
www.allitebooks.com

http://www.allitebooks.org

Learning Underscore.js

Explore the Underscore.js library using a test-driven
development approach

Alex Pop

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Underscore.js

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1261015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-381-6

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Alex Pop

Reviewers
Craig Davis

Pavel Tkachenko

Jitendra Zaa

Commissioning Editor
Dipika Gaonkar

Acquisition Editors
Indrajit Das

Rebecca Pedley

Content Development Editor
Divij Kotian

Technical Editor
Siddhi Rane

Copy Editor
Janbal Dharmaraj

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Alex Pop is a professional software developer with 14 years of experience in
building applications for various platforms and technologies.

He has worked for ISVs, building enterprise resource planning applications, a
content management system, and insurance and financial software products, and is
currently working in the higher education sector as a web application developer.

He is the author of Learning AngularJS for .NET Developers, Packt Publishing. His
developer blog at http://alexvpop.blogspot.co.uk/ contains technical articles
about .NET, JavaScript, and various software engineering topics.

I would like to thank my wife and daughter for their support and
understanding.

www.allitebooks.com

http://alexvpop.blogspot.co.uk/
http://www.allitebooks.org

About the Reviewers

Craig Davis is a software engineer with a 20-year history in the web industry. He
works at Help Scout, an organization that helps people bring personalized e-mail
support to the enterprise. He has been a technical editor for many programming
books and is proud to contribute to multiple open source projects. He is a competitive
cyclist and runner and lives in New Mexico with his wife and their dog.

Pavel Tkachenko is an inspired self-taught computer wizard. Since childhood,
he has had a passion for designing and developing websites and maintaining
complex server architectures. He has created a number of original tools, such as
HTMLki, Sqobot, and Sqimitive, to tackle common problems in a new way. He is
also the founder of the Russian Laravel community and an active member of Russian
publication networks such as Habrahabr.ru.

He has been freelancing since 2009, working on all sorts of websites built around
PHP, Rails, Python, JavaScript, and MySQL. He used to lead his own team as well
as work on his own. His views are often unconventional, but that's what allows
him to work on high-profile projects with a custom approach. You can contact him
via his page at http://proger.me.

www.allitebooks.com

http://proger.me
http://www.allitebooks.org

Jitendra Zaa is Salesforce MVP with more than 6 years of experience in web
technologies and cloud platforms. He is a manager at Cognizant technology solutions.

You can follow him @JitendraZaa or at his website http://jitendrazaa.com/.

Writing technical blog articles, learning new programming languages and
frameworks, and sharing knowledge with others are some of his hobbies.

His experience and projects normally include Salesforce, Java, C#, ASP.Net, JIRA,
and PHP-based applications.

Other books he has reviewed include Force.com Enterprise Architecture, Developing
Applications with Salesforce Chatter, and Visualforce Development Cookbook, all by Packt
Publishing. Right now, he is writing a book on design patterns in Salesforce with
Packt Publishing.

I would like to thank my mom, dad, my wife, Minal, and our
adorable son, Rudra, for all their support, time, and above all for the
motivation to go on.

www.allitebooks.com

http://jitendrazaa.com/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Getting Started with Underscore.js 1

Why Underscore 2
Getting started with Underscore by example 3

The ECMAScript 5 starter example 4
The Underscore find starter example 6
The Underscore countBy starter example 8

Key Underscore functions 9
Underscore each 10
Underscore map and reduce 10

Functional programming fundamentals 12
Useful patterns and practices for JavaScript applications
targeting ECMAScript 5 13

The immediately-invoked function expression 14
The revealing module pattern 15
The JavaScript strict mode 18

Setting up a development workflow for exploring Underscore 19
Modern JavaScript development with Node.js 19

Windows 20
Mac OS X 20
Linux 20
Verifying Node.js installation 21

Managing JavaScript dependencies with Bower 21
Choosing a JavaScript editor 23

Testing JavaScript code with Jasmine 24
Jasmine introduction 24
Adding tests using the default Jasmine infrastructure 25

Summary 29

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Using Underscore.js with Collections 31
Key Underscore functions revisited – each, map, and reduce 32

Applying reflection techniques 32
Manipulating the this variable 35
Using map and reduce with object properties 37

Searching and filtering 40
Searching 41

Underscore find 41
Underscore some 43
Underscore findWhere 44
Underscore contains 45

Filtering 45
Underscore filter 45
Underscore where 47
Underscore reject and partition 47
Underscore every 48

Aggregations and transformations 49
Aggregations 49

Underscore max and min 51
Transformations 53

Underscore sortBy 53
Underscore groupBy 54
Underscore indexBy 56
Underscore countBy 57

Other collection-based functions 58
Summary 58

Chapter 3: Using Underscore.js with Arrays, Objects,
and Functions 59

Arrays 59
Extracting array start and end sequences 60
Union, intersect, and related functions 63
Other array-related functions 66

Objects 69
Underscore keys 69
Underscore values and pairs 71
Underscore invert and functions 72
Underscore pick, omit, and has 73
Underscore extend, clone, and defaults 74
Underscore has, property, propertyOf, and matcher 74
Comparing objects and making assertions against objects 76
Other object-related functions 79

Table of Contents

[iii]

Functions 79
Functional composition with bind, bindAll, and partial 79
Further functional composition with memoize, wrap, negate,
and compose 83
Controlling when and how often functions are called 85

Utility functions 87
Summary 88

Chapter 4: Programming Paradigms with Underscore.js 89
The object-oriented programming paradigm 90

Inheritance with object literals 91
Inheritance with object constructors 94
Using Underscore with the object-oriented programming paradigm 97

Using classes with original client data 97
Constructor validation with Underscore 99

The functional programming paradigm 101
Migrating to a functional programming style 103
Functional programming with Underscore.js 107
Summary 109

Chapter 5: Using Underscore.js in the Browser, on the
Server, and with the Database 111

Using Underscore in the browser 112
Enhancing examples output with Bootstrap 112

Better HTML markup with Underscore templates 115
Using Underscore on the server with Node.js 118

Executing JavaScript with Node.js 118
Using Node.js modules 120
Locating modules 121
Creating a npm package 122
Converting JavaScript code to Node.js modules 124
Running tests with Node.js 126

Using Underscore with MongoDB 127
Installing and configuring MongoDB 129

Installing MongoDB on Windows 129
Installing MongoDB on Ubuntu Linux 129
Installing MongoDB on Mac OS X 129
Configuring and running MongoDB 130

Creating initial data using the MongoDB client and Underscore 130
Asynchronous programming in Node.js 135
Accessing data using the MongoDB Node.js driver 135

Table of Contents

[iv]

Using Underscore with PostgreSQL 138
Installing and configuring PostgreSQL 139

Installing PostgreSQL on Windows 139
Installing PostgreSQL on Ubuntu Linux 139
Installing PostgreSQL on Mac OS X 140

Using psql with basic database commands 140
PostgreSQL data types 142

SQL types 142
The jsonb type 143

Using PostgreSQL with plv8 145
Generating data using plv8 and Underscore 146

Summary 149
Chapter 6: Related Underscore.js Libraries and
ECMAScript Standards 151

Using the Underscore-contrib library 151
An overview of Underscore-contrib functionality 152
Exploring Underscore-contrib via examples 155

Using the lodash library 157
An overview of lodash functionality 157
Migrating a project from Underscore to lodash 161

Underscore and JavaScript standards 162
ECMAScript 5.1 (ES5) 163
ECMAScript 2015 (ES6) 163

Array – new features 164
Other notable new features 166
Using ECMAScript 2015 (ES6) today with transpilers 167
ECMAScript 2015 (ES6) by example 175

Summary 180
Chapter 7: Underscore.js Build Automation and
Code Reusability 183

Build automation with Gulp 183
Reusing code based on Underscore between client and server 187

Using CommonJS modules for packaging client code with Browserify 188
Testing CommonJS modules in the browser with Browserify 191
Using Gulp with Browserify 192

Adding ECMAScript 2015 (ES6) support to Browserify 194
Summary 196

Index 197

[v]

Preface
Over the last few years, JavaScript has emerged as one the most popular programming
languages, expanding its reach from its original browser environment to server
runtimes, databases, and to mobile, embedded, or desktop applications. The sixth
edition of its specification ECMAScript 2015 (ES6) was a major milestone that
brought JavaScript features in line with other popular programming languages. The
community and the browser vendors stepped up their efforts to support ES6, and
we should see full support for the standard across multiple JavaScript engines as
soon as early 2016. The future of JavaScript beyond ES6 looks very promising as
its standardization effort aims to release a new specification every year.

In summer 2015, JavaScript was the most popular language used on the GitHub
repository hosting service and had the biggest number of packages compared to all
other languages. This change in popularity was made possible by an intense process
of creation and refinement of libraries and frameworks alongside an improvement
in development standards and practices throughout the JavaScript community. One
of these modern JavaScript libraries is jQuery, the most popular browser library,
which was a great facilitator in speeding up the adoption of common web standards
across browser engines. Similarly, at least in impact, the Underscore library brought
uniformity and functional programming features to JavaScript while bridging the
gap between client and server environments.

Underscore represents a model of code quality and community involvement that
other libraries should try to emulate, and many libraries were inspired or built
upon Underscore. Throughout this book, Underscore proved to be the perfect vehicle
to explore programming concepts that apply to any type of application. It is also a
great example for the concept of universal JavaScript where the same code can be
executed in multiple environments. For a JavaScript developer, Underscore is the
JavaScript-based library that can be used to create code that runs everywhere or as
a foundation for adopting a functional programming style.

Preface

[vi]

JavaScript has become an important language in enterprise software development
with the adoption of the Node.js runtime by companies such as Microsoft, IBM, and
Intel to name just a few. The considerable rise in popularity of single page application
frameworks, such as Backbone.js, AngularJS, React, and many others, means that
developers are writing more complex JavaScript code with an increased effort in
managing the increase in complexity. Adopting standards such as ES6 and using
Underscore or similar libraries should help in coping with the challenges of the
rapidly and continuously changing industry.

What this book covers
Chapter 1, Getting Started with Underscore.js, introduces you to Underscore and explains
the main problems addressed by the library together with a quick introduction to
functional programming. This chapter describes some of the concepts and patterns
that are used by Underscore or are helpful when using Underscore. The final part is a
walkthrough to set up the development environment used throughout the book with
a starter example.

Chapter 2, Using Underscore.js with Collections, explores the Underscore functionality for
collections by example and explains some of the concepts related to these areas—scope
resolution and execution context, map/reduce, and functional programming concepts.

Chapter 3, Using Underscore.js with Arrays, Objects, and Functions, looks at functionality
for arrays, objects, and functions and builds upon the concepts and functions
introduced in the previous chapter. In the functions section, you will learn how to
manipulate function scopes and arguments and why this is an important aspect of
JavaScript programming in general.

Chapter 4, Programming Paradigms with Underscore.js, expands on the concepts and
practices of functional programming to solve common programming problems.
The chapter starts with a differentiation between object-oriented programming
and functional programming. It continues by exploring examples of functional
programming with Underscore.

Chapter 5, Using Underscore.js in the Browser, on the Server, and with the Database, is
about using Underscore in specific contexts, starting with the browser environment,
closely followed by Node.js server-side applications or libraries. You will then learn
how to use Underscore with databases such as MongoDB and PostgreSQL, which
can execute JavaScript to query data.

Preface

[vii]

Chapter 6, Related Underscore.js Libraries and ECMAScript Standards, discusses
advanced topics such as the link between Underscore and JavaScript standards,
libraries that augment or can even replace Underscore, with a focus on taking
advantage of the new ECMAScript 2015 (ES6) features.

Chapter 7, Underscore.js Build Automation and Code Reusability, introduces a build
automation solution together with strategies to reuse Underscore based code
between different application hosts.

What you need for this book
You need to have the Node.js runtime installed and it is available at
https://nodejs.org/. Details on how to install it can be found in
Chapter 1, Getting Started with Underscore.js.

All the code in this book can be edited in any text editor or IDE that you are
familiar with and has support for the JavaScript language.

Who this book is for
This book is for developers with fundamental JavaScript knowledge who want to
use modern JavaScript libraries to advance their programming skills. Underscore is
one of the most important libraries you should be familiar with and the book will
help you achieve this goal by going through its fundamentals and using it in a wide
variety of contexts. This book should be relevant to anyone who:

• Is interested in building web applications, single-page web applications
or JavaScript-based desktop, mobile, or embedded applications

• Wants to use Node.js to build web applications or web services
• Wants to work with databases such as MongoDB or PostgreSQL and

leverage their JavaScript support

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We just need to open the SpecRunner.html file in a browser and we should see
this output."

https://nodejs.org/

Preface

[viii]

A block of code is set as follows:

var peopleWithAwardAge = _.map(people, function(person){
 return {
 name: person.name,
 awardAge: person.awardYear - person.birthYear
 }
});

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

var peopleWithAwardAge = _.map(people, function(person){
 return {
 name: person.name,
 awardAge: person.awardYear - person.birthYear
 }
});

Any command-line input or output is written as follows:

npm install -g bower

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Executing the following line in a Command Prompt with administrator
privileges (opened using the Run as administrator option)."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

Preface

[ix]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with
Underscore.js

This chapter introduces you to Underscore and explains the main problems
addressed by this library together with a quick introduction to functional
programming. The chapter describes some of the concepts and patterns that are
used by Underscore or are helpful when using Underscore. The final part is a
walkthrough to set up the development environment used throughout the book.

The topics covered in this chapter are as follows:

• Why Underscore
• Getting started with Underscore by example
• Key Underscore functions
• Functional programming fundamentals
• Useful patterns and practices for JavaScript applications targeting

ECMAScript 5
• Setting up a development workflow to explore Underscore
• Testing JavaScript code with Jasmine

The chapter assumes that you know JavaScript programming fundamentals
and how to create basic web pages using HTML, CSS, and jQuery.

The source code for all the examples from this chapter is also hosted online on
GitHub at https://github.com/popalexandruvasile/underscorejs-examples/
tree/master/getting-started.

www.allitebooks.com

https://github.com/popalexandruvasile/underscorejs-examples/tree/master/getting-started
https://github.com/popalexandruvasile/underscorejs-examples/tree/master/getting-started
http://www.allitebooks.org

Getting Started with Underscore.js

[2]

Why Underscore
In the last couple of years, the JavaScript programming language has extended its
reach dramatically. While initially it was a browser-based scripting language, it is
now used in server-side applications via platforms such as Node.js or in mobile and
desktop applications via frameworks such as PhoneGap and Node-Webkit. Database
engines such as MongoDB and PostgreSQL also use JavaScript, and this makes it
possible to write an application using the same programming language throughout all
its layers and components. Another significant change that raised the importance of
JavaScript was the emergence of libraries and frameworks that targeted the browser
as an application platform. Libraries such as jQuery enabled cross-browser HTML
element manipulation, among other features, and frameworks such as Backbone.js
facilitated building single page applications.

A single page application (also known as SPA) has the user interface
rendering and navigation happening in the browser rather than on
the server.

The library presented in this book is called Underscore and provides an extensive
set of functions that simplify and enhance handling of JavaScript objects, arrays, and
functions. It accomplishes this by providing missing functional programming features
to JavaScript. By using Underscore JavaScript gains a better level of usability that
makes coding easier and more expressive on a similar level to other general purpose
programming languages.

Version 1.0 of Underscore was launched in 2010 around the time when single page
applications started to gain more ground. Underscore is used in Backbone.js as both
have the same author, and after its launch it has become one of the most popular
JavaScript libraries. At the time of writing this book, Underscore has reached
version 1.8.3, which will be the version used throughout all examples.

Underscore is representative of a good JavaScript utility library as it provides
solutions for a specific problem domain rather than being a catchall utility. It also
has very good online documentation (including annotated source code) that is
available at http://underscorejs.org/, which is another distinctive attribute of a
good software library. This book will explore Underscore by presenting a series of
more involved examples than the ones provided with its library documentation.

http://underscorejs.org/

Chapter 1

[3]

To understand why Underscore is so popular, we need to discuss the ECMAScript
5 (ES5) specification and what it meant for JavaScript as a programming language.
Technically, JavaScript is a specific implementation of an open language specification
called ECMAScript. The current version of this specification was finalized at the
end of 2009 and is known as ECMAScript 5 (or ECMAScript 5.1 to be very specific).
This version added functionality for the built-in JavaScript objects, Array and
Object, included new functional features, and improved the meta-programming
story among other changes. Soon after its release, it started to be adopted by all
major browsers, including Internet Explorer from version 9. There was still a large
number of users relying on browsers such as Internet Explorer 6, 7, and 8 that were
unlikely to upgrade too quickly to Internet Explorer 9 compared to users of browsers
such as Mozilla Firefox and Google Chrome that had faster release and upgrade
cycles. As Underscore provided support for some of the functionality introduced
by ECMAScript 5, this made it a useful library for web applications targeting older
browsers such as Internet Explorer 8, and for developers that wanted to write code
that was based on ES5 without worrying about browser support. Although ES5
support is important, this is just a small feature of Underscore compared to the
rest of its features.

All of this book's examples assume that they are executed against a JavaScript
version that is ES5 compliant. All the examples can be executed on Windows, Mac
OS X, and Linux, and we will mainly target Google Chrome and Mozilla Firefox
that are the most popular cross platform browsers (although you should not have
issues running the examples in other browsers).

Technically, Underscore is not directly compatible with ES5 starting
from version 1.7.0, and we will discuss more about standards
compliance in Chapter 6, Related Underscore.js Libraries
and ECMAScript Standards.
ES 5 support for older browsers should be provided through a library
targeting this feature exclusively such as es5-shim. This library is
available at https://github.com/es-shims/es5-shim, where
you can find more details about its features.

Getting started with Underscore by
example
The best way to introduce Underscore is with examples. We will target the same
problem and solve it first using plain JavaScript that is ES5 compliant followed
by a couple of Underscore-based solutions.

https://github.com/es-shims/es5-shim

Getting Started with Underscore.js

[4]

The ECMAScript 5 starter example
The examples presented in this chapter are hosted in web pages, and they can be
executed by opening the index.html example file in your preferred web browser.

We start with a dataset that contains various bicycles and each one has a specific
type. We want to process the dataset and get a count of bicycles for each bicycle
type. The dataset is represented by an array of bicycle objects created using the
object literal notation:

var bicycles = [{
 name: "A fast bike",
 type: "Road Bike"
 }, {
 name: "An even faster bike",
 type: "Road Bike"
 }, {
 name: "A springy bike",
 type: "Mountain Bike"
 }, {
 name: "A springier bike",
 type: "Mountain Bike"
 }, {
 name: "An all-terain bike",
 type: "Mountain Bike"
 }, {
 name: "A classy bike",
 type: "Urban Bike"
 }, {
 name: "A modern bike",
 type: "Urban Bike"
 }, {
 name: "A blue bike",
 type: "Children Bike"
 }, {
 name: "A pink bike",
 type: "Children Bike"
 }, {
 name: "A noisy bike",
 type: "Children Bike"
 }, {
 name: "A clown bike",
 type: "Children Bike"
 }];

Chapter 1

[5]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Next, we will define a function that processes the dataset and creates an array of
objects that contains the count of bicycles for a specific bicycle type:

var getBicyclesCountPerType = function() {
 var bicyclesCountPerType = [];
 bicycles.forEach(function(bicycle) {
 var isExistingType = false;
 bicyclesCountPerType.forEach(function(typeCount) {
 if (typeCount.type === bicycle.type) {
 typeCount.count += 1;
 isExistingType = true;
 }
 });
 if (!isExistingType) {
 bicyclesCountPerType.push({
 type: bicycle.type,
 count: 1
 });
 }
 });
 return bicyclesCountPerType;
};

The first highlighted function forEach is ES5 specific and enumerates the values of an
array while executing a function for each element in the array. The forEach function is
defined against Array.prototype, so it will be available to any Array instance.

The final code snippet for the first example relies on jQuery to append the
results for each bicycle type as HTML content:

$(document).ready(function() {
 var outputContent = "There are " + bicycles.length + "
 bicycles:"
 var results = getBicyclesCountPerType();
 results.forEach(function(typeCount) {
 outputContent += "
";

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Getting Started with Underscore.js

[6]

 outputContent += " - " + typeCount.count + " of type: " +
 typeCount.type;
 });

 $("#output").html(outputContent);
});

Notice how we use forEach again to enumerate the final results. You can explore
the example in the starter-example-with-ECMAScript5 folder from the source
code for this chapter. In order to run this example, you need to open the index.html
file in your preferred web browser. The example can also be executed directly at
http://bit.ly/1WLzHuS.

You can view the example output in this screenshot:

The Underscore find starter example
In the previous example, we used two-nested forEach calls, and this approach
seems inefficient under closer scrutiny. You cannot break a forEach loop, which
means that you cannot stop after you processed the specific elements that were
targeted. The second nested forEach call only needs to process a target element from
the list rather than iterating the full list every time. Fortunately, Underscore has a
function called find that iterates an array and stops when an element matching a
specific criteria is found.

To use Underscore, we need to add a reference to a hosted version of the library
in the head element of the example web page:

<script src="http://cdnjs.cloudflare.com/ajax/
libs/underscore.js/1.8.3/underscore.js"></script>

In the first example, we changed the function getBicyclesCountPerType() to use
the Underscore find function:

var getBicyclesCountPerType = function() {

http://bit.ly/1WLzHuS

Chapter 1

[7]

 var bicyclesCountPerType = [];
 bicycles.forEach(function(bicycle) {
 var currentTypeCount = _.find(bicyclesCountPerType,
 function(typeCount){
 return typeCount.type === bicycle.type;
 });
 if (currentTypeCount) {
 currentTypeCount.count += 1;
 }
 else
 {
 bicyclesCountPerType.push({
 type: bicycle.type,
 count: 1
 });
 }
 });
 return bicyclesCountPerType;
};

The code is terser and more efficient thanks to the find function, while the
rest of the example remains unchanged. You can explore the full example in the
starter-example-with-underscore.find folder from the source code for this
chapter or by running it directly at http://bit.ly/1U7dVO4.

All Underscore functions are usually accessed through the Underscore global
object named _. This name can be changed if it conflicts with other global variable
names, and we will explore how to do this in Chapter 4, Programming Paradigms with
Underscore.js. We will stick with the default Underscore global object name for most
of the examples.

The full signature of the find function is _.find(list, predicate, [context]).
This function accepts an array or an object as its first parameter list followed by
a function parameter predicate that will be executed against each element of the
array or against each property value of the object passed as the first parameter. The
second parameter function predicate accepts an array element or an object property
value and should return a Boolean value. If the return value is true, the _.find()
function will stop iterating and will return the array element or the property value
from the current position. The last optional parameter context is rarely used in this
book and will be covered later on when we discuss scopes and the value of the this
object. The find function signature was briefly explored here as it is used extensively
in Underscore and subsequently in the rest of the examples.

http://bit.ly/1U7dVO4

Getting Started with Underscore.js

[8]

In ES6, there is also a find function defined against Array.prototype
that can be used as an alternative. We will discuss this function and
other similar ECMAScript 6 functions in Chapter 6, Related Underscore.js
Libraries and ECMAScript Standards.

The Underscore countBy starter example
The previous example introduced Underscore as an incremental improvement
compared to the example before that. Among Underscore's 100+ functions, there
is one that can replace the getBicyclesCountPerType() function completely and
significantly reduce the number of lines of code. This function is countBy and its
signature is _.countBy(list, iteratee, [context]). While its signature is
similar with the one for the find function, the second function parameter iteratee
is expected to return a string value representing a key for the iterated item. The key
is used to group different elements of an array or different object property values
depending on the list parameter type.

The countBy function returns an object with properties that have names taken from
the keys supplied by the iteratee function. The value of such a property is the
count of items from the list parameter that share the current property name as key.

The getBicyclesCountPerType() function invocation can be completely replaced
with the _.countBy() function invocation:

var result = _.countBy(bicycles, function(bicycle){
 return bicycle.type;
});

The result object value has the following JSON representation:

{
 "Road Bike": 2,
 "Mountain Bike": 3,
 "Urban Bike": 2,
 "Children Bike": 4
}

Chapter 1

[9]

The code tasked with displaying the example output needs to be changed accordingly.
Instead of manipulating the array returned by the getBicyclesCountPerType()
function it should manipulate the result object properties. We will use another
Underscore function _.pairs(), which converts object properties to an array of
elements where each element is a property name and value pair. Such a pair is a
two-dimensional array itself, and you can see how it is declared and referenced
in the highlighted sections from the following example:

$(document).ready(function() {
 var outputContent = "There are " + bicycles.length + "
 bicycles:"
 var result = _.countBy(bicycles, function(bicycle) {
 return bicycle.type;
 });
 _.pairs(result).forEach(function(typeCountPair) {
 var key = typeCountPair[0];
 var value = typeCountPair[1];
 outputContent += "
";
 outputContent += " - " + value + " of type: " + key;
 });
 $("#output").html(outputContent);
});

We have now dramatically reduced the size of the initial example by using Underscore
functions while maintaining the same functionality. You can explore the full example
in the starter-example-with-underscore.countBy folder from the source code for
this chapter or by running it directly at http://bit.ly/1JdNwc6.

We started with one example that uses ES5 functions, followed by one that uses
an Underscore function that is also an ES6 function. The final example uses another
Underscore specific function that provides a higher level of data manipulation
compared to built in JavaScript functions. You should find a lot more Underscore
examples of this kind throughout the book.

Key Underscore functions
Out of the many Underscore functions, there are a couple that deserve special
attention as they provide a good introduction to a range of similar functions.
These functions are essential when processing data, they have an equivalent
in the ES5 specification, and they are: each, map, and reduce.

http://bit.ly/1JdNwc6

Getting Started with Underscore.js

[10]

Underscore each
In the first example, we used the ES5 function Array.prototype.forEach to iterate
the initial dataset. Underscore also provides its own version called _.each(). The
main difference from the Array.prototype.forEach function is that _.each() can
be used against object properties if an object rather than array is provided as its first
argument. The full function signature is _.each(list, iteratee, [context]) and
it will call the second function parameter iteratee against each item of the iterated
list object or array passed as its first argument. To use this function in the second
example starter-example-with-underscore.find from this chapter, we just need
to replace this line from the getBicyclesCountPerType() function:

bicycles.forEach(function(bicycle) {

With line:

_.each(bicycles, function(bicycle) {

Underscore each has a forEach alias, so it can be called in a similar way with its
ES5 equivalent:

_.forEach(bicycles, function(bicycle) {

Another difference from the ES5 equivalent is that Underscore each returns the
first parameter as opposed to undefined allowing further function call chaining.
Underscore also has first class support for function chaining that will be detailed
in Chapter 4, Programming Paradigms with Underscore.js.

We will explore calling each over object properties together with other Underscore
functions mentioned in this chapter in Chapter 2, Using Underscore.js with Collections.

Underscore map and reduce
The next Underscore functions of special interest are map and reduce. The
Underscore map function signature is similar to the each function signature:
_.map(list, iteratee, [context]). It transforms a list array or object
parameter into a new array that contains modified elements or property values
of the list parameter. The transformation is made by:

• Iterating the elements or properties of the list parameter using the second
parameter function iterate, and calling this function for each item;

• Collecting the values of the iteratee call into the array returned by the
_.map() function.

Chapter 1

[11]

Underscore reduce is a function that converts an array or object properties into
a single value. The function signature is _.reduce(list, iteratee, [memo],
[context]) and the optional memo parameter is used as the seed for the returned
value. If memo is not specified, then the first element or object property value of
the list parameter will be used as the seed value instead. The iteratee function
signature is iteratee(memo, element, index, list) when list is an array like
object. The value returned by iteratee is either supplied as the memo parameter
for the next iteration or is returned as the final reduce value if there are no more
iterations left.

The next example will showcase these two functions by iterating over an array of
people that have received an important award at some point in their lives—the
Nobel prize for literature. The example calculates the age when the award was
received using _.map() and the average value of the age when the award was
received using _.reduce().

This is the initial dataset:

var people = [{
 name: "Herta Muller",
 birthYear: 1953,
 awardYear: 2009
 }, {
 name: "Mario Vargas Llosa",
 birthYear: 1936,
 awardYear: 2010
 }, {
 name: "Tomas Transtromer",
 birthYear: 1931,
 awardYear: 2011
 }, {
 name: "Mo Yan",
 birthYear: 1955,
 awardYear: 2012
 }, {
 name: "Alice Munro",
 birthYear: 1931,
 awardYear: 2013
 }, {
 name: "Patrick Modiano",
 birthYear: 1945,
 awardYear: 2014
 }];

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Underscore.js

[12]

First, we calculate the age when the award was received for each person by using
_.map():

var peopleWithAwardAge = _.map(people, function(person){
 return {
 name: person.name,
 awardAge: person.awardYear - person.birthYear
 }
});

Next, we calculate the average age of the award by using _.reduce() and passing 0
as the memo seed value:

var totalAge = _.reduce(peopleWithAwardAge, function(memo, person) {
 return memo + person.awardAge;
}, 0);
var averageAwardAge = totalAge / peopleWithAwardAge.length;

You can explore the complete example in the underscore.map.reduce folder from
the source code for this chapter or by running it directly at http://bit.ly/1MMSOlc.

Functional programming fundamentals
In the previous example, we transformed an existing dataset into a new structure
rather than modifying it (mutating it) by using the two powerful Underscore functions
_.map() and _.reduce(). This is a typical example of a functional programming style
in action: we use functions also known as higher-order functions that accept other
functions as parameters, and we don't alter (mutate) the state of variables such as
people and peopleWithAwardAge once they are created—the data that we work
with is immutable.

Functional programming (FP) is a declarative programming paradigm in which
functions are first class citizens that are treated as values (data), and the application
code avoids mutating existing states. In an FP language, you also find that:

• Functions called higher-order functions can be used to compose other
functions by accepting functions as arguments or by returning functions.

• Functions that don't have side effects are called pure functions, and if they
are called repeatedly with the same parameters, they return the same result.
They don't have any dependency on data outside their function scope.

http://bit.ly/1MMSOlc

Chapter 1

[13]

There are many aspects of FP such as extensive use of recursion, employing lazy
evaluation, and built-in support for pattern matching that are implemented to various
degrees in FP languages. Languages such as Erlang, Haskell, Clojure, and F# (to
name just a few) are considered functional languages, while languages such as C#,
JavaScript, and Java 8 have limited support for a functional programming style.
Languages such as Scala are classified as object-functional—a bridge between FP
and OOP (object-oriented programming) paradigms.

JavaScript can be used in a functional programming style through its built in
support for functions as first class citizens, higher-order functions, by simulating
immutability and using its limited recursion capabilities. We will explore JavaScript
functional aspects in Chapter 4, Programming Paradigms with Underscore.js and where
needed in other chapters.

Useful patterns and practices for
JavaScript applications targeting
ECMAScript 5
The examples we have used so far had an introductory role and they are not
representative of a production ready application. One of the goals of this book is to
present examples that are closer to real life usage and the rest of the examples will
follow this goal. As a first step, we need to introduce some JavaScript patterns and
practices that will be useful in organizing and driving the rest of the examples in
this book. They are essential when writing ES5 code, but you don't need them when
writing ES6 code using classes and modules (more details about ES6 and how it
improves code quality will be discussed in Chapter 6, Related Underscore.js Libraries
and ECMAScript Standards).

One of the difficult problems to solve when writing JavaScript code is to avoid the
pollution of the global scope. Any variable declared outside of a function body will
automatically be visible in the global scope. You can easily imagine a scenario where
your variable names clash with the variables defined in other JavaScript files or
libraries. Also, JavaScript automatically moves all variable declarations to the top
of the current scope. This behavior is called hoisting and can lead to scenarios
where you use a variable before it is declared, which is confusing and can cause
unintended errors.

Getting Started with Underscore.js

[14]

To avoid these problems, a typical workaround is to use a function body to declare
your variables. Variables declared in this way belong to the local scope of the enclosing
function, and they are invisible to the global scope. This workaround is based on two
patterns used frequently in JavaScript applications: the immediately invoked function
expression (IIFE)—pronounced "iffy"—and the revealing module pattern.

The immediately-invoked function expression
If we append the line, console.log(people.length);, at the end of the script
section from the previous example found in the underscore.map.reduce folder, we
will see the length of the array written in the console as 6. If we convert the example
to use an immediately invoked function expression, the script section will look like
the following code (with most of the code removed for brevity):

(function(){
 var people = […];
 $(document).ready(function() {…});
}());
console.log(people.length);

You can view the preceding example either online at http://bit.ly/1WNL31t or
in the underscore.map.reduce-iife folder from the source code for this chapter.

I have highlighted the changes required to convert the code to use the immediately
invoked function expression. Sometimes, a leading semicolon is used to prevent
issues caused by the automatic semicolon insertions in JavaScript when your
scripts get concatenated with other scripts. The enclosing parentheses around the
highlighted self-executing anonymous function and before the last semicolon are
the signature for these types of expression.

The example will still work as before, but the console output will have this message:
Uncaught ReferenceError: people is not defined. Using this pattern, we
made the people variable inaccessible for the global scope, while leaving it available
for the IIFE function scope. The Underscore library is using an IIFE that contains all
its source code and we will follow suit by ensuring the rest of the examples will use
this pattern whenever applicable.

Next, we will explore a JavaScript pattern that also prevents exposing data to the
global scope and is useful for safely sharing application code between different
components in JavaScript.

http://bit.ly/1WNL31t

Chapter 1

[15]

The revealing module pattern
The revealing module pattern solves the problem of hiding implementation
details for JavaScript objects that expose property-like objects or functions to
the global scope. The following example is a plain JavaScript one—no external
library references are required:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Getting started - Revealing module pattern</title>
</head>
<body>
 <h1>See browser console for example output.</h1>
 <script>
 var revealingModule = (function() {
 var innerObject = 5;
 var innerFunction = function(value) {
 return innerObject + value;
 };
 return {
 outerObject1: innerFunction(1),
 outerObject2: innerFunction(2),
 outerFunction: innerFunction
 };
 }());
 console.log("outerObject1:" + revealingModule.outerObject1);
 console.log("outerObject2:" + revealingModule.outerObject2);
 console.log("innerObject:" + revealingModule.innerObject);
 console.log("outerFunction(3):" +
 revealingModule.outerFunction(3));
 console.log("innerFunction(3):" +
 revealingModule.innerFunction(3));
 </script>
</body>
</html>

You can view the example either online at http://bit.ly/1hUg2J5 or in the
revealing-module-pattern folder from the source code for this chapter.

http://bit.ly/1hUg2J5

Getting Started with Underscore.js

[16]

The first highlighted code represents the object created through the revealing module
pattern, and you will notice that it relies on an IIFE to define itself. Using this pattern,
all of the variables declared inside the IIFE are inaccessible to the outside scope,
and the only visible properties are the ones returned in the object created in the last
highlighted code snippet. The console output for this example is shown as follows:

outerObject1:6

outerObject2:7

innerObject:undefined

outerFunction(3):8

Uncaught TypeError: undefined is not a function

Any reference to the variables defined within the IIFE will be unsuccessful as
demonstrated by the exception raised when the innerFunction was called within
the global scope. You will see this pattern in action throughout this book, as we
will use it in many examples. The Underscore library is using a version of this
pattern and exposes all its global accessible functions though its _ object. The
annotated Underscore source code available at http://underscorejs.org/docs/
underscore.html is great for exploring how the library works behind the covers
and is the recommended companion for this book.

You can find more information about the revealing module
pattern and other JavaScript design patterns in the online
resource Learning JavaScript Design Patterns, Addy Osmani,
O'Reilly Media, available at http://addyosmani.com/
resources/essentialjsdesignpatterns/book/.

Next, we will convert the underscore.map.reduce-iife example code to
use the revealing module pattern and define a global accessible object called
awardAgeCalculator. This object exposes all relevant functions that need to
be accessible outside the IIFE scope as shown in the next code snippet:

var awardAgeCalculator = (function() {
 var getPeople = function() {
 return [{
 name: "Herta Muller",
 birthYear: 1953,
 awardYear: 2009
 }, {
 ...
 }, {
 name: "Patrick Modiano",
 birthYear: 1945,

http://underscorejs.org/docs/underscore.html
http://underscorejs.org/docs/underscore.html
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/

Chapter 1

[17]

 awardYear: 2014
 }];
 };

 var innerGetPeopleWithAwardAge = function() {
 return _.map(getPeople(), function(person) {
 return {
 name: person.name,
 awardAge: person.awardYear - person.birthYear
 };
 });
 };

 return {
 getPeopleWithAwardAge: innerGetPeopleWithAwardAge,
 getAverageAwardAge: function() {
 var peopleWithAwardAge = innerGetPeopleWithAwardAge();
 var totalAwardAge = _.reduce(peopleWithAwardAge,
 function(memo, person) {
 return memo + person.awardAge;
 }, 0);
 return totalAwardAge / peopleWithAwardAge.length;
 }
 };
}());

You can find the example in the underscore.map.reduce-revealing-module
folder from the source code for this chapter or you can execute it online at
http://bit.ly/1h7eg6x.

I have highlighted the two functions that are defined in the local IIFE scope and
cannot be accessed directly unless they are referenced as properties in the object
returned by the awardAgeCalculator IIFE. Notice the functional style used in
the example; apart from the awardAgeCalculator object, we use only functions
throughout and don't have any variable inside awardAgeCalculator that preserves
its value between any two function calls. We will continue to use this approach to
define the core functionality of an example and here is how awardAgeCalculator
is used to generate the example output as part of the same example:

$(document).ready(function() {
 var outputContent = "
Award age for people:";
 _.each(awardAgeCalculator.getPeopleWithAwardAge(),
 function(person) {

http://bit.ly/1h7eg6x

Getting Started with Underscore.js

[18]

 outputContent += "
";
 outputContent += " - " + person.name + " was " +
 person.awardAge + " years old";
 });
 var averageAwardAge =
 Math.floor(awardAgeCalculator.getAverageAwardAge());
 outputContent += "

" + "Average award age is " +
 averageAwardAge + " years old.";
 $("#output").html(outputContent);
});

I have highlighted the usages of the awardAgeCalculator functions, and we
obtained a better separation of the code and simplified the example output section.

We can encounter an issue if we reference other JavaScript files that
might also declare an awardAgeCalculator variable. Choosing
the name of your global accessible objects is very important because
of this issue, and it is a very difficult problem to solve without
a dependency management utility. We will discuss how we can
avoid this issue and other ways to organize JavaScript code in
Chapter 6, Related Underscore.js Libraries and ECMAScript Standards.

The JavaScript strict mode
ES5 has introduced a new way to use a stricter variant of JavaScript called strict
mode. This variant changes the behavior of the JavaScript runtime, and the
following are some changes that occur in strict mode:

• Some silent errors are thrown instead of being ignored, such as assignment
to a nonwritable property.

• All global variables need to be explicitly declared. When you mistype a
global variable name, an exception is thrown.

• All of the property names of an object need to be unique, and all of the
parameter names for a function also need to be unique.

By including the line "use strict"; in your scripts, you can adhere to this
JavaScript variant when using a modern ES5-compliant browser. If the script is
loaded in an older browser, the statement is ignored and the JavaScript is parsed
in non-strict mode. Strict mode can only be safely declared at the top of a function
body. If it is declared in the global scope, it can cause issues when a strict mode
script is concatenated with other non-strict scripts.

Chapter 1

[19]

Using strict mode leads to safer, cleaner code with fewer errors. All examples
throughout the rest of the book will use the patterns and practices discussed
in this section.

Setting up a development workflow for
exploring Underscore
The examples we used so far can be executed directly and their external JavaScript
dependencies such as jQuery and Underscore are referenced using publicly hosted
files. This is great for quick examples and rapid prototyping but not a recommended
practice when building any non-trivial application. We will next set up a development
workflow that is popular with JavaScript developers. This workflow will help us build
examples efficiently and is close to what a real-life JavaScript application will use.

Modern JavaScript development with Node.js
The process of building modern JavaScript applications is greatly simplified by
leveraging the rich ecosystem powered by Node.js.

Node.js is a software runtime for building server-side applications using JavaScript.
Internally, it uses the V8 JavaScript engine that powers the Google Chrome web
browser to compile JavaScript code to native code before executing it. It is based
on an asynchronous event-driven programming model with non-blocking I/O
operations using a single thread of execution. This makes it a great fit for real-time
applications and high-throughput web applications. Node.js benefits from all the
optimizations and performance improvements that Google Chrome has introduced
since its first version and it runs on all major operating systems: Linux, Mac OS X,
and Windows.

The Node.js installation comes with a built-in package manager called npm that
contains a very large number of packages. There is an online npm packages
repository available at https://www.npmjs.org/ that is used for installing or
updating Node.js application dependencies.

For setting up the Node.js environment, we will target the Windows operating
system first with Mac OS X and Linux covered next.

https://www.npmjs.org/

Getting Started with Underscore.js

[20]

Windows
You need to install Node.js, which comes in 32-bit and 64-bit versions by going to
https://nodejs.org/download/, and select one of the packages that matches your
OS. You can use https://nodejs.org/dist/v0.12.7/node-v0.12.7-x86.msi for
the 32-bit version or https://nodejs.org/dist/v0.12.7/x64/node-v0.12.7-x64.
msi for the 64-bit version (the available versions may be different at the time you are
reading this book). We have used the 64-bit version with the examples from this book.
As an alternative installation method, you can use the Chocolatey package manager for
Windows and install it using the instructions provided at https://chocolatey.org
or by executing the following line in a Command Prompt with administrator privileges
(opened using the Run as administrator option):

@powershell -NoProfile -ExecutionPolicy Bypass -Command "iex ((new-object
net.webclient).DownloadString('https://chocolatey.org/install.ps1'))" &&
SET PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin

With Chocolatey now available, we can use it to install Node.js by executing the
following command:

choco install -y node.js

Mac OS X
On Mac OS X, we will use the Homebrew package manager for OS X that can be
installed by following the instructions at http://brew.sh or by executing the
following command line in the terminal:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"

With Homebrew now available, we can use it to install Node.js by executing the
following command:

brew install node

Linux
Ubuntu 14.04 was the target Linux distribution used to test the examples from
this book, but you should be able to use any Linux distribution you prefer.
Ubuntu comes with its built-in package manager, and we will use it to execute
the commands requires to register the Node.js repository used in this book
(more details at http://bit.ly/1hcVaMm):

sudo apt-get install -y curl

https://nodejs.org/download/
https://nodejs.org/dist/v0.12.7/node-v0.12.7-x86.msi
https://nodejs.org/dist/v0.12.7/x64/node-v0.12.7-x64.msi
https://nodejs.org/dist/v0.12.7/x64/node-v0.12.7-x64.msi
https://chocolatey.org
http://brew.sh
http://bit.ly/1hcVaMm

Chapter 1

[21]

curl -sL https://deb.nodesource.com/setup_0.12 | sudo bash -

With the Node.js repository now configured in Ubuntu, we can install Node.js
with the following command:

sudo apt-get install -y nodejs

Verifying Node.js installation
To verify that Node.js has installed correctly, we need to open the OS-specific
Command Prompt and execute the following command:

node -v

If you see v0.12.07 on the screen, it means that Node.js has installed correctly, and
we can execute all the examples from this book without any other OS-level changes.

We will explore more about Node.js and npm packages in Chapter 5,
Using Underscore.js in the Browser, on the Server, and with the Database.

Managing JavaScript dependencies with
Bower
With Node.js installed, we have access to its large repository of development tools and
libraries provided through npm. We will use npm to install Bower, which is a package
manager optimized for web sites and web applications. Bower is very similar to npm
with the main difference being that Bower packages maintain a flat dependency
tree as opposed to npm packages that maintain a deep nested dependency tree. For
example, if two Bower packages have a dependency on Underscore, only one version
of the Underscore package will be installed. If two npm packages have a dependency
on Underscore, each package will install its Underscore package separately (although
npm 3 will use flat dependencies by default similar to Bower).

Bower has a dependency on the Git source control system, which can
be installed from this location http://git-scm.com/downloads.

To install Bower, you need to open a Command Prompt and execute this
npm command:

npm install -g bower

http://git-scm.com/downloads

Getting Started with Underscore.js

[22]

Notice the -g npm command-line switch, which installs the package in the machine
specific npm packages folder. By default, npm packages are installed relative to the
current directory unless this command switch is specified. From now on, Bower
will be available to all our examples regardless of the folder in which they reside.

Next, we will use the previous example found in the underscore.map.reduce-
revealing-module folder from the source code for this chapter and transform it
into a new example that leverages Bower for package management.

By running the following command in the example folder, we will create a
bower.json file that holds metadata about the current project and its dependencies:

bower init

When running this command, there are a series of Command Prompt options
that can be accepted with their default values. The values will be updated in the
bower.json file. Next, we will install the Bower packages that match the required
JavaScript library dependencies for jQuery and Underscore:

bower install jquery#2.1.4 --save

bower install underscore#1.8.3 --save

Notice the package name jquery followed by the version target #2.1.4 that ensures
that we are using only a specific version of a Bower package rather than the latest
version available when we omit the version target. The last command-line switch
--save will persist the package information in the bower.json file allowing an easy
restore for the Bower packages if they get deleted locally or they are not committed
with the source code for the current project.

We now have the two JavaScript libraries installed in the current folder
within a bower_components subfolder, which is the default Bower location
for storing packages.

We can now change the JavaScript references in the index.html file to point to
the two local Bower packages rather than the online hosted files:

<script src="bower_components/jquery/dist/jquery.js"></script>
<script src="bower_components/underscore/underscore.js"></script>

I have also moved the inline JavaScript code into two separate files called
awardAgeCalculator.js and index.js that separate the core functionality in
the former from the output specific code in the latter. You can find the example
in the underscore.map.reduce-with-local-dependencies folder from the
source code for this chapter.

Chapter 1

[23]

By leveraging Bower, we can quickly reference any JavaScript library that is needed
while making it very easy to share the current project with other developers or even
publish it to the Bower package repository.

Choosing a JavaScript editor
We are approaching the end of the first chapter, and so far, we have not mentioned
any tool for editing the code used in the example. Actually, we don't really have
to as modern JavaScript development relies on a command-line-based tool chain
usually based on Node.js. The workflow we established for exploring the examples
from this book does not require a specific visual editor to be installed. You could just
use the default operating system text editor and stop at that. However, it is worth
mentioning the existing rich ecosystem of JavaScript visual editors and IDEs that is
available if you want to benefit from additional functionality.

There are both commercial and free to use tools available, and they are separated
into two categories: tools that have a main focus on Node.js and JavaScript-based
development, and tools for general development that support Node.js and JavaScript
through a plugin system. Note that we mentioned both Node.js and JavaScript as
requirements for any editor or IDE as Node.js will be used extensively later on in
this book.

Out of the Node.js and JavaScript-specific commercial tools, it is worth mentioning
WebStorm IDE (more details at https://www.jetbrains.com/webstorm/) and
Cloud9 online IDE that allows browser-based JavaScript development among other
languages (more details at https://c9.io/). There is even a free Microsoft Visual
Studio plugin called Node.js Tools for Visual Studio development (more details at
http://nodejstools.codeplex.com/).

Out of the editors supporting JavaScript via their plugin system, I will mention the
commercial editor Sublime Text (free trial available, more details at http://www.
sublimetext.com/) and the free and open editor Atom (https://atom.io/). Atom
itself was built using Node.js, has a rich plugin ecosystem, and is the editor used to
author all the code from this book. To install Atom, you can follow the instructions
available at http://bit.ly/1EiGYwn.

Of course there are many other tools available out there, but these are the ones that I
personally found useful for learning how to build JavaScript applications.

You can execute all the examples from this book without having to install or
configure anything just by using Cloud9 IDE (free registration required) at the
project address https://ide.c9.io/alexpop/underscorejs-examples.

https://www.jetbrains.com/webstorm/
https://c9.io/
http://nodejstools.codeplex.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
https://atom.io/
http://bit.ly/1EiGYwn
https://ide.c9.io/alexpop/underscorejs-examples

Getting Started with Underscore.js

[24]

Testing JavaScript code with Jasmine
Maintaining complex JavaScript codebases is challenging due to the dynamic nature
of the language and the lack of built-in module support (up until ES6). Applying unit
testing practices helps alleviate these issues and JavaScript as a language benefits
from a large number of unit testing frameworks, libraries, and tools.

We will now add tests for the previous example found in the underscore.map.
reduce-with-local-dependencies folder from the source code for this chapter.
To implement these tests we will use Jasmine, a popular test framework.

Jasmine is a behavior-driven development (BDD) framework that contains
extensive built-in functionality to define and execute tests for JavaScript code. A
BDD framework differs from other test frameworks such as QUnit by defining tests
as a desired behavior, where the test outcome is specified first followed by the actual
test assertion. Jasmine uses a describe/it syntax to define test specifications, while
other BDD frameworks use a given/when/then syntax. Using BDD tests produces
output similar to a specification document and these types of tests are usually called
specs. Other advantages of using Jasmine are that it does not rely on any other
library, it has a rich functionality for defining tests and tests assertions, and it
has great documentation available at http://jasmine.github.io.

Jasmine introduction
A typical Jasmine test that asserts the result of a trivial JavaScript operation will
have the following code (with the Jasmine specific functions highlighted):

describe("A basic JavaScript add operation", function() {
 it("should be correct", function() {
 var result = 1 + 1;
 expect(result).toEqual(2);
 });
});

When running the test, its output should read A basic JavaScript add operation
should be correct, forming a meaningful statement about the value delivered by the
code being tested. The describe call is a Jasmine global function that will group one
or more test specifications that are defined by the it function (which is also another
Jasmine global function). Both functions have a test-related description as the first
argument. The second argument is a function that defines the test suite in its body
with the test specification (or the spec) defined in the it function. Test assertions use
the Jasmine global function expect, which is chained with a helper function called
matcher that will facilitate the test result evaluation.

http://jasmine.github.io

Chapter 1

[25]

There are a couple of built-in matcher functions available, such as toBe(), which
checks whether the test assertion object and the expected object are the same;
toEqual(), which checks whether the two objects are equivalent; and toBeDefined(),
which checks whether the test assertion object is not undefined. You can also define
your own custom matchers for more complex expectation checks. Jasmine allows you
to set up and tear down data before and after a spec is executed through the global
functions beforeEach() and afterEach().

Adding tests using the default Jasmine
infrastructure
Before creating the tests, we need to modify the awardAgeCalculator.js file that
contains the code under test (or SUT—system under test) and ensure it is testable.
A SUT is testable if it allows swapping out its dependencies, if it can be tested in
isolation and does not depend on a shared or global application state.

For our example, we need to test that the two global accessible (or public) functions
of the awardAgeCalculator object (the SUT) are producing the expected results
when executed against specific data sets. Currently, we cannot easily swap out the
default array of people used in the example and we need to change it by making
the getPeople() function public and changing the rest of the functions to accept
an input array as highlighted in the next code snippet:

var awardAgeCalculator = (function() {
 "use strict";

 var getPeople = function() {
 return [{
 name: "Herta Muller",
 birthYear: 1953,
 awardYear: 2009
 }, {
 ...
 }, {
 name: "Patrick Modiano",
 birthYear: 1945,
 awardYear: 2014
 }];
 };

 return {
 getPeople: getPeople,

Getting Started with Underscore.js

[26]

 calculateAwardAgeForPeople: function(people) {
 return _.map(people, function(person) {
 return {
 name: person.name,
 awardAge: person.awardYear - person.birthYear
 };
 });
 },
 getAverageAwardAgeForPeople: function(people) {
 var peopleWithAwardAge =
 this.calculateAwardAgeForPeople(people);
 return _.reduce(peopleWithAwardAge, function(memo, person) {
 return memo + person.awardAge;
 }, 0) / peopleWithAwardAge.length;
 }
 };
}());

We also exposed the getPeople() function to the global scope for convenient access
to the default data set. By making these changes, we have created a testable SUT
where we can alter the input data for the two functions we plan to test. We can now
write the tests by creating a spec\awardAgeCalculatorSpec.js file and using the
following code:

describe("Given awardAgeCalculator", function() {
 describe(
 "when calling calculateAwardAgeForPeople()",
 function() {
 var people;
 var peopleWithAwardAge;
 beforeEach(function() {
 people = awardAgeCalculator.getPeople();
 peopleWithAwardAge =
 awardAgeCalculator.calculateAwardAgeForPeople(people);
 });
 it(
 "then the award age for the first person should be
 correct",
 function() {
 expect(peopleWithAwardAge[0].name).toEqual("Herta
 Muller");
 expect(peopleWithAwardAge[0].awardAge).toEqual(56);
 });
 it(

Chapter 1

[27]

 "then the award age of the last person should be correct",
 function() {
 expect(peopleWithAwardAge[peopleWithAwardAge.length -
 1].name).toEqual("Patrick Modiano");
 expect(peopleWithAwardAge[peopleWithAwardAge.length -
 1].awardAge).toEqual(69);
 });
 });
 describe(
 "when calling getAverageAwardAgeForPeople()",
 function() {
 var people;
 var aveargeAwardAge;
 beforeEach(function() {
 people = awardAgeCalculator.getPeople();
 aveargeAwardAge =
 awardAgeCalculator.getAverageAwardAgeForPeople(people);
 });
 it("then the average award age should be correct",
 function() {
 expect(Math.floor(aveargeAwardAge)).toEqual(69);
 });
 });
});

The tests are defined within two nested describe functions and we used a
beforeEach function to avoid code duplication when exercising the SUT. The
expectations for the first set of tests are verifying that the person name and the
award age are correct.

To execute these tests, we need to add Jasmine support to our example. We will
use Bower to install Jasmine as a development package (a package that can be
omitted when the current project is deployed to a target environment) through
the following command:

bower install jasmine#2.3.4 --save-dev

We will change the default SpecRunner.html file provided with the standalone
Jasmine distribution at http://bit.ly/1EhdgHT to reference the files from the
Bower package together with the SUT file (the code file) and the test file
as highlighted in the following code:

<!DOCTYPE HTML>
<html>
<head>

http://bit.ly/1EhdgHT

Getting Started with Underscore.js

[28]

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-
 8">
 <title>Jasmine Spec Runner v2.3.4</title>
 <link rel="shortcut icon" type="image/png"
 href="bower_components/jasmine/images/jasmine_favicon.png">
 <link rel="stylesheet" type="text/css"
 href="bower_components/jasmine/lib/jasmine-core/jasmine.css">
 <script type="text/javascript"
 src="bower_components/jasmine/lib/jasmine-
 core/jasmine.js"></script>
 <script type="text/javascript"
 src="bower_components/jasmine/lib/jasmine-core/jasmine-
 html.js"></script>
 <script type="text/javascript"
 src="bower_components/jasmine/lib/jasmine-
 core/boot.js"></script>

 <!-- include source files here... -->
 <script src="bower_components/underscore/underscore.js">
 </script>
 <script type="text/javascript" src="awardAgeCalculator.js">
 </script>
 <!-- include spec files here... -->
 <script type="text/javascript"
 src="spec/awardAgeCalculatorSpec.js"></script>
</head>
<body>
</body>
</html>

Notice that we referenced Underscore as a SUT dependency and we don't need any
special test output code to display the results other than ensuring that all required
JavaScript files are referenced in the SpecRunner.html file. You can find the example
in the underscore.map.reduce-with-jasmine folder from the source code for
this chapter.

Chapter 1

[29]

To run the tests, we just need to open the SpecRunner.html file in a browser and
we should see this output:

Jasmine tests can also be executed automatically through test runners such as
Karma (http://karma-runner.github.io/) or Node.js build tools such as Grunt
or Gulp. We will discuss these topics in Chapter 5, Using Underscore.js in the Browser,
on the Server, and with the Database and Chapter 6, Related Underscore.js Libraries and
ECMAScript Standards.

Summary
This chapter provided an introduction to Underscore and explored useful practices
and patterns that will be used throughout the book. We established a development
workflow for working efficiently with Underscore examples and we finished the
chapter by introducing testing with Jasmine.

Based on these fundamentals, in the next chapter, we will start exploring the
Underscore functionality for collections in detail.

http://karma-runner.github.io/

[31]

Using Underscore.js with
Collections

The previous chapter introduced Underscore and presented some of the principles
and patterns that will help with using it more efficiently. The chapter concluded by
setting up the development workflow used for the book examples.

In this chapter, we will explore Underscore functionality for collections using more
in-depth examples. Some of the more advanced concepts related to Underscore
functions such as scope resolution and execution context will be explained. The
topics of the chapter are as follows:

• Key Underscore functions revisited
• Searching and filtering
• Aggregations and transformations

This chapter assumes that you are familiar with JavaScript fundamentals such as
prototypical inheritance and the built-in data types.

The source code for the examples from this chapter is hosted online at
https://github.com/popalexandruvasile/underscorejs-examples/tree/
master/collections, and you can execute the examples using the Cloud9 IDE
at the address https://ide.c9.io/alexpop/underscorejs-examples from the
collections folder.

www.allitebooks.com

https://github.com/popalexandruvasile/underscorejs-examples/tree/master/collections
https://github.com/popalexandruvasile/underscorejs-examples/tree/master/collections
https://ide.c9.io/alexpop/underscorejs-examples
http://www.allitebooks.org

Using Underscore.js with Collections

[32]

Key Underscore functions
revisited – each, map, and reduce
The previous chapter introduced key Underscore functions that are representative
of the library and mentioned that some functions can be used with either an array or
an object. This flexible approach means that some Underscore functions can operate
over collections: an Underscore-specific term for arrays, array-like objects, and objects
(where the collection represents the object properties). We will refer to the elements
within these collections as collection items.

By providing functions that operate over object properties Underscore
expands JavaScript reflection like capabilities. Reflection is a programming
feature for examining the structure of a computer program, especially during
program execution.

JavaScript is a dynamic language without static type system support (as of ES6).
This makes it convenient to use a technique called duck typing when working
with objects that share similar behaviors. Duck typing is a programming technique
used in dynamic languages where objects are identified through their structure
represented by properties and methods rather than their type (the name of duck
typing is derived from the expression "if it walks like a duck, swims like a duck, and
quacks like a duck, then it is a duck"). Underscore itself uses duck typing to assert
that an object is an array by checking for a property called length of type Number.

Applying reflection techniques
We will build an example that demonstrates duck typing and reflection techniques
through a function that will extract object properties so that they can be persisted
to a relational database. Usually a relational database stores objects represented as
a data row with column types that map to regular SQL data types.

We will use the _.each() function to iterate over object properties and extract those
of type boolean, number, string, and Date as they can be easily mapped to SQL
data types and ignore everything else:

var propertyExtractor = (function() {
 "use strict";
 return {
 extractStorableProperties: function(source) {
 var storableProperties = {};

Chapter 2

[33]

 if (!source || source.id !== +source.id) {
 return storableProperties;
 }
 _.each(source, function(value, key) {
 var isDate = typeof value === 'object' && value instanceof
 Date;
 if (isDate || typeof value === 'boolean' || typeof value
 === 'number' ||
 typeof value === 'string') {
 storableProperties[key] = value;
 }
 });

 return storableProperties;
 }
 };
}());

You can find the example in the propertyExtractor.js file within the
each-with-properties-and-context folder from the source code for this chapter.

The first highlighted code snippet checks whether the object passed to the
extractStorableProperties() function has a property called id that is a number.
The + sign converts the id property into a number and the non-identity operator !==
compares the result of this conversion with the unconverted original value. The non-
identity operator returns true only if the type of the compared objects is different or
they are of the same type and have different values.

This was a duck typing technique used by Underscore up until version
1.7 to assert whether it deals with an array-like instance or an object
instance in its collections related functions.
Underscore collection related functions operate over array-like
objects as they do not strictly check for the built in array object. These
functions can also work with the arguments objects or the HTML
DOM NodeList objects.

The last highlighted code snippet is the _.each() function that operates over object
properties using an iteration function that receives the property value as its first
argument and the property name as the optional second argument. If a property has
a null or undefined value it will not appear in the returned object.

Using Underscore.js with Collections

[34]

The extractStorableProperties() function will return a new object with all the
storable properties. The return value is used in the test specifications to assert that,
given a sample object, the function behaves as expected:

describe("Given propertyExtractor", function() {
 describe("when calling extractStorableProperties()", function()
 {
 var storableProperties;
 beforeEach(function() {
 var source = {
 id: 2,
 name: "Blue lamp",
 description: null,
 ui: undefined,
 price: 10,
 purchaseDate: new Date(2014, 10, 1),
 isInUse: true,
 };
 storableProperties =
 propertyExtractor.extractStorableProperties(source);
 });
 it("then the property count should be correct", function() {
 expect(Object.keys(storableProperties).length).toEqual(5);
 });
 it("then the 'price' property should be correct", function() {
 expect(storableProperties.price).toEqual(10);
 });
 it("then the 'description' property should not be defined",
 function() {
 expect(storableProperties.description).toEqual(undefined);
 });
 });
});

Notice how we used the propertyExtractor global instance to access the function
under test, and then we used the ES5 function Object.keys to assert that the
number of returned properties had the correct size.

In a production ready application, we need to ensure that global
object names do not clash, among other best practices. We will
explore some techniques that will help to achieve this in Chapter 7,
Underscore.js Build Automation and Code Reusability.

Chapter 2

[35]

You can find the test specification in the spec/propertyExtractorSpec.js file
and execute it by browsing the SpecRunner.html file from the example source code
folder. There is also an index.html file that will display the results of the example
rendered in the browser using the index.js file.

Manipulating the this variable
Many Underscore functions have a similar signature to _.each(list, iteratee,
[context]), where the optional context parameter will be used to set the this
value for the iteratee function when it is called for each collection item. In
JavaScript, the built in this variable will be different depending on the context
where it is used.

We introduced scopes in the previous chapter (Chapter 1, Getting Started with
Underscore.js), and it is worth mentioning again that using the function scope
is the only way to obscure variables' visibility in ES5 JavaScript.

When the this variable is used in the global scope context, and in a browser
environment, it will return the native window object instance. If this is used in a
function scope, then the variable will have different values:

• If the function is an object method or an object constructor, then this will
return the current object instance. Here is a short example code for this
scenario:
var item1 = {
 id: 1,
 name: "Item1",
 getInfo: function(){
 return "Object: " + this.id + "-" + this.name;
 }
};
console.log(item1.getInfo());
// -> "Object: 1-Item1"

• If the function does not belong to an object, then this will be undefined in
the JavaScript strict mode. In the non-strict mode, this will return its global
scope value.

Using Underscore.js with Collections

[36]

With a library such as Underscore that favors a functional style, we need to ensure
that the functions used as parameters are using the this variable correctly. Let's
assume that you have a function that references this (maybe it was used as an
object method) and you want to use it with one of the Underscore functions such as
_.each(). You can still use the function as is and provide the desired this value as
the context parameter value when calling each.

I have rewritten the previous example function to showcase the use of the
context parameter:

var propertyExtractor = (function() {
 "use strict";
 return {
 extractStorablePropertiesWithThis: function(source) {
 var storableProperties = {};
 if (!source || source.id !== +source.id) {
 return storableProperties;
 }
 _.each(source, function(value, key) {
 var isDate = typeof value === 'object' && value instanceof
 Date;
 if (isDate || typeof value === 'boolean' || typeof value
 === 'number' ||
 typeof value === 'string') {
 this[key] = value;
 }
 },
 storableProperties);
 return storableProperties;
 }
 };
}());

The first highlighted snippet shows the use of this, which is typical for an object
method. The last highlighted snippet shows the context parameter value that this
was set to. The storableProperties value will be passed as this for each iteratee
function call. The test specifications for this example are identical to the previous
example, and you can find them in the same folder each-with-properties-and-
context from the source code for this chapter.

You can use the optional context parameter in many of the Underscore functions
where applicable and is a useful technique when working with functions that rely
on a specific this value.

Chapter 2

[37]

Using map and reduce with object properties
In the previous example, we had some user interface-specific code in
the index.js file that was tasked with displaying the results of the
propertyExtractor. extractStorableProperties() call in the browser.
Let's pull this functionality into another example and imagine that we need a
new function that, given an object, will transform its properties into a format
suitable for displaying in a browser by returning an array of formatted text
for each property. To achieve this, we will use the Underscore _.map()
function over object properties as demonstrated in the next example:

var propertyFormatter = (function() {
 "use strict";
 return {
 extractPropertiesForDisplayAsArray: function(source) {
 if (!source || source.id !== +source.id) {
 return [];
 }
 return _.map(source, function(value, key) {
 var isDate = typeof value === 'object' && value instanceof
 Date;
 if (isDate || typeof value === 'boolean' || typeof value
 === 'number' ||
 typeof value === 'string') {
 return "Property: " + key + " of type: " + typeof value
 + " has value: " + value;
 }
 return "Property: " + key + " cannot be displayed.";
 });
 }
 };
}());

With Underscore, we can write compact and expressive code that
manipulates these properties with little effort. The test specifications for the
extractPropertiesForDisplayAsArray() function use Jasmine regular
expression matchers to assert the test conditions in the highlighted code
snippets from the following example:

describe("Given propertyFormatter", function() {
 describe("when calling extractPropertiesForDisplayAsArray()",
 function() {

Using Underscore.js with Collections

[38]

 var propertiesForDisplayAsArray;
 beforeEach(function() {
 var source = {
 id: 2,
 name: "Blue lamp",
 description: null,
 ui: undefined,
 price: 10,
 purchaseDate: new Date(2014, 10, 1),
 isInUse: true,
 };
 propertiesForDisplayAsArray = propertyFormatter.
 extractPropertiesForDisplayAsArray(source);
 });
 it("then the returned property count should be correct",
 function() {
 expect(propertiesForDisplayAsArray.length).toEqual(7);
 });
 it("then the 'price' property should be displayed", function()
 {
 expect(propertiesForDisplayAsArray[4]).toMatch("price.+10");
 });
 it("then the 'description' property should not be displayed",
 function() {
 expect(propertiesForDisplayAsArray[2]).toMatch("cannot be
 displayed");
 });
 });
});

The following example shows how _.reduce() is used to manipulate object
properties. This will transform the properties of an object into a format suitable
for browser display by returning a string value that contains all the properties
in a convenient format:

extractPropertiesForDisplayAsString: function(source) {
 if (!source || source.id !== +source.id) {
 return [];
 }
 return _.reduce(source, function(memo, value, key) {
 if (memo && memo !== "") {
 memo += "
";
 }
 var isDate = typeof value === 'object' && value instanceof
 Date;

Chapter 2

[39]

 if (isDate || typeof value === 'boolean' || typeof value ===
 'number' ||
 typeof value === 'string') {
 return memo + "Property: " + key + " of type: " + typeof
 value + " has value: " + value;
 }
 return memo + "Property: " + key + " cannot be displayed.";
 },
 "");
}

The example is almost identical to the previous one with the exception of the memo
accumulator used to build the returned string value.

The test specifications for the extractPropertiesForDisplayAsString()
function use a regular expression matcher and can be found in the
spec/propertyFormatterSpec.js file:

describe("when calling extractPropertiesForDisplayAsString()",
function() {
 var propertiesForDisplayAsString;
 beforeEach(function() {
 var source = {
 id: 2,
 name: "Blue lamp",
 description: null,
 ui: undefined,
 price: 10,
 purchaseDate: new Date(2014, 10, 1),
 isInUse: true,
 };
 propertiesForDisplayAsString =
 propertyFormatter.extractAllPropertiesForDisplay(source);
 });
 it("then the returned string has expected length", function() {
 expect(propertiesForDisplayAsString.length).
 toBeGreaterThan(0);
 });
 it("then the 'price' property should be displayed", function() {
 expect(propertiesForDisplayAsString).toMatch("
Property:
 price of type: number has value: 10
");
 });
});

The examples from this subsection can be found within the
map.reduce-with-properties folder from the source code for this chapter.

Using Underscore.js with Collections

[40]

Searching and filtering
In the previous chapter, we used the function _.find(list, predicate,
[context]) to search for a specific item within a collection. This function is
part of the Underscore comprehensive functionality for searching and filtering
collections represented by object properties and array-like objects. We will make
a distinction between search and filter functions with the former tasked with
finding one item in a collection and the latter tasked with retrieving a subset of the
collection (although sometimes, you will find the distinction between these functions
thin and blurry).

We will revisit the find function and the other search-related and filtering-related
functions using an example with slightly more diverse data that is suitable for
database persistence. We will use the problem domain of a bicycle rental shop and
build an array of bicycle objects with the following structure:

var getBicycles = function() {
 return [{
 id: 1,
 name: "A fast bike",
 type: "Road Bike",
 quantity: 10,
 rentPrice: 20,
 dateAdded: new Date(2015, 1, 2)
 }, {
 ...
 }, {
 id: 12,
 name: "A clown bike",
 type: "Children Bike",
 quantity: 2,
 rentPrice: 12,
 dateAdded: new Date(2014, 11, 1)
 }];
};

Each bicycle object has an id property, and we will use the propertyFormatter
object built in the previous section to display the example's results in the browser for
your convenience.

The code was shortened here for brevity (you can find its full version alongside the
other examples from this section within the searching and filtering folders from
the source code for this chapter). All the examples are covered by tests and these are
the recommended starting points if you want to explore them in detail.

Chapter 2

[41]

Searching
For the first example in this section, we will define a bicycle-related requirement
where we need to search for a bicycle of a specific type and with a rental price
under a maximum value. Compared to the previous _.find() example, we will
start with writing the test's specifications first for the functionality that is yet to be
implemented. This is a test-driven development approach where we will define
the acceptance criteria for the function under test first followed by the actual
implementation. Writing the tests first forces us to think about what the code should
do, rather than how it should do it, and this helps eliminate waste by writing only
the code required to make the tests pass.

Underscore find
The test specifications for our initial requirement are as follows:

describe("Given bicycleFinder", function() {
 describe("when calling findBicycle()", function() {
 var bicycle;
 beforeEach(function() {
 bicycle = bicycleFinder.findBicycle("Urban Bike", 16);
 });
 it("then it should return an object", function() {
 expect(bicycle).toBeDefined();
 });
 it("then the 'type' property should be correct", function() {
 expect(bicycle.type).toEqual("Urban Bike");
 });
 it("then the 'rentPrice' property should be correct",
 function() {
 expect(bicycle.rentPrice).toEqual(15);
 });
 });
});

The highlighted function call bicyleFinder.findBicycle() should return one
bicycle object of the expected type and price as asserted by the tests.

It is important to note that in all the book tests, we are not checking
whether the Underscore functions are working correctly. We only
test the application code to ensure our expectations about the
application functionality are correct.

Using Underscore.js with Collections

[42]

Here is the implementation that satisfies the test specifications:

var bicycleFinder = (function() {
 "use strict";
 var getBicycles = function() {
 return [{
 id: 1,
 name: "A fast bike",
 type: "Road Bike",
 quantity: 10,
 rentPrice: 20,
 dateAdded: new Date(2015, 1, 2)
 }, {
 ...
 }, {
 id: 12,
 name: "A clown bike",
 type: "Children Bike",
 quantity: 2,
 rentPrice: 12,
 dateAdded: new Date(2014, 11, 1)
 }];
 };
 return {
 findBicycle: function(type, maxRentPrice) {
 var bicycles = getBicycles();
 return _.find(bicycles, function(bicycle) {
 return bicycle.type === type && bicycle.rentPrice <=
 maxRentPrice;
 });
 }
 };
}());

The code returns the first bicycle that satisfies the search criteria ignoring the rest of
the bicycles that might meet the same criteria.

You can browse the index.html file from the searching folder within the source
code for this chapter to see the result of calling the bicyleFinder.findBicycle()
function displayed on the browser via the propertyFormatter object.

Chapter 2

[43]

Underscore some
There is a closely related function to _.find() with the signature _.some(list,
[predicate], [context]). This function will return true if at least one item of
the list collection satisfies the predicate function. The predicate parameter is
optional, and if it is not specified, the _.some() function will return true if at least
one item of the collection is not null. This makes the function a good candidate for
implementing guard clauses. A guard clause is a function that ensures that a variable
(usually a parameter) satisfies a specific condition before it is used any further. The
next example shows how _.some() is used to perform checks that are typical for a
guard clause:

var list1 = [];
var list2 = [null, , undefined, {}];
var object1 = {};
var object2 = {
 property1: null,
 property3: true
};
if (!_.some(list1) && !_.some(object1)) {
 alert("Collections list1 and object1 are not valid when calling
 _.some() over them.");
}
if(_.some(list2) && _.some(object2)){
 alert("Collections list2 and object2 have at least one valid
 item and they are valid when calling _.some() over them.");
}

If you execute this code in a browser, you will see both alerts being displayed.
The first alert gets triggered when an empty array or an object without any
properties defined are found. The second alert appears when we have an array
with at least one element that is not null and is not undefined or when we have
an object that has at least one property that evaluates as true.

Going back to our bicycle data, we will define a new requirement to showcase the
use of _.some() in this context. We will implement a function that will ensure that
we can find at least one bicycle of a specific type and with a maximum rental price.

Using Underscore.js with Collections

[44]

The code is very similar to the bicycleFinder.findBicycle() implementation
with the difference that the new function returns true if the specific bicycle is
found (rather than the actual object):

hasBicycle: function(type, maxRentPrice) {
 var bicycles = getBicycles();
 return _.some(bicycles, function(bicycle) {
 return bicycle.type === type && bicycle.rentPrice <=
 maxRentPrice;
 });
}

You can find the test specifications for this function in the
spec/bicycleFinderSpec.js file from the searching example folder.

Underscore findWhere
Another function similar to _.find() has the signature
_.findWhere(list, properties). This compares the property key-value pairs
of each collection item from list with the property key-value pairs found on the
properties object parameter. Usually, the properties parameter is an object literal
that contains a subset of the properties of a collection item. The _.findWhere()
function is useful when we need to extract a collection item matching an exact value
compared to _.find() that can extract a collection item that matches a range of
values or more complex criteria.

To showcase the function, we will implement a requirement that needs to search a
bicycle that has a specific id value. This is how the test specifications look:

describe("when calling findBicycleById()", function() {
 var bicycle;
 beforeEach(function() {
 bicycle = bicycleFinder.findBicycleById(6);
 });
 it("then it should return an object", function() {
 expect(bicycle).toBeDefined();
 });
 it("then the 'id' property should be correct", function() {
 expect(bicycle.id).toEqual(6);
 });
});

Chapter 2

[45]

And the next code snippet from the bicycleFinder.js file contains the actual
implementation:

findBicycleById: function(id){
 var bicycles = getBicycles();
 return _.findWhere(bicycles, {id: id});
}

Underscore contains
In a similar vein to the _.some() function, there is a _.contains(list, value)
function that will return true if there is at least one item from the list collection
that is equal to the value parameter. The equality check is based on the strict
comparison operator === where the operands will be checked for both type and
value equality.

We will implement a function that checks whether a bicycle with a specific id value
exists in our collection:

hasBicycleWithId: function(id) {
 var bicycles = getBicycles();
 var bicycleIds = _.pluck(bicycles,"id");
 return _.contains(bicycleIds, id);
}

Notice how the _.pluck(list, propertyName) function was used to create an
array that stores the id property value for each collection item. In its implementation,
_.pluck() is actually using _.map(), acting like a shortcut function for it.

Filtering
As we mentioned at the beginning of this section, Underscore provides powerful
filtering functions, which are usually tasked with working on a subsection of a
collection. We will reuse the same example data as before, and we will build
some new functions to explore this functionality.

Underscore filter
We will start by defining a new requirement for our data where we need to
build a function that retrieves all bicycles of a specific type and with a maximum
rental price.

Using Underscore.js with Collections

[46]

This is how the test specification looks for the yet to be implemented function
bicycleFinder.filterBicycles(type, maxRentPrice):

describe("when calling filterBicycles()", function() {
 var bicycles;

 beforeEach(function() {
 bicycles = bicycleFinder.filterBicycles("Urban Bike", 16);
 });

 it("then it should return two objects", function() {
 expect(bicycles).toBeDefined();
 expect(bicycles.length).toEqual(2);
 });

 it("then the 'type' property should be correct", function() {
 expect(bicycles[0].type).toEqual("Urban Bike");
 expect(bicycles[1].type).toEqual("Urban Bike");
 });

 it("then the 'rentPrice' property should be correct", function()
 {
 expect(bicycles[0].rentPrice).toEqual(15);
 expect(bicycles[1].rentPrice).toEqual(14);
 });
});

The test expectations are assuming the function under test filterBicycles()
returns an array, and they are asserting against each element of this array.

To implement the new function, we will use the _.filter(list, predicate,
[context]) function that returns an array with all the items from the list collection
that satisfy the predicate function. Here is our example implementation code:

filterBicycles: function(type, maxRentPrice) {
 var bicycles = getBicycles();
 return _.filter(bicycles, function(bicycle) {
 return bicycle.type === type && bicycle.rentPrice <=
 maxRentPrice;
 });
}

Chapter 2

[47]

The usage of the _.filter() function is very similar to the _.find() function with
the only difference in the return type of these functions.

You can find this example together with the rest of the examples from this subsection
within the filtering folder from the source code for this chapter.

Underscore where
Underscore defines a shortcut function for _.filter() which is _.where(list,
properties). This function is similar to the _.findWhere() function, and it uses the
properties object parameter to compare and retrieve all the items from the list
collection with matching properties.

To showcase the function, we defined a new requirement for our example data
where we need to retrieve all bicycles of a specific type. This is the code that
implements the requirement:

filterBicyclesByType: function(type) {
 var bicycles = getBicycles();
 return _.where(bicycles, {
 type: type
 });
}

By using _.where(), we are in fact using a more compact and expressive version of
_.filter() in scenarios where we need to perform exact value matches.

Underscore reject and partition
Underscore provides a useful function, which is the opposite of _.filter() and
has a similar signature: _.reject(list, predicate, [context]). Calling the
function will return an array of values from the list collection that do not satisfy the
predicate function. To show its usage, we will implement a function that retrieves
all bicycles with a rental price less than or equal to a given value. Here's the function
implementation:

getAllBicyclesForSetRentPrice: function(setRentPrice) {
 var bicycles = getBicycles();
 return _.reject(bicycles, function(bicycle) {
 return bicycle.rentPrice > setRentPrice;
 });
}

Using Underscore.js with Collections

[48]

Using the _.filter() function alongside the _.reject() function with the same
list collection and predicate function will allow us to partition the collection into
two arrays. One array holds items that do satisfy the predicate function, while the
other holds items that do not satisfy the predicate function.

Underscore has a more convenient function that achieves the same result, and this is
_.partition(list, predicate). It returns an array that has two array elements—
the first has the values that would be returned by calling _.filter() using the same
input parameters and the second has the values for calling _.reject().

Underscore every
We mentioned _.some() as being a great function for implementing guard clauses.
It is also worth mentioning another closely related function _.every(list,
[predicate], [context]). The function will check every item of the list
collection and will return true if every item satisfies the predicate function or if
list is null, undefined or empty. If the predicate function is not specified, the
value of each item will be evaluated instead. If we use the same data from the guard
clause example for _.some(), we will get the opposite results, as shown in the next
example:

var list1 = [];
var list2 = [null, , undefined, {}];
var object1 = {};
var object2 = {
 property1: null,
 property3: true
};
if (_.every(list1) && _.every(object1)) {
 alert("Collections list1 and object1 are valid when calling
 _.every() over them.");
}
if(!_.every(list2) && !_.every(object2)){
 alert("Collections list2 and object2 do not have all items valid
 so they are not valid when calling _.every() over them.");
}

To ensure a collection is not null, undefined, or empty and each item is also not
null or undefined, we should use both _.some() and _.every() as part of the
same check, as shown in the following example:

var list1 = [{}];
var object1 = { property1: {}};

Chapter 2

[49]

if (_.every(list1) && _.every(object1) && _.some(list1) &&
_.some(object1)) {
 alert("Collections list1 and object1 are valid when calling both
 _some() and _.every() over them.");
}

If the list1 object is an empty array or an object without properties, when we
call _.every(list1) we get the result true. When we call _.some(list1) for an
empty array or an object without properties we get the result false. Hence we can
use both functions to validate a collection and ensure it has at least one element or
one object property.

These code examples demonstrate how you can build your own guard clauses
or data validation rules by using simple Underscore functions. We will explore
more data validation topics in Chapter 4, Programming Paradigms with Underscore.js.

Aggregations and transformations
We dealt so far with functions tasked with extracting a value or a range of values
from collections, and we will now move to functions that aggregate or transform
collections. Aggregate functions operate over an entire collection to extract or
calculate a single value or a limited set of values. Transformation functions operate
over an entire collection and return a new collection that is usually a different
representation of the original collection.

The first example of an aggregate function was _.reduce() and the first example
of a transformation function was _.map(). The former calculates an accumulator
value from the entire collection and the latter creates a new collection from the
original collection.

Aggregations
We will use our example data for this chapter to revisit _.reduce() and define a
new requirement to calculate the average rental price for all bicycles or for bicycles
of a specific type. We will implement the getAverageRentalPrice(type) function
that will return the average rental price for all bicycles when the type parameter is
not specified. First of all, we will define the tests for this new function in the
spec/bicycleAggregatorSpec.js file:

describe("Given bicycleAggregator", function() {
 describe("when calling getAverageRentalPrice()", function() {

Using Underscore.js with Collections

[50]

 var averageRentalPrice =
 bicycleAggregator.getAverageRentalPrice();
 it("then it should be correct", function() {
 expect(averageRentalPrice).toBeCloseTo(16.83);
 });
 });
 describe("when calling getAverageRentalPrice() for urban
 bicycles", function() {
 var averageRentalPrice =
 bicycleAggregator.getAverageRentalPrice("Urban Bike");
 it("then it should be correct", function() {

 expect(averageRentalPrice).toBeCloseTo(15.33);
 });
 });
});

The tests assume the function is implemented in a global bicycleAggregator
object similar to the bicycleFinder object from the previous sections. Notice we
highlighted the Jasmine matcher function toBeCloseTo(), which allows us to
approximate the expected value down to the desired precision.

The getAverageRentalPrice(type) function implementation should be familiar as
we already used a similar example in Chapter 1, Getting Started with Underscore.js:

getAverageRentalPrice: function(type) {
 var bicycles = getBicycles();
 var filteredBicycles = bicycles;
 if (type) {
 filteredBicycles = _.where(bicycles, {
 type: type
 });
 }
 return _.reduce(filteredBicycles, function(memo, bicycle) {
 return memo + bicycle.rentPrice;
 }, 0) / _.size(filteredBicycles);
}

First, we extracted a subset of the collection using the _.where() function if
the type parameter is specified (if the type parameter is not specified, we will
operate on the entire collection created by the getBicycles call). Then, we
accumulated all the rental prices using _.reduce() and we divided the final
value with the size of the collection.

Chapter 2

[51]

Notice that instead of using filteredBicycles.length to get the collection size, we
used the _.size() function that also works with plain objects not only with array-
like objects. If we pass a plain object to the _.size() function, we can get back the
number of properties, and if we pass an array-like object, we get back the length of
the array.

You can find this example together with the other examples from this subsection in
the aggregations folder from the source code for this chapter. For convenience, the
index.html file can be opened in the browser to view the example's output.

Underscore max and min
Underscore provides two specialized aggregate functions: _.max(list, [iteratee],
[context]) and _.min (list, [iteratee], [context]), which work with
collections. The second optional parameter iteratee is a function called for each
collection item and its return value is used for comparison. If iteratee is not
specified, then the value of the collection item itself will be used for comparison.

To apply these functions to our example data, we will define two new requirements.
The first one is to create a function that will return the most recently added bicycle
for a given bicycle type. If the bicycle type is not specified, the function should return
the most recently added bicycle across all bicycle types. To satisfy this requirement,
we will implement a new function with the signature getMostRecentlyAddedBicyc
le(type).

The previous example for the getAverageRentalPrice(type) function had a
section where we retrieved the bicycles for a given type parameter:

var bicycles = getBicycles();
var filteredBicycles = bicycles;
if (type) {
 filteredBicycles = _.where(bicycles, {
 type: type
 });
}

As we need the same code in our new function, we will move it into its own function:

var filterBicyclesByType = function(bicycles, type) {
 if (!type) {
 return bicycles;
 }
 return _.where(bicycles, {
 type: type
 });
};

Using Underscore.js with Collections

[52]

Next, we will use the filterBicyclesByType() and _.max() functions to extract
the bicycle with the most recent added date:

getMostRecentlyAddedBicycle: function(type) {
 var filteredBicycles = filterBicyclesByType(getBicycles(),
 type);
 return _.max(filteredBicycles, function(bicycle) {
 return bicycle.dateAdded;
 });
}

The highlighted iteratee function extracts the bicycle added date for comparison
and can be easily changed to calculate a different value used for comparison.

For the second requirement of our example data, we need a function that will return
the lowest priced bicycle for a given bicycle type. If the bicycle type is not specified,
the function should return the lowest priced bicycle across all bicycle types. In
implementing the requirement, we will use the _.min() function and its usage
should be familiar from the previous example:

getLowestPricedBicycle: function(type) {
 var filteredBicycles = filterBicyclesByType(getBicycles(),
 type);
 return _.min(filteredBicycles, function(bicycle) {
 return bicycle.rentPrice;
 });
}

The test specifications for the getLowestPricedBicycle function ensures that the
returned bicycle is not null or undefined by using the Jasmine toBeTruthy()
matcher and it also checks that the returned bicycle has the expected id value:

describe("when calling getLowestPricedBicycle() for urban
bicycles", function() {
 var bicycle = bicycleAggregator.getLowestPricedBicycle("Urban
 Bike");
 it("then it should be correct", function() {
 expect(bicycle).toBeTruthy();
 expect(bicycle.id).toEqual(8);
 });
});

Chapter 2

[53]

Transformations
We have already seen the _.map() function used in some of the previous
examples. In itself, this function represents one of the most simple and powerful
transformations, and we will use it alongside another useful transformation function
in the following example.

Underscore sortBy
We will define a new requirement for our sample data where we need to extract an
array of bicycles ordered by their rental price. The array should contain strings that
have the bicycle information formatted for display and should be optionally filtered
by the bicycle type.

In implementing this requirement, we will use _.map() alongside _.sortBy(list,
iteratee, [context]). The latter function will sort a collection by a specific
property name (passed as the iteratee string value) or by using a calculated value
(returned by iteratee when it is passed as a function).

For the examples within this section, we have defined a bicycleTransformer object
that implements the current requirement in the getBicyclesSortedByRentPrice()
function:

getBicyclesSortedByRentPrice: function(type) {
 var filteredBicycles = filterBicyclesByType(getBicycles(),
 type);
 var sortedBicycles = _.sortBy(filteredBicycles, 'rentPrice');
 return _.map(sortedBicycles, function(bicycle) {
 return bicycle.name + " - " + bicycle.type + " : " +
 bicycle.rentPrice;
 });
}

We created a sorted array of bicycle objects first, and then we extracted a formatted
string from every bicycle returned in a final array. We tested the returned array
object as well as some of its elements in the spec/bicycleTransformerSpec.js file:

describe("when calling getBicyclesSortedByRentPrice()", function()
{
 var sortedBicycles =
 bicycleTransformer.getBicyclesSortedByRentPrice();
 it("then it returns an array of correct length", function() {
 expect(sortedBicycles).toBeTruthy();
 expect(sortedBicycles.length).toEqual(12);

Using Underscore.js with Collections

[54]

 });
 it("then the first bicycle should be correct", function() {
 expect(sortedBicycles[0]).toEqual("A blue bike - Children Bike
 : 10");
 });
 it("then the last bicycle should be correct", function() {
 expect(sortedBicycles[sortedBicycles.length - 1]).toEqual("An
 all-terain bike - Mountain Bike : 27");
 });
});

You can find all the examples from this subsection within the transformations
folder from the source code for this chapter. For convenience, the index.html file
can be opened in the browser to view the example's output.

Underscore groupBy
Another useful transformation is grouping objects based on a specific criteria.
Underscore provides a _.groupBy(list, iteratee, [context]) function that
groups collection items into arrays. The arrays representing the groups are stored
as properties of the object returned by this function. The property names of the
returned objects are also the distinct values that represent a group. The group values
are either returned by calling the iteratee function or are property values of the
collection items when iteratee is provided as a string.

Our example implements a function that groups bicycles by their added year (the
bicycles are optionally filtered by the bicycle type):

getBicyclesGroupedByYear: function(type) {
 var filteredBicycles = filterBicyclesByType(getBicycles(),
 type);

 return _.groupBy(filteredBicycles, function(bicycle) {
 return bicycle.dateAdded.getFullYear();
 });
}

We used the iteratee function to calculate the added year from the bicycle
dateAdded property and the year value appears as a property name on the result
object. In the test specifications, the result object's properties are accessed using the
bracket notation (because they are numbers, they cannot be accessed using the dot
notation as with valid property names):

describe("when calling getBicyclesGroupedByYear()", function() {
 var groupedBicycles =
 bicycleTransformer.getBicyclesGroupedByYear();

Chapter 2

[55]

 it("then it returns an object with two properties", function() {
 expect(groupedBicycles).toBeTruthy();
 expect(_.size(groupedBicycles)).toEqual(2);
 });
 it("then the bicycle count for year 2014 should be correct",
 function() {
 expect(groupedBicycles['2014'].length).toEqual(8);
 });
 it("then the bicycle count for year 2015 should be correct",
 function() {
 expect(groupedBicycles['2015'].length).toEqual(4);
 });
});

For the next example, the iteratee parameter is provided as a string, and we
implement a function that groups bicycles by their rental price values:

getBicyclesGroupedByPrice: function(type) {
 var filteredBicycles = filterBicyclesByType(getBicycles(),
 type);

 return _.groupBy(filteredBicycles, 'rentPrice');
}

Similar to the previous example, the result object's properties cannot be accessed
through the dot notation as they are numbers so the bracket notation is used instead
within its test specifications:

describe("when calling getBicyclesGroupedByPrice()", function() {
 var groupedBicycles =
 bicycleTransformer.getBicyclesGroupedByPrice();
 it("then it returns an object with 10 properties", function() {
 expect(groupedBicycles).toBeTruthy();
 expect(_.size(groupedBicycles)).toEqual(10);
 });
 it("then the bicycle count for lowest price should be correct",
 function() {
 expect(groupedBicycles['10'].length).toEqual(2);
 });
 it("then the bicycle count for highest price should be correct",
 function() {
 expect(groupedBicycles['27'].length).toEqual(1);
 });
});

Using Underscore.js with Collections

[56]

Underscore indexBy
Our example data revolves around an array of bicycle objects and each time we need
to find a specific bicycle, we have to process each array item until it is found. If the
array is considerably bigger and we have to repeatedly search for bicycles, we will
end up with an implementation that might be lacking in efficiency and performance.

Underscore provides a function that converts a collection to an object with properties
mapped to each collection item. The property name is either a unique property
value or a unique calculated value of the collection item. The Underscore function
that provides this functionality is _.indexBy(list, iteratee, [context])
and the iteratee parameter can be a string value representing a property name
of a collection item or a function that returns a unique value for a collection item.
The object returned by _.index() allows us to find a collection item very quickly
without having to iterate through the collection as exemplified next.

For the code example, we will implement a function that returns an object where
all property names are values of the bicycle id property so that we can retrieve any
bicycle using its id value:

getBicyclesIndexedById: function() {
 var bicycles = getBicycles();
 return _.indexBy(bicycles, 'id');
}

We used the _.indexBy function with the iteratee parameter supplied as a string,
but we could replace it with an alternative implementation where iteratee is
passed as a function:

getBicyclesIndexedById: function() {
 var bicycles = getBicycles();
 return _.indexBy(bicycles, function(bicycle){ return
 bicycle.id;});
}

The test specifications provide an example of how the return object can be used to
access a bicycle for which we know its id value:

describe("when calling getBicyclesIndexedById()", function() {
 var indexedBicycles =
 bicycleTransformer.getBicyclesIndexedById();
 it("then it returns an object with 12 properties", function() {
 expect(indexedBicycles).toBeTruthy();
 expect(_.size(indexedBicycles)).toEqual(12);
 });

Chapter 2

[57]

 it("then the first indexed bicycle should be correct",
 function() {
 expect(indexedBicycles['1'].name).toEqual('A fast bike');
 });
 it("then the last indexed bicycle count should be correct",
 function() {
 expect(indexedBicycles['12'].name).toEqual('A clown bike');
 });
});

Underscore countBy
We already used _.countBy in Chapter 1, Getting Started with Underscore.js, but now
we can understand it better in the context of transformation functions. The function
_.countBy(list, iteratee, [context]) is very similar to _.groupBy() as it
groups collection items based on a group key with the difference that it stores the
group count rather than the actual group in the return object properties.

We will use an example suitable for our bicycle data sample and define a new
requirement to extract an object that contains the bicycle count for each bicycle type.
The code that implements the new getBicyclesCountByType() function is succinct:

getBicyclesCountByType: function() {
 var bicycles = getBicycles();
 return _.countBy(bicycles, 'type');
}

The iteratee parameter is a string in our example, but it can be also supplied as a
function (see Chapter 1, Getting Started with Underscore.js, for the starter example).

The test specifications show how the object returned by the
getBicyclesCountByType() function is accessed:

describe("when calling getBicyclesCountByType()", function() {
 var bicyclesCount = bicycleTransformer.getBicyclesCountByType();
 it("then it returns an object with 4 properties", function() {
 expect(bicyclesCount).toBeTruthy();
 expect(_.size(bicyclesCount)).toEqual(4);
 });
 it("then the bicycle count for 'Urban Bike' should be correct",
 function() {
 expect(bicyclesCount['Urban Bike']).toEqual(3);
 });

Using Underscore.js with Collections

[58]

 it("then the bicycle count for 'Road Bike' should be correct",
 function() {
 expect(bicyclesCount['Road Bike']).toEqual(2);
 });
});

Other collection-based functions
There are three more collection transformation functions that we will mention
briefly here:

• _.toArray(list) creates a native Array object from a collection.
• _.shuffle(list) creates an array of randomized collection items using

the Fisher-Yates shuffle algorithm.
• _.sample(list, [n]) also creates an array of randomized collection items

with an optional limit of n array items. If n is not specific, it returns one
random item from the collection.

The last collection specific function for this chapter is _.invoke(list, methodName,
*arguments) that will call method methodName for each collection item and will
optionally pass an arguments list to the invoked method.

Summary
In this chapter, we explored many of the collection specific functions as provided by
Underscore. We revisited some of the functions introduced in the previous chapter
and demonstrated additional functionality. We continued with searching and
filtering functions and finished with aggregation and transformation functions.

In the next chapter, we will demonstrate the Underscore features covering arrays,
functions, and objects.

[59]

Using Underscore.js with
Arrays, Objects, and

Functions
The previous chapter explored the functionality provided by Underscore.js for
collections. This chapter will continue in the same vein and will further explore
the specialized features that Underscore implements for:

• Arrays
• Objects
• Functions
• Utility functions

The chapter assumes that you are familiar with the JavaScript built-in data types.

The source code for the examples from this chapter is hosted online at https://
github.com/popalexandruvasile/underscorejs-examples/tree/master/
arrays-objects-functions, and you can execute the examples using Cloud9 IDE
at the address https://ide.c9.io/alexpop/underscorejs-examples from the
arrays-functions-objects folder.

Arrays
The Underscore functions targeting collections worked with array-like objects
or object properties. In this section, we will look into more specific functions that
work with the Array object or with array-like objects such as the arguments variable
that is available in any JavaScript function body.

https://github.com/popalexandruvasile/underscorejs-examples/tree/master/arrays-objects-functions
https://github.com/popalexandruvasile/underscorejs-examples/tree/master/arrays-objects-functions
https://github.com/popalexandruvasile/underscorejs-examples/tree/master/arrays-objects-functions
https://ide.c9.io/alexpop/underscorejs-examples

Using Underscore.js with Arrays, Objects, and Functions

[60]

First, we will expand the sample data we used in the previous chapter by adding an
array of client objects for our bicycle rental universe. Each client has rented at least one
bicycle and has a registered date property and a preferredBike property holding
the name of an existing bicycle. The client object has other standard properties such
as name, gender, and email. We can use a website such as www.json-generator.com
to define and randomly generate the required JSON data in a larger quantity that is
suitable for more involved examples. A sample of such a client object is as follows:

{
 "id": 4,
 "name": "Virgie Glenn",
 "gender": "female",
 "company": "SPHERIX",
 "email": "virgieglenn@spherix.com",
 "phone": "+1 (931) 540-3924",
 "address": "810 Dikeman Street, Aberdeen, Nevada, 9711",
 "registered": "2014-03-03T04:45:09 -00:00",
 "preferredBike": "An all-terain bike",
 "bikePoints": 3342,
 "isActive": true,
 "notes": "Sit do fugiat esse consequat commodo incididunt ex.
 Et exercitation elit commodo enim exercitation consectetur culpa
 officia est excepteur officia proident officia. Ex adipisicing
 dolore pariatur cupidatat labore. Consequat labore laboris
 dolore eiusmod sint laborum veniam do cillum ut culpa eiusmod.
 In dolore adipisicing ea consectetur incididunt enim magna nulla
 sint do dolore mollit. Cillum dolor velit consectetur aute.\r\n"
}

The template file clients.json.template was used to generate the sample data
and can be found in the source code for this chapter within the arrays folder. We
also have a dataProvider.js file that contains the previous getBicycles() function
that returns the bicycle sample data, together with a new function getClients()
that returns the client sample data used in this chapter (and which was generated
using the clients.json.template file).

Extracting array start and end sequences
Underscore provides four useful functions that facilitate working with array
elements located at the beginning or the end:

• _.first(array, [n]) extracts the first n elements from array. If n is
not specified, it returns the first element of the array.

www.json-generator.com

Chapter 3

[61]

• _.rest(array, [index]) is the complement of the _.first function and
extracts array elements starting from the index position. If index is not
specified, it extracts all array elements except the first element.

• _.last(array, [n]) extracts the last n elements from array. If n is not
specified, it returns the last element of array.

• _.initial(array, [n]) is the complement of the _.last function and
extracts all array elements except the last n elements. If n is not specified,
it extracts all array elements except the last element.

For our sample data, we will define two complementary requirements to showcase the
first two functions _.first and _.rest. The first gives us a list of the oldest clients so
that they can be given a special discount; the second gives us a list of all other clients
so that we can give them a normal discount. We will create a new clientRetriever
object that contains two functions: getOldestClients(count), which retrieves the
oldest clients for a special discount; and getNewerClients(skipFirstCount),
which retrieves the rest of the clients, who will get a normal discount.

We will first write the test specifications for two new functions in the
spec/clientRetrieverSpec.js file:

describe("when calling getOldestClients()", function() {
 var clients = clientRetriever.getOldestClients(5);
 it("then it returns an array of correct length", function() {
 expect(clients).toBeTruthy();
 expect(clients.length).toEqual(5);
 });
 it("then the first client should be correct", function() {
 expect(clients[0]).toBeTruthy();
 expect(clients[0].id).toEqual(150);
 });
 it("then the last client should be correct", function() {
 expect(clients[clients.length - 1]).toBeTruthy();
 expect(clients[clients.length - 1].id).toEqual(243);
 });
});
describe("when calling getNewerClients()", function() {
 var clients = clientRetriever.getNewerClients(5);
 it("then it returns an array of correct length", function() {
 expect(clients).toBeTruthy();
 expect(clients.length).toEqual(245);
 });

Using Underscore.js with Arrays, Objects, and Functions

[62]

 it("then the first client should be correct", function() {
 expect(clients[0]).toBeTruthy();
 expect(clients[0].id).toEqual(85);
 });
 it("then the last client should be correct", function() {
 expect(clients[clients.length - 1]).toBeTruthy();
 expect(clients[clients.length - 1].id).toEqual(69);
 });
});

The test specifications are ensuring the assumptions about our data sample are
correct when using the functions under test and they are not meant to test the
Underscore functionality. They are also useful for showing how the functions under
test are actually called. This is the implementation of our new functions from the
clientRetriever.js file, and the following code can be read side by side with
the test specifications for a richer context:

var clientRetriever = (function() {
 "use strict";
 var clients = dataProvider.getClients();
 return {
 getOldestClients: function(count) {
 return _.first(_.sortBy(clients, function(client) {
 return new Date(client.registered);
 }), count);
 },
 getNewerClients: function(skipFirstCount) {
 return _.rest(_.sortBy(clients, function(client) {
 return new Date(client.registered);
 }), skipFirstCount);
 }
 };
}());

By calling _.sortBy(), we ensured the array is sorted by the registered
property value before extracting the required sequence. Notice how we combined
two Underscore functions in the same line of code, which is representative for a
functional programming style that we will explore more in Chapter 4, Programming
Paradigms with Underscore.js.

Chapter 3

[63]

For the _.last() and _.initial() functions, we will define two other
complementary requirements: to get a list of the newest clients so that we can send
them a survey about the ease of use of the client registration process; and to get a
list of all the other clients so that we can send them an overall satisfaction survey.
The implementation of the two new functions getNewestClients(count) and
getOlderClients(skipLastCount) is as follows:

getNewestClients: function(count) {
 return _.last(_.sortBy(clients, function(client) {
 return new Date(client.registered);
 }), count);
},
getOlderClients: function(skipLastCount) {
 return _.initial(_.sortBy(clients, function(client) {
 return new Date(client.registered);
 }), skipLastCount);
}

You can view the test specifications in the spec/clientRetrieverSpec.js file
and the examples rendered output by browsing to the index.html file.

We have used concise and expressive Underscore functions to manipulate the start
and end of an array with little effort. The functions presented in this chapter are
more powerful as they are narrower in their scope compared with the functions
presented in Chapter 2, Using Underscore.js with Collections.

The four functions explored in this subsection use Array.
prototype.slice to implement their functionality. You could
use this function directly, but I found the Underscore functions
easier to understand and closer to natural language.

Union, intersect, and related functions
Underscore provides a series of useful functions for working with multiple arrays.
The first one is _.union(*arrays) where the *arrays notation represents one or
more array objects passed as parameters. This function returns an array with unique
elements collected from the input arrays. The elements are collected in the order they
appear in the input arrays from left to right, and any element that is already collected
is ignored. The unique elements are verified using the strict equality operator ===.

Using Underscore.js with Arrays, Objects, and Functions

[64]

For its associated example, we will define a new sample data requirement to get the
combination of the oldest and best clients in order to give them a special discount
by e-mail. By "best clients" we mean the ones who have the highest values in the
bikePoints property (which stores the accumulated value of a client's bicycle
rentals since they first registered). The combination should have unique clients to
avoid sending duplicate e-mails. We will define a new function clientRetriever.
getOldestOrBestClients() with the following test specifications:

describe("when calling getOldestOrBestClients()", function() {
 var clients = clientRetriever.getOldestOrBestClients(50);
 it("then it returns an array of correct length", function() {
 expect(clients).toBeTruthy();
 expect(clients.length).toEqual(89);
 });
});

Some of the code for the function being tested should be familiar as it was used in
the previous subsection:

getOldestOrBestClients: function(count) {
 var oldestClients = _.first(_.sortBy(clients, function(client) {
 return new Date(client.registered);
 }),
 count);
 var bestClients = _.last(_.sortBy(clients, 'bikePoints'),
 count);
 var oldestOrBestClients = _.union(oldestClients, bestClients);
 return oldestOrBestClients;
}

We have created two separate arrays: one with the clients sorted by the registered
property value, the other with clients sorted by the bikePoints property value;
and we have used _.union() to return the array of unique clients that are present
in any of the input arrays. The client objects are compared by reference and they
are guaranteed to be unique as they were all created as part of the dataProvider.
getClients() call.

If you need more information about reference comparisons and the strict
equality operator, I recommend an insightful article on the Mozilla
Developer Network (MDN) website at http://mzl.la/1O4fFWk.

http://mzl.la/1O4fFWk

Chapter 3

[65]

An alternative way to implement getOldestOrBestClients() is through the use of
the _.uniq(array, [isSorted], [iteratee]) function. This function will return
only unique elements from the array parameter and these unique elements were
compared using the strict equality operator ===. The optional iteratee parameter
function provides a custom identifier value if required and the optional isSorted
parameter should be set to true if array is already sorted for an improvement in
performance. Here is the alternative implementation using _.uniq():

getOldestOrBestClientsWithuniq: function(count) {
 var oldestClients = _.first(_.sortBy(clients, function(client) {
 return new Date(client.registered);
 }),
 count);
 var bestClients = _.last(_.sortBy(clients, 'bikePoints'),
 count);
 var oldestOrBestClientsWithDuplicates =
 oldestClients.concat(bestClients);
 return _.uniq(oldestOrBestClientsWithDuplicates);
}

The first two lines are identical to the previous function getOldestOrBestClients()
and we used Array.prototype.concat() to create a single array that is
processed further by the _.uniq() function. The test specifications for the new
getOldestOrBestClientsWithuniq() function are identical to the ones for the
getOldestOrBestClients() function as they achieve the same functionality.

We will now look at multiple intersecting arrays and define a new requirement
for our sample data to get both the oldest and best clients so that we can send them
a bigger discount code via e-mail. We will use the _.intersection(*arrays)
function that works on multiple arrays and extracts the unique elements that appear
in all input arrays. Here is the implementation for the getOldestOrBestClients()
function that fulfills the new requirement:

getOldestAndBestClients: function(count) {
 var oldestClients = _.first(_.sortBy(clients, function(client) {
 return new Date(client.registered);
 }),
 count);
 var bestClients = _.last(_.sortBy(clients, 'bikePoints'),
 count);
 var oldestAndBestClients = _.intersection(oldestClients,
 bestClients);
 return oldestAndBestClients;
}

Using Underscore.js with Arrays, Objects, and Functions

[66]

Again, the first two lines are identical to the getOldestOrBestClients() function,
but if you look at the test specifications, you will notice that we expect a result of 11
clients from the top 50 best and top 50 oldest clients. This is considerably smaller
compared to the 89 clients expected for the same input data in the test specifications
for the getOldestOrBestClients() function.

We have the functionality provided by getOldestOrBestClients() to send a
discount to all our best or oldest clients, but we need to make sure we exclude the
ones returned by getOldestAndBestClients(), as they will receive a different
(and better) discount. Underscore help us with this requirement through the
_.difference(array, *others) function that returns only elements from the
array parameter that are not present in any of the arrays provided through the
others parameters. Here is the code that will extract the difference between the
two sets of clients:

getOldestOrBestClientsThatAreNotBoth: function(count) {
 var oldestClients = _.first(_.sortBy(clients, function(client) {
 return new Date(client.registered);
 }),
 count);
 var bestClients = _.last(_.sortBy(clients, 'bikePoints'),
 count);
 var oldestOrBestClients = _.union(oldestClients, bestClients);
 var oldestAndBestClients = _.intersection(oldestClients,
 bestClients);
 return _.difference(oldestOrBestClients, oldestAndBestClients);
}

The test specifications for the getOldestOrBestClientsThatAreNotBoth()
function expects a result of 78 clients that ties in with the previous test specifications
expectations.

Alongside the _.difference() function, there is a _.without(array, *values)
function that will remove one or more elements provided as additional parameters
(represented by the *values notation) from the array parameter.

Other array-related functions
Underscore also provides the functionality for transposing arrays through the
_.zip(*arrays) function. Given one or more arrays as input parameters,
it will return an array that contains other arrays as its elements. Each array
element contains the elements from all input arrays located at the current index,
as demonstrated in the following code snippet:

var array1 = [0,1,2,4];

Chapter 3

[67]

var array2 = ['a', 'b', 'c'];
var array3 = [{ id: 1}, {id:2}];
var zippedArray = _.zip(array1, array2, array3);
console.log(zippedArray);
// -> [[0, "a", { id: 1 }],
// [1, "b", { id: 2 }],
// [2, "c", undefined],
// [4, undefined, undefined]]

To use _.zip() with our bicycle-related examples, we will introduce a new data
sample that contains the client orders as represented by the object from the next
example (generated using a similar JSON template as the one used for clients):

{
 "clientId": 2,
 "orders": [{
 "bicycleName": "A modern bike",
 "quantity": 4
 }, {
 "bicycleName": "An all-terrain bike",
 "quantity": 1
 }]
}

The function dataProvider.getClientOrders() returns an array of client orders
that matches the indexes of the clients returned in dataProvider.getClients().

We will define a new requirement to extract an array of elements that are also arrays
that contain client data and order count, so it can be processed further. The code that
implements this requirement can be found in the clientRetriever.js file:

getClientsAndOrdersAsArrays: function() {
 var clientIds = _.pluck(clients, 'id');
 var clientNames = _.pluck(clients, 'name');

 var clientOrders = dataProvider.getClientOrders();
 var ordersCount = _.map(clientOrders, function(clientOrder) {
 return clientOrder.orders.length;
 });

 var clientAndOrders = _.zip(clientIds, clientNames,
 ordersCount);
 return clientAndOrders;
}

Using Underscore.js with Arrays, Objects, and Functions

[68]

We extracted three distinct arrays initially: one with the client id properties, one with
the client name properties and last one with the order count for each client. We then
applied _.zip() for these three arrays and the result is an array that contains 250
arrays (one array for each client). Each array within the result array contains three
elements: the client id value, the client name value, and the client order count value.

You can browse the index.html file to see the output for the
getClientsAndOrdersAsArrays() function or look at the spec/
clientRetrieverSpec.js file to see its test specifications. They can
be found in the arrays folder from the source code for this chapter.

We will mention the remaining array-related functions briefly:

• _.unzip(*arrays): This has the reverse effect _.zip(), as demonstrated
in the following code snippet:
var unzippedArray = _.unzip(
 [[0, "a", { id: 1 }],
 [1, "b", { id: 2 }],
 [2, "c", undefined],
 [4, undefined, undefined]]);
console.log(unzippedArray);
// -> [[0, 1, 2, 4],
// ["a", "b", "c", undefined],
// [{ id: 1 }, { id: 2 }, undefined, undefined]]

• _.compact(array): This eliminates any element that is either null,
undefined, false, 0, "", or NaN, which is useful for cleaning up arrays
of undesired values.

• _.flatten(array, [shallow]): This checks every element of the array
parameter, and if it is an array itself, it will pull its elements into the returned
array alongside the other non-array elements. Unless shallow is set to true,
the function will operate on more than one level and will pull any array
elements into the top-level array regardless of their nesting depth.

• _.object(list, [values]): This creates an object that has properties
with keys specified in the list array parameter and values specified in
the values array parameter. If the values parameter is not specified,
then the list parameter should be an array of arrays that contain a key
and value pair.

Chapter 3

[69]

• _.indexOf(array, value, [isSorted]): This returns the index at which the
value parameter can be found as an element of the array parameter. If value
cannot be found, then the return value is -1. For large arrays that are known to
be sorted, you can pass isSorted as true for a faster binary search.

• _.lastIndexOf(array, value, [fromIndex]): This returns the index at
which the last occurrence of the value parameter can be found as an element
of the array parameter. If value cannot be found, then the return value is -1.
If the fromIndex parameter is specified, then the search will start from that
index value onwards.

• _.findIndex(array, predicate, [context]): This is an alternative to
_.indexOf() when we need to use a predicate function like the one from
the _.find() function.

• _.findLastIndex(array, predicate, [context]): This is an alternative
to _.lastIndexOf() when we need to use a predicate function like the
one from the _.find() function.

• _.sortedIndex(list, value, [iteratee], [context]): This works
with a sorted array specified as the list parameter. It returns the index
at which the value parameter needs to be inserted so that the sort order
of list is maintained. The optional iteratee parameter can be a function
that is used to calculate the sort order value of an element from the list
array and of the value parameter, or it can be a property name used to
extract the sort order value.

• _.range([start], stop, [step]): This generates an array that is a
sequence of integer values that starts from 0 or from the start parameter
(if specified) until the stop parameter. The default increment is 1 or step
when specified.

Objects
Underscore has a series of dedicated functions targeting objects, which extends the
features provided for collections.

Underscore keys
We will revisit the propertyFormatter related examples to showcase some of the
object-related features, and we will start with the function _.keys(object). This
function will extract an array containing the names of all enumerable properties from
the object parameter. It ignores any properties that are inherited, and if you want
to include those as well you need to use the _.allKeys(object) function instead.

Using Underscore.js with Arrays, Objects, and Functions

[70]

Going back to the original propertyFormatter.
extractPropertiesForDisplayAsArray() function introduced in Chapter 2,
Using Underscore.js with Collections, we can now change it to use _.keys(object)
to ensure we only process objects that have at least one valid property:

extractPropertiesForDisplayAsArray: function(source, ignoreId) {
 if (!source || (!ignoreId && source.id !== +source.id) ||
 _.keys(source).length === 0) {
 return [];
 }

 return _.map(source, function(value, key) {
 var isDate = typeof value === 'object' && value instanceof
 Date;
 if (isDate || typeof value === 'boolean' || typeof value ===
 'number' ||
 typeof value === 'string') {
 return "Property: " + key + " of type: " + typeof value + "
 has value: " + value;
 }
 return "Property: " + key + " cannot be displayed.";
 });
}

The highlighted code shows the new enhancement and we also added the option
of processing objects that don't have an id property that is numeric in line with the
propertyFormatter.extractPropertiesForDisplayAsString() function. As a
consequence, we can write test specifications for calling the changed function with
an empty object represented by {}:

describe("when calling extractPropertiesForDisplayAsArray({}, true)
(for an empty object)", function() {
 var propertiesForDisplay;
 beforeEach(function() {
 propertiesForDisplay =
 propertyFormatter.extractPropertiesForDisplayAsArray({},
 true);
 });
 it("then the returned property count should be correct",
 function() {
 expect(propertiesForDisplay.length).toEqual(0);
 });
});

Chapter 3

[71]

You can find the code for all the examples from this section in the objects folder
from the source code for this chapter.

The function _.keys(object) will use the built in ES5 function
Object.keys() if available.

Underscore values and pairs
Somewhat similar to _.keys(object), Underscore has _.values(object)
that extracts an array containing the values of all enumerable properties from
the object parameter. Another useful function is _.pairs(object) that
extracts an array of [key, value] elements where key is a property name
and value is a property value. We can refactor the propertyFormatter.
extractPropertiesForDisplayAsArray() function to use _.pairs() in
combination with _.each():

extractPropertiesForDisplayAsArray: function(source, ignoreId) {
 var propertiesForDisplay = [];
 if (!source || (!ignoreId && source.id !== +source.id) ||
_.keys(source).length === 0) {
 return propertiesForDisplay;
 }
 .each(.pairs(source), function(keyValue) {
 var isDate = typeof keyValue[1] === 'object' && keyValue[1]
 instanceof Date;
 if (isDate || typeof keyValue[1] === 'boolean' || typeof
 keyValue[1] === 'number' ||
 typeof keyValue[1] === 'string') {
 propertiesForDisplay.push("Property: " + keyValue[0] + " of
 type: " + typeof keyValue[1] + " has value: " +
 keyValue[1]);
 } else {
 propertiesForDisplay.push("Property: " + keyValue[0] + "
 cannot be displayed.");
 }
 });
 return propertiesForDisplay;
}

www.allitebooks.com

http://www.allitebooks.org

Using Underscore.js with Arrays, Objects, and Functions

[72]

The highlighted line has replaced the previous version based on _.map() while
maintaining the same functionality. If you browse to the SpecRunner.html file,
you will receive confirmation that all test specifications are passing even after we
made the current changes.

Underscore invert and functions
For more advanced usage scenarios, you can use the _.invert(object) function
and switch the object parameter property names with property values, as long as
the property values are unique and valid property names.

When using the _.keys() function, you get all properties of an object, including
function properties. Underscore provides _.functions(object) that extracts an
array that contains the names of all function properties for the object parameter.

To illustrate its usage, we will add a new function propertyFormatter.extractDat
aPropertiesForDisplayAsArray(source, ignoreId) that returns only properties
that are not functions:

extractDataPropertiesForDisplayAsArray: function(source, ignoreId) {
 var propertiesForDisplay = [];
 if (!source || (!ignoreId && source.id !== +source.id) ||
 _.keys(source).length === 0) {
 return propertiesForDisplay;
 }
 var functionNames = _.functions(source);
 .each(.pairs(source), function(keyValue) {
 var isDate = typeof keyValue[1] === 'object' && keyValue[1]
 instanceof Date;
 if (isDate || typeof keyValue[1] === 'boolean' || typeof
 keyValue[1] === 'number' ||
 typeof keyValue[1] === 'string') {
 propertiesForDisplay.push("Property: " + keyValue[0] + " of
 type: " + typeof keyValue[1] + " has value: " +
 keyValue[1]);
 } else if (!_.contains(functionNames, keyValue[0])) {
 propertiesForDisplay.push("Property: " + keyValue[0] + "
 cannot be displayed.");
 }
 });
 return propertiesForDisplay;
}

Chapter 3

[73]

The highlighted lines will ensure all function properties are ignored, and in the test
specifications for this new function, you will notice that we successfully process an
object that has a function property besides data properties.

Underscore pick, omit, and has
We already used the _.pluck() function as a convenient shortcut for calling
_.map(). There are two functions to extract properties from an object that can
be used to build more powerful versions of _.pluck().

The first function is _.pick(object, *keys), where keys can be string values
specified as additional parameters or an array of property names and the result is
a copy of object that contains only the properties specified in the keys parameter.

The second function is _.omit(object, *keys), where keys can be additional
string parameters or an array of property names and the result is a copy of object
that contains all its properties except the ones specified in the keys parameter.

In this subsection, we will revisit the bicycle rental sample data and define a new
requirement to extract a client array that contains only the id and name properties. The
function that implements the new requirement in clientRetriever.js is as follows:

getClientsIdAndName: function() {
 return _.map(clients, function(client) {
 return _.pick(client, 'id', 'name');
 });
}

The second requirement is to extract only the contact information for all clients,
and we will use _.omit() in its implementation:

getClientsContactInfo: function() {
 return _.map(clients, function(client) {
 return _.omit(client, 'registered', 'preferredBike',
 'bikePoints', 'isActive', 'notes');
 });
}

In both requirements, we created copies of existing client objects, and next we will
explore similar functions that enable more advanced object functions.

Using Underscore.js with Arrays, Objects, and Functions

[74]

Underscore extend, clone, and defaults
Underscore provides the _.extend(destination, *sources) function that is
similar to jQuery.extend() and is tasked with copying the properties from one or
more source objects into a destination object and returns the modified destination
object as a result. If a property with the same name exists in more than one source
object, the result property value is taken from the last object where it is present.
The function performs a shallow copy—that is, if a destination object has a nested
property (an object or an array), it will be copied by reference. In contrast, jQuery.
extend() supports deep copy, where any nested property that is an object or an
array will be copied by calling jQuery.extend() in a recursive manner. There is
a closely-related function _.extendOwn(destination, *sources) that copies
properties owned by the source object and ignoring anything that is inherited.

The next function _.clone(object) creates a shallow copy for the object
parameter and in its implementation is actually calling _.extend({}, object)
to perform the actual copy.

Next, we will discuss the _.defaults(object, *defaults) function, where
*defaults can be one or more additional object parameters. The function will
fill in the object parameter with properties that belong to any of the *defaults
object parameters and are undefined in the object parameter. This means that
if a property belongs to more than one *defaults object parameters only the
value from the first occurrence will be present in the final result.

We will revisit some of these functions in Chapter 6, Related Underscore.js Libraries and
ECMAScript Standards, where we will explore even more powerful alternatives.

Underscore has, property, propertyOf, and
matcher
Underscore has an alternative for the built-in JavaScript function Object.
prototype.hasOwnProperty() and this is _.has(object, key). Both functions
provide the same functionality, with the Underscore function having additional
safety in case the built-in JavaScript function has been overwritten.

The following functions facilitate the evaluation of object properties; the first one
is _.property(key), which returns a function that will extract the key property
from an object, as demonstrated in the next example:

var item1 = {

Chapter 3

[75]

 id: 1,
 name: "Item1"
};
var getName = _.property('name');
console.log(getName(item1));
var item2 = {
 id: 2,
 name: "Item2",
};
console.log(getName(item2));
// -> Item1
// Item2

Its inverse equivalent is _.propertyOf(object), which returns a function that will
retrieve a property value from the object parameter as in the following example:

var item1 = {
 id: 1,
 name: "Item1"
};
var getItem1 = _.propertyOf(item1);
console.log(getItem1('name'));
var item2 = {
 id: 2,
 name: "Item2",
};
var getItem2 = _.propertyOf(item2);
console.log(getItem2('name'));
// -> Item1
// Item2

The third function is _.matcher(attrs) that returns a predicate function that will
check if an object has the property's values specified in the attrs object parameter:

var items = [{
 id: 1,
 name: "Item1",
 archived: false
}, {
 id: 2,
 name: "Item2",
 archived: true
}];

Using Underscore.js with Arrays, Objects, and Functions

[76]

var match = _.matcher({
 archived: true
});
var item = _.find(items, match);
console.log("Found item: " + item.name);
// -> Found item: Item2

These functions enable the functional programming paradigm by converting
imperative operations, such as getting a property value or comparing multiple
property values into functions that can be evaluated later or can be reused by
higher-order functions.

Comparing objects and making assertions
against objects
As seen so far in this section, Underscore has many useful functions for copying
objects, however this presents a problem when we want to compare a copy with
the original.

A typical scenario is when we create a copy of an object, pass it to another
function, and then persist this copy only if it was modified. Underscore facilitates
this scenario through the _.isEqual(object, other) function that executes a deep
comparison of the two object parameters. The function compares all the property
values of the two objects, and if the objects contain nested properties, it will recursively
compare them, returning true if all property values at any level are equal.

There is another function that can be used in comparisons between objects with
signature _.isMatch(object, properties) that is closely related to _.matcher()
(it is actually called by the latter when its return function is invoked). We can say
that _.isMatch() is the imperative version of _.matcher(), as demonstrated in
the next example:

var items = [{
 id: 1,
 name: "Item1",
 archived: false
}, {
 id: 2,
 name: "Item2",
 archived: true
}];
var foundItem = _.find(items, function(item) {
 return _.isMatch(item, {

Chapter 3

[77]

 archived: true
 });
});
console.log("Found item: " + foundItem.name);
// -> Found item: Item2

Underscore has a comprehensive set of functions that can be used to make assertions
against objects. These are great when used as predicate functions on their own
or in different combinations. We will enumerate them first and then revisit the
propertyFormatter.js file and refactor it to use some of these new functions.

These are the assertion functions useful for object validation:

• _.isEmpty(object): This returns true if object does not have any
properties or if the length property is 0 when object is a string or an
array-like object

• _.isNull(object): This returns true if the object is null
• _.isUndefined(value): This returns true if value is undefined

These are the assertion functions used for determining object types:

• _.isElement(object): This returns true if object is a Document Object
Model (DOM) element

• _.isArray(object): This returns true if object has the Array type
• _.isObject(value): This returns true if object has the Object type,

which is applicable to arrays and functions, but not to string and
number primitives

• _.isArguments(object): This returns true if object has the
Arguments type

• _.isFunction(object): This returns true if object has the Function
type; in JavaScript, all functions are of the Function type

• _.isBoolean(object): This returns true if object is strictly equal
with true, if it is strictly equal with false, or has the Boolean type

• _.isDate(object): This returns true if object has the Date type
• _.isError(object): This returns true if object inherits from the

Error object

These are the assertion functions used for String objects:

• _.isString(object): This returns true if object has the String type
• _.isRegExp(object): This returns true if object has the RegExp type

Using Underscore.js with Arrays, Objects, and Functions

[78]

And finally, these are the assertion functions used for Number objects:

• _.isNumber(object): This returns true if object has the Number type.
This also applies to NaN values.

• _.isFinite(object): This returns true if object has the Number type
and is finite.

• _.isNaN(object): This returns true if object has the Number type
and is a NaN value. This is the more accurate alternative for the built-in
JavaScript isNaN() function that can return true for objects that don't
have the Number type.

These functions enable more precise assertions compared with the built-in JavaScript
possibilities and introduce an elegant approach to express assertions that is closer to
the natural language, making them easier to understand at a glance.

We can now revisit the propertyFormatter.js file and refactor it to use some of the
assertions functions and evolve it in a more expressive code base. We will leave the test
specifications from the spec/propertyFormatterSpec.js file unchanged and rely on
them to ensure that the overall functionality is preserved. All the functions from this
file were modified and we will look at extractDataPropertiesForDisplayAsArray
implementation as it incorporates most of the changes:

extractDataPropertiesForDisplayAsArray: function(source, ignoreId) {
 var propertiesForDisplay = [];
 if (_.isNull(source) || _.isUndefined(source) ||
 .isEmpty(source) || (!ignoreId && !.isNumber(source.id))) {
 return propertiesForDisplay;
 }
 .each(.pairs(source), function(keyValue) {
 var key = keyValue[0];
 var value = keyValue[1];
 if (_.isDate(value) || _.isBoolean(value) || _.isNumber(value)
 || _.isString(value)) {
 propertiesForDisplay.push("Property '" + key + "' of type: "
 + typeof value + " has value: " + value);
 } else if (!_.isFunction(value)) {
 propertiesForDisplay.push("Property: " + keyValue[0] + "
 cannot be displayed.");
 }
 });
 return propertiesForDisplay;
}

Chapter 3

[79]

We were able to replace the expression that checked whether a property was of the
type Date with one _.isDate() call. We replaced the rather long-winded check
whether a property is a function with a single _.isFunction() call. A special
mention should be made of the code that ensured the id property was a
number that has now been replaced by a _.isNumber() call.

You can find the example for this subsection in the objects-assertions folder
from the source code for this chapter.

Other object-related functions
Because the function _.tap(object, interceptor) is used as part of the chaining
functionality of Underscore, we will discuss it in Chapter 4, Programming Paradigms
with Underscore.js, where wee will also mention the function _.create(prototype,
props).

The function _.mapObject(object, iteratee, [context]) is a version of
_.map() that only works with objects.

Functions
Underscore has a series of functions that specifically target objects of the type
Function: it has functions that target other functions. This subsection touches on
some of the functional programming concepts that will be explored in detail in
Chapter 4, Programming Paradigms with Underscore.js.

Functional composition with bind, bindAll,
and partial
The first function is _.bind(function, object, *arguments) that returns a new
function wrapper for the original function parameter. The wrapper function has the
this value set to the object parameter and its arguments will be prefilled in order
with the values from the *arguments parameters. The returned function is also known
as bound function and is an example of functional composition in action. Through
functional composition, we can create new functions based on existing functions in
scenarios where we cannot change the original function implementation (we don't
own the code) or it is more convenient to do so. It is a core technique used in functional
programming and is facilitated by most of the functions in this subsection.

Using Underscore.js with Arrays, Objects, and Functions

[80]

To demonstrate the _.bind() functionality, we will define an accumulator object
with two methods, add(value) and substract(value), that will be extracted
and invoked independently:

var accumulator = {
 currentValue: 0,
 add: function(value) {
 this.currentValue += value;
 },
 substract: function(value) {
 this.currentValue -= value;
 }
};

accumulator.currentValue = 5;
accumulator.add(2);
accumulator.substract(3);
console.log("accumulator.currentValue = " +
accumulator.currentValue);

var pseudoAccumulator1 = {
 currentValue: 1
};
var pseudoAccumulator2 = {
 currentValue: 2
};

var addFunction = _.bind(accumulator.add, pseudoAccumulator1);
var substractFunction = _.bind(accumulator.substract,
pseudoAccumulator2);

addFunction(2);
substractFunction(3);
console.log("pseudoAccumulator1.currentValue = " + pseudoAccumulator1.
currentValue);
console.log("pseudoAccumulator2.currentValue = " + pseudoAccumulator2.
currentValue);
// -> accumulator.currentValue = 4
// pseudoAccumulator1.currentValue = 3
// pseudoAccumulator2.currentValue = -1

The _.bind() function is defined in the ES5 standard and Underscore
will default to the native function if available.

Chapter 3

[81]

A function closely related to _.bind() is _.bindAll(object, *methodNames),
where *methodNames is a list of function name parameters that belong to the object
parameter (they are method names for the object parameter). This function ensures
that all methods specified through the methodNames parameter have the this value set
to the object parameter. It is useful when used in the context of event handlers, and
in the following example, we will reuse the accumulator object and define two new
methods, add1() and substract1(), that are suitable to be used as event handlers.
Here is the HTML snippet that defines the example buttons:

<button id="testBindAll_add1">Test _.bindAll() add1</button>

<button id="testBindAll_substract1">Test _.bindAll()
substract1</button>

<button id="testBindAll_log">Log accumulator.currentValue</button>

And here is the code that manipulates them:

var accumulator = {
 currentValue: 0,
 add: function(value) {
 this.currentValue += value;
 },
 substract: function(value) {
 this.currentValue -= value;
 },
 add1: function() {
 this.currentValue += 1;
 },
 substract1: function() {
 this.currentValue -= 1;
 }
};

accumulator.currentValue = 5;
accumulator.add(2);
accumulator.substract(3);
console.log("accumulator.currentValue = " + accumulator.currentValue);

_.bindAll(accumulator, 'add1', 'substract1');

testBindAll_add1.addEventListener('click', accumulator.add1);

_.bindAll(accumulator, 'add1', 'substract1');

Using Underscore.js with Arrays, Objects, and Functions

[82]

testBindAll_substract1.addEventListener('click',
accumulator.substract1);

testBindAll_log.addEventListener('click', function() {
 console.log("accumulator.currentValue = " +
 accumulator.currentValue);
});

If we remove the highlighted _.bindAll() line, accumulator.currentValue
remains unchanged, and you can test this change using the online example at
http://bit.ly/1NekLkz. The example output is written in the browser console.

Another function closely related to _.bind() is _.partial(function, *arguments),
which accomplishes the same functionality as the former function apart from
presetting the this value. In addition, if any of the *arguments parameters is specified
as _, it will leave that argument unset so that it can be replaced with a value specified
when the result function is invoked (we should not mistake this argument with the
Underscore global object). The approach facilitated by _.partial() is called partial
function application and it is another frequently used functional
programming technique.

We will revisit the propertyFormatter.js file and implement a function that uses
the existing extractDataPropertiesForDisplayAsArray function to provide the
same functionality for any object regardless of whether they have an id property or
not. The new function extractDataPropertiesForDisplayForAnyObject has a
signature with only one parameter, as shown in the next example that is a shortened
version of the full propertyFormatter.js file:

var propertyFormatter = (function() {
 "use strict";

 var extractDataPropertiesForDisplayAsArray = function(source,
 ignoreId) {
 var propertiesForDisplay = [];
 if (_.isNull(source) || _.isUndefined(source) ||
 .isEmpty(source) || (!ignoreId && !.isNumber(source.id))) {
 return propertiesForDisplay;
 }
 .each(.pairs(source), function(keyValue) {
 var key = keyValue[0];
 var value = keyValue[1];
 if (_.isDate(value) || _.isBoolean(value) ||
 _.isNumber(value) || _.isString(value)) {
 propertiesForDisplay.push("Property '" + key + "' of type:
 " + typeof value + " has value: " + value);

http://bit.ly/1NekLkz

Chapter 3

[83]

 } else if (!_.isFunction(value)) {
 propertiesForDisplay.push("Property: " + keyValue[0] + "
 cannot be displayed.");
 }
 });
 return propertiesForDisplay;
 };

 var extractDataPropertiesForDisplayForAnyObject =
 _.partial(extractDataPropertiesForDisplayAsArray, _, true);
 return {
 ...
 extractDataPropertiesForDisplayAsArray:
 extractDataPropertiesForDisplayAsArray,
 extractDataPropertiesForDisplayForAnyObject:
 extractDataPropertiesForDisplayForAnyObject,
 ...
 };
}());

The highlighted code demonstrates the use of the _.partial() function using
the _ parameter. This parameter allows for the source value to be supplied when
extractDataPropertiesForDisplayForAnyObject is invoked providing a simpler
and elegant alternative for extractDataPropertiesForDisplayAsArray.

You can find the examples from this section within the functions folder from the
source code for this chapter.

Further functional composition with memoize,
wrap, negate, and compose
Underscore provides a powerful performance optimization through the use of the
function _.memoize(function, [hashFunction]). By using this function, we can
memorize the results of function calls using a default key set to the first function
parameter value. Using _.memoize() creates a function that returns a memorized
result each time it is called again with the same value for its first argument. When the
arguments list is more complex, you can use the optional hashFunction parameter,
where you define the key that will be used to store the function result based on the
current arguments list.

The _.wrap(function, wrapper) function creates a function that can execute code
before and after the function parameter is invoked. It enhances the functionality
provided by the function parameter with additional code and it is another useful
tool for functional composition.

Using Underscore.js with Arrays, Objects, and Functions

[84]

To illustrate the power of _.wrap(), we will adapt the code from index.js that
displays the example output in the browser to use this function. We will create a
modified version of propertyFormatter.extractPropertiesForDisplayAsArray
that adds a string to the result with information on the number of processed properties:

$(document).ready(function() {
 ...
 var extractPropertiesForDisplayWithFinalPropertiesCount = _.wrap(
 propertyFormatter.extractPropertiesForDisplayAsArray,
 function(func) {
 return function() {
 var result = func.apply(this, arguments);
 result.push("Processed property count is " + result.length
 + ".");
 return result;
 };
 })();

 var propertiesForDisplay =
 extractPropertiesForDisplayWithFinalPropertiesCount(source);

 $("#output").html("<h2>Object properties using a _.wrap version
 of propertyFormatter.extractPropertiesForDisplayAsArray:</h2>");

 _.each(propertiesForDisplay, function(line) {
 var existingContent = $("#output").html();
 $("#output").html(existingContent + "
" + line);
 });
 ...
});

The highlighted code creates a function that has a similar signature to
propertyFormatter.extractPropertiesForDisplayAsArray with a slightly
different result. You can use the example to experiment with versions that log how
fast the original function took to execute or how many times it was called.

The _.negate(predicate) function returns the logical complement (negation) of
the predicate function parameter and provides an elegant way to reuse an existing
function that returns a Boolean result.

The _.compose(*functions) function takes one or more function parameters that
will be evaluated from the last one to the first one with each function parameter
receiving the result of the following function.

Chapter 3

[85]

Controlling when and how often functions are
called
Underscore provides a series of functions that manipulate the built-in
JavaScript setTimeout() function to control when a function is called using
a declarative approach.

The first function is _.delay(function, wait, *arguments) and it will invoke
the function parameter after wait milliseconds using the parameters provided in
the *arguments values. The second function, _.defer(function, *arguments), is
closely related, and it is useful when using Underscore in a complex computational
context. The function parameter will be invoked only when the current call stack
is clear, and thus, it will not be affected even if the actual function call
is a computational heavy operation.

The next function, _.throttle(function, wait, [options]), returns a function
that will invoke the function parameter at most once every wait milliseconds.
This is useful when the result function will be called many times during wait
milliseconds, and we need to limit the actual execution to one call for that duration.
The initial function invocation is immediate, but if you pass {leading: false} as
the optional options parameter the initial invocation will be done after the wait
duration. Similarly, if {trailing: false} is passed, the function parameter will
be invoked at the beginning of the wait duration rather than at the end as default.
To demonstrate the functionality of _.throttle(), we have an example where we
create a throttled function that, although called millions of times in the space of 6
seconds, it is actually only executed 3 times:

var throttledFunctionCallLimit = 3;
var throttledFunction = _.throttle(function() {
 console.log("Throttled function executed at: " + new Date());
 throttledFunctionCallLimit -= 1;
}, 2000, {
 leading: false
});
var i = 0;
while (throttledFunctionCallLimit > 0) {
 throttledFunction();
 i += 1;
}
console.log("The throttled function was called " + i + " times.");
// -> Throttled function executed at: Sun Sep 06 2015 13:50:15
// Throttled function executed at: Sun Sep 06 2015 13:50:17
// Throttled function executed at: Sun Sep 06 2015 13:50:19
// The throttled function was called 31192639 times.

Using Underscore.js with Arrays, Objects, and Functions

[86]

The last function based on setTimeout() is _.debounce(function, wait,
[immediate]) that creates a wrapper function for the function parameter that
will execute it after a delay of wait milliseconds since the wrapper function was
last called. We will illustrate this function using a slightly more advanced example
than the one for the _.throttle() function. Rather than using a while loop, we
will recursively call a function that uses _.delay() to ensure the function created
using _.debounce() has executed:

var debouncedFunctionCallLimit = 3;
var debouncedFunction = _.debounce(function() {
 console.log("Debounced function executed at: " + new Date());
 debouncedFunctionCallLimit -= 1;
}, 1000);
var i = 0;
var callDebouncedFunction = function() {
 if (debouncedFunctionCallLimit === 0) {
 console.log("The debounced function was called " + i + " times
 in total.");
 return;
 }
 debouncedFunction();
 debouncedFunction();
 debouncedFunction();
 debouncedFunction();
 debouncedFunction();
 i += 5;
 console.log("Called the debounced function 5 times in the
 current iteration.");
 _.delay(function() {
 callDebouncedFunction();
 }, 1500);
};
callDebouncedFunction();
// -> Called the debounced function 5 times in the current
// iteration.
// Debounced function executed at: Sun Sep 06 2015 16:43:32
// Called the debounced function 5 times in the current
// iteration.
// Debounced function executed at: Sun Sep 06 2015 16:43:34
// Called the debounced function 5 times in the current
// iteration.
// Debounced function executed at: Sun Sep 06 2015 16:43:35
// The debounced function was called 15 times in total.

Chapter 3

[87]

We try to call the function returned by _.debounce() 5 times, and then we wait 1.5
seconds before trying it to call it again, giving it the required one-second wait that it
needs before it is executed.

The next set of functions control how many times a given function can be executed.
The first function is _.once(function), which creates a new function that ensures
function is invoked once and only once. Each time the returned function is called,
it will return the result of this first function invocation.

The next function is _.after(count, function), which returns a function that
when called repeatedly will only invoke the function parameter after it is called
at least count times.

The last function of this subsection is _.before(count, function), which
returns a function that ensures that the function parameter will be invoked at
most count times (it behaves like _.once() if count is 1). After the maximum
number of calls is reached, each subsequent call will return the result of the last
actual function invocation.

Utility functions
Underscore has a set of miscellaneous functions that we will enumerate briefly in
this section. Some of these functions will be explored in other chapters, and they
will have a summary description followed by the chapter reference:

• _.noConflict(): This returns the Underscore object when the _ global
variable is already in use

• _.identity(value): This is mainly used by Underscore internally to return
the value parameter as a result

• _.constant(value): This is closely related to _.identity() and creates
a function that returns the value parameter when invoked

• _.noop(): This creates a function that will always return undefined
regardless of its invocation parameters

• _.times(n, iteratee, [context]): This invokes the iteratee function n
times and each time it is passing the current invocation index as parameter;
the result is an array with all the iteratee invocation return values

• _.random(min, max): This returns a random integer between min and max
• _.mixin(object): This provides a convenient way to add functionality to

the Underscore object, and we will explore it further in Chapter 6, Related
Underscore.js Libraries and ECMAScript Standards

Using Underscore.js with Arrays, Objects, and Functions

[88]

• _.iteratee(value, [context], [argCount]): This is another
Underscore internal function used to create functions that can be
invoked against collection elements

• _.uniqueId([prefix]): This generates unique values using an
Underscore internal counter and the optional prefix string parameter

• _.escape(string), _.unescape(string): The first function converts
the characters &, <, >, ", ', and ` into their HTML escaped versions: &,
<, >, ", ', and ` the second function performs
the reverse operation

• _.result(object, property): If property is a function property of
object, it will be invoked and the result will be returned. If property
is a value property of object, then the property value will be returned

• _.now(): This defaults to the native JavaScript Date.now() in an ES5
runtime; otherwise, it provides a faster replacement for older JavaScript
runtimes

• _.template(templateString, [settings]): This provides HTML
templating functionality; we will explore this function in Chapter 5, Using
Underscore.js in the Browser, on the Server, and with the Database.

Summary
This chapter explored the specialized Underscore functions that target arrays, objects
and functions. It also included a section on miscellaneous Underscore functions that
will be referenced in other chapters.

The sections on objects and functions are a prerequisite for the next chapter that will
discuss more about using programming paradigms with Underscore.

[89]

Programming Paradigms
with Underscore.js

The previous chapter concluded the overview of most of the Underscore features.
This chapter will explore how Underscore can be used in the context of different
programming paradigms and has the following sections:

• An overview of the object-oriented programming (OOP) paradigm
• Examples of how you can use Underscore in an OOP context
• A description of the functional programming (FP) paradigm
• Examples of how you can use Underscore in a FP context

The chapter assumes that you are familiar with OOP concepts in general. In
this chapter, we will use the programming paradigm interchangeable with the
programming style.

The source code for the examples from this chapter is hosted online at https://
github.com/popalexandruvasile/underscorejs-examples/tree/master/
programming-paradigms, and you can execute the examples using the Cloud9 IDE
at the address https://ide.c9.io/alexpop/underscorejs-examples from the
programming-paradigms folder.

https://github.com/popalexandruvasile/underscorejs-examples/tree/master/programming-paradigms
https://github.com/popalexandruvasile/underscorejs-examples/tree/master/programming-paradigms
https://github.com/popalexandruvasile/underscorejs-examples/tree/master/programming-paradigms
https://ide.c9.io/alexpop/underscorejs-examples

Programming Paradigms with Underscore.js

[90]

The object-oriented programming
paradigm
JavaScript is a dynamic multi-paradigm programming language that can be used
with an imperative, object-oriented, or functional programming style. Imperative
programming is a programming style found in languages that can be used for
scripting, and we will explore this style in Chapter 5, Using Underscore.js in the
Browser, on the Server, and with the Database.

Object-oriented programming is mainly characterized by the use of objects created
using classes in class-based languages or cloned from other objects in prototype-
based languages. Some of the object-oriented features are abstraction, inheritance,
polymorphism, encapsulation, and information hiding, and these features favor a
programming style where objects contain both data and behavior represented
by methods.

You can find more OOP principles and patterns described in the "Gang
of four" design patterns at https://en.wikipedia.org/wiki/
Software_design_pattern and the S.O.L.I.D. principles at http://
www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.

The JavaScript language facilitates object-oriented features through its built in
prototypal inheritance. Each object is either of the built-in type Object or inherits
from it directly or indirectly through prototypal inheritance. Although this concept
might be a bit more advanced for some developers, I think it is essential to explore
it at the beginning of this section because:

• Prototypal inheritance is a key mechanism to share data and behavior
between JavaScript objects

• Underscore provides a couple of functions that facilitate and simplify
prototypal inheritance

• ES6 introduces classes with a syntax that is similar with class-based
languages, but prototypal inheritance is still being used under-the-covers

In the ECMAScript specification, each object has an internal built-in property
defined as [[Prototype]] and implemented initially by browser vendors as a
nonstandard property called __proto__. ES5 defined a standard function called
Object.getPrototypeOf(obj) that returns the [[Prototype]]value for an object
and ES6 went further and standardized the __proto__ property. Using either of
the two approaches will return the same [[Prototype]] value, and we will refer
to it as the object prototype from now on.

https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Chapter 4

[91]

Understanding prototypal inheritance can prove difficult for programmers coming
from OOP languages with class-based inheritance. In JavaScript, objects inherit
from instances of other objects and share properties via the object prototype. In this
section, we will use a series of examples that explore these concepts via a bare-bones
project structure for a better focus.

Inheritance with object literals
The first example demonstrates that all object literals are bound to the same
prototype that is the built-in default JavaScript Object prototype. We will take a
simplified version of the client object from our bicycles-related samples, and we
will make two objects out of it (one inheriting from the other). The initial object is
similar to the contact object we used in previous examples:

var originalClient = {
 "id": 1,
 "name": "Baxter Brooks",
 "gender": "male",
 "type": "client",
 "email": "baxterbrooks@dymi.com",
 "registered": "2014-03-15T10:52:05 -00:00",
 "isActive": false,
};
var contact = {
 "id": 1,
 "name": "Baxter Brooks",
 "gender": "male",
 "type": "contact",
 "email": "baxterbrooks@dymi.com",
};
var assertObjectLiteralPrototype = originalClient.__proto__ ===
contact.__proto__ && contact.__proto__ === {}.__proto__;
console.log(exampleTitle + "Assert that the default [[Prototype]]
property of any object literal is the same object instance: " +
assertObjectLiteralPrototype);

The highlighted code snippet is accessing the [[Protoype]] property defined in the
ECMAScript specification using the contact.__proto__ property (available in any
modern browser). The same expression can be rewritten so it is strictly ES5 compliant:

Object.getPrototypeOf(originalClient) ===
Object.getPrototypeOf(contact) && Object.getPrototypeOf(contact)
=== Object.getPrototypeOf({})

Programming Paradigms with Underscore.js

[92]

I prefer the __proto__ notation as it is more expressive and succinct and it is now
part of the ES6 standard. It proves useful when invoked in the browser JavaScript
console although it should not be used in the production code.

You can execute the examples from this section at http://bit.ly/1KfBLSb or
from the folder oop-inheritance from the source code for this chapter. The first
series of examples can be found in the inheritanceUsingObjectLiterals.js file.

We will now create a new client1 object that is set to inherit from the contact
object by setting the [[Protoype]] property of the former to the instance of
the latter:

var client1 = {
 __proto__: contact,
 "type": "client",
 "registered": "2014-03-15T10:52:05 -00:00",
 "isActive": false,
};
var assertClient1Prototype = client1.__proto__ ===
Object.getPrototypeOf(client1) && client1.__proto__ === contact;
console.log(exampleTitle + "Assert that [[Prototype]] for object
'client1' is 'contact': " + assertClient1Prototype);

If you inspect the client1 object when you execute the example, you will notice
that it has all the property values of contact, for example, client1.id, with the
exception of the type property that was overwritten. This example represents the
simplest case of a prototypal inheritance chain—when we access a property on an
object that is not defined on the same object, the JavaScript runtime will inspect the
object prototype and look for the property there. This is a recursive process that will
stop after the default object literal prototype is reached, as its own prototype is null
(this can be expressed in the code as {}.__proto__.__proto__ === null).

The previous example can be also written as ES5-compliant code using the built-in
Object.create() function and _.extend():

var client2 = Object.create(contact);
_.extend(client2, {
 "type": "client",
 "registered": "2014-03-15T10:52:05 -00:00",
 "preferredBike": "A clown bike",
 "isActive": false,
});
var assertClient2Prototype = client2.__proto__ ===
Object.getPrototypeOf(client2) && client2.__proto__ === contact;

http://bit.ly/1KfBLSb

Chapter 4

[93]

 console.log(exampleTitle + "Assert that [[Prototype]] for object
'client2' is 'contact': " + assertClient2Prototype);

The function Object.create(proto[, propertiesObject]) will create a new
object instance with its [[Prototype]] property set to proto and additional
properties defined through the optional propertiesObject object.

Underscore provides a simpler alternative to the Object.create() function and
this is _.create(prototype, props). The previous code snippet can use the
_.create() function instead of both Object.create() and _.extend():

var client2 = _.create(contact, {
 "type": "client",
 "registered": "2014-03-15T10:52:05 -00:00",
 "preferredBike": "A clown bike",
 "isActive": false,
});

As client1 and client2 objects share the same contact prototype, we can add new
properties for all these objects when we set them as contact.__proto__ properties:

client1.__proto__.emailSubscriber = true;
console.log(exampleTitle + "Assert that all objects inheriting
from 'contact' and 'contact' itself have emailSubscriber set to
true: " + (contact.emailSubscriber && client1.emailSubscriber &&
client2.emailSubscriber));

client1.__proto__.getContactIdAndName = function() {
 return this.name + " (" + this.id + ")";
};
console.log(exampleTitle + "Assert that all objects inheriting
from 'contact' and 'contact' itself have the same value for
getContactIdAndName(): " + (contact.getContactIdAndName() ===
client1.getContactIdAndName() && contact.getContactIdAndName() ===
client2.getContactIdAndName()));

The example represents the simplest form of extending objects with new functionality.
In theory, we can use the contact prototype to add new properties. Because the
contact prototype is the built-in default JavaScript Object prototype, we will also
extend all JavaScript objects, which can potentially break any code relying on these
objects behaving as per the ECMAScript standard. Extending built-in JavaScript
prototypes is considered a bad practice unless used in libraries that implement
unsupported JavaScript features for older browsers (these libraries are also known
as polyfills).

Programming Paradigms with Underscore.js

[94]

Inheritance with object constructors
The second series of examples explores a different way to create objects that allows
for more control and flexibility compared to using object literals.

In JavaScript, a function becomes an object constructor function when used with
the new operator. Calling a function with the new operator will create a new object
instance, and you can reference the new instance in the constructor function body
via the built-in this variable.

The object literal-based example is adapted to use an object constructor and calling
the object constructor creates the contact instance:

function Contact(id, name, gender, email) {
 this.id = id;
 this.name = name;
 this.gender = gender;
 this.type = "contact";
 this.email = email;
}
var contact = new Contact(
 1,
 "Baxter Brooks",
 "male",
 "baxterbrooks@dymi.com"
);

The convention for the object constructor is to use Pascal cased names as
Contact to keep the syntax close to similar syntax in OOP languages with
class-based inheritance.

The last line of the code snippet is identical with calling a class constructor in
an OOP language such as C#; the example demonstrates how a class definition
and instantiation looks like in JavaScript.

The contact object has a property called constructor, which points to the Contact
function. To check whether an object is a specific "class" in OOP terminology, we
can check its constructor properties like in the expression: contact.constructor.
name === "Contact". I should note that this check is simplistic and it does not
cover cases such as the Array type that has a different kind of constructor. A better
way to check that an object is of a specific type is to use the JavaScript operator
instanceof, which can be used in an expression such as: contact instanceof
Contact === true. The operator checks whether an object inherits directly or
indirectly from a constructor function prototype.

Chapter 4

[95]

Other important advantages to using an object constructor function are as follows:

• A constructor function has a built-in property called prototype that holds
the [[Prototype]] property of all the object instances created with it

• A constructor function prototype property is unique and different
from the built-in default JavaScript Object prototype

The next example contains an expression that verifies the contact object
prototype assumptions using the __proto__ property first and the
instanceof operator second:

console.log(exampleTitle + "Assert that [[Prototype]] for
'contact' instance is the object constructor prototype: " +
(contact.__proto__ === Contact.prototype));
var assertContactIsInstanceOfContact = contact instanceof Contact;
console.log(exampleTitle + "Assert that 'contact' is an instance
of Contact: " + assertContactIsInstanceOfContact);

Using object constructors, we can validate object properties before an instance
is created, and we have a unique object prototype that can be used to extend
behavior in a safe way.

We will now revisit the object literal representing a client and change it to use
inheritance based on object constructors. First, we will define a Client object
constructor that creates objects with a prototype that inherits from Contact.
prototype:

function Client(id, name, gender, email, registered, isActive) {
 Contact.call(this, id, name, gender, email);
 this.type = 'client';
 this.registered = registered;
 this.isActive = isActive;
}
Client.prototype = Object.create(Contact.prototype);
Client.prototype.constructor = Client;

var client = new Client(
 1,
 "Baxter Brooks",
 "male",
 "baxterbrooks@dymi.com",
 "2014-03-15T10:52:05 -00:00",
 false
);

Programming Paradigms with Underscore.js

[96]

Within the Client constructor function, we are calling the Contact constructor to
initialize all inherited properties with the exception of the type property and set
the Client specific properties after that.

The first line of the highlighted code should be familiar as it is similar to the Object.
create() invocation from the inheritance with object literals example. This time
around we use it to ensure the Client prototype inherits from the Contact prototype.
The effect of using this line is the same as before with the distinction that now the two
prototypes are unique and distinct and can be accessed using simpler code. Having
a common and easy to access prototype allows us to extend the functionality of all
Contact and Client instances in a controlled, flexible, and elegant manner. The last
highlighted line links the Client prototype constructor (which holds the Contact
constructor function at this point) with the Client constructor function, completing
the last piece of infrastructure for implementing prototypal inheritance with object
constructors.

We can verify the relationship between object prototypes with this expression:

console.log(exampleTitle + "Assert that [[Prototype]] for 'client'
inherits from the [[Prototype]] for 'contact': " +
(client.__proto__.__proto__ === contact.__proto__));

Another way to verify this relationship is to use the instanceof operator:

 var assertClientIsInstanceOfContact = client instanceof Contact;
 console.log(exampleTitle + "Assert that 'client' is an instance
 of Contact: " + assertClientIsInstanceOfContact);

The next step is to extend both Contact and Client object functionality through
Contact.prototype:

Contact.prototype.getContactIdAndName = function() {
 return this.name + " (" + this.id + ")";
};
console.log(exampleTitle + "Assert that all objects inheriting
from 'Contact' or that are 'Contact' have the same value for
getContactIdAndName(): " + (contact.getContactIdAndName() ===
client.getContactIdAndName()));

We will start referring to object constructors as classes from now to make their
intent more explicit for readers with an OOP background and we will expand
this subject when we discuss ES6 classes.

In this subsection, we explored OOP features based on ES5 and we will discuss
more about OOP improvements in ES6 in Chapter 6, Related Underscore.js Libraries
and ECMAScript Standards.

Chapter 4

[97]

JavaScript support for OOP is more extensive than was explored in this
section. You can find more information about OOP and JavaScript on
the Mozilla Developer Network website at https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Introduction_
to_Object-Oriented_JavaScript and https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Inheritance_
and_the_prototype_chain. I also recommend a book that I
found especially useful and it is available to read online at http://
eloquentjavascript.net/—see Chapter 6, The Secret Life Of Objects.

Using Underscore with the object-oriented
programming paradigm
In this chapter, we used functions such as _.extend() and _.create() that
helped us leverage prototypal inheritance. We will now walkthrough some
code examples that showcase various Underscore functions that facilitate the
OOP paradigm.

Using classes with original client data
We will start a series of examples that build upon the prototypal inheritance and
are based on the previous chapter's sample data. The leading requirement that we
need to implement is to differentiate between active clients (referred to as clients)
and inactive ones (referred to as contacts). To make this distinction, we will use
the property isActive of the original client object, and we will retrieve just
contact-related properties for the inactive clients.

First, we will extend the object constructors introduced in this chapter for the
Contact and Client objects to include all the properties that were removed for
brevity. You can find the two constructor functions in the classes.js file in the
oop-underscore folder from the source code for this chapter.

Next, we will change the clientRetriever.js file so that it loads the original
client objects returned by dataRetriever.getClients() into an array of
Contact and Client instances:

var clientRetriever = (function() {
 "use strict";
 var getContacts = function() {
 var clientObjects = dataProvider.getClients();
 return _.map(clientObjects, function(clientObject) {

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
http://eloquentjavascript.net/
http://eloquentjavascript.net/

Programming Paradigms with Underscore.js

[98]

 if (!clientObject.isActive) {
 return new Contact(
 clientObject.id,
 clientObject.name,
 clientObject.gender,
 clientObject.company,
 clientObject.email,
 clientObject.phone,
 clientObject.address);
 }
 return new Client(
 clientObject.id,
 clientObject.name,
 clientObject.gender,
 clientObject.company,
 clientObject.email,
 clientObject.phone,
 clientObject.address,
 new Date(clientObject.registered),
 clientObject.preferredBike,
 clientObject.bikePoints,
 clientObject.notes
);
 });
 };
 return {
 getContacts: getContacts
 };
}());

If an original client object has the isActive property set to true, we create a
Client object; if not, we create a Contact object. Because Client inherits
from Contact, any Client object is also a Contact object, so the main function
is called getContacts() to reflect the common denominator.

It is worth mentioning that the constructor functions Contact()
and Client() from the classes.js file could be refactored to
accept an object argument that has all the required properties for
the constructed object.

Based upon these changes we can now create a function to retrieve the active clients
represented by the Client type. We have multiple ways to accomplish this: by
comparing the type property, by comparing the object constructor type, and by
using the instanceof operator.

Chapter 4

[99]

We will implement all three functions in the clientRetriever.js file:

getClientsUsingTypeProperty: function() {
 var contacts = getContacts();
 return _.filter(contacts, function(contact) {
 return contact.type === "client";
 });
},
getClientsUsingConstructorType: function() {
 var contacts = getContacts();
 return _.filter(contacts, function(contact) {
 return contact.constructor === Client;
 });
},
getClientsUsingInstanceof: function() {
 var contacts = getContacts();
 return _.filter(contacts, function(contact) {
 return contact instanceof Client;
 });
}

The last function gives us an elegant and expressive way to ensure an object is of
a specific type and we verify that all functions return the same results in the
associated test specifications from the spec/clientRetrieverSpec.js file.

Constructor validation with Underscore
One of the advantages of using object constructors is that we can control the creation
of objects via validation. In Chapter 3, Using Underscore.js with Arrays, Objects, and
Functions, we explored a series of functions such as _.isNumber() and _.isString()
that can be used to make type assertions against an object. We also discussed the
function _.toArray() that transforms the arguments variable available in any
JavaScript function into an array for convenient manipulation. We will use the latter
function first to validate that the object constructor has the correct number
of arguments and the former ones to validate that the arguments are of the correct
type. This is the changed implementation for the Contact class in classes.js:

var Contact = (function() {
 "use strict";
 function Contact(id, name, gender, company, email, phone,
 address) {
 var argsArray = _.toArray(arguments);
 if (argsArray.length != 7) {
 throw {
 name: "ArgumentsException",

Programming Paradigms with Underscore.js

[100]

message: "The arguments length is incorrect."
};

 }
 if (!_.isNumber(id) || !_.isString(name) ||
 !_.isString(gender) || !_.isString(company) ||
 !_.isString(email) || !_.isString(phone) ||
 !_.isString(address)) {

throw {
name: "ArgumentsException",
message: "One of the arguments does not have the expected
type."

};
 }
 this.id = id;
 this.name = name;
 this.gender = gender;
 this.company = company;
 this.email = email;
 this.phone = phone;
 this.address = address;
 this.type = "contact";
 }
 Contact.prototype.getContactNameIdAndType = function() {
 return this.name + " (" + this.id + " - " + this.type + ")";
 };
 return Contact;
}());

Any validation error will be thrown as an exception so, when we write the test
specifications for our class in the spec/contactSpec.js file, we need to use a
slightly different syntax. We define a function variable that creates an invalid
Contact object, and then we check that the exact exception name and message
were thrown:

describe("Given Client class", function() {
 describe("when calling new Client() with too few arguments",
 function() {
 var createClient = function() {

new Client(1, " A contact name");
 };
 it("then throws the correct exception", function() {

expect(createClient).toThrow({
name: 'ArgumentsException',
message: 'The arguments length is incorrect.'

});

Chapter 4

[101]

 });
 });
 describe("when calling new Client() with an argument of the
 wrong type", function() {
 var createClient = function() {
 new Client(1, " A contact name", "Female", "Company2", "An
 email", "Phone1", "An address",
 "Date2014", "A bike", 200, "Some notes ");
 };
 it("then throws the correct exception", function() {
 expect(createClient).toThrow({
 name: "ArgumentsException",
 message: "One of the arguments does not have the expected
 type."
 });
 });
 });
});

You can find the validation changes for the Client class in the classes.js file
and the tests specs in the spec/clientSpec.js file.

The Underscore object-related functions helped us build a class implementation that
should feel familiar to developers coming from a class-based OOP language. The
example also demonstrates that, even if Underscore is implemented in a functional
programming style, this does not mean it can't be used in an OOP context. You can
use it as a general-purpose utility library rather than as a functional library although
it will prove to be a solid base to build your own functional code, as discussed in
the rest of the chapter.

The functional programming paradigm
In the first chapter, we described a couple of the principles behind the functional
programming paradigm. Underscore in itself is a great example of applying
functional programming in JavaScript while the jQuery library also observes
functional programming principles.

Up until the current chapter, all the examples tried to remain close to functional
programming principles and you already saw some of these principles in action:

• Using functions as first-class citizens in most of the examples
• Using objects as data structures while relying on standalone functions

(as opposed to object methods) for implementing functionality in most
of the examples

Programming Paradigms with Underscore.js

[102]

• Using higher-order functions and immutability in the collections and
arrays examples

• Functional composition in the functions examples

Alongside immutability an important concept in functional programming is using
functions that don't have side effects. These are functions that do not modify the
global state or outside state, do not modify their arguments and if called with the
same arguments, they return the same results. You can find this concept applied
in most of the examples discussed up until and including this chapter.

We will explore another concept that straddles the demarcation line between
OOP and FP paradigms. The concept is known as method chaining and it is
a programming technique where object method calls can be chained together if
they return either the same instance of an object or the same type of object.

We will revisit the first example from the first chapter and use the built in
Array methods map, filter, and reduce to calculate the bicycle count using
method chaining:

var bicycles = [{
name: "A fast bike",
type: "Road Bike"
}, {
...
}, {
name: "A clown bike",
type: "Children Bike"
}];
var bicycleTypeCountData = bicycles
.map(function(bicycle) {
 return bicycle.type;
})
.filter(function(bicycleType) {
 return bicycleType !== 'Children Bike';
})
.reduce(function(bicycleTypeCount, bicycleType) {
 bicycleTypeCount[bicycleType] += 1;
 return bicycleTypeCount;
}, {
 "Road Bike": 0,
 "Mountain Bike": 0,
 "Urban Bike": 0
});
//=> Chaining using arrays : {"Road Bike":2,"Mountain
Bike":3,"Urban Bike":2}

Chapter 4

[103]

We started by calling the first method on an Array instance and stopped with the
final call that returned an Object instance, breaking the method chain. Underscore
also has built in support for method chaining and we will explore it in the final
section of this chapter.

You can find the example in the chaining.js file under the fp folder from the
source code for this chapter.

Adopting a functional programming style does not mean you necessarily have to
forego classes. As long as the classes are describing a data structure rather than
encapsulating behavior, they can be used with a functional programming style as
demonstrated in the next section. We will explore more functional programming
features in Chapter 6, Related Underscore.js Libraries and ECMAScript Standards,
when we discuss the library underscore-contrib.

The topic of functional programming in JavaScript is extensive and you
can find more information in Functional JavaScript, Michael Fogus, O'Reilly
Media, 2013 and in JavaScript Allongé by Reginald Braithwaite available
to read online at https://leanpub.com/javascript-allonge/
read—to name just a few of the resources available on this topic.

Migrating to a functional programming
style
We will revisit the examples in the folder oop-underscore from the source code for
this chapter and adapt them to use standalone functions instead of object methods:

• We will keep the classes as simple data structures and we will even preserve
the inheritance

• We will move all the functionality around validation and any object methods
outside the original classes

Because we want to preserve the existing functionality, we will leave the test
specifications unchanged together with the code that displays the example output.
First of all, we will move the validation logic into a separate validations.js
file. The object constructor functions for Contact and Client are validating the
argument's length and we will move this functionality into a new function:

validateArgsLength: function(argsLength, argsArray) {
 if (argsArray.length != argsLength) {
 throw {

https://leanpub.com/javascript-allonge/read
https://leanpub.com/javascript-allonge/read

Programming Paradigms with Underscore.js

[104]

 name: "ArgumentsException",
 message: "The arguments length is incorrect."
 };
 }
}

The second validation done in both object constructors was for the argument types.
We will replace this validation with a set of new functions, as shown in the next
code snippet:

validateArgsTypes: function(argsArray, argumentValidatorArray) {
 _.each(argsArray, function(argument, index) {
 if (!argumentValidatorArray[index](argument)) {
 throw {
 name: "ArgumentsException",
 message: "One of the arguments does not have the expected
 type."
 };
 }
 });
},
validateContactArgs: function(argsArray) {
 this.validateArgsTypes(
 argsArray, [_.isNumber, _.isString, _.isString, _.isString,
 _.isString, _.isString, _.isString]);
},
validateClientArgs: function(argsArray) {
 this.validateContactArgs(_.first(argsArray, 7));
 this.validateArgsTypes(
 .rest(argsArray, 7), [.isDate, _.isString, _.isNumber,
 _.isString]);
}

The first new function validateArgsTypes() is used by the object-specific validators
validateContactArgs() and validateClientArgs(), and we have used Underscore
functions to split the arguments array. We can also highlight the usefulness of
manipulating function arguments through the array created by the _.toArray()
function. We can use the arguments with the Underscore array functions _.first()
and _.rest(), which would not be possible if we left them unchanged.

The Contact class definition is a lot simpler now:

var Contact = (function() {
 "use strict";
 function Contact(id, name, gender, company, email, phone,
 address) {

Chapter 4

[105]

 var argsArray = _.toArray(arguments);
 validations.validateArgsLength(7, argsArray);
 validations.validateContactArgs(argsArray);
 this.id = id;
 this.name = name;
 this.gender = gender;
 this.company = company;
 this.email = email;
 this.phone = phone;
 this.address = address;
 this.type = "contact";
 }
 return Contact;
}());

The highlighted code shows the new validation function calls. The validations object
is similar to other objects encapsulating functionality that we used in other examples
such as clientRetriever and dataProvider. This object represents a unit of closely
related functionality and represents a module. The concept of a JavaScript module will
be explored in Chapter 5, Using Underscore.js in the Browser, on the Server, and with the
Database and Chapter 6, Related Underscore.js Libraries and ECMAScript Standards.

We have similar replacement code for the validation logic in the Client class:

var Client = (function() {
 "use strict";
 function Client(id, name, gender, company, email, phone,
 address, registered, preferredBike, bikePoints, notes) {
 var argsArray = _.toArray(arguments);
 validations.validateArgsLength(11, argsArray);
 validations.validateClientArgs(argsArray);
 Contact.call(this, id, name, gender, company, email, phone,
 address);
 this.type = 'client';
 this.registered = registered;
 this.preferredBike = preferredBike;
 this.bikePoints = bikePoints;
 this.notes = notes;
 }
 Client.prototype = Object.create(Contact.prototype);
 Client.prototype.constructor = Client;
 return Client;
}());

Programming Paradigms with Underscore.js

[106]

We kept the code that implements the inheritance between the two classes unchanged
but, if it is removed, it does not have any impact on our example. The two classes are
still linked together and we moved the validation logic into a separate module. We
can now reuse the validation logic in different contexts.

This refactoring is extended to the getNameIdAndType() function that was
implemented in the Contact class and inherited by the Client class. We moved
it into a separate module in the transformations.js file:

var transformations = (function() {
 "use strict";
 return {
 getContactNameIdAndType: function(contact) {
 return contact.name + " (" + contact.id + " - " +
 contact.type + ")";
 }
 };
}());

Similar to the validations objects, we now have access to the new function
getContactNameIdAndType() in other contexts without having to create a Contact
or Client instance first. This gives us greater flexibility and the ability to compose
and expand existing functions outside the original classes' context.

You can even restore the Contact.getNameIdAndType() method by calling
transformations.getContactNameIdAndType() in its implementation. This is
where following strict FP principles and OOP principles can drive a class definition
in different directions. I personally prefer to keep the programming style consistent
and avoid mixing and matching different principles in the same module or class.
As mentioned in the OOP section, you can use a functional library such as
Underscore in an OOP context; however, the opposite might prove a bit of a stretch.

JavaScript is not a fully-fledged functional programming language and, while it has
functional programming elements, it also has object-oriented constructs. You could
easily create a codebase that supports both programming styles: FP for algorithms
and data transformations and OOP for data persistence or rich user interface-related
objects. This does not mean that you could not use FP for the entire codebase or
that FP is more limited than OOP—many modern programming languages such
as JavaScript are multi-paradigm languages, and it is up to the developer to
choose the most appropriate style.

Chapter 4

[107]

Functional programming with
Underscore.js
In the previous chapter, we excluded some important functions that are essential
in implementing the method-chaining concept. Underscore has built-in support for
this concept through the _.chain(obj) function, which returns a new instance of
the _ object with the obj parameter stored as a property of the returned object; this
property is called _wrapped. The new _ instance is different from the global _ object
exclusively used up until now in all our examples. The new _ instance becomes the
vehicle of the method chain started with _.chain(obj) and we can use it to call any
Underscore function without specifying the first argument. The first argument is
always implied to be the _wrapped instance, so we can write code like this:

var people = [{
 name: "Herta Muller",
 birthYear: 1953,
 awardYear: 2009
}, {
 name: "Mario Vargas Llosa",
 birthYear: 1936,
 awardYear: 2010
}, {
 name: "Tomas Transtromer",
 birthYear: 1931,
 awardYear: 2011
}, {
 name: "Mo Yan",
 birthYear: 1955,
 awardYear: 2012
}, {
 name: "Alice Munro",
 birthYear: 1931,
 awardYear: 2013
}, {
 name: "Patrick Modiano",
 birthYear: 1945,
 awardYear: 2014
}];

var averagePersonAge = _.chain(people)

Programming Paradigms with Underscore.js

[108]

 .map(function(person) {
 return {
 name: person.name,
 awardAge: person.awardYear - person.birthYear
 };
 })
 .reduce(function(memo, person, index) {
 memo += person.awardAge;
 if (index === people.length - 1) {
 return Math.floor(memo / people.length);
 }
 return memo;
 }, 0)
 .value();
//=> 69

We took the example from the underscore.map.reduce folder from the source
code for the first chapter and we applied the method chaining concept using
_.chain(). The last method call value() ends the method chain, returning the
final _wrapped value shown in the last line of the code snippet representing the
example output.

The third Underscore function used in method chaining is _.tap(object,
interceptor), which will invoke the interceptor function parameter with the
object parameter passed as an argument. The function is useful when we need to
access the intermediary result for a method chain. If we introduce the next code
snippet between subsequent method chain calls, we will see the _wrapped value
in the browser JavaScript console:

 .tap(function(result) {
 console.log(result);
 })

We can also call some of the built-in JavaScript Array.prototype functions as part of
a method chain initiated with _.chain(): pop, push, reverse, shift, sort, splice,
unshift, concat, join, and slice. This feature makes Underscore a great choice for
manipulating arrays in general. Through the use of _.chain(), we effectively create a
fluent interface for transforming data in a concise and expressive manner.

Another interesting feature of functional programming languages is lazy evaluation,
where the value of an expression is calculated only when actually needed. JavaScript
does not support lazy evaluation out of the box, but if it did we could visualize the
_.chain() example, invoking all the methods only when the final method value()
is called.

Chapter 4

[109]

The practical value of a lazy evaluation language is the ability to further compose
method chains and some multi-paradigm languages such as C# have support for
this feature.

The extensive support for FP provided by Underscore can be used as a solid base
on which to build a library in a functional style. There are other libraries built on
Underscore, and we will explore them further in Chapter 6, Related Underscore.js
Libraries and ECMAScript Standards.

Summary
In this chapter, we explored different programming paradigms that can be used
with Underscore. Both the OOP and FP paradigms were discussed using code
examples that highlighted the built-in JavaScript support first followed by
expanded examples using Underscore.

The next chapter will present Underscore usage scenarios within specific
environments: browser, server, and database.

[111]

Using Underscore.js in the
Browser, on the Server, and

with the Database
In the previous chapter, we discussed how to use Underscore in the context of
two different programming paradigms and explored some of the programming
principles behind OOP and FP using a series of code samples.

In this chapter, we will see Underscore in action, applied in separate contexts:

• In the browser with Underscore templates
• On the server with Node.js
• With the MongoDB and PostgreSQL databases

The chapter assumes that you know fundamental jQuery concepts and have some
basic notions about web development and server-side and relational database
programing in general.

The source code for the examples from this chapter is hosted online at
https://github.com/popalexandruvasile/underscorejs-examples/tree/
master/browser-server-database, and you can execute the examples using the
Cloud9 IDE at the address https://ide.c9.io/alexpop/underscorejs-examples
from the browser-server-database folder.

https://github.com/popalexandruvasile/underscorejs-examples/tree/master/browser-server-database
https://github.com/popalexandruvasile/underscorejs-examples/tree/master/browser-server-database
https://ide.c9.io/alexpop/underscorejs-examples

Using Underscore.js in the Browser, on the Server, and with the Database

[112]

Using Underscore in the browser
In this section, we will explore Underscore browser-specific features. We will start
by pulling most of the code developed for Chapter 4, Programming Paradigms with
Underscore.js, from the fp-underscore folder and create an initial example with a
focus on user interface changes. We will render the example output using a popular
frontend design framework as a fast and efficient way to prototype web application.

Enhancing examples output with
Bootstrap
In the last couple of years, the rise in JavaScript frameworks has been matched by
a rise in frontend design frameworks such as Bootstrap and Foundation. These
frameworks provide a consistent set of HTML markup and base CSS files that will
render a user interface with a specific look and feel. You can customize this look and
feel by providing your own version of the base CSS or use a prebuilt one. Frontend
design frameworks have a central grid system that is used to layout and organize
content. They also have support for implementing responsive web design with a lot
of built-in functionality that will adapt the user interface for various screen sizes.

In this book, we will use the Bootstrap framework and, although an initial
overview is provided, a good place to get more in-depth documentation is
http://getbootstrap.com.

The Bootstrap grid system is based on a 12-column layout that is usually built
with div tags and special CSS classes to differentiate between rows and columns.
CSS classes are also used to set column widths, offsets, and spans. We will adapt
the initial example found in the browser-underscore folder from the source code
for this chapter and use Bootstrap to structure the rendered output. We need to
add the Bower package that contains this framework by first running the following
command in the example folder:

bower install bootstrap#3.3.4 --save

Next, we need to add a script reference to the base CSS file located at
bower_components/bootstrap/dist/css/bootstrap.css from the
Bootstrap Bower package.

http://getbootstrap.com

Chapter 5

[113]

If you browse the index-original.html file from the browser-underscore
example folder, you will see that the example output is rendered using the
Bootstrap framework:

There is now an example output area on the left and an information message on the
right. If the browser width drops below 992 px, the content gets aligned horizontally
to fit devices with smaller screens and you will see the right message beneath the
example output area. Here is the HTML markup with highlighted Bootstrap-specific
elements:

<div class="container">
 <div class="row">
 <div class="col-md-12">
 <div class="page-header">
 <h1>Browser jQuery examples
 </h1>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-md-12">
 <div class="btn-group">
 <button id="home-btn" type="button" class="btn btn-
 default">Home</button>
 <button id="oldest-clients-btn" type="button" class="btn
 btn-default">Oldest clients</button>
 <button id="best-clients-btn" type="button" class="btn
 btn-default">Best clients</button>
 </div>
 </div>

Using Underscore.js in the Browser, on the Server, and with the Database

[114]

 </div>
 <div class="row">
 <div class="col-md-6">
 <div class="panel panel-default">
 <div class="panel-heading">Panel heading</div>
 <div class="panel-body">Panel body</div>
 </div>
 </div>
 <div class="col-md-6">
 <div class="well">
 You can see the example output on the left of this message
 when the browser resolution is >= 992px or above this
 message when the browser resolution is < 992px </div>
 </div>
 </div>
</div>

The first highlighted attribute initializes the Bootstrap grid system with matching
class="row" attributes and class="col-md-12" attributes that define the rows and
cells of the grid. The first two rows have one cell each that spans the entire Bootstrap
12-column layout. The last row has two cells and each cell spans 6 grid columns as
defined by the class="col-md-6" attribute. The md class name part instructs Bootstrap
to collapse the two cells horizontally when the browser's horizontal resolution is less
than 992 px. Because the first two rows contain only one cell, they will always show
its content on a single line regardless of the browser resolution.

The first row defines a Bootstrap page header component through the class="page-
header" attribute. The second row has a Bootstrap button group component defined
by the class="btn-group" attribute. We use it as basic navigation for our example
output and its buttons are used to trigger the display of different clientRetriever
function call results, as shown in the index-original.js code:

$(document).ready(function() {
 var oldestClients = clientRetriever.getOldestClients(5);
 var bestClients = clientRetriever.getBestClients(5);
 var clients = clientRetriever.getClients();
 var onSelectHome = function() {
 $(".panel-heading").html("Welcome");
 $(".panel-body").html("<p>There are " + clients.length + "
 clients.</p>");
 };
 $("#home-btn").click(onSelectHome);
 $("#oldest-clients-btn").click(function() {

Chapter 5

[115]

 $(".panel-heading").html("Top 5 oldest clients with name, id and
 type");
 var displayContent = "" +
 _.map(oldestClients, function(client) {
 return transformations.getContactNameIdAndType(client);
 }).join('') +
 "";
 $(".panel-body").html(displayContent);
 });
 $("#best-clients-btn").click(function() {
 $(".panel-heading").html("Top 5 best clients with name, id and
 type");
 var displayContent = "" +
 _.map(bestClients, function(client) {
 return transformations.getContactNameIdAndType(client);
 }).join('') +
 "";
 $(".panel-body").html(displayContent);
 });
 onSelectHome();
});

On closer inspection, the code from the two highlighted click event handlers seems
a bit repetitive, and we will use the templating support in Underscore to provide a
better alternative.

Better HTML markup with Underscore
templates
Underscore provides the _.template(templateString, [settings]) function
that takes an HTML string with special formatted snippets, which is provided in
the templateString parameter, and returns a function. The function returned
by _.template() should be invoked with an object that contains the properties
referenced in the special formatted snippets as in the next examples.

The templateString parameter can contain the following:

• Expressions delimited by <%= … %>, which are interpolated:
var template = _.template("<h1><%= client.name %></h1>");
template({ client: { name: "Evelyn Obrien" } });
//=> "<h1>Evelyn Obrien</h1>"

Using Underscore.js in the Browser, on the Server, and with the Database

[116]

• Expressions delimited <% … %> that are evaluated as verbatim
JavaScript code:
var template = _.template("<h1><% if(client.name) { %> <%=
client.name %> <% } else { %> N/A <% } %></h1>");
template({ client: {} });
//=> "<h1> N/A </h1>"
template({ client: { name: "Giles Sykes" } });
//=> "<h1>Giles Syke</h1>"

• Expressions delimited by <%- … %>, which are interpolated and
HTML-escaped:

var template = _.template("<h1><%- client.name %></h1>");
template({ client: { name: "A. & R. Thompson" } });
//=> "<h1>A. & R. Thompson</h1>"

The settings parameter allows you to provide alternative regular expressions to
capture interpolate, evaluate, and escape snippets. For example, you can replace
the evaluate expression from <% … %> to {{ … }} to match the syntax of another
templating library called Mustache.js.

Using Underscore templates allows us to create a better solution for the previous
subsection example. We have created a new web page index-templates-js.html
and a new JavaScript file index-templates-js.js that use _.template(). Here
is the code from index-templates-js.js that handles the last two button click
events from index-templates-js.html and renders the same template in two
different contexts:

var clientsTemplate = _.template(
 "" +
 "<%_.forEach(clients, function (client,index) {%>" +
 "<%if (index>0) {%>" +
 "" +
 "<%}%>" +
 "<%=transformations.getContactNameIdAndType(client)%>" +
 "<%})%>" +
 "");
 $("#oldest-clients-btn").click(function() {
 $(".panel-heading").html("Top 5 oldest clients with name, id
 and type");
 var displayContent = clientsTemplate({
 clients: oldestClients
 });

Chapter 5

[117]

 $(".panel-body").html(
 displayContent);
 });
 $("#best-clients-btn").click(function() {
 $(".panel-heading").html("Top 5 best clients with name, id and
 type");
 var displayContent = clientsTemplate({
 clients: bestClients
 });
 $(".panel-body").html(
 displayContent);
});

The highlighted code demonstrates that Underscore template interpolation works
for function calls and not only for variables. This feature makes Underscore a simple
yet very powerful templating solution. You can find this example in the same folder
browser-underscore from the source code for this chapter.

When dealing with larger templates, you might find the process of building
Underscore templates from JavaScript strings a bit unwieldy. An alternative is to
embed the template in a script element on the web page and pass its contents to
the _.template() function. In the index-templates-html.html file, there is a
new script element that replaces the previous example template:

<script type="text/template" id="clients-template">

 <%_.forEach(clients, function (client,index) {%>
 <%if (index>0) {%>

 <%}%>
 <%=transformations.getContactNameIdAndType(client)%>
 <%})%>

</script>

We can now get load the template contents in index-templates-html.js
using jQuery:

var clientsTemplate = _.template($("#clients-template").html());

Using Underscore.js in the Browser, on the Server, and with the Database

[118]

It is worth mentioning that using templates in Underscore is a two-phase process. First,
the _.template() call compiles the HTML snippet received as input and returns a
function that can be reused as many times as needed. Second, the returned function is
invoked with a specific data input and generates the rendered output. The first phase
is usually more computationally expensive than the second, hence the benefit of using
templates compared to regular string operations. As a general rule templates should
contain as little logic as possible to make them more readable and easier to test.

The rest of the code is unchanged from the previous example, and you can find all the
files in the same folder browser-underscore from the source code for this chapter.

As mentioned before, Underscore was initially extracted from a project
that also used another client-side framework created by the same author
called Backbone.js. Backbone is a JavaScript Model-View-Controller
(MVC) framework that depends on Underscore and uses it to power
a lot of the framework functionality, including the default templating
system. You can find more about Backbone at http://backbonejs.
org/ and in the excellent free-to-read online book Developing Backbone.js
Applications, Addy Osmani, O'Reilly available at http://addyosmani.
github.io/backbone-fundamentals/.

Using Underscore on the server with
Node.js
In Chapter 1, Getting Started with Underscore.js, we briefly introduced Node.js
together with instructions on how to install and use its package manager npm.
By using Node.js from the operating system command line, we can execute
JavaScript server-side code: JavaScript runs inside the Node.js process with
full access to operating system resources.

Executing JavaScript with Node.js
At this point, Node.js and npm are available in the command line, and if we execute
the command node, you should see a prompt > appearing in the console waiting for
further input. We have launched Node.js as an interactive shell, which is similar to
the browser JavaScript console mode, and we can now execute any JavaScript code
and immediately see the feedback in the console. We can create a new object, read
one of its properties, and then add a new property and read the new property all in
the same interactive shell session (I used the Mac OS X terminal for this example):

MacBook-Air:~ alex$ node

> var item1 = {id: 1, name: "Item1"};

http://backbonejs.org/
http://backbonejs.org/
http://addyosmani.github.io/backbone-fundamentals/
http://addyosmani.github.io/backbone-fundamentals/

Chapter 5

[119]

undefined

> item1.name

'Item1'

> item1.isProcessed = true;

true

> item1.isProcessed

true

Each command has some type of feedback in the interactive shell, and this mode of
operation is known as read-eval-print loop or REPL (you should already be familiar
with it if you used the browser JavaScript console). You can exit the REPL at anytime
by pressing Ctrl + C and resume normal command-line operations.

Node.js can also execute a JavaScript program file if specified in the command line.
We will rewrite the previous example as an index.js file with the following content:

var item1 = {
 id: 1,
 name: "Item 1"
};
console.log("item1.name: " + item1.name);
item1.isProcessed = true;
console.log("item1.isProcessed: " + item1.isProcessed);

Notice that we have not used the revealing module pattern here to isolate scope, and
we don't need to as in Node.js global scope is not the default execution scope. Only
when we execute Node.js in REPL mode does the global scope behave in a similar
manner to the browser and becomes the default scope. Also, in the browser the
variable window holds the reference to the global scope, while in Node.js global scope
is referenced by the global variable and both objects are different in structure. Only
in the Node.js REPL mode does the this variable references the global scope and
returns the global object.

The "use strict;" line used in our previous JavaScript examples is also missing
because Node.js supports a global command-line switch that enables the ES5 strict
mode for any code executed in the current process. The code snippet is using
console.log() to output text in the console and this functionality is similar to the
browser JavaScript console. We will run the next command line and Node.js will
execute the index.js file in the ES5 strict mode:

node index.js --use_strict

Using Underscore.js in the Browser, on the Server, and with the Database

[120]

We should see this output in the command-line console; it is similar with the
previous example output from the REPL:

item1.name: Item 1

item1.isProcessed: true

Using Node.js modules
Node.js only accepts one file in its start arguments and relies on its built-in module
system to identify and execute code from multiple files.

The previous example used an index.js file that is actually loaded by Node.js
as a module:

• A Node.js module is a code abstraction used to encapsulate and share
JavaScript objects and functions

• Any module has one to one mapping to a file
• A module has a specific syntax to make functions and objects available

to other modules through the built-in Node.js expressions exports and
module.exports

• A module can reference other modules through the built-in Node.js
require() function

To illustrate how modules are declared and used, we will move the code from the
previous example into a module1.js file and change the index.js file to load the
module1.js file as a module using require(). The contents of the index.js file
are listed next, and we can execute this code by running the same command from
the previous example:

var module1 = require('./module1.js');
console.log("module1:" + JSON.stringify(module1));
//=> module1:{}

We are displaying the object returned by require() in the console; in its
current form, module1 does not provide any functionality outside its local
scope. A Node.js module has built-in access to a local variable called module, which
can be used to "export" functionality for other modules. If we add the line module.
exports = item1; at the end of the module1.js file, the console output changes to:

module1:{"id":1,"name":"Item 1","isProcessed":true}

Chapter 5

[121]

By using module.exports, we can export an object or a function and this gives us
full control what is shared with other modules. Node.js also provides a shortcut
variable called exports that can be used to export multiple objects or functions from
the current module. You can find an example of using exports in the module2.js
file that sits together with the updated index.js file in the nodejs-modules folder,
from the source code for this chapter.

Locating modules
In the previous subsection examples, the require() function located the target
module by using the ./ prefix that made the search relative to the current file index.
js. You can specify the full path to a file by using the prefix / or you can just specify
the module name without any path information. The require() search algorithm
will first check whether the module name matches a built in Node.js module name
(as Node.js itself comes with a series of default modules such as http or net). The
next step is to search the requested module within a node_modules folder in the
current folder, and if the module is not found, then the same search will continue in
the parent folder recursively until the top-level folder is reached. This algorithm is
used whenever we import modules installed through npm.

The target module can be specified as a folder name or a folder path (absolute or
relative), and the require() function will first locate the folder, and if the found
folder has an index.js file, then the module will be loaded from this file. You can
find an example in the nodejs-modules/shared/module3 folder from the source
code for this chapter. This module is loaded by relative path in the nodejs-modules/
index.js file:

var module3 = require('./shared/module3');

If the target module is in a folder that has a package.json file, this file will be used
to locate the module file. You can find an example (in the nodejs-modules/shared/
module4 folder from the source code for this chapter) that has a package.json file
and a folder src with a namedModule.js file inside it. The contents of the package.
json file are displayed next with the module file location specified in the main
property:

{
 "name": "module4",
 "main": "./src/namedModule.js"
}

Using Underscore.js in the Browser, on the Server, and with the Database

[122]

Loading module4 is very similar with loading module3, while their folder structure
is very different and you can find the matching require() call in the nodejs-
modules/index.js file.

Node.js module files can be specified without any extension and the
require() function will append .js, .json, and .node extensions
to locate its target. You can find more about these types of files
and modules in general in the official documentation at https://
nodejs.org/api/modules.html.

Creating a npm package
We will now proceed to convert the example found in the folder browser-underscore
to its Node.js equivalent. The first step is to create a copy in the nodejs-underscore
folder and then remove all files required for rendering the example in a browser: the
bower_components folder, bower.json, and all .html files. We will only keep the
index-templates-html.js out of the index-*.js files and rename it to index.js.
We have now created the seed for our Node.js example, and we will integrate it with
the npm package manager.

We already established that Node.js associates a single file with a module. Because
we have multiple JavaScript files in our nodejs-underscore folder, it is a good
practice to use a package.json file to establish the main module for our example
folder. In the previous subsection, we used the package.json file to identify the
name and the main file for a module, so it can be located by the Node.js runtime.
The npm package manager supports additional fields for the package.json file
and some of them facilitate package maintenance among other features. There are
two key fields that we will use to manage dependencies to other npm packages or
to packages located outside the npm online repository:

• dependencies: This lists other packages that the current package depends
on for execution

• devDependencies: This lists other packages that the current package
depends on for building documentation, running tests, or any other task
that is not essential for actually executing the current package

The npm package manager usually works with its associated online
package repository hosted at https://www.npmjs.com/. Npm
also supports package references that are local packages, Git URLs, or
tarball URLs, and you can find more information about the full extent
of package.json features for npm at https://docs.npmjs.com/
files/package.json.

https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://www.npmjs.com/
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json

Chapter 5

[123]

We will use the package.json file to define the main file for our example folder and
to define the dependencies on other packages. To convert our example folder into
an npm-compatible package, we need to execute the following command line in the
example folder nodejs-underscore:

npm init

This command initiates a console-based dialog, and we will accept all incoming
prompts with the default values by pressing Enter until the dialog is finished.

Next, we will use npm to download the Underscore package and save it as a
dependency of our current package by executing the following command-line entry:

npm install underscore --save

We will notice that the node_modules folder is created in our example folder with
a subdirectory called underscore. The current contents of our package.json file
created by the previous commands are listed in the following code:

{
 "name": "nodejs-underscore",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "underscore": "^1.8.3"
 }
}

We have created an npm-compatible package from our example folder that can be
published and distributed through the npm package repository with some minor
additional changes. When working with source control repositories, it is a good
practice to omit the node_modules folders from being committed. We can restore the
packages defined in the package.json file by running the following command line:

npm install

Using Underscore.js in the Browser, on the Server, and with the Database

[124]

Converting JavaScript code to Node.js
modules
We will now proceed to convert our existing JavaScript files from the nodejs-
underscore example folder. Most of the changes required are minimal and they
mainly consist in removing the redundant code that enforces the revealing module
pattern and defining the functions and objects that are exported by the module.

We will start with the transformations.js and validations.js files. The first
file is the simplest, and we will use the exports variable for a final output that
looks like:

exports.getContactNameIdAndType = function(contact) {
 return contact.name + " (" + contact.id + " - " + contact.type +
")";
};

Notice how the revealing module pattern-specific code is gone, and we will see a
similar change in the validations.js file. The code from this file is using Underscore,
and we need to explicitly declare this dependency in the following line:

var _ = require("underscore");

Underscore is configured as an npm dependency, and we can use its module name
rather than its path to identify it (Node.js will search by this module name in the
node_modules folder). The validations.js file defines multiple functions that
reference each other, and rather than using exports as with the previous file, we
will use module.exports to export the object that contains all the self-referencing
functions:

var validations = {
 validateArgsLength: function(argsLength, argsArray) {
 ...
 },
 ...
 validateClientArgs: function(argsArray) {
 ...
};
module.exports = validations;

The validations variable is in effect the object returned by the previous revealing
module pattern implementation, and there is no change between the contents of the
two objects.

Chapter 5

[125]

We will explore in Chapter 7, Underscore.js Build Automation and
Code Reusability, various techniques to share code between client
and server environments, and you will see a similar refactoring
technique.

The next change is for the classes.js file that contains the class definitions, and
we will split them in two files contact.js and client.js so that we can define
two separate modules for the two separate classes. The Contact class is using both
Underscore and functions from the validations.js file. We can use require()
for both dependencies and the final code has minimal changes that are highlighted
for clarity:

var _ = require("underscore");
var validations = require("./validations");
function Contact(id, name, gender, company, email, phone, address) {
 ...
}
module.exports = Contact;

The object constructor function is the only thing exported by the module and similar
minimal changes were done for the Client class (also highlighted for clarity):

var _ = require("underscore");
var Contact = require("./contact");
var validations = require("./validations");
function Client(id, name, gender, company, email, phone, address,
registered, preferredBike, bikePoints, notes) {
...
}
Client.prototype = Object.create(Contact.prototype);
Client.prototype.constructor = Client;
module.exports = Client;

The dataProvider.js and clientRetriever.js files are the next ones to be
changed, and they follow a similar approach with the transformations.js file
by using the exports variable.

The final changes are done in the index.js file where we ensure the relevant
require() calls are in place, and we replace the code that rendered output to
the browser with code that generates output to the console:

var _ = require("underscore");
var clientRetriever = require("./clientRetriever");

Using Underscore.js in the Browser, on the Server, and with the Database

[126]

var transformations = require("./transformations");

var oldestClients = clientRetriever.getOldestClients(5);
var bestClients = clientRetriever.getBestClients(5);
var clients = clientRetriever.getClients();
console.log("There are " + clients.length + " clients.");
var getContactsOutput = function(clients) {
 var outputText = "";
 _.forEach(clients, function(client, index) {
 if (index > 0) {
 outputText += ", ";
 }
 outputText += transformations.getContactNameIdAndType(client);
 });
 return outputText;
};
console.log("Top 5 oldest clients with name, id and type: " +
getContactsOutput(oldestClients));
console.log("Top 5 best clients with name, id and type: " +
getContactsOutput(bestClients));

We also removed the jQuery-specific function $(document).ready() as it is not
valid in the Node.js environment. We can now execute the following command line
in the example folder to see the previous browser-rendered content being displayed
instead in the console:

node index.js --use_strict

Running tests with Node.js
Up until now, we executed tests using the Jasmine test library (installed through the
Bower package manager) and by browsing a page such as the SpecRunner.html
from the browser-underscore example folder that has references to all the tests
files. The Jasmine library also has an npm package that can be used to test Node.js
code, and we will install it in our example folder using the following command:

npm install --save-dev jasmine

Notice the --save-dev command-line switch that configures Jasmine as a
development dependency, and this means that the package is not required to be
included in a production deployment package (it will be saved in the devDependecies
entry of the package.json file from the example folder). By installing the Jasmine npm
package, we now have access to the Jasmine command-line interface (CLI) executable
at the node_modules/.bin/jasmine location.

Chapter 5

[127]

Using the Jasmine CLI, we can set up the test folder structure for the example folder
by executing the next command:

node_modules/.bin/jasmine init

This command creates a spec/support/jasmine.json file with the
following content:

{
 "spec_dir": "spec",
 "spec_files": [
 "**/*[sS]pec.js"
],
 "helpers": [
 "helpers/**/*.js"
]
}

The JSON file specifies the folder that contains tests in the spec_dir entry and the
search pattern to find test files in the spec_files entry. If we go back and look again
at the test files from the browser-underscore example folder (or any test files from
the book examples), we notice that they already conform to the default jasmine.
json values. We can copy all the test files from the browser-underscore/spec
folder to the nodejs-underscore/spec folder and execute the Jasmine CLI to run
the tests with the command:

node_modules/.bin/jasmine

Although all test specifications are discovered and executed by Jasmine, they will all
fail as code under test needs to be initialized explicitly as Node.js modules. It is just
a matter of ensuring that all test specifications include a module import for all the
modules they depend on like the next one found in the spec/ContactSpec.js file:

var Contact = require("../contact");

If we execute the tests again, we should see that they all pass now.

Using Underscore with MongoDB
In the last decade, we have seen a wide range of successful alternatives to relational
databases becoming more and more popular. These alternative databases are usually
referred to as NoSQL databases and their common denominator should be read as
an abbreviation for "not only SQL". Among such databases that specialize in big data
analysis such as Hadoop or that specialize in key-value storage such as Redis, there
is MongoDB (with the name derived from "humongous")—a popular document
database that recently reached version 3.

Using Underscore.js in the Browser, on the Server, and with the Database

[128]

MongoDB like other similar document database engines stores data in databases that
contain collections of documents:

• A document is a set of keys and values (or fields) that can be expressed in
JSON format and it is stored internally as BSON (binary JSON—a more
efficient JSON-derived format). A document can contain other nested
documents, and you can visualize it as a JavaScript object literal.

• A collection is simply a container of documents and it does not enforce
any specific document structure. The documents stored in a collection
can differ significantly in their structure (they are schema-less), but they
will always have at least one _id field with a unique value throughout
the document collection.

We can draw a parallel with relational databases:

• A collection is similar to a table that does not have any structure
• A document can be seen as a row that has a variable number of fields
• The _id field of a document is like the primary key of a table

MongoDB and Node.js can be a great match when used together:

• MongoDB uses a built-in JavaScript V8 engine similar with Node.js.
• The MongoDB database shell is using JavaScript to execute data

commands or queries and to define more advanced database operations.
It can be configured using JavaScript files, it can execute JavaScript files,
and it can load other JavaScript files.

• Node.js is officially supported by the MongoDB database through an npm
package called mongodb that contains a native database driver implementation.

We will explore the relationship between MongoDB, Node.js, and Underscore by
converting the example from the previous section to use MongoDB for data storage.
We will then use the MongoDB database shell to create the initial data in a database,
and we will extract data from the database with the Node.js driver. We will only
cover features of MongoDB that are used in the examples so a lot of the functionality
around security, replication, sharding, and administration will be left out.

MongoDB has its own excellent free online and offline documentation
in the form of the MongoDB Manual available at https://docs.
mongodb.org/manual/. I recommend reading the Getting Started
section. There is another free online MongoDB book called The Little
MongoDB Book, Karl Seguin, available at http://openmymind.
net/2011/3/28/The-Little-MongoDB-Book/ that is a great and
quick way of getting familiar with MongoDB.

https://docs.mongodb.org/manual/
https://docs.mongodb.org/manual/
http://openmymind.net/2011/3/28/The-Little-MongoDB-Book/
http://openmymind.net/2011/3/28/The-Little-MongoDB-Book/

Chapter 5

[129]

Installing and configuring MongoDB
First of all, we need to install the MongoDB database from its official download
address at http://www.mongodb.org/downloads.

Installing MongoDB on Windows
For Windows systems, we will use the 64-bit version and install it with the default
options. The default options will install MongoDB in the C:\mongodb folder. In
the MongoDB installation folder, you will find a bin folder that contains the main
executables: mongod.exe that runs the database engine and mongo.exe that starts
the database shell (also referred to as the MongoDB client). MongoDB assumes
another default path for the local databases at C:\data\db (for which it should have
read and write permissions) and, when we execute mongod.exe, it will try and load
all databases found at this path. You can find more information about installing
MongoDB on Windows at https://docs.mongodb.org/manual/tutorial/
install-mongodb-on-windows/.

Installing MongoDB on Ubuntu Linux
MongoDB is included in the default Ubuntu Linux software package and to install
it you need to execute the following command line:

sudo apt-get install -y mongodb

To start and stop the mongod process, you need to execute the following commands:

sudo service mongod start

sudo service mongod stop

If you prefer to use the packages provided directly by the MongoDB team, you
can follow the instructions available at https://docs.mongodb.org/manual/
administration/install-on-linux/.

Installing MongoDB on Mac OS X
Installing MongoDB on Mac OS X is a very quick task when using the Homebrew
package manager (see http://brew.sh/ for Homebrew installation instructions). If
case, this is not installed on your system and you don't want to give it a try you can
download the 64-bit MongoDB binaries for Mac OS X from http://www.mongodb.
org/downloads and follow the instructions at https://docs.mongodb.org/manual/
tutorial/install-mongodb-on-os-x/. We assume you have Homebrew available,
and in this case you just need to execute the following command line to install
MongoDB and add its executables to the PATH variable:

brew install mongodb

http://www.mongodb.org/downloads
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.org/manual/administration/install-on-linux/
https://docs.mongodb.org/manual/administration/install-on-linux/
http://brew.sh/
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/

Using Underscore.js in the Browser, on the Server, and with the Database

[130]

The only additional step is to create the /data/db folder and give read and write
permissions for the currently logged on user.

Configuring and running MongoDB
In the rest of the section, we assume that both the mongod and mongo processes
are added to your specific environment PATH variable, and if this is not the case
we assume you know how to invoke them using their full path, for example, C:\
mongodb\bin\mongod and C:\mongodb\bin\mongo (for Windows systems). If
you prefer a different location for your database files, the mongod process can
take a different default database path via the command line or in the MongoDB
configuration file mongodb.config and you can find more details about how to
configure MongoDB at https://docs.mongodb.org/manual/tutorial/manage-
mongodb-processes/. To execute the examples from this section, you need to ensure
the mongod process is running successfully in the background first by using the
MongoDB start command line specific to your environment.

Creating initial data using the MongoDB client
and Underscore
We will use the MongoDB database shell (also known as the MongoDB client)
by launching the mongo executable. The MongoDB client will connect to the local
MongoDB database instance using address 127.0.0.1 and port 27017, and then it
will start the MongoDB database prompt. You can then execute MongoDB database
commands and the MongoDB client supports:

• Database shell helper commands that are similar with other relational
database commands such as: show dbs (displays a list of existing databases),
use <db> (selects <db> as the current database), and show collections
(displays a list of collections for the current database)

• Database shell commands that use the MongoDB JavaScript API such as:
db.adminCommand('listDatabases') (displays a list of existing databases),
db = db.getSiblingDB('<db>') (selects <db> as the current database),
and db.getCollectionNames() (displays a list of collections for the
current database)

In this section, we will use the MongoDB JavaScript API because we can save a
MongoDB client script as a JavaScript file and use the mongo executable to run
the JavaScript file directly in unattended mode. The client helper commands are
available only when we launch the mongo executable in interactive mode.

https://docs.mongodb.org/manual/tutorial/manage-mongodb-processes/
https://docs.mongodb.org/manual/tutorial/manage-mongodb-processes/

Chapter 5

[131]

You can find more details about the full MongoDB client scripting
capabilities at https://docs.mongodb.org/manual/
administration/scripting/.

We will start by launching the MongoDB client and passing an argument to
a JavaScript file that displays information about the current database and its
collections. You can select a database even if it is not created and you can also
access its collections. I have prepared a script that sets the current database to be
underscorejs-examples and then it enumerates the database object properties
using both Underscore and a built in MongoDB console output function. These
are the contents of the data\ getDatabaseInfo.js file located in the mongodb-
underscore folder from the source code for this chapter:

db = db.getSiblingDB('underscorejs-examples');
print("Current database is set to: " + tojson(db));
load("node_modules/underscore/underscore.js");

print("Showing current database properties using Underscore: ");
_.each(db, function(value, key) {
 print("key: " + key + ", value: " + value);
});
print("Showing current database properties using tojson(): " +
tojson(db));

var collectionNames = db.getCollectionNames();
print('Collection list: ' + tojson(collectionNames));

_.each(collectionNames, function(collectionName) {
 print("Collection " + collectionName + " has " +
 db.getCollection(collectionName).count() + " documents.");
});

The first line selects the current database and the second one displays information
about the database object using the MongoDB built in functions print() and
tojson(). These functions are similar with console.log() and JSON.stringify()
available in the browser and Node.js environments. The MongoDB V8 JavaScript
engine is fully compliant with ECMAScript 5 and it also supports JSON.
stringify().

www.allitebooks.com

https://docs.mongodb.org/manual/administration/scripting/
https://docs.mongodb.org/manual/administration/scripting/
http://www.allitebooks.org

Using Underscore.js in the Browser, on the Server, and with the Database

[132]

The MongoDB client can load other JavaScript files by using their absolute or relative
path using the built in load() function. Any variable or function that is defined in
the loaded JavaScript file becomes available for use by the MongoDB client. The
highlighted code snippet shows how we load the Underscore library from its npm
local package and use its _ variable to display the enumerable properties of the current
database in the command line console. We also use JSON.stringify() to display the
JSON version of the current database object. The last section of the script enumerates
the database collections and displays their document count.

We will execute the data\getDatabaseInfo.js file using the MongoDB client by
typing the following command line from the mongodb-underscore folder:

mongo data/getDatabaseInfo.js

You should see this output:

MongoDB shell version: 3.0.1

connecting to: test

Current database is set to: underscorejs-examples

Showing enumerable database properties using Underscore:

key: _mongo, value: connection to 127.0.0.1

key: _name, value: underscorejs-examples

Showing all database properties using JSON.stringify(): {"_mongo":{"slave
Ok":false,"host":"127.0.0.1"},"_name":"underscorejs-examples","_defaultAu
thenticationMechanism":null,"_defaultGssapiServiceName":"mongodb"}

Collection list: []

Inserting MongoDB documents into a collection is an extremely simple process with
the db.collection.insert(data) function where data can be an object or an array
of objects. If the objects about to be inserted don't have an _id field, MongoDB will
set it to an auto-generated value of type ObjectId—a 12-byte BSON type composed
from a 4-byte timestamp, a 3-byte machine identifier, a 2-byte process ID, and a
3-byte counter based on a random seed. This value can be used to calculate the
creation time of the document and can be used to sort documents by creation time.

The db.collections.insert() function accepts a second parameter
that can specify the insert order or change how the insert operation is
done. You can find more information at https://docs.mongodb.
org/manual/reference/method/db.collection.insert/#db.
collection.insert.

https://docs.mongodb.org/manual/reference/method/db.collection.insert/#db.collection.insert
https://docs.mongodb.org/manual/reference/method/db.collection.insert/#db.collection.insert
https://docs.mongodb.org/manual/reference/method/db.collection.insert/#db.collection.insert

Chapter 5

[133]

If you insert two documents with the same _id field value, the last inserted document
will overwrite the previously inserted one. The example script that will be used to
insert documents will check whether the target collection is empty beforehand.

We will now move the functions that generate the initial data sample from the
dataProvider.js file into the data\insertSeedData.js file that can be found
in the mongodb-underscore folder from the source code for this chapter. The first
change is to rename all id fields to _id to ensure they become MongoDB primary
key values when persisted to the database. We will then create the actual insert
script at data\insertSeedData.js with the following contents:

db = db.getSiblingDB('underscorejs-examples');
print("Current database is set to: " + tojson(db));
load("data/generateSeedData.js");
if (db.bicycles.count() === 0) {
 var bicycles = getBicycles();
 print("Inserting " + bicycles.length + " bicycles ...");
 var result = db.bicycles.insert(bicycles);
 printjson(result);
} else {
 print("The bicycles collection is not empty. Skipping seed data
 insertion for bicycles.");
}
if (db.clients.count() === 0) {
 var clients = getClients();
 print("Inserting " + clients.length + " clients ...");
 var result = db.clients.insert(clients);
 printjson(result);
} else {
 print("The clients collection is not empty. Skipping seed data
 insertion for clients.");
}
if (db.clientOrders.count() === 0) {
 var clientOrders = getClientOrders();
 print("Inserting " + clientOrders.length + " client orders ...");
 var result = db.clientOrders.insert(clientOrders);
 printjson(result);
} else {
 print("The client orders collection is not empty. Skipping seed
 data insertion for client orders.");
}

Using Underscore.js in the Browser, on the Server, and with the Database

[134]

The highlighted code snippet shows how the data generation functions are loaded
in the MongoDB client and then used to get the array of documents about to be
inserted. The db.collection.insert() function returns a WriteResult object
when a single document is inserted or a BulkWriteResult object when an array
of documents is inserted. The console output for the highlighted code is:

Inserting 12 bicycles ...

{

 "writeErrors" : [],

 "writeConcernErrors" : [],

 "nInserted" : 12,

 "nUpserted" : 0,

 "nMatched" : 0,

 "nModified" : 0,

 "nRemoved" : 0,

 "upserted" : []

}

To see the example output you need to run this command line:

mongo data/insertSeedData.js

We can also inspect the database collections again using the command line:

mongo data/getDatabaseInfo.js

The console output for collections is now different:

Collection list: ["bicycles", "clientOrders", "clients", "system.
indexes"]

Collection bicycles has 12 documents.

Collection clientOrders has 250 documents.

Collection clients has 250 documents.

Collection system.indexes has 3 documents.

Notice that we have an additional collection system.indexes that was
automatically created by MongoDB to store the indexes created for the
collections primary keys—the _id fields. For convenience, I also created a
script data/dropDatabase.js to delete the sample database so you can run
the examples repeatedly.

Chapter 5

[135]

Asynchronous programming in Node.js
Up until now, all the Node.js code that we used has been synchronous: all the
functions that we implemented returned the results immediately. When working
with databases, you will always have an amount of latency involved, due to the cost
of retrieving the data or due to network throughput when working with a remote
database. And this is where using the Node.js asynchronous (or non-blocking) API
stops database latencies from affecting the overall throughput of the application. Node.
js uses by design a single thread of execution to avoid the complexity of multithreaded
runtimes. To counter the lack of multithreading, any input/output (I/O) computer
operation such as a database call, a file system task, or a remote API request does not
block the Node.js execution thread.

The following example shows a synchronous function call that will be used for
comparison with an equivalent asynchronous version:

var outputValue = syncFunction(inputValue);
processOutput(outputValue);

The asynchronous (or non-blocking) version has different signature:

asyncFunction(inputValue, function(outputValue) {
 processResult(outputValue);
});

The second parameter is a callback function that will be invoked only when
asyncFunction finishes processing and can return a result. If the processing happens
as part of an I/O operation the Node.js execution thread will continue unaffected.
This is an event-driven programming model that ensures a high throughput.

The powerful npm module async can help with simplifying
asynchronous code by providing many built in helper functions. You can
find more details at https://www.npmjs.com/package/async.

Accessing data using the MongoDB Node.js
driver
At this point, we should have data available in the MongoDB database, and we will
use Node.js to access it by modifying dataProvider.js to extract data using the
MongoDB driver. First, we will install the MongoDB Node.js driver as a dependency
in the package.json file using the following command line:

npm install mongodb --save

https://www.npmjs.com/package/async

Using Underscore.js in the Browser, on the Server, and with the Database

[136]

The MongoDB driver is similar to the MongoDB JavaScript API while being a Node.js
idiomatic implementation. The driver API is asynchronous and it is relying on callback
functions to return its results for further processing. This ensures all I/O operations are
non-blocking, leaving the Node.js execution thread to process other requests.

The module implemented in the dataProvider.js file will open the local
MongoDB database connection, extract the data requested, and then close the
database connection after the data request is finished. The following example
shows the asynchronous version of the getBicycles() call:

var MongoClient = require('mongodb').MongoClient
var dbUrl = 'mongodb://localhost:27017/underscorejs-examples';
var getBicycles = function(callback) {
 MongoClient.connect(dbUrl, function(err, db) {
 var collection = db.collection('bicycles');
 collection.find({}).toArray(function(err, bicycles) {
 callback(bicycles);
 db.close();
 });
 });
};

First of all, we referenced the MongoDB client object and we stored the MongoDB
database address to the previously created instance. After connecting to the MongoDB
database using the connect() function, we selected the target collection bicycles and
extracted all documents using the collection.find() function. The collection.
find() function accepts as its first argument an object that will be used to filter
the results and returns a Cursor object that can return data sequentially by calling
Cursor.next(). In this example, we used Cursor.toArray() to return all the
documents at once and we have not filtered the results.

The highlighted MongoDB API calls are asynchronous and they expect a callback
function to be provided for delivering their results. The callback variable stores
the function that will be called after the database call has ended and will receive
the database call result as an argument.

You can see another functional technique at play, as getBicycles() is
a function that accepts another function as an argument. This is a good
technique to use when working with asynchronous APIs to avoid nested
callbacks and make debugging and troubleshooting easier.

You can find similar implementations for the getClients() and
getClientOrders() functions in the same file.

Chapter 5

[137]

As we introduced asynchronous functions in the dataProvider module used in
clientRetriever.js and index.js, we now need to propagate the asynchronous
calls up the chain. This is how the clientRetriever.getContacts() looks after
the change:

var getContacts = function(callback) {
 dataProvider.getClients(function(clientObjects) {
 var contacts = _.map(clientObjects, function(clientObject) {
 if (!clientObject.isActive) {
 return new Contact(
 clientObject._id,
 clientObject.name,
 clientObject.gender,
 clientObject.company,
 clientObject.email,
 clientObject.phone,
 clientObject.address);
 }
 return new Client(
 clientObject._id,
 clientObject.name,
 clientObject.gender,
 clientObject.company,
 clientObject.email,
 clientObject.phone,
 clientObject.address,
 new Date(clientObject.registered),
 clientObject.preferredBike,
 clientObject.bikePoints,
 clientObject.notes
);
 });
 callback(contacts);
 });
};

The function takes a callback argument that will be invoked after the data is
retrieved from the database and converted to class instances. Further up the
chain, the index.js code needs to be changed to an asynchronous version:

clientRetriever.getClients(function(clients) {
 console.log("There are " + clients.length + " clients.");
});

Using Underscore.js in the Browser, on the Server, and with the Database

[138]

You can find the other changed functions in the mongodb-underscore folder from
the source code for this chapter.

In this section, we only scratched the surface of the MongoDB Node.js
driver functionality. You can find more information on how to use the
MongoDB Node.js driver at http://mongodb.github.io/node-
mongodb-native/2.0/.

Using Underscore with PostgreSQL
In this section, we will introduce PostgreSQL, which is a mature relational database
engine that started as a research project at University of California in mid-1980s and
surfaced as a community open source project with a permissive license (similar with
a BSD license) in 1995.

In 2014, PostgreSQL 9.4 was released and introduced a new binary JSON (JSONB)
data type support alongside its existing JSON data type support. This allows for more
efficient storage and for better performance through JSONB indexing capabilities.

Another feature that makes it interesting for us is that it supports JavaScript as a
procedural language through the PL/v8 project. A procedural language can be used
to create user-defined functions and PostgreSQL alongside SQL and C has built-in
support for procedural languages such as Python, Perl, and Tcl through PL/Python,
PL/Perl, and PL/Tcl. Many other procedural languages are supported through
community contributions and PL/v8 is one of them, using the same JavaScript V8
engine that powers Google Chrome, Node.js, and MongoDB.

SQL support in PostgreSQL is very solid and comparable with commercial
database engines such as Microsoft SQL Server and Oracle (in features, reliability,
and performance), and we will not explore it here. Apart from installation and
configuration topics, we will only discuss the JSONB data type and the PL/v8
procedural language that makes it an attractive alternative for document
databases such as MongoDB.

PostgreSQL has more than 2,500 pages in its community-supported
manual available at http://www.postgresql.org/docs/9.4/
static/index.html. I recommend reading the http://www.
postgresql.org/docs/9.4/static/tutorial.html topics for
an excellent general introduction to this database.

http://mongodb.github.io/node-mongodb-native/2.0/
http://mongodb.github.io/node-mongodb-native/2.0/
http://www.postgresql.org/docs/9.4/static/index.html
http://www.postgresql.org/docs/9.4/static/index.html
http://www.postgresql.org/docs/9.4/static/tutorial.html
http://www.postgresql.org/docs/9.4/static/tutorial.html

Chapter 5

[139]

Installing and configuring PostgreSQL
PostgreSQL supports a large number of operating systems and it comes installed
by default on many of them. You can find installers and detailed instructions at
http://www.postgresql.org/download/. We will need the PostgreSQL 9.4
version for this section. The PL/v8 procedural language is provided through
the plv8 project binaries (https://github.com/plv8/plv8) that are installed
differently depending on your environment.

Once installed and with the database engine running, the main way to interact
with the PostgreSQL database engine is through the psql executable that provides
a command-line interface similar with other database engines, for example, mssql
for Microsoft SQL Server or sqlplus for Oracle.

PostgreSQL has a series of GUI clients such as pgAdmin that you can be
used as an alternative to psql. The Windows installer includes pgAdmin
by default and you can install the Mac OS X version from here http://
www.pgadmin.org/download/macosx.php. On Ubuntu, pgAdmin
can be installed by following the instructions at https://help.
ubuntu.com/community/PostgreSQL.

Installing PostgreSQL on Windows
Download and install the package for PostgreSQL from http://www.postgresql.
org/download/windows/. As part of the installation, the database administrator user
postgres is created and you need to set its password. After installation, you need
to retrieve the plv8 binaries from http://bit.ly/1Q5iLMC and copy them to your
PostgreSQL installation folder (usually C:\Program Files\PostgreSQL\9.4 or see
the README.txt file for more details).

You can then launch psql via the PostgreSQL 9.4 | SQL Shell (psql) link from the
Windows Start menu's All Programs folder. At that point, you need to authenticate
using the postgres user and the password you created earlier and after that you
should have initiated successfully the psql session.

Installing PostgreSQL on Ubuntu Linux
PostgreSQL 9.4 is available on Ubuntu 14.10 or greater and you can install it using
the following command line:

sudo apt-get install postgresql-9.4

http://www.postgresql.org/download/
https://github.com/plv8/plv8
http://www.pgadmin.org/download/macosx.php
http://www.pgadmin.org/download/macosx.php
https://help.ubuntu.com/community/PostgreSQL
https://help.ubuntu.com/community/PostgreSQL
http://www.postgresql.org/download/windows/
http://www.postgresql.org/download/windows/
http://bit.ly/1Q5iLMC

Using Underscore.js in the Browser, on the Server, and with the Database

[140]

If you are on an earlier Ubuntu version you need to enable the official package
repositories by following the instructions from https://wiki.postgresql.org/
wiki/Apt. On the same page, you can find the link http://bit.ly/1Otwuci for a
shell script that will perform this change for you. Assuming you downloaded it to
your home directory, you can run the following command line using the friendly
name of your Ubuntu release at the end, for example, trusty for Ubuntu 14.04:

sudo bash ./apt.postgresql.org.sh trusty

After this step, you can install PostgreSQL 9.4 using the official PostgreSQL
repository.

The plv8 package needs to be installed next through the command line:

sudo apt-get install postgresql-9.4-plv8

You can then connect to the local PostgreSQL instance using the database
administration user postgres with the next command line:

sudo -u postgres psql postgres

The psql session is now started and you need to set the password for the postgresql
user before any database command can be executed. The following psql command
line will start the password change task:

 \password postgres

Installing PostgreSQL on Mac OS X
The Mac OS X version can be installed in many different ways as detailed at
http://www.postgresql.org/download/macosx/. For Mac OS X, we have the
most convenient and simple way to install PostgreSQL through the PostgreSQL.app
from http://postgresapp.com/. This easily installable package also includes the
plv8 binaries, so I strongly recommend it. After installation, start the PostgreSQL.
app application, and the database engine will create a database using your current
username on its first launch. To initiate the psql session, you need to click the Open
psql link from the application screen or from the application tray icon menu.

Using psql with basic database commands
With the psql interactive session started, you can now launch database commands
against the local PostgreSQL database. Apart from the SQL command psql has a
series of internal command that can be executed using a \ prefix.

https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
http://bit.ly/1Otwuci
http://www.postgresql.org/download/macosx/
http://postgresapp.com/

Chapter 5

[141]

 The following psql commands will list the current database, create a new database,
and select the newly created database (\c is a shortcut for \connect):

\l

CREATE DATABASE underscorejs_examples;

\c underscorejs_examples

The second line is a SQL command while the first and last are internal psql commands.
The third command should be executed before any other example when running psql
in interactive mode to ensure the changes only affect this specific database. The current
database can also be specified as a psql argument with the -d switch. After the current
database is selected your psql command prompt should change to underscorejs_
examples=#.

The psql session can execute commands using the underlying OS command prompt
when the commands are prefixed with \!. The following psql commands will
display the current working directory and the first one is for Linux/Mac OS X
with the second one for Windows:

\! pwd

\! echo %cd%

We will now proceed to set the psql working directory to your local copy of the
postgresql-underscore from the source code for this chapter. We will use the
\cd internal psql command and this is what I had to run on a Linux/Mac OS X
environment:

\cd '/Users/alex/Documents/underscorejs-examples/browser-server-database/
postgresql-underscore'

Notice the enclosing single quotes that need to surround the target path. For the rest
of the section, we assume that:

• Your PostgreSQL database engine is running and it is configured correctly
• You have a psql command prompt open and connected to the

underscorejs_examples database
• Your psql command prompt has its working directory set to your local copy

of the postgresql-underscore folder from the source code for this chapter

Using Underscore.js in the Browser, on the Server, and with the Database

[142]

PostgreSQL data types
PostgreSQL like similar relational database engines has extensive support for SQL
data types, including numeric, character, binary, date/time, boolean, and composite
types (known in other database engines as user-defined types). It also has support
for specialized types such as monetary, enumerated, geometric, network address
types, text search, JSON types, and even arrays to name just some of them. You can
find more information about all supported types at http://www.postgresql.org/
docs/9.4/static/datatype.html.

SQL types
To show some of the PostgreSQL types, we will create a table to store the bicycle
objects used in the previous examples, insert a couple of rows, and then view the
inserted rows:

CREATE TABLE bicycles_sql(
 id serial primary key,
 name text not null,
 type varchar(255) not null,
 quantity smallint,
 rent_price numeric,
 date_added timestamp
);
INSERT INTO bicycles_sql (name, type, quantity, rent_price, date_
added)
VALUES
 ('A fast bike', 'Road Bike', 10, 20,'2015-02-02'),
 ('An even faster bike', 'Road Bike', 4, 25, '2015-03-25'),
 ('A springy bike', 'Mountain Bike', 20, 18, '2014-11-01');
SELECT * FROM bicycles_sql;
DROP TABLE bicycles_sql;

The output in the psql console should look like this:

http://www.postgresql.org/docs/9.4/static/datatype.html
http://www.postgresql.org/docs/9.4/static/datatype.html

Chapter 5

[143]

The code should look familiar if you have used a relational database before as
PostgreSQL closely follows the SQL standards. The database object names are
case-sensitive and we used a typical naming style. The first table column id is of
the type serial, which is an auto-incremented integer. The numeric type for the
rent_price column is a decimal type (it can also be aliased as decimal) and the
date_added column timestamp type stores date and time values without time zone
information. You can find the example in the bicyclesTable_SQL.sql file in the
postgresql-underscore folder from the source code for this chapter.

The jsonb type
One of the most important features in PostgreSQL 9.4 is the support for the jsonb
type. PostgreSQL already supports the json type that stores text that is a valid JSON
value. The jsonb type stores JSON as binary data and with the JSON field types
mapped to PostgreSQL column types internally. This enables more efficient
storage and improved query performance through indexing.

This is how we declare and insert into a table for our bicycle objects using the jsonb
type (creating what is effectively a document store):

CREATE TABLE bicycles(
 id int primary key,
 body jsonb not null
);
INSERT INTO bicycles (id, body)
VALUES
(1, '{ "id": 1,
 "name": "A fast bike",
 "type": "Road Bike",
 "quantity": 10,
 "rentPrice": 20,
 "dateAdded": "2015-02-02T00:00:00.000Z" }'),
(2, '{ "id": 2,
 "name": "An even faster bike",
 "type": "Road Bike",
 "quantity": 4,
 "rentPrice": 25,
 "dateAdded": "2015-03-25T00:00:00.000Z" }'),
(3, '{ "id": 3,
 "name": "A springy bike",

Using Underscore.js in the Browser, on the Server, and with the Database

[144]

 "type": "Mountain Bike",
 "quantity": 20,
 "rentPrice": 18,
 "dateAdded": "2014-11-01T00:00:00.000Z" }');
SELECT * FROM bicycles;

We inserted the JSON values as text and PostgreSQL will internally convert the
JSON field values to existing SQL types such as text, numeric, or boolean (and
(none) for null JSON field values). The output for this query should look like this:

Notice how the order of the JSON fields was changed and this shows that the jsonb
type is storing values verbatim and is parsing the input first. A similar query for the
same column using the json type instead of jsonb would show the inserted values
exactly as they were inserted.

The PostgreSQL support for json and jsonb types is extended through specialized
functions that convert table rows to these data types. The reverse operation is also
possible and we will use a function that will convert the jsonb data into rows:

SELECT converted.id, name, type, quantity, "rentPrice","dateAdded"
FROM bicycles, jsonb_to_record(body) AS
 converted (
 id int,
 name text,
 type varchar(255),
 quantity smallint,
 "rentPrice" numeric,
 "dateAdded" timestamp);

The highlighted function transforms the data into a SQL-compatible format bridging
the gap between NoSQL documents and SQL table records. The query output looks
now like a typical SQL table output:

Chapter 5

[145]

PostgreSQL also supports JSON field selectors, which are useful when working
with complex nested documents. We have rewritten the previous query using JSON
selectors getting a similar output:

SELECT body->'id' AS id,
 body->'name' AS name,
 body->'type' AS type,
 (body->>'quantity')::smallint AS quantity,
 body->'rentPrice' AS rent_price,
 (body->>'dateAdded')::timestamp AS date_added
FROM bicycles;

The -> selector returns the JSON field as jsonb while the ->> selector returns the
JSON fields as text, allowing a conversion to the desired type. You can find the
example in the bicyclesTable_JSONB.sql file in the postgresql-underscore
folder from the source code for this chapter.

You can find more information about support for json, jsonb types,
and related functions at http://www.postgresql.org/docs/9.4/
static/datatype-json.html and at http://www.postgresql.
org/docs/9.4/static/functions-json.html.

Using PostgreSQL with plv8
Procedural languages are enabled for each database separately and the next line
of SQL will enable the PL/v8 language for the current database:

CREATE EXTENSION IF NOT EXISTS plv8;

We can now leverage JavaScript as a language and implement PostgreSQL functions
or execute ad hoc code. A PostgreSQL function in a specific procedural language is
created and invoked like this:

CREATE FUNCTION plv8_test(keys text[], vals text[]) RETURNS text AS $$
 var o = {};
 for(var i=0; i<keys.length; i++){
 o[keys[i]] = vals[i];
 }
 return JSON.stringify(o);
$$ LANGUAGE plv8 IMMUTABLE STRICT;
SELECT plv8_test(ARRAY['name', 'age'], ARRAY['Alex', '37']);

http://www.postgresql.org/docs/9.4/static/datatype-json.html
http://www.postgresql.org/docs/9.4/static/datatype-json.html
http://www.postgresql.org/docs/9.4/static/functions-json.html
http://www.postgresql.org/docs/9.4/static/functions-json.html

Using Underscore.js in the Browser, on the Server, and with the Database

[146]

The first line defines the input and output function parameters. The function body
is embedded between the $$ delimiters and it is written in the procedural language
of choice (and we used JavaScript out of the many available PostgreSQL procedural
languages). The procedural language identifier is specified after the last $$ delimiter.
The IMMUTABLE and STRICT parameters are used by the query planner to optimize
the function execution: IMMUTABLE means that for the same input the function will
return the same output and STRICT means that for NULL input values the function
will return a NULL output. The last line shows how the newly created function is
called, using SQL types as parameters.

We used the previous example from the plv8 documentation available
at http://pgxn.org/dist/plv8/doc/plv8.html.

In addition to creating functions using a given procedural function PostgreSQL
supports ad hoc execution for code written in a procedural language. We have
rewritten the plv8_test() function declaration and invocation as 100%
JavaScript code:

DO LANGUAGE plv8 $$
 var keys = ['name', 'age'];
 var vals = ['Alex', '37'];
 var o = {};
 for(var i=0; i<keys.length; i++){
 o[keys[i]] = vals[i];
 }
 plv8.elog(NOTICE,JSON.stringify(o));
$$;

The elog() function is a plv8 utility function that output a message to the console or
the database log. It is similar to the SQL command RAISE. You can find the example
in the configureAndTest_plv8.sql file in the postgresql-underscore folder from
the source code for this chapter.

Generating data using plv8 and Underscore
We will now take a similar approach with the MongoDB section and create a plv8
version of the code that generates the sample data and stores it in the database. We
will also use Underscore in the process and the first two tasks are to create the target
table and make Underscore available in the plv8 session:

CREATE TABLE IF NOT EXISTS bicycles(
 id int primary key,
 body jsonb not null
);

http://pgxn.org/dist/plv8/doc/plv8.html

Chapter 5

[147]

CREATE TABLE IF NOT EXISTS js_files(
 id varchar(255) primary key,
 content text not null
);
\set underscore_content `cat node_modules/underscore/underscore.js`

INSERT INTO js_files
SELECT 'underscore', :'underscore_content' WHERE NOT EXISTS(SELECT
id FROM js_files WHERE id = 'underscore');

DO LANGUAGE plv8 $$
 var files = plv8.execute("SELECT content FROM js_files;");
 for (var i = 0; i < files.length; i++)
 {
 var file = files[i].content;
 eval("(function() { " + file + "})")();
 }
 $$;

We use the second table js_files to store the contents of the Underscore file or any
other similar library if required. The highlighted line executes an operating system
command line and stores the output into a underscore_content variable. This
is a psql variable and not a SQL variable and it is interpolated into SQL using the
:'underscore_content' expression as part of the js_files table insertion. In this
example, the psql variable is declared and initialized within the current script but it
can be also be passed as a psql argument.

The plv8 ad hoc code relies on the plv8.execute() function to launch a query and
read the results as an array of JSON values representing the rows returned by the
query. Using the JavaScript eval() function, we then parsed and invoked the code
read from the file system making Underscore available to the current plv8 session.

We can now proceed to generate some of the example data and insert it into the
bicycles table using JavaScript. The example was kept as close as possible to
the similar example from the MongoDB section and I hope you can recognize most
of the code:

DO LANGUAGE plv8 $$
 var files = plv8.execute("SELECT content FROM js_files;");
 for (var i = 0; i < files.length; i++)
 {
 var file = files[i].content;
 eval("(function() { " + file + "})")();
 }

Using Underscore.js in the Browser, on the Server, and with the Database

[148]

 var getBicycles = function() {
 return [{
 id: 1,
 name: "A fast bike",
 type: "Road Bike",
 quantity: 10,
 rentPrice: 20,
 dateAdded: new Date(2015, 1, 2)
 }, {
 …
 }, {
 id: 12,
 name: "A clown bike",
 type: "Children Bike",
 quantity: 2,
 rentPrice: 12,
 dateAdded: new Date(2014, 11, 1)
 }];
 };

 if (plv8.execute("SELECT COUNT(*) FROM bicycles;")[0].count ===
 0) {
 var bicycles = getBicycles();
 plv8.elog(NOTICE,"Inserting " + bicycles.length + " bicycles
...");
 var sqlScript = "INSERT INTO bicycles VALUES ";
 _.each(bicycles, function (bicycle, index) {
 if(index > 0) {
 sqlScript += ", ";
 }
 sqlScript += "(" + bicycle.id + ", " + "'" +
 JSON.stringify(bicycle) + "')";
 });
 plv8.execute(sqlScript + ";");
 } else {
 plv8.elog(NOTICE,"The bicycles collection is not empty.
 Skipping seed data insertion for bicycles.");
 }
$$;

We used Underscore to build a SQL script based on the bicycles objects converted
in the JSON format; after we execute this code out, the bicycles table should be
populated with the example data. You can find the example in the insertSeedData.
sql file in the postgresql-underscore folder from the source code for this chapter.

Chapter 5

[149]

The plv8 procedural language looks full of potential for reusing JavaScript code
across different functions and database scripts, but it needs a built-in easier way
to load JavaScript files.

You can find the original reference for this example, including a method
to preload JavaScript files and make them available to all plv8 sessions,
at http://bit.ly/1bkeUuF.

Summary
In this chapter, we explored how to use Underscore in different environments
starting with the browser with templating support. We then discussed Node.js and
described a new way to organize JavaScript code on the server using modules. The
last two sections presented two database engines that are JavaScript-friendly
and that can launch Underscore as database scripting helper library.

The next chapter will go through some more advanced Underscore topics and will
build upon and revisit some concepts that were discussed in this chapter.

http://bit.ly/1bkeUuF

[151]

Related Underscore.js
Libraries and ECMAScript

Standards
In the previous chapter, we have seen Underscore used across browser, server,
and database contexts proving it to be a versatile and essential library. We will
now explore some advanced topics for using Underscore such as:

• Alternative and complementary libraries
• The relationship with JavaScript standards and how to write the

ECMAScript 2015 (ES6) code

The source code for the examples from this chapter is hosted online at https://
github.com/popalexandruvasile/underscorejs-examples/tree/master/
advanced-topics-1 and you can execute the examples using the Cloud9 IDE at
https://ide.c9.io/alexpop/underscorejs-examples/ from the advanced-
topics-1 folder.

Using the Underscore-contrib library
While Underscore is a powerful library and in the same time, it is a relatively small
one that has around 1,500 lines of code. You can read through its annotated source
code available at http://underscorejs.org/docs/underscore.html in less than
an hour (if you are an experienced JavaScript developer).

Many popular JavaScript libraries have a similar size and when they become
bigger they are split into separate components. These bigger libraries provide
some core functionality as a main component and provide further specialized
functionality in optional packages.

https://github.com/popalexandruvasile/underscorejs-examples/tree/master/advanced-topics-1
https://github.com/popalexandruvasile/underscorejs-examples/tree/master/advanced-topics-1
https://github.com/popalexandruvasile/underscorejs-examples/tree/master/advanced-topics-1
https://ide.c9.io/alexpop/underscorejs-examples/
http://underscorejs.org/docs/underscore.html

Related Underscore.js Libraries and ECMAScript Standards

[152]

Underscore-contrib is a functional library that is closely related to Underscore as
its official companion or complementary library. The Underscore-contrib source
code and documentation are hosted by the same parent organization of Underscore,
although a different author created it originally.

Similar to Underscore, it has great documentation and annotated source code
available at http://documentcloud.github.io/underscore-contrib.
Underscore-contrib is dependent on the Underscore library and it provides:

• Specialized functionality that does not belong to Underscore due to its
targeted applicability

• Functionality that is more experimental in nature and it should be merged
into Underscore after it reaches a certain maturity and acceptance threshold

Underscore-contrib has its functionality split into different components that are
contained in one of the 14 JavaScript files that comprise this library. You can
reference each file separately and pick and chose the ones that you plan to use.
Underscore-contrib also provides a single file that contains all the components
for scenarios when you need to use the whole library.

An overview of Underscore-contrib
functionality
The library provides distinctive functionality for arrays, collections, functions, objects,
and other utility functions that follow closely the areas of functionality already defined
in the Underscore documentation (and covered in the first part of this book). In
addition to these areas of functionality, Underscore-contrib identifies further units
of functionality that map to separate functionality concerns.

We will enumerate the JavaScript files where the Underscore-contrib functionality is
contained (this library is using the same _ global object as Underscore to provide its
functions). We will only mention a couple of functions for each unit of functionality
(followed by some examples in the next subsection):

• underscore.array.builders.js: This contains functions that create
or construct arrays, such as:

 ° _.cat(...): This concatenates zero or more arrays, array-like
objects, objects, or a combination of any of these that are passed
as parameters into a single array

 ° _.interpose(array, value): This returns an array built by
inserting the value parameter between all the elements of the
array parameter

http://documentcloud.github.io/underscore-contrib

Chapter 6

[153]

 ° _.repeat(size, value): This returns an array of length equal to
the size parameter and filled with the value parameter

• underscore.array.selectors.js: This contains functions that extract
values from arrays, such as:

 ° _.best(array, selectFunc): This returns the value taken from
the array parameter that satisfies all calls of the selectFunc
function parameter over the array elements, for example,
selectFunc(elem1, elem2), where elem1 and elem2 are
successive elements from the array parameter

 ° _.dropWhile(array, predicate): This removes values from the
array parameter that do not satisfy the predicate function until
the first element that satisfies it is reached

• underscore.collections.walk.js: This contains functions that can
traverse and process data from complex JavaScript objects.

• underscore.function.arity.js: This contains functions that operate on the
arguments of a function by changing the number of arguments (the arity of the
function) or by changing how a function and its arguments are evaluated. They
create new functions from existing functions. Here are a few examples:

 ° _.binary(func): This returns a function that when called with a
number of arguments will pass only the first two arguments to the
func parameter and will discard any other arguments.

 ° _.curry(func[, reverse]): This returns a new function that is
the curried version of the func parameter function. We already
discussed _.partial() that binds predefined values to function
arguments. The operation of currying a function in JavaScript
transforms a function and its arguments into a series of nested
intermediate functions with one argument (unary functions). We
will explore this function in the section examples and I encourage
you to explore its theoretical definition at https://en.wikipedia.
org/wiki/Currying.

• underscore.function.combinators.js: This function creates new
functions by combining other functions, such as:

 ° _.complement(predicate): This creates the reversed equivalent
of the predicate parameter function

 ° _.conjoin(predicate1[, predicate2[, ..., predicateN]]):
This creates a new predicate function that will filter an array
by checking that its elements satisfy all the predicate1...
predicateN predicates

https://en.wikipedia.org/wiki/Currying
https://en.wikipedia.org/wiki/Currying

Related Underscore.js Libraries and ECMAScript Standards

[154]

• underscore.function.iterators.js: This contains functions that create
collection iterators and functions that operate over these iterators. In this
context, an iterator is a function that is based on a collection, and when
invoked, it will return the next element from the collection. Here are a
couple of examples:

 ° _.iterators.List(array): This creates an iterator function from
an array. When invoked, the iterator function returns the next
element from the array parameter and when the last element is
reached, it returns undefined.

 ° _.iterators.select(iterator, predicate): This returns
the elements provided by the iterator function that satisfy
the predicate function.

• underscore.function.predicates.js: These functions create predicates,
such as:

 ° _.isEven(value): This returns true if value is an even number
 ° _.isJSON(value): This returns true if value is valid JSON

• underscore.object.builders.js: This contains functions that build
objects, such as:

 ° _.merge(obj1[, obj2[, ..., objN]]): This merges two or
more objects starting with object1

 ° _.snapshot(obj): This creates a deep clone of an object

• underscore.object.selectors.js: These are functions that extract
from objects, such as:

 ° _.kv(obj, key): This returns a key-value pair representing a
property of obj that has a name that matches the key parameter

 ° _.pickWhen(obj, predicate): This returns a copy of the object obj
with properties that have values that satisfy the predicate function

• underscore.util.existential.js: These functions make assertions if an
object exists or can be converted to a Boolean value, such as:

 ° _.exists(value): This returns true if value is not equal to
undefined and not equal to null

 ° _.truthy(value): This returns true if value can be converted
to true

Chapter 6

[155]

• underscore.util.operators.js: This contains a function that acts as
operators, such as:

 ° _.add(value1[, value2[, ..., valueN]]): This adds all the
arguments and returns the result

 ° _.dec(value): This decrements the value number parameter
and returns the result

• underscore.util.strings.js: This contains functions that operate
on strings, such as:

 ° _.camelCase(value): This converts a dash-separated value
parameter to a camel-cased string. The function _.toDash(value)
performs the reverse operation.

 ° _.strContains(value, search): This returns true if the value
string parameter contains the search string parameter.

• underscore.util.trampolines.js: This contains functions that enable
recursive function behavior while avoiding the JavaScript maximum
recursion depth limit for browsers that do not support ECMAScript
2015 (ES6).

We only mentioned a handful of the Underscore-contrib functions to give you an
idea of the kind of functionality it offers and how we can adopt a more advanced
functional programming style via this library.

The library author Michael Fogus explores many of its functions and
underlying concepts in the book Functional JavaScript, O'Reilly Media
2013. This book is strongly recommended if you are interested in
adopting a functional programming style with JavaScript.

Exploring Underscore-contrib via examples
To install the library using the Bower package manager, we need to execute the
following command line:

bower install underscore-contrib --save

We will set up a browser-centric project (similar to the ones created for Chapter 4,
Programming Paradigms with Underscore.js) in the underscore-contrib folder from
the source code for this chapter. We will use a mix of Underscore and Underscore-
contrib functions to illustrate how seamlessly they work together.

Related Underscore.js Libraries and ECMAScript Standards

[156]

We will define a new requirement for a function that concatenates arrays and
values into a single sorted array that does not have duplicated values or values
that are null or undefined. The test specification a for this function can be found
in the spec/contribSamplesSpec.js file:

describe("Given contribSamples", function() {
 describe("when calling concatenateArrays()", function() {
 var result = contribSamples.concatenateArrays(1, [5, , 64],
 null, [5,6,7], [1, , 2, null, 3], 99);
 it("then it returns an array of the correct length",
 function() {
 expect(result.length).toEqual(8);
 });
 it("then it returns an array with the correct first and last
 element", function() {
 expect(_.first(result)).toEqual(1);
 expect(_.last(result)).toEqual(99);
 });
 });
});

The implementation of this function employs the Underscore-contrib _.cat() function
to create an initial concatenated array. The initial array is passed to a processing
pipeline based on the Underscore _.chain() function and the final pipeline value
will contain the result array as implemented in the contribSamples.js file:

var contribSamples = (function() {
 "use strict";

 return {
 concatenateArrays: function(args) {
 var concatResult = _.cat.apply(this, arguments);
 var filteredResult = _.chain(concatResult)
 .filter(_.existy)
 .sortBy(_.identity)
 .unique(true)
 .value();
 return filteredResult;
 }
 };
}());

Chapter 6

[157]

The two highlighted functions are Underscore-contrib functions, and they don't
look out of place with the rest of the Underscore functions. We used the call _.cat.
apply(this, arguments) to pass the arguments of the outer function unchanged
to _.cat(). For convenience, you can use the index.html file to see the output of
this example.

Using the lodash library
The lodash library (https://lodash.com) was created as a fork of Underscore, with
a focus on better performance, improved consistency across browsers, and enhanced
code readability. Currently at version 3, it offers a thorough test suite, excellent
documentation, and an extensively customizable build utility. In its previous versions,
it even offered an Underscore compatible file so that you can use lodash as a drop-in
replacement for Underscore (especially, useful for projects using Backbone.js).

Initially, the main difference between lodash and Underscore was that lodash was not
relying on any native JavaScript functions to implement functions such as _.map(),
_reduce, and _.forEach(). As discussed in the Underscore and JavaScript standards
section, Underscore used the native ES5 functions if available (up until version 1.6).
These native functions were slower than the lodash equivalent functions, as they
catered to many edge cases and historic JavaScript implementations. By using simple
loops and modern JavaScript code practices, lodash managed to be significantly
faster than Underscore 1.5 and lower. The difference in performance is reduced
after Underscore 1.6. As of this version, Underscore follows a similar approach with
lodash and drops support for the slow native JavaScript functions. This is one of
the reasons that, starting with lodash 3, there is no Underscore-compatible build
available anymore.

An overview of lodash functionality
The current version of lodash 3.10 has become (as of July 2015) the most depended
upon package on the npm repository overtaking Underscore, which used to hold the
top spot before that. The library far exceeds the features of Underscore, as detailed
at https://lodash.com/#features, and we will explore a couple of them next.

You can find more information about the differences
between Underscore before version 1.6 and lodash in the
blog entry at http://kitcambridge.be/blog/say-
hello-to-lo-dash/. A comparison between Underscore
1.6+ and lodash can be found at http://benmccormick.
org/2014/11/12/underscore-vs-lodash/.

https://lodash.com
https://lodash.com/#features
http://kitcambridge.be/blog/say-hello-to-lo-dash/
http://kitcambridge.be/blog/say-hello-to-lo-dash/
http://benmccormick.org/2014/11/12/underscore-vs-lodash/
http://benmccormick.org/2014/11/12/underscore-vs-lodash/

Related Underscore.js Libraries and ECMAScript Standards

[158]

Functionality-wise, lodash makes the same distinction between areas of concern
such as collections, arrays, functions, objects, and utility functions. It refines this
distinction by further separating functionality for strings, numbers, dates, and
math functions.

For collections, it keeps a common set of functions with Underscore and it defines
additional ones, such as:

• _.at(collection, [props]): This returns an array of elements that
represent either array values or object property values specified as keys
or indexed in the optional props argument. This argument can be an array
of numbers or strings or a comma-delimited list of numbers of strings.

• _.findLast(collection, [predicate], [thisArg]): This is similar
to _.find; it processes the collection argument from right to left. We
should note that in all lodash functions with optional predicate arguments,
the default value is set to the _.identity function.

• _.forEachRight(collection, [iteratee], [thisArg]): This is similar
to lodash _.forEach(); it processes the collection argument from right to
left. Both _.forEach() and _.forEachRight() functions will stop processing
the collection if the iteratee function returns false and this is another
important difference from the Underscore _.forEach() implementation.

• _.sortByOrder(collection, iteratees, [orders]): This sorts the
collection argument using iteratees, which is an array of functions,
property names, or even objects. When iteratees contains objects, the
properties of each object will be used for comparison against collection
elements (relying on a function similar to the _.matches() utility function
for the actual comparison). The optional orders argument is an array of
Boolean values that specifies the sort order of each iteratees entry.

The array functionality has many functions that are similar to Underscore,
while also defining new ones, such as:

• _.chunk(array, [size]): This splits the array argument into arrays
of size length and returns a new array containing the results.

• _.dropWhile(array, [predicate], [thisArg]): This creates a new array
without the first elements of the array argument that satisfy the predicate
function. The predicate argument can be a string in which case elements
are dropped, while they have a property with the same name that evaluates
as true. If predicate is an object, then a function that operates in a similar
way with the _.matches function will be used to evaluate each element
of the array argument.

Chapter 6

[159]

• _.remove(array, [predicate], [thisArg]): This mutates the array
argument and removes the elements that satisfy the predicate argument
(see _.dropWhile for details on how the predicate argument is evaluated).
The return value is an array containing the removed elements.

• _.takeWhile(array, [predicate], [thisArg]): This creates a new
array that contains the first elements of the array argument that satisfy the
predicate function (see _.dropWhile for details on how the predicate
argument is evaluated).

Most of the functions that work with objects, strings, numbers, and dates are shared
with Underscore, and we can find different ones, such as:

• _.forOwn(object, [iteratee], [thisArg]): This is similar to lodash
_.forEach(); it processes the enumerable properties of the object argument
(ignoring any inherited enumerable properties).

• _.mapValues(object, [iteratee=_.identity], [thisArg]): This is
similar to lodash _.map(); it creates a version of the object argument with
the same keys and values generated by the iteratee function (its signature
is (value, key, object)).

• There are string-specific functions that should eliminate the need for a
specialized string library, as it is the case for Underscore (see the Underscore
string library at https://epeli.github.io/underscore.string/). Here
are a couple of useful string-related functions:

 ° _.camelCase([string]): This converts a string to camel case by
changing letters from the Unicode block "Latin-1 Supplement" into
letters from the Unicode block "Basic Latin", while removing any
combining diacritic marks; for example, my-custom-control is
converted to myCustomControl.

 ° _.padRight([string], [length], [chars]): This creates a left-
padded version from the string argument if it is shorter than the
length argument using the value provided in the chars argument.

 ° _.trim([string], [chars]): This removes the whitespace
character at the beginning and at the end of the string argument.
If the chars argument is specified, then the function will remove its
characters instead.

 ° _.words([string], [pattern]): This returns an array of words
extracted from the string argument. If the pattern argument is
specified, it will change the default regular expression used by the
function to extract the words.

https://epeli.github.io/underscore.string/

Related Underscore.js Libraries and ECMAScript Standards

[160]

• Number-specific ones such as _.inRange(n, [start], end), which
return true if n is between start and end-1.

• Functions for mathematical operations such as _.sum(collection,
[iteratee], [thisArg]), which calculate the sum of the collection
element, using the optional iteratee function to extract the desired value.

The utility functions have some useful additions on top of the ones shared with
Underscore, such as:

• _.attempt(func): This tries to execute the func argument function and
returns its result or the error raised in the process.

• _.matches(source): This creates a function that performs a deep
comparison between its argument and the source argument. It is using
the enumerable properties of the two objects for comparison, and it even
works with arrays.

The area of functionality that targets functions, while similar with Underscore, it
differs through API additions like:

• _.ary(func, [n]): This creates a version of func that only accepts n
arguments ignoring the rest.

• _.curry(func, [arity]): This creates a curried version of func similar
to the Underscore-contrib version. The optional arity argument controls
the depth of nesting, and it defaults to the number of func arguments.

• _.rearg(func, indexes): This creates a new function that is a version
of func, where the new function arguments are mapped back to the func
arguments via the indexes list or array. Each index value is used to locate
an argument of the new function that will be passed back to func in sequence.

Special mentions should be made for some powerful features from the
chaining functionality:

• Chaining-related functions allow for a shorter syntax and bring additional
functionality compared to Underscore. Rather than using _.chain(value)
to initiate explicit chaining, you can also use _(value) and initiate implicit
chaining instead. With implicit chaining, there is no need to call value() to
terminate the chaining and get the final result from the processing pipeline.
The chain will be terminated when a chain method returns a single value or
a primitive value.

Chapter 6

[161]

• Lazy evaluation happens when the processing pipeline involved as part of
chaining does not create intermediary arrays between successive chain method
calls. Instead, there is a process called shortcut fusion the where multiple
methods of the chain are merged and applied against iterated elements.

• Deferred execution is where a chain is not actually executed unless it is
terminated explicitly through a value() function call, or implicitly by
calling a function that returns a single value or a primitive value.

More details about lodash chaining features can be found in the
official docs at https://lodash.com/docs#_ and in the blog
entry http://gajus.com/blog/4/harder-better-faster-
stronger-lo-dash-v3#shortcut-fusion. Further details
about lazy evaluation in lodash can be found in the blog entry
http://filimanjaro.com/blog/2014/introducing-lazy-
evaluation/.
There is also a dedicated book for lodash called Lo-Dash Essentials, Adam
Boduch, Packt Publishing, and you can find more details at https://
www.packtpub.com/web-development/lo-dash-essentials.

Migrating a project from Underscore to lodash
The lodash library is a great alternative to Underscore offering many more features,
better performance, and finer grained control on what gets imported from this
library. Many Underscore users have switched to lodash because of its benefits, so
we will discuss the migration process.

To illustrate how easy is to switch from Underscore to lodash for an existing project,
we will reuse the one found in the oop-underscore folder from the source code for
Chapter 4, Programming Paradigms with Underscore.js. The converted project can be
found in the folder lodash-migration from the source code for this chapter.

To install the library using the Bower package manager, we need to execute the
following command line:

bower install lodash --save

The next step is to replace all references to the Underscore library file with references
to the lodash library file in index.html and in SpecRunner.html files. If we run the
tests by opening the SpecRunner.html file in the browser, we will notice that they
are all successful. This is a scenario where having tests in place helps us migrate
code across different libraries or different versions of the same library.

https://lodash.com/docs#_
http://gajus.com/blog/4/harder-better-faster-stronger-lo-dash-v3#shortcut-fusion
http://gajus.com/blog/4/harder-better-faster-stronger-lo-dash-v3#shortcut-fusion
http://filimanjaro.com/blog/2014/introducing-lazy-evaluation/
http://filimanjaro.com/blog/2014/introducing-lazy-evaluation/
https://www.packtpub.com/web-development/lo-dash-essentials
https://www.packtpub.com/web-development/lo-dash-essentials

Related Underscore.js Libraries and ECMAScript Standards

[162]

However, if we open the index.html file, there is no rendered content displayed.
This is caused by an exception in the index.js file, as the _.first(array) function
in lodash only returns the first element of an array. To fix the error, we need to
replace the Underscore call _.first(contacts, 4) with its lodash equivalent
_.take(contacts, 4).

The lodash library has a dedicated page for the migration from
Underscore at https://github.com/lodash/lodash/wiki/
Migrating.

Underscore and JavaScript standards
Up until Underscore 1.6, there was a strong correlation between the library and some
of the native JavaScript functions available in ES5. Starting with Underscore 1.7, this
link was broken and the library introduced implementations that performed better
than the native JavaScript equivalents. For example, the native JavaScript functions
operating on arrays make provisions for so called sparse arrays. In JavaScript, arrays
behave similarly to objects: they can contain elements at arbitrary indexes even if the
initial length is less than the index value, as shown in this code snippet:

var arr = [];
arr[5] = null;
arr[12] = 1;
console.log("Array length is " + arr.length);

The array length is now 13, and as it only contains two defined elements, we say
that the array is sparse. Prior to Underscore 1.7, enumerating a sparse array using
the _.each() function would only touch the valid elements from the array, and
this involves extra computational effort. Starting with version 1.7, Underscore treats
all arrays as dense arrays or arrays that are expected to contain values at all their
indexes. Using Underscore 1.8 or greater means that enumerating the sparse array
from the previous example would touch elements at all 13 indexes, even if most
of them were not defined. This change makes Underscore slightly faster than the
equivalent ECMAScript functions, and at the same time incompatible with them.

For brevity, we will refer to ECMAScript 5.1 as ES5 throughout the rest of
the chapter.

https://github.com/lodash/lodash/wiki/Migrating
https://github.com/lodash/lodash/wiki/Migrating

Chapter 6

[163]

ECMAScript 5.1 (ES5)
The following functions were first standardized in ES5 and are similar with
Underscore functions:

• Array.prototype.forEach() is similar to _.each()
• Array.prototype.map() is similar to _.map()
• Array.prototype.reduce() is similar to _.reduce()
• Array.prototype.reduceRight() is similar to _.reduceRight()
• Array.prototype.filter() is similar to _.filter()
• Array.prototype.every() is similar to _.every()
• Array.prototype.some() is similar to _.some()
• Array.prototype.indexOf() is similar to _.indexOf()
• Array.prototype.lastIndexOf() is similar to _.lastIndexOf()

Underscore functions are faster than their native JavaScript equivalent; they work
with objects and array-like instances, and they support chaining.

There are also ES5 functions that will be used by Underscore instead of its own
implementation if defined in the JavaScript engine executing the code:

• Array.isArray() is equivalent to _.isArray()
• Object.keys() is equivalent to _.keys()
• Function.prototype.bind() is equivalent to _.bind()
• Object.create() is used in the Underscore function _.create()

Overall, Underscore is closely aligned with ES5, and while it cannot be used as
a direct replacement anymore, it is a library that can be used to write modern
JavaScript code in the spirit of ES5.

ECMAScript 2015 (ES6)
The sixth edition of the ECMA-262 standard is also known as ES6, and it was
finalized and released officially in June 2015 as the "ECMAScript 2015 Language
Specification". The emphasis on a year of release rather than a version number
is in line with the plans to have yearly iterations for the standard that defines the
JavaScript language. The next version of JavaScript should be standardized as
ECMAScript 2016 (ES7) and be finalized at some point in 2016. For brevity, we
will use the ES6 acronym each time we refer to the ECMAScript 2015 standard,
as it is a widely used moniker.

Related Underscore.js Libraries and ECMAScript Standards

[164]

ES6 contains a series of features that make JavaScript an expressive and powerful
language, in line with other programming languages such as Java, C#, or Ruby.
Some of the most important features introduced in ES6 are modules and classes,
and these features resolve the biggest shortcomings of JavaScript as a language by
introducing native support for encapsulation and modularity. Given the renewed
effort to standardize new features in ECMAScript on a yearly basis, I think that
ES6 adoption should be a top priority for any new JavaScript project. A modern
JavaScript library such as Underscore benefits considerably from ES6 features, and
we will focus a large part of the rest of the book on the topic of ES6 adoption.

We will start by mentioning some of the new additions in ES6, followed by an
exploration of some of these additions.

Array – new features
First, we will highlight the ES6 new features for the Array object as they
complement or replace some of the Underscore functionality.

There are new static methods for the Array object that make it easier to create
array instances:

• Array.from(items[, mapfn[, thisArg]]): items is an array-like object
that will be converted to an Array instance. The second optional argument
mapfn is a mapping function that operates on each element of the array.
The third optional argument thisArg represents the this value for the
mapfn function. Array.from() is similar to _.toArray(). Here is an
example showcasing its functionality:
var arrayFromDemo = function(n1, n2, n3, n4) {
 console.log("arguments length: " + arguments.length);
 console.log("Is arguments an instance of Array? " +
 (arguments instanceof Array));
 var argsArray = Array.from(arguments);
 console.log("argsArray length: " + argsArray.length);
 console.log("Is argsArray an instance of Array? " +
 (argsArray instanceof Array));
};
arrayFromDemo(1, 2, 3, 4);
// "arguments length: 4"
// "Is arguments an instance of Array? false"
// "argsArray length: 4"
// "Is argsArray an instance of Array? true"

Chapter 6

[165]

• Array.of(argument0, [argument1, [..., [argumentN]]]): This
function converts consecutive arguments into an array, as exemplified in
the following code snippet. This function eliminates the need to use the
_.toArray() function for scenarios when we need to create an Array
instance from function parameters:

var arrayOfDemo = function(n1, n2, n3, n4) {
 var argsArray = Array.of(n1, n2, n3 , n4);
 console.log("argsArray length: " + argsArray.length);
 console.log("Is argsArray an instance of Array? " + (argsArray
instanceof Array));
};
arrayOfDemo(1,2,3,4);
// "argsArray length: 4"
// "Is argsArray an instance of Array? true"

There are also new instance methods for the Array object that can replace or
complement some of the Underscore functionality:

• Array.prototype.copyWithin(target, start[,end]): This copies values
from the array at the start index to array positions starting with the target
index. This function does not have a similar Underscore alternative.

• Array.prototype.entries(): This returns an Array iterator object that can
be enumerated by calling its next() method or through the new ES6 for...
of statement. The iterated item contains an array object that holds the item
index and the item value as elements. The functionality is somewhat similar
to the _.pairs(object) function with the main difference that the former
function works with arrays and the latter with objects.

• Array.prototype.fill(value[, start[, end]]): This function copies
the value argument from the start index to the end index of the array. If
end is not specified, it will be set to the last index of the array. Again, this
function does not have an Underscore alternative.

• Array.prototype.find(predicate[, thisArg]): This is similar to
_.find().

• Array.prototype.findIndex(predicate[, thisArg]): This is similar
to _.findIndex().

• Array.prototype.keys(): This returns an Array iterator object and the
iterated item contains the index value of the current array element. The
functionality is somewhat similar to the _.keys(object) function and
the main difference is that the ES6 function works with arrays and the
Underscore one with objects.

Related Underscore.js Libraries and ECMAScript Standards

[166]

• Array.prototype.values(): This returns an Array iterator object and
the iterated item contains the value of the current array element. The
functionality is somewhat similar to the _.values(object) function
and the main difference is that the ES6 function works with arrays and
the Underscore one with objects.

Other notable new features
Next, we will highlight a couple of new language features that have significant
implications on JavaScript development, and we will explore them later through
a series of examples:

• Support for classes and modules:
 ° We can declare classes and use prototype-based inheritance

explicitly via constructors and base class calls
 ° Modules help us organize code and solve the problem of

exporting data and functionality in an elegant manner

• Arrow functions (or fat arrow functions or lambda functions): These
functions can be expressed using a more concise syntax (similar to the
syntax for anonymous functions in C# or Java). The arrow functions have
the this variable set to the this variable of its surrounding context, rather
than defining their own value as in the classic function behavior.

• Support for block-scoped variables through let and const keywords.
We don't have to worry about the pollution of global scope or accidentally
overriding values that should be read only.

• Template strings and object literal enhancements (support for the
__proto__ keyword and a more concise way to declare variables
and functions).

• Function arguments: default values, better handling through rest and
spread features.

• Among many other features, we should mention the introduction of
promises, extensive destructuring support, iterators and generators,
new data structures such as Map, Set, WeakMap, and WeakSet, reflection
support, and proxies.

Before seeing some of these features in action, we will discuss various options to
execute ES6 code, and we will set up a development workflow that will be iterated
upon in the next and final chapter.

Chapter 6

[167]

You can find more about the ECMAScript 2015 (ES6) standard from
its official documentation at http://www.ecma-international.
org/ecma-262/6.0/index.html. There is a lot of online material
about ES6 that reflects the community interest, and I will mention
just a few resources: an overview of its most important features at
https://github.com/lukehoban/es6features#readme; a
series of blog posts at https://hacks.mozilla.org/category/
es6-in-depth/; the books Exploring ES6 by Axel Rauschmayer
available at http://exploringjs.com/es6/; and Understanding
ES6 by Nicholas C. Zakas available at https://leanpub.com/
understandinges6/read/.

Using ECMAScript 2015 (ES6) today with transpilers
At the moment of writing the book, none of the major browsers had full support
for ES6. However, there is lot of progress in this space and it might be possible that
at the time you are reading this book at least one major browser (if not all) will fully
support ES6. A good way to track progress of the ES6 support in browsers and
JavaScript runtimes is through the compatibility table at https://kangax.github.
io/compat-table/es6/. For example, Google Chrome, Mozilla Firefox and Microsoft
Edge (the new browser that replaces Internet Explorer in Windows 10) had at least
60% support for ES6 in July 2015, while Safari 8 and Internet Explorer 11 had less
than 20% support.

Until support for ES6 is widely available, a good solution to adopt ES6 is to use a
transpiler (a shorter word for transcompiler), which is a special type of compiler
that transforms code between two languages that are similar. These transpilers
convert code from ES6, or other upcoming ECMAScript specifications such as
ECMASCript 2016 (ES7) into code that is compatible with older specifications such
as ES5 or ES3. They usually support many configurations options that will allow
you to specify the target specification and whether you convert each file in its own
output file or in one single output file among other things.

Two popular transpilers that convert ES6 or ES7 are Google Traceur (more information
available at https://github.com/google/traceur-compiler/wiki/Getting-
Started) and Babel (formerly known as 6to5) available at http://babeljs.io.

Babel experienced a great increase in community adoption in 2015, and as of July
2015, it has the most comprehensive support for ES6 at 73%. We will use this
transpiler throughout the book to convert any ES6 code to its ES5 equivalent.

http://www.ecma-international.org/ecma-262/6.0/index.html
http://www.ecma-international.org/ecma-262/6.0/index.html
https://github.com/lukehoban/es6features#readme
https://hacks.mozilla.org/category/es6-in-depth/
https://hacks.mozilla.org/category/es6-in-depth/
http://exploringjs.com/es6/
https://leanpub.com/understandinges6/read/
https://leanpub.com/understandinges6/read/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://github.com/google/traceur-compiler/wiki/Getting-Started
https://github.com/google/traceur-compiler/wiki/Getting-Started
http://babeljs.io

Related Underscore.js Libraries and ECMAScript Standards

[168]

Using Babel directly in the browser
Babel can be used in a browser environment without an explicit transpilation step.
First, we need to install the babel-core npm module in the project folder using
the following command line:

npm install babel-core --save

The module contains two files that are required next:

• The browser.js file, which will transform the ES6 code into ES5
code on the fly.

• The browser-polyfill.js file, which provides support for nontrivial ES6
features such as generator, iterators, promises, and others. It is based on
two projects: regenerator (https://github.com/facebook/regenerator),
which provides support for ES6 generator functions, and core-js (https://
github.com/zloirock/core-js), which provides support for ES6 symbols,
collections, iterators, and promises among other features.

These two files need to be included in the <head> element at the top of the HTML
file that contains the ES6 code. The ES6 code needs to be provided inline in the same
file inside a <script type="text/ecmascript-6"> or a <script type="text/
babel"> element.

Our ES6 example shows two classes, one derived from the other and a Set object
that requires the browser-polyfill.js file to work as expected. A class in ES6
can use a constructor function for initialization and can be derived from another
class using the extends keyword. The functionality around classes in ES6 should
be familiar as it is very close to what we covered in Chapter 4, Programming Paradigms
with Underscore.js. The Set object holds a collection of unique values and any
duplicate value added to it will be ignored.

Here are the contents of index.html file for the folder babel-client found in
the source code for this chapter:

<!DOCTYPE html>
<html>
<head>
 <title>Using Babel in the browser without transpilation</title>
 <script src="bower_components/jquery/dist/jquery.js"></script>
 <script src="node_modules/babel-core/browser.js"></script>
 <script src="node_modules/babel-core/browser-polyfill.js"></script>
</head>
<body>
 <h1>Example output:</h1>

https://github.com/facebook/regenerator
https://github.com/zloirock/core-js
https://github.com/zloirock/core-js

Chapter 6

[169]

 <div id="output"></div>
 <script type="text/ecmascript-6">
 class Greeter {
 constructor(message) {
 this.message = message;
 }
 getMessage() {
 return "An instance of class " + this.constructor.name + "
 says: " + this.message;
 }
 }
 class DerivedGreeter extends Greeter {
 constructor(message) {
 super(message + " !");
 }
 }
 let aGreeter = new DerivedGreeter("Hello world");
 let message = aGreeter.getMessage();
 var aSet = new Set([10, 20, 30, 40, 50, 10, 20, 30]);
 $("#output").html(message + "
 The example set size is "
 + aSet.size);
 </script>
</body>
</html>

I have highlighted the HTML elements required by Babel, and if you open the file
in a browser, you should see the correct output:

An instance of class DerivedGreeter says: Hello world !

The example set size is 5

This approach is not recommended for writing production code, and
you should only use it as a quick way to write ES6 code. I would use this
example as a starter project for learning and testing ES6 or ECMAScript
2017 (ES7) functionality without employing a complicated workflow.

Babel is currently provided through npm packages, and in this example, we had
to use both Bower and npm to manage our dependencies. We will show a better
way to automate the build process in Chapter 7, Underscore.js Build Automation and
Code Reusability.

Related Underscore.js Libraries and ECMAScript Standards

[170]

An overview of Babel CLI
Babel can be used to transpile ES6 in a browser environment or in a Node.js
environment using a CLI (command-line interface) package via the npm module
called babel. It is recommended that you install Babel as a global npm module
using the following command line:

npm install babel --global

You can now use the babel executable and start transpiling ES6 code to ES5 using
a workflow configured, as following:

• A one-to-one file mapping where each ES6 file has an ES5 equivalent file.
This is a suitable setup for Node.js code. You could also use this setup in
a browser environment for specific development deployments, but you
need to ensure when deploying to production that you don't link to too
many files. You could also have an automated build step where you can
concatenate the generated ES5 files and we will explore these options in
Chapter 7, Underscore.js Build Automation and Code Reusability.

• A many-to-one file mapping, where all of the ES6 files get converted to one ES5
file, and this is a suitable approach when deploying to a browser environment.

• In a server-side environment you can write code using ES6 language features
and execute your Node.js program using the Babel enabled executable:
babel-node index.js

• Executing babel-node will start a Babel enabled Node.js interactive session,
where you can write ES6 code directly.

• Using a require hook that will bind to the Node.js module system and
transpile ES6 files dynamically.

We will explore some of these options in the next sections with a view to establishing
a workflow that can be used to explore some of the ES6 features.

Using Babel CLI for the client-side code
We will modify the previous example from the babel-client folder and move the
JavaScript code from the index.html file into separate files in the es6 folder found
in babel-client-cli from the source code for this chapter. The classes are now in
their own file es6/greeters.es6 and the code that generates the example output
is in es6/index.es6. Notice that we used the .es6 extension that is supported by
Babel for the code written in ES6, but we could have used the .js extension or even
a custom one that can be declared in the Babel configuration.

Chapter 6

[171]

At this point, we have our ES6 files ready and we can transpile them into the ES5
equivalent by running the next command with the target folder es6 as the first
argument:

babel es6 --watch --out-dir es5

The second argument --watch will ensure that any change in the es6 folder
will trigger a new transpilation and the last argument --out-dir es5 sets the
destination folder. After running this command, you should see the following
folder structure in the babel-client-cli folder:

├── es5
│ ├── greeters.js
│ └── index.js
├── es6
│ ├── greeters.es6
│ └── index.es6
├── index-with-many-files.html
└── index-with-one-file.html

If you open the index-with-many-files.html file in a browser, you should see
the same output as in the previous example from the babel-client folder. Also,
the index-with-many-files.html file links to all the files from the es5 folder.

Babel can transpile all the files from a folder in a single file, and this is the
required command:

babel es6 --watch --out-file es5/app.js

The index-with-one-file.html file links to a generated file and displays the
expected output when opened in a browser. This example is provided as a way of
comparing ES6 code with its converted ES5 output, and it should not be used for
production code as it lacks the integration with a module system.

ES6 brings the powerful structural construct of module that is similar
to the Node.js module, but the specification that defines the module
loader has not made it into the final version. It was separated instead
into its own specification at http://whatwg.github.io/loader/,
and we will explore using a module loader in Chapter 7, Underscore.js
Build Automation and Code Reusability.

http://whatwg.github.io/loader/

Related Underscore.js Libraries and ECMAScript Standards

[172]

Using Babel with Node.js
When working in a Node.js environment, Babel provides a require hook that
integrates in the runtime module system and provides dynamic transpilation.
We will evolve our previous example and move each class into its own file and
use the new ES6 module syntax in the process. Before we progress with the
example, we need to install Babel as an npm module that is local to the current
example folder to support the require() hook:

npm install babel --save

We already discussed the CommonJS module system used by Node.js in Chapter 5,
Using Underscore.js in the Browser, on the Server, and with the Database and this module
system is synchronous and has a compact syntax. At this point, we should mention
another module system used in browser environments called AMD (asynchronous
module definition) and implemented by the library RequireJS available at http://
requirejs.org/. The AMD module system loads modules asynchronously and
supports dynamic module configuration while being more verbose than CommonJS.

The ES6 module system is reconciling both these systems and has support for
synchronous and asynchronous loading, has a compact syntax, can handle cyclic
dependencies, and enables dynamic module configuration.

The ES6 module system should feel very similar to CommonJS as each ES6 module
maps to one JavaScript file, and it supports many named exports and one default
export per file. We have converted the Greeter class to an ES6 module that exports
the class definition as default:

export default class Greeter {
 constructor(message) {
 this.message = message;
 }
 getMessage() {
 return "An instance of class " + this.constructor.name + "
 says: " + this.message;
 }
}

The DerivedGreeter class is a module that imports the Greeter class, and it
also exports its own class definition as default:

import Greeter from './Greeter';
export default class DerivedGreeter extends Greeter {

http://requirejs.org/
http://requirejs.org/

Chapter 6

[173]

 constructor(message) {
 super(message + " !");
 }
}

Notice the keywords import and export that make the module declaration explicit
and easy to read. You can find the section example in the babel-server folder from
the source code for this chapter. The ES6 modules can be found in the es6 folder and
they use the .es6 extension to differentiate from regular JavaScript code.

When Babel processes ES6 module files, it will transpile them by default as
CommonJS modules. Because of this behavior, we can reference Node.js modules
such as Underscore using the ES6 module syntax. We will import Underscore as
an npm package in our example folder using the command:

npm install underscore --save

Next, in the es6/example.es6 file, we will import Underscore as an ES6 module
and define the current module that contains both a default and a named export:

import DerivedGreeter from './DerivedGreeter';
import _ from "underscore";

export let name = "example";
export default function getExampleOutput() {
 let aGreeter = new DerivedGreeter("Hello world");
 let message = aGreeter.getMessage();

 let aSet = new Set([10, 20, 30, 40, 50, 10, 20, 30]);
 var arrayFromSet = Array.from(aSet);
 var size = _.size(arrayFromSet);
 return message + ". The example set size is: " + aSet.size + ".
 The example set size calculated with underscore is: " + size;
}

We used both the Set.size property and the _.size() function to calculate the
dimension of the aSet instance to showcase the use of ES6 features alongside a
popular JavaScript library, such as Underscore.

To execute this example, we have two options:

• Use an ES6 code file called by the babel-node executable. This file will use
the ES6 module syntax to load and execute the example module.

• Use the Babel require hook in a regular Node.js code file called by the node
executable. This file will use the Node.js require syntax to load and execute
the example module.

Related Underscore.js Libraries and ECMAScript Standards

[174]

For the first option, we will use the index.es6 file to import both the default and
named exports from the example module:

import { default as getExampleOutput, name } from './es6/example';
console.log(name + " - " + getExampleOutput());

The import expression from index.es6 cannot use default as a reference and has
to rename it as getExampleOutput. To execute the file, we need to run this command
in the sample folder:

babel-node index.es6

The sample output is slightly different to include the Underscore call result and
the named export property value:

example - An instance of class DerivedGreeter says: Hello world !. The
example set size is: 5. The example set size calculated with underscore
is: 5

For the second option, we will use the index.js file to configure the Babel require
hook and load the example module:

require("babel/register")({
 only: /es6/
});

var example = require("./es6/example");
var getExampleOutput = example.default;

console.log(example.name + " - " + getExampleOutput());

The first require method is the Babel require hook that supports many configuration
options, and we used the only configuration that enforces the dynamic transpilation
for files that match a specific regex. Some default configuration options exclude
the node_modules folder from transpilation and restrict the file extensions that are
processed by Babel, but they can be changed easily and you can find more details at
http://babeljs.io/docs/usage/require/. The second require() loads the ES6
module that, in fact, is transpiled by Babel as a CommonJS module so that it can be
consumed natively in Node.js. You can find more details about modules transpilation
with Babel at https://babeljs.io/docs/usage/modules/.

To execute the example, we need to run the following command line:

node index.js

We have now established a couple of Babel enabled workflows and each one can be
used as a quick and relatively simple starting point to explore ES6 features.

http://babeljs.io/docs/usage/require/
https://babeljs.io/docs/usage/modules/

Chapter 6

[175]

ECMAScript 2015 (ES6) by example
Using ES6 today via a tool such as Babel is a great way to write modern JavaScript
code and prepare for the moment when browsers and runtimes will fully support the
new specification. Microsoft Edge, Google Chrome, and Mozilla Firefox are on track
to become fully ES6 compatible by early 2016 if not faster. The Node.js project has
released a new major version (Node 4.0 in September 2015) that incorporates Google
Chrome V8 engine changes a lot faster than its previous versions and this also
includes new ES6 features. This is the reason why ES6 should be used now rather
than later and this is also why we explored the capabilities of a tool such as Babel
that makes ES6 possible on any JavaScript engine.

We will continue exploring other ES6 features and we will use the Node.js Babel
integration facilitated by the babel-node executable. This is the simplest way to
execute ES6 code, and it does not involve additional steps or switching context
between ES6 and ES5. We rely on the CommonJS module system that is also the
current default module system supported by Babel.

In the process of setting up Babel, we already explored some of the ES6 features:
classes, modules, and the Set structure. We also used the Array.from() expression
to convert a Set object to an Array object. Set is an iterable object and Array.from()
will convert these types of object to Array. Iterators and generator are not covered in
this book, but you can find more information in the ES6 reference materials already
mentioned or at https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Guide/Iterators_and_Generators.

Another ES6 feature that we used in our examples was the let keyword that helps
enforcing block scopes for variables. In ES5, you had two scopes: the global scope
and function scope, and in ES6, there is an additional block scope. Variables defined
with let have block scope—that is, when defined inside an if or a for statement,
they are only visible and accessible inside that statement scope (which is what we
refer to as a block scope).

A great reference for exploring ES6 features is the Mozilla Developer
Network documentation available at https://developer.
mozilla.org. I recommend that you use it as the starting point for
any JavaScript-related query and ES6 in particular. You can also use
the two books I mentioned at the beginning of the section for a more
in-depth explanation.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org
https://developer.mozilla.org

Related Underscore.js Libraries and ECMAScript Standards

[176]

Testing ES6 code
As an additional step, we will add unit testing support similar to the Node.js unit
testing from Chapter 5, Using Underscore.js in the Browser, on the Server, and with the
Database. There is an npm package called jasmine-es6 that integrates with Babel
and provides a Jasmine executable that can run tests written in the ES6 syntax (the
project is hosted at https://github.com/vinsonchuong/jasmine-es6). We will
adapt and slightly change the example from the babel-server folder into a starter
for the rest of the ES6 examples. First of all, we need to install the jasmine-es6
npm package using the following command:

npm install jasmine-es6 --save-dev

At this point, we have a Jasmine executable that is ES6 aware and we can initialize
the test configuration files by running the next command:

node_modules/.bin/jasmine init

The generated file spec/support/jasmine.json needs to have this content:

{
 "spec_dir": "spec",
 "spec_files": [
 "**/*[sS]pec.js",
 "**/*[sS]pec.es6"
],
 "helpers": [
 "../node_modules/jasmine-es6/lib/install.js",
 "helpers/**/*.js"
]
}

Notice that the spec_files node accepts the .es6 extension and we added an
additional line to the helpers node that is required by jasmine-es6 to work properly.

All the ES6 examples from this section reside in the es6/examples.es6 file and
they have a matching spec/examplesSpec.es6 file that contains the test
specifications. You can find the examples in the es6-examples folder from
the source code for this chapter and its folder structure should look like the
following (excluding the node_modules folder, which is not shown):

├── es6
│ ├── DerivedGreeter.es6
│ ├── Greeter.es6

https://github.com/vinsonchuong/jasmine-es6

Chapter 6

[177]

│ └── examples.es6
├── spec
│ ├── support
│ │ └── jasmine.json
│ └── examplesSpec.es6
└── package.json

We have slightly changed the es6/examples.es6 file to use named function
exports for each ES6 feature: getDerivedGreeterMessage() for the classes
and getSetSize() for the Set object.

Before looking at the test specifications, you can also execute some of the
examples invoked in the index.es6 file by running the following command
in the example folder:

babel-node index.es6

The spec/examplesSpec.es6 file is targeting the named exports from the es6/
examples.es6 file to define the following test specifications:

import * as examples from '../es6/examples';

describe('Given examples module', function() {
 it('when calling getDerivedGreeterMessage() then returns the
 correct result', () => {
 const message = examples.getDerivedGreeterMessage();
 expect(message).toBe('An instance of class DerivedGreeter says:
 Hello world !');
 });

 it('when calling getSetSize() then returns the correct result', ()
 => {
 const setSizeInfo = examples.getSetSize();
 expect(setSizeInfo).toBe('The example set size is: 5. The example
 set size calculated with underscore is: 5');
 });
});

Notice the use of the ES6 const keyword that is similar to let in having block scope
visibility, but it cannot be reassigned or redeclared after initialization.

To execute the tests, we need to invoke the jasmine-es6 executable with the
following command and watch the two test cases passing:

node_modules/.bin/jasmine

Related Underscore.js Libraries and ECMAScript Standards

[178]

Further ES6 examples – the arrow function
We have already used classes and one of the new static Array object methods Array.
from() in our current example. We will showcase next an important new feature
in E6 known as the arrow function. An arrow function is an anonymous function
declared using a shorter syntax and for which the this reference is bound to its
surrounding context. As discussed previously for regular functions in ES6, the this
reference can hold different values depending of context and with arrow function
this issue is resolved.

To show this functionality, we will define an ArrayAccumulator class that takes
an array of numbers and a maximum value as its constructor arguments and adds
a value to each element of the array until the maximum value is reached:

export default class ArrayAccumulator {
 constructor(seedArray, maxValue) {
 this.values = seedArray;
 this.maxValue = maxValue;
 }
 addToArray(addedValue) {
 this.values.forEach((value, index) => {
 if (value === this.maxValue) {
 return;
 }
 value += addedValue;
 if (value > this.maxValue) {
 value = maxValue;
 }
 this.values[index] = value;
 });
 }
}

The first highlighted code snippet shows the declaration of the arrow function,
and the second highlighted one has the this reference. If we had used a regular
anonymous function instead, then the this.maxValue variable would be undefined
and the example would fail when executing the test specification defined in the
spec/ArrayAccumulatorSpec.es6 file.

The arrow function should prove invaluable when working with Underscore
functions in an ES6 context and when using it inside classes.

Chapter 6

[179]

Further ES6 examples – function declaration improvements
There are a series of changes that facilitate calling functions and manipulating
functions arguments. Function arguments support default values in ES6 and we
can write the constructor for the ArrayAccumulator class to support this feature:

export default class ArrayAccumulator {
 constructor(seedArray, maxValue = 100) {
 ...
 }
 ...
}

If we initialize a class instance using expressions such as new
ArrayAccumulator([1,2,3]) or new ArrayAcumulator([1,2,3],undefined),
then the maxValue parameter will take the default value of 100.

Function declarations also support the ES6 rest operator that represents an array
of a variable number of arguments. Here is the rest operator in the highlighted
code from the following function (added to the es6/examples.es6 file):

export function functionUsingRestOperator(argsNo, ...otherArgs) {
 if (otherArgs.length + 1 !== argsNo) {
 return "Incorrect number of required arguments. Expected " +
 argsNo + " and " + arguments.length + " were supplied.";
 }
 if (arguments.length < 2) {
 return "Too few arguments were supplied.";
 }
 return arguments.length;
}

The example is using the otherArgs parameter to ensure the number of arguments
matches expectations. Next, we have a test specification that calls the function using
regular parameters followed by a test specification that uses the spread operator.
The spread operator transforms an iterable object into a comma separated list of
items, such as the one expected by a function call or an array literal declaration. The
highlighted code in the following snippet shows the spread operator in action:

describe('when calling functionUsingRestOperator()', () => {
 ...
 describe('with correct number of arguments', () => {
 let result = examples.functionUsingRestOperator(4, {

Related Underscore.js Libraries and ECMAScript Standards

[180]

 id: 1
 }, {
 id: 2
 }, {
 id: 3
 });
 it('then returns the argument length', () => {
 expect(result).toBe(4);
 });
 });
 describe('with the spread operator', () => {
 let argsArray = [4, {
 id: 1
 }, {
 id: 2
 }, {
 id: 3
 }];

 let result = examples.functionUsingRestOperator(...argsArray);
 it('should return the argument length', () => {
 expect(result).toBe(4);
 });
 });
});

I hope this section provided an initial encounter with some of the ES6 features
and made a strong case for ES6 adoption. There are many more ES6 features that
will help when working with Underscore on the client or on the server, and I
recommend exploring them using the additional reference material that was
mentioned in this section.

Summary
We started the chapter by exploring the complementary library underscore-contrib
and the alternative library lodash. We then discussed the Underscore functions that
are similar with the ones standardized in the ES5 and ES6 specifications, and we
focused on presenting some of the ES6 features that facilitate and simplify working
with Underscore.

Chapter 6

[181]

Writing code using ES6 syntax is key for becoming more productive in JavaScript,
and we explored a couple of workflows based on Babel that enable most of the ES6
features today in the client and on the server. The next chapter will discuss how to
automate JavaScript code-related tasks and how to reuse code between a client and
server environments using both ES5 and ES6 focused approaches.

[183]

Underscore.js Build
Automation and Code

Reusability
In the previous chapter, we discussed Underscore.js-related libraries, ECMAScript
standards, and how to use ES6. We will now explore other advanced topics for using
Underscore, such as:

• Build automation with Gulp.js
• Reusing code between client and server environments

The source code for the examples from this chapter is hosted online at https://
github.com/popalexandruvasile/underscorejs-examples/tree/master/
advanced-topics-2, and you can execute the examples using the Cloud9 IDE at
the address https://ide.c9.io/alexpop/underscorejs-examples/ from the
advanced-topics-2 folder.

Build automation with Gulp
So far, all the examples that targeted the browser environment took more effort to
configure and execute compared with the examples targeting Node.js. The lack of a
dynamic module system is one of the reasons for all the additional steps, and it may
take a while until all the major browsers will natively support ES6 modules.

https://github.com/popalexandruvasile/underscorejs-examples/tree/master/advanced-topics-2
https://github.com/popalexandruvasile/underscorejs-examples/tree/master/advanced-topics-2
https://github.com/popalexandruvasile/underscorejs-examples/tree/master/advanced-topics-2
https://ide.c9.io/alexpop/underscorejs-examples/

Underscore.js Build Automation and Code Reusability

[184]

Another important consideration is the need to reduce the number of resource requests
when deploying to the browser environment and usually this is accomplished through
file concatenation using a build automation tool (also known as a build system or a
task runner). Many server-side web application frameworks already have their own
build systems, such as Rake for the programming language Ruby, while JavaScript has
its own build systems powered by Node.js. Two of the more popular ones are Grunt
(http://gruntjs.com/) and Gulp.js (http://gulpjs.com). We will use Gulp in this
chapter to automate some manual tasks from one of our previous examples.

Gulp is a code-driven build system based on Node.js streams that provides a simple
API comprised of just four functions. Additional functionality is available through a
rich plugin ecosystem, and you will see some of the plugins used in the example for
this section.

To start using Gulp, we will use the browser-underscore example from Chapter 5,
Using Underscore.js in the Browser, on the Server, and with the Database, and transform
it into the gulp-automation example that can be found into the source code for this
chapter. First, we will move all the example JavaScript code in the app folder leaving
the test specifications where they are. Next, we will install Gulp as a global npm
module so that it becomes available as a command-line tool:

npm install gulp --global

Then, we will install Gulp as a current project module, so we can load it as a
Node.js module:

npm install gulp --save-dev

Gulp expects a file called gulpfile.js to be present in the current project folder,
and we will start with the simplest one possible:

var gulp = require('gulp');
gulp.task('default', function() {
 // place code for your default task here
});

Notice how the module gulp was used to invoke the core API function gulp.
task(name[, deps], fn). The first argument defines the name of the current task,
the optional deps argument is an array of task names that will be executed before
the current task, and the last argument is the function that defines the current task.
If we execute gulp in the command line, you will see log messages stating that the
task default is invoked successfully and nothing else.

http://gruntjs.com/
http://gulpjs.com

Chapter 7

[185]

We will now define the first real task that will concatenate all the files in the app
folder into a single public/app.js file. We will use two more Gulp functions:

• gulp.src(globs[, options]) returns a stream representing a selection of
files so that it can be processed further. The first argument globs can be single
value or an array of values. These values, also known as globs, represent a
path to a file or a folder or a pattern matching files using the command shell
syntax found in Mac OS X and Linux systems (you can find more details at
https://github.com/isaacs/node-glob, which is an npm module used
by Gulp for this function).

• gulp.dest(path[, options]) outputs the files contained in the processed
stream to a folder or a virtual file depending on the type of the path argument.
If path is a string, it writes to the location defined by it and returns the current
stream, so it can be processed further (for other usage scenarios including
output to a virtual file that we will not cover here, please see https://
github.com/gulpjs/gulp/blob/master/docs/API.md).

To use the concatenation module, we will install a Gulp plugin provided as an
npm module using the following command:

npm install gulp-concat --save-dev

Here is the first task of the gulpfile.js that creates the public/app.js file:

var gulp = require('gulp');
var concat = require('gulp-concat');
gulp.task('build-app', function() {
 gulp.src('app/**/*.js')
 .pipe(concat('app.js'))
 .pipe(gulp.dest('./public/'));
});

The pipe() function is a Node.js stream API function that is used to transfer data
between streams: pipe() is invoked on the current stream with the argument function
concat() that returns a writable stream. The pipe() call will transfer copy the current
stream to the writable stream. We will not cover Node.js streams here, but you can use
https://nodejs.org/api/stream.html as a reference. If we execute the following
command line, we will see the new file created as public/app.js:

gulp build-app

The first automation step allows us to replace all individual JavaScript file references
from the index.html file with a single reference to a bundle file that contains all the
application code. Any file added in the app folder will be automatically included in
the bundle and a further step could minimize the bundle, so it can be deployed in a
production environment.

https://github.com/isaacs/node-glob
https://github.com/gulpjs/gulp/blob/master/docs/API.md
https://github.com/gulpjs/gulp/blob/master/docs/API.md
https://nodejs.org/api/stream.html

Underscore.js Build Automation and Code Reusability

[186]

Ideally, we should be able to use the same bundle file when executing the test
specifications for this example, but the app/index.js file included there will cause
errors. Our tests are unit tests where we try and test specific functionality from a
JavaScript file and the index.js file relies on the HTML document object model to
be present and libraries such as jQuery to be made available. Testing the index.js
file brings us into end-to-end or integration tests territory that we will not cover here.
To focus only on unit tests, we need to create a bundle that excludes the index.js
file, and we will use another Gulp plugin called gulp-ignore, which is available
as an npm module. The following command will install it for our example:

npm install gulp-ignore --save-dev

We can now exclude a given glob from a gulp.src() files selection by prefixing
it with the ! character. Here is the task that creates the bundle that can be used for
testing the application code:

gulp.task('build-tests', function() {
 gulp.src([appScripts, '!app/index.js'])
 .pipe(concat('app.js'))
 .pipe(gulp.dest('./spec/public/'));
});

By running this task, we will create a file that can be used as a reference in the
SpecRunner.html file to replace all existing application code references. The same
treatment can be applied to test specifications themselves, but we will not explore
this option. We have now two Gulp tasks available and we can execute them
together by running the command line:

gulp build-app build-tests

To view the example web page and execute the tests, we still need to open two
HTML files manually in the browser, and this should be something that we can
automate. Thanks to the plugin called gulp-open, we can define two new tasks that
will open the required HTML files after we execute the following command line:

npm install gulp-open --save-dev

These are the two new tasks definitions in gulpfile.js:

var open = require('gulp-open');
gulp.task('open-app', ['build-app'], function() {
 gulp.src('./index.html')
 .pipe(open());
});
gulp.task('open-tests', ['build-tests'], function() {

Chapter 7

[187]

 gulp.src('./SpecRunner.html')
 .pipe(open({
 app: 'firefox'
 }));
});

Both tasks depend on the task that created the bundles and the first one opens the
HTML file using the default application for this type of file, while the second task
sets a specific application identifier to open the HTML file. (More details about the
gulp-open API can be found at https://www.npmjs.com/package/gulp-open).
Executing the following command will create the test application code bundle and
open the SpecRunner.html file in Mozilla Firefox, where all the test specification
will be executed automatically:

gulp open-tests

There are other plugins that can execute the test specifications in the background
and display the results in the Gulp console log or in a designated file, but we will
not cover them here.

We can now define the default task as an empty task that depends on the two
top-level tasks we defined earlier:

gulp.task('default', ['open-app', 'open-tests'], function() {
});

When we execute the gulp command, the two bundle files will be build and the
two HTML files will be opened in the browser.

We can easily define a watch task triggered on file changes that can
remove the need to execute Gulp manually. For this type of task and
many others, please see https://github.com/gulpjs/gulp/
blob/master/docs/recipes/README.md.

Reusing code based on Underscore
between client and server
One of the biggest advantages of using JavaScript for client-server applications is
the possibility of code reuse between the two environments. For example, one can
easily envisage a validation utility that could be used to validate data on the client
and then again on the server. Class definitions are another good example of code
that can be reused.

https://www.npmjs.com/package/gulp-open
https://github.com/gulpjs/gulp/blob/master/docs/recipes/README.md
https://github.com/gulpjs/gulp/blob/master/docs/recipes/README.md

Underscore.js Build Automation and Code Reusability

[188]

Before ES6, JavaScript did not have any built-in concept of code encapsulation or
modularization, unlike other languages such as Java, C#, or Ruby. ES6 solves this
problem by standardizing modules and classes, but stops short of standardizing
a module loader. A separate ECMAScript module loader specification is under
development and published at http://whatwg.github.io/loader/, and this
specification tries to reconcile browser and Node.js module systems among
other goals. Currently, there is at least one working implementation of a module
loader that tracks this specification, and it is available at https://github.com/
ModuleLoader/es6-module-loader.

There are package managers such as jspm (http://jspm.io) that enable ES6
modules in the browser and can reference other ES6, CommonJS, and AMD
modules, or even regular JavaScript files that are using global variables to
provide their functionality.

Rather than focusing on a specific environment, we will use a workflow that allows
us to reuse modules between client and server environments, and we will start
with revisiting the module system used by Node.js.

Using CommonJS modules for packaging
client code with Browserify
Node.js implements the CommonJS module specification, and through its npm
package manager, you have access to an extensive number of modules that is not yet
matched (even by far) by any other JavaScript package managers. When you compare
the CommonJS and the ES6 module systems, you will find that they are very similar.
In some respect, the ES6 module system looks like a redesign of CommonJS, and
transpilers such as Babel can easily convert ES6 modules to CommonJS modules,
as discussed previously.

Many of the frontend packages such as jQuery and Bootstrap (for which we used
browser-targeted package managers such as Bower) are also available as npm
packages. Underscore has an npm package that will detect the environment where
it is deployed, and will register itself as a global variable or a CommonJS module
accordingly. Due to the abundance and popularity of npm packages, there are tools
that can transform CommonJS modules into special packages that can run in the
browser. One of the more popular such tools is Browserify (http://browserify.org).

http://whatwg.github.io/loader/
https://github.com/ModuleLoader/es6-module-loader
https://github.com/ModuleLoader/es6-module-loader
http://jspm.io
http://browserify.org

Chapter 7

[189]

Browserify is a bundling tool that transforms CommonJS modules into code that can
run in the browser, in the process preventing any potential name clashes or global
scope pollution. Browserify relies on the fact that many Node.js modules published
on npm can also work on the browser without any change. For the ones that don't,
Browserify provides its own implementation of many built-in Node.js libraries, such
as buffer, console, crypto, and stream, to name just a few. As long as a module does
not use server I/O, there are great chances that it could run in the browser via the
Browserify compatibility layer.

The Browserify CLI process usually takes a JavaScript file as a starting point and
another JavaScript file as a target for the resulting bundle. Browserify uses logic
similar to the Node.js module loader and will identify all dependent modules starting
from the initial source file, packaging them up in a bundle that is self sufficient, and
in which each initial CommonJS module is uniquely identified. To understand why
Browserify is useful, we will start exploring a series of examples without going too
much into its inner details. You can find out more details about Browserify and how it
works by reading its excellent official handbook at https://github.com/substack/
browserify-handbook.

We will start by converting the code from the previous example found in the
gulp-automation folder into a Browserify ready example. The first step is to
replace all existing Bower packages with their npm equivalent by removing the
bower_components folder, the bower.json file and then running the
following commands:

npm install --save jquery

npm install --save bootstrap

npm install --save underscore

We will now proceed and change all the files from the app folder (and rename
the index.js to index_client.js) to their CommonJS equivalent. This process
is identical to the one used in Chapter 5, Using Underscore.js in the Browser, on the
Server, and with the Database, and the required files can be copied from the nodejs-
underscore folder from the source code for that chapter. We will also copy the
index.js file from there to app/index_server.js in our current example. We
now have a Node.js baseline that can be used as a reference for the code that we
will package for the browser shortly. If we run the following command line, we
should see the same output as seen in the previous chapter:

node app/index_server.js

https://github.com/substack/browserify-handbook
https://github.com/substack/browserify-handbook

Underscore.js Build Automation and Code Reusability

[190]

We can now transform the index_client.js file into a CommonJS friendly version
and the first thing we need to do is import jQuery as a Node.js module. This is made
possible by the fact that we are using jQuery 2 that has built in support for the Node.
js environment. Most of the contents of the index_client.js file remain unchanged,
with the exception of the require statements:

var $ = require('jquery');
var _ = require("underscore");
var clientRetriever = require("./clientRetriever.js");
var transformations = require("./transformations.js");
$(function() {
 var oldestClients = clientRetriever.getOldestClients(5);
 ...
 onSelectHome();
});

Notice that we use the short form of the jQuery.ready() function, and we reference
all former global variables such as clientRetriever and transformations as
CommonJS modules. At this point, we can use Browserify to prepare the client
bundle, and we will install it as a global npm module first:

npm install --global browserify

The next step is to execute Browserify, specifying the entry point file as the first
argument and the output file as the second:

browserify app/index_client.js --outfile public/app.js

Looking at the newly generated file, public/app.js, you will notice that each
individual module that can be traced back from index_client.js is concatenated
and wrapped into a function body, including jQuery and Underscore source files.
To check whether the resulting bundle has maintained its functionality, we will
modify the index.html file and reference the public/app.js output file instead of
all previous JavaScript file references. We also need to point the Bootstrap style sheet
to its new node_modules location, and you should be able to see a working example
when you open the index.html file in a browser. You can find the current example
in the gulp-browserify folder from the source code for this chapter.

Browserify has support for generating multiple bundles and referencing
modules from different bundles. For example, you can create a bundle
for external libraries and one for application code. Browserify also has
support for source maps that make it easier to identify the original code
during debugging in a browser that supports source maps. You can find
more about the Browserify API and CLI at https://github.com/
substack/node-browserify.

https://github.com/substack/node-browserify
https://github.com/substack/node-browserify

Chapter 7

[191]

Testing CommonJS modules in the browser
with Browserify
We can take the CommonJS module transformation further and convert the test
specifications to CommonJS modules. These are similar to the ones found in
the nodejs-underscore/spec folder from the source code for Chapter 5, Using
Underscore.js in the Browser, on the Server, and with the Database. Next, we will apply
the same commands from the previous chapter to set up the example folder for
running Node.js tests via the Jasmine CLI:

npm install --global jasmine

jasmine init

The spec folder containing the Jasmine configuration file spec/support/jasmine.
json should now be created, and if we copy the CommonJS test specifications,
we can execute them by calling jasmine in the command line from the gulp-
browserify example folder.

We have executed the server side Node.js tests, and thanks to Browserify, we can
also execute the same tests in a browser environment. First, we need to generate
the test specifications bundle via the following command:

browserify spec/*Spec.js --outfile spec/output/specs.js

Notice that we specified multiple entry point files as the first argument while
keeping a single file as output. The generated file contains all the source code
and test specifications wrapped as Browserify client compatible modules.

We no longer have Jasmine available as a Bower package, but we can install its
npm equivalent, the jasmine-core library that contains the required files to
execute the tests in the browser:

npm install jasmine-core --save-dev

We will modify the SpecRunner.html file and add the Jasmine node_modules
references and replace all code and test specifications links with one link to the
spec/output/specs.js file:

<!DOCTYPE HTML>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">

Underscore.js Build Automation and Code Reusability

[192]

 <title>Jasmine Spec Runner v2.3.4</title>

 <link rel="shortcut icon" type="image/png"
 href="node_modules/jasmine-core/images/jasmine_favicon.png">
 <link rel="stylesheet" type="text/css"
 href="node_modules/jasmine-core/lib/jasmine-core/jasmine.css">

 <script type="text/javascript" src="node_modules/jasmine-
 core/lib/jasmine-core/jasmine.js"></script>
 <script type="text/javascript" src="node_modules/jasmine-
 core/lib/jasmine-core/jasmine-html.js"></script>
 <script type="text/javascript" src="node_modules/jasmine-
 core/lib/jasmine-core/boot.js"></script>

 <!-- include source files here... -->
 <!-- include spec files here... -->
 <script type="text/javascript"
 src="spec/output/specs.js"></script>
</head>
<body>
</body>
</html>

If we open this file in any cross platform browser such as Google Chrome or Mozilla
Firefox, we should see all tests passing. We now have both code and tests that run on
the server and in the browser using Node.js and Browserify.

Using Gulp with Browserify
Working directly with the Browserify CLI is a great way to learn this tool, but it does
not suit an automated build scenario. Browserify is versatile and can be loaded as a
Node.js module in a server file such as the gulpfile.js file used to automate the
build process via Gulp.

First, we need to install Browserify as an npm package local to our gulp-browserify
example folder so that we can start using it as a module and access its API:

npm install browserify --save-dev

The output stream from the Browserify API is not compatible with the streams
expected by Gulp, so we will install the package vinyl-source-stream
(https://github.com/hughsk/vinyl-source-stream) that makes the
necessary conversion:

npm install vinyl-source-stream --save-dev

https://github.com/hughsk/vinyl-source-stream

Chapter 7

[193]

We can now update the Gulp task build-app to use the newly installed npm
package:

var gulp = require('gulp');
var browserify = require('browserify');
var source = require('vinyl-source-stream');
gulp.task('build-app', function() {
 return browserify('./app/index_client.js')
 .bundle()
 .pipe(source('app.js'))
 .pipe(gulp.dest('./public/'));
});

The first line of the task initializes the Browserify instance with the entry point
file and the subsequent call to bundle() returns a readable stream. This readable
stream is then converted to the type of Node.js stream expected by Gulp via the
source() call.

When we execute the following command, we should end up with the same file
generated via the Browserify CLI at public/app.js:

gulp build-app

In order to modify the Gulp task build-test to use Browserify, we need to rely
on the glob module to load the entry point files representing the test specifications.
We have to install it first as an npm package:

npm install glob --save-dev

The Gulp task build-tests will use the glob.sync() method to search for test
specifications and returns an array of matching file names. The Browserify API
supports initialization from an array of file names and our Gulp task is now
changed to this:

var gulp = require('gulp');
var glob = require('glob');
var browserify = require('browserify');
var source = require('vinyl-source-stream');
gulp.task('build-tests', function() {
 var specFiles = glob.sync('./spec/**/*Spec.js');
 return browserify({
 entries: specFiles
 })
 .bundle()

Underscore.js Build Automation and Code Reusability

[194]

 .pipe(source('specs.js'))
 .pipe(gulp.dest('./spec/output/'));
});

Executing the following command will generate the same bundled test
specification file at the spec/output/specs.js location that we generated
with the Browserify API:

gulp bundle-tests

All the intermediary tasks now run synchronously as the task functions return an
object. The reason for this change in behavior is due to Browserify being slower than
the previous concatenation actions. If the task is run asynchronously, we might end
up with the browser being launched while the output file is still being built, and
the tests will fail because of that. If we execute the gulp executable, we should have
the same output with the one from the gulp-automation folder, while relying on
reusable CommonJS modules that can be referenced in Node.js and in the browser.

You can find more details about the Gulp and Browserify integration,
including links to more comprehensive Gulp examples at the blog entry
https://viget.com/extend/gulp-browserify-starter-faq.

Adding ECMAScript 2015 (ES6) support
to Browserify
When we explored Babel's capabilities, we looked at a key feature where by default
Babel will transpile ES6 modules as CommonJS modules that can be loaded natively
by Node.js. Because Browserify also supports CommonJS files, we could write code
using the ES6 module syntax, transpile it via Babel into CommonJS modules, and
then use Browserify to create a bundle that can run in the browser.

Browserify has extensive supports for plugins and transformations that add extra
functionality that is not provided by default. Browserify can apply a transformation
to its source files before they are processed for bundling. One such transformer
called babelify can convert ES6 modules to CommonJS modules via the Babel API.

Before we modify our Gulp tasks to use this new transformer, we will follow a
similar workflow to the previous subsection. Before we build the browser
bundles, we will create an ES6 baseline codebase that can be exercised and
tested via the babel-node and jasmine-es6 executables.

https://viget.com/extend/gulp-browserify-starter-faq

Chapter 7

[195]

In the process, we will make minimal changes to make the code ES6 compatible: use
the new module syntax, arrow functions, classes, and change all converted files to end
with the .es6 extension to make it obvious that we are working with ES6 code.

You can find the example in the gulp-browserify-es6 folder from the source code
for this folder, and we will include the app/index_server.es6 file as an example
of the converted ES6 code:

import _ from "underscore";
import * as clientRetriever from "./clientRetriever.es6";
import * as transformations from "./transformations.es6";
var oldestClients = clientRetriever.getOldestClients(5);
var bestClients = clientRetriever.getBestClients(5);
var clients = clientRetriever.getClients();
console.log("There are " + clients.length + " clients.");
var getContactsOutput = (clients) => {
 var outputText = "";
 _.forEach(clients, (client, index) => {
 if (index > 0) {
 outputText += ", ";
 }
 outputText += transformations.getContactNameIdAndType(client);
 });
 return outputText;
};
console.log("Top 5 oldest clients with name, id and type: " +
getContactsOutput(oldestClients));
console.log("Top 5 best clients with name, id and type: " +
getContactsOutput(bestClients));

Executing the following command should output the same console messages as
the example from the previous subsection:

babel-node app/index_server.es6

If we install the jasmine-es6 npm package via the following command, we will
be able to execute ES6 tests using its CLI:

npm install jasmine-es6 --save-dev

If the file spec/support/jasmine.json matches the following code snippet,
we can execute the tests using the node_modules/.bin/jasmine command:

{
 "spec_dir": "spec",
 "spec_files": [

Underscore.js Build Automation and Code Reusability

[196]

 "**/*[sS]pec.js",
 "**/*[sS]pec.es6"
],
 "helpers": [
 "../node_modules/jasmine-es6/lib/install.js",
 "helpers/**/*.js"
]
}

We will now convert the index_client.js file to ES6 and start modifying the Gulp
tasks to bundle ES6 modules via babelify and Browserify. First, let's install babelify
as a development npm package:

npm install --save-dev babelify

The Gulp task build-app was changed to use babelify:

var gulp = require('gulp');
var browserify = require('browserify');
var source = require('vinyl-source-stream');
var babelify = require('babelify');
gulp.task('build-app', function() {
 return browserify('./app/index_client.es6')
 .transform(babelify)
 .bundle()
 .pipe(source('app.js'))
 .pipe(gulp.dest('./public/'));
});

Notice how we applied the babelify transform before creating the bundle and a
similar approach can be observed in the build-tests task. Executing the gulp
command in the current example folder gulp-browserify-es6 will have the
expected outcome: the index.html will display correctly and all the tests
executed in SpecRunner.html should pass.

Summary
In this chapter, we explored Gulp: a build automation tool that simplifies
deployments. The last major topic of the book was on how to reuse JavaScript code
between client and server environments, and we identified Browserify as a key
tool that makes CommonJS modules executable in the browser. The final section
presented a workflow where ES6 modules can be reused between client and
server via Browserify and babelify.

[197]

Index
A
aggregations

about 49-51
Underscore max and min 51, 52

annotated Underscore source code
reference 16

Array object
instance methods 165, 166
static methods 164

array-related functions
_.compact(array) 68
_.findIndex(array, predicate, [context]) 69
_.findLastIndex(array, predicate,

[context]) 69
_.flatten(array, [shallow]) 68
_.indexOf(array, value, [isSorted]) 69
_.lastIndexOf(array, value, [fromIndex]) 69
_.object(list, [values]) 68
_.range([start], stop, [step]) 69
_.sortedIndex(list, value, [iteratee],

[context]) 69
_.unzip(*arrays) 68
about 66-68

arrays
about 59, 60
array start and end sequences,

extracting 60-63
intersect 65, 66
union 63, 64

arrow function 178
assertion functions, for determining

object types
_.isArguments(object) 77

_.isArray(object) 77
_.isBoolean(object) 77
_.isDate(object) 77
_.isElement(object) 77
_.isError(object) 77
_.isFunction(object) 77
_.isObject(value) 77

assertion functions, for Number objects
_.isFinite(object) 78
_.isNaN(object) 78
_.isNumber(object) 78

assertion functions, for object validation
_.isEmpty(object) 77
_.isNull(object) 77
_.isUndefined(value) 77

assertion functions, for String objects
_.isRegExp(object) 77
_.isString(object) 77

Atom
URL 23

B
Backbone

URL 118
behavior-driven development (BDD) 24
bound function 79
Browserify

reference 188
Browserify API

reference 190
Browserify CLI 189
build automation

with Gulp 183-187

[198]

C
chaining functionality

chaining-related functions 160
deferred execution 161
features 160
lazy evaluation 161

Cloud9 online IDE
reference 23

code reuse, between client and server
about 187, 188
CommonJS modules, for packaging client

code with Browserify 188-190
CommonJS modules, testing in browser

with Browserify 191, 192
Gulp, using with Browserify 192-194

collection based functions
_.sample(list, [n]) 58
_.shuffle(list) 58
_.toArray(list) 58
about 58

collections 32
currying 153

D
development workflow, Underscore

JavaScript dependencies, managing with
Bower 21, 22

JavaScript development, with Node.js 19
JavaScript editor, selecting 23
setting up 19

E
ECMAScript 5.1 (ES5) 163
ECMAScript 5 (ES5) 3
ECMAScript 2015 (ES6)

about 163
Array object 164
Babel CLI 170
Babel CLI, using for client-side

code 170, 171
Babel, using in browser 168, 169
Babel, using with Node.js 172-174

language features 166
using, with transpilers 167

ECMAScript 2015 (ES6), by example
about 175
arrow function 178
code testing 176, 177
function declaration improvements 179

ECMAScript 2015 (ES6) support
adding, to Browserify 194-196

ECMAScript 2016 (ES7) 163
es5-shim

reference 3
ES6 rest operator 179
examples output

enhancing, with Bootstrap 112-115

F
filtering

about 40, 45
Underscore every 48, 49
Underscore filter 45-47
Underscore reject and partition 47, 48
Underscore where 47

Fisher-Yates shuffle algorithm 58
fluent interface 108
frontend design framework 112
functional programming (FP)

about 12, 13
migrating to 103-106
principles 101
with Underscore.js 107, 108

functional programming paradigm 101-103
functions

_.bindAll(object, *methodNames) 81
_.bind(function, object, *arguments) 79, 80
_.compose(*functions) 84
_.memoize(function, [hashFunction]) 83
_.negate(predicate) 84
_.partial(function, *arguments) 82, 83
_.wrap(function, wrapper) 83
about 79
controlling 85-87

[199]

G
Grunt

URL 184
Gulp

about 184
using, for build automation 184-187

Gulp.js
URL 184

gulp-open API
reference 187

H
hoisting 13
Homebrew package manager

URL 129
HTML markup

with Underscore templates 115-118

I
immediately-invoked function

expression 14

J
Jasmine

about 24, 25
JavaScript code, testing with 24
reference 24

JavaScript code
testing, with Jasmine 24

JavaScript development, with Node.js 19
JavaScript Model-View-Controller

(MVC) 118
JavaScript patterns and practices

about 13
immediately-invoked function

expression 14
JavaScript strict mode 18
revealing module pattern 15-18

JavaScript strict mode 18
jsonb type 143, 144
jspm

reference 188

K
Karma

reference 29
key Underscore functions

about 32
map and reduce, using with object

properties 37-39
reflection techniques, applying 32-35
this variable, manipulating 35, 36

L
lazy evaluation 108
lodash functionality

area of functionality 160
array functionality 158, 159
chaining functionality 160
common set of functions 158
overview 157
utility functions 160

lodash library
about 157
chaining functionality 160
project, migrating from Underscore 161
URL 157
using 157

M
matcher 24
method chaining 102
MongoDB

about 128
configuring 130
installing 129
installing, on Mac OS X 129
installing, on Ubuntu Linux 129
installing, on Windows 129
running 130

MongoDB Node.js driver
reference 138

Mozilla Developer Network (MDN)
URL 64

[200]

N
Node.js 19
Node.js installation

on Linux 20
on Mac OS X 20
on Windows 20
verifying 21

Node.js streams
reference 185

Node.js Tools
reference 23

npm module async
reference 135

npm package manager 122
npm packages

URL 19

O
object constructor 94
object-oriented programming paradigm

about 90
classes, using with original client

data 97, 98
constructor validation, with

Underscore 99-101
inheritance, with object

constructors 94-96
inheritance, with object literals 91-93
Underscore, using with 97

object prototype 90
object-related functions

_.mapObject(object, iteratee, [context]) 79
_.tap(object, interceptor) 79
about 79

objects
_.clone(object) 74
_.defaults(object, *defaults) 74
_.extend(destination, *sources) 74
_.functions(object) 72, 73
_.has(object, key) 74
_.invert(object) 72, 73
_.keys(object) 69, 70
_.matcher(attrs) 75

_.omit(object, *keys) 73
_.pairs(object) 71, 72
_.pick(object, *keys) 73
_.property(key) 74
_.propertyOf(object) 75
_.values(object) 71, 72
about 69
assertions, making against 77-79
comparing 76, 77

OOP principles
reference 90

P
partial function application 82
polyfills 93
PostgreSQL

configuring 139
installing 139
installing, on Mac OS X 140
installing, on Ubuntu Linux 139
installing, on Windows 139
references 138

PostgreSQL data types
about 142
jsonb type 143, 144
SQL types 142, 143

prototypal inheritance 90

R
read-eval-print loop (REPL) 119
RequireJS

URL 172
revealing module pattern 15, 16

S
searching

about 40, 41
Underscore contains 45
Underscore find 41, 42
Underscore findWhere 44, 45
Underscore some 43

shortcut fusion 161
single page application (SPA) 2

[201]

S.O.L.I.D. principles
reference 90

sparse arrays 162
specs 24
SQL types 142
Sublime Text

URL 23
SUT-system under test 25

T
templateString parameter 115
tests

adding, default Jasmine infrastructure
used 25-29

transformations
about 49, 53
Underscore countBy 57
Underscore groupBy 54, 55
Underscore indexBy 56
Underscore sortBy 53, 54

U
Underscore

about 1
and JavaScript standards 162
ECMAScript 5 starter example 4-6
features 2, 3
Underscore countBy starter example 8, 9
Underscore find starter example 6, 7
URL 2
using, in browser 112

Underscore contains 45
Underscore-contrib library

exploring, via examples 155-157
overview 152-155
underscore.array.builders.js 152
underscore.array.selectors.js 153
underscore.collections.walk.js 153
underscore.function.arity.js 153
underscore.function.combinators.js 153
underscore.function.iterators.js 154
underscore.function.predicates.js 154
underscore.object.builders.js 154

underscore.object.selectors.js 154
underscore.util.existential.js 154
underscore.util.operators.js 155
underscore.util.strings.js 155
underscore.util.trampolines.js 155
using 151, 152

Underscore countBy 57
Underscore find 41, 42
Underscore findWhere 44, 45
Underscore functions

about 9
Underscore each 10
Underscore map and reduce 10-12

Underscore groupBy 54, 55
Underscore indexBy 56
Underscore max and min 51, 52
Underscore some 43
Underscore sortBy 53, 54
Underscore, using on server with Node.js

about 118
JavaScript code, converting to Node.js

modules 124-126
JavaScript, executing with Node.js 118, 119
modules, locating 121
Node.js modules, using 120
npm package, creating 122, 123
tests, running with Node.js 126, 127

Underscore, using with MongoDB
about 127, 128
asynchronous programming, in

Node.js 135
data, accessing with MongoDB

Node.js driver 135-137
initial data, creating 130-134
MongoDB, configuring 130
MongoDB, installing 129

Underscore, using with PostgreSQL
about 138
data, generating with plv8 146-148
PostgreSQL data types 142
PostgreSQL, installing 139
PostgreSQL, using with plv8 145, 146
psql, using with basic database

commands 140, 141

[202]

utility functions
_.constant(value) 87
_.escape(string), _.unescape(string) 88
_.identity(value) 87
_.iteratee(value, [context], [argCount]) 88
_.mixin(object) 87
_.noConflict() 87
_.noop() 87
_.now() 88
_.random(min, max) 87

_.result(object, property) 88
_.template(templateString, [settings]) 88
_.times(n, iteratee, [context]) 87
_.uniqueId([prefix]) 88
about 87

W
WebStorm IDE

reference 23

Thank you for buying
Learning Underscore.js

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

JavaScript at Scale
ISBN: 978-1-78528-215-7 Paperback: 266 pages

Build enduring JavaScript applications with scaling
insights from the front-line of JavaScript development

1. Design and implement JavaScript application
architectures that scale from a number
of perspectives, such as addressability,
configurability, and performance.

2. Understand common JavaScript scaling
pitfalls and how to tackle them through
practical, real-world solutions and strategies.

3. Learn techniques to deliver reusable
architectures that stand the test of time.

Bootstrap for Rails
ISBN: 978-1-78398-726-9 Paperback: 168 pages

A quick-start guide to developing beautiful
web applications with the Bootstrap toolkit
and Rails framework

1. Enhance your applications with Bootstrap
modals and carousels.

2. Explore the usage of advanced Bootstrap
components and plugins in Rails through
various examples.

3. Use Bootstrap's Grid System to create
beautiful responsive Rails applications
with this hands-on guide.

Please check www.PacktPub.com for information on our titles

Building Single-page Web Apps
with Meteor
ISBN: 978-1-78398-812-9 Paperback: 198 pages

Build real-time apps at lightning speed using the most
powerful full-stack JavaScript framework

1. Create a complete web blog from frontend
to backend that uses only JavaScript.

2. Understand how Web 2.0 is made by
powerful browser-based applications.

3. Step-by-step tutorial that will show you how
fast, complex web applications can be built.

Getting Started with Gulp
ISBN: 978-1-78439-576-6 Paperback: 120 pages

Create powerful automations with gulp to improve
the efficiency of your web project workflow

1. Learn the basics of Node.js, npm, and gulp
and how they work together.

2. Harness the power of gulp to solve a number
of recurring problems that you are likely to face
while building complex web applications.

3. A step-by-step guide to help you simplify
and manage complex tasks such as image
compression, minification, and so on.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Underscore.js
	Why Underscore
	Getting started with Underscore by example
	The ECMAScript 5 starter example
	The Underscore find starter example
	The Underscore countBy starter example

	Key Underscore functions
	Underscore each
	Underscore map and reduce

	Functional programming fundamentals
	Useful patterns and practices for JavaScript applications targeting ECMAScript 5
	The immediately-invoked function expression
	The revealing module pattern
	The JavaScript strict mode

	Setting up a development workflow for exploring Underscore
	Modern JavaScript development with Node.js
	Windows
	Mac OS X
	Linux
	Verifying Node.js installation

	Managing JavaScript dependencies with Bower
	Choosing a JavaScript editor

	Testing JavaScript code with Jasmine
	Jasmine introduction
	Adding tests using the default Jasmine infrastructure

	Summary

	Chapter 2: Using Underscore.js with Collections
	Key Underscore functions
revisited – each, map, and reduce
	Applying reflection techniques
	Manipulating the this variable
	Using map and reduce with object properties

	Searching and filtering
	Searching
	Underscore find
	Underscore some
	Underscore findWhere
	Underscore contains

	Filtering
	Underscore filter
	Underscore where
	Underscore reject and partition
	Underscore every

	Aggregations and transformations
	Aggregations
	Underscore max and min

	Transformations
	Underscore sortBy
	Underscore groupBy
	Underscore indexBy
	Underscore countBy

	Other collection-based functions
	Summary

	Chapter 3: Using Underscore.js with Arrays, Objects, and Functions
	Arrays
	Extracting array start and end sequences
	Union, intersect, and related functions
	Other array-related functions

	Objects
	Underscore keys
	Underscore values and pairs
	Underscore invert and functions
	Underscore pick, omit, and has
	Underscore extend, clone, and defaults
	Underscore has, property, propertyOf, and matcher
	Comparing objects and making assertions against objects
	Other object-related functions

	Functions
	Functional composition with bind, bindAll, and partial
	Further functional composition with memoize, wrap, negate, and compose
	Controlling when and how often functions are called

	Utility functions
	Summary

	Chapter 4: Programming Paradigms with Underscore.js
	The object-oriented programming paradigm
	Inheritance with object literals
	Inheritance with object constructors
	Using Underscore with the object-oriented programming paradigm
	Using classes with original client data
	Constructor validation with Underscore

	The functional programming paradigm
	Migrating to a functional programming style
	Functional programming with Underscore.js
	Summary

	Chapter 5: Using Underscore.js in the Browser, on the Server, and with the Database
	Using Underscore in the browser
	Enhancing examples output with Bootstrap
	Better HTML markup with Underscore templates

	Using Underscore on the server with Node.js
	Executing JavaScript with Node.js
	Using Node.js modules
	Locating modules
	Creating a npm package
	Converting JavaScript code to Node.js modules
	Running tests with Node.js

	Using Underscore with MongoDB
	Installing and configuring MongoDB
	Installing MongoDB on Windows
	Installing MongoDB on Ubuntu Linux
	Installing MongoDB on Mac OS X
	Configuring and running MongoDB

	Creating initial data using the MongoDB client and Underscore
	Asynchronous programming in Node.js
	Accessing data using the MongoDB Node.js driver

	Using Underscore with PostgreSQL
	Installing and configuring PostgreSQL
	Installing PostgreSQL on Windows
	Installing PostgreSQL on Ubuntu Linux
	Installing PostgreSQL on Mac OS X

	Using psql with basic database commands
	PostgreSQL data types
	SQL types
	The jsonb type

	Using PostgreSQL with plv8
	Generating data using plv8 and Underscore

	Summary

	Chapter 6: Related Underscore.js Libraries and ECMAScript Standards
	Using the Underscore-contrib library
	An overview of Underscore-contrib functionality
	Exploring Underscore-contrib via examples

	Using the lodash library
	An overview of lodash functionality
	Migrating a project from Underscore to lodash

	Underscore and JavaScript standards
	ECMAScript 5.1 (ES5)
	ECMAScript 2015 (ES6)
	Array – new features
	Other notable new features
	Using ECMAScript 2015 (ES6) today with transpilers
	ECMAScript 2015 (ES6) by example

	Summary

	Chapter 7: Underscore.js Build Automation and Code Reusability
	Build automation with Gulp
	Reusing code based on Underscore between client and server
	Using CommonJS modules for packaging client code with Browserify
	Testing CommonJS modules in the browser with Browserify
	Using Gulp with Browserify

	Adding ECMAScript 2015 (ES6) support to Browserify
	Summary

	Index

