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Preface

About This Book
There are many Multiprotocol Label Switching (MPLS) books available on the mar‐
ket. In particular, we have been very much influenced in the recent past by these two
great books:

• MPLS-Enabled Applications: Emerging Developments and New Technologies, Third
Edition by Ina Minei and Julian Lucek (Wiley, 2010).

• MPLS and VPN Architectures by Ivan Pepelnjak and Jim Guichard (Cisco Press,
2010).

What is the point in releasing another book about MPLS? In two words: interopera‐
bility and Software-Defined Networking (SDN).

Interoperability
Although this first edition is published in late 2015, the initial idea dates from
mid-2012. This book was initially conceived to describe real MPLS interoperability.

Over the past decade, we have heard this sentence from many customers: “You ven‐
dors keep speaking about what you do better than your competitors, but you never
tell us what you can do with them on a multivendor network.” Clearly, the answer,
“We try to comply to the standards—ask the other vendors to do the same and it
should be fine,” is not satisfactory enough for large feature sets. This book attempts to
break that taboo by describing, for the first time in networking history, how a large
portfolio of multivendor MPLS services can be deployed on real networks, down to
the configuration level. We’ll look at what interoperates and what does not interoper‐
ate yet.

The two chosen network operating systems are Juniper’s Junos and Cisco’s IOS XR.
Although there are other relevant MPLS vendors, a basic combinatory analysis shows
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that achieving interoperability among four vendors is six times as costly as doing it
for two vendors.

MPLS in the SDN Era
In the early 2010s, some people claimed that Softwared-Defined Netwroking (SDN),
specifically, OpenFlow would replace MPLS. However, after realizing the many chal‐
lenges of the first OpenFlow version, SDN was redefined into a paradigm (SDN 2.0)
that shares many of the principles that have made MPLS a very successful service
provider technology for decades.

Looking at SDN and MPLS as competing technologies is fundamentally wrong.
MPLS is a key SDN enabler. This statement holds particularly true if you look at
MPLS as an architectural paradigm (not as an encapsulation). In a nutshell, this is the
MPLS model:

• Decoupling control plane from forwarding plane.
• Decoupling service from transport.
• Decoupling overlay from underlay.
• Layered architecture with a feature-rich edge and a fast transport core. This

approach can be applied to the WAN, to data centers, and so on.
• Building overlay networks at the edge in order to support multitenancy and

multiservice.
• Minimizing the forwarding state on the core.
• Advanced packet steering by either signaling forwarding paths and/or by stack‐

ing instructions on packet headers.

It is hard to imagine a scalable network that does not follow these principles. The
implementation details (and the actual encapsulation is one of these details) are sec‐
ondary. For example, this book considers Ethernet VPN (EVPN) with Virtual eXten‐
sible LAN (VXLAN) transport as a genuine MPLS technology. Even if it does not
make use of MPLS labels, this solution is truly based on the MPLS paradigm. Looking
at the details, VXLAN does not implement instruction stacking and it uses an IP-
based encapsulation whose header overhead is 10 times bigger than that of MPLS.

On the other hand, there is a fast-growing MPLS trend at large-scale data centers,
especially for cloud providers. New data center solutions use the Border Gateway
Protocol (BGP) and MPLS technologies in a similar way to what WAN service pro‐
viders have done for decades. This trend not only includes the MPLS paradigm, but
more and more, the MPLS encapsulation, too.

One of the proofs that MPLS is more relevant in the SDN era than ever is the explod‐
ing amount and variety of MPLS features that networking vendors are developing to
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meet the requirements of a fast-changing market. This book tries to reflect this reality
by including technologies and use cases that are in their earliest life stage.

MPLS is a flexible technology that is not complex, per se. As any modular technology,
it can become as complex as you want (or rather, as complex as the requirements are).

Live Book
This book is very practical, and the authors want to keep it alive after publication.
Here are some additional resources that you can use:

• For a better reading experience and for space reasons, this book only shows the
configuration that is relevant for each section but not the full configurations. In
the months following this book’s publication, the authors will start to upload
some full configurations to this book’s blog at http://www.mplsinthesdnera.net.

• The authors kept some interop scenarios in the cellar and they will post them
periodically on this book’s blog at http://www.mplsinthesdnera.net.

• You can write directly to the authors at mplsinthesdnera@gmail.com. Please keep
it fair. Feedback, suggestions for new blog posts, or clarification queries are very
welcome. Consultancy requests will not be answered.

Contents of This Book
This book is written so that you can read it in a linear fashion, from its first page to
the last one, which is the approach that we recommend. However, if you are only
interested in certain chapters, the following list alerts you to the interchapter depen‐
dencies. For example, the dependencies for Chapter 9 are Chapter 1, Chapter 2, and
Chapter 3. This means that in order to read Chapter 9 you need to master the con‐
cepts explained in the first three chapters but you can skip Chapter 4 through Chap‐
ter 8 if you’d like.

Chapter 1, Introduction to MPLS and SDN lays the foundation for the rest of the
book by introducing basic MPLS and SDN concepts and by providing a static LSP
example. There are no chapter dependencies.

Chapter 2, The Four MPLS Builders covers the four methods for signaling dynamic
MPLS LSPs: LDP, RSVP-TE, IGP (IS-IS, OSPF) SPRING, and BGP. Chapter depen‐
dencies: 1.

Chapter 3, Layer 3 Unicast MPLS Services explains 6PE (IPv6 transport over an IPv4/
MPLS core) and BGP/MPLS IP VPNs (also known as L3VPNs). Chapter dependen‐
cies: 1, 2.
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Chapter 4, Internet Multicast Over MPLS provides an IP multicast introduction and
describes one interoperable method to transport global (non-VPN) IP multicast traf‐
fic over MPLS. Chapter dependencies: 1, 2, 3.

Chapter 5, Multicast VPN extensively covers most if not all of the interoperable fla‐
vors of BGP MVPN, previously known as next-gen MVPN. Chapter dependencies: 1,
2, 3, 4.

Chapter 6, Point-to-Point Layer 2 VPNs is all about pseudowires. The LDP-based and
BGP-based flavors are both discussed. Chapter dependencies: 1, 2, and the first
L3VPN sections of 3 (RD and RT concepts).

Chapter 7, Virtual Private LAN Service describes multipoint L2VPNs whose MAC
learning is implemented at the forwarding plane. Chapter dependencies: 1, 2, 6.

Chapter 8, Ethernet VPN describes multipoint L2VPNs whose MAC learning is
implemented at the control plane. Several flavors are discussed: EVPN with MPLS
transport, EVPN with VXLAN transport, and PBB EVPN. Chapter dependencies: 1,
2, 6.

Chapter 9, Inter-Domain MPLS Services focuses on BGP/MPLS IP VPN Inter-AS
options A, B, and C. Chapter dependencies: 1, 2, 3.

Chapter 10, Underlay and Overlay Architectures explores the myth of control-plane
and forwarding-plane separation by presenting architectures that are very similar
despite being used for quite different purposes: multiforwarder devices, fabrics, and
virtualization overlays. Chapter dependencies: 1.

Chapter 11, Network Virtualization Overlays is the first genuine SDN chapter in this
book. It describes how you can use the MPLS paradigm to interconnect VMs with
one another and with subscribers. Dependencies: 1, 3, 8, 9 (option B), 10.

Chapter 12, Network Function Virtualization explains how to build Service Function
Chains in order to steer traffic through virtualized network appliances. Chapter
dependencies: 1, 10, 11.

Chapter 13, Introduction to Traffic Engineering explains how explicit paths can be
dynamically computed upon static constraints such as metric, colors, and Shared-
Risk Link Groups. The main focus is on RSVP-TE and there is also a scenario based
on BGP-LU for Egress Peer Engineering (EPE). Chapter dependencies: 1, 2.

Chapter 14, TE Bandwidth Reservations shows how to reserve bandwidth with
RSVP-TE, both statically and dynamically (auto-bandwidth). It also describes con‐
tainer LSPs applied to RSVP-TE load balancing. Chapter dependencies: 1, 2.

Chapter 15, Centralized Traffic Engineering introduces a model in which LSP path
computation is performed by a central controller that communicates to network devi‐
ces via PCEP. Chapter dependencies: 1, 2, 13.
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Chapter 16, Scaling MPLS Transport and Seamless MPLS covers IGP and RSVP-TE
scaling best practices and many flavors of LSP hierarchy with applications for service
providers and data centers, with or without controllers. Chapter dependencies: 1, 2, 3,
9 (option C).

Chapter 17, Scaling MPLS Services describes common strategies to reduce the control
plane load on low-scale devices. The focus is on L3VPN services. Chapter dependen‐
cies: 1, 2, 3.

Chapter 18, Transit Fast Restoration Based on the IGP explains how to achieve
sub-50 ms convergence upon failure of transit links/nodes with IGP (OSPF, IS-IS)
mechanisms, some of them tactically combined with RSVP-TE. It covers technologies
like LFA, RLFA, TI-LFA, TI-FRR, and MRT. Chapter dependencies: 1, 2.

Chapter 19, Transit Fast Restoration Based on the RSVP-TE explains how to achieve
sub-50 ms convergence upon failure of transit links/nodes by exclusively using
RSVP-TE. Two models of path protection are described: facility protection and one-
to-one protection. Chapter dependencies: 1, 2.

Chapter 20, FIB Optimization for Fast Restoration is a very vendor-specific chapter
that explains how both Junos and IOS XR enhance their FIB structures to meet fast
restoration requirements. Chapter dependencies: 1, 2, 3.

Chapter 21, Egress Service Fast Restoration explains how to achieve sub-50 ms con‐
vergence upon failure of transit egress links/nodes. It includes technologies like BGP
PIC, tail-end protection and EPE protection. Chapter dependencies: 1, 2, 3, 6, 20.

Disclaimer
The honest intention of the two authors has been to show working interoperable sce‐
narios, focusing on the successful scenarios rather than criticizing any implementa‐
tions. We have made every effort to remain neutral, despite both being Juniper
Networks employees when we were writing this. If you spot any kind of favoritism,
we can assure you that it was not intentional.

This book exclusively reflects the opinion of the authors and not the company for
which they work. It does not contain any corporate message from Juniper Networks
or any other vendors.

Every statement you see in this book is a conclusion drawn from personal research
and lab testing. Let’s use the example of statements that are worded as follows: “ven‐
dor X supports, or implements, or does not support, or behaves, or interoperates, etc.”
The actual meaning of this type of sentence is: “after some unofficial research and lab
testing, these book authors came to the personal conclusion that vendor X seems to sup‐
port, or seems to implement, or seems not to support, or seems to behave, or seems to
interoperate, and so on.”
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This book is not a vendor official document.

Please also be aware of the following:

• Some scenarios have been built with alpha prototypes. It is possible that at the
time of publication some of the features and commands were not yet generally
available. Vendors are not committed to releasing any of the features that are
described in this book and have not yet been released. There is a good side: this
book opens a window to the real state of the art and you have the opportunity to
spy on the things that may be coming.

• It is possible that some of the commands used in this book will change or become
obsolete in the future. Syntax accuracy is not guaranteed.

Finally, for space and brevity reasons, the authors took the liberty to edit the com‐
mand output examples by removing lines, columns, or characters. For this reason,
this book’s examples do not have guaranteed accuracy either.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, standards, drafts, email addresses, filenames, and file
extensions.

Constant width

Used for device configuration, operation commands and their output, as well as
protocol captures.

This element signifies a tip or suggestion.

This element signifies a general note.
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This element indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/mpls-sdn-era.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.
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For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction to MPLS and SDN

This chapter introduces the basic Multiprotocol Label Switching (MPLS) and
Software-Defined Networking (SDN) concepts. These technologies were born for a
reason, and a very good way to put them in the proper context is to understand their
history. For example, although MPLS has countless applications and use cases today,
it was originally conceived to solve a very specific problem in the Internet.

The Internet
The Internet is a collection of autonomous systems (ASs). Each AS is a network oper‐
ated by a single organization and has routing connections to one or more neighbor‐
ing ASs.

AS numbers ranging from 64512 to 65534 are reserved for private use. Although the
examples in this book use AS numbers from this range, in real life, Internet Service
Providers (ISPs) use public AS numbers to peer with their neighboring ASs.

Traditionally, AS numbers were 16 bits (2-byte) long, but newer protocol implemen‐
tations support AS numbers that are 32 bits (4-byte) in length, too.

Figure 1-1 provides a very simplified view of the Internet. Here, we’re going to take a
look at Annika, a random Internet user. She lives in Europe, has a wireline Internet
connection at home, and works in a big enterprise that is also connected to the Inter‐
net. The company that employs Annika happens to have its own AS number
(65001)—this is not a requirement for corporate Internet access. Coincidentally, this
company is connected to the Internet through the same ISP (AS 65000) that Annika
uses for her residential access.
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Figure 1-1. The Internet—one day in the life of Annika

As shown in the figure, Annika has two friends who are also ISP subscribers:

• Ruijiao lives in Oceania and connects with her mobile phone to AS 65100.
• Luis lives in South America and connects with his laptop to AS 65005.

Annika also uses the public-cloud services of a provider in Africa (65201) and con‐
sumes content from different providers in Asia (AS 65510), Europe (AS 65002), and
North America (AS 64900).

Figure 1-1 shows different types of providers. The list that follows describes each:

Domestic ISPs
In this example, Annika’s residential and corporate Internet connections go
through a domestic ISP (AS 65000) that provides Internet access in a particular
country, state, or region. Likewise, Ruijiao and Luis are also connected to the
Internet through domestic ISPs (AS 65100 and AS 65005, respectively).

Global ISPs
101.230The domestic ISP’s to which Annika (AS 65000) and Luis (AS 65005) are
connected belong to the same global ISP group, which has presence in several
countries in Europe and America. This global ISP uses a specific network (AS
65010) to interconnect all of the domestic ISPs of the group with one another. In
addition, global ISPs also connect their domestic ISPs to the rest of the world.
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Content and cloud providers
These service providers (SPs) do not generate revenue by charging the subscrib‐
ers for Internet access. Instead, they provide other types of services to users
around the world. For example, they offer multimedia, hosting, cloud services,
and so on.

Transit providers
These are typically large Tier-1 networks that comprise the Internet skeleton.
Their customers are other SPs. If two SPs are not directly connected, they typi‐
cally reach one another through one or more transit providers.

In practice, this classification is a bit fuzzy. Most SPs try to diversify their portfolios
by getting a share from more than one of these markets.

There is yet one more key piece of information in Figure 1-1: the links that intercon‐
nect ASs have routers at their endpoints. Pay attention to the icons used for Junos and
IOS XR because this convention is used throughout this book.

A router that is placed at the border of an AS and which connects to one or more
external ASs is called an AS Border Router (ASBR). Internet ASBRs speak to one
another using the Border Gateway Protocol (BGP), described in RFC 4271. BGP runs
on top of Transmission Control Protocol (TCP); it is called external BGP (eBGP) if
the session’s endpoints are in different ASs. Internet eBGP is responsible for distribut‐
ing the global IPv4 and IPv6 routing tables. The former already contains more than
half a million prefixes and is continually growing.

And this is the Internet some bricks (ASs), links, and a protocol (eBGP) that distrib‐
utes routing information worldwide. Figure 1-1 is a simplistic representation of the
Internet; in reality, it looks more like Figure 1-2.
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Figure 1-2. The Internet in 2011—topology of autonomous systems (copyright © Peer1
Hosting; used with permission)

This great picture, provided by its owner, Peer1 Hosting, represents ASs as nodes.
Peer1’s description of the image is as follows:

This image depicts a graph of 19,869 AS nodes joined by 44,344 connections. The siz‐
ing and layout of the ASs is based on their eigenvector centrality, which is a measure of
how central to the network each AS is—an AS is central if it is connected to other ASs
that are central. This is the same graph-theoretical concept that forms the basis of Goo‐
gle’s PageRank algorithm.
The graph layout begins with the most central nodes and proceeds to the least, posi‐
tioning them on a grid that subdivides after each order of magnitude of centrality.
Within the constraints of the current subdivision level, nodes are placed as near as pos‐
sible to previously placed nodes that they are connected to.
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So far, this description of the Internet is unrelated to MPLS. To
understand the original motivation for MPLS, you need to look
inside an AS.

Let’s take the time to understand the topology that will be used in the first eight chap‐
ters of this book. It is a worthwhile investment of time.

ISP Example Topology
This topology builds on the previous example. Annika is working, and her laptop is
H1. At some point, she realizes that she needs to retrieve some data from the provider
(more specifically from H3).

For the moment, let’s forget about Network Address Translation
(NAT) and imagine that all the addresses are actually public.

Figure 1-3. Basic ISP topology

More than half of the lab scenarios built for this book run on a single server. The
hypervisor spawned virtual machines (VMs) running Junos or IOS XR, which were
internally connected through a vSwitch/vRouter.
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Around each router, you can see numbers in circles. These are the network interface
numbers. For example, if the number inside the circle is <#>, the actual port number
is as follows:

• On devices running Junos, ge-2/0/<#>
• On devices running IOS XR, Gi 0/0/0/<#>

This convention is used throughout the book.

All the inter-router links are point-to-point (/31), except for the multipoint connec‐
tion 10.2.0.0/24. Although the latter topology can be found in the WAN access, it is
progressively being considered as legacy. For the moment, let’s think of these LANs as
classical /24 IPv4 subnets and ignore how they are actually instantiated.

The ISP in this example runs a single Level 2 IS-IS domain with point-to-point inter‐
faces. The PE1-PE2 and PE3-PE4 links are configured with symmetrical IS-IS metric
100, and the remaining core links (PE-P and P-P) are left with the default IS-IS metric
10. These metrics are represented inside square brackets in Figure 1-3.

Ensure that the RRs are configured with the IS-IS overload bit or
with Open Shortest-Path First (OSPF) high metrics so that they do
not attract transit traffic.

Router Types in a Service Provider
Although at first sight they look similar, the Enterprise (AS 65001) and the Content
Provider (AS 65002) play a different role from the perspective of the ISP (AS 65000):

• The Enterprise is a corporate customer that pays the ISP for Internet access. It
can be dual-homed to more than one ISP for redundancy, but overall the rela‐
tionship between the Enterprise and the ISP is that of traditional customer-to-
provider.

• The Content Provider has a peering relationship to several ISPs, including AS
65000, AS 64777, and others. The business model is more complex and there is
no clear customer-provider relationship: the SPs reach agreements on how to bill
for traffic.

The devices in Figure 1-3 play different roles from the perspective of AS 65000, which
we’ll explore in the sections that follow.
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Customer equipment
CE1 and CE2 in Figure 1-3 are Customer-Premises Equipment (CPE), also known as
customer equipment (CE). Traditionally, they are physically located on the customer’s
facilities. In the SDN era, it is also possible to virtualize some of their functions and
run them on the SP network: this solution is called virtual CPE or vCPE.

For the moment, let’s think of traditional CEs that are on a customer’s network. The
operation and management of the CE might be the responsibility of the ISP or the
customer, or both. We can classify CEs as follows:

Residential
These can be DSL modems, FTTH ONTs, and so on. They don’t run any routing
protocols and they are seen by the IP layer of the ISP as directly connected.

Mobile
These are smartphones, tablets, and so forth. They also don’t run any routing
protocols and are seen by the IP layer of the ISP as directly connected.

Organizational
These are dedicated physical or virtual routers that might (or might not) imple‐
ment an additional set of value-added network functions. They typically have
static or dynamic routing to the ISP. eBGP is the most commonly used—and the
most scalable—dynamic protocol. If the organization is multihomed to several
ISPs, eBGP is simply the only reasonable option.

The organization might be an external enterprise, an internal ISP
department, a government institution, a campus, an NGO, and so
on.

Now, let’s look at the different functions performed by the core (backbone) routers of
the ISP (AS 65000): PE1, PE2, P1, P2, PE3, and PE4.

The core—provider edge
Provider edge (PE) is an edge function performed by ISP-owned core network devices
that have both external connections to CEs and internal connections to other core
routers. PE1 and PE2 in Figure 1-3 perform the PE role when they forward traffic
between CEs and other core routers.

The core—provider
Provider (P) is a core function performed by ISP-owned core routers that have inter‐
nal backbone connections to more than one other core router. P1 and P2 are pure P-
routers because they do not have any connections to external providers or to
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customers. As for PE1, PE2, PE3, and PE4, they might perform the P role when they
forward traffic between two core interfaces. For example, if PE1 receives a packet on
ge-2/0/3 and sends it out of ge-2/0/4, it is acting as a P-router.

The border—ASBR
ASBR is an edge function performed by ISP-owned core routers that establish external
eBGP peering to other SPs. Although PE1 and PE2 can establish eBGP sessions to
CE1 and CE2, they are not considered ASBRs, because the remote peer is a customer,
not an SP.

On the other hand, PE3, PE4, BR1, and BR2 are ASBRs, and they perform that func‐
tion when they forward traffic between external and internal interfaces. For example,
if PE3 receives a packet on ge-2/0/1 and sends it out to ge-2/0/3, it is behaving as an
ASBR.

The Content Provider (AS 65002) in Figure 1-3 has an overly simplified network.
This is fine given that the focus here is on the ISP (AS 65000).

Hosts
The purpose of hosts (H) H1 and H3 in this example is to run ping and traceroute, so
their OS is not very relevant. In this example, these hosts are VMs that happen to be
running IOS XR; hence, the router icon for a host.

H1 belongs to the customer intranet, and H3 is connected to the content provider
core. Neither H1 nor H3 run any routing protocols.

Route Reflectors
Route Reflectors (RR) RR1 and RR2 do not forward user traffic. They have a pure
control-plane mission: reflecting BGP routes.

BGP Configuration
Intermediate System–to–Intermediate System (IS-IS) provides loopback-to-loopback
connectivity inside the ISP, which is required to establish the multihop internal BGP
(iBGP) sessions.

Figure 1-4 shows the BGP sessions and their endpoints: loopback addresses for iBGP,
and link addresses on the border (eBGP).
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Figure 1-4. Internet eBGP and iBGP sessions

BGP configuration—PEs and ASBRs running Junos
Example 1-1 shows the BGP configuration at PE1.

Example 1-1. BGP configuration at PE1 (Junos)

1     routing-options {
2         autonomous-system 65000;
3     }
4     protocols {
5         bgp {
6             group iBGP-RR {
7                 type internal;
8                 local-address 172.16.0.11;
9                 family inet {
10                    unicast {
11                        add-path {
12                            receive;
13                            send {
14                                path-count 6;
15                            }
16                        }
17                    }
18                }
19                export PL-iBGP-RR-OUT;
20                neighbor 172.16.0.201;
21                neighbor 172.16.0.202;
22            }
23            group eBGP-65001 {
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24                family inet {
25                    unicast;
26                }
27                peer-as 65001;
28                neighbor 10.1.0.0 {
29                    export PL-eBGP-65001-CE1-OUT;
30                }
31                neighbor 10.1.0.6 {
32                    export PL-eBGP-65001-CE2-OUT;
33                }
34            }
35        }
36    }
37    policy-options {
38        policy-statement PL-iBGP-RR-OUT {
39            term NHS {
40                from family inet;
41                then {
42                    next-hop self;
43                }
44            }
45        }
46        policy-statement PL-eBGP-65001-CE1-OUT {
47            term BGP {
48                then {
49                    metric 100;
50                }
51            }
52        }
53        policy-statement PL-eBGP-65001-CE2-OUT {
54            term BGP {
55                then {
56                    metric 200;
57                }
58            }
59        }
60    }

PE1 and PE3 have a similar configuration. The different business relationship to the
peering providers does not change the fact that the protocol is the same: eBGP.

Lines 6 through 22 contain the loopback-to-loopback configuration for the PE1-RR1
and PE1-RR2 iBGP sessions. The Add-Path functionality (lines 11 through 16) will be
explained later.

When a router readvertises a prefix into iBGP, it does not change the original BGP
next hop attribute by default. So, if PE1 advertises the 10.1.12.0/24 route to the RRs,
the BGP next hop of the route is 10.1.0.0. This next hop is not reachable from inside
the ISP—for example, from PE3 and PE4—making the BGP route useless. The clean‐
est solution is to make PE1 rewrite the BGP next-hop attribute to its own loopback
(lines 19, and lines 38 through 45) before advertising the route via iBGP.
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Lines 23 through 34 contain the single-hop PE1-CE1 and PE1-CE2 eBGP configura‐
tion. The eBGP route policies (lines 29, 32, and 46 through 59) will be explained
soon.

BGP configuration—RRs running Junos
This BGP configuration at RR1 is very similar to PE1’s, but it has one key difference,
as demonstrated in Example 1-2, for which the neighbors are omitted for brevity.

Example 1-2. BGP configuration at RR1 (Junos)

1     protocols {
2         bgp {
3             group iBGP-CLIENTS {
4                 cluster 172.16.0.201;
5     }}}

What makes RR1 a Route Reflector is line 4; without it, the default iBGP rule—iBGP
routes must not be readvertised via iBGP—would apply.

The peering with the other RR (RR2) is configured as a neighbor on a different group
that does not contain the cluster statement.

BGP Configuration—PEs and ASBRs running IOS XR
PE2 and PE4 have a similar configuration. Example 1-3 presents that of PE2.

Example 1-3. BGP configuration at PE2 (IOS XR)

1     router bgp 65000
2      address-family ipv4 unicast
3       additional-paths receive
4       additional-paths send
5      !
6      neighbor-group RR
7       remote-as 65000
8       update-source Loopback0
9       address-family ipv4 unicast
10       route-policy PL-iBGP-RR-OUT out
11     !
12     neighbor 10.1.0.2
13      remote-as 65001
14      address-family ipv4 unicast
15       route-policy PL-eBGP-65001-IN in
16       route-policy PL-eBGP-CE2-OUT out
17     !
18     neighbor 10.1.0.4
19      remote-as 65001
20      address-family ipv4 unicast
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21       route-policy PL-eBGP-65001-IN in
22       route-policy PL-eBGP-CE1-OUT out
23     !
24     neighbor 172.16.0.201
25      use neighbor-group RR
26     !
27     neighbor 172.16.0.202
28      use neighbor-group RR
29     !
30    !
31    route-policy PL-iBGP-RR-OUT
32      set next-hop self
33    end-policy
34    !
35    route-policy PL-eBGP-CE1-OUT
36      set med 200
37      pass
38    end-policy
39    !
40    route-policy PL-eBGP-CE2-OUT
41      set med 100
42      pass
43    end-policy
44    !
45    route-policy PL-eBGP-65001-IN
46      pass
47    end-policy

The syntax is different, but the principles are very similar to Junos. The Add-Path
functionality (lines 3 through 4) will be explained later.

A remarkable difference between the BGP implementation of Junos and IOS XR is
that IOS XR by default blocks the reception and advertisement of routes via eBGP.
There are two alternative ways to change this default behavior:

• Explicitly configure input and output policies (lines 15 through 16, 21 through
22, and 35 through 47) in order to allow IOS XR to signal eBGP routes.

• Configure router bgp 65000 bgp unsafe-ebgp-policy. This is a shortcut that
you can use for quick configuration which is especially useful in the lab. This
command automatically creates and attaches the “pass all” policies

Due to the constraints of space, from this point forward, Junos and
IOS XR configuration examples may be represented with merged
lines.
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BGP configuration—RRs running IOS XR
The BGP configuration at RR2 shown in Example 1-4 is very similar to that of PE2,
but it has some differences.

Example 1-4. BGP configuration at RR2 (IOS XR)

1     router bgp 65000
2      address-family ipv4 unicast
3       additional-paths receive
4       additional-paths send
5      !
6      neighbor-group iBGP-CLIENTS
7       cluster-id 172.16.0.202
8       address-family ipv4 unicast
9        route-reflector-client
10    !

What makes RR2 a Route Reflector are lines 7 and 9; without them, the default iBGP
rule—iBGP routes must not be readvertised via iBGP—would apply.

The peering with the other RR (RR1) is not configured through this neighbor-group.

BGP Route Signaling and Redundancy
This book considers three BGP redundancy models—Nonredundant, Active-
Backup, and Active-Active—and they are all supported by the topology in Figure 1-3.

Nonredundant BGP Routes
In this example, CEs and BRs advertise their own loopacks to one single eBGP peer:

• CE1 advertises 192.168.10.1/32 to PE1 only.
• CE2 advertises 192.168.10.2/32 to PE2 only.
• BR3 advertises 192.168.20.3/32 to PE3 only.
• BR4 advertises 192.168.20.4/32 to PE4 only.

If an eBGP session fails, the loopback of the affected CE or BR is no longer reachable
via AS 65000. This scenario is frequent in single-homed access topologies. In this
example, it is simulated by selectively blocking the local loopback advertisement from
CE1 and CE2 (eBGP export policies), and by only configuring one eBGP session at
each BR.

Figure 1-5 shows CE1’s loopback route signaling process.
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Figure 1-5. Internet eBGP and iBGP route signaling—CE1 loopback

CE1’s loopback is single-homed to PE1, so a packet that any device in AS 65002 sends
to CE1’s loopback should go via PE1 at some point.

The RRs do not change the value of the BGP next hop and AS path attributes when
they reflect the route to PE2, PE3, and PE4.

On the other hand, PE2 does not advertise the route to CE2, because it would result
in an AS loop. This behavior, which you can change by using the as-override config‐
uration command, is further discussed in Chapter 3.

Figure 1-6 shows BR4’s loopback route signaling process.
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Figure 1-6. Internet eBGP and iBGP route signaling—BR4 loopback

BR4’s loopback is single-homed to PE4, so a packet that any device in AS 65001 sends
to BR4’s loopback should go via PE4 at some point.

There is an additional redundancy level on the left side of Figure 1-6. CE1 prefers to
reach BR4 via PE1 (Multi Exit Discriminator [MED] 100 is better than MED 200),
but if the CE1-PE1 eBGP session fails, it can still fail-over to PE2.

In the absence of access link failures:

• Inter-loopback ping and traceroute between CE1 and BR3 go via PE1 and PE3.
In this book, this is called the Junos plane.

• Inter-loopback ping and traceroute between CE2 and BR4 go via PE2 and PE4.
In this book, this is called the IOS XR plane.

Active-Backup BGP routes
As you can see in Figure 1-7, BR3 and BR4 both advertise the 10.2.34.0/24 route, but
they do it with a different MED. As a result, PE1 and PE2 prefer to reach BR4 via
PE4. If, for whatever reason, PE4 no longer advertises the 10.2.34.0/24 route (or if the
route is in an invalid state), then PE1 and PE2 can fail-over to PE3.
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Figure 1-7. Internet eBGP and iBGP route signaling—H3’s subnet

H1 has a default route pointing to the virtual IPv4 address 10.1.12.100. CE1 and CE2
run Virtual Router Redundancy Protocol (VRRP) on the host LAN, and in the
absence of failures CE1 is the VRRP master that holds the 10.1.12.100 address. On the
other hand, VRRP route tracking is configured so that if CE1 does not have a route to
reach H3 and CE2 does, CE2 becomes the VRRP master. The mechanism is very sim‐
ilar between BR3 and BR4, except in this case BR4 is the nominal VRRP master.

Finally, the MED scheme configured on PE1’s and PE2’s eBGP export policies is such
that CE1 prefers to reach H3 via PE1 rather than via PE2. With all the links and ses‐
sions up, the path followed by H1→H3 (10.1.12.10→10.2.34.30) packets is CE1-PE1-
PE4-BR4. VRRP mastership on the first hop, and then MED on the remaining hops,
are the tie-breaking mechanisms to choose the best path.

Active-Active BGP routes
PE1 and PE2 both have an eBGP route to 10.1.12.0/24 with MED 100, so both adver‐
tise the route with MED 100 to the RRs, as you can see in Figure 1-8.
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Figure 1-8. Internet eBGP and iBGP route signaling—H1’s subnet

The path followed by H3→H1 packets is BR4-PE4-PE2-CE2. PE4 prefers PE2
because the MED value is 100 for both BGP next hops (PE1 and PE2) and the IGP
metric of the shortest internal path PE4→PE2 is lower than the IGP metric of
PE4→PE1. Likewise, PE3 prefers PE1, but BR4 is the VRRP master, so PE3 is not in
the nominal H3→H1 path.

The end result is asymmetrical but optimal forwarding of H1→H3 and H3→H1
flows. It is optimal because the RRs are reflecting all the routes, not just those that
they consider to be the best, as shown in Example 1-5.

Example 1-5. iBGP Route Reflection with Add-Path—RR1 (Junos)

1     juniper@RR1> show route advertising-protocol bgp 172.16.0.44
2                  10.1.12.10
3
4     inet.0: 33 destinations, 38 routes (33 active, ...)
5       Prefix           Nexthop          MED     Lclpref    AS path
6     * 10.1.12.0/24     172.16.0.11      100     100        65001 I
7                        172.16.0.22      100     100        65001 I
8
9     juniper@RR1> show route advertising-protocol bgp 172.16.0.44
10                 10.1.12.0/24 detail
11
12    inet.0: 33 destinations, 38 routes (33 active, ...)
13    * 10.1.12.0/24 (3 entries, 2 announced)
14     BGP group CLIENTS type Internal
15         Nexthop: 172.16.0.11
16         MED: 100
17         Localpref: 100
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18         AS path: [65000] 65001 I
19         Cluster ID: 172.16.0.201
20         Originator ID: 172.16.0.11
21         Addpath Path ID: 1
22     BGP group CLIENTS type Internal
23         Nexthop: 172.16.0.22
24         MED: 100
25         Localpref: 100
26         AS path: [65000] 65001 I
27         Cluster ID: 172.16.0.201
28         Originator ID: 172.16.0.22
29         Addpath Path ID: 2

This is possible thanks to the Add-Path extensions (lines 21 and 29). Without them,
RR1 would choose the route with the best IGP metric from its own perspective—
from the RR to the BGP next hop—which does not necessarily match the perspective
from PE4.

In summary, policies are configured in such a way that the MED or BGP metric is
symmetrically set. Following are the results:

• CE1 prefers reaching H3 via PE1 rather than via PE2.
• CE2 prefers reaching H3 via PE2 rather than via PE1.
• PE1 prefers reaching H1 via CE1 rather than via CE2.
• PE2 prefers reaching H1 via CE2 rather than via CE1.
• PE1 and PE2 prefer reaching H3 via PE4 rather than via PE3.
• PE3 and PE4 prefer reaching H1 via PE1 and PE2, respectively.

Packet Forwarding in a BGP-Less Core
Everything is fine so far, except for one major detail: H1 and H3 cannot communicate
to each other. Let’s take the example of an IPv4 packet with source H1 and destination
H3. PE1 decides to forward the packet via PE4, but PE1 and PE4 are not directly con‐
nected to each other. The shortest path from PE1 to PE4 is PE1-P1-P2-PE4. Thus,
PE1 sends the packet to its next hop, P1. Here is the problem: P1 does not speak BGP,
so it does not have a route to the destination H3. As a result, P1 drops the packet.

How about establishing iBGP sessions between P1 and the RRs? This is a relatively
common practice in large SPs with high-end core devices. In the real Internet there
are more than half a million routes, and it keeps growing. Although route summari‐
zation is possible, it still requires a significant control-plane load for P1 to program
all the necessary BGP routes. P1 would also lose agility upon network topology
changes because it would need to reprogram many routes on the forwarding plane.
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P1 and P2 are internal core routers (they do not have any eBGP peerings), and their
role is to take packets as fast and reliably as possible between edge routers such as
PE1, PE2, PE3, and PE4. This is possible if PE1 adds to the H1→H3 IPv4 packet an
extra header—or set of headers—with the following instruction: take me to PE4.

One option is to use IP tunneling. By encapsulating the H1→H3 IPv4 packet inside
another IPv4 header with source and destination PE1→PE4, the packet reaches PE4.
Then, PE4 removes the tunneling headers and successfully performs an IPv4 lookup
on the original H1→H3 packet. There are several IP tunneling technologies available
such as GRE, IP-in-IP, and VXLAN. However, this approach has several problems
when it comes to forwarding terabits per second or petabits per second, or more.

The most immediate of these problems was cost, given that IP tunneling used to be
expensive:

• First, an IPv4 header alone comprises 20 bytes. Add the extra adaptation headers,
and the overhead becomes significant, not to mention the effort that is required
to create and destroy headers with many dynamic fields.

• Second, performing an IPv4 lookup has traditionally been expensive. Although
modern platforms have dramatically reduced its differential cost, in the 1990s
IPv4 forwarding resulted in a much worse performance than label switching.

There is another technology that is better in terms of overhead (4 bytes per header)
and forwarding efficiency. This technology is natively integrated with BGP and
brings a large portfolio of features that are of paramount importance to SPs. You
might have guessed already that its name is MPLS, or Multiprotocol Label Switching.
In the SDN era, forwarding cost is no longer the main driver to deploy MPLS: its
architecture and flexibility are.

MPLS
MPLS was invented in the late 1990s, at a time when Asynchronous Transfer Mode
(ATM) was a widespread WAN technology.

ATM had some virtues: multiservice, asynchronous transport, class of service,
reduced forwarding state, predictability, and so on. But it had at least as many defects:
no tolerance to data loss or reordering, a forwarding overhead that made it unsuitable
to high speeds, no decent multipoint, lack of a native integration with IP, and so forth.

MPLS learned from the instructive ATM experience, taking advantage of its virtues
while solving its defects. Modern MPLS is an asynchronous packet-based forwarding
technology. In that sense, it is similar to IP, but MPLS has a much lighter forwarding
plane and it greatly reduces the amount of state that needs to be signaled and pro‐
grammed on the devices.
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MPLS in Action
Probably the best way to understand MPLS is by looking at a real example, such as
that shown in Figure 1-9.

Figure 1-9. MPLS in action

Figure 1-9 shows two unidirectional MPLS Label-Switched Paths (LSPs) named
PE1→PE4 and PE4→PE2. Let’s begin with the first one. An IPv4 H1→H3
(10.1.12.10→10.2.34.30) packet arrives at PE1, which leads to the following:

1. H3 is reachable through PE4, so PE1 places the packet in the PE1→PE4 LSP. It
does so by inserting a new MPLS header between the IPv4 and the Ethernet
headers of the H1→H3 packet. This header contains MPLS label 1000001, which
is locally significant to P1. In MPLS terminology, this operation is a label push.
Finally, PE1 sends the packet to P1.

2. P1 receives the packet and inspects and removes the original MPLS header. Then,
P1 adds a new MPLS header with label 1000002, which is locally significant to P2,
and sends the packet to P2. This MPLS operation is called a label swap.

3. P2 receives the packet, inspects and removes the MPLS header, and then sends
the plain IPv4 packet to PE4. This MPLS operation is called a label pop.

4. PE4 receives the IPv4 packet without any MPLS headers. This is fine because PE4
speaks BGP and is aware of all the IPv4 routes, so it knows how to forward the
packet toward its destination.

The H3→H1 packet travels from PE4 to PE2 in a shorter LSP where only two MPLS
operations take place: label push at PE4 and label pop at P2. There is no label swap.
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These LSPs happen to follow the shortest IGP path between their
endpoints. This is not mandatory and it is often not the case.

Is This IPv4-Over-MPLS or MPLS-Over-IPv4?
This is a trickier question than it seems. It is IPv4-over-MPLS. The IPv4 packet is
encapsulated behind an MPLS header. On the other hand, in this book’s diagrams, you
will always see the MPLS header over the IPv4 header—the other way around.

Packets in this book are shown in the same way that a sniffer
would decode them. The most external headers are on top.
When we talk about MPLS labels, outer means upper, and
inner means lower.

This is actually the natural way to visualize MPLS packets. MPLS headers are stacka‐
ble and the topmost label is the most external one.

Router roles in a LSP
Looking back at Figure 1-9, the PE1→PE4 LSP starts at PE1, traverses P1 and P2, and
ends... at P2 or at PE4? Let’s see. By placing the packet in the LSP, PE1 is basically
sending it to PE4. Indeed, when P2 receives a packet with label 1000002, the forward‐
ing instruction is clear: pop the label and send the packet out of the interface Gi
0/0/0/5. So the LSP ends at PE4.

The H1→H3 packet arrives unlabeled to PE4 by virtue of a mecha‐
nism called Penultimate Hop Popping (PHP) executed by P2.

Following are the different router roles from the point of view of the PE1→PE4 LSP.
For each of these roles, there are many terms and acronyms:

• PE1 Ingress PE, Ingress Label Edge Router (LER), LSP Head-End, LSP
Upstream Endpoint. The term ingress comes from the fact that user packets like
H1→H3 enter the LSP at PE1, which acts as an entrance or ingress point.

• P1 (or P2) Transit P, P-Router, Label Switching Router (LSR), or simply P.
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• PE4 Egress PE, Egress Label Edge Router (LER), LSP Tail-End, LSP Down‐
stream Endpoint. The term egress comes from the fact that user packets such as
H1→H3 exit the LSP at this PE.

The MPLS Header
Paraphrasing Ivan Pepelnjak, technical director of NIL Data Communications, in his
www.ipspace.net blog:

MPLS is not tunneling, it’s a virtual-circuits-based technology, and the difference
between the two is a major one. You can talk about tunneling when a protocol that
should be lower in the protocol stack gets encapsulated in a protocol that you’d usually
find above or next to it. MAC-in-IP, IPv6-in-IPv4, IP-over-GRE-over-IP... these are
tunnels. IP-over-MPLS-over-Ethernet is not tunneling.
It is true, however, that MPLS uses virtual circuits, but they are not identical to tunnels.
Just because all packets between two endpoints follow the same path and the switches
in the middle don’t inspect their IP headers, doesn’t mean you use a tunneling technol‐
ogy.

MPLS headers are elegantly inserted in the packets. Their size is only 4 bytes.
Example 1-6 presents a capture of the H1→H3 packet as it traverses the P1-P2 link.

Example 1-6. MPLS packet on-the-wire

1     Ethernet II, Src: MAC_P1_ge-2/0/3, Dst: MAC_P2_gi0/0/0/2
2         Type: MPLS label switched packet (0x8847)
3     MultiProtocol Label Switching Header
4         1111 0100 0010 0100 0010 .... .... .... = Label: 1000002
5         .... .... .... .... .... 000. .... .... = Traffic Class: 0
6         .... .... .... .... .... ...0 .... .... = Bottom of Stack: 1
7         .... .... .... .... .... .... 1111 1100 = MPLS TTL: 252
8     Internet Protocol Version 4, Src: 10.1.12.10, Dst: 10.2.34.30
9         Version: 4
10        Header Length: 20 bytes
11        Differentiated Services Field: 0x00
12        # IPv4 Packet Header Details and IPv4 Packet Payload

Here is a description of the 32 bits that compose an MPLS header:

1. The first 20 bits (line 4) are the MPLS label.
2. The next 3 bits (line 5) are the Traffic Class. In the past, they were called the

experimental bits. This field is semantically similar to the first 3 bits of the IPv4
header’s Differentiated Services Code Point (DSCP) field (line 11).

3. The next 1 bit (line 6) is the Bottom of Stack (BoS) bit. It is set to value 1 only if
this is the MPLS header in contact with the next protocol (in this case, IPv4)
header. Otherwise, it is set to zero. This bit is important because the MPLS
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header does not have a type field, so it needs the BoS bit to indicate that it is the
last header before the MPLS payload.

4. The next 8 bits (line 7) are the MPLS Time-to-Live (TTL). Like the IP TTL, the
MPLS TTL implements a mechanism to discard packets in the event of a for‐
warding loop. Typically the ingress PE decrements the IP TTL by one and then
copies its value into the MPLS TTL. Transit P-routers decrement the MPLS TTL
by one at each hop. Finally, the egress PE copies the MPLS TTL into the IP TTL
and then decrements its value by one. You can tune this default implementation
in both Junos and IOS XR.

Figure 1-10 shows two other label operations that have not been described so far:

• The first incoming packet has a two-label stack. You can see the usage of the BoS
bit. The swap operation only affects the topmost (outermost) label.

• The second incoming packet initially has a one-label stack, and it is processed by
a composite label operation: swap and push. The result is a two-label stack.

Figure 1-10. Other MPLS operations

MPLS Configuration and Forwarding Plane

MPLS interface configuration
The first step is to enable MPLS on the interfaces on which you want to forward
MPLS packets. Example 1-7 shows the Junos configuration of one interface at PE1.

Example 1-7. MPLS interface configuration—PE1 (Junos)

1     interfaces {
2         ge-2/0/4 {
3              unit 0 {
4                 family mpls;
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5     }}}
6     protocols {
7         mpls {
8             interface ge-2/0/4.0;
9     }}

Lines 1 through 4 enable the MPLS encapsulation on the interface, and lines 6
through 8 enable the interface for MPLS protocols. Strictly speaking, the latter config‐
uration block is not always needed, but it is a good practice to systematically add it.

Throughout this book, it is assumed that every MPLS-enabled
interface in Junos has at least the configuration from Example 1-7.

In IOS XR, there is no generic MPLS configuration. You need to enable the interface
for each of the MPLS flavors that you need to use. This chapter features the simplest
of all the MPLS flavors: static MPLS. Example 1-8 presents the configuration of one
interface at PE4.

Example 1-8. MPLS interface configuration—PE4 (IOS XR)

mpls static
 interface GigabitEthernet0/0/0/0
!

Label-switched path PE1→PE4—configuration
Remember that H1→H3 packets go through PE1 and PE4. You need an LSP that
takes these packets from PE1 to PE4. Let’s make the LSP follow the path PE1-P1-P2-
PE4 that we saw in Figure 1-9.

This example is based on static LSPs, which are not scalable
because they require manual label assignments at each hop of the
path. Beginning in Chapter 2, the focus is on the much more scala‐
ble dynamic LSPs.

Example 1-9 gives the full configuration along the path.

Example 1-9. LSP PE1→PE4 configuration—Junos and IOS XR

#PE1 (Junos)

protocols {
    mpls {
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        static-label-switched-path PE1--->PE4 {
            ingress {
                next-hop 10.0.0.3;
                to 172.16.0.44;
                push 1000001;
}}}}

#P1 (Junos)

protocols {
    mpls {
        icmp-tunneling;
        static-label-switched-path PE1--->PE4 {
            transit 1000001 {
                next-hop 10.0.0.7;
                swap 1000002;
}}}}

#P2 (IOS XR)

mpls static
 address-family ipv4 unicast
  local-label 1000002 allocate
   forward
    path 1 nexthop GigabitEthernet0/0/0/5 10.0.0.11 out-label pop
!

PE4 receives plain IPv4 packets from P2, so it does not require any LSP-specific con‐
figuration.

Labels 1000001 and 1000002 are locally significant to P1 and P2, respectively. Their
numerical values could have been identical and they would still correspond to differ‐
ent instructions because they are not interpreted by the same LSR.

LSP PE1→PE4—forwarding plane
It’s time to inspect the forwarding instructions that steer the H1→H3 IPv4 packet
through the PE1→PE4 LSP. Let’s begin at PE1, which is shown in Example 1-10.

Example 1-10. Routing and forwarding state at the ingress PE—PE1 (Junos)

1     juniper@PE1> show route receive-protocol bgp 172.16.0.201
2                  10.2.34.30 active-path
3
4     inet.0: 36 destinations, 45 routes (36 active, ...)
5       Prefix         Nexthop        MED     Lclpref    AS path
6     * 10.2.34.0/24   172.16.0.44    100     100        65002 I
7
8     juniper@PE1> show route 172.16.0.44
9
10    inet.0: 36 destinations, 45 routes (36 active, ...)
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11    + = Active Route, - = Last Active, * = Both
12
13    172.16.0.44/32     *[IS-IS/18] 1d 11:22:00, metric 30
14                        > to 10.0.0.3 via ge-2/0/4.0
15
16    inet.3: 1 destinations, 1 routes (1 active, ...)
17    + = Active Route, - = Last Active, * = Both
18
19    172.16.0.44/32     *[MPLS/6/1] 05:00:00, metric 0
20                        > to 10.0.0.3 via ge-2/0/4.0, Push 1000001
21
22    juniper@PE1> show route 10.2.34.30 active-path
23
24    inet.0: 36 destinations, 45 routes (36 active...)
25    + = Active Route, - = Last Active, * = Both
26
27    10.2.34.0/24   *[BGP/170] 06:37:28, MED 100, localpref 100,
28                              from 172.16.0.201, AS path: 65002 I
29                    > to 10.0.0.3 via ge-2/0/4.0, Push 1000001
30
31    juniper@PE1> show route forwarding-table destination 10.2.34.30
32    Routing table: default.inet
33    Internet:
34    Destination   Next hop              Type  Index   NhRef Netif
35    10.2.34.0/24                        indr  1048575     3
36                  10.0.0.3 Push 1000001           513     2 ge-2/0/4.0
37
38    juniper@PE1> show mpls static-lsp statistics name PE1--->PE4
39    Ingress LSPs:
40    LSPname      To            State   Packets      Bytes
41    PE1--->PE4   172.16.0.44   Up        27694    2768320

The best BGP route to the destination 10.2.34.30 (H3) has a BGP next-hop attribute
(line 6) equal to 172.16.0.44. There are two routes toward 172.16.0.44 (PE4’s loop‐
back):

• An IS-IS route in the global IPv4 routing table inet.0 (lines 10 through 14).
• A MPLS route in the inet.3 auxiliary table (lines 16 through 20). The static LSP

configured in Example 1-9 automatically installs this MPLS route.

The goal of the inet.3 auxiliary table is to resolve BGP next hops (line 6) into for‐
warding next hops (line 20). Indeed, the BGP route 10.2.34.0/24 is installed in inet.0
with a labeled forwarding next hop (line 29) that is copied from inet.3 (line 20).
Finally, the BGP route is installed in the forwarding table (lines 31 through 36) and
pushed to the forwarding engines.

The fact that Junos has an auxiliary table (inet.3) to resolve BGP next hops is quite
relevant. Keep in mind that Junos uses inet.0 and not inet.3 to program the for‐
warding table. For this reason, PE1’s default behavior is not to push any labels on the
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packets that it sends to internal (non-BGP) destinations such as PE4’s loopback, as
demonstrated in Example 1-11.

Example 1-11. Unlabeled traceroute to a non-BGP destination—PE1 (Junos)

juniper@PE1> traceroute 172.16.0.44
traceroute to 172.16.0.44
 1  P1 (10.0.0.3)  42.820 ms  11.081 ms  4.016 ms
 2  P2 (10.0.0.25)  6.440 ms P2 (10.0.0.7)  3.426 ms *
 3  PE4 (10.0.0.11)  9.139 ms *  78.770 ms

Let’s get back to the PE1→PE4 LSP and move on to P1, the first LSR on the path.

Example 1-12. Routing and forwarding state at a transit P—P1 (Junos)

juniper@P1> show route table mpls.0 label 1000001

mpls.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

1000001    *[MPLS/6] 07:23:19, metric 1
            > to 10.0.0.7 via ge-2/0/3.0, Swap 1000002

The mpls.0 table stores label instructions. For example, if P1 receives a packet with
label 1000001, the instruction says: swap the label for 1000002 and send the packet
out of ge-2/0/3 to P2. This instruction set is known as the Label Forwarding Informa‐
tion Base (LFIB). The mpls.0 table is not auxiliary: it populates the forwarding table.

Finally, let’s look at P2’s LFIB in Example 1-13.

Example 1-13. Routing and forwarding state at a transit P—P2 (IOS XR)

RP/0/0/CPU0:P2#show mpls forwarding labels 1000002
Local  Outgoing    Outgoing     Next Hop        Bytes
Label  Label       Interface                    Switched
------ ----------- ------------ --------------- ------------
1000002 Pop         Gi0/0/0/5    10.0.0.11       8212650

There is no point in looking at PE4, which behaves like a pure IP router with respect
to the H1→H3 packets.

LSP PE4→PE2—Configuration
For completeness, Example 1-14 presents the full configuration of the PE4→PE2 LSP.
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Example 1-14. LSP PE4→PE2 configuration—IOS XR

#PE4 (IOS XR)
mpls static
 address-family ipv4 unicast
  local-label 1000200 allocate per-prefix 172.16.0.22/32
   forward
    path 1 nexthop GigabitEthernet0/0/0/0 10.0.0.10 out-label 1000110
!

#P2 (IOS XR)
mpls static
 address-family ipv4 unicast
  local-label 1000110 allocate
   forward
    path 1 nexthop GigabitEthernet0/0/0/0 10.0.0.4 out-label pop
!

The key syntax at PE4 is per-prefix: this says that in order to place a packet on an
LSP whose tail end is PE2 (172.16.0.22), push label 1000110 and send it to P2.

The first label value (1000200) from Example 1-14 is not really part of the PE4→PE2
LSP. It means that if it receives an MPLS packet with the outermost label 1000200,
PE4 puts the packet on the PE4→PE2 LSP by swapping the label for 1000110. This
logic is not very relevant to the current example, where H3→H1 packets arrive unla‐
beled to PE4.

Example 1-15 demonstrates the routing and forwarding state at the ingress PE (PE4).

Example 1-15. Routing and forwarding state at the ingress PE—PE4 (IOS XR)

RP/0/0/CPU0:PE4#show bgp 10.1.12.0/24 brief
[...]
   Network        Next Hop       Metric LocPrf Weight Path
* i10.1.12.0/24   172.16.0.11       100    100      0 65001 i
*>i               172.16.0.22       100    100      0 65001 i

RP/0/0/CPU0:PE4#show cef 10.1.12.10
[...]
 local adjacency 10.0.0.10
   via 172.16.0.22, 2 dependencies, recursive [flags 0x6000]
    path-idx 0 NHID 0x0 [0xa137dd74 0x0]
    next hop 172.16.0.22 via 172.16.0.22/32

RP/0/0/CPU0:PE4#show cef 172.16.0.22
[...]
 local adjacency 10.0.0.10
   via 10.0.0.10, GigabitEthernet0/0/0/0, 4 dependencies, [...]
    next hop 10.0.0.10
    local adjacency
     local label 1000200      labels imposed {1000110}
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RP/0/0/CPU0:PE4#show mpls forwarding labels 1000200
Local  Outgoing Prefix         Outgoing   Next Hop  Bytes
Label  Label    or ID          Interface            Switched
------ -------- -------------- ---------- --------- --------
1000200 1000110 172.16.0.22/32 Gi0/0/0/0  10.0.0.10 10410052

The logic in IOS XR is very similar, except that in this case there are no auxiliary
tables. As a result, PE4’s default behavior is to push labels on the packets that it sends
to internal (non-BGP) destinations that are more than a hop away, like PE2’s loop‐
back shown in Example 1-16.

Example 1-16. Labeled traceroute to a non-BGP destination—PE4 (IOS XR)

RP/0/0/CPU0:PE4#traceroute 172.16.0.22

 1  p2 (10.0.0.10) [MPLS: Label 1000110 Exp 0] 9 msec ...
 2  pe2 (10.0.0.4) 0 msec ...

End-to-end user traffic
After the PE1→PE4 and the PE4→PE2 LSPs are up, end-to-end connectivity is fine.

Example 1-17. End-to-end user traceroute through an MPLS network

RP/0/0/CPU0:H1#traceroute vrf H1 10.2.34.30

 1  ce1 (10.1.12.1) 0 msec ...
 2  pe1 (10.1.0.1) 0 msec ...
 3  p1 (10.0.0.3) [MPLS: Label 1000001 Exp 0] 9 msec ...
 4  p2 (10.0.0.7) [MPLS: Label 1000002 Exp 0] 9 msec ...
 5  pe4 (10.0.0.11) 9 msec ...
 6  br4 (10.2.0.4) 9 msec ...
 7  h3 (10.2.34.30) 9 msec ...

As expected, traceroute shows the forward path with the PE1→PE4 LSP’s labels.

You might wonder how P1 can send an Internet Control Message Protocol (ICMP)
Time Exceeded message to H1, taking into account that it does not even have a route
to reach H1. What happens is the following:

1. P1 receives a UDP packet with MPLS label 1000001 and MPLS TTL =1.
2. P1 decrements the TTL, detects that it expired, and encapsulates the original

UDP packet with MPLS label 1000001 inside an ICMP Time Exceeded packet,
which is in turn encapsulated with MPLS label 1000002. This packet has
TTL=255.
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3. P1 sends the MPLS-encapsulated ICMP Time Exceeded packet to P2, which pops
the label and sends the packet to PE4.

4. PE4 looks at the destination of the ICMP Time Exceeded packet, which is H1.
According to a regular IPv4 lookup, PE4 sends this packet through the PE4→PE2
LSP, and this is how it gets to H1.

This mechanism works by default in IOS XR, but you must explic‐
itly activate it in Junos by using the command set protocols
mpls icmp-tunneling.

Forwarding Equivalence Class
The previous example focused on the communication between two hosts, H1 and H3.
Let’s take one step back and think of the global Internet. Imagine that PE1 chooses
PE4 as the BGP next hop for 100,000 routes. Think twice: all of these 100,000 routes
have the same BGP next hop. This means that PE1 can send all the packets toward
any of these 100,000 prefixes through the same LSP. Of course, this can raise concerns
with regard to load balancing and redundancy, but these topics are fully covered in
this book.

Every packet that PE1 maps to the PE1→PE4 LSP belongs to a single Forwarding
Equivalence Class (FEC). The transit LSRs only need to know how to forward in the
context of this FEC: basically, just one entry in the LFIB. Thus, trillions of flows can
be successfully forwarded with just one forwarding entry.

Forwarding state aggregation is one of the first immediate benefits
of MPLS.

Again, What Is MPLS?
MPLS is not an encapsulation. It is an architectural framework that decouples trans‐
port from services. In this case, the service is Internet access (IPv4 unicast) and the
transport is performed by MPLS LSPs.

This decoupling is achieved by encoding instructions in packet headers. Whether the
encapsulation is MPLS or something else, the MPLS paradigm remains.

The Internet is living proof of how MPLS is a cornerstone of network service scalabil‐
ity. Every second that our user, Annika, is in a video conference with her friend Rui‐
jiao, more than 1,000 MPLS labels are pushed, swapped, or popped to make it
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happen. The core devices that do these label operations have no visibility of the public
IP addresses that Annika’s and Ruijiao’s terminals use to connect to the Internet.

Another important aspect of MPLS is instruction stacking. Whether these instruc‐
tions are in the form of labels or something else, being able to stack them is equiva‐
lent to providing a sequence of instructions. For network services that go beyond
simple connectivity, this is a key enabler.

As discussed later in Chapter 10, scalable network architectures have a North-South
and an East-West direction. Instruction stacking introduces another dimension: Up-
Down.

MPLS is a natural fit for architectures with a feature-rich network
edge combined with a fast and resilient backbone.

MPLS was born for the Internet. It started small and continues to grow. The initial
goal of MPLS was to solve a very specific challenge, but now it keeps evolving to meet
many other requirements in terms of service, transport, class of service, performance,
resilience, and so on.

OpenFlow
The SDN era started with an experimental protocol that created a high level of
expectation: OpenFlow.

OpenFlow enables flow-based programmability of a forwarding engine. Its initial ver‐
sion (v1.0) is basically a network switch abstraction. Over time, different versions of
OpenFlow have incorporated more functionality, the details of which are beyond the
scope of this book. You can find all the definitions and specifications at the Open
Networking Forum (https://www.opennetworking.org/sdn-resources/openflow).

Figure 1-11 shows OpenFlow v1.0 at work. OpenFlow assumes that there is a central
controller software running as a virtual machine (VM), or as a container, or directly
on the host OS of a server. The controller must have IP connectivity to the switches
by using either of the following:

• An out-of-band network that is not under the command of the controller
• An in-band network connection that relies on some preexisting forwarding state
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Figure 1-11. Openflow in action

Switches have a lightweight control plane and a comparatively more powerful for‐
warding engine. The most important piece of state on an OpenFlow-controlled
switch is its flow table. The switches’ control plane is connected to the central con‐
troller via an OpenFlow TCP session, whose purpose is to exchange OpenFlow
messages.

Figure 1-11 shows Host A sending the first packet of a user TCP flow to Host B.
When the packet arrives to port 1, Switch #1 realizes that this flow is not program‐
med on its flow table, so its control agent “punts” the packet to the controller. The
controller had previously learned where Host B is, and with this information it is able
to program the new flow on the switches. At this point, the switches are able to for‐
ward this flow’s packets to the destination.

OpenFlow—Flow-Based Forwarding
One fundamental architectural attribute of OpenFlow is its per-flow programmabil‐
ity, offering a fine granularity when it comes to defining flows and their associated
actions. This results in a flow-based forwarding model. For decades, the industry has
produced a wide variety of both flow-based forwarding and packet-based forwarding
solutions. Which model is better? Neither—both are. It really depends on the use
case.

There are parts of the network where even thinking about flow-based forwarding is
out of the question, like in the core and most of the broadband edge functions,
because it would not scale and there is no need for it. The Internet requires state
aggregation (FECs) instead of state expansion (flows). Keeping state for flows is
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inherently more expensive and complex than doing packet-based forwarding. How‐
ever, there are other network functions, such as firewalling, DPI, and CGNAT, among
others, that need to be flow-based due to the nature of the function they execute.

The same principles by which the industry has naturally selected which parts of the
network should be flow-based and which should not are still completely valid. The
fact that there is a new protocol to program flows on a network does not make flow-
based forwarding either a better or worse idea.

New developments in forwarding technology, memory, and costs, could shift things
in one direction or the other. For this reason, it is wise to decouple the existence of
the OpenFlow protocol from the debate of whether flow-based forwarding is a good
idea or not. In fact, OpenFlow, as such, does not mandate nor specify the granularity
of the flows to be programmed.

When deciding to use one model or the other, the first question to answer is do you
need flow-based forwarding? If not, it’s better to use packet-based forwarding. Data
center fabrics (described in Chapter 10) are a good example of the risks involved in
blindly moving to a flow-based forwarding paradigm. At first glance, it looks like a
good fit, but a deeper analysis proves that it really depends on the primary use of the
data center.

Ivan Pepelnjak wrote an enlightening article called “OpenFlow and Fermi Estimates,”
which is included in his book, SDN and OpenFlow—The Hype and the Harsh Reality
(self-published, 2014, http://www.ipspace.net/Books). You might have realized that
your web browser automatically establishes connections to many URLs that you had
no intention to visit. For example, when you read your favorite online newspaper, a
wide variety of content—such as advertisements, multimedia, and stats—are auto‐
matically loaded from external sites. Every piece of content is retrieved via an individ‐
ual short-lived connection. It is this short-lived characteristic of many Internet flows
that makes flow programming a very intensive task. This is particularly true for high-
speed data center switches, which have a comparatively weak control plane. Pepeln‐
jak’s Fermi estimate shows that the forwarding capacity of a typical data center switch
is reduced by several orders of magnitude when it must perform flow-based forward‐
ing of HTTP flows. The control plane becomes the bottleneck in this case, so most of
the bandwidth cannot be used. If your network transports short-lived flows, use
OpenFlow carefully.

OpenFlow—Openness and P4
OpenFlow is an open protocol and P4 (a newer high-level language—programming
protocol-independent packet processors—thus four Ps) takes it one step further, from a
protocol to a programming language. Despite the definitions, not everyone agrees on
whether OpenFlow and P4 are actually high level or low level.
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No wonder, openness is cool. On the other hand, implementing fine-grained edge
features is complex. There is no way around it. Regardless of whether the complexity
is on the application-specific integrated circuits (ASICs), or on the low-level micro‐
code, or on high-level instructions, it must be somewhere, and not every approach is
equally efficient or flexible. Standardizing a high-level language hides complexity,
which is great, but for many features, developers need to go down to the lower levels.

There is value in low-level languages because they provide flexibility due to how close
they are to the actual hardware. They are, and must be, inherently specific, and if they
want to be generic, they will precisely lose that specificity. Hardware has differences
that must be exposed because there is a lot of innovation that vendors are adding to
their ASICs to differentiate them from one another. If they are exposed, the language
becomes specific. If they are not exposed, the innovation is lost, and the system
becomes a disincentive to innovation.

At a certain low level, the relationship between hardware and the software that pro‐
grams it is very intimate. Trying to insert a layer between, even an industry-defined
layer, is not guaranteed to boost innovation. Only time will tell whether standardizing
the way that a network device is programmed brings innovation or slows down the
new feature implementations. It will certainly be an interesting story to watch or in
which to at least play a role.

Another important characteristic of the OpenFlow model is the decoupling of the
control and forwarding planes. Let’s discuss this topic in the broader context of SDN.

SDN
This book does not attempt to redefine the SDN concept itself: this is up to the inven‐
tors of the acronym. What this book takes the liberty of describing is the SDN era.
Let’s first discuss the official definition of SDN and then later move on to the SDN
era.

SDN has been defined by Open Networking Forum (https://www.opennetworking.org)
as follows:

The physical separation of the network control plane from the forwarding plane, and
where a control plane controls several devices.

Following this definition, it states:
Software-Defined Networking (SDN) is an emerging architecture that is dynamic,
manageable, cost-effective, and adaptable, making it ideal for the high-bandwidth,
dynamic nature of today’s applications. This architecture decouples the network con‐
trol and forwarding functions enabling the network control to become directly pro‐
grammable and the underlying infrastructure to be abstracted for applications and
network services. The OpenFlow™ protocol is a foundational element for building SDN
solutions.
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Separation of the Control and Forwarding Planes
The process of decoupling the control and the forwarding planes is presented as a key
element that drives SDN adoption; however, some engineers contend that such sepa‐
ration has existed for many years on their own networks. For example, both Juniper
and Cisco routers clearly separated the control and forwarding planes in the 1990s.
The fact that they were running on the same physical chassis did not negate such sep‐
aration, which was, in fact, fundamental to enable growth on the Internet. When
Juniper introduced such separation, along with ASIC-based forwarding, it triggered
an era of unprecedented capacity growth. And with hindsight, it was required to sus‐
tain the unprecedented traffic growth that lay ahead.

Since the early 2000s—a few years before OpenFlow was proposed—networking ven‐
dors have implemented and shipped solutions that instantiate the control plane on an
external physical device. This is essentially a controller that programs the so-called
“line card chassis.”

It is therefore fair to note that the fundamental architectural attribute associated with
SDN, separating the control and forwarding planes, is not essentially new, and is
widely used already on the networks. Anyway, new or not, this attribute is valuable.

Another fundamental architectural ingredient of SDN is centralization. Sometimes it
is logical centralization, because physical centralization is not always feasible. If you
assume that the control plane of your network is physically decoupled from the for‐
warding plane, it leads to an interesting set of challenges:

• You need a network to connect both functions (the control and forwarding
planes). If such a network fails, how does the solution work?

• There are latency constraints for proper interworking between the control and
forwarding planes. Latency is important for resiliency, response to network
events, telemetry, and so on. How far can the controller be from the forwarding
elements?

It is not trivial to generalize, for any network, a way that these principles can be
applied. SDN’s principles are better analyzed in the context of specific use cases. You
can then see if an architecture that adheres to these principles is feasible or not.

Separating the control and forwarding planes—data center overlays
A paradigmatic use case for which SDN principles fit well is the overlay architecture
at data centers, assuming the following:

• There is an underlay fabric that provides resilient connectivity between the over‐
lay’s forwarding plane (usually a vRouter or a vSwitch on a server) and the con‐
trol plane (central controller).
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• The latency is contained within specific working limits.

Separating the control and forwarding planes—WAN IP/MPLS
Let’s now analyze the applicability of the SDN architectural principles to the WAN IP/
MPLS network on any ISP. Although there are certain control plane functions that we
can centralize, it is unfeasible to achieve a full centralization. Indeed, if you place the
entire control plane hundreds or thousands of kilometers (and N network hops) away
from the forwarding plane, it is not possible to guarantee the interaction between
both planes in a reliable and responsive way. For this reason, the SDN concept can
only be applied to the WAN environment in a tactical manner.

Having some centralized network-wide control intelligence can lead to more accurate
calculations, which is very useful for cases such as Traffic Engineering. In this case,
the distributed control plane is enhanced by an additional centralized intelligence.
This is fully explained in Chapter 15.

These examples show that SDN can have different levels of applicability for each sce‐
nario (no one-size-fits-all). Network vendors have applied this design principle over
the years to many technology and architecture designs: centralize what you can, dis‐
tribute what you must. If something can be centralized, and there are no physical or
functional constraints, centralize it; otherwise, it should be left distributed.

SDN and the Protocols
It is fair to claim that OpenFlow was a spark that caused a mind shift in the industry,
triggering a healthy debate that has acted as a catalyzer for the SDN era.

That having been said, there is some controversy about the technical relevance of
OpenFlow. Whereas some engineers believe that OpenFlow is the cornerstone of
SDN, others believe that it does not propose anything fundamentally new. In all fair‐
ness, as with any other protocol or technology, OpenFlow is evolving through its dif‐
ferent versions. Whether it will really enable a fundamental benefit in the future or
not, only time will tell.

In parallel with the continual development of OpenFlow, other industry forums such
as IETF have also been developing similar concepts. In fact, two of the IETF’s crown
jewels, BGP and MPLS, are gaining momentum as SDN-enabler protocols.

It is not surprising to find BGP in the SDN era, because it is the most scalable net‐
working protocol that ever has been designed and implemented. On the other hand,
the MPLS paradigm (decoupling service from transport, placing instructions on
packet headers) is gaining an ever-growing relevance in the development and deploy‐
ment of scalable SDN solutions. This paradigm has indeed been renamed by the
OpenFlow community as SDN 2.0.
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Remember that the MPLS paradigm is not an encapsulation.

Chapter 11 and Chapter 12 describe production-ready SDN solutions mainly based
on BGP—and its derivatives—in combination with the MPLS paradigm.

In practice, OpenFlow is an optional element of the SDN-like architectures. Many
modern SDN-like solutions do not rely on OpenFlow and are not even inspired by it.
Others do: of course, OpenFlow belongs to the SDN era.

Some parallel IETF projects concentrate on standardizing the way to program and
configure the network elements’ behavior (e.g., PCEP, BGP Flowspec, NETCONF/
YANG/OpenConfig, I2RS, and ForCES). Although some have not been widely adop‐
ted, others are gaining momentum and they also belong to the SDN era. Chapter 15
covers PCEP in detail.

Regardless of the terminology debate and the protocol choice, one thing is certain:
the industry will continue exploring and implementing new architectures that are
certainly changing the way we see and use networking.

The SDN Era
If you look at all the SDN-like implementations and technologies, you’ll find two ele‐
ments in common that reveal what was missing at the beginning of the century in our
industry:

Automation
Creating the conditions to automate actions on the networks (configuration, pro‐
visioning, operation, troubleshooting, etc.)

Abstraction
Achieving North-South communication by surpassing the vendor-specific barri‐
ers and complexities that customers had to adapt to, or avoid

If you look at how the industry has adopted two protocols such as OpenFlow or Net‐
conf, the focus has typically been on the “how”: how to program low-level flows or
how to configure a device. However, what the industry really needs is a focus on the
“what”: what is the intent. It is going high level, going abstract, which enables defining
intents and automating actions around those intents. In other words: “Say what you
want, not how you want it.” Then make the network intelligent enough to decide the
best “how” possible.

In summary, what is common across the myriad SDN terms and cross initiatives,
industry wide, is automation and abstraction. This is the real essence of what this
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book considers the SDN era and that we, as an industry, should probably care about.
Let’s briefly look at a few specific use cases of new technologies that seem to provide
concrete added value to real customer challenges through automation and abstrac‐
tion.

SDN-Era Use Cases
If we step away from the term SDN and its many interpretations, there are in fact new
solutions and technologies developed for specific use cases that involve both an archi‐
tectural change, and a response to a real problem. The following is a list of represen‐
tative scenarios that are part of the new thinking in the SDN era. Some use tested
technologies in a practical, often brilliant, way.

Data center
The data center requirements have grown by orders of magnitude in many dimen‐
sions, and very rapidly. Data centers have suffered a rapid transition from being mere
dense LANs into hyperscale infrastructures with very strict requirements not only in
performance but also in latency, scale, multitenancy, and security. And associated
with all of that is the need for improved manageability.

Some proposed data center switching infrastructures are based on OpenFlow with a
central controller programming flows along the path, but the industry has also looked
at other architectures and technologies that have proven to deliver on the same
requirements at scale. You do not need to look far to find them: the Internet itself.
The suite of protocols and architectures used to build the Internet and the ISP IP net‐
works have become the best mirror to look at to build the next generation data cen‐
ters that do the following:

• Decouple transport from services (the architectural principle of MPLS)
• Build a stable, service-agnostic transport infrastructure (fabrics)
• Provision services only at the edge, and use scalable protocols for the control

plane (BGP)

This ISP architecture has been adapted to data centers in several ways. First, the
underlay’s forwarding plane is optimized to the specific requirements of data centers,
which include very low latency among the end systems (servers) and very high trans‐
port capacity with almost no restriction.

The ISP’s edge is replaced with the data center’s overlay-capable edge forwarders, typ‐
ically instantiated by the vRouter/vSwitch on server hypervisors or eventually the
Top-of-Rack (ToR) switch.

This provides a good opportunity to use a central controller that is capable of pro‐
gramming the edge forwarders as if they were the packet forwarding engines or the
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line cards of a multicomponent physical network device. You can see this model in
detail throughout Chapter 11.

WAN
The ISP WAN—the internal ISP backbone—is another specific use case for which
there are new challenges that need to be addressed. Bandwidth resources are scarcer
than ever, and CAPEX control levels make it impossible to deploy as much capacity
as in the past. However, traffic continues to grow, and a growing variety of services
flow across the WAN infrastructure, raising the need for mechanisms that are capable
of managing these resources more efficiently and dynamically. MPLS Traffic Engi‐
neering has existed for many years, but the distributed nature of the Traffic Engineer‐
ing decisions led to inefficiencies.

Now, with the broader availability and implementations of protocols such as PCEP, it
is possible to enable centralized intelligent controllers that complement the distributed
control plane of the network, by adding a network-wide vision and decision process.
The ISP WAN can now take advantage of implementations that offer intelligent man‐
agement of resources and automation for tasks that previously could only be done in
a limited fashion and to some extent manually, or were simply not done, because
there was enough capacity. The resource scarcity and the business requirements now
mandate a different way of doing it, and this is another example and use case of new
implementations that employ long-standing concepts, such as the PCE Client-Server
architecture. This model is detailed in Chapter 15.

Packet-optical convergence
Packet-based and circuit-based switching are two fundamentally different paradigms,
and they both have reasons to exist. Traditionally they have been separate layers, most
of the time with the circuit-switching network as the server layer for the packet-
switching network (the client). This role is sometimes reversed; for example—with
TDM emulated circuits over MPLS in Mobile backhaul scenarios, briefly discussed in
Chapter 6.

Optical networks are the most common circuit-switched technology. They provide
optical circuits that packet-based networks use for point-to-point communication
among the different packet-switching nodes (routers, switches, etc.).

In the SDN era, the vast majority of the traffic is becoming IP—even mobile voice
with technologies such as VoLTE. It is already a fact that the main (if not only) pur‐
pose of the optical network is to transport the IP network. For this reason, the tight
coordination and optimization of the optical and IP networks becomes business criti‐
cal. Any inefficiency on such integration immediately becomes a large source of extra
CAPEX and OPEX.
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Therefore, here’s another area where ISPs face a strong challenge that requires specific
solutions. The need for resource coordination, automation, and optimization is
addressed by doing the following:

• Exposing resources in a normalized way (abstraction)
• Having the ability to automate the right resource allocation decisions (set up

paths, optimize paths, search for backup resources, etc.) while considering both
the optical layer and the packet layer

Again, the role of a centralized controller is paramount. The model described in
Chapter 15 is also targeting this use case.

IP peering
IP peering provides another opportunity to enhance and optimize the existing mech‐
anisms. So far, the IP peering points’ behavior has been exclusively governed by BGP
protocol rules. BGP implements a decision algorithm that searches for the best loop-
free path—loop-free in the sense that the AS path does not contain the same AS
twice. Although many tools such as BGP attributes can be used to influence the deci‐
sion process, it still remains a built-in algorithm that is based on certain predefined
rules. Such rules may not take into account business-related aspects that a provider
could need to consider in order to make the best routing decisions.

Some of these business aspects are the price of the peering connection (it might be a
transit link), the actual latency to the destination (shorter AS paths do not necessarily
imply lower latency), link occupation, and maybe others. As business conditions
become stricter in our industry, network decisions need to factor in more variables.

ISPs often use ad hoc tunneling overlays (based on IP or MPLS) to bypass the default
forwarding decisions, but this approach does not scale: ISPs deserve a better solution.

A controller-based solution that addresses this opportunity needs to have detailed
visibility of all the BGP routing state in the SP. The BGP Monitoring Protocol (BMP),
implemented in both Junos and IOS XR, accommodates retrieving from a given
router:

The Adj-RIB-in
These are the prefixes that the polled router has received from a peer, prior to the
application of import routing policies.

The Adj-RIB-out
These are the prefixes that the polled router has advertised to a peer, after the
application of export routing policies.
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Additionally, enhanced telemetry mechanisms are being implemented to retrieve sig‐
nificant traffic statistics. Putting all together, such a solution is definitely feasible in
the mid-term future.

This is another example of a real customer challenge that can be solved in the SDN
era by a partial centralization of the decision process through incremental intelli‐
gence. And it’s another case of automation and abstraction.

The branch office
The services offered at the branch office have been substantially static. SPs are look‐
ing at ways to offer more dynamic services that the customer might even self-
provision. These services can reduce operating expenses by delegating some tasks to
the customer, and at the same time help increase the revenue through a faster service
adoption (point-and-click customer service-provisioning) and new business models
(try-and-buy).

This is an old aspiration from SPs and has been the object of traditional technologies
such as policy servers, PCRF, Radius/CoA, and the like. For example, the so-called
Turbo Button, with which the customer can increase the bandwidth temporarily of its
broadband connection, or the self-provisioning portals that enable it, among other
possibilities, have existed in the industry for many years. However, the market and
business is now rising and more SPs are interested in actively offering these options.

Today, in the SDN era, the business pressure threatens sustainability, so increasing
top-line revenue becomes a must through offering more flexible services. This is an
opportunity for new emerging solutions based on centralized controllers that imple‐
ment flexible and automated services configuration.

Although these scenarios use existing technologies and do not represent any radical
architectural shift, all of these use cases represent a clever combination of one or
more of the following attributes:

• Automation and abstraction
• Complementing the intelligence of the existing infrastructure
• Making the network decisions more dynamic
• Decoupling overlay from underlay in order to scale

These attributes are what the authors intend to apply to the book’s many chapters on
MPLS, making it fundamentally a key tool in the SDN era.
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CHAPTER 2

The Four MPLS Builders

Depending on the function of a Multiprotocol Label Switching (MPLS) label, it can
receive many names: transport label, service label, VPN label, entropy label, and so
on. This chapter focuses on the original and primary function of MPLS labels: the
transport of data packets through a labeled tunnel.

Chapter 1 describes how MPLS tunnels are provisioned by using a static label-
mapping technique. However, this approach is limited in terms of scalability, opera‐
bility, failure detection, and redundancy. There is fortunately a classic solution at
hand: signaling the tunnels with protocols that create MPLS paths in a dynamic man‐
ner. What protocols? There are actually a few of them, each with their pros and cons.

This chapter covers the following alternatives:

• Two pure MPLS signaling protocols: Label Distribution Protocol (LDP) and
Resource Reservation Protocol with Traffic Engineering (RSVP-TE)

• The modern MPLS extensions of classic IP routing protocols: Border Gateway
Protocol (BGP), Intermediate System–to–Intermediate System (IS-IS), and Open
Shortest-Path First (OSPF)

BGP has had MPLS extensions since the early times, and they keep evolving. As for
IS-IS and OSPF, their MPLS extensions have come more recently with a technology
called SPRING or Segment Routing. SPRING, which was still in IETF draft state at
the time of the publication of this book, also has extensions for BGP.

The four MPLS Builders are therefore: LDP, RSVP-TE, BGP, and the Interior Gateway
Protocol (IGP). LDP was already proposed in the 1990s, so why are there so many
other MPLS signaling protocols? First, LDP did not cover the Traffic Engineering use
case, so RSVP-TE was soon proposed for that purpose. And because neither LDP nor
RSVP-TE nicely solved the interdomain use case, new BGP extensions were defined
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to achieve it. Some scenarios are a good fit for LDP, or for RSVP-TE, or for BGP, or
for a combination of them. As for SPRING, most of its use cases can be covered by a
combination of other protocols (LDP, RSVP-TE, and BGP), but it is a recent technol‐
ogy whose applications are diversifying, it brings deterministic labels to the table, and
it is very interesting to see how you can use the IGP to build MPLS LSPs.

Let’s begin with LDP, probably the most classic and widespread of them all. The base‐
line topology is borrowed from Chapter 1. For convenience, it is also displayed here
in Figure 2-1.

Figure 2-1. Basic MPLS topology

In this chapter, all the IGP core link IS-IS metrics are set to the
default value (10). This makes internal load-balancing scenarios
more interesting.

LDP
Despite its simple appearance, LDP (RFC 5036) is not that easy to understand. 
Indeed, LDP can signal three types of transport Label-Switched Paths (LSPs):
multipoint-to-point (MP2P), point-to-multipoint (P2MP), and multipoint-to-
multipoint (MP2MP). Unlike its fellow RSVP-TE, LDP does not signal the LSP type
that happens to be the most intuitive of them all: point-to-point (P2P) LSPs. This
chapter focuses on unicast traffic, which in the context of LDP is transported in
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MP2P LSPs. These go from any ingress provider edge (PE) to a given egress PE. Last
but not least, LDP does not implement Traffic Engineering.

So, why is LDP such a popular MPLS transport protocol? Several characteristics make
it highly scalable and operationally attractive. First, label signaling takes place on TCP
connections, achieving reliable delivery with minimal refresh. Second, MP2P LSPs
involve a significant state reduction. And finally, when it comes to configuring trans‐
port LSPs, LDP is plug-and-play. You just enable LDP on the core interfaces, and the
magic is done.

Example 2-1. LDP configuration at PE1 (Junos)

protocols {
    ldp {
        track-igp-metric;
        interface ge-0/0/3.0;
        interface ge-0/0/4.0;
}}

The track-igp-metric knob couples LDP to the IGP and it is a best practice for loop
avoidance. Remember that throughout this entire book, it is assumed that all the
MPLS interfaces are declared under [edit protocols mpls] and have family mpls
enabled, as in Chapter 1.

Following is a basic LDP configuration in IOS XR.

Example 2-2. LDP configuration at PE2 (IOS XR)

mpls ldp
 interface GigabitEthernet0/0/0/3
 interface GigabitEthernet0/0/0/4

In IOS XR, MPLS often relies on LDP to be globally enabled. If the
network runs a different MPLS label signaling protocol, you don’t
need to configure any interfaces under mpls ldp, but the global
statement is typically needed.

LDP Discovery and LDP Sessions
As soon as LDP is enabled on an interface, a process called basic discovery begins. The
LSR begins to send and receive LDP hello messages on each of the configured inter‐
faces. Let’s focus on the message exchange between P1 and P2, which is illustrated in
Figure 2-2.
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Figure 2-2. LDP hello messages

In the basic discovery process, LDP hello messages are encapsulated as follows:

• First, in a UDP header, with source and destination port 646
• Then, in an IPv4 header with TTL=1 and destination address 224.0.0.2, the all-

routers link-local multicast address

These packets are not routable, and their purpose is to establish adjacencies between
directly connected neighbors only. Note that there is another method called extended
discovery, also known as targeted LDP, whereby the LDP hellos are unicast and multi‐
hop (TTL>1). This is described later in this chapter.

The basic discovery process builds LDP hello adjacencies. There is one per LDP-
enabled interface, so P1 and P2 establish two hello adjacencies.

Example 2-3. LDP hello adjacencies at P1 (Junos)

juniper@P1> show ldp neighbor
Address            Interface          Label space ID      Hold time
10.0.0.2           ge-2/0/1.0         172.16.0.11:0         13
10.0.0.7           ge-2/0/3.0         172.16.0.2:0          12
10.0.0.25          ge-2/0/4.0         172.16.0.2:0          12
10.0.0.9           ge-2/0/6.0         172.16.0.33:0         14

Example 2-4. LDP hello adjacencies at P2 (IOS XR)

RP/0/0/CPU0:P2#show mpls ldp discovery brief

Local LDP Identifier: 172.16.0.2:0

Discovery Source  VRF Name       Peer LDP Id    Holdtime Session
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----------------- -------------- -------------- -------- -------
Gi0/0/0/0         default        172.16.0.22:0     15       Y
Gi0/0/0/2         default        172.16.0.1:0      15       Y
Gi0/0/0/3         default        172.16.0.1:0      15       Y
Gi0/0/0/5         default        172.16.0.44:0     15       Y

The LDP hello messages originated by P1 have two key pieces of information:

• The label space 172.16.0.1:0, whose format is <LSR ID>:<label space ID>. The
<LSR ID> is simply P1’s router ID.

• The IPv4 transport address, which is also P1’s router ID.

But, what do the label space and the transport address stand for?

Let’s begin with the transport address. LDP discovery triggers the establishment of
one LDP-over-TCP session between each pair of neighboring LSRs. The endpoints of
these multihop TCP sessions are precisely the transport addresses encoded in the
UDP-based hellos, as shown in Example 2-5.

Example 2-5. LDP over TCP session (CE1)

juniper@P1> show system connections | match "proto|646"
Proto Recv-Q Send-Q  Local Address   Foreign Address    (state)
tcp4       0      0  172.16.0.1.646  172.16.0.2.51596   ESTABLISHED
tcp4       0      0  172.16.0.1.646  172.16.0.33.50368  ESTABLISHED
tcp4       0      0  172.16.0.1.646  172.16.0.11.49804  ESTABLISHED
tcp4       0      0  *.646           *.*                LISTEN
udp4       0      0  *.646           *.*

It is important to configure the router ID to the same value as a reachable loopback
address; otherwise, the LDP session cannot be established.

Even though P1 and P2 have more than one LDP hello adjacency,
they only establish one LDP session, from loopback to loopback.

After they establish the TCP connection via the classic three-way handshake, P1 and
P2 exchange LDP initialization messages and finally the label information. Let’s have
a look at the LDP sessions.

Example 2-6. LDP sessions at P1 (Junos)

juniper@P1> show ldp session
  Address       State        Connection     Hold time  Adv. Mode
172.16.0.2      Operational  Open             24         DU
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172.16.0.11     Operational  Open             21         DU
172.16.0.33     Operational  Open             20         DU

Example 2-7. LDP Sessions at P2 (IOS XR)

RP/0/0/CPU0:P2#show mpls ldp neighbor brief

Peer               GR  NSR  Up Time   Discovery  Address  IPv4 Label
-----------------  --  ---  --------- -------    -------  ----------
172.16.0.22:0      N   N    1d04h            1        6          25
172.16.0.44:0      N   N    1d04h            1        5          23
172.16.0.1:0       N   N    00:02:02         2        6          10

The terminology becomes a bit confusing across vendors, so we’ve summarized the
concepts. This book uses the RFC terms.

Table 2-1. LDP neighbor terminology

RFC 5036 LDP hello adjacencies (UDP) LDP sessions (TCP)

Junos show ldp neighbor show ldp session

IOS XR show mpls ldp discovery show mpls ldp neighbor

There are two types of heartbeat mechanisms in LDP:

• LDP-over-UDP Hello messages to maintain LDP Hello Adjacencies
• LDP-over-TCP keepalives to maintain LDP Sessions (TCP already provides a

keepalive mechanism, but LDP keepalives are more frequent and hence more
robust)

LDP Label Mapping
As soon as two neighbors establish an LDP session, they begin to exchange label
mapping messages that associate IPv4 prefixes to MPLS labels. These label mappings
make up a Label Information Base (LIB).

IPv4 prefixes are one example of Forwarding Equivalence Class (FEC) elements.
According to RFC 5036, “The FEC associated with an LSP specifies which packets are
‘mapped’ to that LSP.”

Translated to this chapter’s example topology, PE1 needs an LSP terminated at PE3 in
order to send packets beyond PE3. And the FEC associated to that LSP is represented
by 172.16.0.33/32, PE3’s loopback address. Although it is not the most precise expres‐
sion, you could say that 172.16.0.33/32 is a FEC. The ingress PE (in this example,
PE1) does not necessarily tunnel traffic destined to the FEC itself. Most typically, the
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packet matches a route at PE1 whose BGP next hop is 172.16.0.33. This is the associa‐
tion between the packet and the FEC. Good old MPLS logic!

Probably the best way to understand LDP is to see it at work. Let’s focus on one IPv4
prefix or FEC: the loopback address of PE3 (172.16.0.33/32).

In Figure 2-3, you can see that all of the core routers in the network advertise a label
mapping for this prefix. This is a bit surprising because PE3 receives from its neigh‐
bors label mappings for its own loopback address! As its name implies, LDP is just
that, a label distribution protocol, not a routing protocol. It simply distributes label
mappings and does not care about whether these announcements make topological
sense.

Looking carefully at Figure 2-3, you can see that each router advertises the same label
mapping on every LDP session. For example, P1 advertises the mapping [FEC ele‐
ment 172.16.0.33/32, label 300000] to all its neighbors. This is a local label binding at
P1. Indeed, P1 locally binds the label 300000 to 172.16.0.33/32, and it’s telling its LDP
peers: if you want me to tunnel a packet toward PE3, send it to me with a topmost
MPLS header containing label 300000.

Figure 2-3. LDP label mapping messages for 172.16.0.33

This assignment has only local significance and must be interpreted in the context of
label space 172.16.0.1:0. How is the label space decoded? The first field is P1’s router
ID, and the second field (zero) translates to a platform label space. What does this
mean? Label lookup takes place in P1 regardless of the interface on which the MPLS
packet arrives. If P1 receives a packet whose outer MPLS label is 300000, no matter
the input interface, P1 will place it on a LSP toward PE3. The mapping
(172.16.0.33/32, 3000000) has platform-wide significance within P1.
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Both Junos and IOS XR use a platform label space.

RFC 3031 also defines per-interface label spaces, wherein each input interface has its
own LIB: an incoming MPLS packet’s label is interpreted in the context of the input
interface. Although per-interface label spaces are not implemented, Chapter 21 covers
a more generic concept: context-specific label spaces, defined in RFC 5331.

Back to Figure 2-3. Because MPLS labels have local significance, each router typically
advertises a different label mapping for a given FEC. However, there is no rule that
enforces the labels to be different. For example, PE2, P2, and PE4 happen to all be
advertising the same label for 172.16.0.33/32. This is completely fine because each
label belongs to a different platform (LSR) label space. It’s a simple coincidence.

LDP label mappings are dynamic and may change upon route flap.

LDP signaling and MPLS forwarding in the Junos plane
Example 2-8 gives us a chance to look at a live demonstration; in this case, a
loopback-to-loopback traceroute from CE1 to BR3 traversing the Junos plane (PE1,
P1, PE3).

Example 2-8. Traceroute through the Junos LDP plane

juniper@CE1> traceroute 192.168.20.3 source 192.168.10.1
traceroute to 192.168.20.3 (192.168.20.3) from 192.168.10.1 [...]
 1  PE1 (10.1.0.1)  7.962 ms  4.506 ms  5.145 ms
 2  P1 (10.0.0.3)  16.347 ms  10.390 ms  10.131 ms
     MPLS Label=300000 CoS=0 TTL=1 S=1
 3  PE3 (10.0.0.9)  9.755 ms  7.490 ms  7.409 ms
 4  BR3 (192.168.20.3)  8.266 ms  10.196 ms  6.466 ms

Let’s interpret the output step by step. As you saw in Chapter 1, PE1 has a BGP route
toward BR3’s loopback, and the BGP next hop of this route is PE3. Then, PE1
resolves this BGP next hop by looking at the inet.3 auxiliary table, and this is how
the Internet route (to BR3) gets a labeled forwarding next hop.

50 | Chapter 2: The Four MPLS Builders



If an IPv4 BGP route does not have a BGP next hop in inet.3,
Junos tries to find it in inet.0. You can disable this second lookup
and make inet.3 the only resolution Routing Information Base
(RIB) for IPv4 routes by using this command: set routing-

options resolution rib inet.0 resolution-ribs inet.3

Let’s see the BGP next-hop resolution process in detail.

Example 2-9. MPLS forwarding at ingress PE1 (Junos)

juniper@PE1> show route 192.168.20.3 active-path detail
[...]
                Protocol next hop: 172.16.0.33

juniper@PE1> show route table inet.3 172.16.0.33

inet.3: 9 destinations, 9 routes (9 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.0.33/32     *[LDP/9] 11:00:49, metric 20
                    > to 10.0.0.3 via ge-2/0/4.0, Push 300000

juniper@PE1> show route forwarding-table destination 192.168.20.3
Routing table: default.inet
Internet:
Destination      Type Next hop  Type       Index  NhRef Netif
192.168.20.3/32  user           indr     1048574  3
                      10.0.0.3  Push 300000  593  2     ge-2/0/4.0

This double table lookup takes place only at the control plane.
Transit packets are processed according to the forwarding table,
which already has the resolved forwarding next hop.

PE1 pushes an MPLS header with label 300000 and sends the packet to the forward‐
ing next hop P1. Why label 300000? The answer is in Figure 2-3 and in Example 2-10.
This is the label that P1 maps to FEC 172.16.0.33/32.

Example 2-10. Label Mappings at ingress PE1 (Junos)

juniper@PE1> show ldp database | match "put|172.16.0.33"
Input label database, 172.16.0.11:0--172.16.0.1:0
 300000      172.16.0.33/32
Output label database, 172.16.0.11:0--172.16.0.1:0
 300432      172.16.0.33/32
Input label database, 172.16.0.11:0--172.16.0.22:0
  24000      172.16.0.33/32
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Output label database, 172.16.0.11:0--172.16.0.22:0
 300432      172.16.0.33/32

This is an interesting command. It lets you know the label mappings that PE1 is
learning (Input label database) and advertising (Output label database). This
usage of the input and output keywords is sometimes a bit confusing:

• The Input label database contains MPLS labels that PE1 must add to a packet
when sending it out to a neighbor. This is input for the control or signaling plane
(LDP), but output for the forwarding (MPLS) plane.

• The Output label database contains MPLS labels that PE1 expects to receive
from its neighbors. This is output for the control or signaling plane (LDP), but
it’s input for the forwarding (MPLS) plane.

After this point is clarified, let’s answer the most important question of this LDP sec‐
tion. If PE1 learns label 300000 from space 172.16.0.1:0, and label 24000 from space
172.16.0.22:0, why is it choosing the first mapping to program the forwarding plane?
The answer is on the IGP. Although most of the example topologies in this book use
IS-IS, OSPF is an equally valid option and (unless specified otherwise), every state‐
ment henceforth applies to IS-IS and OSPF indistinctly.

The shortest path to go from PE1 to PE3 is via P1, so among the several label map‐
pings available for 172.16.0.33/32, PE1 chooses the one advertised by P1. This tight
coupling with the IGP is the conceptual key to understanding LDP.

Let’s move on to P1, a pure LSR or P-router.

Example 2-11. LDP signaling and MPLS forwarding at P1 (Junos)

juniper@P1> show ldp database | match "put|172.16.0.33"
Input label database, 172.16.0.1:0--172.16.0.2:0
  24000      172.16.0.33/32
Output label database, 172.16.0.1:0--172.16.0.2:0
 300000      172.16.0.33/32
Input label database, 172.16.0.1:0--172.16.0.11:0
 300432      172.16.0.33/32
Output label database, 172.16.0.1:0--172.16.0.11:0
 300000      172.16.0.33/32
Input label database, 172.16.0.1:0--172.16.0.33:0
      3      172.16.0.33/32
Output label database, 172.16.0.1:0--172.16.0.33:0
 300000      172.16.0.33/32

juniper@P1> show route table mpls.0 label 300000

mpls.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
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300000             *[LDP/9] 00:47:20, metric 10
                    > to 10.0.0.9 via ge-2/0/6.0, Pop
300000(S=0)        *[LDP/9] 00:47:20, metric 10
                    > to 10.0.0.9 via ge-2/0/6.0, Pop

juniper@P1> show route forwarding-table label 300000 table default
Routing table: default.mpls
MPLS:
Destination  Type RtRef Next hop         Index    NhRef Netif
300000       user     0 10.0.0.9   Pop     605     2    ge-2/0/6.0
300000(S=0)  user     0 10.0.0.9   Pop     614     2    ge-2/0/6.0

The IGP tells P1 that the next router in the path toward PE3 is PE3 itself. Naturally!
And PE3 maps label 3 to FEC 172.16.0.33/32, its own loopback. This is a reserved
label value called implicit null. It is not a real label, but a forwarding instruction that
translates to pop the label. In other words, an MPLS packet never carries the label
value 3, which is simply a signaling artifact. So, the IPv4 packet arrives unlabeled to
PE3, and PE3 has the BGP route to reach BR3. The traceroute trip finishes here. This
behavior is called Penultimate Hop Popping (PHP).

There is no label swap operation in a two-hop LSP with PHP. For a longer LSP such
as PE1-P1A-P1B-PE3, P1A would perform a label swap.

You can disable PHP and configure explicit null (value 0 for IPv4,
value 2 for IPv6), therefore making a real transport MPLS header
arrive at the egress PE. One of the applications of explicit null is to
keep independent class of service policies for IP and MPLS.

So, is this an LSP? Yes, it is Label-Switched Path; there are MPLS labels after all. But it
is signaled in a particular way. The Label Mapping messages depicted in Figure 2-3
allow any router in the network to send MPLS-labeled traffic toward PE3. This is a
many-to-one or, in other words, an MP2P LSP.

Let’s finish with a useful toolset described in RFC 4379: MPLS ping and traceroute.
These tools don’t require any specific configuration in Junos and they inject UDP-
over-IPv4 data packets in an LSP. In that sense, they are very useful to test an LSP’s
forwarding plane. The destination IPv4 address of these packets is in the range 127/8,
which is reserved for loopback use and is not routable. The appropriate MPLS labels
are pushed in order to reach the destination PE, in this case 172.16.0.33. Following is
an MPLS traceroute.

Example 2-12. MPLS LDP traceroute (Junos)

juniper@PE1> traceroute mpls ldp 172.16.0.33
  Probe options: ttl 64, retries 3, wait 10, paths 16, exp 7[...]
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  ttl    Label  Protocol    Address     Previous Hop   Probe Status
    1   300000  LDP         10.0.0.3    (null)         Success
  FEC-Stack-Sent: LDP
  ttl    Label  Protocol    Address     Previous Hop   Probe Status
    2        3  LDP         10.0.0.9    10.0.0.3       Egress
  FEC-Stack-Sent: LDP

  Path 1 via ge-2/0/4.0 destination 127.0.0.64

LDP signaling and MPLS forwarding in the IOS XR plane
Figure 2-4 presents a similar example, this time focusing on the IOS XR plane (PE2,
P2, PE4). The logic is practically identical.

Figure 2-4. LDP label mapping messages for 172.16.0.44

Following is an IPv4 (non MPLS) traceroute from CE2 to BR4.

Example 2-13. Traceroute through the IOS XR Plane

juniper@CE2> traceroute 192.168.20.4 source 192.168.10.2
traceroute to 192.168.20.4 (192.168.20.4) from 192.168.10.2 [...]
 1  PE2 (10.1.0.3)  4.358 ms  2.560 ms  5.822 ms
 2  P2 (10.0.0.5)  9.627 ms  8.049 ms  9.261 ms
     MPLS Label=24016 CoS=0 TTL=1 S=1
 3  PE4 (10.0.0.11)  8.869 ms  7.833 ms  9.193 ms
 4  BR4 (192.168.20.4)  10.627 ms  11.592 ms  11.593 ms

PE2 has a BGP route toward BR4’s loopback, and the BGP next hop of this route is
PE4. As is expained in Chapter 1, IOS XR does not have an auxiliary table such as
inet.3 in Junos. The actual forwarding is ruled by the Cisco Express Forwarding
(CEF) entry for 172.16.0.44/32.
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Example 2-14. MPLS forwarding at ingress PE2 (IOS XR)

RP/0/0/CPU0:PE2#show route 192.168.20.4

Routing entry for 192.168.20.4/32
  Known via "bgp 65000", distance 200, metric 0
  Tag 65002, type internal
  Installed Nov 17 08:32:32.941 for 00:30:58
  Routing Descriptor Blocks
    172.16.0.44, from 172.16.0.201
      Route metric is 0
  No advertising protos.

RP/0/0/CPU0:PE2#show cef 172.16.0.44
172.16.0.44/32, version 91, internal [...]
 local adjacency 10.0.0.5
 Prefix Len 32, traffic index 0, precedence n/a, priority 3
   via 10.0.0.5, GigabitEthernet0/0/0/3, 6 dependencies [...]
    path-idx 0 NHID 0x0 [0xa0eb34a4 0x0]
    next hop 10.0.0.5
    local adjacency
     local label 24021      labels imposed {24016}

PE2 pushes an MPLS header with label 24016 and sends the packet to the forwarding
next hop P2. Why label 24016? As you can see in Figure 2-4 and in Example 2-15, this
is the label that P2 maps to FEC 172.16.0.44/32.

Example 2-15. Label mappings at ingress PE2 (IOS XR)

RP/0/0/CPU0:PE2# show mpls ldp bindings 172.16.0.44/32
172.16.0.44/32, rev 85
        Local binding: label: 24021
        Remote bindings: (2 peers)
            Peer                Label
            -----------------   ---------
            172.16.0.2:0        24016
            172.16.0.11:0       300224

Now, let’s see the LDP signaling and the forwarding state on P2, the next hop LSR.

Example 2-16. LDP signaling and MPLS forwarding at P2 (IOS XR)

RP/0/0/CPU0:P2# show mpls ldp bindings 172.16.0.44/32
172.16.0.44/32, rev 36
        Local binding: label: 24016
        Remote bindings: (3 peers)
            Peer                Label
            -----------------   ---------
            172.16.0.1:0        299840
            172.16.0.22:0       24021
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            172.16.0.44:0       ImpNull

RP/0/0/CPU0:P2#show mpls forwarding labels 24016
Local  Outgoing  Prefix         Outgoing   Next Hop     Bytes
Label  Label     or ID          Interface               Switched
------ --------- -------------- ---------- ------------ ----------
24016  Pop       172.16.0.44/32 Gi0/0/0/5  10.0.0.11    379266

Unlike Junos, IOS XR uses MPLS forwarding to reach internal IPv4 prefixes. So, a
plain IPv4 traceroute from PE2 to PE4 shows the label, too (although it provides less
information than MPLS traceroute).

Example 2-17. IPv4 Traceroute from PE2 to PE4 (IOS XR)

RP/0/0/CPU0:PE2#traceroute ipv4 172.16.0.44
[...]
 1  p2 (10.0.0.5) [MPLS: Label 24016 Exp 0] 9 msec  0 msec  0 msec
 2  pe4 (10.0.0.11) 0 msec  *  0 msec

LDP and Equal-Cost Multipath
According to the IGP metric, there is no single shortest path from PE1 to PE4.
Instead, there are four possible equal-cost paths: PE1-PE2-P2-PE4, PE1-P1-PE3-PE4,
and two times PE1-P1-P2-PE4 (there are two parallel links between P1 and P2). This
condition is called Equal-Cost Multipath (ECMP). With ECMP, each next hop is dis‐
tinct from a Layer 3 (L3) perspective.

Similarly, a popular technology called Link Aggregation Group (LAG), or Link Bun‐
dling, also results in several equal-cost paths. Some common LAG variants are Aggre‐
gated Ethernet (AE) and Aggregated SONET (AS). In this case, a single L3 interface
can span several physical links that are bundled together. Finally, you can achieve
complex equal-cost topologies by combining ECMP and LAG together (e.g., one of
the P1-P2 connections could be a LAG).

As soon as there are equal-cost paths to a destination, a natural question arises: which
path do the packets follow? Well, they are load balanced, according to a certain logic
that is explained later in this section.

Let’s step back for a moment and revisit LDP. Because LDP is coupled to the IGP, it
implements ECMP natively. You can check this easily by using MPLS traceroute from
PE1 to PE4 (different 127/8 destination IPv4 addresses are automatically used to trig‐
ger load balancing); see Example 2-18.

Example 2-18. LDP ECMP (Junos)

juniper@PE1> traceroute mpls ldp 172.16.0.44/32
  Probe options: ttl 64, retries 3, wait 10, paths 16, exp 7 [...]
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  ttl    Label  Protocol  Address    Previous Hop   Probe Status
    1    24021  LDP       10.0.0.1   (null)         Success
  FEC-Stack-Sent: LDP
  ttl    Label  Protocol  Address    Previous Hop   Probe Status
    2    24016  Unknown   10.0.0.5   10.0.0.1       Success
  FEC-Stack-Sent: LDP
  ttl    Label  Protocol  Address    Previous Hop   Probe Status
    3        3  Unknown   10.0.0.11  10.0.0.5       Egress
  FEC-Stack-Sent: LDP

  Path 1 via ge-2/0/3.0 destination 127.0.0.64

  ttl    Label  Protocol  Address    Previous Hop   Probe Status
    1   299840  LDP       10.0.0.3   (null)         Success
  FEC-Stack-Sent: LDP
  ttl    Label  Protocol  Address    Previous Hop   Probe Status
    2   299856  LDP       10.0.0.9   10.0.0.3       Success
  FEC-Stack-Sent: LDP
  ttl    Label  Protocol  Address    Previous Hop   Probe Status
    3        3  LDP       10.0.0.13  10.0.0.9       Egress
  FEC-Stack-Sent: LDP

  Path 2 via ge-2/0/4.0 destination 127.0.1.64

  ttl    Label  Protocol  Address    Previous Hop   Probe Status
    2    24016  LDP       10.0.0.25  10.0.0.3       Success
  FEC-Stack-Sent: LDP
  ttl    Label  Protocol  Address    Previous Hop   Probe Status
    3        3  Unknown   10.0.0.11  10.0.0.25      Egress
  FEC-Stack-Sent: LDP

  Path 3 via ge-2/0/4.0 destination 127.0.1.65

  ttl    Label  Protocol  Address    Previous Hop   Probe Status
    2    24016  LDP       10.0.0.7   10.0.0.3       Success
  FEC-Stack-Sent: LDP
  ttl    Label  Protocol  Address    Previous Hop   Probe Status
    3        3  Unknown   10.0.0.11  10.0.0.7       Egress
  FEC-Stack-Sent: LDP

  Path 4 via ge-2/0/4.0 destination 127.0.1.69

You must explicitly enable MPLS Operations, Administration and
Management (OAM) in IOS XR by using the global configuration
command mpls oam.
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The LSP from PE1 to PE4 has four possible equal-cost paths. So, not only the LDP
LSPs are MP2P, they are also ECMP-aware. This makes it more challenging to per‐
form fault isolation on very meshed LDP networks.

Here’s what happens from the point of view of a given LSR:

• When a packet arrives at a specific interface and with a given MPLS label, is it
easy to determine the interface to which the LSR will switch the packet out? If
there is just one shortest path to the egress PE, it’s easy. But if there is ECMP
toward the destination FEC, only advanced vendor-specific tools (beyond the
scope of this book) can help to predict the result of the load-balancing decision.

• When the LSR switches a packet out of an interface with a given MPLS label, it is
not easy to guess the previous history of that packet. Which ingress PE did inject
it in the MPLS core? At which interface did the packet arrive to the LSR? It is
tricky to answer these questions because these LSPs are MP2P and the LDP label
space is per platform.

Note that in the previous example, TTL=1 entry for paths 3 and 4 is the same as in
path 2; therefore, in the interest of brevity, Junos does not display it. All of these paths
traverse P-routers at both planes: Junos (P1) and IOS XR (P2). With the software ver‐
sions used in this book, MPLS OAM has an interoperability issue that causes the Pro
tocol to be displayed as Unknown. This issue is specific of MPLS OAM only: as far as
plain transport LDP is concerned, interoperability is perfect.

In practice, load balancing in LDP networks takes place on a hop-by-hop basis. PE1
has two equal-cost next hops to reach PE4: P1 and PE2. In turn, P1 has three equal-
cost next hops to reach PE4: PE3 and twice P2. And so on.

Load-balancing hash algorithm
Load balancing is a complex topic that is intimately related to the hardware imple‐
mentation of each platform. The good news is that Junos and IOS XR are both capa‐
ble of doing per-flow load balancing of IP and MPLS traffic. Unlike stateful firewalls,
LSRs perform packet-based (not flow-based) forwarding, so what is a flow in the con‐
text of a LSR?

A flow is a set of packets with common values in their headers. For example, all the
packets of a TCP connection from a client to a server (or of a voice stream between
two endpoints), have several fields in common: source and destination address, trans‐
port protocol, source and destination ports, and so on. To guarantee that all the pack‐
ets of a given flow arrive to the destination in the correct order, they should all follow
exactly the same path; indirectly, this means that they share respectively the same
MPLS label values, hop by hop.
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The set of fields that are selected from the packet headers depends
on the platform and on the configuration. These fine-tuning details
are beyond the scope of this book.

On the other hand, different flows should be evenly distributed across equal-cost next
hops such as ECMP, LAG, and so on. Otherwise, some links would not be utilized
and others would quickly saturate. This phenomenon is commonly called traffic
polarization.

Let’s see how routers achieve per-flow load balancing. For every single packet, the
router selects some header fields (plus a fixed local randomization seed) and applies a
mathematical algorithm to them called a hash. This algorithm is very sensitive to
small variations of its input values. The hash result determines (modulus the number
of equal-cost next hops) the actual forwarding next hop to which the packet is map‐
ped. All the packets of a given flow receive the same hash value and are hence forwar‐
ded out to the same next hop.

Basic per-flow load balancing is enabled by default in IOS XR, but it requires explicit
configuration in Junos, which performs per-destination route hashing by default.

Example 2-19. Enabling per-flow load balancing in Junos

policy-options {
    policy-statement PL-LB {
      then load-balance per-packet; 
}}
routing-options {
  forwarding-table export PL-LB; 
}

The per-packet syntax remains for historical reasons, but the way
it is implemented in modern Junos versions is per-flow (hash
based).

Let’s forget for a moment that the topology has two vendor-specific planes. This is a
vendor-agnostic analysis of an IP flow from CE1 to BR4:

• The ingress PE1 receives plain IPv4 packets from CE1 and applies a hash to
them. Because all the packets belong to the same flow, the result of the hash is the
same and they are all forwarded to the same next hop: P1 or PE2. If the next hop
is PE2, there is only one shortest path remaining and the load-balancing discus‐
sion stops here.
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• Let’s suppose that the next hop is P1. So, P1 receives MPLS packets and applies a
hash to them. This hash takes into account the MPLS label value(s) and it might
also consider the inner (e.g., IPv4) headers. As a result, all the packets of this flow
are sent out to one and only one of the available next hops: PE3, P2-link1, or
P2-link2.

MPLS hash and Entropy Labels
Many LSRs in the industry are able to include MPLS packet payload fields (like IP
addresses, TCP/UDP ports) into the load-balancing hash algorithm. But some low-
end (or old) platforms from different vendors cannot do that. This can be an issue if
the number of active FECs is low. For example, in a domestic Internet Service Pro‐
vider (ISP) that sends all the upstream traffic up to only two big Internet gateways,
most of the packets carry either label L1 (mapped to FEC gateway_1) or label L2
(mapped to FEC gateway_2). Two different label values are clearly not enough to
spread traffic across multiple equal-cost paths.

To ensure that there is enough randomness to achieve good load balancing on these
devices, RFC 6790 introduces the concept of Entropy Labels. These labels have a per-
flow random value and do not have any forwarding significance. In other words, they
are not mapped to any FEC. Their goal is just to ensure smooth load balancing along
the available equal cost paths. You can read more about Entropy Labels in Chapter 6.

There is a similar technology called Flow-Aware Transport (FAT, RFC 6391), but it is
specific of Layer 2 (L2) services. Chapter 6 also covers this in greater detail.

LDP Implementation Details
Although Junos and IOS XR have behaved similarly in the examples so far, their LDP
implementation is actually quite different. Let’s follow the LDP advertising flow, start‐
ing at the egress PE.

Local FEC label binding/allocation
As shown earlier, PE3 and PE4 both advertise their own loopback mapped to the
implicit null label. The following command shows all of the local (or egress) FECs
that PE3 and PE4 advertise.

Example 2-20. Default label bindings for local routes (Junos, IOS XR)

juniper@PE3> show ldp database session 172.16.0.44 | match "put|  3"
Input label database, 172.16.0.33:0--172.16.0.44:0
      3      10.0.0.10/31
      3      10.0.0.12/31
      3      10.2.0.0/24
      3      10.255.0.0/16
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      3      172.16.0.44/32
Output label database, 172.16.0.33:0--172.16.0.44:0
      3      172.16.0.33/32

The only local FEC that PE3 (Junos) advertises via LDP is its primary lo0.0 address.
This is a default behavior that you can change by applying an egress-policy at the
[edit protocols ldp] hierarchy. A common use case covered in Chapter 3 is the
advertisement of nonprimary lo0.0 IP addresses. Additionally, LDP export policies
provide granular per-neighbor FEC advertisement.

On the other hand, PE4 (IOS XR) advertises label mappings for all its directly con‐
nected routes by default. Most services use LSPs whose endpoints are loopback
addresses, though. In that sense, you can configure IOS XR to do the following:

• Only advertise /32 FECs by using mpls ldp address-family ipv4 label local
allocate for host-routes

• Granular label binding and advertisement with policies applied at mpls ldp
address-family ipv4 label.

The benefit is a lower amount of state to be kept and exchanged in the LIBs.

What about remote (nonlocal) FECs? By default, both Junos and IOS XR advertise
label mappings for IGP routes, regardless of their mask. Again, the previously listed
knobs make it possible to change this default behavior.

Label advertisement modes
Figure 2-3 and Figure 2-4 illustrate the Downstream Unsolicited (DU) LDP label
advertisement (or distribution) mode that both Junos and IOS XR use by default.
This elicits two questions:

• Why downstream? When it advertises label mapping (300000, 172.16.0.33/32),
P1 is telling its neighbors: if you want to use me as a downstream LSR to reach
172.16.0.33/32, send me the packets with this label. So, P1 becomes a potential
downstream LSR for that FEC.

• Why unsolicited? P1’s neighbors do not request any label mappings from P1;
however, P1 sends the messages.

Chapter 16 briefly mentions another label distribution method called Downstream
on Demand (DoD), which is also used by RSVP-TE.

Label distribution control modes
There are two label distribution control modes: ordered and independent. Junos
implements the ordered mode, whereas IOS XR implements the independent mode.
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In the ordered mode, the following sequence takes place in strict chronological
sequence (see Figure 2-3):

1. PE3 advertises the label mapping (172.16.0.33/32, 3) to its neighbors.
2. P1 receives this label mapping from PE3, the egress LSR, and the shortest-path

next hop from P1 to 172.16.0.33 is precisely the direct link P1→PE3.
3. P1 binds label 300000 to this FEC, installs the forwarding entry (300000→ pop to

10.0.0.9) in its Label Forwarding Information Base (LFIB) and advertises the
Label Mapping (172.16.0.33/32, 300000) to its neighbors.

4. PE1 receives the label mapping from P1, and the shortest path next hop from PE1
to 172.16.0.33 is precisely P1.

5. PE1 binds label 300432 to the FEC, installs the forwarding entry (300432→ swap
300000 to 10.0.0.3) in its LFIB and advertises the label mapping (172.16.0.33/32,
300432) to its neighbors.

In a nutshell, before binding a label to a remote FEC, Junos LSRs first need to receive
a label mapping from the shortest-path downstream LSR en route to the FEC. Like‐
wise, if it loses the downstream labeled state to the FEC (due to an LDP event or to a
topology change), after some time the Junos LSR removes the label binding and sends
a Label Withdraw message out to its neighbors.

The ordered mode guarantees a strong consistency between the control and the for‐
warding plane; on the other hand, it requires a potentially higher time to establish the
LSPs.

How about independent mode? P2 (IOS XR) binds and announces label mappings
regardless of the FEC’s downstream label state.

Suppose that P2 has not established any LDP session yet. Nevertheless, P2 binds
labels to local and remote FECs. Then, suppose that the LDP session between P2 and
PE2 (and only this session) comes up. At this point, P2 advertises all the label map‐
pings to PE2. These mappings include (172.16.0.33/32, 24000) and (172.16.0.44/32,
24016). As you can see in Example 2-21, the resulting LFIB entries at P2 are marked
as Unlabelled.

Example 2-21. Unlabeled bindings in independent mode (IOS XR)

RP/0/0/CPU0:P2#show mpls forwarding
Local  Outgoing    Prefix          Outgoing   Next Hop   Bytes
Label  Label       or ID           Interface             Switched
------ ----------- --------------- ---------- ---------- ---------
[...]
24000  Unlabelled  172.16.0.33/32  Gi0/0/0/2  10.0.0.6   25110
       Unlabelled  172.16.0.33/32  Gi0/0/0/3  10.0.0.24  2664
       Unlabelled  172.16.0.33/32  Gi0/0/0/5  10.0.0.11  2664
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24016  Unlabelled  172.16.0.44/32  Gi0/0/0/5  10.0.0.11  134
[...]

What if P2 receives a packet whose outer MPLS label is 24000? The Unlabelled
instruction means pop all the labels and forward to the next hop(s) in the LFIB. This is
different from the Pop instruction, which just pops the outer label.

The outcome depends on the traffic flows:

• Internet traffic from CE2 to BR4 successfully reaches its destination.
• Internet traffic from CE2 to BR3 is forwarded by P2 across three equal-cost next

hops. Two of them point to P1, which has no route toward the destination and
thus drops the packets.

• VPN traffic with several labels in the stack might be mapped to the master rout‐
ing instance (and likely discarded) by the next hop.

When all the LDP sessions come up and P2 receives all the label mapping messages
from its neighbors, P2’s LFIB is programmed with the appropriate Swap (to a given
label) and Pop instructions.

Example 2-22. Labeled bindings in independent mode (IOS XR)

RP/0/0/CPU0:P2#show mpls forwarding
Local  Outgoing    Prefix          Outgoing   Next Hop   Bytes
Label  Label       or ID           Interface             Switched
------ ----------- --------------- ---------- ---------- ---------
[...]
24000  300000      172.16.0.33/32  Gi0/0/0/2  10.0.0.6   25110
       300000      172.16.0.33/32  Gi0/0/0/3  10.0.0.24  2664
       24000       172.16.0.33/32  Gi0/0/0/5  10.0.0.11  2664
24016  Pop         172.16.0.44/32  Gi0/0/0/5  10.0.0.11  134
[...]

The ordered and independent label distribution control modes are radically different
and each has its pros and cons in terms of control and delay. The final state after LDP
converges is the same, regardless of the implemented mode.

Label retention modes
Both Junos and IOS XR implement Liberal Label Retention Mode (as opposed to
Conservative) by default, meaning that the LSRs accept and store all the incoming
label mapping messages. For example, PE1 receives label mappings for FEC
172.16.0.33/32 from both P1 and PE2. Even though the forwarding next hop is P1,
PE1 decides to store both label mappings. Why? Potentially, a topology change in the
future might turn PE2 into the next hop. Therefore, PE1 keeps all the states, just in
case.
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FEC aggregation
Looking back at Example 2-20, PE4 advertises five different local FECs to PE3, all of
them mapped to the implicit null label. Let’s focus on two of them: 172.16.0.44/32 and
10.0.0.10/31. By default, PE3 advertises them with the same label to P1.

This default behavior in Junos is called FEC aggregation, and you can disable it by
configuring set protocols ldp deaggregate. Here is the outcome:

Example 2-23. Default FEC aggregation (Junos)

juniper@PE3> show ldp database | match "put|172.16.0.44|10.0.0.10"
[...]
Output label database, 172.16.0.33:0--172.16.0.1:0
 299856      10.0.0.10/31
 299856      172.16.0.44/32
Input label database, 172.16.0.33:0--172.16.0.44:0
      3      10.0.0.10/31
      3      172.16.0.44/32

Example 2-24. FEC de-aggregation (Junos)

juniper@PE3> show ldp database | match "put|172.16.0.44|10.0.0.10"
[...]
Output label database, 172.16.0.33:0--172.16.0.1:0
 299920      10.0.0.10/31
 299856      172.16.0.44/32
Input label database, 172.16.0.33:0--172.16.0.44:0
      3      10.0.0.10/31
      3      172.16.0.44/32

IOS XR does not perform FEC aggregation by default. In other
words, it performs FEC de-aggregation by default.

LDP Inter-Area
Looking back at Figure 2-1, let’s suppose the following:

• PE1 and PE2 are L2-only IS-IS routers in Area 49.0001.
• PE3 and PE4 are L1-only IS-IS routers in Area 49.0002.
• P1 and P2 are IS-IS L1-L2 routers, present in both Areas.

In this scenario, PE3 and PE4 only have a default route to reach PE1 and PE2. And
the same would happen with OSPF stub areas. A default route is not specific enough
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for PE3 and PE4 to process the LDP label mappings for 172.16.0.11/32 and
172.16.0.22/32. This breaks MPLS forwarding.

RFC 5283 proposes a clean solution to this problem, but it is not implemented yet. Is
there a workaround? Yes: selective IS-IS L2-to-L1 route leaking, or non-stub OSPF
areas. However, this approach has an impact on routing scalability. Chapter 16 covers
a clean solution to this challenge, called Seamless MPLS.

Protecting LDP Networks from Traffic Blackholing
Because it is tightly coupled to the IGP but it is not the IGP, plain LDP builds fragile
MPLS networks that can easily cause traffic blackholing. Let’s see why, and how to
make it more robust.

LDP IGP Synchronization (RFC 5443)
What happens if PE1 and P1 bring up an IS-IS adjacency together, but for whatever
reason (routing/filtering issue, misconfiguration, etc.), they do not establish an LDP
session to each other? From the point of view of PE1, the shortest path to PE3 is still
PE1-P1-PE3. Unfortunately, this path is unlabeled, so P1 discards the customer traf‐
fic. In other words, CE1 can no longer ping BR3.

The LDP IGP Synchronization feature increases the IGP metric of a link if LDP is
down on it. This way, the network dynamically skips unlabeled links and restores the
service. Following is the syntax for IS-IS, which is very similar to the one for OSPF.

Example 2-25. LDP IGP Synchronization in Junos and IOS XR

/* Junos sample configuration */
protocols {
  isis {
     interface ge-0/0/4.0 ldp-synchronization; 
 }}

/* IOS XR sample configuration */
router isis mycore
 interface GigabitEthernet0/0/0/3
  address-family ipv4 unicast
   mpls ldp sync

In the following example, the LDP IGP Synchronization feature is turned on for all
the network core links, and all the LDP sessions are up except for the one between
PE1 and P1. The customer traffic finds its way through a longer yet labeled path. So
the end-to-end service is fine.
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Example 2-26. LDP IGP Synchronization in action

juniper@PE1> show isis database level 2 PE1.00-00 extensive
[...]
    IS extended neighbor: P1.00, Metric: default 16777214
    IS extended neighbor: PE2.00, Metric: default 10
[...]

juniper@PE1> show isis database level 2 P1.00-00 extensive
[...]
    IS extended neighbor: PE1.00, Metric: default 16777214
    IS extended neighbor: P2.00, Metric: default 10
    IS extended neighbor: P2.00, Metric: default 10
    IS extended neighbor: PE3.00, Metric: default 10
[...]

juniper@CE1> traceroute 192.168.20.3 source 192.168.10.1
traceroute to 192.168.20.3 (192.168.20.3) from 192.168.10.1 [...]
 1  PE1 (10.1.0.1)  7.577 ms  3.113 ms  3.478 ms
 2  PE2 (10.0.0.1)  14.778 ms  13.087 ms  11.303 ms
     MPLS Label=24000 CoS=0 TTL=1 S=1
 3  P2 (10.0.0.5)  11.723 ms  12.630 ms  14.843 ms
     MPLS Label=24000 CoS=0 TTL=1 S=1
 4  P1 (10.0.0.24)  14.599 ms  15.018 ms  23.803 ms
     MPLS Label=300032 CoS=0 TTL=1 S=1
 5  PE3 (10.0.0.9)  13.564 ms  20.615 ms  25.406 ms
 6  BR3 (192.168.20.3)  18.587 ms  15.589 ms  19.322 ms

Both Junos and IOS XR support this feature on IGP interfaces configured as point-to-
point, which is the recommended mode for core links. In addition, IOS XR also sup‐
ports it on broadcast links.

LDP Session Protection
Session Protection is another LDP robustness enhancement, based on the Targeted
Hello functionality that is defined on RFC 5036. With this feature, two directly con‐
nected LDP peers exchange two kinds of LDP-over-UDP Hello packets:

LDP Link Hellos
Single-hop (TTL=1) multicast packets sourced at the link address, destined to
224.0.0.2 and sent independently on each link. These packets achieve basic dis‐
covery (see Figure 2-2).

LDP Targeted Hellos
Multihop (TTL>1) loopback-to-loopback unicast packets, enabled by using the
Session Protection feature.
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LDP-over-UDP Targeted Hellos are not the same thing as LDP-
over-TCP keepalive messages; they coexist.

LDP Session Protection, as it name implies, maintains the LDP session up upon a link
flap. Even if the direct PE1-P1 link goes down, the LDP-over-TCP session and the
LDP-over-UDP targeted hello adjacency are both multihop. These packets are routed
across the alternate PE1-PE2-P2-P1 path, and in this way the LDP session and the
LDP hello adjacency between PE1 and P1 both remain up. The routers keep all the
LDP label mappings, which adds forwarding plane robustness to the network.

Let’s look at the configuration and its outcome in Junos:

Example 2-27. LDP Session Protection in Junos (PE1)

protocols {
    ldp {
        interface lo0.0;
        session-protection; 
}}

juniper@PE1> show ldp session
  Address           State        Connection  Hold time  Adv. Mode
172.16.0.1          Operational  Open          26         DU
172.16.0.22         Operational  Open          29         DU

juniper@PE1> show ldp neighbor
Address            Interface          Label space ID   Hold time
10.0.0.1           ge-2/0/3.0         172.16.0.22:0      13
10.0.0.3           ge-2/0/4.0         172.16.0.1:0       14
172.16.0.1         lo0.0              172.16.0.1:0       44
172.16.0.22        lo0.0              172.16.0.22:0      41

PE1 does not have parallel links to any neighboring router. So, there are two hello
adjacencies to each peer (identified by a common Label space ID): the link hello and
the targeted hello adjacency.

Finally, let’s see it on IOS XR:

Example 2-28. LDP Session Protection in IOS XR (PE2)

mpls ldp
 session protection

RP/0/0/CPU0:PE2#show mpls ldp discovery brief

Local LDP Identifier: 172.16.0.22:0
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Discovery Source     VRF Name   Peer LDP Id      Holdtime Session
-------------------- ---------- ---------------- -------- -------
Gi0/0/0/2            default    172.16.0.11:0       15       Y
Gi0/0/0/3            default    172.16.0.2:0        15       Y
Tgt:172.16.0.2       default    172.16.0.2:0        90       Y
Tgt:172.16.0.11      default    172.16.0.11:0       45       Y

RSVP-TE
RSVP was initially defined in RFC 2205 as a protocol to make resource reservations
along paths in the Internet. Although this original specification did not have much
success in terms of industry adoption and real deployments, RSVP was further
evolved into the popular RSVP-TE (RFC 3209, Extensions to RSVP for LSP Tunnels),
the most flexible and powerful of all the MPLS signaling protocols—which requires
more state in the network. Although the TE in the acronym RSVP-TE stands for Traf‐
fic Engineering, RSVP-TE has its own place in the MPLS world, and it is a valid
deployment choice even for scenarios in which TE is not required. This section cov‐
ers basic RSVP-TE, and leaves Traffic Engineering to Chapter 13, Chapter 14, and
Chapter 15. Very often, this book refers to RSVP-TE simply as RSVP.

RSVP-TE is easier to understand than LDP. It builds two types of LSPs: P2P and
P2MP. IP unicast traffic is tunneled in P2P LSPs. Unlike the MP2P LSPs (from-any-
to-one) signaled with LDP, RSVP-TE P2P LSPs (from-one-to-one) have a clear head-
end. Conceptually, they are very similar to the static LSPs of Chapter 1, except that
this time they are dynamically signaled with a protocol: RSVP-TE.

On the other hand, RSVP-TE is not as plug-and-play as LDP. The first necessary (but
not sufficient) step is to enable Traffic Engineering in the IGP (IS-IS, in this example)
and to configure RSVP on the core interfaces, except for the links to the RRs.

Example 2-29. RSVP-TE configuration at PE1 (Junos)

protocols {
    isis {
        level 2 wide-metrics-only;
    }
    rsvp {
        interface ge-0/0/3.0;
        interface ge-0/0/4.0;
}}

In Junos, IS-IS Traffic Engineering extensions are turned on by
default. OSPF TE extensions require explicit configuration by using
the set protocols ospf traffic-engineering command.
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Example 2-30. RSVP-TE configuration at PE2 (IOS XR)

1     router isis mycore
2      address-family ipv4 unicast
3       metric-style wide
4       mpls traffic-eng level-2-only
5       mpls traffic-eng router-id Loopback0
6     !
7     rsvp
8      interface GigabitEthernet0/0/0/3
9      interface GigabitEthernet0/0/0/4
10    !
11    mpls traffic-eng
12     interface GigabitEthernet0/0/0/3
13     interface GigabitEthernet0/0/0/4

Lines 7 through 9 are actually not needed for basic RSVP-TE oper‐
ation, but it is a good practice to add them.

The configuration in Example 2-29 and Example 2-30 does not bring up any RSVP-
TE neighbors or LSPs. As you can see in Example 2-31, it just enables the RSVP pro‐
tocol on the interfaces.

Example 2-31. RSVP-TE baseline state at PE1 and PE2

juniper@PE1> show rsvp neighbor
RSVP neighbor: 0 learned

juniper@PE1> show rsvp interface
RSVP interface: 2 active
                  Active Subscr- Static   Available Reserved[...]
Interface   State resv   iption  BW       BW        BW      [...]
ge-2/0/3.0  Up         0   100%  1000Mbps 1000Mbps  0bps    [...]
ge-2/0/4.0  Up         0   100%  1000Mbps 1000Mbps  0bps    [...]

RP/0/0/CPU0:PE2#show rsvp neighbors
RP/0/0/CPU0:PE2#show rsvp interface

RDM: Default I/F B/W %: 75% [default] (max resv/bc0), 0% [default]

Interface   MaxBW (bps)  MaxFlow (bps) Allocated (bps) MaxSub (bps)
----------- ------------ ------------- --------------- ------------
Gi0/0/0/2             0              0        0 (  0%)       0
Gi0/0/0/3             0              0        0 (  0%)       0

The lack of neighbors is expected. Unlike LDP and IGPs, the role of hello packets in
RSVP-TE is quite secondary. RSVP-TE LSPs have their own refresh mechanism and it
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is not mandatory to have hello adjacencies on the interfaces. RSVP hello adjacencies
are typically established when at least one RSVP-TE LSP traverses the link.

RSVP-TE LSP Fundamentals
Unless you use a central controller (see Chapter 15), you need to configure RSVP
LSPs explicitly at the ingress PE. There are basically two ways of doing it: defining
LSPs one by one, or enabling a certain level of endpoint autodiscovery. Let’s begin
with the first approach, which has the advantage of providing more control and flexi‐
bility for each individual LSP. Despite its power, the need for manual LSP configura‐
tion is one of the reasons why some designers prefer LDP to RSVP, and reserve RSVP
for scenarios in which Traffic Engineering is required.

RSVP-TE Tunnels, LSPs, and Sessions
Table 2-2 summarizes the different terminology used by RFC 3209, Junos, and IOS
XR.

Table 2-2. RSVP-TE terminology

RFC 3209 Tunnel LSP

Junos LSP Session

IOS XR Tunnel Path, Session

In the terms of RFC 3209, you configure tunnels on the ingress PE. A tunnel is incar‐
nated through one or more LSPs. There are several reasons why you may have more
than one LSP per tunnel, for example:

• A tunnel has a primary LSP protected by a standby LSP. This topic is discussed in
Chapter 19. This type of tunnel has two persistent LSPs.

• A tunnel has only one primary LSP but it is being resignaled upon failure, reop‐
timization, or a change in TE constraints such as bandwidth. In these cases, the
tunnel may transitorily have more than one LSP.

You can view an LSP as an incarnation of a tunnel. Two LSPs that belong to the same
tunnel share the Tunnel ID value and have a different LSP ID that differentiates them.

In this book, the different vendor terminologies are used and you might see the
words tunnel and LSP used in a relatively relaxed and interchangeable manner. This
chapter uses the Junos terminology.

RSVP-TE LSP configuration
RSVP-TE LSPs are configured at the head-end (ingress) PE. This makes sense for P2P
LSPs, because MPLS LSPs in general—with the exception of MP2MP—are unidirec‐
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tional. So, even with no specific LSP configuration at PE3 and PE4, Example 2-32 and
Example 2-33 are enough to signal the following LSPs.

From PE1 (Junos) to: PE2, PE3, and PE4.

Example 2-32. RSVP-TE LSP configuration at PE1 (Junos)

1     groups {
2         GR-LSP {
3             protocols {
4                 mpls label-switched-path <*> adaptive;
5     }}}
6     protocols {
7         mpls {
8             apply-groups GR-LSP;
9             label-switched-path PE1--->PE2 to 172.16.0.22;
10            label-switched-path PE1--->PE3 to 172.16.0.33;
11            label-switched-path PE1--->PE4 to 172.16.0.44;
12    }}

From PE2 (IOS XR) to: PE1, PE3, and PE4.

Example 2-33. RSVP-TE LSP configuration at PE2 (IOS XR)

group GR-LSP
 interface 'tunnel-te.*'
  ipv4 unnumbered Loopback0
  autoroute announce
  record-route
  path-option 1 dynamic
end-group
!
interface tunnel-te11
 apply-group GR-LSP
 signalled-name PE2--->PE1
 destination 172.16.0.11
!
interface tunnel-te33
 apply-group GR-LSP
 signalled-name PE2--->PE3
 destination 172.16.0.33
!
interface tunnel-te44
 apply-group GR-LSP
 signalled-name PE2--->PE4
 destination 172.16.0.44

Bidirectional end-to-end traffic (such as a successful ping between CE1 and BR3) also
requires right-to-left LSPs for the return traffic. As a result, unless another MPLS fla‐
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vor such as LDP or SPRING is enabled in the core, you also need to configure RSVP-
TE LSPs rooted from PE3 and from PE4.

In this way, the network has a full mesh of PE→PE RSVP LSPs.

In “RSVP-TE in Action” on page 78, you will see that PE1 (Junos) automatically
installs 172.16.0.33/32 in the inet.3 auxiliary table, pointing to LSP PE1--->PE3. On
the other hand, PE2 (IOS XR) needs the autoroute announce command to make the
CEF entry 172.16.0.44/32 point to interface tunnel-te44 (LSP PE2--->PE4). But this
command has more implications, as you can see at the end of Chapter 3.

The Traffic Engineering Database
What happens directly after you configure a RSVP-TE LSP? By default, the ingress PE
doesn’t leave anything to fate. It decides in advance the LSP’s exact itinerary by build‐
ing an ordered list of the hops that the LSP should go through. This list is encoded in
an Explicit Route Object (ERO). But where does the ingress PE find the information
to compute the ERO? It finds it in the Traffic Engineering Database (TED).

Let’s have a sneak peek on a Junos router’s TED.

Example 2-34. TED at PE1 (Junos)

juniper@PE1> show ted database PE1.00
TED database: 7 ISIS nodes 7 INET nodes
ID                            Type Age(s) LnkIn LnkOut Protocol
PE1.00(172.16.0.11)           Rtr     198     2      2 IS-IS(2)
    To: P1.00(172.16.0.1), Local: 10.0.0.2, Remote: 10.0.0.3
    To: PE2.00(172.16.0.22), Local: 10.0.0.0, Remote: 10.0.0.1

juniper@PE1> show ted database P1.00
TED database: 7 ISIS nodes 7 INET nodes
ID                            Type Age(s) LnkIn LnkOut Protocol
P1.00(172.16.0.1)             Rtr      92     4      4 IS-IS(2)
    To: PE1.00(172.16.0.11), Local: 10.0.0.3, Remote: 10.0.0.2
    To: PE3.00(172.16.0.33), Local: 10.0.0.8, Remote: 10.0.0.9
    To: P2.00(172.16.0.2), Local: 10.0.0.6, Remote: 10.0.0.7
    To: P2.00(172.16.0.2), Local: 10.0.0.24, Remote: 10.0.0.25

juniper@PE1> show ted database PE3.00
TED database: 7 ISIS nodes 7 INET nodes
ID                            Type Age(s) LnkIn LnkOut Protocol
PE3.00(172.16.0.33)           Rtr     133     2      2 IS-IS(2)
    To: P1.00(172.16.0.1), Local: 10.0.0.9, Remote: 10.0.0.8
    To: PE4.00(172.16.0.44), Local: 10.0.0.12, Remote: 10.0.0.13

Similarly, PE2 (IOS XR) also has a TED (Example 2-35).
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Example 2-35. TED at PE2 (IOS XR)

RP/0/0/CPU0:PE2#show mpls traffic-eng topology brief 172.16.0.22
[...]
IGP Id: 1720.1600.0022.00, MPLS TE Id: 172.16.0.22 Router Node
  (IS-IS mycore level-2)
  Link[0]:Point-to-Point, Nbr IGP Id:1720.1600.0002.00 [...]
  Link[1]:Point-to-Point, Nbr IGP Id:1720.1600.0011.00 [...]

RP/0/0/CPU0:PE2#show mpls traffic-eng topology brief 172.16.0.2
[...]
IGP Id: 1720.1600.0002.00, MPLS TE Id: 172.16.0.2 Router Node
  (IS-IS mycore level-2)
  Link[0]:Point-to-Point, Nbr IGP Id:1720.1600.0022.00 [...]
  Link[1]:Point-to-Point, Nbr IGP Id:1720.1600.0001.00 [...]
  Link[2]:Point-to-Point, Nbr IGP Id:1720.1600.0001.00 [...]
  Link[3]:Point-to-Point, Nbr IGP Id:1720.1600.0044.00 [...]

RP/0/0/CPU0:PE2#show mpls traffic-eng topology brief 172.16.0.44
[...]
IGP Id: 1720.1600.0044.00, MPLS TE Id: 172.16.0.44 Router Node
  (IS-IS mycore level-2)
  Link[0]:Point-to-Point, Nbr IGP Id:1720.1600.0002.00 [...]
  Link[1]:Point-to-Point, Nbr IGP Id:1720.1600.0033.00 [...]

Although not shown due to the restrictions of space, the TEDs for
PE1 and PE2 also contain the nodes from the other vendor’s plane.

The TED looks very much like a Link State Database (LSDB). Indeed, protocols such
as IS-IS or OSPF feed the information to build the TED. In addition, both the LSDB
and the TED contain per-link Traffic Engineering information that you can see by
using the extensive keyword.

Here are the main differences between the IS-IS (or OSPF) LSDB and the TED:

• The TED is protocol agnostic. It can be populated by IS-IS, OSPF, or even BGP
(with a special address family).

• The TED is unique and there is one separate LSDB per IGP (OSPF, IS-IS)
instance or process.

• The IS-IS (or OSPF) LSDB has information about MPLS and non-MPLS inter‐
faces, whereas the TED only contains MPLS interfaces.

And how can you tell from the LSDB whether a link has MPLS turned on? Let’s tem‐
porarily remove family mpls from PE1’s interface ge-2/0/4 (connected to P1). Or,
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alternatively, delete ge-2/0/4 from protocols rsvp | mpls. Example 2-36 shows
PE1’s Link State Packet.

Example 2-36. Link State Packet with MPLS and non-MPLS interfaces (Junos)

juniper@PE1> show isis database PE1 extensive
[...]
  TLVs:
    IS extended neighbor: PE2.00, Metric: default 10
      IP address: 10.0.0.0
      Neighbor's IP address: 10.0.0.1
      Local interface index: 336, Remote interface index: 0
      Current reservable bandwidth:
        Priority 0 : 1000Mbps
        Priority 1 : 1000Mbps
        Priority 2 : 1000Mbps
        Priority 3 : 1000Mbps
        Priority 4 : 1000Mbps
        Priority 5 : 1000Mbps
        Priority 6 : 1000Mbps
        Priority 7 : 1000Mbps
      Maximum reservable bandwidth: 1000Mbps
      Maximum bandwidth: 1000Mbps
      Administrative groups:  0 <none>
    IS extended neighbor: P1.00, Metric: default 10
      IP address: 10.0.0.2
      Neighbor's IP address: 10.0.0.3
      Local interface index: 337, Remote interface index: 0

juniper@PE1> show ted database PE1
TED database: 11 ISIS nodes 7 INET nodes
ID                            Type Age(s) LnkIn LnkOut Protocol
PE1.00(172.16.0.11)           Rtr     601     2      1 IS-IS(2)
    To: PE2.00(172.16.0.22), Local: 10.0.0.0, Remote: 10.0.0.1
      Local interface index: 336, Remote interface index: 0

The acronym LSP can stand for Label-Switched Path or for Link
State Packet. In this book, it typically has the first meaning.

Only the MPLS link (PE1-PE2) contains Traffic Engineering sub–Type Length Value
(sub-TLVs), and as a result this is the only interface at PE1 that makes it to the TED.
Let’s enable MPLS and RSVP on PE1-P1 interface again and move on.
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Both Junos and IOS XR ensure that all the interfaces included in
the TED are fully operational at the MPLS and RSVP levels. And
because it is computed from the TED, the path that a RSVP-TE LSP
follows is always labeled.

Constrained Shortest-Path First
To compute the ERO for the PE1→PE3 LSP, PE1 runs an algorithm called Con‐
strained Shortest-Path First (CSPF), which finds the best path to PE3 in the TED.
Although this book does explore a wide variety of TE constraints later on in Chapter
13 through Chapter 15, the LSPs in Example 2-32 and Example 2-33 are so simple
that they impose no constraints at all. And without constraints, CSPF looks very
much like the traditional Shortest-Path First (SPF). Here is the outcome of the CSPF
calculation that preceded PE1→PE3 LSP’s signaling from PE1:

Example 2-37. CSPF computation for PE1→PE3 LSP (Junos)

juniper@PE1> show rsvp session name PE1--->PE3 detail
[...]
  Explct route: 10.0.0.1 10.0.0.5 10.0.0.24 10.0.0.9

Surprise! The PE1→PE3 LSP is now signaled via PE2, and it has four hops instead of
two. Why? Remember that MPLS was temporarily disabled on the PE1→P1 link. This
brought down the RSVP-TE LSP and triggered a CSPF computation through a longer
alternate path. Yet, now that PE1→P1 is fine again from the point of view of MPLS,
why is the LSP still following a longer path?

In both Junos and IOS XR, simple RSVP-TE LSPs tend to avoid flapping links. When
they are signaled, RSVP LSPs can remain indefinitely on their current path. If there is
a failure (e.g., in one of the path’s links or nodes), the ingress PE runs CSPF again and
resignals the LSP.

Thus, the PE1→PE3 LSP has a suboptimal ERO. How can you reoptimize this LSP, or
in other words, how can you trigger a CSPF recalculation? Manually flapping a link is
not a good idea. There are better ways.

First, you can manually reoptimize an LSP by executing the following operational
commands:

• Junos: clear mpls lsp name PE1--->PE3 optimize
• IOS XR: mpls traffic-eng reoptimize 44 (tunnel-te 44)

However, this is not scalable from an operational perspective. In both Junos and IOS
XR, it is recommended that you configure a reoptimization timer. When the timer
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expires, the ingress PE runs CSPF again, and if the result is better than the current
path, the LSP is resignaled.

If the network service requirements (latency, bandwidth, etc.) allow
it, try to use high timer values. Staying on stable links is a good
thing!

You can configure reoptimization timers in Junos either globally or on a per-LSP
basis, and they are global in IOS XR. Let’s call this timer T1 (in seconds):

• Junos: protocols mpls [label-switched-path <name>] optimize-timer

<T1>

• IOS XR: mpls traffic-eng reoptimize <T1>

LSP optimization takes place in a make-before-break fashion. Before tearing down
the original path, PE1 signals a new PE1→PE3 path and gracefully switches the traffic
to it. In that sense, the change is not disruptive and does not cause any transit packet
loss. In scaled environments, it is wise to delay this switchover, allowing time for the
LSP’s forwarding plane to be ready before the routes point to the new path. Let’s call
this timer T2 (in seconds):

• Junos: protocols mpls optimize-switchover-delay <T2>
• IOS XR: mpls traffic-eng optimize timers delay installation <T2>

How do T1 and T2 relate to each other? Let’s see an example, by using the Junos ter‐
minology from Table 2-2.

The PE1→PE3 LSP is initially mapped to RSVP session A, which follows the shortest
IGP path PE1-P1-PE3. Then, the PE1-P1 link experiences a short flap
(up→down→up).

Directly after the up→down transition, RSVP session A goes down, and PE1 signals a
new RSVP session B through a (longer) available path—for example, PE1-PE2-P2-
PE4-PE3. PE1 quickly activates the LSP on RSVP session B and starts timer T1. At this
point, the user traffic is restored.

While T1 is ticking down, the link comes back up and IS-IS converges. That’s orthog‐
onal to T1, which just keeps ticking down. When T1 expires, PE1 signals a new RSVP
session C through the shortest path PE1-P1-PE3, and starts timer T2.

While T2 is ticking down, PE1 keeps both RSVP sessions B and C up, but the LSP and
the user traffic are still on session B. Only when T2 expires, PE1 switches the LSP and
the user traffic to session C.
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RSVP-TE messages
After the ingress PE computes the ERO, it begins to signal the LSP. Let’s focus on the
PE1→PE3 example. As shown in Figure 2-5, the ingress PE (PE1) sends Path mes‐
sages and the egress PE (PE3) answers with Resv messages. These RSVP messages are
encapsulated directly on top of IP (RSVP = IPv4 protocol 46).

Figure 2-5. RSVP-TE Path and Resv messages

In addition to the ERO, a Path message contains several objects, including the Record
Route Object (RRO). The ERO and the RRO have symmetrical roles: whereas the
ERO shrinks hop by hop (as there are less hops to go), the RRO grows hop by hop (as
there are more hops left behind).

Try to spot the Tunnel ID and the LSP ID in Figure 2-5. When the
LSP is resignaled (upon failure, reoptimization, or a change in TE
requirements), the Tunnel ID remains the same and the LSP ID is
incremented.

RSVP Path messages have a destination IPv4 address equal to the egress PE’s loop‐
back (and not to the transit LSR). For this reason, the ingress PE sets the Router Alert
(RA) option in the IPv4 header. This allows the transit LSRs (P1) to intercept and
process the Path messages at the control plane, thereby creating dynamic local LSP
state and updating both the ERO and the RRO on a hop-by-hop basis.
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The Resv messages flow in the opposite direction (upstream) and contain label infor‐
mation. First, the egress PE (PE3) signals the implicit null label; then, the upstream
LSRs assign a locally unique label bound to the LSP.

In RSVP-TE, a label is locally bound to an LSP, not to an FEC. If
PE1 signals 1,000 LSPs toward PE3 with the same ERO, P1 assigns
1,000 different MPLS labels, one per LSP.

Because Resv messages are triggered by Path messages, RSVP-TE label distribution
method is DoD, as compared to the default LDP mode (DU).

RSVP-TE LSPs are maintained by periodic Path/Resv message refresh. This per-LSP
message exchange is often called an RSVP session. You can view an RSVP session as a
control plane incarnation of an LSP. This is a subtle nuance, so in the RSVP world,
the terms LSP and session are often used interchangeably (see Table 2-3).

After it is configured to do so, PE3 also signals a PE3→PE1 LSP by sending Path mes‐
sages to PE1 and receiving Resv messages from PE1. This enables bidirectional end-
to-end traffic.

LSRs send Path and Resv messages periodically in order to keep the RSVP-TE ses‐
sions alive. Chapter 16 covers some possible optimizations.

There is also a set of messages (PathErr, PathTear, ResvErr, and ResvTear) that signal
LSP error conditions or tear down RSVP-TE LSPs.

RSVP-TE in Action
Let’s see two end-to-end traffic examples, first on the Junos plane (LSP PE1→PE3)
and then on the IOS XR plane (PE2→PE4). Figure 2-6 illustrates the RSVP signaling
involved in both examples.
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Figure 2-6. RSVP-TE LSPs on Junos and IOS XR planes

RSVP-TE signaling and MPLS forwarding in the Junos plane
The first example (Example 2-38) is a loopback-to-loopback traceroute from CE1 to
BR3 traversing the Junos plane (PE1, P1, PE3).

Example 2-38. Traceroute through the Junos plane

juniper@CE1> traceroute 192.168.20.3 source 192.168.10.1
traceroute to 192.168.20.3 (192.168.20.3) from 192.168.10.1 [...]
 1  PE1 (10.1.0.1)  21.468 ms  8.833 ms  4.311 ms
 2  P1 (10.0.0.3)  20.169 ms  33.771 ms  137.208 ms
     MPLS Label=300560 CoS=0 TTL=1 S=1
 3  PE3 (10.0.0.9)  14.305 ms  13.516 ms  12.845 ms
 4  BR3 (192.168.20.3)  23.651 ms  10.378 ms  11.674 ms

Let’s interpret the output step by step. As you saw in Chapter 1, PE1 has a BGP route
toward BR3’s loopback, and the BGP next hop of this route is PE3. Then, PE1
resolves this BGP next hop by looking at the inet.3 auxiliary table, and this is how
the Internet route (to BR3) gets a labeled forwarding next hop.

Example 2-39. MPLS forwarding at ingress PE1 (Junos)

juniper@PE1> show route 192.168.20.3 active-path detail
[...]
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                Protocol next hop: 172.16.0.33

juniper@PE1> show route table inet.3 172.16.0.33

inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.0.33/32     *[RSVP/7/1] 05:01:26, metric 20
        > to 10.0.0.3 via ge-2/0/4.0, label-switched-path PE1--->PE3

juniper@PE1> show route forwarding-table destination 192.168.20.3
Routing table: default.inet
Internet:
Destination      Type Next hop  Type       Index  NhRef Netif
192.168.20.3/32  user           indr     1048576  2
                      10.0.0.3  Push 300560  595  2     ge-2/0/4.0

PE1 pushes an MPLS header with label 300560 and sends the packet to the forward‐
ing next hop P1. Why label 300560? The answer is in Figure 2-5, Figure 2-6, and
Example 2-40: because this is the label that P1 maps to the LSP PE1→PE3.

Example 2-40. RSVP sessions at PE1 (Junos)

juniper@PE1> show rsvp session
Ingress RSVP: 3 sessions
To           From         State Style Labelin Labelout LSPname
172.16.0.22  172.16.0.11  Up       SE       -        3 PE1--->PE2
172.16.0.33  172.16.0.11  Up       FF       -   300560 PE1--->PE3
172.16.0.44  172.16.0.11  Up       SE       -   300256 PE1--->PE4
Total 3 displayed, Up 3, Down 0

Egress RSVP: 3 sessions
To           From         State Style Labelin Labelout LSPname
172.16.0.11  172.16.0.22  Up       SE       3        - PE2--->PE1
172.16.0.11  172.16.0.44  Up       SE       3        - PE4--->PE1
172.16.0.11  172.16.0.33  Up       FF       3        - PE3--->PE1
Total 3 displayed, Up 3, Down 0

Transit RSVP: 2 sessions
To           From         State Style Labelin Labelout LSPname
172.16.0.22  172.16.0.33  Up       SE  299952        3 PE3--->PE2
172.16.0.33  172.16.0.22  Up       SE  299968   300144 PE2--->PE3
Total 2 displayed, Up 2, Down 0

juniper@PE1> show rsvp session name PE1--->PE3 detail
[...]
  PATH sentto: 10.0.0.3 (ge-2/0/4.0) 4226 pkts
  RESV rcvfrom: 10.0.0.3 (ge-2/0/4.0) 4235 pkts[...]
  Explct route: 10.0.0.3 10.0.0.9
  Record route: <self> 10.0.0.3 10.0.0.9
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The two first columns in the previous output are To and From. The
order is important: first comes the tail-end of the LSP and then the
head-end. It’s not always intuitive because the LSPs are signaled the
other way around.

From the perspective of PE1, there are three types of RSVP sessions:

• Ingress RSVP sessions correspond to LSPs originated at PE1 (head-end). They
have PE1’s router ID in the second column (From).

• Egress RSVP sessions correspond to LSPs that terminate at PE1 (tail-end). They
have PE1’s router ID in the first column (To).

• Transit RSVP sessions correspond to LSPs that go through PE1, but whose two
endpoints are both outside PE1.

The Style column can show two different values: Shared Explicit (SE) and Fixed Fil‐
ter (FF). SE is the recommended mode because it makes sure that bandwidth reserva‐
tions (if any) are not double counted. It is the default in IOS XR and requires explicit
configuration in Junos, as you can see in Example 2-32, line 4 (adaptive keyword).

Now, let’s see how to interpret the Labelin and Labelout columns:

• If PE1 needs to send a packet through LSP PE1→PE3, PE1 pushes label 300560 to
the packet before sending it out to the next hop.

• If PE1 receives an incoming packet with outermost label 299968, PE1 maps the
packet to LSP PE2→PE3 and swaps its label to 300144.

• If PE1 receives an incoming packet with outermost label 299952, PE1 maps the
packet to LSP PE3→PE2 and pops the label.

As you can see, RSVP’s Labelin and Labelout are forwarding-plane concepts. MPLS
data packets are received by using Labelin and sent by using Labelout. In this sense,
show rsvp session and show ldp database have an opposite interpretation of what
input and output mean. Indeed, LDP’s input and output label database contain
labels learned and advertised, respectively. But MPLS packets flow in the reverse
direction!

Back to RSVP: let’s compare two similar (but not identical) commands in Junos.

Example 2-41. RSVP session versus MPLS LSP (Junos)

juniper@PE1> show rsvp session ingress name PE1--->PE3
Ingress RSVP: 3 sessions
To           From         State Style Labelin Labelout LSPname
172.16.0.33  172.16.0.11  Up       FF       -   300560 PE1--->PE3
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juniper@PE1> show mpls lsp ingress name PE1--->PE3
Ingress LSP: 3 sessions
To           From         State  P     ActivePath  LSPname
172.16.0.33  172.16.0.11  Up     *                 PE1--->PE3
Total 1 displayed, Up 1, Down 0

If the LSP is up and stable, the first command provides more information (namely,
the labels). But, the second command is very useful in other situations: for example, if
the LSP cannot be established due to a CSPF failure (no RSVP session), or if the LSP
is being reoptimized or it has path protection (two RSVP sessions for the same LSP).
These two commands are complementary.

You can see the Tunnel ID by looking at the port number in the
show rsvp session extensive output.

Let’s move on to P1, a pure LSR or P-router (Example 2-42).

Example 2-42. RSVP signaling and MPLS forwarding at P1 (Junos)

juniper@PE1> show rsvp session transit name PE1--->PE3
Transit RSVP: 6 sessions
To           From         State Style Labelin Labelout LSPname
172.16.0.33  172.16.0.11  Up       FF  300560        3 PE1--->PE3

juniper@P1> show route forwarding-table label 300560 table default
Routing table: default.mpls
MPLS:
Destination  Type RtRef Next hop         Index    NhRef Netif
300560       user     0 10.0.0.9   Pop     586     2    ge-2/0/6.0
300560(S=0)  user     0 10.0.0.9   Pop     588     2    ge-2/0/6.0

The forwarding table has two routes for label 300560, one for each value of the Bot‐
tom of Stack (BoS) bit in the external MPLS header. Which one is relevant for the
CE1-to-BR3 traceroute packets? These arrive to P1 with just one MPLS label. In
single-label stacks, the Top of Stack (ToS) label is at the same time the BoS label, so
the BoS bit is set to 1 (S=1) and the first route applies.

As you saw in the LDP section, label 3 is a reserved label value called implicit null and
it translates to pop the label. So, the IPv4 packet arrives unlabeled to PE3, and PE3 has
the BGP route to reach BR3.

Let’s wrap up by looking at an RSVP-TE LSP traceroute.
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Example 2-43. MPLS RSVP-TE traceroute from PE1 to PE3 (Junos)

juniper@PE1> traceroute mpls rsvp PE1--->PE3
  Probe options: retries 3, exp 7

  ttl    Label  Protocol  Address    Previous Hop   Probe Status
    1   300560  RSVP-TE   10.0.0.3   (null)         Success
  FEC-Stack-Sent: RSVP
  ttl    Label  Protocol  Address    Previous Hop   Probe Status
    2        3  RSVP-TE   10.0.0.9   10.0.0.3       Egress
  FEC-Stack-Sent: RSVP

  Path 1 via ge-2/0/4.0 destination 127.0.0.64

RSVP-TE signaling and MPLS forwarding in the IOS XR plane
Example 2-44 is an end-to-end traceroute from CE2 to BR4 that goes through the
IOS XR plane (PE2, P2, PE4).

Example 2-44. Traceroute through the IOS XR plane

juniper@CE2> traceroute 192.168.20.4 source 192.168.10.2
traceroute to 192.168.20.4 (192.168.20.4) from 192.168.10.2 [...]
 1  PE2 (10.1.0.3)  2.833 ms  3.041 ms  2.441 ms
 2  P2 (10.0.0.5)  10.465 ms  8.480 ms  9.311 ms
     MPLS Label=24008 CoS=0 TTL=1 S=1
 3  PE4 (10.0.0.11)  8.461 ms  8.757 ms  7.982 ms
 4  BR4 (192.168.20.4)  9.109 ms  10.427 ms  9.248 ms

PE2 has a BGP route toward BR4’s loopback, and the BGP next hop of this route is
PE4. The key here is the CEF entry for 172.16.0.44/32. Let’s have a look at it.

Example 2-45. MPLS forwarding at ingress PE2 (IOS XR)

1     RP/0/0/CPU0:PE2#show cef 172.16.0.44
2     172.16.0.44/32, version 91, internal [...]
3      local adjacency 10.0.0.5
4      Prefix Len 32, traffic index 0, precedence n/a, priority 1
5        via 172.16.0.44, tunnel-te44, 4 dependencies [...]
6         path-idx 0 NHID 0x0 [0xa0db3250 0x0]
7         next hop 172.16.0.44
8         local adjacency
9          local label 24016      labels imposed {ImplNull}

The label operation for this LSP is as follows: push a real label, not implicit null. The
real label does not show in line 9. Actually, seeing ImplNull there is a sign that every‐
thing is OK.
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What is tunnel-te44? This is an explicitly configured interface, and it pushes an
MPLS label with a value (24008) that matches traceroute’s output, as shown in
Example 2-44 and in Example 2-46 (line 7):

Example 2-46. RSVP-TE LSP at PE2 (IOS XR)

1     RP/0/0/CPU0:PE2#show mpls traffic-eng tunnels name tunnel-te44 detail
2     Name: tunnel-te44  Destination: 172.16.0.44  Ifhandle:0x580
3       Signalled-Name: PE2--->PE4
4       Status:
5         Admin:    up Oper:   up   Path:  valid   Signalling: connected
6     [...]
7         Outgoing Interface: GigabitEthernet0/0/0/3, Outgoing Label: 24008
8         Path Info:
9           Outgoing:
10            Explicit Route:
11              Strict, 10.0.0.5
12              Strict, 10.0.0.11
13              Strict, 172.16.0.44
14        Resv Info:
15          Record Route:
16            IPv4 10.0.0.5, flags 0x0
17            IPv4 10.0.0.11, flags 0x0
18
19    RP/0/0/CPU0:PE2#show rsvp session tunnel-name PE2--->PE4
20    Type Destination Add DPort  Proto/ExtTunID  PSBs  RSBs  Reqs
21    ---- --------------- ----- --------------- ----- ----- -----
22    LSP4     172.16.0.44    44     172.16.0.22     1     1     0

Now, let’s look at the RSVP-TE session and forwarding entries on P2, the next hop
LSR.

Example 2-47. RSVP signaling and MPLS forwarding at P2 (IOS XR)

RP/0/0/CPU0:P2#show rsvp session tunnel-name PE2--->PE4 detail
SESSION: IPv4-LSP Addr: 172.16.0.44, TunID: 44, ExtID: 172.16.0.22
 Tunnel Name: PE2--->PE4 [...]
  RSVP Path Info:
   InLabel: GigabitEthernet0/0/0/0, 24008
   Incoming Address: 10.0.0.5
   Explicit Route:
     Strict, 10.0.0.5/32
     Strict, 10.0.0.11/32
     Strict, 172.16.0.44/32
   Record Route:
     IPv4 10.0.0.4, flags 0x0
   Tspec: avg rate=0, burst=1K, peak rate=0
  RSVP Resv Info:
   OutLabel: GigabitEthernet0/0/0/5, 3
   FRR OutLabel: No intf, No label
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   Record Route:
     IPv4 10.0.0.11, flags 0x0

RP/0/0/CPU0:P2#show mpls forwarding labels 24008
Wed Nov 26 10:58:09.822 UTC
Local  Outgoing    Prefix     Outgoing     Next Hop   Bytes
Label  Label       or ID      Interface               Switched
------ ----------- ---------- ------------ ---------- --------
24008  Pop         44         Gi0/0/0/5    10.0.0.11  192900

And finally, following is an example of RSVP-TE LSP traceroute in IOS XR.

Example 2-48. MPLS RSVP-TE traceroute from PE2 to PE4 (IOS XR)

RP/0/0/CPU0:PE2#traceroute mpls traffic-eng tunnel-te 44

[...]
  0 10.0.0.4 MRU 1500 [Labels: 24008 Exp: 0]
L 1 10.0.0.5 MRU 1500 [Labels: implicit-null Exp: 0] 0 ms
! 2 10.0.0.11 1 ms     IPv4 10.0.0.4, flags 0x0

Remember that MPLS OAM requires explicit configuration in IOS
XR.

RSVP-Constrained Paths and ECMP
RSVP-TE EROs determine the path of an LSP univocally. There is no load balancing
inside an LSP: after it is established, the LSP follows one—and only one—path until
the LSP is resignaled and moves to another single path. This makes RSVP-TE less
ECMP-aware than LDP. Let’s see how to achieve load balancing with plain RSVP-TE
LSPs: you basically need several LSPs between the same head and tail.

Following is a Junos configuration with three RSVP-TE LSPs from PE1 to PE4.

Example 2-49. Three RSVP-TE LSPs from PE1 to PE4 (Junos)

protocols {
    mpls {
        label-switched-path PE1--->PE4 to 172.16.0.44;
        label-switched-path PE1--->PE4-A {
            to 172.16.0.44;
            primary PE4-A;
        }
        label-switched-path PE1--->PE4-B {
            to 172.16.0.44;
            primary PE4-B;
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        }
        path PE4-A {
            10.0.0.3 strict;
            10.0.0.7 strict;
            10.0.0.11 strict;
        }
        path PE4-B {
            172.16.0.22 loose;
}}}

This configuration brings up three LSPs:

• PE1→PE4 does not have any CSPF constraints. PE1 chooses an ERO among the
four available equal-cost paths to PE4, and the result is not deterministic.

• PE1→PE4-A has strict CSPF constraints: an ordered list of forwarding next hops.
This is actually a manually configured ERO and it leaves CSPF with only one
option. Hence, the path is deterministic.

• PE1→PE4-B has a loose CSPF constraint: go via PE2. It is loose because it does
not specify how to enter or exit PE2. However, there is only one possible path
that meets the constraint in this topology.

PE1 load balances across the three LSPs, regardless of their path.

Example 2-50. RSVP-TE ECMP from PE1 to PE4 (Junos)

1     juniper@PE1> show rsvp session ingress name PE1--->PE4* extensive
2     [...]
3       LSPname: PE1--->PE4, LSPpath: Primary
4       Resv style: 1 SE, Label in: -, Label out: 300576
5       Explct route: 10.0.0.3 10.0.0.9 10.0.0.13
6      [...]
7       LSPname: PE1--->PE4-A, LSPpath: Primary
8       Resv style: 1 SE, Label in: -, Label out: 300560
9       Explct route: 10.0.0.3 10.0.0.7 10.0.0.11
10     [...]
11      LSPname: PE1--->PE4-B, LSPpath: Primary
12      Resv style: 1 SE, Label in: -, Label out: 24003
13      Explct route: 10.0.0.1 10.0.0.5 10.0.0.11
14
15    juniper@PE1> show route table inet.3 172.16.0.44
16
17    inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
18    + = Active Route, - = Last Active, * = Both
19
20    172.16.0.44/32     *[RSVP/7/1] 11:44:37, metric 30
21       > to 10.0.0.3 via ge-2/0/4.0, label-switched-path PE1--->PE4
22         to 10.0.0.3 via ge-2/0/4.0, label-switched-path PE1--->PE4-A
23         to 10.0.0.1 via ge-2/0/3.0, label-switched-path PE1--->PE4-B
24
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25    juniper@PE1> show route forwarding-table destination 192.168.20.4
26    Routing table: default.inet
27    Internet:
28    Destination      Type Next hop        Type  Index    Netif
29    192.168.20.4/32  user                 indr  1048577
30                                          ulst  1048581
31                          10.0.0.3 Push 300576      596  ge-2/0/4.0
32                          10.0.0.3 Push 300560      599  ge-2/0/4.0
33                          10.0.0.1 Push 24003       597  ge-2/0/3.0

As you can see, the ingress PE actually expands the 172.16.0.22 loose next hop into a
list of strict next hops (lines 5, 9, and 13). In this case, loose and strict are local prop‐
erties, only meaningful in the context of CSPF. The resulting ERO has a simpler
structure: it’s just a list of IPv4 next hops.

In some cases, the RSVP-TE Path messages may actually include
loose next hops. This is the case of inter-area scenarios where the
ingress PE signals a loose next hop and the ABR expands it into a
list of strict next hops.

If the manually defined path is not valid or it has loops, CSPF fails and the ingress PE
does not signal the LSP. In addition, RSVP-TE has a mechanism (based on the RRO)
to detect loops in transit during LSP establishment.

Load balancing is achieved with a unilist next hop (line 30). Although not shown in
Example 2-50, all the unicast next hops (lines 31 through 33) have weight 0x1. This
topic is fully explained in Chapter 20.

Note that after a packet enters a given RSVP-TE LSP, there is just one possible path
ahead. All of the load balancing is performed at the head-end, unlike LDP LSPs for
which ECMP happens in a hop-by-hop basis.

The load-balancing scheme illustrated in Example 2-50 and in Figure 2-7 is imper‐
fect: one of the P1-P2 links is not utilized and the PE1-P1 link is loaded two more
times than the PE1-PE2 link. As the network grows more complex, it’s virtually
impossible to achieve decent load balancing with this manual approach. Fortunately,
this challenge can be addressed with container LSPs (Chapter 14) and/or external
controllers (Chapter 15).
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Figure 2-7. Three RSVP-TE LSPs from PE1 to PE4

What if a transit link fails? If the currently active path of PE1→PE4 were affected, the
LSP would be resignaled successfully through a different path. But PE1→PE4-A (like
PE1→PE4-B) does not have this flexibility and it would fail—see the fast restoration
(Chapter 18 through Chapter 21) for protection features.

Now let’s discuss a different example. Suppose that PE1 has two LSPs toward PE3 (not
PE4). These two LSPs follow the paths (PE1, P1, PE3) and (PE1, PE2, P2, PE4, PE3),
respectively. Obviously, the second path is longer and has a higher cumulative metric.
However, PE1 load-balances flows across the two LSPs. Why?

By default in Junos and IOS XR, the metric of a RSVP-TE LSP is
equal to the IGP shortest-path metric to the destination. This is
regardless of the actual path followed by the LSP: only the end‐
points matter.

Let’s finish up the ECMP discussion by looking at Example 2-51, which is based on
IOS XR. In this case, PE2 signals several LSPs toward PE3.

Example 2-51. Two RSVP-TE LSPs from PE2 to PE3 (IOS XR)

group GR-LSP-NO-PATH
 interface 'tunnel-te.*'
  ipv4 unnumbered Loopback0
  autoroute announce
  record-route
end-group
!
interface tunnel-te33
 apply-group GR-LSP-NO-PATH
 signalled-name PE2--->PE3
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 destination 172.16.0.33
 path-option 1 dynamic
!
interface tunnel-te330
 apply-group GR-LSP-NO-PATH
 signalled-name PE2--->PE3-A
 destination 172.16.0.33
 path-option 1 explicit name PE3-A
!
explicit-path name PE3-A
 index 10 next-address strict ipv4 unicast 10.0.0.5
 index 20 next-address loose ipv4 unicast 172.16.0.44

As expected, the PE2→PE3-A path follows the path specified, and PE2 load-balances
PE2-to-PE3 traffic between the two LSPs (Example 2-52).

Example 2-52. RSVP-TE ECMP from PE2 to PE3 (IOS XR)

RP/0/0/CPU0:PE2#show rsvp session tunnel-name PE2--->PE3 detail
[...]
   Explicit Route:
     Strict, 10.0.0.0/32
     Strict, 10.0.0.3/32
     Strict, 10.0.0.9/32
     Strict, 172.16.0.33/32

RP/0/0/CPU0:PE2#show rsvp session tunnel-name PE2--->PE3-A detail
[...]
   Explicit Route:
     Strict, 10.0.0.5/32
     Strict, 10.0.0.11/32
     Strict, 172.16.0.44/32

RP/0/0/CPU0:PE2#show cef 172.16.0.33
172.16.0.33/32, version 829, internal [...]
 Updated Nov 29 10:35:04.150
 Prefix Len 32, traffic index 0, precedence n/a, priority 1
   via 172.16.0.33, tunnel-te33, 4 dependencies [...]
    path-idx 0 NHID 0x0 [0xa0db3638 0x0]
    next hop 172.16.0.33
    local adjacency
   via 172.16.0.33, tunnel-te330, 4 dependencies [...]
    path-idx 1 NHID 0x0 [0xa0db3250 0x0]
    next hop 172.16.0.33
    local adjacency

Like Junos, IOS XR decouples the load-balancing decision from the actual path fol‐
lowed by the LSP. If PE2 has several paths to PE4, for example (PE2, P2, PE4) and
(PE2, PE1, P1, PE3, PE4), PE2 spreads traffic flows between both LSPs, even if one
path is much longer than the other.
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Inter-Area RSVP-TE LSPs
RFC 4105 defines a set of requirements on inter-area RSVP-TE LSPs.

Looking back at Figure 2-1, let’s suppose the following:

• PE1 and PE2 are L2-only IS-IS routers in Area 49.0001
• PE3 and PE4 are L1-only IS-IS routers in Area 49.0002
• P1 and P2 are IS-IS L1-L2 routers, present in both Areas

In this scenario, the link-state information is fragmented so that only P1 and P2 have
a complete TED. On the other hand, a PE’s TED only contains links of the local area.
This makes it impossible for PE1 or PE2 to compute an ERO to reach PE3 or PE4,
and vice versa. And a similar situation would occur with OSPF, too.

Route redistribution (such as IS-IS L2-to-L1 route leaking) does not propagate topol‐
ogy information, so it doesn’t solve the issue. There are two clean solutions:

• BGP-LS (covered in Chapter 15) solves the issue by propagating interdomain
topology information.

• Segmented and Hierarchical LSPs (Chapter 9 and Chapter 16) relax the need for
inter-area RSVP-TE LSPs.

Let’s now see a quick but limited approach to get the inter-area RSVP-TE LSPs up and
running. It’s the third (and less preferred) solution.

Although by default Junos and IOS XR compute a complete ERO and include it in
Path messages, in reality this is not mandatory. The ERO is an optional object, and
CSPF is optional, too. If you configure the PE3→PE1 LSP with the no-cspf option in
Junos, PE3 simply looks for the best IGP route to PE1. It sends the Path message with
no ERO to the next-hop LSR and waits for a Resv message. This actually works fine,
but PE3 has no control on the path beyond the first next hop, which is clearly a chal‐
lenge if you want to use Traffic Engineering constraints.

As an administrator, you can actually influence the LSP’s itinerary within the local
area of the ingress PE. For example, PE3 can choose the path that PE3→PE1 takes
within area 49.0002. This can be useful to select the path toward the ABR, but there is
no control beyond the ABR because there is no end-to-end visibility of the TED.

Likewise, the following IOS XR configuration results in an inter-area PE4→PE1 LSP
successfully signaled end to end.

Example 2-53. Inter-area RSVP-TE LSP signaled from PE4 (IOS XR)

group GR-LSP-PATH
 interface 'tunnel-te.*'
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  ipv4 unnumbered Loopback0
  record-route
end-group
!
interface tunnel-te11
 apply-group GR-LSP-PATH
 signalled-name PE4--->PE1
 destination 172.16.0.11
 path-option 1 explicit name PE1-A
!
explicit-path name PE1-A
 index 10 next-address loose ipv4 unicast 172.16.0.2
!
router static
 address-family ipv4 unicast
  172.16.0.11/32 tunnel-te11

The static route is necessary because IOS XR only supports autoroute announce in
single-domain LSPs. You must configure it so that the CEF entry for 172.16.0.11/32
points to the tunnel interface.

RSVP Auto Tunnel
When it comes to RSVP-TE LSPs, there is much confusion around the words static
and dynamic. In this book, RSVP-TE is always considered to be dynamic. Chapter 1
presents an example of static (protocol-less) LSPs. But RSVP-TE is a dynamic proto‐
col that signals LSPs end to end, detects and reacts upon failures, and so on. This
remains true even if the LSP has a statically configured ERO.

RSVP Auto Tunnel (or Dynamic Tunnels) brings endpoint autodiscovery to the table.
Instead of having to explicitly configure LSPs one by one, you let the ingress PE do
the job of discovering remote PEs and automatically building LSPs toward them. It is
still possible to apply Traffic Engineering constraints to these LSPs via a template, but
you can no longer specify strict or loose IPv4 paths. So, RSVP Auto Tunnel is a time
saver, but it has a cost: less control and less granularity.

The following example presents RSVP Auto Tunnel in Junos (PE1).

Example 2-54. RSVP-TE Auto Tunnel at PE1 (Junos)

routing-options {
    dynamic-tunnels {
        TN-PE1 {
            rsvp-te LOOPBACKS {
                label-switched-path-template default-template;
                destination-networks 172.16.0.0/16; 
}}}}

juniper@PE1> show rsvp session ingress
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Ingress RSVP: 3 sessions
To           From         State Labelout LSPname
172.16.0.22  172.16.0.11  Up           3 172.16.0.22:dt-rsvp-TN-PE1
172.16.0.33  172.16.0.11  Up      300512 172.16.0.33:dt-rsvp-TN-PE1
172.16.0.44  172.16.0.11  Up      300608 172.16.0.44:dt-rsvp-TN-PE1
Total 3 displayed, Up 3, Down 0

There is no LSP toward P1 and P2. So, why does PE1 only signal LSPs toward the
PEs? The P-routers are not advertising any BGP route, so PE1 does not need to
resolve the BGP next hops 172.16.0.1 and 172.16.0.2. This is a resource-saving strat‐
egy: PE1 signals only the LSPs it needs.

Finally, let’s see the Auto Tunnel feature in IOS XR (PE2).

Example 2-55. RSVP-TE Auto Tunnel at PE2 (IOS XR)

ipv4 unnumbered mpls traffic-eng Loopback0
!
ipv4 prefix-list PR-TUNNEL
 10 deny 172.16.0.0/30 eq 32        # No tunnels to P1 and P2
 20 permit 172.16.0.0/26 eq 32
!
mpls traffic-eng
  auto-tunnel mesh
    group 1
      attribute-set AT-MESH
      destination-list PR-TUNNEL
    tunnel-id min 10 max 20
  attribute-set auto-mesh AT-MESH
    autoroute announce

RP/0/0/CPU0:PE2#  show mpls traffic-eng tunnels brief

         TUNNEL NAME         DESTINATION      STATUS  STATE
        +tunnel-te10         172.16.0.11          up  up
        +tunnel-te11         172.16.0.33          up  up
        +tunnel-te12         172.16.0.44          up  up
   autom_PE4_t12_mg1         172.16.0.22          up  up
  172.16.0.22:dt-rsv         172.16.0.22          up  up
  172.16.0.22:dt-rsv         172.16.0.22          up  up
+ = automatically created mesh tunnel

The Auto Tunnel LSPs signaled to PE2 from PE1, PE3 and PE4 are: 172.16.0.22:dt-
rsvp-TN-PE1, 172.16.0.22:dt-rsvp-TN-PE3 and autom_PE4_t12_mg1, respectively.

IGP and SPRING
Source Packet Routing in Networking (SPRING), also known as Segment Routing
(SR), is a recent network routing paradigm covered by several complementary IETF
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drafts at the time of publication of this book. The most fundamental are draft-ietf-
spring-segment-routing, draft-ietf-spring-segment-routing-mpls, draft-ietf-isis-segment-
routing-extensions, and draft-ietf-ospf-segment-routing-extensions.

SPRING is proposed as an alternative to LDP and/or RSVP-TE:

• As an LDP alternative, SPRING is natively implemented by the IGP (IS-IS or
OSPF), so it reduces the number of protocols running in the network.

• As an RSVP-TE alternative, SPRING natively supports ECMP and implements a
more scalable control plane because it does not need to keep per-LSP state in the
network. On the other hand, SPRING does not have bandwidth reservation
mechanisms, so if this function is required, you can achieve it only with the help
of a central controller.

SPRING initial use cases are Traffic Engineering (see Chapter 16) and fast restoration
(see Chapter 18), but new applications are being defined.

You might be venturing a guess that SPRING uses source routing as a means to trans‐
port packets from one PE to another PE across the core. However, this is not always
the case. Strikingly, the SPRING technology applied to this chapter’s basic transport
scenario can be explained without invoking the source routing concept at all. Indeed,
this first example’s SPRING LSP’s are MP2P and have only one segment. This chapter
later explains what the “Source Packet Routing” in SPRING and the “Segment” in SR
actually stand for.

For the moment, you can think of a segment as an instruction. On the wire, a seg‐
ment is either encoded into a MPLS header or into something else (the alternatives
are explained later in this section). Following is a first classification of segments,
assuming that the forwarding plane is MPLS-based. Unlike labels, which are always
local (see RFC 3031), segments can either be local or global.

• Local segments

The router that originates and advertises a local segment is the only one that assigns a
label to the segment and installs that label in its LFIB.

• Global segments

Typically every router in the domain assigns a (local) label to a (global) segment and
installs that label in its LFIB.
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SPRING in Action
One of the most important components of SPRING is its ability to advertise MPLS
label information in the IGP, in the form of IS-IS sub-TLVs or new opaque OSPF
LSAs. Let’s see it in detail for IS-IS.

This is a basic SPRING configuration in Junos (PE1).

Example 2-56. SPRING configuration at PE1 (Junos)

protocols {
    isis {
        source-packet-routing {
            node-segment ipv4-index 11;

And here it is in IOS XR (PE2).

Example 2-57. SPRING configuration at PE2 (IOS XR)

router isis mycore
 address-family ipv4 unicast
  segment-routing mpls
 !
 interface Loopback0
  address-family ipv4 unicast
   prefix-sid index 22

This configuration leads to the automatic creation of MP2P LSPs (any-to-PE1 and
any-to-PE2), topologically identical to the ones signaled by LDP. SPRING is easier to
understand when the LSPs have at least two hops on each (Junos, IOS XR) plane. The
links PE1-P1 and P2-PE4 are temporarily disabled to achieve the forwarding path
shown in Example 2-58 and in Figure 2-8.

Example 2-58. Traceroute from CE1 to BR4

juniper@CE1> traceroute 192.168.20.4 source 192.168.10.1
traceroute to 192.168.20.4 (192.168.20.4) from 192.168.10.1 [...]
 1  PE1 (10.1.0.1)  33.591 ms  9.484 ms  3.845 ms
 2  PE2 (10.0.0.1)  45.782 ms  11.524 ms  16.886 ms
     MPLS Label=16044 CoS=0 TTL=1 S=1
 3  P2 (10.0.0.5)  11.891 ms  11.991 ms  13.639 ms
     MPLS Label=16044 CoS=0 TTL=1 S=1
 4  10.0.0.24 (10.0.0.24)  13.205 ms  15.812 ms  16.886 ms
     MPLS Label=800044 CoS=0 TTL=1 S=1
 5  PE3 (10.0.0.9)  21.226 ms  15.272 ms  18.900 ms
     MPLS Label=800044 CoS=0 TTL=1 S=1
 6  PE4 (10.0.0.13)  19.875 ms  15.498 ms  21.145 ms
 7  BR4 (192.168.20.4)  15.067 ms  21.923 ms  21.952 ms
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Figure 2-8. SPRING tunnel from PE1 to PE4

Interestingly, all the labels end in 44, the Node Segment Identifier (Node SID) of PE4.
And, there are only two different label values in the flow: 16044 and 800044. Actually,
if the path had 10 times more next hops, there would still be only two label values
(one for Junos, one for IOS XR). This is totally different from LDP and RSVP, whose
labels are not deterministic and often change to a different value over time and on a
hop-by-hop basis.

But, where do these labels come from? Every LSR in the path adds new sub-TLVs to
their own IS-IS node Link State Packet.

Example 2-59. SPRING sub-TLVs in IS-IS Link State Packets

RP/0/0/CPU0:PE2# show isis database verbose

IS-IS mycore (Level-2) Link State Database
LSPID           LSP Seq Num  LSP Checksum  LSP Holdtime  ATT/P/OL
P1.00-00        0x00000645   0xdde2        472             0/0/0
  Router Cap:   172.16.0.1, D:0, S:1
    Segment Routing: I:1 V:1, SRGB Base: 800000 Range: 4096
  Metric: 0          IP-Extended 172.16.0.1/32
    Prefix-SID Index: 1, R:0 N:1 P:0 E:0 V:0 L:0
[...]
P2.00-00        0x000005e2   0x3a06        942             0/0/0
  Router Cap:   172.16.0.2, D:0, S:0
    Segment Routing: I:1 V:0, SRGB Base: 16000 Range: 8000
  Metric: 0          IP-Extended 172.16.0.2/32
    Prefix-SID Index: 2, R:0 N:1 P:0 E:0 V:0 L:0
[...]
PE1.00-00       0x0000065e   0x8515        1151            0/0/0
  Router Cap:   172.16.0.11, D:0, S:1
    Segment Routing: I:1 V:1, SRGB Base: 800000 Range: 4096
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  Metric: 0          IP-Extended 172.16.0.11/32
    Prefix-SID Index: 11, R:0 N:1 P:0 E:0 V:0 L:0
[...]
PE2.00-00     * 0x00000591   0x1254        1057            0/0/0
  Router Cap:   172.16.0.22, D:0, S:0
    Segment Routing: I:1 V:0, SRGB Base: 16000 Range: 8000
  Metric: 0          IP-Extended 172.16.0.22/32
    Prefix-SID Index: 22, R:0 N:1 P:0 E:0 V:0 L:0
[...]
PE3.00-00       0x00000055   0x573f        900             0/0/0
  Router Cap:   172.16.0.33, D:0, S:1
    Segment Routing: I:1 V:1, SRGB Base: 800000 Range: 4096
  Metric: 0          IP-Extended 172.16.0.33/32
    Prefix-SID Index: 33, R:0 N:1 P:0 E:0 V:0 L:0
[...]
PE4.00-00       0x00000049   0xea9c        749             0/0/0
  Router Cap:   172.16.0.44, D:0, S:0
    Segment Routing: I:1 V:0, SRGB Base: 16000 Range: 8000
  Metric: 0          IP-Extended 172.16.0.44/32
    Prefix-SID Index: 44, R:0 N:1 P:0 E:0 V:0 L:0
[...]

Following is the way these sub-TLVs are displayed in Junos CLI.

Example 2-60. SPRING sub-TLVs in IS-IS Link State Packets (Junos)

juniper@PE1> show isis database extensive
[...]
PE2.00-00 Sequence: 0x643, Checksum: 0xe1e0, Lifetime: 910 secs
 Router Capability:  Router ID 172.16.0.22, Flags: 0x01
   SPRING Capability - Flags: 0x80, Range: 8000, SID-Label: 16000
 IP extended prefix: 172.16.0.22/32 metric 0 up
   Node SID, Flags: 0x40, Algo: SPF(0), Value: 22
[...]

When a Prefix SID has the N-Flag (0x40), it becomes a Node SID. Node segments are
global because every prefix segment is global. On the other hand, MPLS labels are
locally significant by definition (RFC 3031).

SRGB stands for Segment Routing Global Block, and it’s a locally significant MPLS label
block that each LSR allocates to SPRING global segments. Using the terms “local” and
“global” in the same sentence might sound like a contradiction, but it will become
clearer as you keep reading this section. The SRGB is encoded as a Base (displayed as
SID-Label in Junos) and a Range. The lowest and highest label values of the block are
Base, and Base+Range–1, respectively.
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Earlier SPRING drafts hoped that all the vendors would agree on a
common label block. But it turned out that every vendor had its
own way to partition the platform label space; hence, the introduc‐
tion of the per-platform SRGB concept.

In addition, you need to allocate, configure, and associate a Prefix Segment Identifier
(SID) to the LSR’s loopback IP address (see Example 2-56 and Example 2-57). A Pre‐
fix SID is a globally significant number linked to an address FEC.

Prefix (and Node) SIDs are global, so they must remain unique
across the entire routing domain. A good practice is to define a
deterministic mathematical rule that maps local Router IDs to
Node SID values.

Going back to the LDP case study, each LSR dynamically allocated a local label for
each remote FEC. This is also true for SPRING, except that these local label mappings
are deterministic and not explicity advertised.

Let’s suppose that PE2 needs to map a local label to FEC 172.16.0.44/32 (PE4’s loop‐
back). PE2 adds its own local SRGB Base (16000) to the global Node SID (44), and the
result is the local label mapping (172.16.0.44/32, 16044) at PE2. This label is locally
unique (local to PE2, and unique because the Node SID value uniquely identifies
PE4). It is a classic downstream-allocated label: if an MPLS packet arrives with label
16044, PE2 knows that the packet must be sent along the LSP toward PE4.

Let’s see how the LSP is built in the forwarding plane. It all begins at the Ingress PE
(PE1).

Example 2-61. MPLS forwarding at ingress PE1 (Junos)

juniper@PE1> show route 192.168.20.4 active-path detail
[...]
                Protocol next hop: 172.16.0.44

juniper@PE1> show route 172.16.0.44 table inet.3

inet.3: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.0.44/32     *[L-IS-IS/14] 00:04:49, metric 50
                    > to 10.0.0.1 via ge-2/0/3.0, Push 16044

juniper@PE1> show route forwarding-table destination 192.168.20.4
Routing table: default.inet
Internet:
Destination      Type Next hop    Type       Index  NhRef Netif
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192.168.20.4/32  user             indr     1048577     2
                      10.0.0.1 Push 16044      588     2 ge-2/0/3.0

The next hop is PE2 because it’s the only available path to PE4 from the IGP perspec‐
tive (remember the PE1-P1 link is down). Label 16044 is calculated as follows: PE2’s
SRGB Base (16000) plus 172.16.0.44’s global Node SID (44): 16000 + 44 = 16044.

Let’s move on to the first transit LSR (PE2).

Example 2-62. MPLS forwarding at transit PE2 (IOS XR)

RP/0/0/CPU0:PE2#show mpls forwarding labels 16044
Local  Outgoing  Prefix   Outgoing    Next Hop    Bytes
Label  Label     or ID    Interface               Switched
------ --------- -------- ----------- ----------- ---------
16044  16044     No ID    Gi0/0/0/3   10.0.0.5    7524

The next hop is P2, and label 16044 is calculated as follows: P2’s SRGB Base (16000)
plus 172.16.0.44’s global Node SID (44).

Let’s look at the next transit LSR (P2).

Example 2-63. MPLS forwarding at transit P2 (IOS XR)

RP/0/0/CPU0:P2#show mpls forwarding labels 16044
Local  Outgoing  Prefix   Outgoing    Next Hop    Bytes
Label  Label     or ID    Interface               Switched
------ --------- -------- ----------- ----------- ---------
16044  800044    No ID    Gi0/0/0/2   10.0.0.6    102318
       800044    No ID    Gi0/0/0/3   10.0.0.24   3324

The next hop is P1 and traffic is load-balanced across the two parallel P1-P2 links.
Good!

Remember that LDP is natively ECMP-aware because it is coupled
to the IGP. Well, SPRING is also natively ECMP-aware because it is
actually a part of the IGP!

The outgoing label 800044 is calculated as follows: P1’s SRGB Base (800000) plus
172.16.0.44’s global Node SID (44).

Let’s look at the next transit LSR (P1).

98 | Chapter 2: The Four MPLS Builders



Example 2-64. MPLS forwarding at transit P1 (Junos)

juniper@P1> show route forwarding-table label 800044
Routing table: default.mpls
MPLS:
Destination  Type  Next hop              Index  NhRef  Netif
800044       user  10.0.0.9 Swap 800044  603    2      ge-2/0/6.0

The next hop is PE3, and the outgoing label 800044 is calculated as follows: PE3’s
SRGB Base (800000) plus 172.16.0.44’s global Node SID (44).

PE3, the penultimate hop LSR. PE3 realizes that the Node SID (44) is attached to the
neighboring router PE4. Furthermore, the 172.16.0.44/32 SID (see Example 2-59)
does not have the P flag set (P:0). This is the no-PHP flag, and because it is not set,
there is PHP. As a result, PE3 simply pops the label.

Example 2-65. MPLS forwarding at transit PE3 (Junos)

juniper@PE3> show route forwarding-table label 800044
Routing table: default.mpls
MPLS:
Destination  Type  Next hop              Index  NhRef  Netif
800044       user  10.0.0.13  Pop        595    2      ge-2/0/2.0
800044(S=0)  user  10.0.0.13  Pop        596    2      ge-2/0/2.0

Finally, as an exercise, you can decipher the traceroute output (from BR4 to CE1) in
Example 2-66 with the help of Figure 2-8. Note that there is ECMP between P1 and
P2 (although only one of the paths is displayed).

Example 2-66. Traceroute from BR4 to CE1

juniper@BR4> traceroute 192.168.10.1 source 192.168.20.4
traceroute to 192.168.10.1 (192.168.10.1) from 192.168.20.4 [...]
 1  PE4 (10.2.0.44)  3.543 ms  2.339 ms  2.941 ms
 2  PE3 (10.0.0.12)  15.954 ms  14.377 ms  12.769 ms
     MPLS Label=800011 CoS=0 TTL=1 S=1
 3  P1 (10.0.0.8)  17.500 ms  12.640 ms  12.053 ms
     MPLS Label=800011 CoS=0 TTL=1 S=1
 4  P2 (10.0.0.25)  14.233 ms  11.790 ms P2 (10.0.0.7)  12.726 ms
     MPLS Label=16011 CoS=0 TTL=1 S=1
 5  PE2 (10.0.0.4)  12.302 ms  52.934 ms  182.355 ms
     MPLS Label=16011 CoS=0 TTL=1 S=1
 6  PE1 (10.0.0.0)  13.430 ms  12.928 ms  12.125 ms
 7  CE1 (192.168.10.1)  16.963 ms  18.107 ms  15.797 ms

SPRING Concepts
The previous examples illustrated a simple SPRING scenario because it only involves
one segment, namely PE4’s (or PE1’s) Node SID.
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Figure 2-9 illustrates a more complex scenario with four segments pushed on the
packets, from top to bottom: a node segment (for TE), an adjacency segment (for
TE), another node segment (the egress PE), and a service segment (see Chapters
Chapter 3 through Chapter 8 for examples of this).

Figure 2-9. Node, adjacency, and service segments

Before sending the packet into the core, PE1 pushes four MPLS headers, each with
one label. They are, from top to bottom (remember that all of these labels are locally-
significant):

P2’s Node (Global Segment)
The outermost label takes the packet from PE1 to P2 in an ECMP-aware manner.
PE1 has two equal-cost next hops to reach P2: P1 and PE2. Depending on
whether PE1 decides to go via P1 or PE2, the label would be 800002 or 16002,
respectively. This is due to the different SRGB Base at P1 and PE2. Then, P1 or
PE2 pops the outer header from the packet on its way to P2.

P2-P1 #2 Adjacency (Local Segment)
P2 receives the packet with a three-label stack. The outer label, Lx, represents a
local segment, and it identifies an IGP adjacency. This is a new type of segment
and it means: pop the label and send the packet over the P2-P1 link #2. This time it
is an internal core link, but it could have been an external peering link or even a
RSVP-TE LSP beginning at P2.
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PE3’s Node (Global Segment)
P1 receives the packet with a two-label stack. The outer label is 800033, and it is
P1’s SRGB Base plus PE3’s Node SID. P1 pops this label before sending the packet
to PE3.

Service Y (Local Segment)
PE3 receives the packet with just one MPLS header. The label Ly is a local seg‐
ment that identifies a service. This new type of segment means: pop the label and
map the packet to Service Y.

You can view segments as instructions. When PE1 pushes four headers, it is giving
four consecutive instructions to the LSRs in the path: first take the packet to P2, then
send it over link P2-P1 #2, then take it to PE3, and then when it arrives at PE3, map it
to Service Y. A global instruction can actually require multiple hops to be completed
(Node Segments are a good example of this).

PE1 codes a sequence of routing instructions directly in the data packet. This time the
instructions are coded as MPLS labels, but SPRING also supports IPv6 (with exten‐
sion headers) forwarding plane. The key concept here is that the source (PE1) not
only decides the next hop, but also the subsequent forwarding decisions. This model
is traditionally called Source Routing and this is how the SPRING acronym becomes
meaningful.

Back to RSVP-TE, the ingress PE also decided the path. Is that Source Routing, too?
Let’s see:

• You can see back in Figure 2-5 that the RSVP-TE Path messages are actually
source-routed. Thanks to the ERO, the ingress PE can decide the exact path of
the LSP. Conversely, the data packets typically have one MPLS label only, which is
mapped to the LSP. In SPRING terminology, an RSVP-TE LSP is just one seg‐
ment. So, in the RSVP-TE world, the control plane relies on Source Routing but
the forwarding plane does not.

• SPRING is a totally different paradigm: the control plane is not even routed (IGP
packets are flooded hop-by-hop), and the forwarding plane may be source-
routed.

Let’s examine each segment type in more detail.

Node Segments are actually a particular subcase (N-flag=1) of Prefix Segments. They
are routed along the IGP’s ECMP shortest path and may be rerouted if the IGP topol‐
ogy changes. In that sense, Node Segments are loose next hops. Their Segment IDs
must be unique because they have global significance. After they’re shifted by the
SRGB Base, the resulting, locally significant, labels are present in the LFIBs of all the
LSRs: this is what a global segment stands for.

IGP and SPRING | 101



Adjacency Segments are local segments, which are only installed in the LFIB of the
LSR advertising them. Said differently, two LSRs can advertise the same label value
for totally different adjacencies. Adjacency Segments can be interpreted as strict next
hops. For example, by pushing five MPLS headers, the ingress PE can send a packet
into an LSP consisting of five strict next hops.

Service Segments are mapped to a service. What is a service? The following chapters
cover several L2 and L3 services in detail. For the time being, it is worth noting that
stacking a service label below a transport label (and, more generally, stacking any
kind of labels) is a standard MPLS technique, not a new contribution from SPRING.

SPRING Adjacency Segments
Both Junos and IOS XR advertise an Adjacency SID by default for each of its IGP
adjacencies.

Following is how the Adjacency SIDs look in Junos and IOS XR CLI.

Example 2-67. SPRING Adjacency SIDs in Junos and IOS XR CLI

juniper@PE1> show isis database PE1.00 extensive
[...]
    IS extended neighbor: PE2.00, Metric: default 10
      IP address: 10.0.0.0
      Neighbor's IP address: 10.0.0.1
      P2P IPV4 Adj-SID - Flags:0x30, Weight:0, Label: 299904
    IS extended neighbor: P1.00, Metric: default 10
      IP address: 10.0.0.2
      Neighbor's IP address: 10.0.0.3
      P2P IPV4 Adj-SID - Flags:0x30, Weight:0, Label: 299920

RP/0/0/CPU0:P2#show isis database verbose PE1.00
[...]
  Metric: 10         IS-Extended PE2.00
    Interface IP Address: 10.0.0.0
    Neighbor IP Address: 10.0.0.1
    ADJ-SID: F:0 B:0 V:1 L:1 S:0 weight:0 Adjacency-sid:299904
  Metric: 10         IS-Extended P1.00
    Interface IP Address: 10.0.0.2
    Neighbor IP Address: 10.0.0.3
    ADJ-SID: F:0 B:0 V:1 L:1 S:0 weight:0 Adjacency-sid:299920

Following is the local meaning of label 299904 at PE1:

• If PE1 receives a packet with outer MPLS label 299904, it pops the label and
sends the packet to PE2 over the link whose remote IPv4 address is 10.0.0.1.
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It is worthwhile to have a look at PE1’s Label Forwarding Information Base (LFIB)
and look for the Node and Adjacency SIDs in it.

Example 2-68. LFIB at PE1 (Junos)

juniper@PE1> show route table mpls.0
[...]
299904             *[L-ISIS/14] 00:05:27, metric 0
                    > to 10.0.0.1 via ge-2/0/3.0, Pop
299904(S=0)        *[L-ISIS/14] 00:01:10, metric 0
                    > to 10.0.0.1 via ge-2/0/3.0, Pop
299920             *[L-ISIS/14] 00:01:29, metric 0
                    > to 10.0.0.3 via ge-2/0/4.0, Pop
299920(S=0)        *[L-ISIS/14] 00:01:10, metric 0
                    > to 10.0.0.3 via ge-2/0/4.0, Pop
800001             *[L-ISIS/14] 00:01:20, metric 10
                    > to 10.0.0.3 via ge-2/0/4.0, Pop
800001(S=0)        *[L-ISIS/14] 00:01:10, metric 10
                    > to 10.0.0.3 via ge-2/0/4.0, Pop
800002             *[L-ISIS/14] 00:01:20, metric 20
                      to 10.0.0.1 via ge-2/0/3.0, Swap 16002
                    > to 10.0.0.3 via ge-2/0/4.0, Swap 800002
800022             *[L-ISIS/14] 19:49:26, metric 10
                    > to 10.0.0.1 via ge-2/0/3.0, Pop
800022(S=0)        *[L-ISIS/14] 00:01:10, metric 10
                    > to 10.0.0.1 via ge-2/0/3.0, Pop
800033             *[L-ISIS/14] 00:01:20, metric 20
                    > to 10.0.0.3 via ge-2/0/4.0, Swap 800033
800044             *[L-ISIS/14] 00:01:10, metric 30
                      to 10.0.0.1 via ge-2/0/3.0, Swap 16044
                    > to 10.0.0.3 via ge-2/0/4.0, Swap 800044

As you can see, PE1’s LFIB contains all the Node labels (global Node SID +
local→remote SRGB Base), and only the local Adjacency SID labels.

Another interesting case is the double P1-P2 link. Depending on the implementation,
LSRs may advertise one different Adjacency SID for each link and/or advertise one
single Adjacency SID representing both links. As a result, the head-end LER may
have the possibility to choose either ECMP or a specific link. The authors did not ver‐
ify these implementation details in the lab.

A Comparison of LDP, RSVP-TE, and SPRING
So far, this chapter has covered three protocols (or actually four, if you consider
SPRING both over IS-IS and OSPF) that are capable of signaling MPLS LSPs. Which
one is better? It depends!

MPLS is a flexible technology and depending on the application, the topology, the
requirements, and more in some cases, the best fit can be RSVP-TE, or SPRING, or
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LDP. It really depends on the relative importance of each factor. Table 2-2 summari‐
zes the pros and cons of each of these great technologies.

Table 2-3. Comparison of internal MPLS signaling protocols

Technology LDP RSVP-TE SPRING

Supports Traffic Engineering No Yes With label stacking, no BW reservation.

Natively supported by the IGP No No Yes

Supports P2MP LSPs Yes Yes Not yet

Simple configuration Yes With Auto Tunnel SID provisioning

Control plane load Low Per-LSP state Null

Deterministic labels No No For global segments

Deterministic labels have benefits in terms of forwarding plane stability and provide
easier troubleshooting. On the other hand, networking devices can simultaneously
push a limited number of MPLS labels, which is a factor to consider for SPRING-
based TE deployments.

BGP-Labeled Unicast
All of the examples in this chapter rely on BGP to propagate IPv4 unicast routes
between different Autonomous Systems (65000, 65001, and 65002). Advertising plain
IPv4 prefixes is actually the original application of BGP as described in RFC 4271. 
This classic BGP flavor is commonly called vanilla BGP, and it is the cornerstone of
the IPv4 Internet.

Although the BGP protocol is extremely scalable and flexible, vanilla BGP is only
capable of advertising IPv4 unicast prefixes. This is where BGP multiprotocol exten‐
sions (RFC 4760) come into play. The word multiprotocol is actually an understate‐
ment: with these extensions, BGP can advertise virtually anything. It can be routes,
but also MAC addresses, or multicast subscriptions, or security filters, or even label
mappings!

In the same way as vanilla BGP exchanges IPv4 routes, multiprotocol BGP exchanges
more generic objects called Network Layer Reachability Information (NLRI). Again,
there is a wide variety of information that can be encoded in an NLRI, and many
times this information has nothing to do with the network layer concept. However,
the NLRI acronym remains very popular and it refers to an object (or prefix)
announced via multiprotocol BGP.

How can different types of NLRI be identified? Every NLRI has an AFI, SAFI pair.
(AFI stands for Address Family Identifier, and SAFI is an acronym for Subsequent
Address Family Identifier.) For example, IPv4 unicast is (AFI=1, SAFI=1) and IPv6
unicast is (AFI=2, SAFI=1). You can get the full list of AFI and SAFI here:
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• http://www.iana.org/assignments/address-family-numbers/address-family-
numbers.xhtml

• http://www.iana.org/assignments/safi-namespace/safi-namespace.xhtml

This chapter covers (AFI=1, SAFI=4), an NLRI that contains label mappings, very
similar to LDP’s. This flavor of BGP is described in RFC 3107, and its familiar name
is Labeled Unicast or simply BGP-LU.

BGP-LU has numerous applications such as interprovider VPN, MPLS in the data
center or Seamless MPLS. Chapter 9 and Chapter 16 cover these use cases, many of
which are hierarchical. Let’s examine a simple example now.

IGP-Free Large-Scale Data Centers
Fabric Clos topologies have become the de facto underlay architecture in modern
data centers. Depending on whether they are MPLS-enabled or not, they are called
MPLS fabrics or IP fabrics. Due to its unparalleled scalability, many large-scale data
centers use BGP as the only routing protocol inside their fabrics.

Data center underlay terminology (Clos, fabric, stage, leaf, spine,
tier) and concepts are fully explained in Chapter 10. For the
moment, you can view the fabric as a classic MPLS topology with
PEs and Ps.

External BGP (eBGP) is preferred over internal BGP (iBGP) due to its better multi‐
path and loop-detection capabilities.

Most typically, a controller programs the MPLS labels on the serv‐
er’s FIB. In this case, MPLS-capable servers do not run BGP-LU;
only the fabric LSRs do that. Anyway, let’s keep the BGP-
everywhere example in this chapter and leave the more realistic
scenario for Chapter 16.

Figure 2-10 shows a minimal three-stage fabric topology.
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Figure 2-10. IGP-free leaf-and-spine topology

Following are descriptions of the components in Figure 2-10:

• Virtual machines (VMs) are like CEs: they do not have a MPLS stack.
• Servers or hypervisors hosting the VMs (or containers) have an MPLS stack. In

this example, Junos and IOS XR routers emulate the role of the MPLS-enabled
servers. They are lightweight PEs.

• Top-of-Rack (ToR) or leaf IP/MPLS switches—Tier-2 in this topology—imple‐
ment Clos fabric stages #1 and #3. They are P-routers.

• Spine IP/MPLS switches—Tier-1 in this topology—implement Clos fabric stage
#2. They are P-routers and, in this example, also service route reflectors.
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Large-scale data centers typically have a more complex (5-stage)
topology.

Like all the examples in this chapter, Figure 2-10’s scenario provides a global IPv4
unicast service (AFI=1, SAFI=1) with vanilla BGP. Instead of Internet access, this ser‐
vice interconnects VMs in the data center. And for that to be possible, the infrastruc‐
ture LSPs must be signaled between MPLS-enabled servers; and that is the goal of
BGP-LU.

Figure 2-11 illustrates the role of the two types of BGP sessions: vanilla BGP for ser‐
vice, and BGP-LU for transport. All of the MPLS-enabled devices establish single-hop
external BGP-LU sessions with all their adjacent neighbors. For example, L1’s eBGP-
LU peers are Srv1, S1, and S2. You can view these sessions as a combination of IGP
and LDP: they encode infrastructure IPv4 addresses mapped to MPLS labels.
Although eBGP-LU does not convey topology information, draft-ietf-rtgwg-bgp-
routing-large-dc explains why it remains a great option for large-scale data centers.

Figure 2-11. BGP sessions in IGP-free leaf-and-spine topology
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Although not shown in this example, it is recommended to use 4-
byte AS numbering. Otherwise, the AS:device 1:1 mapping might
result in the exhaustion of the AS space.

BGP-LU—policy and community scheme
Let’s clarify the usage of BGP communities in this example before jumping into the
configuration details:

Servers
Advertise their own loopback addresses 172.16.3.11 and 172.16.3.22, respectively,
as eBGP-LU routes with standard community CM-SERVER (65000:3).
Advertise the VM addresses 10.1.0.0/31 and 10.2.0.0/31, respectively, as vanilla
eBGP routes with standard community CM-VM (65000:100).
Do not readvertise any eBGP route at all.

Leaf LSRs
Readvertise all of the eBGP-LU routes. Although they might advertise their local
loopback, it is not required for the solution to work.

Spine LSRs
Advertise their own loopback addresses 172.16.1.1 and 172.16.1.2, respectively, as
eBGP-LU routes with standard community CM-RR (65000:1).
Readvertise only those vanilla eBGP routes with community CM-VM.
Readvertise only those eBGP-LU routes with community CM-SERVER.

This careful community scheme is due to the fact that IOS XR keeps labeled and
unlabeled IP routes in the same global table, so it is important not to readvertise
labeled routes as unlabeled routes, or vice versa. Said differently, you need to pay spe‐
cial attention so that the SAFI=1 and SAFI=4 worlds remain independent.

As you can see, communities CM-VM and CM-SERVER play a key role in the route
advertising flow. Conversely, the community CM-RR plays a subtler role that we’ll
look at a bit later.

BGP-LU Configuration
In general, IOS XR treats the label as an additional property of the IP unicast route.
On the other hand, Junos treats labeled unicast and unlabeled unicast routes as differ‐
ent entities, keeping them in different tables by default.

Junos—copying interface routes from inet.0 to inet.3

The role of the inet.0 and inet.3 routing tables in Junos has already been explained.
Nonetheless, here’s a quick refresher:
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• inet.0 is the global IPv4 routing table that populates the FIB and is typically
populated by IP routing protocols (IGP, vanilla BGP, etc.).

• inet.3 is an auxiliary table for BGP next-hop resolution and is typically popula‐
ted by MPLS signaling protocols (LDP, RSVP, SPRING-enabled IGP, etc.)

But is BGP-LU an IP routing protocol or an MPLS signaling protocol? Actually, it’s
both. In Junos, you can configure it in two modes:

• BGP-LU installs prefixes in inet.0 and picks prefixes from inet.0 for further
advertising. Optionally, explicit configuration might copy all (or a selection of)
the prefixes into the inet.3 table, enabling BGP next-hop resolution for MPLS
services.

• BGP-LU installs prefixes in inet.3 and picks prefixes from inet.3 for further
advertising. Optionally, explicit configuration might copy all (or a selection of)
the prefixes into the inet.0 table, enabling IPv4 forwarding with labeled next
hop toward these prefixes.

This book uses the second method because it provides more flexibility. For example,
with this model, a single BGP session can exchange prefixes from plain unicast and
labeled unicast address families. Also, it is a good choice in terms of scalability
because BGP-LU prefixes are not automatically installed in the FIB, relaxing the FIB
load on low-end devices. The configuration is slightly more complex, though.

OK, let’s make BGP-LU work on the inet.3 routing table. The first step at Srv1 is to
copy the local loopback address from inet.0 (where it resides by default) to inet.3,
so BGP-LU can advertise it in later steps.

Example 2-69. Copying an interface route from inet.0 to inet.3 at Srv1 (Junos)

1     policy-options {
2         policy-statement PL-LOCAL-LOOPBACK {
3             term LOCAL-LOOPBACK {
4                 from interface lo0.0;
5                 then {
6                     metric 0;
7                     origin incomplete;
8                     community add CM-SERVER;
9                     accept;
10                }
11            }
12            term DIRECT {
13                from protocol direct;
14                then reject;
15            }
16        }
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17        community CM-SERVER members 65000:3;
18    }
19    routing-options {
20        interface-routes {
21            rib-group inet RG-LOCAL-LOOPBACK;
22        }
23        rib-groups {
24            RG-LOCAL-LOOPBACK {
25                import-rib [ inet.0 inet.3 ];
26                import-policy PL-LOCAL-LOOPBACK;
27    }}}

A similar configuration is required on S1, just with a different community: CM-RR.
The usage and relevance of all these communities is explained later. The service does
not require L1’s loopback to be advertised; hence, this configuration is optional for L1
(you can use another community such as 65000:2 for L1 and L2 loopbacks).

A rib-group is like a template. It contains an ordered list of RIBs (line 25). The list
begins with a single primary RIB (inet.0 here) where the to-be-copied prefixes origi‐
nally reside, and then it lists one or more secondary RIBs (only inet.3 here) to which
the prefixes must be copied. The rib-group is then applied to a protocol, or in this
case, to the interface routes (lines 20 and 21) because the local loopback is one of
them. As a result, the route 172.16.3.11/32 is copied from inet.0 to inet.3.

If no policy were specified, all the interface routes would be now in both inet.0 and
inet.3. The policy (PL-LOCAL-LOOPBACK) performs a selective copy of the local loop‐
back route only. Also, to provide consistency between Junos and IOS XR, the policy
changes two route attributes:

• By default, there is no Multi Exit Discriminator (MED) in Junos, and in IOS XR
it is set to zero. The policy sets the MED to zero for consistency across vendors.

• By default, the origin in Junos and IOS XR is igp and incomplete, respectively.
The policy sets it to incomplete.

It is a good practice to also add a geographical or location commu‐
nity that will eventually help to filter the prefixes based on where
the prefix is originally injected.

Note that the policy can only select or modify the routes installed in the secondary
RIBs; it has no effect on the primary RIB. Also, if there were several secondary RIBs,
the to rib knob makes the action specific to a subset of the secondary RIBs only.

Now that the configuration is applied, let’s have a look at the local loopback route.
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Example 2-70. Effect of copying the Local Loopback Route—Srv1 (Junos)

juniper@Srv1> show route 172.16.3.11/32 detail

inet.0: 11 destinations, 12 routes (11 active, 0 holddown, 0 hidden)
172.16.3.11/32 (1 entry, 0 announced)
(...)
                Secondary Tables: inet.3

inet.3: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
172.16.3.11/32 (1 entry, 1 announced)
(...)
                Communities: 65000:3
                Primary Routing Table inet.0

The loopback IPv4 address is copied to inet.3 (secondary table), and the copied
route has a new community. A similar check on other local link address (e.g.,
10.0.10.8/31) only shows the route in inet.0, due to the policy constraints at the rib-
group.

Junos—BGP-LU configuration
The next step is to assign a label to the route and advertise it with BGP-LU.

Example 2-71. eBGP-LU configuration—Srv1 (Junos)

protocols {
    bgp {
        group eBGP-LU-65201 {
            family inet {
                labeled-unicast {
                    per-prefix-label;
                    rib {
                        inet.3;
                    }
                }
            }
            export PL-LOCAL-LOOPBACK;
            peer-as 65201;
            neighbor 10.0.0.1;
}}}

BGP-LU’s per-prefix-label knob is equivalent to LDP’s
deaggregate. It is recommended in BGP-LU to improve conver‐
gence times. However, because it raises the scalability requirements
on the peers, it is not recommended for other BGP address fami‐
lies. Chapter 3 discusses this topic more in detail.
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A similar configuration is required on S1. As for L1, it does not need any export poli‐
cies, because Junos readvertises eBGP prefixes by default.

With the previous configuration (Example 2-71), Srv1 advertises its labeled loopback
to L1, as you can see in the following example.

Example 2-72. Local loopack advertisement via BGP-LU—Srv1 (Junos)

juniper@Srv1> show route advertising-protocol bgp 10.0.0.1
             172.16.3.11 detail

inet.3: 12 destinations, 12 routes (12 active, 0 holddown, ...)
* 172.16.3.11/32 (1 entry, 1 announced)
 BGP group eBGP-LU-65201 type External
     Route Label: 3
     Nexthop: Self
     Flags: Nexthop Change
     AS path: [65301] I
     Communities: 65000:3
     Entropy label capable

As expected, Srv1 assigns the implicit null label to enable PHP.

IOS XR—BGP-LU configuration
Following is the IOS XR configuration at Srv2.

Example 2-73. eBGP-LU configuration—Srv2 (IOS XR)

1     route-policy PL-LOCAL-INTERFACES
2       if destination in (172.16.3.22/32) then
3         set community CM-SERVER
4         pass
5       endif
6     end-policy
7     !
8     route-policy PL-LOCAL-LOOPBACK
9       if community matches-any CM-SERVER then
10        pass
11      else
12        drop
13      endif
14    end-policy
15    !
16    route-policy PL-ALL
17      pass
18    end-policy
19    !
20    community-set CM-SERVER
21      65000:3
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22    end-set
23    !
24    router bgp 65302
25     mpls activate
26      interface GigabitEthernet0/0/0/1
27     !
28     address-family ipv4 unicast
29      redistribute connected route-policy PL-LOCAL-INTERFACES
30      allocate-label all
31     !
32     neighbor 10.0.0.3
33      remote-as 65202
34      address-family ipv4 labeled-unicast
35       send-community-ebgp
36       route-policy PL-LOCAL-LOOPBACK out
37       route-policy PL-ALL in
38    !
39    router static
40     address-family ipv4 unicast
41      10.0.0.3/32 GigabitEthernet0/0/0/1

The local loopback is labeled and announced via eBGP-LU with the following actions:

• Redistribute the local loopback (lines 1 through 6, and 29) into BGP. The PL-
LOCAL-INTERFACES policy is later extended during vanilla BGP configuration.

• Allocate labels to the unicast routes (line 30). It is recommended to apply a policy
here in order to select the routes that require label allocation.

• Attach (line 36) a BGP outbound policy (lines 8 through 14) to only advertise the
local loopback with the appropriate community. In this case, this community is
set during route redistribution but it could have been set during route announce‐
ment, too.

A similar configuration is required on L2 and S2, just with different policies, as
detailed in “BGP-LU—policy and community scheme” on page 108.

Sending communities over eBGP is turned on by default on Junos; you need to turn it
on explicitly for IOS XR (line 35).

Beware of the else drop action in line 12. This is fine for servers,
which only need to advertise their own loopback. Leaf-and-spine
LSRs, however, need to allow the readvertisement of eBGP-LU
routes, too. Their policies need to be less restrictive.

Furthermore, in IOS XR there is a default “reject all” inbound and outbound route
policy applied to eBGP sessions. Explicit policies are required to accept and advertise
eBGP routes (lines 16 through 18, 36 and 37).
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When the previous configuration (Example 2-73) is applied, Srv2 advertises its loop‐
back via eBGP-LU, as demonstrated in Example 2-74.

Example 2-74. Local loopack advertisement via BGP-LU—Srv2 (IOS XR)

RP/0/0/CPU0:Srv2#show bgp ipv4 labeled-unicast advertised

172.16.3.22/32 is advertised to 10.0.0.3
[...]
  Attributes after outbound policy was applied:
    next hop: 10.0.0.2
    MET ORG AS COMM
    origin: incomplete  metric: 0
    aspath: 65302
    community: 65000:3

Incomplete configurations may cause the learned eBGP-LU routes
to remain unresolved. You can check that by using the IOS XR
command show cef unresolved. A similar and very useful Junos
command is show route hidden.

This is why a static route toward L1’s peer interface is configured (Example 2-73, lines
39 through 41). Thanks to that, Srv2 can resolve the eBGP-LU routes. Let’s see it.

Example 2-75. Inter-server labeled reachability—Srv2 (IOS XR)

RP/0/0/CPU0:Srv2#show cef 172.16.3.11
172.16.3.11/32, version 159, internal 0x1000001 [...]
 Prefix Len 32, traffic index 0, precedence n/a, priority 4
   via 10.0.0.3, 6 dependencies, recursive, bgp-ext [flags 0x6020]
    path-idx 0 NHID 0x0 [0xa1558774 0x0]
    recursion-via-/32
    next hop 10.0.0.3 via 24006/0/21
     local label 24004
     next hop 10.0.0.3/32 Gi0/0/0/1 labels imposed {ImplNull 24005}

Service Configuration in an IGP-Less Topology
Now that the LSP signaling infrastructure is in place, it is time to signal the service
routes corresponding to the VMs. For that to happen, Srv1 and Srv2 need to establish
vanilla multihop eBGP sessions with the service route reflectors S1 and S2.

Nothing special is required in IOS XR, but Junos needs to get the remote loopbacks—
previously learned via single-hop eBGP-LU—copied from inet.3 to inet.0 so that
multihop vanilla eBGP sessions can be established.
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Junos—copying eBGP-LU routes from inet.3 to inet.0
Back in Example 2-69 and Example 2-70, the local loopback route was copied from
inet.0 to inet.3—this was so it could be advertised via eBGP-LU. Now, the process
is the reverse: certain routes learned via eBGP-LU need to be copied from inet.3 to
inet.0—so that they are reachable from a pure IPv4 forwarding perspective. The fol‐
lowing example illustrates how to achieve it.

Example 2-76. Copying eBGP-LU routes from inet.3 to inet.0—Srv1 (Junos)

policy-options {
    policy-statement PL-RR-INET {
        term RR {
            from community CM-RR;
            then accept;
        }
        then reject;
    }
    community CM-RR members 65000:1;
}
routing-options {
    rib-groups {
        RG-RR-INET {
            import-rib [ inet.3 inet.0 ];
            import-policy PL-RR-INET;
        }
    }
}
protocols {
    bgp {
        group eBGP-LU-65201 {
            family inet {
                labeled-unicast {
                    rib-group RG-RR-INET;
}}}}}

As mentioned earlier, S1 and S2 are advertising their local loopback routes with com‐
munity CM-RR. As a result of the copy in Example 2-76, these routes are installed in
both inet.3 and inet.0 at Srv1, as shown in Example 2-77.

Example 2-77. Effect of copying an eBGP-LU route—Srv1 (Junos)

juniper@Srv1> show route 172.16.1.1/32 detail

inet.0: 11 destinations, 12 routes (11 active, 0 holddown, 0 hidden)
172.16.1.1/32 (1 entry, 0 announced)
(...)
                Communities: 65000:1
                Primary Routing Table inet.3
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inet.3: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
172.16.3.11/32 (1 entry, 1 announced)
(...)
                Communities: 65000:1
                Secondary Tables: inet.0

Likewise, S1 is configured to copy all the routes with community CM-SERVER from
inet.3 to inet.0. Here is a summary of the use of communities so far:

• Srv1 and Srv2 announce their loopbacks with community CM-SERVER.
• S1 and S2 announce their loopbacks with community CM-RR.
• Srv1 copies eBGP-LU routes with community CM-RR from inet.3 to inet.0.
• S1 copies eBGP-LU routes with community CM-SERVER from inet.3 to inet.
0.

• Srv2 and S2 run IOS XR, which does not have a resolution RIB, so no route copy
is needed.

At this point, IPv4 connectivity between PEs (Srv1, Srv2) and RRs (S1, S2) is guaran‐
teed and multihop vanilla eBGP sessions can be established as in Figure 2-11’s dotted
lines.

Junos—Vanilla eBGP configuration in IGP-less topology
Following is the service configuration at Srv1.

Example 2-78. Vanilla BGP configuration in IGP-less topology—Srv1 (Junos)

policy-options {
    policy-statement PL-eBGP-INET-OUT {
        term VM-INTERFACE {
            from interface ge-2/0/1.0;
            then {
                community add CM-VM;
                accept;
            }
        }
        then reject;
    }
    community CM-VM members 65000:100;
}
protocols {
    bgp {
        group eBGP-INET {
            multihop;
            local-address 172.16.3.11;
            export PL-eBGP-INET-OUT;
            neighbor 172.16.1.1 { peer-as 65101; }
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            neighbor 172.16.1.2 { peer-as 65102; }
}}}

And Example 2-79 shows the service configuration at S1.

Example 2-79. Vanilla BGP configuration in IGP-less topology—S1 (Junos)

1     policy-options {
2         policy-statement PL-eBGP-INET-OUT {
3             term VM {
4                 from community CM-VM;
5                 then accept;
6             }
7             then reject;
8         }
9     }
10    protocols {
11        bgp {
12            group eBGP-INET {
13                multihop {
14                    no-nexthop-change;
15                }
16                local-address 172.16.1.1;
17                export PL-eBGP-INET-OUT;
18                neighbor 172.16.3.11 { peer-as 65301; }
19                neighbor 172.16.3.22 { peer-as 65302; }
20    }}}

Here is the logic behind this configuration: MPLS-enabled servers advertise the VM
prefixes with community CM-VM. Service RRs—S1 and S2, which in this example
happen to be spine LSRs, too—only reflect routes with the community CM-VM. This
prevents any unexpected leaking between labeled and unlabeled routes. A very
important piece of configuration is in line 14. By default, announcing a prefix to a
different AS triggers a BGP next-hop attribute rewrite. This is not desired for service
route reflection, and this is why no-nexthop-change is configured.

IOS XR—vanilla eBGP configuration in IGP-less topology
Following is the service configuration at Srv2.

Example 2-80. Vanilla BGP configuration in IGP-less topology—Srv2 (IOS XR)

route-policy PL-LOCAL-INTERFACES
  if destination in (172.16.3.22/32) then
    set community CM-SERVER
    pass
  endif
  if destination in (10.2.0.0/31) then
    set community CM-VM
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    pass
  endif
end-policy
!
route-policy PL-eBGP-INET
  if community matches-any CM-VM then
    pass
  else
    drop
  endif
end-policy
!
community-set CM-VM
  65000:100
end-set
!
router bgp 65302
 neighbor-group eBGP-INET
  ebgp-multihop 255
  update-source Loopback0
  address-family ipv4 unicast
   send-community-ebgp
   redistribute connected route-policy PL-LOCAL-INTERFACES
   route-policy PL-eBGP-INET out
   route-policy PL-eBGP-INET in
 !
 neighbor 172.16.1.1
  remote-as 65101
  use neighbor-group eBGP-INET
 !
 neighbor 172.16.1.2
  remote-as 65102
  use neighbor-group eBGP-INET

The logic is similar to Junos. Only the VM routes, flagged with community CM-VM,
are advertised as unlabeled IPv4 prefixes toward the service RRs.

Remember that the PL-LOCAL-INTERFACES policy is in control of the redistribution of
interface routes into BGP (Example 2-73, line 29). The local loopback and the VM
route are flagged with community CM-SERVER and CM-VM, respectively. With this
entire configuration in place, the local loopback is only distributed via eBGP-LU,
whereas the VM route is only distributed via vanilla BGP.

The configuration at S2 is similar, with two differences. First, it reflects only remote
VM routes, so it does not have any local VM route to announce. Second, it must not
change the BGP next-hop attribute, so the extra configuration is required.
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Example 2-81. Vanilla BGP configuration in IGP-less topology—S2 (IOS XR)

router bgp 65302
 neighbor-group eBGP-INET
  address-family ipv4 unicast
   next-hop-unchanged

BGP-LU—Signaling and Forwarding Plane
Figure 2-12 puts it all together by showing the end-to-end signaling and forwarding
in detail.

Figure 2-12. Signaling and forwarding in an IGP-free topology

Although only one path is shown, you can definitely configure multipath in eBGP-LU
so that traffic can also transit S2.

Let’s have a look at the traceroute between VM1 and VM2.

Example 2-82. Traceroute from VM1 to VM2

RP/0/0/CPU0:VM#traceroute vrf VM1 10.2.0.1
[...]

 1  10.1.0.0 0 msec  0 msec  0 msec
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 2  10.0.0.1 [MPLS: Label 300272 Exp 0] 0 msec  0 msec  9 msec
 3  10.0.0.5 [MPLS: Label 300928 Exp 0] 0 msec  0 msec  0 msec
 4  10.0.0.8 [MPLS: Label 24006 Exp 0] 0 msec  0 msec  0 msec
 5  10.0.0.2 0 msec  0 msec  0 msec
 6  10.2.0.1 0 msec  *  39 msec

Let’s see how the LSPs are signaled. Each PE has three BGP sessions in total: one
BGP-LU session (single-hop to the adjacent P) and two vanilla BGP sessions to the
RRs.

The routing and forwarding state at the Junos ingress PE is shown in Example 2-83.

Example 2-83. Signaling and MPLS forwarding at ingress PE—Srv1 (Junos)

juniper@Srv1> show route 10.2.0.1
              receive-protocol bgp 172.16.1.1 detail

inet.0: 11 destinations, 12 routes (11 active, 0 holddown, [...])
* 10.2.0.0/31 (2 entries, 1 announced)
     Accepted
     Nexthop: 172.16.3.22
     AS path: 65101 65302 ?
     Communities: 65000:100

juniper@Srv1> show route 172.16.3.22 table inet.3
              receive-protocol bgp 10.0.0.1 detail

inet.3: 12 destinations, 12 routes (12 active, 0 holddown, [...])
* 172.16.3.22/32 (1 entry, 1 announced)
     Accepted
     Route Label: 300272
     Nexthop: 10.0.0.1
     AS path: 65201 65101 65202 65302 ?
     Communities: 65000:3

juniper@Srv1> show route 172.16.3.22 table inet.3

inet.3: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.3.22/32     *[BGP/170] 06:18:31, localpref 100
                      AS path: 65201 65101 65202 65302 ? [...]
                    > to 10.0.0.1 via ge-2/0/2.0, Push 300272

juniper@Srv1> show route forwarding-table destination 10.2.0.1
Routing table: default.inet
Internet:
Destination      Type Next hop  Type       Index  Nhref Netif
10.2.0.1/31      user           indr     1048576  2
                      10.0.0.1  Push 300272  588  2     ge-2/0/2.0
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Srv1 pushes an MPLS header and sends the packet to the forwarding next hop, L1,
with label 300272. This is the label that L1 advertises for 172.16.3.22 via eBGP-LU. L1
swaps the label for 300928, sends the packet to S1, and so on.

Finally, if you look at the reverse flow (VM2→VM1) shown in Figure 2-12 and
Example 2-84, Srv2 acts as an ingress PE.

Example 2-84. Vanilla BGP routing state at ingress PE—Srv2 (IOS XR)

RP/0/0/CPU0:Srv2#show route 10.1.0.1

Routing entry for 10.1.0.0/31
  Known via "bgp 65302", distance 20, metric 0
  Tag 65101, type external
  Routing Descriptor Blocks
    172.16.3.11, from 172.16.1.1, BGP external
      Route metric is 0
  No advertising protos.

You can combine Example 2-75 (Srv2# show cef 172.16.3.11/32, next hop

10.0.0.3, labels imposed {ImplNull 24005}) with Example 2-84 and obtain the
packet sent by Srv2 to L2 in Figure 2-12.

Forwarding at the transit Ps has been skipped here for the sake of brevity. It follows
the same principles as the other protocols. Simply, the protocol changes; for example,
there are BGP routes in mpls.0.

BGP-LU—SPRING Extensions
Deterministic labels require manual provisioning and have several advantages:

• They improve resiliency by reducing the likelihood of events that require reprog‐
ramming the label stacks on the FIB. This is especially important in large-scale
data centers whose devices might need to store a high amount of label forwarding
state.

• They ease the integration with external controllers that are able to program a
label stack on MPLS-capable servers. This becomes relevant if the servers do not
speak BGP-LU or other MPLS protocols with the fabric. In addition, by pro‐
gramming stacks of labels, this architecture enables explicit routing à la SPRING.

• They provide easier operation and troubleshooting.

As described in draft-ietf-idr-bgp-prefix-sid, it is possible to use the SPRING para‐
digm with BGP thanks to the BGP-Prefix-SID Label Index attribute.

Let’s see how it works with the help of Figure 2-13

.
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Figure 2-13. BGP-LU with SPRING extensions

Here is the sequence on the control plane:

1. Srv2 has a policy that assigns the Prefix SID value 322 to the prefix
172.16.3.22/32. This time it is Srv2’s local loopback but it could be any other pre‐
fix—used as BGP next hop—referenced by the policy; hence, the name Prefix
SID and not Node SID. This value must be unique in the domain and assigned by
a central administration entity, as it is also the case for IGP-based SPRING.

2. Srv2 sends the eBGP-LU route 172.16.3.22/32 with an implicit null label and the
locally configured Prefix SID.

3. L2 receives the route and allocates a label for the prefix 172.16.3.22/32. This new
label is locally significant to L2 but its value is not arbitrary: L2 calculates it by
adding its local SRGB to the received Prefix SID: 16000 + 322 = 16322. After it
allocates the label, L2 advertises it with a regular eBGP-LU update, but this time
it adds also the Prefix SID, allowing S1 to repeat the logic.

The same process is repeated on S1 and L1, which have a different SRGB from L2.

Here are a couple of interesting differences between IGP-based SPRING and BGP-
based SPRING:

• IGP-based SPRING does not advertise labels.
• BGP-based SPRING does advertise labels because it is based on BGP-LU. In addi‐

tion, the BGP updates also contain the SID and the SRGB (the latter is not shown
in Figure 2-13).
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As of this writing, this feature is under development for Junos and IOS XR. The
authors had access to a Junos prototype and this is how the eBGP-LU export policy
can be modified in order for Srv1 to assign and announce a prefix SID for its local
loopback.

Example 2-85. Assigning a prefix SID—Srv1 (Junos)

policy-options {
    policy-statement PL-LOCAL-LOOPBACK {
        term LOCAL-LOOPBACK {
            then {
                prefix-segment-index 311;
}}}}

SPRING Anycast
Anycast segments allow sharing the same SID (for a given so-called anycast prefix)
among a group of devices. Several drafts cover two possible scenarios: if all of the
anycast nodes advertising a given SID use the same SRGB, or if they use different
SRGBs. Further details are beyond the scope of this book.

A related technology called Egress Peer Engineering (EPE) is dis‐
cussed in Chapter 13.
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CHAPTER 3

Layer 3 Unicast MPLS Services

So far, this book has illustrated the primary role of MPLS: building tunnels (LSPs)
across the service provider (SP) or the data center core in order to transport packets.
In previous examples, the ingress PE performs a route lookup on each IPv4 packet
before placing it on an LSP. This route lookup process takes into account Layer 3 (L3)
fields contained in the IPv4 header; and the user packets are unicast—destined to a
single host. Putting it all together, IPv4 Internet Transit over MPLS is an L3 Unicast
MPLS Service. It is, historically speaking, the first MPLS service and in terms of vol‐
ume it also remains the most widely used.

IPv4 Internet over MPLS is an unlabeled service, in the sense that packets typically
have no MPLS label when they arrive to the egress (service) PE. While in the LSP,
packets only carry transport labels, but no service labels. What is a service label? It is
simply an MPLS label that identifies a service. At first glance, it is impossible to dis‐
tinguish transport labels from service labels: they look the same. The difference lies in
the way Label Switch Routers (LSRs) and Label Edge Routers (LERs) interpret them,
as determined by the signaling process: when an LSR/LER advertises a label, it is also
mapping it to something with a precise meaning.

If an MPLS service is labeled, the ingress PE typically pushes a stack of two MPLS
headers—as long as the egress PE is more than one hop away. The outer and the inner
headers contain a transport and a service label, respectively. Later in the path, the
penultimate LSR pops the transport label and exposes the service label to the egress
PE. Don’t worry if you are struggling to visualize it, the examples that follow will help.

What other L3 Unicast MPLS services are there? Here are some popular examples:

• Transport of Internet IPv6 packets over an IPv4/MPLS core—a service popularly
known as 6PE. The ingress PE performs a route lookup on its global IPv6 table.
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• L3 Virtual Private Networks (L3VPNs). The ingress PE performs a route lookup
on a private table that is dedicated to a specific customer or tenant.

A tenant typically can be either an external customer or an internal department, but it
can also be an application. The term multitenancy refers to the capability of a service
to keep traffic and routing information isolated between tenants.

In all of the examples in this chapter, PEs translate routing state
from one NLRI to another—the AFI/SAFI values change. This
automatically triggers a next-hop-self (NHS) action at the PE.

6PE: IPv6 Transport in an IPv4/MPLS Core
The 6PE solution shown in Figure 3-1 and described in RFC 4798 allows transporting
IPv6 unicast packets through an IPv4/MPLS backbone whose P-routers are totally
unaware of IPv6. Taking into account that native Label Distribution Protocol (LDP)
over IPv6 is not implemented as of this writing, 6PE is the de facto technology that
carriers use to transport IPv6 in the Internet core.

Figure 3-1. 6PE Topology
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From now on, in Chapter 3 through Chapter 9, the PE1-PE2 and
PE3-PE4 links have Intermediate System–to–Intermediate System
(IS-IS) metric 100. So, the preferred path from PE1 to PE4 is PE1-
P1=P2-PE4, and vice versa.

The hosts, CEs, and PEs, are dual-stack devices that support both IPv4 and IPv6. To
make the example easy to follow, IPv6 addressing looks very similar to IPv4. For
example, H1 has IPv4 and IPv6 addresses 10.1.12.10/24 and
fc00:0:0:0:10:1:12:10/112, respectively. Shortened with the “::” construct—which
means all zeros and can only appear at most once in an IPv6 prefix—thus, H1’s IPv6
address becomes fc00::10:1:12:10/112. Although the addresses look similar, the IPv4
and IPv6 prefixes are in decimal and hexadecimal format, respectively. So, this
addressing choice is more cosmetic rather than a real translation of the bits from IPv4
to IPv6. And the example’s IPv6 mask /112 provides twice as many host bits than the
IPv4 mask /24.

H1 has a default IPv6 route (0::0/0) pointing to fc00::10:1:12:100, a Virtual Router
Redundancy Protocol (VRRP) group address whose default master is CE1. VRRP
route tracking is in place, so if CE1 does not have visibility of the fc00::10:2:34:0/112
remote route but CE2 does, CE2 becomes the VRRP master.

Similarly, H3 has a default IPv6 route pointing to fc00::10:2:134:100, a VRRP group
address whose master is CE4, provided that it has visibility of the fc00::10:1:12:0/112
remote route.

How about the IPv6 route exchange all the way between CE1 and CE4? Let’s go step
by step, starting with the iBGP sessions between PEs and Route Reflectors (RRs).

6PE—Backbone Configuration at the PEs
Let’s see the configuration in Junos and IOS XR.

6PE—backbone configuration at Junos PEs
Example 3-1 shows the relevant core-facing configuration at PE1.

Example 3-1. 6PE—core-facing configuration at PE1 (Junos)

1     protocols {
2         mpls {
3             ipv6-tunneling;
4         }
5         bgp {
6             group iBGP-RR {
7                 family inet6 {
8                     labeled-unicast;
9     }}}}
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So it looks like IPv6 packets are to be tunneled in MPLS (line 3). The internal BGP
(iBGP) sessions convey IPv6 Labeled Unicast (AFI=2, SAFI=4) prefixes, instead of
unlabeled IPv6 Unicast (AFI=2, SAFI=1) ones. You’ll see more about this in the sig‐
naling section.

6PE—backbone configuration at IOS XR PEs
Here is the relevant core-facing configuration at PE2:

Example 3-2. 6PE—core-facing configuration at PE2 (IOS XR)

1     router bgp 65000
2      address-family ipv6 unicast
3       allocate-label all
4      !
5      neighbor-group RR
6       address-family ipv6 labeled-unicast
7     !

The principle is the same as in Junos. PE2 assigns MPLS labels to IPv6 prefixes, and
this information is sent via iBGP to the RRs. In addition, PEs exchange unlabeled pre‐
fixes with CEs via eBGP. Later in the chapter, see Example 3-8, line 10.

6PE—RR Configuration
This is the additional configuration at RR1:

Example 3-3. 6PE—RR configuration at RR1 (Junos)

1     protocols {
2         bgp {
3             group CLIENTS {
4                 family inet6 labeled-unicast;
5     }}}
6     routing-options {
7         rib inet6.0 static route 0::0/0 discard;
8     }

An IPv6 (AFI=2) BGP route carries a BGP next-hop attribute with IPv6 format. But
RR1 is not running any IPv6 routing protocols, so it cannot resolve the BGP next
hop. This is why a default IPv6 route is configured in lines 6 through 7.

Example 3-4 shows the additional configuration at RR2.

Example 3-4. 6PE—RR configuration at RR2 (IOS XR)

router bgp 65000
 address-family ipv6 unicast

128 | Chapter 3: Layer 3 Unicast MPLS Services



 !
 neighbor-group CLIENTS
  address-family ipv6 labeled-unicast
   route-reflector-client
!

IOS XR does not require any extra configuration to resolve the BGP next hop.

6PE—Access Configuration at the PEs
Let’s now focus on the CE-PE routing. The most scalable protocol is BGP, and there
are two configuration options for the PE1-CE1 connection:

• The first option requires two eBGP sessions. One eBGP session is established
between the IPv4 endpoints (10.1.0.0-1) and exchanges IPv4 unicast (AFI=1,
SAFI=1) prefixes; the other session is established between the IPv6 endpoints
(fc00::10:1:0:0-1) and exchanges IPv6 unicast (AFI=2, SAFI=1) prefixes.

• The second option relies on a single eBGP session established between the IPv4
endpoints (10.1.0.0-1). This multiprotocol eBGP session is able to signal both
IPv4 unicast (AFI=1, SAFI=1) and IPv6 unicast (AFI=2, SAFI=1) prefixes.

Both options are valid, but the second one is more scalable; hence, it is used here.

6PE—access configuration at Junos PEs
Example 3-5 shows the access configuration at PE1. The only logical interface and
eBGP session displayed correspond to the PE1-CE1 link.

Example 3-5. 6PE—access configuration at PE1 (Junos)

1     interfaces {
2         ge-2/0/1 {
3             unit 1001 {
4                 vlan-id 1001;
5                 family inet address 10.1.0.1/31;
6                 family inet6 address fc00::10:1:0:1/127;
7     }}}
8     protocols {
9         bgp {
10            group eBGP-65001 {
11                family inet unicast;
12                family inet6 unicast;
13                peer-as 65001;
14                neighbor 10.1.0.0 export PL-eBGP-CE1-OUT;
15    }}}
16    policy-options {
17        policy-statement PL-eBGP-CE1-OUT {
18            term BGP {
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19                from protocol bgp;
20                then metric 100; 
21            }
22            term IPv6 {
23                from family inet6;
24                then next-hop fc00::10:1:0:1; 
25    }}}

As you can see, the logical interface is dual-stacked (lines 5 and 6). Both IPv4 and
IPv6 unicast (lines 11 and 12) prefixes can be exchanged on top of one single eBGP
session (line 14).

The BGP next-hop rewrite in line 24 is essential. Without it, PE1 would advertise
IPv6 routes to CE1 in the format shown in Example 3-6.

Example 3-6. 6PE—IPv4-mapped IPv6 BGP next hop

juniper@PE1> show route advertising-protocol bgp 10.1.0.0 detail
             table inet6.0

* fc00::10:2:34:0/112 (2 entries, 1 announced)
     [...]
     Nexthop: ::ffff:10.1.0.1

In classical IPv6 notation, ::ffff:10.1.0.1 is ::ffff:0a01:0001. This is an IPv4-mapped
IPv6 address, automatically derived from 10.1.0.1. But, the PE1-CE1 link is config‐
ured with IPv6 network fc00::10:1:0:0, which is totally different—watch out for hex
colon versus decimal dot. Hence, the need for a BGP next-hop rewrite: without it,
CE1 would not be able to resolve the BGP next hop. The same technique must be
applied for prefixes announced by CE1 to PE1. Following is the next hop after the
policy is applied.

Example 3-7. 6PE—rewritten IPv6 BGP next hop

juniper@PE1> show route advertising-protocol bgp 10.1.0.0 detail table inet6.0

* fc00::10:2:34:0/112 (2 entries, 1 announced)
     [...]
     Nexthop: fc00::10:1:0:1

As a more complex alternative, you can install the ::ffff:10.1.0.1/128 route into
inet6.3, which is the auxiliary table to resolve BGP next hops in IPv6 format. This
technique is illustrated in Chapter 9.
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In the remainder of this section, dual-stack is assumed. Even if not
shown, all of the BGP sessions are also configured with family
inet unicast (address-family ipv4 unicast).

6PE—access configuration at IOS XR PEs
Following is the access configuration at PE2. The only logical interface and eBGP ses‐
sion displayed correspond to the PE2-CE2 link.

Example 3-8. 6PE—access configuration at PE2 (IOS XR)

1     interface GigabitEthernet0/0/0/0.1001
2      ipv4 address 10.1.0.3 255.255.255.254
3      ipv6 address fc00::10:1:0:3/127
4      encapsulation dot1q 1001
5     !
6     router bgp 65000
7      address-family ipv6 unicast
8      neighbor 10.1.0.2
9       remote-as 65001
10      address-family ipv6 unicast
11       route-policy PL-eBGP-65001-IN in
12       route-policy PL-eBGP-CE2-OUT out
13    !

The principle is very similar to Junos, except that IOS XR PE2 automatically performs
the BGP next-hop rewrite (to fc00::10:1:0:3) on its IPv6 advertisements to CE2.

The eBGP route policies (lines 11 and 12) basically pass all the prefixes (see Chap‐
ter 1).

6PE—Signaling
Figure 3-2 illustrates the entire signaling and forwarding logic. The labeled IPv6 route
signaling always relies on BGP. As for the transport mechanism, you have the same
flexibility as with any other MPLS service: it can be based either on IP tunnels or, bet‐
ter, on MPLS LSPs (static, LDP, RSVP, BGP IPv4-LU, or SPRING). This example uses
LDP, but any other option is valid.
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Figure 3-2. 6PE in action

Refer back to Chapter 1 for an explanation as to why, in this multi‐
homing scenario, the packet follows the path
H1→CE1→PE1→...→PE4→CE4→H3.

Let’s first see the signaling flow. First, PE4 receives an IPv6 Unicast (AFI=2, SAFI=1)
route from CE4, as shown in the following example:

Example 3-9. 6PE—IPv6 Labeled Unicast route

RP/0/0/CPU0:PE4# show bgp ipv6 unicast fc00::10:2:34:0/112
[...]
   Network    Next Hop        Metric LocPrf Weight Path
*> fc00::10:2:34:0/112
              fc00::10:2:0:4     100             0 65002 i

Then, PE4 allocates an MPLS label to the prefix and advertises it to the RRs.
Example 3-10 shows how the IPv6 Labeled Unicast route advertised by PE4 looks
from the perspective of RR1.

Example 3-10. 6PE—IPv6 Labeled Unicast route

1     juniper@RR1> show route receive-protocol bgp 172.16.0.44 detail table inet6.0
2
3     inet6.0: 3 destinations, 6 routes (...)
4     * fc00::10:2:34:0/112 (2 entries, 1 announced)
5          Accepted
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6          Route Label: 24020
7          Nexthop: ::ffff:172.16.0.44
8          MED: 100
9         Localpref: 100
10         AS path: 65002 I

RRs do not change the BGP next hop, and as a consequence they
do not change the label encoded in the Network Layer Reachability
Information (NLRI) either: the label is meaningful to the egress PE
only.

You can refer to Example 3-7 to partially see the route advertised from PE1 to CE1.

6PE—Forwarding Plane
Let’s examine the forwarding bits illustrated in Figure 3-2 step by step. First, H1 sends
the packet via its default gateway CE1, which holds the VRRP group’s virtual IPv6 and
MAC addresses.

Next, CE1 must choose between two routes to the same destination: one from PE1
(with Multi Exit Discriminator [MED] 100), and another one from PE2 (with MED
200). CE1 chooses the best route, which is via PE1.

Then, PE1 looks at the BGP next hop of the Labeled Unicast route (Example 3-10,
line 7), which is ::ffff:172.16.0.44. What does it mean? It is the IPv4-mapped IPv6
address derived from PE4’s IPv4 loopback address: 172.16.0.44.

Example 3-11. 6PE—BGP next-hop resolution at ingress PE—PE1 (Junos)

juniper@PE1> show route table inet6.3 ::ffff:172.16.0.44/128
[...]
::ffff:172.16.0.44/128
                   *[LDP/9] 2d 20:39:37, metric 30
                    > to 10.0.0.3 via ge-2/0/4.0, Push 299808

If you look back at Figure 3-2, you can see that P1 only advertises an LDP label map‐
ping for the IPv4 FEC 172.16.0.44, not for ::ffff:172.16.0.44. Indeed, only the PEs are
assumed to be IPv6-aware, and LDP only signals IPv4 FECs. In other words, there is
no change at the LDP level when the 6PE service is turned on.

As you can see in Example 3-12, and in Figure 3-2, PE1 pushes two MPLS labels
before sending the packet to P1.

Example 3-12. 6PE—Double MPLS label push at the ingress PE—PE1 (Junos)

1     juniper@PE1> show route forwarding-table destination fc00::10:2:34:0
2     [...]
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3     Destination      Next hop   Type  Index    NhRef
4     fc00::10:2:34:0/112          indr  1048574      2
5                      10.0.0.3   Push 24020, Push 299808(top) ge-2/0/4.0

This is the first time that this book shows a double MPLS label push operation. There
are several use cases for MPLS label stacking, and this is one of the most common: a
bottom service label (24020 in line 5) and a top transport label (299808 in line 5). The
transport label typically changes hop by hop, and in this example, it is eventually pop‐
ped at the penultimate hop. On the other hand, the service label travels intact down
to the egress PE, in this case PE4. And PE4 is the router that in the first instance had
allocated that service label to the IPv6 prefix, so it knows how to interpret it.

Example 3-13. 6PE—MPLS label pop at the egress PE—PE4 (IOS XR)

1     RP/0/0/CPU0:PE4#show mpls forwarding
2     Local  Outgoing    Prefix
3     Label  Label       or ID
4     ------ ----------- ------------------
5     24020  Unlabelled  fc00::10:2:34:0/112
6
7     Outgoing        Next                        Bytes
8     Interface       Hop                         Switched
9     --------------  ------------------------    --------
10    Gi0/0/0/2.1001  fe80::205:8603:e971:f501    32576

When PE4 receives a packet with label 24020, it pops all the labels and sends the
packet out toward CE4. How do you check that this strange IPv6 address in line 10
actually belongs to CE4? Let’s see how by taking a look at Example 3-14.

Example 3-14. 6PE—IPv6 link-local address

juniper@CE4> show interfaces ge-0/0/1.1001 terse
Interface      Admin Link Proto    Local
ge-0/0/1.1001  up    up   inet     10.2.0.4/24
                          inet6    fc00::10:2:0:4/112
                                   fe80::205:8603:e971:f501/64

Indeed, CE4 computes a link-local IPv6 address from the link’s MAC address.

6PE—why is there a service label?
PE4 pops the service label and maps the packet to the Internet Global IPv6 Routing
Table. Does PE4 really need the service label? Not really. If PE4 had received a native
IPv6 packet on its core uplink Gi 0/0/0/0, it would still have mapped the packet to the
global routing table. And it would know that it is an IPv6 packet due to the Layer 2
(L2) header’s Ethertype, not to mention that the first nibble (four bits) of the
packet is 6.
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So, why is there a service MPLS label? The main reason is PHP. The 6PE model was
developed assuming that no LSR (including the penultimate one) supports IPv6 on its
core uplinks. If PE1 had only pushed the transport MPLS label, this would be the
Bottom of Stack (BoS) label. After popping it, P2 inspects the resulting packet and
finds a first nibble with value 6. This is definitely not an IPv4 packet, whose first nib‐
ble would be 4. So far, no problem: P2 should be able to send the packet to the egress
PE (PE4), as dictated by the LSP. But there is one snag: after all this popping, the
packet has no L2 header.

In IPv4, the solution is easy: P2 builds an L2 header with Ethertype 0x0800 (IPv4)
and a destination MAC address corresponding to PE4—and resolved via Address
Resolution Protocol (ARP) by asking who has 10.0.0.11.

Now, in IPv6, P2 needs to push an L2 header with Ethertype 0x86DD (IPv6), but to
which destination MAC address? ARP is an IPv4 thing! In IPv6 you need Neighbor
Discovery (ND), an ICMPv6 mechanism that relies on IPv6 forwarding. And this is
not possible if P2 does not support or is not configured for IPv6.

By using a service label, things are made easier for P2 because there is still an MPLS
label after popping the transport label. P2 builds the L2 header with Ethertype 0x8847
(MPLS) and the destination MAC address is the one resolved via ARP for 10.0.0.11.

OK, this is why there is a service label. But how important is its value if the egress PE
is going to pop it anyway? This is where it becomes more interesting.

6PE—service label allocation
There are three service label allocation modes at the egress PEs:

Per-prefix mode
This is the default mode in IOS XR for routes learned from (or pointing to) CEs.
Every different service prefix (in this case, IPv6 route) has a different label. This
mode is illustrated in Figure 3-2.

Per-CE
Also called per-NH (next hop) mode. This is the default mode in Junos. Let’s
illustrate it with an example. Imagine PE3 has 1,000 IPv6 routes pointing to CE3,
and 500 IPv6 routes pointing to CE4. PE3 assigns two labels: L1 to the first 1,000
routes, and L2 to the other 500 routes.

Per-table
Also called per-VRF (even if strictly speaking in the 6PE case there is no VRF).
An egress PE assigns the same label to all the prefixes in the same table.

The most scalable model is per-table, followed by per-CE. Why? Because the lower
the number of labels, the lower the number of forwarding next hops that the remote
ingress PEs need to store and update.
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However, using a high number of labels has an advantage if the backbone is com‐
posed of LSRs that do not have the capability of extracting fields from the IPv6 pay‐
load to compute the load-balancing hash. Most of the modern platforms are capable
of doing it; hence, the trend is toward reducing the number of labels.

Following is the procedure to tune IOS XR in order to use per-CE or per-VRF mode.

Example 3-15. 6PE—changing the label allocation mode in IOS XR

RP/0/0/CPU0:PE4#configure
RP/0/0/CPU0:PE4(config)#router bgp 65000
RP/0/0/CPU0:PE4(config-bgp)#address-family ipv6 unicast
RP/0/0/CPU0:PE4(config-bgp-af)#label mode ?
  per-ce        Set per CE label mode
  per-vrf       Set per VRF label mode
  route-policy  Use a route policy to select prefixes ...

The per-vrf mode is very interesting. The assigned label to all the global IPv6 pre‐
fixes is number 2 or, in other words, the IPv6 Explicit Null label. For this reason, it is
recommended to turn on this mode in Junos, as follows:

Example 3-16. 6PE—per-table label allocation mode in Junos

protocols {
    bgp {
        group iBGP-RR {
            family inet6 labeled-unicast explicit-null;
}}}

Using one label mode or another is a purely local decision. It is
possible to have an interoperable network with PEs using different
modes.

The choice of a label allocation mode has additional implications. The following
statements hold true for Junos and might apply to IOS XR, too:

• With per-prefix and per-CE modes, the egress PE performs an MPLS lookup on
the packet, and as a result, the forwarding next hop is already determined. The
egress PE is actually performing packet switching, in MPLS terms.

• With per-table mode, the egress PE performs an IPv4 lookup on the packet after
the MPLS label is popped. This results in a richer functionality set.

Now consider the PE-CE subnet fc00::10:2:0:0/112, which is local from the perspec‐
tive of PE3. If PE3 is using per-CE mode for the 6PE service, what CE is actually
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linked to that prefix? Is it CE3 or CE4? Actually it’s neither. This is why, in per-CE
mode, the local multipoint subnets are not advertised in Junos. You can still advertise
CE3 (fc00::10:2:0:3/128) and CE4 (fc00::10:2:0:4/128) host routes if you locally con‐
figure a static route to the host.

6PE—traceroute
Here is a working traceroute from H1 (a host running IOS XR) to H3. You can com‐
pare the following example to Figure 3-2.

Example 3-17. 6PE—traceroute

RP/0/0/CPU0:H#traceroute fc00::10:2:34:30

 1  fc00::10:1:12:1 0 msec 0 msec 0 msec                   # CE1
 2  fc00::10:1:0:1 59 msec 9 msec 0 msec                   # PE1
 3  fc00::10:0:0:3 [MPLS: Labels 299808/24020 Exp 0] ...   # P1
 4  ::ffff:172.16.0.2 [MPLS: Labels 24016/24020 Exp 0] ... # P2
 5  fc00::10:2:0:44 0 msec 0 msec 39 msec                  # PE4
 6  fc00::10:2:0:4 39 msec 0 msec 0 msec                   # CE4
 7  fc00::10:2:34:30 0 msec 0 msec 9 msec                  # H4

The traceroute mechanism in an MPLS core is the same as the one described in
Chapter 1 for IPv4 over MPLS packets. When an IPv6 packet’s Time-to-Live (TTL)
expires at a transit LSR, such as P1 or P2, the LSR generates an ICMPv6 time excee‐
ded toward the original source (H1). The resulting ICMPv6 message is then encapsu‐
lated on the original LSP (→PE4), so the egress PE (PE4) can IPv6-route it toward the
source (H1) The egress PE (PE4) is configured in per-VRF label allocation mode, so it
does not include the service label in the time exceeded message.

But how can a non-IPv6 LSR generate an ICMPv6 packet? IOS XR does it automati‐
cally by sourcing the packet from the IPv6 address that is mapped from its own loop‐
back IPv4 address (line 4). As for Junos, it requires that you configure icmp-
tunneling, and also some IPv6 addressing in place. The common practice is to
configure IPv6 addresses on all the core links, and not to advertise them in the Inte‐
rior Gateway Protocol (IGP)— in IS-IS, protocols isis no-ipv6-routing.

BGP/MPLS IP Virtual Private Networks
BGP/MPLS IP Virtual Private Networks (VPNs), often called L3VPNs, are the most
popular application of MPLS. If someone enters a room full of network engineers and
asks them to write down the first MPLS application that comes to mind, most will put
L3VPN. That having been said, L3VPNs are not the leading MPLS service in terms of
traffic. Instead, the classic Internet over MPLS service (Global IPv4 over MPLS)
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described in Chapter 1 transports the majority of the data and multimedia traffic in
the world.

So why are L3VPNs so recognizable?

• L3VPNs make it possible for customers to interconnect their headquarters,
branch offices, and mobile users in a very simple manner. The Enterprises can
keep their original private IP addressing, while the SP maintains the routing and
traffic separate among tenants. In this way, connectivity and security needs are all
addressed at the same time.

• SPs achieve higher revenue per user (and per bit) compared to residential IP
services.

True, there are other popular VPN technologies such as Secure VPNs based on IPsec
or on SSL/TLS. These deal with similar business requirements and can even work
over a plain Internet connection. But the flexibility, scalability, manageability, and
simplicity of BGP/MPLS IP VPNs, both from the point of view of the tenant and of
the SP, are unparalleled. BGP/MPLS IP VPNs remain an undeniably fundamental
piece of the VPN portfolio in the world.

BGP/MPLS IP VPNs were originally described in RFC 2547, which was later obsole‐
ted by RFC 4364. You can find a great description of this technology in the RFC itself:

This method uses a “peer model,” in which the customers’ edge (CE) routers send their
routes to the Service Provider’s edge (PE) routers [...] Routes from different VPNs
remain distinct and separate, even if two VPNs have an overlapping address space [...].
The CE routers do not peer with each other; hence, the “overlay” is not visible to the
VPN’s routing algorithm [...].

In this book, the terms BGP/MPLS IP VPN and L3VPN are used interchangeably.
This is not totally accurate because L3VPN also includes non-IP services such as OSI
VPNs. However, for the sake of simplicity and readability we will use the term
L3VPN. This section focuses on a dual stack (IPv4 and IPv6) scenario.

Attachment Circuits and Access Virtualization
Multiplexing at L2 is one of the primary forms of virtualization. For example, it is
perfectly possible for one single CE-facing physical interface (such as PE1’s ge-2/0/1)
to have several logical interfaces, each with its own VLAN/802.1q identifier. Each
VLAN ID identifies a separate attachment circuit (AC), using the terminology of RFC
4364. An AC connects a PE either to a single CE or to a multipoint access network—
such as an Ethernet Metropolitan Area Network (MAN).

The terminology can be a bit confusing across vendors. If you have some hands-on
experience with Juniper and Cisco, you should certainly have noticed that an untag‐
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ged Ethernet interface is directly configured in IOS XR, whereas in Junos it is done via
unit 0. The reason lies in the following implementation difference:

• In Junos, a physical interface (IFD: Interface Device) can have several logical
interfaces (IFL: Interface Logical or unit), thanks to L2 multiplexing techniques
such as VLAN tagging. On the other hand, if the IFD has a native encapsulation
with no multiplexing, only one IFL is supported and it must be unit 0. In all
cases, an AC in Junos is a CE-facing IFL.

• In IOS XR, there are two options: an AC can be either a native (nonmultiplexed)
physical interface, or if there is L2 multiplexing, a subinterface (similar to an
IFL).

Junos ACs are typically IFLs, whereas in IOS XR an AC can be a
subinterface or an interface—depending on the encapsulation.

An AC is a logical concept. In L3 services, the AC is where service L3 parameters such
as IP addresses are configured at the PE.

An AC is typically associated with a single service at the PE. Let’s use an example
wherein PE1’s ge-2/0/1 has four IFLs with VLAN ID 1001, 1002, 1003, and 1004,
respectively. The per-IFL unit number may match the VLAN ID or not—for simplic‐
ity, let’s suppose that it does match. It is perfectly possible to map IFL 1001 to a global
Internet service, IFL 1002 to L3VPN A, IFL 1003 to L3VPN B, and IFL 1004 to an
L2VPN.

On the other hand, one service can have several ACs at a given PE. For example, a PE
can have several ACs connected to different CEs in such a way that all these ACs are
associated to a global Internet service, or all of them to the same VPN.

AC classification—per technology
One of the most common AC types is VLAN-tagged Ethernet. One VLAN/802.1q
header contains a 12-bit VLAN ID field, so its maximum value is 4,095. It’s also possi‐
ble to stack two VLAN/802.1q headers inside the original MAC header, overcoming
the limit of 4,096 VLANs in one LAN. This is a popular technique that has different
names: stacked VLAN, Q-in-Q, SVLAN/CVLAN (where S stands for Service and C for
Customer), and so on. VXLAN is a different technology, and it is discussed in Chap‐
ter 8.

In addition to the classic AC types (native Ethernet, VLAN-tagged Ethernet, ATM,
Frame Relay, etc.), there are many other flavors. For example, an AC can actually be
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totally virtual, such as a VLAN transported in a locally terminated MPLS Pseudowire
(see PWHE at Chapter 6), or a PPPoE session, or an L2TP session, or a dynamic
interface created upon the headers of incoming IP traffic (IP demux), and so forth.
Even an IPsec tunnel coming from the Internet can be terminated at the PE, itself
becoming an AC of a BGP/MPLS IP VPN. Not all these access flavors are covered
here, but there is an important concept to keep in mind: any connection with an end‐
point at the PE can be a valid attachment circuit.

Going back to the classic ACs (such as basic Ethernet with or without VLANs), in
many real-life scenarios the connection between CE and PE is not direct. An L2 ser‐
vice provider is typically in the middle, transporting the frames between CE and PE
in a transparent manner—via either a point-to-point or a multipoint mechanism. In
that case, the L2 carrier provides an overlay: the CEs and PEs are the only IP end‐
points of the circuit connection. So, if the AC is Ethernet-based and the service is a
BGP/MPLS IPv4 VPN, CE1 and PE1 can resolve each other’s IPv4 addresses by using
ARP.

L3VPN in a Nutshell
In the examples that follow, the topology and IPv4/IPv6 addressing scheme remain
the same as in Figure 1-1 and Figure 3-1, with the following differences:

• The VLAN ID of the ACs is 1002 instead of 1001.
• At the PEs, the ACs do not belong to the global routing instance, but to private

instances called Virtual Routing and Forwarding (VRFs).
• The PEs are the same, but a new set of CEs is used, one per site and VPN. For

example, on the lefthand side, there is CE1-A and CE2-A for VPN A.
• This is an Intranet VPN service, so CE3 (BR3) and CE4 (BR4) are replaced with

CE3-A and CE4-A, respectively. The righthand AS is 65001, matching the left‐
hand AS number.

The primary goal of an MPLS VPN is to provide connectivity between tenant CEs
that are attached to different PEs. The VPN concept is global, whereas a VRF is a
local instance at a specific PE.

For the time being, you can think of a VRF as the local representa‐
tion of one (and only one) VPN. This will change later on in this
chapter.
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Many routing flavors and protocols (static routes, Routing Information Protocol
[RIP], OSPF, IS-IS, eBGP) can run between CE and PE. We use eBGP in this book
because it’s the most scalable protocol:

• PE-CE eBGP sessions are used to exchange IP Unicast (SAFI=1) prefixes.
• PE-RR iBGP sessions convey IP Unicast VPN (SAFI=128) prefixes.

How about the AFI? It’s 1 for IPv4; 2 for IPv6. So, for example, IPv6 VPN Unicast
corresponds to [AFI=2, SAFI=128].

IPv6 Unicast VPN is commonly called 6vPE

IP VPN prefixes have one thing in common with the Labeled Unicast (LU) prefixes
used in the 6PE solution: they both encode a label in the NLRI. However, IP VPN is
more complex because it also must provide information about the private context.
This is achieved with the help of Route Distinguishers and Route Targets.

Given this, it’s only logical that L3VPN configurations are longer than 6PE’s. So let’s
see L3VPN signaling and forwarding first; then, when the service is understood,
move on to the configurations.

L3VPN—Signaling
Figure 3-3 illustrates the entire signaling and forwarding flow for IPv4 Unicast VPN.
The IP VPN route signaling always relies on BGP. As for the transport mechanism,
you have the same flexibility as with any other MPLS service: it can be based either on
IP tunnels or, better, on MPLS LSPs (static, LDP, RSVP, BGP IPv4-LU, or SPRING).
This example uses LDP, but any other option is valid.
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Figure 3-3. IPv4 VPN Unicast in action

Go to Chapter 1 for an explanation as to why, in this multihoming
scenario, the packet follows the path
H1→CE1A→PE1→...→PE4→CE4A→H3.

Let’s analyze the signaling flow for IPv4 and IPv6 prefixes. First, PE4 receives IPv4
Unicast and IPv6 Unicast routes from CE4-A.

Example 3-18. eBGP IPv4 and IPv6 Unicast routes

RP/0/0/CPU0:PE4# show bgp vrf VRF-A ipv4 unicast
[...]
   Network    Next Hop        Metric LocPrf Weight Path
*> 10.2.34.0/24
              10.2.0.4        100             0 65001 i

RP/0/0/CPU0:PE4# show bgp vrf VRF-A ipv6 unicast
[...]
   Network    Next Hop        Metric LocPrf Weight Path
*> fc00::10:2:34:0/112
              fc00::10:2:0:4     100             0 65001 i

Then, PE4 allocates an MPLS label to each prefix and advertises them to the RRs.
Example 3-19 shows how the IPv4 Unicast VPN and IPv6 Unicast VPN routes adver‐
tised by PE4 look, from the perspective of RR1.
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Example 3-19. L3VPN—IPv4 and IPv6 Unicast VPN routes (Junos)

1     juniper@RR1> show route receive-protocol bgp 172.16.0.44 detail
2                  table bgp.l3vpn
3
4     bgp.l3vpn.0: 6 destinations, 12 routes [...]
5     * 172.16.0.44:101:10.2.34.0/24 [...]
6          Accepted
7          Route Distinguisher: 172.16.0.44:101
8          VPN Label: 24022
9          Nexthop: 172.16.0.44
10         MED: 100
11         Localpref: 100
12         AS path: 65001 I
13         Communities: target:65000:1001
14
15    bgp.l3vpn-inet6.0: 6 destinations, 12 routes [...]
16
17    * 172.16.0.44:101:fc00::10:2:34:0/112 [...]
18         Accepted
19         Route Distinguisher: 172.16.0.44:101
20         VPN Label: 24023
21         Nexthop: ::ffff:172.16.0.44
22         MED: 100
23         Localpref: 100
24         AS path: 65001 I
25         Communities: target:65000:1001

Remember that RRs do not change the BGP next-hop attribute by
default. For this reason, they do not change the VPN label, either.

Example 3-20 shows these same routes from the perspective of PE4 itself.

Example 3-20. L3VPN—IPv4 and IPv6 Unicast VPN routes (IOS XR)

RP/0/0/CPU0:PE4#show bgp vpnv4 unicast advertised
Route Distinguisher: 172.16.0.44:101
10.2.34.0/24 is advertised to 172.16.0.201 [...]
  Attributes after outbound policy was applied:
    next hop: 172.16.0.44
    MET ORG AS EXTCOMM
    origin: IGP  neighbor as: 65001  metric: 100
    aspath: 65001
    extended community: RT:65000:1001
    /* Same route advertised to RR2 (omitted) */

RP/0/0/CPU0:PE4#show bgp vpnv6 unicast advertised
Route Distinguisher: 172.16.0.44:101
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fc00::10:2:34:0/112 is advertised to 172.16.0.201 [...]
  Attributes after outbound policy was applied:
    next hop: 172.16.0.44
    MET ORG AS EXTCOMM
    origin: IGP  neighbor as: 65001  metric: 100
    aspath: 65001
    extended community: RT:65000:1001
    /* Same route advertised to RR2 (omitted) */

Example 3-19 and Example 3-20 also introduced three key L3VPN concepts: Route
Distinguisher, VPN Label, and Route Target.

Route Distinguisher
Route Distinguisher (RD) is a very accurate name. An RD does precisely what the
term implies: it distinguishes routes. PE4 may have the route 10.2.34.0/24 in different
VRFs. The host 10.2.34.30 may be a server in a multinational enterprise (VRF-A), and
at the same time a mobile terminal in a university (VRF-B). VPNs provide independ‐
ent addressing spaces, so prefixes from different VRFs can overlap with no collision.

The prefixes exchanged over PE-CE eBGP sessions are IP Unicast (SAFI=1) and they
do not contain any RDs. Indeed, from the point of view of the PE, each eBGP session
is bound to one single VRF, so there is no need to distinguish the prefixes. On the
other hand, CEs have no VPN awareness: from the perspective of the CE, a PE is just
an IPv4/IPv6 router.

Now, one single PE-RR (or PE-PE) iBGP session can signal prefixes from multiple
VPNs. For example, PE4 may advertise the 10.2.34.0/24 route from VRF-A and VRF-
B. The 10.2.34.0/24 prefix represents a different reality in each of the VRFs, and this is
where an RD comes in handy. The actual prefixes that PE4 announces to the RRs are
<RD1>:10.2.34.0/24 and <RD2>:10.2.34.0/24. These prefixes are different as long as
<RD1> is different from <RD2>.

In a given PE, you must configure each VRF with a different RD. It
is also possible to configure a router so that it automatically gener‐
ates a distinct RD for each VRF.

Back in Figure 3-3, the RD is 172.16.0.44:101. There are several ways to encode RDs,
as regulated by IANA. This book discusses two types: 0 and 1. These formats are
<AS>:<VPN_ID> and <ROUTER_ID>:<VPN_ID>, respectively.

In an Active-Backup redundancy scheme, CE3-A and CE4-A advertise the
10.2.34.0/24 prefix with a different MED: 200 to PE3 and 100 to PE4, respectively.
This makes PE3 prefer the iBGP route over the eBGP route; as a result, PE4 does not
advertise it to the RRs. In this model, the RD choice is not very important.
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In an Active-Active redundancy scheme, CE3-A and CE4-A would advertise the
10.2.34.0/24 with the same MED, so both PE3 and PE4 would in turn advertise it to
the RRs. In this case, the RD choice is critical. Let’s consider the case of VRF-A:

• If the RD format is <AS>:<VPN_ID>, unless each PE assigns a different <VPN_ID>
to the VRF—which would result in a virtually unmanageable numbering scheme
—both PE3 and PE4 advertise the 65000:101:10.2.34.0/24 prefix. The RR selects
the best route (from its point of view) and reflects it. This results in information
loss and suboptimal routing. Not only that, it also causes a delay in failure recov‐
ery. The RRs must detect that the primary route is not valid before they can
advertise the backup route to the ingress PEs. Typically, RRs have many peers, so
this process usually takes time, and RRs act as a control-plane bottleneck. In the
Internet service, BGP Add-Path extensions were required to address this chal‐
lenge, but not necessarily in IP VPN, where there is a native solution!

• If the RD format is <ROUTER_ID>:<VPN_ID>, PE3 and PE4 advertise two different
prefixes: 172.16.0.33:101:10.2.34.0/24 and 172.16.0.44:101:10.2.34.0/24, respec‐
tively. These are two different NLRI prefixes, and RRs reflect both of them. This
guarantees that all of the PEs have all the information, achieving optimal routing
and improved convergence. This is the scheme we use in this book. Note that in
this case the <VPN_ID> value is the same (101) on both PEs, but this is not
mandatory.

It is possible to have iBGP multihoming with unequal-cost multipath—see Chap‐
ter 20 for more details. The ingress PE can load-balance traffic between several egress
PEs, even if these are not at the same IGP distance.

VPN label
The VPN label is an MPLS label that is locally significant to the egress PE. It is a ser‐
vice label by which the egress PE can map the downstream (from the core) user pack‐
ets to the appropriate VRF (or CE). Like in 6PE, there are different label allocation
schemes, which we’ll discuss later.

Although the VPN label is encoded in the IP Unicast VPN (SAFI=128) NLRI, routers
in general—and RRs in particular—consider it more like a route attribute rather than
as part of the NLRI. In other words, two identical RD:route prefixes are considered to
be the same even if the VPN label is different. Thus, the RRs only reflect one of them.

RRs do not change the BGP next hop, and as a consequence they
do not change the label encoded in the NLRI either: the label is
meaningful to the egress PE only.
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Route Target
The Route Target (RT) concept is probably the one that makes BGP/MPLS VPNs so
powerful. RTs are one type of BGP extended community.

You can see an exhaustive list of standard Extended Communities
in RFC 7153 and at http://www.iana.org/assignments/bgp-extended-
communities/bgp-extended-communities.txt.

Every BGP VPN route carries at least one RT. RTs control the distribution of VPN
routes. How? Locally at a PE, a VRF has the following export and import policies:

• An export policy influences the transition of (local and CE-pointing) VRF routes
from IP Unicast to IP Unicast VPN, before these routes are advertised to the RRs
or other PEs. The export policy can filter prefixes and change their attributes; its
most important task is to add RTs to the IP Unicast VPN routes.

• An import policy influences the installation of remote IP Unicast VPN routes
into the local VRFs. The import policy can filter prefixes and change their
attributes; its most important task is to look at the incoming routes’ RTs and
make a decision as to whether to install the route on the VRF where the import
policy is applied.

You could view RTs as door keys. When a PE advertises a VPN route, it adds a key
chain to the route. When the route arrives to other PEs, the route’s keys (RTs) can
open one or more doors (import policies) at the target PE. These doors give access to
rooms (VRFs) where the route is installed after stripping the RD.

For example, you can configure VRF-A on all PEs to export RT 65000:1001 and to
also import RT 65000:1001. This symmetrical policy—with the same import and
export RT—results in a full-mesh topology in which all the CEs are reachable from
one another. In this sense, you can easily identify VPN A routes: they all carry RT
65000:1001.

But there are many other ways to configure RT policies (hub-and-spoke, service
chaining, etc.). Indeed, RTs are a fundamental concept that will be discussed quite a
few times in this book. Let’s move on.

L3VPN—Forwarding Plane
 This section takes a look at the forwarding bits back in Figure 3-3, step by step. The
text will describe what happens to an IPv4 packet, but the command output also
shows the IPv6 variant.
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First, H1 sends the packet via its default gateway CE1-A, which holds the VRRP
group’s virtual IPv4 and MAC addresses.

Next, CE1-A must choose between two routes to the same destination: one from PE1
(with MED 100) and another one from PE2 (with MED 200). CE1-A chooses the best
route, which is via PE1.

Prior to forwarding the packet, PE1 must have installed the route to the destination
in its forwarding table. To do that, PE1 first looks at the BGP next hop of the labeled
unicast route (Example 3-19, line 9), which is 172.16.0.44. This BGP next hop is
present in PE1’s inet.3 table, with a forwarding next hop that says push 299808 label,
send to P1. PE1 combines this instruction with the VPN label (Example 3-19, line 8),
so it pushes two MPLS labels before sending the packet to P1.

Example 3-21. L3VPN—double MPLS label push at ingress—PE1 (Junos)

1     juniper@PE1> show route forwarding-table destination 10.2.34.30
2                  table VRF-A
3     [...]
4     Destination      Next hop   Type  Index    NhRef
5     10.2.34.0/24                indr  1048587      2
6                      10.0.0.3   Push 24022, Push 299808(top) ge-2/0/4.0
7
8     juniper@PE1> show route forwarding-table destination fc00::10:2:34:0
9                  table VRF-A
10    [...]
11    Destination      Next hop   Type  Index    NhRef
12    fc00::10:2:34:0/112         indr  1048584      2
13                     10.0.0.3   Push 24023, Push 299808(top) ge-2/0/4.0

In Junos, 6vPE (like 6PE) routes get their BGP next hop resolved in
the auxillary table inet6.3.

There is a bottom service label (24022 in line 6) and a top transport label (299808 in
line 6). The transport label typically changes hop by hop—in this example, it is pop‐
ped at the penultimate hop. Conversely, the service label travels intact down to the
egress PE—in this case PE4. And because PE4 is the router that in the first instance
had allocated the service label to the IPv4 VPN prefix, it therefore knows how to
interpret it fully.
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Example 3-22. L3VPN—MPLS label pop at the egress PE—PE4 (IOS XR)

RP/0/0/CPU0:PE4#show mpls forwarding vrf VRF-A
Local  Outgoing    Prefix              Outgoing        Next    Bytes
Label  Label       or ID               Interface       Hop     Switched
------ ----------- ------------------  --------------  -----   -------
24022  Unlabelled  10.2.34.0/24[V]     Gi0/0/0/2.1001  10.2.0.4

Local  Outgoing    Prefix
Label  Label       or ID
------ ----------- ------------------
24023  Unlabelled  fc00::10:2:34:0/112[V]

Outgoing        Next                        Bytes
Interface       Hop                         Switched
--------------  ------------------------    --------
Gi0/0/0/2.1001  fe80::205:8603:e971:f501    0

Finally, it is interesting to see how the return route (to 10.1.12.0/24) looks from the
perspective of PE4—acting as an ingress PE.

Example 3-23. L3VPN—double MPLS label push at ingress—PE4 (IOS XR)

RP/0/0/CPU0:PE4#show cef vrf VRF-A 10.1.12.0/24
10.1.12.0/24 [...]
   via 172.16.0.22, 5 dependencies, recursive [flags 0x6000]
    recursion-via-/32
    next hop VRF - 'default', table - 0xe0000000
    next hop 172.16.0.22 via 24005/0/21
     next hop 10.0.0.10/32 Gi0/0/0/0 labels imposed {24002 24019}

You can use the same command for IPv6 prefixes. In that case, ensure that you intro‐
duce the keyword ipv6 between the VRF name and the prefix.

L3VPN—why is there a service label?
The answer is quite straightforward: the VPN label is essential for the egress PE to
know to which VRF the downstream (from the core) packet belongs. The service
label allocation models are similar to those of 6PE, and they are further described
later.

L3VPN—Backbone Configuration at the PEs
Let’s take a look at the backbone configuration in Junos and IOS XR.

L3VPN—backbone configuration at Junos PEs
Example 3-24 shows the relevant core-facing configuration at PE1.
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Example 3-24. L3VPN—core-facing configuration at PE1 (Junos)

protocols {
    bgp {
        group iBGP-RR {
            family inet-vpn unicast; 
            family inet6-vpn unicast;
}}}

As expected, two new address families are added: IPv4 Unicast VPN (AFI=1,
SAFI=128) and IPv6 Unicast VPN (AFI=2, SAFI=128).

You must also configure IPv6 tunneling as shown in Example 3-1,
line 3. This is needed in order to install IPv4-mapped addresses in
the inet6.3 auxiliary table.

L3VPN—backbone configuration at IOS XR PEs
Here is the relevant core-facing configuration at PE2:

Example 3-25. L3VPN—core-facing configuration at PE2 (IOS XR)

router bgp 65000
 address-family vpnv4 unicast
 address-family vpnv6 unicast
 !
 neighbor-group iBGP-RR
  address-family vpnv4 unicast
  address-family vpnv6 unicast
!

Regardless of the transport LSP technology you use, don’t forget to
globally configure mpls ldp. Otherwise, IP VPN prefixes will
remain unresolved in the Cisco Express Forwarding (CEF). If you
do not really need LDP as a protocol, just configure mpls ldp
without any interfaces below.

L3VPN—RR Configuration
Example 3-26 lays out the additional configuration at RR1.

Example 3-26. L3VPN—RR configuration at RR1 (Junos)

1     protocols {
2         bgp {
3             group CLIENTS {
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4                 family inet-vpn unicast;
5                 family inet6-vpn unicast;
6     }}}
7     routing-options {
8         rib inet.3 static route 0/0 discard; 
9         rib inet6.3 static route 0::0/0 discard;
10    }

In the examples in this chapter, MPLS is fully functional and LDP
is active at all the PE-PE, PE-P, and P-P links. However, the RRs
have no MPLS configuration in place.

An IP VPN Unicast (SAFI=128) BGP route has a private context. Indeed, transit P-
routers do not keep any IP VPN routing state. For this reason, packets matching such
route must be transported to the egress PE via an IP tunnel or an MPLS LSP.

In Junos, the tables in which BGP next hops can be resolved into labeled paths are
inet.3 (for IPv4) and inet6.3 (for IPv6). Because this example’s RRs do not run any
MPLS protocol, they need static routes (lines 8 and 9) to perform BGP next-hop reso‐
lution and reflect IP VPN routes.

Following is the additional configuration at RR2:

Example 3-27. L3VPN—RR configuration at RR2 (IOS XR)

1     router bgp 65000
2      address-family vpnv4 unicast
3      address-family vpnv6 unicast
4      !
5      neighbor-group CLIENTS
6       address-family vpnv4 unicast
7        route-reflector-client
8       !
9       address-family vpnv6 unicast
10       route-reflector-client
11    !

IOS XR does not require any extra configuration to resolve the BGP next hop.

L3VPN—VRF Configuration at the PEs
Now, let’s take a look at the VRF configuration in Junos and IOS XR.

L3VPN—VRF configuration at Junos PEs
Example 3-28 presents the access configuration at PE1. The only logical interface and
eBGP session displayed correspond to the PE1-CE1 link.
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Example 3-28. L3VPN—VRF configuration at PE1 (Junos)

1     interfaces {
2         ge-2/0/1 {
3             unit 1002 {
4                 vlan-id 1002;
5                 family inet address 10.1.0.1/31;
6                 family inet6 address fc00::10:1:0:1/127;
7     }}}
8     routing-instances {
9         VRF-A {
10            instance-type vrf;
11            interface ge-2/0/1.1002;
12            route-distinguisher 172.16.0.11:101;
13            vrf-export PL-VRF-A-EXP;
14            vrf-import PL-VRF-A-IMP;
15            protocols {
16                bgp {
17                    group eBGP-65001 {
18                        family inet unicast;
19                        family inet6 unicast; 
20                        peer-as 65001;
21                        as-override;
22                        neighbor 10.1.0.0 {
23                            export PL-VRF-A-eBGP-CE1A-OUT;
24                        }
25    }}}}}
26    policy-options {
27        policy-statement PL-VRF-A-eBGP-CE1A-OUT {
28            term BGP {
29                from protocol bgp;
30                then {
31                    metric 100;
32                    community delete RT-ALL;
33                }
34            }
35            term IPv6 {
36                from family inet6;
37                then {
38                    next-hop fc00::10:1:0:1;
39                }
40        }}
41        policy-statement PL-VRF-A-EXP {
42            term eBGP {
43                from protocol bgp;
44                then {
45                    community add RT-VPN-A;
46                    accept;
47                }
48        }}
49        policy-statement PL-VRF-A-IMP {
50            term VPN-A {
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51                from community RT-VPN-A;
52                then accept;
53            }
54        }
55        community RT-ALL members target:*:*;
56        community RT-VPN-A members target:65000:1001;
57    }

The AC configuration (lines 1 through 6) has nothing special: just a dual-stack IFL.

The VRF export (lines 13, and 41 through 46) and VRF import (lines 14, and 49
through 52) are very simple, to the point that they would not need to be defined. You
could replace lines 13 and 14 with vrf-target target:65000:1001. But this shortcut
is compatible only with full-mesh VPN topologies, and it does not allow filtering or
modifying prefixes. For this reason, it’s a good practice to use the syntax in
Example 3-28.

The as-override configuration in line 21 is not specific to L3VPNs. In fact, it is
required for any BGP-based design that requires connecting two islands with the
same AS (65001 in this case). Otherwise, the AS-loop detection logic would drop the
prefixes at some point. There are other techniques to achieve the same result, but this
one is simple.

Unlike IOS XR, when Junos readvertises an IP Unicast VPN route—after converting
it to IP Unicast format—it keeps all the communities, including the RTs. It is a good
practice to strip the RTs before sending the route to a plain CE (line 32).

As for the IPv6 next-hop rewrite in line 38, it is due to the fact that there is a single
eBGP session used for IPv4 and IPv6 prefixes. The rationale is the same as explained
previously in the 6PE section. (See the full discussion with respect to Example 3-6.)

L3VPN—VRF configuration at IOS XR PEs
Example 3-29 contains the access configuration at PE4. The only logical interface and
eBGP session displayed correspond to the PE4-CE4A link.

Example 3-29. L3VPN—VRF configuration at PE4 (IOS XR)

1     interface GigabitEthernet0/0/0/2.1002
2      vrf VRF-A
3      ipv4 address 10.2.0.44 255.255.255.0
4      ipv6 address fc00::10:2:0:44/112
5      encapsulation dot1q 1002
6     !
7     router bgp 65000
8      vrf VRF-A
9       rd 172.16.0.44:101
10      address-family ipv4 unicast
11      address-family ipv6 unicast
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12      !
13      neighbor 10.2.0.4
14       remote-as 65001
15       address-family ipv4 unicast
16        route-policy PL-VRF-A-eBGP-CE4A-IN in
17        route-policy PL-VRF-A-eBGP-CE4A-OUT out
18        as-override
19       !
20       address-family ipv6 unicast
21        route-policy PL-VRF-A-eBGP-CE4A-IN in
22        route-policy PL-VRF-A-eBGP-CE4A-OUT out
23        as-override
24    !
25    vrf VRF-A
26     address-family ipv4 unicast
27      import route-target
28       65000:1001
29      export route-target
30       65000:1001
31     !
32     address-family ipv6 unicast
33      import route-target
34       65000:1001
35      export route-target
36       65000:1001
37    !
38    route-policy PL-VRF-A-eBGP-CE4A-IN
39      pass
40    end-policy
41    !
42    route-policy PL-VRF-A-eBGP-CE4A-OUT
43      pass
44    end-policy

See the discussion about eBGP policies in Chapter 1. It explains
why eBGP pass policies are required in IOS XR but not in Junos.

As a side note, there is one significant configuration difference in the way non-BGP
prefixes can be announced via BGP. In Junos, you need to modify the VRF export
policy. Here is the syntax in IOS XR: router bgp <AS> vrf <VRF> address-family
<AF> redistribute [...].
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L3VPN—Routing Tables in Junos
You have already seen a few auxiliary tables: inet.3 and inet6.3 are used to resolve
BGP IPv4 and IPv6 next hops, respectively. Their routes never make it to the for‐
warding table.

On the other hand, the bgp.l3vpn.0 and bgp.l3vpn-inet6.0 tables store the
received RD:IPv4 and RD:IPv6 prefixes, respectively. Only the prefixes that match a
local VRF’s import policy—typically, because the route’s RTs matches the import poli‐
cy’s RTs—are stored. The other prefixes are simply discarded by default.

There are several exceptions to this discard-if-no-match rule. First, is PEs with the
keep all knob configured. Second, certain routers readvertise IP Unicast VPN
routes in IP Unicast VPN (SAFI=128) format:

• RRs readvertise IP VPN iBGP routes as IP VPN iBGP routes.
• Inter-AS Option B ASBRs (a concept discussed in Chapter 9) readvertise IP VPN

iBGP routes as IP VPN eBGP routes, and vice versa.
• A variant of the latter involves eiBGP (confederations) instead of eBGP.

In all of these exceptions, the device installs all the incoming IP VPN routes in the
bgp.l3vpn[-inet6].0 auxiliary tables.

Let’s forget for the moment about these exceptions and think of a regular PE that
receives a matching route. After the RD is stripped from it, the IP prefix is copied—as
a secondary route—to the VRFs with a matching import policy. Yes, there can be sev‐
eral matching VRFs, and that will be discussed later. In the case of VRF-A, IPv4 and
IPv6 prefixes are stored in VRF-A.inet.0 and VRF-A.inet6.0 routing tables, respec‐
tively.

Defining a VRF as a table has been cautiously avoided. In fact, a
VRF is an instance that can have several tables, one for each route
type.

As you can see in Figure 3-4, the export logic is a bit different from that of the import.
In Junos, by default, IP Unicast VPN routes are advertised directly from the VRF, not
from L3VPN auxiliary tables.

However, if a device reflects IP VPN prefixes (like RR1), or if you configure the
advertise-from-main-vpn-tables knob, all the IP VPN routes are advertised from
the bgp.l3vpn[-inet6].0 table. Let’s call it the main IP VPN table. Now suppose that
RR1 is also a PE and it has a local VRF connected to CE10. RR1 installs IP VPN pre‐
fixes learned from CE10 into the VRF (primary RIB) and copies them into the main
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IP VPN table (secondary RIB). In this case, which is not shown in Figure 3-4, RR1
advertises all the prefixes (either reflected or originated in the VRF) from the main IP
VPN table.

Figure 3-4. IPv4 Unicast VPN—Junos routing tables

Do you really need to worry about from which table the routes are exported? If, for
whatever reason, a PE advertises IP Unicast VPN prefixes from the main IP VPN
table, the BGP next hop of these routes cannot be changed with VRF export policies;
you can do it only with the global export policy applied to the iBGP group. On a sep‐
arate note, if the primary RIB of an advertised prefix is the local VRF, the global
export policy applies to this prefix only if you configure vpn-apply-export under the
group.

Virtual routers
The idea of having a private routing instance is very attractive, and not only in the
context of an L3VPN service. For example, a physical CE can be turned into a set of
virtual CEs, each with its own upstream circuits and routing table(s).

In Junos, this is called virtual router (VR, a.k.a., VRF Lite), and you can configure it as
shown in Example 3-28, with the following differences:

• The instance-type in line 10 is virtual-router.
• Lines 12 through 14 must be removed, and line 32 is not necessary.

Graphically, if you disconnect VRF-A.inet.0 from bgp.l3vpn.0 in Figure 3-4, VRF-A
becomes a VR.
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You cannot further virtualize virtual routers. Conversely, Junos
Logical Systems can in turn contain their own VRFs and VRs.

The Cisco term for this same concept is VRF Lite. You can turn VRF-A into a VRF
Lite by suppressing lines 27 through 30, and 33 through 36 from Example 3-29. Note
that eBGP configuration in VRF Lite requires that you configure an RD, even if it is
not actually signaled.

L3VPN—Service Label Allocation
The three different label allocation modes are already described in the context of 6PE.
The concepts are the same with L3VPN.

The default label allocation mode in IOS XR is per-prefix, but you can change it to
per-CE or per-VRF mode, as demonstrated in the following example:

Example 3-30. L3VPN—changing the label allocation mode in IOS XR

RP/0/0/CPU0:PE4#configure
RP/0/0/CPU0:PE4(config)#router bgp 65000
RP/0/0/CPU0:PE4(config-bgp)#vrf VRF-A
RP/0/0/CPU0:PE4(config-bgp-vrf)#address-family ipv4 unicast
RP/0/0/CPU0:PE4(config-bgp-vrf-af)#label mode ?
  per-ce        Set per CE label mode
  per-vrf       Set per VRF label mode
  route-policy  Use a route policy to select prefixes ...

IOS XR per-prefix mode is the default for routes learned from (or
pointing to) CEs. Other VRF prefixes (directly connected, static to
Null0, aggregate) are all advertised with the same label by default.

It is possible to do the same tuning for address-family ipv6 unicast. In any case, a
label that is bound to an IPv4 prefix is never bound to an IPv6 prefix in IOS XR: dif‐
ferent label sets are kept for each address family.

This is different in Junos, for which per VRF label allocation mode associates the
same label to all the prefixes in a VRF, regardless of whether they are IPv4 or IPv6.

The default label allocation mode in Junos is per-CE, but you can change it to per-
VRF in two different ways. Let’s look at the first one:
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Example 3-31. 6PE—per-table label allocation mode in Junos (I)

routing-instances VRF-A vrf-table-label;

This configuration creates a Label-Switched Interface (LSI), which is a global virtual
IFL that is associated to one single MPLS label and to one single VRF. This LSI pro‐
cesses all the downstream (from the core) packets with that MPLS label: the label is
popped and the packet is mapped to the correct VRF.

Example 3-32 depicts the second method, which is mutually exclusive to the first one.

Example 3-32. 6PE—per-table label allocation mode in Junos (II)

1     chassis {
2         fpc 2 pic 0 tunnel-services bandwidth 10g;
3     }
4     interfaces {
5         vt-2/0/0 unit 101 family inet;
6     }
7     routing-instances {
1         VRF-A interface vt-2/0/0.101;
2     }

The result is similar to an LSI, but this time the virtual IFL is anchored to a specific
Packet Forwarding Engine (PFE) in the PE. This results in lower resource consump‐
tion because the IFL (Virtual Tunnel or vt-) is only instantiated in one PFE. On the
other hand, the placement of the tunnel resources must be carefully planned to ach‐
ieve an optimal forwarding path inside the router. Finally, it is possible to provision
redundant vt- interfaces for a higher resiliency.

In both Junos and IOS XR, it is possible to change the label allocation method in a
granular manner with policies. You can select different methods for different VRFs,
and even for different prefix sets inside the same VRF.

L3VPN—Topologies
Symmetric VRF import and export policies using one single (and distinct) RT per
VRF results in a full-mesh routing topology. Any site can reach any other site in the
VPN, but you can tune RT policies to create arbitrary routing topologies. This is not
only true for L3VPN: it also applies to any BGP-based service.

L3VPN—hub-and-spoke VPN
The lefthand scenario in Figure 3-5 shows a classic hub-and-spoke L3VPN. PE1 and
PE2 are the hub PEs, connected to the corporate headquarters’ data center. PE3 and
PE4 are spoke PEs, connected to small offices, home offices, or mobile users.

BGP/MPLS IP Virtual Private Networks | 157



Figure 3-5. L3VPN Topology Samples

The remote sites do not need to communicate with one another.

With these connectivity requirements, hub-and-spoke PEs use complementary poli‐
cies in the context of the same VPN:

• Spoke PEs export routes with route target RT-S, so hub PEs import them.
• Hub PEs export routes with route target RT-H, so spoke PEs import them.
• Spoke PEs do not import routes from other spoke PEs.
• Hub PEs may import routes from other hub PEs, if their import policies are con‐

figured to also accept routes with RT-H. This adds an extra level of redundancy.

The following example shows a typical asymmetrical RT configuration in Junos.

Example 3-33. L3VPN—hub VPN policy configuration (Junos)

1     policy-options {
2         policy-statement PL-VRF-A-HUB-EXP {
3             term eBGP {
4                 from protocol bgp;
5                 then {
6                     community add RT-VPN-A-HUB;
7                     accept;
8                 }
9         }}
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10        policy-statement PL-VRF-A-HUB-IMP {
11            term VPN-A {
12                from community [ RT-VPN-A-SPOKE RT-VPN-A-HUB ];
13                then accept;
14            }
15        }
16        community RT-VPN-A-HUB members target:65000:2001;
17        community RT-VPN-A-SPOKE members target:65000:3001;
18    }

Junos applies the following logical operators:

[OR]
This operator is applied if several communities are listed in a from community
statement. It is enough for the route to contain any of the communities in order
to match the term.

[AND]
This operator is applied if several communities are listed in members. The route
must contain all the communities in order to match the community.

Following is an IOS XR sample.

Example 3-34. L3VPN—hub VPN configuration (IOS XR)

1     vrf VRF-A-HUB
2      address-family ipv4 unicast
3       import route-target
4        65000:2001
5        65000:3001
6       !
7       export route-target
8        65000:2001
9     !

L3VPN—management VPN
The righthand scenario in Figure 3-5 is explained later. Let’s see a simpler example
first. Very frequently, SPs manage all or a subset of the tenant CEs—just the first rout‐
ing device, not necessarily the tenant network behind it.

Imagine 10 fully meshed customer VPNs called VPN-n (VPN-1 through VPN-10).
These are instantiated on each PE as a VRF-n (VRF-1 through VRF-10), and each
VPN has its own and different RT-n (RT-1 through RT-10).

In addition, the SP has a management VPN (VPN-M). This VPN is instantiated at
PE1 and PE2 as VRF-M and the ACs are connected to the SP’s management network.

The SP’s management servers need to communicate to the customer VPN CEs, but
not to the tenant’s end hosts. Here is how you can meet the connectivity requirement:
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• PEs’ VRF-n export policies tag all the exported prefixes with at least RT-n.
• PEs’ VRF-M export policies tag the management server’s prefixes with RT-M.
• The SP assigns a globally unique loopback IP address to each CE in a VPN-n.

PEs’ VRF-n export policies advertise these prefixes with RT-n and RT-CE-LO.
• PEs’ VRF-n import policies accept prefixes containing its RT-n and/or RT-M.
• PEs’ VRF-M import policies accept prefixes containing RT-CE-LO and/or RT-M.
• CEs must not advertise management prefixes to the tenants’ internal networks.

Management VPNs are examples of a broader solution called extra‐
net. In an extranet, VPNs are no longer isolated, because they can
exchange prefixes with one another. This process is controlled by
policies.

The same RT techniques used in Example 3-33 and Example 3-34 apply here, but this
time it is necessary to do something more granular on the CE loopback prefixes.

Let’s assume that the CEs are advertising their own loopback to the PEs with standard
community 65000:1234. In this way, PE3 can easily recognize CE3-A’s loopback.
Then, PE3 adds RT-CE-LO to the prefix before announcing it via iBGP to the RRs.

Example 3-35. L3VPN—granular RT setting at PE1 (Junos)

1     policy-options {
2         policy-statement PL-VRF-A-EXP {
3             term CE-LO {
4                 from community CM-CE-LO;
5                 then community add RT-CE-LO;
6             }
7             term eBGP {
8                 from protocol bgp;
9                 then {
10                    community add RT-VPN-A;
11                    accept;
12                }
13            }
14        }
15        community CM-CE-LO members 65001:1234;
16        community RT-CE-LO members target:65000:1234;
17        community RT-VPN-A members target:65000:1001;
18    }

The resulting route 172.16.0.33:101:<CE-LO>/32 has the three communities in lines
15 through 17, because it is evaluated by both terms in the policy. The original com‐
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munity 65001:1234 is kept because the action in line 5 is community add. If it had
been community set, the original community would have been stripped.

The following example illustrates how RTs can be granularly set in IOS XR:

Example 3-36. L3VPN—granular RT Setting at PE4 (IOS XR)

vrf VRF-A
 address-family ipv4 unicast
  export route-policy PL-VRF-A-EXP
!
route-policy PL-VRF-A-EXP
  if community matches-any CM-LO-CE then
    set extcommunity rt (65000:1001, 65000:1234)
  endif
end-policy
!
community-set CM-LO-CE
  65000:1234
end-set
!

Again, the resulting IPv4 Unicast VPN prefix has three communities in total: one
standard (65000:1234) and two extended (target:65000:1001 and target:65000:1234)
communities. Hence, IOS XR differs from Junos in that the set keyword is additive.

As for the generic RT configuration in IOS XR Example 3-29 (lines 25 through 36), it
still applies to prefixes that do not match the configured VRF export and import poli‐
cies.

L3VPN—extranet
The previous example illustrated a generic technique known as extranet. In an extra‐
net, a set of tenants is no longer isolated from one another and they can exchange
prefixes. How much connectivity and which type of connectivity the VPNs have with
each other is totally at the discretion of the configured routing policies.

There are two types of prefixes from the point of view of a VRF: remote and local.
Remote prefixes are received from the RRs and/or from remote PEs. Conversely, local
prefixes belong to the access side: these are typically routes learned from directly con‐
nected CEs, or they can also be static routes, directly connected ACs, local VRF loop‐
backs at the PE, and so on.

When a PE receives a remote IP Unicast VPN prefix, typically the RTs and other
attributes determine the VRFs (it can be none, one or several) in which the prefix is
imported. How about the local prefixes? The logic is the same. RT policies are evalu‐
ated, so two VRFs in a given PE may exchange local prefixes if their VRF policies
match. This is known as route leaking.
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A very common use case here is a tenant merger. Imagine VRF-A and VRF-B used to
belong to different corporations but the two are merging into a bigger company. Pro‐
vided that the IP addressing scheme is carefully analyzed and there is no overlap, the
two VPNs can be merged into one by just importing each other’s RTs in their respec‐
tive VRFs. As a final step after the extranet interim period, the two VRFs are then
merged into one single VRF.

Route leaking between local VRFs in Junos requires the routing-
instances <VRF> routing-options auto-export knob at both
the donor (primary) and receiver (secondary) VRF.

Route leaking is a very rich topic, and for further reading about this and other topics,
we highly recommend the #TheRoutingChurn blog at http://forums.juniper.net/.

L3VPN—Service Chaining
Service Chaining or Service Function Chaining (SFC) is one of the most rapidly
evolving solutions these days. As is detailed in Chapter 12, some network virtualiza‐
tion solutions go beyond the RT concept in order to achieve modern SFC.

In the late 1990s, well before the SDN era, the earliest flavor of SFC already existed in
traditional L3VPN services. Let’s examine how SFC looked at that time, not only for
historical reasons, but because it is still a common practice in carriers.

Imagine that an SP wants to provide added value services such as NAT, firewall,
DDoS protection, deep-packet inspection, IDS/IDP, traffic big-data analytics, and so
on to its high-touch customers. One expensive option is to implement all of these
services at the CE—which can be particularly challenging for mobile users. In con‐
trast, the most scalable and convenient option is to steer the traffic to service nodes
that perform these added value tasks. These service nodes can be all in the same loca‐
tion or distributed in different sites.

RT policies can steer traffic through routing-aware appliances distributed in different
data centers, each on a different VPN site. Indeed, this is possible even in classical
BGP VPN setups, like the one on the righthand side of Figure 3-5. Each appliance
performs an added-value function on top of the baseline Internet access service. The
diagram shows the routes required to steer upstream traffic from the tenant’s host to
the Internet, through the different (physical or virtual) appliances.

A similar routing scheme (not shown) would be required for downstream traffic, too.
This is a bit more complex—but definitely feasible—when NAT is in the picture. Very
often, the NAT function is performed directly on the PEs so the Left/Right VRFs are
stitched locally at the PE through the NAT service interfaces.
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Another challenge is redundancy, because many services (NAT, stateful firewalling,
etc.) typically require symmetrical traffic. When there are several appliances in a
redundancy pool, it is important that upstream and downstream packets from the
same flow are all handled by the same appliance. Again, you can solve this challenge
by carefully defining the policies.

It’s not theoretical: as mentioned, this approach has been used for decades in many
SPs. This traditional SFC concept has evolved in the more recent years:

• Virtualizing the appliances
• Decoupling the PE’s control/signaling from the routing/forwarding functions

into different entities
• Introducing flexible BGP next-hop manipulation and enhanced forwarding intel‐

ligence at the programmable PEs
• Natively implementing scalable security functions in the forwarding logic
• Automating the service provisioning, configuration, resiliency, and monitoring

Chapter 12 shows how the BGP VPN technology, which has always supported service
chaining at some extent, recently evolved into a flexible, scalable, and modern SFC
solution.

L3VPN—Loop Avoidance
Multihoming brings redundancy, at the expense of introducing the possibility of
incurring routing loops. Luckily, in L3 services, you can count on the TTL field that is
present in IPv4, IPv6, and MPLS packet headers; and thanks to TTL, packets cannot
loop forever. For this reason, the impact of an L3 forwarding loop is much less scary
than the one caused by an L2 loop. Regardless, L3 routing loops are not desirable and
it is important to avoid them.

When eBGP is the PE-CE protocol, most deployments rely on another extended
community called Site of Origin (SoO). As it name implies, a route’s SoO informs
about the site where the route originated.

What sites are there in this example? CE1-A and CE2-A have a backdoor link to each
other, as do CE3-A and CE4-A. So, there are two sites in total, one on the left and one
on the right. The following SoO values are globally assigned to the sites in VPN A:

• 65000:10112 to the lefthand site (CE1-A and CE2-A). This SoO value is set on
the prefixes that either PE1 or PE2 learn from CE1-A or CE2-A.

• 65000:10134 to the righthand site (CE3-A and CE4-A). This SoO value is set on
the prefixes that either PE3 or PE4 learn from CE3-A or CE4-A.
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Using the SoO prevents intrasite traffic from transiting the service provider. How?
Simply, PEs do not readvertise routes learned from a given site into the same site. For
example, when the SoO is correctly configured and PE1 receives a route from CE1-A:

• PE1 does not readvertise the route to CE2-A.
• PE1 advertises the route with SoO:65000:10112 to the RRs, which in turn reflects

it to all the PEs. PE2 would never readvertise this route to CE1-A or CE2-A.

Here is how the route looks when PE1 advertises it to the RRs.

Example 3-37. L3VPN—Site of Origin Advertisement (Junos)

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             table VRF-A
[...]
     Communities: target:65000:1001 origin:65000:10112

The same communities are displayed as follows in IOS XR: Extended community:
RT:65000:1001 SoO:65000:10112.

This mechanism is especially useful when same-site CEs run a routing protocol with
each other. For example, CE1-A and CE2-A might well establish an iBGP (SAFI=1)
session with NHS if the tenant network is more complex than just a backdoor link.

In addition, SoO is handy for operators to manually check where a route originated.

The following example presents the Junos configuration for the PE1-CE1 session,
assuming that the –OUT and –IN policies are applied to the 10.1.0.0 neighbor as
export and import, respectively.

Example 3-38. L3VPN—site of origin configuration for PE1-CE1 (Junos)

policy-options {
    policy-statement PL-VRF-A-eBGP-CE1A-OUT {
        term SOO {
            from community SOO-VPN-A-SITE-12;
            then reject;
        }
        term BGP { ... }
    }
    policy-statement PL-VRF-A-eBGP-CE1A-IN {
        term SOO then community add SOO-VPN-A-SITE-12;
    }
    community SOO-VPN-A-SITE-12 members origin:65000:10112;
}

Example 3-39 shows the equivalent syntax in IOS XR.
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Example 3-39. L3VPN—SoO configuration for PE2-CE2 (IOS XR)

router bgp 65000
 vrf VRF-A
  neighbor 10.1.0.2
   address-family ipv4 unicast
    site-of-origin 65000:10112
   !
   address-family ipv6 unicast
    site-of-origin 65000:10112
!

The loop avoidance logic is more complex when the PE-CE protocol is link-state, like
OSPF and IS-IS, especially when multi-area and route redistribution are in the game.
Although OSPF as a PE-CE protocol was tested successfully in this book’s interopera‐
ble setup, it falls outside the scope of the current edition.

Internet Access from a VRF
Providing Internet services to L3VPN tenants is a wide and relatively complex topic
that this book just touches on very briefly. There are many options to achieve it. The
key is whether upstream Internet traffic is sourced from public or private IP
addresses at the CE→PE link. Or, to put it in a different way, whether downstream
Internet traffic is destined to public or private IP addresses at the PE→CE link.

Let’s focus on upstream traffic. If the PE receives Internet packets from the CE with
public source IP addresses, there are several options. Probably the cleanest approach
is to use a different attachment circuit for each service: one for Internet, and one for
intranet (L3VPN). In this case, the CE has at least two service-specific logical connec‐
tions to the PE. And ACs are associated to different routing instances—global routing
and a tenant VRF, respectively.

There is no mandate to provide Internet service on the global rout‐
ing table. It is perfectly possible to have an Internet VPN and estab‐
lish eBGP peerings to other providers in the context of the Internet
VRF.

Other options include classifying packets based on their source and destination IP
address, and then using one or more of the following tools:

• Hairpin connecting the tenant VRF and the global routing instance. It can be an
external back-to-back connection or an internal link such as a Junos logical
tunnel.

• Filter-Based Forwarding (FBF), also known as ACL-Based Forwarding (ABF). 
This is the name used for modern Policy-Based Routing (PBR).
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• Route leaking between the global routing table and the VRF.
• Routes pointing from one table to another.

If, on the other hand, the PE receives Internet packets from the CE with private
source IP addresses, a NAT function is necessary on the PE or further upstream:

• If the PE performs the NAT function, typically the NAT service provides two log‐
ical interfaces: an internal one belonging to the tenant VRF, and an external one
at the global routing table (or Internet VRF). The public (post-NAT) tenant IP
addresses are advertised from the public instance.

• If the NAT function is performed by a different entity further upstream—such as
a physical or virtual appliance—upstream traffic needs to be conveniently steered
from the PE toward the NAT. Typically, a dynamic default route advertised from
the NAT inside function does the trick.

Route Target Constraint
Imagine an SP network with 1,000 VPNs. Most PEs only have a subset of VPNs
locally instantiated as VRFs.

A new PE called PE5 is now configured with just VRF-A and symmetrical RT policies
that set and match RT 65000:1001. When the iBGP session comes up, by default the
RRs send to PE5 all the IP Unicast VPN routes for the 1,000 VPNs. Then, PE5 only
stores the small fraction of routes containing RT 65000:1001 and (by default) silently
discards the rest. Every time there is a new routing change, the RRs propagate it to
PE5, regardless of whether the change affects VRF-A.

Now a new VRF called VRF-B—with a new RT 65000:1002—is configured on PE5,
which sends a BGP refresh message to the RRs. These in turn send all the IP Unicast
VPN routes to PE5 again. And so on.

Fortunately, this mechanism can be greatly optimized, as described in RFC 4684:
Constrained Route Distribution for BGP/MPLS IP VPNs. This solution is commonly
called Route Target Constraint (RTC). It relies on an additional NLRI called Route
Target Membership (AFI=1, SAFI=132), or simply RT.

The format of this NLRI is simply <AS>:<Route Target>.

RTC—Signaling
When all the iBGP sessions in the SP network negotiate the RT address family, the
first thing the peers do is to exchange RT prefixes:

166 | Chapter 3: Layer 3 Unicast MPLS Services



• RRs advertise an RT default prefix 0:0:0/0, which simply means: send me all your
VPN routes.

• PEs walk through their VRF import policies and, for each matching RT, they
send to the RRs a specific RT prefix (e.g., AS:65000:1001), which means: if you
have a VPN route with this RT (65000:1001), send the route to me.

Example 3-40 shows the RT prefix exchange between PE1 and RR1, illustrated in the
left half of Figure 3-6. PE1 has two VRFs locally configured: VRF-A (with RT
65000:1001) and VRF-B (with RT 65000:1002).

Example 3-40. RTC—prefix exchange (Junos)

juniper@PE1> show route receive-protocol bgp 172.16.0.201 table bgp.rtarget.0

bgp.rtarget.0: 3 destinations, 4 routes [...]
  Prefix         Nexthop           MED     Lclpref    AS path
* 0:0:0/0        172.16.0.201              100        I

juniper@PE1> show route advertising-protocol bgp 172.16.0.201 table bgp.rtarget.0

bgp.rtarget.0: 3 destinations, 4 routes [...]
  Prefix                Nexthop    MED     Lclpref    AS path
* 65000:65000:1001/96   Self       100        I
* 65000:65000:1002/96   Self       100        I

RT routes are not readvertised, so RRs do not reflect them.

Then, the PEs send all their VPN routes to the RRs. Junos PEs only do it if they have
previously received a matching RT prefix (which can be 0:0:0/0) from the BGP peer.
Conversely, IOS XR PEs do it spontaneously. So the default RT route—advertised by
the RRs—is particularly important for Junos PEs, but not so much for IOS XR PEs.

The VPN routes are distributed in a conservative manner. Why do RRs reflect the
172.16.0.44:10.2.34.0/24 route to PE1? Because PE1 had previously expressed its
interest to receive VPN routes with RT 65000:1001.
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Figure 3-6. Route Target Constraint

This mechanism ensures that PEs only receive the VPN routes that they are interes‐
ted in: nothing more, nothing less. Also, every time a VRF is added, removed, or
modified at PE1, its RT routes are updated accordingly, potentially triggering tailored
VPN route updates from the RRs. There is no need for a full route refresh anymore.
And the same reasoning applies to PE2, too.

Note that the term VPN (and not L3VPN) has been used intentionally. RT routes are
not bound to any particular type of VPN NLRI. Indeed, RTC is a conceptually uni‐
versal mechanism. In Junos, every VPN NLRI supports RTC. In IOS XR, as of this
writing, IPv4 and IPv6 Unicast VPN (SAFI=128) NLRIs support RTC.

RTC—RR Configuration
Following is the Junos RR additional configuration:

Example 3-41. RTC configuration at RR1 (Junos)

protocols {
    bgp {
        group CLIENTS {
            family route-target advertise-default;
}}}

Here is the equivalent for IOS XR PE:
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Example 3-42. RTC configuration at RR2 (IOS XR)

router bgp 65000
 address-family ipv4 rt-filter
 !
 neighbor-group CLIENTS
  address-family ipv4 rt-filter
   default-originate
!

The ipv4 notation is due to the fact that RT NLRI has AFI=1. But RT prefixes also
determine the distribution of non-IPv4 VPN routes such as IPv6 Unicast VPN.

Remember that RT prefixes are not reflected. Also, there is no need to negotiate the
RT NLRI on the inter-RR iBGP sessions.

RTC—PE Configuration
The following example provides the Junos PE additional configuration:

Example 3-43. RTC configuration at PE1 (Junos)

1     protocols {
2         bgp group iBGP-RR family route-target; 
3     }
4     routing-options {
5         rib inet.3 {
6             static {
7                 route 172.16.0.201/32 discard;
8                 route 172.16.0.202/32 discard;
9     }}}

RRs advertise an RT default prefix whose BGP next hop equals the RR’s local loop‐
back (172.16.0.201 or 172.16.0.202). In this example, the RRs do not run any MPLS
protocols, so their loopbacks are missing from the PE1’s inet.3 routing table.
Without the static routes in lines 4 through 8, the RT prefixes would be hidden at
PE1—effectively disrupting the L3VPN service.

Alternatively, you can configure: set routing-options resolution rib

bgp.rtarget.0 resolution-ribs [ inet.3 inet.0 ].

Finally, Example 3-44 shows here is the additional configuration at an IOS XR PE.

Example 3-44. RTC configuration at PE2 (IOS XR)

router bgp 65000
 address-family ipv4 rt-filter
 !
 neighbor-group RR
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  address-family ipv4 rt-filter
!

The RT static route concept is explored in Chapter 9.

Coupling MPLS Services to Transport Planes
Every MPLS service has its own requirements. Let’s suppose that you want to do the
following:

• Transport high-volume Internet traffic through a set (#1) of core RSVP-TE LSPs
that take the available bandwidth and the actual link utilization into account. In
this way (fully covered in Chapter 14) you can minimize packet loss by avoiding
situations in which some links are underutilized, whereas others are saturated.

• Transport low-volume VPN traffic by following the IGP. This traffic does not
contribute to link bandwidth significantly, and the shortest path is preferred. For
this service, LDP or node-SID SPRING are perfectly fine transport alternatives.

• Transport the traffic from critical VPNs—or specific flows within these VPNs—
with a new set (#2) of RSVP-TE LSPs that have fast restoration paths; and you
don’t want the Internet traffic to use these LSPs.

The solution is to define three loopback addresses on every LSR and LER:

• Loopback address A is reachable through RSVP-TE LSPs named with suffix
PLANE_A. Internet BGP routes have their iBGP next hop set to this address.

• Loopback address B is advertised as a FEC in LDP. Most VPN routes have their
iBGP next hop set to this address.

• Loopback address C is reachable through RSVP-TE LSPs named with suffix
PLANE_C. Certain VPN routes have their iBGP next hop set to this address.

Let’s see how to configure several global loopback addresses, how to bind them to
RSVP-TE LSPs or LDP FECs, and how to change the iBGP next hop.

Configuring Several Loopbacks in the Default Instance
Junos supports a maximum of one loopback IFL per instance. You can configure sev‐
eral IPv4 addresses on the same unit as follows:
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Example 3-45. Multiple global loopback address—PE1 (Junos)

interfaces {
    lo0 {
        family inet {
            address 172.16.0.11/32 primary;
            address 172.16.1.11/32;
            address 172.16.2.11/32;
}}}

These are loopback addresses A, B, and C mentioned previously. The router ID is bet‐
ter set explicitly to the primary loopback address A.

IOS XR provides two options: either configuring several loopback interfaces, or con‐
figuring several addresses on the same interface. Let’s look at the first option:

Example 3-46. Multiple global loopback address—PE4 (Junos)

interface Loopback0
 ipv4 address 172.16.0.44 255.255.255.255
 ipv4 address 172.16.1.44 255.255.255.255 secondary
 ipv4 address 172.16.2.44 255.255.255.255 secondary
!

Signaling LSPs to Different Loopback Addresses
Let’s carry on with the example, this time focusing on the signaling and forwarding
between PE1 and PE4. From PE1’s perspective, the remote PE is PE4, and vice versa.

Plane A—RSVP-TE LSPs to the remote PE’s router ID
These are the two RSVP-TE LSPs signaled on plane A: PE1→PE4_PLANE-A and
PE4→PE1_PLANE-A. They have as a destination the remote PE’s loopback address
A.

By default, Junos only installs a route to the RSVP-TE LSP destination (to address) in
the inet.3 routing table. This is exactly what we want in this case.

Example 3-47. RSVP-TE LSP plane A, rooted at PE1 (Junos)

protocols {
    mpls {
        label-switched-path PE1--->PE4_PLANE-A {
            to 172.16.0.44;
}}}

As for IOS XR, by default there is no prefix bound to a RSVP-TE LSP. Indeed, auto
route is not turned on by default; you must configure it explicitly.
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Now, the autoroute announce feature automatically uses the RSVP-TE LSPs as a next
hop for all the destinations that are at or behind the tail end. So, PE4’s CEF sees the
three PE1’s loopback IP addresses as reachable via the PE4→PE1_PLANE_A LSP.
This is not what you want in this scenario, and the solution is not to use autoroute
announce. There are several alternative methods for coupling prefixes to a LSP. One
option is to use static routes, but it is much better to use a dynamic method that takes
the IGP metric into account: this is the autoroute destination feature.

Example 3-48. RSVP-TE LSP plane A, rooted at PE4 (IOS XR)

1     interface tunnel-te1101
2      ipv4 unnumbered Loopback 0
3      signalled-name PE4--->PE1_PLANE-A
4      autoroute destination 172.16.0.11
5      !
6      destination 172.16.0.11
7      record-route
8      path-option 1 dynamic
9     !

It is line 4, not line 6, that determines what is installed at PE4’s CEF. In this case, PE4
sees only one prefix as reachable via PE4→PE1_PLANE_A: 172.16.0.11.

The IOS XR autoroute announce feature is equivalent to Junos’
shortcuts, which are briefly described in Chapter 16.

Plane B—controlling LDP label bindings
The two vendors covered by this book have a different default behavior:

• Junos PE1 only advertises a label mapping for one local FEC: its primary loop‐
back address (A). As for remote FECs, it uses the ordered label distribution con‐
trol mode, which means that it only advertises label mappings for those remote
FECs for which it has already received label mappings from the downstream LSR.

• IOS XR advertises a label mapping for all the local and remote (IGP) FECs in
independent mode. This means that PE2, P2, and PE4 advertise a label mapping
for all the loopback addresses (A, B, and C) of all the PEs, including PE1 and
PE4.

Is the default implementation a valid one in this scenario? Let’s focus on plane A first.

In both Junos and IOS XR, if a remote FEC is reachable via a RSVP-TE LSP and via
LDP label mappings, RSVP-TE is preferred. So RSVP-TE LSPs PE1→PE4_PLANE_A
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and PE4→PE1_PLANE_A take precedence over LDP. Only if the RSVP-TE LSPs can‐
not be signaled, for whatever reason, does LDP act as a fallback mechanism.

But this might not be your preferred option. Suppose that all the LSRs in the network
are capable of IP routing Internet packets in the global instance. Although this sce‐
nario deviates from the first classical MPLS use case, it is a common practice in inter‐
national carriers because it provides hop-by-hop control. In this case, you might
prefer the fallback mechanism in plane A—dedicated in this example to the Internet
service—not to be LDP, but hop-by-hop classical (unlabeled) IP routing. In this case,
it is necessary to filter loopback address A out of LDP advertisements.

As for plane B, Junos P1 only advertises a label mapping for PE1’s loopback address B
if it has previously received the corresponding label mapping from PE1.

Finally, let’s assume that LDP is a desirable fallback mechanism for plane C. Putting
this all together, LDP must advertise label mappings for planes B and C, but not for
plane A.

Following is the required configuration at Junos PE1:

Example 3-49. Controlling LDP label bindings for Local FECs—PE1 (Junos)

1     protocols {
2         ldp egress-policy PL-LDP-EGRESS;
3     }
4     policy-options {
5         policy-statement PL-LDP-EGRESS {
6             term LOOPBACK-B-C {
7                 from {
8                     route-filter 172.16.1.11/32;
9                     route-filter 172.16.2.11/32;
10                }
11                then accept;
12            }
13            term REST {
14                then reject;
15    }}}

Junos PE3 needs a similar configuration—just by adapting lines 8 and 9 to its local
addressing—and P1 does not require any additional changes.

The required configuration on all the IOS XR core routers (PE2, P2, and PE4) is
shown in Example 3-50.

Example 3-50. Controlling LDP label bindings—IOS XR

mpls ldp
 address-family ipv4
  label
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   local
    allocate for ALL-LOCAL-PLANE-B-C
!
ipv4 access-list AL-LOCAL-PLANE-B-C
 10 permit ipv4 172.16.1.0 0.0.0.255 any
 20 permit ipv4 172.16.2.0 0.0.0.255 any
 30 deny ipv4 any any
!

Plane C—RSVP-TE LSPs to a secondary loopback address
These are the two RSVP-TE LSPs signaled on plane C: PE1→PE4_PLANE-C and
PE4→PE1_PLANE-C. They are coupled to the remote PE’s loopback address C.

In both Junos and IOS XR, by default a RSVP-TE LSP must be tar‐
geted to the tail end’s router ID. In this scenario, this is loopback
address A. You can relax this requirement in Junos with the inter-
domain knob.

Taking into account this boundary condition, here is the configuration at PE1:

Example 3-51. RSVP-TE LSP plane C, rooted at PE1 (Junos)

1     protocols {
2         mpls {
3             label-switched-path PE1--->PE4_PLANE-C {
4                 to 172.16.0.44;
5                 no-install-to-address;
6                 install 172.16.2.44;
7     }}}

With the previous configuration, the LSP is a next hop for the 172.16.2.44/32 route
(line 6) at PE1’s inet.3 table. But it is not a next hop for 172.16.0.44/32 (line 5).

Here is the IOS XR configuration at PE4.

Example 3-52. RSVP-TE LSP plane C, rooted at PE4 (IOS XR)

1     interface tunnel-te1103
2      ipv4 unnumbered Loopback 0
3      signalled-name PE4--->PE1_PLANE-C
4      autoroute destination 172.16.2.11
5      !
6      destination 172.16.0.11
7      record-route
8      path-option 1 dynamic
9     !
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It is line 4, not line 6, that determines what is installed at PE4’s CEF. In this case, PE4
sees only one prefix as reachable via PE4→PE1_PLANE_C: 172.16.2.11.

There is an interesting implementation difference between Junos install and IOS
XR autoroute destination. Junos calculates the 172.16.2.44/32 FEC metric as the
shortest IGP path to the LSP’s tail end (172.16.0.44). IOS XR, on the other hand, cal‐
culates it as the shortest IGP path to the FEC itself (172.16.2.11, not 172.16.0.11).

In this example, there is no difference because the FEC is local to the LSP’s tail end.
But there are other use cases of this technique—mainly Traffic Engineering—for
which the LSP’s tail end may be en route to the FEC; however, the FEC is still one or
more hops beyond. In this case, the previous implementation difference is relevant.
There is a way to make Junos use the FEC metric—based on LDP tunneling and LDP
policies—but it is beyond the scope of this book.

Changing the Service Routes’ BGP Next Hop
Now that there are three transport planes, let’s couple the services to them according
to the previously stated requirements. No change is required on plane A, because the
BGP next-hop self (NHS) action automatically picks the primary loopback address
(A).

Let’s see plane B in Junos:

• If PE1 advertises IP VPN prefixes directly from the VRF (this topic was further
discussed earlier in this chapter), the way to go is making the VRF export policy
execute a then next-hop 172.16.1.11 action.

• If PE1 advertises IP VPN prefixes from the main IP VPN table, the then next-
hop 172.16.1.11 action must be applied at the iBGP-RR group export policy,
where you can also match the RTs in order to achieve a good granularity. Don’t
forget in this case to configure vpn-apply-export under the group, too.

Example 3-53 shows the procedure in IOS XR.

Example 3-53. Changing BGP next hop for L3VPN routes—PE4 (IOS XR)

1     router bgp 65000
2      neighbor-group RR
3       address-family vpnv4 unicast
4        route-policy PL-VRF-NH-CHANGE out
5       !
6       address-family vpnv6 unicast
7        route-policy PL-VRF-A-NH-CHANGE out
8     !
9     route-policy PL-VRF-NH-CHANGE
10      if extcommunity rt matches-any RT-VPN-A then
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11        set next-hop 172.16.1.44
12      endif
13      pass
14    end-policy
15    !
16    extcommunity-set rt RT-VPN-A
17      65000:1001
18    end-set
19    !

For IPv6 Unicast VPN prefixes (line 6), the next hop changes to ::ffff:172.16.1.44 even
if it’s configured to be 172.16.1.44. Good!

The approach for plane C is identical, except that further per-prefix granularity may
be configured in the policies.
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CHAPTER 4

Internet Multicast Over MPLS

This chapter describes Global Internet Multicast, as opposed to Chapter 5, which
focuses on Multicast VPN. Let’s begin with a basic multicast introduction that should
also help for a better understanding of Chapter 5.

Multicast packets flow from a given source (S) to a group (G) of receivers, as com‐
pared to unicast packets, which are destined to a single receiver. The forwarding path
used to transport multicast is typically modeled as a tree, with the source being the
root and the receivers sitting at the leaves. In a multicast tree, the routers replicate the
traffic at the branching points. The traffic flows from the root to the leaves, like sap in
a tree. In that sense, the terms upstream and downstream defy gravity: take a picture
of a tree and turn it upside down, with the root on top and the leaves at the bottom,
and let the traffic flow down. With this image in mind it’s easier to understand why,
in multicast land, upstream means toward the root (source) and downstream is
toward the leaves (receivers). Multicast packets flow downstream in a point-to-
multipoint manner.

Let’s get back to reality after this short imagination twister. In a nutshell, multicast
technologies make it possible for a network to replicate one single packet to multiple
destinations. A popular and typical multicast application is IP Television (IPTV),
whereby many residential and mobile users can be watching the same live channel at
the same time. If the source had to replicate and produce thousands or millions of
copies for each packet, the requirements in terms of processing power and network
bandwidth at the source site would be huge, not to mention the impact on latency.
Fortunately, the IPTV source is typically a server (or a cluster) that sends only one
copy of the multicast stream out of its network interface. But, how can this stream
reach all the receivers? Multicast solves the challenge: the service provider (SP) net‐
work builds a tree that replicates the original packet, ensuring that each receiver gets
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one and only one copy of it. This tree performs an efficient replication at the branch‐
ing points; so only one copy of each packet traverses a given network link.

There are many other multicast applications, each with different requirements. Some
of them have low bit rates and strict low latency (e.g., stock-ticker data real-time dis‐
tribution to trading companies, or radar signal transmission to air control operators.)
Other multicast applications move high traffic volumes and have varied latency
requirements, like videoconferencing, or software and media distribution to reposito‐
ries and caches.

This chapter covers IPv4 multicast distribution across a MPLS core for two types of
service: Internet Multicast (in the Global Routing Table) and Multicast IP VPN.
Although IPv6 is not covered in depth, the configuration and mechanics are very
similar.

But, before diving into the services, let’s first brush up on the very basics of IP Multi‐
cast.

IP Multicast
An IP multicast flow is often represented as (S, G), where S and G are the source and
destination IP addresses of the data packets, respectively:

S
This is a unicast IP (v4 or v6) address, representing a single host. This host (S) is
the source of the multicast stream.

G
This is a multicast IP address, representing a group of hosts (receivers) interested
in receiving the traffic.

What is the difference between a unicast and a multicast IP address? They both look
similar, but there are well-known address ranges that are reserved for multicast:

• IPv4 multicast address range is 224/4, or 224.0.0.0 through 239.255.255.255
• IPv6 multicast address range is ff00::/8

Not all the multicast IP addresses are routable across domains. Any addresses in the
224/24 and ff02::/16 ranges are link-local and therefore are not routable. Just to pro‐
vide one example, nontargeted LDP hello packets have destination IP address
224.0.0.2. For a complete list of multicast address ranges reserved for different pur‐
poses, refer to the IPv4 and IPv6 Multicast Address Space Registry at the IANA web‐
site.

In Ethernet Layer 2 (L2) domains, IP Multicast packets are encapsulated inside an
Ethernet header. The network interface card that introduces the frame into the L2
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domain simply copies its own MAC address into the Source MAC address field of the
frame’s Ethernet header; that’s Ethernet business as usual. The destination MAC
address is special, though:

IPv4 Multicast
Address Resolution Protocol (ARP) plays no role here. The last 23 bits of the
IPv4 Multicast address are appended to the 01:00:5e MAC prefix in order to
make up a destination MAC address. For example, IPv4 packets destined to
232.1.2.3 are encapsulated in an Ethernet header with destination MAC address
01:00:5e:01:02:03.

IPv6 Multicast
Neighbor Discovery (ND) plays no role here. The last 32 bits of the IPv6 Multi‐
cast address are appended to the 33:33 MAC prefix. For example, IPv6 packets
destined to ff3e::0001:0203 have destination MAC address 33:33:00:01:02:03.

There is actually something in common between the 01:00:5e and 33:33 prefixes. The
last bit of the first octet is set to 1 in both cases. In Ethernet, any frame with that bit
set to 1 is considered to be a (not necessarily IP) multicast frame. Many non-IP proto‐
cols use such destination MAC addresses. For example, Intermediate System–to–
Intermediate System (IS-IS) point-to-point and LAN hellos are sent to 09:00:2b:
00:00:05 and 01:80:c2:00:00:15 MAC addresses, respectively.

Likewise, in unicast frames the destination MAC address has the last bit of the first
octet set to 0. Typically, a unicast MAC address is dynamically resolved via ARP (in
IPv4) or ND (in IPv6); unlike multicast MAC addresses, which are statically calcula‐
ted with the mathematical rule explained in the previous paragraphs.

IP Multicast Protocols
Multicast sources are stateless. They just send the packets out of a network interface
into a local network segment. This segment might contain local receivers, and more
important, also a multicast-capable router(s) called First Hop Router (FHR).

In contrast, end receivers are stateful and signal their multicast subscriptions by using
a link-local protocol: Internet Group Management Protocol (IGMP) for IPv4 groups,
and Multicast Listener Discovery (MLD) for IPv6 groups. Hopefully, there is a
multicast-capable router locally connected to the same segment as the receivers. Such
device is called a Last Hop Router (LHR), and it processes the local IGMP and MLD
messages.

What if an FHR and an LHR are several hops away from each other? Well, a multicast
tree must connect the FHR to the LHR, such that all the segments with local receivers
can get the multicast packets. And how is such a tree signaled? This is the principal
role of the Protocol Independent Multicast (PIM) protocol.
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PIM has additional functions such as multicast source discovery, and it also provides
a redundancy mechanism in topologies with several FHRs (or several LHRs) in the
same segment.

IP Multicast Modes
PIM can operate in two main modes:

Sparse Mode
In Sparse Mode (RFC 4601, standards track), receivers trigger the signaling of the
multicast tree. In other words, a multicast flow is natively forwarded if, and only
if, there are downstream receivers for that flow. This results in an efficient utiliza‐
tion of bandwidth resources.

Dense Mode
In Dense Mode (RFC 3973, experimental track), traffic is flooded first down all
the possible paths, in case there are receivers. Later, if there are no receivers down
a given path, that branch is pruned from the multicast tree. This mode is seldom
used, because it is not scalable in terms of bandwidth and signaling. Therefore, it
is not covered in this book.

Inside PIM sparse mode, there are three submodes: Any Source Multicast (ASM),
Source-Specific Multicast (SSM), and Bidirectional (BIDIR).

Cisco documentation often uses the Sparse Mode term to refer to
ASM only. Strictly speaking, Sparse Mode is actually a superset that
includes ASM, SSM, and BIDIR. This book uses the standard ter‐
minology.

Some receivers simply subscribe to a group G if they are interested in receiving all the
traffic destined to the group address G, regardless of what sources are active for that
group. These receivers generate a (*, G), or ASM subscription via IGMP or MLD.

Other receivers also specify the source S from which they want to receive multicast
traffic. These receivers generate a (S, G), or SSM subscription via IGMP or MLD.
RFC 4607 lists all the IP multicast addresses reserved for SSM usage. In the case of
IPv4, the default SSM address range is 232/8, or 232.0.0.0 to 232.255.255.255. You can
also configure the network to use addresses outside this range for SSM.

There is no solid border line between ASM and SSM. Even if a receiver sends an ASM
(*, G) message, at some point the network might end up signaling SSM (S, G) state
directly toward the source (upstream). There are several scenarios in which this hap‐
pens, and you will see them later in this chapter.
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Both ASM and SSM have pros and cons. Although ASM is simpler for the receiver,
SSM is simpler for the network. Routers find it much easier to build a multicast tree if
the sources are known beforehand than if they must discover the sources from
scratch. For this reason, ASM is left for the end of Chapter 5.

In ASM and SSM, multicast trees are unidirectional: they transport traffic from sour‐
ces to receivers. On the other hand, BIDIR (RFC 5015) covers a special use case for
which sources can also be receivers, and vice versa. For these applications, it makes
sense to build a bidirectional tree.

This book focuses on ASM and SSM, the most common modes.

Multicast in general and PIM in particular have a lot of terminology. Instead of
reviewing it all from scratch, let’s introduce it gradually as the examples move along.

Classic Internet Multicast
Internet Multicast stands for the transport of global IP Multicast traffic across an SP
core. The provider edges (PEs) forward the packets in the context of the Global Rout‐
ing Table (GRT). In other words, there is no VPN involved in this service. On the
other hand, Classical implies MPLS-free: the starting point is hence very similar to
that of Chapter 1, and the need for MPLS (or IP tunneling) will naturally show up.

Starting Multicast Sources and Receivers
Figure 4-1 shows this chapter’s topology. The IS-IS metrics are initially configured as
follows: value 15 for the PE1-PE2 and PE3-PE4 links, and the default value (10) on
the remaining links (PE-P and P-P). This topology also has Route Reflectors (RRs)
even if they are not displayed in Figure 4-1.

H1 and H2 are actively generate traffic toward SSM groups 232.1.1.1 and 232.2.2.2,
respectively. Multicast receivers for both groups are spread all over the network, and
they will subscribe one by one, so you can see how the multicast tree is created.
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Figure 4-1. Internet Multicast topology

All the hosts are simulated within a single IOS XR device or virtual
machine (VM) called H. More specifically, each host is a VRF–lite
inside H.

A simple ping is enough to generate multicast traffic. Let’s make host H1 send one
packet per second toward 232.1.1.1, as shown in the following example:

Example 4-1. Generating IP Multicast traffic by using ping (IOS XR)

RP/0/0/CPU0:H#ping vrf H1 232.1.1.1 source 10.1.1.10
              count 100000 timeout 1
Type escape sequence to abort.
Sending 100000, 100-byte ICMP Echos to 232.1.1.1, timeout is 0s:
.............[...]

If you generate multicast packets from a Junos device, ensure that
you use the bypass-routing, interface, and ttl ping options.

The previous ping fails. That’s expected given that there are no receivers yet: just let
the ping run continuously in the background.

182 | Chapter 4: Internet Multicast Over MPLS



Next, let’s turn some hosts into dynamic multicast receivers. Here is a sample config‐
uration for receiving host H11 at device H:

Example 4-2. Multicast receiver at H11 (IOS XR)

router igmp
 vrf H11
  interface GigabitEthernet0/0/0/0.1011
   join-group 232.1.1.1 10.1.1.10
!

This makes H11 begin to send dynamic IGMP Report messages, effectively subscrib‐
ing to the (S, G) = (10.1.1.10, 232.1.1.1) flow. Let’s assume that H3, H4, H22, H33,
H34, and H44 (in other words, every host except for H2) also subscribe to the same
(S, G) flow.

Strictly speaking, the previous example is incomplete. For IOS XR to simulate a mul‐
ticast end receiver, the interface must be turned on at the multicast-routing level
first, and this has some implications.

In Junos, this dynamic receiver emulation feature is only available
in the ASM mode (protocols sap listen <group>). Additionally,
both Junos and IOS XR support static subscriptions—ASM and
SSM—at the receiver-facing interface of an LHR.

Signaling the Multicast Tree
After multicast sources and receivers are active, it’s time to signal the multicast tree.
And for that, CEs and PEs need to run the multicast protocols shown here:

Example 4-3. Multicast routing configuration at PE1 (Junos)

protocols {
    igmp {
        interface ge-2/0/2.1011 version 3;
    pim {
        interface ge-2/0/2.1011;
        interface ge-2/0/1.1010;
}}

A similar configuration is applied to PE3, CE1, CE2, BR3, and BR4. For the moment,
only the access (PE-H, PE-CE, and CE-H) interfaces are configured.

By default in Junos, an interface configured for PIM automatically runs IGMP on it,
too. The default IGMP version is 2, and IGMP version 3 is required to process (S, G)
Reports.
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PIM is a router-to-router protocol, so strictly speaking the receiver-facing interface
ge-2/0/2.1011 does not really need PIM. IGMP is enough on the last-hop interface.
However, H11 might become a multicast sender at some point. Furthermore, as you
will see soon in this chapter, enabling PIM on all of the router’s IP multicast access
interfaces is considered a good practice for potential redundancy and loop detection.

The multicast traffic now flows end to end, thanks to the protocol exchange illustra‐
ted in Figure 4-2.

Figure 4-2. IGMP and PIM in action (SSM model)

Let’s look at the multicast routing configuration in IOS XR:

Example 4-4. Multicast routing configuration at PE2 (IOS XR)

multicast-routing
 address-family ipv4
  interface GigabitEthernet0/0/0/0.1020
   enable
  interface GigabitEthernet0/0/0/1.1022
   enable

The previous configuration actually enables PIM and IGMP on the specified PE-CE
and PE-H interfaces.

IGMP signaling
The multicast tree is signaled in the upstream direction, from the receivers to the
source. Let’s begin with the tree branch whose leaf is H11. The following capture,
taken at PE1, shows the IGMP packet exchange between PE1 and H11.
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Example 4-5. IGMP query (from PE1) and report (from H11)

juniper@PE1> monitor traffic interface ge-2/0/2.1011 no-resolve
             size 2000 extensive matching igmp
<timestamp> Out
  -----original packet-----
  00:50:56:8b:32:4a > 01:00:5e:00:00:01, ethertype 802.1Q (0x8100),
  length 54: vlan 1011, p 6, ethertype IPv4, (tos 0xc0, ttl 1, 
  id 20138, offset 0, flags [none], proto: IGMP (2), length: 36, 
  optlength: 4 ( RA )) 10.1.11.1 > 224.0.0.1: igmp query v3

<timestamp> In
  -----original packet-----
  IP (tos 0xc0, ttl 1, id 2772, offset 0, flags [none], proto: IGMP (2), length: 76, 
  optlength: 4 ( RA )) 10.1.11.11 > 224.0.0.22: igmp v3 report [...] 
  [gaddr 232.1.1.1 is_in { 10.1.1.10 }]

PE1 sends the IGMP Query to 224.0.0.1, the all-hosts link-local multicast address.
H11 replies with an IGMP Report destined to 224.0.0.22, the all-IGMPv3-routers
address. The information about the (S, G) subscriptions is in the payload of the
IGMP Report.

Reverse Path Forwarding
PE1 further processes the IGMP Report by looking at the S address (10.1.1.10) and
performing a unicast IP route lookup. This process of looking up the source is called
Reverse Path Forwarding (RPF) and it’s a central concept in the multicast world.

Example 4-6. RPF at PE1 (Junos)

juniper@PE1> show route active-path 10.1.1.10

inet.0: 44 destinations, 53 routes (44 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.1.1.0/24        *[BGP/170] 02:32:51, MED 100, localpref 100
                      AS path: 65001 I, validation-state: unverified
                    > to 10.1.0.0 via ge-2/0/1.1010

juniper@PE1> show multicast rpf 10.1.1.10
Multicast RPF table: inet.0 , 44 entries

10.1.1.0/24
    Protocol: BGP
    Interface: ge-2/0/1.1010
    Neighbor: 10.1.0.0

In a nutshell, multicast packets that arrive at the non-RPF interface are discarded.
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By default, the unicast IP route lookup and the RPF lookup provide exactly the same
result. The unicast and multicast topologies are then said to be congruent. If you want
to make the unicast and multicast traffic follow different paths, it is also possible to
make the topologies noncongruent. This is further discussed at the end of Chapter 5.

PIM signaling
CE1 and PE1 exchange PIM hello packets destined to 224.0.0.13, the all-PIM-routers
link-local multicast address. Through that exchange, they become PIM neighbors.

Example 4-7. PIM neighbors at PE1 (Junos)

juniper@PE1> show pim neighbors
B = Bidirectional Capable, G = Generation Identifier
H = Hello Option Holdtime, L = Hello Option LAN Prune Delay,
P = Hello Option DR Priority, T = Tracking Bit

Instance: PIM.master
Interface        IP V Mode  Option     Uptime  Neighbor addr
ge-2/0/1.1010     4 2       HPLGT    02:40:25  10.1.0.0

From the perspective of PE1, the PIM neighbor CE1 is also the RPF upstream neigh‐
bor en route to the source. So, PE1 sends a PIM (S, G) Join message upstream to CE1:

Example 4-8. PIM (S, G) Join state from PE1 to CE1 (Junos)

juniper@PE1> show pim join inet detail
Instance: PIM.master Family: INET
R = Rendezvous Point Tree, S = Sparse, W = Wildcard

Group: 232.1.1.1
    Source: 10.1.1.10
    Flags: sparse,spt
    Upstream interface: ge-2/0/1.1010
    Downstream neighbors:
        Interface: ge-2/0/2.1011

The PIM (S, G) Join is actually a PIM Join/Prune packet. These messages contain a
Join (add a branch) list, and a Prune (cut a branch) list. In this example, the receiver is
turned on, so PE1 sends the Join/Prune packet with an empty Prune list. Such a PIM
Join/Prune packet is commonly called a PIM Join. Example 4-9 shows the packet in
detail.

Example 4-9. PIM (S, G) Join Packet from PE1 to CE1 (Junos)

juniper@PE1> monitor traffic interface ge-2/0/1.1010 no-resolve
             size 2000 detail matching pim
<timestamp> Out IP (tos 0xc0, ttl 1, id 36704, offset 0, no flags,
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proto: PIM (103), length: 54) 10.1.0.1 > 224.0.0.13
  Join / Prune, cksum 0xd6dc (correct), upstream-neighbor: 10.1.0.0
    1 group(s), holdtime: 3m30s
      group #1: 232.1.1.1, joined sources: 1, pruned sources: 0
        joined source #1: 10.1.1.10(S)

IGMP and PIM are hence soft-state protocols. In the IP Multicast
world, all of the protocol messages (IGMP Query and Report, PIM
Hello and Join/Prune, etc.) are refreshed periodically. By default,
PIM Hello and Join/Prune are refreshed every 10 and 60 seconds,
respectively.

As you can see, PIM messages are encapsulated as IP packets with protocol #103 and
destination IP address 224.0.0.13. Because it is a link-local multicast IPv4 address, all
of the PIM routers in the same VLAN would also process the packet. PE1 only has
one neighbor in VLAN 1010, but what if there were more neighbors in the broadcast
domain? How can PE1 indicate that the message is actually targeted to CE1? It does
this via the upstream neighbor field in the PIM payload.

But, why is the PIM Join message sent to 224.0.0.13 if it’s targeted to CE1 only? PIM
in a LAN is a complex topic and in some cases it is important that all the neighboring
PIM routers LAN have full visibility of all the message exchanges. This prevents
undesired traffic blackouts and duplication.

Multicast forwarding
Finally, CE1 is the FHR and after receiving the PIM Join/Prune packet, it just needs to
forward the multicast traffic down to PE1, as shown in the following example:

Example 4-10. Multicast forwarding state at CE1 (Junos)

juniper@CE1> show multicast route inet detail
Instance: master Family: INET

Group: 232.1.1.1
    Source: 10.1.1.10/32
    Upstream interface: ge-0/0/1.1001
    Downstream interface list:
        ge-0/0/2.1010
    Session description: Source specific multicast
    Statistics: 0 kBps, 1 pps, 6064 packets
[...]

This multicast route is not really a route. It is more accurately
viewed as a forwarding cache entry.
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Now that the source (H1) and the receiver (H11) are connected via the multicast tree,
the multicast ping is successful: every echo request sent from H1 to 232.1.1.1 has one
reply back, coming from H11 (10.1.11.11). If you don’t see the replies, you might be
facing a corner-case condition in the dynamic receiver implementation: try to restart
it by deleting and applying again the router igmp vrf H11 configuration at H (in
two commits).

Classic Internet Multicast—Connecting Multicast Islands
Across the Core
The tree now has one root (H1), one leaf (H11), and one single branch connecting
them.

One-hop transit through the core (PE1-PE2)
Let’s add two more leaves to the tree:

• H22 sends an IGMP (S, G) Report to PE2.
• H2 sends an IGMP (S, G) Report to CE2, which sends a PIM (S, G) Join to PE2.

As a result, PE2 has the multicast (S, G) state depicted in the following example:

Example 4-11. Multicast RIB (IOS XR)

RP/0/0/CPU0:PE2#show mrib route 232.1.1.1
[...]
IP Multicast Routing Information Base
(10.1.1.10,232.1.1.1) RPF nbr: 0.0.0.0 Flags: RPF
  Up: 01:26:05
  Outgoing Interface List
    GigabitEthernet0/0/0/0.1020 Flags: F NS, Up: 01:26:00
    GigabitEthernet0/0/0/1.1022 Flags: F NS LI, Up: 01:26:05

The (S, G) entry is installed in PE2’s Multicast RIB (MRIB), but unfortunately the
RPF neighbor is 0.0.0.0. In other words, RPF has failed. as shown in Example 4-12.

Example 4-12. Failed RPF at PE2 (IOS XR)

RP/0/0/CPU0:PE2#show pim rpf

Table: IPv4-Unicast-default
* 10.1.1.10/32 [200/100]
    via Null with rpf neighbor 0.0.0.0
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Actually, PE2 has a valid BGP route toward 10.1.1.10, and its BGP next hop
(172.16.0.11) is reachable via interface Gi 0/0/0/2. Why does RPF fail? Because PIM is
not enabled in the core, so PE1 and PE2 are not PIM neighbors of each other.

In this classic MPLS-free example, the next step is enabling PIM on the core inter‐
faces. When this is done, the new receivers are successfully connected to the source.

Example 4-13. Successful RPF at PE2 (IOS XR)

RP/0/0/CPU0:PE2#show pim neighbor GigabitEthernet 0/0/0/2
[...]
Neighbor Address  Interface              Uptime    Expires  DR pri

10.0.0.0          GigabitEthernet0/0/0/2 00:00:20  00:01:25 1
10.0.0.1*         GigabitEthernet0/0/0/2 00:00:20  00:01:26 1 (DR)

RP/0/0/CPU0:PE2#show pim rpf

Table: IPv4-Unicast-default
* 10.1.1.10/32 [200/100]
    via GigabitEthernet0/0/0/2 with rpf neighbor 10.0.0.0

RP/0/0/CPU0:PE2#show mrib route 232.1.1.1
[...]
(10.1.1.10,232.1.1.1) RPF nbr: 10.0.0.0 Flags: RPF
  Up: 01:50:26
  Incoming Interface List
    GigabitEthernet0/0/0/2 Flags: A, Up: 00:01:13
  Outgoing Interface List
    GigabitEthernet0/0/0/0.1020 Flags: F NS, Up: 01:50:21
    GigabitEthernet0/0/0/1.1022 Flags: F NS LI, Up: 01:50:26

At this point, the multicast tree has three leaves (H11, H22, and H2) connected to the
root (H1), so the multicast ping receives three replies per request, as shown in
Example 4-14.

Example 4-14. Successful multicast ping with three receivers

RP/0/0/CPU0:H#ping vrf H1 232.1.1.1 source 10.1.1.10 count 100000
Type escape sequence to abort.
Sending 100000, 100-byte ICMP Echos to 232.1.1.1, timeout is 2s:

Reply to request 0 from 10.1.11.11, 1 ms
Reply to request 0 from 10.1.2.20, 1 ms
Reply to request 0 from 10.1.22.22, 1 ms
Reply to request 1 from 10.1.11.11, 9 ms
Reply to request 1 from 10.1.2.20, 9 ms
Reply to request 1 from 10.1.22.22, 1 ms
[...]
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One single copy of each packet traverses each link, including the PE1→PE2 connec‐
tion. There are two replication stages: one at PE1, and another one at PE2.

With respect to the (10.1.1.10, 232.1.1.1) flow, PE1 and PE2 are popularly called
sender PE and receiver PE, respectively. This is a per-flow role: one given PE can be a
source PE for some flows, and a receiver PE for others. PE1 is not considered as a
receiver PE even if it has a local receiver (H11), because the flow is not arriving from
the core.

In this chapter and in Chapter 5, the following terms are equiva‐
lent: root PE, ingress PE, and sender PE. Similarly, these terms are
also synonyms: leaf PE, egress PE, and receiver PE.

Two-hop transit through the core (PE1-P1-PE3)
Let’s add one more leaf: H33. The LHR is now PE3, which as a PE has complete visi‐
bility of the customer BGP routes. Thanks to that, PE3 successfully performs an RPF
lookup toward the source (10.1.1.10) and sends a PIM (S, G) Join to its upstream PIM
neighbor: P1. So far, so good. However, P1 as a pure P-router does not have visibility
of the BGP routes, so it fails to perform RPF toward the multicast source:

Example 4-15. Failed RPF at P1 (Junos)

juniper@P1> show route 10.1.1.10

inet.0: 33 destinations, 33 routes (33 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[Static/5] 2w2d 05:08:19
                      Discard

juniper@P1> show pim join inet
Instance: PIM.master Family: INET
R = Rendezvous Point Tree, S = Sparse, W = Wildcard

Group: 232.1.1.1
    Source: 10.1.1.10
    Flags: sparse,spt
    Upstream interface: unknown (no neighbor)

But, how did the H2 and H22 receivers manage to join the multicast tree rooted at
H1? Because the multicast branches that connects the root to H2 and H22 do not tra‐
verse any P-routers. Conversely, connecting H1 and H33 can be done only through a
P-router; hence, the failure to signal the multicast branch end-to-end for H33.

190 | Chapter 4: Internet Multicast Over MPLS



How can you solve this problem? Actually, there are many ways—probably too many!
Let’s see the different qualitative approaches to this challenge.

Signaling Join State Between Remote PEs
RPF failure in a transit router is a very similar problem to the classical one that moti‐
vated MPLS in Chapter 1. Now, it does not impact the forwarding of unicast data
packets, but the propagation of PIM (S, G) Join states. The source S is an external
unicast prefix that belongs to a different AS and is not reachable through the IGP.
Chapter 1 proposed several ways to solve the unicast forwarding problem (without
redistributing the external routes into the IGP), and all of them consisted of tunnel‐
ing the user data packets. But here in the multicast case, it is the PIM (S, G) Join (a
control packet), not the user data traffic, that needs to be tunneled. This opens the
door to a more diverse set of design choices. Following are some possible strategies to
signal Join state between remote PEs.

This section focuses on the ways to solve RPF failures on transit
routers. The discussion is independent of the service, which can be
either Global Internet Multicast or Multicast VPN (MVPN). In
practice, some of the approaches that follow are only implemented
for MVPN.

Carrier IP Multicast Flavors
So let’s move from Classical IP Multicast to Carrier IP Multicast, which has tunneling
capabilities in order to solve the multihop core challenge.

Table 4-1 lists six of the many dimensions that the multicast universe has.

Table 4-1. Carrier Multicast Flavors

Service Global Internet Multicast (S1), Multicast VPN (S2)

C-Multicast Architecture None (A0), Direct Inter-PE (A1), Hop-by-Hop Inter-PE (A2), Out-of-Band (A3)

C-Multicast Inter-PE Signaling
Protocol

None (C0), PIM (C1), LDP (C2), BGP (C3)

P-Tunnel Encapsulation None (E0), GRE over IP Unicast (E1), GRE over IP Multicast (E2), MPLS (E3)

P-Tunnel Signaling Protocol None (T0), PIM (T1), LDP (T2), RSVP-TE (T3), Routing Protocol with MPLS Extensions (T4)

P-Tunnel Layout None (Y0), P2P (Y1), MP2P (Y2), P2MP (Y3), MP2MP (Y4)

The C- and P- prefixes stand for customer and provider, respec‐
tively. The classic IP Multicast model is purely C-Multicast. Con‐
versely, Carrier IP Multicast models also have P- dimensions.
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Every carrier multicast flavor has at least one element from each dimension. As you
can imagine, not all the combinations make sense and each vendor supports only a
subset of them. Although this book focuses on the combinations supported both by
Junos and IOS XR, for completeness, noninteroperable combinations are also briefly
discussed.

Print a copy of Table 4-1 and keep it as a reference as you read this
book’s multicast chapters.

There are two types of service, depending on whether the multicast routing is per‐
formed on the global routing table or on a VRF. This chapter focuses on global serv‐
ices but it tactically borrows some examples that are only implemented for Multicast
VPN.

This book considers three C-Multicast architectures:

• In the Direct Inter-PE (A1) model, PE1 and PE3 establish a C-PIM adjacency
through a bi-directional tunnel. This tunnel transports control and data C-
Multicast packets.

• In the Hop-by-Hop (A2) model, PE3 converts the upstream C-PIM Join state
into a different message that P1 can process and send to PE1, which in turn con‐
verts it into C-PIM Join state. This architecture is also known as In-Band, or
Proxy.

• In the Out-of-Band (A3) model, PE3 signals the C-Join state to PE1 with a non-
tunneled IP protocol. Like in the A1 model, P1 does not take any role in the C-
Multicast control plane.

Don’t worry if these definitions do not make much sense yet. Keep them as a refer‐
ence and they should be much clearer as you continue reading.

In the terms of Table 4-1, the classic IP multicast model is: S1, A2,
C1, E0, T0, Y0.

Direct Inter-PE Model—PE-to-PE PIM Adjacencies over Unicast
IP Tunnels
In the terms of Table 4-1, this model is A1, C1, E1, T0, Y1. It is implemented by both
Junos and IOS XR for S1 and S2.
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This approach requires a unicast IP tunnel (e.g., GRE-based) between each pair of
PEs. There is one PIM instance and it is running on the PEs only. This PIM context is
often called C-PIM.

Let’s focus on the following tunnels: PE1→PE3 and PE3→PE1. PE1 and PE3 see this
pair of GRE tunnels as a point-to-point interface that interconnects the two IP Multi‐
cast islands in a transparent manner. PE1 and PE3 exchange two types of multicast
traffic over the GRE tunnels:

• Control packets such as PIM Hello or (S, G) Join are destined to 224.0.0.13, a
multicast (even if link-local, where the link is the GRE tunnel) address

• Data packets of the active multicast user stream (10.1.1.10→232.1.1.1)

From the point of view of the GRE tunnels, there is no distinction between Control
and Data. If PE1 needs to send a (Control or Data) multicast packet to PE3 over the
PE1→PE3 GRE tunnel, it adds the following headers:

• GRE header with Protocol Type = 0x0800 (IPv4).
• IPv4 header with (Source, Destination) = (172.16.0.11, 172.16.0.33). In other

words, the GRE tunnel’s endpoints are the primary loopback addresses of PE1
and PE3.

After receiving the tunneled packets, PE3 strips these two headers. The result is the
original (Control or Data) multicast packet that PE1 had initially put into the tunnel.
And the same logic applies to the packets that travel in the reverse direction: from
PE3 to PE1.

How good is this model? Although you can use it in a tactical manner for limited or
temporary deployments, you cannot consider it as a modern and scalable approach,
for the same reasons why the Internet does not run over IP tunnels. The model is also
affected by the following multicast-specific limitations:

• If PE1 has two core uplink interfaces but it needs to send a multicast data packet
to 1,000 remote PEs, PE1 must replicate the packet 999 times and send each one
of the 1,000 copies into a different unicast GRE tunnel. This technique is called
Ingress Replication, and it causes inefficient bandwidth consumption. When the
multicast data packets are sent into the core, the main advantage of multicast
(efficient replication tree) is simply lost.

• The PEs establish PIM adjacencies through the GRE tunnels. The soft-state
nature of PIM causes a periodic refresh of all the PIM packets (Hello, Join/Prune,
etc.) at least once per minute. This background noise loads the control plane
unnecessarily. Think for a moment on how the PEs exchange unicast routes: one
BGP update through a reliable TCP connection, and that’s it (no periodic route
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refresh is required). In that sense, the multicast PE-to-PE protocol (PIM) is less
scalable than the unicast protocol (BGP).

Whenever unicast GRE tunnels come into the multicast game, it is important to
ensure that only the customer multicast traffic goes through them. The customer uni‐
cast traffic should travel in MPLS. This requirement for noncongruency is analyzed
further at the end of Chapter 5.

Direct Inter-PE Model—PE-to-PE PIM Adjacencies over Multicast IP
Tunnels
In the terms of Table 4-1, this model is A1, C1, E2, T1, [Y3, Y4]. It is implemented by
both Junos and IOS XR for S2 only.

It is described in historic RFC 6037 - Cisco Systems’ Solution for Multicast in BGP/
MPLS IP VPNs. Most people call it draft Rosen because draft-rosen-vpn-mcast was the
precursor to RFC 6037.

In draft Rosen—implemented only for IP VPNs—each PE (e.g., PE1) is the root of at
least one multicast GRE tunnel per VPN, called Multicast Distribution Tree (MDT).
Why at least one and not just one? Let’s skip this question just for a moment, and
think of each PE as the root of one MDT called the default MDT.

This model requires two different instances of PIM: C-PIM (where C stands for Cus‐
tomer) and P-PIM (where P stands for Provider). Note that C- and P- just represent
different contexts. PIM is actually implemented in the same way—it is the same pro‐
tocol after all:

• C-PIM is the service instance of PIM and it runs at the edge: PE-to-CE, and PE-
to-PE (the latter, through the GRE tunnels). It is used to signal the end-user mul‐
ticast trees, in this example (10.1.1.10→232.1.1.1). So far, the PIM context used
throughout this chapter has always been C-PIM. From the point of view of C-
PIM, the core is just a LAN interface that interconnects all of the PEs. The PEs
simply establish PIM adjacencies over the core, as they would do over any other
interface.

• P-PIM is the transport instance of PIM and runs on the core links only. It is used
to build the Multicast GRE Provider Tunnels or P-Tunnels. The most popular P-
PIM mode is SSM. One of the advantages of SSM here is that it makes Provider
Group (P-G) assignment much simpler. Let’s suppose that PE1 and PE3 are the
roots of P-Tunnels (172.16.0.11→P-G1) and (172.16.0.33→P-G3), respectively. P-
G1 and P-G3 can be different, but they could also be the same. With SSM, as long
as the sources are different, the multicast trees remain distinct even if G1 equals
G3. This is especially important for data MDTs, discussed later in this section.
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P-PIM runs on the global routing instance (default VRF), whereas
C-PIM runs on a (nondefault) VRF. So, the service is provided in
the context of a VPN. And it can be the Internet Multicast service
as long as it is provided within an Internet VPN.

Looking back at Table 4-1, P-PIM SSM corresponds to Y3 and P-PIM ASM to Y4.

Let’s suppose that each of the PEs in the core is the root of a P-Tunnel whose SSM P-
Group is 232.0.0.100—the same one for simplicity, although it could be a different P-
Group per root, too. PE1 receives the following P-PIM (S1, G) Joins from its P-PIM
neighbors, where S1 = 172.16.0.11 and G = 232.0.0.1:

• PE2 sends an (S1, G) Join directly to PE1.
• PE3 sends an (S1, G) Join to P1 and then P1 sends an (S1, G) Join packets to PE1.
• PE4 sends an (S1, G) Join to P2, then P2 sends an (S1, G) Join to P1, which is

already sending (S1, G) Join packets to PE1.

In this way, PE1 is the root of a default MDT whose leaves are PE2, PE3, and PE4.

Likewise, PE1 is also a leaf of the remote PEs’ default MDTs. Indeed, PE1 sends the
following P-PIM Joins: (172.16.0.22, 232.0.0.100) to PE2, (172.16.0.33, 232.0.0.100) to
P1 en route to PE3, and (172.16.0.44, 232.0.0.100) to P1 en route to PE4.

This process ends up establishing an all-to-all LAN-like overlay that interconnects all
the PEs with one another. PEs exchange two types of C-Multicast traffic over the
default MDT:

• Control packets like C-PIM Hello or C-PIM (S, G) Join are destined to 224.0.0.13,
a multicast (even if link-local) address

• Data packets of the active C-Multicast user stream (10.1.1.10→232.1.1.1)

From the point of view of the default MDT, there is no distinction between Control
and Data. If PE1 needs to send a (Control or Data) C-Multicast packet to its neigh‐
bors over the default MDT, PE1 adds the following headers:

• GRE header with Protocol Type = 0x0800 (IPv4)
• IPv4 header with (Source, Destination) = (172.16.0.11, 232.0.0.100)

The tunneled packets arrive at all the other PEs, which strip the two headers. The
result is the original (Control or Data) C-Multicast packet that PE1 had initially put
into the default MDT.

PE1 is the root of its default MDT, and can optionally be the root of one or more data
MDTs. What is a data MDT? Suppose that PE1 is the sender PE of a high-bandwidth
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C-Multicast (C-S, C-G) stream, and out of 1,000 remote PEs, only 10 of them have
downstream receivers for (C-S, C-G). For bandwidth efficiency, it makes sense to sig‐
nal a new MDT that is dedicated to transport that particular (C-S, C-G) only. This
data MDT would only have 10 leaves: the 10 receiver PEs interested in receiving the
flow.

Default and Data MDTs are often called Inclusive and Selective
Trees, respectively. Inclusive Trees include all the possible leaves,
and Selective Trees select a specific leaf subset.

Note that the protocols described so far (C-PIM, P-PIM SSM, and GRE) are typically
not enough to auto-discover the leaves of each MDT. Additional protocols are
required and deployed to achieve this autodiscovery (AD) function. Which proto‐
cols? The answer varies depending on the implementation flavor. Using Cisco termi‐
nology (as of this writing):

Rosen GRE
Default MDT with P-PIM Any Source Multicast (ASM) does not require any
extra protocols, because the P-Source AD function is performed by P-PIM
(source discovery in PIM ASM is discussed in Chapter 15). As for Data MDTs,
they are signaled with User Datagram Protocol (UDP) packets that are
exchanged in the Default MDT.

Rosen GRE with BGP AD
Default MDT with P-PIM SSM requires a new multiprotocol BGP address family
for (P-S, P-G) AD. As for Data MDTs, they can be signaled either by using BGP
or UDP.

Cisco documentation associates each carrier multicast flavor with a
profile number. For example, Rosen GRE is MVPN Profile 0, and
Rosen GRE with BGP AD is MVPN Profile 3.

Further details of Rosen GRE implementation and interoperability are beyond the
scope of this book, as we’re focusing on MPLS and not GRE. Let’s be fair: draft Rosen
has been the de facto L3 Multicast VPN technology for two decades, and it has solved
the business requirements of many customers. But, as time moves on, it is being
replaced by next-generation models.

Wrapping up, let’s take a look at the pros and cons of this model:
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• Pro: an MDT is actually a (provider) multicast tree that facilitates the efficient
replication of multicast data. If PE1 has two core uplink interfaces and it needs to
send a multicast data packet to 1,000 remote PEs, PE1 replicates the packet at
most once and sends at most one copy of the packet out of each core uplink.
Also, this model implements data MDT for an even more efficient distribution.

• Con: C-PIM in a LAN is complex and noisy. If PE3 sends a C-PIM Join to PE1,
all of the other PEs in the VPN receive it and look into it. As you have seen previ‐
ously, PIM Join/Prune messages are sent to 224.0.0.13 and are periodically
refreshed. This makes the solution less scalable and robust in the control plane.

• Finally, this model does not provide total forwarding-plane flexibility. There are
two P-Tunnel types available: PIM/GRE and MP2MP mLDP (coming next).
None of them can benefit from MPLS features such as Traffic Engineering.

Before moving on, let’s first remove PIM from all of the core links
because P-PIM is not needed anymore. From now on, the core is
MPLS territory!

Direct Inter-PE Model—PE-PE PIM Adjacencies over MPLS Label-
Switched Paths
In the terms of Table 4-1, this model is A1, C2, E3, T2, Y4. It is implemented only by
IOS XR and for S2 only.

PIM is designed for bidirectional links. When R1 sends a PIM Join to R2 over link L,
the multicast traffic must flow from R2 to R1 over the same link L. However, MPLS
Label-Switched Paths (LSPs) are unidirectional—or are they? Actually, there is one
type of LSP that is bi-directional. It is called Multipoint-to-Multipoint LSP (MP2MP
LSP) and it’s one of the two LSP types described in RFC 6388 - Label Distribution Pro‐
tocol Extensions for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched
Paths. With any of these (P2MP or MP2MP) extensions, LDP is often referred to as
Multipoint LDP (mLDP). Paraphrasing the RFC:

An MP2MP LSP [...] consists of a single root node, zero or more transit nodes, and one
or more Leaf LSRs acting equally as an ingress or egress LSR.

In a nutshell, MP2MP LSPs have a central (so-called root) LSR, where all the branches
meet. The PEs sit at the leaves and exchange with their LDP neighbors two types of
multipoint (MP) FEC Label Mappings: up, for user traffic flowing from a leaf to the
root, and down, for user traffic flowing from the root to a leaf. From a service per‐
spective, the MP2MP LSP emulates a bidirectional LAN interconnecting the PEs, and
with no learning mechanism to reduce flooding. Any packet put in an MP2MP LSP
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reaches all of the leaves. In that sense, the MP2MP LSP is a Default MDT or Inclusive
Tree.

As of this writing, Cisco calls this model Rosen mLDP, as it has many similarities to
Rosen GRE. Cisco documentation uses the name Rosen to tag a wide variety of
MVPN profiles. Some of them are similar to draft Rosen (draft-rosen-vpn-mcast),
whereas others are not. So, this tag does not really provide a hint with respect to the
underlying technology.

In both Rosen GRE and Rosen mLDP, the PEs build C-PIM adjacencies over the
Default MDT. Therefore, they both rely on the implementation of C-PIM on a LAN.
Last but not least, they both require additional mechanisms to auto-discover the
leaves of Default and/or Data MDTs.

Data MDTs are P2MP, unlike the Default MDT, which is MP2MP.

The main difference between Rosen GRE and Rosen mLDP lies in the way the C-PIM
messages and C-Multicast packets are exchanged over the Default MDT: through IP
or MPLS tunnels, respectively. In Rosen mLDP, C-PIM Joins are encapsulated in
MPLS, and they flow in the opposite direction to C-Multicast traffic. You can com‐
pare Rosen GRE to Rosen mLDP by replacing P-PIM with LDP, and GRE with MPLS.

Neither Rosen GRE nor Rosen mLDP are further covered in this book. The first is
not based on MPLS, and the second is not interoperable as of today. Both models rely
on establishing PE-PE C-PIM adjacencies across the core.

Beyond the Direct Inter-PE Model—Not Establishing PE-PE PIM
Adjacencies
Previous models’ assessment shows that tunneling C-PIM between PEs is not particu‐
larly scalable. In the early 2000s, Juniper and Cisco began to define new frameworks
to signal and transport multicast traffic across an MPLS backbone. At the time, this
new set of paradigms was called Next-Generation or NG, but right now it is simply
state-of-the-art technology. Although many people continue to call it NG, this book
does not.

These modern frameworks leave PIM running on PE-CE and PE-Host links only.
However, the PEs no longer establish C-PIM adjacencies with one another. Instead, a
scalable carrier-class protocol signals inter-PE C-Multicast information. There are
basically two such protocols: BGP and LDP. Both of them are capable of encoding C-
Multicast state.
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Out-of-Band Model
When BGP is used to signal C-Multicast Join state, the service and the transport
planes are loosely coupled. Thanks to certain techniques that are described in Chap‐
ter 5, BGP virtually supports all of the dynamic P-Tunnel technologies listed in
Table 4-1.

Let’s consider the particular case in which LDP is the P-Tunnel signaling protocol. In
the terms of Table 4-1, this model is A3, C3, E3, T2, [Y2, Y3, Y4]. The role of LDP in
this case is to build the LSPs that transport the multicast data. BGP fully takes care of
the PE-to-PE service C-Multicast signaling. In that sense, the service plane (BGP) is
not tightly coupled to the transport plane (LDP here). BGP performs Out-of-Band C-
Multicast signaling. This model provides great flexibility in the P-Tunnel choice, and
it relies on a rich signaling mechanism, which is covered later in Chapter 5.

Hop-by-Hop Inter-PE model
When LDP is used (instead of BGP) to signal C-Multicast Join state, the service and
the transport planes are tightly coupled: LDP signals both at the same time, thanks to
special FEC types. This is In-Band C-Multicast signaling, which means that the ser‐
vice and the transport planes are blended.

This model is less flexible and scalable than the out-of-band architecture, but also
simpler to understand, so let’s use it for the first Multicast over MPLS illustrated
example in this book. Finally!

Internet Multicast over MPLS with In-Band Multipoint
LDP Signaling
This section illustrates the P2MP part of RFC 6826 - Multipoint LDP In-Band Signal‐
ing for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths.

In the terms of Table 4-1, this model is S1, A2, C2, E3, T2, Y3. In Cisco documenta‐
tion, it is called Global Inband. It is the simplest way to deploy dynamic Multicast
over MPLS. Although it brings easy operation and deployment, this carrier multicast
flavor also has some limitations:

• It creates C-Multicast label state at the core LSRs, breaking one of the main bene‐
fits of MPLS: reducing the state by not propagating customer routes to the P-
routers.

• It does not have P-Tunnel flexibility (it is restricted to LDP only).
• It does not yet support Inclusive Tunnels (default MDTs).
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Multipoint LDP
Multipoint LDP (mLDP) is not a new protocol; rather, it is a set of LDP extensions
and procedures. PE1 and PE2 establish one single LDP session, and they use it to
exchange label mappings for all the FEC elements. These include good old IPv4 pre‐
fixes (as in plain LDP) and, in addition, the Multipoint FEC elements; all advertised
in the same LDP session.

Use the policy framework in Junos and IOS XR to select which
FECs you want to advertise over the LDP session. For example, you
might want to use LDP only for P2MP FECs, not for IPv4 Unicast
FECs.

LDP is called mLDP if the neighbors negotiate special MP capabilities. More specifi‐
cally, a neighbor supporting the P2MP capability (0x0508) can signal P2MP FEC ele‐
ments over a (m)LDP session.

Let’s begin with a scenario in which LDP is configured on all the interfaces (see Chap‐
ter 2). Example 4-16 shows the incremental mLDP configuration in Junos.

Example 4-16. mLDP configuration (Junos)

protocols {
    ldp p2mp;
}

Example 4-17 presents the configuration in IOS XR.

Example 4-17. mLDP configuration (IOS XR)

mpls ldp
 mldp

It is a good practice in both Junos and IOS XR to configure mLDP
make-before-break in order to minimize traffic loss upon link
recovery. The details are outside the scope of this book.

As a result of this configuration, LDP peers negotiate the P2MP capability. Let’s see
the negotiation between PE1 (Junos) and PE2 (IOS XR): they both have in common
the P2MP capability:
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Example 4-18. LDP capability negotiation (Junos and IOS XR)

juniper@PE1> show ldp session 172.16.0.22 detail
[...]
  Capabilities advertised: p2mp, make-before-break
  Capabilities received: p2mp

RP/0/0/CPU0:PE2#show mpls ldp neighbor 172.16.0.11:0 detail
[...]
  Capabilities:
    Sent:
      0x508  (MP: Point-to-Multipoint (P2MP))
      0x509  (MP: Multipoint-to-Multipoint (MP2MP))
      0x50b  (Typed Wildcard FEC)
    Received:
      0x508  (MP: Point-to-Multipoint (P2MP))

For now, the LDP session only signals the classic IPv4 prefix FEC elements. For the
moment, no P2MP FEC elements are being advertised on the LDP sessions because
there is no service requiring a multipoint LSP yet. This is about to change.

You need to configure mLDP on all the LSRs and LERs.

In-Band Signaling
At this point, PE2, PE3, and PE4 have upstream PIM Join state pointing to PE1, but
RPF is failing because PIM has been removed from the core links. In C- and P- termi‐
nology, P-PIM is no longer running and C-PIM needs to rely on mLDP in order to
extend the multicast tree through the core. However, C-PIM does not know that it can
rely on mLDP. Yet.

Later in this chapter, you will see the configuration (see Example 4-19 and
Example 4-26) that allows the automatic conversion of C-PIM Join state into LDP
P2MP FECs. This triggers the creation of a P2MP LSP rooted at PE1 and with three
leaves (PE2, PE3, and PE4). The P2MP LSP is built by mLDP, and the signaling
actually goes in the upstream direction: from the leaves toward the root (PE1). In
contrast, the C-Multicast data is tunneled downstream, from the root to the leaves.

You can use Figure 4-3 as a guide for the following mLDP walkthrough.

Internet Multicast over MPLS with In-Band Multipoint LDP Signaling | 201



For the remainder of this chapter, the links PE1-PE2 and PE3-PE4
have their IS-IS metrics raised to 100. So, in the absence of link fail‐
ures, all the inter-PE shortest paths go through P-routers.

Figure 4-3. mLDP P2MP LSPs—In-Band signaling and forwarding

Assume that all the hosts back in Figure 4-1, with the exception of source H1, are
subscribed to the (10.1.1.10, 232.1.1.1) multicast flow. In other words: H2, H3, H4,
H22, H33, H34, and H44 are all C-Multicast receivers.

Signaling Join state from an egress PE that runs Junos
The folowing Junos configuration links C-PIM to mLDP at the Junos PEs:

Example 4-19. mLDP In-Band configuration at the PEs (Junos)

protocols {
    pim mldp-inband-signalling;
}
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This configuration is only needed on the (ingress and egress) PEs.
Pure P-routers such as P1 and P2 do not need it, because they do
not even run PIM.

After clearing the C-PIM Join state at PE3—by using the command
clear pim join—the multicast ping from H1 to 232.1.1.1 begins to receive replies
from H3, H4, and H33.

Use the clear pim join command with caution. This command is
typically disruptive for the established multicast flows. Try to be
specific with respect to the particular (S, G) that you want to clear.

Letl’s see how this PE1→PE3 branch of the multicast tree is signaled through the core.
The egress PE (PE3) knows that the C-Multicast source 10.1.1.10 is beyond PE1.

Example 4-20. RPF resolution at egress PE—PE3 (Junos)

juniper@PE3> show route 10.1.1.10 detail active-path
[...]
         Protocol next hop: 172.16.0.11

juniper@PE3> show pim source inet
Instance: PIM.master Family: INET

Source 10.1.1.10
    Prefix 10.1.1.0/24
    Upstream protocol MLDP
    Upstream interface Pseudo MLDP
    Upstream neighbor MLDP LSP root <172.16.0.11>

Thanks to the configuration just applied, PE3’s upstream C-PIM Join state can be
resolved via Multicast Label Distribution Protocol (mLDP), as shown in
Example 4-21.

Example 4-21. Upstream C-PIM Join state at egress PE—PE3 (Junos)

juniper@PE3> show pim join inet detail
Instance: PIM.master Family: INET
R = Rendezvous Point Tree, S = Sparse, W = Wildcard

Group: 232.1.1.1
    Source: 10.1.1.10
    Flags: sparse,spt
    Upstream protocol: MLDP
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    Upstream interface: Pseudo MLDP
    Downstream neighbors:
        Interface: ge-2/0/3.1034
        Interface: ge-2/0/4.1033

From the forwarding plane perspective, the (downstream) path is PE1→PE3, but it
must be signaled the other way around: from PE3 to PE1. In other words, signaling
takes place upstream from the leaf to the root. PE3 is not directly connected to PE1,
so PE3 (the egress PE) needs to find the RPF neighbor toward PE1 (the root).

Example 4-22. RPF lookup at egress PE—PE3 (Junos)

juniper@PE3> show route 172.16.0.11 table inet.0

inet.0: 43 destinations, 51 routes (43 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.0.11/32     *[IS-IS/18] 04:37:38, metric 20
                    > to 10.0.0.8 via ge-2/0/1.0

Now, PE3 builds a P2MP FEC element, maps a label to it, and advertises the Label
Mapping only to P1. Why P1? Because it is the RPF neighbor—and LDP neighbor—
toward the root (PE1). This targeted advertisement is totally different from the pro‐
miscuous Label Mapping distribution of IPv4 Prefix FEC elements, depicted in
Figure 2-3 and Figure 2-4. In the P2MP case, the downstream LSR performs a route
lookup before advertising the Label Mapping, and as a result, only the RPF neighbor
receives it.

Example 4-23. P2MP FEC signaling from egress PE—PE3 (Junos)

juniper@PE3> show ldp p2mp fec
LDP P2MP FECs:
 P2MP root-addr 172.16.0.11, grp: 232.1.1.1, src: 10.1.1.10
  Fec type: Egress (Active)
  Label: 301200

juniper@PE3> show ldp database p2mp
Input label database, 172.16.0.33:0--172.16.0.1:0
Labels received: 8

Output label database, 172.16.0.33:0--172.16.0.1:0
Labels advertised: 19
  Label   Prefix
 301200   P2MP root-addr 172.16.0.11, grp: 232.1.1.1, src: 10.1.1.10

Input label database, 172.16.0.33:0--172.16.0.44:0
Labels received: 19
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Output label database, 172.16.0.33:0--172.16.0.44:0
Labels advertised: 18

Let’s interpret the new FEC element. The format of MP (P2MP and MP2MP) FEC
elements is described in RFC 6388 - LDP Extensions for Point-to-Multipoint and
Multipoint-to-Multipoint Label Switched Paths, which we paraphrase here:

The P2MP FEC Element consists of the address of the root of the P2MP LSP and an
opaque value. [...] The opaque value is unique within the context of the root node. The
combination of (Root Node Address type, Root Node Address, Opaque Value)
uniquely identifies a P2MP LSP within the MPLS network.

Back to the example, the P2MP Root Address is 172.16.0.11 (PE1’s loopback address)
and the Opaque Value is: group 232.1.1.1, source 10.1.1.10. As you can see, the
FEC element used to build this P2MP LSP also contains C-Multicast information,
namely the C-Group and the C-Source. This is precisely what In-Band means. But
this information is encoded in an opaque value, which means that the transit LSRs do
not need to understand it: only the root does.

When P1 receives this P2MP FEC element, it only looks at its root address
(172.16.0.11) and, of course, at the label. P1 performs an RPF check, allocates a new
label, and sends a P2MP Label Mapping to its RPF neighbor toward the root, PE1.

Example 4-24. mLDP P2MP FEC signaling from transit P—P1 (Junos)

juniper@P1> show ldp p2mp fec
LDP P2MP FECs:
 P2MP root-addr 172.16.0.11, grp: 232.1.1.1, src: 10.1.1.10
  Fec type: Transit (Active)
  Label: 300400

juniper@P1> show ldp database session 172.16.0.11 p2mp
Input label database, 172.16.0.1:0--172.16.0.11:0
Labels received: 9

Output label database, 172.16.0.1:0--172.16.0.11:0
Labels advertised: 7
  Label  Prefix
 300400   P2MP root-addr 172.16.0.11, grp: 232.1.1.1, src: 10.1.1.10

Unlike P1, the ingress PE (PE1) is the root, so it looks into the MP opaque value,
which contains C-Multicast state. Indeed, PE1 converts the downstream mLDP FEC
into upstream C-PIM Join state. The latter already exists due to the local receiver
H11, so the mLDP FEC simply triggers an update of the outgoing interface list.

Example 4-25. Upstream C-PIM Join state at ingress PE—PE1 (Junos)

juniper@PE1> show pim join inet detail
Instance: PIM.master Family: INET
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R = Rendezvous Point Tree, S = Sparse, W = Wildcard

Group: 232.1.1.1
    Source: 10.1.1.10
    Flags: sparse,spt
    Upstream interface: ge-2/0/1.1010
    Downstream neighbors:
        Interface: ge-2/0/2.1011
        Interface: Pseudo-MLDP

As of this writing, mLDP In-Band signaling builds Selective Trees
(data MDTs) only. Each P2MP LSP transports one single (C-S, C-
G) flow to the receiver PEs that have downstream (C-S, C-G) Join
state.

Signaling Join state from an egress PE that runs IOS XR
The IOS XR configuration that links C-PIM to mLDP at PE2 is shown in
Example 4-26.

Example 4-26. mLDP In-Band Configuration at PE2 (IOS XR)

prefix-set PR-REMOTE-SOURCES
  10.1.1.0/24 eq 32,
  10.2.0.0/16 eq 32
end-set
!
route-policy PL-MLDP-INBAND
  if source in PR-REMOTE-SOURCES then
    set core-tree mldp-inband
  else
    pass
  endif
end-policy
!
router pim
 address-family ipv4
  rpf topology route-policy PL-MLDP-INBAND
!
multicast-routing
 address-family ipv4
  mdt mldp in-band-signaling ipv4
!

PE4 is configured in a similar way, with just some adjustments in the prefix-set.
Like in Junos, this configuration is only required at the PEs, not at the Ps. After clear‐
ing the C-PIM Join state at PE2 and PE4—by using the command clear pim ipv4
topology—the multicast ping from H1 to 232.1.1.1 begins to receive replies from H2,
H22, and H44.
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Use the clear pim ipv4 topology command with caution. This
command is typically disruptive for the established multicast flows.
Try to be specific with respect to the particular (S, G) that you want
to clear.

Let’s see how these branches of the multicast tree are signaled through the core.
Actually, one of the egress PEs (PE2) acts as a branching point, so the H1→H2 and
H1→H22 paths actually share the same subpath (PE1→PE2) in the core.

Following is the C-PIM upstream Join state at PE2. Remember that the PE1-PE2 link
has a high IS-IS metric value, so the shortest PE2→PE1 path goes via P2 and P1.

Example 4-27. Upstream C-PIM Join at egress PE—PE2 (IOS XR)

RP/0/0/CPU0:PE2#show mrib route 232.1.1.1

IP Multicast Routing Information Base
[...]
(10.1.1.10,232.1.1.1) RPF nbr: 10.0.0.5 Flags: RPF
  Up: 01:00:38
  Incoming Interface List
    Imdtdefault Flags: A LMI, Up: 01:00:38
  Outgoing Interface List
    GigabitEthernet0/0/0/0.1020 Flags: F NS, Up: 01:00:38
    GigabitEthernet0/0/0/1.1022 Flags: F NS LI, Up: 01:00:38

The imdtdefault interface is the internal “glue” between the C-PIM and the mLDP
domains at PE2. Don’t be confused by the name: this mLDP LSP is a data MDT
(selective tree). Now, the C-PIM upstream Join state triggers the creation and signal‐
ing of a P2MP FEC label mapping that PE2 sends up to P2.

Example 4-28. P2MP FEC signaling from egress PE—PE2 (IOS XR)

RP/0/0/CPU0:PE2#show mpls mldp database
mLDP database
LSM-ID: 0x00001   Type: P2MP   Uptime: 01:08:29
  FEC Root           : 172.16.0.11
  Opaque decoded     : [ipv4 10.1.1.10 232.1.1.1]
  Upstream neighbor(s) :
    172.16.0.2:0 [Active] Uptime: 00:12:26
      Local Label (D) : 24021
  Downstream  client(s):
    PIM MDT            Uptime: 01:08:29
      Egress intf     : Imdtdefault
      Table ID        : IPv4: 0xe0000000
      RPF ID          : 3
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P2 receives P2MP FEC label mappings from PE2 and PE4, which are then aggregated
into one single label mapping that P2 signals upstream to P1.

Example 4-29. P2MP FEC signaling at Transit P—P2 (IOS XR)

RP/0/0/CPU0:P2#show mpls mldp database
mLDP database
LSM-ID: 0x00003   Type: P2MP   Uptime: 00:39:07
  FEC Root           : 172.16.0.11
  Opaque decoded     : [ipv4 10.1.1.10 232.1.1.1]
  Upstream neighbor(s) :
    172.16.0.1:0 [Active] Uptime: 00:39:07
      Local Label (D) : 24020
  Downstream  client(s):
    LDP 172.16.0.22:0  Uptime: 00:39:07
      Next Hop         : 10.0.0.4
      Interface        : GigabitEthernet0/0/0/0
      Remote label (D) : 24021
    LDP 172.16.0.44:0  Uptime: 00:37:55
      Next Hop         : 10.0.0.11
      Interface        : GigabitEthernet0/0/0/5
      Remote label (D) : 24021

In Example 4-29, the remote label value 24021 happens to be the
same in both of the downstream branches. This is just a typical
MPLS coincidence; the labels also could have had different values.

This is the control-plane view of a branching point: two downstream branches
(P2→PE2 and P2→PE4) are merged into a single upstream branch (P1→P2). In the
forwarding plane, the process is the opposite: a packet arriving on P2 from P1 is
replicated toward PE2 and PE4. Let’s examine the life of a C-Multicast packet.

Life of a C-Multicast Packet in an mLDP P2MP LSP
After analyzing the control plane, let’s focus on the forwarding plane.

Ingress PE
PE1 replicates each incoming (10.1.1.10, 232.1.1.1) C-Multicast packet and sends one
copy down to the directly connected receiver H11, and one more copy—encapsulated
in MPLS—down the PE1-P1 core link, as shown in Example 4-30.

Example 4-30. mLDP P2MP LSP forwarding at the ingress PE—PE1 (Junos)

1     juniper@PE1> show multicast route detail
2     Instance: master Family: INET

208 | Chapter 4: Internet Multicast Over MPLS



3
4     Group: 232.1.1.1
5         Source: 10.1.1.10/32
6         Upstream interface: ge-2/0/1.1010
7         Downstream interface list:
8             ge-2/0/4.0 ge-2/0/2.1011
9         Session description: Source specific multicast
10        Statistics: 0 kBps, 1 pps, 8567 packets
11        Next-hop ID: 1048581
12        Upstream protocol: PIM
13
14    juniper@PE1> show route table inet.1 match-prefix "232.1.1.1*"
15
16    inet.1: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
17    + = Active Route, - = Last Active, * = Both
18
19    232.1.1.1,10.1.1.10/64*[PIM/105] 07:08:35
20                          to 10.0.0.3 via ge-2/0/4.0, Push 300400
21                          via ge-2/0/2.1011
22
23    juniper@PE1> show route forwarding-table destination 232.1.1.1
24                 table default extensive
25    Destination:  232.1.1.1.10.1.1.10/64
26      Route type: user
27      Route reference: 0                   Route interface-index: 332
28      Multicast RPF nh index: 0
29      Flags: cached, check incoming interface, [...]
30      Next-hop type: indirect        Index: 1048581  Reference: 2
31      Nexthop:
32      Next-hop type: composite       Index: 595      Reference: 1
33      # Now comes the list of core (MPLS) next hops
34      Next-hop type: indirect        Index: 1048577  Reference: 2
35      Nexthop:
36      Next-hop type: composite       Index: 592      Reference: 1
37      Nexthop: 10.0.0.3
38      Next-hop type: Push 300400     Index: 637      Reference: 2
39      Load Balance Label: None
40      Next-hop interface: ge-2/0/4.0
41      # Now comes the list of access (IPv4) next hops
42      Next-hop type: indirect        Index: 1048591  Reference: 2
43      Nexthop:
44      Next-hop type: composite       Index: 633      Reference: 1
45      Next-hop type: unicast         Index: 1048574  Reference: 3
46      Next-hop interface: ge-2/0/2.1011

All of the previous commands simply show different stages of a multicast forwarding
cache entry. The inet.1 auxiliary Routing Information Base (RIB) is actually a multi‐
cast cache whose entries populate the forwarding table (the Forwarding Information
Base [FIB]). There is a deep level of indirection in the Junos next-hop structures. In
practice, you can think of the composite next hop as an action. In the case of multi‐
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cast routes, this action is replicate. You can find a full discussion about composite next
hops applied to unicast in Chapter 20.

Look at line 37 in Example 4-30. One copy of the C-Multicast packet is encapsulated
in MPLS and then into Ethernet. The destination MAC address of the Ethernet frame
is the unicast MAC address associated to 10.0.0.3 (P1), typically resolved via ARP.

Multicast over MPLS over Ethernet is transported in unicast
frames.

This is an important advantage for scenarios in which the core link, despite being log‐
ically point-to-point, transits an underlying multipoint infrastructure. For example,
AS 65000 may buy multipoint L2VPN services to an external SP and use this L2 over‐
lay to implement its own core links. From the perspective of AS 65000, these are
point-to-point core links, but behind the scenes multicast Ethernet frames are floo‐
ded through the multipoint L2VPN at the transport provider network. This reason‐
ing highlights the advantage of encapsulating the C-Multicast packets in unicast
MPLS-over-Ethernet frames. L2VPN services are further discussed in Chapters
Chapter 6, Chapter 7 and Chapter 8.

Finally, you can ignore the term unicast in Example 4-30, line 45. Its meaning is fully
explained in Chapter 20 and it has nothing to do with the classical notion of unicast.

Due to the currently configured IGP metric scheme—inter-PE links have a higher
metric (100)—PE1 only sends one copy of the C-Multicast packet into the core. If the
IGP metrics were set back to the default values, PE1 would send one copy to P1 and
another copy to PE2. In other words, nothing prevents an ingress PE from being a
replication point of a P2MP LSP if the topology requires it.

In this example, the ingress PE (PE1) runs Junos. If the multicast
ping is sourced from H2, the ingress PE (PE2) runs IOS XR, and
the results are successful and symmetrical to those shown here.

Transit P-router running Junos
When it arrives to P1, the MPLS packet is further replicated in two copies: one goes
to PE3, and another one to P2, as shown in Example 4-31.
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Example 4-31. mLDP P2MP LSP forwarding at a transit PE—P1 (Junos)

juniper@P1> show ldp p2mp path
P2MP path type: Transit/Egress
  Output Session (label): 172.16.0.11:0 (300400) (Primary)
  Input Session (label): 172.16.0.33:0 (301200)
                         172.16.0.2:0 (24020)
  Attached FECs:  P2MP root-addr 172.16.0.11,
                  grp: 232.1.1.1, src: 10.1.1.10 (Active)

juniper@P1> show route forwarding-table label 300400 extensive
Routing table: default.mpls [Index 0]
MPLS:

Destination:  300400
  Route type: user
  Route reference: 0              Route interface-index: 0
  Multicast RPF nh index: 0
  Flags: sent to PFE
  Next-hop type: indirect         Index: 1048582  Reference: 2
  Nexthop:
  Next-hop type: composite        Index: 602      Reference: 1
  # Now comes the replication towards PE3
  Nexthop: 10.0.0.9
  Next-hop type: Swap 301200      Index: 594      Reference: 2
  Load Balance Label: None
  Next-hop interface: ge-2/0/6.0
  # Now comes the replication towards P2
  Next-hop type: unilist          Index: 1048581  Reference: 2
  # Now comes the first P1-P2 link for load balancing
  Nexthop: 10.0.0.7
  Next-hop type: Swap 24020       Index: 596      Reference: 1
  Load Balance Label: None
  Next-hop interface: ge-2/0/3.0  Weight: 0x1
  # Now comes the second P1-P2 link for load balancing
  Nexthop: 10.0.0.25
  Next-hop type: Swap 24020       Index: 597      Reference: 1
  Load Balance Label: None
  Next-hop interface: ge-2/0/4.0  Weight: 0x1

If you look carefully at Example 4-31, there is a new type of next hop called unilist.
It means that the single copy of the packet that is sent down to P2 needs to be load
balanced—not replicated—across the two P1-P2 links. This single copy is sent down
the first or down the second link, depending on the results of the packet hash compu‐
tation (see “LDP and Equal-Cost Multipath” on page 56 if this language does not
sound familiar to you). The fact that the Weight is 0x1 in both links means that they
are both available for load balancing. Hence, in Junos, mLDP natively supports
Equal-Cost Multipath (ECMP) across parallel links.
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Transit P-router running IOS XR
P2 further replicates the packet down to PE2 and PE4, as illustrated in the folowing
example:

Example 4-32. mLDP P2MP LSP forwarding at a transit PE—P2 (IOS XR)

RP/0/0/CPU0:P2#show mpls forwarding labels 24020
Local  Outgoing  Prefix         Outgoing   Next Hop    Bytes
Label  Label   or ID          Interface             Switched
------ ------- -------------- ---------- ---------- --------
24020  24021   MLDP: 0x00003  Gi0/0/0/0  10.0.0.4   2170
       24021   MLDP: 0x00003  Gi0/0/0/5  10.0.0.11  2170

Egress PE running Junos
PE3 pops the MPLS label and replicates the resulting IPv4 multicast packets toward
the two receiver ACs, as you can see in Example 4-33.

There is no Penultimate Hop Popping (PHP) for P2MP LSPs. In
this chapter’s Global Internet Multicast case, this is important
because the core links should not transport native user multicast
packets. As for the Multicast VPN case, it is also important but for
a different reason, which is discussed in Chapter 5.

Example 4-33. mLDP P2MP LSP forwarding at an egress PE—PE3 (Junos)

juniper@PE3> show route forwarding-table label 301200 extensive
Routing table: default.mpls [Index 0]
MPLS:

Destination:  301200
  Route type: user
  Route reference: 0                   Route interface-index: 0
  Multicast RPF nh index: 0
  Flags: sent to PFE
  Next-hop type: indirect              Index: 1048577  Reference: 2
  Nexthop:
  Next-hop type: composite             Index: 601      Reference: 1
  # Now comes the replication towards VLAN 1034 [...]
  Next-hop type: Pop                   Index: 597      Reference: 2
  Load Balance Label: None
  Next-hop interface: ge-2/0/3.1034
  # Now comes the replication towards H33 [...]
  Next-hop type: Pop                   Index: 600      Reference: 2
  Load Balance Label: None
  Next-hop interface: ge-2/0/4.1033
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Unicast next hops have been stripped from Example 4-33 because they are mislead‐
ing: multicast MAC addresses are calculated with a mathematical rule; they are not
resolved via ARP.

Egress PE running IOS XR
Let’s see how PE4 pops the MPLS label and sends the IPv4 multicast packet to H44
only.

Example 4-34. mLDP P2MP LSP Forwarding at an egress PE–PE4 (IOS XR)

RP/0/0/CPU0:PE4#show mrib route 10.1.1.10 232.1.1.1

IP Multicast Routing Information Base
[...]
(10.1.1.10,232.1.1.1) RPF nbr: 10.0.0.10 Flags: RPF
  Up: 09:45:39
  Incoming Interface List
    Imdtdefault Flags: A LMI, Up: 03:17:05
  Outgoing Interface List
    GigabitEthernet0/0/0/2.1034 Flags: LI, Up: 12:40:38
    GigabitEthernet0/0/0/3.1044 Flags: F NS LI, Up: 09:01:24

In this book’s tests, H44 only receives the C-Multicast flow if PE4’s unicast CEF entry
for 172.16.0.11 resolves to an LDP label. If PE4’s RPF to PE1 resolves to a (P2P) RSVP
tunnel, PE4 does not forward the traffic to H44. In other words, as of this writing,
IOS XR implementation of mLDP does not coexist with unicast RSVP-TE. This
boundary condition was not observed in Junos PE3.

The key point of the previous output is the flag F – Forward. The interface toward
H44 has the flag set, but the other interface (VLAN 1034) does not. However, if you
stop the source and wait for a few minutes, the F flag is set again on both entries. Let’s
see why.

CE Multihoming
It is essential that each host receives one, and only one, copy of each multicast packet.
H2, H11, H22, H33, and H44 have no access redundancy, so they do not receive mul‐
tiple copies of each packet sent by H1. Conversely, H3, H4, and H34 are (directly or
indirectly) multihomed to PE3 and PE4. Let’s discuss this case more in detail.

Egress PE redundancy
The following discussion is quite generic in IP Multicast and not specific of the
mLDP In-Band model. VLAN 1034 topology (Figure 4-1) is a classic example of PE
Redundancy. Three devices (BR3, BR4, and H34) are connected to the SP (AS 65000)
on a VLAN that is multihomed to both PE3 and PE4. There are two EBGP sessions
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established: PE3-BR3 and PE4-BR4. Furthermore, all the routers in VLAN 1034 are
PIM neighbors. Here is the specific PIM configuration of the devices:

• PE3: protocols pim interface ge-2/0/3.1034 priority 200
• PE4: Default configuration (PIM priority 1)
• BR3, BR4: protocols pim interface ge-0/0/1.1034 priority 0
• H34: router pim [vrf H34] address-family ipv4 interface

GigabitEthernet0/0/0/0.1034 dr-priority 0

With this configuration, PE3 is the Designated Router (DR), which you can verify by
using the show pim interfaces command on PE3, or show pim neighbor on PE4.
The DR is responsible for processing the IGMP Reports from the directly connected
hosts (in this case, H34).

Figure 4-4 illustrates the C-Multicast convergence process on VLAN 1034, in two
steps.

Figure 4-4. C-Multicast—egress PE redundancy and C-PIM Assert

Initially, both PE3 and PE4 are ready to forward the (10.1.1.10, 232.1.1.1) traffic to
VLAN 1034. Here is why:

• PE3 is the DR and is processing the IGMP Reports from H34.
• PE3 is the Upstream Neighbor of a PIM (10.1.1.10, 232.1.1.1) Join sent by BR3,

because BR3 only has an eBGP session with PE3.

214 | Chapter 4: Internet Multicast Over MPLS



• PE4 is the Upstream Neighbor of a PIM (10.1.1.10, 232.1.1.1) Join sent by BR4,
because BR4 only has an eBGP session with PE4.

When H1 sends the first C-Multicast packet to 232.1.1.1, both PE3 and PE4 forward
it to VLAN 1034. This causes C-Multicast packet duplication in VLAN 1034, which
you can verify in the first set of ping replies.

Example 4-35. mLDP P2MP LSP forwarding at a transit PE—P2 (IOS XR)

1     RP/0/0/CPU0:H# ping vrf H1 232.1.1.1 source 10.1.1.10 count 1
2     Reply to request 0 from 10.1.11.11, 1 ms
3     Reply to request 0 from 10.1.22.22, 9 ms
4     Reply to request 0 from 10.2.33.33, 9 ms
5     Reply to request 0 from 10.2.44.44, 9 ms
6     Reply to request 0 from 10.2.3.30, 9 ms
7     Reply to request 0 from 10.2.0.34, 9 ms
8     Reply to request 0 from 10.2.4.40, 9 ms
9     Reply to request 0 from 10.2.3.30, 19 ms
10    Reply to request 0 from 10.2.0.34, 19 ms
11    Reply to request 0 from 10.2.4.40, 19 ms

ICMP echo request #0 receives duplicate replies from H3, H34, and H4. From a ser‐
vice perspective, this is strongly undesirable. For most multicast applications, receiv‐
ing a duplicate or multiplied copy of the original data stream can be as bad as not
receiving it at all. For that reason, when PE3 and PE4 detect this packet duplication,
they start a competition called PIM Assert, based on their route to the 10.1.1.10 mul‐
ticast source.

Example 4-36. Egress PE redundancy—Unicast Route to the C-Source

1     juniper@PE3> show route active-path 10.1.1.10
2
3     inet.0: 44 destinations, 53 routes (44 active, 0 holddown, 0 hidden)
4
5     10.1.1.0/24  *[BGP/170] 1d 12:04:09, MED 100, localpref 100,
6                   from 172.16.0.201, AS path: 65001 I [...]
7                         > to 10.0.0.8 via ge-2/0/1.0, Push 300368
8
9     RP/0/0/CPU0:PE4#show route 10.1.1.10
10
11    Routing entry for 10.1.1.0/24
12      Known via "bgp 65000", distance 200, metric 100
13      Tag 65001, type internal
14      Installed Jan  6 06:11:52.147 for 15:19:12
15      Routing Descriptor Blocks
16        172.16.0.11, from 172.16.0.201
17          Route metric is 100
18      No advertising protos.
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Although the MED attribute of the route is 100 in both cases, the default administra‐
tive distance of the BGP protocol is 170 on PE3 (line 5, Junos), as opposed to 200 on
PE4 (line 12, IOS XR). The lowest administrative distance wins, so PE3 becomes the
C-PIM (10.1.1.10, 232.1.1.1) Assert winner. At this point, PE4 stops injecting the flow
on VLAN 1034. Also, because PIM Assert packets are sent to the 224.0.0.13 address,
BR4 sees the Assert competition and redirects its PIM (C-S, C-G) Join Upstream
Neighbor to PE3. Overall, the packet duplication in VLAN 1034 is fixed and PE3
becomes the single forwarder.

There is no assert in VLAN 1044. So the fact that PE3 is the Assert
winner in VLAN 1034 does not prevent PE4 from forwarding the
packets to H44.

As you would expect with PIM, Assert packets are refreshed periodically. In other
words, Assert, like Join/Prune, has soft state. Some minutes after the C-Source stops
sending traffic, Assert times-out and the initial condition resumes (the F flag appears
for VLAN 1034 in Example 4-34). So, even in a model with PIM SSM, there are sce‐
narios in which the signaling of the multicast tree is data driven.

Ingress PE redundancy
Now, suppose that an active C-Multicast source is multihomed to PE1 and PE2, and
that this source is sending traffic to (C-S, C-G). Now, both H33 and H44 send an
IGMP Report subscribing to that flow. How is the P2MP LSP signaled? There are two
cases:

• Both PE3 and PE4 choose the same Upstream PE (either PE1 or PE2) as the root
for the P2MP FEC. In this case, a single P2MP LSP is created, with one root and
two leaves: PE3 and PE4.

• PE3 and PE4 choose different Upstream PEs. For example, PE3 selects PE1 and
PE4 selects PE2. In this case, there are two P2MP LSPs, one rooted at PE1 and the
other rooted at PE2. Each of these P2MP LSPs has a single (and different) leaf.

There is no risk of data duplication in any of these cases: each egress PE signals the
P2MP FEC toward a single ingress PE. This is a general advantage of Selective Trees.

mLDP In-Band and PIM ASM
As of this writing, the vendor implementations support only PIM SSM in combina‐
tion with mLDP In-Band. The efforts to bring support of PIM ASM are polarized in
two RFCs:
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• RFC 7438 - mLDP In-Band Signaling with Wildcards
• RFC 7442 - Carrying PIM-SM in ASM Mode Trees over mLDP

Other Internet Multicast over MPLS Flavors
There are some additional Global Internet Multicast (S1) flavors. Here is a non-
exhaustive list.

Static RSVP-TE P2MP LSPs
There is one more interoperable model to signal and transport Internet Multicast
between Junos and IOS XR PEs. In Cisco documentation, it is called Global P2MP-
TE. In the terms of Table 4-1, it is S1, A0, C0, E3, T3, Y3.

It relies on using static routes to place IP Multicast traffic into RSVP-TE P2MP LSPs.
The network administrator manually configures the leaves of each LSP. Although you
can successfully apply this model to relatively static environments such as traditional
IPTV, it is not particularly appealing for the purposes of this book.

BGP Internet Multicast

Junos supports one type of routing instance called mpls-internet-multicast, which
applies BGP Multicast VPN techniques to the signaling and transport of Internet
Multicast traffic. In the terms of Table 4-1, it is S1, A3, C3, [E1, E2, E3], [T0, T1, T2,
T3, T4], [Y1, Y2, Y3, Y4]. Not all the combinations are supported, though.

Although IOS XR does not implement this approach, you can configure the IOS XR
PEs with Internet VRFs running BGP Multicast VPN. That being said, from an inter‐
operability perspective it is more interesting to focus on the genuine BGP Multicast
VPN, with VRFs on both PE types (Junos and IOS XR). Let’s go for it in Chapter 5!
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CHAPTER 5

Multicast VPN

After exploring Internet Multicast over MPLS, let’s see Multicast VPN (MVPN) over
MPLS. The three implemented models in growing scalability order, are:

• Rosen mLDP, already discussed in Chapter 4 and only implemented in IOS XR.
In the terms of Table 4-1, it is S2, A1, C2, E3, T2, Y4.

• VRF In-Band mLDP, only implemented in IOS XR. In the terms of Table 4-1, this
model is S2, A2, C2, E3, T2, Y3. It is nearly identical to the one discussed for
Internet Multicast in Chapter 4, but it also encodes VPN-specific information
(the RD of the S unicast route) in the LDP opaque value.

• BGP Multicast VPN, formerly known as Next-Generation MVPN or NG-MVPN.
It is implemented by both Junos and IOS XR. In the terms of Table 4-1, this
model is S2, A3, C3, [E1, E2, E3], [T0, T1, T2, T3, T4], [Y1, Y2, Y3, Y4]. Not all
the combinations make sense and/or are supported, though.

As of this writing, the only interoperable solution is BGP MVPN. Fortunately, it is the
most flexible and scalable flavor of them all. Table 4-1 lists the different C-Multicast
Architectures: Out-of-band (A3) is more scalable than Hop-by-Hop Inter-PE (A2),
which in turn is more scalable than Direct Inter-PE (A1). The only implemented sol‐
ution that is compatible with the A3 model is precisely BGP MVPN.

MVPN is a multidimensional universe, whose richest galaxy is BGP MVPN. Its Out-
of-Band signaling approach, which decouples service from transport, makes BGP
MVPN flavors and use cases quite extensive. As a technology it requires more time to
fully understand and master than In-Band signaling, but it’s worth the effort.

BGP MVPN architectural and functional aspects are described in RFC 6513 -
Multicast in MPLS/BGP IP VPNs. This RFC is the result of a multivendor effort to
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achieve a common specification for Multicast VPN in the industry. It provides a big
framework that supports two totally different C-Multicast signaling paradigms:

• PE-PE C-PIM peering: Rosen GRE and Rosen mLDP. These models rely on the
Direct Inter-PE (A1) architecture and are discussed in Chapter 4.

• PE-PE BGP peering: BGP MVPN. This model relies on the Out-of-Band (A3)
architecture.

In-Band MVPN signaling is not covered in this RFC. Refer back to
Chapter 4 for more details on this model, which relies on the Hop-
by-Hop Inter-PE (A2) architecture.

BGP Multicast VPN with mLDP Transport
This chapter is based on the same topology as Chapter 4 (see Figure 4-1).

In this chapter, Figure 4-1 needs to be modified so that the right‐
hand AS is 65001, the BRs are replaced with CEs, and the inter-PE
links have IS-IS metric 100.

Let’s discuss BGP MVPN in detail. In the terms of Table 4-1, the following scenario is
S2, A3, C3, E3, T2, Y3.

MVPN Address Family
The first step when configuring any BGP MVPN flavor is enabling a new BGP
address family. Multiprotocol BGP routes can encode virtually anything. Yes, also C-
Multicast state: neighbors, joins, prunes and registers. How? With a new Multiproto‐
col BGP Network Layer Reachability Information (NLRI), called MCAST-VPN. This
NLRI is commonly called the MVPN address family (IPv4: AFI=1, SAFI=5; IPv6:
AFI=2, SAFI=5), and it supports different route types. These are described in RFC
6514 - BGP Encodings and Procedures for Multicast in MPLS/BGP IP VPNs. The first
scenario illustrated in this chapter involves three of these route types. Let’s first look
at the full picture, and then we’ll examine each step in detail.

MVPN route types
Table 5-1 can serve as a reference for all the upcoming Layer 3 (L3) MVPN scenarios,
here and in subsequent chapters. All of these routes will be fully explained as the sce‐
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narios evolve. For the moment, here is a quick acronym list: AD is Autodiscovery, I is
Inclusive, S is Selective, and PMSI is Provider Multicast Service Interface.

Table 5-1. MCAST-MVPN (SAFI=5) route types

Type Route name C-PIM analogy Has C- information?

1 Intra-AS I-PMSI AD (a.k.a., Site AD) Hello Packet No

2 Inter-AS I-PMSI AD Hello Packet No

3 S-PMSI AD N/A Yes

4 Leaf AD N/A Yes

5 Source Active AD Register-Start Yes

6 C-Multicast (C-S, C-G) Source Tree Join (S, G) Join Yes

7 C-Multicast (*, C-G) Shared Tree Join (*, G) Join Yes

The following pages are dedicated to exploring the signaling in detail. For a first
impression, have a look at Figure 5-1, which illustrates how one C-Receiver in one
site pulls C-Multicast traffic from a C-Source in a remote site. The lower part of
Figure 5-1 shows the signaling of one of the Provider Tunnel branches. You can easily
add and merge more branches into the tree by using similar (but not identical) LDP
P2MP mechanisms to those discussed in Chapter 4.

You can use the Figure 5-1 as a reference, but don’t worry if it
doesn’t make sense yet. As this section progresses, the different
pieces will fit together.

The main difference between AD and non-AD routes lies in the Route Target (RT):

• AD routes have a static configurable RT that is typically imported by all the
remote PEs in the MVPN—or, by playing with RT export and import policies,
just by a subset of the PEs.

• Non-AD routes (Types 6 and 7) have a dynamic RT that is imported only by one
provider edge (PE): namely, by the sender PE to which the C-Multicast Join is
targeted.

Let’s now see a BGP MVPN scenario in detail, step by step.
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Figure 5-1. BGP Multicast VPN with mLDP transport—the full picture

MVPN address family configuration
First, the PE-RR BGP sessions need to support the new NLRI.

Multicast relies on a healthy unicast service. The configuration
examples that follow assume that the IPv4 VPN address family
(inet-vpn unicast or vpnv4 unicast) is already configured.

This is the additional configuration in a Junos PE (it would be inet6-mvpn for IPv6):

Example 5-1. MVPN address family configuration—PE1 (Junos)

protocols {
    bgp {
        group iBGP-RR {
            family inet-mvpn signaling;
            mvpn-iana-rt-import;
}}}
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Adding this configuration to all of the BGP groups also does the trick on Junos RRs.
The mvpn-iana-rt-import command ensures that a very important extended com‐
munity has the correct format to interoperate with other vendors.

Here is the additional configuration on IOS XR PEs (it would be ipv6 mvpn for IPv6):

Example 5-2. MVPN address family configuration—PE2 (IOS XR)

router bgp 65000
address-family ipv4 mvpn
 !
 neighbor-group RR
  address-family ipv4 mvpn
!

On RRs running IOS XR, you also need to add the route-
reflector-client knob under each neighbor[-group]

adddress-family.

With this configuration in place, the new address family is successfully negotiated, as
shown in Example 5-3. No MVPN routes are exchanged yet, though.

Example 5-3. BGP MVPN address family—PE1 (Junos) and PE2 (IOS XR)

juniper@PE1> show bgp summary instance master
[...]
Peer              AS    State|#Active/Received/Accepted/Damped...
172.16.0.201   65000    Establ
  inet.0: 0/0/0/0
  bgp.l3vpn.0: 12/12/12/0
  bgp.mvpn.0: 0/0/0/0
  VRF-A.inet.0: 12/12/12/0
172.16.0.202   65000    Establ
  inet.0: 0/0/0/0
  bgp.l3vpn.0: 0/12/12/0
  bgp.mvpn.0: 0/0/0/0
  VRF-A.inet.0: 0/12/12/0

RP/0/0/CPU0:PE2#show bgp ipv4 mvpn summary
[...]
Neighbor          AS MsgRcvd MsgSent  InQ OutQ  Up/Down  St/PfxRcd
172.16.0.201   65000       9       7    0    0 00:00:07          0
172.16.0.202   65000      11       7   80    0 00:00:11          0
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Configuring BGP MVPN
What is an MVPN? It is not a new type of VPN; rather, it is an extension of a BGP/
MPLS IP VPN. The starting point is a classic VRF, with unicast routing up and run‐
ning. On this very same VRF, you turn on multicast services: this is how you make an
MVPN.

Junos basic configuration
The initial VRF-A configuration is similar to the L3VPN baseline of Chapter 3
(Example 3-24, Example 3-28, and Example 3-32). There are minor differences,
mainly at the access interface configuration level (VLANs and IPv4 addresses).

The additional configuration at PE1 makes its VRF-A part of a MVPN:

Example 5-4. Multicast VPN configuration at VRF-A—PE1 (Junos)

1     interfaces {
2         vt-2/0/0 unit 101 family inet;
3     }
4     policy-options {
5         policy-statement PL-VRF-A-EXP {
6             # Other terms #
7             term MULTICAST {
8                 from family inet-mvpn;
9                 then {
10                    community add RT-VPN-A;
11                    accept;
12    }}}}
13    routing-instances {
14        VRF-A {
15            interface vt-2/0/0.101 multicast;
16            vrf-table-label;
17            protocols {
18                pim {
19                    interface ge-2/0/1.1010;
20                    interface ge-2/0/2.1011;
21                }
22                mvpn;
23    }}}

Chapter 3 explains the vrf-table-label and vt- concepts. With this configuration,
the VRF behaves in vrf-table-label mode for unicast services while it relies on a
vt- interface for multicast. Although strictly speaking a vt- interface is not manda‐
tory for Multicast VPN to work, it becomes necessary if a given LSR behaves as a Bud
LSR—simultaneously acting as an egress PE and Transit P for a given flow. Because in
most topologies PEs can potentially be Bud LSRs, the vt- interface is a de facto
requirement for MVPN in Junos. Not a big deal in modern platforms, which imple‐
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ment vt- directly on the Packet Forwarding Engines. Another specific feature that
requires vt- interfaces in Junos is MVPN Extranet.

As you can see, the access interfaces and the PIM configuration have simply been
moved from the global routing table to the VRF. This makes the VRF exchange Pro‐
tocol Independent Multicast (PIM) and Internet Group Management Protocol
(IGMP) packets with the connected CEs and hosts. Finally, MVPN (line 22) is not
really a protocol; it is the “glue” between C-PIM and BGP. With protocols mvpn, the
VRF is no longer isolated from the multicast point of view. PEs can become MVPN
neighbors of each other and exchange C-Multicast information, all by using BGP.

IOS XR basic configuration
Again, the initial VRF-A configuration presented in the following example builds on
top of a L3VPN baseline that is very similar to that of Chapter 3 (Examples
Example 3-25 and Example 3-29). There are minor differences, mainly at the access
interface configuration level (VLANs and IPv4 addresses). Example 5-5 shows the
additional configuration required to make PE4’s VRF-A part of a MVPN.

To bring MVPN neighbors up, IOS XR requires information about
P-Tunnels. For this reason, the following example includes refer‐
ences to mLDP P2MP and MDT. Just ignore them for the moment.

Example 5-5. Multicast VPN configuration at VRF-A—PE2 (IOS XR)

1     router bgp 65000
2       vrf VRF-A
3       address-family ipv4 mvpn
4     !
5     multicast-routing
6      address-family ipv4
7       interface Loopback0
8        enable
9       !
10      mdt source Loopback0
11     !
12     vrf VRF-A
13      address-family ipv4
14       interface GigabitEthernet0/0/0/0.1020
15        enable
16       !
17       interface GigabitEthernet0/0/0/1.1022
18        enable
19       !
20       bgp auto-discovery mldp
21       mdt default mldp p2mp
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22    !
23    mpls ldp
24     mldp

MVPN Site AD
With the previous configuration, PEs become the following:

• C-PIM neighbors of the directly connected CEs
• MVPN neighbors of the remote PEs

Example 5-6. C-PIM and MVPN neighbors—PE1 (Junos)

juniper@PE1> show pim neighbors instance VRF-A

Instance: PIM.VRF-A
Interface         IP V Mode    Option       Uptime Neighbor addr
ge-2/0/1.1010      4 2         HPLGT   1d 01:52:51 10.1.0.0

juniper@PE1> show mvpn neighbor inet instance-name VRF-A

Instance : VRF-A
  MVPN Mode : SPT-ONLY
  Neighbor                          Inclusive Provider Tunnel
  172.16.0.22
  172.16.0.33
  172.16.0.44

How do the PEs become MVPN neighbors of each other in VRF-A? They do it by
exchanging a new BGP route. The MCAST-VPN address family defines seven route
types. Out of them, Type 1 routes perform Site AD. They are functionally similar to
PIM hellos, except that they are only signaled once, not periodically.

The official name of Type 1 routes is Intra-AS I-PMSI AD, because they may carry a
BGP attribute called PMSI. This is a mandatory attribute for some route types, but it
is totally optional for Type 1. This book sometimes refers to Type 1 routes as Site AD.

MVPN Site AD in PEs running Junos
Following is the Intra-AS Site AD route advertised by PE1 (Junos):

Example 5-7. MVPN Type 1: intra-AS site AD route—PE1 (Junos)

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             match-prefix "1:*" detail
[...]
bgp.mvpn.0: 6 destinations, 9 routes (6 active, ..., 0 hidden)
* 1:172.16.0.11:101:172.16.0.11/240 (1 entry, 1 announced)
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 BGP group iBGP-RR type Internal
     Nexthop: Self
     Flags: Nexthop Change
     Localpref: 100
     AS path: [65000] I
     Communities: target:65000:1001

VRF-A.mvpn.0: 6 destinations, 9 routes (6 active, ..., 0 hidden)
# Same route here – omitted for brevity

The format of the prefix is 1:<RD>:<ADVERTISING_PE_ROUTER_ID>. The /240 mask is
internal in Junos and not advertised via iBGP: you can simply ignore it.

As is detailed in Chapter 3, the Route Distinguisher (RD) format can be
<ROUTER_ID>:<VPN_ID> or <AS>:<VPN_ID>. In this chapter, the format chosen is
<ROUTER_ID>:<VPN_ID>. The MVPN multihoming section explains its advantages.

The route target is 65000:1001, exactly the same as in unicast routes. Consequently,
the resulting MVPN topology is a full PE-PE mesh. This is actually chosen by config‐
uration (Example 5-4, line 10), and you can modify it to achieve arbitrary MVPN
topologies. This can make sense, for example, if the set of sender PEs is clearly identi‐
fied and you don’t want the sender PEs to become neighbors of each other. The same
logic would apply to receiver PEs. BGP with its flexibility makes that possible. Finally,
note that this route doesn’t carry a PMSI attribute (at least yet).

Junos—even on pure PEs with no route reflection enabled—advertises MVPN routes
from the bgp.mvpn.0 table. The routes are first copied from VRF-A.mvpn.0 to
bgp.mvpn.0, and then advertised to other PEs via iBGP. This implementation is dif‐
ferent from unicast IP VPN routes, which are advertised by default from the VRF
tables on pure PEs (you can find more details in Chapter 3).

MVPN Site AD in PEs running IOS XR
Here is the Intra-AS Site AD route advertised by PE2 (IOS XR):

Example 5-8. MVPN Type 1: intra-AS site AD route—PE2 (IOS XR)

RP/0/0/CPU0:PE2#show bgp ipv4 mvpn vrf VRF-A advertised

Route Distinguisher: 172.16.0.22:101
[1][172.16.0.22]/40 is advertised to 172.16.0.202
[...]
  Attributes after outbound policy was applied:
    next hop: 172.16.0.22
    ORG AS COMM EXTCOMM
    origin: IGP
    aspath:
    community: no-export
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    extended community: RT:65000:1001
[...]

Although the format looks a bit different, Junos and IOS XR advertise the NLRI
exactly with the same format on the wire (only the BGP attributes may differ).

The BGP next hop is a mandatory BGP attribute but in MCAST-
VPN routes it is typically irrelevant: the meat is in the NLRI and in
the extended communities.

Signaling C-Multicast (S, G) Join State with BGP
This example is based on Source-Specific Multicast (SSM) mode. Any Source Multi‐
cast (ASM) is covered later.

In SSM mode, the sources are known beforehand, so the forwarding state is created
independently of the multicast traffic. If the sources begin to send multicast traffic
before there is any receiver, the First Hop Router (FHR)—let it be a PE or a CE—
simply drops the traffic. Indeed, in SSM (unlike ASM) the sources play no role in
building the multicast tree. The receivers, with their IGMP (S, G) Reports, are the
ones that trigger the multicast tree signaling.

Let’s start the following receivers of the (10.1.1.10, 232.1.1.1) flow: H3, H4, H33, H34,
and H44 (see Figure 4-1). The C-Multicast source is H1, so PE1 is the sender PE.

Receiver PE configuration
There are two receiver PEs in this example, PE3 and PE4, which run Junos and IOS
XR, respectively. They both get IGMP (S, G) Reports from the directly connected
hosts (H33, H34, and H44) and C-PIM Joins from their downstream CEs (CE3 and
CE4). Any of these messages—IGMP Report or PIM Join—is enough for the receiver
PEs to generate a (C-S, C-G) Join state pointing to the upstream C-Source. Let’s see
how PE3 and PE4 perform Reverse Path Forwarding (RPF) toward a C-Source that is
beyond a remote PE (PE1).

Junos receiver PEs just require the basic MVPN AD configuration (Example 5-4).
With it in place, PE3 performs RPF successfully toward the C-Source, as demon‐
strated here:

Example 5-9. Successful RPF at receiver PE—PE3 (Junos)

juniper@PE3> show pim join inet instance VRF-A
Instance: PIM.VRF-A Family: INET
R = Rendezvous Point Tree, S = Sparse, W = Wildcard
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Group: 232.1.1.1
    Source: 10.1.1.10
    Flags: sparse,spt
    Upstream protocol: BGP
    Upstream interface: Through BGP

Then, PE3 converts this downstream Join state into a BGP route. But how can PE3
make sure that the new route is targeted only to PE1, the Source PE? This logic and
the format of the new route are unveiled in the next few pages.

Before that, let’s see how PE4 performs RPF toward the remote C-Source. To perform
Site Auto-Discovery, IOS XR receiver PEs require P-Tunnel specific information (see
Example 5-5, lines 20 and 21).

However, that configuration is still incomplete, so RPF fails:

Example 5-10. Failed RPF at receiver PE—PE4 (IOS XR)

RP/0/0/CPU0:PE4#show mrib vrf VRF-A route 232.1.1.1
[...]
(10.1.1.10,232.1.1.1) RPF nbr: 0.0.0.0 Flags: RPF
  Up: 2d00h
  Outgoing Interface List
    GigabitEthernet0/0/0/2.1034 Flags: LI, Up: 00:05:51
    GigabitEthernet0/0/0/3.1044 Flags: F NS LI, Up: 2d00h

Example 5-11 provides the additional configuration, which will allow IOS XR PE4 to
do a successful RPF lookup and signal the C-Multicast Join state via BGP.

Example 5-11. RPF policy at receiver PE—PE4 (IOS XR)

route-policy PL-BGP-MVPN-LDP-P2MP
  set core-tree mldp-default
end-policy
!
router pim
 vrf VRF-A
  address-family ipv4
   rpf topology route-policy PL-BGP-MVPN-LDP-P2MP
   mdt c-multicast-routing bgp
!

After this configuration is applied, PE4 performs a successful RPF lookup:

Example 5-12. Successful RPF at receiver PE—PE4 (IOS XR)

RP/0/0/CPU0:PE4#show mrib vrf VRF-A route 232.1.1.1
[...]
(10.1.1.10,232.1.1.1) RPF nbr: 172.16.0.11 Flags: RPF
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  Up: 2d00h
  Incoming Interface List
    LmdtVRF-A Flags: A LMI, Up: 00:00:07
  Outgoing Interface List
    GigabitEthernet0/0/0/2.1034 Flags: LI, Up: 00:00:04
    GigabitEthernet0/0/0/3.1044 Flags: F NS LI, Up: 2d00h

It’s time to see how the BGP Joins are built and targeted.

Route Import—a new extended community
First, let’s have a look at PE1 (the sender PE) and forget for a moment about multi‐
cast. PE1 advertises the unicast route toward the source (10.1.1.10):

Example 5-13. Unicast C-S route, advertised from sender PE—PE1 (Junos)

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             10.1.1.10 detail

VRF-A.inet.0: 22 destinations, 30 routes (22 active, ..., 0 hidden)
* 10.1.1.0/24 (1 entry, 1 announced)
 BGP group iBGP-RR type Internal
     Route Distinguisher: 172.16.0.11:101
     VPN Label: 16
     Nexthop: Self
     Flags: Nexthop Change
     MED: 100
     Localpref: 100
     AS path: [65000] 65001 I
     Communities: target:65000:1001 src-as:65000:0
                  rt-import:172.16.0.11:8

This unicast route has the following communities:

• RT 65000:1001, the full mesh RT of VPN A, so the unicast route is installed in all
the PEs of the VPN.

• Source AS 65000:0, matching the locally configured AS at PE1 and PE3.
• Route Import 172.16.0.11:8. It contains the router ID of PE1 (its global loop‐

back address) and 8, a number that is locally generated by PE1.

Chapter 3 discussed the <IP>:<number> format. But that format
was associated with RDs, which have nothing to do with communi‐
ties.
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PE1 adds these two new communities (Source AS and Route Import) to the VPN IP
unicast routes, simply because MVPN is enabled at VRF-A and all the unicast subnets
might potentially contain C-Sources. But what is the purpose of Route Imports?
Route Import communities are C-Multicast Join attractors.

Now, if number 8 is locally generated by PE1, it must mean something to PE1.

Example 5-14. Internal policies at sender PE—PE1 (Junos)

juniper@PE1> show policy __vrf-mvpn-export-inet-VRF-A-internal__
Policy __vrf-mvpn-export-inet-VRF-A-internal:
 Term unnamed:
    then community
           + __vrf-mvpn-community-rt_[rt-import:172.16.0.11:8]
           + __vrf-mvpn-community-src_[src-as:65000:0]
         accept

juniper@PE1> show policy __vrf-mvpn-import-cmcast-VRF-A-internal__
Policy __vrf-mvpn-import-cmcast-VRF-A-internal:
 Term unnamed:
    from community
          vrf-mvpn-community-rt_[target:172.16.0.11:8]
    then accept

Nobody configured these policies, at least directly. They were dynamically created
after applying the set routing-instances VRF-A protocols mvpn statement. The
export-inet policy explains why the unicast routes now carry two additional com‐
munities. The import-cmcast policy is even more interesting: if a C-Multicast—
whatever that means—BGP route arrives with RT 172.16.0.11:8, it is imported in
VRF-A. In other words, number 8 locally represents VRF-A at PE1.

Route Import and RT are symmetrical or reverse concepts:

• PE1 sets RT 65000:1001, hoping that its prefix will be imported in the VRFs of
the remote PEs. RTs are like keys that open others’ homes.

• PE1 sets Route Import 172.16.0.11:8, telling remote PEs what RT value they
must set in order for their routes to be imported in PE1’s local VRF. Sending a
Route Import is like telling your friend a code to enter your own home.

So, if a PE adds a Route Import community to a prefix, it is basically instructing the
remote PEs to put this value in your prefixes’ RT, and they will be installed on my VRF.

Stripping extended communities from PE→CE eBGP updates
It is a good practice to keep extended communities internal to the local AS. To ach‐
ieve that, you can remove them with eBGP export policies, as illustrated here:
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Example 5-15. Stripping extended communities—PE3 (Junos)

policy-options {
    policy-statement PL-VRF-A-eBGP-65001-OUT {
        term BGP {
            from protocol bgp;
            then {
                community delete RT-ALL;
                community delete RI-ALL;
                community delete SRC-AS-ALL;
            }
        } # Other terms omitted
    }
    community RT-ALL members target:*:*;
    community RI-ALL members rt-import:*:*;
    community SRC-AS-ALL members src-as:*:*;
}

As discussed earlier in Chapter 3, IOS XR does not require this explicit configuration.

MVPN Source Tree Join routes
OK, let’s get back to multicast. PE3 converts its downstream C-PIM Join state into a
BGP route called (C-S, C-G) Source Tree Join. This is the Type 7 route of the
MCAST-VPN NLRI, and it is the BGP equivalent of a (C-S, C-G) PIM Join; see
Example 5-16.

Example 5-16. Type 7—(C-S, C-G) Source-Tree Join—PE3 (Junos)

juniper@PE3> show route advertising-protocol bgp 172.16.0.201
             match-prefix "7:*" detail
[...]
bgp.mvpn.0: 7 destinations, 10 routes (7 active, ..., 0 hidden)
* 7:172.16.0.11:101:65000:32:10.1.1.10:32:232.1.1.1/240
 BGP group iBGP-RR type Internal
     Nexthop: Self
     Flags: Nexthop Change
     Localpref: 100
     AS path: [65000] I
     Communities: target:172.16.0.11:8

VRF-A.mvpn.0: 7 destinations, 10 routes (7 active, ..., 0 hidden)
# Same route here – omitted for brevity

The format of a Type 7 route is 7:<ROOT_RD>:<AS>:<C-S_LENGTH>:<C-

S_ADDRESS>:<C-G_LENGTH>:<C_G_GROUP>. The <ROOT_RD> field is the RD of VRF-A at
the Root PE (PE1).

The prefix does not contain any information about the receiver PE addresses. Imag‐
ine 100 receiver PEs have downstream subscribers for the (10.1.1.10, 232.1.1.1) flow.
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In this case, the RR gets 100 identical (C-S, C-G) Source Tree Join prefixes, one from
each receiver PE. Then, the RR selects one of the 100 routes and reflects it. This is
totally fine, because at this C-Multicast stage the sender PE only needs to know
whether it needs to add the core to the outgoing interface list; in other words,
whether there are receiver PEs for the flow. As for the number and identity of the
receiver PEs, it simply does not matter from the perspective of C-Multicast. It is defi‐
nitely relevant later, when the P-Tunnel is selected and signaled, but that takes place
in the Provider context and the sender PE finds the information elsewhere, not in the
Source Tree Join routes.

The meat is in the RT—target:172.16.0.11:8—which identifies the Source PE at
which the BGP route is targeted. Functionally, this RT is equivalent to the Upstream
Neighbor field of a PIM Join packet. So, the route is targeted to PE1 (172.16.0.11), the
sender PE. But what does number 8 stand for? If you go back to Example 5-13, you
can see that 172.16.0.11:8 is precisely the Route Import carried in the unicast route
toward the C-Source. Figure 5-2 illustrates this mechanism.

Figure 5-2. C-Multicast Source Tree Join and Route Import

It all comes from the RPF lookup at PE3, the receiver PE. The unicast route toward
the C-Source has Route Import 172.16.0.11:8, and this value is literally copied into
the RT of PE3’s Source Tree Join BGP route. In this way, PE3 targets the (C-S, C-G)
BGP Join to PE1, its RPF upstream PE. This route is only imported in PE1’s VRF-A.

Receiver PE4, which runs IOS XR, also generates a (C-S, C-G) Source Tree Join route:

Example 5-17. Type 7—(C-S, C-G) Source-Tree Join—PE4 (IOS XR)

RP/0/0/CPU0:PE4#show bgp ipv4 mvpn advertised
[...]
Route Distinguisher: 172.16.0.44:101  /* This is the local RD */
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[7][172.16.0.11:101][65000][32][10.1.1.10][32][232.1.1.1]/184
[...]
  Attributes after outbound policy was applied:
    next hop: 172.16.0.44
    ORG AS EXTCOMM
    origin: IGP
    aspath:
    extended community: RT:172.16.0.11:8

As you can see, the NLRI in Example 5-16 and Example 5-17 are identical. Indeed,
the NLRI does not contain information of the receiver PE.

Let’s get back to the (10.1.1.10, 232.1.1.1) flow. At this point, the Root PE (PE1) still
doesn’t forward the C-Multicast traffic into any P-Tunnel; see Example 5-18.

Example 5-18. Discarding C-Multicast traffic at ingress PE—PE1 (Junos)

juniper@PE1> show route forwarding-table multicast table VRF-A detail
[...]
Destination        Type RtRef Next hop   Type Index    NhRef Netif
232.1.1.1.10.1.1.10/64
                   user     0            mdsc    28170     3

The mdsc next hop stands for multicast discard.

Why is the traffic discarded? Simply, there is no P-Tunnel yet. Let’s take care of that.

Signaling Provider Tunnels—BGP and the PMSI Attribute
Let’s move from the customer (C-) to the provider (P-) context.

Provider tunnels and PMSIs
RFC 6513 classifies the PEs depending on their role in each Multicast VPN:

Sender Sites set
PEs in the Sender Sites set can send C-Multicast traffic to other PEs by using P-
Tunnels. (In this book, we use the terms “sender PE”, “ingress PE,” and “root PE”
interchangeably.)

Receiver Sites set
PEs in the Receiver Sites set can receive C-Multicast traffic from P-Tunnels roo‐
ted on other (sender) PEs. (In this book, we use the terms “receiver PE,” “egress
PE,” and “leaf PE” interchangeably.)

One PE can be both sender and receiver in the same VPN. Every time you read the
words “sender,” “receiver,” “ingress,” “egress,” “root,” or “leaf ”, keep in mind that they
are used in the context of one specific VPN and even one C-Multicast flow. It is per‐
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fectly possible for one PE to be sender for VPN A, receiver for VPN B, and both
sender and receiver for VPN C.

RFC 6513 also defines the general concept of PMSI (P-Multicast Service Interface) as
the virtual interface that a sender PE uses to put C-Multicast traffic into a P-Tunnel.
The P-Tunnel is functionally point-to-multipoint (even if it might be implemented
differently) and takes the traffic to a set of receiver PEs. It is very common to refer to
the P-Tunnel as a tree, where the sender PE is the root and the receiver PEs are the
leaves. The P-Tunnel provides an overlay to the C-Multicast tree: from the point of
view of the C-Multicast tree, the P-Tunnel is just one hop.

There are basically three criteria to classify P-Tunnels:

• Whether the P-Tunnel can be shared by different VPNs: Aggregate and Non-
Aggregate, respectively.

• How the P-Tunnel’s leaf set is chosen: Inclusive or Selective.
• The underlying tunnel technology: Ingress Replication, RSVP-TE P2MP, LDP

P2MP, LDP MP2MP, and multipoint GRE.

For the first classification, let’s consider two VRFs (A and B) and one P-Tunnel. Typi‐
cally, the P-Tunnel is dedicated to one VPN only; either VRF A or B can use it, but
not both. There are two exceptions to this rule:

• In current vendor implementations, two VPNs can share a given P-Tunnel only if
they leak unicast prefixes with each other. In other words, two VPNs that are iso‐
lated from each other cannot share a P-Tunnel.

• RFC 6513 also defines the concept of an Aggregate Tunnel, where MPLS label
stacking allows two distinct (isolated from each other) VRFs to use the same P-
Tunnel. As of this writing, neither Junos nor IOS XR implements Aggregate Tun‐
nels.

In current vendor implementations, and therefore in all of this book’s examples, there
is a 1:1 relationship between each PMSI and each P-Tunnel. In other words, only one
PMSI can point to a given Non-Aggregate P-Tunnel.

Provider tunnel classification—based on the leaf set
In Figure 5-3, PE1 is the sender PE of C-Multicast flow (S1, G1) and it has four
MVPN neighbors in VRF-A: PE2, PE3, PE4, and PE5. Clearly, PE2 has a high likeli‐
hood to be a receiver PE because it has downstream receivers precisely for (S1, G1).
But, what about the other PEs? It depends on the P-Tunnel type:

• An Inclusive Tree (P-Tunnel) goes from the sender PE to all of its MVPN neigh‐
bors, regardless of their C-PIM Join state. In this example, only PE2 has down‐
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stream receivers for (S1, G1). As for the other PEs, they simply drop the packets
locally, unless the topology makes them act as transit LSRs for other downstream
PEs.

• Selective Trees only reach the receiver PEs with downstream C-Multicast receiv‐
ers. C-Multicast flows are mapped to Selective PMSIs (S-PMSIs) in different
manners. Out of the three S-PMSI examples in Figure 5-3, the first two of them
are of type wildcard: (*, *) S-PMSI points to a tree that reaches all of the PEs with
downstream receivers for any flow; (*, G1) S-PMSI points to the PEs with down‐
stream receivers for any (S, G1) flow, where S may be equal to or different from
S1. Finally, the (S1, G1) S-PMSI points to the PEs with downstream receivers for
(S1, G1).

Figure 5-3. Four types of single-rooted provider tunnels

In a unicast analogy, you can see PMSIs as if they were routes. An
Inclusive PMSI (I-PMSI) is like a static default route; (*, *) S-PMSI
is like a dynamic default route; (*, G1) S-PMSI is like a more spe‐
cific route; and (S1, G1) S-PMSI is like a host /32 route.
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It is important to note that the appearance of wildcards does not mean that the sce‐
nario moved into ASM mode. Indeed, wildcard S-PMSIs are just a method to map C-
Multicast flows to P-Tunnels. This concept is orthogonal to C-PIM SSM versus ASM:
the model used in the core might or might not match the C-Multicast flavor.

In BGP MVPN, Inclusive Tunnels are advertised inside Type 1 (Intra-AS I-PMSI AD)
routes, by using their optional PMSI attribute. As for Selective Tunnels, they are
advertised inside the mandatory PMSI attribute of the MCAST-VPN route Type 3:
Selective PMSI Auto-Discovery (S-PMSI AD).

In the multicast world, it is not possible to achieve bandwidth efficiency and signaling
efficiency at the same time; it is one or the other. (S, G) and (*, G) Selective Tunnels
are the most efficient in terms of bandwidth, at the expense of a higher load on the
control plane. Inclusive Tunnels and (*, *) Selective Tunnels, on the other hand, have
a very efficient signaling, but they often result in a waste of bandwidth resources.

For a good compromise between bandwidth and signaling effi‐
ciency, it is a good practice to set a data threshold for the signaling
of Selective Tunnels. In this way, low-bitrate flows stay in Inclusive
Tunnels, whereas high-bitrate flows are transported in Selective
Tunnels.

Inclusive PMSI
Junos MVPN PEs are by default pure receiver PEs. They need explicit P-Tunnel con‐
figuration to act as sender PEs. In the following example, PE1 becomes—in the con‐
text of VRF-A—the root of an Inclusive P-Tunnel that is to be signaled with mLDP
P2MP:

Example 5-19. Inclusive Tunnel based on mLDP P2MP—PE1 (Junos)

routing-instances {
    VRF-A {
        provider-tunnel ldp-p2mp;
}}

Now, at this point, PE1 readvertises its Type 1 route (now, properly called I-PMSI
AD) with a new attribute called PMSI:

Example 5-20. Type 1 route with mLDP P2MP I-PMSI—PE1 (Junos)

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             match-prefix "1:*" detail
[...]
bgp.mvpn.0: 7 destinations, 11 routes (7 active, ..., 0 hidden)
* 1:172.16.0.11:101:172.16.0.11/240 (1 entry, 1 announced)
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[...]
     Communities: target:65000:1001
     PMSI: Flags 0x0: Label 0: LDP-P2MP: Root 172.16.0.11, lsp-id 16777226

VRF-A.mvpn.0: 7 destinations, 11 routes (7 active, ..., 0 hidden)
# Same route here – omitted

Thanks to the PMSI attribute, PE1 tells all its MVPN neighbors about the new P-
Tunnel: it is based on LDP P2MP, the root is PE1 itself, and there is an opaque value
(displayed as lsp-id). These are mLDP root and opaque values, two concepts that
were previously explained in the context of mLDP Inband Signaling. Now, in the
BGP MVPN case, the mLDP opaque value no longer contains C-Multicast informa‐
tion; it is simply a number, locally significant to PE1, which is the root PE that adver‐
tises the PMSI.

Are you wondering about the label field? It is mandatory in the PMSI attribute, and it
is zero in this case because the sender PE does not choose the label value.

Let’s focus on PE2, a sender PE running IOS XR. Site Auto-Discovery in IOS XR—
unlike in Junos—requires some P-Tunnel configuration to take place. In other words,
an auto-discoverable MVPN PE running IOS XR can potentially be a sender PE by
default. Let’s pick the key lines from Example 5-5, in the context of the Inclusive P-
Tunnel that is rooted at PE2 and bound to VRF-A.

Example 5-21. Inclusive Tunnel based on mLDP P2MP—PE2 (IOS XR)

multicast-routing
 vrf VRF-A
  address-family ipv4
   bgp auto-discovery mldp
   mdt default mldp p2mp
!

With this configuration, PE2 sends the MCAST-VPN Type 1—Intra-AS I-PMSI—
route with the PMSI attribute, as you can see from the perspective of the Junos RR.

Example 5-22. Type 1 route with mLDP P2MP I-PMSI—PE2 (IOS XR)

juniper@RR1> show route receive-protocol bgp 172.16.0.22
             match-prefix "1:*" detail table bgp.mvpn
[...]
* 1:172.16.0.22:101:172.16.0.22/240 (1 entry, 1 announced)
[...]
   Communities: no-export target:65000:1001
   PMSI: Flags 0x0: Label 0: LDP-P2MP: Root 172.16.0.22, lsp-id 2
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It is possible to remove the PMSI attribute from the Type 1 route
by using multicast-routing vrf VRF-A address-family ipv4
bgp auto-discovery mldp receiver-site.

Before moving on to how the actual mLDP tunnel is built, let’s explore a bit more
about the PMSI attribute’s signaling with BGP, this time in the context of Selective
Tunnels.

(S, G) Selective PMSI
With the configuration shown in Example 5-23, the Junos sender PE (PE1) creates a
specific (S, G) S-PMSI that points to a Selective P-Tunnel, also built with mLDP
P2MP.

Example 5-23. (C-S, C-G) S-PMSI based on mLDP P2MP—PE1 (Junos)

routing-instances {
    VRF-A {
        provider-tunnel {
            selective {
                group 232.0.0.0/8 {
                    source 0.0.0.0/0 {
                        ldp-p2mp;
                        threshold-rate <kbps>;  # Optional
}}}}}}

The (10.1.1.10, 232.1.1.1) Source Tree Join BGP route—sent by remote PEs and targe‐
ted to PE1—matches the rule (S, G) = (0/0, 232/8), so PE1 does the following:

• If there is no threshold-rate, or if the (C-S, C-G) bit rate exceeds the config‐
ured value, PE1 advertises a (C-S, C-G) S-PMSI AD route. Later, PE1 switches
this flow’s C-Multicast packets to the new (C-S, C-G) Selective Tunnel.

• If there is a threshold-rate, but the actual (C-S, C-G) bit rate is below the con‐
figured value, PE1 does not advertise any (C-S, C-G) S-PMSI AD route. And if it
had previously advertised one such route, PE1 withdraws it. Then, PE1 switches
this flow’s C-Multicast packets into the Inclusive Tunnel, if any. This switchover
can be further tuned with timers.

If you specify a threshold-rate and there is no Inclusive PMSI,
PE1 cannot forward the low-bitrate flows and discards the packets.
For this reason, it is essential to configure an Inclusive PMSI as a
fallback whenever a flow does not reach the configured threshold-
rate.
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Example 5-24 shows the newly generated (S, G) S-PMSI MVPN Type 3 route.

Example 5-24. Type 3—(C-S, C-G) S-PMSI AD route—PE1 (Junos)

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             match-prefix "3:*" detail
[...]
bgp.mvpn.0: 8 destinations, 12 routes (8 active, ..., 0 hidden)
* 3:172.16.0.11:101:32:10.1.1.10:32:232.1.1.1:172.16.0.11/240
 BGP group iBGP-RR type Internal
     Nexthop: Self
     Flags: Nexthop Change
     Localpref: 100
     AS path: [65000] I
     Communities: target:65000:1001
     PMSI: Flags 0x0: Label 0: LDP-P2MP: Root 172.16.0.11 ,
                               lsp-id 17004996

VRF-A.mvpn.0: 8 destinations, 12 routes (8 active, ..., 0 hidden)
# Same route here – omitted

The format of this (S, G) S-PMSI AD route is 3:<ROOT_RD>:<C-S_LENGTH>:<C-
S_ADDRESS>:<C-G_LENGTH>:<C_G_GROUP>:<SENDER_PE_ROUTER_ID>. The prefix con‐
tains a mix of C-Multicast and Provider information.

Note that the IPv4 address length can either be 0 (for wildcard) or 32 (for specific). In
other words, there is no subnetting concept here.

Now, let’s consider the flow (10.1.2.20, 232.1.1.1), whose sender PE is PE2 and it runs
IOS XR. Here again, the receivers are: H3, H4, H33, H34, and H44.

Following is the IOS XR configuration required to signal (S, G) Selective PMSIs:

Example 5-25. (C-S, C-G) S-PMSI based on mLDP P2MP—PE2 (IOS XR)

multicast-routing
 vrf VRF-A address-family ipv4
   mdt data mldp <max-number-of-tunnels> threshold <kbps>
!

The threshold is 1 kbps by default, and you can configure immediate-switch if you
do not want to set a threshold at all. The latter is the IOS XR’s equivalent to not con‐
figuring any threshold-rate in Junos.

Like in Junos, in IOS XR the (C-S, C-G) flow uses the Inclusive Tunnel until it
exceeds the bitrate threshold. Then, PE2 advertises a (C-S, C-G) S-PMSI and switches
the traffic to the new (C-S, C-G) Selective Tunnel.
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Example 5-26. Type 3—(C-S, C-G) S-PMSI AD route—PE2 (IOS XR)

juniper@RR1> show route receive-protocol bgp 172.16.0.22
             match-prefix "3:*" detail table bgp.mvpn
[...]
* 3:172.16.0.22:101:32:10.1.2.20:32:232.1.1.1:172.16.0.22/240
[...]
   Communities: no-export target:65000:1001
   PMSI: Flags 0x0: Label 0: LDP-P2MP: Root 172.16.0.22 , lsp-id 3

Junos and IOS XR behave in the same manner for (S, G) S-PMSI AD routes: they
both require a matching (S, G) Source Tree Join targeted at the local PE.

Signaling Provider Tunnels—Multipoint LDP for Transport
Inclusive and Selective Tunnels differ in the way they are signaled in BGP—Type 1
versus Type 3 routes—and, of course, in the leaf set. Let’s focus on the (C-S, C-G) =
(10.1.1.10, 232.1.1.1) C-Multicast flow, whose sender PE is PE1. Suppose that PE1 is
the root of an Inclusive Tunnel and of a (C-S, C-G) Selective Tunnel:

• The Inclusive Tree has leaves PE2, PE3, and PE4. This matches the list of PE1’s
MVPN neighbors.

• The (C-S, C-G) Selective Tree has leaves PE3 and PE4. This is indeed the list of
PEs with downstream receivers for (C-S, C-G).

When it receives an I-PMSI AD route, a receiver PE looks for a PMSI attribute. If it
finds one—remember it is optional—and its type is LDP P2MP, the receiver PE
immediately begins to signal an LSP branch toward the root. This happens regardless
of the actual C-Multicast state. In the context of a given VRF, a receiver PE must
become a leaf of all the I-PMSI’s rooted at its MVPN neighbors, even if the receiver
PE is not connected to any C-Multicast receivers whatsoever.

The logic is different for Selective Trees. After receiving an S-PMSI AD route, the
receiver PE looks at the PMSI attribute. Then, it checks if there are downstream C-
Multicast receivers in the VRF matching the (C-S, C-G) or (*, C-G) or (*, *) informa‐
tion encoded in the NLRI. Only if there is a best-match—in the sense that there is no
other NLRI that matches the downstream C-Multicast state in a more specific man‐
ner—the receiver PE becomes a leaf of the Selective Tree.

These are the differences. But what do Inclusive and Selective P-Tunnels have in com‐
mon? If the P-Tunnels are based on LDP P2MP, their Multipoint LDP (mLDP) signal‐
ing logic is identical. Although each PMSI has a different [root address, opaque
value] pair and it has a different leaf set, there is no clue inside the mLDP FECs
about the Inclusive or Selective nature of the tree. Let’s pick as an example a Selective
Tree rooted at PE1 and dedicated to the (10.1.1.10, 232.1.1.1) flow. You can compare
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Figure 5-4 to Example 5-24 and verify that the BGP PMSI attribute matches the
mLDP P2MP FEC value.

Figure 5-4. MVPN Selective P-Tunnel—signaled with mLDP P2MP

mLDP signaling begins at the receiver PEs
Remember, in the LDP world, signaling typically begins from the tail end. The fol‐
lowing example demonstrates how Junos receiver PE3 proclaims itself a leaf of the
new LDP P2MP, and it informs P1 (its RPF neighbor toward the root):

Example 5-27. mLDP P2MP FEC signaling from egress PE—PE3 (Junos)

juniper@PE3> show ldp database p2mp
Input label database, 172.16.0.33:0--172.16.0.1:0
Labels received: 8

Output label database, 172.16.0.33:0--172.16.0.1:0
Labels advertised: 16
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  Label     Prefix
 417731      P2MP root-addr 172.16.0.11, lsp-id 17004996 [...]
[...]

In parallel, IOS XR PE4 also informs P2 (its RPF neighbor toward the root) that it
intends to become a leaf of the new LDP P2MP tunnel, as shown here in
Example 5-28.

Example 5-28. mLDP P2MP FEC signaling from egress PE—PE4 (IOS XR)

RP/0/0/CPU0:PE4# show mpls mldp database root 172.16.0.11
mLDP database
LSM-ID: 0x00015   Type: P2MP   Uptime: 01:53:57
  FEC Root           : 172.16.0.11
  Opaque decoded     : [global-id 17004996]
  Upstream neighbor(s) :
    172.16.0.2:0 [Active] Uptime: 01:53:57
      Local Label (D) : 24026
  Downstream  client(s):
    PIM MDT            Uptime: 01:53:57
      Egress intf     : LmdtVRF-A [...]

There are two things in common between Example 5-27 and Example 5-28: the root
172.16.0.11, and the opaque value 17004996. These are identical to the values enco‐
ded in the S-PMSI AD route’s PMSI attribute back in Example 5-24. The label may
differ between PE3 and PE4, though: MPLS business as usual.

mLDP signaling continues at the Transit Ps
To review the LDP P2MP signaling and forwarding in detail, refer back to “In-Band
Signaling” on page 201. The mechanics are almost identical here, except for one dif‐
ference. In the BGP MVPN service, the mLDP Opaque field no longer contains C-
Multicast information; instead, it is just a number, which is locally significant to PE1
because PE1 previously encoded it inside the PMSI attribute.

As the LDP P2MP FEC signaling progresses toward the root, the (root, opaque) val‐
ues remain unchanged. P2 generates another LDP P2MP label mapping that it sends
to P1 the branch point of the LSP. And P1 sends a single Label Mapping to PE1.

Following is the view from P1’s perspective:

Example 5-29. mLDP P2MP FEC signaling at Transit P—P1 (Junos)

juniper@P1> show ldp database p2mp
Input label database, 172.16.0.1:0--172.16.0.2:0
  Label     Prefix
  24001      P2MP root-addr 172.16.0.11, lsp-id 17004996

Output label database, 172.16.0.1:0--172.16.0.2:0
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Input label database, 172.16.0.1:0--172.16.0.11:0

Output label database, 172.16.0.1:0--172.16.0.11:0
Label     Prefix
 391728      P2MP root-addr 172.16.0.11, lsp-id 17004996

Input label database, 172.16.0.1:0--172.16.0.33:0
  Label     Prefix
 417731      P2MP root-addr 172.16.0.11, lsp-id 17004996

Output label database, 172.16.0.1:0--172.16.0.33:0

mLDP signaling arrives at the sender PE

When PE1 receives the label mapping from P1, the opaque value 17004996 makes full
sense. Indeed, as you can see back in Example 5-24, PE1 had generated that number
dynamically! As shown in Example 5-30, there is a useful command that binds C-
Multicast state to P-Tunnels.

Example 5-30. C-Multicast state at ingress PE—PE1 (Junos)

juniper@PE1> show mvpn c-multicast inet instance-name VRF-A
[...]
Instance : VRF-A
  MVPN Mode : RPT-SPT
  C-mcast IPv4 (S:G)           Provider Tunnel                           St
  10.1.1.10/32:232.1.1.1/32    S-LDP-P2MP:172.16.0.11, lsp-id 17004996   RM

The RM flag means that the original Source Tree Join was received from a remote PE
(as compared to being generated by the local PE). Remember, while keeping in mind
Figure 5-1: a Source Tree Join triggered the S-PMSI AD route, which in turn trig‐
gered the mLDP signaling from the leaves.

All the signaling described so far is fully driven by the control plane
(except when S-PMSI data thresholds are in place). This is one key
advantage of BGP MVPN over establishing C-PIM PE-PE adjacen‐
cies.

Forwarding plane: from the Junos root PE to the leaves
After the P2MP LSP is completely signaled, the C-Multicast traffic flows nicely to all
the receivers. Here is the forwarding state at the sender PE:
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Example 5-31. Forwarding state at ingress PE—PE1 (Junos)

juniper@PE1> show route table VRF-A.inet.1 active-path
             match-prefix "232.1.1.1,*"

VRF-A.inet.1: 4 destinations, 5 routes (4 active, ..., 0 hidden)
+ = Active Route, - = Last Active, * = Both

232.1.1.1,10.1.1.10/64*[MVPN/70] 00:10:00
                    > to 10.0.0.3 via ge-2/0/4.0, Push 391728

In both Junos and IOS XR, when any service uses a P2MP LSP for
the transport of C-Multicast packets, the ingress PE only pushes
one MPLS label. There is no label stacking because the P2MP LSP
only transports packets of a single VPN (if the tunnel is non-
aggregate). In other words, the P2MP LSP label has a combined
service + transport significance.

The forwarding state in the transit LSRs is very similar to the one already shown for
mLDP In-Band Signaling, so it is omitted.

Let’s have a look at PE3, a Junos receiver PE (see Example 5-32).

Example 5-32. Forwarding state at an egress PE—PE3 (Junos)

juniper@PE3> show route label 417731

mpls.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

417731             *[LDP/9] 00:03:47, metric 1
                    > via vt-2/0/0.101, Pop

The C-Multicast packets get their MPLS header removed at the vt- interface. Then,
PE3 performs an IPv4 lookup in the context of VRF-A and replicates the packet
toward the two access interfaces with downstream receivers.

Likewise, the IOS XR receiver PE4 also pops the label and processes the packet in the
context of VRF-A, as illustrated in Example 5-33.

Example 5-33. Forwarding state at egress PE—PE4 (IOS XR)

RP/0/0/CPU0:PE4#show mpls mldp forwarding label 24026
mLDP MPLS forwarding database

24026  LSM-ID: 0x00023 HLI: 0x00001 flags: None
   LmdtVRF-A, RPF-ID: 3, TIDv4: E0000011, TIDv6: E0800011
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In this book’s tests, H44 only receives the C-Multicast flow if PE4’s unicast CEF entry
for 172.16.0.11 resolves to a LDP label. If it resolves to a RSVP tunnel, the traffic is
not forwarded to H44. This restriction was not observed in Junos PE3. Chapter 4
covers this topic in more detail.

Remember that there is no Penultimate Hop Popping (PHP) for
P2MP LSPs! There is one MPLS label, end to end. Thanks to this
label, receiver PEs know to which VRF the C-Multicast packets
belong.

Root PE running IOS XR
Let’s focus for a moment on the (10.1.2.20, 232.1.1.1) flow, whose sender PE is PE2.
The lsp-id in Example 5-26 corresponds to the Opaque value locally assigned by
PE2.

Example 5-34. mLDP P2MP FEC at the ingress PE—PE2 (IOS XR)

RP/0/0/CPU0:PE2#show mpls mldp database root 172.16.0.22
mLDP database
LSM-ID: 0x0002E   Type: P2MP   Uptime: 1w1d
  FEC Root           : 172.16.0.22 (we are the root)
  Opaque decoded     : [global-id 3]
  Upstream neighbor(s) :
    None
  Downstream  client(s):
    LDP 172.16.0.2:0   Uptime: 23:05:14
      Next Hop         : 10.0.0.5
      Interface        : GigabitEthernet0/0/0/3
      Remote label (D) : 24002
    PIM MDT            Uptime: 1w1d
      Egress intf     : LmdtVRF-A
[...]

By combining the two commands in Example 5-35, you can see how PE2 forwards
the (10.1.2.20, 232.1.1.1) packets in the context of VRF-A.

Example 5-35. Forwarding state at ingress PE—PE2 (IOS XR)

RP/0/0/CPU0:PE2#show mrib vrf VRF-A route 232.1.1.1 10.1.2.20 detail
[...]
(10.1.2.20,232.1.1.1) Ver: 0x4313 RPF nbr: 10.1.22.0 Flags: RPF EID
[...]
  Incoming Interface List
    GigabitEthernet0/0/0/0 Flags: A, Up: 01:05:50
  Outgoing Interface List
    LmdtVRF-A Flags: F LMI, Up: 01:05:50, Head LSM-ID: 0x0002E
 [...]
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RP/0/0/CPU0:PE2# show mrib mpls forwarding
LSP information (MLDP) :
    LSM ID: 0x0002E Role: Head [...]
    HEAD LSM ID: 0x0002E
[...]
      Outsegment Info #1 [H/Push]:
        Outgoing Label: 24002
        Outgoing  IF: GigabitEthernet0/0/0/3 (P) Nexthop: 10.0.0.5

The key is to link the LSM ID of both commands’ output (LSM stands for Label-
Switched Multicast). This method applies to Multicast MPLS in general and is not
specific of mLDP.

BGP Multicast VPN with RSVP-TE P2MP Transport
The main advantage of BGP Multicast VPN is the way it decouples C-Multicast from
P-Tunnel signaling. The very flexible PMSI attribute is the glue between both worlds.
So far, you saw PMSIs encoding LDP P2MP information, but many other P-Tunnel
technologies are available. Keep in mind that the sender PE is the one responsible for
choosing the P-Tunnel. And each sender PE makes its own choice, which may be
even different for each C-Multicast flow. It is up to the receiver PEs to tune and join
the P-Tunnels signaled by the sender PEs. This flexible logic is allowed by the proto‐
col and currently implemented by Junos.

In both Junos and IOS XR, it is possible to transport C-Unicast
traffic on LDP P2MP LSPs while C-Multicast traffic travels on
RSVP-TE P2MP LSPs. The reverse combination (C-Unicast with
RSVP-TE P2MP, and C-Multicast with mLDP) is also supported in
Junos. The P-Tunnel choices for C-Unicast and C-Multicast are
generally independent from each other.

In the interest of brevity, this section skips the Site AD and C-Multicast signaling,
which is orthogonal to the P-Tunnel flavor chosen. The goal is to illustrate how you
can signal P2MP LSPs by using RSVP-TE and the role that BGP takes on it. You can
already guess that the PMSI attribute is of fundamental importance.

In the terms of Table 4-1, the following scenario is S2, A3, C3, E3, T3, Y3.

The baseline RSVP-TE configuration is very simple:

• Junos PEs and Ps have core links configured under [edit protocols rsvp].
• IOS XR PEs and Ps have core links configured under mpls traffic-eng (and

optionally rsvp).
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Advertising the Inclusive PMSI—RSVP-TE P2MP

Sender PE running Junos
PE1 can be the root of only one Inclusive P-Tunnel at VRF-A. If instead of using
mLDP (Example 5-19) you choose to build the P-Tunnel with RSVP-TE P2MP, the
following example shows you how to do it:

Example 5-36. Inclusive Tunnel based on RSVP-TE P2MP—PE1 (Junos)

routing-instances {
    VRF-A {
        provider-tunnel {
            rsvp-te {
                label-switched-path-template {
                    default-template;
}}}}}

The default-template exists by default, and it means no Traffic Engineering (TE)
constraints. It is also possible to explicitly configure named templates that define the
TE constraints of the new LSPs. This is indeed one of the unique advantages of RSVP-
TE, and it applies to P2MP LSPs, as well. With the previous configuration, PE1 read‐
vertises the Type 1 (I-PMSI AD) BGP route with a new PMSI value.

Example 5-37. Type 1 route with RSVP-TE P2MP I-PMSI—PE1 (Junos)

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             match-prefix "1:*" detail
[...]
* 1:172.16.0.11:101:172.16.0.11/240 (1 entry, 1 announced)
[...]
     Communities: target:65000:1001
     PMSI: Flags 0x0: Label 0: RSVP-TE: Session_13[172.16.0.11:0:19208:172.16.0.11]
[...]

The PMSI format is already familiar: a protocol (RSVP-TE), a root (172.16.0.11 =
PE1), and a number that is locally significant to the root. If you are thinking that this
number will be present in RSVP-TE protocol messages, you made a good guess!
Indeed, it’s the RSVP-TE Tunnel ID.

The RSVP-TE messages used to establish a P2MP LSP contain an object called P2MP
LSP Tunnel IPv4 Session. This object is defined in RFC 4875 - Extensions to RSVP-TE
for Point-to-Multipoint TE Label Switched Paths (LSPs). Its format is <Extended Tunnel
ID, Reserved, Tunnel ID, P2MP ID> and must be globally unique. And, it is globally
unique because it contains the loopback address for PE1 and a number that is locally
generated by PE1 in order to identify the P-Tunnel.
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Sender PE running IOS XR
PE2 can be the root of only one Inclusive P-Tunnel at VRF-A, right now configured
with mLDP (Example 5-21). Example 5-38 contains the syntax to make it based on
RSVP-TE P2MP instead.

Example 5-38. Inclusive Tunnel based on RSVP-TE P2MP—PE1 (Junos)

ipv4 unnumbered mpls traffic-eng Loopback0
!
multicast-routing
 vrf VRF-A
  address-family ipv4
   bgp auto-discovery p2mp-te
   mdt default p2mp-te
!
mpls traffic-eng
 auto-tunnel p2mp
  tunnel-id min 1000 max 1050
!

PE2 now sends the MCAST-VPN Type 1—Intra-AS I-PMSI—route with a different
PMSI attribute, as you can see from the perspective of the Junos RR.

Example 5-39. Type 1 route with RSVP-TE P2MP I-PMSI—PE2 (IOS XR)

juniper@RR1> show route receive-protocol bgp 172.16.0.22
             match-prefix "1:*" detail table bgp.mvpn
[...]
* 1:172.16.0.22:101:172.16.0.22/240 (1 entry, 1 announced)
[...]
   Communities: no-export target:65000:1001
   PMSI: Flags 0x0: Label 0: RSVP-TE: Session_13[0.0.3.238:0:1006:172.16.0.22]

The format is slightly different from that of Junos because the Extended Tunnel ID is
no longer equal to the P2MP ID; instead, it is equal to the Tunnel ID: 0.0.3.238 = 3 x
256 + 238 = 1006. It is still globally unique, though, and more important, interopera‐
ble with Junos.

Receiver PEs running Junos
Junos receiver PEs such as PE3 look into the received MCAST-VPN routes and
dynamically adapt to the P-Tunnel encoded in the PMSI, which can be a MPLS flavor
or P-PIM/GRE. In other words, as an administrator you can change the PMSI config‐
uration on the (Junos or IOS XR) sender PEs without having to adapt the configura‐
tion on Junos receiver PEs. The latter dynamically determine what to do and no
configuration is required.
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Receiver PEs running IOS XR
Both Junos and IOS XR support the coexistence of P-PIM/GRE and MPLS P-Tunnels
to migrate an existent P-PIM/GRE transport to MPLS. In contrast, as of this writing,
IOS XR supports up to one P-Tunnel MPLS technology per VRF, which can be mLDP
P2MP, RSVP-TE P2MP, and so on. After the choice is made, the PE uses this one
technology for all the MPLS P-Tunnels in the VRF. This happens regardless of the
role (root or leaf) that the PE plays in each P-Tunnel. In other words, it is generally
assumed that all of the PEs in the VPN are configured with the same P-Tunnel type.

The configuration of a receiver PE is a combination of Example 5-38 and
Example 5-40.

Example 5-40. RPF Policy at receiver PE—PE4 (IOS XR)

route-policy PL-BGP-MVPN-RSVP-TE-P2MP
  set core-tree p2mp-te-default
end-policy
!
router pim
 vrf VRF-A
  address-family ipv4
   rpf topology route-policy PL-BGP-MVPN-RSVP-TE-P2MP
   mdt c-multicast-routing bgp
!

Advertising Selective PMSIs—RSVP-TE P2MP
You can also base Selective P-Tunnels on RSVP-TE P2MP. Suppose that H1 starts to
generate a new flow (10.1.1.10, 232.2.2.2), and you decide to transport it on a P2MP
LSP signaled with RSVP-TE. You can turn Example 5-23 from mLDP into RSVP-TE,
but it would also affect (10.1.1.10, 232.1.1.1), the other active flow sent by H1. So, let’s
leave that configuration block in place as is and add a more specific one for the new
flow. Junos uses a best-match logic to map a C-Multicast flow to a PMSI.

The following additional configuration at PE1 meets the requirements:

Example 5-41. (C-S, C-G) S-PMSI based on RSVP-TE P2MP—PE1 (Junos)

routing-instances {
    VRF-A {
        provider-tunnel {
            selective {
                group 232.2.0.0/16 {
                    source 0.0.0.0/0 {
                        rsvp-te {
                            label-switched-path-template {
                                default-template;
                            }
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                        }
                        threshold-rate <kbps>;  # Optional
}}}}}}

By playing with (C-S, C-G) addresses and masks, Junos sender PEs can use different
P-Tunnel protocols for different C-Multicast flows. Example 5-42 illustrates how the
(C-S, C-G) S-PMSI AD route looks like after the configuration is applied and all the
conditions to signal a S-PMSI are met (see the details in the previous section about
BGP MVPN with mLDP).

Example 5-42. Type 3—(C-S, C-G) S-PMSI AD route—PE1 (Junos)

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             match-prefix "3:*" detail
[...]
bgp.mvpn.0: 9 destinations, 14 routes (9 active, ..., 0 hidden)
* 3:172.16.0.11:101:32:10.1.1.10:32:232.2.2.2:172.16.0.11/240
[...]
   Communities: target:65000:1001
   PMSI: Flags 0x1: Label 0: RSVP-TE: Session_13[172.16.0.11:0:58476:172.16.0.11]

VRF-A.mvpn.0: 9 destinations, 14 routes (9 active, ..., 0 hidden)
# Same route here – omitted for brevity

Note the flag 0x1. It stands for Leaf Information Required. In other words, PE1 is
instructing its neighbors to send me a leaf AD route if you want to become a leaf for
this S-PMSI. This flag was not set for mLDP-based P-Tunnels.

Following is the IOS XR syntax to configure Selective Tunnels based on RSVP-TE
P2MP:

Example 5-43. (C-S, C-G) S-PMSI based on RSVP-TE P2MP—PE2 (IOS XR)

ipv4 unnumbered mpls traffic-eng Loopback0
!
multicast-routing
 vrf VRF-A
  address-family ipv4
   mdt data p2mp-te <max-number-of-tunnels> threshold <kbps>
!
mpls traffic-eng
 auto-tunnel p2mp
  tunnel-id min 1000 max 1050
!

As of this writing, the MPLS PMSIs rooted or terminated at the same VRF on a given
IOS XR PE, must all rely on the same P-Tunnel technology.
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Signaling P- Tunnels with RSVP-TE P2MP
RSVP-TE and LDP have many differences, and one of them is the direction in which
LSPs are signaled. This has important implications:

• LDP LSP signaling begins from downstream (tail-end). In P2MP terms, LDP
P2MP LSPs are signaled from the leaves. This means that the leaves must know
in advance what the root is. And they do know it easily, because the root address
is part of the PMSI attribute included in the I-PMSI and S-PMSI AD routes.

• RSVP-TE LSP signaling begins from upstream (head-end). In P2MP terms,
RSVP-TE P2MP LSPs are signaled from the root. This means that the root must
know in advance what the leaves are. This is trickier because the PMSI is adver‐
tised from the root to the leaves, not the other way around.

So, how does a sender PE know what the set of receiver PEs is?

For the Inclusive PMSI, it is easy: by definition, every neighbor in the MVPN is a leaf
of the Inclusive Tree. So PE1 signals a RSVP-TE P2MP LSP with leaves PE2, PE3, and
PE4. Likewise, PE2 signals an LSP toward PE1, PE3, and PE4.

For Selective PMSIs, the mechanism is a bit more complex. There must be a way for
the receiver PEs to signal that they want to be a leaf of a certain Selective Tree. They
achieve that with a new BGP MCAST-VPN Type 4 – Leaf AD route, which they tar‐
get to the sender PE.

Let’s examine the following example: an S-PMSI rooted at PE1 and transporting the
(10.1.1.10, 232.2.2.2) C-Multicast flow. Note that the RSVP-TE P2MP LSP signaling
mechanism is the same, regardless of the Inclusive or Selective nature of the Tree, but
the S-PMSI example involves more BGP signaling and therefore it is more interesting
to illustrate.

Figure 5-5 illustrates the entire signaling (BGP and RSVP-TE). As you can see, a field
is common to the S-PMSI AD BGP route (the PMSI attribute) and to the RSVP-TE
messages. The value of this field is 172.16.0.11:0:58476:172.16.0.11, and it is the
P2MP LSP Tunnel IPv4 Session. You can think of it as a globally unique P2MP LSP
identifier.
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Figure 5-5. MVPN Selective P-Tunnel—signaled with RSVP P2MP

One RSVP-TE P2MP LSP is actually a set of sub-LSPs—in this case, two sub-LSPs:
PE1→PE3 and PE1→PE4. The ingress PE (PE1) signals each sub-LSP independently,
so there are two different Path messages from PE1 to P1. On the way back, P1 realizes
that the P2MP LSP identifier is the same in both sub-LSPs and sends one single Resv
message up to P1. This is very similar to the way LDP P2MP works at the branch
LSRs.

One common way to call these sub-LSPs is Source to Leaf (S2L).

Finally, the leaf PEs (PE3 and PE4) receive RSVP-TE Path messages whose P2MP LSP
Tunnel IPv4 Session has a value that perfectly matches the PMSI attribute of the BGP
route. This is how the leaf PE binds the RSVP-TE P2MP sub-LSP to VRF-A.
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Leaf AD routes
Let’s have a look at the leaf AD route sent by Junos PE3:

Example 5-44. Type 4—leaf AD route—PE3 (Junos)

juniper@PE3> show route advertising-protocol bgp 172.16.0.201
             match-prefix "4:*" detail
[...]
bgp.mvpn.0: 9 destinations, 14 routes (9 active, ..., 0 hidden)
* 4:3:172.16.0.11:101:32:10.1.1.10:32:232.2.2.2:172.16.0.11:172.16.0.33/240
[...]
   Communities: target:172.16.0.11:0

VRF-A.mvpn.0: 9 destinations, 14 routes (9 active, ..., 0 hidden)
# Same route here – omitted for brevity

The NLRI format is 4:<S-PMSI-A-D_NLRI>:<RECEIVER_PE_ROUTER_ID>. Type 4 (leaf
AD) routes are sent as a response to Type 3 (S-PMSI AD) routes. Their meaning is I
want to become a leaf of this S-PMSI that you advertised. So, the receiver PE simply
takes the prefix of the S-PMSI AD route to which it is replying, and inserts it in the
leaf AD route prefix.

As for the route target, it contains the router ID of PE1—the sender PE that origina‐
ted the S-PMSI AD route—and always number zero. PE1 automatically creates a
global policy (one common policy for all the VRFs) to import routes with this route
target.

Example 5-45. Internal policy at sender PE—PE1 (Junos)

juniper@PE1> show policy
                  __vrf-mvpn-import-cmcast-leafAD-global-internal__
Policy __vrf-mvpn-import-cmcast-leafAD-global-internal__:
    Term unnamed:
        from community
          __vrf-mvpn-community-rt_import-target-global-internal__
                                         [target:172.16.0.11:0]
        then accept
    Term unnamed:
        then reject

This RT is slightly different from the one used in Type 7 (Source Tree Join) routes,
which contained a non-zero VRF identifier. So, how does PE1 find the VRF to which
the leaf AD route belongs? When PE3 copies the original S-PMSI AD route into the
leaf AD prefix, it is basically mirroring a NLRI that PE1 had locally assigned to VRF-
A. Thus, the RT does not require any extra information apart from PE1’s router ID.

Let’s have a look at the leaf AD route sent by IOS XR PE4, shown in Example 5-46.
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Example 5-46. Type 4—leaf AD route—PE4 (IOS XR)

RP/0/0/CPU0:PE4#show bgp ipv4 mvpn advertised
[...]
Route Distinguisher: 172.16.0.44:101    /* This is the local RD */
[4][3][172.16.0.11:101][32][10.1.1.10][32][232.2.2.2][172.16.0.11]
                                                 [172.16.0.44]/224
[...]
  Attributes after outbound policy was applied:
[...]
    extended community: RT:172.16.0.11:0 SEG-NH:172.16.0.44:0

RSVP-TE P2MP state at the sender PEs
As the following example demonstrates, the sender PE maintains one RSVP-TE ses‐
sion per sub-LSP:

Example 5-47. RSVP-TE P2MP LSP at the ingress PE—PE1 (Junos)

juniper@PE1> show rsvp session p2mp ingress
Ingress RSVP: 2 sessions
P2MP name: 172.16.0.11:101:mv1:VRF-A, P2MP branch count: 2
To            From         State  Style Labelin Labelout LSPname
172.16.0.33   172.16.0.11  Up        SE       -   301840
                           172.16.0.33:172.16.0.11:101:mv1:VRF-A

172.16.0.44   172.16.0.11  Up        SE       -   301840
                           172.16.0.44:172.16.0.11:101:mv1:VRF-A
Total 2 displayed, Up 2, Down 0

The sub-LSPs are linked together into one single P2MP LSP, thanks to the common
P2MP LSP Tunnel IPv4 Session object, whose Tunnel ID is displayed as port here:

Example 5-48. P2MP Session object at the ingress PE—PE1 (Junos)

juniper@PE1> show rsvp session p2mp detail
             name 172.16.0.11:101:mv1:VRF-A
[...]
  Port number: sender 1 receiver 58476 protocol 0
[...]
  Port number: sender 1 receiver 58476 protocol 0

As a result, PE1 does not need to replicate the packet. One single copy of the packet is
pushed out to P1, as illustrated in Example 5-49.

Example 5-49. Forwarding state at the ingress PE—PE1 (Junos)

juniper@PE1> show route table VRF-A.inet.1 match-prefix "232.2.2.2*"

VRF-A.inet.1: 5 destinations, 5 routes (5 active, ...)
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+ = Active Route, - = Last Active, * = Both

232.2.2.2,10.1.1.10/64*[MVPN/70] 01:12:14
                    > to 10.0.0.3 via ge-2/0/4.0, Push 301840

The mechanics are the same in IOS XR sender PEs. The format of the LSP dynamic
names is different, though, as you can see here:

Example 5-50. RSVP-TE P2MP LSP at the ingress PE—PE2 (IOS XR)

RP/0/CPU0:PE2#show mpls traffic-eng tunnels auto-tunnel brief

         TUNNEL NAME         DESTINATION      STATUS  STATE
     ^tunnel-mte1009         172.16.0.11          up  up
     ^tunnel-mte1009         172.16.0.33          up  up
     ^tunnel-mte1009         172.16.0.44          up  up
     ^tunnel-mte1011         172.16.0.33          up  up
     ^tunnel-mte1011         172.16.0.44          up  up
^ = automatically created P2MP tunnel [...]

In Example 5-50, ^tunnel-mte1009 is the Inclusive Tunnel rooted at PE2, whereas
^tunnel-mte1011 is a Selective Tunnel also rooted at PE2.

RSVP-TE P2MP state at the Transit LSRs
P1 is a branching point for the Selective Tree that carries the (10.1.1.10, 232.2.2.2)
flow.

Example 5-51. RSVP-TE P2MP LSP at the Transit P—P1 (Junos)

juniper@P1> show rsvp session transit p2mp
[...]
P2MP name: 172.16.0.11:101:mv1:VRF-A, P2MP branch count: 2
To            From         State  Style Labelin Labelout LSPname
172.16.0.33   172.16.0.11  Up        SE  301840   302240
                           172.16.0.33:172.16.0.11:101:mv1:VRF-A

172.16.0.44   172.16.0.11  Up        SE  301840    24018
                           172.16.0.44:172.16.0.11:101:mv1:VRF-A
[...]

P1 is replicating the packets toward PE3 and P2. Finally, P2 is not a branching point
and therefore only displays one branch for this Selective Tree rooted at PE1.
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Example 5-52. RSVP-TE P2MP LSP at the Transit P—P2 (IOS XR)

RP/0/CPU0:P2# show mpls forwarding labels 24018
Local  Outgoing  Prefix         Outgoing   Next Hop    Bytes
Label  Label     or ID          Interface              Switched
------ --------- -------------- ---------- ----------- --------
24018  24027     P2MP TE: 58476 Gi0/0/0/5  10.0.0.11    2170

RSVP-TE P2MP state at the receiver PEs
Because there is no PHP for P2MP LSPs, the receiver PEs pop the MPLS label and
replicate the packet toward their C-Multicast interfaces with receiver state for the
(10.1.1.10, 232.2.2.2) flow.

BGP Multicast VPN with Ingress Replication
Multicast was invented as a method to efficiently replicate traffic in a network.
Ingress Replication (IR) is at the opposite end: the sender PE (ingress PE) sends one
different copy of each C-Multicast packet to each of the remote receiver PEs. Each
packet copy is targeted to one receiver PE and it travels in a P2P (or MP2P, in the case
of LDP) LSP.

Imagine a sender PE with just one core uplink interface and 1,000 receiver PEs. With
P2MP LSPs, the sender/ingress PE just needs to send one copy of each C-Multicast
packet out of the core uplink. With IR, however, it needs to send 1,000 copies!

Despite its extreme inefficiency in the forwarding plane, IR has a use case. Because
you can use the same LSPs for transporting the C-Unicast and the C-Multicast pack‐
ets, from a signaling perspective, IR can be totally transparent for the transit LSRs.
This facilitates deploying an MVPN service without having to touch the configura‐
tion of the P-routers. For fast, ad hoc deployments or in multivendor networks with
legacy implementations that do not support P2MP LSPs in an interoperable manner,
this can be an advantage.

In the terms of Table 4-1, there are many IR flavors depending on the *-to-point tun‐
neling technology used. Here is the list:

• For GRE Unicast, it is S2, A3, C3, E3 over E1, T0, Y1. This is MPLS-over-GRE-
over-IP Unicast, and it is beyond the scope of this book.

• For LDP, it is S2, A3, C3, E3, T2, Y2.
• For RSVP-TE, it is S2, A3, C3, E3, T3, Y1.
• For regular node-segment SPRING, it is S2, A3, C3, E3, T4, Y2.
• For traffic-engineered SPRING, it is S2, A3, C3, E3, T4, Y1.
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The good news is that the MVPN configuration and signaling are the same for all of
these different flavors.

Inclusive PMSI—IR
Let’s begin with Inclusive PMSIs and then move on to Selective PMSIs.

IR I-PMSI configuration
Following is the Junos configuration of an IR Inclusive Tunnel rooted at PE1:

Example 5-53. Inclusive Tunnel based on IR—PE1 (Junos)

routing-instances {
    VRF-A {
        provider-tunnel {
            ingress-replication label-switched-path;
}}}

This configuration reuses the existing *-to-point LSPs without signaling any new
LSPs. If you want to signal new *-to-point LSPs, which are dedicated to this service,
you can also specify a template (this option is available for RSVP-TE P2P only).

Here is the IOS XR configuration of an IR Inclusive Tunnel rooted at PE2:

Example 5-54. Inclusive Tunnel based on IR—PE2 (IOS XR)

1     multicast-routing
2      vrf VRF-A
3       address-family ipv4
4        bgp auto-discovery ingress-replication
5        mdt default ingress-replication
6     !

The configuration of IR Selective Trees is left as an exercise for the reader.

IR I-PMSI signaling
Figure 5-6 illustrates the IR Inclusive Tree rooted at PE1. Note that the label value
advertised by PE1 is irrelevant for this P-Tunnel; it would be relevant for the Inclusive
Trees rooted at other PEs. As for the LDP-PEx labels, they are mapped, hop by hop, to
the IPv4 unicast FEC 172.16.0.xx/32 (refer back to Figure 2-3 and Figure 2-4).
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Figure 5-6. MVPN Inclusive P-Tunnel—IR

The forwarding mechanism for each packet is similar to IPv4 VPN Unicast: double
push at the ingress PE, and PHP of the transport label. In this example, the MPLS
transport protocol is LDP, but it could be a different one, as well.

In Junos, each sender PE can freely choose the P-Tunnel technology of its own rooted
PMSIs. There is one exception to this rule: Inclusive IR P-Tunnels.

Looking back at Figure 5-6, PE1 knows what service MPLS label to push by looking at
the Intra-AS PMSI AD route of the remote PEs. In other words, the IR Inclusive Tree
rooted at PE1 requires the remote PEs (PE2, PE3, and PE4) to also be themselves the
root of an IR Inclusive Tree.

Selective PMSI—IR
IR Selective Trees are not affected by this restriction. They are signaled with a similar
albeit slightly different strategy:

• S-PMSI AD routes carry PMSI attribute with Label 0 and Tunnel Type IR.
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• Leaf AD routes carry a PMSI attribute with non-zero Label and Tunnel Type IR.

Unlike Figure 5-6, in which the leaf router advertises the downstream service label via
the I-PMSI AD route, in the Selective PMSI, the label is signaled in a separate leaf AD
route. This makes it possible for a Junos PE to be the root of an I-PMSI based on
mLDP or on RSVP-TE P2MP while being a leaf of an IR S-PMSI.

BGP Multicast VPN with Other P- Tunnel Flavors
The Tunnel Type encoded in the PMSI attribute can also be PIM, and all of the PIM
modes (SSM, ASM, and BIDIR) are defined in RFCs 6513 and 6514. In the terms of
Table 4-1, this model is S2, A3, C3, E2, T1, [Y3 for SSM, Y4 for ASM and BIDIR].

PIM signals the P-Tunnels, which are based on multipoint GRE. Although this model
is very similar to draft Rosen at the transport level (P-PIM and GRE), C-Multicast sig‐
naling is the responsibility of BGP and not C-PIM, so it is genuinely BGP Multicast
VPN. In the terms of Table 4-1, draft Rosen is A1, C1 (not A3, C3).

Finally, mLDP MP2MP is also an available option (S2, A3, C3, E3, T2, Y4), but as of
this writing it is only implemented on IOS XR.

CE Multihoming in BGP Multicast VPN
Egress PE Redundancy
When C-Receivers are multihomed to several PEs, the same mechanisms discussed
around Figure 4-4 apply. There is nothing specific to BGP MVPN in that respect.

Ingress PE Redundancy
Let’s suppose that H2 (10.1.2.20) is multihomed in an active-active model. CE1 and
CE2 advertise the 10.1.2.0/24 IPv4 route with the same attributes—Local Preference,
MED, and AS Path—to PE1 and PE2, respectively. The Root PEs do not change these
attributes, so they prefer the eBGP route to the iBGP route. With these conditions,
both PE1 and PE2 advertise an RD:10.1.2.0/24 route to the RRs.

Now, both PE3 and PE4 have downstream C-Multicast receivers of (10.1.2.20,
232.1.1.1) at VRF-A. Do they target the Source Tree Join route to PE1 or to PE2? If
this is the first time you ask yourself this question, you might find the answer some‐
what surprising.

This is called the Upstream Multicast Hop (UMH) selection process. According to
RFC 6513: “the default procedure [...] is to select the route whose corresponding
Upstream PE address is numerically highest.” This is actually the default implementa‐
tion in Junos. It means that PE3 targets its Source Tree Join to PE2, regardless of the
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IGP metric toward the Upstream PEs. In other words, Unicast and UMH are not
congruent when it comes to selecting the Upstream PE for C-Multicast traffic.

During this book’s tests, it was observed that the default implementation of IOS XR
and Junos differ. PE4 also targets its Source Tree Join to PE2, but for a different rea‐
son: PE4’s best unicast route toward the source is via PE2, due to the lower IGP met‐
ric. In other words, Unicast and UMH are congruent by default in IOS XR. You can
achieve this behavior in Junos by using the configuration command set routing-
instances VRF-A protocols mvpn unicast-umh-election.

Aligning Unicast to UMH has some risks, and it is good to know them well so that
you can work around them. In this example, PE1 and PE2 both advertise the unicast
IPv4 VPN route RD:10.1.2.0/24. With the IGP metric as a tie-breaker, the preferred
BGP next hop toward 10.1.2.0/24 in VRF-A is 172.16.0.11 for PE3, and 172.16.0.22
for PE4. So, PE3 and PE4 target the Source Tree Join to PE1 and PE2, respectively.
What is the impact?

• If the C-Multicast flow is transported in (S, G) Selective Trees, PE3 is a leaf of
PE1’s S-PMSI only, and PE4 is a leaf of PE2’s S-PMSI only. As a result, there is no
traffic duplication at the receivers and the service is fine. This cannot be guaran‐
teed for Wildcard (*, G) or (*, *) S-PMSI, though.

• If the C-Multicast flow is transported in Inclusive Trees, the Source Tree Join that
PE3 sends to PE1 is enough for PE4 to receive the C-Multicast traffic tunneled by
PE1. Likewise, the Source Tree Join that PE4 sends to PE2 is enough for PE3 to
receive the C-Multicast traffic tunneled by PE2. The result is traffic duplication at
PE3 and PE4. But, does that affect the service?

PE3 and PE4 may implement an RPF mechanism to discard the traffic arriving from
the wrong Upstream PE. This is possible if each P2MP LSP has a different egress
MPLS label, which is always the case in IOS XR and it requires vt- interfaces in Junos
(like in Example 5-4). The different label value makes it possible for the receiver PE to
determine what sender PE injected the C-Multicast packet in the network. This is one
key advantage of not doing PHP.

This label RPF behavior is implemented by default in IOS XR. As for Junos, it requires
explicit configuration: set routing-instances <VRF_NAME> protocols mvpn

sender-based-rpf. As of this writing, this knob is supported for RSVP-TE P2MP
only.

This mechanism cannot work with IR Inclusive Tunnels in any of the vendors. Look‐
ing back at Figure 5-6, PE3 advertises one single I-PMSI AD route with one single
service label to all the PEs. Thus, both PE1 and PE2 would push the same inner label
toward PE3. This behavior, combined with the fact that IR relies on PHP, makes it
impossible for PE3 to determine whether a C-Multicast packet is coming from PE1 or
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PE2. For this reason, IR with Inclusive Tunnels requires an active-backup unicast
scheme in which all the egress PEs select the same Upstream PE.

Choosing the Best RD Scheme
The RD scheme choice is critical from the perspective of convergence. Let’s keep ana‐
lyzing the scenario where the C-S (H2) is multihomed in an active-active manner.

With per-VPN RDs (<AS>:<VPN_ID>) format, the RR selects the best (from its point
of view) IPv4 VPN unicast route to C-S and reflects it. As you saw in Chapter 3, this
introduces a delay in unicast convergence. How about multicast? First, multicast RPF
is based on unicast, and the MVPN Source Tree Join route’s RT is copied from the
IPv4 VPN C-S unicast route’s RI. For this reason, multicast is equally affected by this
delay. This issue is cleanly fixed with a <ROUTER_ID>:<VPN_ID> RD scheme, which
brings both IPv4 VPN C-S unicast routes to the receiver PEs.

How about the MVPN routes? Source Tree Join prefixes contain the <ROOT_RD>,
which is VRF’s RD at the Root PE. Imagine PE3 and PE4 target their (10.1.2.20,
232.1.1.1) joins to PE1 and PE2, respectively. With the <AS>:<VPN_ID> RD format, the
Source Tree Join routes are identical and the only difference is in the RT. The RR
selects one of the routes only and reflects it. That route contains just one RT, so only
one of the two PEs (PE1 or PE2) receive a Source Tree Join targeted to itself. This is
typically service-disruptive for the receiver PE whose Source Tree Join is not reflec‐
ted. On the other hand, with the <ROUTER_ID>:<VPN_ID> RD scheme, the Source Tree
Join prefixes—which contain the <ROOT_RD>—are different and the RR reflects both
of them. Again, per-PE-and-VPN RDs prove more advantageous.

Now, let’s consider a pure active-backup scenario with PE1 and PE2 as primary and
secondary Root PEs, respectively. There are 1,000 receiver PEs—PE3 to PE1002—for
(10.1.2.20. 232.1.1), and the VRFs are configured with the <AS>:<VPN_ID> RD format.
Now, imagine that the RR choses PE1002’s as the best Source Tree Join prefix. If PE1
fails, the Leaf PEs update their self-originated (10.1.2.20, 232.1.1.1) Source Tree Join
routes so that the RT points to PE2. But only one of these 1,000 updates has an effect:
the one coming from PE1002. This means that fast-updating Leaf PEs would need to
wait for PE1002 before they can receive the flow from PE2. Again, the solution to this
challenge is using a <ROUTER_ID>:<VPN_ID> RD scheme.

On a parallel note, during this book’s tests, RTC has been proven to be an efficient
manner to limit the distribution of MVPN routes while maintaining the service in an
interoperable manner. RTC is fully discussed in Chapter 3. As of this writing, RTC for
MVPN is supported in Junos only. The design implications of this fact in a multiven‐
dor network are discussed in Chapter 6 for the L2VPN NLRI (same reasoning is
applicable to the MPVN NLRI).

262 | Chapter 5: Multicast VPN



The most scalable, responsive, and efficient MVPNs are obtained
by combining per-PE-and-VPN RDs with Route Target Constraint
(RTC).

BGP Multicast VPN with C-PIM ASM
After discussing the different P-Tunnel options, let’s briefly explore the C-Multicast
world beyond SSM. By default, the multicast groups 232.0.0.0–232.255.255.255
(shortly stated, 232/8) are reserved for SSM mode.

If you want multicast groups outside the 232/8 range to also behave in SSM mode,
you need to do the following:

• In Junos, declare them explicitly. For example: set routing-instances VRF-A
routing-options multicast ssm-groups 226/8.

• In IOS XR, it just works. An equivalent command exists, but it is not required in
this book’s tests.

ASM Mode
In ASM mode, multicast receivers send an IGMP (*, G) Report and rely on the net‐
work to discover the C-Sources and bring the C-Multicast flow down. It’s easier said
than done: for the network, the complexity of the task is much higher!

A special router called Rendezvous Point (RP) performs source discovery and con‐
verts (*, G) into (S, G) join state. Rendezvous is French for meeting, and it is a nice
metaphorical way of saying that the RP brings multicast sources and receivers
together.

On one hand, the FHR encapsulates (S, G) multicast data packets into unicast PIM
packets called Register-Start or simply Register. PIM Registers are sent unicast to the
RP, and this is how the RP learns about the active (S, G) flows. At this point, the RP
sends a Register-Stop to the FHR, so the FHR stops encapsulating every single (C-S,
C-G) packet toward the RP.

On the other hand, Last Hop Routers (LHRs) process the IGMP (*, G) Reports and
send PIM (*, G) Joins to their RPF neighbors en route to the RP—the LHR does not
know about the source S yet. This (*, G) Join state is propagated up to the RP.

After it has information about active (S, G) flows and also downstream (*, G) receiv‐
ers, the RP sends PIM (S, G) Join packets to its RPF neighbor en route to the source
S. This is how the RP Tree (RPT), also known as Shared Tree, connects sources to
receivers. Initially, C-Multicast traffic flows down the RPT. As soon as a LHR receives
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the first (S, G) data packet, it discovers the source S. At this point, the LHR can (and
does by default) signal a branch of the Shortest Path Tree (SPT), also known as
Source Tree, and prunes its branch from the RPT. This process is called SPT switch‐
over.

The RP is a critical element in multicast networks and it is often redundant. In IP
Multicast, the most scalable RP redundancy technique is MSDP Anycast (RFC 4611).
In this model, RPs have two loopback IPv4 addresses:

• Each RP has a different primary loopback IPv4 address, which they use to estab‐
lish MSDP sessions with other RPs. MSDP (RFC 3618) is a soft-state TCP-based
protocol that is capable of exchanging (S, G) Source Active messages.

• All of the RPs have the same secondary loopback IPv4 address. All of the routers
in the network consider it as the RP address, where the Registers and the (*, G)
Joins go.

All of the following models account for C-RP redundancy. They all
rely on the loopback addressing strategy just described.

IPv4 Multicast in general and PIM in particular are complex technologies. Therefore,
let’s keep the MPLS focus and see how to solve the ASM challenge in the context of
the BGP Multicast VPN service.

Figure 5-7 shows four different solutions to the same challenge.
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Figure 5-7. BGP Multicast VPN and C-PIM ASM—four models

Let’s take a closer look at each of them:

Solution 1
The Customer RPs (C-RPs) are all based on CE devices. The C-RPs exchange
Source Active messages over a full mesh of MSDP sessions. A big drawback of
this model is that every site in the MVPN must have a local CE acting as a C-RP:
this imposes an administrative overhead to the service provider’s customer, not
to mention the need to maintain an MSDP full mesh. Conversely, it is totally
transparent for the SP, unless it manages the CEs.

Solution 2
More than one (for redundancy) PE in the MVPN has a loopback interface in the
VRF acting as C-RP. The advantage of this model is that the SP’s customer only
needs to point to the (same) C-RP address and completely rely on the SP to per‐
form the C-RP role. The administrative overhead is low because there are no
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MSDP sessions to configure, and the extra BGP signaling is light and simple. On
the down side, the customer is totally dependent on the SP even for intra-site
multicast.

Solution 3
More than one (for redundancy) CE act as C-RPs. The C-RPs maintain a full
MSDP mesh and also more than one MSDP session between a CE and the VRF
loopback of a PE in the MVPN. Redundancy is ensured if there are at least two
CE-PE MSDP sessions, whose CE and PE are both different. This solution makes
it possible for the SP’s customer to keep the control of their C-RPs. This is a bet‐
ter solution than Solution 1 because it relaxes the requirement to have a CE con‐
figured as C-RP on every site. On the downside, like Solution 1 it also requires a
protocol (MSDP) with manual provisioning to work.

Solution 4
More than one (for redundancy) CE act as C-RPs. The C-RPs maintain a full
MSDP mesh, but they do not peer via MSDP with any PE. This is a simple solu‐
tion for the SP’s customer, but it brings a significant complexity to the SP. From a
C-Multicast perspective, this is the only model where not only the SPT, but also
the Rendezvous Point Tree RPT (or Shared Tree) are signaled across the core.
Then, comes the SPT switchover and many design considerations regarding the
C-RP placement. What if the C-Source, the C-Receiver and the C-RP are in three
different sites? It works, but the signaling is quite complex and it is beyond the
scope of this book.

As of this writing, the authors have not exhaustively tested each of these options in a
multivendor lab setup. However, past Junos deployment experiences rank Solution 2
as the most scalable and the less complex of them all, especially when all of the PEs in
the MVPN are configured as a local C-RP. Solutions 1, 2, and 3 are supported in
mvpn-mode spt-only (the default), whereas Solution 4 is supported in mvpn-mode
rpt-spt.

C-Rendezvous Point—PE and CE Configuration
Let’s pick Solution 2 and provide some configuration and signaling examples.

Here is the additional configuration on a Junos CE, pointing to an external C-RP:

Example 5-55. C-RP static configuration at a CE—CE1 (Junos)

protocols {
    pim rp static address 10.10.10.10;
}

Let’s have a look at a Junos PE locally configured as a C-RP in VRF-A.
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Example 5-56. C-RP local configuration at a PE—PE1 (Junos)

interfaces {
    lo0 {
        unit 1 {
            family inet {
                address 192.168.10.11/32 primary;
                address 10.10.10.10/32;
}}}}
routing-instances {
    VRF-A {
        interface lo0.1;
        protocols {
            pim {
                rp local address 10.10.10.10; 
}}}}

Watch local versus static. It really makes a difference.

And, finally, here is an IOS XR PE locally configured as a C-RP in VRF-A:

Example 5-57. C-RP local configuration at a PE—PE4 (IOS XR)

interface Loopback1
 vrf VRF-A
 ipv4 address 192.168.20.44 255.255.255.255
 ipv4 address 10.10.10.10 255.255.255.255 secondary
!
router pim
 vrf VRF-A
  address-family ipv4
   rp-address 10.10.10.10
!

C-Multicast Signaling—ASM Mode with C-RP at the PEs
Let’s suppose that H1 is sending C-Multicast packets (10.1.1.10, 225.0.0.1). By default,
225.0.0.1 is an ASM C-G address.

PE3 and PE4 receive C-PIM (*, 225.0.0.1) Joins and/or IGMP (*, 225.0.0.1) Reports at
their downstream interfaces. But, they cannot originate a (C-S, 225.0.0.1) Source Tree
Join BGP route until they learn at least one C-S (in this case, 10.1.1.10).

PE1 has that information because it received (C-S, C-G) C-PIM Registers from CE1.
Then, PE1 sends a new MCAST-VPN route: Type 5—(S, G) Source-Active AD.
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Example 5-58. Type 5—(C-S, C-G) Source-Active AD route—PE1 (Junos)

juniper@PE1> show pim statistics instance VRF-A

PIM Message type        Received       Sent  Rx errors
V2 Register                 2667          0          0
V2 Register Stop               0         50          0

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             match-prefix "5:*" detail
[...]
bgp.mvpn.0: 9 destinations, 16 routes (9 active, ..., 0 hidden)
* 5:172.16.0.11:101:32:10.1.1.10:32:225.0.0.1/240 (1 entry...)
 BGP group iBGP-RR type Internal
     Nexthop: Self
     Flags: Nexthop Change
     Localpref: 100
     AS path: [65000] I
     Communities: target:65000:1001

VRF-A.mvpn.0: 9 destinations, 16 routes (9 active, ..., 0 hidden)
# Same route here – omitted

The format of this (S, G) Source-Active AD route is 5:<RD>:<C-S_LENGTH>:<C-
S_ADDRESS>:<C-G_LENGTH>:<C_G_GROUP>. The prefix only contains C-Multicast
information.

The Source-Active AD route is targeted to all of the PEs in the MVPN. As soon as
PE3 and PE4 receive it, they can signal (C-S, C-G) Source Tree Join routes and the
rest of the story is the same as in the SSM examples.

The interoperability of this Solution 2 was successfully tested.

Noncongruent C-Unicast and C-Multicast
Long before BGP Multicast VPN was proposed, there was one thing called Multicast
BGP. It is first mentioned in the precursor of RFC 4760 - Multiprotocol Extensions for
BGP-4 as Network Layer Reachability Information used for multicast forwarding.

Interestingly, it is a set of unicast address families, which you can see in Table 5-2.

Table 5-2. BGP Address families for noncongruent RPF

AFI SAFI Junos family Junos tables IOS XR family

1 2 inet multicast inet.2 ipv4 multicast

1 129 inet-vpn multicast bgp.l3vpn.2 and
<vrf-name>.inet.2

vpnv4 multicast

2 2 inet6 multicast inet6.2 ipv6 multicast
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AFI SAFI Junos family Junos tables IOS XR family

2 129 inet6-vpn multicast bgp.l3vpn-inet6.2 and <vrf-
name>.inet6.2

vpnv6 multicast

What is the purpose of these address families? PIM (S, G) Join and BGP (S, G) Source
Tree Join are targeted to the RPF neighbors en route to the multicast Source. Simi‐
larly, PIM (*, G) Join and BGP (*, G) Source Tree Join are targeted to the RPF neigh‐
bors en route to the Rendezvous Point.

Multicast RPF is tightly coupled to unicast routing. This usually elicits two questions:
what is my RPF neighbor en route to the source (or the RP)? and what is the next hop if
I want to send unicast packets to the source (or the RP)? Typically, they have the same
answer. This is the default behavior, and it can be changed. Actually, sometimes it
makes sense to decouple RPF from unicast routing. And this is when these address
families become handy.

Figure 5-8 illustrates a use case. The CE-PE connections are not straight; instead,
there is an L2 (Ethernet) transport provider in the middle. These connections do not
support the transport of multicast Ethernet frames. As a result, the only way to trans‐
port multicast packets between CE1 and PE1, or between CE3 and PE3, is by encap‐
sulating them within unicast frames. There are basically two options: extending
MPLS to the CEs, or using GRE-over-IP unicast tunnels as PE-CE access interfaces at
the VRF (in other words, as ACs). The first model is nice and scalable, but it requires
a significant architectural change. The second model, with all its limitations, can fit
into a quick deployment and it is used by some SPs.

Figure 5-8. Incongruent Unicast and Multicast topology—use case

In this case, it is important that you use the GRE tunnels only to transport the multi‐
cast packets. On the other hand, you can transport unicast packets natively. This is a
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motivation to keep two separate unicast topologies or RIBs: one for unicast forward‐
ing, and another one for multicast source RPF.

To achieve interoperability, Junos routers require the rfc6514-
compliant-safi129 knob on all the BGP neighbors supporting
SAFI 129.

If you look back at Table 5-1 and Figure 5-1, they should make more sense now than
they might have when you first saw them. It’s time to move on from L3 multicast
services, and explore another universe: L2VPN.

270 | Chapter 5: Multicast VPN



CHAPTER 6

Point-to-Point Layer 2 VPNs

In all of the MPLS services discussed in previous chapters, the entire service provider
(SP) network acts like a distributed router from the perspective of the SP’s customer.
These are Layer 3 (L3) MPLS services. The Ingress PE removes the original Layer 2
(L2) header and looks at the packet’s L3+ information. On its way out to the destina‐
tion CE, the Egress PE pushes a new L2 header. Both the ingress and the egress PE
have L3 addresses on the attachment circuits, which might rely on different L2 tech‐
nologies.

On the other hand, in L2 services, the SP acts like a distributed switch, whose ports are
the PEs’ attachment circuits. And there is no L2 global public service equivalent to the
Internet, so all the L2 MPLS services are actually VPNs.

L2VPN in a Nutshell
Figure 6-1 has outer headers on top, and it compares the forwarding plane of L3 and
L2 VPNs (with P1 performing PHP). This is an all-Ethernet example—both on the
access circuits and on the underlying core links—so it does not provide the full pic‐
ture. It conveys the main idea, though: the customer frame’s L2 information is pre‐
served. This is not a hard statement: in reality, the user frame’s L2 header can actually
change. For example, in Ethernet L2VPNs, it is a frequent practice to manipulate the
frame’s VLAN tags at the Label Edge Routers (LERs); but key information like the
source or destination MAC address is typically preserved—although it can be tun‐
neled in certain L2VPN flavors.
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Figure 6-1. L3 and L2VPNs—forwarding plane

L2VPN Use Cases
Among the many use cases for L2VPN, two of them are especially relevant.

Corporate WAN and data centers
Like L3VPN, L2VPN can be a service that a traditional SP offers to its customers.
These customers can be enterprises or small cloud providers that have a couple of
things in common:

• They cannot afford or do not want to pay for their own WAN infrastructure.
• They need an L2 overlay to stretch their L2 domains among physically distant

sites.

Data centers are a powerful example. Traditionally, data center architectures relied on
flat L2 connectivity. As data centers scale with more traffic and virtual machines
(VMs), while they also become geographically distributed, legacy L2 bridging is no
longer an option.

Let’s look at the data center WAN use case. This is a popular application often called
Data Center Interconnect (DCI). Many enterprises and cloud providers place gate‐
ways at the edge of each data center. These act as L2VPN PEs interconnected through
a central IP/MPLS core. From the perspective of a data center gateway, the local data
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center network infrastructure plays the role of a CE or a set of CEs. And the IP/MPLS
core interconnects the different data centers. L2VPN not only helps to scale, it also
provides virtualization so different tenants or end customers can share the same data
center—or set of data centers.

This virtualization capability is also the reason why L2VPN has another powerful use
case: inside each data center for scalable server and application connectivity. In this
scenario, though, most often the intra–data center L2VPN PEs are interconnected via
an IP fabric (or an MPLS fabric) rather than a classic IP/MPLS core. We will explore
this topic in Chapter 10; for the moment, let’s get back to MPLS.

DCI is not the only reason why an organization might purchase L2VPN services from
an SP. For example, some customers build their own WAN links by purchasing
L2VPN services from SPs. The SP becomes a pure transport provider and the cus‐
tomer uses the L2VPN as if it were an L2 link that interconnects two of the customer’s
core devices. Why do that? In this way, the customer could build its own MPLS core!
Although this MPLS over L2 over MPLS architecture might sound like science fic‐
tion, it is a common practice: many small and medium-sized organizations already
use this nested overlay approach (although they do not really have visibility of the
inner MPLS layer, which is transparently implemented by the transport provider).

Backhauling—L2VPN as a transport
Although L2VPN is definitely a popular commercial service offered to customers for
many applications (e.g., DCI or WAN emulation), SPs also use internal L2VPNs as
part of their own infrastructure: L2VPN as a transport in aggregation networks. This
is a common approach to backhaul both mobile and wireline traffic.

Figure 6-2 represents a classic architecture. Note that the Customer and Service
VLAN are optional: it is also possible to backhaul with one or zero VLAN tags. Using
both tags is great for multiplexing, though.
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Figure 6-2. Backhauling—L2VPN as a transport

The Metro Ethernet Forum (MEF) has defined some standards and mechanisms
(such as OAM) necessary to achieve carrier-class behavior in a Carrier Ethernet net‐
work.

The last-mile access device is typically a translational L2 bridge whose customer-
facing interfaces might or might not be pure Ethernet. On the left side of Figure 6-2,
you can see the following:

• A corporate customer with a DSL connection that transports Ethernet over ATM
• A residential customer with a native Ethernet FTTH (Fiber to the Home) con‐

nection
• A 4G mobile user with a non-Ethernet microwave connection

These are just a few examples to illustrate the variety of access technologies. The last-
mile access device hides all this complexity by translating CE→PE customer frames
or cells into Ethernet frames and forwarding them up to the aggregation network.
Likewise, PE→CE Ethernet frames are translated into the appropriate L2 format and
sent down to the customer device. The manipulation of the original L2 headers can
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range from no action (such as in some FTTx implementations) to a significant trans‐
lation logic. But it remains L2 bridging.

The Local Service PE may in turn provide an L3 service (Internet, IP VPN, etc.). In
this case, the access L3 endpoints are the CE and the Local Service PE.

Or, the Local Service PE may provide an L2VPN Service; this is why in Figure 6-2 the
right-side L3 Termination Point is labeled or beyond. In this case, the concepts of
L2VPN as a Transport and L2VPN Service are totally orthogonal to each other.
L2VPN as a Transport relates to how the SP transports L2 frames from CE to Local
Service PE, and this should be transparent for the customer. On the other side, the
L2VPN Service is what the customer purchases: L2 connectivity between its sites. In
Figure 6-2, the Local Service PE sees the CE-PE interface as an L2 straight attachment
circuit. How the L2 frames are actually transported inside the aggregation network is
quite transparent to the Local Service PE. In that sense, the Infrastructure (Transport)
L2VPN is just an overlay.

In more modern architectures, some of the functions depicted in Figure 6-2 are col‐
lapsed as follows:

• The same device can perform the last-mile access and Access L2VPN PE func‐
tions. This is just an internal implementation at the last-mile access device, which
gets promoted from a L2 bridge to a L2VPN PE.

• The same device may perform the Aggregation L2VPN PE and Local Service PE
functions. This interesting dimension (called PWHE) is explored later in this
chapter.

L2VPN—regardless of its application—is a bidirectional service that
provides an overlay to transport L2 frames. The actual underlay is
composed of unidirectional transport LSPs, a.k.a., PSN Tunnels.

L2VPN Topological Classification
L2VPNs can be Point-to-Point (P2P) or Multipoint-to-Multipoint (MP2MP). This
concept is service-centric, not transport-centric, and it refers to the number of sites
that a given L2VPN can have:

• P2P L2VPNs can have only two sites, which may be redundant or protected.
These L2VPNs are commonly called Pseudowire Edge-to-Edge Emulation
(PWE3), or Virtual Private Wire Service (VPWS), or E-Line, or Virtual Leased
Line (VLL).
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• MP2MP L2VPNs can have more than two sites. Depending on the topology, they
are called E-Tree or E-LAN. Other popular terms such as Virtual Private LAN
Service (VPLS) or Ethernet VPN (EVPN) are specific to certain flavors and do
not represent the MP2MP L2VPN technology as a whole.

Another important concept is that of a pseudowire (PW). Paraphrasing RFC 6624,
“the entity that connects two attachment circuits across the SP network is called a
pseudowire.” In the context of the previous service classification, P2P L2VPNs rely on
a single PW, and some flavors of MP2MP L2VPNs rely on a set of PWs.

Ethernet frames can be forwarded in the context of any of these two L2VPN topolo‐
gies. Indeed, Ethernet is a multiaccess technology and it supports both. An MP2MP
Ethernet L2VPN service behaves like a distributed switch with more than two ports,
so it performs MAC learning. Conversely, P2P Ethernet L2VPNs do not require MAC
learning because they are like a distributed hub with two ports (like a pipe): whatever
the ingress PE receives on port #1, the egress PE simply sends it out of port #2, and
vice versa.

Non-Ethernet L2 technologies are typically P2P in nature, so these can only be trans‐
ported by using P2P L2VPNs.

L2VPN Signaling and Transport
Like L3VPNs, modern L2VPNs decouple the service from the transport by using
MPLS label stacking: the outer label takes the tunneled packets to the egress PE, and
the inner label identifies the VPN service.

In L2VPN literature, a Transport LSP is often called a Packet-
Switched Network (PSN) Tunnel. We use both terms in this book
interchangeably. But is a PSN Tunnel a Pseudowire? No! Actually, a
Pseudowire is a bidirectional service element that uses at least two
unidirectional PSN Tunnels (maybe more if redundancy is
required) for transport.

Two protocols are capable of signaling the service labels: Multiprotocol BGP and Tar‐
geted LDP. In general, you can choose one or the other, after you’ve evaluated the
pros and cons, with one exception: the latest L2VPN flavor (EVPN) is only supported
in BGP.

As for the PSN Tunnels, they are simply MPLS LSPs so all of the options discussed in
Chapter 2 apply here, too: LDP, RSVP-TE, BGP-LU, and SPRING.
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P2P L2VPN—Varied Access Technologies
The mechanisms to signal a P2P L2VPN are quite agnostic of the L2 technology that
needs to be transported. After you have chosen the signaling protocol (BGP or Targe‐
ted LDP), the message exchange required to establish an Ethernet or a non-Ethernet
P2P L2VPN are practically identical. The only difference lies in a protocol attribute
that encodes the L2 technology type for the VPN. This attribute is either an extended
community (BGP) or a TLV (Targeted LDP).

As for the forwarding plane, L2 frames or cells are encapsulated in MPLS by using a
collection of methods that are specific to each technology:

• Ethernet L2VPN forwarding is covered in RFC 4448 - Encapsulation Methods for
Transport of Ethernet over MPLS Networks.

• There are equivalent RFCs for other L2 technologies: HDLC/PPP over MPLS
(RFC 4618), Frame Relay over MPLS (RFC 4619), and ATM over MPLS (RFC
4717).

These forwarding plane RFCs belong to a collection of standards that are frequently
referred to as Martini encapsulation, for Luca Martini. They explain how to encapsu‐
late L2 frames or cells in MPLS. Actually, it is possible to go even one step further and
simulate leased lines by encapsulating Time Division Multiplexing (TDM) data in
packets over MPLS. This technology is commonly called Circuit Emulation Services
(CES), and it has several flavors. For traditional Digital Signal (DS): Structure-
Agnostic TDM over Packet (SAToP, RFC 4553) and Structure-Aware TDM Circuit
Emulation Service over Packet Switched Network (CESoPSN, RFC 5086). These are
implemented and widely deployed in a variety of physical interfaces such as E1/T1,
OC3/STM1, and OC12/STM4. As for mapping native SONET/SDH frames into
packets, the model is described in RFC 4842, but the authors are unaware of any
production-ready implementation.

CES is very important in mobile backhaul legacy applications such as 2G and 3G
requiring TDM transport. The TDM circuits begin at the base stations and are termi‐
nated on the BSC (Base Station Controller) or the RNC (Radio Network Controller).
Timing and packet order requirements are typically quite strict for TDM, which
motivates the usage of a control word. This concept is presented later in this chapter
and can also be used in other L2VPNs services like Ethernet.

L2VPN versus L1VPN
L2VPNs and L3 (three) VPNs have many things in common: tunneling and trans‐
porting data between CE-facing attachment circuits, label stacking, and so on.

On the other hand, the L2VPN and L1 (one) VPN concepts are completely different.
L2VPN is a service that uses the IP/MPLS core as an overlay, whereas L1VPN is a
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technology aimed to build the core underlay. L1VPN and Generalized MPLS
(GMPLS) are widely deployed technologies, but they fall outside the scope of this
book.

The IP/MPLS core underlay can be based on Ethernet, on TDM, or on any other L2
technology. Figure 6-1 shows an Ethernet L2VPN service and also an Ethernet under‐
lay, but this is just a coincidence; the L2VPN service flavor is totally independent
from the underlying L2 technology used at the IP/MPLS core links.

CES is an L2VPN service; its concept is the reverse of L1VPN.

L2.5 VPN
An interesting variation is L2.5 VPN, where each attachment circuit is based on a dif‐
ferent L2 technology—for example, Ethernet on one endpoint and ATM on the other
endpoint. The L2.5 VPN service automatically performs frame/cell conversion while
leaving the payload (e.g., the IPv4 packet with its IPv4 header) untouched. The L2.5
term comes from the fact that there is L2 media conversion—a traditional function of
routers—but no L3 lookup.

Circuit Cross-Connect and Translational Cross-Connect
For many years, Junos has supported an L2VPN flavor called Circuit Cross-Connect
(CCC), which does not require any service signaling (no BGP, no Targeted LDP).
Indeed, with CCC the service and the transport are not decoupled and each transport
LSP (or PSN tunnel) is dedicated to one service: linking two remote attachment cir‐
cuits via the IP/MPLS core. CCC signals exclusive RSVP-TE LSPs that cannot be
shared with other services. This service-to-transport 1:1 relationship allows bringing
up the L2VPN without the intervention of any service signaling protocol (BGP or
LDP). On the downside, no autodiscovery is available for CCC and coupling the ser‐
vice to transport is less scalable.

Translational Cross-Connect (TCC) is CCC applied to L2.5VPN. This book does not
cover CCC and TCC in detail. You will often see the CCC acronym, though: the inter‐
face encapsulation used for L2VPN is [vlan-]ccc. Indeed, the forwarding plane is
the same for CCC and for modern L2VPN.

L2VPN Flavors Covered in This Book
This book covers L2VPNs whose service and transport are decoupled. This means
that regardless of the protocol used to signal the service (BGP or LDP), the transport
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LSP can be signaled with any of the available protocols: LDP, RSVP-TE, BGP-LU, or
SPRING.

Although this L2VPN set fully supports the transport of Ethernet frames, the P2P fla‐
vors also support the transport of other data in a wide variety of formats: frames,
cells, and CES. Looking forward, all of this chapter’s examples feature the transport of
Ethernet frames. Not a hard constraint: the variety of solutions is still overwhelming!
Table 6-1 lists the Ethernet L2VPN flavors addressed in this book.

Table 6-1. Ethernet L2VPN flavors

Flavor Topology Signaling protocol RFC MAC learning

VPWS Point-to-point BGP 6624 N/A

VPWS Point-to-point Targeted LDP 4447 N/A

VPLS Multipoint BGP 4761 Forwarding plane

VPLS Multipoint Targeted LDP 4762 Forwarding plane

EVPN Multipoint BGP 7432 Control plane

A recent acronym for BGP-based L2 Services is BESS, which stands
for BGP-Enabled Services.

All of these Ethernet L2VPN flavors rely on the same forwarding-plane encapsula‐
tion, as defined in RFC 4448 - Encapsulation Methods for Transport of Ethernet over
MPLS Networks. The differences are in the signaling plane. When referring to Mar‐
tini, it is important to differentiate between Martini encapsulation (RFC 4448 in the
case of Ethernet) and Martini transport or signaling (RFC 4447, LDP VPWS). The
latter is just one of the several L2VPN flavors that rely on the Martini encapsulation.

There are also L2VPN flavors based on a different encapsulation called Provider
Backbone Bridging (PBB) or MAC-in-MAC on the AC side. This requires some
extensions for VPLS (VPLS-PBB, RFC 7041) and for EVPN (EVPN-PBB, RFC 7623).
The latter is briefly discussed in Chapter 8.

For the moment, let’s stick to the classic Martini encapsulation.

This chapter focuses on L2VPN with MPLS forwarding plane in
the core. Non-MPLS encapsulations such as VXLAN are discussed
in Chapter 8, Chapter 10, and Chapter 11.
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VPWS Signaled with BGP
BGP VPWS is commonly known as Kompella L2VPN, because draft-kompella-l2vpn-
l2vpn was the precursor to RFC 6624. As of this writing, Kireeti Kompella, who keeps
making important contributions to both MPLS and SDN, is the CTO of Juniper’s
Development and Innovation team. The forwarding plane of BGP VPWS is based on
Martini encapsulation (RFC 4448).

Probably the best way to understand BGP VPWS technology is to see it at work. In
Figure 6-3, the CEs are no longer L3 routers but L2 switches. Initially, the following
links are administratively down in order to prevent L2 loops: CE1-PE2, CE2-PE1,
CE3-PE4, and CE4-PE3.

Figure 6-3. L2VPN—physical topology

As in the previous chapter, inter-PE links PE1-PE2 and PE3-PE4 have a high IGP
metric, so they are not used for transit in the absence of core link failures.

Let’s bring up a BGP VPWS service, and later explore CE multihoming in depth. The
L2 service goes like this: CE1—PE1—PE4—CE4. When it is correctly provisioned,
H1 and H4 can resolve each other’s MAC addresses (via ARP) successfully, so ping
between H1 and H4 succeeds.

BGP L2VPN Address Family
BGP VPWS and BGP VPLS both use the same multiprotocol BGP address family:
AFI=25, SAFI=65. Let’s call it the L2VPN address family.

Here is the additional configuration at a Junos PE:
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Example 6-1. L2VPN address family configuration—PE1 (Junos)

protocols {
    bgp {
        group iBGP-RR {
            family l2vpn signaling;
}}}

Adding this configuration to all the BGP groups also does the trick on Junos RRs.

The additional configuration on IOS XR PEs is shown in Example 6-2.

Example 6-2. L2VPN address family configuration—PE2 (IOS XR)

router bgp 65000
 address-family l2vpn vpls-vpws
 !
 neighbor-group RR
  address-family l2vpn vpls-vpws
!

On RRs running IOS XR, you also need to add the route-
reflector-client knob under each neighbor[-group]

adddress-family.

BGP VPWS Configuration at the PEs
Let’s begin with the simplest VPWS example, featuring a PW that interconnects these
two ACs: PE1’s ge-2/0/1 and PE4’s GigabitEthernet0/0/0/3. All of the Ethernet
frames entering one of these physical ports exits unchanged from the remote AC. As
you can see, this PW is somehow stretching a physical wire between two CEs. Other,
more flexible, models are described later.

The original frames can be untagged or VLAN-tagged. In the latter case, the VLAN
tags are transported end to end because they are considered as part of the payload.

Example 6-3 the configuration of the PE1—PE4 PW at the Junos PE1 side.

Example 6-3. BGP VPWS configuration with physical AC—PE1 (Junos)

1     interfaces {
2         ge-2/0/1 {
3             mtu 2000;
4             encapsulation ethernet-ccc;
5             unit 0;
6         }
7     }

VPWS Signaled with BGP | 281



8     routing-instances {
9         L2VPN-A {
10            instance-type l2vpn;
11            interface ge-2/0/1.0;
12            route-distinguisher 172.16.0.11:1010;
13            vrf-target target:65000:1010;
14            protocols {
15                l2vpn {
16                    encapsulation-type ethernet;
17                    interface ge-2/0/1.0;
18                    site CE1-A {
19                        site-identifier 1;
20                        ignore-mtu-mismatch;
21                        interface ge-2/0/1.0 {
22                            remote-site-id 4;
23    }}}}}}

As with any BGP-based VPN service, the Route Distinguisher (RD, line 12) format
can be <IP>:<#> or <AS>:<#>. But we strongly recommend using the <IP>:<#> for‐
mat for L2VPN prefixes, especially in CE multihoming topologies.

Note that the configuration does not include the remote PE address. BGP takes care
of the autodiscovery!

The local and remote sites (lines 19 and 22, respectively) are L2VPN CE-IDs. They
are numbered here according to the CE to which the attachment circuit is connected.

Let’s take care of the maximum transmission unit (MTU) now. One of the stickiest
L2VPN interoperability challenges between Junos and IOS XR is setting and negotiat‐
ing the PW MTU. When the negotiated MTU is not the same at both ends of a PW,
typically the PW does not come up due to MTU mismatch.

There are two options to overcome this challenge:

Configuring the endpoints to ignore MTU mismatch
This is achieved both in Junos and IOS XR by using the knob ignore-mtu-
mismatch. Actually, in IOS XR there are two knobs: ignore-mtu-mismatch for
LDP-based L2VPNs, and ignore-mtu-mismatch-ad for BGP-based L2VPNs. The
latter is hidden, so it does not autocomplete and does not show up in the running
configuration even if it’s set.

Configuring a matching MTU on both ends
This has the advantage of providing more control, but both vendors have imple‐
mentation gaps. Setting an explicit MTU is only available for some of the L2VPN
flavors; and this flavor subset is different for each vendor.

A negotiated MTU is not really enforced on the traffic. The actual PW’s MTU is
determined by the MTU of the local and remote ACs as well as the core links. L2 traf‐
fic cannot be fragmented, so it is very important to set the AC physical links’ MTU
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large enough to account for a standard IP packet (1,500 bytes), plus the Ethernet and
VLAN headers. Furthermore, core links need to account for RFC 4448 encapsulation
and for MPLS headers, too. In this book’s examples, it is assumed that all of the access
interfaces are configured with a physical MTU of 2,000 bytes (line 3), and the core
links with a MTU of at least 2,100 bytes.

In both Junos and IOS XR, sometimes a configuration change on the PW MTU does
not have an immediate effect, and the PW needs to be deleted and added again or
deactivated/activated in order for the change to take effect.

The approach used in this book is to ignore MTU mismatches (line
20). In addition, one more Junos knob might help to work around
negotiation mismatch issues: ignore-encapsulation-mismatch.

Example 6-4 the configuration for the PE1—PE4 PW at the IOS XR PE4 side.

Example 6-4. BGP VPWS configuration with physical AC—PE4 (IOS XR)

1     interface GigabitEthernet0/0/0/3
2      mtu 2000
3      l2transport
4     !
5     l2vpn
6      ignore-mtu-mismatch-ad
7      xconnect group myL2VPN
8       mp2mp L2VPN-A
9        vpn-id 123456789
10       mtu 1986
11       l2-encapsulation vlan
12       autodiscovery bgp
13        rd 172.16.0.44:1010
14        route-target 65000:1010
15        signaling-protocol bgp
16         ce-id 4
17          interface GigabitEthernet0/0/0/3 remote-ce-id 1
18    !

Strictly speaking, a physical mtu 2000 does not necessarily mean
the same on Junos and on IOS XR. Whether the Ethernet header is
taken into account or not depends on the implementation.

The IOS XR configuration hierarchy in line 8 (mp2mp) supports a collection of BGP
VPWS services, each with a different [local ce-id, remote ce-id] pair. VPWS is

VPWS Signaled with BGP | 283



actually P2P, and it does not perform proper Ethernet bridging or MAC learning. So
despite the mp2mp term, you can think point to point.

The vpn-id (line 9) is mandatory but its value is arbitrary because it is not signaled
with BGP. Its value is only relevant when targeted LDP (and not BGP) is the protocol
responsible for signaling the service.

How about the MTU? In some L2VPN flavors, IOS XR performs two MTU checks:

• The local PW’s MTU must match the MTU advertised by the remote end.
• The local AC’s MTU must match the locally configured PW’s MTU.

The ignore-mtu-mismatch-ad knob (line 6) helps to bypass the first check in BGP
L2VPN, whereas the second check—if present—needs a little more work.

Why is the PW’s MTU (line 10) different from the AC’s MTU (line 2)? If you take line
10 off Example 6-4, the PW goes down (see Example 6-5.

Example 6-5. Automatic AC MTU computation—PE4 (IOS XR)

RP/0/0/CPU0:PE4#show l2vpn xconnect group myL2VPN detail | i MTU
        AC MTU Mismatch
    MTU 1986; XC ID 0x3881ef5; interworking none

The value in line 3 is dynamically computed from the physical MTU and must be
configured explicitly on the PW (Example 6-4, line 10). This extra step is only
required on a minority of the L2VPN flavors.

This is the MTU Toolbox. Many of the upcoming examples require
playing with the previous knobs and/or setting the PW’s MTU.

BGP VPWS Signaling
After they’re configured, PE1 and PE4 advertise one L2VPN BGP route each.

Example 6-6 the BGP L2VPN route advertised by Junos PE1.

Example 6-6. L2VPN route advertised by PE1 (Junos)

1     juniper@PE1> show route advertising-protocol bgp 172.16.0.201
2                  table L2VPN-A.l2vpn.0 detail
3
4     L2VPN-A.l2vpn.0: 2 destinations, 3 routes (2 active, ...)
5     *  172.16.0.11:1010:1:3/96 (1 entry, 1 announced)
6      BGP group iBGP-RR type Internal
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7         Route Distinguisher: 172.16.0.11:1010
8         Label-base: 800012, range: 2, offset: 3, status-vector: 0x0
9         Nexthop: Self
10        Flags: Nexthop Change
11        Localpref: 100
12        AS path: [65000] I
13        Communities: target:65000:1010
14                     Layer2-info: encaps: ETHERNET, control flags:[0x2]
15                                  Control-Word, mtu: 0
16                                  site preference: 100

The /96 mask is internal in Junos and not advertised via iBGP: you can safely
ignore it.

The NLRI in line 5 contains the RD, the advertised local CE-ID (1) and the lowest
numbered remote CE-ID (3) to which this advertisement applies. This value is equal
to the offset in line 8.

Line 8 contains the MPLS label information. PE1 is allocating two labels (range: 2).
The mathematical rule to calculate the label is as follows:

• Label = Label base + (Remote CE-ID – offset)
• Frames from remote CE-ID 3 (CE-ID = offset = 3) should arrive to PE1 with

MPLS label 800012 (Label base + 0 = 800012).
• Frames from remote CE-ID 4 (CE-ID = offset + 1 = 4) should arrive to PE1

with MPLS label 800013 (Label base + 1 = 800013).

In this P2P L2VPN, there is just one remote CE from the perspective of PE1 and its
CE-ID is 4. This is why you can see label 800013 in Figure 6-4, but not label 800012.
Out of the two labels (800012 and 800013), only one is used in this P2P L2VPN. So
what’s the point of advertising a label block?

This is not the first appearance of a label block in this book. You
might remember the SRGB concept from Chapter 2. In SPRING,
each destination SID is reachable with one different label. In BGP
L2VPN, each source CE-ID can be identified by one different label.
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Figure 6-4. BGP VPWS signaling with LDP-based PSN Tunnel

Not only can you define several sites inside the same L2VPN instance, you can also
declare several interfaces under the same site. For example, imagine there are two log‐
ical interfaces connecting CE1 to PE1—which might be on the same or in different
physical links. In this case, you can connect (CE-ID 1, interface A) to remote CE-ID
3, and also connect (CE-ID 1, interface B) to remote CE-ID 4. This is still a VPWS
service that connects each link from CE1 to one and only one remote CE. One single
label block would be enough to achieve the two parallel VPWS services.

On the other hand, the L2VPN NLRI is also used for MP2MP L2VPN, where more
labels are required for MAC learning purposes—see Chapter 7. Instead of defining
two different L2VPN NLRIs, one for P2P and one for MP2MP, there is just one NLRI
for both purposes, and that is another reason why you see a label block here.

The Layer2 Info extended community (lines 14 and 15) contains all the information
about the attachment circuit and the way frames must be encapsulated in the MPLS
core. This community must be consistent on both ends for the PW to come up.

Example 6-7 shows the L2VPN route advertised by IOS XR PE4, as seen from Junos
RR1.
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Example 6-7. L2VPN route advertised by PE4 (IOS XR)

1     juniper@RR1> show route receive-protocol bgp 172.16.0.44
2                  table bgp.l2vpn.0 detail
3
4     bgp.l2vpn.0: 2 destinations, 4 routes (...)
5        172.16.0.44:1010:4:1/96 (2 entries, 1 announced)
6          Accepted
7          Route Distinguisher: 172.16.0.44:1010
8          Label-base: 24045, range: 16, offset: 1, status-vector: 0x7F 0xFF
9          Nexthop: 172.16.0.44
10         Localpref: 100
11         AS path: I
12         Communities: target:65000:1010
13                      Layer2-info: encaps: ETHERNET, control flags:[0x2]
14                                   Control-Word, mtu: 1986

Line 8 contains the MPLS label information. PE4 is allocating 16 labels (range: 16).
Following is what the lowest and highest numbered labels are for:

• Frames from remote CE-ID 1 (CE-ID = offset = 1) should arrive to PE4 with
MPLS label 24045 (Label base + 0 = 24045).

• Frames from remote CE-ID 16 (CE-ID = offset + 15 = 16) should arrive to
PE1 with MPLS label 24060 (Label base + 15 = 24060).

In this P2P L2VPN, there is just one remote CE from the perspective of PE4 and it is
CE-ID is 1. This is why you can see label 24045 in Figure 6-4, but not the other labels
in the block (24046 up to 24060).

At this point, the PW is correctly established:

Example 6-8. PW established between PE1 (Junos) and PE4 (IOS XR)

juniper@PE1> show l2vpn connections instance L2VPN-A
[...]
Instance: L2VPN-A
Edge protection: Not-Primary
  Local site: CE1-A (1)
    connection-site           Type  St     [...] # Up trans
    4                         rmt   Up     [...] 1
      Remote PE: 172.16.0.44, Negotiated control-word: Yes
      Incoming label: 800013, Outgoing label: 24045
      Local interface: ge-2/0/1.0
      Status: Up, Encapsulation: ETHERNET

RP/0/0/CPU0:PE4#show l2vpn xconnect group myL2VPN detail

Group myL2VPN, XC L2VPN-A.4:1, state is up; Interworking none
  Local CE ID: 4, Remote CE ID: 1, Discovery State: Advertised
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  AC: GigabitEthernet0/0/0/3, state is up
    Type VLAN; Num Ranges: 1
    Outer Tag: 1010
    VLAN ranges: [123, 123]
    MTU 1994; XC ID 0x1; interworking none
[...]
  PW: neighbor 172.16.0.11, PW ID 262145, state is up (established)
      MPLS         Local             Remote
      ------------ ----------------- ----------------
      Label        24045             800013
      MTU          1986              unknown
      Control word enabled           enabled
      PW type      Ethernet          Ethernet
      CE-ID        4                 1
      ------------ ----------------- ----------------
[...]

Route Target Constraint and L2VPN
One drawback of BGP P2P L2VPN is the fact that RRs reflect a L2VPN route to all
the PEs, even though there is only one remote PE at the other end of the P2P L2VPN.
So, all the PEs receive the route, but only one PE imports it. Chapter 3 describes the
solution to this efficiency challenge: Route Target Constrain (RTC).

Junos supports BGP L2VPN in combination with RTC. As of this writing, IOS XR
allows both address families to coexist; but the distribution of L2VPN NLRI is not
constrained. This means that IOS XR does not advertise specific RTC routes for the
RTs configured in local L2VPNs.

Here are the possible scenarios when the L2VPN and RTC address families are both
advertised on the same Multiprotocol-BGP (MP-BGP) session:

MP-BGP session between two Junos routers
In this case, L3VPN and L2VPN prefixes are distributed successfully in a con‐
strained and efficient manner.

MP-BGP session between two IOS XR routers
In this case, L3VPN prefixes are distributed in a constrained and efficient man‐
ner; on the other hand, L2VPN prefixes are flooded as if RTC was not config‐
ured. In any case, the services work fine.

MP-BGP session between a Junos router and an IOS XR router
In one sense, the IOS XR router floods all of the L2VPN prefixes toward the
Junos router; although this is not perfectly efficient, it keeps the L2VPN service
up. In the other sense, the Junos router only sends the L2VPN prefixes toward
the IOS XR router if the latter advertises a matching RTC route—this can only be
a default RTC route. If the IOS XR router is a pure RR, it should be configured to
advertise the default RTC route anyway: business as usual. But, if the IOS XR
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router is a PE, advertising the default RTC route means receiving all the L3VPN
prefixes, too: this has a cost in efficiency, but it does make it possible to keep the
L2VPN service up and running.

Complex, isn’t it? Try to avoid mixing the BGP L2VPN and RTC
address families in the same multivendor Junos-IOS XR BGP ses‐
sion. If you really need to, there is a potential workaround: defining
fake L3VPNs on the IOS XR side with the same RT as the one used
by the L2VPN.

L2VPN Forwarding Plane
Junos computes L2VPN forwarding entries by using a new set of RIBs. Let’s review
the Junos routing tables used by all the MPLS services described so far in this book.

Junos routing tables
Several routing tables are worth examining in the context of Junos L2VPN instances.
Table 6-2 shows the equivalence between tables of different VPN services.

Table 6-2. Junos routing tables for MPLS VPN services

Service Global auxiliary: raw NLRIs Instance-specific: raw NLRIs Instance-specific: processed NLRIs

IPv4 Unicast VPN bgp.l3vpn.0  <VRF>.inet.0

IPv6 Unicast VPN bgp.l3vpn-inet6.0  <VRF>.inet6.0

IPv4 Multicast VPN bgp.mvpn.0 <VRF>.mvpn.0  

IPv6 Multicast VPN bgp.mvpn-inet6.0 <VRF>.mvpn-inet6.0  

BGP L2VPN bgp.l2vpn.0 <L2VPN>.l2vpn.0 <L2VPN>.l2id.0

The <L2VPN> tag represents the actual name of the L2VPN instance—in this example,
L2VPN-A. And the <L2VPN>.l2id table contains the resolved local and remote CE
IDs: 1, 4, and so on. However, the most useful table from the forwarding perspective
is actually mpls.0, which contains the routes that are later pushed to the forwarding
table.

Example 6-9. L2VPN forwarding entries at PE1 (Junos)

juniper@PE1> show route table mpls.0 protocol l2vpn

mpls.0: 15 destinations, 15 routes (15 active, ...)
+ = Active Route, - = Last Active, * = Both

800013         *[L2VPN/7] 1d 11:58:41
                > via ge-2/0/1.0, Pop [...]
ge-2/0/1.0     *[L2VPN/7] 1d 09:11:58, metric2 4
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                > to 10.0.0.3 via ge-2/0/4.0,
                  Push 24045, Push 299808(top) [...]

If a packet arrives with MPLS label 800013, PE1 pops the MPLS header and sends the
resulting frame out of ge-2/0/1.0. Likewise, if PE1 receives a frame on ge-2/0/1.0, it
pushes the MPLS service label 24045 and puts the packet on an LSP toward PE4.

L2 frame encapsulation in MPLS is a bit more complex than what you can see back in
Figure 6-4. H1 sends the frame untagged to CE1, and CE1 pushes two VLAN tags
(outer 1010, inner 123). As discussed, the L2VPN service transports by default the
VLAN tags in a transparent manner. Following is an L2 frame from H1 to H4 as it
transits the link PE1→P1.

Example 6-10. Ethernet L2VPN forwarding plane

Ethernet II, Src: MAC_PE1_ge-2/0/4, Dst: MAC P1_ge-2/0/3
MPLS Header, Label: 299808, Exp: 0, S: 0, TTL: 255
MPLS Header, Label: 24045, Exp: 0, S: 1, TTL: 255
PW Ethernet Control Word, Sequence Number: 0
Ethernet II, Src: MAC H1_Gi0/0/0/0, Dst: MAC H2_Gi0/0/0/2
    Type: 802.1Q Virtual LAN (0x8100)
# Outer VLAN header #
802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 1010
    Type: 802.1Q Virtual LAN (0x8100)
# Inner VLAN header #
802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 123
    Type: IP (0x0800)
Internet Protocol Version 4, Src: 10.1.1.1, Dst: 10.1.1.4
Internet Control Message Protocol
    Type: 8 (Echo (ping) request) [...]

Control Word
There is an extra header, called Control Word (CW), inserted between the inner
MPLS header and the transported L2 frame. Its usage is described in RFC 4385 -
Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN.
As discussed in Chapter 2, label switching routers (LSRs) perform load balancing by
applying a hash to certain packet fields. To know what fields to take into account for
the hash, it is essential to know the packet type. But MPLS headers do not have any
protocol field, so LSRs must play a guessing game:

• IP packets have the IP version number encoded in the first nibble (four bits) of
their header. Consequently, if a MPLS packet has a payload whose first nibble is
number four, the LSR assumes that the MPLS payload is an IPv4 packet, without
any L2 headers.
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• If the first nibble of the MPLS payload is six, the LSR assumes that it is an IPv6
packet.

Let’s suppose that the payload is an Ethernet frame whose destination MAC address’
first nibble equals four. In this case, the hash (assuming that the hardware and the
configuration support hashing at the MPLS payload level) is computed as if it were an
IPv4 packet. Now suppose that the fourth byte of the source MAC address—which is
the tenth byte in the frame—is six, the IPv4 protocol number for TCP. The way the
LSR interprets it is this is a TCP-over-IPv4 L3 packet. Which is wrong: the MPLS pay‐
load is an L2 Ethernet frame, which might in turn contain an IPv4 packet—or not!
Then, the LSR looks for the source and destination TCP ports at a certain byte offset
inside the frame. What the LSR interprets as TCP ports are actually certain bytes
within the Ethernet payload, whose value may differ between several packets of the
same flow. These packets can be load-balanced across different paths and potentially
arrive to the egress PE out of order. For certain applications requiring a strict packet
order, this can be a big issue. And if you think about CES, it would simply break the
service.

The CW is a four-byte header whose first nibble is zero. In this way, it is guaranteed
that LSRs do not load-balance two frames belonging to the same flow across different
equal-cost next hops. The two ends of the PW must agree on whether they use the
CW, otherwise the PW is not successfully established.

There is another use case of the CW, described in RFC 5885 - Bidirectional Forward‐
ing Detection (BFD) for the Pseudowire Virtual Circuit Connectivity Verification
(VCCV). VCCV establishes a BFD session between the two endpoints of a PW. One of
the available VCCV options uses the CW as a header that precedes a raw (no IP
header, no UDP header) BFD packet.

BGP VPWS—CE Multihoming to Several PEs
Imagine an L2 frame circulating in the following manner (see Figure 6-3):
H3→CE3→PE3→PE1→CE1→PE2→PE1→CE1, and so on, looping in a triangle with
vertices CE1, PE1 and PE2. In general, L2 frames do not have a Time-to-Live (TTL)
field in the L2 header, so a frame can be looping forever. Such an L2 loop scenario
typically causes broadcast storms and connectivity loss, thus it is extremely undesira‐
ble. This is why redundancy is one of the touchiest aspects of L2 services in general.

Strictly speaking, there is one only clean solution to this problem: moving to L3! In
L3, every time a packet traverses a device, the TTL field is decremented and when it
expires the packet is dropped, which limits the impact of forwarding loops. This is
not always an option for applications and services, so let’s see what alternatives are
available to prevent, detect, and mitigate L2 loops.
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In traditional LANs, L2 loops are prevented with Spanning Tree protocols (STP,
RSTP, MSTP, etc.). If a loop takes place, it can be handled with a series of techniques:
MAC move detection, broadcast storm control and mitigation, policing, automatic
port disabling, and so on. Still, L2 loops do sometimes happen in L2 bridging net‐
works, no matter how many protection measures are in place.

Now moving to L2VPN, it is possible to keep these measures in place, but just for the
sake of extra protection. The L2VPN design (assuming that there are no backdoor
links) should guarantee a loop-free protection even without Spanning Tree. You may
add Spanning Tree on top only as an extra protection layer.

Transporting Spanning Tree frames in the L2VPN (between sites)
is only a reasonable option for P2P L2VPN. It does not make sense
in MP2MP L2VPN flavors where Bridge PDUs (BPDUs) would be
flooded to several remote sites.

There are several multihoming options in L2VPN, and the most robust are based on
Link Aggregation Group (LAG). LAGs with Link Aggregation Control Protocol
(LACP) are stateful, and a CE does not switch frames between two members of a
LAG, which is a great built-in way to avoid L2 loops. Here are some common
approaches:

• The CE may control the multihomed AC redundancy. For example, CE1 may
group its two uplinks in a standard LAG. PE1 and PE2 both have a standard one-
link LAG toward CE1, and their local System ID is different. Due to this System
ID discrepancy, CE1 only activates one of the LAG’s links. If the chosen link is
CE1-PE1, CE1 changes the flags of its LACP packets to PE2 to inform it that the
link is not active in the LAG. The result is that PE1 flags its AC up, whereas PE2
flags its AC down. Although this solution relies on a LAG that goes to different
chassis (PE1 and PE2), it is not what the industry calls a Multichassis LAG (MC-
LAG).

• The solution may be implemented on the SP, and this is a preferred option for the
SP because it can take control over the critical L2 redundancy decisions. CE1
groups its two uplinks in a standard LAG, and this time PE1 and PE2 are config‐
ured with the same System ID, so CE1 sees both links as if they were connected
to the same chassis. PE1 and PE2 communicate to each other over the SP core by
using Inter-Chassis Communication Protocol (ICCP) and decide on whether to
keep both links active or only one of them. In the all-active case—only supported
in EVPN—CE1 sees both links as part of the LAG and load-balances the frames
between both uplinks. In the single-active case, then if PE2 assumes the standby
role—according to the ICCP negotiation—it changes the flags of its LACP pack‐
ets to CE1 in order to inform it that the link is not active in the LAG. As a result,
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CE1 only activates its link toward PE1. This is MC-LAG. A downgraded MC-
LAG without ICCP is also possible and operational (it works), but this latter
model does not benefit from the possibility of having a decision point at the
multi-PE side.

How about not aggregating the uplinks? This is a bad idea. Allow‐
ing a CE to switch traffic between its uplinks is opening the door to
L2 loops!

If either PE1 or PE2 has its local AC down—or not active in the LAG—it must signal
this state accordingly to the remote PEs. Otherwise, the remote PEs might send traffic
to a PE that is not able to forward the traffic to the AC, which results in traffic black‐
holing. Let’s see how the AC status is signaled in BGP VPWS.

BGP VPWS—PW status vector
By looking carefully at Example 6-6 and Example 6-7, you can see that PE1 (Junos)
and PE4 (IOS XR) advertise a status vector as part of the NLRI. Its value is 0x0000
and 0x7FFF for PE1 and PE4, respectively. Very different!

The status vector bit length and the label block size are exactly the same. Each bit in
the status vector corresponds to a label in the label block (first bit to first label, second
bit to second label, etc.). Let’s see how to interpret the 0x0000 and 0x7FFF values:

• PE4 advertises the following prefix: RD 172.16.0.44:1010, CE-ID 4, Label-Block
Offset 1, Label-Block Size 16, Label Base 24045, Status Vector 0x7F 0xFF. It corre‐
sponds to local CE-ID 4, which is connected to remote CE-ID 1. The offset is
precisely 1, which means that the only meaningful label for VPWS is the first one
of the block (24045). And the only relevant bit of the status vector is the first one,
too. In binary: 0x7F 0xFF = 01111111 11111111. The first bit is zero and it means
that the local attachment circuit is up from the perspective of PE4.

• Now, PE1 advertises the following prefix: RD 172.16.0.11:1010, CE-ID 1, Label-
Block Offset 3, Label-Block Size 2, Label Base 800012, Status Vector 0x00. It corre‐
sponds to local CE-ID 1, which is connected to remote CE-ID 4. The offset is 3
and not 4, which means that the only meaningful label is the second one of the
block (800013). And the only relevant bit of the status vector is the second one,
too. The second bit of 0x00 is obviously zero, and it means that the local attach‐
ment circuit is up from the perspective of PE1.
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Despite the different way to code the unused bits of the status vec‐
tor (zero in Junos, one in IOS XR) there is no interoperability issue
because the meaningful bits are set accordingly: zero = up; one =
down.

What happens if the attachment circuit at PE4 (interface Gi 0/0/0/3.1010) is down? In
that case, PE4 advertises the L2VPN BGP route with status vector 0xFF 0xFF. All bits
are set to 1, including the meaningful bit. At this point, PE1 detects the failure.

Example 6-11. PW status reflecting the received status vector—PE1 (Junos)

juniper@PE1> show l2vpn connections
[...]
Instance: L2VPN-A
Edge protection: Not-Primary
  Local site: CE1-A (1)
    connection-site           Type  St     Time last up
    4                         rmt   VC-Dn  -----
[...]

If the attachment circuit at PE1 (interface ge-2/0/1.1010) is down, PE1 advertises the
L2VPN BGP route with status vector 0x40 = 01000000. Remember that the offset is 3
and the remote CE-ID is 4, so the second bit of the status vector is the meaningful
one, and it is set to 1. At this point, PE4 detects the failure.

Example 6-12. PW status reflecting the received status vector—PE4 (IOS XR)

RP/0/0/CPU0:PE4#show l2vpn xconnect
XConnect               Segment 1              Segment 2
Group Name        ST   Description       ST   Description    ST
--------------------   --------------------   -----------------
L2VPN-A.4:1       DN   Gi0/0/0/3         UP   172.16.0.11    DN

Junos and IOS XR PEs both update the status vector to reflect the state of its local
attachment circuits. In addition, Junos PEs also change the Layer2 Info extended
community when all the local interfaces toward a given CE are down.

Example 6-13. Down “D” bit in Layer2-info extended community—PE1 (Junos)

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             table L2VPN-A.l2vpn.0 detail

L2VPN-A.l2vpn.0: 2 destinations, 3 routes (3 active, ...)
*  172.16.0.11:1010:1:3/96 (1 entry, 1 announced)
 BGP group iBGP-RR type Internal
    Route Distinguisher: 172.16.0.11:1010
    Label-base: 800004, range: 2, status-vector: 0x40, offset: 3
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[..]Communities: target:65000:1010
                 Layer2-info: encaps: ETHERNET, control flags:[0x82]
                              Control-Word Site-Down, mtu: 0
                              site preference: 100

This detail is relevant for CE multihoming scenarios.

The AC status is propagated to the PW status, but the reverse is not
necessarily true. As a general design rule, try not to assume that
when a PW is down, the PE notifies the CE via LACP or Ethernet
OAM.

BGP VPWS multihoming at work
After understanding how the AC status is signaled with BGP, it’s time to see BGP
VPWS multihoming in action. Junos supports draft-ietf-bess-vpls-multihoming, which
describes BGP L2VPN active-backup multihoming scenarios such as in Figure 6-5.
As of this writing, IOS XR does not support multihoming with BGP VPWS; however,
it supports multihoming with LDP VPWS, as you will see later in this chapter.

Figure 6-5. BGP VPWS—CE Multihoming

The dashed line in Figure 6-5 means that PE2 is not forwarding traffic from/to the
AC. This is typically the case if the LAG is in single-active mode (the AC is logically
down on PE2). But, before uplink LAGs became popular, the CE uplinks were often
not aggregated, and then the standby PE (PE2) saw the AC up but did not forward
traffic. BGP VPWS multihoming takes care of both scenarios, but remember that
LAG uplink is a good practice whenever possible.

With BGP VPWS multihoming, one, and only one, PE is chosen as a Designated For‐
warder (DF) for CE1. How? PE1 and PE2 have a CE-ID (or Site ID) assigned to their
CE1-facing attachment circuits. The key is that you must configure the same CE-ID
value on both PEs. Why? Because they are connected to the same CE!

The site-identifier assignment is therefore critical:
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• PE1 and PE2 both have local CE ID = 1 and remote CE ID = 4. The same local
CE ID ensures that either PE1 or PE2—only one of them—is a DF.

• PE3 and PE4 both have local CE ID = 4 and remote CE ID = 1. The same local
CE ID ensures that either PE3 or PE4—only one of them—is a DF.

The election of the DF for each L2VPN site is deterministic: every PE in the network
chooses the same DF for each L2VPN site. The preferred way to control the outcome
of this election is to configure a site preference:

Example 6-14. BGP VPWS—site preference—PE1 (Junos)

routing-instances {
    L2VPN-A {
        protocols {
            l2vpn {
                site CE1-A {
                    site-identifier 1;
                    site-preference primary;
}}}}}

Alternatively, you can configure site-preference backup. Junos automatically sets
the preference numerical values accordingly (65,535 for primary and 1 for backup).

Looking back at Figure 6-5, PE1 has a higher site preference, so it becomes the DF for
CE1. Junos automatically copies the site preference—which is a numeric field in the
Layer2 Info extended community—to the well-known BGP Local Preference
attribute. This ensures that all of the PEs in the network—those that support draft-
ietf-bess-vpls-multihoming—choose PE1 as the Designated Forwarder for CE1.

What happens if the PE1-CE1 attachment circuit goes down? PE1 advertises its
L2VPN route with a modified status vector in the NLRI and, more important, with
the Down “D” bit in the Layer2 Info extended community flags. Thanks to this “D”
bit, all the other PEs learn that PE1 can no longer be a DF for CE1. At this point, PE2
becomes the DF for CE1, and all the PEs agree on that. Last but not least, PE1 sets the
Local Preference of its L2VPN route to zero.

Note that PE1 does not withdraw its route upon PE1-CE1 failure, it only changes its
attributes.

It is recommended to use a <ROUTER_ID>:<VPN_ID> RD scheme in
BGP VPWS scenarios with CEs multihomed to several PEs.
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What if CE1 and CE4 are also connected via a direct backdoor link without the inter‐
vention of the MPLS/IP backbone? In that case, which is strongly undesirable, they
would need to run a loop prevention mechanism such as Spanning Tree, both on the
L2VPN and on the backdoor link. This is only an option for P2P L2VPN.

Ethernet OAM (802.3ah, 802.1ag)
Looking back at Figure 6-2, there are many reasons why the CE might lose connectiv‐
ity to the Service PE, and many of them do not involve a physical link failure on the
Service PE side.

If the attachment circuit on the Service PE side is L3-capable, it can run a routing or a
keepalive end-to-end protocol (such as BFD) and keep track of the PE1-CE’s connec‐
tion health. However, this is not always possible, especially if the Service PE provides
an L2VPN service to the end customer, in which case the attachment circuit is not
L3-capable.

The CE and the PE can also run LACP, even in non-multihomed scenarios (one-link
LAG). Although this approach works and is gaining traction in real deployments, this
is not what LACP was designed for in the first instance.

Ethernet OAM was designed for this purpose and it comes to the rescue with the fol‐
lowing L2 tools:

Link Fault Management (IEEE 802.3ah)
This provides, among other things, a link-local keepalive that is exchanged
between L2-capable adjacent devices.

Connectivity Fault Management (IEEE 802.1ag)
This provides, among other things, a hierarchical end-to-end keepalive between
two remote endpoints that are not necessarily adjacent to each other.

This book does not cover Ethernet OAM interoperability but here are some notes
based on the authors’ deployment experience, particulary on Junos.

You can couple an Ethernet OAM action-profile to an interface. These profiles
monitor events such as [link-]adjacency-loss (no longer receiving Ethernet OAM
PDUs) or [interface|port]-status-tlv (receiving a down status TLV in an incom‐
ing Ethernet OAM PDU). As a result of one of these events, the attachment circuit
can be considered to be logically down even if the physical interface is up. If that hap‐
pens, the local PE updates the L2VPN status vector and notifies the remote PE.

However, the remote PE does not notify its CE by changing the [interface|port]-
status-tlv of its Ethernet OAM PDUs. Why? This is intentional and the goal is to
avoid a deadlock where CEs prevent one another from coming up.

VPWS Signaled with BGP | 297



On a side note, an Ethernet OAM action-profile that checks for
[link-]adjacency-loss is event-driven. To bring an attachment circuit logically
down, the PE must stop receiving keepalives. But if keepalives have never been
received on the interface, the action-profile is not executed.

BGP VPWS—VLAN Tag Multiplexing
The basic PW configured in Example 6-3 and Example 6-4 can transport native
Ethernet as well as VLAN-tagged frames. There is no restriction about the number of
VLAN tags, or about the outer VLAN tag’s value. However, this approach has a big
drawback: the entire AC physical interface is dedicated to a single PW; or, in other
words, it is dedicated to a single remote PE. The model does not allow mapping dif‐
ferent frames to different PWs in a per-VLAN basis; and it does not allow associating
certain VLANs to other services such as L3VPN. Let’s consider a more flexible model!

If you look back to Figure 6-2, the last-mile access device inserts two VLAN tags in
the user frame. What are these? It is very common to refer to the outer and inner tags
as Service VLAN (S-VLAN) and Customer VLAN (C-VLAN), respectively.

Typically, the S-VLAN identifies one last-mile access device. Being the outer tag, this
is the only VLAN that the aggregation network cares about. The mapping is not
always 1:1, and there may be several S-VLANs handled by the same last-mile access
device.

The C-VLAN typically identifies one customer circuit. Imagine that the last-mile
access device receives—from the upstream aggregation network—a frame whose
outer VLAN tag matches one of the S-VLANs for which it is responsible. The last-
mile access device (which is a bridge, not a PE) determines, according to the combi‐
nation of S-VLAN and C-VLAN, the actual end customer interface to which the
frame must be forwarded. In that sense, C-VLANs act as pure multiplexers.

What if you want to map one S-VLAN to one PW? Example 6-15 shows how you can
do it in Junos.

Example 6-15. BGP VPWS Configuration with SVLAN AC—PE1 (Junos)

1     interfaces {
2         ge-2/0/1 {
3             mtu 2000;
4             flexible-vlan-tagging;
5             encapsulation flexible-ethernet-services;
6             unit 1010 {
7                 encapsulation vlan-ccc;
8                 vlan-id 1010;
9     }}}
10    routing-instances {
11        L2VPN-A {

298 | Chapter 6: Point-to-Point Layer 2 VPNs



12            instance-type l2vpn;
13            interface ge-2/0/1.1010;
14            route-distinguisher 172.16.0.11:1010;
15            vrf-target target:65000:1010;
16            protocols {
17                l2vpn {
18                    encapsulation-type ethernet-vlan;
19                    interface ge-2/0/1.1010;
20                    site CE1-A {
21                        site-identifier 1;
22                        ignore-mtu-mismatch;
23                        interface ge-2/0/1.1010 {
24                            remote-site-id 4;
25    }}}}}}

VLAN tags are just a multiplexing field in the VPWS world. They do not identify a
bridge domain, because there is simply no intelligent bridging in VPWS. Indeed, a
VPWS service is just a cross-connect between an AC and a PW.

A single VLAN tag is specified on line 8. As a result, all the following frames are
transported by the VPWS service:

• Frames with single VLAN tag 1010.
• Frames with double VLAN tag, being 1010 the outer (SVLAN) tag. In this case,

the CVLAN header is considered as part of the payload and it is preserved.

If you want to be more selective, you can use the syntax vlan-tags outer 1010
inner[-list] <CVLAN(s)>, specifying the CVLAN(s) that are mapped to the PW.

For easier reading, this chapter’s examples use the same numbering
for the VLAN, RT, and RD (in this case, 1010). This is arbitrary:
the three numbers could just as well be all different.

Example 6-16 shows the configuration to map one S-VLAN to one PW in IOS XR.

Example 6-16. BGP VPWS Configuration with SVLAN AC—PE4 (IOS XR)

1     interface GigabitEthernet0/0/0/3
2      mtu 2000
3     !
4     interface GigabitEthernet0/0/0/3.1010 l2transport
5      encapsulation dot1q 1010
6     !
7     l2vpn
8      xconnect group myL2VPN
9       mp2mp L2VPN-A
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10       vpn-id 123456789
11       l2-encapsulation vlan
12       autodiscovery bgp
13        rd 172.16.0.44:1010
14        route-target 65000:1010
15        signaling-protocol bgp
16         ce-id 4
17          interface GigabitEthernet0/0/0/3.1010 remote-ce-id 1
18    !

The handling of additional VLAN tags is the same as in Junos. If you want to be more
selective, you can use the syntax encapsulation dot1q 1010 second-dot1q

<CVLAN>, specifying the CVLAN that is mapped to the PW.

The two previous examples are interoperable between both vendors.

Finally, it is also possible to specify a list of S-VLANs that are mapped to a PW. Here
are the changes that you would need to apply:

• In Junos, let’s use Example 6-15 as a reference. First, replace vlan-id (line 8)
with, for example, vlan-id-list [1001-1019 2001-2009]. Then, set the
encapsulation-type (line 18) to ethernet.

• In IOS XR, simply configure the list on the AC itself. In Example 6-16, line 5, use
the syntax encapsulation dot1q 1010-1019.

This S-VLAN list scenario works fine in single-vendor scenarios, but, as of this writ‐
ing, it does not interoperate between Junos and IOS XR. This is because Junos and
IOS XR signal Ethernet and VLAN encapsulation, respectively. Neither Junos nor IOS
XR allows changing the encapsulation successfully in this case, and the ignore-
encapsulation-mismatch knob is only available in Junos.

There is one way to achieve interoperability, though. If the entire physical interface is
reserved in the IOS XR device (Example 6-4), it interoperates successfully with Junos
vlan-id-list.

This interoperability issue is specific to the current BGP VPWS
implementation; it does not affect LDP VPWS or BGP/LDP VPLS.

BGP VPWS—VLAN Tag Translation and Manipulation
Now, put a mirror on Figure 6-2. Place it in the middle of the right-side cloud
(labeled Central IP/MPLS Core) and look from the left so that you can see the same
picture twice in a nice symmetrical manner. Imagine that two end customers—one
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on the far left and one on the far right—need to communicate to each other. The Ser‐
vice PEs can provide an L3 Service or an L2 Service to achieve that:

• If they provide an L3 Service, the ingress PE strips the Ethernet header—includ‐
ing the VLAN tags—from the user frame, as you can see at the top of Figure 6-1.

• In the L2 Service case, the Ethernet header—including its VLAN tags—is pre‐
served. Now, the VLAN tags must match on the left and on the right. That is a
tough provisioning challenge, and its workaround is VLAN tag translation.

In the remainder of the BGP VPWS section, all the configuration
examples are incomplete for the sake of brevity. To complete them,
you can mix and match with Example 6-3 and Example 6-4.

In the following example, a frame with (SVLAN, CVLAN) = (1010, 123) in the PE-
CE interface would have (SVLAN, CVLAN) = (2020, 123) in the PW. And if the
frame has only one VLAN tag equal to 1010 on the AC, the tag would be 2020 on the
PW.

Example 6-17. Rewriting the SVLAN tag in the PW—Junos, IOS XR

# PE1 (Junos)

interfaces {
    ge-2/0/1 {
        unit 1010 {
            encapsulation vlan-ccc;
            vlan-id 1010;
            input-vlan-map {
                swap;
                vlan-id 2020;
            }
            output-vlan-map swap;
}}}

juniper@PE1> show interfaces ge-2/0/1.1010 | match vlan
    VLAN-Tag [ 0x8100.1010 ]
        In(swap-swap .2020) Out(swap-swap .1010)
    Encapsulation: VLAN-CCC

# PE4 (IOS XR)

interface GigabitEthernet0/0/0/3.1010 l2transport
 encapsulation dot1q 1010
 rewrite ingress tag translate 1-to-1 dot1q 2020 symmetric
!
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This technique resolves mismatched SVLAN/CVLAN values at the PW’s endpoints.
Indeed, Example 6-17 interoperates fine, regardless of the AC’s VLANs.

Finally, in Example 6-18, a frame with (SVLAN, CVLAN) = (1010, 123) in the AC
would have single VLAN = 123 in the PW. And if the frame has only one VLAN tag
equal to 1010 on the AC, it travels with no VLAN tag through the PW.

Example 6-18. Removing SVLAN tag in the PW—Junos and IOS XR

1     # PE1 (Junos)
2
3     interfaces {
4         ge-2/0/1 {
5             unit 1010 {
6                 encapsulation vlan-ccc;
7                 vlan-id 1010;
8                 input-vlan-map pop;
9                 output-vlan-map push;
10    }}}
11    routing-instances {
12        L2VPN-A {
13            protocols {
14                l2vpn {
15                    encapsulation-type ethernet;
16    }}}}
17
18    # PE4 (IOS XR)
19
20    interface GigabitEthernet0/0/0/3.1010 l2transport
21     encapsulation dot1q 1010
22     rewrite ingress tag pop 1 symmetric
23    !

Several combinations of the pop, push, and swap actions are available and the flexibil‐
ity is so nice that there is often more than one solution to each challenge.

Just note that the SVLAN-pop scenario in Example 6-18 works fine in single-vendor
scenarios, but as of this writing, it does not interoperate between Junos and IOS XR.
The reason is the encapsulation mismatch discussed in the context of vlan-id-list,
and it is specific to the current BGP VPWS multivendor implementation.

What if the AC is configured with two VLAN tags? In that case, you can apply the
pop/push actions as in Example 6-18 (lines 8 and 9) and keep encapsulation
ethernet-vlan on the PW. With these settings, interoperability is successful. How‐
ever, the encapsulation mismatch issue is hit if there is a double pop/push instead of a
single one, for exactly the same reasons discussed earlier.
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BGP VPWS—PW Head-End (PWHE)
The traditional L2VPN as a transport architecture depicted back in Figure 6-2 offers a
pair of possibilities to optimize provisioning and service delivery:

• Merging the functions of the last-mile access device and the Access L2VPN PE
into a converged Access Node. This is a local implementation matter.

• Merging the functions of the Aggregation L2VPN PE and the Local Service PE in
one single Service Node device, as in Figure 6-6.

Figure 6-6. Aggregation L2VPN and Local Service PE in one device

The second evolution brings the possibility of having one unified IP/MPLS backbone.
The core can be flat from the IGP perspective or, for better scaling, it can be parti‐
tioned if the Local Service PE acts as an Area Border Router (ABR) or Autonomous
System Border Router (ASBR), and you can find further details in Chapter 16.

This Local Service PE may be offering different services:
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L3 Services (Internet or L3VPN)
In this case, the Local Service PE is an L3 Endpoint: you can ignore the mention
or beyond in Figure 6-6. Each VLAN or SVLAN/CVLAN transported in the PW
gets mapped to a different L3 logical interface. In turn, each such L3 interface can
belong to the master routing table (Internet service) or to a L3VPN.

P2P L2VPN
The Infrastructure PW is stitched to the Service PW. PW stitching is not dis‐
cussed in detail in this book.

MP2MP L2VPN
There is more about this option in Chapter 7.

Let’s discuss the first use case. It is called Pseudowire Head-End (PWHE or PWH),
also known as Pseudowire Head-End Termination (PWHT or PHT). Among all the
acronyms, this book picks PWHE.

We are in VLAN (de)multiplexing mode: the traffic from all the customers that share
the same pair (last-mile access device, Local Service PE) are grouped into one single
PW. Let’s focus on just one such PW.

Back in Figure 6-2, the Aggregation L2VPN PE has one AC pointing to the right,
toward the Local Service PE. Similarly, the Local Service PE has one AC per VLAN(s)
pointing to the left, toward the Aggregation L2VPN PE.

Now, in Figure 6-6 both functions are collapsed into the same device, labeled as Local
Service PE: let’s call it Head-End PE from now on.

Conceptually, PWHE is simply VLAN (de)multiplexing on the same PW. The only
difference is that the Head-End PE—converged Aggregation L2VPN PE + Local Ser‐
vice PE—terminates the L2 emulated circuit, instead of switching traffic between PW
and external L2 ACs.

As of this writing, both IOS XR and Junos support PWHE with LDP VPWS, but only
Junos supports PWHE with BGP VPWS. The following example uses BGP VPWS,
but because the Head-End role (PWHE function) is implemented on a Junos PE, the
end result is interoperable. The Access L2VPN PE, which runs IOS XR, simply sees a
regular L2VPN, but it has no L3 visibility of the PWHE.

The IOS XR configuration is exactly the same as in Example 6-4. The only difference
is on the Head-End PE side, running Junos (see Example 6-19).

Example 6-19. BGP VPWS—PW Head-End termination—PE1 (Junos)

1     chassis {
2         pseudowire-service device-count 10;
3         fpc 0 pic 0 tunnel-services bandwidth 10g;
4     }
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5     interfaces {
6         ps1 {
7             anchor-point lt-0/0/0;
8             flexible-vlan-tagging;
9             mtu 9192;
10            unit 0 {
11                encapsulation ethernet-ccc;
12            }
13            unit 1010 {
14                vlan-tags outer 1010 inner 123;
15                family inet address 10.1.1.100/24;
16    }}}
17    routing-instances {
18        L2VPN-A {
19            instance-type l2vpn;
20            interface ps1.0;
21            route-distinguisher 172.16.0.1:111;
22            vrf-target target:65000:111;
23            protocols {
24                l2vpn {
25                    encapsulation-type ethernet;
26                    interface ps1.0;
27                    site CE1-A {
28                        site-identifier 1;
29                        mtu 2000;
30                        interface ps1.0 remote-site-id 4;
31    }}}}}}

You can view each ps interface as the local termination of a PW coming from one
single last-mile access device. With the previous configuration (line 2), you can define
up to 10 psX interfaces (ps0 through ps9), each mapped to/from one PW. These inter‐
faces are anchored (line 7) to an lt interface (line 3). Anchoring instantiates the psX
interface in a Packet Forwarding Engine (PFE) inside the router. This makes the ser‐
vice actually work by associating bandwidth resources and also enabling Quality of
Service (QoS).

Now, the psX.0 logical interface (lines 10 through 12) is special in that it represents
the PW’s AC inside the Head-End PE (lines 20, 26, and 30). VLANs are then used as
(de)multiplexers and many non-zero units (lines 13 through 15) can be created: these
are the service endpoints. In this case, the service is L3 but it could be in theory L2
(not implemented yet), as well.

The L3 endpoint units such as ps1.1010 can have single or dual VLAN tags. They can
be kept in the master routing table or declared in a VRF. Although as of this writing
the latter is not officially supported yet, the authors’ lab testing was successful.

The logical interface ps1.1010 is static. But it is also possible to create dynamic inter‐
faces by using VLAN autosensing, which opens the door to a very flexible broadband
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access and subscriber management model. The classical BNG (Broadband Network
Gateway) is replaced with a Service PE that can be anywhere in the MPLS core.

BGP VPWS—Load Balancing
As you saw before, the CW is required to ensure that all the L2VPN frames of the
same flow are forwarded on the same path so that they do not arrive to the destina‐
tion out of order. The downside of the CW is that all the packets of the same PW may
follow the same path. For some applications, this is a poor load-balancing scheme
that can easily lead to traffic polarization in the core network. There are two solutions
to this challenge:

RFC 6790 - The Use of Entropy Labels in MPLS Forwarding
It is applicable to MPLS in general (not only L2VPN) and it relies on inserting
two MPLS labels just below the transport label: the Entropy Label Indicator
(ELI), which is a reserved fixed label with value 7, and the entropy label itself. The
full MPLS label stack from top to bottom would be: the transport label, the ELI,
the entropy label, and the VPN label (if any).

RFC 6391 - Flow-Aware Transport (FAT) of Pseudowires over a MPLS Packet
Switched Network

This is only available for L2VPN and it relies on inserting an MPLS label—a so-
called flow label—at the bottom of the stack. This label lies between the L2VPN
label and the Control Word.

The principle of both approaches is quite simple: entropy (or flow) labels have
pseudo-random values and are not interpreted by any routers. By inserting such
label(s), the ingress PE is actually adding a variable seed for load-balancing hash
computation when the packet arrives to transit LSRs. The ingress PE assigns the same
entropy (or flow) label value to every packet of a given flow, so packet order is guar‐
anteed. As a result of the entropy (or flow) label, different flows in the same PW can
be mapped to different equal-cost paths.

Here is what happens when the packet reaches the egress PE:

• In the entropy label case, due to PHP the ELI is exposed (although the penulti‐
mate LSR may decide to also pop the ELI and entropy label). If needed, the egress
PE removes the ELI and the entropy label, exposing the service label (if any). The
packet is then mapped to the appropriate service—for example, to an L2VPN
AC.

• In the FAT scenario, due to PHP the L2VPN label is exposed. The egress PE maps
the packet to the appropriate L2VPN AC, and then it pops all the remaining
labels (VPN and flow label) without any further processing.
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As of this writing, entropy labels were supported by Junos, but not by IOS XR. On the
other hand, this book’s tests provided interoperable PW with FAT and LDP VPWS.

As for BGP VPWS, flow labels can be enabled in IOS XR but not in Junos. The result
is interoperable, in the sense that PE4 pushes the flow label and PE1 is able to pop it
and forward the frame successfully. In the other direction, PE1 does not push the
flow label, but that is fine for PE4, too.

Example 6-20 shows the IOS XR configuration.

Example 6-20. BGP VPWS—FAT configuration—PE4 (IOS XR)

l2vpn
 xconnect group myL2VPN
  mp2mp L2VPN-A
   autodiscovery bgp
    signaling-protocol bgp
     load-balancing flow-label both static
!

VPWS Signaled with LDP
LDP VPWS is commonly known as Martini transport and, like BGP VPWS (Kom‐
pella), it relies on Martini encapsulation (RFC 4788). It is also called L2 Circuit or
L2CKT.

In Chapter 2 and Chapter 4 you saw two applications of LDP: building MP2P and
P2MP LSPs with IPv4 and P2MP FECs, respectively. These FECs are typically
exchanged over direct LDP sessions, whose endpoints are the loopback interfaces of
two directly connected neighbors. These LDP sessions are therefore not targeted.

LDP VPWS, on the other hand, requires PE-PE targeted LDP sessions:

• If the PEs are directly connected to each other, and they already have a LDP ses‐
sion established to exchange other FEC types (e.g., IPv4), there is no need to sig‐
nal any more LDP sessions: the existing one is used to exchange L2VPN FECs.
Note that sometimes you might need to selectively filter the FECs that you want
to advertise or receive: for example, the network design might rely on a given ses‐
sion to exchange L2VPN FECs but not IPv4 FECs, or vice versa.

• If the PEs are several hops away from each other, a new LDP session must be
established between the two PEs.
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LDP VPWS Configuration at the PEs
Let’s begin with a scenario in which a physical AC is mapped to a PW. The AC config‐
uration is skipped because it is similar to BGP VPWS (see Example 6-3, lines 1
through 7 and Example 6-4, lines 1 through 4).

Example 6-21 shows the PE1—PE4 PW configuration at Junos PE1.

Example 6-21. LDP VPWS configuration with physical AC—PE1 (Junos)

1     protocols {
2         ldp {
3             interface lo0.0;
4         }
5         l2circuit {
6             neighbor 172.16.0.44 {
7                 interface ge-2/0/1.0 {
8                     virtual-circuit-id 13579;
9                     encapsulation-type ethernet;
10                    ignore-mtu-mismatch;
11                    pseudowire-status-tlv;
12    }}}}

One key aspect of LDP VPWS is its lack of a native autodiscovery mechanism. You
must configure neighbors (line 6) explicitly. Later you will see how this limitation is
overcome by using BGP AD.

The service is identified by a VC ID (line 8) that must match on both ends of the PW.

The pseudowire-status-tlv usage is explained later.

Following is the PE1—PE4 PW configuration at PE4, which runs IOS XR:

Example 6-22. LDP VPWS configuration with physical AC—PE4 (IOS XR)

l2vpn
 ignore-mtu-mismatch
 pw-class PW-L2CKT-UNTAGGED
  encapsulation mpls
   protocol ldp
   control-word
   transport-mode ethernet
 !
 xconnect group myL2CKT
  p2p L2CKT-A
   interface GigabitEthernet0/0/0/3
   neighbor ipv4 172.16.0.11 pw-id 13579
    pw-class PW-L2CKT-UNTAGGED
!
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LDP VPWS Signaling and Forwarding Planes
With the previous configuration, the PW comes up. Let’s verify that.

Example 6-23. Established LDP VPWS—Junos and IOS XR

# PE1 (Junos)

juniper@PE1> show l2circuit connections interface ge-2/0/1.0
[...]
Neighbor: 172.16.0.44
 Interface                 Type  St     # Up trans
 ge-2/0/1.0(vc 13579)    rmt   Up     1
   Remote PE: 172.16.0.44, Negotiated control-word: No
   Incoming label: 299776, Outgoing label: 16080
   Negotiated PW status TLV: Yes
   Local PW status code: 0x0000, Neighbor PW status code: 0x0000
   Local interface: ge-2/0/1.0, Status: Up, Encapsulation: ETHERNET
   Flow Label Transmit: No, Flow Label Receive: No

# PE4 (IOS XR)

RP/0/0/CPU0:PE4#show l2vpn xconnect group myL2CKT
XConnect               Segment 1          Segment 2
Group    Name     ST   Description     ST  Description         ST
--------------------   ------------------  ----------------------
myL2CKT  L2CKT-A  UP   Gi0/0/0/3       UP  172.16.0.11  13579  UP
-----------------------------------------------------------------

In IOS XR, you can use the show l2vpn xconnect detail option in order to see the
local and remote PW status TLV values. The following couple of tips can help you to
interpret the output of both Junos and IOS XR commands:

• Local PW Status in Junos means the same as Outgoing PW Status in IOS XR:
the advertised PW Status TLV value.

• Neighbor PW Status in Junos means the same as Incoming Status in IOS XR:
the received PW Status TLV.

Figure 6-7 shows an example in which the transport LSP is signaled by using LDP.
This is just one option and all the other transport protocols are also available. Indeed,
LDP-based L2VPNs can also be transported with RSVP-TE, BGP-LU, and SPRING-
signaled LSPs, as well as with IP (e.g., GRE) tunnels.

VPWS Signaled with LDP | 309



Figure 6-7. LDP VPWS signaling with LDP-based PSN Tunnel

LDP PWid FEC has type 0x80 = 128. It is popularly called FEC 128
or Martini FEC.

The forwarding plane is the same as in BGP VPWS. Just one note about the CW: by
default, an LDP VPWS whose endpoints run Junos negotiate to use the CW, whereas
two IOS XR PEs negotiate not to use it. As a result, in a multivendor PW with one PE
running Junos and the other running IOS XR, there is no CW unless the IOS XR PE
is explicitly instructed to use it (Example 6-22).

LDP VPWS—CE Multihoming and PW Redundancy
The concepts were already discussed in the context of BGP VPWS. With the FEC 129
model, discussed in Chapter 7, it is possible to deploy the same multihoming mecha‐
nisms as in BGP VPWS, but let’s see what can be done with plain FEC 128.

LDP VPWS—PW Status TLV
Back in BGP VPWS, there was a Status Vector that accounted potentially for several
VPWS connections to different local CEs. In the LDP VPWS case, each PW only con‐
nects two CEs, so there is no need to have a vector. However, the PW Status TLV that
optionally accompanies each PWid FEC is actually a vector. This time, the bits do not
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represent several remote CEs, but different aspects of the status of a single PW. This
makes it possible to provide richer information than just the up/down state. A perfect
PW Status TLV has all bits set to zero, and any non-zero bits reflect an exceptional
condition whose interpretation is ruled by the following standards:

• RFC 4446 - IANA allocations for PWE3, defines the following values: PW for‐
warding (clear all failures) (0x0), PW not forwarding (0x01), local AC receive
fault (0x02), local AC transmit fault (0x04), local PSN-facing PW receive fault
(0x08), and local PSN-facing PW transmit fault (0x10).

• RFC 6870 - Pseudowire Preferential Forwarding Status Bit, defines the following
values: PW forwarding standby (0x20), and PW request switchover (0x40). These
values are quite relevant for PW redundancy solutions.

The PW Status TLV is advertised in two types of LDP messages: in LDP Label Map‐
ping during PW establishment, and in LDP Notification messages when there is a sta‐
tus change.

The usage of these bits is not unified across vendors. For example, if an AC is down
from the point of view of LACP (on an active-backup LAG), Junos signals 0x01 (PW
not forwarding) and IOS XR signals 0x06 (local AC receive and transmit faults). The
reaction on the remote end is the same, though: considering the PW as down from a
forwarding-plane perspective.

LDP VPWS—PW redundancy configuration
Let’s suppose that PE1 signals a VPWS service and both PE3 and PE4 are two valid
endpoints. For example, both PE3 and PE4 are connected to the same CE, or they
both provide L3 PWHE, or they both can stitch PWs (PE1-PE3 or PE1-PE4) to the
next L2VPN hierarchy level.

Unlike BGP VPWS, traditional (FEC 128) LDP VPWS has no native autodiscovery so
if PE1 needs to have PW redundancy toward both PE3 and PE4, you need to config‐
ure these PWs manually. In the configuration shown in Example 6-24 Junos PE1
chooses PE4 as primary and PE3 as standby.

Example 6-24. Active-Standby LDP VPWS configuration—PE1 (Junos)

protocols {
    l2circuit {
        neighbor 172.16.0.44 {
            interface ge-2/0/1.0 {
                virtual-circuit-id 13579;
                pseudowire-status-tlv;
                backup-neighbor 172.16.0.33 {
                    virtual-circuit-id 13579;
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                    [hot-]standby;
}}}}}

The hot-standby knob allows faster convergence than that of the standby by doing
the following:

• Allowing frames received from the backup (and, of course, the primary) neigh‐
bor. PE1 signals status TLV 0x20 (backup) and 0x00 to PE3 and PE4, respectively.
Therefore, by default, PE3 does not send frames to PE1. You can change this
default behavior by configuring PE3 with the hot-standby-vc-on knob, which has
the downside of causing BUM frame duplication.

• Using the backup neighbor as a preprogrammed backup forwarding next hop.
This idea is further explained in Chapter 21.

And here is the PW redundancy configuration for IOS XR PE4, which chooses PE1 as
primary and PE2 as standby:

Example 6-25. Active-Standby LDP VPWS configuration—PE4 (IOS XR)

l2vpn
 xconnect group myL2CKT
  p2p L2CKT-A
   interface GigabitEthernet0/0/0/3
   neighbor ipv4 172.16.0.11 pw-id 13579
    pw-class PW-L2CKT-UNTAGGED
    backup neighbor 172.16.0.22 pw-id 13579
     pw-class PW-L2CKT-UNTAGGED
!

During this book’s tests, PW redundancy interoperability between
Junos and IOS XR proved to be tricky. The details will be covered
in a blog post at http://mplsinthesdnera.net.

LDP VPWS—VLAN Tag Multiplexing
As with BGP VPWS, you can map one or more S-VLANs to a PW in LDP VPWS.
Example 6-26 builds on top of the AC configuration in Example 6-15 (lines 1 through
9), except that the unit and VLAN IDs are 1020 instead of 1010 now.

Example 6-26. LDP VPWS configuration with SVLAN AC—PE1 (Junos)

protocols {
    l2circuit {
        neighbor 172.16.0.44 {
            interface ge-2/0/1.1020 {
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                virtual-circuit-id 13579;
                ignore-mtu-mismatch;
                pseudowire-status-tlv;
}}}}

Likewise, the following example builds on top of the AC configuration in
Example 6-16 (line 1 through 6), after replacing 1010 with 1020:

Example 6-27. LDP VPWS Configuration with SVLAN AC—PE4 (IOS XR)

l2vpn
 ignore-mtu-mismatch
 pw-class PW-L2CKT-TAGGED
  encapsulation mpls
   protocol ldp
   control-word
   transport-mode vlan passthrough
!
 xconnect group myL2CKT
  p2p L2CKT-A
   interface GigabitEthernet0/0/0/3.1020
   neighbor ipv4 172.16.0.11 pw-id 13579
    pw-class PW-L2CKT-TAGGED
!

To transport all the frame’s VLAN tags on the PW, IOS XR needs the vlan pass
through knob. This is the default in Junos.

The strategy to map an SVLAN and one or more CVLAN(s) to a PW is the same as in
BGP VPWS, and the AC configuration is identical, so it is skipped here.

As for the possibility to map a list of SVLANs to a PW, the AC configuration remains
the same as in BGP VPWS (vlan-id-list, etc.), and you can achieve interoperability
by using the following Junos configuration:

Example 6-28. Adjustment for S-VLAN List PW Interop—PE1 (Junos)

protocols {
    l2circuit {
        neighbor 172.16.0.44 {
            interface ge-2/0/1.1020 {
                encapsulation-type ethernet-vlan;
}}}}

So, multiplexing several SVLANs in the same PW fully interoperates without having
to reserve a physical interface on any PE. This is an advantage of LDP VPWS over
BGP VPWS that has nothing to do with the protocols; it has to do with the current
implementation in both vendors.
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LDP VPWS—VLAN Tag Translation and Manipulation
Again, the concepts are the same as in BGP VPWS. The techniques are already illus‐
trated in Example 6-17 and Example 6-18 (just ignore lines 11 through 16 in the lat‐
ter). And the good news with the current LDP VPWS implementation is that all of the
scenarios—not just a subset—are fully interoperable.

The BGP VPWS interoperability issue happens if all the VLAN tags (one or two) con‐
figured on the AC are popped at the PW’s ingress—and pushed at egress. Junos and
IOS XR considered the resulting encapsulation to be Ethernet and VLAN, respec‐
tively. Now, in LDP VPWS it is possible to tune the encapsulation on the Junos side,
achieving interoperability. As of this writing, the difference is due exclusively to the
implementation in both vendors; it has nothing to do with the protocols.

The adjustment required on the Junos PE side in order to achieve full interoperability
with IOS XR is already shown in Example 6-28.

LDP VPWS—PWHE
Once again, the concepts are the same as in BGP VPWS. And for the same imple‐
mentation reasons just discussed, in LDP VPWS it is not necessary to dedicate a
physical interface on any PE to achieve interoperability between IOS XR and Junos.

Following is an interoperable PWHE configuration in Junos:

Example 6-29. LDP VPWS—PWHE termination—PE1 (Junos)

1     protocols {
2         ldp {
3             interface lo0.0;
4         }
5         l2circuit {
6             neighbor 172.16.0.44 {
7                 interface ps2.0 {
8                     virtual-circuit-id 13579;
9                     ignore-mtu-mismatch;
10                    control-word;
11                    encapsulation-type ethernet-vlan;
12                    pseudowire-status-tlv;
13    }}}}

The configuration of the ps2 interface follows the same principle as Example 6-19,
lines 1 through 16: ps2.0 binds to the PW, and ps2.<X> are the L3 multiplexed inter‐
faces.
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As of this writing, Junos PWHE requires the CW to be negotiated
in the PW. This requires explicit configuration on the IOS XR side,
as shown earlier in Example 6-22.

In Example 6-29, PE1 is acting as the PWHE, and PE4 as a plain L2VPN PE.

In Example 6-30, we’ll reverse the roles, and make IOS XR PE4 the PWHE.

Example 6-30. LDP VPWS—PWHE termination—PE4 (IOS XR)

1     generic-interface-list GIL-CORE
2      interface GigabitEthernet0/0/0/0
3      interface GigabitEthernet0/0/0/1
4     !
5     interface PW-Ether100
6      attach generic-interface-list GIL-CORE
7     !
8     interface PW-Ether100.1020
9      ipv4 address 10.2.2.200 255.255.255.0
10     encapsulation dot1q 1020 second-dot1q 123
11    !
12    l2vpn
13     ignore-mtu-mismatch
14     xconnect group myL2CKT
15      p2p L2CKT-A
16       interface PW-Ether1020
17       neighbor ipv4 172.16.0.11 pw-id 13579
18        pw-class PW-L2CKT-TAGGED
19    !

PW-Ether interfaces in IOS XR are anchored on physical interfaces. The best practice
is to include all the core-facing links in the generic-interface-list (lines 1 through
3). The pw-class PW-L2CKT-TAGGED configuration is the same as in Example 6-27.

LDP VPWS—FAT
The concept is already discussed in “BGP VPWS Signaling” on page 284. This book’s
tests provided interoperable LDP VPWS with FAT by using the configuration shown
in Example 6-31.

Example 6-31. LDP VPWS—FAT interoperability—Junos and IOS XR

# PE1 (Junos)

protocols {
    l2circuit {
        neighbor 172.16.0.44 {
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            interface ge-2/0/1.1020 {
                flow-label-transmit-static;
                flow-label-receive-static;
}}}}

# PE4 (IOS XR)

l2vpn
 pw-class PW-L2CKT    ! This pw-class is applied to the PW
  encapsulation mpls
   load-balancing
    flow-label both static
!

The usage of flow labels can also be negotiated during LDP VPWS establishment, but
it did not provide successfully interoperable results in this book’s tests. On the other
hand, when FAT was statically configured as in Example 6-31, interoperability was 
successful.
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CHAPTER 7

Virtual Private LAN Service

Using a rough analogy, you can view a Virtual Private LAN Service (VPLS) instance
like a Layer 2 (L2) VRF. Following are two important differences with respect to L3
VRFs:

• A real (L3) VRF provides virtualized routing, and VPLS provides virtualized
switching.

• PEs advertise L3 (e.g., IP VPN) routes, but they do not advertise VPLS MAC
routes to remote PEs.

VPLS just provides Multipoint-to-Multipoint (MP2MP) L2 connectivity between
sites; MAC learning is performed in the forwarding plane—unlike IP routes, which
are advertised in the control plane. It is very likely that in the following years Ethernet
VPN (EVPN) takes over VPLS progressively, but as of this writing, the installed base
of VPLS is big, so it deserves its own chapter.

Introduction to VPLS
VPLS is a virtual LAN switching instance with two types of interfaces: traditional
Attachment Circuits (ACs) and Pseudowires (PWs). VPLS is a natural extension of
Virtual Private Wire Service (VPWS). In a nutshell, here are differences:

• VPWS can support many L2 technologies; VPLS supports only Ethernet.
• VPWS is Point-to-Point (P2P), and VPLS is truly MP2MP. Actually, the topology

can be quite arbitrary (full-mesh E-LAN, hub-and-spoke E-TREE, etc.) because
both the usage of RTs in BGP VPLS and the manual definition of targeted neigh‐
bors in LDP VPLS provide that topological flexibility.
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• VPWS does not perform MAC learning (it is not needed), and VPLS does it in
the forwarding plane.

The entire VPLS service behaves like a big switch with distributed MAC learning
intelligence implemented on each PE. In the context of a given VPLS instance, a PE
can have one or more local ACs, and one or more PWs toward remote PEs.

Remember that all the PWs between the same two PEs can share
the same pair (one in each direction) of LSPs, which are also
known as Packet-Switched Network (PSN) Tunnels, for transport.

For the moment and for the sake of simplicity, let’s use a VPLS example with one
VLAN only. In Figure 7-1, all of the PEs are interconnected with a full mesh of bidir‐
ectional P2P PWs: PE1—PE2, PE1—PE3, PE1—PE4, PE2—PE3, PE2—PE4, and
PE3—PE4.

Figure 7-1. VPLS forwarding plane

The service just started, and the very first frame is an ARP request sent by H1. An
ARP request is a broadcast frame, which means that its destination MAC address is
ff:ff:ff:ff:ff:ff. This is the all-ones or broadcast MAC address, and it represents all the
hosts in the bridging domain.
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This frame arrives to all the hosts with the MAC addresses unchanged. First, CE1
replicates the frame and sends one copy of the frame to H11 and another copy to
PE1. This replication process is known as L2 flooding. Then, PE1 sends one copy to
H10—local switching between ACs—and one additional copy over each of the PWs
toward PE2, PE3, and PE4. Thus, PE1 sends in total four copies of the original frame.
The process continues until all of the hosts receive the ARP request.

During this flooding process, every switching device in the path (the CEs and the
VPLS instances on the PEs) also inspects the source MAC address of the frame. In
this way, they learn on which interface, or on which PW, the unicast MAC address
00:00:00:00:00:01 can be reached: PE1 learns that MAC 0x1 is reachable over its inter‐
face to CE1, and PE4 learns that MAC 0x1 is reachable over its PW to PE1. This pro‐
cess is one of the essential functions of a bridge, and it is known as MAC learning. As
a result of MAC learning, bridges populate a MAC table in which they keep track of
the interface (or PW) where each unicast MAC is reachable.

When H4 replies to the ARP request, it does so with a unicast Ethernet frame. Its des‐
tination MAC address is 0x1, which has already been learned by the network. CE4
knows that it must send this frame on its port toward PE4; in turn, PE4 sends it only
over the PW to PE1; and so on. Because the destination MAC address (0x1) has
already been learned, the frame is classified as known unicast: it is not replicated and
it is forwarded point-to-point until it reaches the destination host H1. In parallel, all
the bridges in the path (CE4, PE4, PE1, and CE1) learn the MAC address of H4,
00:00:00:00:00:04.

Figure 7-1 represents a bridge domain, often called a broadcast domain: a broadcast
frame is flooded to all the elements in the domain. According to its destination MAC
address, a frame can be classified as follows:

• Broadcast frames have destination MAC address ff:ff:ff:ff:ff:ff.
• Multicast frames have a destination MAC address whose first octet has its last bit

set to one—for example, 01:00:5e:11:22:33 (see Chapter 4) or ff:ff:ff:ff:ff:ff. Strictly
speaking, broadcast is a specific case of multicast.

• Unicast frames have a destination MAC address whose first octet has its last bit
set to zero.

What packets are not flooded in a broadcast domain? Unicast frames whose destina‐
tion MAC address is known—that is, the address is present in the MAC tables—are
forwarded point-to-point to the destination host. All of the other frames are flooded,
and these are collectively referred to as BUM, or Broadcast, Unknown unicast, and
Multicast.

Bridges keep an idle timer for each of the MAC table (cache) entries. If, for a certain
amount of time (typically minutes), there is no traffic from a given source MAC
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address, that particular MAC entry expires and is deleted from the table. Later, if the
bridge needs to forward a frame destined to that MAC address, the frame is flooded:
known unicast became unknown unicast! So, the known/unknown characteristic of
L2 unicast frames depends on the actual traffic patterns.

Then what is the function of VPLS? Simply put, it interconnects the different sites,
acting as a “glue” that binds together the PWs and the ACs in a distributed bridge
domain. You already saw how PWs are signaled and how traffic is forwarded in a PW.
VPLS relies exactly on the same BGP or LDP mechanisms, so this section is shorter.

A very important aspect of VPLS implementation is split horizon. A frame received
on a PW is never sent back on the same PW: this is an elementary property of Ether‐
net bridges. In addition, by default, a frame received on a PW is not forwarded on
any other PW, either. Without this precaution, L2 loops would be easily created.

You can tactically change this default behavior in some cases (such
as Hierarchical VPLS, discussed later in this chapter).

VPLS Signaled with BGP
BGP VPLS has many points in common with BGP VPWS.

BGP VPLS Configuration
In Junos, you can configure VPLS with two different routing instance types: vpls and
virtual-switch. The pros and cons of each approach will be discussed in the context
of LDP VPLS. Example 7-1 shows the configuration of a vpls instance at Junos PE1.

Example 7-1. BGP VPLS configuration—PE1 (Junos)

1     interfaces {
2         ge-2/0/1 {
3             flexible-vlan-tagging;
4             encapsulation flexible-ethernet-services;
5             unit 2010 {
6                 encapsulation vlan-vpls;
7                 vlan-id 2010;
8     }}}
9     routing-instances {
10        VPLS-A {
11            instance-type vpls;
12            vlan-id 2010;
13            interface ge-2/0/1.2010;
14            route-distinguisher 172.16.0.11:2010;
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15            vrf-target target:65000:2010;
16            protocols {
17                vpls {
18                    control-word;
19                    interface ge-2/0/1.2010;
20                    no-tunnel-services;
21                    site CE1-A {
22                        site-identifier 1;
23                        interface ge-2/0/1.2010;
24    }}}}}

This VPLS instance just has one AC, but it could have several ACs, as is demon‐
strated in Figure 7-1. How many PWs does it have? Any number, starting from zero.
Unlike LDP VPLS, in BGP VPLS, PWs are not explicitly configured and they are not
explicitly signaled, either. As you saw in Chapter 6, there is an autodiscovery mecha‐
nism relying on CE numbering and label blocks.

For the configuration, you can refer to the explanations between Examples
Example 6-3 and Example 6-4. In Example 7-1, a single VLAN tag is specified in the
AC, but it could be two (or none), as well.

Line 20 (no-tunnel-services) is optional but recommended for VPLS. It is further
explained after Example 7-4.

As for the MTU, Junos does not take it into account in BGP VPLS implementation,
but IOS XR does. The only way to achieve interoperability is to configure IOS XR to
ignore the MTU mismatch. Example 7-2 shows the configuration at IOS XR PE4.

Example 7-2. BGP VPLS configuration—PE4 (IOS XR)

1     interface GigabitEthernet0/0/0/3.2010 l2transport
2      encapsulation dot1q 2010
3     !
4     l2vpn
5      ignore-mtu-mismatch-ad
6      bridge-group myVPLS
7       bridge-domain VPLS-A
8        interface GigabitEthernet0/0/0/3.2010
9        !
10       vfi CE4-A
11        vpn-id 1234567
12        autodiscovery bgp
13         rd 172.16.0.44:2010
14         route-target 65000:2010
15         signaling-protocol bgp
16         ve-id 4
17         control-word
18    !
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In line 10, VFI stands for Virtual Forwarding Instance. In line 16, VE stands for VPLS
Edge. In Junos terminology, a VE is a site: a collection of ACs identified by a number
(Example 7-1, line 22; and Example 7-2, line 16) that is globally unique in the context
of the VPLS.

BGP VPLS Signaling
A very important advantage of BGP VPLS over LDP VPLS is autodiscovery. There is
no need to manually specify the remote PEs because RTs dynamically do the trick.

RTs make it possible to build topologies different from a full mesh, exactly like in
L3VPN. Although you can achieve the same level of control in LDP VPLS by man‐
ually configuring the desired PW topology, using RTs is more dynamic and efficient.

Let’s assume a single-homing topology with the following connections: CE1—PE1,
CE2—PE2, CE3—PE3, and CE4—PE4.

The signaling of BGP VPLS is very similar to BGP VPWS. Indeed, it is the same
NLRI. This is the autodiscovery route advertised by PE1 for VPLS-A’s site CE1-A.

Example 7-3. L2VPN route advertised for a VPLS service—PE1 (Junos)

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             table VPLS-A.l2vpn.0 detail

VPLS-A.l2vpn.0: 4 destinations, 7 routes (4 active, ...)
*  172.16.0.11:2010:1:1/96 (1 entry, 1 announced)
 BGP group iBGP-RR type Internal
     Route Distinguisher: 172.16.0.11:2010
     Label-base: 2049, range: 8, offset: 1
     Nexthop: Self
     Flags: Nexthop Change
     Localpref: 100
     AS path: [65000] I
     Communities: target:65000:2010
                  Layer2-info: encaps: VPLS, control flags:[0x2]
                               Control-Word, mtu: 0
                               site preference: 100

Here are the differences between the routes for BGP VPWS and BGP VPLS:

• The encapsulation signaled in the Layer2 Info community is VPLS for BGP
VPLS, versus Ethernet or VLAN for BGP VPWS.

• There is no Status Vector in BGP VPLS. In BGP VPWS, each local AC is linked
to a remote AC in a one-to-one basis, composing a collection of P2P services that
could be represented with a vector. In BGP VPLS, any local AC can communicate
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to any remote AC: this is a communication matrix, not a vector. The decision is
not to include the vector in the BGP VPLS NLRI.

The BGP L2VPN NLRI already allocates a label block, so it is prepared for multisite.

Example 7-4. PWs in BGP VPLS instance—PE1 (Junos)

juniper@PE1> show vpls connections instance VPLS-A
             table VPLS-A.l2vpn.0 detail

Instance: VPLS-A
 Local site: CE1-A (1)
  connection-site   Type  St     # Up trans
  2                 rmt   Up     1
   Remote PE: 172.16.0.22, Negotiated control-word: Yes (Null)
    Incoming label: 2050, Outgoing label: 24000
    Local interface: lsi.1048834, Status: Up, Encapsulation: VPLS
  3                 rmt   Up     1
   Remote PE: 172.16.0.33, Negotiated control-word: Yes (Null)
    Incoming label: 2051, Outgoing label: 800256
    Local interface: lsi.1048832, Status: Up, Encapsulation: VPLS
  4                 rmt   Up     1
   Remote PE: 172.16.0.44, Negotiated control-word: Yes (Null)
    Incoming label: 2052, Outgoing label: 24000
    Local interface: lsi.1048833, Status: Up, Encapsulation: VPLS

Here is what each service MPLS label signifies when PE1 receives them:

2049
The labeled frame is coming from site 1, so it must be dropped because site 1 is
local to PE1.

2050
The labeled frame is coming from site 2, and therefore on the PW from PE2.

2051
The labeled frame is coming from site 3, and therefore on the PW from PE3.

2052
The labeled frame is coming from site 4, and therefore on the PW from PE4.

Knowing which PW each frame is received on is essential to per‐
form MAC learning and to avoid flooding of known unicast traffic.

After its MPLS labels are removed, the L2 frame is forwarded according to the desti‐
nation MAC address and the VPLS instance’s forwarding table.
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By default, Junos automatically creates one vt- logical interface per remote site; in
other words, one for each value of the incoming service MPLS label. When the egress
PE receives a L2VPN packet from the core, it pops the service label and maps the
packet to a label-specific vt- interface for MAC learning. If the no-tunnel-services
knob is configured, there is a Label Switched Interface (lsi)—instead of a vt-
interface—per remote site. The vt- and lsi concepts are discussed in more detail in
Chapter 3.

BGP VPLS implements a MAC flush mechanism. When a site goes down, the local
PE readvertises the site, this time setting the “F” bit in the Layer2 Info control flags.
With the “F” flag, the local PE is telling the remote PEs the following: if you have a
MAC entry pointing to me for this site, remove it from your MAC table.

The “F” bit is also used in Active-Backup multihoming architectures like the one dis‐
cussed around Figure 6-5 for BGP VPWS. In normal conditions, the Designated For‐
warder in a given site does not set the “F” bit. On the other hand, non-DF PEs set the
“F” bit in order to trigger MAC flush on remote PEs that might have MAC entries
pointing to them.

VLAN manipulation techniques for instance-type vpls are very
similar to those already discussed for VPWS in Chapter 6.

BGP VPLS—Efficient BUM Replication
Both Junos and IOS XR perform Ingress Replication (IR) by default. Therefore, if PE1
receives a BUM frame from an AC, it creates three copies of the original frame and
sends one such copy to each of the remote PEs: PE2, PE3, and PE4. Each copy typi‐
cally has two MPLS labels (inner service label and outer transport label), except for
PHP, and travels through a P2P or MP2P LSP.

As discussed in Chapter 5, IR is not particularly efficient as compared to using P2MP
LSPs. If configured to do so, both Junos and IOS XR can flood BUM traffic by using
single-labeled RSVP-TE Point-to-Multipoint (P2MP) LSPs. This mechanism was
already explored in the context of BGP MVPN, which was formerly known as NG-
MVPN. In analogy, VPLS with P2MP LSPs for BUM flooding is sometimes called
Next Generation VPLS or NG-VPLS.

As of this writing, both Junos and IOS XR support NG-VPLS with RSVP-TE P2MP
LSPs. Neither of the two vendors implement it yet for Multipoint LDP (mLDP).

324 | Chapter 7: Virtual Private LAN Service



VPLS with P2MP LSPs—Junos configuration
The principle is the same as in BGP Multicast VPN. With the following configura‐
tion, PE1 becomes the root of a P2MP RSVP-TE LSP that it uses for BUM flooding in
the context of VPLS-A:

Example 7-5. RSVP-TE P2MP LSPs for BUM transport—PE1 (Junos)

routing-instances {
    VPLS-A {
        provider-tunnel {
            rsvp-te {
                label-switched-path-template {
                    default-template;    # Or a custom template
}}}}}

If you have read Chapter 5, this configuration should look familiar.

VPLS with P2MP LSPs—IOS XR configuration
The following configuration achieves similar results in IOS XR:

Example 7-6. RSVP-TE P2MP LSPs for BUM transport—PE4 (IOS XR)

l2vpn
 bridge group myVPLS
  bridge-domain VPLS-A
   vfi CE4-A
    multicast p2mp
     signaling-protocol bgp
     transport rsvp-te
!

VPLS with P2MP LSPs—signaling
When configured as in the two previous examples, the PE updates its BGP L2VPN
autodiscovery routes by adding a Provider Multicast Service Interface (PMSI)
attribute:

Example 7-7. PMSI attribute in a BGP L2VPN route—PE1 (Junos)

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             table VPLS-A.l2vpn.0 detail

VPLS-A.l2vpn.0: 3 destinations, 5 routes (3 active, ...)
*  172.16.0.11:2010:1:1/96 (1 entry, 1 announced)
[...]
    PMSI: Flags 0x0: Label 0:
          RSVP-TE: Session_13[172.16.0.11:0:58496:172.16.0.11]
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In multicast terms (see Chapter 5), this is an Inclusive PMSI, so all the remote PEs in
VPLS-A become leaves of the P2MP LSP.

The rest of the signaling is exactly the same as described in Chapter 5. The leaf PEs
receive RSVP-TE path messages whose P2MP LSP Tunnel IPv4 Session is
172.16.0.11:0:58496:172.16.0.11. This value matches the PMSI attribute and that
is how the leaf PE binds the RSVP-TE P2MP sub-LSP to the VPLS-A instance.

Likewise, because all of the RSVP-TE P2MP sub-LSPs belonging to the same LSP
share the same P2MP LSP Tunnel IPv4 Session value, a transit LSR advertises the same
label for all of these sub-LSPs to the upstream LSR. This is how the transit LSRs act as
branching points, achieving efficient replication of BUM frames.

VPLS Signaled with LDP
LDP VPLS has many points in common with LDP VPWS.

LDP VPLS Configuration
As already mentioned, there are two instance types in Junos that support VPLS: VPLS
instances and Virtual Switches. Which one is better? There is no simple answer. Let’s
begin by looking at a configuration example for each instance type and leave the fea‐
ture comparison for “VLANs and Learning Domains in VPLS” on page 332.

LDP VPLS—Junos VPLS instances
Example 7-8 shows a configuration example in Junos featuring a VPLS instance with
just one AC (it could be more than one) and three PWs.

Example 7-8. LDP VPLS with VPLS instance—PE1 (Junos)

1     interfaces {
2         ge-2/0/1 {
3             flexible-vlan-tagging;
4             encapsulation flexible-ethernet-services;
5             unit 2010 {
6                 encapsulation vlan-vpls;
7                 vlan-id 2010;
8     }}}
9     routing-instances {
10        VPLS-B {
11            instance-type vpls;
12            vlan-id 2010;
13            interface ge-2/0/1.2010;
14            protocols {
15                vpls {
16                    no-tunnel-services;
17                    vpls-id 24680;
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18                    mtu 1900;
19                    neighbor 172.16.0.22;
20                    neighbor 172.16.0.33;
21                    neighbor 172.16.0.44;
22    }}}}

The vpls-id (line 17) value must match on both endpoints, and it is equivalent to the
virtual-circuit-id from Example 6-21. Indeed, it is the value of the Martini FEC’s
VC-ID.

LDP VPLS—Junos Virtual Switches
Example 7-9 shows the equivalent configuration on a Virtual Switch instead of a
VPLS instance.

Example 7-9. LDP VPLS with Virtual Switch—PE1 (Junos)

1     interfaces {
2         ge-2/0/1 {
3             flexible-vlan-tagging;
4             encapsulation flexible-ethernet-services;
5             unit 2010 {
6                 encapsulation vlan-bridge;
7                 vlan-id 2010;
8     }}}
9     routing-instances {
10        VS-B {
11            instance-type virtual-switch;
12            interface ge-2/0/1.2010;
13            protocols {
14                vpls {
15                    no-tunnel-services;
16                    vpls-id 24680;
17                    mtu 1900;
18                    neighbor 172.16.0.22;
19                    neighbor 172.16.0.33;
20                    neighbor 172.16.0.44;
21                }
22            }
23            bridge-domains {
24                BR-2010 {
25                    vlan-id 2010;
26                    interface ge-2/0/1.2010;
27    }}}}

LDP VPLS—IOS XR configuration

IOS XR has one way to configure LDP VPLS, on a bridge-domain (see
Example 7-10).
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Example 7-10. LDP VPLS configuration—PE4 (IOS XR)

interface GigabitEthernet0/0/0/3.2010 l2transport
 encapsulation dot1q 2010
!
l2vpn
 brige-group myVPLS
  bridge-domain VPLS-B
   mtu 1900
   interface GigabitEthernet0/0/0/3.2010
   !
   vfi CE4-B
    vpn-id 654321   ! This number is irrelevant (not signaled)
    neighbor 172.16.0.11 pw-id 24680
    neighbor 172.16.0.22 pw-id 24680
    neighbor 172.16.0.33 pw-id 24680
!

LDP VPLS Signaling
LDP VPLS and LDP VPWS signaling are virtually identical, to the point that a PW
between PE1 and PE4 may be associated to a LDP VPWS at PE1, and to an LDP
VPLS instance at PE4, or vice versa (VPLS at PE1 and VPWS at PE4). Interoperability
is perfect and you need only ensure that MTU and encapsulation at both ends of the
PW match—the Junos ignore-mtu-mismatch and ignore-encapsulation-mismatch
knobs are helpful, too.

Due to the multipoint nature of VPLS, there is no AC:PW 1:1 mapping; that’s why
you don’t see the AC in the Example 7-11 (as compared to Example 6-23 for VPWS).

Example 7-11. Established LDP VPLS—Junos and IOS XR

# PE1 (Junos)

juniper@PE1> show vpls connections instance VPLS-B
[...]
Instance: VPLS-B
  VPLS-id: 24680
    Neighbor                  Type  St     # Up trans
    172.16.0.22(vpls-id 24680) rmt   Up     1
      Remote PE: 172.16.0.22, Negotiated control-word: No
      Incoming label: 2305, Outgoing label: 24141
      Negotiated PW status TLV: No
      Local interface: lsi.1049614, Status: Up,
                       Encapsulation: ETHERNET
    172.16.0.33(vpls-id 24680) rmt  Up     1
      Remote PE: 172.16.0.33, Negotiated control-word: No
      Incoming label: 2306, Outgoing label: 2405
      Negotiated PW status TLV: No
      Local interface: lsi.1049615, Status: Up,
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                       Encapsulation: ETHERNET
    172.16.0.44(vpls-id 24680) rmt  Up     1
      Remote PE: 172.16.0.44, Negotiated control-word: No
      Incoming label: 2307, Outgoing label: 24367
      Negotiated PW status TLV: No
      Local interface: lsi.1049616, Status: Up,
                       Encapsulation: ETHERNET

# PE4 (IOS XR)

RP/0/0/CPU0:PE4#show l2vpn bridge-domain bd-name VPLS-B
[...]
  List of VFIs:
    VFI CE2-B (up)
      Neighbor 172.16.0.11 pw-id 24680, state: up, [...]
      Neighbor 172.16.0.22 pw-id 24680, state: up, [...]
      Neighbor 172.16.0.33 pw-id 24680, state: up, [...]

Here is what each service MPLS label signifies when PE1 receives a labeled packet:

2305
The labeled frame is coming from PE2, and it is processed at lsi.1049614.

2306
The labeled frame is coming from PE3, and it is processed at lsi.1049615.

2307
The labeled frame is coming from PE4, and it is processed at lsi.1049616.

As discussed many times before, an alternative to lsi is vt- interfaces. The key,
regardless of the choice, is that depending on what PE the frame is coming from, it is
processed via a different logical interface inside the router. This is essential for the
MAC learning process in Junos.

After its MPLS labels are removed, the L2 frame is forwarded according to the desti‐
nation MAC address and the VPLS instance’s forwarding table.

The command to show the MAC table associated to a given VPLS service in Junos is
show vpls mac-table for VPLS instances, and show bridge mac-table for Virtual
Switches, as shown in Example 7-12.

Example 7-12. Virtual Switch MAC table—PE1 (Junos)

juniper@PE1> show bridge mac-table instance VS-B

Routing instance : VS-B
 Bridging domain : BR-2010, VLAN : 2010
   MAC                 MAC      Logical          NH     RTR
   address             flags    interface        Index  ID
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   6c:9c:ed:37:8a:df   D        xe-0/0/0.2001
   80:71:1f:c0:e9:00   D        lsi.1049904

During this book’s tests, Junos and IOS XR interoperability was successful.

LDP VPLS—Autodiscovery via BGP
If you look back to BGP VPLS configuration (Example 7-1 and Example 7-2), you
can see that the administrator does not need to manually specify the remote PE
addresses. The magic of BGP and RTs does the trick.

However, LDP VPLS does not have this autodiscovery capability, and you must man‐
ually configure the targeted LDP sessions on both ends of each PW. This is the FEC
128 model, and its name comes from the fact that Martini LDP FEC is #128.

Although for VPWS this does not look like a big issue, in LDP VPLS each instance
can have many PWs, and manually configuring all of them is quite an overhead and
hard to manage. The solution comes with BGP.

Instead of manually configuring the neighbors like in Example 7-8, Example 7-9, and
Example 7-10, it is possible to let BGP autodiscover them. When the endpoints are
known, the PEs use targeted LDP to signal the PW. This mixed BGP+LDP solution is
commonly called FEC 129, because that FEC type is ultimately signaled in the LDP
session. Let’s see how it works.

LDP VPLS—FEC 129—BGP configuration
The same L2VPN address family (AFI=25, SAFI=65) is used as for BGP VPWS/
VPLS.

IOS XR works fine with the configuration on Example 6-2. As for Junos, it requires
the extra configuration shown here:

Example 7-13. L2VPN address family for FEC 129—PE1 (Junos)

protocols {
    bgp {
        group iBGP-RR {
            family l2vpn {
                auto-discovery-only;
}}}}

LDP VPLS—FEC 129—Junos service configuration
FEC 129 works fine in Junos VPLS instances, and as of this writing it is not imple‐
mented on Virtual Switches. To transition to FEC 129, you can take the configuration
from Example 7-8, remove the neighbors, delete the vpls-id, and then add the fol‐
lowing lines:
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Example 7-14. LDP VPLS with FEC 129—PE1 (Junos)

1     routing-instances {
2         VPLS-B {
3             route-distinguisher 172.16.0.11:2010;
4             l2vpn-id l2vpn-id:65000:24680;
5             vrf-target target:65000:2010;
6     }}

LDP VPLS—FEC 129—IOS XR service configuration
To transition to FEC 129, you can take the configuration on Example 7-10, remove
the neighbors, and then add the lines shown in Example 7-15.

Example 7-15. LDP VPLS configuration—PE4 (IOS XR)

1     l2vpn
2      brige-group myVPLS
3       bridge-domain VPLS-B
4        vfi CE4-B
5         autodiscovery bgp
6          rd 172.16.0.22:2010
7          route-target 65000:2010
8          signaling-protocol ldp
9           vpls-id 65000:24680
10    !

LDP VPLS—FEC 129 signaling
You might have guessed from Example 7-14 (line 4) and Example 7-15 (line 9) that
there is a new BGP community that identifies the PW service and must match on
both ends. Let’s have a look at it:

Example 7-16. L2VPN FEC 129 route advertised by PE1 (Junos)

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             table VPLS-B.l2vpn.0 detail

VPLS-B.l2vpn.0: 4 destinations, 5 routes (4 active, ...)
*  172.16.0.11:2010:172.16.0.11/96 (1 entry, 1 announced)
 BGP group iBGP-RR type Internal
     Route Distinguisher: 172.16.0.11:2001
     Autodiscovery for mesh-group: __ves__
     Nexthop: Self
     Flags: Nexthop Change
     Localpref: 100
     AS path: [65000] I
     Communities: target:65000:2010 l2vpn-id:65000:24680
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The route advertised by IOS XR looks similar. Thanks to the two communities, the
PEs discover each other in the context of this VPLS service.

Now it’s time to signal the PWs themselves:

Example 7-17. LDP FEC 129 exchanged between Junos and IOS XR

juniper@PE1> show ldp database session 172.16.0.44

Input label database, 172.16.0.11:0--172.16.0.44:0
  Label     Prefix
  24011      FEC129 NoCtrlWord ETHERNET
             000afde8:00006068 ac10002c ac10000b

Output label database, 172.16.0.11:0--172.16.0.44:0
  Label     Prefix
   2305      FEC129 NoCtrlWord ETHERNET
             000afde8:00006068 ac10000b ac10002c

The hexadecimal pattern contains 0x6068 = 24680, which nicely matches the L2VPN
ID community value. If you look carefully, you can also see the loopback addresses of
PE1 and PE4. This completes the signaling of the PW’s service label.

Like BGP VPLS, FEC 129 brings to LDP VPLS the possibility to have an Active-
Backup multihoming mechanism and implements the “F” bit.

As for PW Status TLV, it is not that useful in VPLS, because there is no longer an
AC:PW coupling. In general, the redundancy story of VPLS is not very compelling,
and that is one of the main reasons why EVPN is gaining traction.

LDP VPLS—efficient BUM replication
As of this writing, IOS XR supports RSVP-TE P2MP LSPs for BUM forwarding in the
FEC 129 model. The mechanism is based on the BGP Provider Multicast Service
Interface (PMSI) attribute, exactly as described in the BGP VPLS section.

Neither Junos nor IOS XR support it in the FEC 128 model.

VLANs and Learning Domains in VPLS
In the old days of enterprise LANs, virtual LANs (VLANs) were introduced as a way
to segment traffic. The VLAN ID can be interpreted in two different manners: it is a
12-bit tag carried on the wire, and also a bridge domain identifier. What is a bridge
(or broadcast) domain? Basically, it is a set of (logical) links and hosts such that an L2
frame sent by one host can reach the other hosts without any L3 routing action. Typi‐
cally, a bridge domain is a full-mesh E-LAN, but with VPLS it is possible to create
other topologies such as a hub-and-spoke E-Tree.
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VLANs bring virtualization in the forwarding plane as well as in the control plane, in
the sense that a different MAC table is kept for each VLAN. In the same way that one
IP route can be present in different VRFs and represent a separate network, the same
MAC address can be present in different MAC tables or learning domains.

Although the concepts are not strictly equivalent, for simplicity this
book uses the terms “learning domain,” “bridge domain,” and
“broadcast domain” interchangeably.

Keeping in mind that the VLAN ID on-the-wire is not necessarily identical to the
VLAN ID identifying the bridge domain, let’s see the different options.

For brevity, let’s consider ACs configured with one VLAN tag only. In this case, if a
frame has two VLAN tags, only the outer one is taken into account for bridging: the
internal tag is left untouched and it’s considered as part of the payload.

Suppose that each PE has four ACs locally attached to the VPLS service:

• AC-A and AC-B—connected to CE-A and CE-B, respectively—are both config‐
ured with VLAN 2010.

• AC-C—connected to CE-C—is configured with VLAN 2011.
• AC-D—connected to CE-D—is configured with VLAN 2222.

Each PE has four CEs attached, which adds up to 16 CEs in total.

VLANs 2010, 2011, and 2222 are the on-the-wire VLAN tags. The frames sent and
received on the ACs have these values set in the outer (maybe the only) VLAN
header.

VPLS in default VLAN mode
The default behavior in both IOS XR VFIs and Junos VPLS instances is the same
(Virtual Switches are discussed later). There is only one learning domain associated
with the instance, which is VLAN-agnostic. After it receives a frame from an AC, the
PE preserves the original VLAN tag(s). If the frame needs to be sent out to one or
more PWs, it also travels with the original VLAN tag(s). Here is the result:

• CE-A can communicate to the local CE-B, and to remote PEs’ CE-A and CE-B.
• CE-B can communicate to the local CE-A, and to remote PEs’ CE-A and CE-B.
• CE-C can communicate to the remote PEs’ CE-C.
• CE-D can communicate to the remote PEs’ CE-D.
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If you want all the CEs to communicate to one another, you need to use VLAN trans‐
lation techniques such as those shown in Example 6-17.

In this default implementation, the VLAN tag is considered as a property of the
frame: it does not identify the bridge domain. In Junos, this is achieved when the
vlan-id is not set on the VPLS instance (Example 7-8, line 12).

In Junos VPLS instances, it is recommended that you set the
vlan-id.

Junos VPLS Instances—Normalized VLAN Mode
Let’s see the implementation when the vlan-id is set to a specific number on a VPLS
instance. In this case, the on-the-wire VLAN tag is replaced inside the router with a
different value, called the normalized tag. This tag is kept when the frame is flooded
or forwarded to a PW.

If you set vlan-id 2222 (for example) on the VPLS instance, the VLAN tags for
incoming frames are swapped to the normalized tag: 2222. And the outgoing frames
whose VLAN tag is 2222 get their tag swapped to the AC’s on-the-wire VLAN tag.
For example, if CE-A sends a BUM frame, it is flooded:

• To the local CE-B with VLAN tag 2010.
• To the local CE-C with VLAN tag 2011.
• To the local CE-D and into the PWs with VLAN tag 2222.

Before the frame is sent out of AC-B and AC-C, it actually has VLAN tag 2222 inside
the router, but this tag is swapped as the frame is sent out of the AC.

The end result is a single bridge domain where local switching between the ACs is
successful, regardless of whether the on-the-wire VLAN tags match the in-box tag.
This ensures communication among all the CEs and is called VLAN normalization,
shown in Example 7-18.

Example 7-18. VLAN normalization in a VPLS instance—PE1 (Junos)

interfaces {
    ge-2/0/1 unit 2010 vlan-id 2010;
}
routing-instances {
    VPLS-B vlan-id 2222;
}

334 | Chapter 7: Virtual Private LAN Service



juniper@PE1> show interfaces ge-2/0/1.2010 | match vlan-tag
    VLAN-Tag [ 0x8100.2010 ] In(swap .2222) Out(swap .2010)

What about the remote CEs that are reachable via the PWs? The remote PEs’ VPLS
instance must know what to do with frames whose VLAN tag is 2222:

• If it is a Junos VPLS instance with vlan-id 2222, it works fine.
• If it is a Junos VPLS instance with a different vlan-id, it does not work.
• If it is an IOS XR VFI or a Junos VPLS instance in the default mode, it works fine

if either the AC is configured with on-the-wire tag 2222 or it has a translation
rule (vlan-map in Junos language) applied that handles the translation from/to
the normalized tag 2222 to the AC-specific tag on-the-wire.

It is possible to normalize both SVLAN and CVLAN. In this case,
use vlan-tags on the VPLS instance and on the ACs. These values
don’t need to match: normalization takes care of the translation!

Junos VPLS Instances—VLAN-Free Mode
Let’s see the implementation when the vlan-id is set to none. In this case, the outer
on-the-wire VLAN tag is popped when the frame enters the router. It is pushed when
the frame is sent out of the AC.

For example, if CE-A sends a BUM frame, it is flooded:

• To the local CE-B with VLAN tag 2010.
• To the local CE-C with VLAN tag 2011.
• To the local CE-D with VLAN tag 2222.
• With no VLAN tag into the PWs, unless the CE sent dual-tagged frames, in

which case the original inner tag is preserved.

Before the frame is sent out of AC-B, AC-C, and AC-D, it actually has no VLAN tag
(unless the original frame was dual-tagged) inside the router. The AC-specific VLAN
tag is pushed as the frame is sent out of the AC.

The end result is a single bridge domain where local switching between the ACs is
successful, regardless of the on-the-wire VLAN tag value.

What about the remote CEs that are reachable via the PWs? The remote PEs’ VPLS
instance must know what to do with tag-less Ethernet frames:

• If it is a Junos VPLS instance with vlan-id none, it works fine.
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• If it is a Junos VPLS instance with a different vlan-id <value>, it does not work,
unless the original frame sent by the CE was dual-tagged and its inner VLAN tag
matched <value>.

• If it is an IOS XR VFI or a Junos VPLS instance in the default mode, either the
AC is a physical port with no VLAN tag, or the AC has applied an in-pop out-
push translation rule (vlan-map in Junos language), such as that shown in
Example 6-18, or the original frame sent by the CE was dual-tagged and its inner
tag matches the AC’s VLAN ID.

Junos VPLS Instances—VLAN-Aware Mode
Let’s see the implementation when the vlan-id is set to all. In this case, the PE auto‐
detects the VLAN tag of a frame as it enters the router. When an incoming frame has
a VLAN tag that does not match any existing bridge domain, Junos creates a new
bridge domain for the new (VPLS instance, VLAN tag) pair. Therefore, flooding is
VLAN-aware. You can check that by using the command show vpls mac-table,
which displays one domain per VLAN with active traffic and MAC entries.

For example, if CE-A sends a BUM frame, it is flooded:

• To the local CE-B with VLAN tag 2010.
• With the original VLAN tag 2010 into the PWs.

Let’s go back to the BUM frame sent by CE-A. The remote PEs’ VPLS instance must
know what to do with a frame with VLAN ID 2010:

• If it is a Junos VPLS instance with vlan-id all or vlan-id 2010, it works fine.
• If it is a Junos VPLS instance with a different vlan-id <value>, or none, end-to-

end connectivity fails.
• If it is an IOS XR VFI or a Junos VPLS instance in the default mode, either the

AC is configured with on-the-wire tag 2010, or it has a translation rule (vlan-map
in Junos language) applied that handles the translation from/to the 2010 tag to
the specific AC-specific tag on-the-wire.

Junos Virtual Switches
Virtual Switches have the greatest granularity because they support per-VLAN bridge
domains, and these implement automatic normalization. If you look back at
Example 7-9, you can define several bridge domains such as BR-2010 in the same Vir‐
tual Switch; each bridge domain can have one or more associated ACs.
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The scenario becomes even more interesting when the AC on-the-wire VLAN tag is
different from the learning VLAN tag. This is VLAN normalization:

Example 7-19. VLAN normalization in a bridge domain—PE1 (Junos)

interfaces {
    ge-2/0/1 unit 2010 vlan-id 2010;
}
routing-instances {
    VS-B {
        bridge-domains {
            BR-2222 {
                vlan-id 2222;
                interface ge-2/0/1.2010;
}}}}

juniper@PE1> show interfaces ge-2/0/1.2010 | match vlan
    VLAN-Tag [ 0x8100.2010 ] In(swap .2222) Out(swap .2010)
    Encapsulation: VLAN-Bridge

The concept is identical to VLAN normalization in VPLS instances, with the advan‐
tage that here you can associate one different learning VLAN to each bridge domain
in the Virtual Switch.

As you know, a Virtual Switch supports one or more bridge domains, which can be
displayed by using the show bridge domain and show bridge mac-table com‐
mands.

The end result is similar to a set of VPLS instances in normalized VLAN mode, with
several advantages. First, Virtual Switches can use the same set of PWs to transport
frames for several feature-rich bridge domains. True, VPLS instances with vlan-id
all can also multiplex the PWs and dynamically create per-VLAN bridge domains,
but these domains are not feature-rich. But what does feature-rich mean? Each of the
bridge domains in a Virtual Switch can have its own normalization VLAN and its
own IRB interface. Now, let’s see what IRB stands for.

As an alternative to IRB in instances with vlan-id all, you can
define a pair of lt- units per VLAN: one unit on the VPLS
instance, and its peer unit with family inet and/or family inet6,
acting like an IP gateway.

Integrated Routing and Bridging in VPLS
The Integrated Routing and Bridging (IRB) concept was conceived in enterprise
LANs, where so-called L3 switches implement inter-VLAN routing. Every bridge
domain or VLAN has a default gateway that is implemented in an IRB interface. Sup‐
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pose that an L2 switch has four VLANs: 2001 through 2004. Each VLAN spans many
access (untagged) and trunk (VLAN-tagged) ports on the switch. A pure L2 switch
does not need to have any IP address on the VLANs: it just bridges frames on each
domain separately. But that results in four isolated domains.

If you want to interconnect the four VLANs at the L3 level, you can do either of the
following:

• Use a traditional L3 router on-a-stick.
• Enhance the L2 switch with L3 capabilities so that it becomes an L3 switch.

In the latter case, the L3 switch has four virtual IP interfaces, each linked to one
VLAN. These IP interfaces are called IRB in Junos and Bridge Virtual Interface (BVI)
in IOS XR. The hosts in each VLAN typically use the IRB/BVI address as the default
gateway—Virtual Router Redundancy Protocol (VRRP) is discussed later. The L3
switch performs inter-VLAN routing and also routing between a VLAN and the
WAN.

VPLS with IRB/BVI provides an L3 switching service. IRB is especially important in
Data Center Interconnect scenarios. As for L2VPN as a Transport, IRB is not that rel‐
evant: PWHE is.

IRB Configuration in Junos VPLS Instances
Junos VPLS instances only support one IRB interface. This makes IRB suitable for
normalized VLAN Mode (vlan-id <number> or vlan-tags) and for VLAN-free
mode (vlan-id none). Example 7-20 shows an IRB configuration.

Example 7-20. IRB on a VPLS Instance—PE1 (Junos)

1     interfaces {
2         irb {
3             unit 2010 {
4                 family inet address 10.1.1.101/24;
5                 mac 00:00:01:00:20:10;
6     }}}
7     routing-instances {
8         VPLS-B {
9             routing-interface irb.2010;
10    }}

The IRB unit ID (line 3) does not need to match the VPLS vlan-id.
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Now, the irb.2010 interface is like any L3 interface. It can be either left in the global
routing table, or assigned to a VRF (set routing-instances <VRF> interface
irb.2010). How is inter-VLAN routing possible? Just take several VPLS instances,
each with its own IRB logical interface, and ensure that all these IRB interfaces belong
to the same L3 routing instance. The latter can also have L3 WAN interfaces and then
our PE becomes a full-blown data center gateway (DC GW).

The MAC address configuration (line 5) is critical. In VPLS, it is important that every
host in the domain can send frames to—and receive frames from—the IRB MAC
address of every PE in an independent manner. This is guaranteed only if each PE
uses a different MAC address on the IRB. Otherwise, a PE can intercept frames pack‐
ets targeted to (or sourced from) another PE. The MAC address must be unicast, so
the last bit of the first octet must be zero. It must also be unique; in the example, it is
made of the PE number and the VLAN ID, but you can use any other numbering
schemes.

The IRB interface is untagged, and the ACs are typically tagged. Junos automatically
handles this discrepancy; not only in VLAN-free mode, but also in normalized
VLAN mode. Suppose that PE1 receives on ge-2/0/1.2010 (or on a PW) a frame tag‐
ged with VLAN 2010 and with destination MAC address 00:00:01:00:20:10 (or the
broadcast address). In that case, PE1 automatically pops the VLAN tag before hand‐
ing the frame to the IRB. Likewise, when the IRB originates an untagged frame, PE1
pushes the VLAN tag before sending the frame out of the AC (or the PW). However,
if the incoming traffic has two VLAN tags and the AC’s configuration has only one
VLAN tag, forwarding breaks: Junos IRB relies on the actual traffic matching the
AC’s settings.

IRB Configuration in Junos Virtual Switches
One advantage of Virtual Switches over VPLS instances is that it supports one IRB
per bridge domain. Example 7-21 shows how to bind an IRB logical interface to a
Virtual Switch.

Example 7-21. IRB on a Virtual Switch’s bridge domain—PE1 (Junos)

routing-instances {
    VS-B {
        bridge-domains BR-2010 routing-interface irb.2010;
}}

IRB Configuration in IOS XR
The following example shows the configuration of an IRB (BVI) interface in IOS XR:
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Example 7-22. IRB on a bridge domain—PE4 (IOS XR)

interface BVI2010
 ipv4 address 10.1.1.104 255.255.255.0
 mac-address 0000.0400.2010
!
l2vpn
 bridge group myVPLS
  bridge-domain VPLS-B
   routed interface BVI2010
!

This BVI interface is shared by all of the ACs and PWs in the bridge domain VPLS-B,
regardless of their VLAN tag. As in Junos IRB, the BVI interface is untagged. But
unlike Junos, VLAN tag pop/push for IRB/BVI is not automatic in IOS XR. As a
result, any frame destined to the BVI unicast MAC address (or to the broadcast
address) from an AC or a PW must be explicitly stripped from any VLAN tags. This
is critical for interoperability: it is not only PE4 that must be locally configured with
this in mind; the remote PEs—and some of them run Junos—also need to send and
receive untagged frames over the PWs they establish with PE4.

Now, if the ACs are VLAN tagged, you need to use the following techniques:

• Manually stripping VLAN tags from the ACs, such as in Example 6-18, so that
the frames arrive untagged to the BVI. This works fine in IOS XR and also in
Junos VPLS instances running in legacy mode (no vlan-id on the instance).

• Junos VPLS instances running in VLAN-free mode (vlan-id none). This is the
recommended approach in Junos for interoperating with IOS XR.

VPLS—IRB Redundancy and Traffic Tromboning
Let’s take the example of a data center with four L2 switches: CE1, CE2, CE3, and
CE4. Each CE has different hosts attached, distributed in broadcast domains, as out‐
lined in Figure 7-2.

The topology is single-homed with the following VLAN-tagged links: CE1-PE1, CE2-
PE2, CE3-PE3, and CE4-PE4. Every link transports two different VLAN tags (2001
and 2002). Each VLAN is associated to a different broadcast domain in the data cen‐
ter, to a bridge domain (or VPLS instance) at the PEs, and to a different IPv4 subnet
(10.1.1.0/24 and 10.1.2.0/24, respectively). More specifically:

• PE1 and PE3 have two VPLS instances configured with vlan-id none. The logi‐
cal ACs with vlan-id 2001 and 2002 are attached to the VPLS-1 and VPLS-2
instances, respectively. Each VPLS instance has its own IRB interface: irb.2001
and irb.2002.
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• PE2 and PE4 have two bridge domains. The logical ACs with encapsulation
dot1q 2001 and 2002 are attached to the VPLS-1 and VPLS-2 instances, respec‐
tively. Each VPLS instance has its own IRB interface: BVI2001 and BVI2002.

Figure 7-2. VPLS IRB and traffic tromboning

The IRBs’ primary IPv4 and MAC addresses are unique in the entire data center
domain. In other words, each [PE, IRB] pair has a different primary IPv4 address and
a different primary MAC address. Why different MAC and IPv4 addresses? Duplicate
MAC addresses might result in a segmented bridge domain because a PE would block
transit traffic sourced from its own IRB MAC address. And non-unique IPv4
addresses might result in unpredictable ARP resolution.

Thanks to its more powerful control plane, EVPN supports having
the same IRB IPv4 and MAC addresses in different PEs. You will
see that in Chapter 8.

Now, on each PE, the three IRB/BVI interfaces are all grouped in the same VRF. So,
there is one single L3VPN for the entire data center. This makes inter-VLAN routing
possible.

Let’s assume that each host has a default gateway configuration pointing to the IPv4
address configured on the closest PE’s irb.<vlan> or BVI<vlan> interface.

Integrated Routing and Bridging in VPLS | 341



H1-A and H4-B are two hosts in the data center. H1-A is connected to CE1 and it
belongs to VLAN 2001. H4-B is connected to CE4 and it belongs to VLAN 2002.
Packets from H1-A to H4-B are routed by PE1, and packets from H4-B to H1-A are
routed by PE4. This results in an asymmetrical routing scheme, but it is perfectly fine.

VPLS and VRRP
The previously described architecture has a couple of issues:

• First, if the CE1-PE1 uplink fails, the hosts connected to CE1 become isolated.
• Second, each site must be configured with a different default gateway address.

This is not only very complex to manage, it also breaks modern applications such
as VM mobility across the data center.

VPLS can solve the first challenge with Active-Backup CE multihoming—because
VPLS does not support Active-Active. When multihomed, CE1 has an Active-Backup
Link Aggregate Group with two links: one to PE1, and one to PE2.

The second challenge is addressed by VRRP. For each VRRP group—and the com‐
mon practice is to define one group per bridge domain—all the routers share a com‐
mon secondary IPv4 address and a common secondary MAC address. But, for each
group, only one PE (so-called the VRRP master) has these addresses in an active state
on its IRB interface. The VRRP master is the only router in each group that does the
following:

• Periodically sends VRRP hellos sourced from the group MAC address.
• Sends ARP replies (and gratuitous ARP requests) mapping the group IPv4

address to the group MAC address.

All the hosts in a given VLAN configure the group IPv4 address as their default gate‐
way, and resolve via ARP this IPv4 address to the group MAC address. Back to our
example, PE1’s IRB interfaces are VRRP masters on their respective bridge domains.
The virtual (MAC, IPv4) addresses for each bridge domain are (00:00:5e:00:01:01,
10.1.1.100) and (00:00:5e:00:01:02, 10.1.2.100), respectively. The VRRP master is elec‐
ted according to the configured priorities and a tie-breaking mechanism based on the
primary IPv4 address numerical value.

Now, what are the challenges of this solution?

First, suppose that there is one more PE that provides connectivity between the data
center and the rest of the world (or the rest of the L3VPN). This Gateway PE adver‐
tises IPv4 VPN routes that the data center PEs (PE1, PE2, PE3, and PE4) import in
their own data center VRF. Now, it’s important that a PE does not become a VRRP
master if it does not have the full routing picture. Otherwise, such a PE would attract
upstream traffic that it cannot route, which ultimately results in traffic blackholing.
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One way to handle this is by making the VRRP priority a dynamic value which is
automatically decreased if certain routes are missing from the local VRF. Still, this
solution is far from clean as compared to the elegant way that EVPN addresses this
very same challenge, as you will see soon.

In addition, if the gateway PE needs to send a packet to one of the hosts in the data
center, it will send it to one of the data center PEs. Which one? Well, they all advertise
the /24 addresses, so one of them will be considered as the best (based on the BGP
route-selection process), but it might not necessarily be the PE that is local to the
host. This results in suboptimal forwarding that you can fix in two ways: activating
the VPLS service at the gateway PE, or replacing VPLS with EVPN.

On a separate note, in VPNs in general and VPLS/EVPN in particular, it is consid‐
ered a good practice to configure a delay between the time an AC goes up and the
time when the control and forwarding planes consider the AC to be active. In this
way, you give time for the core protocols to converge before enabling the ACs, reduc‐
ing the likelihood of traffic blackholes.

As a general rule on interfaces with L2 ACs, set hold-time up
(Junos) or carrier-delay up (IOS XR) to at least one minute.

Traffic tromboning
Here is one more issue illustrated in Figure 7-2. H3-A and H3-B are two hosts con‐
nected to CE3 and belonging to VLAN 2001 and 2002, respectively. PE1 is the VRRP
master for VLAN 2001. If H3-A sends an IP packet to H3-B, it must send it to its
default gateway: PE1’s irb.2001.

As a result, H3-A to H3-B inter-VLAN routing follows this path: H3-A→CE3→
PE3→PE1→PE3→CE3→H3-B. Thus, packets originated and destined to the same
data center site are actually forwarded via a remote data center site. This phenom‐
enon is called traffic tromboning (inspired by the shape of a trombone) and is also
elegantly solved by EVPN.

Hierarchical VPLS
To enhance the scalability or security of a VPLS design, you can implement hierarchi‐
cal VPLS (H-VPLS) models. Depending on the VPLS signaling protocol, you can
deploy three different models:

LDP signaling
H-VPLS model based on PWs (VPWS service) initiated on Spoke devices and
terminated inside a VPLS instance on Hub devices
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BGP signaling
H-VPLS based on Route Target (RT) filtering

BGP signaling
H-VPLS based on site ID (site-range) filtering

Due to space constraints, this book presents only a short descrip‐
tion of each hierarchical VPLS model.

H-VPLS Model with LDP Signaling
VPLS scaling with LDP signaling, as defined in RFC 4762, Section 10, looks at how to
minimize the number of required PWs. As discussed earlier in this chapter, VPLS in
its typical form requires a full mesh of PWs established between all participating
devices. As the network grows, and more and more VPLS Edge (VE) devices are
added, the number of required PWs might grow considerably—significantly enough,
in fact, that it can cause scaling problems on some low-end VE devices.

The problem is somehow similar to the iBGP session full-mesh problem. In the case
of iBGP, to overcome session full-mesh scaling limitation, you can deploy Route
Reflectors (very frequently used) or confederations (used sometimes, as well). The
basic idea of all these solutions is to break the session full-mesh requirement and
allow iBGP neighbors to peer to one another only in a partial-mesh fashion—full
mesh is no longer required.

Looking from very high level, you can apply the basic idea introduced to solve iBGP
session full-mesh problem to solving the PW full-mesh problem between VPLS edge
devices. The significant difference, however, is that the iBGP problem is a pure
control-plane one, whereas in LDP-based VPLS, control and forwarding planes are
more coupled together.

To relax the requirement for PW full-mesh, the H-VPLS model is defined in RFC
4762, Section 10. There are a couple of variations of the H-VPLS model outlined in
the RFC. On the hub side (referenced in RFC as PE-rs, meaning a PE device that can
perform global routing and private switching), the variations do not differ—in each
of those variations PWs from a spoke device terminate in a VPLS instance on V-hubs.

The basic H-VPLS variation (Section 10.1.3 in the RFC) assumes that the spoke
device (referenced in the RFC as PE-r) is not capable of providing bridging capability
among multiple interfaces. In this variation, the spoke is only capable of establishing
a PW and transporting frames from the local interface (AC) over such PW, and vice
versa.
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A more advanced H-VPLS variation (Section 10.1.1 in the RFC) and its redundant
option (Section 10.2 in the RFC) assumes that you can configure bridging instances
on the spokes (referred to MTU-s in the RFC).

The H-VPLS model is conceptually similar to the hierarchical L3VPN model based
on PWHE architecture (see Chapter 17). However, there are, of course, some differ‐
ences that you typically see in H-VPLS architectures:

• PWs used in the H-VPLS architecture can be terminated on the hub device
directly (natively) inside a VPLS instance without the need for ps (Junos) or PW-
Ether (IOS XR) auxiliary interfaces. However, the integration of VPLS with the L3
world relies on IRB interfaces, which do not implement the same feature set as
PWHE interfaces.

• Because H-VPLS operates in principle on L2, you can use L2-capable spoke devi‐
ces to provide local bridging for locally connected CEs. In the PWHE-based H-
L3VPN model, traffic between two CEs connected to the same spoke device
typically goes via the hub, as only the hub provides L3 (routing) capabilities
required to route the traffic between two CEs.

Depending on the configuration of the hub device, L2 forwarding between two
spokes with PWs terminated on the same hub can be allowed (classic H-VPLS with
spoke-to-spoke forwarding) or prevented (H-VPLS without spoke-to-spoke forward‐
ing, called as well Hub-and-Spoke VPLS).

H-VPLS Models with BGP for Autodiscovery and Signaling
In BGP VPLS, you can deploy two models for hierarchical VPLS, as briefly described
in the following sections.

Model A: RT filtering
This model is exactly the same one as the hub-and-spoke L3VPN discussed in Chap‐
ter 3. Described simply, you allocate one RT (RT-H) to VPLS hub sites, and another
RT (RT-S) to VPLS spoke sites. Spoke sites export RT-S but import RT-H only,
whereas hub sites export RT-H and import RT-S (plus eventually import RT-H, if
two-way connectivity between VPLS hub sites is required).

As the result of such RT deployment, VPLS spokes import only information from
hub site(s) but not from other spoke site(s). Hub sites, on the other hand, have full
visibility. Therefore, PWs are established only between spoke and hub sites (and
optionally between hub sites), but not between spoke sites.

With this model, apart from reducing the overall number of PWs (PWs between
spoke sites are not established), you also limit the possible connectivity. As opposed
to H-VPLS with LDP signaling, for which the hub could be configured to allow or
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prevent frame forwarding between PWs from different spokes, here forwarding
between spokes is always blocked.

Model B: Site-ID (Site-Range) filtering
Hub-and-spoke VPLS Model A unfortunately has certain limitations—namely, it
doesn’t support multihomed VPLS spoke sites based on draft-ietf-bess-vpls-
multihoming. As already discussed in Chapter 6, two PEs connected to the same CE
site perform Designated Forwarded (DF) election process. The DF election process is
based on the comparison of BGP local preference values advertised by PEs attached
to the same multihomed CE site.

However, in hub-and-spoke VPLS Model A, BGP prefixes carrying VPLS informa‐
tion (and other BGP attributes, like, for example, local preference) are not exchanged
between spokes. Therefore, two PEs connected to a given VPLS spoke site do not see
each other, which can cause L2 loops. A hub-and-spoke VPLS architecture with mul‐
tihomed spoke sites must fulfill two requirements:

• Prefixes between spoke PEs must be exchanged so that visibility of the local pref‐
erence BGP attribute advertised by multiple PEs connected to the same VPLS
spoke site (multihomed spoke) is not restricted (required for DF election).

• PWs between spoke sites must not be established (hub-and-spoke VPLS design
requirement).

Therefore, in hub-and-spoke VPLS Model B, RTs are no longer filtered. A single RT
used for both hub-and-spoke sites provides full-mesh site visibility. On the other
hand, site ID numbering requires more attention. If hub sites are numbered with site-
ID numbers from a low range (e.g., 1 to 15), and spoke sites are numbered with site-
ID numbers from a high range (e.g., 16 to 127), two distinct site-ID ranges are
defined. This makes it possible to enforce PW establishment restrictions. Namely, you
can configure spoke PEs to allow PW establishment toward sites with IDs from range
1 to 15 only (hub sites).
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CHAPTER 8

Ethernet VPN

Ethernet VPN (EVPN) is not Virtual Private LAN Service (VPLS). It is a more recent
technology that aims to overcome some of the challenges that have arisen during
more than a decade of VPLS live deployments.

EVPN with MPLS Transport
EVPN, formerly called MAC VPN, is described in RFC 7432 - BGP MPLS-Based
Ethernet VPN.

EVPN Versus VPLS
If there was already a multipoint L2VPN solution (VPLS), why has another one been
defined and implemented? Let’s compare both technologies.

EVPN versus VPLS—signaling protocols
VPLS has two possible signaling protocols, LDP and BGP, of which only BGP sup‐
ports autodiscovery. EVPN takes good note of that by deprecating Targeted LDP and
adopting BGP as the one and only service signaling protocol.

EVPN versus VPLS—MAC address learning
VPLS has only data-plane MAC learning, which can easily lead to stale forwarding
state.

Indeed, if a local Attachment Circuit (AC) goes down, it is important to flush the
associated MAC entries from the bridge table. You must do this on the local PE, and
also on the remote PEs. The PW Status TLV is not a valid option, due to the lack of
an AC:PW deterministic mapping in VPLS. True, VPLS has the concept of a MAC
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Flush flag (BGP VPLS) or TLV (LDP VPLS), but it is more like a patch than a robust
solution.

Although EVPN also performs data-plane MAC learning on its local ACs, it relies on
control-plane MAC learning between PEs. In fact, it uses BGP to exchange MAC
address routes. This greatly reduces unknown unicast flooding and, more important,
it natively implements a flush mechanism in BGP by withdrawing the BGP routes.

EVPN versus VPLS—CE Multihoming
EVPN natively implements two CE multihoming solutions: single-active (one active,
N standby) and all-active (with known unicast per-flow load balancing).

True, the mechanism is complex as it involves a few route types, the election of a
BUM Designated Forwarder, and so on. But it represents a breakthrough with respect
to VPLS, which only implements single-active solutions. Actually, in the VPLS world,
the flavors that implement a genuine albeit single-active multihoming solution are all
BGP-based: BGP VPLS and LDP VPLS with BGP autodiscovery (FEC 129).

EVPN versus VPLS—Layer 2 to Layer 3 coupling
In VPLS, the Integrated Routing and Bridging (IRB) or BVI interface acts like an
anchor into the Layer 3 (L3) world. But the Layer 2 (L2) and L3 worlds are quite
decoupled from a state perspective. Last but not least, VPLS gateway redundancy typ‐
ically relies on VRRP, which brings together some undesired effects: risk of traffic
blackholing (mitigated with VRRP route or interface tracking, together with a rich set
of VRRP and interface timers), traffic tromboning, complex operation, and difficult
troubleshooting.

EVPN natively implements several L2-L3 hooks, as you are about to discover; this
brings a native way to handle active virtual machine (VM) moves across different
servers in the same data center.

EVPN Implementations
As of this writing, there are implementations of EVPN with MPLS transport, Pro‐
vider Backbone Bridging[PBB]-EVPN with MPLS transport, and EVPN with Virtual
eXtensible LAN (VXLAN) transport. Some of them are publicly made available at the
same time as this book, so the only flavor that the authors could test in an interopera‐
ble manner is PBB-EVPN with MPLS transport. This book also includes Junos exam‐
ples of the two other flavors. Stay tuned to the blog http://mplsinthesdnera.net for
EVPN interoperability posts.

PBB-EVPN is more complex than EVPN, so let’s begin with EVPN. Hence, this first
scenario is Junos-only (except for the BGP address family, which is shown for both
vendors).
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EVPN—This Book’s Topology
This book’s EVPN example focuses on the Data Center Interconnect (DCI) applica‐
tion. The technology remains the same for different applications, though.

In the initial topology depicted in Figure 8-1, the CE1-PE2 and CE3-PE4 links are
administratively down. They will be brought up later, in the multihoming section. So,
the CE1-PE1 and CE3-PE3 connections are single-link LAGs.

Figure 8-1. EVPN—the physical topology

H1 and H3 are connected via access (untagged) interfaces to the CEs, and they belong
to VLAN 2100. Likewise, H2 and H4 belong to VLAN 2200. As for the PE-CE ACs,
they are trunk (VLAN-tagged) interfaces that transport VLANs 2100 and 2200.

Although not shown in the picture, there are two Route Reflectors (RRs) with loop‐
back addresses 172.16.0.201 and 172.16.0.202, respectively.

BGP EVPN Address Family
BGP EVPN use Multiprotocol-BGP (MP-BGP) address family: AFI=25, SAFI=70.

Example 8-1 shows how to configure the EVPN address family at a Junos PE.

Example 8-1. EVPN address family configuration—PE1 (Junos)

protocols {
    bgp {
        group iBGP-RR {
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            family evpn signaling;
}}}

Adding this configuration to all the BGP groups also does the trick on Junos RRs.

Like for other BGP VPN flavors, Junos uses different RIBs for EVPN. In the language
of Table 6-2, bgp.evpn.0 and <instance_name>.evpn.0 are Global Auxiliary: Raw
NLRI and Instance-Specific: Raw NLRI, respectively.

Although this EVPN scenario is Junos-only, at the end of this chapter you will see an
interoperable PBB-EVPN example. EVPN and PBB-EVPN use the same BGP address
family. Here is the additional configuration on IOS XR PEs:

Example 8-2. EVPN address family configuration—PE2 (IOS XR)

router bgp 65000
 address-family l2vpn evpn
 !
 neighbor-group RR
  address-family l2vpn evpn
!

On RRs running IOS XR, you also need to add the route-
reflector-client knob under each neighbor[-group]

adddress-family.

EVPN with MPLS Transport—Junos Configuration
As with VPLS, Junos has two types of routing instances that both support EVPN:

• EVPN instances (EVIs) are more suitable for models with one single bridge
domain. RFC 7432 calls these models VLAN-based.

• Virtual Switches are the best fit for services where each VLAN must have its own
bridge table and its own IRB interface. This model, called VLAN-aware bundle in
RFC 7432, is the one chosen for this book’s example.

Example 8-3 shows PE1’s EVPN configuration. PE1 has one AC that is a Link Aggre‐
gation Group (LAG). Note that the Inter-Chassis Communication Protocol (ICCP)
and Multichassis LAG (MC-LAG) specific commands are skipped here for brevity.

Example 8-3. EVPN MPLS on a Virtual Switch—PE1 (Junos)

1     chassis {
2         aggregated-devices ethernet device-count 20;
3     }
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4     interfaces {
5         ge-2/0/1 {
6             gigether-options 802.3ad ae10;
7         }
8         ae10 {
9             flexible-vlan-tagging;
10            encapsulation flexible-ethernet-services;
11            aggregated-ether-options lacp active;
12            unit 2100 {
13                encapsulation vlan-bridge;
14                vlan-id 2100;
15            }
16            unit 2200 {
17                encapsulation vlan-bridge;
18                vlan-id 2200;
19    }}}
20    routing-instances {
21        EVPN-A {
22            instance-type virtual-switch;
23            route-distinguisher 172.16.0.11:2000;
24            vrf-target target:65000:2000;
25            protocols {
26                evpn {
27                    extended-vlan-list [ 2100 2200 ];
28                }
29            }
30            bridge-domains {
31                BR-2100 {
32                    vlan-id 2100;
33                    interface ae10.2100;
34                }
35                BR-2200 {
36                    vlan-id 2200;
37                    interface ae10.2200;
38    }}}}

Lines 23 and 24 are BGP business as usual: RDs to distinguish routes belonging to
different VPNs, and RTs to control route distribution at the PEs. As for the configura‐
tion of the AC and the Virtual Switch, it follows the same principles as Example 7-9.

EVPN MPLS—Inclusive Tunnel and Autodiscovery
The Inclusive Tunnel and Provider Multicast Service Interface (PMSI) concepts have
already been illustrated in the context of BGP MVPN and VPLS. In a VLAN-aware
bundle EVPN service, every PE is the root of a VLAN-specific Inclusive Tunnel. This
tunnel is used to send BUM traffic to all the remote PEs that also have sites in the
same EVPN:VLAN.

In BGP MVPN, Inclusive Tunnels were signaled with MVPN Route Type 1. On the
other hand, EVPN uses Route Type 3 for this same purpose. Indeed, EVPN uses a
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totally different Route Type numbering as compared to MVPN. Table 8-1 lists these
route types.

Table 8-1. EVPN (AFI=25, SAFI=70) route types

Type Route Name

1 Ethernet autodiscovery (AD) route

2 MAC/IP advertisement route

3 Inclusive multicast Ethernet tag route

4 Ethernet segment (ES) route

5 IP prefix route

This book does not cover EVPN IP Prefix (Type 5) routes. For
more information, see draft-ietf-bess-evpn-prefix-advertisement.

Example 8-4 shows the EVPN Type 3 routes advertised by PE1, one per VLAN.

Example 8-4. EVPN Type 3: inclusive multicast route—PE1 (Junos)

1     juniper@PE1> show route advertising-protocol bgp 172.16.0.201
2                  table EVPN-A.evpn.0 match-prefix "3:*" detail
3     [...]
4     * 3:172.16.0.11:2000::2100::172.16.0.11/304 (1 entry, 1 announced)
5      BGP group IBGP type Internal
6          Route Distinguisher: 172.16.0.11:2000
7          Nexthop: Self
8          Localpref: 100
9          AS path: [65000] I
10         Communities: target:65000:2000
11         PMSI: Flags 0x0: Label 299840:
12               Type INGRESS-REPLICATION 172.16.0.11
13
14    * 3:172.16.0.11:2000::2200::172.16.0.11/304 (1 entry, 1 announced)
15     BGP group IBGP type Internal
16         Route Distinguisher: 172.16.0.11:2000
17         Nexthop: Self
18         Localpref: 100
19         AS path: [65000] I
20         Communities: target:65000:2000
21         PMSI: Flags 0x0: Label 299856:
22               Type INGRESS-REPLICATION 172.16.0.11

So, PE1 is advertising two Type 3 routes: one for each VLAN (2100 and 2200).
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These routes are called Inclusive Multicast Ethernet Tag because they provide informa‐
tion about the Inclusive Tunnel; they are used for BUM and they contain the VLAN
ID or Tag.

The prefix format 3:<RD>:<VLAN_ID>:<ROUTER_ID_LENGTH>:<ROUTER_ID> (lines 4
and 14) is partially displayed in the previous example. Indeed, as of this writing,
Junos displays everything except for the <ROUTER_ID_LENGTH>, which is invariably 32
for IPv4. The /304 mask is internal in Junos and not advertised via iBGP: you can
simply ignore it. As you will see soon, Type 2 routes can also include IP information.

The BGP next hop is irrelevant for Type 3 routes: it’s there simply because it is a
mandatory BGP attribute.

As of this writing, Ingress Replication (IR) is the only PMSI type implemented for
EVPN. Consequently, to flood a BUM frame, the ingress PE (PE1) replicates the
frame and sends one individual copy to each of the remote PEs individually. How? By
using the same set of to-point (Point-to-Point [P2P] or Multipoint-to-Point [MP2P])
LSPs that are used for unicast services. The MPLS label encoded in the PMSI attribute
(lines 11 and 21) is the VPN label, which is stacked below the transport label.

One important aspect of the MPLS labels included in the PMSI attribute (lines 11 and
21) is that they are downstream-allocated labels. Exactly as in BGP MVPN with IR
transport, PE1 uses the PMSI attribute to specify that:

• As a root PE, PE1 uses an Inclusive Tunnel based on IR to send frames to remote
PEs—pushing the service labels specified by the remote PEs.

• As a leaf PE, PE1 expects to receive frames with the MPLS label value included in
the PMSI attribute that it generates: in the example, label 299840 for VLAN 2100,
and label 299856 for VLAN 2200.

Figure 5-6 illustrates the IR mechanism for BGP MVPN, similar to the EVPN one
except that the to-point tunnels transport L3 packets instead of L2 frames.

EVPN with MPLS Transport—Advertising MACs
EVPN was once called MAC VPN because it implements MAC route advertising.
One important aspect of MAC addresses, as compared to IP, is that MAC addresses
do not support any subnetting. Two hosts connected to the same L2 switch and in the
same VLAN can have completely different MAC addresses; to the point that the first
bytes of a MAC address identify the network adapter’s vendor.

This means that EVPN advertises one MAC route per host: there is no possibility to
aggregate them. PBB EVPN changes this rule a bit, as you will see later.
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Every bridge domain in the EVPN instance performs independent MAC learning. As
soon as a new source MAC address is learned on an AC, the PE advertises a MAC
route. These are EVPN Type 2 routes, corresponding to H1’s MAC address:

Example 8-5. EVPN Type 2: MAC Advertisement route—PE1 (Junos)

1     juniper@PE1> show route advertising-protocol bgp 172.16.0.201
2                  table EVPN-A.evpn.0 match-prefix "2:*" detail
3     [...]
4     * 2:172.16.0.11:2000::2100::5c:5e:ab:0a:c3:92/304 (1 entry, ...)
5      BGP group IBGP type Internal
6          Route Distinguisher: 172.16.0.11:2000
7          Route Label: 299776
8          ESI: 00:00:00:00:00:00:00:00:00:00
9          Nexthop: Self
10         Localpref: 100
11         AS path: [65000] I
12         Communities: target:65000:2000
13    /* Other routes omitted */

The prefix format is 2:<RD>:<VLAN_ID>:<MAC_LENGTH>:<MAC_ADDRESS> (line 4).
Junos does not display the <MAC_LENGTH>, which is invariably 48. The /304 mask is
internal in Junos and not advertised via IBGP: you can simply ignore it.

With the Route Label 299776, PE1 is telling the remote PEs if you receive a frame from
a local AC in EVPN-A, and the bridge domain is associated to VLAN 2100, and the
destination MAC address is 5c:5e:ab:0a:c3:92, send it to me with VPN label 299776.

Because PE1 learned H1’s MAC address through a frame received from a single-
homed CE, the Ethernet Segment Identifier (ESI) is set to 0x0 (line 8). PEs map to ESI
#0 all the ACs connected to either single-homed CEs or single-active multihomed
CEs.

Only MAC addresses learned on all-active multihomed CEs have a non-zero ESI
value. How do PEs realize whether the CE is single-homed or multihomed? Actually,
they don’t. It is up to the network administrator or an external software to configure a
non-zero ESI on each AC that is connected to an all-active multihomed CE. EVPN
ESIs and VPLS CE-IDs have points in common, but also differences, as explained
later on.

EVPN with MPLS Transport—Intra-VLAN Bridging
The two previously described EVPN route types are enough to enable bridging
among hosts in the same VLAN. The full sequence is illustrated in Figure 8-2. Read it
from top to bottom. In this chapter, the control-plane signaling is shown with round
corners, and the forwarding-plane units are shown with sharp corners. The outer‐
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most headers are displayed on top, and the external Ethernet headers at the core links
are omitted.

Figure 8-2. EVPN—intra-VLAN bridging

You can check that MAC learning takes place thanks to EVPN MAC Advertisement
(Type 2) routes. This is an important difference as compared to VPLS, and it allows a
PE to advertise the same label to all the remote PEs. Because MAC learning takes place
in the control plane, in EVPN it is no longer necessary to know from which remote
PE the frame arrives.

This example has no transport label because the PEs are directly connected to each
other. Otherwise, label stacking would take place and the transport label would be the
top of the stack, and then removed at the penultimate hop: MPLS VPN + PHP busi‐
ness as usual.

The broadcast frame (ARP request sent from H1) uses the Inclusive Tunnel, so it is
flooded to all the remote PEs. On the other hand, unicast frames (ARP reply and
ICMP echo request) are only sent to one remote PE, thanks to MAC learning. Note
that EVPN Type 3 (Inclusive Multicast) and Type 2 (MAC Advertisement) use differ‐
ent MPLS label values, and so does BUM versus known unicast traffic.
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Like in VPLS, there is a default split horizon rule in EVPN: a tun‐
neled frame received from the core is not forwarded back to the
core (to any PE). This is essential to prevent L2 loops.

Finally, there is a strong coupling between a bridge domain’s MAC table and the
EVPN Type 2 (MAC Advertisement) routes. If the H1 entry in PE1’s MAC table
expires due to traffic inactivity, or if it is manually cleared, PE1 withdraws H1’s MAC
Advertisement route. This triggers a MAC table entry flush in the remote PEs. MAC
Advertisement routes synchronize all the PEs’ MAC tables. It is the BGP way to pro‐
gram a distributed switch.

The MAC tables can be checked with the commands show evpn mac-table (for
EVPN instances) or show bridge mac-table (for Virtual Switches).

EVPN with MPLS Transport—Inter-VLAN Forwarding
One of the key advantages of EVPN over VPLS lies on the integration of the L2 and
L3 worlds. Let’s see that in detail.

EVPN IRB—Junos configuration
It’s time to allow H1 and H3 (VLAN 2100) to communicate to H2 and H4 (VLAN
2200). IRB in VPLS and IRB in EVPN are configured in a similar way. However, if we
look closely, the implementation is very different, making EVPN a superior solution.

Typically, the IRB interfaces are placed in an L3 VRF. Unlike VPLS, the EVPN
instance is tightly coupled to the L3 VRF(s) where its IRBs are placed. Example 8-6
shows the configuration at PE1, where this tight coupling is not obvious yet.

Example 8-6. EVPN IRB configuration—PE1 (Junos)

1     interfaces {
2         irb {
3             unit 2100 {
4                 family inet address 10.1.1.100/24;
5                 mac 00:00:0a:01:01:64;
6             }
7             unit 2200 {
8                 family inet address 10.2.2.200/24;
9                 mac 00:00:0a:02:02:c8;
10    }}}
11    routing-instances {
12        VRF-A {
13            instance-type vrf;
14            interface irb.2100;
15            interface irb.2200;
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16            route-distinguisher 172.16.0.11:1234;
17            vrf-target target:65000:1234;
18            vrf-table-label;
19        }
20        EVPN-A {
21            protocols {
22                evpn {
23                    default-gateway advertise;
24            }}
25            bridge-domains {
26                BR-2100 {
27                    routing-interface irb.2100;
28                }
29                BR-2200 {
30                    routing-interface irb.2200;
31    }}}}

The new L3 VRF has different RD (line 16) and RT (line 17), with respect to the
EVPN Virtual Switch instance (Example 8-3, lines 23 and 24).

A very important aspect of the previous example is the fact that the IRB MAC
addresses are manually derived from the IPv4 address. This is a method to ensure
that if two PEs have the same IRB IPv4 address on a given bridge domain, they also
have the same IRB MAC address on that domain. Why do this? Imagine that, for a
given VLAN, you set the same IRB IPv4 and MAC addresses on all the PEs. This
makes it possible to seamlessly move an active VM from one site to another or even
from one data center to another. The VM would keep its original ARP entry pointing
to its default gateway, remaining valid! On the down side, it is not possible to ping the
individual IRB interfaces in a precise manner, and the solution to this challenge is
briefly mentioned later.

Strictly speaking, it would even be possible to set the same MAC address on all the
IRBs of all the bridge domains; but keeping a per-VLAN unique MAC is typically
enough.

VPLS cannot use the same trick. You will see why in a few pages.

Just one more implementation detail: modern Junos releases enable chained-
composite-next-hop for EVPN by default. You need to confirm that this is the case
in your Junos PEs; otherwise, you need to configure it explicitly. Indeed, it is required
by the L2 rewrites that take place during inter-VLAN forwarding at the ingress PE.

Example 8-7. EVPN chained composite next hop—PE1 (Junos)

juniper@PE1> show configuration groups junos-defaults routing-options
forwarding-table {
    export evpn-pplb;
    chained-composite-next-hop ingress evpn;
}
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EVPN IRB—new routes advertised
The previous configuration triggers a series of new routes. First, the new L3 VRF
locally connected routes 172.16.0.11:1234:10.1.1.0/24 and 172.16.0.11:1234:
10.2.2.0/24. These routes are exported with RT 65000:1234 and imported in the
matching L3 VRF of the remote PEs. Nothing special: just L3 VPN business as usual.

Second, for every logical IRB interface there are two new MAC/IP Advertisement
routes exchanged in the context of the EVPN instance.

Example 8-8. EVPN Type 2: gateway MAC/IP Advertisement—PE1 (Junos)

juniper@PE1> show route advertising-protocol bgp 172.16.0.201
             table EVPN-A.evpn.0 match-prefix "2:*" detail
[...]
* 2:172.16.0.11:2000::2100::00:00:0a:01:01:64/304 (1 entry, ...)
     Route Label: 299776
     ESI: 00:00:00:00:00:00:00:00:00:00
     Communities: target:65000:2000 evpn-default-gateway
[...]
* 2:172.16.0.11:2000::2200::00:00:0a:02:02:c8/304 (1 entry, ...)
     Route Label: 299776
     ESI: 00:00:00:00:00:00:00:00:00:00
     Communities: target:65000:2000 evpn-default-gateway
[...]
* 2:172.16.0.11:2000::2100::00:00:0a:01:01:64::10.1.1.100/304
     Route Label: 299776
     ESI: 00:00:00:00:00:00:00:00:00:00
     Communities: target:65000:2000 evpn-default-gateway
[...]
* 2:172.16.0.11:2000::2200::00:00:0a:02:02:c8::10.2.2.200/304
     Route Label: 299776
     ESI: 00:00:00:00:00:00:00:00:00:00
     Communities: target:65000:2000 evpn-default-gateway
[...]

Indeed, for each IRB (2100 and 2200), there are two EVPN Type 2 routes:

• A good old MAC Advertisement route, which just the IRB’s MAC in the NLRI.
• A juicier MAC/IP Advertisement route (also Type 2), which contains both the

IRB’s MAC and IPv4 address in the NLRI.

Why two routes and not just one? Actually, a MAC route belongs to a pure L2 context
and it is linked to the EVPN bridge domain’s MAC table. On the other hand, a
MAC/IP route has an L3 side and it is linked to the L3 VRF ARP table!

Let’s learn more about this, and leave the default-gateway community for a bit later.
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EVPN IRB—strong L2 to L3 coupling
Here comes one of the most interesting aspects of EVPN.

EVPN PEs with IRB synchronize their ARP state with each other.

When PE1 resolves the MAC addresses of H1 (or H2) via ARP, it does two things:

• Advertises an EVPN MAC/IP route with ARP-like mappings to the remote PEs.
• Advertises an IPv4 VPN route with the host’s /32 address to the remote PEs.

Let’s see that for H1 (Example 8-9).

Example 8-9. EVPN Type 2: host MAC/IP Advertisement—PE1 (Junos)

1     juniper@PE1> show arp vpn VRF-A hostname 10.1.1.1
2     [...]
3     MAC Address       Address   Name       Interface       Flags
4     5c:5e:ab:0a:c3:92 10.1.1.1  10.1.1.1   ae10.2000       none
5
6     juniper@PE1> show route advertising-protocol bgp 172.16.0.201
7                  evpn-mac-address 5c:5e:ab:0a:c3:92 detail
8
9     EVPN-A.evpn.0: 24 destinations, 24 routes (24 active, ...)
10    * 2:172.16.0.11:2000::2100::5c:5e:ab:0a:c3:92/304 (1 entry, ...)
11         Route Label: 299776
12         ESI: 00:00:00:00:00:00:00:00:00:00
13         Communities: target:65000:2000
14    [...]
15    * 2:172.16.0.11:2000::2100::5c:5e:ab:0a:c3:92::10.1.1.1/304
16         Route Label: 299776
17         ESI: 00:00:00:00:00:00:00:00:00:00
18         Communities: target:65000:2000
19    [...]
20
21    juniper@PE1> show route advertising-protocol bgp 172.16.0.201
22                 table VRF-A.inet.0 10.1.1.1/32 detail
23
24    VRF-A.inet.0: 7 destinations, 13 routes (7 active, ...)
25    * 10.1.1.1/32 (1 entry, 1 announced)
26    [...]
27         VPN Label: 16
28         Communities: target:65000:1234
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The EVPN MAC route (lines 10 through 13) has a pure L2 meaning, therefore it is
not really related to ARP. The EVPN MAC/IP route (lines 15 through 18) is aimed to
synchronize the remote PEs’ ARP bindings. Finally, the IPv4 VPN host route (lines 25
through 28) ensures that the traffic forwarding is fully optimized.

Imagine a remote IPv4 VPN PE—let’s call it PE100—that is providing access from the
data center’s IPv4 VPN to different external services. PE100 might not be connected
to any of the data center sites. Now let’s make it more interesting: PE100 could have
no local EVPN instance at all! But thanks to the dynamically generated host /32
routes, PE100 knows exactly where to forward downstream packets. Is it PE1, or PE2,
or PE3, or PE4? PE100 makes the right choice! This is a breakthrough advantage over
VPLS.

Now, other PEs in the EVPN receive both the EVPN MAC/IP route and the IPv4
VPN host route for H1. Which one takes preference? By default in Junos, the EVPN
MAC/IP route takes preference, so it is programmed in the forwarding table.

Example 8-10. Choosing between EVPN MAC/IP and IP VPN route—PE3 (Junos)

juniper@PE3> show route table VRF-A 10.1.1.1

VRF-A.inet.0: 7 destinations, 13 routes (7 active, ...)
+ = Active Route, - = Last Active, * = Both

10.1.1.1/32    *[EVPN/7] 00:52:41
                > to 10.0.0.2 via ge-2/0/1.0, Push 299776
                [BGP/170] 00:52:42, localpref 100, from 172.16.0.201
                  AS path: I, validation-state: unverified
                > to 10.0.0.2 via ge-2/0/1.0, Push 16

EVPN IRB in action
Let’s see how H1 in VLAN 2100 can send an IPv4 packet to H4 in VLAN 2200. For a
complete learning experience, let’s take the less favorable case: for whatever reason,
the PEs have not yet learned about H4’s MAC/IP mapping. PE3 not only populates its
local ARP table with H4’s MAC address, it also advertises the MAC/IP mapping to all
the PEs, including PE1. End of the story: now PE1 knows H4’s MAC address and the
original IPv4 H1→H4 packet can reach its destination.

Figure 8-3 shows the sequence.
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Figure 8-3. EVPN—Inter-VLAN forwarding

Here’s what’s happening in Figure 8-3:

1. H1 is configured with 10.1.1.100 as its default gateway. H1 resolves this address
via ARP (not shown in the illustration) into MAC address 00:00:0a:01:01:64. H1
sends the frame with that destination MAC address.

2. PE1 receives the frame in the bridge domain BR-2100 and sees that the destina‐
tion MAC address matches its own irb.2100 interface. PE1 removes the L2
header and performs an L3 route lookup for which the result is this: the destina‐
tion is directly connected via irb.2200.

3. PE1 does not know the MAC address of H4, so it sources an ARP request from
its irb.2200 interface (source MAC = 00:00:0a:02:02:c8) and floods it in bridge
domain BR-2200.

4. H4 replies to the ARP request with an ARP reply whose destination is 00:00:0a:
02:02:c8, PE1’s irb.2200 MAC address. But it’s also PE3’s irb.2200 MAC
address! If this was VPLS instead of EVPN, the flow would break here. This is
one of the reasons why in VPLS it is not an option to use the same MAC address
in different PEs. But this is EVPN, so let’s continue!

5. PE3 advertises H4’s MAC/IP route to all the PEs in the EVPN, including PE1. At
this point, PE1 knows H4’s MAC address, and it can forward the original frame.
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So, what is the default-gateway community in Example 8-8? It is just another type
of extended community. Its value is irrelevant: all that matters is whether it is present.
The EVPN MAC/IP routes for the IRB addresses carry this community in order to
inform the remote PEs that these addresses belong to default gateways. This mecha‐
nism is called default gateway synchronization, and in this book’s example it is not
really needed. Indeed, the default gateways are already manually synchronized
because all of the PEs have the same IRB IPv4 and MAC addresses configured.

The use case of automatic default gateway synchronization is a scenario in which the
IRB MAC (and IPv4) addresses for a given VLAN are set to different values at each
PE. If an active VM is moved by the hypervisor from one site to another, the VM still
has the old ARP entry for the default gateway. The new gateway processes the frames
coming from this VM because it knows that the destination MAC address actually
corresponds to a default gateway somewhere in the EVPN. Although this alternative
approach allows to ping the individual IRB interfaces in a precise manner, it is still a
better practice to configure the same IRB IP and MAC address on every PE because it
is cleaner from a forwarding perspective. An even better option is the virtual gateway
functionality, which is discussed later.

EVPN—VM mobility
It is possible to move a VM live from one data center site to another by using hypervi‐
sor features such as VMware’s vMotion. The ARP cache of the VM is still valid, even
the entry for the default gateway, if the IRB’s MAC/IP is the same on all PEs. This is
enough to get outbound (leaving the DC site toward the core) traffic seamlessly flow‐
ing without any significant interruption.

As for inbound traffic (arriving from the core), it relies on the VM to send at least
one frame so that the [EVI, VLAN] MAC table is refreshed on all the PEs. As soon as
the new PE advertises a MAC/IP route for the VM, the old PE withdraws it. At this
point, inbound traffic is correctly attracted to the new VM location. You can apply the
same logic to each of the VM’s virtual Network Interface Cards (NICs).

Although not implemented at the time of this writing, RFC 7432 describes the MAC
Mobility extended community. This new community is not strictly necessary for VM
mobility, but it keeps track of MAC moves with a sequence number. If this sequence
number grows abnormally fast, it is an indication of a potential L2 loop.

EVPN with MPLS Transport—All-Active Multihoming
All-active multihoming is one of the main advantages of EVPN over VPLS.
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EVPN all-active—Junos configuration
As mentioned before, an EVPN AC has an ESI that is set to zero by default. This is
fine for single-homed, or single-active multihomed CEs.

To guarantee correct forwarding state, it is essential to assign a unique non-zero ESI
to each CE that is all-active multihomed to more than one PE. The ESI is configured
on the PE ACs, not on the CE; and its value must be the same on all the ACs connec‐
ted to a given multihomed CE. An ESI is to an Active-Active multihomed CE in
EVPN, as a CE-ID is to any CE (multihomed or not) in VPLS.

The CE3-PE4 link, initially down in Figure 8-1, is now brought up, so CE3 becomes
multihomed to PE3 and PE4.

The very same AC configuration needs to be applied on both PE3 and PE4:

Example 8-11. EVPN: CE multihoming—PE3 and PE4 (Junos)

1     interfaces {
2         ae10 {
3             esi {
4                 00:11:00:11:00:11:00:11:00:11;
5                 all-active;
6             }
7             aggregated-ether-options {
8                 lacp system-id 00:11:22:33:44:55;
9     }}}

The ESI is a property of the physical interface. For this reason, EVIs can have logical
ACs on the same ES. Conversely, a VPLS CE-ID is a property of the logical AC.
Another difference is the following: the ESI is set to zero if the physical AC is connec‐
ted to a single-homed (or single-active multihomed) CE, unlike the CE-ID, which has
a globally unique non-zero number for every connected CE.

A real MC-LAG has a larger configuration. For CE3 to believe that it has just one
device in front, PE3 and PE4 must send the same system-id (line 8) in their Link
Aggregation Control Protocol (LACP) packets to CE3. In addition, PE3 and PE4
must also send the same LACP key. The key is typically a dynamic value, and you can
set it to a deterministic value in Junos only if you apply a complete MC-LAG configu‐
ration, which in the interest of brevity, is not shown here.

From CE3’s point of view, there is no such thing as a MC-LAG: thanks to the com‐
mon system-id and key received on both links, it believes to have a LAG to one single
device (see Example 8–12).
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Example 8-12. MC-LAG from the perspective of CE3 (Junos)

juniper@CE3> show lacp interfaces ae0
Aggregated interface: ae0
[...]
LACP protocol: Rx State  Tx State       Mux State
  ge-2/0/1     Current   Fast periodic  Collecting distributing
  ge-2/0/2     Current   Fast periodic  Collecting distributing

Let’s focus on the traffic flows H3→H1 and H1→H3. From the perspective of the data
center site on the right (PE3, PE4), the H3→H1 and H1→H3 flows are outbound and
inbound, respectively. In data center terminology, outbound traffic goes out of the
data center (CE→PE) and inbound traffic goes into the data center (PE→ CE).

The transition to an all-active multihoming scenario has an immediate effect on out‐
bound traffic: CE3 load-balances the traffic, sending some flows via PE3 and other
flows via PE4. It is possible that due to hashing at CE3, some outbound flows that
originated from H3 might go via CE3→PE3 and others via CE3→PE4. For this rea‐
son, H3’s MAC and MAC/IP routes can be generated either by PE3, or by PE4, or by
both of them. As you are about to see, this detail is not that relevant as long as there is
at least one PE advertising the routes, which happens if H3 remains actively sending
outbound traffic and CE forwards it over at least one member link in the LAG.

If both PE3 and PE4 advertise H3’s MAC, it is not considered as a MAC move,
because the ESI is non-zero and has the same value in both routes.

EVPN all-active—change to existing routes
H3’s MAC and MAC/IP routes get their ESI changed from zero to the configured
value, as show in Example 8-13.

Example 8-13. EVPN Type 2: non-zero ESI—PE3 or PE4 (Junos)

juniper@PE3> show route advertising-protocol bgp 172.16.0.201
             evpn-mac-address f8:c0:01:18:90:69 detail

EVPN-A.evpn.0: 25 destinations, 25 routes (25 active, ...)
* 2:172.16.0.33:2000::2100::f8:c0:01:18:90:69/304 (1 entry, ...)
     Route Label: 299780
     ESI: 00:11:00:11:00:11:00:11:00:11
     Communities: target:65000:2000
[...]
* 2:172.16.0.33:2000::2100::f8:c0:01:18:90:69::10.2.2.4/304
     Route Label: 299780
     ESI: 00:11:00:11:00:11:00:11:00:11
     Communities: target:65000:2000
[...]
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For a proper active-active behavior, it is important that all of the PEs know to which
ESI each MAC/IP route belongs. That’s why the ESI is included in the MAC/IP route.

IRB interfaces are not associated with any AC, so they are still advertised with an ESI
set to zero. MACs learned from local single-homed (or single-active multihomed)
CEs also remain with ESI set to zero.

EVPN all-active—new routes
PE3 and PE4 advertise three new routes each. Example 8-14 shows the new routes
from PE3.

Example 8-14. EVPN Types 1 & 4: Ethernet AD and ES Routes—PE3 (Junos)

1     juniper@PE3> show route advertising-protocol bgp 172.16.0.201
2                  evpn-esi-value 00:11:00:11:00:11:00:11:00:11 detail
3
4     EVPN-A.evpn.0: 31 destinations, 31 routes (31 active, ...)
5     * 1:172.16.0.33:2000::110011001100110011::0/304
6      BGP group IBGP type Internal
7          Route Distinguisher: 172.16.0.33:2000
8          Route Label: 299780
9          Nexthop: Self
10         Localpref: 100
11         AS path: [65000] I
12         Communities: target:65000:2000
13
14    default_evpn__.evpn.0: 3 destinations, 3 routes (3 active, ...)
15
16    * 1:172.16.0.33:0::110011001100110011::FFFF:FFFF/304
17     BGP group IBGP type Internal
18         Route Distinguisher: 172.16.0.33:0
19         Nexthop: Self
20         Localpref: 100
21         AS path: [65000] I
22         Communities: target:65000:2000
23                      esi-label:all-active (label 299872)
24
25    * 4:172.16.0.33:0::110011001100110011:172.16.0.33/304
26     BGP group IBGP type Internal
27         Route Distinguisher: 172.16.0.33:0
28         Nexthop: Self
29         Localpref: 100
30         AS path: [65000] I
31         Communities: es-import-target:0-11-0-11-0-1

These are new EVPN route types: per-EVI Ethernet AD (Type 1), per-ESI Ethernet
AD (Type 1, too), and Ethernet Segment (Type 4).

The additional routes from PE4 are nearly identical, as shown next.
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Example 8-15. EVPN Types 1 and 4: Ethernet AD and ES routes—PE4 (Junos)

1     juniper@PE4> show route advertising-protocol bgp 172.16.0.201
2                  evpn-esi-value 00:11:00:11:00:11:00:11:00:11 detail
3
4     EVPN-A.evpn.0: 31 destinations, 31 routes (31 active, ...)
5     * 1:172.16.0.44:2000::110011001100110011::0/304
6          Route Label: 300000
7          Communities: target:65000:2000
8     [...]
9     default_evpn__.evpn.0: 3 destinations, 3 routes (3 active, ...)
10
11    * 1:172.16.0.44:0::110011001100110011::FFFF:FFFF/304
12         Communities: target:65000:2000
13                      esi-label:all-active (label 299876)
14    [...]
15    * 4:172.16.0.44:0::110011001100110011:172.16.0.44/304
16         Communities: es-import-target:0-11-0-11-0-11

The advertised MPLS labels—which have local significance—are different in PE4 ver‐
sus PE3. There are actually two label types:

• Aliasing label: Example 8-14, line 8; and Example 8-15, line 6.
• Split horizon label: Example 8-14, line 23;and Example 8-15, line 13.

Let’s see each of the three routes per PE in detail, before discussing the purpose of the
two label types.

Per-EVI Ethernet AD routes carry both the EVI’s RD and RT. Conversely, per-ESI
Ethernet AD routes are slightly more tricky. Indeed, their RD is generic (not EVI-
specific), but they carry the RTs of all the EVIs that have ACs on this particular ES. As
a result, the receiving PEs import the per-ESI AD route on all their matching EVI
tables. You will soon see that this speeds up convergence upon link failure on the ES.

Ethernet Segment (Type 4) routes don’t have a traditional RT. Instead, they carry a
new extended community called ES-Import Route Target, which contains the ESI’s six
most significant bytes. This ensures that only PE3 and PE4—but neither PE1 nor PE2
—import the route, because they are the only PEs with a local AC matching that ESI
prefix.

What if PE1 happens to have a local AC whose ESI is 00:11:00:11:00:11:22:33:44:55?
PE1 imports the Type 4 route because its ES-Import Route Target matches the six
most significant bytes of a local ESI. But the NLRI (Example 8-15, line 15) contains
the entire ESI, so PE1 simply ignores the route after it’s imported. The end result is a
higher memory consumption on PE1, but the ES redundancy logic is not fooled.
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EVPN all-active—aliasing label
The per-EVI Ethernet AD route in Example 8-14 (lines 5 through 12) is a Type 1
EVPN route whose NLRI contains the ESI 00:11:00:11:00:11:00:11:00:11. Both PE3
and PE4 advertise one such route, which is imported by all the PEs in the EVPN.
These routes carry the aliasing label for the advertised ESI.

The per-ESI Ethernet AD route in Example 8-14 (lines 16 through 23) also provides
information for ESI 00:11:00:11:00:11:00:11:00:11, and it is also imported by all of the
PEs in the EVPN. Have a look at the new ESI Label extended community. Let’s ignore
for the moment the encoded label value and pay attention to the all-active part—it
is a result of the configuration in Example 8-11, line 5. Thus, if they are equally con‐
figured, both PE3 and PE4 advertise the ESI as an all-active one.

Now, if hashing at CE3 makes all the outbound frames from H3 go via PE3, only PE3
advertises H3’s Type 2 MAC/IP routes (Example 8-13). That’s fine; let’s move on.

As for the H1→H3 frames, PE1 distributes them in a per-flow basis between PE3 and
PE4. But, how can PE1 send a H1→H3 frame to PE4 if PE4 is not announcing H3’s
MAC/IP route? PE1 knows that H3’s MAC is at ESI 00:11:00:11:00:11:00:11:00:11.
And PE4 is advertising an aliasing label for that ESI. So, PE1 just pushes the aliasing
label as if it were a MAC label.

You can see the process in Figure 8-4, which is almost complete. Actually, the
PE1→PE4 LSP is two-hop, so there is also an outer transport label at the first hop.
Also, the MAC and aliasing labels advertised by PE3 happen to be the same on the
current Junos implementation.

Figure 8-4. EVPN—Aliasing in all-active multihoming
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In Figure 8-4, PE3 advertises the same values for the MAC label
and for the aliasing label. This is valid but not mandatory. PE3
might have also advertised different values. Conversely, the split
horizon label must be different.

There is one additional advantage of using Ethernet AD routes. Imagine that PE3 is
advertising 1,000 MAC/IP routes for ESI 00:11:00:11:00:11:00:11:00:11, and its link to
CE3 fails or LACP times-out. In this case, by withdrawing the Ethernet AD routes
(before withdrawing 1,000 MAC/IP routes), PE3 signals to PE1 that it must flush or
update the 1,000 MAC addresses in its bridge table. This speeds up convergence. Fur‐
thermore, the single per-ESI Ethernet AD route is very helpful when there is a large
number of EVIs.

EVPN all-active—split horizon label
The H1→H3 flow is known unicast, because PE3 has previously learned and adver‐
tised H3’s MAC. But, what about BUM traffic? The answer depends on whether the
traffic is inbound or outbound with respect to the multihomed ES.

Let’s begin with inbound frames. By virtue of IR, PE1 sends the following:

• One copy to PE3, after pushing the label that PE3 advertised in its Inclusive Mul‐
ticast route for [EVPN-A, VLAN 2100]

• One copy to PE4, after pushing the label that PE4 advertised in its Inclusive Mul‐
ticast route for [EVPN-A, VLAN 2100]

If both PE3 and PE4 forward the frame to CE3, the end result would be frame dupli‐
cation toward H3; which is quite undesirable. For this reason, there is a Designated
Forwarder (DF) election between PE3 and PE4. Both PEs execute an algorithm to
choose the DF. Although this algorithm is locally executed, it must be deterministic in
the sense that both PEs choose the same DF for a given [ES, VLAN] pair.

The algorithm is described in RFC 7432, Section 8.5. A different
DF may be elected for each VLAN: this is known as service carving.

In this particular example, PE3 is the DF and it is the only one that forwards inbound
BUM traffic from VLAN 2100 toward CE3.

What about outbound BUM frames? CE3 performs hash-based load balancing:

• If a BUM frame in VLAN 2100 goes from CE3 via PE3, PE3 performs IR toward
all the other PEs in the EVPN, including PE4. The mechanism is exactly the same
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as in single-homed ES. PE4 does not forward the frame back to CE3, because it is
not the DF.

• If a BUM frame in VLAN 2100 goes from CE3 via PE4, the mechanism is slightly
different because PE4 is not the DF. Although PE4 sends the frame to PE1 and
PE2 using the standard IR mechanism, it also sends the frame to PE3 in a very
special manner. Indeed, before pushing PE3’s Inclusive Multicast label for VLAN
2100 (see label 299856 in Figure 8-2), PE4 pushes at the bottom of the stack the
split horizon label previously advertised by PE3 (Example 8-14, line 23).

When PE3 receives a MPLS-labeled BUM frame from PE4, it first pops the Inclusive
Multicast label and maps the frame to [EVPN-A, VLAN 2100]. Then, PE3 looks at
the next label and sees the split horizon label that it had previously announced. The
key role of the Split Horizon label is to prevent L2 loops: PE3 realizes that the frame
comes from ES 00:11:00:11:00:11:00:11:00:11, so it does not forward the frame back to
CE3.

But why does PE4 send the frame to PE3 in the first place? Because PE3 might have
other local Ethernet Segments to which the frame must be flooded.

EVPN virtual gateway
Setting the same IRB IP+MAC across PEs—for a specific [EVI, VLAN] pair—is
enough to achieve all-active load balancing as long as every PE has such an IRB inter‐
face. Now, let’s consider an all-active topology in which CE1 is multihomed to PE1
and PE2, whereas CE3 is multihomed to PE3 and PE4. By combining the concepts
illustrated in Figure 8-3 and Figure 8-4 for known unicast, you can infer the follow‐
ing:

• CE1 applies a local hash to distribute outbound H1→H4 frames between its two
LAG member interfaces, toward PE1 or PE2, respectively.

• PE1 (or PE2) receives the packets on its local irb.2100 interface, strips the L2
header, performs an L3 lookup that yields output interface irb.2200, pushes a
new L2 header, and then tunnels the frame toward PE3 or PE4. The frame is
encapsulated under a service MPLS label, which can be either a MAC label or an
aliasing label.

But, what if PE1 and PE2 do not have a local IRB interface? In this case, they need to
bridge the frame in the context of bridge domain BR-2100 toward the remote IRB,
which is in PE3 or PE4. Is there all-active load-balancing from the ingress PE to the
two egress PEs? Not really: the ingress PE chooses either PE3 or PE4 because there is
no aliasing for the IRB (irb.2100) MAC. Unless you dynamically associate an ESI to
the IRB interface: in this case, all-active load-balancing is possible. This virtual gate‐
way functionality is implemented with EVPN Type 1 (Ethernet Segment AD), the
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details for which are beyond the scope of this book. As of this writing, the Virtual
Gateway functionality is implemented in Junos for EVPN with VXLAN transport.

As the authors will document in the blog http://mplsinthesd‐
nera.net, the Virtual Gateway feature supports VM mobility while
allowing to ping each of the PEs’ IRB interfaces in a deterministic
manner.

Ethernet VPN with VXLAN Transport
Ethernet VPN is a powerful technology that supports several encapsulation types.
VXLAN is one of the available transport options in those typically small-scale and
medium-scale data centers whose network does not support (or is not configured for)
the transport of MPLS packets.

Data Center Challenges
Although Chapter 10 discusses data center challenges and architectures in greater
detail, let’s do a very brief introduction of the use case for VXLAN here.

Data center transport challenge
Data centers are growing exponentially in terms of traffic, services, and geographical
distribution. With its many limitations—flooding, L2 loops, and so on—a legacy L2
underlay is no longer an acceptable option. What are the options to build a scalable
transport overlay?

In the early 2000s, MPLS was considered to be a pure service provider (SP) (carrier)
technology. This has changed now: MPLS is being progressively accepted and
deployed as a powerful technology for Data Center Interconnection (DCI) at the
WAN edge.

What about server connectivity inside of each data center? As of this writing, not all
of the hypervisors support native MPLS yet, so many modern data centers run with
an IPv4 overlay. This approach—popularly called IP fabric—supports the transport of
servers’ L3 traffic. But that’s not all: it can also transport L2 frames by somehow
encapsulating them within an IPv4 packet at the edge of the fabric.

Regardless of the specific flavor chosen, an IPv4 overlay is similar to an IP core net‐
work that transparently tunnels customer traffic between edge devices. The edge
devices in the data center can be either traditional network PEs (data center gateways)
or the networking logic in modern hypervisors, or Top-of-Rack (ToR) switches.

Let’s expand this powerful analogy a bit more:

370 | Chapter 8: Ethernet VPN



• The L2 tunneling overlay is to the data center as an L2 VPN is to an SP.
• IP is to an IP fabric as IP+MPLS is to an SP core.

Data center multitenancy challenge
Now add the requirement to separate traffic in different virtual instances or tenants.
What is a tenant? You can view it as a data center customer or service (it can even be
an application). The concept is pretty similar to that of a MPLS VPN in the SP world.

The legacy way to separate tenants in a data center is VLANs. But this approach has
many drawbacks, for example:

• It is a pure L2 technology, with no intelligence to build a scalable overlay.
• The VLAN ID is a 12-bit value, limiting the number of VLANs (or SVLANs) in a

data center to a maximum of 4,095.

Now think of SPs: how was the multitenant problem solved several decades ago? By
pushing a (MPLS) label to the packets. This label only lives inside the core and is
stripped from the packet before sending it to the customer device.

How is this challenge solved in a data center having an IP overlay? With the very
same idea: by encoding something such as a service label over IP. As you can see in
Chapter 10’s Figure 10-5, this “something” can be an MPLS label—for example, using
MPLS over Generic Routing Encapsulation (GRE) or MPLS over User Datagram Pro‐
tocol (UDP)—or it can also be a VXLAN Network Identifier (VNI). But what is
VXLAN?

VXLAN
Recall from earlier in the chapter that VXLAN stands for Virtual eXtensible Local
Area Network. It is defined in RFC 7348 and is basically an L2VPN technology that
does not rely on MPLS for transport or service multiplexing. VXLAN was initially
proposed with a MAC learning paradigm that was based on the forwarding plane.
Because this mechanism does not scale well, control planes came to the rescue and
one of them is EVPN.

VXLAN transport tunnels are IP-based. Indeed, VXLAN runs on top of UDP desti‐
nation port 4789, and its payload is an Ethernet frame—which can be either native or
VLAN-tagged. IP tunnels are less optimized than MPLS from the point of view of
resiliency and forwarding-plane lookup resources. On the other hand, as of this writ‐
ing, many intra-data center deployments rely on IP transport—as an evolution from
pure legacy L2 VLAN. So let’s explore VXLAN in more detail.
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How can we distinguish tenants in the VXLAN world? The VXLAN header has a 24-
bit field called segment ID or VXLAN Network Identifier (VNI). And, like an MPLS
service label, the VNI acts as a multiplexing field. There is an important implementa‐
tion difference when comparing a VNI to a service MPLS label: a VNI typically has
global significance among the VXLAN Tunnel End Points (VTEPs) in the data center
network, whereas a service MPLS label typically has a local significance to the egress
PE only.

Figure 8-5 shows a typical architecture with two data centers (one on top, one at the
bottom). VXLAN tunnels span inside a single data center, and VXLAN packets are
exchanged between VTEPs.

Figure 8-5. VXLAN and VTEPs

Let’s view Figure 8-5 in analogy to MPLS L2 VPN:

• A VM or a bare-metal server is like a CE. These do not speak VXLAN. They just
send and receive untagged or VLAN-tagged Ethernet frames. Traditional hyper‐
visor vSwitches, which are plain VLAN-aware Ethernet bridges, are also consid‐
ered like (L2) CEs.
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• VTEPs are like PEs. They have (physical or virtual) CE-facing interfaces where
they exchange plain native or VLAN-tagged Ethernet frames. And they also have
core-facing interfaces where they exchange VXLAN packets.

• The IP fabric is like an MPLS/IP core. In the same way that MPLS P routers typi‐
cally do not look at the MPLS service labels, the IP fabric nodes do not look at the
packets’ VNI.

There are more than 16 million possible VNI values, overcoming the 4,000 VLAN
limitation. Conceptually, though, a VXLAN is closer to an MPLS label than to a
VLAN.

You can implement the VTEP function in the software of modern hypervisors and
host operating systems. VMs and containers still act as CEs, so they don’t implement
VXLAN.

What about bare-metal servers or hypervisors without VXLAN support? You need to
connect them as CEs to a VXLAN gateway that performs the VTEP function.

Finally, a data center gateway is a (physical or logical) network device that acts as a
VTEP toward the local data center, and as a L2 VPN PE toward the WAN IP/MPLS
core.

Nothing prevents you from grouping these functions (hypervisor, VXLAN gateway,
and data center gateway) into the same physical device(s).

It’s time to paraphrase RFC 7348.
VXLAN runs over the existing networking infrastructure and provides a means to stretch an

L2 network. In short, VXLAN is an L2 overlay scheme on an L3 network. Each overlay is
termed a VXLAN segment. Only VMs within the same VXLAN segment can communicate

with each other. Each VXLAN segment is identified through a 24-bit segment ID [...] (VNI).

Finishing the analogy, a VXLAN segment is equivalent to a VPN in the MPLS world.

Beyond the 16 million versus 4,000 identifier space, the main
advantage of VXLAN over legacy VLAN switching in the data cen‐
ter is L3 itself. When hypervisors perform IP tunneling and the
infrastructure is natively L3, the risk of L2 loops is drastically
reduced.

EVPN with VXLAN Transport—Motivation
As of this writing, EVPN VXLAN is described in IETF draft-ietf-bess-evpn-overlay. It
is in the standards track, so it might be an RFC by the time you read these lines.
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One of the most important use cases of EVPN is DCI: interconnecting several data
centers across a MPLS/IP core. This is popularly called the WAN application and it is
a natural fit for EVPN MPLS. But EVPN also has a use case within each data center.

How about EVPN VXLAN? If, for whatever reason, a data center does not support
the transport of MPLS packets, there are several multitenant IP tunneling options
available, and one of them is VXLAN. Strictly speaking, simple VXLAN is already
VPN-aware (via the VNI) and has a transport method (IP). VXLAN even implements
a native IP Multicast mechanism for VTEP autodiscovery and BUM flooding. Then,
what is the point of running EVPN with VXLAN transport?

Using EVPN as the VXLAN’s control plane has many advantages over plain VXLAN:

• MAC learning implemented by the control plane. VM mobility assisted by the
control plane. Unnecessary flooding is reduced.

• Robust autodiscovery based on BGP, as compared to IP Multicast.
• Native integration between the L2 and L3 worlds. Strong IRB solution.
• All-Active multihoming.
• Arbitrary E-LAN, E-LINE, E-TREE topologies, thanks to RT policies. Use RT

policies with care because they may break CE multihoming solutions.

As of this writing, there is one disadvantage of EVPN: plain VXLAN uses IP multi‐
cast trees for BUM flooding, which provide a higher forwarding-plane efficiency than
IR, the currently implemented mechanism for EVPN VXLAN. That having been said,
EVPN is a technology designed to reduce unicast flooding to the minimum. You can
also have a look at the Assisted Replication model defined in draft-rabadan-bess-
evpn-optimized-ir.

EVPN with VXLAN Transport—Forwarding Plane
Here’s what happens when a bridge domain has a learning vlan-id configured:

• In both VPLS and EVPN MPLS, the learning VLAN travels within the MPLS-
encapsulated frame. Why? An egress PE may allocate the same MPLS label for
different bridge domains in a given EVI. To de-multiplex inbound traffic cor‐
rectly and map it to the right bridge domain, the egress PE expects a VLAN tag.

• In EVPN VXLAN, by default the VLAN tag is stripped before encapsulating the
frame in VXLAN. Why? Every bridge domain has a different VNI, so the VNI
acts as a multiplexer. There is typically no need to carry VLAN tags on the core.

You can configure EVPN VXLAN to carry the VLAN tags on the core with two
knobs: encapsulate-inner-vlan and decapsulate-accept-inner-vlan.
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Example 8-16 shows an H3→H1 frame—an ICMP echo request—encapsulated in
VXLAN, assuming that the two previous knobs are configured.

Example 8-16. VXLAN encapsulation (Junos)

Ethernet II, Src: MAC_PE3_ge-0/0/1, Dst: MAC_PE1_ge-0/0/3
Internet Protocol Version 4, Src: 172.16.0.33 , Dst: 172.16.0.11
User Datagram Protocol, Src Port: 55468, Dst Port: 4789
Virtual eXtensible Local Area Network
    Flags: 0x08
        0... .... = Reserved(R): False
        .0.. .... = Reserved(R): False
        ..0. .... = Reserved(R): False
        ...0 .... = Reserved(R): False
        .... 1... = VXLAN Network ID(VNI): Present
        ...0 .... = Reserved(R): False
        ...0 .... = Reserved(R): False
        ...0 .... = Reserved(R): False
    Reserved: 0x000000
    VXLAN Network Identifier (VNI): 5100
    Reserved: 0
Ethernet II, Src: H3 (f8:c0:01:18:90:69), Dst: H1 (5c:5e:ab:0a:c3:92)
802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 2100
Internet Protocol Version 4, Src: 10.1.1.3, Dst: 10.1.1.1
Internet Control Message Protocol
    Type: 8 (Echo (ping) request)
    Code: 0

You can see the original frame encapsulated in VXLAN, which is in turn encapsulated
in UDP. The destination UDP port for VXLAN is 4789.

EVPN with VXLAN Transport—Junos Configuration
EVPN VXLAN was released (in Junos and IOS XR) just before this book’s publica‐
tion, so the authors did not have time to build multivendor scenarios. However, there
was an interoperability proof-of-concept executed and published by the European
Advanced Networking Test Center (EANTC).

In the interest of brevity, the following Junos configuration only includes one bridge
domain and it has neither IRB nor multihoming. You can refer to Examples
Example 8-3 and Example 8-6 for AC and IRB configuration, respectively.

Example 8-17. EVPN VXLAN on a Virtual Switch—PE1 (Junos)

1     routing-instances {
2         EVPN-A {
3             instance-type virtual-switch;
4             vtep-source-interface lo0.0;
5             route-distinguisher 172.16.0.11:2000;
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6             vrf-target target:65000:2000;
7             protocols {
8                 evpn {
9                     encapsulation vxlan;
10                    extended-vni-list 5100;
11                }
12            }
13            bridge-domains {
14                BR-2100 {
15                    vlan-id none;
16                    interface ae10.2100;
17                    vxlan {
18                        vni 5100;
19                        ingress-node-replication;
20    }}}}}

The encapsulate-inner-vlan and decapsulate-accept-inner-
vlan knobs are configurable under the vxlan hierarchy (line 17).

The bridge domain’s vlan-id (line 15) is actually the normalization or learning
VLAN. The on-the-wire VLAN tag may be different in a per-AC basis, as shown in
Example 7-19. And the normalization VLAN is mapped to a VNI. In this case, it is set
to none—even if it had a specific value it would be stripped by default.

Multitenancy is possible because a VNI has twice as many bits as a VLAN ID. Imag‐
ine 1,000 different tenants, each with its own VLAN ID space (1–4,095). Each [ten‐
ant, VLAN] pair can be mapped to a different VNI.

EVPN with VXLAN Transport—Signaling
The signaling is very similar to EVPN with MPLS transport, except for certain details.
Here is the Inclusive Multicast route advertised by PE1, one per VNI:

Example 8-18. EVPN VXLAN—Inclusive Multicast route—PE1 (Junos)

1     juniper@PE1> show route advertising-protocol bgp 172.16.0.201
2                  table EVPN-A.evpn.0 match-prefix "3:*" detail
3     [...]
4     * 3:172.16.0.11:2000::5100::172.16.0.11/304 (1 entry, 1 announced)
5      BGP group IBGP type Internal
6          Route Distinguisher: 172.16.0.11:2000
7          Nexthop: Self
8          Localpref: 100
9          AS path: [65000] I
10         Communities: target:65000:2000
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11         PMSI: Flags 0x0: Label 5100:
12               Type INGRESS-REPLICATION 172.16.0.11

The NLRI now contains the VNI instead of the VLAN ID. And the label encoded in
the PMSI attribute is no longer a MPLS label: it is the VNI!

As shown in the following example, the MAC/IP route’s NLRI also contains the VNI:

Example 8-19. EVPN VXLAN—MAC route—PE1 (Junos)

1     juniper@PE1> show route advertising-protocol bgp 172.16.0.201
2                  table EVPN-A.evpn.0 match-prefix "2:*" detail
3     [...]
4     * 2:172.16.0.11:2000::5100::5c:5e:ab:0a:c3:92/304 (1 entry, 1 announced)
5      BGP group IBGP type Internal
6          Route Distinguisher: 172.16.0.11:2000
7          Nexthop: Self
8          Localpref: 100
9          AS path: [65000] I
10         Communities: target:65000:2000 encapsulation:vxlan

Back to EVPN MPLS, MAC/IP routes included a MPLS label. Here in EVPN
VXLAN, the NLRI includes a VNI. As expected!

The VNI is the same for BUM traffic (Example 8-18, lines 4 and 11) and known uni‐
cast traffic (Example 8-19, line 4). This is another subtle difference with respect to
EVPN MPLS. Another difference is the way in which all-active multihoming works.
Since there is no way of using a split-horizon label with VXLAN, the external IP
header of the VXLAN packet is inspected in order to determine which PE a BUM
frame is arriving from.

Provider Backbone Bridging EVPN
Provider Backbone Bridging (PBB) EVPN is an EVPN variant that can also run either
over MPLS or over VXLAN. In a nutshell, PBB EVPN inserts an extra encapsulation
between the original Ethernet frame and the transport (MPLS or VXLAN) header.
The goal of PBB EVPN is to achieve a higher scalability than native EVPN in the con‐
trol plane. Let’s see how, after the following analogy.

Introduction to PBB
As of this writing, the Internet IPv4 Full Routing comprises more than a half million
prefixes: this is the number of routes that an Internet ASBR typically learns from its
transit eBGP peers. Are all of these routes needed? Not really, there is a lot of ineffi‐
ciency there. However, it could be much worse! Indeed, it is estimated that there are
more than ten billion active devices in the Internet of Things (IoT), and many of them
have their own public IPv4 address. On average, each single IPv4 public route repre‐
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sents thousands of active hosts. This aggregation—made possible thanks to subnet‐
ting and summarization—is one of the reasons why the Internet can scale worldwide.
Imagine that every single host resulted in one IPv4 public route: the Internet control
plane would be unmanageable!

Now, think about a big data center, with up to millions of MAC addresses, typically
corresponding to VMs. Wouldn’t it be great to create MAC group prefixes so that each
such prefix could represent thousands of MAC addresses? Unfortunately, this is not
implemented in Ethernet. The most significant bytes of a MAC address compose the
vendor code of the network interface; so MAC summarization is not an option these
days.

How can you scale the L2 service? The best option is to make it L3! It sounds trivial,
but it is the best option. On the other hand, some legacy apps require L2 flat connec‐
tivity, so the data center infrastructure usually keeps the L2 service in place. What
scaling options are there? One of them is PBB, also known as MAC-in-MAC.

PBB is defined in IEEE 802.1ah-2008. It is different from IEEE 802.1ad (Q-in-Q):

• Q-in-Q or VLAN stacking leaves the original MAC header in place and inserts an
extra 4-byte VLAN header—with 3 bytes or 12 bits composing the VLAN tag.

• PBB encapsulates the original Customer MAC (C-MAC) frame inside a new set
of headers including a 24-bit tag called I-SID, and a Backbone MAC (B-MAC)
header.

Effectively, this increases the multiplexing space from 4,000 (VLAN) to 16 million (I-
SID) values. This achievement is similar to VXLAN’s but, unlike VXLAN, PBB adds a
new MAC header. These technologies are very different: VXLAN is L2 over L3,
whereas PBB is L2 over L2 (and PBB EVPN is L2 over L2 over L3).

When combined with EVPN, VXLAN and PBB cover two different use cases.
VXLAN resolves the challenge of transporting Ethernet frames through an IP fabric;
on the other hand, PBB tries to provide a higher scalability by hiding many different
C-MACs behind a much more reduced number of B-MACs.

PBB itself does not provide a solution to transport L2 over an IP fabric or an IP/
MPLS core. Indeed, PBB EVPN needs to run over VXLAN or MPLS. For this reason,
the VXLAN and PBB technologies are not comparable like apples and apples: they ful‐
fill a completely orthogonal purpose.

PBB is a generic technology that has been applied to VPLS, as well: RFC 7041 -
Extensions to the Virtual Private LAN Service (VPLS) Provider Edge (PE) Model for
Provider Backbone Bridging. PBB VPLS is not covered in this book.
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PBB EVPN in a Nutshell
PBB EVPN is described in RFC 7623. This is how it compares to EVPN:

• There is no concept of B-MAC in EVPN. Each PE advertises all the C-MACs that
it locally learns (on its ACs) via EVPN MAC/IP routes. Synchronizing the PEs’
bridge tables via the control plane (BGP) minimizes unicast frame flooding. And
customer MAC/IP routes provide a native L2-L3 hook that brings robustness
while avoiding undesired behavior like traffic tromboning. On the downside,
when C-MACs are in the order of many thousands or even millions, advertising
every single C-MAC stresses the control plane—and this is the only motivation
for PBB EVPN.

• PBB EVPN maintains control-plane MAC learning for B-MACs, but it leaves C-
MAC address learning exclusively to the forwarding plane (like in VPLS). PEs
still need to maintain huge C-MAC bridge tables, and the only benefit brought by
PBB EVPN is a reduction in the number of BGP routes. What are the disadvan‐
tages?

PBB EVPN dramatically reduces the control-plane load, at the
expense of much more flooding and complexity. As for the nice L3
hooks in EVPN, the PBB layer hides them, so they are no longer
available.

PBB EVPN finds its natural application in the WAN (DCI, provider transport, etc.),
where the highest number of MAC addresses is expected.

After comparing PBB EVPN to EVPN, let’s now compare PBB EVPN to VPLS. Both
technologies rely on the forwarding plane for customer MAC learning, so what are
the advantages of PBB EVPN over VPLS? Two specific advantages are all-active
multihoming and its better B-MAC flush mechanism.

PBB EVPN Implementations
As of this writing, both Junos and IOS XR support PBB EVPN with MPLS transport.

How about PBB EVPN with VXLAN transport? Neither vendor supports it in gener‐
ally available (GA) releases as of this writing, but IOS XR had a working prototype at
EANTC in 2015.
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PBB EVPN in Action
Many examples in this book begin with the configuration and then move on to the
signaling and forwarding details. But PBB EVPN is such a tricky technology that it is
very difficult to make any sense of the configuration without seeing it in action first.

This book’s PBB EVPN tests achieved Junos and IOS XR interoperability, so the refer‐
ence topology is the multivendor one in Figure 6-3.

PBB EVPN—IM signaling and BUM traffic forwarding
Figure 8-6 provides a view of how a PBB EVPN service transports an ARP request
initially sent from H1 (remember that EVPN route type 3 is Inclusive Multicast). The
logic inside PE4 is similar to PE1’s.

Figure 8-6. PBB EVPN—BUM intra-VLAN bridging

PBB is MAC-in-MAC, and it requires two components on each service endpoint:
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The I-Component (where “I” stands for “Instance”)
This component is customer facing and bridges frames according to the C-MAC.
This C- concept is different from C- in C-VLAN. Indeed, PE1 receives (on its
AC) Ethernet frames that can be non-tagged, single-tagged or double-tagged.
How PE1 maps these frames to a bridge domain in the I-Component is just vir‐
tual switch/bridge domain business as usual (see the VPLS section for more
details). In the following examples, the ACs and bridge domains are actually con‐
figured with one single vlan-id, so it is an SVLAN model. Still, from the PBB
perspective, the frame’s MAC header is considered to be C-MAC.

The B-Component (where “B” stands for “Backbone”)
This component is core-facing and it bridges frames according to the B-MAC.
The B-MAC is in an outer MAC header as compared to the C-MAC.

The core links in this example are based on Ethernet, so there is yet a third Ethernet
header in order to transport the packet from one LER/LSR to its downstream neigh‐
bor LSR/LER. This outermost header is not shown in Figure 8-6, but you can find it
in Example 8-20, line 1.

The original PBB standard allows for the I-Component and B-Component to be in
different devices, but in PBB EVPN, they are assumed to be both in the same PE.

The following interfaces are defined in the PBB model:

• Customer Instance Port (CIP), at the I-Component and pointing to the ACs
• Provider Instance Port (PIP), at the I-Component, pointing to the B-Component
• Customer Backbone Port (CBP), at the B-Component, pointing to the I-

Component
• Provider Backbone Port (PBP), at the B-Component and pointing to the SP core

Let’s assume that each bridge domain only has one (S-)VLAN assigned to it, so there
is a 1:1 VLAN:BD mapping. The following N:1 mappings are defined on each PE:

• N x VLANs to one I-SID
• N x I-SIDs to one I-Component
• N x I-Components to one B-Component
• N x B-Components in one PE; each B-Component is an EVPN Instance.

The N number is arbitrary and it can have a different value for each of these map‐
pings—of course, it can be 1, as well. The I-SID stands for Backbone Service Instance
Identifier, and it is the “glue” that binds an I-Component to its peer B-Component.

So there are several levels of N:1 multiplexing. How can de-multiplexing work at all?
As you can see in Figure 8-6, the customer frames get some more headers added,

Provider Backbone Bridging EVPN | 381



including the VLAN tag, the I-SID, and the Inclusive Multicast MPLS label that iden‐
tifies the B-Component on the egress PE (PE4).

Looking at the B-MAC header in Figure 8-6, the source B-MAC is the local B-MAC
assigned to ESI #0 at PE1’s B-Component. This MAC address is locally generated by
PE1 in a dynamic manner, and it needs to have a different value on each PE. If PE1
has thousands of C-MACs on ESI #0—remember this is the ESI for all the single-
homed and single-active multi-homed sites—all of these C-MACs are hidden behind
one single B-MAC. Additionally, it is possible to reuse the same B-MAC in several B-
Components on the same PE, because the B-MAC is not a multiplexing field.

How about the destination B-MAC address 01:1e:83:03:0e:08? It is composed of two
parts: a fixed 01:1e:83 prefix, and 0x030e08 = 200200, the I-SID value! The following
capture shows the Ethernet frame represented earlier in Figure 8-6. As expected, it is
encapsulated over PBB-over-MPLS (although, in the capture, over becomes under).

Example 8-20. PBB-over-MPLS encapsulation

1     Ethernet II, Src: MAC_PE1_ge-0/0/4, Dst: MAC_P1_ge-0/0/1
2     MPLS Header, Label: <Transport to-PE4 Label>, Exp: 0, S: 0, TTL: 255
3     MPLS Header, Label: 16288, Exp: 0, S: 1, TTL: 255
4     PW Ethernet Control Word, Sequence Number: 0
5     Ethernet II, Src: 80:71:1f:c0:1f:b0, Dst: 01:1e:83:03:0e:08
6         Type: 802.1ah Provider Backbone Bridge (mac-in-mac) (0x88e7)
7     IEEE 802.1ah
8         I-TAG, I-SID: 200200
9         C-Src: H1_MAC (5c:5e:ab:0a:c3:92)
10        C-Dst: Broadcast (ff:ff:ff:ff:ff:ff)
11        Type: 802.1Q Virtual LAN (0x8100)
12    802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 2100
13    ARP Request, who is 10.1.1.3, tell 10.1.1.1

Here are the three Ethernet headers:

• Line 1: Outermost header to take the packet from PE1 to its neighbor P1.
• Line 5: Source B-MAC dynamically assigned by PE1, and Destination B-MAC

computed for BUM in the context of I-SID 200200.
• Lines 9 through 10: Embedded in the IEEE 802.1ah header, the unicast C-MAC

associated to H1 and the broadcast C-MAC address.

When PE4 receives the packet, it first pops the service MPLS label (line 3) and maps
the packet to the appropriate B-Component. Then, by looking at the I-SID, PE4 maps
the packet to the corresponding I-Component. And the I-Component delivers the
customer frame (lines 9 through 13) out of the local ACs. Note that the Source B-
MAC is useful for Source C-MAC learning (see Example 8-22).
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Complex, isn’t it? Well, there is still known unicast to come, not to mention multi‐
homing. This complexity is the result of one of the most repeated mantras in net‐
working:

Simplicity is never a free lunch. If application developers assume the network is flat,
reliable and with zero latency, network designers and engineers need to implement
incredibly complex solutions.

In modern times, application development should take the network into account and
assume L3 (not L2) connectivity at the very least. A really network-respectful applica‐
tion should also rely on intelligent transport mechanisms that are load-balancing
aware. Paraphrasing a blog post from Ivan Pepelnjak on ipspace.net:

In a world with scale-out applications, you don’t need fancy combinations of routing,
bridging, and whatever else; you just need fast L3 transport between endpoints.

In a world with really modern applications, a solution such as PBB EVPN should not
be needed.

PBB EVPN—B-MAC signaling and known unicast traffic forwarding
Figure 8-7 illustrates how a PBB EVPN service transports the unicast ARP reply from
H3 to H1. This is a known unicast packet because of the following:

• PE4’s I-Component already learned H1’s C-MAC address on its forwarding
plane.

• PE4’s B-Component already learned PE1’s B-MAC address on its control plane.
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Figure 8-7. PBB EVPN—known unicast intra-VLAN bridging

As you can see, the C_MAC_H1 to B_MAC_PE1 mapping is held at PE4’s I-
Component. It is the result of a more-complex-than-usual MAC learning process that
was triggered by H1’s ARP request in Figure 8-6. PE4 created this state while process‐
ing and removing the ARP request’s B-MAC and I-TAG headers (Example 8-20).

Remember that EVPN Type 2 is MAC/IP. In this case, it is B-MAC.

PBB EVPN Configuration
Now that we can spell PBB EVPN, let’s see an interoperable configuration example.

PBB EVPN—Junos configuration
The AC is configured as is shown in Example 7-9, lines 1 through 8 (just replace 2010
with 2100). Example 8-21 shows a PBB EVPN configuration with just one VLAN and
one I-SID.
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Example 8-21. PBB EVPN configuration—PE1 (Junos)

1     # I-COMPONENT
2
3     interfaces {
4         pip0 {
5             unit 2000 {
6                 family bridge {
7                     interface-mode trunk;
8                     bridge-domain-type svlan;
9                     isid-list all-service-groups;
10    }}}}
11    routing-instances {
12        EVPN-I-COMPONENT-A {
13            instance-type virtual-switch;
14            interface pip0.2000;
15            bridge-domains {
16                BR-I-2100 {
17                    vlan-id 2100;
18                    interface ge-2/0/1.2100;
19                }
20            }
21            pbb-options {
22                peer-instance EVPN-B-COMPONENT-A;
23            }
24            service-groups {
25                SG-A {
26                    service-type elan;
27                    pbb-service-options {
28                        isid 200200 vlan-id-list 2100;
29    }}}}}
30
31    # B-COMPONENT
32
33    interfaces {
34        cbp0 {
35            unit 2000 {
36                family bridge {
37                    interface-mode trunk;
38                    bridge-domain-type bvlan;
39                    isid-list all;
40    }}}}
41    routing-instances {
42        EVPN-B-COMPONENT-A {
43            instance-type virtual-switch;
44            interface cbp0.2000;
45            route-distinguisher 172.16.0.11:2000;
46            vrf-target target:65000:2000;
47            protocols {
48                evpn {
49                    control-word;
50                    pbb-evpn-core;
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51                    extended-isid-list 200200;
52                }
53            }
54            bridge-domains {
55                BR-B-200200 {
56                    vlan-id 1234;
57                    isid-list 200200;
58                    vlan-id-scope-local;
59    }}}}

As shown in Figure 8-6 and Figure 8-7 the PIP (lines 3 through 10) and CBP (lines 33
through 40) interconnect the I-Component to the B-Component, respectively. The
actual I-to-B mapping is performed on line 22. VLAN 2100 is mapped to I-SID
200200 on line 28. And I-SID 200200 is mapped to the B-Component on lines 51 and
57.

As for the B-Component bridge domain’s VLAN ID (line 56), it must be set, but its
value is not very relevant, because it is never sent on the wire.

The B-Component is an EVPN-capable instance but the
I-Component is not.

Example 8-22 shows the result of the configuration.

Example 8-22. PBB EVPN—MAC table—PE1 (Junos)

1     juniper@PE1> show brige mac-table
2
3     MAC flags       (D -dynamic MAC, C -Control MAC)
4
5     Routing instance : EVPN-B-COMPONENT-A
6      Bridging domain : BR-B-200200, VLAN : 1234
7        MAC                 MAC      Logical     NH     RTR
8        address             flags    interface   Index  ID
9        01:1e:83:03:0e:08   DC                   1048575 0
10       f8:66:f2:03:b5:df   DC                   1048576 1048576
11
12    Routing instance : EVPN-I-COMPONENT-A
13     Bridging domain : BR-I-2100, ISID : 200200, VLAN : 2100
14       MAC                 MAC     Logical         Remote
15       address             flags   interface       BEB address
16       5c:5e:ab:0a:c3:92   D       ge-2/0/1.2100
17       f8:c0:01:18:90:69   D       rbeb.32768      f8:66:f2:03:b5:df

By looking carefully at Figure 8-6 and Figure 8-7, you can identify all of the MAC
addresses displayed in the previous example:
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• Line 9: Multicast B-MAC address used for BUM in the context of I-SID 200200
• Line 10: B-MAC address locally assigned by PE4
• Lines 16 and 17: H1’s and H3’s C-MAC addresses, respectively

The Remote BEB address column (BEB stands for Backbone Edge Bridge) shows,
from the perspective of PE1, how H3’s C-MAC is mapped to PE4’s B-MAC. This
mapping allows PE1 to successfully process unicast frames destined to H3.

PBB EVPN—IOS XR configuration
IOS XR implicitly creates the PIP and CBP interfaces, so the configuration is shorter:

Example 8-23. PBB EVPN configuration—PE4 (IOS XR)

1     # I-COMPONENT
2
3     interface GigabitEthernet0/0/0/3.2100 l2transport
4      encapsulation dot1q 2100
5     !
6     l2vpn
7      bridge group I-COMPONENTS
8       bridge-domain BR-I-2100
9        interface GigabitEthernet0/0/0/3.2100
10       !
11       pbb edge i-sid 200200 core-bridge BR-B-200200
12    !
13
14    # B-COMPONENT
15
16     bridge group B-COMPONENTS
17      bridge-domain BR-B-200200
18       pbb core
19        evpn evi 2000
20    !

The I-SID clearly acts as a glue from the I-Component to the B-Component (line 11).
Where are the EVPN instance’s RD and RT? They are automatically calculated from
evpn evi 2000 (line 19):

• The RD is calculated as <Router ID>:<EVI>, so it is 172.16.0.44:2000.
• The RT is calculated as <AS>:<EVI>, so it is 65000:2000.

PBB EVPN Signaling
PBB EVPN and EVPN signaling are very similar, but not identical. Here are some dif‐
ferences.
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First, PBB EVPN signals B-MACs, whereas EVPN signals C-MACs. Obvious!

There is no L3 hook on the B-Component, so PBB EVPN’s Type 2 routes are only
MAC—and not IP/MAC—routes. The NLRI contains the I-SID instead of the VLAN
(see the NLRI format shown in Example 8-5 and replace 2100 with 200200).

The trickier difference comes with all-active multihoming. In EVPN, all the ACs con‐
nected to the same Ethernet Segment are identified with a common ESI. In PBB
EVPN, the implementation is very different. Let’s see it in detail.

First, the administrator or external software manually configures the ES’s B-MAC
address. For example, in Junos: set interfaces ae10 esi source-bmac

00:11:22:33:44:55. The ACs connected to a given all-active ES must all have the
same B-MAC address, regardless of which PE they are on. So, taking as a reference
the topology in Figure 8-1, PE3 and PE4 both have the same B-MAC value config‐
ured on the right-facing LAG. The EVPN MAC route looks like the following exam‐
ple:

Example 8-24. EVPN Type 2 MAC route: non-zero ESI—PE3 (Junos)

juniper@PE3> show route advertising-protocol bgp 172.16.0.201
             evpn-mac-address 00:11:22:33:44:55 detail

EVPN-B-COMPONENT-A.evpn.0: [...]
* 2:172.16.0.33:2000::200200::00:11:22:33:44:55/304 (1 entry, ...)
     Route Label: 300776
     ESI: ff:ff:ff:ff:ff:ff:ff:ff:ff:ff
     Communities: target:65000:2000
[...]

Regardless of the configured ESI, the B-MAC route has the ESI attribute set to the all-
ones binary value. The key is the B-MAC, which must match on all the PEs connec‐
ted to a given all-active Ethernet Segment.

There are no Ethernet AD (Type 1) routes in PBB EVPN, simply because there is no
need for aliasing. Both PE3 and PE4 advertise the single B-MAC associated to a given
ES in a permanent manner (there is no B-MAC aging), so the ingress PEs just need to
look up the MPLS label that the egress PEs are advertising for that single B-MAC.

Ethernet Segment (Type 4) routes are present in both EVPN and PBB EVPN, as they
are needed for the BUM DF election in all-active ES.
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CHAPTER 9

Inter-Domain MPLS Services

Inter-domain MPLS services is such a vast topic that it could fill a book on its own.
This chapter focuses on an inter-domain type (Inter-AS) and a service type (IP VPN).
Although this is just one piece of the entire picture, it is enough to get an idea of the
challenges and techniques that are typically seen in inter-domain MPLS services.

But, before diving into Inter-AS IP VPN, let’s get an overview of what the different
inter-domain MPLS services are and how they can be classified.

Inter-Domain Architectures
Given two domains, D1 and D2, there are two ways to design the border:

Inter-AS
Each domain is a different AS: D1 = AS1, D2 = AS2. The border is composed of
two devices, each belonging to a single domain. These are AS Border Routers
(ASBRs). One ASBR belongs to D1 and the other one belongs to D2. They both
peer with each other through a neutral inter-domain link.

Inter-area
Each IGP area is one domain: D1 = Area X, D2 = Area Y. One single device is
enough to instantiate the border. Such a border device is typically called a Border
Node (BN) or Area Border Router (ABR). It has some interfaces in D1 and other
interfaces in D2. Actually, it can also connect to D3, D4, and so on.

Two ASs are connected through a link with one device at each end,
whereas two areas are connected through a network device.
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This chapter focuses on Inter-AS. Chapter 16 and Chapter 17 also feature inter-area
scenarios.

In classic networking, an AS and an IGP area are two completely different concepts:
an AS represents an organization and an IGP area is just one region within a larger
network. This interpretation is outdated. True, each service provider typically has one
or more public ASs in order to become part of the Internet. But this is just one appli‐
cation of the AS concept. Any public or private network can be segmented in
multiple—typically private—ASs or in multiple areas, or in a combination of both.
ASs and areas are just elements of the network designer toolbox. For example, the last
example of Chapter 2 is a single data-center network that is composed of many differ‐
ent private ASs, one per device.

It is assumed that the IGP prefixes of one domain are not leaked in
the IGP of the other domain. MPLS needs to work with this con‐
straint.

This Chapter’s Example Topology
Let’s take the following example as a reference to discuss all the models:

• There are three IP VPNs. These correspond to three VRFs that are instantiated at
PE1, PE2, PE3, and PE4. The VRF names are: VRF-BLUE, VRF-GREEN, and
VRF-RED. Each VRF has its own Route Target (RT) that it uses for importing
and exporting prefixes. The RT policies are symmetrical (full mesh).

• Each CE device in Figure 9-1 in fact represents three CEs. The topology has the
following CEs: CE<#>-BLUE, CE<#>-GREEN, and CE<#>-RED, where <#> is a
number that can take the values 1, 2, 3, or 4. Each colored CE is connected to the
adjacent PE through a separate AC. For a given PE, all the ACs share the same
physical interface and reuse the same IP addresses. ACs remain different because
each of them uses a different VLAN tag.
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Figure 9-1. Inter-AS example topology

• Likewise, each H device represents three hosts: H<#>-BLUE, H<#>-GREEN, and
H<#>-RED, where <#> is a number that can take the values 1 or 3. Again, the
physical interfaces and the IP addressing remain the same and VLAN tags act as
multiplexers.

• The challenge is to connect H1-BLUE to H3-BLUE; H1-GREEN to H3-GREEN;
and H1-RED to H3-RED.

Although they are not shown in the Figure 9-1, this chapter illus‐
trates both IPv4 VPN and IPv6 VPN. All the access and inter-AS
links are dual-tagged so every IPv4 address 10.x.y.z coexists with an
IPv6 address fc00::10:x:y:z. The MPLS/IP core networks in each AS
are IPv4-only.

Inter-AS Flavors
RFC 4364 - BGP/MPLS IP VPNs, section 10, lists three options to provide IP VPN
services to tenants that have sites in different ASs. These options are listed in the RFC
as: (a), (b), and (c). For these reason, these three models are known in the industry as
inter-AS Options A, B, and C, respectively.

Figure 9-2 shows an additional model, referred to in this book as Option X.
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The gray shadow next to certain MPLS Transport headers repre‐
sents implicit null. In other words, a MPLS transport label is sig‐
naled but its control-plane value is 3, so there is no associated
MPLS header.

Figure 9-2. Inter-AS IP VPN flavors

For the purposes of simplicity, let’s assume in this illustration that VRRP priorities on
H-CE links—and MEDs on CE-PE sessions—are set so that the preferred path is via
PE1 and PE3.

This chapter’s goal is to make Figure 9-2 meaningful to you—keep reading and it will
become clearer.
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Inter-AS Option A
Inter-AS Option A, illustrated in Figure 9-3, requires the VRFs to be instantiated in
the ASBRs. You can enable VLAN tagging on the inter-AS link and define three dif‐
ferent logical interfaces on each ASBR:

• ASBR1’s VRF-BLUE: ge-2/0/3.1001. ASBR3’s VRF-BLUE: ge-2/0/1.1001
• ASBR1’s VRF-GREEN: ge-2/0/3.1002. ASBR3’s VRF-GREEN: ge-2/0/1.1002
• ASBR1’s VRF-RED: ge-2/0/3.1003. ASBR3’s VRF-RED: ge-2/0/1.1003

Figure 9-3. Inter-AS VPN Option A—signaling and forwarding

This technique relies on stitching the ACs of the two ASBRs. ASBR1 sees ASBR3 as a
CE, and vice versa. These inter-AS ACs are like PE-CE ACs in all respects. You can
run any routing protocol or even static routing over these ACs.

As you might expect, eBGP (SAFI=1) is the most popular choice due to its scalability.
So to extend 10K VPNs across the two ASs, the two ASBRs need to establish 10K
eBGP sessions with each other. This has an effect on scalability.

Option A is the simplest model, but also the least scalable of
them all.

Inter-AS Option A | 393



Looking back at Figure 9-2, every AS has its own MPLS protocol. It is perfectly possi‐
ble to run RSVP-TE on AS 65100 and LDP on AS 65101. Let’s assume that this is the
case.

Following is the “imaginary” life of the packet as it goes from CE1-BLUE to CE3-
BLUE. It is imaginary because in reality the forwarding table is precomputed with all
the instructions, so the control plane has already executed the complex recursive
logic. Also, let’s assume that the VPN label allocation mode is per-CE.

1. CE1 sends the IP packet to PE1, which receives it on the VRF-BLUE’s AC.
2. PE1 looks for a route in VRF-BLUE to the destination. It finds an IP VPN

(SAFI=128) route with an MPLS service label S1 (302016) and a BGP next hop
equal to ASBR1’s loopback address 172.16.0.101. This next hop resolves into a
RSVP-TE LSP, whose first-hop transport label is T1 (349184). This LSP termi‐
nates at ASBR1. PE1 sends the packet to P1 with two labels: S1 at the bottom, and
T1 on top.

3. P1 pops the T1 label and sends the packet to ASBR1.
4. ASBR1 looks at the S1 label, pops it, and sends the plain IP packet to ASBR3.

From the perspective of ASBR1, ASBR3 is a CE.
5. ASBR3 receives the packet and processes it in the context of VRF-BLUE. It finds

a route to the destination with an MPLS service label S2 (301008) and a BGP next
hop equal to PE3’s loopback address 172.16.10.33. This next hop resolves into an
LDP LSP, whose first-hop transport label is T2 (300048). This LSP terminates at
PE3. ASBR3 sends the packet to P3 with two labels: S2 at the bottom, and T2 on
top.

6. P3 pops the T2 label and sends the packet to PE3.
7. PE3 looks at the S2 label, pops it, and sends the packet to CE3-BLUE.

Remember that an MPLS service label, which is sometimes called a
service MPLS label, or simply a service label, is just an MPLS label.
On the wire, it cannot be distinguished from a transport label.
What makes it a service label is the way in which the receiver inter‐
prets it.

Option A is a model in which the inter-AS link is not MPLS-enabled. Strictly speak‐
ing, in Option A the MPLS service is not extended; it is terminated by each AS. The
extension takes place as a non-MPLS service.

The service BGP route undergoes several transformations:
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1. From PE3 to ASBR3, it is an IP VPN route (SAFI=128) with BGP next hop PE3
(172.16.10.33).

2. From ASBR3 to ASBR1, it is a plain IP route (SAFI=1) with BGP next hop
ASBR3 (10.0.1.1).

3. From ASBR1 to PE1, it is an IP VPN route (SAFI=128) with BGP next hop
ASBR1 (172.16.0.101).

Each ASBR behaves like a traditional PE, so all the techniques described in Chapter 3
apply here, too. You might remember from Chapter 3 that Junos, by default, does not
strip the extended communities from eBGP updates. In inter-AS Option A scenarios,
it is especially important to remove these communities by using the appropriate
eBGP policies. Otherwise, the prefix might be mistakenly imported into the wrong
VRFs at the receiver AS, based on the RT(s) attached by the sender AS.

Inter-AS Option B
In this model, VPN packets that traverse the link ASBR1→ASBR3 all egress ASBR1
through the same logical interface. In this case, it is no longer possible to use the
VLAN tag as a sort of VPN identifier in the inter-AS link. Another multiplexing tech‐
nique comes to the rescue: MPLS!

ASBR1 and ASBR3 establish one single eBGP session with each other. This session
exchanges IP VPN (SAFI=128) prefixes, essentially extending the VPN in an MPLS-
aware manner. This has an immediate scaling benefit: one eBGP session shared by all
VPNs, instead of one eBGP session for each VPN. However, ASBRs still need to keep
all the routes for every extended VPN.

In a pure Option B model, ASBRs do not have any local VRFs.
They act like transit LSRs and perform MPLS label operations.

Inter-AS Option B—Signaling and Forwarding
Looking back at Figure 9-2, every AS has its own MPLS protocol. Again, let’s assume
that AS 65100 runs RSVP-TE, and AS 65101 uses LDP.

Inter-AS Option B—signaling and forwarding—Junos plane
Figure 9-4 illustrates inter-AS Option B signaling and forwarding planes.
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Figure 9-4. Inter-AS VPN Option B—signaling and forwarding

Let’s inspect the H1-BLUE→H3-BLUE packet, assuming for simplicity that the for‐
warding path flows through a single-vendor plane (Junos in this case).

Example 9-1. Inter-AS Option B forwarding—Junos plane

RP/0/0/CPU0:H#traceroute vrf H1-BLUE 10.2.34.30

Type escape sequence to abort.
Tracing the route to 10.2.34.30

 1  10.1.12.1 0 msec  0 msec  0 msec
 2  10.1.0.1 0 msec  0 msec  0 msec
 3  10.0.0.3 [MPLS: Labels 349184/302016 Exp 0] 0 msec  [...]
 4  10.0.0.9 [MPLS: Label 302016 Exp 0] 79 msec  19 msec  [...]
 5  10.0.1.1 [MPLS: Label 301632 Exp 0] 9 msec  9 msec  [...]
 6  10.0.10.3 [MPLS: Labels 300048/301008 Exp 0] 19 msec  [...]
 7  10.0.10.9 [MPLS: Label 301008 Exp 0] 0 msec  [...]
 8  10.2.0.3 9 msec  0 msec  0 msec
 9  10.2.34.30 9 msec

Following is the “imaginary” life of the packet as it goes from CE1-BLUE to CE3-
BLUE. It is imaginary because in reality the forwarding table is precomputed with all
of the instructions, so the control plane has already executed the complex recursive
logic. Also, let’s assume that PE3’s VPN label allocation mode is per-CE.

1. CE1-BLUE sends the packet to PE1, which receives it on one of VRF-BLUE’s
ACs.
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2. PE1 looks for a BGP IP VPN route in VRF-BLUE to the destination. It finds a
route with a MPLS service label S1 (302016) and a BGP next hop equal to
ASBR1’s loopback address 172.16.0.101. This next hop resolves into a RSVP-TE
LSP, whose first-hop transport label is T1 (349184). This LSP terminates at
ASBR1. PE1 sends the packet to P1 with two labels: S1 at the bottom, and T1 on
top.

3. P1 pops the T1 label and sends the packet to ASBR1.
4. ASBR1 looks at the S1 label, swaps it for S2 (301632), and sends the packet out of

its ge-2/0/3.1001 interface toward ASBR3.
5. ASBR3 receives the packet, looks at the S2 label, swaps it for S3 (301008), and

pushes transport label T2 (300048). This label corresponds to an LDP LSP that
terminates at PE3.

6. P3 pops the T2 label and sends the packet to PE3.
7. PE3 looks at the S3 label, pops it, and sends the packet to CE3-BLUE.

As you can see, the ASBRs no longer perform an IP lookup. It is pure MPLS forward‐
ing. This is possible due to the way that the service BGP route is transformed at the
border:

1. From PE3 to ASBR3, it is an IP VPN route (SAFI=128) with BGP next hop PE3
(172.16.10.33).

2. From ASBR3 to ASBR1, it is an IP VPN route (SAFI=128) with BGP next hop
ASBR3 (10.0.1.1).

3. From ASBR1 to PE1, it is an IP VPN route (SAFI=128) with BGP next hop
ASBR1 (172.16.0.101).

This route transformation is practically identical to the one described in Option A.
But it has a very important difference: between the ASBRs, the route is IP VPN
(SAFI=128) instead of IP (SAFI=1). ASBRs must have iBGP export policies that
change the BGP next-hop attribute of the reflected IP VPN routes to self. This next-
hop rewrite operation triggers a new MPLS label allocation, which further modifies
the IP VPN routes:

• The Option A example features two different service label values: S1 from PE1 to
ASBR1, and S2 from ASBR3 to PE3. These S1 and S2 labels are locally meaning‐
ful to ASBR1 and PE3, respectively.

• The Option B example features three different service label values: S1 from PE1
to ASBR1, S2 from ASBR1 to ASBR3, and S3 from ASBR3 to PE3. These S1, S2,
and S3 labels are locally meaningful to ASBR1, ASBR3, and PE3, respectively.

When allocating a new service label, ASBR3 is programming a new entry in its LFIB.
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MPLS service label S2 is the only and topmost (outermost) label in
the inter-AS link. This label is advertised in IP VPN (SAFI=128)
eBGP routes. So, is it a service or a transport label? Functionally, it
acts more like a transport than a service label!

Most of the Junos-specific commands are already explained in Chapter 3. Let’s focus
on the MPLS forwarding state created at ASBR3 (see Example 9-2).

Example 9-2. Inter-AS Option B signaling and forwarding—ASBR3 (Junos)

1     juniper@ASBR3> show route receive-protocol bgp 172.16.10.203
2                    table bgp.l3vpn.0 community target:65000:1001
3                    match-prefix "*10.2.34.*" detail
4
5     bgp.l3vpn.0: 8 destinations, 16 routes (8 active, 0 holddown, ...)
6     * 172.16.10.33:101:10.2.34.0/24 (2 entries, 1 announced)
7          Accepted
8          Route Distinguisher: 172.16.10.33:101
9          VPN Label: 301008
10         Nexthop: 172.16.10.33
11         MED: 100
12         Localpref: 100
13         AS path: 65001 I (Originator)
14         Cluster list:  172.16.10.203
15         Originator ID: 172.16.10.33
16         Communities: target:65000:1001
17
18    juniper@ASBR3> show route table inet.3 172.16.10.33
19
20    inet.3: 11 destinations, 11 routes (11 active, 0 holddown, ...)
21    + = Active Route, - = Last Active, * = Both
22
23    172.16.10.33/32    *[LDP/9] 2d 00:37:33, metric 30
24                        > to 10.0.10.3 via ge-2/0/3.0, Push 300048
25
26    juniper@ASBR3> show route advertising-protocol bgp 10.0.1.0
27                   table bgp.l3vpn.0 community target:65000:1001
28                   match-prefix "*10.2.34.*" detail
29
30    bgp.l3vpn.0: 8 destinations, 16 routes (8 active, 0 holddown, ...)
31    * 172.16.10.33:101:10.2.34.0/24 (2 entries, 1 announced)
32     BGP group eBGP-VPN type External
33         Route Distinguisher: 172.16.10.33:101
34         VPN Label: 301632
35         Nexthop: Self
36         Flags: Nexthop Change
37         AS path: [65101] 65001 I
38         Communities: target:65000:1001
39
40    juniper@ASBR3> show route label 301632
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41
42    mpls.0: 14 destinations, 14 routes (14 active, 0 holddown, ...)
43    + = Active Route, - = Last Active, * = Both
44
45    301632  *[VPN/170] 00:17:32, metric2 30, from 172.16.10.203
46             > to 10.0.10.3 via ge-2/0/3.0, Swap 301008, Push 300048(top)

ASBR3 receives the IP VPN route (lines 1 through 16) with BGP next hop
172.16.10.33 and MPLS service label 301008 (S3). Next, it looks at the inet.3 table
and realizes that the BGP next hop 172.16.10.33 is resolved via LDP (lines 18 through
24), being the first-hop label equal to 300048 (T2). Then, ASBR3 associates the new
MPLS service label 301632 (S2) to every single received IP VPN route with original
BGP next hop 172.16.10.33 and original MPLS service label 301008.

ASBR3 then programs the LFIB accordingly (lines 40 through 46): upon reception of
a packet with topmost label S2 (301632), swap it for S3 (301008) and push T2
(300048). Finally, ASBR3 advertises the IP VPN route (lines 26 through 38) with the
new MPLS service label S2 (301632) and the new BGP next hop 10.0.1.1.

The BGP next-hop change operation at ASBR3 is crucial: it is this
operation that makes ASBR3 generate a new MPLS service label.
Remember this in the rest of the book. A device that changes the
BGP next hop of a labeled BGP route also allocates a new MPLS
label.

Inter-AS Option B—forwarding—IOS XR plane
The signaling mechanisms in Junos and IOS XR are very similar. Let’s have a brief
look at the forwarding plane in IOS XR, focusing on the MPLS service label that
ASBR4 allocates for RD:10.2.34.0/24 (see Example 9-3).

Example 9-3. Inter-AS Option B forwarding—ASBR4 (IOS XR)

1     RP/0/0/CPU0:ASBR4# show mpls forwarding labels 24023
2     Sun Jul 26 12:59:30.533 UTC
3     Local  Outgoing    Prefix                       Outgoing
4     Label  Label       or ID                        Interface
5     ------ ----------- ------------------           ----------
6     24023  24029       172.16.10.44:101:10.2.34.0/24
7
8     Next Hop        Bytes
9                     Switched
10    --------------- ------------
11    172.16.10.44    317400
12
13    RP/0/0/CPU0:ASBR4# show cef 172.16.10.44
14    [...]
15     local adjacency 10.0.10.5
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16     Prefix Len 32, traffic index 0, precedence n/a, priority 3
17       via 10.0.10.5, GigabitEthernet0/0/0/2, 5 dependencies, ...
18        path-idx 0 NHID 0x0 [0xa1044bd4 0x0]
19        next hop 10.0.10.5
20        local adjacency
21         local label 24002      labels imposed {24009}

ASBR4 assigns label 24023 (S2) to the IP VPN prefix 172.16.10.44:101:10.2.34.0/24
(line 6). In the LFIB, ASBR4 swaps S2 (24023) for S3 (24029) and pushes T2 (24009).
This conclusion results from combining lines 6 and 21 in Example 9-3.

You can see this label operation in the traceroute lines for TTL=5 and TTL=6 shown
in Example 9-4.

Example 9-4. Inter-AS Option B forwarding—IOS XR plane

RP/0/0/CPU0:H#traceroute vrf H1-BLUE 10.2.34.30

Type escape sequence to abort.
Tracing the route to 10.2.34.30

 1  10.1.12.1 0 msec  0 msec  0 msec
 2  10.1.0.5 0 msec  0 msec  0 msec
 3  10.0.0.5 [MPLS: Labels 24000/24031 Exp 0] 9 msec  [...]
 4  10.0.0.11 [MPLS: Label 24031 Exp 0] 59 msec  [....]
 5  10.0.1.3 [MPLS: Label 24023 Exp 0] 79 msec  [...]
 6  10.0.10.5 [MPLS: Labels 24009/24029 Exp 0] 9 msec  [...]
 7  10.0.10.11 9 msec  9 msec  9 msec
 8  10.2.0.4 9 msec  9 msec  9 msec
 9  10.2.34.30 9 msec  [...]

Inter-AS Option B—Junos Configuration
PE1 and PE3 are configured the same as they are in Chapter 3, except for the AS
number and the IP addressing. For PEs, inter-AS or intra-AS only results in a minor
difference: the AS path. All the rest is identical.

An ASBR’s configuration is also similar to a PE’s, except that it has no local VRFs. The
configuration of the iBGP sessions toward the Route Reflector (RR) must include an
export policy with next-hop self. Let’s look at the eBGP configuration for an ASBR,
shown in Example 9-5.

Example 9-5. Inter-AS Option B configuration—ASBR3 (Junos)

protocols {
    bgp {
        group eBGP-VPN {
            family inet-vpn unicast;
            family inet6-vpn unicast;
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            export eBGP-65100-OUT;
            peer-as 65100;
            neighbor 10.0.1.0;
}}}
policy-options {
    policy-statement eBGP-65100-OUT {
        term IPv6 {
            from family inet6-vpn;
            then next-hop fc00::10:0:1:1;
}}}

Nothing special is required for IPv4 VPN prefixes. As for IPv6 VPN, the IPv6 next-
hop rewrite is essential. Otherwise—like you saw in Chapter 3—the BGP next hop is
set to ::ffff:10.0.1.1, and ASBR1 cannot resolve it.

Inter-AS Option B—Junos and IOS XR interoperability
The IPv6 next-hop requirement just discussed has interoperability implications.
Although in Figure 9-1 all the inter-AS links are single-vendor, the authors also suc‐
cessfully tested multivendor inter-AS Option B.

The first attempt was similar to the aforementioned IPv6 BGP next-hop rewrite, but
the authors did not find how to achieve it in IOS XR. Thus, IOS XR uses an IPv4-
mapped address as BGP next hop, and the Junos device cannot resolve it. The good
news is that there are two ways to get around it and achieve next-hop resolution at
the Junos ASBR.

One method is to split the eBGP session in two:

• One eBGP session between the IPv4 endpoints (10.0.1.x), used to exchange IPv4
VPN (AFI=1, SAFI=128) prefixes.

• One eBGP session between the IPv6 endpoints (fc00::10:0:1:x), used to exchange
IPv6 VPN (AFI=2, SAFI=128) prefixes.

The second method is compatible with having one single eBGP session for both
address families, and it requires an additional trick on the Junos ASBR (see
Example 9-6).

Example 9-6. Installing IPv4-mapped routes in inet6.3—ASBR1 (Junos)

routing-options {
    rib-groups {
        RG-STATIC-IPv6 {
            import-rib [ inet.0 inet6.3 ];
            import-policy PL-ASBR-LINKS;
        }
    }
    static {
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        rib-group RG-STATIC-IPv6;
        route 10.0.1.1/32 {
            next-hop 10.0.1.1;
            community 65000:12345;
}}}
policy-options {
    policy-statement PL-ASBR-LINKS {
        term ASBR-LINKS {
            from {
                protocol static;
                community CM-ASBR-LINKS;
            }
            then accept;
        }
        then reject;
    }
    community CM-ASBR-LINKS members 65000:12345;
}

This technique consists of creating a static route on the Junos ASBR’s inet.0 table
toward the remote ASBR peering address (10.0.1.x/32). This route is then leaked into
inet6.3 with RIB groups, so the Junos ASBR automatically coverts it and installs
a ::ffff:10.0.1.x/128 route on its inet6.3 table.

Example 9-7. IPv4-Mapped Route in inet6.3—ASBR1 (Junos)

juniper@ASBR1> show route ::ffff:10.0.1.1 table inet6.3

inet6.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

::ffff:10.0.1.1/128
                   *[Static/5] 00:26:38
                    > to 10.0.1.1 via ge-0/0/3.0

Thanks to this route, ASBR1 can resolve IPv4-mapped IPv6 next hops. After it is con‐
figured, interoperability is successful. Even in a Junos-to-Junos eBGP session, the
next-hop rewrite shown in Example 9-5 is no longer necessary.

Inter-AS Option B—optimizing the control plane
By default, ASBRs establish iBGP sessions toward the RRs and pull all of the IP VPN
routes from them. This is a waste of resources. Ideally, ASBRs should pull only the IP
VPN routes for those VPNs that are extended across the AS border. This is typically a
subset of all the VPNs provisioned in the local AS.

The solution is to use the RT address family (SAFI=132), but there is a challenge.
Pure Option B ASBRs do not have local VRFs. They need a way to know in which
RTs they are interested. This need is fulfilled in Junos by RT static routes.
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Example 9-8. Inter-AS Option B and RTC—ASBR1 and ASBR3 (Junos)

protocols {
    bgp {
        group iBGP-RR family route-target;
        group eBGP-VPN family route-target;
}}
routing-options {
    rib bgp.rtarget.0 {
        static {
           route-target-filter 65000:1001/64 group [iBGP-RR eBGP-VPN];
           route-target-filter 65000:1002/64 group [iBGP-RR eBGP-VPN];
           route-target-filter 65000:1003/64 group [iBGP-RR eBGP-VPN];
}}}

RTs 65000:1001, 65000:1002, and 65000:1003 are the global route targets of VPNs
BLUE, GREEN, and RED, respectively.

Inter-AS Option B—IOS XR Configuration
PE2 and PE4 are configured the same as in Chapter 3, except for the AS number and
the IP addressing. Let’s look at the relevant configuration at ASBR4, shown in
Example 9-9.

Example 9-9. Inter-AS Option B configuration—ASBR4 (IOS XR)

1     router bgp 65101
2      mpls activate
3       interface GigabitEthernet0/0/0/0
4      !
5      neighbor-group RR
6       remote-as 65101
7       update-source Loopback0
8       address-family vpnv4 unicast
9        next-hop-self
10      !
11      address-family vpnv6 unicast
12       next-hop-self
13     !
14     neighbor 10.0.1.2
15      remote-as 65100
16      update-source GigabitEthernet0/0/0/0
17      address-family vpnv4 unicast
18       route-policy PL-ALL in
19       route-policy PL-ALL out
20      !
21      address-family vpnv6 unicast
22       route-policy PL-ALL in
23       route-policy PL-ALL out
24     !
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25     neighbor 172.16.10.203
26      use neighbor-group RR
27     !
28     neighbor 172.16.10.204
29      use neighbor-group RR
30    !
31    route-policy PL-ALL
32      pass
33    end-policy
34    !
35    router static
36     address-family ipv4 unicast
37      10.0.1.2/32 GigabitEthernet0/0/0/0
38    !

The next-hop-self knob (lines 9 and 12) in the sessions toward the RRs is an essen‐
tial piece to make the solution work, and it was not present in the PE configuration.

Another significant piece of configuration is the static route in lines 35 through 37.
Without it, the IP VPN routes stay unresolved in the CEF (show cef unresolved).
This trick is similar to the Junos one in Example 9-6, except that IOS XR does not
have auxiliary tables like inet.3 and inet6.3 in Junos, so the route copy is not an
option.

Inter-AS Option B with Local VRF
Nothing prevents an Option B ASBR from being a PE itself and having its own local
ACs. Actually, an ASBR can act in four different manners with respect to a given
VPN:

• The VPN is extended to the remote AS and does not have local presence at the
ASBR. This is the pure inter-AS Option B scenario that has been discussed so far
in this chapter. The ASBR does not need to provision the corresponding VRF.

• The VPN is extended to the remote AS and also has local presence at the ASBR.
The ASBR locally provisions the VRF and may have local ACs connected to CEs.
The device acts like an ASBR/PE.

• The VPN is not extended to the remote AS. This VPN is instantiated in VRFs at
different PEs of the local AS. The list of PEs includes the local ASBR, which
behaves like a classical PE—not really an ASBR—with respect to this VPN.

• The VPN is neither locally present nor extended to the remote AS.

The suboption described in the second bullet item receives different names in the lit‐
erature, depending on the vendor and the particular flavor: AB, AB+, A+B, D, E, and
so on. This book uses the term “Option B with local VRF”.
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There are reasons to define a local VRF in the ASBR, even if there are no local CEs to
connect. For example, a local VRF allows for route summarization.

Route summarization with local VRF—Junos
In the following example, a local VRF in ASBR3 is not connected to any CEs, but it is
defined in order to summarize the 10.2.x.0/24 prefixes into 10.2.0.0/16. With the con‐
figuration shown in Example 9-10, only the summary route is advertised to ASBR1.

Example 9-10. Inter-AS Option B prefix aggregation—ASBR3 (Junos)

protocols {
    bgp {
        group iBGP-RR vpn-apply-export;
        group eBGP-VPN vpn-apply-export;
}}
routing-instances {
    VRF-BLUE {
        instance-type vrf;
        interface lo0.1001;
        route-distinguisher 172.16.10.103:101;
        vrf-target target:65000:1001;
        vrf-table-label;
        routing-options {
            aggregate route 10.2.0.0/16;
}}}
policy-options {
    policy-statement eBGP-65100-OUT {
        term VRF-BLUE-AGGREGATE {
            from {
                protocol aggregate;
                community RT-VPN-BLUE;
            }
            then accept;
        }
        term VRF-BLUE-IPv4-SPECIFIC {
            from {
                community RT-VPN-BLUE;
                route-filter 10.2.0.0/0 prefix-length-range /17-/32;
            }
            then reject;
        }
    }
    community RT-VPN-BLUE members [ target:65000:1001 ];
}
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As discussed in Chapter 3, inter-AS Option B ASBRs behave as IP
VPN RRs between iBGP and eBGP. When local VRFs are config‐
ured, don’t forget the vpn-apply-export knob.

Some configuration bits have been skipped for brevity:

• The interface lo0.1001 configuration just contains an IPv4 address.
• The eBGP-65100-OUT policy may also have an additional term that you can find

in Example 9-5.
• A policy to prevent the advertisement of the aggregate to RR3 and RR4 is needed.

This is the reason why the iBGP-RR also has the vpn-apply-export knob.

Route summarization with local VRF—IOS XR
Example 9-11 achieves a similar result in ASBR4.

Example 9-11. Inter-AS Option B prefix aggregation—ASBR4 (IOS XR)

router bgp 65101
 vrf VRF-BLUE
  rd 172.16.0.104:101
  address-family ipv4 unicast
   aggregate-address 10.2.0.0/16
!

Again, some configuration bits have been skipped for brevity:

• The VRF-BLUE VRF and the loopback 1001 interface configuration.
• Two policies are needed: one to prevent the advertisement of more specific routes

to ASBR2, and one more to filter out the aggregate toward RR3 and RR4.

Inter-AS Option B with local VRF—implementation details
In both Junos and IOS XR, when an Option B ASBR readvertises an IP VPN route,
the original Route Distinguisher (RD) is maintained. There is no RD rewrite.

The same Route Target (RT) is typically used for every single site of a given VPN,
regardless of the actual AS where the sites are.

In Junos, the same VPN label allocation mechanisms that were described in Chap‐
ter 3 apply here, too:

• The default mode is per-CE and it includes both local-AS and remote-AS CEs.
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• When per-table (per-VRF) label allocation is selected, the same label is allocated
to both locally originated and reflected prefixes. This triggers an IP lookup on the
VRF for certain transit packets that otherwise would have been MPLS-switched.
If, for certain non-aggregated prefixes, you wish to revert to MPLS forwarding of
inter-AS transit traffic, you can use label allocation policies so that the IP lookup
is only performed, for example, on local VRF destinations and aggregate routes.

This book does not cover label allocation details in Option B
ASBRs running IOS XR. These details are explained in Chapter 3
for regular PEs.

Finally, as far as routing tables in Junos are concerned, the internal implementation in
RRs and in Option B ASBRs is very similar. At the end, the latter also perform service
route reflection between eBGP and iBGP. Chapter 3 contains all the details.

Inter-AS Option C
As in Option B, Option C just requires one logical interface on each inter-AS link.
However, the topmost MPLS label as the packet traverses the inter-AS link does not
contain any VPN information. It is a pure transport label.

In Option C, ASBRs no longer need to keep IP VPN routing state—except for those
VPNs where the ASBR acts like a local PE. This is a huge advantage in terms of scala‐
bility because the ASBR can act like a transit LSR with a smaller forwarding table.

If the ASBRs do not keep IP VPN routes, how are these advertised between ASs? The
RRs of AS 65100 establish multihop eBGP sessions to the RRs of AS 65101 in order to
exchange IP VPN prefixes. This means that certain IGP prefixes of one AS need to be
reachable from the other AS. For example, the RR loopbacks need to be visible in
both ASs, otherwise the inter-AS multihop eBGP sessions cannot be established.

Furthermore, the IP VPN routes keep the original BGP next-hop attribute and VPN
label. There is no next-hop rewrite operation as there is in Option B. As a result, PEs
must be able to resolve BGP next hops corresponding to the loopbacks of PEs in the
remote AS. Again, this requires inter-AS visibility of PEs’ loopback addresses.

There is a clean solution to achieve inter-AS loopback prefix visibility: BGP Labeled
Unicast (BGP-LU). This protocol and its configuration are fully covered in Chapter 2.
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The internal addresses of AS 65100 are not redistributed in AS
65101’s IGP, and vice versa. All the inter-domain information is
kept in BGP.

BGP Sessions in Inter-AS Option C
Figure 9-5 shows a first classification of the BGP flavors that are involved in this solu‐
tion. The RRs in a box are actually a way to avoid too many arrows in the illustration.
An arrow between PE1 and the box containing RR1 and RR2 actually represents two
BGP sessions: PE1-RR1 and PE1-RR2. Inside each box, there is one session: RR1-RR2
on one box, and RR3-RR4 on the other. As for the arrow connecting the two boxes, it
represents up to four BGP sessions: RR1-RR3, RR1-RR4, RR2-RR3, and RR2-RR4.

Figure 9-5. Inter-AS VPN Option C—BGP flavors

The RRs do not reflect BGP-LU prefixes. The only reason why they
negotiate the IPv4-LU address family is for inter-AS RR
reachability.

Here is the role of each address family in the solution:
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IPv4 Labeled Unicast (AFI=1, SAFI=4)
BGP-LU is an infrastructure protocol. Indeed, its goal is to signal end-to-end
LSPs. There are two types of BGP-LU sessions in this example: iBGP multihop
(ASBR-RR and ASBR-PE) and eBGP single-hop (ASBR-ASBR). These sessions
propagate labeled internal prefixes; namely, the loopback addresses of PEs and
RRs. Due to the session layout, only ASBRs readvertise these routes. When they
do so, ASBRs change the routes’ BGP next hop: this triggers a new label alloca‐
tion at the ASBR. A new set of LSPs is forming!

IPv4 or IPv6 VPN Unicast (AFI=1 or 2, SAFI=128)
In this context, BGP is a service signaling protocol. There are two types of BGP
sessions that propagate IP VPN prefixes: iBGP multihop (PE-RR) and eBGP
multihop (RR-RR). In this solution, the BGP next hop of the IP VPN routes is
untouched. A route originated by PE3 and advertised all the way to PE1 keeps
the original BGP next hop and VPN label values.

IPv4 or IPv6 Unicast (AFI=1 or 2, SAFI=1)
This is the BGP service protocol incarnation outside the MPLS world. These ses‐
sions are eBGP single-hop.

Inter-AS Option C—Signaling and Forwarding
Looking back at Figure 9-2, every AS has its own MPLS protocol. Again, let’s assume
that AS 65100 runs RSVP-TE and AS 65101 uses LDP.

Inter-AS Option C—signaling and forwarding—Junos plane
Figure 9-6 illustrates the life of a H1-BLUE→H3-BLUE packet as it traverses the two
ASs in an inter-AS Option C solution.

Inter-AS Option C | 409



Figure 9-6. Inter-AS VPN Option C—signaling and forwarding

You can match the label values in Figure 9-6 with those in Example 9-12.

Example 9-12. Inter-AS Option C forwarding—Junos plane

RP/0/0/CPU0:H#traceroute vrf H1-BLUE 10.2.34.30

Type escape sequence to abort.
Tracing the route to 10.2.34.30

 1  10.1.12.1 0 msec  0 msec  0 msec
 2  10.1.0.1 0 msec  0 msec  0 msec
 3  10.0.0.3 [MPLS: Labels 349184/303616/301120 Exp 0] 29 msec [...]
 4  10.0.0.9 [MPLS: Labels 303616/301120 Exp 0] 19 msec [...]
 5  10.0.1.1 [MPLS: Labels 303120/301120 Exp 0] 9 msec [...]
 6  10.0.10.3 [MPLS: Labels 300048/301120 Exp 0] 209 msec [...]
 7  10.0.10.9 [MPLS: Label 301120 Exp 0] 149 msec [...]
 8  10.2.0.3 19 msec [...]
 9  10.2.34.30 19 msec [...]

Again, here is the “imaginary” life of the packet as it goes from CE1-BLUE to CE3-
BLUE. It is imaginary because in reality the forwarding table is precomputed with all
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the instructions, so the control plane has already executed the complex recursive
logic:

1. CE1-BLUE sends the packet to PE1, which receives it on VRF-BLUE’s AC.
2. PE1 looks for a BGP IP VPN route in VRF-BLUE to the destination. It finds a

route with a MPLS service label S0 (301120) and a BGP next hop equal to PE3’s
loopback address 172.16.10.33. This next hop cannot be resolved through a plain
LSP.

3. PE1 tries to resolve the address 172.16.10.33 into a labeled path. It finds a BGP-
LU prefix 172.16.10.33/32 with the following properties: BGP next hop
172.16.0.101 and label L1 (303616).

4. PE1 resolves 172.16.0.101 into a RSVP-TE LSP, whose first-hop transport label is
T1 (349184). This LSP terminates at ASBR1.

5. PE1 pushes three labels, S0, L1, and T1, and sends the packet to P1.
6. P1 pops the T1 label and sends the packet to ASBR1.
7. ASBR1 looks at the L1 label, swaps it for L2 (303120), and sends the packet out of

its ge-2/0/3.0 interface toward ASBR3.
8. ASBR3 receives the packet, looks at the L2 label, pops it, and pushes transport

label T2 (300048). This label corresponds to a LDP LSP that terminates at PE3.
ASBR3 programs the pop-push label operation as a simple swap instruction in the
LFIB. ASBR3 sends the packet to P3.

9. P3 pops the T2 label and sends the packet to PE3.
10. PE3 looks at the S0 label, pops it, and sends the IP packet to CE3-BLUE.

As you can see, all of the elements in the path except for the ingress PE are plain
LSRs. A hierarchical LSP takes the packet from PE1 to PE3, and only MPLS label
operations take place at each hop.

Let’s focus on the recursive next-hop logic that takes place at the ingress PE, shown in
Example 9-13.

Example 9-13. Inter-AS Option C at ingress PE—PE1 (Junos)

1     juniper@PE1> show route receive-protocol bgp 172.16.0.201
2                  table VRF-BLUE 10.2.34.0/24 detail
3
4     VRF-BLUE.inet.0: 6 destinations, 10 routes (6 active, ...)
5     * 10.2.34.0/24 (2 entries, 1 announced)
6          Import Accepted
7          Route Distinguisher: 172.16.10.33:101
8          VPN Label: 301120
9          Nexthop: 172.16.10.33
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10         Localpref: 100
11         AS path: 65101 65001 I
12         Communities: target:65000:1001
13
1     juniper@PE1> show route receive-protocol bgp 172.16.0.101
2                  172.16.10.33/32 detail
3
4     inet.3: 13 destinations, 15 routes (13 active, ...)
5     * 172.16.10.33/32 (1 entry, 1 announced)
6          Accepted
7          Route Label: 303616
8          Nexthop: 172.16.0.101
9          Localpref: 100
10         AS path: 65101 ?
11
12    juniper@PE1> show route table inet.3 172.16.0.101
13
14    inet.3: 13 destinations, 15 routes (13 active, ...)
15    + = Active Route, - = Last Active, * = Both
16
17    172.16.0.101/32    *[RSVP/7/1] 14:05:16, metric 20
18                        > to 10.0.0.3 via ge-2/0/4.0,
19                          label-switched-path PE1-->ASBR1
20
21    juniper@PE1> show rsvp session name PE1-->ASBR1
22    Ingress RSVP: 2 sessions
23    To              From            State   Labelout LSPname
24    172.16.0.101    172.16.0.11     Up        349184 PE1-->ASBR1
25
1     juniper@PE1> show route forwarding-table destination 10.2.34.0/24
2                  table VRF-BLUE
3     Routing table: VRF-BLUE.inet
4     Internet:
5     Destination    Next hop
6     10.2.34.0/24   10.0.0.3  Push 301120, Push 303616, Push 349184(top)
7                    ge-2/0/4.0

As you can see, the control-plane logic is complex, but the forwarding-plane entry is
very simple: just push three labels and send out of the ge-2/0/4.0 interface.

Inter-AS Option C—signaling and forwarding—IOS XR plane
The mechanics in IOS XR are very similar, so we will skip them here, for brevity. You
can find examples of the relevant operational commands in Chapter 2 and Chapter 3.

Inter-AS Option C—Configuration
Inter-AS Option C is an intelligent combination of IP VPN and BGP-LU. These tech‐
nologies have already been illustrated with configuration examples in Chapters Chap‐
ter 3 and Chapter 2, respectively. Rather than presenting the full configurations
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(which are quite long) the focus here is on the particularities of inter-AS Option C
configuration with respect to the previous examples featuring IP VPN and BGP-LU.

Inter-AS Option C—P-router configuration
In this example, P-routers are totally unaware of BGP-LU and IP VPN. They just
implement the intra-AS LSPs—based on LDP and RSVP-TE here. Therefore, inter-AS
Option C does not require any special configuration on the P-routers. This is actually
true for all the inter-AS flavors.

Inter-AS Option C—PE configuration
No special configuration is required in either Junos or IOS XR.

The BGP-LU example in Chapter 2 required a relatively complex community scheme
to prevent labeled routes from being redistributed as unlabeled routes, and vice versa.
This was due to the fact that IOS XR treats an IP prefix as one entity, regardless of
whether it is encoded as IP Unicast (SAFI=1) or IP Labeled Unicast (SAFI=4). In that
scenario, the service was global IP routing (SAFI=1).

Here, in inter-AS VPN, the service is IP VPN (SAFI=128). There is no risk of mixing
BGP-LU (SAFI=4) with IP VPN (SAFI=128) routes, so the special community
scheme from Chapter 2 is not required in this inter-AS Option C example.

iBGP is multihop by default, so no special care is required in that respect for iBGP-
LU.

As for the iBGP sessions toward the RRs, they are IP VPN business as usual.

Just one note for Junos PEs: to resolve the BGP next hop of the IPv6 VPN routes, it is
important to copy BGP-LU routes from inet.3 to inet6.3, as demonstrated in
Example 9-14.

Example 9-14. Copying routes from inet.3 to other tables—PE1 (Junos)

routing-options {
    rib-groups]
        RG-REMOTE-LOOPBACKS {
            import-rib [ inet.3 inet.0 inet6.3 ];
        }
}}
protocols {
    bgp {
        group iBGP-LU {
            family inet {
                labeled-unicast {
                    rib-group RG-REMOTE-LOOPBACKS;
                    rib inet.3;
}}}}}
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With the previous configuration, the BGP-LU loopback routes are copied to two sec‐
ondary tables:

inet.0

This is optional because it is not required for the service to work. However, it is a
good practice because it enables PE-to-PE IPv4 reachability and this is interesting
from an operational perspective. Who doesn’t want to run ping?

inet6.3

This is essential for the IPv6 VPN service to work. For example, the prefix
172.16.10.33/32 from inet.3 becomes ::ffff:172.16.10.33/128 when copied to
inet6.3. This is precisely the next hop of the IPv6 VPN routes advertised by
PE3.

Inter-AS Option C—RR configuration
In all of the previous IP VPN examples, RRs did not have MPLS enabled. They did
not need MPLS, because they could establish iBGP sessions by exchanging plain IP
packets.

Inter-AS Option C is different: RRs in different ASs can only reach each other
through a hierarchical LSP, as shown in Figure 9-7.

You can match the label values in Figure 9-7 with those in Example 9-15.

Example 9-15. Inter-AS Option C—inter-RR reachability

juniper@RR1> traceroute 172.16.10.203 source 172.16.0.201

 1  10.0.0.16 (10.0.0.16)  59.155 ms  98.086 ms  91.264 ms
     MPLS Label=349264 CoS=0 TTL=1 S=0
     MPLS Label=303664 CoS=0 TTL=1 S=1
 2  10.0.0.9 (10.0.0.9)  89.668 ms  411.857 ms  11.368 ms
     MPLS Label=303664 CoS=0 TTL=1 S=1
 3  10.0.1.1 (10.0.1.1)  45.761 ms  90.310 ms  122.391 ms
     MPLS Label=303152 CoS=0 TTL=1 S=1
 4  10.0.10.3 (10.0.10.3)  9.407 ms  12.204 ms  11.089 ms
     MPLS Label=300128 CoS=0 TTL=1 S=1
 5  172.16.10.203 (172.16.10.203)  12.576 ms  13.402 ms  6.773 ms
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Figure 9-7. Inter-AS VPN Option C—inter-RR reachability

This means that the RRs need to be fully integrated with the intra-domain MPLS pro‐
tocols (LDP, RSVP-TE, etc.). As long as the IS-IS overload bit—or very high metrics
in OSPF—is set on the RRs, there is no risk of attracting transit traffic toward them.

Let’s suppose that the RRs only reflect VPN routes and they do not need reflect Inter‐
net (IP Unicast, SAFI=1) routes. Because RRs must not forward actual transit traffic,
they do not require BGP-LU routes in inet.3 table, which is used for next-hop reso‐
lution of BGP labeled services. For this reason, it is perfectly fine to install iBGP-LU
routes only into the inet.0 routing table at the Junos RRs. You can achieve that by
configuring the iBGP-LU group with family inet labeled-unicast and no explicit
RIB. In this way, there is no need to leak routes between inet.0 and inet.3 at the
Junos RRs.
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This solution is not valid if the RRs also reflect Internet routes.
Check Chapter 2 for the full story.

As for IP VPN itself, here are some tips to configure (at the local AS’ RRs) the BGP
group containing the remote AS’ RRs:

• In Junos RRs, configure multihop no-nexthop-change.
• Configure RRs running IOS XR according to Example 9-16.

Example 9-16. eBGP multihop configuration—RR2 (IOS XR)

route-policy PL-ALL
 pass
end-policy
!
router bgp 65100
 neighbor-group eBGP-RR-65101
  remote-as 65101
  ebgp-multihop 255
  update-source Loopback0
  address-family vpnv4 unicast
   route-policy PL-ALL in
   route-policy PL-ALL out
   next-hop-unchanged
  !
  address-family vpnv6 unicast
   route-policy PL-ALL in
   route-policy PL-ALL out
   next-hop-unchanged
!

Inter-AS Option C—ASBR configuration
Option C ASBRs do not handle IP VPN routes, so you only need to take care of BGP-
LU.

In Junos, the family inet labeled-unicast rib inet.3 is specified in both the
iBGP-LU and the eBGP-LU group configuration, as expected.

In IOS XR, remember that you need to do the following:

• Configure static host routes on the inter-AS link; this is to avoid unresolved CEF
entries.
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• Under the iBGP-LU neighbor group configuration, set address-family ipv4
labeled-unicast next-hop-self.

• Manually apply permissive import (in) and export (out) policies to the eBGP-LU
group or use unsafe-ebgp-policy to apply dynamically created policies allowing
everything.

Carrier Supporting Carrier
Is MPLS a complex technology? It really depends on how far you want to stretch it.
Carrier Supporting Carrier (CsC), also known as Carrier-of-Carriers, is quite a
stretch.

The previous inter-AS options consider each AS equally important. AS 65100 and AS
65101 peer with each other without any hierarchical relationship. On the other hand,
CsC defines a hierarchical relationship between the involved ASs.

When a service provider (or an enterprise) wants to provision its own MPLS VPN
services, it needs an MPLS backbone. Now, suppose that it does not have a WAN.
This SP needs to purchase transport services to yet another SP or carrier.

In this section, the SP term is kept for the company in need for a
WAN. The WAN infrastructure provider is referred to as a Trans‐
port Provider.

Nowadays, SPs in need of a WAN typically request L2 services to the Transport Pro‐
vider: just give me a transparent wire and I will pass my MPLS frames through it.

However, this is not always an option, so the SP might need to purchase L3 services to
the Transport Provider. Unless the SP establishes IP tunnels between its remote PEs—
which is a non-scalable approach—a solution such as CsC is required (see
Figure 9-8). Some people consider CsC as MPLS at its best. However, it is complex
and this book does not cover it in detail.
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Figure 9-8. Carrier Supporting Carrier (CsC)

If you really want to understand Figure 9-8, keep in mind the following:

• From the point of view of the Transport Provider, the SP is just a customer. The
Transport Provider uses a VRF to peer with the SP’s global routing.

• The P-routers of the Transport Provider core have no awareness of the SP’s infra‐
structure addresses.

• ASBR3 and ASBR5 have a dual ASBR/PE role: they are PEs from the point of
view of the Transport Provider, and ASBRs from the point of view of the SP.

• ASBR1 and ASBR7 have a dual ASBR/CE role: they are CEs from the point of
view of the Transport Provider, and Option C ASBRs from the point of view of
the SP.

• PE1 and PE3 are PEs from the point of view of the SP. For the Transport Pro‐
vider, they are simply behind the CEs.

• eBGP-LU is the PE-CE protocol on the Transport Provider VRF. For that reason,
the SP’s eBGP-LU labels are stitched to the Transport Provider’s IP VPN labels.
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Inter-Domain RSVP-TE LSPs
Let’s get back to inter-AS—no hierarchy between ASs—and look at Figure 9-2:

• The inter-AS Option C model establishes hierarchical LSPs. This is a great option
if you do not want to leak AS1’s IGP prefixes into AS2’s IGP, or vice versa.
Actually, reciprocal IGP prefix leaking is a very bad idea. Inter-AS Option C is
the most scalable of all the inter-AS models because it does not rely on such leak‐
ing and also relieves the ASBRs from keeping VPN routes.

• In contrast, the inter-AS model that Figure 9-2 calls Option X establishes flat
LSPs. What for? There is one application for that: establishing inter-domain
RSVP-TE LSPs, which are not fully covered in this book.

Inter-area RSVP-TE is briefly discussed in Chapter 2. The challenges in inter-AS top‐
ologies are very similar. In general, inter-domain RSVP-TE is a good fit for a new
BGP address family, called BGP-LS (Link State) or BGP-TE (Traffic Engineering).
However, the main application of this address family is different: propagating the
Traffic Engineering Database, or TED, to a northbound external controller. This topic
is fully covered in Chapter 15.
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CHAPTER 10

Underlay and Overlay Architectures

Software-Defined Networking (SDN) is an umbrella concept that means many things
—probably, too many things. Depending on whom you ask, you will hear a com‐
pletely different definition of what SDN is. Every new solution is wrapped with the
SDN-ready mention and every new project is immediately overvalued when one says
we will do it with SDN.

To separate hype from reality, it is very important to know precisely what we are talk‐
ing about. Two key ideas, overlay and underlay, are at the center of the discussion and
are often treated very lightly. They happen to be very complex concepts, with many
derivatives, gray areas, and nuances. And, most important, they have a long history.
Paraphrasing Martin Luther King Jr.: history is a great teacher. Ignoring it is a sure
recipe for reinventing the wheel or, even worse, resurrecting architectures that have
already been seen to fail repeatedly in the past.

The centralized and distributed control-plane dilemma is an old one. Phrases such as
“centralize what you can, distribute what you must” have been told so many times
and belong to the culture of good-old network engineers.

Here is the structure of this chapter:

• Introduction to the overlay and underlay concepts
• Architecture of multiforwarder network devices
• Discussion of the challenges of legacy data center networking and the need for an

overlay
• Architecture of IP fabrics, with a distributed or centralized control plane
• Architecture of overlays in the data center
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This chapter’s conductive wire is analogy. If you understand well how a big network
device is built inside, you will easily understand the architectural challenges of
designing a data center underlay and overlay. If it sounds strange, keep reading.

Overlays and Underlays
If you are a networking professional, you might have already encountered some diffi‐
culties in explaining your job to people outside the industry. For them, the Internet
just works. Their laptops or mobile phones simply exchange IP packets with other
end devices, which are typically very, very far away. These packets go hop by hop
through an amazing series of transformations—light through fibers, electrical signals
on wires, microwaves through the air—but this underlay is completely transparent for
the user.

The Internet is the most archetypical example of an overlay, and its magic is in the IP
header. If a group of bytes generated by an application gets an IP header on top, sud‐
denly the resulting data unit—an IP packet—is placed in an overlay that seamlessly
takes it to the destination. Headers can act as “tickets” to enter an overlay network.

VPNs are also a classic family of overlays. As discussed in Chapter 3 through Chap‐
ter 8, Layer 2 VPN (L2VPN) and Layer 3 VPN (L3VPN) look from the point of view
of the end customer like an L2 bridge or a L3 router, respectively. The hop-by-hop
and multiheader encapsulations are transparent to the end customer devices, which
might not have any visibility of the underlying signaling and transport mechanisms.

Overlay and Underlay Are Relative Concepts
Let’s step back from data centers for a moment and discuss a quite baroque example
that illustrates the relativity of overlay and underlay concepts.

Imagine a customer that builds a private WAN by connecting its geographically dis‐
tant sites with a set of Virtual Private Wire Service (VPWS) purchased from a service
provider (SP). These VPWS emulate WAN links, which the customer can use in turn
to build its own MPLS core. Then, on top of this MPLS core, the customer runs its
own L3VPN services.

If you sniff one such packet transiting an SP link, you might see something as nested
as the following: IP over MPLS over MPLS over Ethernet over MPLS over MPLS over
Ethernet! So many headers actually compose a stack where the up and down concepts
are relative to one another. Although this is quite a complex example, CEs connected
to the customer’s PEs use an L3VPN overlay, whose underlay is the customer’s MPLS
core. In turn, each customer’s MPLS core link actually uses an overlay (VPWS) whose
underlay is the multihop SP core.

Not to mention the additional tunneling that packets undergo inside network devices.
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Fortunately, a typical data center scenario is not that nested. But its actual complexity
is not very far from that example. Beware of it just works because it’s an overlay
explanations. If it works, there is a reason and, most important, an underlying mech‐
anism.

Other Fundamental Concepts
Here are some additional terms that are very common, so it’s good to define them at
least once in this book.

First, there are two ways to scale a network infrastructure:

Scale up
Deploying more powerful network devices and raising the throughput of network
links (e.g., from 10M Ethernet to 100G Ethernet or beyond).

Scale out
Deploying more devices and network links.

Changing topics, in the figures that follow you will see a compass with its four points:

• In the control plane, North and South determine hierarchical relationships: typi‐
cally, an element in the North has control over an element in the South. Con‐
versely, East and West are relationships between equals (e.g., an eBGP session).

• In the forwarding plane, North and South typically indicate a bandwidth hierar‐
chy. Elements in the South are closer to the edge, have lower bandwidth, and
implement customer-facing features. They rely on the higher-capacity elements
in the North to exchange traffic with each other; and to reach the rest of the
world.

Now, let’s mix both concepts: when you scale-out an infrastructure (control or for‐
warding), the growth direction is West-East. This is horizontal scaling.

Multiforwarder Network Devices
Let’s have a look at the inside of a physical high-end single-chassis network device.

A given multicomponent router such as a Juniper MX/PTX or a Cisco ASR/CRS, just
to name a few examples, is actually a network on its own. Or, more strictly, two net‐
works: the forwarding plane and the control plane. You can view the different func‐
tional components (CPUs, ASICs) in a physical router as different devices
interconnected to one another. They just are packaged together with some degree of
modularity. Like parts of a body, they don’t live independently; they are different
interconnected entities.
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Single-Chassis Network Devices—Forwarding Plane
Figure 10-1 provides a simplified view of the forwarding plane inside a multicompo‐
nent router, or switch, or firewall, and so on.

Figure 10-1. Single-chassis multiforwarder network device—forwarding plane

The forwarding plane of a multicomponent network device is composed of three
types of elements:

Forwarding engines
These handle traffic coming from and going out to the outside world. They are
responsible for route/label/flow lookup and for all the externally visible
forwarding-plane features: packet header manipulation, classification, schedul‐
ing, policing, rewrite, replication, filtering, accounting, fine-grained traffic steer‐
ing, mirroring, sampling, unicast and multicast RPF checks, class-based
forwarding, and many others. A line card typically contains one or more for‐
warders, which in turn are composed of one or more application-specific integra‐
ted circuits (ASICs) and/or network processors. The generic term forwarding
engine is like an umbrella for many different vendor-specific terms. For example,
Juniper calls it a Packet Forwarding Engine (PFE), and Cisco uses different
names for each platform: CRS have Packet Switching Engines (PSE) and ASR has
Network Processing Units (NPU). Actually, the latter name is also used by Juni‐
per for certain packet processors, too. For simplicity, let’s use the shorter term
forwarder to designate a forwarding engine.

The fabric
A network device can scale up by using more powerful forwarders, which are
typically shipped in newer generation line cards. It also can scale out by having
more forwarders. When a device has multiple forwarders, it needs a fabric to
interconnect them. Fabrics are much simpler than forwarders: they just know
how to move data units from an ingress/source forwarder to an egress/destina‐
tion forwarder. Conceptually, fabric chips are similar to Asynchronous Transfer 
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Mode (ATM)—or, why not, MPLS—switches that implement a full mesh of vir‐
tual circuits among all the forwarders in a given device; their forwarding state
contains just a few destinations.

Links
Like in any network, the device’s components are linked together. In this exam‐
ple, the physical connections are instantiated via high-speed links at the mid‐
plane: don’t look for the cables!

What does this have to do with real networks and with data centers? Well, this inter‐
nal network has feature-rich edge components (the forwarding engines) and simple
core components (the fabric). Now we are talking! Let’s move on with the analogy.

Suppose that the forwarder FWD_0 in Figure 10-1 receives a packet from the outside
world. FWD_0 looks at the packet headers and performs a lookup whose result is:
send the packet out of port X that is anchored to FWD_2. FWD_0 adds a new header to
the packet—which may be previously fragmented, but that’s another story. This
header simply says, take me to FWD_2. Then, it sends the packet to the fabric, using a
load-balancing algorithm to distribute the data across the fabric chips (FAB_0, FAB_1
up to FAB_X).

Thanks to this extra (tunnel) header, the fabric can switch the packet to FWD_2
without looking at the packet’s content. When it receives the packet from the fabric,
FWD_2 removes the extra header and forwards the packet out of port X toward its
destination.

Wait, isn’t this tunneling? Indeed, it is tunneling inside the router! True, this tunnel‐
ing is transparent to the outside world. But packets can flow inside a multicomponent
network device, simply because the edge components (forwarders) use an overlay
based on a tunneling header that steers the packets through the fabric underlay.

Forwarding engines inside a network device use an overlay to exchange packets with
one another. The fabric acts like a dummy underlay. Fabric chips are not capable of
doing a real forwarding lookup: they need a header that points to a destination for‐
warder.

Single-Chassis Network Devices—Control Plane
As in the case of the forwarding plane, let’s use the powerful analogy between a multi‐
component single-chassis network device and a multidevice network.

Remember that there are two networks inside a network device: the forwarding plane
and the control plane. It’s time to have a look inside the control plane.

Although the general architecture is similar for all vendors, the details of the follow‐
ing example are inspired on a Juniper MX—for example, not all vendors use a
TCP/IP stack for the internal control plane.
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Figure 10-2 represents one single MX chassis. Rectangular components act like hosts
from the point of view of the control plane’s internal network. The Ethernet Bridges,
represented with rounded corners, switch internal and external control packets as
described here:

• Internal control packets are natively exchanged between internal hosts through
the internal Ethernet Bridges.

• External control packets are actually coming from, or destined to, the outside
world. When a Controller processes external control packets, these are tunneled
through the Ethernet Bridges between the Controller and the Control Agent(s).

Figure 10-2. Internal control plane in a Juniper MX

At first sight, this topology might remind you of a fabric, but it is
not. The topmost elements in a fabric are (spine) switches. Here,
they are hosts. And control-plane links have a lower bandwidth
than fabric links.

Controller is a generic term for the software that computes all the forwarding rules of
the device. This software typically runs on a pair of boards—active and backup—with
varied vendor-specific names such as Juniper Routing Engine (RE), Cisco CRS Route
Processor (RP), or Cisco ASR Route Switch Processor (RSP). These boards contain
multipurpose CPUs that execute the Controller code. Among their many tasks, Con‐
trollers are responsible for pushing a forwarding table to Control Agents.
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Junos uses the term Master as an equivalent to Active in an Active-
Backup control plane. This is a horizontal relationship. In this
book, the term Master is reserved for a different concept: a hier‐
archical relationship between two Controllers.

Control Agents are also pieces of software that run in less powerful CPUs, typically
located in line cards. These are responsible, among other tasks, for translating the
high-level instructions received from Controllers into low-level hardware-specific
instructions that are optimized and adapted to forwarding ASICs.

Software? Yes, this type of (internal) Networking is also Software-
Defined!

Single-chassis network devices—internal control traffic
For the Controllers to send instructions to Control Agents, and for the Control
Agents to report events and statistics to Controllers, they need a communication
infrastructure: indeed, internal Ethernet Bridges that physically interconnect them.

Every internal host has a MAC address (derived from its physical location) and an
IPv4 address. For example, in Junos, the master RE has IPv4 address 128.0.0.1 and
line cards have IPv4 address 128.0.0.16+<slot_number>. These addresses reside in a
hidden private routing table called __juniper_private1__, whose purpose is to
exchange data between Controllers and Control Agents (and also between the Active
and Backup Controllers). These addresses are not visible from the outside.

When a Control Agent boots, it gets from the Active Controller via BOOTP (over
UDP) both an IPv4 address and the name of the software image, and then it gets the
image itself via TFTP (over UDP). After booting, Control Agents establish TCP ses‐
sions with Controllers. Controllers use these sessions to send a forwarding table, filter
attachments and definitions, class of service structures, and so on to the Control
Agents. On the other hand, Control Agents send events and statistics to Controllers
via these TCP sessions, too.

Finally, Control Agents adapt the forwarding instruction set to a format that is under‐
standable by the Forwarding Engine ASICs. This is typically a complex layered pro‐
cess with two main stages: a hardware-agnostic stage called Hardware Adaptation
Layer (HAL) in Junos, and a hardware-specific layer that depends on the actual chip‐
set in the Forwarding Engine. The resulting microcode instructions and structures
are programmed into the ASICs by using a mechanism such as Peripheral Compo‐
nent Interconnect Express (PCIe). Chapter 12 compares this architecture—based on
purpose-built ASICs that have a special instruction set used for networking—with the
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multipurpose x86 architecture, for which only the software (OS or controller) knows
that this is a networking device, but the hardware is “dumb.”

Single-chassis multiforwarder devices—external control traffic
So far, we have very briefly seen how the internal control plane works. But a network
device needs to exchange control packets with the outside world, too. If a router does
not learn routes from the outside, it cannot even compute a useful forwarding table!

Figure 10-3 shows how two adjacent MX routers (CE1 and PE1) exchange an eBGP
update. The gray header fields only live in the internal control network, so they can‐
not be captured with an inline sniffer at the CE1-PE1 link. As for the external MAC
header MAC_A→MAC_B, it is surrounded by a dotted line in the internal path
because it is not always present. For example, in MX, CE1’s Active Controller builds
the packet with that header, which goes on the wire, and PE1 strips the header before
sending the packet up to its local Active Controller.

Figure 10-3. Distributed control plane between two Juniper MX devices

It is important to note that the control plane relies on the forwarding plane. Let’s
focus on the most interesting aspect: the ingress path at PE1. When the packet arrives
to FWD_Y at PE1, a route lookup occurs. The result of this lookup is: the destination
is a local IPv4 address; send it up to the control plane. So, the Forwarding Engine
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hands the packet to the Control Agent on which it depends. The Control Agent adds
a Generic Routing Encapsulation (GRE)-like header (the actual protocol used in Juni‐
per devices is called TTP, but it is very similar to GRE).

The resulting packet has two IPv4 headers:

• An external IPv4 header, from the Control Agent at line card slot #2 (128.0.0.18 =
128.0.0.16+<slot_number>) to the Active Controller (128.0.0.1). Thanks to this
header, the packet arrives to PE1’s Active Controller, which removes the tunnel‐
ing headers and processes the original BGP (CE1→PE1) packet.

• An internal IPv4 header with the configured—externally visible—addresses at the
CE1-PE1 link (10.1.0.0 → 10.1.0.1).

The model represented in Figure 10-3 also applies to the exchange of other one-hop
control packets like those used by link-state protocols (OSPF, IS-IS, etc.).

Things become a bit more interesting when the control packet follows an external
multihop path, such as that shown in Figure 10-4. Although the examples in previous
chapters included a Route Reflector (RR), this implies a hierarchy that makes things
more confusing for an initial multihop example. So let’s consider a flat multihop
iBGP session between PE1 and PE3 loopback addresses. The original physical inter‐
faces started with ge-2/0/x, so they all belonged to the same forwarder. These num‐
bers have been changed in order to make the example more interesting.

Figure 10-4. Distributed multihop control plane—Juniper MX
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From the point of view of P1, the PE1→PE3 iBGP update is not a control packet; it is
a transit packet. This raises an important paradigm of modern networking:

• The control plane does not process the vast majority of the packets that transit a
network device. Instead, transit traffic typically uses the high-speed links of the
forwarding plane.

• Only control and exception packets (e.g., IPv4 packets with an expired Time-to-
Live [TTL], or with options in their headers) are “punted” to the control plane,
bypassing the fabric. The gates between both worlds are the medium-speed links
between Control Agents and Forwarders.

Even if an internal Ethernet Bridge may coexist in the same physi‐
cal cards with Fabric Chips, they are all different functional compo‐
nents. Internal Ethernet Bridges are not part of the fabric.

When P1 receives the BGP update, it does not find anything exceptional: TTL is fine,
no IP options, and the destination is out of FWD_Y. So, the packet bypasses the con‐
trol plane. There are at least a couple of scenarios in which things would have been
different:

• If the packet had TTL expired due to IP forwarding. After passing a hierarchical
anti-DDoS rate limiter, the packet reaches the Control Agent. This, in turn, gen‐
erates an ICMP message back to the original packet’s source informing of the
TTL expired condition. The Controller is not bothered for simple tasks like this
one.

• If the packet had IP Options. This would be the case of a non-bundled RSVP
PE1→PE3 packet. Even though the destination IP address of such packets is the
remote PE, they need to be fully processed, hop by hop, involving all the Active
Controllers in the path. As a result, these packets typically do not transit
the fabric.

As you can see, a simple PE1→PE3 BGP packet actually undergoes three stages of
tunneling: two at internal control-plane networks (PE1 and PE3) and one at a
forwarding-plane internal network (P1). This example is adequate to illustrate the
relativity of the overlay and underlay concepts. P1 is an underlay from the point of
view of the PE1→PE3 BGP update. But P1’s forwarding plane is an overlay built over
its underlying fabric.

A very important piece of Figure 10-4 is the simplified diagram at the bottom.
Despite all the internal complexity, PE1 and PE3 establish a West-East control peer‐
ing for which all the internal and external forwarding components are simply an
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underlay. Many of this chapter’s figures use such an abstraction. Although it is essen‐
tial to understand the details, there is no need to recall them over and over.

Multichassis Network Devices
One way to scale the forwarding plane of a network device is to use a single control
plane to manage several chassis at the same time. The result is often called a virtual
chassis. It is virtualization by fusion (several physical devices become one virtual
device) rather than fission (one physical server runs several virtual machines [VMs],
or one router instantiates several VRFs).

Here is one possible coarse classification of virtual-chassis architectures, from the
point of view of the forwarding plane:

• The fabric is implemented by certain physical devices whose forwarding plane
only performs this function. These are dedicated chassis with fabric-only links.
They look different and, in fact, are different from the line-card chassis that con‐
tain both the forwarding engines and the external facing interfaces. This archi‐
tecture is beyond the scope of this book.

• The fabric is implemented by physical devices that could be used as standalone
network devices, as well. This architecture will be discussed later.

Let’s zoom out for a moment and take a broader look at data centers. The analogy
between multiforwarder (or multichassis) devices and data center networks will natu‐
rally unfold.

Legacy Data Center Networking
The previous discussion provides very powerful analogies to data center networking.
But it’s important to provide some context before explaining the analogies.

The Challenges of L2 Bridged Networks
In the early days of the Internet, public and private data centers consisted of physical
servers connected to legacy L2 bridged networks. And this is still the case in many
small and medium-sized data centers and countless private enterprise networks.

Over time, compute virtualization has become more and more popular with the uni‐
versal adoption of applications running on VMs or containers. There’s no doubt: vir‐
tualization is cool, but in the legacy L2 connectivity model, hypervisors are still
connected via VLAN trunks to the physical underlay. This takes a huge toll.
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Revolution against the VLAN tyranny
In a legacy L2 bridged network, traffic segmentation is achieved by VLANs. Every
time that a new server is deployed, its Network Interface Cards (NICs) typically
obtain static or dynamic IP addresses. These addresses cannot be freely assigned; they
belong to IP subnets, which in turn are rigidly coupled to VLANs. These VLANs
must be provisioned all the way from the server (or hypervisor) through the broadcast
domain—spanning L2 bridges—to all the host and router interfaces in the VLAN.
The result is a monolithic paradigm in which the service and the applications are inti‐
mately associated to the network underlay. Despite all the possible attempts to auto‐
mate and orchestrate this process, in practice the IT staff must coordinate service
deployment with the network team; this clearly interferes with business agility.

VLANs were initially proposed as a broadcast containment mechanism. The NICs for
end systems are in promiscuous mode for broadcast, so the system performance
would be much more affected by broadcasts without VLANs.

Then, the VLAN became a service delimiter mechanism: department isolation, ser‐
vice A versus service B, or customer 1, 2, 3.

As a result, the VLAN tag has two interpretations:

• It is a (multipoint) circuit identifier at the L2 network infrastructure level.
• It is a multiplexer for edge devices (hosts, hypervisors, and routers); at the edge, a

VLAN is conceptually linked to an L3 network, and it acts like a tenant or a ser‐
vice identifier.

Divide and conquer is a general rule for workable solutions, and a VLAN means too
many things. In contrast, modern data center architectures completely decouple the
service from the transport; regardless of whether the multiplexing object is an MPLS
service label, or a Virtual eXtensible LAN (VXLAN) Network Identifier (VNI), or
something else, it is only meaningful for edge devices.

Edge devices in a modern data center must use a multiplexing tech‐
nique that is decoupled from the underlying infrastructure. In other
words, they must use an overlay.

One additional limitation imposed by VLANs is the creation of deployment silos.
Imagine that the data center network is composed of an L3 core interconnecting L2
islands. If a legacy application requires L2 connectivity, the application is constrained
to just one island. The introduction of an overlay breaks this barrier by allowing any-
to-any connectivity.
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Oh, yes, and the VLAN ID is just a 12-bit field, so only 4,095 values are available.
This is often mentioned as the main reason to use an overlay instead of VLANs.
Although it is an important point indeed, there are more compelling reasons to move
away from VLANs.

Bandwidth scaling
As mentioned earlier, there are two ways to grow a network: scale up and scale out.

The scale-up approach is limited and very often must be combined with scale out. On
the other hand, more network devices and links typically results in a meshed topol‐
ogy full of loops. With an L2 bridged underlay, this is a no-go: Spanning Tree would
block most of the redundant links, resulting in a degraded topology. This is one of the
main reasons why the underlay in a modern data center must be L3.

Control-plane scaling
L2 bridges typically have a limit on the number of MAC addresses that they can
learn—when this limit is reached, the bridge floods frames destined for the new MAC
addresses. Core bridges need to learn all the MACs, and this creates a serious scalabil‐
ity issue.

If in order to ease provisioning you configure all the VLANs on hypervisor ports,
broadcast significantly loads the control plane in the hypervisor stack.

Network stability and resiliency
Redundant topologies are always looped and, if the underlay is L2 Ethernet, loop
avoidance relies on Spanning Tree, which is probably the scariest and most fragile
control protocol suite. The broadcast storm beast has been responsible for so many
network meltdowns throughout networking history. Simply stated, a broadcast
domain is a single point of failure. This is probably the most important reason to
claim that L2 bridging is legacy.

Underlays in Modern Data Centers
In a data center, the underlay is a set of interconnected network devices that provide
data transport between (physical or virtual) computing systems. You can view this
underlay as a core inconnecting edge devices. These edge devices—called here edge
forwarders or VPN forwarders—are functionally equivalent to PEs and are responsible
for implementing the overlay.

Due to the numerous challenges that L2 bridged networks face, an underlay in a
modern data center must be based on L3, pretty much like an SP core underlay.

Oh, some applications require L2 connectivity? In reality, the majority of the applica‐
tions work perfectly well over L3 (in multihop connections). Technologies such as
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VM mobility, which traditionally relied on L2, are beginning to support L3, as well.
However, many data centers still run applications that require L2 connectivity. Some‐
times, data center administrators might not know what particular application has this
requirement, but still they decide to prepare their infrastructure for that eventuality.
Anyway, when L2 connectivity is needed, it is handled by the overlay. The underlay
can definitely remain L3:

• Network devices build an IP core that is typically modeled as an IP fabric (soon
to be explained). IP control plane provides great resiliency and multipath capa‐
bilities.

• In large-scale data centers, the underlay core typically supports native MPLS
transport, because MPLS is the only technology that provides the required level
of scaling and features required by the most demanding and scalable data centers.
Over time, MPLS may be progressively adopted by lower-scale data centers, too.

Overlays in Modern Data Centers
Depending on the logic implemented by an edge device, the overlay can be L3 or L2
(see Figure 10-5). In an analogy to the concepts already covered in previous chapters,
these overlays are similar to L3VPNs or L2VPNs.

Figure 10-5. L3 and L2 overlays

Remember that this book represents frames following the MPLS
convention: the upper label is also the outer label. In X over Y, X is
actually represented below Y. The wire is on top of the representa‐
tion.

There are many types of overlay encapsulations available and implemented.

First, here are three MPLS-over-X flavors that are capable of encapsulating both L2
and L3:
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• MPLS-over-GRE encodes a MPLS packet inside the GRE payload.
• MPLS-over-UDP encodes a MPLS packet inside the UDP payload. The variable

values of the source and destination ports in the UDP header makes it a more
suitable solution for hashing and load balancing than the less feature-rich origi‐
nal GRE header. However, as of this writing, most network devices do not yet
support it.

• MPLS-over-MPLS is just MPLS VPN as usual. It requires an MPLS-capable
underlay.

Next, here are some examples of IP-over-IP tunnels with a multiplexing header:

• VXLAN is similar to MPLS-over-UDP except that the MPLS label is replaced
with a field that gets a different name (VXLAN Network Identifier [VNI]). As of
this writing, it is only capable of encapsulating L2 frames because it lacks a con‐
trol plane for L3.

• Network Virtualization using GRE (NVGRE) is similar to VXLAN, just that it
uses an enhanced GRE header with a multiplexing key instead of VXLAN over
UDP. The principle is the same. This is not covered in this book.

• STT (Stateless Transport Tunneling) uses a TCP-like header but it does not use
the TCP logic: it is stateless. The only advantage is the possibility to reuse the
TCP offload implementations in host operating system (OS) kernels. This, too, is
not covered in this book.

• Other encapsulations such as Geneve, IEEE 802.1BR, and the next one round the
corner.

The actual encapsulation is an implementation detail. What matters are the structural
model, the control plane, and the possibility of stacking. From an efficiency perspec‐
tive, nothing beats a 4-byte stackable header like MPLS. Other overlay encapsulations
are available if, for whatever reasons (be they technical or not), MPLS is not desired.
Anyway, even if the on-the-wire packet does not have any MPLS headers, the struc‐
tural model of any overlay is still MPLS-like. This is the spinal chord of the MPLS
paradigm. Deep innovation comes with new structural models and not with new
encapsulations.

Except for MPLS-over-MPLS, all the listed encapsulations work perfectly well over
plain IP networks. VXLAN is a widely adopted L2 overlay in small to medium-sized
data centers. Conversely, large-scale data centers typically rely on a native MPLS
encapsulation with an MPLS-capable kernel network stack at the servers’ OS.

Remember that VXLAN implements the overlay by embedding a VNI in a transport
IP tunnel. The VNI is a multiplexer and its role is similar to a service MPLS label.
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Chapter 8 already covers VXLAN, including its forwarding plane and an example of a
control plane (Ethernet VPN [EVPN]).

Multiplexer fields such as MPLS service labels and VNIs are only
significant to edge forwarders. They do not create any state in core
or IP fabric devices.

Let’s add a cautionary note about L2 overlays: if an application requires L2 connectiv‐
ity between end systems in geographically distant data centers, it is possible to stretch
the L2 overlay across the WAN. This service is known as Data Center Interconnection 
(DCI), and you can read more about it in Chapter 8. True, stretching L2 overlays
across geographical boundaries might be required by legacy applications, but this
does not make it a good practice: it is a remedy. The good practice is to reduce as
much as possible the scope of L2 broadcast domains. Even L2 overlays have the risk
of loops.

Data Center Underlays—Fabrics
IP fabrics (and MPLS fabrics) have become a de facto underlay in modern data cen‐
ters. These fabrics are typically composed of many network devices. There is a power‐
ful analogy between a multicomponent device and a multidevice network. Many of
the challenges (and solutions) proposed for modern multidevice data center under‐
lays were already addressed, in the context of multicomponent devices, by network‐
ing vendors. Of course, the momentum created by the evolution of data center
networking has certainly opened new horizons and accelerated the development of
more powerful paradigms. But the foundations were already there for decades.

High-scale data centers are evolving toward MPLS fabrics. Indeed,
their servers implement a lightweight MPLS stack. The architec‐
tural IP fabric concepts discussed in this chapter also apply to
MPLS fabrics. You can find some simple examples of the latter in
Chapter 2 and Chapter 16.

Traffic in data centers has evolved from a model in which the North-South (client-to-
server) traffic pattern was dominant into one in which horizontal (West-East) traffic
is very relevant. For example, imagine a video provider with a frontend web applica‐
tion that needs to talk to file services and many other applications—like advertising—
inside the same data center. Horizontal traffic appears more and more in the full
picture.
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IP Fabrics—Forwarding Plane
An IP fabric is simply an IP network with a special physical topology that is very ade‐
quate to scale out and to accommodate a growing West-East traffic pattern.

Let’s discuss Figure 10-6, in which all the unshaded boxes are separate physical devi‐
ces. Beginning at the South, there are VMs, containers (labeled CT), bare-metal
servers (labeled BM), and legacy hypervisors. These elements are either not capable
or not configured to implement an overlay over an IP network.

Figure 10-6. Leaf-and-spine architecture—three-stage fabric

Edge forwarders
Edge forwarders (labeled FWD) implement an overlay through the IP Fabric. They
are responsible for encapsulating packets or frames coming from their clients—VMs,
bare-metal servers, legacy hypervisors, and systems beyond the WAN—into IP tun‐
nels that can be transported through the IP fabric. Likewise, they decapsulate the traf‐
fic received from the IP fabric and deliver the resulting data to their clients.
Conceptually, they play the same role as do PEs in an SP core.
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Don’t look for the term “edge forwarders” in the existing literature.
It is a generic term proposed ad hoc in this book to describe that
function.

Although this overlay function is typically performed by a dedicated edge forwarder
device, optionally it can be performed by a leaf switch, provided that the latter has
one or more directly connected hosts that are not overlay-capable.

There are three types of edge forwarders:

• Modern hypervisors (and host OSs) that implement an overlay stack. In
Figure 10-6, these are FWD_0, FWD_1, FWD_X, and FWD_Y. The overlay
headers are handled by the forwarder component inside the hypervisor (or host
OS). VMs just send and receive plain Ethernet frames: they have no overlay/
underlay awareness.

• Top of the Rack (ToR) switches with an overlay stack, providing connectivity to
legacy bare-metal servers and legacy hypervisors which lack an overlay stack. In
Figure 10-6, FWD_2 and FWD_Z are dedicated to this function, whereas L_1,
L_2, and L_P perform it in combination with their underlay function.

• PE routers (data center gateways) implementing an overlay stack (FWD_A and
FWD_B in Figure 10-6). These gateways typically interconnect the local data cen‐
ter to other data centers (DCI service) and/or to the outside world, represented
as the WAN.

Edge forwarders implement an overlay by using an additional set of packet headers,
including at least one header that is only meaningful to edge forwarders.

Leaf-and-spine IP switches
The IP fabric spans leaf-and-spine IP switches. These are basically IP routers that
transport tunneled traffic, similar to what P-routers do in an IP/MPLS core. The
encapsulation in an IP fabric is, obviously, IP! IP switches in a fabric forward the IP
packets that are produced by an overlay encapsulation. As for the necessary IP rout‐
ing logic, it is discussed later in the context of the control plane.

In Figure 10-6, edge forwarders FWD_0, FWD_1, and FWD_2 are multihomed to
one or more of these leaf switches: L_0, L_1, and L_2. However, it is not a perfect
mesh; for example, FWD_0 and FWD_1 are not connected to L_2. The single bare-
metal server connected to L_P is only connected to L_P. The bottom line is that south
of the leaf IP switches, there is no connectivity mandate.

Only within the fabric is there such a mandate: each leaf IP switch is connected to
every spine IP switch.
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Three-stage IP fabrics
In 1952, Charles Clos designed a model for multistage telephone switching systems.
Today, this model is still the de facto reference for scale out, nonblocking architec‐
tures (you can find more information on Wikipedia). Paraphrasing Yakov Rekhter,
one of the fathers of MPLS:

Do not assume that being innovative, or being a technology leader, requires inventing
new technologies. To the contrary, one can be quite innovative by simply combining
creative use and packaging with high-quality implementation of existing technologies.

The Clos model is being applied over and over to different use cases, always in a very
successful manner. Some of them are covered in this chapter.

In Clos terminology:

• Leaf IP Switches implement fabric stages #1 and #3.
• Spine IP Switches implement fabric stage #2.

Another frequently used term is Tier. In this topology, spine IP switches are Tier-1,
and leaf IP switches are Tier-2. The lower the Tier, the higher is the relevance.

Back to Figure 10-6, let’s suppose that FWD_0 places a user packet inside an IP over‐
lay header whose destination is FWD_Y. Because there is no leaf device connecting
FWD_0 to FWD_Y, the packet must go through three stages:

• Stage 1 via one of the leaf switches connected to FWD_0: L_0 or L_1
• Stage 2 via one of the spine switches: S_0, S_1, ..., S_N
• Stage 3 via one of the leaf switches connected to FWD_Y: L_Q or L_R

From the point of view of a packet that flows in the reverse direction, Stage 1 would
be on L_Q or L_R, and Stage 3 on L_0 or L_1.

The Clos architecture is a perfect paradigm for optimal bandwidth utilization and,
most important, it is typically nonblocking. This means that if you activate two
unused ports at Stages 1 and 3, a switching path can be established between them
with no impact on the existing paths. In practice, the traffic between a pair of [source
forwarder, destination forwarder] can affect the traffic flowing between another pair
of forwarders if the links or devices are congested. Of course! However, this conges‐
tion is more unlikely with this architecture than with any other. Clos architectures are
the best for horizontal scaling.

Five-stage IP fabrics
You can scale-up an IP fabric by making it five-stage. This model is sometimes
referred to as multistage (although, strictly speaking, three-stage fabrics are
also multistage).
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Figure 10-7 illustrates two five-stage fabric topologies in which all the shaded circles
are separate physical devices. The Point of Delivery (POD) model is optimized for
connect more PODs, in other words, to connect more sites and devices. As for the
Performance model, it is perfect for nonblocking scale out. Adding more leaves and
more spines efficiently increases the capacity without a major network redesign.

Figure 10-7. Five-stage fabric (courtesy of Doug Hanks)

There is a practical limit on the number of devices that you can add
to any architecture while maintaining the nonblocking property.

Here is the translation from Tier to Stage terminology in the context of five-stage fab‐
rics:

• Access IP switches are in fabric stages 1 and 5, and are considered Tier-3 devices.
• Leaf IP switches on Stages 2 and 4 are considered Tier-2 devices.
• Spine IP switches on Stage 3 are considered Tier-1 devices.
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In the POD model, these roles are usually called leaf (stages 1 and 5), spine (stages 2
and 4), and fabric (stage 3).

Another scaling option is to connect IP fabrics with one another on the West-East
direction, but this is complex and beyond the scope of this document.

OK, it’s time to talk about the control plane.

IP Fabrics with Distributed-Only Control Plane
For simplicity, let’s discuss a three-stage IP fabric. The concepts for a five-stage IP
fabric are exactly the same: just the topology changes.

An IP fabric is composed of network devices that have a forwarding plane. For this
reason, Figure 10-8 shows a forwarder component inside each physical device. In this
context, the forwarding plane has the role of taking control and transit packets from
one device to another. Although not shown for graphical reasons, these packets also
traverse the forwarding plane of the leaf IP switches.

Figure 10-8. IP fabric—distributed-only control plane

You can run any routing protocol between the IP switches, from that of a link-state,
to eBGP. A trend in medium and high-scale data centers is to use eBGP because it is
simply the most scalable protocol and it has great multipath capabilities. And when
the overlay supports native MPLS, this is actually eBGP Labeled Unicast (eBGP-LU),
as discussed in Chapter 2 and Chapter 16.

And there is no control plane hierarchy apart from the one imposed by eBGP—spine
IP switches readvertise routes from one leaf to another. Nothing fancy in this dis‐
tributed control plane model: just good-old IP routing as usual.

Figure 10-9 illustrates the forwarding plane in this architecture (for an L3 overlay).
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Figure 10-9. Forwarding plane of an IP Fabric with a centralized-only control plane

IP Fabrics with Hybrid Control Plane
It is also possible to have an IP fabric with a hybrid control plane (see Figure 10-10):

• To perform topology autodiscovery, there is a distributed control plane based on
IP routing like the one just described. It is typically a link-state protocol. The goal
is to build an internal IP underlay that is able to transport packets between any
pair of devices in the fabric.

• After the topology is discovered, devices can exchange further internal control
packets. Through this packet exchange, a spine switch is elected as the active con‐
troller of a centralized control plane. Leaf switch controllers are demoted to con‐
trol agents. Very much like in a multiforwarder single-chassis device, control
agents get their forwarding instruction set from the central controller.

Figure 10-10. IP fabric—hybrid control plane
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The result is one single virtual device, spanning several physical devices: an enveloped
IP fabric. This virtual device is composed of devices that can also run in standalone
mode.

IP fabrics have two port types: fabric ports interconnect two IP switches in the fabric,
and network ports connect the fabric to the outside world. In a nutshell, the dis‐
tributed control plane runs on the fabric ports, whereas the centralized control plane
programs the network ports.

Having a centralized control plane is useful to program—inside the IP fabric—certain
advanced forwarding rules. Enforcing these rules requires acting upon several devices
according to a global topology view. For example, the central controller can create
automatic link-aggregates at two different levels (next-hop and remote destination),
and also build optimized, resilient replication trees for Broadcast, Unknown unicast,
and Multicast (BUM).

A centralized IP fabric logic is simple enough to be implemented in the processor of a
network device. As an alternative, this logic can also run as an application on an
external server or VM.

When its control plane is hybrid, the IP fabric looks like one single device, and as a
result, an extra header—the fabric header—steers packets from one leaf to another.
The central parts of Figure 10-4 and Figure 10-11 are strictly analogous. In that sense,
a leaf IP switch integrated in the IP fabric behaves like a line card, with its control
agent and its forwarding engine(s). Figure 10-11 illustrates a L3 overlay example.

Figure 10-11. Forwarding plane of an IP fabric with a hybrid control plane

Network Virtualization Overlay
As you have just seen, centralizing the control plane of an IP fabric underlay is an
interesting option. How about the overlay? At the edge, requirements become more
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complex: multitenancy, policies, services, and so on. Centralizing the control plane
becomes the strongly preferred way to automate the provisioning, evolution, and
operation of virtual overlay networks. This is especially true taking into account that
there are several types of edge forwarder, and sometimes it is necessary to coordinate
all of them to deploy a service. Remember, they can be classified as follows:

• Hypervisor or Host OS implementing an overlay stack. The overlay header is
handled by the forwarder component in the kernel. If the system is virtualized,
then VMs or containers just send and receive plain (may be VLAN-tagged)
Ethernet frames: they have no awareness of the overlay implementation.

• ToR switches with an overlay stack, providing connectivity to legacy bare metal
servers and hypervisors which lack an overlay stack. These ToR switches act like
gateways between the legacy and the overlay worlds.

• PE routers (data center gateways) implementing an overlay stack.

Modern overlay architectures such as Network Virtualization Overlay (NVO), shown
in Figure 10-12, typically have an active-active central control plane that programs
the networking stack of overlay-capable hypervisors and host OSs. The resulting
architecture is very similar to those in Figure 10-2 and Figure 10-8. Although they
need to be interpreted in totally different contexts—a network device, an underlay,
and an overlay—they have a common denominator. All of them provide a centralized
control plane. There is one way to shape a wheel: round!
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Figure 10-12. NVO control plane

Compute Controllers
To scale-out a virtual compute deployment, it is essential to have a cluster of central‐
ized controllers in charge of defining, instantiating, and moving the virtual comput‐
ing entities that run on different physical servers.

There are roughly two types of virtual computing entities:

Virtual machines
These have their own OS, applications, and libraries. You can see a VM as a full
OS with its own kernel running on top a hypervisor. One single hypervisor can
run many VMs and provides emulated hardware resources to each VM. Type 1
hypervisors are embedded in the host OS, and Type 2 hypervisors are basically an
application that runs on top of yet another host OS. Type 1 hypervisors are more
efficient since they involve one less computing layer.

Containers
These do not have their own OS. A container is a bundle of applications and
dependencies that runs as an isolated process in host OS’ user space. All of the
containers running on a given host share the kernel of the host OS.
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Both flavors of virtual computing architectures exist in the industry, and there are
many different vendor implementations for each of them. As soon as you start adding
more physical servers, centralized controllers become handy. Here is an ultra-short
list of popular central compute controller examples (there are many more):

• In the VM world, two different solid references are VMware vCenter and Open‐
stack.

• In the Container world, Kubernetes (as a centralized controller) and Docker (as a
server-local agent and container engine) are popular examples.

Virtual Network Controllers
In legacy compute networking, every virtual interface card in a VM or container is
connected to a VLAN. Today, in modern overlay architectures virtual interfaces con‐
nect to virtual networks (not VLANs).

Virtual Network Controllers provide a central point of control to define and operate
virtual networks together with their policies and forwarding rules.

These controllers typically implement various protocols and programmatic interfaces:

To the North
Controllers expose a programmatic northbound interface that an external
orchestrator can use to provide an additional level of customized automation to
the entire overlay builder solution.

East-West internal
Two controllers that belong to the same overlay builder talk to each other
through a series of protocols that allow them to synchronize their configuration,
state, analytics data, and so on. Among these protocols, there is a special one that
performs the function of synchronizing the network overlay routing information.
To avoid reinventing the wheel, this protocol can definitely be BGP.

East-West external
Controllers can federate to other external controllers via BGP. This provides a
good scale-out option by deploying overlay builders in parallel. BGP is also the
de facto protocol that controllers use to peer to network gateways.

To the South
Controllers send a dynamic forwarding instruction set (networks, policies, etc.)
to Control Agents or Virtual Network Agents. Two popular options are XMPP—
conceptually, similar to BGP—and OVSDB. These protocols are described later
in this book.
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Because controllers are the brain that centralizes network signaling, they are also the
main entry point for operators and external applications. For this reason, controllers
typically expose a GUI, a CLI, a northbound programmatic interface, and so on.

NVO—Transport of Control Packets
Internal Ethernet Bridges in Figure 10-2 are similar to the Underlay IP Network in
Figure 10-12, with two main differences:

• In Figure 10-2, the underlay is L2, whereas in Figure 10-12 it is L3.
• In Figure 10-2, there is a dedicated control network, whereas in Figure 10-12

control plane packets use the same underlay network that transports transit traf‐
fic from the tenants’ applications. This is the typical architecture, although an
Out-of-Band control network is an option, too.

NVO—Agents
Virtual Network Agents and Control Agents are responsible for converting the high-
level instruction set received from the Controllers into low-level instructions that are
adapted and optimized for the forwarders. The name Control Agent is reserved for
traditional network devices, whereas Virtual Network Agents run on hypervisors. But
they play the same role in the architecture.

In the same way as line cards in a multiforwarder network device, hypervisors are
slave entities and they typically implement a very basic user interface as compared to
the comprehensive ones offered by the controllers.
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CHAPTER 11

Network Virtualization Overlays

This chapter discusses one of the most important incarnations of Software-Defined
Networking (SDN) for clouds and data centers: Network Virtualization Overlay
(NVO).

Chapter 10 introduced the Edge Forwarder concept in detail. Now, let’s have another
look at it from a functional and service-centric perspective. In the context of NVO,
Edge Forwarders support multitenancy by implementing flexible network policies
that rely on an overlay transport mechanism. You should know that this is basically
the definition of a VPN; thus in this chapter, Edge Forwarders are actually VPN For‐
warders.

One type of VPN Forwarder, network devices that implement L3 VPNs and L2 VPNs,
has already been the subject of many pages in the first part of this book. These PE
routers can run in dedicated physical platforms, or virtualized in a container, or as a
VM in a hypervisor, or even directly on a bare-metal server. Anyway, physical or vir‐
tual, they perform the same function—of course, performance differs.

This chapter focuses on two other VPN Forwarder types:

• Host operating system (OS) that implements virtual networks (VNs) while acting
at the same time as a Hypervisor or as a Container Engine. As you are about to
see, this is not the same as a network OS running on a virtual machine (VM).
From the computing perspective, it is lower in the stack and hence more native.
But these approaches are not mutually exclusive; actually, they combine nicely in
Network Functions Virtualization (NFV), which is covered in Chapter 12.

• Top-of-Rack (ToR) switches with overlay capabilities.
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Let’s begin with the first type of VPN Forwarders in this short list. They are at the
heart of SDN. Depending on the actual implementation, they are called vRouters or
vSwitches. Both perform a similar function but not all vSwitches are overlay-capable.

Several vendors have developed products that create overlay virtual networks in order
to achieve connectivity between VMs, containers, and the physical world. As of this
writing, it is an emerging market. This book’s SDN chapter block (10, 11, 12, and 15)
focuses on illustrating the technology, not product comparisons. In the end, concepts
are quite universal and network solutions are meant to interoperate.

As of this writing, there are several NVO production-ready solutions on the market,
and one of them is OpenContrail. Here are the reasons why OpenContrail was
chosen for this book’s NVO examples:

• It happens to be a solution that the authors know well. Resources are limited in
every project, and this book is no exception. A choice had to be made. If you
enjoy this book, a future second edition would likely cover other vendors’ SDN
solutions and multivendor interoperability.

• OpenContrail is a deployed, production-ready SDN solution with a comprehen‐
sive feature set in all the key areas, including network policy and network service
architecture, providing a wide range of overlay flavors from which to choose.

• Like Open vSwitch (OVS), OpenContrail is an open source project.
• Unlike OVS, OpenContrail was inspired since day one by BGP and MPLS service

architecture. It clearly decouples overlay from underlay, and control plane from
forwarding plane. After policies are centrally defined, distributed vRouters are
empowered to locally create flows with no intervention from the controller—
which later gets information about the flows for analytics purposes. Having this
architecture since its conception, OpenContrail vRouter has better scalability,
performance, and robustness than current OVS implementations, which are
influenced by OpenFlow’s initial design approach.

As for Network Virtualization Controllers (NVCs), OpenContrail is also kept as a
main reference for the same reasons. For the record, other popular solutions include
OpenDaylight (ODL), Nuage, and VMware’s NSX.

OpenContrail in a Nutshell
Chapter 10 explains the generic architecture of cloud SDN solutions. This chapter’s
Figure 11-1 is similar to Figure 10-12, except that now we are actually using Open‐
Contrail terms (such as vRouter) and actual protocols between the different func‐
tions.
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Figure 11-1. OpenContrail control-plane architecture

OpenContrail Controllers
Although in Figure 11-1 each OpenContrail Controller is represented as a single box,
it is actually the combination of at least four different software components or nodes.

Beware of the term node: here, it is just software running on
general-purpose x86 processors. Each of these nodes can run on
the same or on different physical servers—and on the same or on
different VMs.

The following description is from the OpenContrail book in Juniper’s Day One
library:

All nodes of a given type run in an active-active configuration, so no single node is a
bottleneck. This scale-out design provides both redundancy and horizontal scalability.
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Configuration nodes, which are responsible for translating the high-level data model
into a lower-level form suitable for interacting with network elements.
Control nodes, which are responsible for propagating this low-level state to and from
network elements and peer systems in an eventually consistent way.
Analytics nodes, which are responsible for capturing real-time data from network ele‐
ments, abstracting it, and presenting it in a form suitable for applications to consume.

In more recent OpenContrail versions, controllers also have database nodes.

From a networking perspective, the control node is the most interesting because it’s
the one performing all the network protocol signaling that is required to build over‐
lay networks. Control nodes speak BGP in the West-East direction, and eXtensible
Messaging and Presence Protocol (XMPP) in the North-South direction.

ToR Service Nodes (covered later) implement a proxy function that
translates XMPP messages from and to Open vSwitch Database
Management (OVSDB).

Compute, Gateway, and Service Nodes
The other node types have a more physical meaning:

• Compute nodes are an intrinsic part of OpenContrail.
• Gateway and service nodes are external and interact with OpenContrail.

Again, paraphrasing the OpenContrail Day One book:
Compute nodes are general-purpose virtualized servers that host VMs. These VMs may
be tenant running general applications, or these VMs may be service VMs running
network services such as a virtual load balancer or virtual firewall. Each compute node
contains a vRouter that implements the forwarding plane and the distributed part of
the control plane.
Gateway nodes are physical gateway routers or switches that connect the tenant virtual
networks to physical networks such as the Internet, a customer VPN, another data cen‐
ter, or to non-virtualized servers.
Service nodes are physical network elements providing network services such as Deep
Packet Inspection (DPI), Intrusion Detection (IDP), Intrusion Prevention (IPS), WAN
optimization, Network Address Translation (NAT) and load balancing. Service chains
can contain a mixture of virtual services (implemented as VMs on compute nodes) and
physical services (hosted on service nodes).

Gateway nodes can also run as a VM, and the service function can definitely be vir‐
tualized. Anyway, all these node terms (Compute, Gateway, Service, and ToR service)
typically refer to a physical host or device.
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Compute nodes
Like other SDN solutions, OpenContrail is a networking product. To avoid reinvent‐
ing the wheel, OpenContrail integrates with existing compute virtualization solutions
that are responsible for managing, instantiating, and moving VMs or containers:

• If OpenStack is used as the Compute Controller + Agent, there are two virtuali‐
zation options: Linux KVM (Kernel-based Virtual Machine) and Docker. The
first is a VM-based hypervisor; the second is a container engine.

• OpenContrail can also integrate with VMware vCenter as the Compute Control‐
ler + Agent, using VMware ESXi as the hypervisor. This requires interconnecting
OpenContrail’s vRouter to VMware’s vSwitch, and dynamically mapping
vSwitch’s VLANs to vRouter’s Virtual Networks.

• As of this writing, there is ongoing work to evaluate a possible integration with
Kubernetes as the Compute Controller + Agent, using Docker as the container
engine; however, it is not yet implemented.

In an analogy to a multiforwarder network device:

• A compute node is like a line card.
• A vRouter agent runs in user space and is analogous to a control agent in a line

card.
• The vRouter’s forwarding plane runs in the kernel and is analogous to a forward‐

ing engine.

Gateway nodes
Figure 11-1 shows that there are actually two types of gateway nodes:

• Peer gateway nodes are capable of building their own overlays. They are typically
PEs and establish iBGP sessions to the control nodes.

• Slave gateway nodes can build overlays as instructed by the control node.

Strictly speaking, nothing prevents a gateway node from running in a VM or con‐
tainer.

Service nodes
Chapter 12 provides more detail on the topic. Service nodes have nothing to do with
ToR service nodes.
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ToR service nodes
OpenContrail controllers are also capable of extending overlay networks to ToR
switches that connect legacy hosts and hypervisors. This overlay extension is per‐
formed by ToR service nodes, which have nothing to do with the aforementioned ser‐
vice nodes. ToR service nodes implement the intelligence to act as a control-plane
proxy between control nodes and ToR devices.

Case Study: A Private Cloud
One of the most powerful applications of SDN solutions like OpenContrail is sub‐
scriber access to a private cloud, as illustrated in Figure 11-2. Service providers (SPs)
can offer this access in the context of Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), or Software as a Service (SaaS). Or, put all together, XaaS.

Figure 11-2. Subscriber access to a private cloud

As soon as you associate a VM—or a container—interface to a Virtual Network with
OpenContrail, the VM is immediately reachable by the subscribers, and vice versa.
This is a very cool example of a natural integration between SDN and BGP/MPLS
services.
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Security is implicit because it is a VPN service: subscribers do not
need to establish IPSec or Secure Socket Layers (SSL) tunnels
toward their private cloud.

Let’s discuss the contents of Figure 11-2, moving from right to left:

• VMs and containers are like CEs. They are totally unaware of the overlay, and
simply send and receive Ethernet frames—which are typically untagged.

• vRouters are like PEs. They can perform the role of either an Ethernet VPN
(EVPN) or an IP VPN PE.

• Like ASBR1, the data center gateway is an Option B Autonomous System Border
Router (ASBR). Alternatively, you can merge the two ASBRs into one Area Bor‐
der Router (ABR). In any case, the data center gateway changes (into a local
address) the BGP next hop of the VPN routes that it reflects; as Chapter 9 details,
this triggers a new service label allocation. Although it is completely optional to
instantiate a local VRF and/or EVPN instance at the data center gateway, doing
so can be advantageous because it allows performing route summarization and
applying advanced routing policies.

• Further to the left, it is a classic SP network.

At the bottom of Figure 11-2, notice the User Packet/Frame box. Indeed, it can be an
L3 packet or an L2 frame depending on whether the service is EVPN or IP VPN.
Thanks to EVPN’s hooks into the L3 world, it is possible to combine EVPN for intra‐
subnet traffic with IP VPN for intersubnet traffic (this combination is known in
OpenContrail as L2_L3 mode). Extending EVPN end-to-end to the subscriber is
technically feasible, but it is a bad practice in general to stretch L2 domains.

Although it is not shown in Figure 11-2, OpenContrail also provides communication
inside the data center. This makes it possible for VMs running in the same or differ‐
ent vRouters—and for applications running outside OpenContrail—to communicate
with one another inside the data center network.

Let’s look at the case study in detail. The focus is on SDN because BGP/MPLS VPNs
in physical PEs are already covered in earlier chapters.

For simplicity, Figure 11-3 shows all of the controller functions in the same physical
server. Anyway, the focus is on the control node. OpenContrail supports two for‐
warding modes: pure L3 and mixed L2_L3. The simplest one is pure L3, so let’s begin
with it.
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Figure 11-3. Infrastructure and VPN addressing—L3 mode

You can see two types of addressing:

• Infrastructure IPv4 addresses (10.0.10.x/31), which reside in the global routing
table and provide underlay connectivity through the IP fabric.

• VPN overlay addresses (10.1.1.1/32, 10.2.20.10/32, 10.2.2.0/24). These corre‐
spond to subscribers, the data center gateway loopback, and VMs, respectively.
The same address scheme is used for VPNs Red and Blue. This is fine: they are
VPNs after all!

Let’s go through the entire signaling process that enables a private cloud service, step
by step.
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vRouter-VM Link Addressing
This book focuses on technology and does not include an OpenContrail user guide.
Very brief GUI pointers are provided so you can easily match the concepts to the
actual configuration hierarchies in OpenContrail.

In general, anything that OpenContrail GUI can do, you can also
do by using OpenContrail’s northbound RESTful API.

Although other options are available, the following Virtual Machine Manager GUI
pointers (steps 1 and 3 below) assume that the Compute Controller and Agents are
based on OpenStack:

1. The first administrative step in VM addressing is to create a project within Open‐
Stack Horizon GUI: Admin→Identity Panel→Projects. This book’s examples use
a project named mpls-in-the-sdn-era. A project is typically associated to a tenant,
and it supports one or more VNs.

2. In the context of the new project, define the VNs (Red, Blue) in OpenContrail
GUI: Configure→Networking→Networks. You can think of a VN as a set of IP
subnets with some additional properties: zero or more route targets (RTs),
optionally a VXLAN Network Identifier (VNI), and so on. Each of these IP sub‐
nets can be broken into /32 addresses that are assigned to the endpoints of VM-
vRouter (CE-PE) links.

3. VMs are defined and instantiated through the OpenStack Horizon GUI:
Project→ Instances→Launch Instance. Each VM typically has one or more VN
interfaces (vNICs), and each vNIC is connected to a vRouter’s tap interface.

A vNIC and a tap interface are the two ends of a CE—PE point-to-point link. Both
interfaces are internally linked together, and they are dynamically created as soon as a
new VM is spawned. A given tap interface in a vRouter belongs to one and only one
VN, and it is connected to a single VM.

Is a VN like a VRF? Almost! Strictly speaking, the OpenContrail term for a VRF is
Routing Instance (RI). RIs are implicitly configured through their parent VNs, not
directly. By default, there is only one VRF for each VN. On the other hand, Chapter 3
explains the extranet concept, in which VRF:VPN mappings are N:1 instead of 1:1.
Similarly, the VRF:VN mappings are N:1. For the moment, in simple scenarios such
as that presented in Figure 11-3, VN Red only has one VRF called Red:Red. Note that it
is sometimes represented as VRF Red for graphical reasons.
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As in a physical PE, a VRF can have local and remote routes. In addition, remember
that a CE can have several uplinks, each connected to a different (or the same) VRF at
the PE. Likewise, a VM can have several vNICs, each connected to a different VRF at
the vRouter. In this first example, each VM has only one vNIC.

One of the most striking aspects of Figure 11-3 is the fact that the 10.2.2.1 address is
present multiple times in the same VRF—on the vRouter side. Let’s focus on VRF
Red. The first and second host addresses—in this case, 10.2.2.1 and 10.2.2.2—are
automatically reserved for the VM’s default gateway and DNS server, respectively.
Both of these functions are provided by the vRouters. Their tap interfaces all have the
same MAC address 00:00:5e:00:01:00.

Having a deterministic IP and MAC address on the vRouter tap
interfaces provides perfect conditions for VM mobility in L3 archi‐
tectures. Chapter 8 discusses a similar scenario, in which all the
IRBs in a given subnet were configured with the same IP and MAC
addresses.

The 10.2.2.0/24 network is not advertised by the control node, only the /32 routes
assigned to the VMs are. Now, suppose that VM Red_1A sends an ARP request to
resolve 10.2.2.102 (at Red_2A) or 10.2.2.103 (at Red_1B). If vRouter_1 knows the
corresponding /32 L3 route, vRouter_1 sends an ARP reply to VM Red_1A, provid‐
ing the well-known MAC address that it uses on all the vRouter-VM links (00:00:5e:
00:01:00). This is an intelligent ARP proxy process where the destination VM does
not receive any (original or proxied) ARP request packets originated by other VMs.

In L3 mode, the vRouter acts like an L3 router, as opposed to a
vSwitch. In L2_L3 mode, the vRouter acts like an L2/L3 switch
from the perspective of the VMs.

vNICs get IPv4/IPv6 and MAC addresses from the control node. Figure 11-3 shows
five VMs, with one vNIC each—some in VRF Red and others in VRF Blue. As you
might expect in a VPN, vNICs in VRF Red can communicate with one another, but
not with vNICs in VRF Blue (by default). When you create a new VM, the Compute
Controller—in this example, OpenStack—communicates the configured vNIC-to-VN
mappings to the OpenContrail controller. Based on this information, the latter
assigns IPv4/IPv6 and MAC addresses to each vNIC.

Initializing vNICs—XMPP as a DHCP-Like Protocol
XMPP, formerly known as Jabber, is a communications protocol for message-oriented
middleware based on eXtensible Markup Language (XML). It implements a series of
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functions such as Subscribe, Publish, and Update that make it suitable for the com‐
munication between the centralized control plane (control node) and the control
agents (vRouter agents).

One of the primary functions that XMPP performs in OpenContrail is the assign‐
ment of all the network attributes of a vNIC, including the VRF to which it belongs,
its IP and MAC addresses, security, policies, and so on. This information makes it
possible for the vRouter to act as a DHCP server in the context of VM addressing, as
shown in Figure 11-4.

Figure 11-4. VM addressing—XMPP and DHCP

XMPP Subscribe Request messages are very simple, as demonstrated in
Example 11-1.

Example 11-1. XMPP—vRouter agent sends Subscribe Request for a VM

1     <?xml version="1.0"?>
2     <iq type="set" from="vrouter_1"
3         to="network-control@contrailsystems.com/config">
4       <pubsub xmlns="http://jabber.org/protocol/pubsub">
5         <subscribe node="virtual-machine:
6                          9747613d-a93a-43f9-b5aa-de747fc96d44"/>
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7       </pubsub>
8     </iq>

This message goes from the control agent at vRouter_1 to the control node (lines 2
and 3). It is triggered by the creation of VM Red_1A in the context of the Compute
Controller and Agent (in this case, OpenStack Nova). These compute control ele‐
ments had already communicated the vNIC-to-VN mappings (in this case, eth0:Red)
to OpenContrail.

The internal VM ID (line 6) is different from the VM’s user-friendly name (Red_1A).

Let’s see the XMPP configuration update from Figure 11-4 in more detail, as shown
in Example 11-2.

Example 11-2. XMPP—Configuration Update to a vRouter Agent

1     <?xml version="1.0"?>
2     <iq type="set" from="network-control@contrailsystems.com"
3         to="default-global-system-config:vrouter_1/config">
4       <config>
5         <update>
6           <node type="virtual-machine">
7             <name>9747613d-a93a-43f9-b5aa-de747fc96d44</name>
8           </node>
9           <link>
10            <node type="virtual-router">
11              <name>default-global-system-config:vrouter_1</name>
12            </node>
13            <node type="virtual-machine">
14              <name>9747613d-a93a-43f9-b5aa-de747fc96d44</name>
15            </node>
16            <metadata type="virtual-router-virtual-machine" />
17          </link>
18          <node type="virtual-machine-interface">
19            <name>default-domain:mpls-in-the-sdn-era:
20                  75fa145a-07c6-4c84-98b7-3e793fc540b4</name>
21            <virtual-machine-interface-mac-addresses>
22              <mac-address>02:75:fa:14:5a:07</mac-address>
23            </virtual-machine-interface-mac-addresses>
24          </node>
25          <link>
26            <node type="virtual-machine-interface">
27              <name>default-domain:mpls-in-the-sdn-era:
28                    75fa145a-07c6-4c84-98b7-3e793fc540b4</name>
29            </node>
30            <node type="virtual-machine">
31              <name>9747613d-a93a-43f9-b5aa-de747fc96d44</name>
32            </node>
33            <metadata type="virtual-machine-interface-virtual-machine"/>
34          </link>
35          <link>
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36            <node type="virtual-machine-interface">
37              <name>default-domain:mpls-in-the-sdn-era:
38                    75fa145a-07c6-4c84-98b7-3e793fc540b4</name>
39            </node>
40            <node type="virtual-network">
41              <name>default-domain:mpls-in-the-sdn-era:Red</name>
42            </node>
43            <metadata type="virtual-machine-interface-virtual-network"/>
44          </link>
45          <node type="instance-ip">
46            <name>d8ba77df-df69-450b-b4d5-daeb53163655</name>
47            <instance-ip-address>10.2.2.101</instance-ip-address>
48            <instance-ip-family>v4</instance-ip-family>
49          </node>
50          <link>
51            <node type="instance-ip">
52              <name>d8ba77df-df69-450b-b4d5-daeb53163655</name>
53            </node>
54            <node type="virtual-machine-interface">
55              <name>default-domain:mpls-in-the-sdn-era:
56                    75fa145a-07c6-4c84-98b7-3e793fc540b4</name>
57            </node>
58            <metadata type="instance-ip-virtual-machine-interface"/>
59          </link>
60        </update>
61      </config>
62    </iq>

XMPP Configuration Update messages contain a graph structure with nodes and
links between nodes. This structure is like a network, but its nodes are not necessarily
network nodes: they can be virtually anything. Unlike relationships between objects
in relational databases, which are strictly unidirectional, these links can be interpreted
as bidirectional.

The concept of node in an XMPP configuration update message
has absolutely nothing to do with OpenContrail’s architectural ele‐
ments, which are also called nodes (control node, compute node,
etc.).

The message in Example 11-2 goes from a control node to the control agent at
vRouter_1 (lines 2 and 3). It contains the following nodes:

• Virtual Machine <VM_ID> (lines 6 through 8). This ID matches Example 11-1,
line 6, and it is different from the VM’s user-friendly name (Red_1A).

• VM Interface <vNIC_ID> (lines 18 through 24). The most important property of
this node is a MAC address assigned by the control node.
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• Instance IP (lines 45 through 49). Its most important element is an IP address
(10.2.2.101).

The rest of the message is a series of links between pairs of nodes that are either
defined in this XMPP configuration update message or in previous ones:

• VM <VM_ID> is linked to the vRouter named vrouter_1 (lines 9 through 17).
• VM Interface <vNIC_ID> is linked to VM <VM_ID> (lines 25 through 34).
• VM Interface <vNIC_ID> is linked to VN Red (lines 35 through 44).
• Instance IP 10.2.2.101 is linked to VM Interface <vNIC_ID> (lines 50 through

59).

For brevity, some data has been omitted from Example 11-2, such
as the vNIC-to-security group link, or the routing instance
(Red:Red) information. Chapter 12 discusses the latter topic fur‐
ther.

From the perspective of VM Red_1A, vRouter_1 acts as a DHCP server, as an IPv4
default gateway, and as a DNS server. Now that VM Red_1A has an interface with an
IPv4 address, it can communicate with the outside world. But, can vRouter_1? Let’s
see how a vRouter communicates with other vRouters and with gateway nodes.

Interconnecting VMs—XMPP as a BGP-Like Protocol
In the context of SDN, probably the most important function of XMPP is its ability to
perform the same function as Multiprotocol BGP (MP-BGP) in signaling overlay net‐
works. XMPP is as powerful and scalable as BGP and it has the same extensibility as
XML. Unlike BGP, which is mainly a West-East protocol, XMPP has its application as
a southbound protocol. This routing application of XMPP is defined in draft-ietf-
l3vpn-end-system: BGP-signaled end-system IP/VPNs. As you will soon see, you can
easily extend XMPP to also signal EVPNs.

Let’s suppose that the 10.2.2.0/24 subnet in VN Red has been configured with the fol‐
lowing range of IPs that can be assigned to VMs: 10.2.2.101–10.2.2.200. Let’s further
suppose that VMs with a vNIC in Red VN are started in the following order: Red_1A,
Red_2A, and Red_1B.

vRouter subscribes to a VRF
Figure 11-5 illustrates how vRouter_1 and vRouter_2 first subscribe to the routing
instance Red:Red, and then exchange VM host routes through the control node.
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Figure 11-5. XMPP routing and inter-vRouter forwarding—L3 mode

As soon as it starts its first VM with a link in Red, vRouter_1 becomes interested in
receiving routing updates for Red:Red. So it sends the Subscribe Request message
shown in Example 11-3 to the control node (you can match Figure 11-5 to
Example 11-3).

Example 11-3. XMPP—VN Subscribe Request

<?xml version="1.0"?>
<iq type="set" from="vrouter_1"
               to="network-control@contrailsystems.com/bgp-peer"
               id="subscribe779">
  <pubsub xmlns="http://jabber.org/protocol/pubsub">
    <subscribe node="default-domain:mpls-in-the-sdn-era:Red:Red">
      <options>
        <instance-id>1</instance-id>
      </options>
    </subscribe>
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  </pubsub>
</iq>

This message is semantically similar to a BGP RT prefix (look for RTC in Chapter 3).
Here is what the vRouter agent is telling the control node: Now that I have to provide
connectivity to VMs with vNICs in Red:Red, I need to know all the existing routes in
that routing instance, so please send them to me.

If this is the very first vNIC in VN Red that comes up in the cloud, and subscribers
did not come up yet, the control node has no routes to send to vRouter Agent #1.

vRouter advertises VM’s host IP route to the control nodes
vRouter_1 has a virtual tap interface that is connected to VM Red_1A. vRouter_1’s
agent assigns a locally significant MPLS label to this tap interface, following a per-CE
label allocation model.

Is a vRouter like a PE or like a line card? Functionally, it is more like a line card
because it plays a slave role in the control plane; and XMPP is a southbound protocol.
On the other hand, a vRouter is able to allocate an MPLS label—in multiforwarder
PEs with per-platform label space, this is typically a centralized task. So, it is fair to
say that a vRouter is like a line card that has been promoted to allocate its own MPLS
labels.

After it assigns an MPLS label to the tap interface facing VM Red_1A, vRouter_1’s
agent advertises prefix 10.2.2.101 plus the label in an XMPP Publish Request message,
as demonstrated in Figure 11-5 and Example 11-4. This message goes to the control
node and is equivalent to a BGP update.

Example 11-4. XMPP Publish Request—VM’s vNIC /32 route

1     <?xml version="1.0"?>
2     <iq type="set" from="vrouter_1"
3         to="network-control@contrailsystems.com/bgp-peer" id="pubsub20">
4       <pubsub xmlns="http://jabber.org/protocol/pubsub">
5         <publish node="1/1/default-domain:mpls-in-the-sdn-era:
6                  Red:Red/10.2.2.101">
7           <item>
8             <entry>
9               <nlri>
10                <af>1</af>
11                <safi>1</safi>
12                <address>10.2.2.101/32</address>
13              </nlri>
14              <next-hops>
15                <next-hop>
16                  <af>1</af>
17                  <address>10.0.10.11</address>
18                  <label>35</label>
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19                  <tunnel-encapsulation-list>
20                    <tunnel-encapsulation>gre</tunnel-encapsulation>
21                    <tunnel-encapsulation>udp</tunnel-encapsulation>
22                  </tunnel-encapsulation-list>
23                </next-hop>
24              </next-hops>
25              <virtual-network>default-domain:mpls-in-the-sdn-era:Red
26              </virtual-network>
27              <sequence-number>0</sequence-number>
28              <local-preference>100</local-preference>
29            </entry>
30          </item>
31        </publish>
32      </pubsub>
33    </iq>
34    <iq type="set" from="vrouter_1"
35        to="network-control@contrailsystems.com/bgp-peer"
36        id="collection20">
37      <pubsub xmlns="http://jabber.org/protocol/pubsub">
38        <collection node="default-domain:mpls-in-the-sdn-era:
39                          Red:Red">
40          <associate node="1/1/default-domain:mpls-in-the-sdn-era:
41                           Red:Red/10.2.2.101" />
42        </collection>
43      </pubsub>
44    </iq>

This message is sent by vRouter_1’s agent to the control node (lines 2 and 3) and is
very similar to a BGP update from both a semantic and a structural point of view (the
security group information has been omitted for brevity). Despite being an IP VPN
prefix, it is encoded as [AFI=1, SAFI=1] because it does not carry a Route Distin‐
guisher (RD). And it does not have any RTs, either. Indeed, the VRF information is
explicitly encoded in the message, so there is no need for an RD or for RTs. This mes‐
sage is for internal consumption within the OpenContrail ecosystem and the control
node knows precisely how to distribute this routing information.

There is a little nuance here. For the moment (lines 1 through 33), the route is bound
to a VN (Red) but not to a VRF. One more XMPP message (lines 34 through 44)
binds the route to its VRF (Red:Red).

Control nodes reflect VM’s route to other vRouters
Control nodes act like Route Reflectors (RRs): they centralize the route signaling, but
they do not forward any user traffic. As a result, this route is sent to vRouter_2 in the
form of a XMPP Update Notification. XMPP Publish Requests and Update Notifica‐
tions both look like BGP update messages, and they receive a different name depend‐
ing on the direction they flow. Publish Requests flow toward the North
(vRouter→controller), and Update Notifications flow toward the South (control‐
ler→vRouter).
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Example 11-5 presents the resulting XMPP Update Notification, which you can also
match to Figure 11-5.

Example 11-5. XMPP Update Notification—VM’s vNIC /32 route

<?xml version="1.0"?>
  <message from="network-control@contrailsystems.com"
           to="vrouter_2/bgp-peer">
    <event xmlns="http://jabber.org/protocol/pubsub">
      <items node="1/1/default-domain:mpls-in-the-sdn-era:Red:Red">
        <item id="10.2.2.101/32">
          <entry> *route at Example 11-4, lines #8-#29* </entry>
        </item>
      </items>
    </event>
  </messages>
</iq>

Although it is not shown for brevity, the <entry> in Example 11-5 looks exactly the
same as the one in Example 11-4, lines 8 through 29. This behavior, illustrated in
Figure 11-5, matches what you might expect from an RR (no next-hop change). The
BGP next hop is still vRouter_1’s infrastructure address (10.0.10.11), the MPLS label
is also the same, and the list of encapsulations remains Generic Routing Encapsula‐
tion (GRE) (MPLSoGRE) and User Datagram Protocol (UDP) (MPLSoUDP). This is
an unordered list and the final encapsulation choice is made by the ingress PE (in this
case, by vRouter_2). When VM Red_2A comes up, a similar message exchange
results in the route 10.2.2.102 learned by vRouter1. At the bottom of Figure 11-5, you
can see an IP packet sent all the way from VM Red_2A to Red_1A.

By default, OpenContrail vRouters prefer MPLSoUDP over MPLSoGRE. This is
because IP switch implementations typically perform a much better load balancing of
UDP packets than GRE packets. You can tune this encapsulation preference order at
the OpenContrail GUI: Configure→Infrastructure→Global Config.

What if VMs Red_1A and Red_1B send IP packets to each other? They are both at
vRouter_1, so there is no tunneling involved. IP packets are routed from one tap
interface to another tap interface, locally at vRouter_1. This is similar to a PE that is
forwarding IP traffic between different locally connected CEs.

Interconnecting Subscribers to Cloud VMs
The magic of this cloud SDN solution is that as soon as a VM comes up in the data
center, or a subscriber connects to its access SP, they have end-to-end IP reachability.
No network device needs to get any additional configuration: overlay networking
combined with intelligent protocols like BGP do the trick.
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ASBR1 is connected to the SP core and is supposed to have iBGP sessions established
to the core RRs. The rest of the signaling is depicted in Figure 11-6. OpenContrail
control nodes act like multiprotocol RRs. They speak XMPP to the vRouter agents and
iBGP to the data center gateway node (DC-GW) converting the routes between both
formats as appropriate.

Figure 11-6. XMPP and BGP—L3 overlay at gateway and vRouter

BGP prefixes originated by OpenContrail have an automatically generated RD in the
format <ROUTER_ID>:<VPN_ID>, so it supports load balancing of inbound traffic
between different vRouters.

OpenContrail advertises its L3 prefixes by listing both GRE (MPLSoGRE) and UDP
(MPLSoUDP) as available encapsulations. This information is encoded in the BGP
encapsulation extended community.
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For detailed coverage of the extended communities that OpenCon‐
trail adds to BGP prefixes, search in GitHub for an article on the
topic.

In contrast, DC-GW does not include the encapsulation extended community, so
OpenContrail assumes that the gateway supports only GRE (MPLSoGRE).

This is a least common denominator decision: MPLSoGRE is used, simply because it
is the only encapsulation that both the gateway and OpenContrail (in L3 mode) sup‐
port.

DC-GW configuration—MPLS-over-GRE
The Junos MPLS-over-GRE tunneling configuration is provided in Example 11-6.

Example 11-6. Dynamic GRE tunnel configuration—DC-GW (Junos)

1     routing-options {
2         dynamic-tunnels {
3             OVERLAY-TUNNELS {
4                 source-address 172.16.10.101;
5                 gre;
6                 destination-networks 10.0.10.0/24;
7     }}}

With this configuration, the local PE (in this case, DC-GW) creates a dynamic GRE
interface for each remote address <A> that meets the following two conditions:

• A received BGP VPN route has as remote BGP next hop <A>.
• <A> is within the address range specified in line 6.

Let’s look at a dynamic GRE interface, which is pointing to vRouter_1
(Example 11-7).

Example 11-7. Dynamic GRE tunnel—DC-GW (Junos)

user@DC-GW> show route table inet.3 10.0.10.11
inet.3: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both
10.0.10.11/32      *[Tunnel/300] 3d 15:31:10
                    > via gr-0/0/0.32769

user@DC-GW> show interfaces gr-0/0/0.32769
  Logical interface gr-0/0/0.32769 (Index 376) (SNMP ifIndex 579)
    Flags: Up Point-To-Point SNMP-Traps 0x0
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    IP-Header 10.0.10.11:172.16.10.101:47:df:64:0000080000000000
    Encapsulation: GRE-NULL
    Protocol inet, MTU: 1576
    Protocol mpls, MTU: 1564, Maximum labels: 3

user@DC-GW> show route table VRF-Red.inet.0

10.2.2.101/32  *[BGP/170] 09:18:20, localpref 200, from 10.0.10.3
                  AS path: ?, validation-state: unverified
                > via gr-0/0/0.32769, Push 35

There is an interoperability example with IOS XE in the OpenContrail web page.

Communication Between Virtual Networks
Inter-VN connectivity requirements are frequent. For example, the Red subscribers in
the upper-left corner of Figure 11-3 might require access to the Blue VMs (Blue_1A
and Blue_2A). Or Red VMs might need to communicate to Blue VMs.

Here is a nonexhaustive list on how to address these requirements:

• Add a new vNIC to the Blue VMs and place the vNIC in the Red VN. This
approach solves the connectivity problem, but it’s not very secure. Communica‐
tion from Blue VMs toward the Red VMs becomes unrestricted.

• Add a new common RT to both VN Red and Blue in OpenContrail. This auto‐
matically leaks prefixes between both VNs. If the policies are conveniently upda‐
ted in the DC-GW, the VNs are functionally blended into one VN. Again, the
connectivity problem is solved, but it is not the best approach in terms of secu‐
rity.

• Define an OpenContrail policy (Configure→Networking→Policies) that allows
traffic between both VNs. This policy is then explicitly applied to both VNs
(Configure→Networking→Networks). After it is applied, prefixes are automati‐
cally leaked between VN Red and Blue inside OpenContrail. However, RTs are
not modified. For this reason, it is necessary to explicitly configure the extranet
(see Chapter 3) at the DC-GW to make this leaking effective up to the subscrib‐
ers. But this has security implications, mind you.

Let’s step back for a moment and briefly talk about policies in OpenContrail. Depend‐
ing on the security requirements, policies can have a set of unidirectional and/or
bidirectional terms. Suppose, for example, that you apply a policy that allows TCP
traffic from the Red VN toward the Blue VN. As a result, vRouters become stateful
firewalls and they support the creation of flows from Red to Blue but not from Blue
to Red.
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Control nodes retrieve flow information from vRouter agents for
analytics purposes. However, vRouters are empowered to create
flows with no intervention from the control nodes. This is very
important from the perspective of performance: flow creation is
distributed.

Last but not least, the most powerful and secure approach to allow inter-VN commu‐
nication is to configure Service Function Chains (SFC). This is an SDN best-in-breed
approach that lies at the heart of the NFV concept. One of its breakthrough advan‐
tages is that you can define SFCs without touching the configuration of the DC-GW.
Chapter 12 covers NFV in detail.

Network Virtualization Overlay: L2_L3 Mode
After discussing OpenContrail’s L3 mode, let’s now focus on the L2_L3 mode. Unlike
classical PEs, which keep the L3 VRF in a different instance with respect to the L2
EVI, an OpenContrail’s VRF have a dual mode and integrate the L2 and L3 function‐
alities.

VXLAN Refresher
Chapter 8 introduces the Virtual eXtensible LAN (VXLAN) basic concepts, including
its forwarding plane and an example of the control plane (EVPN). Let’s quickly
refresh the basics. Any VXLAN Tunnel Endpoint (VTEP) is an edge forwarder (func‐
tionally, like a PE). There are basically three types of VTEPs:

• Hypervisors implementing a VXLAN stack. The VXLAN header is handled by
the forwarder component within the hypervisor. VMs just send and receive plain
Ethernet frames: they have no VXLAN awareness.

• ToR switches with a VXLAN stack, providing connectivity to legacy switches,
bare-metal servers, and hypervisors, which lack overlay capabilities.

• PE routers (data center gateways) implementing a VXLAN stack.

As of this writing, VXLAN has three alternative solutions to achieve MAC learning
between VTEPs: EVPN, OVSDB, and BUM flooding over IP Multicast. This book
considers the last approach as legacy so it only covers EVPN and OVSDB.

VXLAN use cases
VXLAN in SDN cloud architectures is typically used to provide an L2 overlay inside a
data center that has an L3 underlay. ToR switches with VXLAN capabilities can also
integrate legacy equipment (bare-metal servers, hypervisors, and switches that lack
overlay capabilities) into the L2 overlay. Another use case is L2 Data Center Intercon‐

470 | Chapter 11: Network Virtualization Overlays



nection (DCI). If an application requires L2 connectivity between end systems in geo‐
graphically distant data centers, it is possible to stretch the L2 overlay across the WAN
by using VXLAN.

MPLS-over-X (where X can be MPLS, or UDP, or GRE), also
addresses these very same use cases successfully.

Stretching L2 overlays across geographical boundaries is not necessarily a good idea.
The best practice is to reduce as much as possible the scope of L2 broadcast domains.
Even L2 overlays have a loop risk.

There are several ways to implement DCI, and probably the most popular is depicted
in Figure 11-7. In this case, the data center gateway implements EVPN VXLAN
toward the local data center, and EVPN MPLS toward the WAN. These two services
are stitched at the same L2 instance in the DC-GW.

Figure 11-7. VXLAN and VTEPs
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Intrasubnet (L2) and Intersubnet (L3) Traffic
In L3-only mode, OpenContrail supports two overlay encapsulations (GRE and
UDP) and two address families (RT and IP VPN). Moving to L2_L3 mode, one more
encapsulation (VXLAN) and one more BGP address family (EVPN) are added to the
list. But these are only applicable to intrasubnet traffic.

In L2_L3 mode, there are two types of traffic: intrasubnet and intersubnet. Remember
that a VN is a set of subnets, so intra-VN traffic can either be intrasubnet or intersub‐
net. For example, if VN Red consists of 10.2.2.0/24 and 10.3.3.0/24:

• A packet from 10.2.2.101 to 10.2.2.103 is intrasubnet.
• A packet from 10.2.2.101 to 10.3.3.101 is intersubnet.

Intersubnet traffic follows the same rules that have just been described for L3-only
mode. The mechanisms shown in Figure 11-5 and Figure 11-6 are applicable to this
case. So let’s focus on intrasubnet traffic. The current specification for EVPN as an
NVO (draft-ietf-bess-evpn-overlay) does not allow for a given EVPN MAC/IP route to
advertise both a MPLS label and a VNI. It is one or the other. For this reason, Open‐
Contrail advertises EVPN routes that have the following:

• MPLS label if VXLAN is not the locally preferred encapsulation
• VNI if VXLAN is the locally preferred encapsulation

Thus, the following examples assume that VXLAN is set as the top preferred encapsu‐
lation in OpenContrail configuration. Note that Figure 11-8 provides the network
architecture and addressing for the upcoming examples.
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Figure 11-8. Infrastructure and VPN addressing—L2_L3 mode

Interconnecting VMs—IntraSubnet Traffic with VXLAN
The L2_L3 signaling process is shown in Figure 11-9, and it is very similar to the L3
illustration in Figure 11-5, but there are some differences. In L2_L3 mode, three
routes are advertised for each vNIC address:

• IP VPN host address with encapsulation communities GRE and UDP. This is
exactly the same route that is advertised in L3 mode (Figure 11-5).

• EVPN IP/MAC route with encapsulation VXLAN and a VNI (5100, in this
example). This is the only route shown in Figure 11-9.

• EVPN MAC route with encapsulation VXLAN and a VNI (5100, in this exam‐
ple).
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Figure 11-9. XMPP and VXLAN—L2_L3 intrasubnet mode

Remember that EVPN IP/MAC and MAC routes are conceptually similar to ARP
and bridge entries—they are just distributed through the control plane. The most rel‐
evant information element for intrasubnet traffic forwarding is the EVPN MAC
route.

MPLS labels are locally assigned by a vRouter. On the other hand, VNIs are typically
configured to the same value on all VTEPs. In OpenContrail, the VNI is a property of
the VN, and this is why the control node sends the message shown in Example 11-8
to all the vRouters with at least one tap interface in VN Red.

Example 11-8. XMPP—Configuration update with VN-VNI mapping

<?xml version="1.0"?>
<iq type="set" from="network-control@contrailsystems.com"
    to="default-global-system-config:vrouter_1/config">
  <config>
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    <update>
      <node type="virtual-network">
        <name>default-domain:mpls-in-the-sdn-era:Red</name>
        <virtual-network-properties>
          <vxlan-network-identifier>5100</vxlan-network-identifier>
          <forwarding-mode>l2_l3</forwarding-mode>
          <rpf></rpf>
        </virtual-network-properties>
      </node>
    </update>
  </config>
</iq>

The format of the remaining XMPP messages—Subscribe Request, Publish Request,
and Update Notification—is very similar to those shown in L3-only mode.
Example 11-9 presents an example of how an EVPN MAC/IP route is encoded in
XMPP.

Example 11-9. XMPP Publish Request—VM’s vNIC MAC/IP route

<?xml version="1.0"?>
<iq type="set" from="vrouter_1"
    to="network-control@contrailsystems.com/bgp-peer" id="pubsub12">
  <pubsub xmlns="http://jabber.org/protocol/pubsub">
    <publish node="25/242/02:4e:a3:72:02:87,10.2.2.101/32">
      <item>
        <entry>
          <nlri>
            <af>25</af>
            <safi>242</safi>
            <ethernet-tag>5100</ethernet-tag>
            <mac>02:4e:a3:72:02:87</mac>
            <address>10.2.2.101/32</address>
          </nlri>
          <next-hops>
            <next-hop>
              <af>1</af>
              <address>10.0.10.11</address>
              <label>5100</label>
              <tunnel-encapsulation-list>
                <tunnel-encapsulation>vxlan</tunnel-encapsulation>
              </tunnel-encapsulation-list>
            </next-hop>
          </next-hops>
          <sequence-number>0</sequence-number>
          <local-preference>100</local-preference>
        </entry>
      </item>
    </publish>
  </pubsub>
</iq>
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<iq type="set" from="vrouter_1"
    to="network-control@contrailsystems.com/bgp-peer"
    id="collection20">
  <pubsub xmlns="http://jabber.org/protocol/pubsub">
    <collection node="default-domain:mpls-in-the-sdn-era:
                      Red:Red">
      <associate node="25/242/02:4e:a3:72:02:87,10.2.2.101/32"/>
    </collection>
  </pubsub>
</iq>

The VNI is encoded as a <label>. Not surprising: it plays the same role! SAFI 242 is
reserved for private use. Because XMPP is used only between control nodes and
vRouter agents, using a reserved SAFI is fine. The proper EVPN SAFI (70) is used in
the iBGP updates: this is all that matters for interoperability purposes.

BUM traffic flooding
As of this writing, a vRouter (as a VTEP) floods BUM traffic by using an Ingress Rep‐
lication (IR) mechanism. See the EVPN sections in Chapter 8 for more details. Trans‐
lated to XMPP, these routes contain <mac>ff:ff:ff:ff:ff:ff</mac>.

VMs take care of ARP resolution. In L2_L3 mode, unlike L3-only mode, vRouters do
not perform any proxy-like ARP function for intrasubnet IP addresses. This is the
current implementation, but it might change in the future.

vRouter and Gateway Nodes—L2_L3 Mode
Again, as you can see in Figure 11-10, control nodes translate XMPP messages to
BGP messages, and vice versa.
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Figure 11-10. XMPP and BGP—L2 overlay at gateway and vRouter

DC-GW can act either as an L2 or an L3 gateway. With regard to the bare-metal (BM)
server on the left in Figure 11-10, DC-GW plays the role of an L2 gateway because
BM and VM Red_1A are in the same subnet. So, as you might expect from an L2
overlay solution, the original MAC headers are preserved end-to-end.

What if the BM server was in a different subnet than the VM? In this case (not shown
in Figure 11-10), DC-GW acts as an L3 gateway, and it should be configured with two
different bridge domains:
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• One bridge domain that includes the local Attachment Circuit (AC) connected to
the BM server: you can optionally stretch this bridge domain beyond DC-GW by
configuring a VXLAN VNI on it, but this VNI must be different from 5100 in
this particular example.

• One bridge domain that is configured with VNI 5100 and therefore is L2 overlay-
connected to the VM Red_1A.

Now, DC-GW has two Integrated Routing and Bridging (IRB) interfaces, one linked
to each bridge domain. These IRB interfaces make it possible for DC-GW to perform
L3 forwarding, the mechanics of which are fully discussed in Chapter 8. This is inter‐
subnet traffic and the original L2 headers are stripped before sending the packets
through the overlay tunnel. From a routing perspective, the IP VPN routes for the
BM’s and VM’s host prefixes are the ones taken into account. Therefore, for intersub‐
net traffic, DC-GW is an L3 gateway, and the transport is MPLS-over-GRE (not
VXLAN).

As of this writing, the implementation in OpenContrail and in a Junos DC-GW is
symmetrical:

L2_L3 intrasubnet
EVPN as the control plane and VXLAN as the overlay tunnel; original L2 headers
are preserved.

L2_L3 intersubnet is similar to L3
IP VPN as the control plane and MPLS-over-GRE as the overlay tunnel (or
MPLS over UDP for vRouter-to-vRouter); original L2 headers are stripped.

This symmetry rule has a very specific exception. Imagine an intrasubnet IP flow
between a VM and an IRB interface at DC-GW. For example, ping between 10.2.2.101
and 10.2.2.10 (this is DC-GW’s IRB address, as illustrated in Figure 11-8). One IP
endpoint of this flow is the IRB interface itself—in other words, it is host traffic from
the point of view of DC-GW. In this very specific case, OpenContrail vRouter uses an
L2 mechanism (like L2_L3 intrasubnet in the preceding list) while a Junos DC-GW
uses a L3 mechanism (like L2_L3 intersubnet in the preceding list). The implementa‐
tion in IOS XR was not explored.

Integrating Legacy L2 World into the NVO
NVOs are great, but not every OS supports them. As a result, some legacy servers,
hypervisors, and switches are not overlay-capable. These legacy devices typically sup‐
port VLANs only; therefore, they need a gateway to become part of the NVO.
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L2 Gateways and OVSDB
There are basically two options for such a legacy device:

• Connecting the device to an L3 gateway that provides IP termination and assigns
the AC to an IP VPN or to the global IP routing table. This is a classic approach.

• Connecting the device to an L2 gateway that stitches the AC into an overlay L2
VPN—such as VXLAN. Typically, an external service node is also required to
handle broadcast traffic like ARP and DHCP.

The first option is IP VPN business as usual. Let’s explore the second option. VXLAN
is a common L2 overlay in IP fabrics. Among the different control-plane options
available for VXLAN, EVPN is the most scalable and flexible one. However, not every
L2 gateway (and not every NVO controller) supports it.

As of this writing, EVPN often coexists with a different control-plane protocol. This
protocol is OVSDB. It is a TCP-based protocol defined in RFC 7047, and like EVPN,
can propagate MAC learning state through the control plane. The vast majority of
NVO solutions in the industry, including OpenContrail, support OVSDB.

OVSDB is very different from BGP (and XMPP). It is easy to see that this protocol
comes from the IT world. The controller has a centralized relational database, and
each agent has a subset of this database. Both the controller and the agents must be
able to modify this database, and the changes must be synchronized.

Figure 11-11 shows BM, a bare-metal server that is connected to an L2 gateway—
labeled as L2 ToR. The L2 ToR is a VTEP and also implements an OVSDB server.
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Figure 11-11. XMPP and OVSDB—Extending L2 overlay to BM server

ToR Service Nodes
ToR service nodes (TSN) are part of OpenContrail and they perform two functions
through their different software components:

Control Plane Proxy
The TSN instantiates one ToR agent for every L2 ToR gateway that supports
OVSDB but not EVPN. Each ToR agent speaks XMPP with the control node and
implements an OVSDB client that interacts with the L2 ToR device. ToR agents at
a TSN basically implement a selective translation function between XMPP and
OVSDB.
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Control Packet Proxy
The TSN also runs one vRouter, but this does not connect VMs. Instead, the
vRouter acts as a VTEP that exchanges certain VXLAN-encapsulated control
traffic (ARP, DHCP, DNS) with the L2 ToR devices. The vRouter agent at the
TSN implements a proxy function. It generates control packets based on the
information that it receives from the control node. For example, suppose that the
TSN vRouter receives a DHCP discover message—originated by a BM server and
VXLAN-tunneled by the L2 ToR toward the TSN’s vRouter. In this case, the
vRouter can send the DHCP offer back, based on the information that it has pre‐
viously received from the control node via XMPP.

From the perspective of both the control node and the vRouter, and regardless of
whether the latter is VM-facing or TSN-based, the mechanism to assign an IP to a
VM or to a BM server, respectively, is exactly the same. The control node centralizes
this information and provides it to the vRouter agent via XMPP.

It is possible to provide TSN active-active redundancy by making the control nodes
advertise a floating IP and redirect OVSDB over TCP sessions to the appropriate
TSN.

Binding a Bare-Metal Server to the Overlay
If an L2 ToR device supports EVPN, it just needs to establish BGP sessions to the
control nodes. Things become more complex if the L2 ToR supports OVSDB but not
EVPN. Figure 11-11 shows how OpenContrail integrates—into the VNO—a BM
server that is connected to such an L2 ToR.

XMPP signaling
After the ToR-BM link is added on the OpenContrail GUI (Configure→Physical
Devices) or on the north-bound RESTful API, control nodes start the signaling.

Example 11-10. XMPP—Configuration update to a TSN vRouter agent

1     <?xml version="1.0"?>
2     <iq type="set" from="network-control@contrailsystems.com"
3         to="default-global-system-config:tsn_1/config">
4     <config>
5       <update>
6         <node type="physical-interface">
7           <name>default-global-system-config:myTorito:xe-0/0/0</name>
8         </node>
9         <node type="logical-interface">
10          <name>default-global-system-config:myTorito:
11                xe-0/0/0:xe-0/0/0.0</name>
12        </node>
13        <link>
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14          <node type="physical-interface">
15            <name>default-global-system-config:myTorito:xe-0/0/0</name>
16          </node>
17          <node type="logical-interface">
18            <name>default-global-system-config:myTorito:
19                  xe-0/0/0:xe-0/0/0.0 </name>
20          </node>
21          <metadata type="physical-interface-logical-interface" />
22        </link>
23        <node type="virtual-machine-interface">
24          <name>default-domain:mpls-in-the-sdn-era:
25                e20af8cd-ef70-4608-a3ec-f34eb5018410</name>
26        </node>
27        <link>
28          <node type="logical-interface">
29            <name>default-global-system-config:myTorito:
30                  xe-0/0/0:xe-0/0/0.0</name>
31          </node>
32          <node type="virtual-machine-interface">
33            <name>default-domain:mpls-in-the-sdn-era:
34                  e20af8cd-ef70-4608-a3ec-f34eb5018410
35              </name>
36          </node>
37          <metadata type="logical-interface-virtual-machine-interface">
38        </link>
39      </update>
40    </config>
41    </iq>

The Configuration Update in Example 11-10 is not complete. A selection is shown to
illustrate the key idea: OpenContrail internally maps the ToR-BM interface to a VM
interface or virtual-machine-interface object (lines 27 through 38). This is very
important because the XMPP encoding used for VM interfaces is reused for ToR-BM
interfaces.

Let’s see how. Back in Example 11-2 (lines 35 through 59), a genuine VM interface
was linked to a VN, an IP address, and a VRF. It’s possible to do exactly the same
thing for the VM interface that is associated to a BM server. Following is the addi‐
tional information that the control node sends to the TSN:

• The VN that the ToR-BM interface belongs to (Red): this VN is in L2_L3 mode
and it has a VNI associated, so the VXLAN encapsulation is known.

• The VRF that the ToR-BM interface belongs to (Red:Red).
• The IP address that is preassigned to the BM server. Thus, the TSN knows what

IP to offer when the BM sends a DHCP discover packet—and the L2 ToR device
encapsulates it in VXLAN toward the TSN.
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OVSDB signaling
As its name implies, OVSDB is a protocol used to transfer and synchronize a database
between different systems. OVSDB is based on JavaScript Object Notation (JSON).
The schema of the hardware_vtep database is documented, and you can easily find it
in the OVS (Open vSwitch) website at http://www.openvswitch.org.

You might wonder why OpenContrail internally uses XMPP instead of OVSDB. The
reasons are flexibility and performance, especially when a DC-GW is present: XMPP
and BGP follow the same structural principles.

In the MPLS analogy, an L2 ToR is seen as a PE, BM servers as CEs, and ToR’s access
interfaces as ACs. With the information shown in Example 11-11, the L2 ToR switch
called myTorito knows how to integrate its untagged access interface xe-0/0/0.0 into a
VXLAN overlay with VNI 5100.

Example 11-11. OVSDB—Integrating a ToR-BM Port in the Overlay

1     "Global":{
2       "587dc36b-09dd-411b-b0e3-44300800d6b9":{
3         "new":{
4           "switches":
5             ["uuid","3841501b-71a6-4f84-97f4-b8aa72ea1723"]
6         }
7       }
8     }
9     "Physical_Switch":{
10      "3841501b-71a6-4f84-97f4-b8aa72ea1723":{
11        "new":{
12          "name":"myTorito",
13          "tunnel_ips":"10.0.10.33",
14          "ports":[
15            "set",[
16              ["uuid","37e69f8a-4c29-413a-b641-a9b420c1548b"],
17            ]
18          ]
19        }
20      }
21    }
22    "Physical_Port":{
23      "37e69f8a-4c29-413a-b641-a9b420c1548b":{
24        "new":{
25          "name":"xe-0/0/0",
26          "vlan_bindings":[
27            "map",[
28              [0,["uuid","26aeb04f-89c7-4c5b-a0d7-c4c9b16aff5c"]]
29            ]
30          ]
31        }
32      }
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33    }
34    "Logical_Switch":{
35      "26aeb04f-89c7-4c5b-a0d7-c4c9b16aff5c":{
36        "new":{
37          "name":"Contrail-fd2f3fd7-db4f-4f0a-a5ab-f3800f5348a0",
38          "tunnel_key":5100
39        }
40      }
41    }

Let’s analyze this example from a database perspective. The Global table contains the
list of physical L2 ToR devices. More specifically, it contains the list of the Universally
Unique Identifier (UUID) of each device. The TSN has the full database, but it only
exchanges with a given ToR the section that corresponds to that ToR. In this example,
there is only one ToR, whose UUID identifies one entry in the Physical_Switch table
(lines 5 and 10 match).

The Physical_Switch table has one entry per physical L2 ToR. Lines 10 through 20
display one single entry, with the following fields:

name

States the L2 ToR’s hostname (myTorito).

tunnel_ips

Specifies the L2 ToR’s VTEP address.

port

Lists the UUIDs of all the access ports that the L2 ToR integrates in the overlay.
Each UUID references one entry in the Physical_Port table: lines 16 and 23
match.

The Physical_Port table has one entry per port. Lines 23 through 32 display one sin‐
gle entry, with the following fields:

name

This is the access port in L2 ToR’s vendor-specific terminology. In this example,
the L2 ToR is a device running Junos, hence the xe-0/0/0 format. Of course, the
format needs to be adapted to the L2 ToR specific vendor, as appropriate.

vlan_bindings

This is a map between per-port access VLANs and logical switches. You can see a
logical switch like a separate bridge domain at a given L2 ToR. In this example,
the BM port is untagged so there is only VLAN zero and it is mapped to the
UUID of an entry in the Logical_Switch table (lines 28 and 35 match).

The Logical_Switch table has one entry per bridge domain. Lines 35 through 40 dis‐
play one single entry, with the following fields:
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name

This is the name of the bridge domain as it has to be configured on the L2 ToR.

tunnel_key

This is the VNI of the bridge domain.

Putting it all together, the OVSDB message in Example 11-11 triggers a configuration
change on the L2 ToR. The latter is responsible for translating the standard OVSDB
message into a vendor-specific configuration. For example, Example 11-12 shows the
resulting change if the L2 ToR device is a QFX Series running Junos.

Example 11-12. Configuration change triggered by an OVSDB message—Junos

1     [edit interfaces]
2     +   xe-0/0/0 {
3     +       encapsulation ethernet-bridge;
4     +       unit 0;
5     +   }
6     [edit vlans]
7     +   Contrail-fd2f3fd7-db4f-4f0a-a5ab-f3800f5348a0 {
8     +       interface xe-0/0/0.0;
9     +       vxlan {
10    +           vni 5100;
11    +       }
12    +   }

The VLAN configured in lines 6 through 12 is actually a bridge domain: it does not
even have a vlan-id! Note that Example 11-11 (line 37) and Example 11-12 (line 7)
match.

Access ports can also be VLAN tagged. In this case, there could be
several entries in the vlan_bindings map.

MAC Learning with OVSDB
As shown in Example 11-13 a new entry in a bridge domain’s MAC table is simply a
new entry in a certain table inside the hardware_vtep database. As soon as the L2 ToR
learns the MAC address of the BM server, it adds a new row to the Ucast_Macs_Local
table and propagates the change toward the TSN.

Example 11-13. MAC table entry in an OVSDB message

1     "Ucast_Macs_Local":{
2       "935afb18-23b8-42b2-8691-41342cf56c07":{
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3         "new":{
4           "ipaddr":"0.0.0.0",
5           "logical_switch":["uuid",
6                             "26aeb04f-89c7-4c5b-a0d7-c4c9b16aff5c"],
7           "MAC":"00:21:59:c4:1c:ee",
8           "locator":["uuid","0d42b081-e569-4cec-91e3-ff4e92813e9f"]
9         }
10      }
11    }
12    "Physical_Locator":{
13      "0d42b081-e569-4cec-91e3-ff4e92813e9f":{
14        "new":{
15          "dst_ip":"10.0.10.33",
16          "encapsulation_type":"vxlan_over_ipv4"
17        }
18      }
19    }

Putting it all together again, the L2 ToR switch is telling the TSN that the BM server’s
MAC address (line 7) is reachable at the ToR’s VTEP address (line 15) via VXLAN
(line 16). And, according to the Logical_Switch table in Example 11-11, with VNI
5100.

Let’s reread the message from a database perspective.

The Ucast_Macs_Local table has one entry for each MAC address of a device that is
locally connected on an access port. Lines 2 through 9 display one single entry, with
the following fields:

logical_switch

This is the UUID of the logical switch (or bridge domain). Example 11-13 (line
6) matches the logical switch in Example 11-11 (lines 35 through 40). This is a
VXLAN domain with VNI 5100.

locator

This is the UUID of an entry in the Physical_Locator table.

The Physical_Locator table has one entry for each local or remote VTEP. Lines 13
through 18 display one single entry, with the following columns:

dst_ip

This is L2 ToR myTorito’s local VTEP address.

encapsulation_type

This is (surprise!) VXLAN-over-IPv4.

As you can see, lines 8 and 13 in Example 11-13 match.

There is another table called Umacs_Macs_Remote for the MAC addresses that the
L2 ToR learns from the TSN. Logically, a MAC that is local from the perspective of an
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L2 ToR device is by definition remote from the perspective of another L2 ToR device.
So, these entries are moved around between tables depending on the L2 ToR to which
the TSN is talking.

Example 11-14 demonstrates how the resulting MAC table looks in a QFX Series run‐
ning Junos.

Example 11-14. MAC table with local and remote (OVSDB) entries—Junos

1     root@QFX> show ethernet-switching table
2
3     MAC flags (S - static MAC, D - dynamic MAC, O - ovsdb MAC)
4
5     Ethernet switching table : 3 entries, 1 learned
6     Routing instance : default-switch
7         Vlan          MAC                 MAC      Age    Logical
8         name          address             flags           interface
9         Contrail-fd2f3fd7-db4f-4f0a-a5ab-f3800f5348a0
10                      00:21:59:c4:1c:ee   D        -      xe-0/0/0.0
11        Contrail-fd2f3fd7-db4f-4f0a-a5ab-f3800f5348a0
12                      02:75:fa:14:5a:07   SO       -      vtep.32769
13        Contrail-fd2f3fd7-db4f-4f0a-a5ab-f3800f5348a0
14                      02:1d:1e:10:74:ad   SO       -      vtep.32770

Lines 9 through 10 show the entry associated to the local BM server’s MAC address. It
corresponds to a row in the Umacs_Macs_Local table (Example 11-13, line 7).

The following two MAC entries correspond to entries in the Umacs_Macs_Remote
table:

• Lines 11 and 12 show the MAC address of VM Red_1A, which is reachable
through vRouter_1 acting as a VTEP.

• Lines 13 and 14 show the MAC address of the remote BM server that is connec‐
ted to the DC-GW (see Figure 11-10, in the upper-left corner). Remember that in
this case, the DC-GW is acting as a VTEP, but its control plane is EVPN and not
OVSDB.

As you can see, the vtep.<#> tunneling interface is different on each of the two
remote entries. Indeed, the overlay tunneling headers differ because the remote
VTEPs are not the same: vRouter_1 versus DC-GW.

Bare-Metal Servers and OVSDB—the Forwarding Plane
Intrasubnet known unicast traffic is forwarded as shown at the bottom of
Figure 11-11. Traffic is directly exchanged between the VTEPs by using standard
VXLAN encapsulation. The TSN stays off the forwarding path.
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Although the control plane is complex, with several protocols
involved, the forwarding plane is very similar: VXLAN every‐
where.

How about intersubnet known unicast traffic? The BM servers need to have a default
gateway or static route pointing to the DC-GW. The latter performs intersubnet rout‐
ing through its IRB interfaces, the details of which are simply beyond the scope of this
book.

Unknown unicast traffic is regulated by the OpenContrail VN configuration: it can
either be dropped or flooded. In the latter case, the information about remote VTEPs
is kept in the table Mcast_Macs_Remote. The corresponding entries have MAC
“unknown-dst”. Because flooding typically involves IR toward several remote VTEPs,
this table has a locator_set rather than a single locator.

Finally, broadcast traffic in OVSDB environments relies on the TSN to perform the
replication. This is especially important for ARP and DHCP, as discussed earlier in
this chapter. On the other hand, IR of broadcast frames is definitely an option for L2
gateways that support EVPN.

Multicast in NVO is not covered in this book.

488 | Chapter 11: Network Virtualization Overlays



CHAPTER 12

Network Function Virtualization

Chapter 11—which is dedicated to Network Virtualization Overlays (NVO)—
described a modern paradigm for the integration of virtual machines (VMs), contain‐
ers, and bare-metal servers in a (private, public, or telco) cloud. The resulting overlay
provides connectivity between subscribers and VMs, or between different VMs. The
latter are typically servers, which behave like IP endpoints. Subscribers also behave
like IP endpoints, therefore a typical service example would be a TCP session
between a subscriber client and a VM acting as a database server (or a web server) in
the cloud.

Network Function Virtualization (NFV) takes advantage of NVO by allowing VMs
(or containers) to actually perform a network service function. These VMs are typi‐
cally in-line and instead of acting as communication endpoints, they are transit devi‐
ces, with a left and a right interface. There are many examples of such network service
functions: stateful firewalling, Network Address Translation (NAT), load balancing,
Distributed Denial-of-Service (DDoS) detection and mitigation, Deep Packet Inspec‐
tion (DPI), Intrusion Detection and Prevention (IDS/IDP), IPSec/TLS tunnel termi‐
nation, proxy functions, and so on.

Throughout this chapter, every time you see the term VM, you can
think of either a VM or a container. Network functions can be
implemented on any of these virtual compute entities (and on phys‐
ical devices, too).

Depending on the actual service provided by the Virtual Network Function (VNF), a
VM may act as follows:
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As an IP endpoint
For example, a VM can establish TCP sessions, becoming a TCP client or server
for both left-facing and right-facing sessions. An archetypical use case is a web
proxy. From a network architecture perspective, this model is similar to a plain
NVO in which the VM has two interfaces—one left-facing and one right-facing.
The NVO does not need to perform any fancy traffic steering, because the IP
endpoints are at the VM itself.

As a transit element in the IP communications
In this case, the VM acts upon packets, and the IP endpoints are outside the VM.
For example, a TCP session might transit this VM in such a way that the VM is
neither the client nor the server of that session. This is a genuine network func‐
tion and it’s the main focus of this chapter.

NFV in the Software-Defined Networking Era
NFV was initially proposed as a paradigm to implement network functions over Intel
x86–based architectures. Its natural applicability to cloud infrastructures makes NFV
interesting, attractive, and timely. Before diving into the details, let’s step back for a
moment and analyze NFV from a broader business perspective.

A first motivation for NFV is the perceived ability to reduce capital expenditures
(CAPEX), assuming that x86-based commodity servers can be cheaper than vendor-
specific hardware and application-specific integrated circuits (ASICs). And they are.
Commodity servers are much cheaper than, for example, a router, by quite a substan‐
tial factor. But that is comparing apples to oranges because the biggest source of cost
in our industry is software development, not hardware or hardware development. If
there are no hardware sales to amortize the software R&D, software needs to be
priced based on its development costs, and summed up to the x86 commodity
servers. In addition to the various software components, there’s also the operating
system (OS), the virtualization layer, and the orchestration layer, which all come with
any new NFV components or elements.

Virtual or Physical?
Anyway, let’s take the software costs out of the discussion and imagine a hypothetical
world where all the network service applications were open source, supported, and
reliable. Does NFV replace the need for physical network devices? Not always. It all
depends on the actual requirements. Let’s answer this question after a brief technical
introduction.

In the NFV world, the term virtual is used somewhat in a misleading manner. For
many people, something is virtual if it is executed in general-purpose processors
based on the Intel x86 architecture. This is actually a very narrow definition. This
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book is full of virtual things; for example, VPNs are virtual, but they are orthogonal
to x86.

Software is ubiquitous and is not only restricted to general-purpose processors. For
example, network device ASICs typically execute microcode. Although this micro‐
code used to be very limited in the past, in recent years it has dramatically increased
in flexibility and richness. One good example is Juniper’s Trio architecture, whose
microcode programmability makes it possible to implement any new encapsulation
with software.

Table 12-1 provides a comparison between the three available platforms to execute
network function software.

Table 12-1. Platform comparison

 Function flexibility Network performance Power efficiency Platform portability

Intel x86 High Low Low High

Custom Silicon High High High Mediuma

Merchant Silicon Low High Medium Low

a *For both Junos and IOS XR, the control plane has always run on general-purpose processors. However, until very recently the
low-level microcode instructions that execute on custom ASICs were not portable to x86. With Juniper virtual MX—and soon
Cisco virtual ASR—a fully x86-compatible OS emulates both the control-plane and the forwarding-engine ASICs. In this way,
the software that runs on custom silicon is portable to x86.

Faithful ASIC emulations over x86 typically have a lower perfor‐
mance for two reasons: the interplatform adaptation layers, and the
intrinsic limitations of the x86 architecture. There is no free lunch.

Intel x86 processors
The x86 architecture is specialized for complex computation tasks and provides the
best environment in which to program, test, and deploy new applications. That is
where it excels over any other technology. But, because it is general purpose, it can
perform many functions and not all at the same level of efficiency. Packet-forwarding
functions do not require complex computation steps (with the exception of encryp‐
tion/decryption) but instead need fast context switching and memory lookup. The
key aspect for efficiency when it comes to packet forwarding is the ability to parallel‐
ize. Certainly x86 can do packet forwarding, but at the expense of efficiency, and that
(if you are looking for scale) means higher power consumption, higher space, higher
cooling requirements, and ultimately, potentially higher total cost of ownership
(TCO).
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The barriers preventing the Intel x86 architecture from achieving better forwarding
performance are well known: clock frequency limits, challenges to increase number
of cores, chipset size constraints, number of pins, and so on. All these constraints
have set a slow pace of incremental improvement. Unless something very innovative
is discovered, the ability to substantially grow packet-forwarding capacity for Intel
x86 CPUs is questionable.

Intel x86 remains a great platform for many use cases. Indeed, if the required packet-
processing performance is low, Intel x86 is the best way to go. As mentioned earlier,
several networking vendors have virtual—or rather, x86-adapted—images of their
network OSs. And the possibility of deploying new innovative services on x86 is
bound only by the imagination.

Custom ASICs
Custom ASICs are designed by networking vendors and have the richest and most
flexible packet plus flow-processing features. If the target packet-processing perfor‐
mance is medium or high while the processing logic required is somewhat complex,
custom silicon provides the lowest TCO—despite having a higher cost per unit.

Merchant ASICs
Merchant ASICs are designed and produced by chip vendors. Networking vendors
write the software for the ASICs and ship them in self-branded network devices. As a
result, the very same ASIC may be present in the equipment sold by different ven‐
dors. These chips typically have a very efficient pipeline, which is adapted to simple
straight-line code, but as soon as the code has branching and looping—as is typically
required for the sophisticated features in the network edge—these ASICs are neither
efficient nor even capable of fulfilling the functionality requirements.

The bottom line is that there are several available architectures to execute network
software functions, and they are all valid but not equivalent. Each has its own pros.
The network designer must carefully choose among the options for each use case.

Applicability of NFV to Service Providers
After the technical foundations are laid, let’s pursue the market analysis. Traffic
growth on networks is still at 40%–50%, or even more, year on year. The network
capacity required to sustain such demand growth must be at least at that level. The
only way for the ecosystem to be sustainable is to have the following capacity growth
characteristics:

• It is larger than the demand growth.
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• It is at the same or lower cost, because demand growth does not necessarily drive
revenue growth.

Such capacity growth is ultimately sustained on edge routers, core routers, security
systems, and switching systems that increase their forwarding density at such pace.
This hardware also keeps improving its footprint in terms of space, power consump‐
tion, cooling requirements, and so on.

As for the x86 architecture, it improves its packet-forwarding capacity on average
10% per year. A generalized shift of the networking industry toward NFV would lead
to a capacity growth below the demand growth. Such a difference would need to be
paid in number of units deployed, with the associated increase in CAPEX and OPEX.

Taking all of these factors into account, NFV has its best use case on the low-traffic
regime. Does it make it irrelevant? No, not at all. NFV is a key enabler of network
agility. If there is any single challenge that service providers (SPs) face, it is agility:
introducing new services and new capabilities on their infrastructure, changing net‐
work behavior, and ultimately, reacting faster and with lower costs to new require‐
ments. In one sentence: quickly adapting to the present and future demands of the
market. And with traffic growth at 40%–50% year on year, there’s a strong business
reason why network agility is more important than ever.

Traditionally, the ISP business model has focused on large-scale services such as resi‐
dential or mobile access, assuming that statistical gain drives the economics into the
green zone. But these services are now commoditized: the revenue associated with
them has already reached a plateau, if not decreased due to competition. Being able to
provide new services in an agile manner is paramount.

On the other hand, shifting from a business model with one single service for ten
million subscribers to another with one thousand services—and ten thousand sub‐
scribers for each service—is a major challenge. What if the service does not attain
market traction? And if the validation cycle is so long that the service is already obso‐
lete by the time it is finally launched?

Here is where NFV comes into play. The key factor is uncertainty. The more uncer‐
tainty there is about a service or about the demand, the more convenient it will be to
approach it with NFV. And the more certainty there is about a service or demand
(expected number of subscribers, traffic patterns, etc.), the more suitable a hardware
technology will be.

Any new service or new function deployed on the network, mainly at the edge, starts
with a lot of uncertainty. It is hard to predict how much traffic it will consume, how
many subscribers are needed for the service to be profitable, how successful it will be,
how fast the demand will grow, and so on. It is at this stage where an NFV-based
deployment provides agility, lower entry costs, and a faster time to market. As
demand grows, stabilizes, or becomes more predictable, uncertainties transform into
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knowledge. Then, cost efficiency per service unit likely becomes a priority, and only
ASICs offer the capacity required to address the next phases of the service deploy‐
ment.

On the other hand, NFV can play a major role in trying out new services with the
guarantee that you can shut it down without a major upfront investment. In conclu‐
sion, NFV is a key tool for SPs to address many new small opportunities, each one
characterized by a high uncertainty.

So, it’s not a black-and-white decision between going virtual or going physical. Both
have key roles at different phases of network growth and viability. They can definitely
coexist on a network infrastructure, be connected to one another, and with the right
tools also be seamlessly operated. This is what we go on to discuss in this chapter:
how VNFs can be interconnected (chained) using technologies, such as MPLS, that
can be naturally extended to hardware elements. In short, MPLS in the SDN era!

NFV Practical Use Case
Figure 12-1 shows a common NFV use case that will serve as this chapter’s reference
example. In it, subscribers access the Internet through a Service Function Chain
(SFC)—frequently just called Service Chain—that consists of three VMs: SI_A, SI_B,
and SI_C. The acronym SI stands for service instance, and here it is basically a VM
that performs a network function. Being a VM, the function is virtualized by defini‐
tion, so it is an NFV.

Each service instance performs a different network function and these are executed in
sequence. For the moment, let’s assume that none of these functions is NAT. In other
words, the original IP source and destination addresses are maintained throughout
the entire packet life—represented in Figure 12-1 as a snake-like double-arrowed
solid line.

Similar to the NVO chapter and for exactly the same reasons, the examples in this
NFV chapter are based on OpenContrail and the main challenge is finding a way to
steer the traffic through the entire service function chain.
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Figure 12-1. SFC inserted in an Internet access

NFV is typically intersubnet. For simplicity, let’s assume that the
Virtual Networks (VNs) are in L3 mode.

Let’s get into the heart of NFV and its forwarding and control planes.
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NFV Forwarding Plane
As compared to its control plane, NFV’s forwarding plane is quite simple, because it
is just a combination of features that have already been described in this book. The
signaling and forwarding in Figure 12-2 should look familiar if you have thoroughly
read all the previous chapters.

Figure 12-2. NFV—forwarding plane

Let’s review a short description of the signaling.

PE3 injects the 0/0 prefix into the VPN Internet. This route is propagated in IP VPN
format via BGP, reaching the NVO control nodes—not shown in the picture—after
several session hops. Control nodes convey this information to the vRouter agents via
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XMPP. Then, some magic route leaking takes place inside the NVO; as a result, the
control nodes advertise the same 0/0 route into VPN Red, up to the data center gate‐
way (DC-GW). This advertisement reaches PE1 after several BGP session hops.

This chapter focuses on left-to-right or subscriber-to-Internet traf‐
fic. The reverse path is strictly symmetrical—with reversed source
and destination IP addresses, and different MPLS labels. The sub‐
scriber’s address 192.0.2.1 is reachable from VPN Internet through
the NVO and, finally, VPN Red.

Figure 12-2 also illustrates a service chain with two service instances (for simplicity,
the external one-hop L2 headers are not shown). Although it is perfectly possible to
run both service instances on the same compute node, this example features them in
different compute nodes in order to again illustrate the overlay connection between
vRouters.

Here is the sequence for left-to-right packets that go from the subscriber to the Inter‐
net (note that the number sequence is also represented in Figure 12-2):

1. The Red subscriber, as a CE, sends a plain IP packet to PE1.
2. This part of the forwarding path takes place in the context of IP VPN Red. PE1

and vRouter_1 are the ingress and egress PE, respectively. PE1 processes the
packet in VRF Red—strictly speaking, the VRF name is Red:Red. The MPLS ser‐
vice label changes twice, once at each of the Option B ASBRs (ASBR1 and DC-
GW), which perform a next-hop-self operation on the BGP control plane.

3. vRouter_1, as an egress IP VPN PE, pops the MPLS service label. This label is
associated to a CE: the VM interface (vNIC) connected to the left interface of VM
SI_A.

4. The magic of the service function chain takes place and the remainder of the
chapter unveils the magic. For the moment, just note that inside each vRouter the
packet is plain IP, whereas it requires an overlay encapsulation to jump between
vRouters.

5. The VM SI_B acts like a CE and sends the packet out of its right interface.
6. This next part of the forwarding path takes place in the context of IP VPN Inter‐

net. vRouter_2 and PE3 are the ingress and egress PEs, respectively. vRouter_2
processes the packet in the context of VRF Internet—strictly speaking, the VRF
name is Internet:Internet. The MPLS service label changes twice, once at each of
the Option B ASBRs (DC-GW and ASBR1), which perform a next-hop-self oper‐
ation on the BGP control plane. As discussed in Chapter 3, it is possible to estab‐
lish eBGP sessions from a VRF to connect to the Internet.
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7. Finally, PE3 pops the last MPLS label and sends the packet out to the Internet.

There are several missing pieces in the puzzle, like the packet processing and for‐
warding inside the service instance VMs, or the service-chain implementation.

Regarding the VMs, let’s assume for the moment that they implement interface-based
forwarding: if a VM receives a packet on the left interface and the packet is not drop‐
ped (and it is not destined for the VM itself), the VM sends it out of the right inter‐
face. Conversely, what arrives on the right is forwarded out of the left interface. This
topic is discussed at the end of this chapter.

Let’s now focus on how OpenContrail builds the service chain by linking the service
instances, and how the traffic is steered through the chain.

NFV—VRF Layout Models
Let’s review sequence 4a in Figure 12-2. When the packet arrives to vRouter_1 from
SI_A’s right interface, it must be processed in the context of a VRF. But, which one?

• If it is VRF Red:Red, the next hop would be the vNIC connected to the left inter‐
face of VM SI_A. This would create a forwarding loop, so it is not an option.

• If it is VRF Internet:Internet, the next hop would be the DC-GW and the packet
would escape the service chain without being processed by VM SI_B. Again, this
is not an option.

So, this reasoning highlights that more auxiliary VRFs are needed to instantiate a ser‐
vice function chain.

If you look back at Figure 3-5, service chaining is not a new concept; in fact, it has
existed for decades in SP networks. However, that asymmetrical route target (RT)
chaining strategy is not particularly efficient—especially for long chains—and it is
not easy to automate and operate.

OpenContrail supports the two alternative mechanisms to build SFCs depicted in
Figure 12-3 and listed here:

• The transit VN model, referenced in draft-fm-bess-service-chaining as “Service
Function Instances Connected by Virtual Networks”.

• The two-VN model, referenced in draft-fm-bess-service-chaining as “Logical Ser‐
vice Functions Connected in a Chain”

Although not explicitly shown in this particular figure, you can definitely distribute
service instances across different compute nodes.
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Remember that OpenContrail allows creating VNs, whereas VRFs
are automatically instantiated from VNs. By default, VN Red is
linked to one single VRF called Red:Red.

Figure 12-3. Two Service Function Chain models
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Legacy VRF Layout—Transit VN Model
This legacy model requires N-1 transit VNs (named X and Y in Figure 12-3) for an
SFC consisting of N service instances. The only purpose of these transit VNs is to
build the chain. Although the following statement is not strictly accurate, you can
view this model as functionally based on a 1:1 VN:VRF mapping. It is worthwhile to
quickly review this model because it establishes a valuable conceptual foundation that
you will need to understand other paradigms.

Transit VN model—configuration
Here are the steps to configure an SFC with transit VRFs using OpenContrail GUI—
there are equivalent methods using the CLI and the north-bound API, too:

1. At Configure→Networking→Networks, define the entry-exit VNs, namely Red
and Internet. Each of these VNs requires an RT that matches on the correspond‐
ing VRF at the gateway nodes. Assign at least one subnet to each VN for vNIC
address allocation.

2. At Configure→Networking→Networks, define the transit VNs, namely X and Y.
These VNs are flagged Allowed Transit and, because they are not propagated to
gateway nodes, they do not need any RTs explicitly configured. Assign at least
one subnet to each VN for vNIC address allocation.

3. At Configure→Services→Service Templates, define one template for each differ‐
ent network function. Typically, for a three-instance chain you need three tem‐
plates. These specify the VM image to use and the interfaces that it will have.
Typically, you need left, right, and management interfaces—the latter is not
shown in the figures, because it does not participate on the SFC. (You can read
more about templates at the end of this chapter.)

4. At Configure→Services→Service Instances, launch SI_A, SI_B, and SI_C from
their corresponding templates. Place the left and right interfaces of each instance
into the appropriate VN according to the upper part of Figure 12-3. Note that
unlike regular VMs, which are defined at the compute controller, network service
VMs or instances are defined at the NVO controller (OpenContrail), which in
turn talks to the compute controller for the VM instantiation.

5. At Configure→Networking→Policies, define three policies. The first one should
specify that traffic between VN Red and VN X should go through service SI_A.
The second one should specify that traffic between VN X and VN Y should go
through service SI_B. And the third policy should specify that traffic between VN
Y and VN Internet should go through service SI_C.
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6. At Configure→Networking→Networks, assign the previously created policies to
the appropriate networks: first policy to VN Red and VN X; second policy to VN
X and VN Y; and, third policy to VN Y and VN Internet.

This policy assignment automatically leaks the routes between the VNs, taking care of
next hops in order to achieve the desired traffic steering.

Transit VN model—routes and next hops
Let’s keep our focus on the top of Figure 12-3. Taking left-to-right (upstream) traffic
as an example, the leaking process for the default 0/0 route goes as follows:

1. OpenContrail learns the 0/0 route from DC-GW and installs it on VRF Inter‐
net:Internet, setting DC-GW as the (MPLS-labeled) next hop.

2. OpenContrail leaks the 0/0 route into VRF Y:Y, setting the next hop to the left (L)
interface of VM SI_C.

3. OpenContrail leaks the 0/0 route into VRF X:X, setting the next hop to the left
(L) interface of VM SI_B.

4. OpenContrail leaks the 0/0 route into VRF Red:Red, setting the next hop to the
left (L) interface of VM SI_A.

5. OpenContrail advertises the 0/0 route to the DC-GW in the context of VRF
Red:Red, setting the vRouter—at the compute node where SI_A is running—as
the (labeled) next hop.

A similar (reverse) mechanism applies to right-to-left (downstream) traffic. It relies
on left-to-right leaking of the 192.0.2.0/24 prefix, setting the right-facing interfaces of
the service instance VMs as the next hops throughout the chain.

NFV relies on the BGP and XMPP mechanisms already discussed
in the NVO chapter. At this point, it is assumed that you know how
routes are learned, advertised, and programmed in OpenContrail.

Modern VRF Layout—Two-VN Model
Let’s make a first interpretation of the center-down area of Figure 12-3. In a nutshell,
VRF Red:Red has a default route 0/0 that points to the left interface of SI_A. After
receiving a packet on its left interface, SI_A performs interface-based forwarding and
sends the packet out of its right interface. The vRouter receives the packet from SI_A’s
right interface and forwards it according to VRF Internet:service-<SC_ID>_SI_A,
which is linked to VRF Red:service-<SC_ID>_SI_B, whose default route points to the
left interface of SI_B. In this way, the packet flows through the chain until it exits
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SI_C’s right interface. At this point, the vRouter forwards the packet according to the
VRF Internet:Internet table, which has a default route pointing to the outside world
(DC-GW).

This alternative and modern approach for defining an SFC in OpenContrail simply
relies on just two VNs: the left VN and the right VN. It will take several pages to fully
describe this model so that we can make sense of it. Keep reading.

Of course, as many VNs as you like can play the left or right VN role; but within a
given SFC, there is only one VN pair [left, right]. In this example, these are VNs Red
and Internet, respectively. The left interface of all of the service instances are assigned
to the left VN on the vRouter. Likewise, all the right interfaces are assigned to the
right VN.

Let’s begin with the configuration details because they will cement the foundation to
understand the actual implementation.

Two-VN model—configuration
Here are the steps to configure an SFC with transit VRFs in OpenContrail’s GUI—
there are equivalent methods using the CLI and the north-bound API:

1. At Configure→Networking→Networks, define the entry-exit VNs, namely Red
and Internet. Each of these VNs requires an RT that matches on the correspond‐
ing VRF at the gateway nodes. Assign at least one subnet to each VN for vNIC
address allocation. No transit VNs need to be defined.

2. At Configure→Services→Service Templates, define one template for each differ‐
ent network function.

3. At Configure→Services→Service Instances, launch SI_A, SI_B, and SI_C from
their corresponding templates. Place the left and right interfaces of each instance
into the appropriate VN: left on Red, right on Internet.

4. At Configure→Networking→Policies, define one single policy. The policy states
that traffic between VN Red and VN Internet should go through the following
service instances in sequence: SI_A, SI_B, and SI_C.

5. At Configure→Networking→Networks, assign the previously created policy to
VN Red and VN Internet.

This policy assignment automatically leaks the routes between the VNs, taking care of
next hops so as to achieve the desired traffic steering. This model has a much simpler
configuration scheme, given that you don’t need to define transit VNs. The complex
magic happens behind the curtains.
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In L3VPN terms, this magic is a combination of the following three features imple‐
mented at the vRouter (this list is dedicated to those readers who come from the SP
routing and MPLS worlds—if this is not the case for you, feel free to skip it):

• Interface leaking between VRFs so that different VRFs can resolve routes toward
the same vRouter-VM interface.

• Per-CE MPLS labels so that packets arriving from the overlay are MPLS-switched
(by executing a pop operation) toward a VM, without an IPv4 lookup.

• Filter-based forwarding (FBF), formerly known as policy-based routing (PBR),
so that packets arriving from a VM are steered to a different next hop from the
one dictated by the normal routing path.

Here’s what mapping label X to a vRouter-VM interface means: if a
packet is received with MPLS label X from an overlay tunnel, pop
the label and then send the packet out of that vRouter-VM inter‐
face.

Two-VN model—routes and next hops
The two-VN model relies on a 1:N VN:VRF relationship. The administrator only cre‐
ates two VNs, but these are cloned in several VRFs with different content. For exam‐
ple, the Red VN is linked to four VRFs—Red:Red, Red:service-<SC_ID>_SI_A,
Red:service-<SC_ID>_SI_B, and Red:service-<SC_ID>_SI_C. Out of these, three are
especially relevant for this chain, whereas the leftmost one is grayed-out in
Figure 12-3. It could become relevant if the SFC is further extended through an addi‐
tional service instance to the left.

Taking left-to-right traffic as an example (in Figure 12-3, it goes up→down), the 0/0
default route has the following next hops in the relevant VRFs at the NVO:

1. At VRF Internet:Internet, the (labeled) next hop is DC-GW.
2. At VRFs Red:service-<SC_ID>_SI_C and Internet:service-<SC_ID>_SI_B, which

are linked together, the next hop is the left interface of SI_C.
3. At VRFs Red:service-<SC_ID>_SI_B and Internet:service-<SC_ID>_SI_A,

which are linked together, the next hop is the left interface of SI_B.
4. At VRF Red:Red, the next hop is the left interface of SI_A.
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The two-VN model will be used for the remainder of this chapter.
If you don’t fully understand it yet, that’s normal. Keep reading.

NFV—Long Version of the Life of a Packet
For simplicity, let’s move back to a scenario with just two service instances in the
chain, rather than three. And for completeness, let’s place the two service instances at
two different compute nodes. You might remember that Figure 12-2 was followed by
a list of steps describing the life of a left-to-right packet, and that step 4 in that list
began with a mysterious note: the magic of the service function chain takes place.

It’s time to unveil the magic. This is the life of a packet inside the SFC as illustrated in
Figure 12-4:

1. The packet arrives to vRouter_1 as MPLS-over-GRE with label 35. This label cor‐
responds to PE-CE interface tapX, so vRouter_1 pops the label and sends the
packet to the left interface of VM SI_A. There is no IP lookup in this step.

2. VM SI_A performs per-interface forwarding and, after processing the packet,
sends it out of its right interface. The remote endpoint of this internal link is
interface tapY.

3. Although tapY belongs to VRF Internet:Internet, OpenContrail dynamically
applies a VRF mapping table to the interface. This table basically says: if the
incoming packet’s source IP address is VM SI_A’s right interface (10.3.3.111),
map the packet to VRF Internet:Internet; otherwise, it is supposed to be a transit
packet for VM SI_A, so map it to Internet:service-<SC_ID>_SI_A. The <SC_ID>
field is a service chain identifier dynamically generated by the control node. In
routing terms, this is FBF (or PBR).

4. VRF Internet:service-<SC_ID>_SI_A at vRouter_1 has a 0/0 route whose next
hop is vRouter_2, MPLS-over-UDP, label 37.

5. The packet arrives to vRouter_2 with MPLS label 37. This label corresponds to
PE-CE interface tapZ, so vRouter_2 pops the label and sends the packet to the
left interface of VM SI_B. There is no IP lookup in this step.

6. VM SI_B performs per-interface forwarding, and after processing the packet,
sends it out of its right interface. The remote endpoint of this internal link is
interface tapT.

7. Interface tapT belongs to VRF Internet:Internet, and being the rightmost end of
the SFC, there is no policy-based routing. The route in that VRF is honored and
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vRouter_2 sends the packet to DC-GW with MPLS service label 90. After that, it’s
IP VPN with Inter-AS Option B business as usual (see Figure 12-2).

Figure 12-4. NFV routing state for left-to-right traffic
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In this example, the following tables at the NVO are relevant to forwarding: MPLS
table at vRouter_1, VRF Internet:service-<SC_ID>_SI_A at vRouter_1, MPLS table at
vRouter_2 and VRF Internet:Internet at vRouter_2.

How about the other tables shown in Figure 12-4? They are relevant for other flows:

• A packet traveling from the Internet to the Red subscriber is processed by: MPLS
table at vRouter_2, VRF Red:service-<SC_ID>_SI_B at vRouter_2, MPLS table at
vRouter_1, and VRF Red:Red at vRouter_1. Of course, the relevant route is
192.0.2.0/24 or 192.0.2.1/32—not 0/0—and the MPLS labels are different.

• VRF Red:Red at vRouter_1 is relevant for packets sourced from VM Red_1A.

Look back at the center-down area of Figure 12-3. This illustration
should be easier to understand now.

NFV Control Plane
After reading Chapter 11, programming and signaling routes on the NVO should no
longer be a mystery. Control nodes implement all the logic and signal it conveniently
via BGP or XMPP, depending on whether the peer is a gateway node or a vRouter.

On the other hand, there are a few new logical constructs specific to NFV, like service
templates, service chains, Access Control Lists (ACLs), VRF mapping tables, or links
between routing instances. To illustrate this, Example 12-1 shows how the control
node instructs a vRouter to assign a VRF mapping table to a tap interface.

Example 12-1. XMPP—VRF mapping table on a VM interface

1     <?xml version="1.0"?>
2     <iq type="set" from="network-control@contrailsystems.com"
3         to="default-global-system-config:vrouter_1/config">
4      <config>
5       <update>
6        <node type="virtual-machine-interface">
7         <name>default-domain:mpls-in-the-sdn-era:default-domain
8               mpls-in-sdn-era__SI_A__right__2</name>
9         <vrf-assign-table>
10         <vrf-assign-rule>
11          <match-condition>
12           <src-address>
13            <subnet>
14             <ip-prefix>10.3.3.111</ip-prefix>
15             <ip-prefix-len>32</ip-prefix-len>
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16            </subnet>
17           </src-address>
18          </match-condition>
19          <routing-instance>default-domain:mpls-in-the-sdn-era:
20                            Internet:Internet</routing-instance>
21         </vrf-assign-rule>
22         <vrf-assign-rule>
23          <match-condition></match-condition>
24          <routing-instance>default-domain:mpls-in-the-sdn-era:
25                           Internet:service-71b49d3d-b710-477a-9fb9-
26                           5bc571579cfb-default-domain_mpls-in-the-
27                           sdn-era_SI_A</routing-instance>
28         </vrf-assign-rule>
29        </vrf-assign-table>
30       </node>
31      </update>
32     </config>
33    </iq>

You can see the SI_A__right__2 interface (line 8) is nothing but the right interface of
VM SI_A. The numeral 2 comes from the fact that it is the right interface (left inter‐
face is 1). As for the VRF mapping table, it is applied at the vRouter side—in other
words, on the interface tapY in Figure 12-4. This table applies to packets received by
the vRouter from the VM.

The long identifier 71b49d3d-b710-477a-9fb9-5bc571579cfb (lines 24 and 25) is
nothing but the dynamically generated service chain identifier or <SC_ID>.

The construct in Example 12-1 is the cornerstone of traffic steering through the
chain. VRF Internet:Internet is only relevant for packets that are originated from SI_A.
All the packets that traverse SI_A (like those going from the subscriber to the Inter‐
net) are processed in the context of VRF Internet:service-<SC_ID>_SI_A. This FBF
(or PBR) mechanism is essential for the SFC to work as expected.

If, instead, a transit packet entering vRouter_1 at tapY was assigned to VRF Inter‐
net:Internet, it would exit the SFC prematurely and go to the DC-GW without being
processed by SI_B.

Example 12-2 shows another interesting XMPP construct: a link between routing
instances.

Example 12-2. XMPP—Link between routing instances

<?xml version="1.0"?>
<iq type="set" from="network-control@contrailsystems.com"
    to="default-global-system-config:vrouter_1/config">
 <config>
  <update>
   <link>
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    <node type="routing-instance">
     <name>default-domain:mpls-in-the-sdn-era:Internet:service-
           71b49d3d-b710-477a-9fb9-5bc571579cfb-default-domain_
           mpls-in-the-sdn-era_SI_A</name>
    </node>
    <node type="routing-instance">
     <name>default-domain:mpls-in-the-sdn-era:Red:service-
           71b49d3d-b710-477a-9fb9-5bc571579cfb-default-domain_
           mpls-in-the-sdn-era_SI_B</name>
    </node>
    <metadata type="connection" />
   </link>
  </update>
 </config>
</iq>

The full signaling involved in SFC creation is beyond the scope of this book on
MPLS, but these brief appearances should give you a feeling for how it works.

NFV Scaling and Redundancy
The SFC examples discussed so far include one single VM at each stage. This might
not be sufficient from the point of view of scaling and redundancy, so Figure 12-5
shows you how to address these concerns.

Figure 12-5. NFV scaling and redundancy
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In OpenContrail configuration terms, you should check the scaling box on the Ser‐
vice Template configuration, and then define a new service instance with a number of
instances greater than one. In this example, two service instances are defined:

• SI_A, with a number of instances equal to three.
• SI_B, with a number of instances equal to two.

The SI_A__# and SI_B__# VMs are dynamically created upon the previous configu‐
ration. From a functional point of view, this SFC is very similar to a simple SFC; it
just has more than one VM per stage. The result is more horsepower and a higher
level of resiliency. Here are some key observations from Figure 12-5:

• VMs are distributed across compute nodes.
• Shared IP addressing is supported. For example, all the left interfaces of SI_A

instances have IP address 10.1.1.111. And they also get the same MAC address in
this flavor of service instance.

• MPLS labels are locally assigned by each vRouter, so they do not necessarily have
the same value on different compute nodes. For example, if vRouter_1 receives
an MPLS packet with label 45, it pops the label and sends the packet to the left
interface of one of its SI_B instances. And there is only one such instance in com‐
pute node 1, namely SI_B__1. The outcome on vRouter_2 would be different,
again due to the local significance of MPLS labels.

NFV Scaling and Redundancy—Load Balancing
OK, so MPLS labels are different across vRouters. On the other hand, vRouter_1
maps the same MPLS label (35) to the left interfaces of both SI_A__1 and SI_A__2.
And it also maps MPLS label 40 to the right interfaces of the same VMs. The reason:
these VMs belong to a common scaled service instance.

In Example 12-3, we can see these routes from the point of view of the gateway node.

Example 12-3. Route pointing to an SFC—Junos (DC-GW)

1     juniper@DC-GW> show route receive-protocol bgp 10.0.10.3
2                    table Red 0/0 exact
3
4     [...]
5     * 0.0.0.0/0 (1 entry, 1 announced)
6          Route Distinguisher: 10.0.10.11:15
7          VPN Label: 35
8          Nexthop: 10.0.10.11
9     [...]
10         Route Distinguisher: 10.0.10.22:15
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11         VPN Label: 17
12         Nexthop: 10.0.10.22

The IP address of the control node is 10.0.10.3 (line 1), whereas the vRouter
addresses are 10.0.10.11 (lines 6 and 8) and 10.0.10.22 (lines 10 and 12).

Because OpenContrail uses a <ROUTER_ID>:<VPN_ID> Route Distinguisher (RD)
format, the gateway node considers the two IP VPN routes 10.0.0.11:15:0/0 and
10.0.0.22:15:0/0 as different. Thanks to that, the gateway node can load-balance the
traffic across the two available next hops: vRouter_1 label 35 and vRouter_2 label 17.

Let’s look at how vRouter_1 effectively load-balances flows between the left interfaces
of SI_A__1 and SI_A__2 (Example 12-4).

Example 12-4. Load balancing across service instances—OpenContrail (vRouter_1)

1     root@compute_node_1:~# mpls --get 35
2     MPLS Input Label Map
3        Label    NextHop
4     -------------------
5           35        58
6
7     root@compute_node_1:~# nh --get 58
8     Id:58  Type:Composite  Fmly: AF_INET
9     Flags:Valid, Policy, Ecmp, Rid:0  Ref_cnt:2 Vrf:3
10                  Sub NH(label): 41(22) 57(41)
11
12    root@compute_node_1:~# nh --get 41
13    Id:41  Type:Encap  Fmly: AF_INET  Flags:Valid, Rid:0 Ref_cnt:4 Vrf:3
14                  EncapFmly:0806 Oif:7 Len:14
15                  Data:02 8a 40 57 28 43 00 00 5e 00 01 00 08 00
16
17    root@compute_node_1:~# nh --get 57
18    Id:57  Type:Encap  Fmly: AF_INET  Flags:Valid, Rid:0 Ref_cnt:4 Vrf:3
19                  EncapFmly:0806 Oif:5 Len:14
20                  Data:02 8a 40 57 28 43 00 00 5e 00 01 00 08 00

This is a sample of the commands available on the vRouter command-line interface
(CLI). These are plain commands that you can run on the host OS shell, and they are
further documented on the OpenContrail website. But back to the example, incoming
packets with MPLS label 35 are processed with an Equal-Cost Multipath (ECMP)
next hop (line 9) containing two sub next hops. These have different outgoing inter‐
faces (lines 14 and 19), as can be expected, because they point to two different VMs:
SI_A__1 and SI_A__2. Conversely, they have the same encapsulation. Lines 15 and 20
can be decoded as shown here:

• Destination MAC address 02:8a:40:57:28:43, shared by both VMs’ left interfaces
• Source MAC address 00:00:5e:00:01:00, on the vRouter side
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• Ethertype 0x0800 (IPv4)

NFV—load-balancing assessment
Load balancing is great because it makes it possible to distribute different left-to-right
packets across all of the six available paths. Indeed, a given left-to-right packet stream
can traverse SI_A__X and SI_B__Y, where X has three possible values (1, 2, 3) and Y
has two possible values (1, 2). In total, there are six possible combinations.

Likewise, right-to-left packets also have six possible paths. And here comes the chal‐
lenge. Many network services—actually, the majority of them—require flow symme‐
try. If the upstream half-flow traverses SI_A__1 and SI_B__2, return packets must
traverse SI_B__2 and SI_A__1. Otherwise, the flow is either disrupted or the appro‐
priate services are not applied to it.

OpenContrail vRouters have flow awareness, and they can redirect packets appropri‐
ately. This topic is a complex one and OpenContrail website has interesting articles
about it that you can read at http://www.opencontrail.org.

Service Instance Flavors
Until now, all of this chapter’s examples feature service instances cloned from a ser‐
vice template that, in OpenContrail technology, is of type [In-Network, Firewall].

The term Firewall refers here to a VM with left and right interface, as compared to a
VM with just one service interface (Analyzer). The VM itself does not need to be a
firewall—or to implement a firewall service—for that, at all.

In-Network Service Instances
The term In-Network is a much more interesting concept. In-Network means that the
service instances (VMs) have IP capability on their left and right interfaces. In other
words, they provide L2 termination and they process packets at L3. So VMs need
some kind of L3 forwarding intelligence to avoid disrupting the chain’s forwarding
plane. The following alternatives are available for In-Network service instances:

• Make the VMs run in interface-based forwarding mode. A packet that enters the
VM on one service interface (left, right) must exit—unless it is discarded by the
VM—via the other (right, left) service interface. Of course, this imposes a
requirement on the forwarding logic implemented by the VM. That being said,
from a pure NFV perspective, it is the best practice.

• Bring routing awareness to the VM. One option is to let OpenContrail include
route prefixes in its DHCP offer, as described in RFC 3442 - The Classless Static
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Route Option for DHCP version 4. In this way, a service instance can learn how to
reach certain destination networks through its left or right interface.

• Letting the VM run dynamic routing protocols with other elements in the same
tenant; although not a trivial operation, it is also an option.

Apart from In-Network, there are two other service instance types in OpenContrail.

In-Network-NAT Service Instances
This service instance flavor is similar to In-Network, with one big difference: the left
VN prefixes are not leaked into the right VN. Back to the original example in
Figure 12-2, the subscriber prefix 192.0.2.0/24 would not be leaked to the Internet
VRF. This is perfectly fine if the service instance is performing a NAT function: there
is no need to expose the inner (left) private address to the (right) public network
domain.

To achieve end-to-end connectivity, the right VN must have the appropriate routes
toward the public NAT pool. These routes must be installed at—and advertised by—
the NVO. They should point to the NAT service instance’s right-facing interface. This
is definitely possible in OpenContrail but beyond the scope of this MPLS book.

Transparent Service Instances
The best practice is L3. In that sense, it is preferred to run service VMs in the In-
Network mode. But if a given service VM performs L2 bridging on transit packets,
the service instance must be defined as transparent. One immediate implication is
that MAC addresses are no longer shared.

When a service instance runs in transparent mode, the vRouter-VM link is VLAN-
tagged allowing for the same service instance to be used in different SFCs, each with
its own VLAN tag. Thus, the VM must be aware that traffic can arrive tagged with
any VLAN tag and that tag must be preserved when switching frames between the left
and the right interface. Back to Example 12-4, if the service instances were transpar‐
ent you would see ethertype 0x8100 and additional bytes to encode the VLAN tags on
lines 15 and 20.

Network Service Function Outside a VM or Container
VMs and containers in the NVO do not necessarily implement all the Network Ser‐
vice Functions (NSFs). Here are some other frequent alternatives:

• Implementing the network function at the vRouter. The feature set of vRouters
and vSwitches in different NVO solutions keeps growing. Sometimes, the NVO
infrastructure can implement a service directly instead of relying on a VM for
that.
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• Using an external device or appliance, which is called a Service Node in Open‐
Contrail terminology. Very frequently, a data center may have physical network
or security elements that need to be integrated in the SFC.

This book does not cover the integration of these two types of network service func‐
tions with VM-based SFCs like the one illustrated throughout this chapter.

Service Instance Flavors | 513





CHAPTER 13

Introduction to Traffic Engineering

Traffic Engineering (TE), simply speaking, is the possibility to send traffic from
source to destination on a path that differs from the lowest-cost path calculated by
routing protocols. There could be multiple reasons for using TE, such as the
following:

• The lowest-cost path to the destination is congested, so you can offload that path
by redirecting (part of) the traffic over a different (longer) path.

• The lowest-cost path has a high latency, so you redirect delay-sensitive traffic
over a different path with lower latency while keeping the traffic that is not sensi‐
tive to delays over the lowest-cost path.

• The lowest-cost path uses insecure (easy to eavesdrop) transmission media, so
you redirect traffic requiring the highest security over different (more difficult to
eavesdrop) path. Typically, optical transmission is considered more secure than
transmission over microwave or copper links.

• Certain applications might require multiple disjoint paths to a single destination
for proper application-level redundancy failover. So, you can create multiple
traffic-engineered paths for such applications. Potentially, these paths, or at least
some of them, do not follow the lowest path to the destination.

Those are just a few examples of potential deployment scenarios for TE. But, there
could be many more. Each service provider (SP) will have its own view of what traffic
should be forwarded over paths that differ from the lowest-cost path.

TE can also be implemented in different provisioning models:

• The operator manually configures an explicit path on the router and enforces
various traffic flows to follow that path.
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• The operator manually configures TE link attributes (e.g., different attributes for
optical, copper, and microwave links) and leaves it to the router to dynamically
calculate the path that fulfills certain constraints (e.g., use optical or copper links,
but do not use microwave links). Next, various traffic flows use said path.

• External Path Computation Element (PCE) collects information from the network
and calculates paths based on various criteria. Next, PCE instructs routers in the
network to use the calculated paths.

Chapter 2 covers the first method (manual path specification for RSVP-TE). This
chapter covers the second method in detail, and Chapter 15 describes the PCE
method.

TE Protocols
TE requires two types of protocols:

TED Builders
One or more protocols that distribute link information, enabling every router in
the network to build a local Traffic Engineering Database (TED). The two classic
examples are IS-IS and OSPF with their TE extensions. BGP can also distribute
TE information, as described in Chapter 15.

LSP Builders
These are protocols that use the information contained in the TED to build LSPs
that satisfy a set of TE constraints. The term build (and not signal) has been care‐
fully chosen. You are about to see why.

TE LSP Types
There are three types of TE LSPs in the SDN era:

Stateful TE LSPs
These LSPs are only defined at the ingress PE, but they have a state that is sig‐
naled and maintained end to end. The only protocol with this capability is RSVP-
TE. Each LSP is an RSVP-TE session, and the ingress PE typically pushes the one
label that it learns through the session’s Resv messages.

Stateless TE LSPs
These LSPs are only defined at the ingress PE. Furthermore, only the ingress PE
keeps state for these LSPs, which are not signaled end to end. The ingress PE
pushes a label stack that steers the packet through the chosen network path. In
this model, the ingress PE often needs to know the label values allocated by
remote routers that are two or more hops away. This can only work if the label
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values are signaled explicitly (see the BGP section at the end of this chapter) or
implicitly (with SPRING).

Static LSPs
According to this book’s definition of TE, static LSPs like those described in
Chapter 2 are also TE LSPs. Indeed, they can follow a custom path, regardless of
the IGP metrics. However, they do not take into account the TED. Finally, they
require provisioning hop-by-hop on all the LSRs in the path, not just on the
ingress PE.

The decision to build any TE LSP, regardless of its type, can be driven by the router’s
configuration, by an external controller, or by a combination of both.

Back to the signal versus build dilemma, all these TE LSP types are built, but only
RSVP-TE LSPs are actually signaled through the path.

Bandwidth reservations can only be signaled with stateful TE LSPs.
RSVP-TE is the only protocol with this capability. Unless the entire
bandwidth policy is offloaded to a central controller, you can per‐
form TE bandwidth management only by using RSVP-TE.

These protocols are the LSP builders: RSVP-TE, all the SPRING-capable protocols
(IS-IS, OSPF, BGP), and as you will see at the end of this chapter, BGP-LU, too. In
addition, you can consider protocols such as Path Computation Element (PCE) Com‐
munication Protocol (PCEP), by which central controllers and routers can exchange
TE instructions, as LSP builders (you can see this architecture in Chapter 15).

This chapter’s examples focus primarily on RSVP-TE. However, the path decision
logic for SPRING is exactly the same: both protocols match the TED to a set of local
constraints. Of course, the configuration syntax at the LSP head-end and the PCEP
extensions are different.

As of this writing, SPRING TE LSP configuration syntax and PCEP
extensions are under development, so they are not covered here.

TE Information Distribution
Normally, link-state routing protocols such as OSPF or IS-IS use Shortest-Path First
(SPF) algorithms to calculate paths (next hops). These algorithms take into account
IGP link costs (metrics) to determine the path with the lowest accumulated cost. TE
extends the basic SPF algorithm so that in addition to (or apart from) IGP link met‐
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rics, some other criteria (constraints) are taken into account during path calculation. 
Such an extended algorithm is called Constrained Shortest-Path First (CSPF).

Before going into details about the CSPF algorithm itself, let’s first discuss how you
can signal and distribute the additional information used during CSPF calculations.
In addition to the usual IGP link metrics, TE uses further link attributes. These link
attributes are distributed via additional sub-TLVs in Link TLV Type 2 (OSPF) or
Extended IS Reachability TLV Type 22 (IS-IS). You can view the complete list of link
attributes distributed via OSPF or IS-IS in sub-TLV at the following locations:

• http://www.iana.org/assignments/ospf-traffic-eng-tlvs/ospf-traffic-eng-tlvs.xhtml
• http://www.iana.org/assignments/isis-tlv-codepoints/isis-tlv-codepoints.xhtml, sec‐

tion Sub-TLVs for TLVs 22, 23, 141, 222, and 223

Some of these attributes are known under multiple names, for example:

• Traffic Engineering Metric: Admin Metric, Admin Weight.
• Administrative Group: Admin Group, Affinity Bits, Attribute Flags, Color,

Resource Class Affinity.

TE Distribution via OSPF
The TE extension to OSPFv2 was initially defined in RFC 3630. After this initial RFC,
further OSPF TE capabilities were covered in several other RFCs.

OSPF uses opaque Link-State Advertisement (LSA) Type 10 (area-local scope) to
flood TE information, and in this chapter we use the network topology presented in
Figure 13-1.
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Figure 13-1. Network topology for TE discussion

Both Junos and IOS XR require explicit configuration to enable TE extensions for
OSPF, as shown in Example 13-1 and Example 13-2, respectively.

Example 13-1. Enabling OSPF TE extensions—PE1 (Junos)

1     routing-options {
2         router-id 172.16.0.11;
3     }
4     protocols {
5         ospf {
6             traffic-engineering;
7     }}

Example 13-2. Enabling OSPF TE Extensions in IOS XR

1     router ospf core
2      area 0
3       mpls traffic-eng
4      !
5      mpls traffic-eng router-id Loopback0
6     !
7     mpls traffic-eng
8      interface GigabitEthernet0/0/0/2
9      interface GigabitEthernet0/0/0/3
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OSPF Router ID
First, you need to configure the TE Router ID (line 2 in Example 13-1, line 5 in
Example 13-2). The TE Router ID (referred to as Router Address in RFC 3630) speci‐
fies a stable IP address of the advertising router, and is used to uniquely identify the
router in the TED. The TED can be populated by multiple protocols (OSPF, IS-IS and
BGP, for example). In this context, the TE Router ID is used to determine if the TE
information received from different protocols is, indeed, from a single router.

In Junos, there is no separate configuration knob for the TE Router ID. Simply, the
router-id knob applies to all the protocols and contexts (OSPF, BGP, TE, etc.). In
IOS XR, however, you can configure per-protocol and TE Router IDs: unless you
have a very good reason not to do it, ensure that you set them to the same value.

OSPF TE Extensions
Next, in Junos you simply need to enable TE extensions (line 6 in Example 13-1) to
start advertising complete TE information for all the MPLS-enabled interfaces—those
with family mpls and listed under the protocols mpls stanza.

In IOS XR, apart from enabling TE extensions in OSPF (line 3 in Example 13-2), you
also need to explicitly list the interfaces (lines 7 through 9) for which TE information
should be flooded. This configuration automatically enables RSVP-TE on the refer‐
enced interfaces.

OSPF TE Opaque LSAs
Good. Let’s now check what new information is flooded in the OSPF database (see
Example 13-3).

Example 13-3. Opaque LSAs generated by PE1 and P2

1     juniper@PE1> show ospf database | match "16.0.2 |16.0.11|Type"
2      Type       ID          Adv Rtr       Seq      Age  Opt  Cksum  Len
3     Router   172.16.0.2   172.16.0.2   0x80000045  582  0x22 0x3dc9 108
4     Router  *172.16.0.11  172.16.0.11  0x80000036  937  0x22 0x3dc1  84
5     OpaqArea 1.0.0.0      172.16.0.2   0x80000039 1589  0x20 0x92e9  28
6     OpaqArea*1.0.0.1      172.16.0.11  0x8000002b  187  0x22 0xaaca  28
7     OpaqArea*1.0.0.3      172.16.0.11  0x80000030  350  0x22 0x5c55 136
8     OpaqArea 1.0.0.4      172.16.0.2   0x80000007  582  0x20 0x894a 168
9     OpaqArea*1.0.0.4      172.16.0.11  0x80000001  348  0x22 0xfef2 136
10    OpaqArea 1.0.0.5      172.16.0.2   0x80000007  582  0x20 0xc6fa 168
11    OpaqArea 1.0.0.6      172.16.0.2   0x80000039 1589  0x20 0x3985 168

You can see that both routers (PE1 and P2) flood standard Router LSAs (lines 3 and
4). Additionally, PE1 floods three Opaque LSAs (lines 6, 7, and 9), while P2 floods
four Opaque LSAs (lines 5, 8, 10, and 11). Why this difference? Let’s look at a couple
of Opaque LSAs in more detail to see why (see Example 13-4).
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Example 13-4. TE attributes in OSPF generated by PE1 (Junos)

1     juniper@PE1> show ospf database opaque-area advertising-router
2                  172.16.0.11 lsa-id 1.0.0.1 detail
3         OSPF database, Area 0.0.0.0
4      Type       ID       Adv Rtr        Seq      Age  Opt  Cksum  Len
5     OpaqArea*1.0.0.1   172.16.0.11  0x8000002b  2561  0x22 0xaaca  28
6       Area-opaque TE LSA
7       RtrAddr (1), length 4: 172.16.0.11
8
9     juniper@PE1> show ospf database opaque-area advertising-router
10                 172.16.0.11 lsa-id 1.0.0.3 detail
11        OSPF database, Area 0.0.0.0
12     Type       ID       Adv Rtr        Seq      Age  Opt  Cksum  Len
13    OpaqArea*1.0.0.3   172.16.0.11   0x80000031  988  0x22 0x5a56 136
14      Area-opaque TE LSA
15      Link (2), length 112:
16        Linktype (1), length 1:
17          1
18        LinkID (2), length 4:
19          172.16.0.22
20        LocIfAdr (3), length 4:
21          10.0.0.0
22        RemIfAdr (4), length 4:
23          10.0.0.1
24        TEMetric (5), length 4:
25          1000
26        MaxBW (6), length 4:
27          1000Mbps
28        MaxRsvBW (7), length 4:
29          1000Mbps
30        UnRsvBW (8), length 32:
31            Priority 0, 1000Mbps
32            Priority 1, 1000Mbps
33            Priority 2, 1000Mbps
34            Priority 3, 1000Mbps
35            Priority 4, 1000Mbps
36            Priority 5, 1000Mbps
37            Priority 6, 1000Mbps
38            Priority 7, 1000Mbps
39        LinkLocalRemoteIdentifier (11), length 8:
40          Local 338, Remote 0
41        Color (9), length 4:
42          0

Each Opaque LSA represents either a router’s global TE information or link specific
TE attributes:

• PE1’s Opaque LSA with ID 1.0.0.1 (lines 5 through 7) advertises the Router
Address (TE Router ID, TLV Type 1) in line 7.
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• PE1’s Opaque LSA with ID 1.0.0.3 (lines 13 through 42) contains link parameters
(TLV Type 2, line 15). These are TE attributes for a single link only: PE1→PE2.

• PE1’s Opaque LSA with ID 1.0.0.4, also contains TE attributes for another single
link: PE1→P1 (not shown for brevity).

Thus, each router generates N+1 Opaque LSAs: one for global TE parameters, and
one for each link. Therefore, PE1 and P2 generate three and four Opaque LSAs,
respectively.

Opaque LSA IDs themselves (e.g., 1.0.0.3) have no special meaning. The pair [Adver‐
tising Router, LSA ID] must be unique. The first 8 bits (first octet) encode the type (1
= TE LSA; see lines 6 and 14), whereas the remaining 24 bits (3 octets) are used to
uniquely distinguish the Opaque LSAs generated by the same router.

Verifying the content of the TE LSA with link parameters (lines 13 through 42), you’ll
recognize the following TE link attributes:

• Link Type (sub-TLV 1): point-to-point (value 1), lines 16 and 17.
• Link ID (sub-TLV 2): 172.16.0.22 (neighbor’s router ID), lines 18 and 19.
• Local Interface IP Address (sub-TLV 3): 10.0.0.0, lines 20 and 21. And so on.

Junos refers to Administrative Group (sub-TLV 9) as Color (lines 41 and 42). Other‐
wise, the displayed names are self-explanatory. There is a default set of TE link
attributes (and values) that is generated right after enabling TE extensions. These
default values might be different for each operating system (OS). For example, by
default:

• Junos allows bandwidth reservations up to the full link bandwidth.
• IOS XR does not allow any bandwidth reservations (reservable bandwidth is

zero).

There is also a difference in the default way that these OSs encode the link metrics:

• Both OSs advertise the IGP metric in the standard (not opaque) Router LSAs.
• Both OSs advertise the TE metric in the opaque LSA with link attributes.
• Only IOS XR advertises the IGP metric in the opaque LSA with link attributes.

One more difference: IOS XR advertises the Extended Administrative Groups by
default.

The use cases for all these attributes will be discussed later in this chapter.

The default values of link attributes such as TE Metric, Bandwidth, or Administrative
Group can, of course, be modified via configuration commands; and you can add
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additional attributes such as SRLG, too. These options are explored later on in this
chapter.

The equivalent command in IOS XR to verify the content of Opaque LSAs is show
ospf database opaque-area. The output is similar, but the bandwidth values are
expressed in bytes/sec, not bits/sec.

TE Distribution via IS-IS
Another IGP that you can use for TE information distribution is IS-IS. In Junos, IS-IS
TE extensions are enabled by default. In IOS XR, you need to explicitly enable TE
extensions (Example 13-5), and like in OSPF, list the interfaces (Example 13-2, lines 7
through 9) for which TE information should be flooded.

Example 13-5. Enabling IS-IS TE extensions in IOS XR

1     router isis core
2      address-family ipv4 unicast
3       metric-style wide
4       mpls traffic-eng level-2-only
5       mpls traffic-eng router-id Loopback0

Similar to OSPF, IS-IS distributes TE attributes via new sub-TLVs. However, this
time, no new LSA or rather LSP (Link-State PDU, not to be confused with LSP as in
Label-Switched Path) is required. IS-IS was designed to be easily extensible from its
early days. Therefore, the Extended IS Reachability TLVs (Type 22) of the node’s LSP
are simply enhanced with additional sub-TLVs describing the TE link attributes, as
you can see in Example 13-6.

Example 13-6. TE Attributes in IS-IS LSP generated by PE1 (Junos)

1     juniper@PE1> show isis database PE1 extensive | find TLVs
2       TLVs:
3         Area address: 49.0000 (3)
4         LSP Buffer Size: 1492
5         Speaks: IP
6         IP router id: 172.16.0.11
7         IP address: 172.16.0.11
8         Hostname: PE1
9         IS extended neighbor: P1.00, Metric: default 1000
10          IP address: 10.0.0.2
11          Neighbor's IP address: 10.0.0.3
12          Local interface index: 337, Remote interface index: 335
13          Current reservable bandwidth:
14            Priority 0 : 1000Mbps
15            Priority 1 : 1000Mbps
16            Priority 2 : 1000Mbps
17            Priority 3 : 1000Mbps
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18            Priority 4 : 1000Mbps
19            Priority 5 : 1000Mbps
20            Priority 6 : 1000Mbps
21            Priority 7 : 1000Mbps
22          Maximum reservable bandwidth: 1000Mbps
23          Maximum bandwidth: 1000Mbps
24          Administrative groups:  0 <none>
25    (...)

You can see the MPLS TE ID (line 6), the local and neighbor’s link addresses (lines 10
and 11), the local and neighbor’s interface indexes (line 12), the bandwidth parame‐
ters (lines 13 through 23), as well as the administrative groups (line 24). The MPLS
TE metric is not advertised by IS-IS if not configured explicitly.

Let’s now take a look at the LSP generated from an IOS XR router, this time using IOS
XR CLI.

Example 13-7. TE attributes in IS-IS LSP generated by P2 (IOS XR)

1     RP/0/0/CPU0:P2#show isis database P2 verbose
2
3     IS-IS core (Level-2) Link State Database
4     LSPID          LSP Seq Num  LSP Checksum  LSP Holdtime  ATT/P/OL
5     P2.00-00  *    0x0000000d   0x4c4d        39137           0/0/0
6       Auth:         Algorithm HMAC-MD5, Length: 17
7       Area Address: 49.0000
8       NLPID:        0xcc
9       Hostname:     P2
10      IP Address:   172.16.0.2
11      Router ID:    172.16.0.2
12      Metric: 1000       IS-Extended PE2.00
13        Affinity: 0x00000000
14        Interface IP Address: 10.0.0.5
15        Neighbor IP Address: 10.0.0.4
16        Physical BW: 1000000 kbits/sec
17        Reservable Global pool BW: 0 kbits/sec
18        Global Pool BW Unreserved:
19          [0]: 0        kbits/sec          [1]: 0        kbits/sec
20          [2]: 0        kbits/sec          [3]: 0        kbits/sec
21          [4]: 0        kbits/sec          [5]: 0        kbits/sec
22          [6]: 0        kbits/sec          [7]: 0        kbits/sec
23        Admin. Weight: 1000
24        Ext Admin Group: Length: 32
25          0x00000000   0x00000000
26          0x00000000   0x00000000
27          0x00000000   0x00000000
28          0x00000000   0x00000000
29    (...)
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IOS XR advertises a similar set of TE attributes: the MPLS TE ID (line 11), the
administrative groups called Affinity (line 13), the local and neighbor’s link addresses
(lines 14 and 15), the bandwidth parameters (lines 16 through 22). Unlike Junos, the
default maximum reservable bandwidth in IOS XR is zero, both for OSPF and IS-IS.

IOS XR displays the IS-IS link bandwidth parameters differently for each protocol: in
bits/sec for IS-IS and in bytes/sec for OSPF.

By default, IOS XR advertises more link attributes than Junos: for example, the MPLS
TE metric called Admin. Weight (line 23) and the Extended Administrative Groups
(lines 24 through 28).

The TED
TE information, distributed by any protocol (OSPF, IS-IS, or even BGP) is collected
in a single database called: TED. CSPF actually uses TED as input when performing
TE paths calculations. (Chapter 2 shows some examples.)

In certain network deployments, TE information about the same links might be pro‐
vided by different routing protocols (IS-IS, OSPF, BGP). Indeed, the topology in
Figure 13-1 might run two IGPs in parallel: IS-IS and OSPF. This is common in pro‐
tocol migrations.

When multiple protocols feed TE information about the same link, some TE
attributes can actually differ. Therefore, there is a need for a preference order between
protocols. In Junos, this preference order is called TE credibility protocol preference,
which is different from normal protocol preference. Example 13-8 shows the default
values.

Example 13-8. TE credibility protocol preference (Junos)

juniper@PE3> show ted protocol
Protocol name        Credibility  Self node
IS-IS(2)             2            PE3.00(172.16.0.33)
IS-IS(1)             1
OSPF(0)              0            PE3.00(172.16.0.33)

When CSPF selects information in the TED, Junos prefers by default IS-IS level 2
over IS-IS level 1 over OSPF. IOS XR, however, sets the preferences in the TED
according to the protocols’ administrative distances: the higher the administrative
distance, the less preferred the protocol is both for routing and for the TED.

Therefore, Junos and IOS XR defaults are different: Junos prefers the TED collected
by IS-IS, whereas IOS XR prefers the TED collected by OSPF. So in multi-IGP
deployments, you need to make manual adjustments to have consistency between
Junos and IOS XR.
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In Junos, there is no way to directly change TE credibility values, but you can do it
indirectly, as outlined in Example 13-9. On a per-protocol basis, you can switch off
the default TE credibility and generate new TE credibility values inherited from the
standard protocol preference values according to this formula:

512 – protocol-preference

Example 13-9. TE credibility adjustments (Junos)

protocols {
    isis traffic-engineering credibility-protocol-preference;
    ospf traffic-engineering credibility-protocol-preference;
}

juniper@PE3> show ted protocol
Protocol name        Credibility  Self node
OSPF(0)              502          PE3.00(172.16.0.33)
IS-IS(1)             497
IS-IS(2)             494          PE3.00(172.16.0.33)

The credibility values are derived from the default protocol preferences: 10 (OSPF),
15 (IS-IS Level 1), and 18 (IS-IS Level 2). So, OSPF becomes the most credible proto‐
col.

TE Static Constraints
Thus far, the first few pages of this chapter have clarified how OSPF and IS-IS distrib‐
ute the TE information, the selection process between OSPF and IS-IS, and how to
influence it.

Now let’s actually begin to use TE in use cases that include different link attributes in
the TE constraints. The examples that follow use IS-IS as the only protocol. In the
end, TE link attributes have the same meaning in both protocols.

TE Metric
The TE Metric attribute was introduced with the initial TE extensions in OSPF and
IS-IS. This attribute is called Admin Metric in IOS XR’s OSPF, and Admin Weight in
IOS XR’s IS-IS. You can manipulate the TE metric and make it different from the IGP
metric. In this way, you define different metric schemes for CSPF versus SPF calcula‐
tions. The TE module uses the results of CSPF calculations to build TE paths,
whereas SPF calculation results are used to install next-hops for prefixes not reacha‐
ble over TE LSPs.
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For example, let’s explicitly set TE metrics to 3000 on all four cross-links, as shown in
Figure 13-2, and configured in Example 13-10 and Example 13-11. The standard IGP
metric is configured to 1000 on all links in the topology.

Figure 13-2. TE metric constraint

Example 13-10. TE metric setting on P3 (Junos)

protocols {
    isis interface ge-2/0/5.0 level 2 te-metric 3000;
}

Example 13-11. TE metric setting on P4 (IOS XR)

mpls traffic-eng
  interface GigabitEthernet0/0/0/5
    admin-weight 3000

As you can see, the TE metric of an interface is set globally in IOS XR, and it can be
configured on a per-protocol basis in Junos.

Now, for testing purposes, let’s create two RSVP-TE tunnels: PE1→PE4 and
PE2→PE3 (shown in Example 13-12 and Example 13-13), respectively. PE3 and PE4
have secondary loopback addresses (172.17.0.33 and 172.17.0.44, respectively), and
only these addresses should be reachable through the new LSPs.
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Example 13-12. PE1→PE4 RSVP-TE tunnel on PE1 (Junos)

1     protocols mpls label-switched-path PE1--->PE4 {
2         no-install-to-address;
3         to 172.16.0.44;
4         install 172.17.0.44/32 active;
5     }

Example 13-13. PE2→PE3 RSVP-TE tunnel on PE2 (IOS XR)

1     interface tunnel-te33
2      ipv4 unnumbered Loopback0
3      signalled-name PE2--->PE3
4      destination 172.16.0.33
5      record-route
6      path-option 1 dynamic
7     !
8     router static
9      address-family ipv4 unicast
10      172.17.0.33/32 tunnel-te33

There are some small differences between Junos and IOS XR. By default, Junos
installs the destination address of the RSVP-TE tunnel in the routing table. In IOS
XR, you need to specify autoroute [announce|destination] to install routes down‐
stream of the LSP, including the tunnel endpoint, as discussed in Chapter 3.

This is the first time that this book uses the Junos active knob (Example 13-12, line 4).
Without it, the route is only installed in inet.3. With it, it is also installed in inet.0.

Now, you can reach the primary loopbacks of PE3 and PE4 via IS-IS (using SPF), and
their secondary loopbacks via RSVP-TE tunnels (using CSPF); see Example 13-14.

Example 13-14. Remote primary and secondary loopbacks reachability

1     juniper@PE1> show route table inet.0 172.16.0.44/32
2     (...)
3     172.16.0.44/32     *[IS-IS/18] 00:57:08, metric 4000
4                         > to 10.0.0.3 via ge-2/0/2.0
5
6     juniper@PE1> show route table inet.0 172.17.0.44/32
7     (...)
8     172.17.0.44/32     *[RSVP/7/1] 00:46:35, metric 4000
9                         > to 10.0.0.3 via ge-2/0/2.0, lsp PE1--->PE4
10    .
11    juniper@PE1> show mpls lsp name PE1--->PE4 detail | match metric
12        Computed ERO (S [L] strict [loose] hops): (CSPF metric: 5000)
13
14    RP/0/0/CPU0:PE2#show route 172.16.0.33/32 | include via
15      Known via "isis core", distance 115, metric 4000, type level-2
16        10.0.0.5, from 172.16.0.33, via GigabitEthernet0/0/0/2
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17
18    RP/0/0/CPU0:PE2#show route 172.17.0.33/32 | include via
19      Known via "static", distance 1, metric 0 (connected)
20        directly connected, via tunnel-te33
21
22    RP/0/0/CPU0:PE2#show mpls traffic-eng tunnels 33 | include weight
23        path option 1, type dynamic (Basis for Setup, path weight 5000)

Remember that both in Junos and IOS XR, the metric of a prefix using LSP as a next
hop equals the lowest IGP metric to the destination (the primary loopback), regard‐
less of the actual path followed by the LSP. The shortest PE1→PE4 IGP paths are
shown with dashed lines in Figure 13-2, and they have IGP metric 4000. The same
logic applies to PE2→PE3.

On the other hand, the actual PE1→PE4 LSP is signaled through the solid line in
Figure 13-2 because that is the path with the lowest cumulative TE metric: 5000. In
other words, the LSP (CSPF) is skipping the cross-links with high TE metric and pre‐
fers to take a path that from the point of view of the IGP (SPF) is suboptimal.

In IOS XR, static routes pointing to RSVP-TE LSPs have metric 0. The autoroute
destination feature, discussed in Chapter 3, inherits the IGP metric to the destina‐
tion.

As shown in Example 13-15, the actual paths to the primary and secondary loopbacks
can be verified with traceroute.

Example 13-15. Verification of SPF and CSPF paths

juniper@PE1> traceroute 172.16.0.44
traceroute to 172.16.0.44 (172.16.0.44)
 1  P1 (10.0.0.3)  3.015 ms  2.511 ms  2.795 ms
 2  P3 (10.0.0.9)  4.094 ms  5.989 ms  5.773 ms
 3  P5 (10.0.0.15)  6.233 ms P6 (10.0.0.19)  3.750 ms  4.271 ms
 4  PE4 (10.0.0.27)  5.538 ms PE4 (10.0.0.29)  6.500 ms *

juniper@PE1> traceroute 172.17.0.44
traceroute to 172.17.0.44 (172.17.0.44)
 1  P1 (10.0.0.3)  22.592 ms  106.019 ms  10.758 ms
     MPLS Label=362784 CoS=0 TTL=1 S=1
 2  P2 (10.0.0.7)  11.303 ms  7.543 ms  8.318 ms
     MPLS Label=24039 CoS=0 TTL=1 S=1
 3  P4 (10.0.0.11)  10.365 ms  7.818 ms  7.692 ms
     MPLS Label=24041 CoS=0 TTL=1 S=1
 4  P6 (10.0.0.17)  8.589 ms  10.847 ms  9.510 ms
     MPLS Label=24027 CoS=0 TTL=1 S=1
 5  PE4 (10.0.0.27)  10.384 ms 10.291 ms

RP/0/0/CPU0:PE2#traceroute 172.16.0.33
(...)
 1  p2 (10.0.0.5) 0 msec  0 msec  0 msec
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 2  p4 (10.0.0.11) 0 msec  0 msec  0 msec
 3  p5 (10.0.0.21) 0 msec  0 msec  0 msec
 4  pe3 (172.16.0.33) 0 msec  19 msec  0 msec

RP/0/0/CPU0:PE2#traceroute 172.17.0.33
(...)
 1  pe1 (10.0.0.0) [MPLS: Label 332608 Exp 0] 9 msec
 2  p1 (10.0.0.3) [MPLS: Label 362640 Exp 0] 0 msec
 3  p3 (10.0.0.9) [MPLS: Label 360208 Exp 0] 29 msec
 4  p5 (10.0.0.15) [MPLS: Label 304304 Exp 0] 0 msec
 5  172.17.0.33 0 msec  0 msec  0 msec

As you can see, paths calculated by SPF (traceroute to primary loopbacks 172.16.0.xx)
and CSPF (traceroute to secondary loopbacks 172.17.0.xx) differ. This confirms that
CSPF uses the TE metric, and not the IGP metric, for path calculation. On links for
which the TE metric is not explicitly configured, the TE metric inherits its value from
the IGP metric. By manipulating TE metrics, you can influence the path taken by
RSVP-TE tunnels and deviate it from the IGP shortest path.

A typical use case is associating the IGP metric to the link bandwidth (the lower the
bandwidth, the higher the IGP metric), while tuning the TE metric according to the
link delay (the higher the delay, the higher the TE metric). In this way, RSVP-TE tun‐
nels follow the path with the smallest accumulated delay, whereas native forwarding
prefers links with the largest bandwidth. The ingress PE can deploy a traffic forward‐
ing policy, as in Chapter 3, to inject delay-sensitive traffic into RSVP-TE tunnels
while keeping the remaining bulk of the traffic over IGP paths.

Link Coloring—Administrative Group
The second TE link attribute to be explored is the Administrative Group (AG), again
introduced with the initial TE extensions in OSPF and IS-IS. Depending on the ven‐
dor and protocol, the actual terminology differs from the one used in the RFCs. In
show commands, IOS XR calls it Affinity Bits (in OSPF) or simply Affinity (in IS-IS),
whereas Junos uses the term Color (in OSPF) or Administrative Groups (in IS-IS).
When it comes to the configuration, in IOS XR you can configure Attribute Flags, and
in Junos Admin Groups. And in some earlier RFCs (like 2702) it was also called
Resource Class Affinity.

Confused? Don’t be! All these terms refer to the same TE link attribute: AG in RFC
3630 and RFC 5305. The term AG will be used in this book for consistency.

So what actually is AG? The AG TE link attribute is a set of 32 flags (bits) distributed
in OSPF or IS-IS via the appropriate sub-TLV. Each flag (bit) corresponds to one AG
or color assigned to the interface. A link can belong to multiple groups, if multiple
flags (bits) are set to 1—in this case, the link has several colors at the same time. By
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convention, the least significant bit is referred to as group 0, and the most significant
bit is referred to as group 31.

The TED, like IGP databases, contains half-links. When you set an
AG on a link on one router only, you are actually coloring it in one
direction only.

Figure 13-3 illustrates an example in which the network administrator has symmetri‐
cally configured AGs on some of the links.

Figure 13-3. AG Constraint

Here are the AG configurations:

• Link P1-P3: AG 0, 14 and 29
• Link P2-P4: AG 15
• Link P4-P6: AG 0, 18 and 29
• Link P5-PE3: AG 29
• Link P6-PE4: AG 0

You can influence path selection by specifying which links can be used, or cannot be
used, based on the specific AGs assigned to each link.
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The first step is to color the links by assigning AGs to them. Let’s examine the config‐
uration of P3 (Junos; see Example 13-16) and P4 (IOS XR; see Example 13-17).

Example 13-16. AG link configuration on P3 (Junos)

1     protocols mpls {
2         admin-groups {
3             AG-0 0;
4             AG-14 14;
5             AG-15 15;
6             AG-29 29;
7         }
8         interface ge-2/0/2.0 {
9             admin-group AG-15;
10        }
11        interface ge-2/0/3.0 {
12            admin-group [ AG-0 AG-14 AG-29 ];
13    }}

The configuration is pretty easy. First, assign custom names to bit positions (lines 2
through 6). Then, set the appropriate AGs (bits) on the interfaces (lines 8 through
12). Example 13-17 shows the equivalent configuration in IOS XR.

Example 13-17. AG link configuration on P4 (IOS XR)

mpls traffic-eng
 interface GigabitEthernet0/0/0/2
  attribute-names AG-15
 !
 interface GigabitEthernet0/0/0/3
  attribute-names AG-15
 !
 interface GigabitEthernet0/0/0/4
  attribute-names AG-0 AG-18 AG-29
 !
 affinity-map AG-0 bit-position 0
 affinity-map AG-15 bit-position 15
 affinity-map AG-18 bit-position 18
 affinity-map AG-29 bit-position 29

As a result, IS-IS starts to advertise the configured AGs for these links and installs the
appropriate information in the TED (see Example 13-18).

Example 13-18. AG distribution

1     juniper@P3> show isis database P4 extensive
2     (...)
3         IS extended neighbor: P6.00, Metric: default 1000
4           Administrative groups:  0x20040001 AG-29 18 AG-0

532 | Chapter 13: Introduction to Traffic Engineering



5
6     juniper@P3> show ted database 172.16.0.4 extensive
7     (...)
8         To: P6.00(172.16.0.6), Local: 10.0.0.16, Remote: 10.0.0.17
9           Color: 0x20040001 AG-29 18 AG-0
10
11    RP/0/0/CPU0:P4#show isis database P3 verbose
12
13      Metric: 1000       IS-Extended P1.00
14        Affinity: 0x20004001
15
16    RP/0/0/CPU0:P4#show mpls traffic-eng topology 172.16.0.3
17    (...)
18      Link[2]:PtP, Nbr IGP Id:1720.1600.0001.00, Nbr Node Id:15
19          Attribute Flags: 0x20004001
20          Attribute Names: AG-0(0) AG-29(29)
21          Unnamed bits   : 14

Junos—in both the IS-IS database and the TED—displays AGs in hexadecimal format
(eight digits, each representing four bits), and additionally, explicitly lists the bits set
to 1 (lines 4 and 9). For those AGs (bits) that do not have a locally defined name, the
numerical bit position (check 18 in lines 4 and 9) is displayed, instead.

In IOS XR, you can find only hexadecimal formats in the IS-IS database display (line
14). Consequently, during troubleshooting, you need to decipher the actual AGs (bit
positions) that are set. Or, you can look at the TED, in which apart from hexadecimal
format (line 19), AG names (line 20) and unnamed bit positions (line 21) are also dis‐
played.

OK some AGs were configured, so now it’s time to put additional constraints on your
LSPs to actually make use of the AGs.

Example 13-19. AG constraint for PE1→PE4 LSP (Junos)

protocols mpls {
    label-switched-path PE1--->PE4 admin-group exclude AG-0;
}

Example 13-20. AG constraint for PE2→PE3 LSP (IOS XR)

interface tunnel-te33
 affinity exclude AG-29

Here, you simply state that your PE1→PE4 LSP is not allowed to use links marked
with AG 0, whereas PE2→PE3 LSP must not use links marked with AG 29. Now, after
LSP reoptimization, let’s check the path taken by these LSPs.
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Example 13-21. Path Taken for LSPs Constrained by Administrative Groups

juniper@PE1> show rsvp session name PE1--->PE4 detail
[...]  Record route: <self> 10.0.0.3 10.0.0.7 10.0.0.11 10.0.0.12
                     10.0.0.15 10.0.0.25 10.0.0.33

RP/0/0/CPU0:PE2#show mpls traffic-eng tunnels 33
[...]
  Path info (IS-IS core level-2):
  Node hop count: 7
  Hop0: 10.0.0.5
  Hop1: 10.0.0.11
  Hop2: 10.0.0.12
  Hop3: 10.0.0.15
  Hop4: 10.0.0.23
  Hop5: 10.0.0.27
  Hop6: 10.0.0.32
  Hop7: 172.16.0.33

Analyzing Record route objects you will find the following paths:

• PE1→PE4 LSP takes PE1→P1→P2→P4→P3→P5→PE3→PE4 path
• PE2→PE3 LSP takes PE2→P2→P4→P3→P5→P6→PE4→PE3 path

The paths are different from the paths observed previously in Example 13-15, and the
new paths do not take any prohibited links. This confirms that the configured AG
constraints are properly taken into account by CSPF calculations.

There is an important aspect of IOS XR implementation that you need to take into
account. When an RSVP-TE LSP does not have any configured AG constraints, in
fact there is a default AG constraint encoded as 0x0/0xffff—or to use its full format,
0x00000000/0x0000ffff. What does this mean? Well, the first numeral is the 32-bit
flag register representing 32 AGs. The second numeral is the 32-bit mask. If in the
mask the bit is set to 1, it is a significant bit, and according to the first numeral its
value must be zero. So, every link with one or more of the 0–15 AG bit positions set is
automatically excluded by CSPF calculations for such RSVP-TE LSPs.

So, what does 0x00000000/0x0000ffff finally mean? It means that, for example, for
the PE2→PE4 tunnel (using default IOS XR AG constraint) only links with no AGs
from range 0–15 can be taken into account (AGs from range 16–31 are not checked,
because corresponding mask bits are set to 0). And this is the problem. Links P1-P3,
P2-P4, and P3-P4 all have some AGs from range 0–15, thus PE2→PE4 tunnel initi‐
ated with the IOS XR default AG constraints, cannot use these links.
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Example 13-22. Status of LSP toward PE4 on PE2 (IOS XR)

1     RP/0/0/CPU0:PE2#show mpls traffic-eng tunnels 44
2     (...)
3         Last PCALC Error: Wed Jun  3 12:58:26 2015
4           Info: No path to destination, 172.16.0.44 (affinity)
5     (...)
6       Config Parameters:
7         Bandwidth:  0 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
8         Metric Type: TE (default)
9     (...)

The equivalent default AG constraint in Junos is 0x0/0x0; in other words, Junos by
default does not take AGs into account for CSPF calculations.

The example that follows demonstrates how you can change IOS XR behavior to
ignore all AGs for tunnels without explicit AG constraints. This enforces consistency
across vendors in the network.

Example 13-23. Ignoring AGs on RSVP-TE Tunnels (IOS XR)

interface tunnel-te44
 affinity ignore

After the changes outlined in Example 13-23 are implemented on all RSVP-TE tun‐
nels without explicit AG constraints, all the RSVP-TE LSPs are in the up state.

Extended Administrative Groups
The standard AG attribute, introduced via RFC 3630 (OSPF) and RFC 5305 (IS-IS),
includes 32 groups (bits). In some deployment scenarios, this might be too low num‐
ber, and more AGs are required. For example, an administrator might use different
AGs to constrain traffic within specific topological regions of the network, and a large
network may well have far more than 32 geographic regions.

Therefore, RFC 7308 introduces Extended Administrative Groups (EAGs) in OSPF
(sub-TLV Type 26) and IS-IS (TLV Type 14). Using this attribute, multiple 32-bit
group series can be advertised. In the RFC, the number of EAGs has no fixed limit. It
is constrained only by protocol-specific restrictions such as LSA in OSPF, Link State
PDU (LSP) in IS-IS, or maximum transmission unit (MTU) sizes.

Following is the EAG configuration syntax in Junos and IOS XR, respectively.

Example 13-24. EAG configuration on PE1 (Junos)

routing-options {
    admin-groups-extended-range {
        minimum 32;
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        maximum 95;
    }
    admin-groups-extended {
        EAG-39 group-value 39;
    }
}
protocols mpls {
    interface ge-2/0/3.0 admin-group-extended EAG-39;
}

Example 13-25. EAG configuration on PE2 (IOS XR)

mpls traffic-eng
 interface GigabitEthernet0/0/0/3
  attribute-names AG-39
 !
 affinity-map AG-39 bit-position 39

Unfortunately, as of this writing, neither IOS XR nor Junos implementations were
compliant with the RFC 7308 specification. Both vendors used different pre-RFC7308
implementations, which were incompatible with each other.

To propagate EAG, Junos used TLV Type 138 reserved by IANA for the SRLG
attribute (discussed in the following section). IOS XR, on the other hand, used sub-
TLV Type 252, reserved by IANA for Cisco proprietary extensions. So interoperabil‐
ity is not successful and therefore not further explored in this book.

Shared Risk Link Group
The Shared Risk Link Group (SRLG) is the next MPLS TE link attribute introduced via
RFC 4202 - Routing Extensions in Support of Generalized Multi-Protocol Label Switch‐
ing (GMPLS), and specifically for OSPF via RFC 4203 - OSPF Extensions in Support of
GMPLS, and for IS-IS via RFC 5307 - IS-IS Extensions in Support of GMPLS.

SRLG is conceptually similar to AG or EAG, in so much as you can configure SRLG
on links and later specify some constraints based on SRLGs for your LSPs. There are,
however, several main differences between AG/EAG and SRLG:

AG or EAG always represents hard (strict) constraints.
For example, if you configure an LSP to exclude links with a certain AG or EAG,
when a path fulfilling this criterion cannot be found, the LSP is not established.
You can use SRLG, however, for soft (loose) constraints, so you could specify that
an LSP should avoid links with a certain SRLG, but if there is no other choice, it
can use such links as a last resort.

You must always manually define AG or EAG constraints
For example, the configuration that says RSVP-TE LSP X must not use links with
AG/EAG Y must be manually specified. Conversely, you can use SRLG in deploy‐
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ments with automatic SRLG constraints such as, path X and path Y should not use
links with the same SRLG, but you don’t need to specify the exact SRLG value that
should be avoided.

AG and SRLG are both 32-bit fields
AG is interpreted as a single vector with 32 bit positions. On the other hand, an
SRLG value is interpreted as a 32-bit number: a given link can have several 32-bit
SRLG attributes assigned. Two SRLG values are considered different if they are
different. Of course!

Typically, you should configure router links that share resources (e.g., two fibers in
the same cable, or two Dense Wavelength Division Multiplexing (DWDM) lambdas
in the same fiber) with the same SRLG value, because such links share the risk. If a
common (shared) resource fails (e.g., a fiber cable cut), all the affected router links
fail at the same time.

Therefore, SRLGs are typically used in protection scenarios. You can build two LSPs
to protect each other. If one LSP fails, traffic can be redirected over the presignaled
second LSP. Obviously, it makes sense that both LSPs use links that do not share risk.
Chapter 19 provides more insight into MPLS protection, but for now, let’s configure
two basic scenarios for SRLG deployment here.

SRLG use case 1—Path Protection
First, let’s configure SRLGs in the network, as presented in Figure 13-4.
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Figure 13-4. SRLG constraint use case 1

Each SRLG is associated with two characteristics:

SRLG value
A 32-bit value exchanged via IGP TE Extensions (Sub-TLV 16 in OSPF, TLV 138
in IS-IS). Figure 13-4 shows SRLG values symmetrically configured on specific
links.

SRLG metric
An incremental TE link metric used in CSPF calculations for links with SRLG
configured. This information is local to the router and never exchanged between
the routers. It means, theoretically, that for the same SRLG value X, one router
can be configured to use incremental TE metric 1000, whereas another router
can be configured to use a different incremental metric 2000. In typical deploy‐
ments, though, for a given SRLG value the same incremental TE metric is config‐
ured on all routers for consistency.

Following is the Junos SRLG configuration of P5:

Example 13-26. SRLG configuration on P5 (Junos)

1     routing-options {
2         srlg {
3             SRLG-96 {

538 | Chapter 13: Introduction to Traffic Engineering



4                 srlg-value 96;
5                 srlg-cost 40000;
6             }
7             SRLG-97 {
8                 srlg-value 97;
9                 srlg-cost 60000;
10            }
11            SRLG-98 {
12                srlg-value 98;
13                srlg-cost 500;
14    }}}
15    protocols {
16        mpls {
17            interface ge-2/0/1.0 srlg [ SRLG-97 SRLG-98 ];
18            interface ge-2/0/3.0 srlg SRLG-97;
19            interface ge-2/0/5.0 srlg SRLG-97;
20    }}

And here is an IOS XR example (P2):

Example 13-27. SRLG configuration on P2 (IOS XR)

1     srlg
2      interface GigabitEthernet0/0/0/1
3       name SRLG-96
4      !
5      interface GigabitEthernet0/0/0/2
6       name SRLG-96
7       name SRLG-98
8      !
9      name SRLG-96 value 96
10     name SRLG-97 value 97
11     name SRLG-98 value 98
12    !
13    mpls traffic-eng
14     srlg
15      value 96 admin-weight 40000
16      value 97 admin-weight 60000
17      value 98 admin-weight 500

You can check how the SRLG configuration is actually translated into the TED by
using the following commands:

• Junos: show ted link detail
• IOS XR: show mpls traffic-eng topology detail

Now, in the first SRLG scenario, you will deploy two presignaled paths for the
PE3→PE1 tunnel. This concept, called Path Protection, is described in detail in Chap‐
ter 19. For the moment, let’s concentrate only on SRLG usage. The goal is that the
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secondary path avoids links with the same SRLG values as links used by the primary
path.

Example 13-28. Two presignaled paths configuration for PE3→PE1 tunnel

1     protocols {
2         mpls {
3             label-switched-path PE3--->PE1 {
4                 to 172.16.0.11;
5                 primary PRIMARY;
6                 secondary SECONDARY standby;
7             }
8             path PRIMARY;
9             path SECONDARY;
10    }}

The configuration is pretty basic. The primary and secondary paths without explicit
IP addresses (lines 8 and 9), referenced in the LSP configuration (lines 5 and 6), cause
two dynamically computed paths to be established. The primary path has no specific
imposed constraints; therefore it finds its way through the lowest accumulated TE
metric.

Similarly, the secondary path has no explicit constraints, either. However, Junos
imposes two default constraints on the secondary path:

• The secondary path should avoid links used by primary path.
• The secondary path should avoid links with the same SRLG value as links used

by primary path.

These two constraints are automatic, so no specific configuration is required, but let’s
check how the paths are established.

Example 13-29. Two presignaled paths for PE3→PE1 tunnel

1     juniper@PE3> show mpls lsp name PE3--->PE1 detail
2     (...)
3     *Primary   PRIMARY          State: Up
4     (...)
5       SRLG: SRLG-97
6       Computed ERO (S [L] strict [loose] hops): (CSPF metric: 4000)
7       10.0.0.24 S 10.0.0.14 S 10.0.0.8 S 10.0.0.2 S
8     (...)
9      Standby   SECONDARY        State: Up
10    (...)
11      SRLG: SRLG-96 SRLG-97 SRLG-98
12      Computed ERO (S [L] strict [loose] hops): (CSPF metric: 70000)
13      10.0.0.30 S 10.0.0.18 S 10.0.0.13 S 10.0.0.10 S
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14      10.0.0.4 S 10.0.0.0 S
15    (...)

The two paths are up (lines 3 and 9). The primary path follows the lowest TE metric
path to the destination via PE3→P5→P3→P1→PE1 (line 7) with total accumulated
TE metric 4000 (line 6), which is correct, because each link on the path has TE metric
1000. You can also see that at least one of the links used by the primary path has
SRLG-97 (line 5). In this case, it is link P3→P1, as is visible in Figure 13-4.

More interesting is the secondary path. It uses the
PE3→P6→P3→P4→P2→PE2→PE1 route (lines 13 and 14), instead of the shorter
route: PE3→P6→P4→P2→PE2→PE1, which has a lower cumulative TE metric.

So what’s happening here? Well, Junos temporarily increases the TE metric for certain
links when performing CSPF calculation for the secondary path. The primary path
uses a link with SRLG-97 (line 5), therefore Junos temporarily increases the TE met‐
ric on all the links with SLRG-97 before doing the computation of the secondary
path. The value is specified in the local configuration on PE3 (see line 9 in
Example 13-26 for a similar configuration on P5). Therefore, for the secondary path
computation CSPF considers links with SRLG-97 with TE metric 61000 (where the
original TE metric was 1000) or 63000 (where the original TE metric was 3000).

Now CSPF performs the calculation for the secondary path, which avoids the links
from the primary path. The lowest TE metric route is the route mentioned in lines 13
and 14 from Example 13-29. The total accumulated metric (70000) is correct, as well:

• PE3→P6: 3000 (explicit TE metric) + 60000 (SRLG-97)
• P6→P3: 3000 (explicit TE metric)
• P3→P4: 1000 (implicit TE metric)
• P4→P2: 1000 (implicit TE metric)
• P2→PE2: 1000 (implicit TE metric)
• P22→PE1: 1000 (implicit TE metric)

This path completely avoids links used by the primary path. Additionally, it minimi‐
zes the usage of links with common SRLG values (97, in the example) on the primary
and secondary paths. Depending on the network topology and the SRLG configura‐
tion, it is not always possible to avoid such links. Therefore, the secondary path now
uses one link with SRLG-97 (link PE3→P6), compared to two, or even three such
links, if only IGP or TE metrics were taken into account.

Note that, the TE metric on links with SLRG different from SRLG 97 (e.g., P3→P4
with SRLG 98 or P2→PE2 with SRLGs 96 and 98) is not increased. SRLG 96 and 98
are not present on links used by the primary path, so there is no requirement to avoid
such links in the secondary path.
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As of this writing, IOS XR didn’t support this SRLG application for
calculating secondary standby paths in Path Protection scenarios.

SRLG use case 2—Facility (link) Protection
The second use case for SRLG, similar to Path Protection, is related again to protec‐
tion—this time to Facility (link) Protection. Although details of facility protection are
discussed in Chapter 19, let’s concentrate only on SRLG.

The goal here is to establish a bypass tunnel that reroutes the traffic around certain
links during link failure. Looking at the topology from Figure 13-5, let’s create such a
bypass tunnel for the link P2→PE2.

Figure 13-5. SRLG constraint use case 2

As Figure 13-5 illustrates, this link has two SRLGs: 96 and 98. Therefore, it is advisa‐
ble that the bypass tunnel avoids links with these SRLGs. Otherwise, if the link being
protected and some links used for the bypass tunnel share the risk, one single net‐
work failure could bring down the primary link and the bypass tunnel.

Example 13-30. Configuration of link bypass with SRLG constraint—P2 (IOS XR)

1     mpls traffic-eng
2      interface GigabitEthernet0/0/0/2
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3       auto-tunnel backup
4        exclude srlg
5        attribute-set AS-AFFINITY-IGNORE
6     !
7      attribute-set auto-backup AS-AFFINITY-IGNORE
8       affinity-ignore

The basic configuration is, again, pretty easy. For interface Gi0/0/0/2, an automati‐
cally established bypass tunnel (line 3) should be established. Additionally, on this
bypass tunnel, the SRLG constraints should be enforced (line 4). Furthermore, simi‐
lar to the case described already in Example 13-23, you need to disable the AG con‐
straints (lines 5, 7, and 8) if you want to allow that bypass tunnel to use links with
AGs 0–15.

Refer to Chapter 19 for a detailed coverage of Facility Protection.

Again, let’s check how the tunnel is established (see Example 13-31.

Example 13-31. Link bypass with SRLG constraint on P2 (IOS XR)

1     RP/0/0/CPU0:P2#show mpls traffic-eng tunnels 103
2     (...)
3     Name: tunnel-te103  Destination: 172.16.0.22  (auto-tunnel backup)
4         path option 10,  type explicit (autob_nhop_srlg_te103)
5                          (Basis for Setup, path weight 8000)
6         SRLGs Excluded: SRLG-96(96), SRLG-98(98)
7     (...)
8       Auto Backup:
9         Protected i/f: Gi0/0/0/2
10        Attribute-set: AS-AFFINITY-IGNORE
11        Protection: NHOP+SRLG (SRLG strict)
12    (...)
13      Path info (IS-IS core level-2):
14      Node hop count: 6
15      Hop0: 10.0.0.11
16      Hop1: 10.0.0.17
17      Hop2: 10.0.0.18
18      Hop3: 10.0.0.8
19      Hop4: 10.0.0.2
20      Hop5: 10.0.0.1
21      Hop6: 172.16.0.22

You can see the automatic bypass tunnel (line 3) to protect Gi0/0/0/2 interface (line
9). The path for this bypass tunnel strictly avoids (line 11) links with SRLG 96 or 98
(line 6). Other AGs are not taken into account as constraints (line 10). The path auto‐
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matically calculated by CSPF is P2→P4→P6→P3→P1→PE1→P2 (lines 14 through
21), with the accumulated TE metric 8000 (line 5).

It is certainly not the shortest path to avoid the P2→PE2 link. If you look at the topol‐
ogy in Figure 13-5, you can see that links P2→P1, P4→P3, and P6→P5 have either
SRLG 96 or 98. Therefore, because strict SRLG constraint is enforced, the bypass tun‐
nel cannot use these links. Thus, CSPF properly selected the lowest accumulated TE
metric path that avoids links with SRLG 96 or 98.

Apart from strict SRLG constraint, IOS XR supports weighted (configured by using
exclude srlg weighted) or preferred (configured by using exclude srlg

preferred) SRLG constraints. Weighted constraint is equivalent to the default SRLG
constraint in Junos, discussed previously, whereas you can configure strict SRLG con‐
straint in Junos by using the exclude-srlg keyword. Due to limited space in this
book, these SRLG constraint methods are not discussed, but you are encouraged to
further explore these methods.

For the sake of completeness, the Junos configuration for bypass tunnel with strict
SRLG constrains is presented in the following example:

Example 13-32. Link bypass configuration with strict SRLG constraint—P5 (Junos)

1     protocols {
2         rsvp {
3             interface ge-2/0/1.0 {
4                 link-protection {
5                     bypass BP-P5-P6 {
6                         to 172.16.0.6;
7                         bandwidth 0;
8                         exclude-srlg;
9     }}}}}

By default, Junos uses weighted SRLG constraints, so if you remove lines 5 through 9
from the configuration, bypass will be established based on weighted constraints, and
no longer on strict SRLG constraints. Refer to Chapter 19 for detailed discussion
about the protection mechanisms in RSVP-TE.

Egress Peer Engineering
Egress Peer Engineering (EPE) is a classic TE requirement that has gained momen‐
tum in the context of high-scaled data centers and is also perfectly applicable to IP
peering environments such as that depicted in Figure 13-6. The challenge is this: how
can PE2 choose the external inter-domain link that a packet should use to get out of
the local domain? PE2 needs to push two labels: one that takes the packet to PE3 (a
classic PE2→PE3 transport LSP), and one more that is locally significant to PE3 and
uniquely determines the interdomain link.
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Figure 13-6. EPE with BGP-LU

If you remember the different SPRING SID types from Chapter 2, the Adjacency SID
automatically comes to mind. Indeed, draft-ietf-idr-bgpls-segment-routing-epe defines
a protocol ID that can be used to encode this type of information in the BGP-LS
NLRI. BGP-LS is discussed in Chapter 15.

EPE Based on BGP-LU
Alternatively, good old BGP-LU is also capable of encoding this type of information,
as you can see in Figure 13-6. This model, described in draft-gredler-idr-bgplu-epe,
does not require any protocol extensions and simply relies on a clever manipulation
of the BGP next-hop attribute:

• No BGP next hop change for the service route, relying on Add-Path extensions
in order to advertise all the possible peering next hops. In this example, the ser‐
vice route is IPv4 Unicast 192.168.20.100/32, but it could be a different address
family, too.

• Allocating a different label to each peering next hop and announcing it via inter‐
nal BGP-LU to the Route Reflectors (RRs).

The MPLS label 299920 (see Example 13-33) is an instruction (a segment in SPRING
terminology) that PE3 interprets as: pop the label and send the packet out to PEER1
through the bottom link.
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Example 13-33. EPE based on BGP-LU—LFIB at PE3 (Junos)

user@PE3> show route table mpls.0 protocol VPN

mpls.0: 19 destinations, 19 routes (19 active, ...)
+ = Active Route, - = Last Active, * = Both

299904             *[VPN/170] 1d 07:32:02
                    > to 10.2.0.1 via ge-2/0/3.0, Pop
299920             *[VPN/170] 1d 07:32:02
                    > to 10.2.0.3 via ge-2/0/4.0, Pop
299936             *[VPN/170] 1d 07:32:02
                    > to 10.2.0.5 via ge-2/0/8.0, Pop

EPE based on BGP-LU—configuration
Example 13-34 shows the relevant configuration at the egress Autonomous Systems
Border Router (ASBR) (PE3).

Example 13-34. EPE based on BGP-LU—configuration at PE3 (Junos)

1     protocols bgp {
2         group eBGP-PEER1-UPPER-LINK {
3             family inet unicast;
4             egress-te;
5             neighbor 10.2.0.1 peer-as 65002;
6         }
7         group eBGP-PEER1-BOTTOM-LINK {
8             family inet unicast;
9             egress-te;
10            neighbor 10.2.0.3 peer-as 65002;
11        }
12        group eBGP-PEER2 {
13            family inet unicast;
14            egress-te;
15            neighbor 10.2.0.5 peer-as 65002;
16        }
17        group iBGP-RR {
18            type internal;
19            family inet {
20                unicast {
21                    add-path {
22                        receive;
23                        send path-count 6;
24                    }
25                }
26                labeled-unicast rib inet.3;
27            }
28            export iBGP-RR-OUT;
29            neighbor 172.16.0.201;
30            neighbor 172.16.0.202;
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31        }
32    }
33    policy-options {
34        policy-statement iBGP-RR-OUT {
35            term eBGP-PEERS {
36                from {
37                    protocol arp;
38                    rib inet.3;
39                }
40                then {
41                    next-hop self;
42                    accept;
43    }}}}

Remember that BGP policies accept BGP prefixes that do not match any terms. The
egress-te knob (lines 4, 9, and 14) automatically creates a so-called ARP route for
each eBGP peer in inet.3.

Example 13-35. ARP Routes in inet.3—PE3 (Junos)

user@PE3> show route table inet.3 10.2.0.0/24

inet.3: 9 destinations, 9 routes (9 active, ...)
+ = Active Route, - = Last Active, * = Both

10.2.0.1/32        *[ARP/170] 1d 07:32:02
                    > to 10.2.0.1 via ge-2/0/3.0, Pop
10.2.0.3/32        *[ARP/170] 1d 07:32:02
                    > to 10.2.0.3 via ge-2/0/4.0, Pop
10.2.0.5/32        *[ARP/170] 1d 07:32:02
                    > to 10.2.0.5 via ge-2/0/8.0, Pop

These are the routes that PE3 later advertises via iBGP-LU thanks to the configured
policies (Example 13-33, lines 28, and 34 through 42).

Let’s move on to Chapter 14, which discusses advanced TE constraints.

Egress Peer Engineering | 547





CHAPTER 14

TE Bandwidth Reservations

Bandwidth reservations are an essential tool that you can use to do the following:

• Avoid link congestion in networks with high-volume traffic, such as ISP back‐
bones.

• Ensure that the most critical applications have their bandwidth resources avail‐
able.

This chapter covers the control plane required to perform bandwidth reservations. To
date, the only protocol that is capable of actually reserving bandwidth in a network is
RSVP-TE. Most forwarding plane details—in particular, fine-grained mapping of cer‐
tain traffic to certain LSPs—are specific to each platform and beyond the scope of this
book.

This book does not cover DiffServ-TE. It is not widely deployed.

The Traffic Engineering (TE) link constraints that are discussed in Chapter 13 are
very simple, and are represented by single numbers. In this chapter, you will discover
more complex TE use cases, with composite TE link attributes such as bandwidth.

TE Static Bandwidth Constraints
The next TE link characteristic is bandwidth. Bandwidth is a little bit special. It is no
longer a single attribute, but a set of attributes that you can find in the IGP’s link-state
databases, in the Traffic Engineering Database (TED) and in the RSVP-TE messages.
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TE Bandwidth Attributes
Let’s have a look at the different attributes that comprise the TE bandwidth.

Maximum bandwidth (4 octets)
This is the physical interface bandwidth (e.g., 1.25 GByte/s for a 10GE interface). Typ‐
ically, this parameter is inherited from the interface bandwidth, but you can also set it
manually. This parameter is not used in TE calculations and is purely informational.

Maximum reservable bandwidth (4 octets)
This is the bandwidth that RSVP-TE is allowed to reserve. It can be bigger than the
Maximum Bandwidth (if you allow RSVP-TE oversubscription), equal to the Maxi‐
mum Bandwidth (if all the interface bandwidth can be taken by RSVP-TE) or smaller
than the Maximum Bandwidth (if you don’t allow RSVP-TE to take the full interface
bandwidth). Typically, this parameter is manually configured. If not explicitly config‐
ured, the default value in Junos is the full interface bandwidth, whereas in IOS XR, it
is zero.

Unreserved bandwidth per priority level (8 x 4 octets)
This is the set of eight counters that keep track of the available bandwidth for each
RSVP-TE priority (priority will be discussed later in this chapter). Although the pre‐
vious two parameters are rather stable (after you start the IGP, the same values are
advertised continuously), unreserved bandwidth changes dynamically. Each time a
new LSP with bandwidth reservation is established, or existing LSPs with bandwidth
reservation are torn down, or they change their bandwidth reservations, the value of
this parameter is adjusted and flooded via the IGP. Actually, typical IGP implementa‐
tions set some thresholds to suppress flooding when bandwidth changes are not sig‐
nificant.

Putting it all together, IGP distributes bandwidth information using 40 octets (4 + 4 +
32), plus normal TLV headers. All the bandwidth values are in bytes/s (not bits/s).
Bandwidth was introduced with the initial TE extensions in OSPF and in IS-IS.

Default TE Interface Bandwidth
After this small bit of theory, let’s get into the lab. First, the default behavior of Junos
and IOS XR is completely different. As mentioned previously, without any explicit
RSVP-TE bandwidth configuration, Junos allows RSVP-TE to utilize the full interface
bandwidth, whereas IOS XR does not allow RSVP-TE to reserve any bandwidth.
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Example 14-1. RSVP interface status with default bandwidth on PE1 (Junos)

juniper@PE1> show rsvp interface
RSVP interface: 2 active
               Active Subscr- Static   Available Reserved Highwater
Interface   St resv   iption  BW       BW        BW       mark
ge-2/0/2.0  Up      8   100%  1000Mbps 1000Mbps  0bps     0bps
ge-2/0/3.0  Up      4   100%  1000Mbps 1000Mbps  0bps     0bps

Example 14-2. RSVP interface status with default bandwidth on PE2 (IOS XR)

RP/0/0/CPU0:PE2#show rsvp interface
(...)
Interface  MaxBW (bps)  MaxFlow (bps) Allocated (bps) MaxSub (bps)
---------- ------------ ------------- --------------- ------------
Gi0/0/0/2            0              0        0 (  0%)            0
Gi0/0/0/3            0              0        0 (  0%)            0

Basic RSVP-TE Bandwidth Reservation
Figure 14-1 shows three LSPs: PE1→PE3, PE2→PE4, and PE2→P5. Initially, only the
two first LSPs are configured, and this time an explicit bandwidth reservation is
included.

Let’s request 500 kbps for PE1→PE3 and 700 kbps for PE2→PE4, as shown in
Figure 14-1 and presented in Example 14-3 and Example 14-4. Note that, in IOS XR,
you specify bandwidth in kbps, whereas in Junos it’s bps.

Example 14-3. RSVP-TE bandwidth request on PE1 (Junos)

protocols {
    mpls label-switched-path PE1--->PE3 bandwidth 500k;
}

Example 14-4. RSVP-TE bandwidth request on PE2 (IOS XR)

interface tunnel-te44
 signalled-bandwidth 700
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Figure 14-1. TE with bandwidth constraints

RSVP-TE tries to signal the tunnel, but now CSPF verifies if the additional constraint
(bandwidth) is fulfilled. That is, the LSP is established only if all the links on the path
have at least 500 (or 700) kbps free bandwidth. Free in this context means bandwidth
that can be reserved by RSVP-TE, and for the moment, has nothing to do with the
bandwidth utilized by actual traffic.

Example 14-5. RSVP-TE LSP status on PE1 and PE2

1     juniper@PE1> show mpls lsp name PE1--->PE3 detail | match <pattern>
2       From: 172.16.0.11, State: Up, ActiveRoute: 0, LSPname: PE1--->PE3
3         Bandwidth: 500kbps
4
5     RP/0/0/CPU0:PE2#show mpls traffic-eng tunnels 44 | include <pattern>
6         Admin:    up Oper: down   Path: not valid   Signalling: Down
7           Info: No path to destination, 172.16.0.44 (bw)
8         Bandwidth Requested: 700 kbps  CT0

The PE1→PE3 tunnel is up (line 2), whereas the PE2→PE4 tunnel is down (line 6).
Apparently, between PE2 and PE4 there is no path for which at least 700 kbps are free
(meaning reservable by RSVP-TE).
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Explicit TE interface reservable bandwidth
So, as shown in Example 14-6 and Example 14-7, let’s configure consistent bandwidth
reservations through the network and allow 10 Mbps for RSVP-TE on each link in
the network. You can simply enhance existing GR-RSVP configuration groups to
include the new bandwidth parameters.

Example 14-6. RSVP-TE link bandwidth configuration (Junos)

1     groups {
2         GR-RSVP {
3             protocols rsvp interface "<*[es]*>" subscription 1;
4     }}}
5     protocols rsvp apply-groups GR-RSVP;

Example 14-7. RSVP-TE link bandwidth configuration (IOS XR)

1     group GR-RSVP
2      rsvp
3       interface 'GigabitEthernet.*'
4        bandwidth 10000
5     !
6     rsvp apply-group GR-RSVP
7     !

In Junos, you can specify the percentage of interface bandwidth (line 3 in
Example 14-6) that can be used for RSVP-TE reservations, or set explicit limits in
bps—1% of 1 Gbps is 10 Mbps, so the result is the same. However, in IOS XR, you
simply specify the limit in kbps (line 4 in Example 14-7).

With this configuration in place, the PE2→PE4 LSP is now up.

Example 14-8. Tunnel status on PE2 (IOS XR)

RP/0/0/CPU0:PE2#show mpls traffic-eng tunnels 44 | include <pattern>
    Admin:    up Oper:   up   Path:  valid   Signalling: connected
    Bandwidth Requested: 700 kbps  CT0

Because there are 10 Mbps available to reserve on every link by RSVP-TE, you can
establish the tunnel with the 700 kbps requirement without any problems, and rout‐
ers update the link bandwidth reservations accordingly.

Example 14-9. RSVP interface status with explicit bandwidth

juniper@PE1> show rsvp interface
RSVP interface: 2 active
               Active Subscr- Static   Available Reserved Highwater
Interface   ST resv   iption  BW       BW        BW       mark
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ge-2/0/2.0  Up      8     1%  1000Mbps 9.5Mbps   500kbps  500kbps
ge-2/0/3.0  Up      3     1%  1000Mbps 10Mbps    0bps     0bps

RP/0/0/CPU0:PE2#show rsvp interface
(...)
Interface MaxBW (bps) MaxFlow (bps) Allocated (bps) MaxSub (bps)
--------- ----------- ------------- --------------- ------------
Gi0/0/0/2        10M            10M     700K (  7%)            0
Gi0/0/0/3        10M            10M       0  (  0%)            0

You can see that now the Maximum Reservable Bandwidth is 10 Mbps on each link
(Junos: AvailableBW + ReservedBW; IOS XR: MaxBW). Also, you can see the currently
reserved bandwidth on each interface (Junos: ReservedBW; IOS XR: Allocated). This
information is distributed via the IGP, as demonstrated in Example 14-10.

Example 14-10. TE bandwidth announcements in IS-IS

1     juniper@PE1> show isis database PE1 extensive
2     (...)
3         IS extended neighbor: P1.00, Metric: default 1000
4           IP address: 10.0.0.2
5           Neighbor's IP address: 10.0.0.3
6           Local interface index: 337, Remote interface index: 335
7           Current reservable bandwidth:
8             Priority 0 : 9.5Mbps
9             Priority 1 : 9.5Mbps
10            Priority 2 : 9.5Mbps
11            Priority 3 : 9.5Mbps
12            Priority 4 : 9.5Mbps
13            Priority 5 : 9.5Mbps
14            Priority 6 : 9.5Mbps
15            Priority 7 : 9.5Mbps
16          Maximum reservable bandwidth: 10Mbps
17          Maximum bandwidth: 1000Mbps
18          Administrative groups:  0 <none>
19
20    RP/0/0/CPU0:PE2#show isis database PE2 verbose
21    (...)
22      Metric: 1000       IS-Extended P2.00
23        Affinity: 0x00000000
24        Interface IP Address: 10.0.0.4
25        Neighbor IP Address: 10.0.0.5
26        Physical BW: 1000000 kbits/sec
27        Reservable Global pool BW: 10000 kbits/sec
28        Global Pool BW Unreserved:
29          [0]: 10000    kbits/sec          [1]: 10000    kbits/sec
30          [2]: 10000    kbits/sec          [3]: 10000    kbits/sec
31          [4]: 10000    kbits/sec          [5]: 10000    kbits/sec
32          [6]: 10000    kbits/sec          [7]: 9300     kbits/sec
33    (...)
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Both PE1 and PE2 advertise 10 Mbps as the links’ maximum reservable bandwidth
(lines 16 and 27). Conversely, there are some differences when you look for the band‐
width available at each priority level. For the PE1→P1 link, the announced bandwidth
for each priority is 9.5 Mbps (lines 8 through 15), whereas for the PE2→P2 link it is
10 Mbps for priority 0–6 (lines 29 through 32), and 9.3 Mbps for priority 7 only (line
32). This is yet another difference in the default implementation of Junos and IOS
XR; let’s see its meaning after introducing some new concepts.

LSP Priorities and Preemption
If you now configure PE2→P5 (the remaining LSP from Figure 14-1) with a 700 kbps
reservation, it has several available paths to choose. Let’s suppose that it uses the
PE2→PE1 link and that completes all the LSPs shown in Figure 14-1.

Now, suppose that you configure yet another new PE2→P6 tunnel (not shown in
Figure 14-1) with 9400 kbps bandwidth reservation. As you can see by looking at the
bandwidth reservations on Figure 14-1, the new LSP’s setup would fail because there
is no path with 9400 kbps of available bandwidth on all links. Specifically, all links
adjacent to PE2 have available bandwidth less than 9400 kbps.

You can fix the problem by moving one of the small bandwidth LSPs to another link.
For example, if you move the PE2→P5 LSP from the PE2→PE1 to the PE2→P2 link,
the PE2→PE1 link would have 10 Mbps free bandwidth. This is enough for the new
LSP requiring 9.4 Mbps to fit, at least on this link.

How can you achieve this? Well, one option is to manually reroute the PE2→P5 LSP,
by setting an explicit path. However, in large networks with many LSPs in place, set‐
ting explicit paths everywhere can be a challenging task.

Therefore, let’s consider another approach: LSP preemption. With LSP preemption,
you can designate some LSPs as more important, and other LSPs as less important.
More-important LSPs can preempt (kick-out or remove: choose your verb) existing
less-important LSPs. Let’s suppose that you designate the high-bandwidth PE2→P6
LSP to be more important that the PE2→P5 LSP. In this case, the PE2→P6 LSP pre‐
empts the PE2→P5 LSP. As a result of this preemption, the PE2→P5 LSP is removed
from the PE2→PE1 link. When the PE2→P5 LSP is calculated again, PE2 signals it
over a different path. As you can see in Figure 14-2, in the end every configured LSP
successfully comes up.
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Figure 14-2. TE with bandwidth constraints and preemption

Setup and Hold priorities
Now, how can you configure the importance of an LSP? In TE, there is a concept of
Setup and Hold priority. Numerically lower priority is better. Thus, when a new LSP is
being signaled, in case of resource conflict (e.g., not enough bandwidth on a certain
link) the Setup priority of the new LSP is compared to the Hold priority of the existing
LSP. If it is numerically lower, the new LSP can preempt the existing LSP.

As shown next, the default settings for Setup and Hold priority are different in Junos
and IOS XR.

Example 14-11. Default Setup and Hold priorities

juniper@PE1> show mpls lsp name PE1--->PE3 detail | match Priorities
    Priorities: 7 0

RP/0/0/CPU0:PE2#show mpls traffic-eng tunnels 44 | include Priority
    Bandwidth:      700 kbps (CT0) Priority:  7  7

What is the difference? In Junos, it is 7 (Setup) and 0 (Hold), whereas in IOS XR it is
7 for both Setup and Hold. It means that the LSPs signaled by Junos are by default
rock-solid: after they are established, no other LSP can preempt them. Why? The Hold
priority of Junos-signaled LSPs is 0, so it is not possible for another LSP to have a
numerically lower Setup priority. IOS XR is just the opposite: the Hold priority is 7,
so any LSP with Setup priority 0 through 6 can preempt such an LSP.
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If you go back to Example 14-10, you will now understand why Junos and IOS XR
advertised different free bandwidths. IOS XR advertised the full bandwidth (10
Mbps) available at priority level 0 through 6, meaning that any LSP with a Setup pri‐
ority level 0 through 6 can take full bandwidth on the advertised link.

With that behind us, let’s configure a better (numerically lower) hold priority for
PE2→PE4 LSP. This will make it more resistant to preemption by other LSPs.

Example 14-12. PE2→PE4 LSP priority configuration on PE2 (IOS XR)

interface tunnel-te44
 priority 7 3

With this configuration, the lines 29 through 32 from Example 14-10 would change
to the following:

• Priorities [0] to [2]: reservable bandwidth 10000 kbps
• Priorities [3] to [7]: reservable bandwidth 9300 kbps

Now, let’s configure the PE2→PE6 tunnel, which is requesting 9.4 Mbps bandwidth,
with Setup priority 3, as demonstrated in Figure 14-2 and in Example 14-13.

Example 14-13. PE2→P6 LSP priority configuration on PE2 (IOS XR)

interface tunnel-te6
 priority 3 3

To maintain LSP stability, the Hold priority cannot be worse (numerically higher)
than the Setup priority. This is enforced by a commit check, on both IOS XR and
Junos platforms. Therefore, 3 was configured for both Setup and Hold priorities.

Results of LSP preemption and resignaling
With its new Setup priority, the PE2→PE6 LSP will be able to preempt the PE2→P5
tunnel (Hold priority 7), but not the PE2→PE4 tunnel (Hold priority 3). Let’s check
that.

Example 14-14. RSVP interface status after preemption on PE2 (IOS XR)

1     RP/0/0/CPU0:PE2#show rsvp interface
2     (...)
3     Interface   MaxBW (bps)  MaxFlow (bps) Allocated (bps) MaxSub (bps)
4     ----------- ------------ ------------- --------------- ------------
5     Gi0/0/0/2           10M            10M    1400K ( 14%)            0
6     Gi0/0/0/3           10M            10M    9400K ( 94%)            0
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The RSVP bandwidth reservations reported on the interfaces confirm that now all
four of the LSPs in question, three of them initiated at PE2, are established. You can
see the global LSP placement in Figure 14-2.

In Junos, you also can configure RSVP-TE LSP priorities by using the priority
<SETUP> <HOLD> keyword, this time under the mpls label-switched-path <NAME>
stanza. The logic is similar to IOS XR, we’ll skip it for brevity.

You can achieve an enhanced LSP distribution logic with the help
of a central controller. See Chapter 15 for more details.

Traffic Metering and Policing
Now, let’s push some traffic through the PE1→PE3 and PE2→PE4 LSPs. Suppose that
the actual utilization of both PE1’s and PE2’s uplinks exceed the reserved LSP band‐
width (500 and 700 kbps, respectively). If you want to know what LSPs are contribu‐
ting to the overall traffic rate, there are at least two handy operational commands that
you can use:

• For Junos: show mpls lsp statistics
• For IOS XR: show mpls forwarding

Although these commands are great, they do not really integrate with the TE logic of
PE1 and PE2. If you really want to make TE traffic-aware, you need at the very least
to add some configuration to collect traffic statistics on a per-LSP basis.

Example 14-15. LSP bandwidth monitoring on PE1 (Junos)

1     protocols mpls {
2         statistics {
3             file mpls.stat size 100m files 10;
4             interval 120;
5             auto-bandwidth;
6         }
7         label-switched-path PE1--->PE3 {
8             auto-bandwidth monitor-bandwidth;
9     }}

Example 14-16. LSP bandwidth monitoring on PE2 (IOS XR)

1     interface tunnel-te44
2      auto-bw
3       collect-bw-only
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4     !
5     mpls traffic-eng
6      auto-bw collect frequency 2

This configuration enables the collection of average bandwidth samples every 120
seconds (Example 14-15), or in other words, every 2 minutes (Example 14-16). As a
result, the TE logic is aware of the bandwidth that is actually used by the LSP.

Example 14-17. LSP bandwidth utilization

juniper@PE1> show mpls lsp name PE1--->PE3 detail | match <pattern>
  Max AvgBW util: 4.65488Mbps
..
RP/0/0/CPU0:PE2#show mpls traffic-eng tunnels 44 | include <pattern>
      Highest BW: 1738 kbps   Underflow BW: 0 kbps

Your LSPs are consuming much more bandwidth than the requested 500 (or 700)
kbps! This simple example shows that there is no admission control for traffic enter‐
ing TE tunnels. TE bandwidth is simply an accounting term, but it is not coupled
with any policing by default. It is like requesting 700 tickets for a football game, and
subsequently sending 1,738 people, hoping that there aren’t any ticket checks at the
entrance to the stadium. And, in the case of RSVP-TE, there aren’t!

Therefore you need to take additional measures, and you basically have two options
to ensure that the traffic demand and bandwidth accounting (TE bandwidth reserva‐
tions) are aligned:

• Limit the traffic entering TE tunnels (comparable to using football game ticket
checks) to match the requested bandwidth.

• Adjust TE tunnels bandwidth reservations to match the traffic demand (compa‐
rable to allocating more tickets for the football game).

This chapter will soon dive deep into the second model. Regarding the first model, as
of this writing, it is implemented by Junos but not by IOS XR. Here is the Junos syn‐
tax:

Example 14-18. Automatic LSP policing configuration on PE1 (Junos)

protocols {
    mpls auto-policing class all drop;
}

This feature assigns policers to LSPs that automatically match each of the LSPs’
reserved bandwidth.
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TE Auto-Bandwidth
So far in this chapter, all of the examples have relied on static bandwidth constraints.
However, traffic patterns and bandwidth utilization are extremely dynamic. The rest
of this chapter looks at ways to adapt the LSP layout based on the actual traffic.

Introduction to Auto-Bandwidth
As already mentioned, it is possible to adapt bandwidth reservations to the actual
traffic demand. This is obviously gentler to traffic than admission control.

Doing it manually is not an option for large networks with thousands of LSPs, oscil‐
lating traffic patterns, and changing service demands. Therefore, it’s better to use
automation for implementing adjustments. Two building blocks are required:

• Traffic rate measurements per LSP (already described).
• Periodic adjustments of RSVP-TE bandwidth reservations based on the meas‐

ured traffic rates. This feature is called auto-bandwidth.

If a bandwidth adjustment is needed, the ingress PE takes into account the new band‐
width and runs CSPF again. If CSPF succeeds, the ingress PE resignals the LSP
according to new path computation.

Auto-bandwidth is an asynchronous process. Ingress Label Edge
Routers (LERs) are distributed across the network and typically
perform their own calculations and bandwidth adjustments, at
their own timing.

If LER-1 performs a bandwidth adjustment, it can influence the next adjustment per‐
formed by LER-2. There is even a risk of “collision” when the two LERs try to simul‐
taneously reserve resources on the same link. Although real experience in large
providers shows that auto-bandwidth is robust and converges fine, it is also an
opportunity for a central controller to bring synchrony to this process.

Both Junos and IOS XR support auto-bandwidth, but as usual, the terminology and
the implementation details are different. The following subsections list the most
important auto-bandwidth parameters for both vendors. Take the time to carefully
read this short “user guide” because these concepts are mandatory to understand the
practical example.

Collection (sampling) interval

Junos
set protocols mpls statistics interval <seconds>
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IOS XR
mpls traffic-eng auto-bw collect frequency <minutes>

This timer controls how often the router collects traffic rates for every LSP that has
the auto-bandwidth feature turned on. These measurements, called bandwidth sam‐
ples, are traffic averages calculated for the collection interval. They are stored in an
internal database for MPLS statistics (in Junos, it is a logfile whose properties you can
tune).

Application (adjustment) interval

Junos
set protocols mpls label-switched-path <name> auto-bandwidth adjust-

interval <seconds>

IOS XR
interface tunnel-te<id> auto-bw application <minutes>

Typically, the adjustment interval is a multiple of the sampling interval; so several
samples are collected for the LSP within each adjustment interval. When the adjust‐
ment timer expires, there is an adjustment event. The router looks at all of the sam‐
ples that have been collected within the last adjustment interval and chooses the one
with a maximum value: the maximum bandwidth sample. This value is compared to
the currently signaled LSP bandwidth and this comparison may cause the RSVP-TE
LSP to be resignaled in order to update the reserved bandwidth. Whether this update
takes place depends on whether the bandwidth has changed enough (see the follow‐
ing parameter).

Application (adjustment) threshold

Junos
set protocols mpls label-switched-path <name> auto-bandwidth adjust-

threshold <percent>

IOS XR
interface tunnel-te<id> auto-bw adjustment-threshold <percent> min

<kbps>

This is defined as a percentage of the current tunnel’s reserved bandwidth. In IOS XR,
optionally, you also can specify an absolute bandwidth difference.

At the end of each adjustment interval, the router compares the following two values:

• The currently reserved LSP bandwidth
• The maximum bandwidth sample from the expired adjustment interval
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If the difference is larger than the configured thresholds, the LSP is resignaled with a
new bandwidth value that equals the maximum bandwidth sample.

It is assumed that you understand the connection between applica‐
tion and adjustment, and collection and sampling, from this point
on.

Overflow detection

Junos
set protocols mpls label-switched-path <name> auto-bandwidth adjust-

threshold-overflow-limit <number>

IOS XR
interface tunnel-te<id> auto-bw overflow threshold <percent> min

<kpbs> limit <number>

If the rate of the traffic entering an LSP drastically increases, the LSP bandwidth
should be resized quickly, without having to wait for the expiry of an adjustment
interval.

At the end of each sampling interval, the router compares the following two values:

• The currently reserved LSP bandwidth.
• The average bandwidth sample from the expired sampling interval.

If the difference is larger than the configured thresholds, the current sample is con‐
sidered an overflow sample. After a configurable number of consecutive overflow
samples, the adjustment interval prematurely ends. An adjustment event takes place
and the router resignals the LSP with a new bandwidth value that equals the maxi‐
mum bandwidth sample. This configurable number of consecutive overflow samples
is called an overflow limit.

For overflow detection, Junos reuses the threshold parameter (percentage) specified
for adjustment thresholds, whereas with IOS XR, you can specify separate parame‐
ters.

Underflow detection

Junos
set protocols mpls label-switched-path <name> auto-bandwidth adjust-

threshold-underflow-limit <number>
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IOS XR
interface tunnel-te<id> auto-bw underflow threshold <percent> min

<kpbs> limit <number>

This is similar to overflow detection, but it works in the opposite direction. When the
traffic rate entering the tunnel significantly lowers within the current adjustment
interval, the tunnel bandwidth can be decreased automatically without waiting for the
current adjustment interval to expire.

Requested bandwidth minimum and maximum limits

Junos
set protocols mpls label-switched-path <name> auto-bandwidth

minimum-bandwidth <bps> maximum-bandwidth <bps>

IOS XR
interface tunnel-te<id> auto-bw bw-limit min <kbps> max <kbps>

The auto-bandwidth feature can dynamically change LSP bandwidth reservations
within certain limits. These commands set the limits.

Auto-Bandwidth in Action
The meaning of all these auto-bandwidth parameters might be difficult to understand
at first glance, so let’s discuss the example presented in Figure 14-3.

Let’s assume the following parameters:

• Collection (sampling) interval: 2 minutes (120 seconds)
• Application (adjustment) interval: 20 minutes (1200 seconds) → 10 times the col‐

lection (sampling) interval
• Requested minimum and maximum bandwidth: 1 kbps and 10 Mbps
• Adjustment threshold: 10%, minimum 0.1 Mbps
• Overflow threshold: 10%, minimum 0.1 Mbps
• Overflow limit: 3
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Figure 14-3. Auto-bandwidth in action

These timers are set quite aggressively for testing purposes, but
they are not suitable for a scaled production environment.

Also, let’s assume that the tunnel has already been established for some time, so there
are some traffic rate samples collected before (not shown in the Figure 14-3). There is
some (around 4.7 Mbps) existing bandwidth reservation already in place.

Figure 14-3 begins with the six last traffic rate samples from the first application
interval. Each sample is collected every 2 minutes, so here you see the last 12 minutes
(out of 20) from this application interval. Each collected sample is an average rate of
traffic entering the monitored LSP. The average is calculated over the sampling inter‐
val (2 minutes).

Now, the sample at T=8 is the highest, with around 4.0 Mbps (let’s assume that the
not-visible four samples from the first adjustment interval are below 4.0 Mbps, too).
The first application interval expires slightly after T=12. The bandwidth difference
between the current bandwidth reservation (around 4.7 Mbps) and the maximum

564 | Chapter 14: TE Bandwidth Reservations



bandwidth sample (around 4.0 Mbps) is higher than the configured adjustment
threshold (10% and 0.1 Mbps). Further, 4.7 Mbps is within the configured minimum
and maximum (1 and 10 Mbps) limits. Therefore the router resignals the LSP,
requesting around 4.0 Mbps bandwidth reservation only.

In the second application interval, the 10 bandwidth samples are collected again.
Note that samples at T=22 (BW≈4.7) and T=24 (BW≈5.0) are above these two values:

• 4.1 x 110% = 4.4, the current bandwidth reservation adjusted to the 10% thresh‐
old.

• 4.0 + 0.1 = the current bandwidth reservation plus the minimum overflow differ‐
ence.

These two samples are therefore considered as overflow samples.

However, the next sample (BW≈4.3), at T=26, is back below the overflow threshold.
Therefore it is a standard sample. Because the configured overflow limit requires
three consecutive overflow samples, the overflow-based bandwidth adjustment is not
triggered. The bandwidth is adjusted based on the highest sample (T=24, BW≈5.0)
only after T=32, when the configured application interval ends.

In the third application interval, the sample at T=38 is higher (BW≈5.3) than the cur‐
rent bandwidth reservation (BW≈5.0). However, it doesn’t cross the 10% overflow
threshold; thus, it is not high enough to be considered as an overflow sample. The
next three samples (T=40, T=42, and T=44), however, are well above the overflow
threshold. Because three consecutive overflow samples are collected, the router
doesn’t wait for the application timer to expire (after T=52). Instead, it prematurely
expires the timer, resignals the bandwidth (based on the highest sample: T=44,
BW≈9.0) reservation, and starts the new application interval immediately. Therefore,
the rapid increase in bandwidth demand can be quickly addressed with bandwidth
reservation resignaling, without the need to wait for the application interval to finish.
Note, in this case, that if the bandwidth sample at T=44 were more than 10 Mbps,
only 10 Mbps would be resignaled, due to the configured maximum bandwidth limit
of 10 Mbps.

In the fourth application interval, only the first sample (T=46) is (slightly) higher
than the current bandwidth reservation. All other samples are lower. However,
because the difference between the first (maximum) sample and the current band‐
width reservation is small (less than the configured adjustment interval, which is
10%), when the application interval ends, the bandwidth is not resignaled. This helps
to keep the RSVP-TE signaling load low, as the unimportant bandwidth changes don’t
trigger the signaling.

It is worth noting that in the fourth application period you can see rapid bandwidth
decreases of traffic flowing through the monitored LSP. However, this doesn’t trigger
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any bandwidth resignaling, because the underflow detection (similar to overflow
detection) is not configured. If underflow detection had been configured with similar
parameters to those used for overflow, the bandwidth would have been resignaled
after T=54, following three consecutive underflow samples (T=50, T=52, T=54).

Auto-Bandwidth Configuration
That’s enough for the extended theory—let’s get into the lab now to configure auto‐
matic bandwidth adjustments in the network for all LSPs. Example 14-19 and
Example 14-20 assume that the entire configuration discussed in this chapter (band‐
width reservations, LSP statistics, and LSP policing) is already removed before pro‐
ceeding.

Example 14-19. Auto-bandwidth configuration on PE1 (Junos)

1     groups GR-LSP {
2         protocols mpls label-switched-path <*> {
3             auto-bandwidth {
4                 adjust-interval 1200;
5                 adjust-threshold 10;
6                 minimum-bandwidth 1k;
7                 maximum-bandwidth 10m;
8                 adjust-threshold-overflow-limit 3;
9                 resignal-minimum-bandwidth;
10    }}}
11    protocols mpls {
12        apply-groups GR-LSP;
13        statistics {
14            file mpls.stat size 100m files 10;
15            interval 120;
16            auto-bandwidth;
17    }}

Example 14-20. Auto-bandwidth configuration on PE2 (IOS XR)

1     group GR-LSP
2      interface 'tunnel-te.*'
3       auto-bw
4        bw-limit min 1 max 10000
5        overflow threshold 10 min 100 limit 3
6        adjustment-threshold 10 min 100
7        application 20
8     end-group
9     !
10    apply-group GR-LSP
11    !
12    mpls traffic-eng
13     auto-bw collect frequency 2
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You can check that this configuration matches the parameters listed before
Figure 14-3.

This book’s tests successfully achieved Junos and IOS XR interoperable auto-
bandwidth.

Auto-Bandwidth Deployment Considerations
Both Junos and IOS XR use similar algorithms for automatic, periodic adjustments in
bandwidth reservations. In the case of significant changes in detected traffic volume,
both support very similar overflow and underflow detection mechanisms, to prema‐
turely adjust reserved bandwidth without the need to wait for the application interval
to end.

But in what scenarios is auto-bandwidth deployed? In many cases, auto-bandwidth is
deployed in combination with preemption. You mark some LSPs (e.g., carrying voice
or IPTV traffic) as important (numerically lower-priority values) and some other
LSPs (e.g., carrying best-effort Internet traffic) as less important (numerically higher-
priority values). For each LSP, you measure and periodically adjust the bandwidth
reservation by using auto-bandwidth.

Now, CSPF tries to establish each LSP based on the TE metrics (shortest path to the
destination), but it takes into account the bandwidth constraints enforced by auto-
bandwidth. If there is enough unreserved bandwidth available on all the links on the
shortest path, all of the LSPs will follow the shortest path. If there is not enough unre‐
served bandwidth, some LSPs will be placed over longer paths to the destination,
where bandwidth is available. Which ones? Less-important LSPs. This all happens
dynamically, without the need for user intervention. If bandwidth for some of the
important LSPs increases, these LSPs will be able to kick-out (thanks to the config‐
ured priority levels) less-important LSPs from the shortest path. Less-important LSPs
will be rerouted elsewhere in the network. And the reverse is also true. When the
bandwidth used by important LSPs decreases, less-important LSPs might be placed
back on the shortest path.

Another application of auto-bandwidth is load-balancing over equal or unequal-cost
multipaths. For example, suppose that you might have multiple (not necessarily equal
cost) paths available between PE-X and PE-Y, each path with a capacity of 10G, and
you want to transport 15G worth of traffic between PE-X and PE-Y. You cannot
transport it by using a single LSP, but you can create multiple LSPs and the ingress PE
(PE-X) can perform load-balancing of traffic between the multiple LSPs. The auto-
bandwidth feature will ensure that these multiple LSPs will be spread across multiple
available paths if the bandwidth on a single path is not sufficient.

You can do load balancing, combined with auto-bandwidth, manually, so you define
how many LSPs should be established between PE-X and PE-Y in the configuration.
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However, in large networks, with dynamically changing traffic patterns, this would be
difficult from both a design and operation perspective. Therefore, Junos offers the
next level of automation here; you not only measure and adjust LSP bandwidth reser‐
vations automatically, but you also increase or decrease the number of LSPs between
two endpoints automatically. Let’s move on to this feature, which is called Dynamic
Ingress LSP Splitting/Merging, which we’ll see in the next section.

As of this writing, IOS XR didn’t support the Dynamic Ingress LSP
Splitting/Merging feature yet, so the examples only feature Junos.

Dynamic Ingress LSP Splitting/Merging
Dynamic Ingress LSP Splitting/Merging is based on RSVP-TE extensions defined in
draft-kompella-mpls-rsvp-ecmp: Multi-path Label Switched Paths Signaled Using
RSVP-TE. This draft introduces the new RSVP Association Object, which allows asso‐
ciating multiple child LSPs, called member LSPs, with a single parent LSP, called a
container LSP. These are all Point-to-Point (P2P) LSPs: there is load balancing and
not replication.

Figure 14-4 illustrates this concept. It is similar to Ethernet Link Aggregation Groups
(LAG, IEEE 802.3ad), for which multiple physical Ethernet links are bundled together
to make a single, aggregated Ethernet interface, consisting of multiple Ethernet link
members. Now, members are LSPs, and the bundle is a container LSP.

Figure 14-4. RSVP-TE multipath
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As in Ethernet LAG, the ingress PE can load-balance the traffic across multiple mem‐
ber LSPs. Also like in Ethernet LAG, traffic is not always perfectly distributed
between the members: this is an inherent limitation of hashing and load balancing.

You can place member LSPs over different paths across the network, so the traffic
load between two endpoints (PE1 and PE3, in the example) can be spread across dif‐
ferent links in the network. In the example topology presented in Figure 14-4, only
the PE1→P1 link carries all three member LSPs. Some of the links carry two member
LSPs, whereas most of the links carry only single member LSPs. The distribution of
member LSPs is automatic, and greatly depends on the requested bandwidth of each
LSP, and the bandwidth available for RSVP reservations on each link.

Dynamic Ingress LSP Splitting/Merging—Configuration
That’s the theory. Now let’s again get into the lab and remove the current PE1→PE3
LSP configuration from PE1, and then configure PE1 to use a container LSP, instead
(see Example 14-21).

Example 14-21. PE1→PE3 container LSP configuration (Junos)

1     protocols mpls {
2         label-switched-path LSP-TEMPLATE {
3             template;
4             least-fill;
5             adaptive;
6             auto-bandwidth {
7                 adjust-interval 600;
8                 adjust-threshold 10;
9                 minimum-bandwidth 1k;
10                maximum-bandwidth 10m;
11                adjust-threshold-overflow-limit 3;
12                resignal-minimum-bandwidth;
13            }
14        }
15        container-label-switched-path PE1--->PE3 {
16            label-switched-path-template LSP-TEMPLATE;
17            to 172.16.0.33;
18            splitting-merging {
19                maximum-member-lsps 4;
20                minimum-member-lsps 1;
21                splitting-bandwidth 4m;
22                merging-bandwidth 2m;
23                normalization normalize-interval 1200;
24    }}}

Notice that instead of label-switched-path PE1--->PE3, you now have container-
label-switched-path PE1--->PE3 (line 15). Likewise, the operational commands
begin with show mpls container-lsp.
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You can create templates for container LSPs (lines 2 through 14) describing common
LSP characteristics, including auto-bandwidth parameters or other TE constraints.
LSP-TEMPLATE is not a standard LSP definition: it includes the keyword template
(line 3) instead of the keyword to. The template can be used later under the container
LSP configuration stanza (line 16) so that the dynamically created member LSPs can
inherit the parameters from the template.

Dynamic Ingress LSP Splitting/Merging in Action
Figure 14-4 shows a real lab test performed during this book’s writing. The traffic
generator was sending an average of 8.0 Mbps, but this value was fluctuating a bit. At
the time the picture was taken, the container LSP PE1→PE3 was transporting a total
7.99 Mbps of traffic, distributed across its member LSPs. Each of these member LSPs
actually transported a different traffic rate due to the intrinsic imperfection of load
balancing. So if the instantaneous bandwidth was 7.99 Mbps, why are there three
member LSPs? Let’s answer this question fully.

Example 14-21 contains a completely new configuration stanza that controls the LSP
splitting/merging behavior (lines 18 through 23):

• Minimum (1) and maximum (4) number of member LSPs within a container LSP
(lines 19 and 20)

• Minimum (merging-bandwidth 2m) and maximum (splitting-bandwidth 4m)
bandwidth of a single member LSP (lines 21 and 22) enforced during each nor‐
malization event

• Normalization interval duration in seconds (line 23): 1200 seconds or 20
minutes.

At the end of each normalization interval, the system decides if the existing member
LSPs should be merged or split. Figure 14-5 provides a correlation between the vari‐
ous intervals (auto-bandwidth sampling interval, auto-bandwidth adjustment inter‐
val, and LSP splitting/merging normalization interval) used in this dynamic process.
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Figure 14-5. Interval correlations in dynamic LSP splitting/merging

Given the parameters from Example 14-21, and with a current aggregate bandwidth
of 7.99 Mbps, there are two options:

• 3 (member LSPs) x 2.66 Mbps (each member LSP) approximately
• 2 (member LSPs) x 3.99 Mbps (each member LSP) approximately

Both options are valid (the number of member LSPs is between 1 and 4, and the
member LSP’s bandwidth is between 2 and 4 Mbps). Here, the second option would
normally be preferred because it requires the lowest number of member LSPs. How‐
ever, there are three member LSPs. Why? Because the traffic generator was sending 8
Mbps on average, and one of the bandwidth samples collected during the last adjust‐
ment interval resulted in an aggregate of 8.01 Mbps.

Dynamic bandwidth calculations for splitting/merging are made according to the
maximum bandwidth samples collected during the last normalization interval. With
the parameters in Example 14-21, the only way to distribute 8.01 Mbps is to have
three member LSPs.

Now imagine that the traffic generator brings down the traffic rate from 8 Mbps to
7.5 Mbps. After the next normalization interval (2 minutes) fully expires, the maxi‐
mum bandwidth sample is around 7.5 Mbps and there are two options to distribute
this traffic:

• 3 (member LSPs) x 2.50 Mbps (each member LSP)
• 2 (member LSPs) x 3.75 Mbps (each member LSP)
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Both options are valid, but the second option will be used because this is the option
with the lowest number of member LSPs. At this point, the container LSP brings one
member LSP down and resignals the two other member LSPs with 3.75 Mbps.

Now imagine that the average bandwidth goes up to 15 Mbps. In this case, one simple
LSP would never be able to reserve all the bandwidth because the links’ maximum
reservable bandwidth is 10 Mbps. Only a container LSP with four member LSPs
would satisfy the requirements. This is a key benefit of the new model.

Dynamic Ingress LSP Splitting/Merging and Auto-Bandwidth
Normalization (splitting or merging) starts assuming perfect load balancing; thus, the
bandwidth initially requested during the normalization event is equal on all member
LSPs. Then, standard auto-bandwidth mechanisms can further adjust the bandwidth
reservation on each member LSP, based on the traffic statistics collected separately for
each member LSP. As already discussed in “TE Auto-Bandwidth” on page 560 this
automatic adjustment can be:

• A periodic bandwidth adjustment, which is separately tracked for each member
LSP.

• An ad hoc bandwidth adjustment, if traffic volume inside the member LSP sig‐
nificantly changes and overflow/underflow detection is enabled.

As of this writing, overflow/underflow detection mechanisms for the LSP splitting/
merging feature were not implemented in Junos. Therefore, LSP normalization (split‐
ting or merging) occurred only at scheduled intervals, without the possibility for
faster reaction in case of significant changes in traffic volumes. However, you can def‐
initely adjust member LSPs’ bandwidth upon an overflow/underflow condition.
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CHAPTER 15

Centralized Traffic Engineering

All the TE models discussed so far are distributed. In Chapter 13 and Chapter 14,
Label Edge Routers (LERs) signal Label-Switched Paths (LSPs) by matching the Traf‐
fic Engineering Database (TED) against a set of locally defined constraints.

This chapter explores a totally different paradigm. Although LERs are still allowed to
define LSPs on their own, the central controller is also capable of defining LSPs. A
basic requirement for such a controller is to have an accurate and up-to-date view of
the link-state database. To get that view, the controller establishes BGP sessions to one
or more LSR/LER devices. Through these sessions, it receives link-state prefixes
(BGP-LS NLRI). This is good due to the scalable and multihop nature of BGP.

LERs always compute the TED locally and according to the dis‐
tributed link-state database. This task is not (and should not be)
centralized.

As soon as it has the TED view, the controller can perform path computations and
ask the different LERs of the network to signal, resignal, or tear down LSPs in a pre‐
cise manner. The controller could do that by accessing the LER configuration via Net‐
conf or other similar mechanism, but this is a heavy approach. Using a protocol
abstraction to signal LSPs on the fly is a more scalable strategy. Such a protocol exists
and it’s called Path Computation Element Protocol (PCEP).

This model might remind you of OpenFlow, but there are some key differences. First,
an LSP can easily transport millions or billions of flows. Using a centralized program‐
ming approach for entities such as LSPs, which are very efficient forwarding aggrega‐
tors, is more than viable. Second, this is a pure control-plane solution: there is no
“punting” of transit traffic from the LERs to the controller.
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BGP Link-State
BGP Link-State (BGP-LS), also known as BGP-TE (for Traffic Engineering), is a new
BGP address family whose main usage is described in draft-ietf-idr-ls-distribution:
North-Bound Distribution of Link-State and TE Information using BGP. It is supported
both in Junos and IOS XR and it is encoded as: AFI=16388, SAFI=71.

This book describes only the Junos implementation of BGP-LS.

In Example 15-1, P1 establishes a BGP-LS session to a northbound controller. The
IGP that runs in the network is IS-IS and it has the TE extensions turned on by
default.

Example 15-1. BGP link-state configuration—P1 (Junos)

1     protocols {
2         bgp {
3             group NORTH-CONTROLLER {
4                 type internal;
5                 local-address 10.255.11.1;
6                 family traffic-engineering {
7                     unicast;
8             }}
9             export PL-ANNOUNCE-TED;
10            neighbor 10.255.10.2;
11        }
12        mpls traffic-engineering database import policy PL-ACQUIRE-TED;
13    }}
14    policy-options {
15        policy-statement PL-ANNOUNCE-TED {
16            term ISIS {
17                from {
18                    protocol isis;
19                    family traffic-engineering;
20                }
21                then accept;
22            }
23        }
24        policy-statement PL-ACQUIRE-TED {
25            term ISIS {
26                from protocol isis;
27                then accept;
28    }}}
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Example 15-2 shows how the topology from Figure 15-1 (presented later, in “PCE
Implementations” on page 576) is encoded in BGP-LS NLRI.

Example 15-2. BGP link-state NLRI—P1 (Junos)

1     juniper@P1> show route advertising-protocol bgp 10.255.10.2
2
3     lsdist.0: 36 destinations, 36 routes (36 active, ...)
4
5     NODE { AS:65000 ISO:1720.1600.0001.00 ISIS-L2:0 }/1152
6     NODE { AS:65000 ISO:1720.1600.0002.00 ISIS-L2:0 }/1152
7     NODE { AS:65000 ISO:1720.1600.0003.00 ISIS-L2:0 }/1152
8     NODE { AS:65000 ISO:1720.1600.0004.00 ISIS-L2:0 }/1152
9     NODE { AS:65000 ISO:1720.1600.0011.00 ISIS-L2:0 }/1152
10    NODE { AS:65000 ISO:1720.1600.0022.00 ISIS-L2:0 }/1152
11    LINK { Local { AS:65000 ISO:1720.1600.0001.00 }.{ IPv4:10.0.0.1 }
12           Remote { AS:65000 ISO:1720.1600.0011.00 }.{ IPv4:10.0.0.0 }
13           ISIS-L2:0 }/1152
14    LINK { Local { AS:65000 ISO:1720.1600.0011.00 }.{ IPv4:10.0.0.0 }
15           Remote { AS:65000 ISO:1720.1600.0001.00 }.{ IPv4:10.0.0.1 }
16           ISIS-L2:0 }/1152
17
18    /* 28 more links skipped */

The two links in lines 11 through 16 are actually unidirectional half-links. They are
the two directions of the first P1-PE1 link: P1→PE1 and PE1→P1. IGPs and the TED
also encode half-links, so everything is consistent.

Now that the controller is aware of the topology, let’s see how it can actually control
TE LSPs.

PCEP
RFC 5440 defines the PCEP. It runs over TCP server port 4189. PCEP is a hierarchical
protocol with two roles:

Path Computation Element (PCE)
(Also known as Path Computation Server [PCS]) At the North. Typically a stand‐
alone software controller that runs in a (virtualized or not) x86 architecture. It
acts like a server from the perspective of PCEP. The PCE uses its global view of
the topology and the network resources to centralize path computation and to
globally apply traffic engineering policies. Typically, PCEs are in a cluster for
redundancy.

Path Computation Client (PCC)
At the South. Network devices that are capable of acting like a head-end LER—in
other words, like an ingress PE. PCCs are the ones that actually signal the LSPs in
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the network. They do so by merging the instructions they receive from the PCE
with some optional local configuration.

PCE Implementations
As of this writing, there are several production-ready PCE solutions. Probably the
two most relevant among them are Juniper’s Northstar and Cisco Open SDN Con‐
troller—the latter is based on OpenDaylight. These solutions have evolved from two
previous company acquisitions: Wandl by Juniper, and Cariden by Cisco Systems.

Again, this book is a project and every project has limited resources. One controller
choice must be made for the examples, and for our purposes it is Northstar. However,
this book focuses on technology and there is just one protocol here: PCEP. All ven‐
dors, including Juniper and Cisco, are making sure that they implement PCEP in an
interoperable manner.

Figure 15-1 illustrates this chapter’s topology. There is one PCE and two PCCs: PE1
and PE2 running Junos and IOS XR, respectively. In Northstar, topology discovery
via BGP-LS is performed by a VM that is nested into the Northstar image. This is why
you can see two addresses on the server: 10.255.10.1 for PCEP, and 10.255.10.2 for
BGP.

Figure 15-1. Centralized TE topology
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In this book’s tests, interoperability was successful between North‐
star as a PCE and two PCC operating systems: Junos and IOS XR.

Interaction Between PCE and PCC
Actually, the original definitions of PCE and PCC in RFC 5440 are completely differ‐
ent from those in this book. RFC 5440 describes a model in which the PCC first
requests a path computation from the PCE. The PCE returns the computation results
to the PCC; if the results are positive, the PCC signals the path through the network.

Although RFC 5440 covers a possible paradigm, typical real-life scenarios are differ‐
ent. The operational logic in a service provider is more aligned with the following two
complementary IETF drafts in the standards track:

• draft-ietf-pce-stateful-pce: PCEP Extensions for Stateful PCE.
• draft-ietf-pce-pce-initiated-lsp: PCEP Extensions for PCE-initiated LSP Setup in a

Stateful PCE Model.

These drafts introduce new PCEP messages that enable the two most common use
cases:

• The PCE initiates (on its own) the computation of a path and sends the results to
the PCC, which in turn signals the LSP. In this case, the PCC does not request
anything to the PCE, which takes the initiative in the entire process. This is a
PCE-initiated LSP—even if the actual LSP signaling is ultimately performed by
the PCC.

• The PCC has a locally configured LSP. This is a PCC-initiated LSP. The PCC
sends the LSP details to the PCE. This is important because the PCE needs to
have a global view of every path in the network in order to perform accurate
computations. Optionally, the PCC might decide to delegate the control of these
paths to the PCE.

Both PCC types (Junos and IOS XR) can successfully act as a PCC for PCE-initiated
LSPs, and of course, for PCC-initiated LSPs, too.

PCE-Initiated RSVP-TE LSPs
Figure 15-2 illustrates the early life of a RSVP-TE LSP that is initiated by the PCE.
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Figure 15-2. PCE-initiated RSVP-TE LSPs

If the PCEP session is not established yet, the PCC initiates and completes a TCP
three-way handshake (not shown in Figure 15-2 and Figure 15-3) before exchanging
PCEP Open messages. The purpose of these Open messages is to exchange capabili‐
ties. In this respect, PCEP and BGP are very similar.

When the administrator or the orchestrator defines a new LSP on the PCE, the PCE
calculates an Explicit Route Object (ERO). This ERO is one of the objects included in
the PCEP Initiate message that the PCE sends to the PCC.

In addition to the ERO, the PCEP Initiate message also contains other objects. The
LSP object is particularly important because it contains the PCEP-specific LSP ID
(PLSP-ID), whose non-zero value is assigned by the PCC. The pair [PCC Address,
PLSP-ID] globally identifies an LSP in all PCEP communication.

PCEP PLSP-ID, RSVP-TE Tunnel-ID and RSVP-TE LSP-ID are
totally different concepts. The two latter are fully explained in
Chapter 2 and Chapter 19, especially around Example 19-16. After
successfully signaling a RSVP-TE tunnel, the PCC passes these IDs
(among other RSVP-TE objects) to the PCE via PCEP Report Mes‐
sages.
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Paraphrasing (with minor rewording) draft-ietf-pce-stateful-pce:
Note that the PLSP-ID is a value that is constant for the lifetime of the PCEP session,
during which time there might be different RSVP identifiers (LSP-id, tunnel-id) alloca‐
ted to the RSVP-signaled LSP.

Some objects are shown in Figure 15-2, but not all of them are. Here is a more
exhaustive list:

• The LSP Object includes: an initially null PLSP-ID, certain state flags, and
optional TLVs. These TLVs convey varied information such as the LSP symbolic
name (in Figure 15-2, this name is CENTRAL-1-2-A), or RSVP information and
state such as RSVP IDs, RSVP Errors, LSP Errors, and so on.

• The Endpoint Object simply lists the addresses of the LSP’s head-end and tail-end.
• The Stateful PCE Request Parameters (SRP) Object consists of a sequence number

that is incremented every time the PCE decides to change the properties of the
LSP. It is crucial for statefulness.

• The LSPA Object, where A stands for Attributes, contains administrative group
vectors—exclude any, include any, and include all—as well as the LSP’s Setup and
Hold priorities.

• The Metric Object and the Bandwidth Object are self-explanatory.

Therefore, PCEP Initiate messages include a set of TE constraints combined with the
path computation outcome (the ERO). This is all the information that the PCC needs
to signal the RSVP-TE LSP.

Some PCEP objects have strictly equivalent RSVP objects that are
simply copied into the RSVP Path messages.

After receiving a PCEP Initiate message, the PCC sends a PCEP Report message to
the PCE. This message contains the LSP Object, updated with the following:

• A non-zero (20, in this example) PLSP-ID assigned by the PCC.
• Additional flags. The D (Delegate) flag is especially important. By setting it, the

PCC is informing the PCE: you are in full control of this LSP.

The PCEP Report message also contains an SRP Object, whose value is identical to
the one set by the PCE in the Initiate message. At this point, RSVP-TE signaling
starts; the interpretation of the remainder of Figure 15-2 is left as an exercise for you
to do.
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PCCs send PCEP Report messages periodically. By updating the LSP object, a PCC
can report LSP or RSVP errors to the PCE.

On the other hand, if the PCE needs to dynamically change the properties of an LSP,
it sends a PCEP Update Request to the PCC. All the PCEP messages discussed so far
(Initiate, Report, Update) were defined after RFC 5440 was published. They are
defined in the drafts mentioned earlier in this chapter.

PCC-Initiated RSVP-TE LSPs
Figure 15-3 illustrates the early life of a RSVP-TE LSP that is initiated by the PCC.

Figure 15-3. PCC-initiated RSVP-TE LSPs

The Sync flag is only set in the first set of Report messages. After the PCC has trans‐
mitted all the local LSP information to the PCE, this flag is cleared.

The Delegate flag is optional:

• If it is not set, the PCE has no control of the LSP.
• If it is set, the PCE can change the TE properties of the PCC-initiated LSP, but it

has no way to delete it. The closest thing to deletion that PCE can do is setting
the LSP’s bandwidth to zero.
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PCC Label-Switched Path Signaling
PCEP runs between the controller and the PEs. But at some point the PEs (PCCs)
need to signal and maintain an LSP. Obviously, only those MPLS control plane flavors
that support traffic engineering are available. If you need to refresh basic RSVP-TE
and SPRING concepts, have a look at Chapter 2.

RSVP-TE LSPs
As of this writing, RSVP-TE is the only protocol that is already integrated with PCEP
in shipping code. This protocol truly signals LSPs throughout the network. Indeed,
RSVP-TE maintains hop-by-hop session state for each LSP by periodically sending
Path and Resv messages along the path. Each LSP has its own dynamically learned
label, which typically changes at each hop. As discussed in Chapter 14, RSVP-TE can
reserve bandwidth resources in the network.

SPRING (IGP) TE LSPs
From a TE perspective, SPRING is quite stateless. The ingress PE is the only network
device that is aware of the existence of SPRING-TE LSPs. By stacking several—node,
adjacency—labels, the ingress PE enforces the forwarding path of a traffic-engineered
LSP. Transit LSRs do not keep any per-LSP state.

Whenever you read in this chapter that the PCC signals the path,
assume it is RSVP-TE’s way of thinking. In the SPRING case, the
PCC just locally programs the path: there is no LSP signaling.

Although this has an immediate benefit in terms of control-plane scaling, someone
needs to program the LSP’s labels on the ingress PE. Basically, an additional logic is
required; this logic can be implemented either on the PCC or on the PCE:

On the PCC
SPRING is based on the IGP and both IS-IS and OSPF have TE extensions.
Actually, both SPRING and RSVP-TE look at the same TED. CSPF is protocol-
agnostic and therefore it is identical for both protocols. Conversely, part of the
power of RSVP-TE resides in its capacity to reserve resources along the path.
Because SPRING TE does not create any state on the LSRs, the PCC is not able to
reserve bandwidth. And it cannot signal Setup and Hold priorities, either. This is
where a PCE with a global view becomes handy.

On the PCE
Having a centralized controller that is capable of deciding which LSPs must be
signaled in the network in order to meet TE policies is very powerful in general.
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But in SPRING, it is almost essential. With SPRING, PCCs are unable to reserve
or prioritize network resources and therefore the PCE role becomes more impor‐
tant than in the RSVP-TE case.

This is an emerging feature set that might still being developed as
you read these lines. Check the vendor documentation for the latest
status.

BGP LSPs
There are several emerging applications that are a good potential fit for centralized
BGP-signaled LSPs. Here are some examples where it would make sense to have a
controller:

Single-hop eBGP in large-scale data centers
Every device in the fabric is configured with a different AS. This approach, which
was discussed in Chapter 2, is especially powerful when BGP also advertises a
transport label (BGP-LU) and the servers are MPLS-capable. These servers are
typically able to deal with MPLS encapsulation but they do not implement a full
MPLS control plane yet; hence, the need for a controller.

BGP for Egress Peer Engineering (EPE)
This use case is discussed in Chapter 13. There are basically two different flavors:
one based on eBGP-LU, and the other based on BGP SPRING extensions. In
combination with a controller, it would allow the centralized logic to choose the
egress hop out of the local AS.

This is a fast-evolving domain that will likely produce several different prototypes
until it converges into mainstream-accepted solutions and ultimately in shipping
code.

PCC Configuration
The baseline PCC configuration is very simple.

Example 15-3 shows the Junos configuration at PE1.

Example 15-3. PCC baseline configuration—PE1 (Junos)

1     protocols {
2         pcep {
3             pce myPCE {
4                 local-address 172.16.0.11;
5                 destination-ipv4-address 10.255.10.1;
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6                 destination-port 4189;
7                 pce-type active stateful;
8                 lsp-provisioning;
9             }
10        }
11        mpls {
12            lsp-external-controller pccd;
13        }
14    }

These commands are only available if the JUNOS SDN Software Suite is installed,
which you can verify by using the command show version. The name pccd in line 12
is not arbitrary: it is the name of the Junos daemon that implements the PCC logic.

You can check at any time the status of the PCEP connection by using the Junos
operational command show path-computation-client active-pce.

And here is the IOS XR configuration at PE2:

Example 15-4. PCC baseline configuration—PE2 (IOS XR)

1     ipv4 unnumbered mpls traffic-eng Loopback0
2     !
3     mpls traffic-eng
4      pce
5       peer source ipv4 172.16.0.22
6       peer ipv4 10.255.10.1
7       !
8       stateful-client
9        instantiation
10       report
11      !
12     !
13     auto-tunnel pcc
14      tunnel-id min 1 max 99
15     !
16    !

With this configuration, PE2 can signal PCE-initiated LSPs (line 9) and report PCC-
initiated LSPs (line 10) to the PCE.

You can check at any time the status of the PCEP connection by using the IOS XR
operational command show mpls traffic-eng pce peer.

PCC Templates for PCE-Initiated LSPs
PCCs signal PCE-initiated LSPs according to:

• The ERO and other properties decided by the PCE.
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• Additional properties determined by the local configuration of the PCC.

Merging the PCE instructions with the PCC local configuration can result in a con‐
flict. For example, the PCE and the PCC might want to reserve 1 Mbps and 10 Mbps
bandwidth, respectively. In this case, the PCE takes precedence, so the PCC signals a
RSVP-TE LSP with 1 Mbps of bandwidth reservation.

Now suppose that the PCE does not specify a given property of the LSP. That prop‐
erty can be set by the PCC’s local configuration successfully because there is no con‐
flict.

Example 15-5 shows how to do this in Junos.

Example 15-5. PCC templates for PCE-initiated LSPs—PE1 (Junos)

1     protocols {
2         mpls {
3             lsp-external-controller pccd {
4                 label-switched-path-template {
5                     PCC-DEFAULT-TEMPLATE;
6                 }
7                 pce-controlled-lsp PCS-AUTOBW-* {
8                     label-switched-path-template {
9                         AUTOBW-TEMPLATE;
10                    }
11                }
12            }
13            label-switched-path PCC-DEFAULT-TEMPLATE {
14                template;
15                link-protection;
16            }
17            label-switched-path AUTOBW-TEMPLATE {
18                template;
19                link-protection;
20                auto-bandwidth {
21                    adjust-interval 300;
22                    adjust-threshold 0;
23                    minimum-bandwidth 100k;
24                    maximum-bandwidth 500k;
25    }}}}

When it receives a PCEP Initiate message, the PCC looks at the LSP name, and
according to the previous configuration, it does the following:

• If the LSP name begins with the pattern PCS-AUTOBW-, it adds two properties
to the LSP: link-protection (explained in Chapter 19) and auto-bandwidth
(discussed in Chapter 14). This is according to lines 7 through 10 and 17 through
25 in Example 15-3.
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• If the LSP name does not match any named template configuration, like in line 7,
the default template is executed and the LSP only gets the additional link-
protection property. This is according to lines 4 through 6 and 13 through 16.

Lines 13 through 25 define templates, not real LSPs. The template
and the to <address> statements are mutually exclusive under a
given label-switched-path configuration.

Delegating PCC-Initiated LSPs to the PCE
Every PCC sends PCEP Report messages to the PCE including both of the following:

• The PCE-Initiated LSPs whose head-end is the local PCC. These have the D-flag
set.

• The PCC-Initiated LSPs whose head-end is the local PCC. These are locally con‐
figured and by default do not have the D-flag set, so they are not delegated.

This is how you can delegate a locally initiated LSP in Junos.

Example 15-6. Delegation of a PCC-Initiated LSP—PE1 (Junos)

1     protocols {
2         mpls {
3             label-switched-path LOCAL-1-2-A {
4                 to 172.16.0.22;
5                 lsp-external-controller pccd;
6             }
7         }
8     }

With this configuration, the D-flag is set as shown in Figure 15-3.

The following example presents the equivalent configuration in IOS XR:

Example 15-7. Delegation of a PCC-initiated LSP—PE2 (IOS XR)

1     interface tunnel-te11
2      ipv4 unnumbered Loopback0
3      signalled-name LOCAL-2-1-A
4      autoroute announce
5      !
6      destination 172.16.0.11
7      record-route
8      path-option 1 dynamic
9      pce
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10      delegation
11     !
12    !

PCE Use Cases
You could claim that one advantage of having a PCE is that it has a global view of the
topology and its resources. Well, every PCC does, as well! The main power of the
PCE is that it can act in a centralized manner upon every single PCC in the network.
Vendors are implementing powerful statistic collection mechanisms that shall soon
allow for centralized auto-bandwidth. How cool is that? Instead of having every PCC
taking independent auto-bandwidth decisions, one single entity can take control over
the entire network and avoid the exponentially damped oscillation behavior that you
might observe in distributed auto-bandwidth. But before this cool feature is available,
let’s see some other use cases that are implemented by centralized PCEs.

Extending the Link Attributes Palette
IGP TE extensions basically encode per-priority bandwidth reservation and availabil‐
ity, link coloring (administrative groups), and Shared Risk Link Group (SRLG). This
is very powerful, but what if you want to add more properties to a link? That would
require implementing the corresponding extensions in IS-IS and OSPF. New stand‐
ards and implementations: a long cycle before the extensions are available in produc‐
tion networks.

Now suppose that you add a PCE to the network and it discovers the entire topology
via BGP-LS. The PCE has visibility of all the link attributes encoded by the routing
protocols, but in addition it can define its own attributes. Indeed, the PCE is already
the central entity responsible for path computation: whenever it binds a new attribute
to a link, this attribute remains local to the PCE database and does not need to be
advertised to the rest of the network. The boss has all the info.

In Figure 15-4, all the links have the same IGP metric: 10. On the other hand, they
have a different cost associated (1, 50, 300). The link cost is just an example of PCE-
local link attribute. It represents the economic price of using a given link, assuming
that the transport provider responsible for the link is charging for bandwidth utiliza‐
tion. This link attribute is local to the PCE database and is not part of the distributed
TED.
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Figure 15-4. Maximum cost constraint—Northstar

The LSP is configured in Northstar with the following constraints: from PE1 to PE2,
maximum cost 5. There is only one path that satisfies the constraints and it is the one
highlighted in Figure 15-4. As soon as the computation is performed, the PCE
instructs the PCC (PE1, in this case) to signal the LSP, as demonstrated here:

Example 15-8. PCE-initiated LSP—PE1 (Junos)

1     juniper@PE1> show mpls lsp externally-provisioned
2     Ingress LSP: 1 sessions
3     To              From            State     LSPname
4     172.16.0.22     172.16.0.11     Up        PE1-PE2-MaxCost-5
5     Total 1 displayed, Up 1, Down 0

The equivalent command in IOS XR is show mpls traffic-eng pce tunnels.

Other link attributes
Another useful PCE-local attribute is the link delay. You could also add different
delay values to each link and come up with composite constraints such as maximum
delay 700, maximum cost 50, maximum hop count 2. Take a look at Figure 15-4
again: there are no delays defined yet, but suppose that they are all set to 100. Would
any path satisfy all the requirements? The answer is no, and the reasoning is left as an
exercise for you to do.

Let us consider a situation in which multiple paths meet all the constraints: the PCE
must choose one of them. By default, the cumulative IGP metric is the tiebreaker. But
you can configure the PCE to use the minimum-path delay—or other conditions—as
a tiebreaker, too.
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Enhanced LSP Preemption Logic
Let’s look back at Figure 14-1. Suppose that three low-bandwidth LSPs were initially
signaled with different bandwidth reservations:

• PE1→PE3 with a reserved bandwidth of 500 kbps.
• PE2→PE4 with a reserved bandwidth of 700 kbps.
• PE2→P5 with a reserved bandwidth of 700 kbps.

Then, a higher-bandwidth LSP PE2→P6 tries to reserve 9.5 Mbps, but it cannot due
to the way that the three preexisting LSPs are already laid out. Chapter 14 proposed to
give a better setup priority to the PE2→P6 LSP, but as the number of LSPs increases it
is not easy to come up with a policy that fulfills all the needs.

Container LSPs, described in Chapter 14, also provide a good solu‐
tion for this challenge.

Is this a priority-related problem? Not really. In this case, there is space for everyone.
All of the LSPs should have the same priority if the type of traffic that they transport
is, regardless of the volume, equally important.

The new LSP could be signaled if the preexisting LSPs were rearranged or resignaled
to different paths. It is not easy to implement this logic on PCCs: what if several PCCs
decide to rearrange LSPs at the same time? They could come up with conflicting deci‐
sions, and the churn that would be generated is only bound by imagination. The solu‐
tion might require a central point of decision, and that is the PCE.

Diverse Paths
PCEs can easily define an LSP whose primary and secondary (standby) paths are
diverse. There are two possible definitions of diverse:

• The paths have no link in common.
• The paths have no LSR in common. This definition is more demanding, and, if

the topology allows it, results in two paths with just the endpoints (ingress and
egress PE) in common.

You can achieve this at a PCC, too, but it requires playing with administrative groups,
SRLG, or even EROs. With the PCE, it is much more straightforward: the administra‐
tor or the orchestrator requests diverse paths, and the PCE just finds its way.
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Figure 15-5 shows the outcome of the computation of an LSP with diverse primary
and secondary (standby) paths. Because no specific constraint is specified, the two
paths are chosen according to the lowest cumulative IGP metric.

Figure 15-5. Diverse paths—Northstar

One variant of this use case is defining two LSPs such that:

• The primary paths of LSP #1 and #2 are diverse from each other.
• The primary and secondary paths of LSP #1 are diverse from each other.
• The primary and secondary paths of LSP #2 are diverse from each other.

The use cases explained in this chapter are just a small sample of what we can do
today, and a tiny sample of what will be feasible in the near future.
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CHAPTER 16

Scaling MPLS Transport and Seamless MPLS

Today, our industry is experiencing a paradigm shift in service provider (SP) net‐
working: network applications are becoming independent from the transport layers.
Modern, cloud-based SP applications need flexible, intelligent overlay network serv‐
ices and are not well-served by legacy, static, low-layer data transmission.

This trend is driven by many factors:

• Increased demand to bring the service delivery point closer to the user. IP devices
are progressively replacing legacy Layer 2 (L2) network elements, hence parti‐
tioning the L2 domains.

• More “intelligent” features for fast protection available at the IP/MPLS layer that
could replace the corresponding fast protection features of optical networks.

• Shifting of mobile traffic—traditionally delivered over TDM circuits—toward
Ethernet, and subsequently toward IP in 3G (e.g., Universal Mobile Telecommu‐
nications System [UMTS]), or 4G (e.g., Long-Term Evolution [LTE]), or small-
cells networks.

• High-scale data centers shifting to MPLS fabrics and MPLS-enabled servers.

To cope with this demand, increasing the capacity of existing core (or spine) devices
is necessary but not sufficient. The required presence of service endpoints in many
small-range sites also relies on increasing the overall number of MPLS-enabled devi‐
ces in the networks.

As a result of bringing the L3 edge closer to the end user, networks are witnessing the
introduction of many small devices:

• In the edge, routers with a relatively small capacity, albeit rich IP/MPLS feature
set, some of them targeted as small universal access or cell site access devices.
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• In high-scale data centers, servers and hypervisors with a basic MPLS stack.

The universal edge model provides great flexibility in deploying a service. The edge
concept dilutes, and the service termination points can be anywhere in the network.
The provider edge (PE) function is distributed in service endpoints, or service termi‐
nation points. Any device that has a VRF, or that terminates a pseudowire (PW), and
so on links the service with the MPLS transport and becomes a service endpoint. In
some sense, the function is decoupled from the actual location and type of connectiv‐
ity of the device.

As for high-scale data centers, implementing MPLS on the servers might end up cre‐
ating a network with the order of 100,000 MPLS-enabled devices.

Although this MPLS-everywhere approach has many advantages, the introduction of
a large number of devices can be challenging. This is especially true if these devices
are limited by the amount of state that they can handle and program on their for‐
warding plane. Segmentation, hierarchy, and state reduction become key properties
of the designs and mechanisms that can achieve the required control-plane scalability.

Thus, the Software-Defined Networking (SDN) era networks need to be designed
carefully and take into account the control-plane and forwarding-plane scaling
capacity of the devices involved.

This chapter discusses several architectural approaches:

• IP/MPLS scaling with flat LSPs in a single IGP domain (intradomain scaling)
• IP/MPLS scaling with hierarchical LSPs in a single IGP domain
• IP/MPLS scaling with hierarchical LSPs in a network split into multiple IGP

domains (inter-domain scaling)
• IP/MPLS scaling with hierarchical LSPs in an IGP-less network

Scaling an IGP Domain
The maximum size of a single IGP domain with MPLS used for transport depends
mainly on the control-plane capacity of the weakest router participating in the
domain as well as the MPLS transport mechanisms used in the domain. Let’s begin
with the IGP.

In this section, the word domain stands for a single OSPF or IS-IS
area inside an Autonomous System (AS).
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To scale an IGP to potentially the highest possible number of routers in a single IGP
domain, you need to follow five major design principles:

• The IGP should only advertise transport addresses.
— Preferably only the loopback addresses from the local IGP domain should be

injected into the IGP database.
— In addition, link addresses from the local IGP domain can eventually be injec‐

ted into the IGP database. In IS-IS backbones where all the core routers speak
BGP, it is a common practice to advertise the link addresses via BGP instead
of IS-IS. However, OSPF lacks this flexibility, as there is no way to suppress
the advertisement of link addresses with OSPF.

• You should avoid redistribution of external prefixes into the IGP.
— Preferably—apart from the prefixes mentioned previously—no other prefixes

should be distributed via the IGP. For example, customer routes should be
carried via BGP, which is designed for a much higher scalability than IGPs.

— In some cases, a limited number of external prefixes (e.g., a default route,
routes to a management network, or some summary routes) may be redistrib‐
uted in the IGP. This situation, however, should be considered as an excep‐
tion, rather than as rule.

• Prefixes announced via the IGP should be suppressed during flapping. In other
words, the prefix should only be advertised if it is stable. This applies to the following
prefixes:
— Prefixes that are inherited from the interface where the IGP is configured. The

interface prefix is not advertised until the interface has stabilized (as deter‐
mined by a fixed hold timer or by an exponential damping algorithm).

— Prefixes that are eventually redistributed (not recommended, as mentioned
previously) from external protocols (e.g., from BGP, or static). The suppres‐
sion of such prefixes is often questionable and difficult to achieve. Very often,
the network administrator responsible of the redistribution point has no
authority to influence the configuration (in order to implement some sort of
flapping suppression) at the source router where the prefix is originally intro‐
duced.

• IGP packets (both Hello packets and packets distributing link state information)
should be protected with cryptographic authentication (HMAC-MD5, or newer
types of authentication such as different types of HMAC-SHA) to reliably and
quickly detect packet corruption and thus improve IGP stability. Standard IS-IS
checksum, for example, doesn’t cover LSP ID or Sequence Number fields at all.
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• IGP interfaces should run in Point-to-Point (P2P) mode, whenever possible (the
default for Ethernet interfaces is broadcast mode), for more efficient protocol opera‐
tion and an optimized resource usage at the control-plane level.

With these basic design principles, the number of prefixes carried by the IGP is con‐
trolled. All prefixes carried by the IGP are suppressed during flapping; efficient (P2P)
operation mode is in place; and IGP packet corruption is detected quickly and relia‐
bly. These design principles greatly contribute to IGP scalability and stability during
network failures.

Another topic, as outlined in the following sections, is the scaling comparison
between OSPF and IS-IS. Although both protocols are link-state, there are some
small differences that make IS-IS more stable in very large IGP domains.

Scaling an IGP—OSPF
The Link-State Advertisement (LSA) refresh timer (as specified in RFC 2328, Section
B) has a fixed, non-configurable value of 30 minutes (1,800 seconds). Thus, LSAs
cause flooding and Shortest-Path First (SPF) calculations relatively often in large net‐
works.

For example, in a stable network with 600 LSAs, every 3 seconds, on average one LSA
is reflooded. During network instability, these flooding events are even more fre‐
quent.

Junos’ implementation of OSPF uses, by default, 50 minutes (instead of 30 minutes
specified in RFC 2328, Section B) of LSARefreshTime for increased network stability.
This default can be changed by using the set protocols ospf lsa-refresh-

interval command to conform to RFC 2328, if required.

Scaling an IGP—IS-IS
The LSP MaxAge can be approximately 18 times bigger compared to OSPF LSA Max‐
Age timer (1 hour, according to RFC 2328, Section B.), because in IS-IS this timer is
no longer fixed (as described in original specification ISO 10589, Section 7.3.21); it is
configurable (RFC 3719, Section 2.1) up to 65,535 seconds (18.2 hours).

RFC 3719, Section 2.1, further specifies that LSPs must be refreshed at least 300 sec‐
onds before LSP MaxAge timer expires. In Junos, the LSP refresh timer is not config‐
urable, but is always 317 seconds less than the (configurable) LSP MaxAge timer.

In IOS XR, on the other hand, you can explicitly configure both LSP MaxAge and
LSP refresh timer. It is up to the responsibility of the network administrator to con‐
figure timers that comply with RFC 3719.
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Now, for example, in a network with 600 LSPs, when configuring 65,535 seconds for
LSP MaxAge (and 65,218 seconds for LSP refresh) there is on average re-flooding of
one LSP every ~109 seconds, which is ~36 times less frequent than in the correspond‐
ing OSPF case.

Conversely, the ISO 10589 standard describes the periodic retransmission of Com‐
plete Sequence Number PDU (CSNP) packets, which contain the headers (ID,
sequence number, lifetime, and checksum) of all the LSPs in the local IS-IS link data‐
base. Although the standard only mandates this periodic retransmission over LAN
links, Junos additionally performs it over P2P links. This improves the overall net‐
work stability thanks to more robust database synchronization, especially when the
IS-IS LSP distribution graphs are sparse.

The Junos implementation of IS-IS performs a SPF recalculation at
least every 15 minutes for increased reliability.

Increasing the LSP refresh time increases the amount of time that
an undetected link-state database corruption can persist. Thus, it is
important to enable cryptographic authentication to minimize the
risk of corrupting the link-state database.

Scaling an IGP—MPLS Protocols
Inside an IGP domain, the following techniques are available: Source Packet Routing
in Networking (SPRING), Label Distribution Protocol (LDP), Resource Reservation
Protocol (RSVP), or a combination of them.

Scaling an IP/MPLS network within a single IGP domain can depend on the MPLS
transport method used. With SPRING or LDP, the scaling limits are dictated by IGP
itself, rather than by the MPLS transport protocol. So, before reaching any scaling
limits related to SPRING or LDP, you would reach IGP limits that would require
dividing the single IGP domain into several domains (areas, ASs). Such MPLS scaling
architectures based on multiple IGP domains are discussed later in this chapter.

If you use RSVP for MPLS transport (to benefit from a wide range of different pro‐
tection and traffic engineering features), the network scaling limits may be dictated
by RSVP scalability, and not any longer by the IGP. Let’s analyze that in more detail.

Scaling RSVP-TE
The topology illustrated in Figure 16-1 has three layers of routers:
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• Edge (PE) layer: PE1, PE2, PE3, and PE4
• Aggregation (combined PE/P) layer: P1, P2, P5, and P6
• Core (P) layer: P3 and P4

Figure 16-1. Example topology for intra-domain scaling

To provide MPLS-based services (e.g., L3VPN), MPLS transport needs to be estab‐
lished between each pair of routers of the outer (edge or aggregation) layers.

Let’s suppose that RSVP-TE is the only MPLS transport signaling protocol enabled in
the network. PE1 signals LSPs toward all of these routers: PE2, P1, P2, P5, P6, PE3,
and PE4. This is basically a O(n2) scaling problem, as the number of RSVP LSPs in
the network is proportional to the square of the number of endpoints (PE and PE/P
layer, in our example). Based on the example topology, the number of RSVP LSPs that
need to be established is 8*(8 – 1) = 56. Despite the fact that not all LSPs are travers‐
ing all the routers, a proper design needs to take into account possible network fail‐
ures, which would eventually cause more concentration of LSPs after LSP rerouting.
From a scaling perspective, the most affected routers are closer to the center of the
core, because they typically concentrate a high number of transit LSPs.

However, RSVP-TE is a unique protocol, and it can do things that no other protocol
can do; for example, reserving bandwidth for LSPs. This makes it the core MPLS pro‐
tocol for big Internet Service Providers (ISPs). Actually, although these core networks
typically have very powerful Label Edge Routers (LERs)/Label Switch Routers (LSRs),
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the actual number of devices is not extremely high. It is high, but it’s nothing com‐
pared to universal edge and high-scale data center environments, for which there are
many more devices, and these devices have a relatively weaker control plane. That
said, ISPs typically prefer not to have a full RSVP mesh due to the O(n2) scaling prob‐
lem.

There are basically two ways to scale RSVP: on the protocol itself, and with hierarchi‐
cal designs. RSVP is a stateful protocol, and there are tools to optimize the amount of
state and signaling that it can create in large networks with a high number of LSPs.

RSVP-TE Protocol Best Practices
Before discussing hierarchical designs, let’s touch upon basic RSVP features to
enhance scaling (and stability) mechanisms, as described in RFC 2961 - RSVP Refresh
Overhead Reduction Extensions and RFC 2747 - RSVP Cryptographic Authentication.
A well-designed network should use these extensions:

• Refresh Overhead Reduction Extensions (RFC 2961):
— Message bundling (aggregation)
— Reliable message delivery: acknowledgments and retransmissions
— Summary refresh

• RSVP cryptographic authentication (RFC 2747, RFC 3097)

Without RFC 2961 RSVP generates separate messages for every LSP; as you can
imagine, there could be quite a considerable number in very large networks. In addi‐
tion, the delivery of the RSVP message is not acknowledged by the recipient, which
requires a constant refresh of the RSVP state by resending the messages quite fre‐
quently.

RFC 2961 addresses this problem in several manners:

Bundling or aggregating the messages
Standard Path/Resv RSVP messages are bundled into one large message.

Introducing the Summary Refresh concept
Multiple LSP states can be refreshed with a single RSVP message.

Reliable delivery mechanism
ACK, NACK, and retransmissions with exponential timers. These mechanisms
are similar to the reliable delivery used, for example, in OSPF or IS-IS.

Further steps to increase RSVP’s overall stability can also increase its potential scala‐
bility; for example, with the introduction of cryptographic checksums (RFC 2747 and
RFC 3097), which improve the reliability in detecting RSVP message corruption.
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All these features are supported in both Junos and IOS XR, and example configura‐
tions from routers P1 and P2 (Example 16-1 and Example 16-2) are provided for ref‐
erence. Refresh reduction is enabled by default on IOS XR, whereas you need
explicitly enable it on Junos. You need to manually enable cryptographic checksum in
both cases.

Example 16-1. RSVP scaling enhancements on P1 (Junos)

groups {
    GR-RSVP {
        protocols {
            rsvp {
                interface <ge-*> {
                    authentication-key "$9$OyXSIhyM87s2alK2aZU.mO1R";
                    aggregate;
                    reliable;
}}}}}
protocols {
    rsvp {
        apply-groups GR-RSVP;
        interface ge-0/0/2.0;
        interface ge-0/0/3.0;
        interface ge-0/0/4.0;
}}

Example 16-2. RSVP scaling enhancements on P2 (IOS XR)

group GR-RSVP
 rsvp
  interface 'GigabitEthernet.*'
   authentication
    key-source key-chain KC-RSVP
 !
end-group
!
key chain KC-RSVP
 key 0
  accept-lifetime 00:00:00 january 01 1993 infinite
  key-string password 002E06080D4B0E14
  send-lifetime 00:00:00 january 01 1993 infinite
  cryptographic-algorithm HMAC-MD5
!
rsvp
 apply-group GR-RSVP
 interface GigabitEthernet0/0/0/1
 interface GigabitEthernet0/0/0/2
 interface GigabitEthernet0/0/0/3
!
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As of this writing, new Junos versions with additional and signifi‐
cant RSVP scaling enhancements have just been released. This
book does not describe them for timing reasons.

Intradomain LSP Hierarchy
Suppose that you need to satisfy the following four requirements at the same time:

• You need to fully mesh MPLS transport from any PE to any other PE.
• You want to use RSVP-TE due to its unique feature set.
• You do not want to face the O(n2) scaling problem associated to establishing the

full mesh with RSVP-TE LSPs only.
• You do not want to split the IGP domain.

In certain network topologies, it is possible to define an innermost core layer within
the IGP domain—and without splitting the domain. This layer is typically composed
of the most powerful devices in the network and they are a lower number of devices,
thereby easing the O(n2) challenge.

For the Internet service, some ISPs run only RSVP-TE on the innermost core layer
and they tactically perform IP lookups at the edge of this layer. In other words, the
Internet service is only MPLS-aware at the inner core. This can be done with the
Internet service because it is an unlabeled one. For labeled services such as L3VPN or
L2VPN, it is essential to have end-to-end MPLS on the entire domain.

The solution to this challenge is using LSP hierarchy:

• The external core devices establish a full mesh of edge LSPs, which may include
the internal core devices (as endpoints), too. This edge LSP layer can naturally be
built with LDP or SPRING, and with some tricks, also with RSVP-TE (this will be
discussed soon).

• The internal core devices establish a full mesh of core LSPs based on RSVP-TE.
• The edge LSPs are tunneled inside the core LSPs.

You can view the edge and core LSPs as client and server LSPs, respectively.

Let’s look at the different options available to achieve this kind of LSP hierarchy.
These options can coexist. Remember that you can configure several global loopback
addresses on the PEs and create different service planes, each with its own MPLS
transport technology (for more details, go to Chapter 3). Additionally, you can still
signal flat (nonhierarchical) RSVP-LSPs between two edge devices in a tactical man‐
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ner, because you need it for a given service and not for full-mesh connectivity
requirements.

Tunneling RSVP-TE LSPs Inside RSVP-TE LSPs
Pure RSVP-TE LSP hierarchy concepts are described in RFC 4206. Figure 16-2 illus‐
trates the idea with two LSPs:

• A core P1→P5 LSP with two hops: P1→P3 and P3→P5
• An edge PE1→PE3 LSP with three hops only: PE1→P1, P1→P5 and P5→PE3

Figure 16-2. Tunneling RSVP-TE LSPs inside RSVP-TE LSPs

Because P1 and P5 are not directly connected, the core LSP is responsible for tunnel‐
ing the edge LSP, so the P1→P5 path looks like one hop. The inner LSR (P3) is totally
unaware of the edge LSP, reducing the state and signaling that P3 needs to handle. As
for P1 and P5, they keep some edge LSP state, but only for their geographical region.

As of this writing, this model is not supported in IOS XR, and in Junos it is only
implemented for networks using OSPF as the IGP. For this reason, this book does not
cover it in detail.

Tunneling LDP LSPs Inside RSVP-TE LSPs
This model, commonly called LDP tunneling, covers a slightly different case.
Although this time the network design still requires RSVP-based traffic engineering
features in the core, these features are no longer required in the edge.
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Based on the sample topology presented in Figure 16-3, Example 16-3 and
Example 16-4 contain the basic configuration required to implement LDP tunneling
in Junos (P1) and IOS XR (P2) devices. A similar configuration needs to be deployed
on P5 and P6 routers, too. LDP tunneling is currently supported for IS-IS and OSPF
in both operating systems. This example uses IS-IS and the metrics are left to the
default value (10) except on the PE1-PE2 and PE3-PE4 links, where it is set to 100.

Figure 16-3. LDP Tunneling topology

Example 16-3. LDP tunneling configuration at P1 (Junos)

groups {
    GR-LSP {
        protocols {
            mpls {
                label-switched-path <*> {
                    ldp-tunneling;
                }
}}}}
protocols {
    rsvp {
        interface ge-0/0/1.0;
        interface ge-0/0/3.0;
    }
    mpls {
        apply-groups GR-LSP;
        label-switched-path P1--->P2 to 172.16.0.2;
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        label-switched-path P1--->P5 to 172.16.0.5;
        label-switched-path P1--->P6 to 172.16.0.6;
        interface ge-0/0/1.0;
        interface ge-0/0/2.0;
        interface ge-0/0/3.0;
    }
    ldp {
        interface ge-0/0/2.0;
        interface lo0.0;
}}

Example 16-4. LDP tunneling configuration at P2 (IOS XR)

interface tunnel-te1
 signalled-name P2--->P1
 destination 172.16.0.1
!
interface tunnel-te5
 signalled-name P2--->P5
 destination 172.16.0.5
!
interface tunnel-te6
 signalled-name P2--->P6
 destination 172.16.0.6
!
rsvp
 interface GigabitEthernet0/0/0/1
 interface GigabitEthernet0/0/0/3
!
mpls traffic-eng
 interface GigabitEthernet0/0/0/1
 interface GigabitEthernet0/0/0/3
!
mpls ldp
 interface tunnel-te1
  address-family ipv4
 !
 interface tunnel-te5
  address-family ipv4
 !
 interface tunnel-te6
  address-family ipv4
 !
 interface GigabitEthernet0/0/0/2
  address-family ipv4
!

The following major configuration elements can be emphasized from this example:

• RSVP is enabled only on the interfaces toward the core (P routers), and is no
longer enabled on interfaces toward the edge (PE routers).
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• LDP is enabled on the interface toward edge (PE routers) as well as over the
RSVP tunnels. In Junos, you need to explicitly enable LDP on the loopback inter‐
face.

As a best practice, you can also enable LDP on all the IS-IS inter‐
faces, providing a backup MPLS transport mechanism.

When LDP tunneling is enabled, the aggregation routers establish LDP sessions that
are targeted to the remote end of the P→P RSVP LSPs, as visible in Example 16-5 and
Example 16-6. The word “targeted” here means not necessarily between directly con‐
nected neighbors. These sessions make it possible for the routers to exchange the LDP
labels required to establish end-to-end forwarding paths.

Example 16-5. Targeted LDP session on P1 (Junos)

juniper@P1> show ldp session
  Address      State        Connection     Hold time  Adv. Mode
172.16.0.11    Operational  Open             26         DU
172.16.0.2     Operational  Open             25         DU
172.16.0.5     Operational  Open             27         DU
172.16.0.6     Operational  Open             22         DU

Example 16-6. Targeted LDP session on P2 (IOS XR)

RP/0/0/CPU0:P2#show mpls ldp neighbor brief
Peer               Up Time     Discovery  Address  IPv4 Label
-----------------  ----------  ---------  -------  ----------
172.16.0.22:0      1d01h               2        4          10
172.16.0.1:0       1d01h               1        2           9
172.16.0.5:0       00:38:41            1        3           8
172.16.0.6:0       00:38:44            1        7          10

The targeted LDP sessions exchange LDP bindings for the access PEs (PE1, PE2, PE3,
and PE4). A targeted LDP session, viewed as one piece of the LDP end-to-end LSP,
exchanges label bindings to “glue” together other LDP LSP segments. These other
segments are signaled with hop-by-hop LDP sessions outside the RSVP domain.

LDP tunneling in action
Let’s suppose that an IP VPN service is provisioned on all the PEs and, according to
the BGP next hop, a user packet needs to be label-switched from PE1 to PE4.
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The key piece is the following label exchange. P1 learns from P6 the label value 16022
to reach the loopback of PE4 (172.16.0.44).

Example 16-7. FEC binding over targeted LDP on P1 (Junos)

juniper@P1> show ldp database session 172.16.0.6 | match <pattern>

Input label database, 172.16.0.1:0--172.16.0.6:0
  16022      172.16.0.44/32
Output label database, 172.16.0.1:0--172.16.0.6:0
 299808      172.16.0.44/32

As a result of this signaling, P1 installs the entry shown in Example 16-8 in its LFIB.

Example 16-8. LDP tunneling—forwarding plane on P1 (Junos)

1     juniper@P1> show route label 299808 table mpls.0
2
3     299808  *[LDP/9] 00:00:20, metric 30
4              > to 10.0.0.9 via ge-2/0/3.0, label-switched-path P1-->P5
5              > to 10.0.0.9 via ge-2/0/3.0, label-switched-path P1-->P6
6
7     juniper@P1> show route forwarding-table label 299808
8
9     Routing table: default.mpls
10    MPLS:
11    Destination  Type RtRef  Type Index    NhRef
12    299808       user     0  ulst 1048579     2
13    Next hop                                 Index  NhRef Netif
14    10.0.0.9  Swap 300016, Push 300112(top)    556     1  ge-2/0/3.0
15    10.0.0.9  Swap 16022, Push 301104(top)     563     1  ge-2/0/3.0

Due to the classical Equal-Cost Multipath (ECMP)–awareness of LDP, the traffic is
load-balanced between the following equal-cost paths:

• PE1→P1→P3→P5→PE4 (lines 4 and 14).
• PE1→P1→P3→P6→PE4 (lines 5 and 15).

Figure 16-4 shows the signaling and forwarding-plane details for an L3VPN user
packet that flows through the second path: PE1→P1→P3→P6→PE4.
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Figure 16-4. Tunneling to-PE4 LDP LSP in P1→P6 RSVP-TE LSP

The label stack in the core now has three labels, from top to bottom: the RSVP label,
the LDP label, and the VPN label.

Tunneling SPRING LSPs Inside RSVP-TE LSPs
This model is very similar to LDP tunneling, with one important difference: it does
not require any extra signaling. There is no strict equivalent to the targeted LDP ses‐
sion. As you know, IGP-based SPRING encodes segment information in the Link
State Packets, and LERs/LSRs automatically translate these segments into MPLS
labels. This solution is therefore operationally simpler than LDP tunneling.

Like LDP, SPRING is natively ECMP-aware, so there are several possible paths. This
example focuses on the PE1→P1→P3→P6→PE4 path, as shown in Figure 16-5.
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Figure 16-5. Tunneling to-PE4 SPRING LSP in P1→P6 RSVP-TE LSP

This is the path followed by a user packet that is label-switched from PE1 to PE4:

• PE1 pushes the VPN label and the SPRING label calculated from P1’s Segment
Routing Global Block (SRGB) and PE4’s node SID, and then sends the packet to
P1.

• P1 swaps the incoming SPRING label for the SPRING label calculated from P6’s
SRGB and PE4’s node SID. Then, it pushes the transport label associated to the
RSVP-TE LSP P1→P6 and sends the packet to P3.

• P3 pops the RSVP label and sends the packet to P6.
• P6 pops the SPRING label and sends the packet to PE4.

Let’s have a look at the forwarding state at P1.

Example 16-9. SPRING shortcuts on P1 (Junos)

juniper@P1> show route label 800044 table mpls.0

800044  *[L-ISIS/14] 00:00:21, metric 30
         > to 10.0.0.9 via ge-2/0/3.0, label-switched-path P1-->P5
         > to 10.0.0.9 via ge-2/0/3.0, label-switched-path P1-->P6

juniper@P1> show route forwarding-table label 800044

Routing table: default.mpls
MPLS:
Destination  Type RtRef  Type Index    NhRef
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800044       user     0  ulst 1048596     2
Next hop                                 Index  NhRef Netif
10.0.0.9  Swap 800044, Push 300112(top)    576     1  ge-2/0/3.0
10.0.0.9  Swap 16044, Push 301104(top)     593     1  ge-2/0/3.0

This tunneling mechanism is enabled in Junos with the following syntax, assuming
that the IGP is IS-IS:

Example 16-10. Configuring TE shortcuts on P1 (Junos)

protocols {
    isis {
        traffic-engineering {
            family inet {
                shortcuts;
}}}}

This configuration basically installs the RSVP-TE LSP as a next hop for all the desti‐
nations that are at or behind the tail end.

You can achieve the same behavior in IOS XR by using the autoroute announce
command.

Interdomain Transport Scaling
As a network grows, it might no longer be possible to keep a single IGP domain. The
network is often divided into multiple IGP domains to cope with the increased scale
requirements. This is especially important when low-end devices with limited scala‐
bility are deployed. Depending on the actual design requirements, the division can be
based on different IGP areas, different (sub)ASs, or a combination of the two.

In this chapter, splitting the network in different domains has a
scaling purpose. The context is therefore different from that of
Chapter 9, where each AS really represented one single administra‐
tive domain.

From the MPLS perspective, multidomain transport architectures add additional
challenges. To provide end-to-end services (e.g., L3VPN) across multiple domains,
you can consider two high-level approaches:

Nonsegmented tunnels
End-to-end transport LSPs established across domains and service provisioning
only takes place at the LSP endpoints. This model is conceptually aligned to
inter-AS Option C, and it typically relies on LSP hierarchy. The next-hop
attributes for the service BGP routes are not changed at the boundaries.
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Segmented tunnels
Transport LSPs span only a local domain and service-aware “stitching” takes
place at the domain boundaries (Area Border Router [ABR], Autonomous Sys‐
tem Border Router [ASBR]). This model is conceptually aligned to inter-AS
Option B, and in it, next-hop attributes for the service BGP routes typically are
changed at the domain boundaries.

Both approaches have their advantages and disadvantages. Depending on the scaling
capabilities of the devices deployed in the network, functional elements of both archi‐
tectural solutions can be found in most typical large-scale IP/MPLS designs.

Let’s begin the discussion covering the options to provide nonsegmented, end-to-end
transport LSPs across a divided network; we’ll leaving the service stitching concepts
for the Chapter 17, which focuses on service scaling. Nonsegmented tunnels can be
further classified as Nonhierarchical and Hierarchical. Let’s look at each of them in
detail.

Nonhierarchical Interdomain Tunnels
To provide end-to-end transport LSPs across domains, you can use different
techniques:

• Redistribution of /32 loopback addresses between IGP domains, to enable end-
to-end LDP-based LSPs between IGP domains. This is in conformance with LDP
specification (RFC 5036), which requires an exact match between routing table
prefixes and the FECs to which labels are mapped.

• Redistribution of summary routes (loopback address ranges) between IGP
domains. This is in conformance with LDP inter-area (RFC 5283), which relaxes
the requirements of RFC 5036 by allowing nonexact matches. It also relaxes the
stress on the IP routing tables in very-large-scale networks. Now, FEC label bind‐
ings can still be processed if they match a less-specific prefix (e.g., a default
route), even if the exact /32 route is not present in the routing table.

• RSVP inter-area LSP, based on RFC 4105.

Inter-area SPRING has not been explored in this book’s tests.

The real benefit of the LDP-based or SPRING-based interdomain solutions is their
simplicity.
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The first option (loopback redistribution) can still suffer from IGP/LDP scalability
problems, especially on low-end devices. The size of the IGP database, the IP For‐
warding Information Base (FIB) and the MPLS FIB might still be too big.

The second option (loopback summary redistribution) relaxes the scaling issue asso‐
ciated with the IGP and IP FIB size, but still might cause MPLS FIB scalability prob‐
lems. Indeed, LDP bindings for all the loopbacks are still exchanged among IGP
domains.

One way to mitigate this problem is to apply LDP policies at the IGP domain bound‐
ary, in such a way that redistribution takes place only for selected FECs. Another
option is to deploy LDP Downstream on Demand (DoD) in access domains. Unlike
the default label distribution method in LDP (downstream unsolicited), DoD makes
it possible for low-scale devices to request labels for selected FECs only.

In many cases, the operational challenge lies on the definition of a set of selected
FECs. If the low-scale access PEs provide only L2 PWs, the selection is quite obvious:
only labels for the remote endpoints of L2 PWs are required. If, however, multipoint
services such as L3VPNs are implemented, as well, the definition of selected FECs is
no longer straightforward, unless there is a limited number of hub-and-spoke–style
L3VPNs only. Another method to mitigate the problem is a service design that
removes the requirement to have label bindings for remote loopbacks, which is dis‐
cussed in detail in the Chapter 17.

Many network operators rely on traffic engineering (TE) techniques, so RSVP
becomes their preferred protocol. Although inter-area RSVP is an option, its scalabil‐
ity is limited. There is a conceptual conflict between dividing the network in smaller
pieces (domains) while maintaining an end-to-end RSVP LSP full mesh. Therefore,
although you can use inter-area end-to-end RSVP LSPs tactically in some scoped sce‐
narios, they are not a generic strategy to fully mesh all the PE routers in large-scale
networks.

Hierarchical Interdomain Tunnels (Seamless MPLS)
Let’s discuss the most robust scaling architecture that is available for ISPs.

Seamless MPLS overview
Scaling and BGP often go hand in hand. In this approach, whereas the MPLS trans‐
port inside each IGP domain is provided by LDP, RSVP, or SPRING (or by a combi‐
nation of these), end-to-end LSPs between domains are provided by BGP. The
architecture is relatively new, and it is defined in draft-ietf-mpls-seamless-mpls. In
reality, this model is based on a mature protocol (BGP labeled unicast: RFC 3107).
What’s new is how this protocol is used to provide a very scalable MPLS architecture,
supporting up to 100,000 routers.
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At a high level, Seamless MPLS is similar to the aforementioned LSP Hierarchy con‐
cept. Each IGP domain establishes standard intradomain LSPs by using LDP, RSVP,
or SPRING. Tunneled inside these intradomain LSPs, there are other—interdomain—
LSPs based on the BGP Labeled Unicast (BGP-LU) protocol. Why choose BGP-LU?
Because of its proven scalability.

Chapter 2 explains BGP-LU in the context of flat (nonhierarchical) LSPs. Chapter 9
goes one step further by showing hierarchical LSPs; however, for a slightly different
use case: interprovider services. Now, let’s see how to build hierarchical LSPs in a sin‐
gle organization domain, which is partitioned in different areas and/or ASs.

It is important to remember that BGP-LU carries information about provider infra‐
structure prefixes. The label in BGP-LU is a transport (and not a service) label, map‐
ped to the global loopback address of a PE router. In that sense, you can view BGP-
LU as a tool to interconnect different routing domains.

In contrast, a PE router is typically the endpoint of an MPLS service such as L3VPN,
L2VPN, and so on. This is the service context of BGP, implemented through other
NLRIs such as IP VPN and L2VPN, as already discussed in Chapter 3 through Chap‐
ter 8.

If you read Chapter 9, this paradigm might sound familiar to you.
Indeed, Seamless MPLS has much in common with Inter-AS
Option C.

Let’s use a bigger example topology to discuss the Seamless MPLS architecture, as
illustrated in Figure 16-6.

In Figure 16-6, the network is divided in two ASs: 65001 and 65002. Moreover, AS
65002 is further divided in two IS-IS domains: an L2 domain with area ID 49.000,
and an L1 domain with area ID 49.0001. There is no IS-IS route exchange between
the two domains: both L1 to L2 leaking and L2 to L1 leaking are blocked. The L1
routers are explicitly configured to ignore the attached bit of the ABR’s L1 Link State
PDUs. This example uses different MPLS protocols inside the different domains to
show that they are completely independent from one another. Thus, there is plain
LDP in IS-IS L1 area 49.0001, LDP tunneling–over-RSVP in IS-IS L2 domain, and
plain RSVP in OSPF area 0.0.0.0. In some sense, you can look at this architecture
from different angles.
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Figure 16-6. Seamless MPLS topology

OSPF, IS-IS, LDP, and RSVP use standard configurations, so let’s concentrate on con‐
figuring interdomain LSPs based on BGP-LU.

Going back to the description of LDP tunneling over RSVP (previously in this chap‐
ter), a targeted LDP session was established between the endpoints of a RSVP LSP.
This targeted LDP session served an important role in facilitating the creation of the
end-to-end LDP LSP. It exchanged label bindings in order to “glue” together other
LDP LSP segments. These other segments were signaled with hop-by-hop LDP ses‐
sions outside the RSVP domain.

There is a powerful analogy between LDP tunneling over RSVP and the Seamless
MPLS scenario. BGP-LU also glues together different LSP segments that are built on
top of a different underlying technology. There are several types of BGP-LU sessions:

• BGP-LU sessions established between the endpoints of an underlying intrado‐
main (LDP, RSVP, etc.) LSP. Let’s think of these as targeted sessions.

• BGP-LU sessions established between directly connected neighbors, if there is no
underlying LSP available for tunneling; for example, at the inter-AS border
between AS 65001 and AS 65002. Let’s think of these as single-hop (hop-by-hop)
sessions.

One major difference compared to LDP tunneling is that you need to configure the
BGP-LU sessions manually, whereas targeted LDP sessions were created automati‐
cally as a result of the LDP tunneling configuration. On the other hand, LDP tunnel‐
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ing works exclusively over RSVP-TE tunnels, whereas multihop BGP-LU is totally
agnostic of the specific intradomain MPLS protocol—it can be LDP, RSVP-TE,
SPRING, and so on.

Similar to the LDP tunneling case, in every BGP-LU session, a new MPLS label is
allocated and stitched to the label of the previous segment. Whereas in LDP this is
automatic, there is a pitfall to avoid in BGP. Very often, the border routers (such as
ABR1 and ABR2 in the example topology) act as BGP-LU Route Reflectors (RRs)
between domains. It is essential to ensure that every time a border router reflects a
BGP-LU route, the BGP next-hop attribute is changed to self: this, in turn, triggers a
new label allocation. This is fine because BGP-LU’s purpose is to build transport
LSPs.

Note that this recommendation does not apply to service RRs, where changing the
BGP next hop is a bad idea. Changing the next-hop on service RRs forces all the
upstream traffic in the domain to traverse the RR instead of using the optimal path.

The architecture, showing BGP-LU session structure and hierarchical LSPs in Seam‐
less MPLS designs, is illustrated in Figure 16-7.

Figure 16-7. BGP-LU architecture for Seamless MPLS

In general, not all the routers participate in the BGP-LU route distribution. For exam‐
ple, routers P3 and P4 do not have any BGP-LU sessions. This illustrates an impor‐
tant fact: the only labeled loopbacks that need to be distributed with BGP-LU
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correspond to the routers that instantiate the end services (L3VPN, L2VPN, etc.). It
also illustrates another fact: routers with limited service capabilities but with suffi‐
cient label stack depth can be used as transit nodes. Other loopbacks are not neces‐
sarily mapped to labels, unless the administrator wants to run MPLS ping between
any two loopbacks in the network for troubleshooting purposes. That having been
said, P1 and P2 are included in the BGP-LU distribution; we’ll explain the reason
later.

The BGP-LU design is similar to a classical hierarchical RR infrastructure. Four
ASBR routers are connected with four BGP sessions in a square: two multihop iBGP
sessions between intradomain loopbacks, and two single-hop eBGP sessions between
physical link addresses. These ASBRs are at the same time the main BGP-LU RR
inside each AS. In AS 65001, there are only two RR clients (RRCs). In AS 65002, how‐
ever, ASBR3 and ASBR4 have four RRCs: two of them (ABR1 and ABR2) build a sec‐
ond level of RR hierarchy, whose clients are PE3 and PE4. As mentioned earlier, every
time a BGP-LU prefix is advertised across a domain (area or AS) boundary, the
advertising border router performs a BGP next-hop self action. This is the default
behavior on eBGP sessions, but you need to configure it explicitly on iBGP sessions.

The end result, as shown at the bottom of Figure 16-7, is an end-to-end BGP-LU LSP
established between PE routers of remote domains. This BGP-LU LSP is tunneled
inside the respective intradomain LSPs of each domain, and it is native (not tunneled)
on ASBR-ASBR links.

Seamless MPLS—BGP-LU path selection
One important topic related to BGP-LU is the handling of cumulative IGP link met‐
rics. In the case of a MPLS network with a single IGP domain, it’s easy: the IGP calcu‐
lates end-to-end costs accurately, so the lowest-cost path is selected automatically. In
the case of interdomain BGP-LU LSPs, finding the shortest path relies on BGP metric
attributes because the IGP cost between IGP domains is not shared across domains.

The standard BGP metric is Multi Exit Discriminator (MED). In principle, one could
use MED as the end-to-end cost metric across domains. However, MED has certain
limitations that could make large deployments (with many interconnected domains)
quite challenging:

• MED is sent only to a neighboring AS (RFC 4271, Section 5.1.4 - The
MULTI_EXIT_DISC attribute received from a neighboring AS MUST NOT be
propagated to other neighboring ASes). In a large-scale design with multiple inter‐
connected ASs, the MED might be lost at some place, so the ultimate goal of
measuring end-to-end costs in an entire network might be difficult.

• In the BGP path selection process (RFC 4271, Section 9.1.2.2), the MED is used
as a standalone tie-breaking criterion at Step C. The MED takes strict precedence
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over the IGP metric comparison at Step E. In a BGP-LU–based Seamless MPLS
architecture, this is not a good idea.

Let’s illustrate the second bullet point with the example topology. For simplicity, all
links have cost 1000, with the exception of three links (as outlined in Figure 16-8),
whose IGP metric is temporarily increased to 1500. Also, the diagonal links (PE1-
ASBR2, PE2-ASBR1, ABR1-P4, ABR2-P3, P3-PE4, and P4-PE3) are temporarily dis‐
abled.

Figure 16-8. BGP-LU MED propagation

Taking into account the cumulative IGP metric, there are multiple possible shortest
paths from PE1 to PE4, including these two:

• PE1→ASBR1→ASBR3→P1→ABR1→P3→PE3→PE4
• PE1→PE2→ASBR2→ASBR4→P2→ABR2→P4→PE4

The IGP costs in the L1 IS-IS domain are 3000 from ABR1 to PE4, and 2000 from
ABR2 to PE4. When the ABRs advertise PE4’s loopback address to the higher-level
RRs (ASBR3 and ASBR4), a common practice is to copy the IGP metric into the
MED attribute of the BGP-LU route. As a result, ABR1 and ABR2 announce PE4’s
loopback with MED values 3000 and 2000, respectively. Following BGP selection
rules, both ASBR3 and ASBR4 select the route advertised by ABR2 due to its lower
MED value. This makes sense for ASBR4, whose shortest path to PE4 is via ABR2.
But it’s not the best option for ASBR3, whose best cumulative IGP metric path is via
ABR1.

Even such a simple example shows that using MED in Seamless MPLS scenarios
might not be the best choice. To overcome this limitation, RFC 7311 - The Accumula‐
ted IGP Metric Attribute for BGP introduces a new BGP attribute called Accumulated
IGP cost, or in short, AIGP. This extension to BGP introduces the following behavior:
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• Every time that the BGP next hop (NH) changes, the Accumulated IGP (AIGP)
attribute is automatically updated to the value of current_AIGP +
IGP_cost_to_current_BGP_NH. This ensures that the total IGP cost across multi‐
ple IGP domains is automatically tracked in the AIGP attribute.

• In the BGP path selection process, among the multiple paths available, the one
with a lowest value of current_AIGP + IGP_cost_to_current_BGP_NH wins. This
check is performed at the very beginning of the process, even before comparing
the AS_PATH attribute length.

Figure 16-9 illustrates the basic principles of AIGP. The BGP-LU prefix (PE4 loop‐
back) is injected initially with AIGP=0. Because the ABR routers change the BGP
next hop, they also update the AIGP: ABR1 sets it to 3000, whereas ABR2 sets it to
2000. When ASBR3 receives the updates from ABR1 and ABR2, it performs a path
selection using the AIGP logic. ASBR3 compares the value of current_AIGP +
IGP_cost_to_current_BGP_NH, chooses the route advertised by ABR1, and propa‐
gates it with an updated AIGP value. ASBR4, on the other hand, selects the route
advertised by ABR2—again, due to AIGP logic.

Figure 16-9. BGP-LU AIGP propagation

Seamless MPLS—BGP-LU configuration on edge routers (PE1, PE2, PE3, and PE4)
This is the third BGP-LU example in the book. There is a detailed example in Chap‐
ter 2 and one more in Chapter 9. For brevity, this section only shows the configura‐
tion that is specific to Seamless MPLS as compared to inter-AS Option C.

The first difference is that in the Seamless MPLS architecture some domains are ASs
and other domains are IGP areas within a larger AS. BGP is used as a loop-
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prevention mechanism based on the AS path—if I receive a route with my AS in the
AS path, I reject it. Inside an AS there is a similar mechanism based on the cluster list
attribute: every iBGP RR adds its cluster ID when it reflects a route and rejects the
received routes whose cluster list contains the local cluster ID. Despite the existence
of these mechanisms, it is better from a scaling and operational perspective to deploy
policies that control the route advertisement flow on the domain borders.

Such policies rely on a geographical community that will eventually help to filter the
prefixes based on where the prefix is originally injected.

Example 16-11. Geographical communities

65000:11XYY
    X – autonomous system (1 – 65001, 2 – 65002)
    YY – area (00 – area 0.0.0.0 or 49.0000, 01 – area 49.0001)

For example, PE1 leaks its own loopback from inet.0 to inet.3 with a community
called CM-LOOPBACKS-100 (65000:11100). PE1 then announces its local loopback
via BGP-LU with this community.

The second difference with respect to inter-AS Option C is that Seamless MPLS uses
the AIGP metric attribute in BGP. Putting it all together, following is the delta config‐
uration at PE1:

Example 16-12. Advertising local loopback via BGP-LU on PE1 (Junos)

1     protocols {
2         bgp {
3             group iBGP-RR {
4                 family inet {
5                     labeled-unicast {
6                         aigp;
7                     }
8                 }
9                 export PL-BGP-LU-UP-EXP;
10    }}}
11    policy-options {
12        policy-statement PL-BGP-LU-UP-EXP {
13            term LOCAL-LOOPBACK {
14                from {
15                    protocol direct;
16                    rib inet.3;
17                    community CM-LOOPBACKS-100;
18                }
19                then {
20                    aigp-originate;
21    }}}}

A similar configuration is required on PE3, with the appropriate community.
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In the IOS XR configuration shown in Example 16-13, the AIGP attribute is initial‐
ized to zero for consistency with Junos. This is the delta configuration for PE2.

Example 16-13. Advertising local loopback via BGP-LU on PE2 (IOS XR)

route-policy PL-BGP-LU-UP-EXP
  if community matches-any CM-LOOPBACKS-100 then
    set aigp-metric 0
    pass
  endif
end-policy
!
router bgp 65001
 neighbor-group iBGP-RR
  address-family ipv4 labeled-unicast
   route-policy PL-BGP-LU-UP-EXP out
!

Let’s look at the receiving side (ASBR2) and verify that the AIGP is correctly set by
PE2.

Example 16-14. Received neighbor loopback on ASBR2 (IOS XR)

RP/0/0/CPU0:ASBR2#show bgp 172.16.10.22/32 | begin "Path #1"
 Path #1: Received by speaker 0
 Advertised to peers (in unique update groups):
   10.1.2.3        172.16.10.101
 Local, (Received from a RR-client), (received & used)
   172.16.10.22 (metric 1001) from 172.16.10.22 (172.16.10.22)
     Received Label 3
     Origin incomplete, metric 0, localpref 100, aigp metric 0, [...]
     Community: 65000:11100
     Total AIGP metric 1001
(...)

The Total AIGP metric is 1001, which is the value of the current AIGP (zero) plus the
IGP cost (1001) to the next hop (172.16.10.22). The default OSPF metric for a loop‐
back in IOS XR is 1, plus the configured link cost (1000) yields 1001. The Total AIGP
metric is used in the BGP path selection process, as discussed earlier. For the sake of
completeness, let’s also look at PE2’s BGP-LU route on ASBR1 (Junos).

Example 16-15. Received neighbor loopback on ASBR1 (Junos)

1    juniper@ASBR1> show route receive-protocol bgp 172.16.10.22
2                    table inet.3 detail
3     inet.3: 12 destinations, 25 routes (12 active, 0 holddown, 0 hidden)
4       172.16.10.22/32 (3 entries, 2 announced)
5          Accepted
6          Route Label: 3
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7          Nexthop: 172.16.10.22
8          MED: 0
9          Localpref: 100
10         AS path: ?
11         Communities: 65000:11100
12         AIGP: 0

This looks fine, too, although the Total AIGP metric (sum of current AIGP + IGP
cost to next hop) is not explicitly displayed in Junos.

Seamless MPLS—BGP-LU configuration on border routers (ASBRs and ABRs)
As already discussed, the ASBR and ABR routers play the role of RRs for BGP-LU
prefixes. They perform next-hop self and automatically update the AIGP attribute by
taking into account the IGP cost toward the current next hop.

The following design optimizes BGP-LU loopback distribution. This optimization is
important in large-scale deployments; otherwise, you can skip it for simplicity.

ASBR1 and ASBR2 have three BGP-LU peer groups, each with a different route pol‐
icy applied:

1. ASBR1/2 to BGP-LU RRCs (PE1 and PE2) → “DOWN” direction

• Don’t advertise local loopbacks via BGP-LU, and don’t reflect the loopbacks
learned from the local domain back to PE1 and PE2. These prefixes are reacha‐
ble anyway thanks to the local domain’s IGP/LDP/RSVP protocols.

• Reflect the BGP-LU loopbacks learned from upstream (eBGP) peers, changing
the next hop (configured action) and updating the AIGP (default action).

• These peers are configured as RR clients (Junos: cluster, IOS XR: route-
reflector-client).

2. ASBR1/2 to BGP-LU RR peers (ASBR2 to ASBR1, and the opposite: ASBR1 to
ASBR2) → “RR peer” direction

• Advertise local loopbacks with initial AIGP value (“0”).
• Reflect the BGP-LU loopbacks learned from upstream (eBGP) peers, changing

the next hop (configured action) and updating the AIGP (default action).
• Reflect other BGP-LU loopbacks, like the ones received from downstream

iBGP peers PE1 and PE2, with no attribute (next hop or AIGP) change.

3. ASBR1/2 to BGP-LU external peers (ASBR1 to ASBR3, and ASBR2 to ASBR4) →
“UP” direction

• Advertise local loopbacks with initial AIGP value (“0”)
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• Propagate the BGP-LU loopbacks learned from iBGP (downstream or RR)
peers, explicitly changing the next hop and updating the AIGP (default action).

The configuration is long but has nothing special, just BGP business as usual. Routes
can be matched on community, protocol, RIB (Junos), route type (Junos: route-type
external, IOS XR: path-type is ebgp), and so on.

The main caveat to be aware of is an implementation difference between Junos and
IOS XR in the way the AIGP is handled at the domain border.

Example 16-16 shows the specific BGP-LU configuration at Junos ASBR1.

Example 16-16. BGP-LU policies on ASBR1 (Junos)

1     protocols {
2         bgp {
3             group iBGP-DOWN:LU+VPN {         ## towards PE1 and PE2 (RRC)
4                 family inet {
5                     labeled-unicast { ... }  ## similar config to PE1's
6                 }
7                 export PL-BGP-LU-DOWN-EXP;
8                 cluster 172.16.10.101;
9             }
10            group iBGP-RR:LU+VPN {           ## towards ASBR2 (RR)
11                family inet {
12                    labeled-unicast { ... }
13                }
14                export PL-BGP-LU-RR-EXP;
15            }
16            group eBGP-UP:LU {               ## towards ASBR3 (eBGP)
17                family inet {
18                    labeled-unicast { ... }
19                }
20                export PL-BGP-LU-UP-EXP;
21    }}}
22    policy-options {
23        policy-statement PL-BGP-LU-DOWN-EXP {
24            term 100-LOOPBACKS {
25                from {
26                    protocol [ bgp direct ];
27                    rib inet.3;
28                    community CM-LOOPBACKS-100;
29                }
30                then reject;
31            }
32            term eBGP-LOOPBACKS {
33                from {
34                    protocol bgp;
35                    rib inet.3;
36                    community CM-LOOPBACKS-ALL;
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37                    route-type external;
38                }
39                then {
40                    next-hop self;
41                    accept;
42                }
43            }
44            from rib inet.3;
45            then reject;
46        }
47        policy-statement PL-BGP-LU-RR-EXP {
48            term LOCAL-LOOPBACK {
49                from {
50                    protocol direct;
51                    rib inet.3;
52                    community CM-LOOPBACKS-100;
53                }
54                then {
55                    metric 0;
56                    aigp-originate;
57                    next-hop self;
58                    accept;
59                }
60            }
61            term eBGP-LOOPBACKS {
62                from {
63                    protocol bgp;
64                    rib inet.3;
65                    community CM-LOOPBACKS-ALL;
66                    route-type external;
67                }
68                then {
69                    next-hop self;
70                    accept;
71                }
72            }
73            term ALL-LOOPBACKS {
74                from {
75                    protocol [ bgp direct ];
76                    rib inet.3;
77                    community CM-LOOPBACKS-ALL;
78                }
79                then accept;
80            }
81            from rib inet.3;
82            then reject;
83        }
84        policy-statement PL-BGP-LU-UP-EXP {
85            term LOCAL-LOOPBACK {
86                from {
87                    protocol direct;
88                    rib inet.3;
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89                    community CM-LOOPBACKS-100;
90                }
91                then {
92                    metric 0;
93                    aigp-originate;
94                    next-hop self;
95                    accept;
96                }
97            }
98            term ALL-LOOPBACKS {
99                from {
100                   protocol bgp;
101                   rib inet.3;
102                   community CM-LOOPBACKS-ALL;
103               }
104               then {
105                   metric 0;
106                   next-hop self;
107                   accept;
108               }
109           }
110           from rib inet.3;
111           then reject;
112       }
113       community CM-LOOPBACKS-100 members 65000:11100;
114       community CM-LOOPBACKS-ALL members 65000:11...;
115   }

Example 16-17 shows the relevant BGP-LU configuration applied to ASBR2.

Example 16-17. BGP-LU policies on ASBR2 (IOS XR)

1     community-set CM-LOOPBACKS-100
2       65000:11100
3     end-set
4     !
5     route-policy PL-BGP-LU-DOWN-EXP
6       if community matches-any (65000:11100) then
7         drop
8       endif
9       if community matches-any (65000:[11000..11999]) then
10        if path-type is ebgp then
11          set next-hop self
12          set aigp-metric + 1
13          done
14        endif
15      endif
16    end-policy
17    !
18    route-policy PL-BGP-LU-RR-EXP
19      if destination in (172.16.10.102/32) then
20        set community CM-LOOPBACKS-100
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21        set aigp-metric 0
22        done
23      endif
24      if community matches-any (65000:[11000..11999]) then
25        if path-type is ebgp then
26          set next-hop self
27          set aigp-metric + 1
28          done
29        endif
30        if path-type is ibgp then
31          done
32        endif
33      endif
34    end-policy
35    !
36    route-policy PL-BGP-LU-UP-EXP
37      if destination in (172.16.10.102/32) then
38        set community CM-LOOPBACKS-100
39        set aigp-metric 0
40        set med 0
41        done
42      endif
43      if community matches-any (65000:[11000..11999]) then
44        set med 0
45        done
46      endif
47    end-policy
48    !
49    router bgp 65001
50     bgp router-id 172.16.10.102
51     mpls activate
52      interface GigabitEthernet0/0/0/1
53     !
54     bgp unsafe-ebgp-policy
55     ibgp policy out enforce-modifications
56     address-family ipv4 unicast
57      redistribute connected
58      allocate-label all
59     !
60     neighbor-group iBGP-DOWN:LU_VPN           !! towards PE1 and PE2 (RRC)
61      address-family ipv4 labeled-unicast
62       route-reflector-client
63       route-policy PL-BGP-LU-DOWN-EXP out
64      !
65     !
66     neighbor-group iBGP-RR:LU_VPN             !! towards ASBR1 (RR)
67      address-family ipv4 labeled-unicast
68       route-policy PL-BGP-LU-RR-EXP out
69      !
70     !
71     neighbor-group eBGP-UP:LU                 !! towards ASBR4 (eBGP)
72      address-family ipv4 labeled-unicast
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73       aigp
74       send-community-ebgp
75       route-policy PL-BGP-LU-UP-EXP out
76      !
77     !
78    !
79    router static
80     address-family ipv4 unicast
81      10.1.2.3/32 GigabitEthernet0/0/0/1
82     !
83    !

The BGP and policy configurations of ASBR3, ASBR4, ABR1, and ABR2 follow the
same principles.

There are some small differences between the default behavior of Junos and IOS XR
when it comes to BGP-LU configuration. To unify the overall network behavior, the
following measures are taken (in addition to those already mentioned in Chapter 2):

• AIGP support needs to be explicitly configured for both iBGP and eBGP sessions
in Junos (see the syntax in Example 16-12, line 6). In IOS XR, AIGP is enabled by
default for iBGP and you need to explicitly configure it for eBGP sessions only
(see the syntax on Example 16-17, line 73).

• An ASBR-to-ASBR link does not have an IGP running. How does the AIGP met‐
ric take this link into account? The answer varies across vendors: Junos increases
AIGP by default by a value of 1, whereas IOS XR does not alter AIGP when send‐
ing BGP updates over such link. To achieve a uniform metric scheme across ven‐
dors, the configuration in IOS XR is set to increase the AIGP metric of reflected
eBGP prefixes by a value of 1 (see Example 16-17, lines 12 and 27).

• The manipulation of attributes via outbound route-policies on iBGP sessions is
disabled by default in IOS XR, and you need to explicitly enable it (see
Example 6-17, line 55).

Seamless MPLS—IPv4 intradomain connectivity between PEs
Now that all the configurations are in place, let’s verify end-to-end LSP connectivity.
First, from PE1 to PE4, as demonstrated here:

Example 16-18. BGP-LU Ping from PE1 (Junos) to PE4 (IOS XR)

juniper@PE1> ping mpls bgp 172.16.21.44/32 source 172.16.10.11
!!!!!
--- lsping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss

And now from PE2 to PE3:
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Example 16-19. BGP-LU Ping from PE2 (IOS XR) to PE3 (Junos)

RP/0/0/CPU0:PE2#ping mpls ipv4 172.16.21.33/32 fec-type
                bgp source 172.16.10.22
(...)
.....
Success rate is 0 percent (0/5)

Hmm. The MPLS (BGP-LU) ping from Junos to IOS XR across the Seamless MPLS
network is fine, but it fails from IOS XR to Junos. This is because the MPLS Echo
Reply is a standard UDP over IPv4 packet, and PE3 does not have a route to reach
PE2 on its global routing table, as illustrated here:

Example 16-20. Route from PE3 (Junos) to PE2 (IOS XR)

juniper@PE3> show route 172.16.10.22 active-path

inet.3: 14 destinations, 24 routes (14 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.10.22/32
    *[BGP/170] 00:16:15, MED 0, localpref 100, from 172.16.20.10
       AS path: 65001 ?, validation-state: unverified

The route is present, but only in the inet.3 table. As already discussed, the inet.3
table provides BGP next-hop resolution for MPLS-based services, but it is not used
for normal packet forwarding. There is no entry in the FIB to forward the IPv4 UDP
packet toward PE2, and as a result the forwarding lookup hits the default “reject”
entry in the FIB.

Example 16-21. Forwarding entry from PE3 (Junos) to PE2 (IOS XR)

juniper@PE3> show route forwarding-table destination 172.16.10.22/32
             table default
(...)
Destination    Type RtRef Next hop       Type Index    NhRef Netif
default        perm     0                rjct       36     1

To solve the interdomain connectivity problem for regular IP packets in a Seamless
MPLS topology, there are two alternative generic solutions:

• Copying the remote PE’s BGP-LU routes from inet.3 to inet.0. This technique
is explained in Chapter 2.

• Alternatively, ABRs can inject into the L1 49.0001 area a default route, or a sum‐
mary route including the loopbacks of remote PEs. Currently, there is no redis‐
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tribution or leaking in that sense and the baseline IS-IS configuration in this
example is set to explicitly ignore the attached bit.

In large Seamless MPLS networks with up to approximately 100,000 loopbacks, the
first option might be applied to devices for which installing all the loopbacks in the
FIB is not an issue; the second option should be used for devices with limited FIB
capacity.

Let’s see how to configure the second option. The assumption is that PE3 and PE4 are
low FIB scale devices, so ABR1 and ABR2 conditionally inject a default route into the
49.0001 area. All the other Junos routers are assumed to be high FIB scale devices that
install all the received BGP-LU loopbacks into both inet.3 and inet.0.
Example 16-22 and Example 16-23 provide the configuration at ABR1 and ABR2,
respectively.

Example 16-22. Conditional default route advertisement on ABR1 (Junos)

routing-options {
    aggregate {
        route 0.0.0.0/0 {
            policy PL-DEFAULT-ROUTE-CONDITION;
            metric 0;
            preference 9;
            discard;
}}}
protocols {
    isis {
        export PL-ISIS-EXP;
}}
policy-options {
    policy-statement PL-DEFAULT-ROUTE-CONDITION {
        term 100-LOOPBACKS {
            from {
                protocol bgp;
                community CM-LOOPBACKS-100;
            }
            then accept;
        }
        then reject;
    }
    policy-statement PL-ISIS-EXP {
        term DEFAULT-ROUTE {
            from {
                protocol aggregate;
                route-filter 0.0.0.0/0 exact;
            }
            to level 1;
            then {
                metric 0;
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                accept;
 }}}}

Example 16-23. Conditional default route advertisement on ABR2 (IOS XR)

route-policy PL-DEFAULT-ROUTE-CONDITION
  if rib-has-route in (172.16.10.11/32, 172.16.10.22/32) then
    set level level-1
  endif
end-policy
!
router static
 address-family ipv4 unicast
  0.0.0.0/0 Null0
 !
!
router isis core
 address-family ipv4 unicast
  default-information originate route-policy PL-DEFAULT-ROUTE-CONDITION

In Example 16-22 and Example 16-23, the condition on ABR1 (Junos) is the existence
of routes with a specific community, whereas on ABR2 (IOS XR), there is an exact
prefix match. In both cases, the ABRs only generate the default route if they have at
least one route to one of the loopbacks in AS 65001. For consistency, the Junos con‐
figuration explicitly advertises the default route with metric 0, which is the default in
IOS XR. The preference of ABR1’s aggregate default route is set to 9, which is lower
than the preference of IS-IS routes. Otherwise, the default route from ABR2 would
suppress the advertisement from ABR1.

With this configuration in place, PE3 should be able to reach PE2’s loopback via a
default route installed both in the inet.0 RIB and in the FIB.

Example 16-24. Route in the RIB of PE3 (Junos) toward PE2 (IOS XR)

juniper@PE3> show route 172.16.10.22 table inet.0

inet.0: 23 destinations, 23 routes (23 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[IS-IS/15] 01:20:57, metric 2000
                      to 10.0.21.4 via ge-0/0/2.0
                    > to 10.0.21.18 via ge-0/0/3.0

And, as shown in Example 16-25, the MPLS ping between PE2 and PE3 now works
without any problems.
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Example 16-25. BGP-LU ping from PE2 (IOS XR) to PE3 (Junos)

RP/0/0/CPU0:PE2#ping mpls ipv4 172.16.21.33/32 fec-type bgp
                source 172.16.10.22
(...)
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/12/30 ms

Services in Seamless MPLS architecture
Now that BGP-LU has built end-to-end transport LSPs through the example topol‐
ogy, it’s time to focus on the end services. Let’s choose IPv4 VPN for illustration pur‐
poses. Actually, there are already some BGP sessions established for the exchange of
IPv4 labeled unicast prefixes, but can these sessions be reused to signal the IPv4 VPN
unicast routes, too? The answer is yes, they can, and if two routers exchange prefixes
of both address families directly, there is one BGP session only. But the BGP session
layout is different for each address family. To get the complete picture, look at both
Figure 16-7 (BGP-LU) and Figure 16-10 (IPv4 VPN).

Figure 16-10. BGP IPv4 VPN unicast in Seamless MPLS architecture

The session layout and the BGP next-hop manipulation for each address family are
completely different. This is for a reason: MPLS transport and VPN services are two
different worlds, even if the same protocol (BGP) can signal both. The RRs in the IS-
IS L2 domain are different for each address family: ASBR3/4 for IPv4 labeled unicast,
and P1/2 for IPv4 VPN unicast.
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L3VPN in the Seamless MPLS architecture is similar to inter-AS Option C. The most
critical aspect is the BGP next-hop handling for each address family:

• For IPv4 labeled unicast (SAFI=4), the BGP next-hop attribute changes at the
border of each domain (area or AS). This provides transport hierarchy, using the
local tunneling mechanism of each domain.

• For IPv4 VPN unicast (SAFI=128), the BGP next hop never changes, as expected
with inter-AS Option C. This is the default behavior on iBGP RRs, but it requires
a specific configuration on eBGP to preserve the original next-hop value.

No inbound or outbound BGP policies are required for IPv4 VPN. Here are some
special configuration requirements:

• Enabling eBGP multihop between RRs in different ASs
• Disabling next-hop change on eBGP sessions
• Disabling the “reject all” default policy of eBGP sessions in IOS XR
• For BGP sessions that signal both the IPv4 LU and the IPv4 VPN Unicast NLRI

(like those represented by double-arrow solid lines in Figure 16-10), ensure that
the BGP policy terms treat each address family independently. We discuss this
topic in “Multiprotocol BGP policies” on page 629.

There is one detail of Figure 16-7 that requires further explanation. P1 and P2 peer
with the BGP-LU RRs ASBR3 and ASBR4. From the point of view of end-to-end PE-
PE transport LSPs, this is not required: the L2 IS-IS domain has its own tunneling
mechanism that is not BGP-LU, and pure P-routers can be completely BGP-free. So
why are these sessions configured? The answer is on Figure 16-10: P1 and P2 are the
RRs for L3VPN prefixes. Consequently, P1 and P2 need to have reachability to the
loopbacks of ASBR1 and ASBR2, and that is why Figure 16-7 shows P1 and P2 as
BGP-LU peers.

If P1 and P2 did not participate in BGP-LU distribution, other options would be as
follows:

• Redistributing ASBR1 and ASBR2 loopbacks from BGP-LU into IS-IS at routers
ASBR3 and ASBR4

• ASBR3 and ASBR4 injecting a default route (or a summary route covering
ASBR1 and ASBR2 loopbacks) into IS-IS

RRs are a crucial component of the network infrastructure. Using default or summary
routes (which suppress more specific routes) to reach these crucial components is
considered a bad practice. Redistribution from BGP-LU to IGP is slightly better, but
it defeats part of the purpose of using BGP. Thus, the best recommended practice is to
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include RRs in the BGP-LU delivery mechanism, even if they do not provide VPN
services themselves.

The service design model used in this chapter results in all the PE routers receiving
all the service prefixes. This approach might not scale for micro-PE (low-scale PE)
devices, so Chapter 17 spends more time on optimizing the design.

Multiprotocol BGP policies
In Junos, the following policies evaluate, filter, and modify IP VPN (Unicast) prefixes.
It is not mandatory to have all of the policies in place. For example, if there is no local
VRF, then there is no vrf-[export|import].

• For prefix export, the VRF’s vrf-export policy chain is executed before the
global export policy chain applied to the BGP session (see Example 16-12, line 9,
and Example 16-16, lines 7, 14, and 20). You need the vpn-apply-export knob in
order to evaluate the global policy chain. Otherwise, only the vrf-export policy
chain (if any) is executed.

• For prefix import, the global import policy chain applied at the BGP session (if
any) is executed before the VRF’s vrf-import policy chain (if any).

A policy chain is an ordered sequence of policies. Very often, it
consists of one single policy.

• The IP LU case is simpler: only the global BGP policy chains (applied to the BGP
session) evaluate IP LU prefixes.

Here comes the tricky aspect. The same global (import and export) policy chains
evaluate both IP LU and IP VPN prefixes. Therefore, you need to carefully define the
policy terms so that each term only evaluates prefixes of one address family.

You can select IP LU prefixes with the condition from rib inet.3.
Selecting IP VPN prefixes is trickier, as several RIBs are involved
(see Chapter 3 and Chapter 17).

In this Seamless MPLS scenario, the global BGP policies only have to process the IP
LU prefixes (in order to change the MED, AIGP, and NH). For this reason, only the
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from rib inet.3 condition becomes handy. In Chapter 17, you will see an example
in which IP VPN prefixes are matched, too.

In IOS XR, policies are applied separately for each address family. Thus, it is easy to
keep track of distinct rules that need to be applied to prefixes from different address
families. As a result, when multiple address families are deployed, you always need
separate policies.

Seamless MPLS—end-to-end forwarding path
Now, after achieving basic connectivity, let’s look at Figure 16-11 and Example 16-26
to understand the label states and operations performed on the IPv4 VPN packets.
Note that multiple equal-cost paths exist; therefore, multiple traceroute outputs are
possible. ASBR1 was temporarily disabled to reduce the available paths and ensure
that the traffic traverses both Junos and IOS XR devices.

Example 16-26. Traceroute from VRF on PE1 (Junos) to PE4 (IOS XR)

juniper@PE1> traceroute routing-instance VRF-A 192.168.1.44
traceroute to 192.168.1.44 (192.168.1.44), 30 hops max, ...
 1  10.0.10.9 (10.0.10.9)  6.919 ms  7.274 ms  5.375 ms
     MPLS Label=16010 CoS=0 TTL=1 S=0
     MPLS Label=16006 CoS=0 TTL=1 S=1
 2  10.1.2.3 (10.1.2.3)  5.781 ms  17.325 ms  6.071 ms
     MPLS Label=16010 CoS=0 TTL=1 S=0
     MPLS Label=16006 CoS=0 TTL=2 S=1
 3  10.0.20.2 (10.0.20.2)  5.988 ms  5.712 ms  5.417 ms
     MPLS Label=16012 CoS=0 TTL=1 S=0
     MPLS Label=16004 CoS=0 TTL=1 S=0
     MPLS Label=16006 CoS=0 TTL=3 S=1
 4  10.0.20.7 (10.0.20.7)  6.037 ms  5.723 ms  5.503 ms
     MPLS Label=16004 CoS=0 TTL=1 S=0
     MPLS Label=16006 CoS=0 TTL=4 S=1
 5  10.0.21.14 (10.0.21.14)  7.514 ms  6.142 ms  7.800 ms
     MPLS Label=301776 CoS=0 TTL=1 S=0
     MPLS Label=16006 CoS=0 TTL=5 S=1
 6  10.0.21.17 (10.0.21.17)  6.020 ms *  7.052 ms
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Figure 16-11. MPLS label operations in a Seamless MPLS network

There is label swap operation 16010→16010 at ASBR2. This is totally fine: labels are
locally significant and they can have different or the same values.

From the perspective of LDP, the LSP in IS-IS L2 domain of AS 65002 is single hop. If
it were multihop, you would see four MPLS labels at this point of the path.

IGP-Less Transport Scaling
Imagine a large-scale data center with more than 100,000 servers in an IGP-less top‐
ology (such as the one described in Chapter 2). This data center would require more
than 100,000 transport labels to be programmed on the FIB of each device. This is
definitely feasible for high-end LSRs, but how about switches with forwarding
engines based on merchant silicon? In any case, regardless of the hardware capacity, it
is clear that reducing this amount of state would be beneficial. There are at least two
complementary strategies to achieve such optimization:

• Implement a hierarchy between different BGP-LU layers.
• Take the servers off BGP-LU and use a lighter control plane to program their for‐

warding plane.

Let’s discuss these two strategies separately.
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BGP-LU Hierarchy
As of this writing, this model is not defined in any drafts. It is an original idea by
Kaliraj Vairavakkalai, who happens to be one of the key contributors of this book.

So far in this chapter, you have seen the following hierarchical LSP examples: RSVP
in RSVP, LDP in RSVP, SPRING in RSVP, and BGP-LU in LDP/RSVP/SPRING. Now
it’s the turn of BGP-LU in BGP-LU. Or BGP-LU in BGP-LU in BGP-LU. You can add
as many layers as you want to this hierarchy, which is based on a clever manipulation
of the BGP-LU routes’ next-hop attribute.

Figure 16-12 is a real lab scenario based on the simplified data center topology from
Chapter 2. However, the solution also works on Seamless MPLS scenarios.

Figure 16-12. BGP-LU hierarchy in IGP-less MPLS network
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The key concept is region. A region is basically a part of the net‐
work. It can be an IGP area, or an AS, or an AS set.

Indeed, in the IGP-less eBGP scenario illustrated in Figure 16-12 and fully explained
in Chapter 2, each router is a different AS. Thus, in this example, any router set is an
AS set, and regions typically identify parts of the data center. As you might remember
from Chapter 10, modern data center topologies are hierarchical, and it is quite feasi‐
ble to partition them in regions (e.g., a collection of PODs).

BGP-LU Hierarchy—control plane
With this generalized region concept in mind, the BGP-LU next-hop rewrite rules are
as follows:

• The network is partitioned in regions, and a unique BGP standard community
identifies each region.

• Each router R belongs to a region set, which consists of one or more regions. For
example, Srv1’s region set is {1}, whereas L1’s region set is {0,1}.

• Each region set has an associated regional community set. For example, L1’s
regional community set is {CM-ZONE-0, CM-ZONE-1}.

• When R advertises a non-BGP route (e.g., its own loopback address) into BGP-
LU, R is considered to be the originator of the route. R adds to the route all the
communities from R’s regional community set.

• If R has to (re)advertise a BGP-LU route that has at least one community match‐
ing R’s regional community set, R considers the route as intraregion. So, R
rewrites the route’s BGP next hop of the route to a local address. Which one? It
depends on whether the peer is inside or outside the route’s region set. You can
extract the rule from Figure 16-12.

• If R has to (re)advertise a BGP-LU route that has no single community matching
R’s regional community set, R considers this route to be interregion. So R does
not rewrite the route’s BGP NH.

In summary, only if the route is intraregion, the BGP next hop is
rewritten.

Let’s analyze the routes in Figure 16-12 one by one:
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eBGP-LU route 172.16.3.22
The route is originated by Srv2, whose region set is {2}. Hence, the route has one
regional community only: CM-ZONE-2. L2 also belongs to region 2 (and region
0, but this is not important here); hence, it rewrites the BGP next hop of the
route to its own loopback address (172.16.2.22) and allocates a locally significant
label. Neither of the other routers (S1, L1, Srv1) belongs to region 2, so neither of
them touches the BGP next hop or the label.

eBGP-LU route 172.16.2.22
The route is originated by L2, whose region set is {0, 2}. As a result, the route has
two regional communities: CM-ZONE-0 and CM-ZONE-2. S1 also belongs to
region 0; hence, it rewrites the BGP next hop of the route to the eBGP peering
address and allocates a locally significant label. L1 also belongs to region 0; hence,
it rewrites the BGP of the route to its own loopback address (172.16.2.11) and
allocates a new label. As you can see, S1 and L1 followed a different BGP next
hop rewrite logic. Indeed, L1 is advertising the route to a peer that, from L1’s per‐
spective, is in region 1. And the route’s region set being {0, 2} does not contain 1
so the route is becoming inter-region.

eBGP-LU route 172.16.2.11
Srv1 and L1 are directly connected so this intraregion LSP is very short and has
no label due to Penultimate Hop Popping (PHP). If there were another LSR
between Srv1 and L1, Srv1 would push a three-label stack just for transport.

The number of BGP routes handled at the control plane is still the
same (you could achieve a reduction by using similar techniques to
those discussed in Chapter 17).

The scaling benefit of this model is at the FIB or forwarding-plane level. Neither L1
nor S1 need to allocate a label for Srv2’s loopback. In other words, LSRs only allocate
labels for prefixes originated in their own region set. So a large-scale data center with
more than 100,000 servers no longer requires LSRs to allocate more than 100,000
labels. Allocating a label requires one FIB entry, so the fewer labels that are allocated,
the thinner the FIB is.

This example topology is too small to appreciate the real benefits. Think of a network
with 1,000 different regions!

Example 16-27 shows the three recursive routes from the perspective of Srv1.
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Example 16-27. Hierarchical BGP-LU signaling—Srv1 (Junos)

juniper@Srv1> show route receive-protocol bgp 10.0.0.1
              table inet.3 detail

inet.3: 12 destinations, 12 routes (11 active, ...)
[...]
* 172.16.2.11/32 (1 entry, 1 announced)
     Accepted
     Route Label: 3
     Nexthop: 10.0.0.1
     AS path: 65201 I
     Communities: 65000:1000 65000:1001

* 172.16.2.22/32 (1 entry, 1 announced)
     Accepted
     Route Label: 300624
     Nexthop: 172.16.2.11
     AS path: 65201 65101 65202 ?
     Communities: 65000:1000

* 172.16.3.22/32 (1 entry, 1 announced)
     Accepted
     Route Label: 24006
     Nexthop: 172.16.2.22
     AS path: 65201 65101 65202 65302 ?
     Communities: 65000:3 65000:1002

You can match the routes, next hops, and labels, from Figure 16-12 to Example 16-27.
Here are the standard communities in the example:

• Regional communities: CM-ZONE-X (65000:100X), where X is the region num‐
ber.

• Other communities (see Chapter 2): CM-SERVER (65000:3) identifies server
loopbacks and CM-VM (65000:100) identifies the end-user virtual machines
(VMs).

BGP-LU hierarchy—forwarding plane
As you can see, the hierarchical transport LSP is ready at the ingress PE (Srv1).

Example 16-28. Forwarding next-hop in Hierarchical BGP-LU—Srv1 (Junos)

juniper@Srv1> show route 172.16.3.22 table inet.3

inet.3: 12 destinations, 12 routes (11 active, ...)
[...]
172.16.3.22/32  *[BGP/170] 02:01:28, localpref 10
                   AS path: 65201 65101 65202 65302 ?
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                 > to 10.0.0.1 via ge-2/0/2.0,
                                   Push 24006, Push 300624(top)

The MPLS service in this example is global (no VPN) IPv4 unicast. Of course, it
could be VPN and that would require yet another (service) label. The service IPv4
unicast route is 10.2.0.0/31, and its BGP next hop (172.16.3.22) has already been
resolved, so VM2 is now reachable from VM1. This prefix exchange is depicted on
top of Figure 16-12. Please refer to Example 2-11 from Chapter 2 for the layout of
BGP sessions distributing service prefixes.

Example 16-29. Forwarding next-hop in Hierarchical BGP-LU—Srv1 (Junos)

juniper@Srv1> show route receive-protocol bgp 172.16.1.1 detail

inet.0: 11 destinations, 11 routes (10 active, ...)
* 10.2.0.0/31 (1 entry, 1 announced)
     Accepted
     Nexthop: 172.16.3.22
     AS path: 65101 65302 ?
     Communities: 65000:100

juniper@Srv1> show route 10.2.0.0/31 table inet.0

inet.0: 11 destinations, 11 routes (10 active, ...)

10.2.0.0/31  *[BGP/170] 00:32:11, localpref 100, from 172.16.1.1
                AS path: 65101 65302 ?
              > to 10.0.0.1 via ge-2/0/2.0,
                                Push 24006, Push 300624(top)

RP/0/0/CPU0:VM#traceroute vrf VM1 10.2.0.1
[...]
 1  10.1.0.0 0 msec  0 msec  0 msec
 2  10.0.0.1 [MPLS: Labels 300624/24006 Exp 0] 29 msec  ...
 3  10.0.0.5 [MPLS: Labels 301408/24006 Exp 0] 0 msec  ...
 4  10.0.0.8 [MPLS: Label 24006 Exp 0] 9 msec  0 msec  ...
 5  10.0.0.2 9 msec  ...
 6  10.2.0.1 9 msec  ...

BGP-LU hierarchy—configuration
You can configure Hierarchical BGP-LU LSPs with plain BGP-LU: no extensions are
required. Example 16-30 shows an example of how one eBGP-LU session is config‐
ured at L1.

Example 16-30. Hierarchical BGP-LU configuration—L1 (Junos)

1     protocols {
2         bgp {
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3             group eBGP-LU-65301 {
4                 multihop {
5                     no-nexthop-change;
6                 }
7                 export PL-eBGP-LU-OUT-REGION-1;
8     }}}
9     policy-options {
10        policy-statement PL-eBGP-LU-OUT-REGION-1 {
11            term LOCAL-LOOPBACK {
12                from interface lo0.0;
13                then {
14                    community add CM-REGION-0;
15                    community add CM-REGION-1;
16                    accept;
17                }
18            }
19            term REGION-0 {
20                from community CM-REGION-0;
21                then {
22                    next-hop 172.16.2.11;
23    }}}
24        community CM-REGION-0 members 65000:1000;
25        community CM-REGION-1 members 65000:1001;
26    }

Junos default BGP policies accept BGP prefixes not already
accepted or rejected by any term in the explicit policy (chain)
shown in Example 16-30.

The key configuration is on lines 4 and 5:

• Even if the actual eBGP session is single hop, Junos needs the multihop statement
in order to set (or accept) the BGP next hop to anything different from the
single-hop eBGP peering address. In this example, L1 needs to rewrite the BGP
next hop of the 172.16.2.22/32 route to L1’s loopback address 172.16.2.11 before
advertising the route to Srv1.

• The no-nexthop-change Junos knob means: do not change the BGP NH unless the
export policy explicitly changes it. Because this solution requires a mix of rewrites
and non-rewrites, the configuration is absolutely required.

As for IOS XR, ebgp-multihop is also required to accept prefixes with a BGP next
hop different from the single-hop eBGP peering address. On the other hand, as of
this writing, you can configure one single eBGP session in IOS XR in one of these
modes: rewrite the next hop of all the prefixes (default) or rewrite the next hop of no
prefixes (next-hop-unchanged). The Hierarchical eBGP-LU solution requires a mix
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of rewrite and non-rewrites, and the authors did not manage to make it work in IOS
XR with one single session. IOS XR still supports this solution if you configure two
IPv4 addresses on the peering interfaces, establish two parallel eBGP-LU sessions,
and carefully use the communities.

MPLS-Capable Servers and Static Labels
Srv1, an MPLS-capable server (acting as a PE) is performing a relatively complex
task. Even with hierarchical LSPs, Srv1 still needs to process the eBGP-LU routes of
all the remote servers, not to mention the service BGP (IP Unicast, IP VPN, etc.)
routes.

Although BGP has many mechanisms to reduce the state (communities, policies
RTC, etc.), some large-scale data center administrators prefer to use central control‐
lers that directly program static label stacks on the servers’ FIB.

Of course, eBGP remains the preferred option for the data center
fabric (L1, S1, L2, S2, etc.).

For example, if Srv1 does not run eBGP-LU, applying this static configuration to Srv1
would work fine, too, as demonstrated here:

Example 16-31. Static label stack configuration—Srv1 (Junos)

protocols {
    mpls {
        static-label-switched-path Srv1--->Srv2 {
             label-stack;
             ingress {
                 to 172.16.3.22;
                 next-hop 10.0.0.1;
                 push [ 24006 300624 ];
}}}}

The problem is that label values are dynamic and can change at any time. If the con‐
troller needs to react every time that a dynamic label value changes in the network,
the overall solution does not scale.

There are two alternative ways to solve this challenge:

• Deterministic labels with BGP-LU Prefix SID extensions (discussed in Chapter 2)
• Assigning a static label at L1, map it to the FEC 172.16.3.22/32, and push it from

Srv1
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Static label stitching
Static LSPs like those described in Chapter 1 do not scale, because they require
assigning and programming labels at every hop. The following model is better in that
the label only needs to be statically allocated at L1. Let’s see how it works.

Example 16-32. Static label stitching configuration at the ingress PE—L1 (Junos)

protocols {
    mpls {
        static-label-switched-path ANY-to-Srv2 {
            transit 1000000 {
                next-hop 172.16.3.22;
                stitch;
}}}}

With this configuration, if L1 receives a MPLS packet with topmost label 1000000, it
processes the packet according to how 172.16.3.22 resolves in L1’s inet.3 table. More
precisely, the Label Forwarding Information Base (LFIB) entry is: 1000000 → Swap
24006, Push 301408, send to 10.0.0.5.

And if the dynamic labels change, L1 automatically updates the LFIB entry accord‐
ingly.

Now suppose that L2 has the following configuration:

Example 16-33. Static label stitching configuration at the egress PE—L2 (IOS XR)

mpls static
 address-family ipv4 unicast
  local-label 1000111 allocate
   forward
    path 1 nexthop GigabitEthernet0/0/0/0 10.0.0.2 out-label pop
!

All that Srv1 needs to do is push label 1000111, then label 1000000, and send the
packet to L1. When the packet arrives to L2, it has only one label (1000111) and it is
safely delivered to the Srv2.
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CHAPTER 17

Scaling MPLS Services

Chapter 16 discusses different methods for scaling IP/MPLS transport. Unfortunately,
in order to design large, scalable networks, it is often not enough to scale the trans‐
port. As the next step, you will learn about different design models to scale MPLS
services.

The general problem with MPLS service scaling is that you can have a network
device, which supports a limited number of routes (in L3VPN deployments), limited
number of MAC addresses (in VPLS or EVPN deployments), limited number of fea‐
tures supported (e.g., no support for L3VPN, no support for VPLS/EVPN), and so
on. To alleviate all of those problems, the MPLS service itself must be designed in a
scalable manner.

This chapter presents some typical architectural models to scale L3 MPLS services.
More specifically, the two examples used here are: Default Route Hierarchical L3VPN
and PWHE-based Hierarchical L3VPN. However, you can port many of the ideas
presented here to other MPLS services. These examples are inspired on the Mobile
Backhaul (MBH) use case.

Hierarchical L3VPN
The network topology used for the discussion of service scaling will be basically the
same as the multidomain topology described in Chapter 16. For reference, this topol‐
ogy is presented in Figure 17-1.
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Figure 17-1. Multidomain topology

To create a meaningful basis for a discussion on service scaling, in addition to CE-less
VPN-A (built in Chapter 16), VPN-B (with CE) extends the topology. CEs are con‐
nected to PE routers as outlined in Figure 17-2. Different CEs use various PE-CE pro‐
tocols (eBGP, IS-IS, OSPF, VRRP) to connect to PE. The details of PE-CE
configurations, however, are not discussed here. The basics of L3VPN and VPLS ser‐
vice are covered in Chapter 3 and Chapter 7.

Figure 17-2. VPN-B topology

As in many of the earlier chapters, the physical CE devices are virtualized with rout‐
ing instances (virtual routers, so-called VRF lite) to create one virtual CE per [physi‐
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cal CE, VPN] pair. In this sense, throughout this chapter there will be further virtual
CE devices in addition to those shown in Figure 17-2, as new L3VPN instances are
added to the architectural model.

Let’s capture the current state of the network by examining the total number of pre‐
fixes in VRF-B, as shown in Example 17-1 and Example 17-2.

Example 17-1. VRF-B prefix state on PE1 (Junos)

juniper@PE1> show route summary
(...)
VRF-B.inet.0: 19 destinations, 39 routes (19 active, ...)
              Direct:      3 routes,      3 active
               Local:      3 routes,      3 active
                 BGP:     32 routes,     12 active
              Static:      1 routes,      1 active
(...)

Example 17-2. VRF-B prefix state on PE2 (IOS XR)

RP/0/0/CPU0:PE2#show route vrf VRF-B summary
Route Source        Routes     Backup     Deleted     Memory(bytes)
connected           2          1          0           420
local               3          0          0           420
local VRRP          0          0          0           0
ospf VRF-B          1          0          0           140
bgp 65001           11         0          0           1540
dagr                0          0          0           0
static              1          0          0           140
Total               18         1          0           2660

On PE1, VRF-B contains routes to 19 destinations, whereas on all other PEs, there are
routes to only 18 (PE3 and PE4 are omitted here to save space). This small difference
is caused by the fact that PE1 is a Virtual Router Redundancy Protocol (VRRP) mas‐
ter, thus the additional route (VIP address) is present in VRF-B on that PE. However,
as it relates to the overall discussion about L3VPN service scaling, this small discrep‐
ancy is irrelevant.

You can imagine that in large-scale deployments, the number of prefixes in VRF-B
could be very large, not just the 18 or 19 shown in the example. Depending on the
platform used as the PE, the number could be too large. In the subsequent sections of
this chapter, architectural models to minimize that number are presented.

To make a meaningful comparison between different architectural models, for each
model discussed, additional service instances (L3VPN) will be created. Multiple mod‐
els running in parallel will give you the opportunity to directly compare advantages
and disadvantages of each model. Because, unfortunately, nothing is for free, to make
the design more scalable, you might need to give up some other aspects. For example,
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you might need to choose between design complexity and failover behavior during
various network failures.

Default Route L3VPN Model
The idea behind the Default Route L3VPN model is very simple:

• Create VRFs somewhere higher in the network hierarchy on more powerful rout‐
ers. Let’s call these routers Virtual Hub PEs (V-hubs). These are somewhere
deeper in the network infrastructure. V-hubs should be capable of holding all
VPN routes for selected VPNs. Depending on the required scale, selected VPNs
could mean all VPNs, or just a subset of all VPNs. Typically V-hubs are routers
sitting in the aggregation layer in the overall network design.

• Within each VPN, advertise the default route from each VRF on the V-hub
toward less powerful routers farther down in the network hierarchy. Let’s call
such routers Virtual Spoke PEs (V-spokes). They are closer to the end user. V-
spokes do not scale well, thus, within each locally configured VPN, it will receive
only default route with the next hop pointing to a V-hub. The advantage of a V-
spoke in such a mode is usually low price, small form factor, low power con‐
sumption, and so on, which makes it the preferred choice for mass deployment
in large quantities. Typically, V-spokes are routers sitting in the access layer in the
overall network design.

The idea is not new. If you look carefully, you’ll see that a similar idea was demon‐
strated in Chapter 16. For example, ABR1 and ABR2 routers advertise the default
route (in a global routing table) toward lower-layer routers (P3, P4, PE3, and PE4)
using IS-IS protocol and suppress all other (IS-IS L2) prefixes. The main difference is
that previously this model was applied to a global routing table, whereas now it is
applied to multiple VPN routing tables. So, the concept is very similar, but the imple‐
mentation details, of course, differ. The concept is described in RFC 7024 - Virtual
Hub-and-Spoke in BGP/MPLS VPNs.

An example of Default Route L3VPN topology is presented in Figure 17-3.
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Figure 17-3. The default route L3VPN model

As mentioned previously, you typically could use such a design when a large number
of low-end devices (feature-rich but with low scale) are deployed. One typical exam‐
ple could be a Mobile Backhaul (MBH) network, especially in 4G or 5G deployments.
In those deployments, the size of the cells (the area covered by a single eNodeB) is
relatively small, which naturally increases the overall number of required eNodeBs.
This, in turn, is reflected in the large number of access ports (and thus the number of
access devices) required from a networking perspective to connect all of
those eNodeBs.

As outlined in Figure 17-3, V-spokes (access devices) are typically attached to V-hubs
(aggregation devices) via semiclosed rings. Depending on the actual design, multiple
VRFs can be created on each V-spoke (Figure 17-3 shows only one). In turn, you
could connect multiple CE devices (e.g., eNodeBs) to each V-spoke. V-spokes adver‐
tise their locally learned (from locally connected CE devices) VPN prefixes to the V-
hubs. In the opposite direction, V-hubs advertise only the default route for each VPN.
The end result is that each VRF on V-spoke contains only local CE prefixes and the
default route from the V-hubs. For redundancy, both V-hubs terminating access
semi-rings are injecting the default route in each VPN. That should result in signifi‐
cantly fewer prefixes in each VRF, compared to nonhierarchical VPN design.

It is important to mention that on V-hubs the VRFs don’t need to be attached to any
CE. Thus, it’s possible that no interfaces will be included in those VRFs. The main
purpose of VRFs created on V-hubs is to collect all VPN prefixes for each VRF as well
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as to aggregate prefixes in each VRF via the default route advertised to V-spokes.
Later, V-spokes will send packets using the default route. Those packets will arrive to
VRFs on V-hubs, where IP lookup (within the VRF) must take place in order to
determine further the forwarding path. As is discussed in Chapter 3, IP lookup inside
the VRF is not the default behavior (neither for Junos, nor for IOS XR), and you need
to explicitly enable it.

You might also see some similarities with the Inter-AS Option B + Local VRF model
described in Chapter 9:

• VRFs typically do not necessarily have local CEs attached.
• Packets arrive to the VRF as labeled packets.
• IP lookup is performed inside the VRF for those labeled packets.
• ASBR in the Inter-AS Option B + Local VRF model acts as kind of an inline RR,

reflecting VPN prefixes between multiprotocol iBGP and multiprotocol eBGP
neighbors. In a hierarchical L3VPN model, the V-hub reflects prefixes between
two multiprotocol iBGP neighbors.

• Next-hop self is performed when VPN routes are reflected by ASBR in an Inter-
AS Option B + Local VRF model. In a hierarchical L3VPN model, a similar result
is achieved by advertising the VPN default route, which also uses a next hop that
is local to V-hub.

Detailed routing model
To verify this theory in practice, OSPF area 0 (ASBR1, ASBR2, PE1, and PE2) and IS-
IS area 49.0001 (ABR1, ABR2, PE3, and PE4) in Figure 17-1 are each functionally—
even if not topologically—equivalent to one of the rings in Figure 17-3.

To illustrate the hierarchical L3VPN model, let’s create a new VPN-C in the sample
interdomain topology used previously. ASBR1 and ASBR2 are acting as V-hubs for
PE1 and PE2, which are deployed in a V-spoke role. Similarly, on the other side of the
topology, ABR1 and ABR2 are V-hubs, whereas PE3 and PE4 are V-spokes. The over‐
all design for VRF-C is illustrated in Figure 17-4.
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Figure 17-4. VPN-C topology

The configuration of the VRF-Cs on V-spokes is standard; there is nothing specific
here. On the V-hubs (ASBR1, ASBR2, ABR1, and ABR2), however, you do not need
to configure the PE-CE interfaces in VRF-C. Additionally, within VRF-C on V-hubs,
you configure aggregate default discard route with standard community attached.
The community will be used to restrict advertisement of this default route to V-
spokes only. For reference, Example 17-3 and Example 17-4 present sample Junos and
IOS XR configurations, respectively. ABR1 and ABR2 have similar configurations.

Example 17-3. VRF-C configuration on V-hub—ASBR1 (Junos)

routing-instances {
    VRF-C {
        instance-type vrf;
        route-distinguisher 172.16.10.101:103;
        vrf-target target:65000:1003;
        routing-options {
            aggregate {
                route 0.0.0.0/0 {
                    community 65000:41999;
                    discard;
}}}}}

Example 17-4. VRF-C configuration on V-hub—ASBR2 (IOS XR)

vrf VRF-C
 address-family ipv4 unicast
  import route-target
   65000:1003
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  !
  export route-target
   65000:1003
!
community-set CM-VPN-DEFAULT-ROUTE
  65000:41999
end-set
!
route-policy PL-VPN-DEFAULT-ROUTE
  set community CM-VPN-DEFAULT-ROUTE
  set origin incomplete
end-policy
!
router bgp 65001
 vrf VRF-C
  rd 172.16.10.102:103
  address-family ipv4 unicast
   aggregate-address 0.0.0.0/0 as-set route-policy PL-VPN-DEFAULT-ROUTE
!

To maintain consistency, in IOS XR, you set the origin attribute explicitly to incom‐
plete (this is the default in Junos). Additionally, you configure the IOS XR V-hub to
attach a full AS_SET to the advertised aggregated default route (which, again, is the
default in Junos).

V-hubs act as VPN RRs. Until now, there was no inbound or outbound BGP policy
attached for IPv4 VPN address families. This must change, because the V-hub role is
to advertise the default route only to V-spokes, not reflect routes. In the other direc‐
tion, upstream (as well as between two V-hubs), routes received from V-spokes
should be reflected, but the default route should not be sent.

Thus, you must implement the VPN downstream, VPN upstream, and VPN RR BGP
outbound policy on V-hubs. To make it possible to compare between standard VPN
(VPN-B) and the default route VPN (VPN-C), those policies will affect only VPN
route distribution for VPN-C, as demonstrated in Example 17-5. Typically, on real-
life small-scale V-spokes, all VPNs would be implemented in the default route L3VPN
model.

Example 17-5. IPv4 VPN outbound BGP policies on ASBR1 (Junos)

protocols {
    bgp {
        group iBGP-DOWN:LU+VPN {
            export [ PL-BGP-LU-DOWN-EXP PL-BGP-VPN-DOWN-EXP ];
        }
        group eBGP-UP:VPN {
            export [ PL-BGP-LU-UP-EXP PL-BGP-VPN-UP-EXP ];
        }
        group iBGP-RR:LU+VPN {
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            export [ PL-BGP-LU-RR-EXP PL-BGP-VPN-RR-EXP ];
}}}
policy-options {
    policy-statement PL-BGP-VPN-DOWN-EXP {
        term LOCAL-DEFAULT-ROUTE {
            from {
                family inet-vpn;
                community CM-VPN-DEFAULT-ROUTE;
            }
            then accept;
        }
        term VRF-C {
            from {
                family inet-vpn;
                community RT-VPN-C;
            }
            then reject;
        }
        from family inet-vpn;
        then accept;
    }
    policy-statement PL-BGP-VPN-UP-EXP {
        term LOCAL-DEFAULT-ROUTE {
            from {
                family inet-vpn;
                community CM-VPN-DEFAULT-ROUTE;
            }
            then reject;
        }
        from family inet-vpn;
        then accept;
    }
    policy-statement PL-BGP-VPN-RR-EXP {
        term LOCAL-DEFAULT-ROUTE {
            from {
                family inet-vpn;
                community CM-VPN-DEFAULT-ROUTE;
            }
            then reject;
        }
        from family inet-vpn;
        then accept;
    }
    community CM-VPN-DEFAULT-ROUTE members 65000:41999;
    community RT-VPN-C members target:65000:1003;
}

You can see the definition of the PL-BGP-LU-*-EXP policies in Example 16-16.
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Example 17-6. IPv4 VPN outbound BGP policies on ASBR2 (IOS XR)

extcommunity-set rt RT-VPN-C
  65000:1003
end-set
!
route-policy PL-BGP-VPN-DOWN-EXP
  if community matches-any CM-VPN-DEFAULT-ROUTE then
    done
  elseif extcommunity rt matches-any RT-VPN-C then
    drop
  endif
  pass
end-policy
!
route-policy PL-BGP-VPN-UP-EXP
  if community matches-any CM-VPN-DEFAULT-ROUTE then
    drop
  endif
  pass
end-policy
!
route-policy PL-BGP-VPN-RR-EXP
  if community matches-any CM-VPN-DEFAULT-ROUTE then
    drop
  endif
  pass
end-policy
!
router bgp 65001
 !
 neighbor-group iBGP-DOWN:LU_VPN
  address-family vpnv4 unicast
   route-policy PL-BGP-VPN-DOWN-EXP out
 !
 neighbor-group eBGP-UP:VPN
  address-family vpnv4 unicast
   route-policy PL-BGP-VPN-UP-EXP out
 !
 neighbor-group iBGP-RR:LU_VPN
  address-family vpnv4 unicast
   route-policy PL-BGP-VPN-RR-EXP out
!

There is one important difference between applying BGP policies in Junos and IOS
XR, as discussed in “Multiprotocol BGP policies” on page 629.

• In IOS XR, policies are applied separately for each address family.

650 | Chapter 17: Scaling MPLS Services



• In Junos, one single BGP policy chain applies to all the address families signaled
in the session. That’s why the policies defined in Example 17-5 use the from
family inet-vpn clause; this way, the IP LU prefixes are unaffected.

Now, it is time for verification. Let’s look at the sizes of VRF routing tables.

Example 17-7. VRF-C prefix state on PE1 (Junos)

juniper@PE1> show route summary
(...)
VRF-C.inet.0: 9 destinations, 11 routes (9 active, ...)
              Direct:      3 routes,      3 active
               Local:      3 routes,      3 active
                 BGP:      4 routes,      2 active
              Static:      1 routes,      1 active

Example 17-8. VRF-C prefix state on PE2 (IOS XR)

RP/0/0/CPU0:PE2#show route vrf VRF-C summary
Route Source        Routes     Backup     Deleted     Memory(bytes)
connected           2          1          0           420
local               3          0          0           420
ospf VRF-C          1          0          0           140
static              1          0          0           140
bgp 65001           1          0          0           140
dagr                0          0          0           0
Total               8          1          0           1260

If you compare these to Example 17-1 and Example 17-2, which show that state for
nonoptimized VPN, you can see the decrease in the number of prefixes. Now, there
are 10 fewer prefixes. Note that PE1 has more BGP prefixes due to the access eBGP
PE-CE session. Let’s have a look at the actual routing tables.

Example 17-9. VRF-C routing table on PE1 (Junos)

juniper@PE1> show route table VRF-C.inet.0 active-path terse
VRF-C.inet.0: 9 destinations, 11 routes (9 active, ...)
+ = Active Route, - = Last Active, * = Both

A V Destination      P Prf  Metric 1    Next hop   AS path
* ? 0.0.0.0/0        B 170       100               65002 {65506} ?
* ? 10.3.1.0/31      D   0              >ge-2/0/1.3
* ? 10.3.1.1/32      L   0               Local
* ? 10.3.5.0/24      D   0              >ge-2/0/5.3
* ? 10.3.5.1/32      L   0               Local
* ? 10.3.5.254/32    L   0               Local
* ? 192.168.3.1/32   B 170       100               65501 I
* ? 192.168.3.5/32   S   5              >10.3.5.5
* ? 192.168.3.11/32  D   0              >lo0.3
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Example 17-10. VRF-C routing table on PE2 (IOS XR)

RP/0/0/CPU0:PE2#show route vrf VRF-C
(...)
B*   0.0.0.0/0 [200/0] via 172.16.10.101 (nexthop in vrf default)
C    10.3.2.0/31 is directly connected, 1w0d, Gi0/0/0/1.3
L    10.3.2.1/32 is directly connected, 1w0d, Gi0/0/0/1.3
C    10.3.5.0/24 is directly connected, 1w0d, Gi0/0/0/5.3
L    10.3.5.2/32 is directly connected, 1w0d, Gi0/0/0/5.3
O    192.168.3.2/32 [110/1001] via 10.3.2.0, 1d02h, Gi0/0/0/1.3
S    192.168.3.5/32 [1/0] via 10.3.5.5, 1w0d
L    192.168.3.22/32 is directly connected, 1w0d, Loopback3

As expected, there is a default route pointing to V-hub (ASBR1) and routes associated
with locally connected CE devices (CE1-C, CE5-C) only. Remote VPN-C routes
(CE2-C, CE3-C, CE4-C, and CE6-C) are not present. Routing tables on other PE
routers look similar.

Full VRF routing tables are now available on V-hubs, as shown in Example 17-11 and
Example 17-12. As expected, there is one aggregate (Junos) or BGP generated, based
on aggregate-address (IOS XR) default discard route, six PE-CE link routes, six CE
loopbacks, and four PE VRF loopbacks. There are no local/connected/direct routes,
because no local interface is connected to those VRFs. VRF routing tables on remain‐
ing V-hubs look similar.

Example 17-11. VRF-C routing table on ASBR1 (Junos)

juniper@ASBR1> show route table VRF-C.inet.0 active-path | match "\*"
+ = Active Route, - = Last Active, * = Both
0.0.0.0/0       *[Aggregate/130] 5d 21:37:39
10.3.1.0/31     *[BGP/170] 10:59:25, from 172.16.10.11
10.3.2.0/31     *[BGP/170] 13:37:36, MED 0, from 172.16.10.22
10.3.3.0/31     *[BGP/170] 23:58:34, from 172.16.20.1
10.3.4.0/31     *[BGP/170] 13:29:16, from 172.16.20.1
10.3.5.0/24     *[BGP/170] 10:59:25, from 172.16.10.11
10.3.6.0/24     *[BGP/170] 23:58:34, from 172.16.20.1
192.168.3.1/32  *[BGP/170] 1d 10:59:25, from 172.16.10.11
192.168.3.2/32  *[BGP/170] 1d 13:37:34, MED 1001, from 172.16.10.22
192.168.3.3/32  *[BGP/170] 23:58:34, from 172.16.20.1
192.168.3.4/32  *[BGP/170] 1d 13:29:16, from 172.16.20.1
192.168.3.5/32  *[BGP/170] 1d 10:59:25, from 172.16.10.11
192.168.3.6/32  *[BGP/170] 23:58:34, from 172.16.20.1
192.168.3.11/32 *[BGP/170] 1d 10:59:25, from 172.16.10.11
192.168.3.22/32 *[BGP/170] 1d 13:37:36, MED 0, from 172.16.10.22
192.168.3.33/32 *[BGP/170] 23:58:34, from 172.16.20.1
192.168.3.44/32 *[BGP/170] 1d 13:29:16, from 172.16.20.1
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Example 17-12. VRF-C routing table on ASBR2 (IOS XR)

RP/0/0/CPU0:ASBR2#show route vrf VRF-C
(...)
B* 0.0.0.0/0 [200/0] via 0.0.0.0, 6d11h, Null0
B 10.3.1.0/31 [200/0] via 172.16.10.11 (nexthop in vrf default)
B 10.3.2.0/31 [200/0] via 172.16.10.22 (nexthop in vrf default)
B 10.3.3.0/31 [20/0] via 172.16.21.33 (nexthop in vrf default)
B 10.3.4.0/31 [20/0] via 172.16.21.44 (nexthop in vrf default)
B 10.3.5.0/24 [200/0] via 172.16.10.11 (nexthop in vrf default)
B 10.3.6.0/24 [20/0] via 172.16.21.33 (nexthop in vrf default)
B 192.168.3.1/32 [200/0] via 172.16.10.11 (nexthop in vrf default)
B 192.168.3.2/32 [200/1001] via 172.16.10.22 (nexthop in vrf default)
B 192.168.3.3/32 [20/0] via 172.16.21.33 (nexthop in vrf default)
B 192.168.3.4/32 [20/0] via 172.16.21.44 (nexthop in vrf default)
B 192.168.3.5/32 [200/0] via 172.16.10.11 (nexthop in vrf default)
B 192.168.3.6/32 [20/0] via 172.16.21.33 (nexthop in vrf default)
B 192.168.3.11/32 [200/0] via 172.16.10.11 (nexthop in vrf default)
B 192.168.3.22/32 [200/0] via 172.16.10.22 (nexthop in vrf default)
B 192.168.3.33/32 [20/0] via 172.16.21.33 (nexthop in vrf default)
B 192.168.3.44/32 [20/0] via 172.16.21.44 (nexthop in vrf default)

Achieving end-to-end connectivity in the Junos plane
Routing information seems to be perfect, so now, let’s verify the connectivity between
CE routers, for example between CE1-C and CE3-C.

Example 17-13. Failed ping from CE1-C to CE3-C (Junos)

juniper@CE1> ping routing-instance CE1-C source 192.168.3.1
             192.168.3.3 count 1
PING 192.168.3.3 (192.168.3.3): 56 data bytes
--- 192.168.3.3 ping statistics ---
1 packets transmitted, 0 packets received, 100% packet loss

Unfortunately, the connectivity is broken. Quick verification using MPLS (L3VPN)
ping originating from PE1 yields the same results.

Example 17-14. Failed MPLS ping from PE1 to CE3-C (Junos)

juniper@PE1> ping mpls l3vpn VRF-C prefix 192.168.3.3/32 detail
             count 1
Request for seq 1, to interface 340, label 308416, packet size 88
Timeout for seq 1

--- lsping statistics ---
1 packets transmitted, 0 packets received, 100% packet loss

Because the routing information looks correct, there must be some problems with
forwarding. Let’s check what MPLS labels are used to forward traffic from PE1.
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Example 17-15. Label stack used to reach CE3-C on PE1 (Junos)

juniper@PE1> show route table VRF-C.inet.0 192.168.3.3 active-path
             detail | match "announced|via|Label"
0.0.0.0/0 (2 entries, 1 announced)
                Next hop: 10.0.10.1 via ge-2/0/2.0, selected
                Label-switched-path PE1--->ASBR1
                Label operation: Push 308416
(...)

Example 17-16. VPN label advertised by ASBR1 for 0.0.0.0/0 Route

juniper@ASBR1> show route advertising-protocol bgp 172.16.10.11 table
               bgp.l3vpn.0 match-prefix 172.16.10.101:103:* detail |
               match "0.0.0.0/0|Label"
* 172.16.10.101:103:0.0.0.0/0 (1 entry, 1 announced)
     VPN Label: 308416

To reach the loopback of CE3-C, traffic uses the default route entry, and traffic is sent
to ASBR1 via PE1→ASBR1 LSP. A single MPLS label (308416) is used, which is the
same label that you can see in the MPLS ping in Example 17-14. This is the VPN label
advertised by ASBR1 and associated with the default route (Example 17-16). LSP is
single hop, thus no transport label (implicit null) is used. So, we can find nothing sus‐
picious here.

Upon examining the label on ASBR1, however, we discover some unexpected infor‐
mation.

Example 17-17. MPLS routing entry associated to 0/0 route at ASBR1 (Junos)

juniper@ASBR1> show route label 308416
(...)
308416             *[VPN/170] 1d 01:40:59
                      Discard

Obviously, traffic is discarded instead of being forwarded based on VRF routing
information on ASBR1. What is needed, instead, is the capability to perform IP
lookup inside VRF. As is discussed in Chapter 3, in Junos, the default label allocation
method for VPN prefixes is per access next hop (per CE). Thus, all VPN prefixes
sharing the same next hop will share the same VPN label. Using such an approach, IP
lookup inside VRF is not required. Packets arriving from an MPLS backbone can be
forwarded to the appropriate next hop based on the label.

In the particular case of the Default Route L3VPN model, the next hop for the VPN
default route is discard. Thus—based on the label associated with the VPN default
route—packets are dropped and no IP lookup inside VRF is performed. For hierarch‐
ical L3VPN to function properly, you must enable IP lookup inside VRF on V-hubs.
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As Chapter 3 details, there are several ways to achieve this, and one of them is the
vrf-table-label Junos knob deployed on all Junos V-hubs.

Example 17-18. Per-VRF label configuration on ASBR1 (Junos)

routing-instances {
    VRF-C {
        vrf-table-label;
}}

With this knob, a single label is assigned to all prefixes from a given VRF. Because the
label is no longer correlated with next hop, IP lookup inside VRF will be performed
to determine the next hop.

Ping between CE1-C and CE3-C works now (output omitted for brevity). Let’s check
the label assignment after enabling per-VRF label mode.

Example 17-19. VPN label advertised by ASBR1 for 0.0.0.0/0 route

juniper@ASBR1> show route advertising-protocol bgp 172.16.10.11 table
               bgp.l3vpn.0 match-prefix 172.16.10.101:103:* detail |
               match "0.0.0.0/0|Label"
172.16.10.101:103:0.0.0.0/0 (1 entry, 1 announced)
     VPN Label: 16

Example 17-20. LFIB entry for a label associated to 0/0 at ASBR1 (Junos)

juniper@ASBR1> show route label 16
(...)
16                 *[VPN/0] 01:19:27
                      to table VRF-C.inet.0, Pop

Examining outputs from Example 17-19 and Example 17-20, you can observe two
differences. First, the VPN label itself is different. Second, the routing entry for that
label now shows behavior required for proper operation of hierarchical VPN model.
Two lookups are performed on the packets:

MPLS label–based lookup
This determines the VRF routing table for subsequent lookup.

IP-based lookup inside VRF (the one previously determined by first lookup)
This determines the actual forwarding next hop.

Achieving end-to-end connectivity in the IOS XR plane
Now, after examining connectivity across a Junos-based IP/MPLS network part, let’s
verify the connectivity across an IOS XR-based network part.
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Example 17-21. Connectivity verification between CE2-C and CE4-C

juniper@CE2> ping routing-instance CE2-C source 192.168.3.2
             192.168.3.4 count 1
PING 192.168.3.4 (192.168.3.4): 56 data bytes
ping: sendto: No route to host

It seems, the default route, although present in VRF-C on PE2 (Example 17-10), is
not present on CE2-C. A quick verification confirms that suspicion.

Example 17-22. Missing default route on CE2-C (Junos)

juniper@CE2> show route table CE2-C.inet.0 0.0.0.0/0 exact

juniper@CE2>

In IOS XR, the default route redistribution into IGP protocols requires special atten‐
tion. Thus, the configuration on IOS XR–based V-spoke with IGP as PE-CE protocols
(PE2, PE4) needs to be extended, as outlined here:

Example 17-23. Default route origination on PE2 (IOS XR)

router ospf VRF-C
 vrf VRF-C
  default-information originate

This different treatment is specific to IOS XR and redistribution to IGP. This extra
configuration is not required when the PE-CE protocol is BGP, as it can be quickly
verified on CE6-C, which uses BGP as the PE-CE protocol. With no specific configu‐
ration, CE6-C receives the default route from both Junos and IOS XR–based PEs.

Example 17-24. Sources for the default route on CE6-C

juniper@CE6> show route table CE6-C.inet.0 0.0.0.0/0 exact detail |
             match "0.0.0.0/0|Source"
0.0.0.0/0 (2 entries, 1 announced)
                Source: 10.3.6.3
                Source: 10.3.6.4

On Junos V-hubs, special attention was needed to enable IP lookup inside VRF. In
IOS XR devices, this is enabled by default. Chapter 3 points out that the default label
allocation method for VPN prefixes in IOS XR is per-prefix. However, this applies
only for the VPN prefixes received from CEs. For local prefixes, IOS XR generates a
single per-VRF aggregate label. Such prefixes are, for example, PE-CE LAN prefixes,
loopback prefixes inside local VRF, aggregate prefixes, or locally defined static routes
with null0 next hop. For packets arriving with an aggregate label, IP lookup is per‐
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formed inside VRF to further determine the next hop. A quick verification confirms
these observations.

Example 17-25. VPN label advertised for 0/0 route by V-hubs

RP/0/0/CPU0:PE2#show bgp vpnv4 unicast vrf VRF-C 0.0.0.0/0 |
                include "from|Label"
    172.16.10.101 (metric 1001) from 172.16.10.101 (172.16.10.101)
      Received Label 16
    172.16.10.102 (metric 1001) from 172.16.10.102 (172.16.10.102)
      Received Label 16016

Example 17-26. LFIB entry for a label associated to 0/0 at ASBR2 (IOS XR)

RP/0/0/CPU0:ASBR2#show mpls forwarding labels 16016
Local  Outgoing    Prefix             Outgoing     Next Hop  Bytes
Label  Label       or ID              Interface              Switched
------ ----------- ------------------ ------------ --------- --------
16016  Aggregate   VRF-C: Per-VRF Aggr[V]   \
                                      VRF-C                  8146

MPLS forwarding in the Junos plane
Let’s now take a look at the path between CE1-C and CE3-C by using traceroute (see
Example 17-27).

Example 17-27. Traceroute from CE1-C to CE3-C

juniper@CE1> traceroute routing-instance CE1-C source 192.168.3.1
             192.168.3.3
traceroute to 192.168.3.3 (192.168.3.3) from 192.168.3.1,
 1  PE1-VRF-C (10.3.1.1)  6.810 ms  3.627 ms  3.125 ms
 2  * * *
 3  ASBR3 (10.1.2.1)  16.881 ms  17.374 ms  19.851 ms
     MPLS Label=303120 CoS=0 TTL=1 S=0
     MPLS Label=22 CoS=0 TTL=1 S=1
 4  P1 (10.0.20.0)  19.883 ms  129.772 ms  30.374 ms
     MPLS Label=299856 CoS=0 TTL=1 S=0
     MPLS Label=300320 CoS=0 TTL=1 S=0
     MPLS Label=22 CoS=0 TTL=2 S=1
 5  ABR1 (10.0.20.5)  19.622 ms  22.494 ms  17.512 ms
     MPLS Label=300320 CoS=0 TTL=1 S=0
     MPLS Label=22 CoS=0 TTL=3 S=1
 6  P4 (10.0.21.12)  14.878 ms P3 (10.0.21.0)  17.384 ms
     MPLS Label=299968 CoS=0 TTL=1 S=0
     MPLS Label=22 CoS=0 TTL=4 S=1
 7  PE3-VRF-C (192.168.3.33)  16.859 ms  15.165 ms  15.675 ms
 8  CE3-C (192.168.3.3)  124.331 ms  81.165 ms  16.002 ms
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Hmm. With the exception of a second hop (apparently ASBR1), everything looks
fine. But why didn’t ASBR1 respond to the traceroute packets with an ICMP Time
Exceeded message?

To send an ICMP Time Exceeded message, some source IP address needs to be
assigned to the packet. This source IP address is later displayed in traceroute output
on the host (CE1-C, in this case) originating the traceroute packets. As already dis‐
cussed, one of the effects of vrf-table-label configuration (Example 17-18) is that
received MPLS packets are handed over to the VRF for further processing (IP
lookup) after the MPLS label is removed. For a traceroute packet, this implies that the
ICMP Time Exceeded message must be sourced from within VRF.

And therein lies the problem. In the current configuration, there are no interfaces
(and thus no local IP address) at all attached to VRF-C on ASBR1. Consequently,
ASBR1 is not able to source any locally generated packets (e.g., previously mentioned
ICMP Time Exceeded message) in VRF-C. You can also verify it by means of a simple
ping from VRF-C on ASBR1.

Example 17-28. Failed ping from ASBR1 to CE1-C (Junos)

juniper@ASBR1> ping routing-instance VRF-C 192.168.3.1 count 1
PING 192.168.3.1 (192.168.3.1): 56 data bytes
ping: sendto: Can't assign requested address
(...)

Therefore, although transit VPN traffic can flow through ASBR1 without any prob‐
lems, scenarios in which traffic needs to be sourced from VRF-C on ASBR1 are cur‐
rently not working. To solve this problem, you must add a loopback interface inside
VRF-C on ASBR1.

Example 17-29. Loopback configuration in VRF-C on ASBR1 (Junos)

interfaces {
    lo0 {
        unit 3 {
            family inet {
                address 192.168.3.101/32;
}}}}
routing-instances {
    VRF-C {
        interface lo0.3;
}}

Similarly, some loopback interface should be added on another Junos V-hub (ABR1).
With this modification, the ICMP Time Exceeded message is sourced from the loop‐
back placed within VRF-C, configured previously. Now, both ping from VRF-C on
ASBR1 (not shown for brevity) and traceroute between CE devices works fine.
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Example 17-30. Traceroute from CE1-C to CE3-C

juniper@CE1> traceroute routing-instance CE1-C source 192.168.3.1
             192.168.3.3
traceroute to 192.168.3.3 (192.168.3.3) from 192.168.3.1, 30 hops max
 1  PE1-VRF-C (10.3.1.1)  4.565 ms  3.823 ms  5.863 ms
 2  ASBR1-VRF-C (192.168.3.101)  6.203 ms  109.403 ms  8.573 ms
 3  ASBR3 (10.1.2.1)  18.768 ms  16.849 ms  15.705 ms
     MPLS Label=303120 CoS=0 TTL=1 S=0
     MPLS Label=22 CoS=0 TTL=1 S=1
(...)

The complete output is provided in Example 17-27. Just for comparison, let’s examine
the traceroute between CE2-C and CE4-C, forcing it to go via IOS XR plane (IGP on
ASBR1 and ABR1 was temporarily disabled, when the output shown in
Example 17-31 was captured).

Example 17-31. Traceroute from CE2-C to CE4-C

juniper@CE2> traceroute routing-instance CE2-C source 192.168.3.2
             192.168.3.4
traceroute to 192.168.3.4 (192.168.3.4) from 192.168.3.2
 1  PE2-VRF-C (10.3.2.1)  3.484 ms  4.882 ms  3.034 ms
 2  ASBR2 (10.0.10.3)  6.378 ms  9.047 ms  5.198 ms
 3  ASBR4 (10.1.2.3)  122.968 ms  18.226 ms  19.753 ms
     MPLS Label=16008 CoS=0 TTL=1 S=0
     MPLS Label=16021 CoS=0 TTL=1 S=1
 4  P2 (10.0.20.2)  18.502 ms  20.385 ms  18.805 ms
     MPLS Label=16005 CoS=0 TTL=1 S=0
     MPLS Label=16004 CoS=0 TTL=1 S=0
     MPLS Label=16021 CoS=0 TTL=2 S=1
 5  ABR2 (10.0.20.7)  18.034 ms  17.620 ms  20.180 ms
     MPLS Label=16004 CoS=0 TTL=1 S=0
     MPLS Label=16021 CoS=0 TTL=3 S=1
 6  P3 (10.0.21.14)  19.625 ms  43.178 ms  21.516 ms
     MPLS Label=300000 CoS=0 TTL=1 S=0
     MPLS Label=16021 CoS=0 TTL=4 S=1
 7  PE4 (10.0.21.17)  19.817 ms  19.515 ms  19.582 ms
     MPLS Label=16021 CoS=0 TTL=1 S=1
 8  CE4-C (192.168.3.4)  19.735 ms  18.215 ms  21.057 ms

The difference is that ASBR2 sources the ICMP Time Exceeded message from an
MPLS interface address, not from an interface within VRF. Thus, loopback inside
VRF-C on ASBR2 is not needed for traceroute to work. The MPLS label, however, is
still not reported. In that case (0.0.0.0/0 route inside VRF-C), a per-VRF aggregate
label is used, which is similar to the previously discussed ASBR1 case.
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Question: why does PE4 (V-spoke) return a label in Example 17-31, whereas ASBR2
(V-hub) doesn’t? Here’s a hint: check the traceroute to CE4-C physical interface (not
loopback), where PE4 doesn’t report the label either (Example 17-32).

Example 17-32. Traceroute from CE2-C to CE4-C

juniper@CE2> traceroute routing-instance CE2-C source 192.168.3.2
             10.3.4.0
traceroute to 10.3.4.0 (10.3.4.0) from 192.168.3.2, 30 hops max
 1  PE2-VRF-C (10.3.2.1)  4.919 ms  7.055 ms  2.955 ms
 2  ASBR2 (10.0.10.3)  6.162 ms  5.481 ms  6.884 ms
 3  ASBR4 (10.1.2.3)  19.437 ms  19.530 ms  18.572 ms
     MPLS Label=16008 CoS=0 TTL=1 S=0
     MPLS Label=16008 CoS=0 TTL=1 S=1
 4  P2 (10.0.20.2)  16.971 ms  16.314 ms  18.551 ms
     MPLS Label=16005 CoS=0 TTL=1 S=0
     MPLS Label=16004 CoS=0 TTL=1 S=0
     MPLS Label=16008 CoS=0 TTL=2 S=1
 5  ABR2 (10.0.20.7)  17.210 ms  18.515 ms  18.357 ms
     MPLS Label=16004 CoS=0 TTL=1 S=0
     MPLS Label=16008 CoS=0 TTL=3 S=1
 6  P3 (10.0.21.14)  18.364 ms  25.810 ms  21.105 ms
     MPLS Label=300000 CoS=0 TTL=1 S=0
     MPLS Label=16008 CoS=0 TTL=4 S=1
 7  PE4 (10.0.21.17)  17.564 ms  15.521 ms  15.989 ms
 8  CE4-C (10.3.4.0)  19.385 ms  20.609 ms  19.845 ms

As Chapter 3 specifies, by default IOS XR uses the following label allocation methods:

• Per-prefix label for VPN prefixes received over PE-CE protocols.
• Per-VRF aggregate label for all remaining (locally defined) prefixes (e.g., PE-CE

LAN prefixes, loopback prefixes inside local VRF, locally generated aggregate
prefixes, or locally defined static routes with null0 next hop). For packets arriving
with aggregate label, IP lookup (and ARP resolution) is performed inside the
VRF to further determine the next hop.

Traceroute reports the label for prefixes with a per-prefix label, because packets des‐
tined to these prefixes are only label-switched on the PE router. Thus, label informa‐
tion is available when a traceroute packet needs to be dropped due to TTL=0. Packets
destined to prefixes with an aggregate label are, on the other hand, handled by two
lookups: label lookup, which determines appropriate VRF, and IP lookup inside VRF
to further determine where about of the packet. Before the packet is handed over to
VRF for further processing, its label is removed. Thus, when the traceroute packet is
dropped inside VRF, the label information is no longer available and cannot be
reported in an ICMP Time Exceeded message.
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Handling network failures by using Hierarchical L3VPN
The last issue that you will look at is the difference between plain L3VPN and Hier‐
archical L3VPN during network failure events. Let’s assume for this example that on
ASBR1 all BGP sessions (with the exception of two sessions only: toward PE1 and
PE2) are down due to some network failure. When checking connectivity during that
network state, you can observe the following:

• VPN-B (plain VPN) still works fine, and traffic is forwarded via ASBR2
(Example 17-33)

• VPN-C (Hierarchical VPN) no longer works (Example 17-34)

Example 17-33. Healthy connectivity (VPN-B) during simulated failure

juniper@CE1> traceroute routing-instance CE1-B source 192.168.2.1
             192.168.2.3
traceroute to 192.168.2.3 (192.168.2.3) from 192.168.2.1
 1  PE1-VRF-B (10.2.1.1)  14.091 ms  2.925 ms  2.548 ms
 2  ASBR2 (10.0.10.9)  225.348 ms  18.487 ms  19.716 ms
     MPLS Label=16014 CoS=0 TTL=1 S=0
     MPLS Label=21 CoS=0 TTL=1 S=1
 3  ASBR4 (10.1.2.3)  17.498 ms  18.760 ms  19.575 ms
     MPLS Label=16007 CoS=0 TTL=1 S=0
     MPLS Label=21 CoS=0 TTL=2 S=1
(...)

Example 17-34. Broken connectivity (VPN-C) during simulated failure

juniper@CE1> traceroute routing-instance CE1-C source 192.168.3.1
             192.168.3.3
traceroute to 192.168.3.3 (192.168.3.3) from 192.168.3.1, 30 hops max
 1  PE1-VRF-C (10.3.1.1)  158.941 ms  11.196 ms  5.830 ms
 2  * * *
 3  * * *
(...)

ASBR1 is advertising the default route even if it has no reachability to PE3 and PE4. 
This highlights the problem: the introduction of route aggregation reduces the net‐
work visibility, which can lead to traffic blackholing in certain failure scenarios. In a
Hierarchical L3VPN model, V-hubs (e.g., ASBR1) perform route aggregation. Instead
of a large number of VPN routes, V-hubs send only the default route.

Thus, as the last step in Hierarchical VPN design, let’s enhance the configuration to
minimize the likelihood of blackholing. In any aggregation designs, you should inject
the aggregate route conditionally. As a condition, you should use reachability to some
remote prefixes (in the test topology, for example, VPN prefixes from CEs connected
to remote PEs).
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From an operation perspective, the easiest way to achieve the desired results is to
introduce a community scheme that encodes the source of prefixes, such as the fol‐
lowing:

• VPN prefixes sourced in AS 65001, OSPF area 0.0.0.0 will be marked with some
community (e.g., 65000:41100)

• VPN prefixes sourced in AS 65002, IS-IS area 49.0001 will be marked with differ‐
ent community (e.g., 65000:41201)

Subsequently, you can use the presence of a VPN prefixes with specific community as
a condition to advertise the VPN default route. ASBR1 and ASBR2 will use prefixes
with community 65000:41201 as a condition, whereas ABR1 and ABR2 will use pre‐
fixes with community 65000:41100.

Let’s begin with Junos V-spokes (PE1 and PE3). Standard community can be attached
to local VPN prefixes either via VRF export policies, or via BGP export policies.
Manipulating VRF export policies will create the situation that VRF export policies
for the same VPN will differ from access region to access region. From an operation
perspective, you should attempt a design where VRF export policies for specific VPNs
are unified. Thus, this option is not the best one in a scaled environment with many
VPNs and many access regions.

Using another option requires the selection of local VPN routes (from any local VRF)
in the BGP export policy. Only those routes should be marked with the standard
community mentioned previously. A technique of selecting VPN routes was already
used in Example 17-5. The from family inet-vpn knob was used to select all VPN
routes, regardless of the VRF. As Chapter 3 discusses, internal RIB structures on pure
PE (PE1 in the topology) versus on combined PE + RR/ASBR (ASBR1 in the topol‐
ogy) routers are slightly different in Junos.

One of the implications of this difference is the fact that the from family inet-vpn
knob selects on pure PE–only VPN routes received via multiprotocol BGP, because
this knob operates on the bgp.l3vpn.0 RIB. Normally this knob is not effective for
VPN routes from local VRFs on a pure PE. To make the from family inet-vpn
knob work in this case, you first need to explicitly copy VPN prefixes from local
VRFs into bgp.l3vpn.0 RIB by using the advertise-from-main-vpn-tables knob.
On a combined PE + RR/ASBR router, this is done automatically, thus no special
attention is required in Example 17-35.

Example 17-35. Location community attachment on PE1 (Junos)

protocols {
    bgp {
        advertise-from-main-vpn-tables;
        group iBGP-RR {

662 | Chapter 17: Scaling MPLS Services



            export PL-BGP-VPN-UP-EXP;
            vpn-apply-export;
}}}
policy-options {
    policy-statement PL-BGP-VPN-UP-EXP {
        from family inet-vpn;
        then {
            community add CM-IPV4-VPN-100;
            accept;
        }
    }
    community CM-IPV4-VPN-100 members 65000:41100;
}

Example 17-36. Location community attachment on PE2 (IOS XR)

community-set CM-IPV4-VPN-100
  65000:41100
end-set
!
route-policy PL-BGP-VPN-UP-EXP
  set community CM-IPV4-VPN-100
end-policy
!
router bgp 65001
 neighbor-group iBGP-RR
  address-family vpnv4 unicast
    route-policy PL-BGP-VPN-UP-EXP out
!

Now, it’s time to configure a condition to generate a default route on V-hub routers.
Again, the example configuration for Junos (ASBR1) is shown in Example 17-37 and
the one for IOS XR (ASBR2) is shown in Example 17-38. You should perform a simi‐
lar configuration—but referencing to community CM-IPV4-VPN-100 instead—on
ABR1 and ABR2. On ASBR1 (Junos), you create a completely new policy, whereas for
ASBR2 (IOS XR) you modify the existing policy (see Example 17-4) to include a con‐
dition.

Example 17-37. Conditional VPN default route generation on ASBR1 (Junos)

policy-options {
    policy-statement PL-VPN-DEFAULT-ROUTE {
        term REMOTE-VPNS {
            from {
                protocol bgp;
                community CM-IPV4-VPN-201;
            }
            then accept;
        }
        then reject;
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    }
    community CM-IPV4-VPN-201 members 65000:41201;
}
routing-instances {
    VRF-C {
        routing-options {
            aggregate {
                route 0.0.0.0/0 {
                    policy PL-VPN-DEFAULT-ROUTE;
}}}}}

Example 17-38. Conditional VPN default route generation on ASBR2 (IOS XR)

route-policy PL-VPN-DEFAULT-ROUTE
  if community matches-any CM-IPV4-VPN-201 then
    set community CM-VPN-DEFAULT-ROUTE
    set origin incomplete
    done
  endif
  drop
end-policy

Now, when you check the VPN default route, you will see that the contributing routes
are limited to remote (from PE3 or PE4) VPN routes. A contributing route is an
active route that is a more specific match for the aggregated destination. The presence
of at least one contributing route is required to activate an aggregate route.

Example 17-39. Contributing routes for VPN default route on ASBR1 (Junos)

juniper@ASBR1> show route table VRF-C.inet.0 0.0.0.0/0 exact
               extensive all
(...)
                State: <Active Int Ext>
(...)
                Announcement bits (2): 1-KRT 2-rt-export
(...)
                Contributing Routes (8):
                        10.3.3.0/31 proto BGP
                        10.3.4.0/31 proto BGP
                        10.3.6.0/24 proto BGP
                        192.168.3.3/32 proto BGP
                        192.168.3.4/32 proto BGP
                        192.168.3.6/32 proto BGP
                        192.168.3.33/32 proto BGP
                        192.168.3.44/32 proto BGP

In IOS XR, you cannot display contributing routes. However, you can verify which
routes are matched by the policy you just configured, as presented here:
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Example 17-40. Contributing routes for VPN default route on ASBR2 (IOS XR)

RP/0/0/CPU0:ASBR2#show bgp vpnv4 unicast vrf VRF-C
                  route-policy PL-VPN-DEFAULT-ROUTE
(...)
   Network         Next Hop     Metric LocPrf Weight Path
Route Distinguisher: 172.16.10.102:103 (default for vrf VRF-C)
*> 10.3.3.0/31     172.16.21.33                    0 65002 i
*> 10.3.4.0/31     172.16.21.44                    0 65002 ?
*> 10.3.6.0/24     172.16.21.33                    0 65002 i
*                  172.16.21.44                    0 65002 ?
*> 192.168.3.3/32  172.16.21.33                    0 65002 i
*> 192.168.3.4/32  172.16.21.44                    0 65002 ?
*> 192.168.3.6/32  172.16.21.33                    0 65002 65506 i
*                  172.16.21.44                    0 65002 65506 i
*> 192.168.3.33/32 172.16.21.33                    0 65002 i
*> 192.168.3.44/32 172.16.21.44                    0 65002 ?

In Junos, when at least one contributing route is not present—for example, due to
some network failure—the corresponding aggregate route goes to hidden state. In
hidden state, the route is no longer used for forwarding and no longer advertised.
The output in Example 17-41 was taken on ASBR1, when BGP sessions to ASBR2, P1
and P2 were disabled temporarily. No contributing routes are available any longer,
thus the VPN default route becomes hidden and is no longer advertised.

Example 17-41. Hidden VPN default route on ASBR1 (Junos)

juniper@ASBR1> show route table VRF-C.inet.0 0.0.0.0/0 exact
               extensive all
VRF-C.inet.0: 10 destinations, 12 routes (9 active, ...)
0.0.0.0/0 (1 entry, 0 announced)
     Aggregate
            Next hop type: Discard
            State: <Hidden Int Ext>
            AS path: I
            Communities: 65000:41999
              Flags: Brief ASPathChanged Discard  Depth: 0  Inactive

In IOS XR, when all contributing routes disappear, the aggregate route is simply
removed from the RIB.

Default Route with Local Routes L3VPN Model
Although the Hierarchical VPN model discussed in the previous section decreases
the control-plane load on V-spokes, it introduces some inefficiency in traffic for‐
warding. Taking traceroute from CE3-C to CE4-C can illustrate this inefficiency.
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Example 17-42. Suboptimal traceroute from CE3-C to CE4-C

juniper@CE3> traceroute routing-instance CE3-C source 192.168.3.3
             192.168.3.4
traceroute to 192.168.3.4 (192.168.3.4) from 192.168.3.3
 1 PE3-VRF-C (10.3.3.1)  105.974 ms  35.702 ms  87.946 ms
 2 P3 (10.0.21.4) 90.2 ms P4 (10.0.21.18) 58.1 ms P3 (10.0.21.4) ...
    MPLS Label=300032 CoS=0 TTL=1 S=0
    MPLS Label=16 CoS=0 TTL=1 S=1
 3 ABR1-VRF-C (192.168.3.103)  11.567 ms  9.499 ms  10.463 ms
 4 P4 (10.0.21.12)  18.656 ms  14.758 ms  15.753 ms
    MPLS Label=16000 CoS=0 TTL=1 S=0
    MPLS Label=16021 CoS=0 TTL=1 S=1
 5 PE4 (10.0.21.7)  17.451 ms  15.600 ms  12.856 ms
    MPLS Label=16021 CoS=0 TTL=1 S=1
 6 CE4-C (192.168.3.4)  13.882 ms  16.727 ms  15.968 ms

Traffic first goes to a V-hub (ABR1) based on the default route. On V-hub, IP lookup
is performed inside VRF-C and traffic is sent back to PE4. An extra three hops are
visited. Depending on the actual deployment, this can create some problems. For
example, if latency of the traffic between CE3-C and CE4-C needs to be minimized,
the basic Hierarchical VPN model is not really suitable.

Thus, you must enhance the basic model. Let’s see how. As illustrated in Figure 17-5,
V-hubs, in addition to the previously discussed default route, reflect VPN prefixes of
local access domains (rings in the figure). For example, VPN prefixes from all V-
spokes on ring 1 are reflected by V-hubs to all V-spokes in that ring. The same hap‐
pens to VPN prefixes on ring 2. During prefix reflection, next hop remains
unchanged. As the end result, V-spokes have prefixes from local ring (local access
domain) and additionally the default route injected by V-hubs to reach remote (out‐
side local ring) destinations.
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Figure 17-5. Default route with local routes L3VPN model

When communicating between V-spokes on the same ring (access domain), the
default route injected by V-hubs is not used. Conversely, when the need arises to
communicate between V-spokes in different rings (or with some remote PEs), the
default route injected by V-hubs is indeed used. This doesn’t cause any huge ineffi‐
ciency in traffic forwarding, because to reach remote V-spokes, packets must transit
V-hubs anyway.

To achieve the desired results, you can use a community scheme introduced into the
base model for Hierarchical VPN. Simply, V-hubs will use the community not only as
a condition to announce VPN default route, they will also be used to reflect VPN pre‐
fixes received from the local access domain back to V-spokes in the same local access
domain. Example 17-43 and Example 17-44 demonstrate simple extensions to exist‐
ing PL-BGP-VPN-DOWN-EXP policy for ASBR1 (Junos) and ASBR2 (IOS XR), respec‐
tively.

Example 17-43. IPv4 VPN outbound BGP policy on ASBR1 (Junos)

policy-options {
    policy-statement PL-BGP-VPN-DOWN-EXP {
        term LOCAL-DEFAULT-ROUTE {
(...)
        }
        term ACCESS-DOMAIN-100 {
            from {
                family inet-vpn;
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                community CM-IPV4-VPN-100;
            }
            then accept;
        }
        term VRF-C {
(...)
        }
        from family inet-vpn;
        then accept;
}}

Example 17-44. IPv4 VPN outbound BGP policy on ASBR2 (IOS XR)

route-policy PL-BGP-VPN-DOWN-EXP
  if community matches-any CM-VPN-DEFAULT-ROUTE then
    done
  elseif community matches-any CM-IPV4-VPN-100 then
    done
  elseif extcommunity rt matches-any RT-VPN-C then
    drop
  endif
  pass
end-policy

You can perform similar policy extensions on ABR1 and ABR2. With updated BGP
outbound policies on V-hubs, the number of prefixes sent to V-spokes increases
slightly (10 additional paths, and out of those, 3 additional active prefixes). You can
compare the output in the following examples with that from Example 17-7 and
Example 17-8.

Example 17-45. VRF-C prefix state on PE1 (Junos)

juniper@PE1> show route summary
(...)
VRF-C.inet.0: 12 destinations, 15 routes (12 active, ...)
              Direct:      3 routes,      3 active
               Local:      3 routes,      3 active
                 BGP:      14 routes,     5 active
              Static:      1 routes,      1 active
(...)

Example 17-46. VRF-C Prefix State on PE2 (IOS XR)

RP/0/0/CPU0:PE2#show route vrf VRF-C summary
Route Source        Routes     Backup     Deleted   Memory(bytes)
connected           2          1          0         444
local               3          0          0         444
static              1          0          0         148
bgp 65001           4          0          0         592
ospf VRF-C          1          0          0         148
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dagr                0          0          0         0
Total               11         1          0         1776

If you look at the VPN-C topology (Figure 17-4), three additional active prefixes are
actually expected. For example, on PE1 router, the following three additional active
BGP prefixes in VRF-C:

• Loopback of CE2-C router
• VRF-C loopback of PE2 router
• LAN prefix from PE2-CE2-C link

There are two additional prefixes (loopback of CE5-C and prefix for LAN connected
to CE5-C) advertised to V-hubs from PE2 and reflected back to PE1. However,
because for those prefixes there are already better (local/static) prefixes present in the
VRF-C table on PE1, BGP prefixes received from V-hubs are not activated.

So, in summary, you see an additional five prefixes (received twice, because there are
two V-hubs sending them), of which three are actually actively used for forwarding. If
you compare this with Example 17-1 or Example 17-2, it is still a much lower number
than with nonhierarchical L3VPN. A similar result occurs in all other PE routers.

Now, when you check the forwarding path between CE3-C and CE4-C routers, based
on additional prefixes distributed to local V-spokes, packets are forwarded on the
shortest path, as shown here:

Example 17-47. Optimal traceroute from CE3-C to CE4-C

juniper@CE3> traceroute routing-instance CE3-C source 192.168.3.3
             192.168.3.4
traceroute to 192.168.3.4 (192.168.3.4) from 192.168.3.3, 30 hops max
 1  PE3-VRF-C (10.3.3.1)  14.720 ms  3.269 ms  2.393 ms
 2  PE4 (10.0.21.11)  58.005 ms  67.934 ms  28.708 ms
     MPLS Label=24003 CoS=0 TTL=1 S=1
 3  CE4-C (192.168.3.4)  8.510 ms  9.473 ms  6.866 ms

Pseudowire Head-End Termination L3VPN Model
In previous sections of this chapter, you built a Hierarchical L3VPN service, based on
the assumption that V-spokes do support L3VPN, including support for multiproto‐
col BGP. This is, unfortunately, not always the case. In many designs, you can find V-
spokes without BGP support at all. Naturally, with no BGP, there is no L3VPN
possible on V-spokes, either.

Therefore, you will need another approach for Hierarchical L3VPN, one which
requires only L2 capabilities (including support for MPLS pseudowires to carry L2
traffic) from the V-spoke. The principle is based on a pseudowire (PW) established
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between V-spoke and V-hubs. Basically, traffic received from a CE is bridged on the
V-spoke to the PW terminated on the V-hub. Because you can terminate many PWs
from many V-spokes on V-hubs, and from the CE’s perspective the L3 segment also
terminates at the V-hub, the model is commonly known as the pseudowire head-end
termination (PWHE) model.

Figure 17-6 presents the overall architecture for this Hierarchical L3VPN model.

Figure 17-6. The pseudowire head-end termination L3VPN model

Figure 17-6 shows that VRFs are no longer present on the V-spokes—the V-spokes
act simply as bridging devices and bridge the traffic between the physical access inter‐
face toward the CE, and the PW toward the V-hub. Of course, for redundancy pur‐
poses, typically primary/backup PW deployments are recommended, with the
primary PW terminated on the primary V-hub, and the backup PW terminated on
the backup V-hub. There could be multiple VLANs (corresponding to multiple
VPNs) transported inside each PW. At the head-end (V-hub), those VLANs are
demultiplexed from the PWs, and each VLAN is placed in appropriate VRF to allow
further processing of the packets at L3.

With this architecture, the capability of V-spoke is further “degraded.” Prefix scalabil‐
ity is no longer needed at all, because now the only prefixes the V-spoke must deal
with are transport network prefixes. Typically, as already discussed in Chapter 16, a
large transport network can be divided into multiple smaller IGP domains; thus, the
prefix information inside each IGP domain can be quite minimal. Additionally, the
only requirement from a protocol-support perspective is some sort of label distribu‐
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tion protocol, IGP, and support for LDP signaled PWs. Thus, Hierarchical L3VPN
based on the PWHE model is the primary choice when quite dummy (and cheap) V-
spokes are deployed.

However, although the possibility to deploy V-spokes without comprehensive L3 ser‐
vice support might sound advantageous, there are, of course, some disadvantages.
First, traffic optimization achieved by injecting VPN routes that originated in the
local IGP domain, as discussed in previous section, is no longer possible. Conse‐
quently, traffic between CE devices connected to V-spokes in the same IGP now
always traverses through the V-hub. For some applications, for which latency must be
minimized, the Hierarchical L3VPN model based on PWHE might consequently be
unsuitable.

Another disadvantage is the increased bandwidth usage in access IGP domains.
Whereas in the previously discussed Hierarchical L3VPN model, MPLS-encapsulated
IP packets were exchanged between V-spokes and V-hubs in the PWHE model,
MPLS encapsulated Ethernet frames carrying IP payload are exchanged. Additional
overhead is around 14 to 26 bytes per packet, depending on the number of VLAN
tags carried, and whether the control word is used. Although this doesn’t look large at
the first glance, it might increase bandwidth requirements significantly in some
deployments. If the majority of carried traffic uses small IP packets (e.g., VoIP pack‐
ets using G.729 codec with IP packet sizes as low as 60 bytes) bandwidth usage can
increase by 20%–40%. Suboptimal traffic routing (always via V-hub) causes addi‐
tional bandwidth inefficiency, because traffic exchanged between two V-spokes in the
same IGP access domain traverses IGP access domain twice. If your bandwidth
resource is limited—for example, limited bandwidth microwave links are used—
those disadvantages of the PWHE Hierarchical L3VPN model might be too big to
justify deployment of devices without even limited L3VPN support in a V-spoke
function. The details are beyond the scope of this book.
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CHAPTER 18

Transit Fast Restoration Based on the IGP

Fast Restoration Concepts
Before starting a detailed discussion about protection and traffic restoration techni‐
ques, let’s clarify the terminology used in this book.

Ingress/Transit/Egress Transport Protection Concepts
Figure 18-1 presents a generic service model with two dual-homed CE devices con‐
nected to a service provider (SP) IP/MPLS network. PE nodes provide the service
itself (e.g., L3VPN), whereas Provider (P) nodes are used purely for transmitting
packets between PE nodes. Additionally, the figure also shows various failure cases
(nine in total) that can affect example traffic flow from left CE to right CE.

For the purpose of this book, failure categories (and corresponding protection cate‐
gories) are classified as follows:

Ingress protection
This is an action performed to minimize traffic loss during failure of an ingress
CE-PE link (failure case 1) or ingress PE node (failure case 2). The Point of Local
Repair (PLR) is the ingress CE, which after detecting failure (based on Loss of
Signal [LoS], or OAM, or BFD, etc.) switches the outgoing traffic to another (bot‐
tom) PE node.

Transit protection
This is an action performed to minimize traffic loss during failure of a transit
link (failure case 3, 5, or 7) or transit P node (failure case 4 or 6). The PLR is
either the ingress PE node (for failure case 3 or 4) or some transit P node (for
failure cases 5, 6, or 7). Different MPLS techniques are available to minimize traf‐
fic loss during these failure cases.
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Egress protection
This is an action performed to minimize traffic loss during failure of an egress PE
(failure case 8) or egress PE-CE link (failure case 9). Depending on the protection
techniques deployed, protection action can be performed by the ingress PE node,
or by the penultimate P node (to protect against egress PE failure) or by the
egress PE node (to protect against egress PE-CE link failure).

Figure 18-1. Traffic protection classification

Ingress protection isn’t typically MPLS-related; instead, it is based purely on the capa‐
bilities of some Layer 3 (L3) PE-CE protocols (e.g., BGP, OSPF, RIP, or VRRP) for L3
services, or Layer 2 (L2) protocols (LACP, some variants of Spanning Tree Protocol
[STP], or OAM) for L2 services. Thus, ingress protection is not covered in this book.

Techniques that you can deploy for transit protection (LFA, MRT, RSVP-TE protec‐
tion) are discussed later in this chapter and in Chapter 19, whereas techniques for
egress protection are discussed in Chapter 21. Additionally, Chapter 20 covers opti‐
mization in FIB data structures allowing for faster FIB reprogramming.

Global Repair Concepts
During network failure events, the following course of actions leads to traffic redirec‐
tion over a new path, which can avoid a failed link or node:

1. Failure detection

• Time required to detect the failure
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• Various techniques are available, depending on the underlying physical trans‐
port technology

2. New state propagation (flooding)

• Time required to propagate the information about failed link or node through
the network

• Typically involves IGP (IS-IS or OSPF) flooding
• This time greatly depends on the size of the network, link distances, and so on.

3. Routing database update and new path (and label) computation

• Time required to compute new paths (next hops)
• Depends on the IGP database size
• On modern, high-end routers, this can be approximated with around 1 μs per

node (in a network with 1,000 nodes it takes approximately 1 ms to perform
Shortest-Path First [SPF] calculation)

4. New next-hops (and labels) installation in Hardware Forwarding Information
Base (HW FIB)

• Time required to program HW FIB in the line cards with newly calculated
next-hops (labels)

• Very hardware dependent
• Can take a relatively long time (measured in seconds) for large number of next

hops in a scaled environment

By optimizing global convergence parameters, you can achieve subsecond conver‐
gence. However, to achieve sub-100 ms convergence, global (network-wide) conver‐
gence is no longer enough, because the state propagation, routing database update,
new path calculation, and installation of new next hops in HW FIB cannot really be
squeezed below a couple of 100 ms. Thus, for very demanding applications that
require sub-100 ms traffic failover times during network failures, tuning global con‐
vergence parameters alone is no longer enough. In these cases, local repair comes into
the picture.

Local Repair Concepts
The idea underpinning local repair is to skip most of the steps that must happen with
global repair when a network failure happens. If another next hop was already
installed in HW FIB, the only action that needs to be performed during failure events
is to detect the failure itself and remove the next hops associated with the failed link
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or node from the HW FIB. All the other steps are no longer required for local repair.
Strictly speaking, local repair is a complement (and not an alternative) to global
repair. Indeed, local repair and global repair take place in parallel. Local repair
quickly restores data forwarding by using a temporary path while global repair com‐
putes the final converged path. As its name implies, local repair is typically a local
decision at the PLR and is not negotiated. Rather than on interoperability, we focus
on implementation differences.

The most challenging issue with local repair is how to determine potential backup
next hops. This chapter and Chapter 19 outline different local-repair techniques that
you can deploy in an IP/MPLS network to protect the traffic against transit link or
transit node failures, with the goal of providing sub-50 ms traffic restoration times.

In Junos, ensure that load-balance per-packet is applied, as dis‐
cussed in Chapter 2. This is necessary to enable local-repair next-
hop structures.

Loop-Free Alternates
The local-repair mechanism using Loop-Free Alternates (LFAs) technique is described
in the following RFCs:

• RFC 5714 - IP Fast Reroute Framework
• RFC 5715 - A Framework for Loop-Free Convergence
• RFC 5286 - Basic Specification for IP Fast Reroute: Loop-Free Alternates
• RFC 6571 - Loop-Free Alternate (LFA) Applicability in SP Networks

LFA techniques require link-state IGP protocols such as IS-IS or OSPF. When LFA is
deployed, in addition to standard SPF calculation, routers perform the SPF calcula‐
tion from the perspective of each directly connected IGP neighbor. For example, in
the topology illustrated in Figure 18-2 (which is a variant of the intradomain topol‐
ogy used in Chapter 16), router PE4, acting as a potential (future) PLR, performs five
SPF calculations:

• One primary SPF calculation, using the local node (PE4) as the root of the SPF
tree. Routers always perform this type of SPF calculations, regardless of whether
LFA is enabled, to determine primary next hops due to normal IGP operation.

• Four backup SPF calculations, with each calculation using a different direct IGP
neighbor node (P2, P5, P6, or PE3) as the root of the SPF tree. Routers perform
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this type of SPF calculation to determine backup next-hops only if the LFA fea‐
ture is enabled.

Figure 18-2. LFA topology A

The backup next hop is considered loop-free if the result of a backup SPF calculation
does not point back to the node which performs the local repair. In other words, the
following condition is checked to determine if the backup next hop is loop-free:

Distance(N, D) < Distance(N, S) + Distance(S, D)

where:

• S = router performing the local repair
• D = destination under consideration
• N = neighbor node that can be used as a potential backup next hop

For simplicity, and like in other examples of this book, IGP metrics
are symmetrically configured, so for any two routers R1 and R2,
the R1→R2 and the R2→R1 link metrics are the same.
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In the example topology, P2 is the primary next hop to reach P1 from PE4. To verify
whether P6 is a feasible backup next hop, you need to test for the following condition:

Distance(P6, P1) < Distance(P6, PE4) + Distance(PE4, P1)
750 (P6→PE4→P2→PE2→PE1→P1) < 200 + 550 (PE4→P2→PE2→PE1→P1)
750 < 750 (false)

So, P6 cannot be used as backup next hop, because the shortest path to reach P1 from
P6 is actually via PE4. When evaluating whether P5 is a feasible backup next hop,
you’ll get the following:

Distance(P5, P1) < Distance(P5, PE4) + Distance(PE4, P1)
600 (P5→P3→P1) < 100 + 550 (PE4→P5→P3→P1)
600 < 650 (true)

This makes P5 suitable as a potential backup loop-free next hop for PE4 to reach P1
because the shortest path from P5 to P1 does not traverse PE4.

Only loop-free backup next hops can be installed in the FIB and used as a real backup
to forward the traffic during network failures.

There are two types of LFA:

Per-link
All prefixes originally reachable over a failed link use the same backup next hop.
This type of protection is sometimes also called Per-Next-Hop LFA.

Per-prefix
Prefixes originally reachable over a failed link or node may use a different backup
next hop on a per-prefix basis.

The next sections of this chapter describe both of these LFA flavors in more detail.

Per-Link LFA
Example 18-1 shows an IOS XR configuration to enable per-link LFA for all IS-IS
enabled interfaces. You can simply enhance the existing configuration group (GR-
ISIS) used to parameterize ISIS interface configuration.

Example 18-1. Per-Link LFA configuration (IOS XR)

group GR-ISIS
 router isis '.*'
  interface 'GigabitEthernet.*'
   address-family ipv4 unicast
    fast-reroute per-link
end-group
router isis core
 apply-group GR-ISIS

678 | Chapter 18: Transit Fast Restoration Based on the IGP



The first thing to look at is the LFA summary overview, which shows you the backup
coverage percentage.

Example 18-2. Backup coverage with per-link LFA on PE4 (IOS XR)

RP/0/0/CPU0:PE4#show isis fast-reroute summary
(...)
                            High       Medium     Low        Total
                            Priority   Priority   Priority
Prefixes reachable in L2
  All paths protected       0          0          0          0
  Some paths protected      0          0          0          0
  Unprotected               0          9          15         24
  Protection coverage       0.00%      0.00%      0.00%      0.00%

You can see that there are nine medium-priority (loopbacks) and 15 low-priority
(links) prefixes for which LFA protection is desired. Based on the topology from
Figure 18-2, those numbers are expected. There are 10 loopbacks altogether in the
topology but the local loopback is visible only as a directly connected route (not as an
IS-IS route). Table 18-1 summarizes the backup coverage results for loopbacks
observed on all routers in the topology. On the Junos routers in this topology, LFA is
not currently configured; thus, LFA coverage on the Junos plane is not yet available.

Table 18-1. Backup coverage with per-link LFA

P1 P2 P3 P4 P5 P6 PE1 PE2 PE3 PE4

n/a 9 n/a 9 n/a 9 n/a 0 n/a 0

n/a 100% n/a 100% n/a 100% n/a 0% n/a 0%

Interestingly, for some of the routers, backup coverage is 100%. However, there are
some routers for which it seems the LFA is not functioning, because all prefixes are
unprotected. Let’s have a closer look at one such router (for example, PE4), focusing
on the paths toward loopback prefixes.

Example 18-3. Routing table on PE4 (IOS XR)

RP/0/0/CPU0:PE4#show route isis | begin /32
i L2 172.16.0.1/32 [115/550] via 10.0.0.36, 00:06:25, Gi0/0/0/6
i L2 172.16.0.2/32 [115/400] via 10.0.0.36, 00:13:02, Gi0/0/0/6
i L2 172.16.0.3/32 [115/200] via 10.0.0.28, 00:13:00, Gi0/0/0/3
i L2 172.16.0.4/32 [115/400] via 10.0.0.28, 00:06:25, Gi0/0/0/3
i L2 172.16.0.5/32 [115/100] via 10.0.0.28, 00:13:00, Gi0/0/0/3
i L2 172.16.0.6/32 [115/200] via 10.0.0.26, 00:13:00, Gi0/0/0/2
i L2 172.16.0.11/32 [115/500] via 10.0.0.36, 00:13:02, Gi0/0/0/6
i L2 172.16.0.22/32 [115/450] via 10.0.0.36, 00:13:02, Gi0/0/0/6
i L2 172.16.0.33/32 [115/400] via 10.0.0.32, 00:13:00, Gi0/0/0/4
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We can summarize the information from PE4’s routing table as such:

• The P6 (172.16.0.6) loopback is reachable via Gi0/0/0/2.
• The PE3 (172.16.0.33) loopback is reachable via Gi0/0/0/4.
• P3, P4, and P5 loopbacks are reachable via Gi0/0/0/3.
• All other loopbacks are reachable via Gi0/0/0/6.

So, if you look carefully at the link metrics, no loop-free backup next hop can be
found for most of the loopbacks. Based on the link metrics deployed in the network,
all backup SPF calculations for most of the loopbacks will result in the next hop
pointing back to PE4. Consequently, these loopbacks do not have LFA backup cover‐
age in this topology. But there are some exceptions; for example, the loopback of P1.

Remember that P5 is a loop-free backup for PE4 to reach P1:

Distance(P5, P1) < Distance(P5, PE4) + Distance(PE4, P1)

If a feasible backup next hop exists, why is it not used? The answer lies with per-link
LFA. As already mentioned, all prefixes originally reachable over a failed link must
use the same loop-free backup next hop in per-link LFA. And in this example, this is
not the case. For P1 (reachable via Gi0/0/0/6 interface), a loop-free backup next hop
exists (P5), but for P2, which is normally reachable via Gi0/0/0/6, too, it does not. As
a result, in case of Gi0/0/0/6 failure, all traffic that originally used Gi0/0/0/6 (P2) as a
next hop cannot be redirected over Gi0/0/0/3 (P5), because it would loop for some of
the flows—flows destined for P2, for example, given that the shortest path from P5 to
P2 is via PE4. Thus, the per-link (per-next-hop) LFA does not install any backup
next-hops if the common backup next-hop cannot be used for each and every prefix
originally reachable over the failed link.

On some other routers, it is better. LFA backup coverage on P2, P4, or P6 is 100%.
This means that all IS-IS prefixes are covered by the LFA backup feature. Let’s verify
the content of the routing table on P4, as well (see Example 18-4).

Example 18-4. Routing table on P4 (IOS XR)

RP/0/0/CPU0:P4#show route isis | begin /32
i L2 172.16.0.1/32 [115/650] via 10.0.0.10, 15:24:38, Gi0/0/0/3
                   [115/0] via 10.0.0.12, 15:24:38, Gig0/0/0/2 (!)
i L2 172.16.0.2/32 [115/500] via 10.0.0.10, 02:06:54, Gi0/0/0/3
                   [115/0] via 10.0.0.12, 02:06:54, Gi0/0/0/2 (!)
i L2 172.16.0.3/32 [115/0] via 10.0.0.17, 17:52:11, Gig0/0/0/4 (!)
                   [115/200] via 10.0.0.12, 17:52:11, Gi0/0/0/2
i L2 172.16.0.5/32 [115/0] via 10.0.0.17, 17:52:11, Gi0/0/0/4 (!)
                   [115/300] via 10.0.0.12, 17:52:11, Gi0/0/0/2
i L2 172.16.0.6/32 [115/500] via 10.0.0.17, 17:45:13, Gi0/0/0/4
                   [115/0] via 10.0.0.12, 17:45:13, Gi0/0/0/2 (!)
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i L2 172.16.0.11/32 [115/600] via 10.0.0.10, 15:24:38, Gi0/0/0/3
                    [115/0] via 10.0.0.12, 15:24:38, Gi0/0/0/2 (!)
i L2 172.16.0.22/32 [115/550] via 10.0.0.10, 15:24:38, Gi0/0/0/3
                    [115/0] via 10.0.0.12, 15:24:38, Gi0/0/0/2 (!)
i L2 172.16.0.33/32 [115/0] via 10.0.0.17, 17:50:38, Gi0/0/0/4 (!)
                    [115/800] via 10.0.0.12, 17:50:38, Gi0/0/0/2
i L2 172.16.0.44/32 [115/0] via 10.0.0.17, 17:52:11, Gi0/0/0/4 (!)
                    [115/400] via 10.0.0.12, 17:52:11, Gi0/0/0/2

When you compare it to the previous case (Example 18-3), you can see that there are
two next hops for each prefix. In each case, one of the next hops is marked with a
mysterious (!). A more detailed view of one of the prefixes, shown in the following
example, sheds more light on what is actually happening here:

Example 18-5. Detailed RIB entry with per-link LFA backup on P4 (IOS XR)

1     RP/0/0/CPU0:P4#show route 172.16.0.33/32 detail | include <pattern>
2     Known via "isis core", distance 115, metric 800, type level-2
3       10.0.0.12, from 172.16.0.33, via GigabitEthernet0/0/0/2, Protected
4         Route metric is 800
5         Path id:1       Path ref count:0
6         Backup path id:33
7       10.0.0.17, from 172.16.0.33, via GigabitEthernet0/0/0/4, Backup
8         Route metric is 0
9         Path id:33              Path ref count:1

The primary path (via Gi0/0/0/2) is marked with a Protected tag. This indicates that
there must be some backup path, which protects the primary path. Additionally, the
primary path contains information about the backup path (line 6), which is expanded
in lines 7 through 9. In this particular case, the backup path is via Gi0/0/0/4.

If you look back at the output in Example 18-4, you should see that the primary next-
hop and the backup next-hop correlation are always consistent. For example, the
Gi0/0/0/2 primary next hop is coupled together with the Gi0/0/0/4 backup next hop
for all prefixes that use Gi0/0/0/2 as the primary next hop. This is actually the main
characteristic of per-link LFA: failure of the primary link causes redirection of all traf‐
fic originally flowing via this link over a single backup link. If a single backup link that
satisfies loop-free criteria cannot be found, the backup next hop is not used at all, as
we saw with PE4.

This characteristic of per-link LFA makes it very inefficient in providing high backup
coverage in most real deployments. Thus, many router vendors do not implement
per-link LFA in their products as more advanced LFA variants provide much better
backup coverage. Additionally, per-link LFA does not provide protection against
node failure (just link failure), which further reduces its usability. As of this writing,
per-link LFA is available in IOS XR but not in Junos or IOS.
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In addition to Routing Information Base (RIB) structures investigated previously, let’s
also have a look at the Forwarding Information Base (FIB) structure.

Example 18-6. IP FIB entry with LFA backup on P4 (IOS XR)

RP/0/0/CPU0:P4#show cef 172.16.0.33/32
(...)
 Prefix Len 32, traffic index 0, precedence n/a, priority 3
   via 10.0.0.12, Gi0/0/0/2, 6 dependencies, weight 0, protected
    path-idx 0 bkup-idx 1 NHID 0x0 [0xa14d6d7c 0x0]
    next hop 10.0.0.12
     local label 24005      labels imposed {300400}
   via 10.0.0.17, Gi0/0/0/4, 6 dependencies, weight 0, backup
    path-idx 1 NHID 0x0 [0xa107024c 0x0]
    next hop 10.0.0.17
    local adjacency
     local label 24005      labels imposed {24001}

You can see that both the primary and backup next hops use some MPLS labels. In
this example topology, the label is exchanged via LDP, as shown in Figure 18-3. The
mechanism works fine too if you use SPRING instead of LDP.

Figure 18-3. Link LFA protecting traffic from P4 to PE3

Label values are different, because P4 receives FECs over different LDP sessions. For
the primary and backup next hop, P4 receives the label from P3 and P6, respectively.

The backup next hop is installed not only in the IP FIB, but also in the MPLS FIB (the
LFIB). Example 18-7 shows a MPLS FIB entry for the label assigned by P4 to PE3
loopback. The entry is very similar to the IP FIB entry for PE3 loopback discussed
previously.
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Example 18-7. MPLS FIB entry with LFA backup on P4 (IOS XR)

RP/0/0/CPU0:P4#show cef mpls local-label 24005 EOS
(...)
 Prefix Len 21, traffic index 0, precedence n/a, priority 3
   via 40960/0, Gi0/0/0/2, 6 dependencies, weight 0, protected
    path-idx 0 bkup-idx 1 NHID 0x0 [0xa14d6d7c 0x0]
    next hop 10.0.0.12
     local label 24005      labels imposed {300400}
   via 40960/0, Gi0/0/0/4, 6 dependencies, weight 0, backup
    path-idx 1 NHID 0x0 [0xa107024c 0x0]
    next hop 10.0.0.17
    local adjacency
     local label 24005      labels imposed {24001}

Now, when the primary interface (Gi0/0/0/2) fails, P5 (depending on how quickly the
failure is discovered) removes the primary next hop from FIB structures. Before
global convergence completes, traffic can be forwarded based on the backup next hop
preprogrammed in the FIB. After global convergence finishes, a new set of primary
and backup (if a loop-free backup is found) next hops will be installed in the FIB,
overriding the old backup next hop used for temporal traffic forwarding.

Per-Prefix LFA
Per-prefix LFA increases the backup coverage because it allows for different per-
prefix backup next hops. Both Junos and IOS XR support it.

Per-prefix LFA in IOS XR
Recall from the discussion about per-link LFA on PE4 that the problem was because
different prefixes required different backup next hops. Thus, per-link LFA was not
working there. Let’s now replace per-link LFA with the per-prefix LFA configuration
presented in Example 18-8 and again verify the backup coverage.

Example 18-8. Per-prefix LFA configuration (IOS XR)

group GR-ISIS
 router isis '.*'
  interface 'GigabitEthernet.*'
   address-family ipv4 unicast
    fast-reroute per-prefix

On two IOS XR routers, there was no backup coverage when per-link LFA was used,
but you can now see some increase. Table 18-2 shows that the backup coverage for
PE4 in particular has jumped from 0% (with per-link LFA) to 22.2% (with per-prefix
LFA).
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Table 18-2. Backup coverage with per-prefix LFA

P1 P2 P3 P4 P5 P6 PE1 PE2 PE3 PE4

n/a 9 n/a 9 n/a 9 n/a 1 n/a 2

n/a 100% n/a 100% n/a 100% n/a 11.1% n/a 22.2%

Let’s determine which prefixes are actually protected on PE4.

Example 18-9. Prefix-specific LFA information on PE4 (IOS XR)

1     RP/0/0/CPU0:PE4#show isis fast-reroute detail | begin "/32"
2     L2 172.16.0.1/32 [550/115] medium priority
3          via 10.0.0.36, Gi0/0/0/6, P2, Weight: 0
4            FRR backup via 10.0.0.28, Gi0/0/0/3, P5, Weight: 0
5            P: No, TM: 700, LC: No, NP: Yes, D: No, SRLG: Yes
6          src P1.00-00, 172.16.0.1
7     (...)
8     L2 172.16.0.4/32 [400/115] medium priority
9          via 10.0.0.28, Gi0/0/0/3, P5, Weight: 0
10           FRR backup via 10.0.0.26, Gi0/0/0/2, P6, Weight: 0
11           P: No, TM: 700, LC: No, NP: Yes, D: No, SRLG: Yes
12         src P4.00-00, 172.16.0.4
13    (...)

Now, thanks to the per-prefix LFA feature, you can use the loop-free backup next
hops on a per-prefix basis and install them in the FIB. However, there are still some
prefixes without a loop-free backup next hop.

Using show command outputs, you can observe the total metric (TM) of the path
through the primary next hop (line 2: 550, and line 8: 400) as well as through the
backup next hop (line 5: 700, and line 11: 700). Additionally, you get an indication
whenever the backup path fulfills node protection (the backup path avoids the neigh‐
bor node used as primary next hop) criterion (line 5 and 11: NP: Yes).

Looking at the backup next hop for another prefix on another router
(Example 18-10), you can see slightly different flag values.

Example 18-10. Prefix-specific LFA information on P2 (IOS XR)

RP/0/0/CPU0:P2#show isis fast-reroute 172.16.0.33/32 detail
L2 172.16.0.33/32 [800/115] medium priority
     via 10.0.0.37, Gi0/0/0/6, PE4, Weight: 0
       FRR backup via 10.0.0.11, Gi0/0/0/3, P4, Weight: 0
       P: No, TM: 1300, LC: No, NP: No, D: No, SRLG: Yes
     src PE3.00-00, 172.16.0.33

So, what is the difference between the backup next hops observed in these previous
two examples? If you go back to the topology (Figure 18-2), you should see that in
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Example 18-9 the backup next hop for the P1 loopback provides protection against
primary link (PE4→P2) and primary node (P2) failures. Packets redirected to the
backup next hop will reach their final destination without transiting P2. In
Example 18-10, however, this is not the case. The packets from P2 destined to PE3
and redirected over the backup next hop (P4) will transit the primary next hop (PE4),
because the backup path is P2→P4→P3→P5→PE4→PE3. Thus, this backup path pro‐
vides protection only against primary link failure, not against primary node failure.
We’ll discuss the other visible flags later, but let’s have a look at a few Junos devices
first.

Per-prefix LFA in Junos
Let’s now enable per-prefix LFA on our Junos devices. Whereas in IOS XR you didn’t
need to specify what kind of LFA backup next hops are permitted, Junos offers two
configuration options:

node-link-protection

Installs, if possible, loop-free backup next hops, which fulfill both node protec‐
tion (backup path avoids neighbor node used as primary next hop) and link pro‐
tection (backup path avoids original link used to reach primary next hop)
criteria.

link-protection

Installs, if possible, loop-free backup next hops, which fulfill at least the link pro‐
tection (backup path avoids original link used to reach primary next hop) crite‐
rion. Node protection criterion (backup path avoids neighbor node used as
primary next hop) might be fulfilled as well, but is not verified or enforced.

OK, so you have choices. The first choice looks more promising (protection against
both node and link failures), so let’s try it first.

Example 18-11. Per-prefix node-link-protection LFA configuration (Junos)

groups {
    GR-ISIS {
        protocols {
            isis {
                interface "<*[es]*>" {   # Matches Ethernet and SONET
                    node-link-protection;
}}}}}
protocols {
    isis {
        apply-groups GR-ISIS;
}}
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If you come from the RSVP-TE world, you will find it surprising
the way that [node-]link-protection is interpreted for LFA. This
point is discussed in greater detail in Chapter 19.

And again, the first thing you probably want to know is the LFA backup coverage you
can achieve. The following example reveals this for you:

Example 18-12. Backup coverage with per-prefix node-link-protection LFA on P5
(Junos)

juniper@P5> show isis backup coverage
Backup Coverage:
Topology        Level   Node    IPv4    IPv6    CLNS
IPV4 Unicast        2  55.56%  65.00%   0.00%   0.00%

The backup coverage is 55.56% for nodes, and 65.00% for IPv4 prefixes. Because you
have a single loopback per node, it basically means five loopback prefixes—out of
nine—have LFA backup coverage, whereas four do not. The next column shows
backup coverage for all IS-IS prefixes (loopback prefixes + link prefixes). Table 18-3
summarizes LFA backup coverage for loopbacks on all routers with the current LFA
feature set enabled.

Table 18-3. Backup coverage with per-prefix node-link-protection LFA

P1 P2 P3 P4 P5 P6 PE1 PE2 PE3 PE4

9 9 8 9 5 9 1 1 8 2

100% 100% 88.9% 100% 55.6% 100% 11.1% 11.1% 88.9% 22.2%

Out of ten routers, only four provide 100% backup coverage. Some of the routers
provide backup coverage for a single loopback only. Let’s look for destination nodes
with no LFA backup next hop from P5.

Example 18-13. Node-specific LFA information on P5 (Junos)

1     juniper@P5> show isis backup spf results no-coverage | except item
2     (...)
3     P2.00
4       Primary next-hop: ge-2/0/3.0, IPV4, PE4, SNPA:  0:50:56:8b:4e:c8
5         Root: PE4, Root Metric: 100, Metric: 400, Root Preference: 0x0
6           Not eligible, IPV4, Reason: Primary next-hop link fate sharing
7         Root: P3, Root Metric: 100, Metric: 600, Root Preference: 0x0
8           Not eligible, IPV4, Reason: Path loops
9         Root: PE3, Root Metric: 500, Metric: 800, Root Preference: 0x0
10          Not eligible, IPV4, Reason: Primary next-hop node fate sharing
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11    (...)
12      4 nodes

There is a lot of information here. The no-coverage keyword was used in the show
output; thus, only backup SPF results for destination nodes with no backup coverage
from P5 are displayed. They are P2 (lines 3 through 10), as well as P3, P4, and P6 (not
listed for brevity). The primary next hop for P2 is PE4 via ge-2/0/3.0 interface (line
4).

For each destination node (in this example, P2), you can see the list of P5’s neighbors.
These neighbors are evaluated for potential backup next-hop function to reach P2
and thus used as the root of the SPF tree during backup SPF calculations. For every
such neighbor, two metrics are displayed. For example, in line 5, Root Metric (100) is
the metric from the PLR (P5) to the neighbor (PE4), and Metric (400) is the metric
from the neighbor (PE4) to the destination (P2).

P5 cannot use the primary next hop node (PE4) as a backup next hop (lines 5 and 6),
because it is already the primary next-hop node, and there is only a single direct link
to the node; therefore, no other link could be used as backup. This is obvious.

P5 cannot use the P3 node as a backup next hop due to a loop (lines 7 and 8). The
shortest path from P3 to P2 is via P5 (P3→P5→PE4→P2), so traffic eventually redi‐
rected to P3 would come back to P5.

Finally, P5 cannot use the PE3 node due to primary next-hop node fate sharing.
What does that mean? It means that the shortest path from PE3 to P2 is via the pri‐
mary next hop PE4 (PE3→PE4→P2); hence, the backup path from P5 to P2 via PE3
(and then via PE4) does not fulfill node protection criterion. Because with node-
link-protection this criterion is verified and enforced, PE3 cannot be used as
backup next hop. Similar analysis can be done for other nodes with no backup cover‐
age.

Before implementing some enhancements in LFA to extend backup coverage, let’s
explore the Junos RIB and FIB structures (see Example 18-14), similar to what we did
for IOS XR in Example 18-6 and Example 18-7.

Example 18-14. Routing table on P5 (Junos)

1     juniper@P5> show route protocol isis table inet.0 | find "/32"
2     172.16.0.1/32      *[IS-IS/18] 03:39:20, metric 600
3                         > to 10.0.0.14 via ge-2/0/4.0
4                           to 10.0.0.29 via ge-2/0/3.0
5     172.16.0.2/32      *[IS-IS/18] 00:23:49, metric 500
6                         > to 10.0.0.29 via ge-2/0/3.0
7     172.16.0.3/32      *[IS-IS/18] 03:39:20, metric 100
8                         > to 10.0.0.14 via ge-2/0/4.0
9     172.16.0.4/32      *[IS-IS/18] 03:39:20, metric 300
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10                        > to 10.0.0.14 via ge-2/0/4.0
11    172.16.0.6/32      *[IS-IS/18] 00:23:49, metric 300
12                        > to 10.0.0.29 via ge-2/0/3.0
13    172.16.0.11/32     *[IS-IS/18] 03:39:20, metric 600
14                        > to 10.0.0.29 via ge-2/0/3.0
15                          to 10.0.0.14 via ge-2/0/4.0
16    172.16.0.22/32     *[IS-IS/18] 03:39:20, metric 550
17                        > to 10.0.0.29 via ge-2/0/3.0
18                          to 10.0.0.14 via ge-2/0/4.0
19    172.16.0.33/32     *[IS-IS/18] 03:39:20, metric 500
20                        > to 10.0.0.29 via ge-2/0/3.0
21                          to 10.0.0.25 via ge-2/0/2.0
22    172.16.0.44/32     *[IS-IS/18] 03:39:20, metric 100
23                        > to 10.0.0.29 via ge-2/0/3.0
24                          to 10.0.0.25 via ge-2/0/2.0

Some of the prefixes have only a single next hop, whereas some other prefixes—appa‐
rently covered by LFA backup—have two next hops. This is to be expected, because
for these prefixes, LFA backup next hop is determined and installed. Furthermore the
backup next hop for prefixes using the same primary next hop might be different
(lines 17 and 18, versus 20 and 21). This confirms that the Junos implementation uses
per-prefix (and not per-link) LFA style. Let’s see the available next hops to reach PE2
from P5, by matching Figure 18-4 (IPv4 FECs are signaled with LDP) to
Example 18-15.

Figure 18-4. Per-prefix LFA protecting traffic from P5 to PE2

Example 18-15. IP/MPLS RIB/FIB entries with LFA backup on P5 (Junos)

juniper@P5> show route protocol isis table inet.0 172.16.0.22/32
            detail | match "Prefer|via|Metric"
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 *IS-IS  Preference: 18
         Next hop: 10.0.0.29 via ge-2/0/3.0 weight 0x1, selected
         Next hop: 10.0.0.14 via ge-2/0/4.0 weight 0xf000
         Age: 3:42:33    Metric: 550

juniper@P5> show route label 300160 detail | match <pattern>
 *LDP    Preference: 9
         Next hop: 10.0.0.29 via ge-2/0/3.0 weight 0x1, selected
         Label operation: Swap 24007
         Next hop: 10.0.0.14 via ge-2/0/4.0 weight 0xf000
         Label operation: Swap 300624
         Age: 3:45:50    Metric: 550

juniper@P5> show route forwarding-table table default destination
            172.16.0.22/32 extensive | match <pattern>
Destination:  172.16.0.22/32
  Next-hop interface: ge-2/0/3.0    Weight: 0x1
  Next-hop interface: ge-2/0/4.0    Weight: 0xf000

juniper@P5> show route forwarding-table table default label 300160
            extensive | match "Dest|interface:|Weight|type"
Destination:  300160
  Next-hop type: Swap 24007          Index: 606   Reference: 1
  Next-hop interface: ge-2/0/3.0    Weight: 0x1
  Next-hop type: Swap 300624         Index: 590   Reference: 1
  Next-hop interface: ge-2/0/4.0    Weight: 0xf000

You can see that P3 is a valid backup next hop, because its shortest path to the desti‐
nation is P3→P1→PE1→PE2 (metric 600), which does not go through P5.

The IP RIB/FIB as well as the MPLS RIB/FIB entries (label 300160 is locally assigned
to prefix 172.16.0.22/32) contain two next hops. The primary next hop has a weight
0x1, whereas the backup next hop has a weight 0xf000. In Junos, only next hops with
the numerically lowest value are actively used for traffic forwarding. If more next
hops have the same (low) value, load-balancing between next hops is performed.
Next hops with higher weight values are true backup next hops only. They are
installed in the FIB but are not used for traffic forwarding in the absence of failures.
When some failure happens, and the primary next hop is removed from the FIB, the
backup next hop is used. And again, if multiple backup next hops exist, the backup
next hop (or next hops) with the lowest weight value will be used for traffic
forwarding.

As observed on P5 (Example 18-13), node and link protection strategy caused some
inefficiency in terms of backup coverage. So let’s try using only link protection and
verify backup coverage.
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Example 18-16. Per-prefix link-protection LFA configuration (Junos)

groups {
    GR-ISIS {
        protocols {
            isis {
                interface "<*[es]*>" {
                    link-protection;
}}}}

Table 18-4 shows that on two nodes, backup LFA coverage increased: P5 (from 5 to 7)
and PE3 (from 8 to 9). So, the design becomes better and better, but still only five
nodes have LFA backup next hops for all loopback prefixes.

Table 18-4. Backup coverage with per-prefix link-protection LFA

P1 P2 P3 P4 P5 P6 PE1 PE2 PE3 PE4

9 9 8 9 7 9 1 1 9 2

100% 100% 88.9% 100% 77.8% 100% 11.1% 11.1% 100% 22.2%

Looking back at Example 18-13, it’s clear that sometimes backup next hops were
rejected due to potential loops. Changing from node and link protection style to link
protection style doesn’t help in this example, unfortunately, as potential loops remain.
You need to deploy some more advanced LFA features to overcome this topology
limitation.

But going back to link protection style, when configuring per-prefix link-protection
LFA, it seems that you can increase the backup coverage. So, the legitimate question
is: What benefits can node-link protection bring? Apart from providing a backup path
that can protect against primary link and node failure, are there other benefits?

Let’s check the forwarding state toward P2 loopback (172.16.0.2/32) on P5 and PE3,
when the P1-P3 and P3-P4 links are temporarily disabled in order to slightly change
the network topology (or, to simulate multiple failures in the network). The following
two examples and Figure 18-5 assume that link (not node-link) protection is config‐
ured.

Example 18-17. FIB entry toward P2 loopback on P5 (Junos)

juniper@P5> show route forwarding-table table default
            destination 172.16.0.2/32
(...)
Destination    Type RtRef Next hop        Type Index    NhRef Netif
172.16.0.2/32  user     1                 ulst  1048596    15
                          10.0.0.29   ucst      586    29 ge-2/0/3.0
                          10.0.0.25   ucst      581    23 ge-2/0/2.0
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Example 18-18. FIB entry toward P2 loopback on PE3 (Junos)

juniper@PE3> show route forwarding-table table default
             destination 172.16.0.2/32
Routing table: default.inet
Internet:
Destination    Type RtRef Next hop    Type Index    NhRef Netif
172.16.0.2/32  user     0             ulst  1048585    24
                          10.0.0.33   ucst      595    25 ge-2/0/4.0
                          10.0.0.24   ucst      542    26 ge-2/0/2.0

Figure 18-5. Per-prefix link-protection LFA protecting traffic from P5 and PE3 to P2
(potential microloop)

Both P5 and PE3 point to PE4 as the primary next hop. And both P5 and PE3 point
to each other as backup next hops. Now, imagine PE4 fails. As discussed already,
before global convergence happens, the primary next hop is removed and forwarding
is based on the backup next hop. As a result, the FIB entry for 172.16.0.2/32 has the
following next hops:

• At P5’s FIB, the next hop is 10.0.0.25 (ge-2/0/2.0). In other words, PE3.
• At PE3’s FIB, the next hop is 10.0.0.24 (ge-2/0/2.0). In other words, P5.

This is a loop! Both P5 and PE3 have only a single next hop, and they are pointing to
each other. Until global convergence happens, which replaces old next hops with
newly calculated next hops, there is indeed a loop. You may well ask how is this possi‐
ble? The technology under discussion is called Loop-Free Alternates.

This kind of loop in LFA is called a microloop. In this particular case, LFA backup
next hop protects only against a single P5-PE4 link failure, but not against PE4’s node
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failure. For single link failure, LFA with link-protection is loop free. However, if the
failure is bigger than expected (for example multiple link failures or node failure),
then micro-loops might occur if LFA had computed only link-protection backup next
hop. This was recognized very early in the LFA development stage (RFC 5286, Sec‐
tion 1.1).

On the other hand, node protection LFA (if available) completely eliminates any
chance of micro-loops during multiple link (connected to the same node) failures, at
least in those basic LFA deployments where we do not impose any additional path
restrictions (like SLRG). Thus, the preferred LFA deployment strategy is to use
backup next hops that satisfy node protection criterion (to eliminate microloops),
and use backup next hops that satisfy the link protection criterion only as last resort.
This logic is implemented by default in IOS XR, whereas in Junos you need to pay
extra attention to implement such logic. It is called node-link-degradation.

Example 18-19. Node-link protection with link degradation LFA (Junos)

groups {
    GR-ISIS {
        protocols {
            isis {
                interface "<*[es]*>" {
                    node-link-protection;
}}}}}
protocols {
    isis {
        apply-groups GR-ISIS;
        backup-spf-options node-link-degradation;
}}

LFA backup coverage in Table 18-4 will not change regardless of whether node-link
protection with degradation or only link protection is configured. But you gain the
benefits of next hops that satisfy node protection requirements (if possible) as well as
next hops that otherwise satisfy only link protection requirements. On the other
hand, node protection backup paths are typically longer, causing more latency for
rerouted traffic during the time the protection is active. However, this typically lasts
for a short period of time (few 100 ms up to few seconds in very large networks) until
global IGP convergence installs new optimized paths. Before starting the discussion
about techniques that can be used to extend LFA backup coverage (remember that in
both IOS XR and Junos planes, the LFA backup coverage was still below 100% on
some routers), let’s review another difference between default IOS XR and Junos LFA
implementations. Let’s temporarily use a slightly different topology, as illustrated in
Figure 18-6.
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Figure 18-6. LFA topology B

Now, when you check reachability of the PE3-PE4 link prefix on P5 and P6 (see
Example 18-20), you will be surprised to find some inconsistency, although P5 and
P6 connectivity to PE3 and PE4 is fully symmetrical. In all of the previous cases,
loopback prefixes were used to investigate LFA behavior. Loopbacks are injected into
the IGP domain by a single router, whereas link prefixes are injected by two routers.

Example 18-20. RIB entry for PE3-PE4 link prefix on P5 and P6

juniper@P5> show route 10.0.0.32/31
(...)
10.0.0.32/31       *[IS-IS/18] 00:03:37, metric 450
                    > to 10.0.0.29 via ge-2/0/3.0

RP/0/0/CPU0:P6#show route isis
(...)
i L2 10.0.0.32/31 [115/450] via 10.0.0.31, 00:03:48, Gi0/0/0/3
                  [115/0] via 10.0.0.27, 00:03:48, Gi0/0/0/2 (!)
(...)

Whereas P6 (IOS XR) has primary and backup next hops, P5 (Junos) has only a pri‐
mary next hop; the backup next hop is missing. On P5, the primary next-hop is PE4,
so let’s see if there is any specific information in the backup SPF results for PE4.
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Example 18-21. Backup SPF results for PE4 on P3 (Junos)

juniper@P5> show isis backup spf results PE4 | match <pattern>
  Primary next-hop: ge-2/0/3.0, IPV4, PE4, SNPA:  0:50:56:8b:4e:c8
    Root: PE4, Root Metric: 50, Metric: 0, Root Preference: 0x0
      Not eligible, IPV4, Reason: Primary next-hop link fate sharing
    Root: P3, Root Metric: 100, Metric: 150, Root Preference: 0x0
      Not eligible, IPV4, Reason: Path loops
    Root: PE3, Root Metric: 100, Metric: 150, Root Preference: 0x0
      Not eligible, IPV4, Reason: Path loops

Neither of P5’s neighbors is eligible to be the backup next hop toward PE4. Why is
PE3 not considered as a backup next hop? From the perspective of P5, the
10.0.0.32/31 prefix has PE4 as its best originator, therefore that prefix somehow
belongs to PE4. Looking at the topology and link metrics, all of P5’s neighbors will
forward traffic destined for the PE4 node back via P5, causing a loop. So, what is the
difference on P6? Let’s see.

Example 18-22. Backup SPF results for PE4 on P6 (IOS XR)

RP/0/0/CPU0:P6#show isis fast-reroute 10.0.0.32/31 detail
L2 10.0.0.32/31 [450/115] low priority
     via 10.0.0.31, Gi0/0/0/3, PE3, Weight: 0
       FRR backup via 10.0.0.27, Gi0/0/0/2, PE4, Weight: 0
       P: No, TM: 500, LC: No, NP: Yes, D: Yes, SRLG: Yes
     src PE3.00-00, 172.16.0.33
       

As you can see, P6 calculated the backup next hop, which fulfills node protection cri‐
terion. It actually means, P6 calculated a backup path that completely avoids the pri‐
mary next hop PE3; in other words, to reach PE4 as a final destination, and not to
reach PE3 (primary next hop) as a final destination. From P6’s perspective, PE3 is the
best originator, whereas PE4 is the non-best originator of the 10.0.0.32/31 prefix, and
P6 allows redirection to the non-best originator.

In Junos, by default, only the best originator is taken into account for LFA backup
next-hop calculations. Thus, P5 tries to find loop-free backup next hops to reach PE4
(best originator) and does not consider the path destined to PE3 (non-best origina‐
tor) as a possible backup. You can change this default behavior with the following
extra configuration knob, to conform with RFC 5286, Section 6.1.

Example 18-23. Enabling non-best originator evaluation (Junos)

protocols {
    isis {
        backup-spf-options per-prefix-calculation;
 }}
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The terms used in the configuration knob might be a little mislead‐
ing. The Junos LFA flavor is per-prefix by default (without any
extra configuration), as already verified (Example 18-14)—this
knob simply enables calculation of backup next hops for non-best
prefix originators.

The following check confirms that after enabling the knob, the backup next hop is
properly determined.

Example 18-24. RIB entry for PE3-PE4 link prefix on P3 (Junos)

juniper@P5> show route 10.0.0.32/31
(...)
10.0.0.32/31       *[IS-IS/18] 00:01:03, metric 450
                    > to 10.0.0.29 via ge-2/0/3.0
                         to 10.0.0.25 via ge-2/0/2.0

Ensuring proper LFA functionality for link prefixes is usually not crucial, because
loopback prefixes (not link prefixes) are typically used as next hops for MPLS services
(L2VPN, L3VPN, etc.). Proper LFA functionality for prefixes originated by multiple
nodes is more important in multiarea deployments, where ABRs redistribute prefixes
between adjacent areas. Typically, multiple ABRs are used for redundancy, so prefixes
(loopbacks) from another IGP area are originated by multiple ABRs.

Another example is the anycast type of architectures. In such architectures, multiple
nodes advertise the same virtual loopback prefix, which is used as a next hop for VPN
services. Chapter 21 presents some examples for such a deployment.

The next sections are based on LFA Topology A (Figure 18-2).

The following LFA sections in this chapter provide incremental
configurations. Except where stated otherwise, each section relies
on the configuration applied on previous sections. 

Extending LFA Backup Coverage
As you discovered from the previous section, native LFA (per-prefix LFA, but espe‐
cially per-link LFA) does not guarantee 100% backup coverage. The backup coverage
is mainly dependent on the link metric costs and overall network topology. Thus,
some extensions to native LFA are required to increase—possibly up to 100% in any
arbitrary network topology—the backup coverage. Methods to extend the backup
LFA coverage include the following architectures:

• LFA with LDP ackup unnels (Remote LFA)
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• LFA with RSVP-TE backup tunnels (Topology-Independent Fast ReRoute [TI-
FRR])

• LFA with SPRING backup tunnels (Topology-Independent LFA [TI-LFA])

LFA with LDP Backup Tunnels (Remote LFA)
Remote LFA (RLFA) for link protection is specified in RFC 7490. RLFA for node pro‐
tection is described in draft-ietf-rtgwg-rlfa-node-protection. This section assumes that
RFC 7490 (and not the node protection draft) is implemented.

RLFA theory of operation
RLFA introduces the concepts of P-space, Q-space, and PQ-node (see Figure 18-7),
which must be interpreted in the context of a given PLR and a given protected link:

P-space
This is a set of routers reachable from a PLR router (denoted S) using a shortest
path and without traversing the protected link. In the case of ECMP, this require‐
ment applies to all the equal-cost shortest paths from S to a node in the P-space.
None of these paths can traverse the protected link; otherwise, the node is not in
the P-space.

Q-space
This is a set of routers that can reach the primary next hop (denoted E) using a
shortest path and without traversing the protected link. In the case of ECMP, this
requirement applies to all the equal-cost shortest paths from a node in the Q-
space to E. In Q-space calculation, only the primary next hop node, but not the
actual destination node, is taken into account. Calculating the Q-space for every
destination node would, in the worst case, require an SPF computation rooted on
many nodes for each destination, which would be nonscalable in large networks.
Therefore, the Q-space of E is used as a proxy for the Q-space of each destina‐
tion. Conceptually, this is closer to per-link LFA, rather than per-prefix LFA.

PQ-node
This is a node that is a member of both the P-space and the Q-space. Remote LFA
uses a PQ-node as a remote backup neighbor and terminates the repair tunnel on
the PQ-node. The PQ-node does not need to be directly connected to S (or to E).
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Figure 18-7. Remote LFA P- and Q-spaces for the PE1→P1 link

In the example topology, the PE1→P1 link is not protected with basic LFA. PE2, the
only potential backup neighbor of PE1, uses PE1 as the next hop to reach P1, so no
loop-free backup next hop is available.

Now, based on RLFA principles, almost all remaining routers (with the exception of
the P3 router) belong to P-space. PE1 can reach these routers over the shortest path
without crossing the PE1→P1 link. On the other hand, in this particular topology,
only P3 and P5 belong to Q-space. Only P3 and P5 can reach P1 over the shortest
path without crossing the PE1→P1 link. They will use the P3→P1 link to reach P1.

RLFA functions as follows: PE1 first sends the traffic to some PQ-node (only P5 in
the example belongs to both P-space and Q-space). Traffic sent to the PQ-node does
not traverse protected links, because this is the definition of P-space. Next, the PQ-
node sends the traffic to the destination. Again, based on the definition of Q-space,
this traffic does not traverse the protected link.

How does PE1 send packets to destination P1? Simply forwarding packets destined to
P1 in the direction of PE2 would cause a loop, because the shortest path from PE2 to
P1 is via PE1. Thus, the final destination (P1) of the packet must be invisible to PE2.

To achieve this, PE1 automatically establishes a targeted multihop LDP session to the
PQ-node (P5). Over this LDP session, the PQ-Node (P5) sends IPv4 FECs, including
the FEC for P1 loopback (172.16.0.1/32). Now, PE1 is able to construct the following
label stack for the packets redirected via the PE1→PE2 link toward the PQ-Node.

• In this example, the outer label is 24004. The backup neighbor (PE2) maps it to
P5’s loopback and advertises it to PE1 over the standard LDP session. (In theory,
other MPLS transport flavors might be supported, but that’s beyond the scope of
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this book’s tests.) Thanks to this outer label, which is locally significant to PE2,
packets can travel from PE1 to P5.

• In this example, the inner label is 299904. The PQ-node (P5) maps it to P1’s loop‐
back and advertises it to PE1 over the T-LDP session. Thanks to this inner label,
which is locally significant to P5, packets can travel from P5 to P1.

This label stack allows steering the traffic as demonstrated in Figure 18-7, with PHP
at PE4 and P3. Because the destination happens to be the E-node (P1), only link pro‐
tection can be provided; node protection does not even make sense here.

What if the destination is P3’s loopback? In this case, the outer label is the same
(24004, to P5 via PE2) and the inner label is the one that the PQ-node (P5) maps to
P3 and advertises to PE1 over the T-LDP session. The tunnel is exactly the one depic‐
ted in Figure 18-7 (from PE1 to P5), and the dashed-line arrow ends at P3. In this
case, traffic from the PQ-node (P5) to the final destination does not traverse the E-
node (P1). Said differently, node protection is achieved. This is actually a coincidence.
In other topologies, traffic from the PQ-node to the final destination may traverse the
E-node.

For example, if the destination is PE3’s loopback and you temporarily increase the
metrics of the P5-PE3 and PE3-PE4 links to 8000, the shortest path from PE1 to
reach PE3 is PE1→P1→PE3. The shortest path from the PQ-node (P5) to the destina‐
tion (PE3) is P5→P3→P1→PE3. In case of P1 node failure, there would be traffic loss
until the PQ-node is informed about P1’s failure.

In this example, RLFA provides protection for the PE1→P1 link failure. This is a step
forward with respect to basic LFA.

RLFA configuration
Now, after discussing the RLFA theory of operation, let’s turn to the configuration for
both Junos and IOS XR planes, respectively.

Example 18-25. RLFA configuration (Junos)

1     protocols {
2         isis {
3             backup-spf-options remote-backup-calculation;
4         }
5         ldp {
6             interface lo0.0;
7             auto-targeted-session;
8     }}
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Example 18-26. RLFA configuration (IOS XR)

1     group GR-ISIS
2      router isis '.*'
3       interface 'GigabitEthernet.*'
4        address-family ipv4 unicast
5         fast-reroute per-prefix level 2
6         fast-reroute per-prefix remote-lfa tunnel mpls-ldp level 2
7     end-group
8     !
9     router isis core
10     apply-group GR-ISIS
11    !
12    mpls ldp
13     address-family ipv4
14      discovery targeted-hello accept
15    !

In both cases (Junos and IOS XR), you simply enable RLFA functionality with a key‐
word (Example 18-25, line 3; Example 18-26, line 6). You also need to ensure that
local initiation and acceptance of remotely initiated targeted LDP sessions is enabled.
Additionally, if filtering of IPv4 FECs is applied to targeted LDP sessions (as briefly
discussed in Chapter 2, Chapter 3, and Chapter 4), these filters need to be removed
now.

RLFA in action
RFC 7490 doesn’t specify the way to determine the IP address of the remote LFA
repair target, referring to it as “out of scope for this document”. This caused some
small interoperability problems between Junos and IOS XR. Namely, IOS XR deter‐
mined the IPv4 address used to establish the targeted LDP (TLDP) session using IS-
IS TLV 134 (TE Router ID), and if not available, the highest /32 prefix advertised via
TLV 128 or TLV 135 (IP Reachability or Extended IP Reachability). Conversely, Junos
determined the IPv4 address from IS-IS TLV 134 exclusively. Although TLV 128/135
is included by default in both Junos and IOS XR implementations, TLV 134 is adver‐
tised by default in Junos implementation only. This resulted in Junos routers that
were not able to establish TLDP sessions to IOS XR routers. As a workaround, ena‐
bling full TE database announcements on IOS XR routers was required (see Chap‐
ter 2 and Chapter 13 for the exact TE configuration).

OK, after the configuration is done, take a look at Table 18-5 to check the backup
coverage again.
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Table 18-5. Backup coverage with remote LFA

P1 P2 P3 P4 P5 P6 PE1 PE2 PE3 PE4

9 9 9 9 9 9 9 3 9 8

100% 100% 100% 100% 100% 100% 100% 33.3% 100% 88.9%

It’s very close to achieving a final design. If you compare Table 18-5 (which shows the
current LFA backup coverage) with Table 18-4, you see a considerable increase. This
confirms RLFA is useful in increasing backup coverage. However, this also confirms
RLFA is still topology dependent because two routers (PE2 and PE4) still do not pro‐
vide full backup coverage. Later, we’ll cover more advanced techniques to finally ach‐
ieve full backup coverage. But for now, let’s verify the routing states.

Example 18-27. RIB/LFA entry toward P1 loopback on PE1 (Junos)

juniper@PE1> show isis backup spf results P1 | match <pattern>
  Primary next-hop: ge-2/0/2.0, IPV4, P1, SNPA:  0:50:56:8b:8:f
    Root: P1, Root Metric: 50, Metric: 0, Root Preference: 0x0
      Not eligible, IPV4, Reason: Primary next-hop link fate sharing
    Root: PE2, Root Metric: 50, Metric: 100, Root Preference: 0x0
      Not eligible, IPV4, Reason: Path loops
    Root: P5, Root Metric: 600, Metric: 600, Root Preference: 0x0
      Eligible, Backup next-hop: ge-2/0/3.0, LSP, LDP->P5(172.16.0.5)

juniper@PE1> show isis route 172.16.0.1/32
(...)
Prefix        L Version Metric Interface   NH   Via
172.16.0.1/32 2    1107     50 ge-2/0/2.0  IPV4 P1
                               ge-2/0/3.0  LSP  LDP->P5(172.16.0.5)

juniper@PE1> show route table inet.3 172.16.0.1/32
(...)
172.16.0.1/32 *[LDP/9] 05:17:38, metric 50
          > to 10.0.0.3 via ge-2/0/2.0
            to 10.0.0.1 via ge-2/0/3.0, Push 299904, Push 24004(top)

Perfect! You can see that next-hop type for backup next hop is a LDP-based LSP
pointing toward P5. Furthermore, the label stack with two labels is associated with
the backup next hop. And the verification of received IPv4 FECs confirms that the
top label provides reachability to P5 (PQ-node) through PE2 (direct backup next
hop), whereas the bottom label provides reachability to P1 (final destination) from P5
(PQ-node).
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Example 18-28. IPv4 FECs received on PE1 (Junos)

juniper@PE1> show ldp database session 172.16.0.22 | match "Inp|24004"
Input label database, 172.16.0.11:0--172.16.0.22:0
  24004      172.16.0.5/32

juniper@PE1> show ldp database session 172.16.0.5 | match "Inp|299904"
Input label database, 172.16.0.11:0--172.16.0.5:0
 299904      172.16.0.1/32

With such a trick, RLFA tunnels the traffic destined for P1 toward P5 through PE2.
PE2 looks only at the outer label and politely forwards the traffic to P5. The loop
doesn’t occur.

After checking the RLFA operation on a Junos device, let’s verify it on an IOS XR
device. As an example let’s have a closer look at the backup for PE2→PE1 link. P-
space and Q-space for this case are presented in Figure 18-8.

Figure 18-8. Remote LFA P-spaces and Q-space for the PE2→PE1 link

As you can see, there is no overlap between P and Q-space, so no PQ-node. However,
even in such situations, there might be cases for which RLFA functionality could still
be achieved. When checking protection for the PE2→PE1 link (see the example that
follows), you can discover that traffic will be redirected through the LDP tunnel ter‐
minated on P3, but going via Gi0/0/0/2 (P2), which is not on the shortest path from
PE2 to P3.

Extending LFA Backup Coverage | 701



Example 18-29. Backup SPF results for PE1 on PE2 (IOS XR)

1     RP/0/0/CPU0:PE2#show isis fast-reroute 172.16.0.11/32 detail
2     L2 172.16.0.11/32 [50/115] medium priority
3        via 10.0.0.0, Gi0/0/0/3, PE1, Weight: 0
4          Remote FRR backup via P3 [172.16.0.3], via 10.0.0.5, Gi0/0/0/2 P2
5          P: No, TM: 650, LC: No, NP: No, D: No, SRLG: Yes
6        src PE1.00-00, 172.16.0.11

How is this possible? Let’s document the trick. PE2 receives IPv4 FECs for P3 loop‐
back (172.16.0.3) from both direct neighbors (PE1 and P2). The shortest path from
PE2 to P3 is via PE1 (PE2→PE1→P1→P3, cost 600). So normally, PE2 will send traf‐
fic to P3 via PE1, and that is the reason why P3 is not in the P-space. But what about
sending the traffic destined to P3 via P2? No loop! The shortest path from P2 to P3 is
via P2→P4→P5→P3 (cost 600). Thus, to protect the PE2→PE1 link, PE2 can redirect
the traffic via P2, using a standard RLFA label stack (top label: P3; bottom label: PE1).
This time, of course, the labels for P3’s and PE1’s loopbacks are allocated by P2 (direct
LDP session) and P3 (targeted LDP session), respectively. And here is what actually
happens.

Example 18-30. RIB/FIB entry for PE1 loopback on PE2 (IOS XR)

RP/0/0/CPU0:PE2#show route 172.16.0.11/32 | include "from|LFA"
    10.0.0.5, from 172.16.0.11, via Gi0/0/0/2, Backup (remote)
      Remote LFA is 172.16.0.3
    10.0.0.0, from 172.16.0.11, via Gig0/0/0/3, Protected

RP/0/0/CPU0:PE2#show cef 172.16.0.11/32 | include "weight|hop|label"
   via 10.0.0.5, Gi0/0/0/2, 10 dependencies, weight 0, backup
    next hop 10.0.0.5, PQ-node 172.16.0.3
     local label 24001      labels imposed {24004 300368}
   via 10.0.0.0, Gi0/0/0/3, 10 dependencies, weight 0, protected
    next hop 10.0.0.0
     local label 24001      labels imposed {ImplNull}

If you’re reading this correctly, how can PE2 determine which node it should use to
redirect the traffic and terminate the RLFA LDP tunnel? Well, here the RLFA RFC
introduces the concept of Extended P-space:

Extended P-space
The union of P-space computed for PLR router (denoted S) as well as P-spaces
computed for each direct neighbor of S, excluding primary next-hop router
(denoted E). Calculations based on extended P-space are supported by default in
IOS XR and Junos.

Thus, in the example topology, you need to check what P-space is computed from
P2’s point of view, as well. P2’s P-space contains all routers with the exception of PE1
and P1. It means P2 can reach all routers (except PE1 and P1) through the shortest
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path without crossing the PE2→PE1 link. Consequently, P-space is extended with one
additional router: P3 (including PE2, the PLR, in the extended P-space does not make
sense from the RLFA perspective). P3 belongs to Q-space, fortunately, so it can be
used as a PQ-node to terminate the RLFA tunnel.

Going back to Example 18-29, it’s worth mentioning the redefini‐
tion of total metric (TM) field. In the case of RLFA, TM means the
actual total cost to the PQ-node, not to the destination.

RLFA with RSVP-TE Backup Tunnels
You have seen a lot of configurations already. You have gone through per-link protec‐
tion, per-prefix protection with various options (node and link protection, link pro‐
tection, node protection with link protection as fallback), and lastly, remote LFA. All
these efforts, although successively increasing LFA backup coverage, did not provide
you with the ultimate solution: full backup coverage on all routers. To make things
more challenging, you will work on a slightly modified topology now (see
Figure 18-9)—without the P2-PE4 direct link—that misses some backup coverage
(even with RLFA) for both Junos and IOS XR planes. The following technique takes
packets to a Q-node through a non-shortest path, hence extending the effective cov‐
erage to 100% (see Table 18-6).

Figure 18-9. LFA topology C—RLFA with RSVP-TE LSP tunnel
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Table 18-6. Backup coverage with remote LFA in topology C

P1 P2 P3 P4 P5 P6 PE1 PE2 PE3 PE4

9 9 9 9 9 9 0 3 9 9

100% 100% 100% 100% 100% 100% 0% 33.3% 100% 100%

Unfortunately, as you can see in Figure 18-9, the (extended) P-space and Q-space do
not share any common node for the PE1→PE2 link. Consequently, standard LDP-
based RLFA does not protect the PE1→PE2 link.

What do you do in such a scenario? You could establish an explicitly (not dynami‐
cally) routed tunnel to one of the Q nodes (P2 or P4). Because the tunnel is estab‐
lished via the explicit path from source node (PE1) to Q node (e.g., P4), if you
configure the path correctly, there is no loop possibility here. The explicit path must
be defined to omit the PE1→PE2 link. LDP does not support explicitly routed tun‐
nels, thus your choice is RSVP-TE (or, in theory, SPRING-TE, when available). So,
let’s configure it! See Example 18-31.

Example 18-31. RLFA configuration with manual RSVP-TE backup (Junos)

1     protocols {
2         mpls {
3             label-switched-path PE1-->P4-LFA {
4                 backup;
5                 to 172.16.0.4;
6                 ldp-tunneling;
7                 preference 10;
8                 primary PE1-P1-P3-P4;
9             }
10            path PE1-P1-P3-P4 {
11                10.0.0.3 strict;           ## P1
12                10.0.0.9 strict;           ## P3
13                10.0.0.13 strict;          ## P4
14    }}}

Example 18-31 assumes that RLFA is already configured. In addition to enabling TE
extensions on the IGP, and RSVP-TE on the interfaces, (which is discussed in Chap‐
ter 2), you need to configure an explicitly routed RSVP-TE tunnel to reach the Q-
node. Additionally, you must allow the use of this tunnel as a backup tunnel (line 4)
in the remote LFA architecture. To prevent the use of this tunnel for normal traffic
forwarding, we recommend that you change the route preference to be numerically
higher than LDP (line 7) so that the tunnel is less preferred than LDP.

A quick verification, by matching Example 18-32 to Figure 18-9, confirms proper
operation. The backup RSVP-TE tunnel is established and LFA uses it as backup next
hop toward the loopbacks of three nodes (P2, P4 and PE2). For brevity, the following
example shows one destination (P2):
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Example 18-32. States for RLFA with manual RSVP-TE backup tunnel (Junos)

juniper@PE1> show mpls lsp ingress detail | match <pattern>
From: 172.16.0.11, State: Up, ActiveRoute: 0, LSPname: PE1-->P4-LFA
ActivePath: PE1-P1-P3-P4 (primary)
LSPtype: Static Configured, Penultimate hop popping
 Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 750)
 10.0.0.3 S 10.0.0.9 S 10.0.0.13 S
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node
               10=SoftPreempt 20=Node-ID):
          10.0.0.3 10.0.0.9 10.0.0.13

juniper@PE1> show route table inet.3 172.16.0.2/32 detail
[...]*LDP    Preference: 9
             Next hop: 10.0.0.1 via ge-2/0/3.0 weight 0x1, selected
             Label operation: Push 24000
             Next hop: 10.0.0.3 via ge-2/0/2.0 weight 0x100
             Label-switched-path PE1-->P4-LFA
             Label operation: Push 24000, Push 301680(top)
             Age: 6:19:29    Metric: 100

juniper@PE1> show isis backup spf results P2 | except item
(...)
P2.00
  Primary next-hop: ge-2/0/3.0, IPV4, PE2, SNPA:  0:50:56:8b:b3:48
    Root: P4, Root Metric: 600, Metric: 500, Root Preference: 0x0
      Eligible, Backup next-hop: ge-2/0/2.0, LSP, PE1-->P4-LFA
    Root: PE2, Root Metric: 50, Metric: 50, Root Preference: 0x0
      Not eligible, IPV4, Reason: Interface is already covered
    Root: P1, Root Metric: 50, Metric: 150, Root Preference: 0x0
      Not eligible, IPV4, Reason: Interface is already covered
  1 nodes

Similar to the standard LFA case, the backup next hop has a numerically higher
weight (this time it is 0x100), and a two-label stack (301680 is the top label to reach
the Q-node via the RSVP-TE tunnel, and 24000 is the bottom label to reach the final
destination from the Q-node via LDP) is used. Due to PHP, these labels are popped at
P3 and P4, respectively.

After investigating the Junos plane, let’s do the same for the IOS XR plane. You can
make a detailed analysis again about P- or Q-space for PE2→PE1. But this time let’s
simply create backup RSVP-TE tunnels using the PE2→P2→P1→PE1 path to avoid
the PE2→PE1 link. Again, in addition to the following configuration, you obviously
must enable RSVP-TE itself (not shown for brevity):

Example 18-33. RLFA Configuration with manual RSVP-TE backup tunnel (IOS XR)

group GR-ISIS              ! This group is applied to isis (not shown)
 router isis '.*'
  interface 'GigabitEthernet.*'
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   address-family ipv4 unicast
    fast-reroute per-prefix level 2
    fast-reroute per-prefix lfa-candidate interface tunnel-te11 level 2
    fast-reroute per-prefix remote-lfa tunnel mpls-ldp level 2
end-group
!
group GR-LSP-LFA
 interface 'tunnel-te.*'
  ipv4 unnumbered Loopback0
  record-route
end-group
!
explicit-path name PE2-P2-P1-PE1
 index 10 next-address strict ipv4 unicast 10.0.0.5
 index 20 next-address strict ipv4 unicast 10.0.0.6
 index 30 next-address strict ipv4 unicast 10.0.0.2
!
interface tunnel-te11
 apply-group GR-LSP-LFA
 signalled-name PE2-->PE1-LFA
 destination 172.16.0.11
 path-option 1 explicit name PE2-P2-P1-PE1

mpls ldp
 interface tunnel-te11
  address-family ipv4

The following verification confirms that everything works as expected:

Example 18-34. RLFA states with manual RSVP-TE backup tunnel (IOS XR)

RP/0/0/CPU0:PE2#show mpls traffic-eng tunnels | include <pattern>
Name: tunnel-te11  Destination: 172.16.0.11  Ifhandle:0xb80
  Signalled-Name: PE2-->PE1-LFA
    Admin:    up Oper:   up   Path:  valid   Signalling: connected
    path option 1,  type explicit PE2-P2-P1-PE1
                    (Basis for Setup, path weight 1100)

RP/0/0/CPU0:PE2#show route isis | begin /32
i L2 172.16.0.1/32 [115/0] via 172.16.0.11, tunnel-te11 (!)
                   [115/100] via 10.0.0.0, Gi0/0/0/3
i L2 172.16.0.2/32 [115/0] via 10.0.0.0, Gi0/0/0/3 (!)
                   [115/50] via 10.0.0.5, Gi0/0/0/2
i L2 172.16.0.3/32 [115/0] via 172.16.0.11, tunnel-te11 (!)
                   [115/600] via 10.0.0.0, Gi0/0/0/3
i L2 172.16.0.4/32 [115/0] via 10.0.0.0, Gi0/0/0/3 (!)
                   [115/550] via 10.0.0.5, Gi0/0/0/2
i L2 172.16.0.5/32 [115/0] via 172.16.0.11, tunnel-te11 (!)
                   [115/700] via 10.0.0.0, Gi0/0/0/3
i L2 172.16.0.6/32 [115/1000] via 10.0.0.0, Gi0/0/0/3
                   [115/0] via 10.0.0.5, Gi0/0/0/2 (!)
i L2 172.16.0.11/32 [115/0] via 172.16.0.11, tunnel-te11 (!)
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                    [115/50] via 10.0.0.0, Gi0/0/0/3
i L2 172.16.0.33/32 [115/0] via 172.16.0.11, tunnel-te11 (!)
                    [115/1100] via 10.0.0.0, Gi0/0/0/3
i L2 172.16.0.44/32 [115/0] via 172.16.0.11, tunnel-te11 (!)
                    [115/800] via 10.0.0.0, Gi0/0/0/3

RP/0/0/CPU0:PE2#show isis fast-reroute 172.16.0.1/32
L2 172.16.0.1/32 [100/115] medium priority
     via 10.0.0.0, Gi0/0/0/3, PE1, Weight: 0
       FRR backup via 172.16.0.11, tunnel-te11, PE1, Weight: 0
     src P1.00-00, 172.16.0.1

It appears, by combining RLFA with the single RSVP-TE tunnel just created, that
we’ve increased the backup coverage to 100 percent on PE2! (Refer back to Table 18-6
for the backup coverage without RSVP-TE tunnel.) However, backup forwarding
might be suboptimal in some cases. For example, the LFA backup path to reach P1
loopback from PE2 is PE2→P2→P1→PE1→P1. First four hops (up to PE1) uses for‐
warding via RSVP-TE backup tunnel, and the last hop uses forwarding via plain LDP.
P1 is visited twice, which is certainly not optimal.

Before moving on to the next LFA flavor, keep in mind the following characteristics
of the “RLFA with RSVP-TE Backup Tunnels” on page 703 models that we have just
discussed:

• It is an extension of classic RLFA, which only considered LDP backup tunnels,
and was originally conceived to provide link protection. In some cases (look back
at Figure 18-8), node protection is coincidentally achieved, but that requirement
is only considered if node-link-protection is configured and draft-ietf-rtgwg-
rlfa-node-protection is implemented.

• If protection can be achieved with classic RLFA (without RSVP-TE backup tun‐
nels), then RSVP-TE tunnels, even if configured, are not used.

Neither of these two bullet points hold true in the context of the technology that we’ll
look at next.

Topology Independent Fast ReRoute
By introducing additional backup RSVP-TE tunnels (for example, a tunnel originated
at PE2 and terminated on P1), you could achieve more optimal forwarding over
backup paths. However, in complex network topologies, determining and manually
configuring backup RSVP-TE tunnels might be a challenging task. Thus, Junos offers
an option for automatic creation of RSVP-TE tunnels used for LFA backups:
Topology-Independent Fast ReRoute (TI-FRR), which is based on draft-esale-ldp-node-
frr.
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As of this writing, IOS XR doesn’t support TI-FRR. However, IOS
XR already supports Topology-Independent LFA (TI-LFA), which is
based on SPRING tunnels instead of RSVP-TE bypass tunnels. TI-
LFA is discussed later in this chapter.

Junos offers two options for automatic bypass RSVP-TE tunnels: tunnels fulfilling
link-protection criterion, or tunnels fulfilling node-protection criterion, with fallback
to link-protection criterion in case a node-protection tunnel is not possible. Obvi‐
ously, to provide backup coverage against both node and link failures, we recommend
node-link protection bypass RSVP-TE tunnels. So, let’s add node and link-protection
tunnels to all the routers in the Junos plane. Following is an example for PE1:

Example 18-35. LFA configuration with dynamic RSVP-TE bypass — PE1 (Junos)

protocols {
    ldp {
        auto-targeted-session;
        interface lo0.0;
        interface ge-2/0/2.0 {
            node-link-protection {         ## or 'link-protection'
                dynamic-rsvp-lsp;
            }
        }
        interface ge-2/0/3.0 {
            node-link-protection {         ## or 'link-protection'
                dynamic-rsvp-lsp;
}}}}

Let’s verify the proper operation. For brevity, the example that follows first shows all
of the dynamic LSPs originated at the source node (PE1), but it later focuses on one
destination node (P3) only. The protected link is PE1→P1, and the protected next-
hop node is P1.

Example 18-36. States for MPLS LFA with dynamic RSVP-TE backup tunnel (Junos)

1     juniper@PE1> show mpls lsp ingress
2     To           From         LSPname
3     172.16.0.1   172.16.0.11  ge-2/0/2.0:BypassLSP->172.16.0.1
4     172.16.0.2   172.16.0.11  Pnode:172.16.0.1:BypassLSP->172.16.0.2
5     172.16.0.2   172.16.0.11  Pnode:172.16.0.22:BypassLSP->172.16.0.2
6     172.16.0.3   172.16.0.11  Pnode:172.16.0.1:BypassLSP->172.16.0.3
7     172.16.0.22  172.16.0.11  ge-2/0/3.0:BypassLSP->172.16.0.22
8     172.16.0.33  172.16.0.11  Pnode:172.16.0.1:BypassLSP->172.16.0.33
9
10    juniper@PE1> show mpls lsp ingress detail | match <pattern>
11    172.16.0.1
12     From: 172.16.0.11, State: Up, ActiveRoute: 0,
13                        LSPname: ge-2/0/2.0:BypassLSP->172.16.0.1
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14     ActivePath:  (primary)
15     LSPtype: Dynamic Configured, Penultimate hop popping
16      Computed ERO (S [L] denotes strict [loose]): (CSPF metric: 1100)
17    10.0.0.1 S 10.0.0.5 S 10.0.0.6 S
18       Received RRO:
19              10.0.0.1 10.0.0.5 10.0.0.6
20    (...)
21    172.16.0.3
22     From: 172.16.0.11, State: Up, ActiveRoute: 0,
23                        LSPname: Pnode:172.16.0.1:BypassLSP->172.16.0.3
24     ActivePath:  (primary)
25     LSPtype: Dynamic Configured, Penultimate hop popping
26      Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 100)
27     10.0.0.1 S 10.0.0.5 10.0.0.11 10.0.0.12 S
28        Received RRO:
29              10.0.0.1 10.0.0.5 10.0.0.11 10.0.0.12
30    (...)
31
32    juniper@PE1> show isis backup spf results P3 | except item
33    (...)
34    P3.00
35      Primary next-hop: ge-2/0/2.0, IPV4, P1, SNPA:  0:50:56:8b:8:76
36        Root: P3, Root Metric: 550, Metric: 0, Root Preference: 0x0
37          Eligible, Backup next-hop: ge-2/0/3.0, LSP,
38                    Pnode:172.16.0.1:BypassLSP->172.16.0.3, Prefixes: 3
39    (...)
40
41    juniper@PE1> show route table inet.3 172.16.0.3/32 detail | match ...
42        *LDP    Preference: 9
43                Next hop: 10.0.0.3 via ge-2/0/2.0 weight 0x1, selected
44                Label operation: Push 299776
45                Next hop: 10.0.0.1 via ge-2/0/3.0 weight 0x100
46                Label-switched-path Pnode:172.16.0.1:BypassLSP->172.16.0.3
47                Label operation: Push 24031
48                Age: 9  Metric: 550

The bypass RSVP-TE tunnels are dynamically established, and LFA can use these tun‐
nels as backup next hops for all prefixes that still don’t have a backup next hop. You
can see the following protection tunnels:

• Two link-protection tunnels (lines 3 and 7), whose name encodes the protected
interface name as well as the router ID of the next-hop node, where the LSP is
terminated.

• Four node-protection tunnels (lines 4 through 6 and line 8), whose name enco‐
des the next-hop node being protected, and the next-next-hop node, where the
LSP is terminated.
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Two link-protection tunnels are pretty obvious: PE1 has only two links. But, why do
you see four node-protection tunnels for two neighbor nodes? Well, there are four
possible ways to reach a next-next-hop:

• PE1→P1→P2 (protected via Pnode:172.16.0.1:BypassLSP->172.16.0.2)
• PE1→PE2→P2 (protected via Pnode:172.16.0.22:BypassLSP->172.16.0.2)
• PE1→P1→P3 (protected via Pnode:172.16.0.1:BypassLSP->172.16.0.3)
• PE1→P1→PE3 (protected via Pnode:172.16.0.1:BypassLSP->172.16.0.33)

To put it simply, PE1 can send traffic to one of the following next hops: P1 or PE2.
Then, P1 has three possible next hops (excluding the undesirable option of returning
the traffic to PE1): P2, P3, and PE3. In turn, PE2 has one single possible next hop: P2.

In the absence of failures, PE1 sends packets destined to P3 via the PE1→P1 link. PE1
can choose between a link-protection bypass (lines 3, and 11 through 19) and a node-
protection bypass (lines 6, and 21 through 29). According to the configuration, PE1
prefers the node-protection bypass (lines 38 and 46).

When TI-FRR is enabled, backup LFA or RLFA next hops are no longer used. All
backup next hops point to bypass RSVP-TE tunnels. This time the backup next hop
has a weight of 0x100 (line 45). As you explore different local-repair techniques used
in Junos platforms, you’ll see that each of them uses a different weight for backup
next hops, therefore it is easy to determine the relative priority of the different next
hops.

Let’s verify the overall coverage provided by TI-FRR.

Example 18-37. States for TI-FRR (Junos)

juniper@PE1> show isis backup coverage
Backup Coverage:
Topology        Level   Node    IPv4    IPv6    CLNS
IPV4 Unicast        2 100.00% 100.00%   0.00%   0.00%

Now you have finally achieved 100 percent backup coverage! And, it is completely
topology independent. Whatever the topology the backup coverage is always 100 per‐
cent.

Modifying the default LFA selection algorithm
In many cases, multiple feasible (loop-free) backup next hops might be available.
These backup next hops could be direct (for plain per-prefix LFA) or point to a
remote PQ-node (when using Remote LFA). A legitimate question would be then:
How do you select the best backup next hop among those that are possible? And
immediately a second question arises: How do you actually define best? Best for one
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network operator might not be the best for another. Typically, a default algorithm
selects the best backup next hop. Just for reference, default tie-breakers in the LFA
backup next-hop selection process, for both Junos and IOS XR, are as follows:

Junos
1. Prefer direct (another primary) ECMP next hop.
2. For multihomed prefixes, if PLR is the penultimate router, prefer direct

backup next hop to another (non-best) originator if per-prefix-

calculation is configured.
3. Prefer backup next hop (direct or PQ-node), which provides node protection

if node-link-protection configured.
4. Prefer backup next hop (direct or PQ-node), which provides link protection,

if link-protection or node-link-degradation configured.
5. Prefer backup next hop (direct or PQ-node) over a link with LDP synchroni‐

zation enabled and LDP in-sync state.
6. Prefer backup next hop (direct or PQ-node) closest to the destination.
7. Prefer backup next hop (direct or PQ-node) closest to PLR.
8. Prefer backup next hop (direct or PQ-node) with lowest System ID.

IOS XR
1. Prefer direct (another primary) ECMP next-hop.
2. Prefer backup next hop with the lowest-total-metric (actually, lowest TM)

backup path.
3. Prefer backup next hop reachable using different line card than the primary

next hop.
4. Prefer backup next hop, which provides node protection.

Keep rule 1 in mind. If a backup next hop is not installed, the rea‐
son might simply be that another primary next hop (ECMP) is
already providing the desired protection.

Even at first sight, the default LFA backup next hop selection process is different.
And, of course, it might not suit every operator’s needs. Therefore, it should be possi‐
ble to influence the default LFA backup next-hop selection process. The requirements
for this are provided in draft-ietf-rtgwg-lfa-manageability: Operational management of
Loop Free Alternates.
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Both IOS XR and Junos offer a wide range of selection criteria, and provide ways to
specify the order in which these criteria should be evaluated:

Junos
Backup path administrative constraints:

• Based on administrative groups (affinity bits)
• Based on Shared Risk Link Group (SRLG)

Bandwidth: For example, the bandwidth over the backup path should be greater
or equal to the bandwidth available over primary path.
Protection type:

• Link protection
• Node and link protection
• Node protection with fallback to link protection if node protection not avail‐

able

Downstream paths only.
Backup neighbors preference:

• Preference list based on IP addresses
• Preference list based on ISIS tags

Metrics:
• Metric from PLR to backup neighbor: highest of lowest
• Metric from backup neighbor to destination: highest or lowest

IOS XR
Backup path administrative constraints:

• Based on SRLG

Protection type:
• Node protection with fallback to link protection if node protection not avail‐

able

Downstream paths preferred.
Metrics:

• Backup path with lowest total metric (actually, lowest TM) preferred

Line card disjoint backup path preferred
ECMP:

• ECMP path preferred
• Non-ECMP path preferred
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Due to the great variety of possible options, this book selects a few in order to intro‐
duce policy-based LFA backup next-hop selection. You are encouraged to test the
others.

Modifying the default LFA selection algorithm in Junos
In the topology illustrated in Figure 18-10, let’s assume that RLFA (without RSVP-TE
backup tunnels, and with node-link-protection) is configured on PE3.
Figure 18-10 illustrates three paths from the source node (PE3) to the destination
node (P2):

• The (shortest-path) primary path, which is PE3→P1→PE1→PE2→P2.
• The backup path that PE3 calculates according to the default backup next-hop

selection algorithm, which chooses P4 as PQ-node. PE3 pushes a bottom (TLDP)
label to go from P4 to P2, and a top (LDP) label for the tunnel PE3→P5→P3→P4.
This LDP tunnel does not follow the shortest path from PE3 to P4. The reason
will be explained later in this section.

• The backup path that PE3 calculates according to a modified backup next-hop
selection algorithm. This modification consists of reversing Step 6 (prefer backup
next hop closest to the destination) with Step 7 (prefer backup next hop closest to
PLR). PE3 pushes a bottom (TLDP) label to go from P4 to P2, and a top (LDP)
label for the tunnel PE3→PE4→P6→P4.

Figure 18-10. Modified LFA next-hop selection process (Junos)
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First, let’s check at PE3 the backup next hop selected by the default LFA selection pro‐
cess implemented in Junos.

Example 18-38. States toward P2 with default LFA selection process—PE3 (Junos)

1     juniper@PE3> show isis backup spf results P2 | except item
2     (...)
3     P2.00
4      Primary next-hop: ge-2/0/6.0, IPV4, P1, SNPA:  0:50:56:8b:16:af
5        Root: P2, Root Metric: 1150, Metric: 0, Root Preference: 0x0
6          Not eligible, LSP, Reason: Primary next-hop node fate sharing
7        Root: PE2, Root Metric: 1100, Metric: 50, Root Preference: 0x0
8          Not eligible, LSP, Reason: Primary next-hop node fate sharing
9        Root: PE1, Root Metric: 1050, Metric: 100, Root Preference: 0x0
10         Not eligible, LSP, Reason: Primary next-hop node fate sharing
11       Root: P1, Root Metric: 1000, Metric: 150, Root Preference: 0x0
12         Not eligible, IPV4, Reason: Primary next-hop link fate sharing
13       Root: P4, Root Metric: 800, Metric: 500, Root Preference: 0x0
14         Eligible, Backup next-hop: ge-2/0/2.0, LSP, LDP->P4(172.16.0.4)
15                                    Prefixes: 1
16       Root: P3, Root Metric: 600, Metric: 650, Root Preference: 0x0
17         Not eligible, IPV4, Reason: Primary next-hop node fate sharing
18         Not eligible, LSP, Reason: Interface is already covered
19       Root: P5, Root Metric: 500, Metric: 750, Root Preference: 0x0
20         Not eligible, IPV4, Reason: Primary next-hop node fate sharing
21       Root: PE4, Root Metric: 400, Metric: 850, Root Preference: 0x0
22         Not eligible, IPV4, Reason: Primary next-hop node fate sharing
23       Root: P6, Root Metric: 600, Metric: 1000, Root Preference: 0x0
24         Not eligible, IPV4, Reason: Missing primary next-hop
25         Not eligible, LSP, Reason: Interface is already covered
26
27    juniper@PE3> show route table inet.3 172.16.0.2/32 detail | match ...
28    172.16.0.2/32 (1 entry, 1 announced)
29             Next hop: 10.0.0.34 via ge-2/0/6.0 weight 0x1, selected
30             Label operation: Push 301168
31             Next hop: 10.0.0.24 via ge-2/0/2.0 weight 0xf100
32             Label operation: Push 24003, Push 300800(top)

Example 18-38 illustrates that the shortest path from PE3 to P2 is via P1 (lines 4 and
29). Currently the (remote) backup next hop, selected using the default LFA backup
next hop selection process, is P4 (line 14). In most of the other evaluated backup next
hops, their reason for noneligibility is Primary next-hop node fate sharing. That
basically means that the end-to-end backup path through these next hops crosses P1,
which is the primary node. Because node-link-protection is used in this example,
these backup paths do not provide the required node diversity.

The only exception is P6. It says Missing primary next-hop (line 24) for IPv4,
which means that P6 cannot be used as a direct backup next hop, because it is not
directly connected to PE3. It also says Interface is already covered (line 25) for
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LSP, which means that P6 is not used as remote (PQ-node) backup next-hop, because
a better backup next hop has been already selected.

But why exactly has P4 been selected as the best LFA backup next hop? Why not P6?
Let’s try to evaluate the default LFA backup next-hop selection criteria specified ear‐
lier.

1. Prefer direct (another primary) ECMP next hop.
P2 is reachable via single (no ECMP) primary next-hop, so this verification crite‐
rion is invalid for all feasible next hops.

2. For multihomed prefixes, if PLR is the penultimate router, prefer direct backup
next hop to another (non-best) originator.
Loopback of P2 is single-homed, so this verification criterion is invalid for all fea‐
sible next hops.

3. Prefer backup next hop (direct or PQ-node), which provides node protection if
node-link-protection is configured.
In this example, node-link-protection has been configured. It means that at
this step only backup next hops that offer node protection are selected. Let’s eval‐
uate all feasible next hops:
P1 P1 is the primary next hop, so it cannot be used as backup next hop
P2 The shortest path to reach P2 from PE3 is via PE3→P1→PE1→PE2→P2. So,
P2 does not belong to PE3 P-space, because the path crosses a primary link
(PE3→P1). On the other hand, P2 belongs to extended P-space, because the
shortest path from PE3’s neighbors (P5→P3→P1→PE1→PE2→P2 and
PE4→P5→P3→P1→PE1→PE2→P2) does not use the PE3→P1 link. However, in
both cases the path traverses a primary next hop (P1), thus P2 as a backup next
hop does not provide node protection, just link protection, and is therefore dis‐
qualified as potential backup next hop.
PE1, PE2 The situation is similar to P2. PE1 or PE2 do not belong to P-space;
rather, they belong to extended P-space. And again, the path from PE3’s neigh‐
bors to PE1 or PE2 traverses P1, so they provide only link protection, but not
node protection; therefore they are disqualified as potential backup next hops.
P4 The shortest path to reach P4 from PE3 is via PE3→PE4→P5→P3→P4. And
further, the shortest path from P4 to P2 is via direct link. Thus, you can conclude
that P4 belongs to P-space, and neither path from PE3 to P4, nor from P4 to P2,
crosses P1. As a result, P4 provides both node and link protection.
P6 The shortest path to reach P6 from PE3 is via PE3→PE4→P6. And further,
the shortest path from P6 to P2 is via P6→P4→P2. Thus, P6 provides both node
and link protection.
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P3 The shortest path to reach P3 from PE3 is via PE3→PE4→P5→P3, so it does
not cross P1. However, the shortest path from P3 to P2 is
P3→P1→PE1→PE2→P2. Thus, P3 provides only link protection and therefore is
not used as potential backup next-hop.
P5, PE4 Both nodes are direct neighbors of PE3 and feasible backup next hops.
The shortest path ([PE4→]P5→P3→P1→PE1→PE2→P2) from either node to P2
crosses P1. Thus, these next hops provide only link protection, so again they are
disqualified.
Consequently, you can conclude that the only possible backup next hops in this
step of the selection process are P4 and P6.

4. Prefer backup next hop (direct or PQ-node), which provides link protection if
link-protection or node-link-degradation is configured.
Both previously selected backup next-hops (P4 and P6) provide link protection
(in addition to node protection) so this criterion is equal for all selected backup
next-hops.

5. Prefer backup next hop (direct or PQ-node) over a link with LDP synchroniza‐
tion enabled and LDP in-sync state.
Network is stable, thus all LDP adjacencies are in in-sync state.

6. Prefer backup next hop (direct or PQ-node) closest to the destination.
The path cost from P4 to P2 is 500 (P4→P2), whereas the path cost from P6 to P2
is 1000 (P6→P4→P2). Therefore, in this step, P4 is selected as preferred next hop.

7. Prefer backup next hop (direct or PQ-node) closest to PLR
Single-backup next hop is already selected.

8. Prefer backup next hop (direct or PQ-node) with lowest System ID
Single backup next hop is already selected.

So, after a detailed analysis of the default LFA backup next hop selection process, you
can conclude that the backup path is PE3→P5→P3→P4→P2. Why is PE4 skipped?
PE3 is clever enough to realize that the shortest path from PE3 to P4 goes via P5,
which is a directly connected neighbor. RLFA makes this exception to the “LDP fol‐
lows the IGP” rule.

Now, let’s make the appropriate configuration changes to influence the selection pro‐
cess.

Example 18-39. Policy LFA (tie-breakers) configuration on PE3 (Junos)

1     routing-options {
2         backup-selection {
3             destination 172.16.0.2/32 {
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4                 interface all {
5                     root-metric lowest;
6                     dest-metric lowest;
7                     metric-order [ root dest ];
8                     evaluation-order metric;
9     }}}}

In this configuration example, the LFA backup path selection process is changed only
for a single prefix (172.16.0.2/32) regardless of what the primary interface for the pre‐
fix is (lines 3 and 4). Furthermore, lower metrics are preferred from the PLR to the
backup next hop (line 5) and from the backup next hop to the destination (line 6).
Next, you specify the order in which the metrics should be evaluated (line 7).

Your choice is to first evaluate the metric from PLR to the backup next hop, and only
after that, evaluate the metric from the backup next hop to the destination. If you
recall the Junos default LFA selection process, this is just the opposite. And, finally (in
line 8), the only specified criterion in the overall LFA backup next-hop selection pro‐
cess is the metric. In this particular case, you don’t specify other selection criteria, so
the evaluation order consists of a single item. If you specified additional criteria, such
as bandwidth requirements, you could indicate if the bandwidth or the metric should
be evaluated first in the LFA backup next-hop selection process.

Okay, let’s check to see if the selection has changed.

Example 18-40. States toward P2 with modified LFA selection process—PE3 (Junos)

1     juniper@PE3> show isis backup spf results P2 | except item
2     (...)
3     P2.00
4      Primary next-hop: ge-2/0/6.0, IPV4, P1, SNPA:  0:50:56:8b:16:af
5     (...)
6        Root: P4, Root Metric: 800, Metric: 500, Root Preference: 0x0
7          Eligible, Backup next-hop: ge-2/0/2.0, LSP, LDP->P4(172.16.0.4)
8                                     Prefixes: 0
9     (...)
10       Root: P6, Root Metric: 600, Metric: 1000, Root Preference: 0x0
11          Eligible, Backup next-hop: ge-2/0/4.0, LSP, LDP->P6(172.16.0.6)
12                                     Prefixes: 1
13
14    juniper@PE3> show route table inet.3 172.16.0.2/32 detail | match ...
15    172.16.0.2/32 (1 entry, 1 announced)
16                 Next hop: 10.0.0.34 via ge-2/0/6.0 weight 0x1, selected
17                 Label operation: Push 301168
18                 Next hop: 10.0.0.33 via ge-2/0/4.0 weight 0x101
19                 Label operation: Push 24006, Push 24003(top)

Let’s compare this output to that of Example 18-38. First, backup SPF results now
include all possible backup next hops in the Eligible state. So, the RLFA tunnel to
P6 (line 10) is now explicitly mentioned. Second, the remote (PQ-node) backup next
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hop has changed to P6 as indicated by the nonzero number of protected prefixes (line
12). Why did the backup next hop change? Based on the configuration changes in
Example 18-39, the path cost from PLR to backup next hop (step 7 in the original
selection process) is now evaluated before the path cost from the backup next hop to
destination (Step 6 in original selection process). The path cost from PE3 to P6 is 600,
whereas the path cost from PE3 to P4 is 800. Thus, P6 is selected as the backup next
hop.

Because P6 is reachable via PE4, the direct backup next hop changed from P5 to PE4
(line 18). If you compare the outputs carefully, you will also realize that the weight of
the backup next hop changed (from 0xf100 to 0x101). In Junos, every type of backup
next hop uses a different weight, and now the backup next hop is delivered by the
nondefault LFA selection algorithm. Basically, the backup path changed from
PE3→P5→P3→P4→P2 to PE3→PE4→P6→P4→P2, successfully modifying the LFA
selection!

Let’s explore other verification commands related to policy-based LFA.

Example 18-41. Modified LFA selection process verification—PE3 (Junos)

juniper@PE3> show backup-selection
Prefix: 172.16.0.2/32
 Interface: all
  Protection Type: Link, Downstream Paths Only: Disabled, SRLG: Loose
  B/w >= Primary: Disabled, Root-metric: lowest, Dest-metric: lowest
  Metric Evaluation Order: Root-metric, Dest-metric
  Policy Evaluation Order: Metric

juniper@PE3> show isis route 172.16.0.2/32
(...)
Prefix         Interface  NH   Via                    Backup Score
172.16.0.2/32  ge-2/0/6.0 IPV4 P1
               ge-2/0/4.0 LSP  LDP->P6(172.16.0.6) 0000000000000010

The show backup-selection command displays the information about nondefault
LFA backup selection elements and reflects the configuration specified in
Example 18-39. The show isis route command now displays a Backup Score value.
While evaluating the LFA selection policy, each backup path is assigned a backup
score, which is a composite, 64-bit entity containing 8 blocks of 8 bits. Each of the
evaluation criteria contributes to an 8-bit block in the backup score. The
evaluation-order (see Example 18-39, line 8) determines the offset of the block. The
criterion at the beginning of the evaluation-order list is assigned the biggest offset,
such that its block becomes most significant. Because a single evaluation criterion is
listed in the example, the offset for that criterion is null, so it occupies the rightmost
block. Finally, the result with the biggest score wins.
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Modifying the default LFA selection algorithm in IOS XR
After checking the modified LFA selection process in Junos devices, let’s verify the
feature in the IOS XR plane. The topology depicted in Figure 18-11 shows three dif‐
ferent paths from the source node (PE4) to the destination node (P2). You can modify
the selection process by introducing SRLG verification, which by default, is not evalu‐
ated in the standard LFA selection process. First, let’s examine the results of the
default selection process.

Example 18-42. States toward P2 with default LFA selection process—PE4 (IOS XR)

1     RP/0/0/CPU0:PE4#show isis fast-reroute 172.16.0.2/32 detail
2     L2 172.16.0.2/32 [850/115] medium priority
3       via 10.0.0.28, Gi0/0/0/3, P5, SRGB Base: 0, Weight: 0
4         FRR backup via 10.0.0.26, Gi0/0/0/2, P6, SRGB Base: 0, Weight: 0
5         P: No, TM: 1200, LC: No, NP:Yes, D: No, SRLG: No
6       src P2.00-00, 172.16.0.2
7
8     RP/0/0/CPU0:PE4#show cef 172.16.0.2/32 | include "via|label"
9        via 10.0.0.26, Gi0/0/0/2, 7 dependencies, weight 0, backup
10         local label 24007      labels imposed {24006}
11       via 10.0.0.28, Gi0/0/0/3, 7 dependencies, weight 0, protected
12         local label 24007      labels imposed {300864}

Figure 18-11. Modified LFA next-hop selection process—IOS XR
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As you can see in Example 18-42, there is no label stacking. Con‐
versely, if PE4 ran Junos, there would be label stacking by default,
because PE4 would select the backup neighbor closest to the desti‐
nation. In this case, it is PQ-node P4 (instead of the direct neighbor
P6) reachable via an LDP tunnel..

Example 18-42 shows that the shortest path from PE4 to P2 is via P5 (lines 3 and 11).
Currently the backup next hop (selected using the default LFA backup next hop selec‐
tion process) is P6 (lines 4 and 9). The end-to-end backup path is PE4→P6→P4→P2
with a cost of 1200 (TM: 1200 statement in line 5). Additionally, the current backup
path not only provides link protection, but also node protection (see NP: Yes in line
5), which means the backup path does not cross P5.

Furthermore, for this example, the same SRLG value is assigned to PE4-P5 and PE4-
P6 links, by using the configuration discussed in Chapter 13. Therefore, the current
backup path via P6 shares the same SRLG value with the primary path via P5. In
other words, the primary and backup paths are not SRLG disjoint. This is emphasized
via the SRLG: No statement (line 5), which is expected, because the default LFA
backup next-hop selection algorithm does not take SRLG into consideration.

Let’s change this. Obviously, as was discussed in Chapter 13, SRLG is used on purpose
—to signify that links with the same SRLG value share the risk. During network fail‐
ure (for example, a cut fiber) they might fail at the same time. Therefore, there is no
point in placing primary and backup paths over links that use the same SRLG value.
Let’s reflect that into the configuration.

Example 18-43. LFA tie-breakers configuration on PE4 (IOS XR)

router isis core
 address-family ipv4 unicast
  fast-reroute per-prefix tiebreaker srlg-disjoint index 1

Let’s verify and see if any of the changes can be observed.

Example 18-44. States for P2 with modified LFA selection process—PE4 (IOS XR)

1     RP/0/0/CPU0:PE4#show isis fast-reroute 172.16.0.2/32 detail
2     L2 172.16.0.2/32 [850/115] medium priority
3       via 10.0.0.28, Gi0/0/0/3, P5, SRGB Base: 0, Weight: 0
4         FRR backup via 10.0.0.32, Gi0/0/0/4, PE3, SRGB Base: 0, Weight: 0
5         P: No, TM: 1550, LC: No, NP: Yes, D: No, SRLG: Yes
6       src P2.00-00, 172.16.0.2
7
8     RP/0/0/CPU0:PE4#show cef 172.16.0.2/32 | include "via|label"
9        via 10.0.0.28, Gi0/0/0/3, 7 dependencies, weight 0, protected
10         local label 24007      labels imposed {300864}
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11       via 10.0.0.32, Gi0/0/0/4, 7 dependencies, weight 0, backup
12         local label 24007      labels imposed {300352}

Perfect! The backup next hop changed to PE3 (lines 4 and 11). The total cost of the
backup path certainly increased (TM: 1550 in line 5), and now the backup path is
completely different (PE4→PE3→P1→PE1→PE2→P2). Node protection is still
achieved (P5 is not used by the backup path), and, remarkably, the new backup path
is SRLG disjoint with the primary path (SRLG: Yes in line 5).

There are many possible ways to influence the default LFA backup next-hop selection
process. Some examples were provided in this section for you to understand the con‐
cepts. Again, you should explore more possibilities on your own; the limited space of
this book does not allow us to have all the fun we want, so we’ve only explored the
topic in scant detail.

Topology-Independent LFA
Topology-Independent LFA (TI-LFA), as the name suggests, is another approach to
provide backup coverage independent of the network topology. TI-LFA, as opposed
to TI-FRR (which uses RSVP-TE bypass tunnels), is based on the SPRING technol‐
ogy discussed in Chapter 2, and it is defined in draft-francois-rtgwg-segment-routing-
ti-lfa: Topology Independent Fast Reroute using Segment Routing.

There are two main characteristics of TI-LFA:

1. When calculating the backup path, TI-LFA temporarily removes the protected
resource (link or node) from the topology database, and runs standard SPF.
Therefore, the backup path calculated by TI-LFA has, among all the paths that
skip the protected resource, the lowest total metric to the final destination. This
is called the shortest post-convergence path.

2. TI-LFA constructs traffic engineered repair tunnel to follow this backup path
using SPRING machinery. It uses the repair label list, which is a combination of
Node and Adjacency Segment IDs, as already discussed in Chapter 2 (see for
example Figure 2-9). Depending on the backup path calculation results, one of
the following options are possible:

Option 1: The repair node is a direct neighbor
When the repair node (backup next hop) is a direct neighbor, the outgoing inter‐
face is set to that neighbor and the repair label list is empty (there is no repair
label).
This is comparable to the plain per-prefix LFA local repair discussed earlier.

Option 2: The repair node is a PQ-node
When the repair node (remote backup next hop) is a PQ-node, the repair label
list comprises a single Node Segment ID to the repair node (PQ-node).
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This is comparable to the RLFA architecture discussed previously. Of course,
now the backup tunnel to PQ-node is established via SPRING model, rather than
LDP.

Option 3: The repair is a Q-node, direct neighbor of the P-node
When the repair node (a Q-node, used as remote backup next hop) is directly
connected to the P-node, the repair label list comprises two segments: a Node
Segment ID to the P-node, and an Adjacency Segment ID from that P-node to the
repair node (Q-node).
This protection method is called Direct LFA (DLFA) and it requires the advertise‐
ment of a label (Adjacency Segment ID) for each IGP adjacency, which is the
default in both Junos and IOS XR.

Option 4: Connecting distant (nondirectly connected) P-nodes and Q-nodes
In some cases, there might not be any adjacent P-nodes and Q-nodes. However,
the PLR can perform additional computations to compute a list of segments
(combination of Node and Adjacency Segment IDs) that represent a loop-free
path from P to Q. The actual computation algorithm is not specified in the TI-
LFA draft; it is left to the actual implementation. Furthermore, the computation
in this option is CPU intensive.

For link protection, TI-LFA with Options 1 through 3 provides full coverage in any
arbitrary redundant network topology with symmetrical link metrics. TI-LFA Option
4 – computationally the most expensive – might be required for link protection only
in topologies with asymmetric link metrics. On the other hand, for node or SRLG
protection, in order to provide 100% coverage, option 4 might be required even in
topologies with symmetrical link metrics. Option 4 was not tested by the authors.

The standard label, based on Node-SID associated with the final
destination, is added below the repair label list when sending traffic
via the backup next hop (unless the repair label list already takes
the packet to the destination node).

As of this writing, TI-LFA was still in early standardization state, therefore the imple‐
mentation status for both vendors was different, as shown next. IOS XR implemented
TI-LFA for link protection only (no node protection) using a backup path computa‐
tion algorithm that calculated the optimized (lowest total cost) post-convergence path
(as specified in TI-LFA draft). After calculating this path, it encoded the repair tunnel
via SPRING repair label list according to the options listed previously. Therefore, IOS
XR’s TI-LFA provided full link-protection coverage in any arbitrary topology with
symmetrical IGP metrics, but did not provide node-protection coverage. Junos, on
the other hand, didn’t use the backup path computation method specified in TI-LFA
draft. Instead, Junos used the standard LFA or RLFA backup next-hop selection pro‐
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cedure discussed in the “Modifying the default LFA selection algorithm” section. The
resulting repair path uses a SPRING repair list from either Option 1 (direct backup
neighbor, no label) or Option 2 (PQ-node as remote backup neighbor, node-SID
label), but no Option 3 yet. Therefore, the backup tunnel was not necessarily on the
shortest post-convergence path to the destination. In conclusion, Junos SPRING
implementation provided protection for both link and node failures, but not for arbi‐
trary topologies. Therefore, to avoid any misunderstanding, we will refer in this book
to Junos implementation as simply SPRING-(R)LFA.

Junos actually implements the shortest post-convergence path logic
for a different flavor of local protection. Check the “RSVP-TE one-
to-one protection” section in Chapter 19 for more details.

So, let’s configure SPRING-(R)LFA/TI-LFA on both Junos and IOS XR planes,
exploiting the LFA topology C we already used in the previous section (see
Figure 18-9). Both planes are configured for pure SPRING operation (LDP-related
configuration parts are removed) with the addition of (TI)-LFA specific configura‐
tion. For reference, these configurations are presented in the following two examples.

Example 18-45. TI-LFA configuration on PE4 (IOS XR)

group GR-ISIS
 router isis '.*'
  interface 'GigabitEthernet.*'
   address-family ipv4 unicast
    fast-reroute per-prefix level 2
    fast-reroute per-prefix ti-lfa level 2
end-group
!
router isis core
 apply-group GR-ISIS
 address-family ipv4 unicast
  segment-routing mpls
 !
 interface Loopback0
  address-family ipv4 unicast
   prefix-sid index 44

Example 18-46. SPRING-(R)LFA configuration on PE3 (Junos)

groups {
    GR-ISIS {
        protocols {
            isis {
                interface "<*[es]*>" {
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                    node-link-protection;
}}}}}
protocols {
    isis {
        apply-groups GR-ISIS
        backup-spf-options {
            remote-backup-calculation;
            node-link-degradation;
        }
        source-packet-routing {
            use-mpls-forwarding;
            node-segment {
                ipv4-index 33;
                index-range 256;
}}}}

And again, you first check the LFA backup coverage. As Table 18-7 confirms, full
backup coverage is achieved on (almost) all routers, so it is truly topology independ‐
ent. On PE1 (Junos, no support for Option 3 or Option 4), you can extend backup
coverage by using the backup RSVP-TE tunnel method, also discussed earlier, in this
case for primary tunnels based on SPRING instead of LDP.

Table 18-7. Backup coverage with remote LFA in topology C

P1 P2 P3 P4 P5 P6 PE1 PE2 PE3 PE4

9 9 9 9 9 9 0 9 9 9

100% 100% 100% 100% 100% 100% 0% 100% 100% 100%

As of this writing, SPRING-(R)LFA on Junos platforms was not
truly topology independent, due to missing Option 3 and Option 4
in the Junos implementation. On the other hand, TI-FRR provided
topology-independent backup coverage on Junos.

TI-LFA with direct repair node
Our first scenario for the repair tunnel is the situation in which the repair node
(backup next hop) is a direct neighbor of PLR, as demonstrated next for IOS XR. In
the following example, PE2 is the source node, P6 is the destination node, and P2 is
the repair node:

Example 18-47. TI-LFA with direct repair node (IOS XR)

1     RP/0/0/CPU0:PE2# show isis fast-reroute 172.16.0.6/32 detail
2     L2 172.16.0.6/32 [1000/115] medium priority
3      via 10.0.0.0, Gi0/0/0/3, PE1, SRGB Base: 800000, Weight: 0
4       FRR backup via 10.0.0.5, Gi0/0/0/2, P2, SRGB Base: 16000, Weight: 0
5       P: No, TM: 1050, LC: No, NP: Yes, D: No, SRLG: Yes
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6      src P6.00-00, 172.16.0.6, prefix-SID index 6, R:0 N:1 P:0 E:0 V:0 L:0
7
8     RP/0/0/CPU0:PE2#show cef 172.16.0.6/32 | include "via|label"
9        via 10.0.0.5, Gi0/0/0/2, 20 dependencies, weight 0, backup
10         local label 24007      labels imposed {16006}
11       via 10.0.0.0, Gi0/0/0/3, 20 dependencies, weight 0, protected
12         local label 24007      labels imposed {800006}

Example 18-47 is not illustrated, but it is based on LFA Topology C (see Figure 18-9
or Figure 18-12). On PE2, P6 loopback is reachable via PE1 (lines 3 and 11) as the
primary next hop (via PE2→PE1→P1→P3→P5→PE4→P6, with path cost 1000), and
a standard LFA selects P2 (lines 4 and 9) as the backup next hop (via
PE2→P2→P4→P6, with path cost 1050). Because the standard LFA is able to find a
backup next-hop, no repair label list is used. Simply put, for the primary next hop
(PE1), PE2 combines P6’s Node-SID index 6 (line 6) with PE1’s node SRGB 800000
(line 3) to calculate label 800006 (line 12). If the PE2→PE1 link (or the PE1 node)
fails, PE2 redirects traffic destined for P6 over the backup next hop (P2), by combin‐
ing P6’s Node-SID index 6 (line 6) with P2’s SRGB 16000 (line 4) to calculate label
16006 (line 10).

Now, let’s see the feature in Junos. In the following example, PE3 is the source node,
P3 is the destination node, and P5 is the repair node:

Example 18-48. SPRING-(R)LFA with direct repair node (Junos)

juniper@PE3> show isis backup spf results P3
(...)
P3.00
  Primary next-hop: ge-2/0/4.0, IPV4, PE4, SNPA:  0:50:56:8b:0:43
    Root: P5, Root Metric: 500, Metric: 100, Root Preference: 0x0
      Eligible, Backup next-hop: ge-2/0/2.0, IPV4, P5
(...)
juniper@PE3> show route table inet.3 172.16.0.3/32 detail |
             match "entry|via|oper"
172.16.0.3/32 (1 entry, 1 announced)
            Next hop: 10.0.0.33 via ge-2/0/4.0 weight 0x1, selected
            Label operation: Push 16003
            Next hop: 10.0.0.24 via ge-2/0/2.0 weight 0xf000
            Label operation: Push 800003

Similarly, in the Junos plane, the Node-SID index of final destination (P3), coupled
with the SRGB of the primary next-hop (PE4: 16000), or the backup next-hop (P5:
800000), is used to determine the outgoing label.
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TI-LFA with PQ repair node
The second scenario mentioned in the TI-LFA draft deals with the PQ-node and is
similar to the RLFA case discussed previously. This scenario is illustrated in
Figure 18-12.

Figure 18-12. TI-LFA with RLFA (PQ-node) Style Repair

Let’s see this TI-LFA flavor in IOS XR. In the following example (illustrated in
Figure 18-12), P2 is the source node, P4 is the destination node, and P3 is the repair
node:

Example 18-49. TI-LFA with PQ-node (IOS XR)

1     RP/0/0/CPU0:P2#show isis fast-reroute 172.16.0.4/32 detail
2     L2 172.16.0.4/32 [500/115] medium priority
3       via 10.0.0.11, Gi0/0/0/3, P4, SRGB Base: 16000, Weight: 0
4         TI-LFA backup via P3 (PQ) [172.16.0.3]
5         via 10.0.0.4, Gi0/0/0/2 PE2, SRGB Base: 16000
6         Label stack [16003, 800004]
7         P: No, TM: 850, LC: No, NP: No, D: No, SRLG: Yes
8       src P4.00-00, 172.16.0.4, prefix-SID index 4, R:0 N:1 P:0 E:0 V:0 L:0
9
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10    RP/0/0/CPU0:P2#show cef 172.16.0.4/32 | include "via|label"
11       via 10.0.0.4, Gi0/0/0/2, 10 dependencies, weight 0, backup
12         local label 24006      labels imposed {16003 800004}
13       via 10.0.0.11, Gi0/0/0/3, 10 dependencies, weight 0, protected
14         local label 24006      labels imposed {ImplNull}

As with the RLFA case, the label stack associated with the backup next hop ensures
delivery to the PQ-node first, and then delivery from the PQ-node to the final desti‐
nation. The PQ-node is P3 (line 4); thus, the top label is derived from P3’s Node-SID:
P3’s Node-SID index 3 + PE2’s (backup next hop) SRGB 16000 (line 5) = 16003 (lines
6 and 12). The second label is derived from P4’s (final destination) Node-SID index 4
(line 8) + P3’s (PQ-Node) SRGB (800000) = 800004 (lines 6 and 12). When the packet
is forwarded on the backup path (P2→PE2→PE1→P1→P3→P4) the first label is
swapped to the label derived from P3’s Node-SID. The penultimate hop for P3 (P1)
removes the first label; consequently, the packet arrives at P3 with a single label only
(based on P4’s Node-SID). And again, the penultimate hop for P4 (P3) removes that
single label, so the packet arrives to P4 without any label.

For the primary next hop, there are no labels (line 14) due to Penultimate Hop Pop‐
ping (PHP). P4 is directly connected to P2; thus, P2 is the penultimate hop for P4.

In the Junos plane the situation is similar. Let’s verify it. In the following example, P5
is the source node, P4 is the destination node, and P2 is the repair node:

Example 18-50. SPRING-(R)LFA with PQ-node (Junos)

1     juniper@P5> show isis backup spf results P4
2     (...)
3     P4.00
4      Primary next-hop: ge-2/0/4.0, IPV4, P3, SNPA:  0:50:56:8b:e6:da
5       Root: P2, Root Metric: 750, Metric: 500, Root Preference: 0x0
6        Eligible, Backup next-hop: ge-2/0/2.0, LSP, SPRING->P2(172.16.0.2)
7     (...)
8     juniper@P5> show route table inet.3 172.16.0.4/32 detail | match ...
9     172.16.0.4/32 (1 entry, 1 announced)
10              Next hop: 10.0.0.14 via ge-2/0/4.0 weight 0x1, selected
11              Label operation: Push 800004
12              Next hop: 10.0.0.25 via ge-2/0/2.0 weight 0xf000
13              Label operation: Push 16004, Push 800002(top)

For example, to reach P4 from P5, the PQ-node is P2 (line 6). Thus, the top label is
derived from P2’s Node-SID: P2’s Node-SID index 2 + PE3’s (backup next hop) SRGB
800000 = 800002 (line 13). The second label is derived from P4’s (final destination)
Node-SID index 4 + P2’s (PQ-Node) SRGB (16000) = 16004 (line 13). For the pri‐
mary next hop, there is a single label derived from P4’s Node-SID coupled with P3’s
SRGB: 4 + 800000 = 800004 (line 11).
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TI-LFA with direct LFA (DLFA) repair
The third scenario describes the situation in which P-node and Q-node are disjointed
but directly connected. In this situation, using the Direct LFA model, traffic can be
forced to flow from the P-node toward the Q-node, despite the fact the IGP shortest
path from P-node to Q-node does not necessarily go over the direct link. Let’s investi‐
gate PE2→PE1 traffic, as illustrated in Figure 18-13.

Figure 18-13. TI-LFA with DLFA (adjacent P- and Q-node)–style repair

For the PE2→PE1 link, the P-space (nodes that PE2 can reach over shortest path
without going via the PE2→PE1 link) and the Q-space (nodes that can reach PE1
over shortest path without going via the PE2→PE1 link) do not overlap, and therefore
there is no PQ-node. RLFA-style protection is consequently not possible.

The good news is that by using Adj-SID, you can force the traffic to go from the P-
node via a direct link to the Q-node. And fortunately, there are a couple of adjacent
P- and Q-nodes, for example, P1 and P2.

So, let’s see how it looks in the network.
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Example 18-51. TI-LFA with disjoint but adjacent P-node and Q-node (IOS XR)

1     RP/0/0/CPU0:PE2#show isis fast-reroute 172.16.0.11/32 detail
2     L2 172.16.0.11/32 [50/115] medium priority
3          via 10.0.0.0, Gi0/0/0/3, PE1, SRGB Base: 800000, Weight: 0
4            TI-LFA backup via P2 (P) [172.16.0.2], P1 (Q) [172.16.0.1]
5            via 10.0.0.5, GigabitEthernet0/0/0/2 P2, SRGB Base: 16000
6            Label stack [ImpNull, 24023, 800011]
7            P: No, TM: 1100, LC: No, NP: No, D: No, SRLG: Yes
8          src PE1.00-00, 172.16.0.11, prefix-SID index 11, R:0 N:1 ...
9
10    RP/0/0/CPU0:PE2#show cef 172.16.0.11/32 | include "via|label"
11       via 10.0.0.5, Gi0/0/0/2, 18 dependencies, weight 0, backup
12         local label 24003    labels imposed {ImplNull 24023 800011}
13       via 10.0.0.0, Gi0/0/0/3, 18 dependencies, weight 0, protected
14         local label 24003    labels imposed {ImplNull}
15
16    RP/0/0/CPU0:PE2#show isis database P2 verbose | include "IS|SRGB|SID"
17    IS-IS core (Level-2) Link State Database
18        Segment Routing: I:1 V:0, SRGB Base: 16000 Range: 8000
19      Metric: 50         IS-Extended PE2.00
20        ADJ-SID: F:0 B:0 V:1 L:1 S:0 weight:0 Adjacency-sid:24025
21      Metric: 500        IS-Extended P4.00
22        ADJ-SID: F:0 B:0 V:1 L:1 S:0 weight:0 Adjacency-sid:24024
23      Metric: 1000       IS-Extended P1.00
24        ADJ-SID: F:0 B:0 V:1 L:1 S:0 weight:0 Adjacency-sid:24023
25        Prefix-SID Index: 2, R:0 N:1 P:0 E:0 V:0 L:0

The primary next hop for PE2→PE1 traffic is PE1 itself, with no label (PHP) associ‐
ated (line 14). The label stack associated with the backup next hop must ensure three
actions:

1. PE2 must send the traffic to P-node (P2).
This is similar to reaching the PQ-node discussed in the previous case. The label
is derived from the Node-SID of the P-node. In the particular case of
Figure 18-13, however, the P-node (P2) is directly connected to PE2, thus there is
no label associated with this step due to penultimate hop popping (see ImpNull in
lines 6 and 12).

2. P-node (P2) must send the traffic to Q-node (P1) over direct link.
This is a new action, not discussed previously. If the label derived from P1 Node-
SID was used for this purpose, traffic would be forwarded from P2 to P1 over the
shortest path: P2→PE2→PE1→P1, which isn’t good, because the backup path
must avoid the PE2→PE1 link. Therefore, instead of Node-SID used in all previ‐
ous cases, Adj-SID is used. P2 advertises Adj-SID labels for each IGP adjacency:
PE2, P1, or P4. The label associated with neighbor P1 is 24023 (line 24). Any
packet arriving to P2 with this label will be sent to P1 not using the shortest path,
but over a direct link. This is good for the TI-LFA scenario because it allows forc‐
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ing the traffic to the directly-connected Q-node. Therefore, this label is used as a
second label in the label stack (lines 6 and 12). This behavior is called Direct LFA.

3. Q-node (P1) must send the traffic to the final destination (PE1).
There’s nothing new here compared to the previous case. PE1’s Node-SID index
11 (line 8) is used in combination with SRGB of the Q-node to reach PE1
through the Q-node (P1). P1’s SRGB (800000) is used, therefore the resulting
label is 800011 (line 6 and line 12).

In LDP-based RLFA, the TM field in show isis fast-reroute out‐
put encodes the path cost to the PQ-node (Example 18-29, line 5).
In TI-LFA, however, the TM field retains its original meaning: total
cost of the backup path (Example 18-49, line 7; Example 18-51, line
7).

Another example of TI-LFA protection with disjoint but adjacent P-nodes and Q-
nodes, is the protection for PE2→PE4 traffic, which uses
PE2→PE1→P1→P3→P5→PE4 as a primary path. P4 is P-node and P3 the Q-node, as
is shown in the following capture:

Example 18-52. TI-LFA with disjoint but adjacent P-node and Q-node (IOS XR)

RP/0/0/CPU0:PE2#show isis fast-reroute 172.16.0.44/32
L2 172.16.0.44/32 [800/115]
     via 10.0.0.0, Gi0/0/0/3, PE1, SRGB Base: 800000, Weight: 0
       TI-LFA backup via P4 (P) [172.16.0.4], P3 (Q) [172.16.0.3]
       via 10.0.0.5, Gi0/0/0/2 P2, SRGB Base: 16000
       Label stack [16004, 24011, 800044]

In this example, the following labels are used:

• 16004: Node-SID to reach P4 (P-node) from PE2 via P2
• 24001: Adj-SID to reach P3 (Q-node) via direct link from P4 (P-node)
• 800044: Node-SID to reach PE4 from P3

Theoretically P3 Node-SID could be used to forward traffic between P4 (P-node) and
P3 (Q-node), because the shortest path between P4 and P3 is via a direct link. More‐
over, the label stack with two labels only—skipping Adj-SID between P4 and P3—
would be enough, too, because the shortest path from P4 (P-node) to PE4 (final desti‐
nation) does not cross the PE2→PE1 link. However, such additional verification of
the shortest path between the P-node and the Q-node or final destination node
requires additional SPF calculation, where the P-node is placed as the SPF root. In
large networks (hundreds of nodes with potentially hundreds or thousands of
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P-nodes), that would eventually mean the PLR needs to perform hundreds (if not
thousands) of SPF calculations on each IGP topology change. This is very challenging
from a performance perspective, and as a result, such additional optimization is typi‐
cally not implemented in the TI-LFA process.

The last case mentioned in the TI-LFA draft differs from previous cases in that the P-
node and the Q-node are not directly connected. Thus, simple Adj-SID to force the
traffic from the P-node to the Q-node cannot be used. However, the PLR can perform
additional computations to compute a list of segments (combination of Node and
Adjacency Segment IDs) from these particular P-nodes. Depending on the network
size and the topology, this computation might cause performance challenges.

The resulting list of segments is explicitly path-encoded in the label stack to forward
traffic from the P-node to the nonadjacent Q-node. Again, depending on the network
topology the list of segments (and corresponding label stack size) might be long. This
puts additional requirements on routers to support larger label stacks, which might
not be available on all router hardware platforms.

Maximally Redundant Trees
Maximally Redundant Trees (MRT) is another approach that provides local-repair-
based protection capabilities in LDP-signaled networks. All previously discussed
techniques were based on SPF calculations (performed from the perspective of the
node in question as well as the node’s neighbors, and eventually the node’s neighbors’
neighbors) to find a loop-free backup next hop. Then, various techniques were dis‐
cussed to patch the network with some backup tunnels (LDP, RSVP-TE, or SPRING–
based) to eventually extend backup coverage.

As of this writing, MRT was still in draft state and defined in several drafts.

MRT provides answers to all of the issues learned during our LFA deployments:

• It provides protection in any arbitrary topology. In other words, MRT is topology
independent.

• It provides protection for both unicast and multicast traffic flows from day one
(LFA focuses primarily on unicast traffic).

• MRT computation efforts are low (comparable to three SPF computations) in any
arbitrary topology (RLFA computation efforts depend on the number of neigh‐
bors and neighbors’ neighbors).

So, what is MRT? In MRT, three forwarding paths (essentially next hops) are always
computed to reach the final destination. One forwarding path (next hop) is computed
by using an ordinary SPF algorithm. The other two forwarding paths (next hops) are

Maximally Redundant Trees | 731



computed using a newly defined (draft-ietf-rtgwg-mrt-frr-algorithm) computation
algorithm. This, rather complex to understand, algorithm does not try to optimize
the forwarding paths based on metrics, distance, or hop count. Such optimization is
the responsibility of standard SPF algorithm. On the other hand, MRT ensures that
both MRT forwarding paths (called MRT-red and MRT-blue) are disjointed (do not
share common links or nodes) to the maximum possible degree; hence, the name:
Maximally Redundant Trees. As a result of such computation, during protection
events (lasting few 100 ms up to few seconds) MRT might redirect the traffic over a
suboptimal path.

The details of MRT (or ordinary SPF) computation algorithm are
not covered in this book. You are encouraged to study the appro‐
priate drafts for further information on the MRT computation
algorithm itself.

Different MPLS labels distinguish all three forwarding paths. Therefore, MRT exten‐
sions to the LDP protocol allow allocation of three labels for each IPv4 prefix adver‐
tised by LDP.

As of this writing, MRT was not supported in production routing
software, but you can try it in Junosphere. Unlike xLFA solution,
MRT is a global solution requiring other IGP nodes to contribute
to the protection. Hence it requires global deployment in the IGP,
or at least in the context of routing islands.

Now, after this very short overview and introduction, let’s verify MRT operation in
practice. In addition to standard (node-link protection) LFA (not shown for brevity)
you need to enable MRT operation.

Example 18-53. MRT backup configuration (Junos)

routing-options mrt;

After enabling MRT on all routers in the topology, let’s check different LDP tracer‐
outes to the same destination using standard SPF, as well as MRT-red and MRT-blue
forwarding paths.

Example 18-54. LDP traceroute to PE1 using SPF, MRT-red, and MRT-blue forwarding
—P3 (Junos)

juniper@P3> show route table inet.3 172.16.0.11/32 detail | match ...
*LDP  Preference: 9
      Next hop: 10.0.0.8 via ge-0/0/3.0 weight 0x1        ## Primary
      Next hop: 10.0.0.13 via ge-0/0/2.0 weight 0xf000    ## Backup

732 | Chapter 18: Transit Fast Restoration Based on the IGP



juniper@P3> traceroute mpls ldp 172.16.0.11/32
  ttl    Label  Protocol    Address     Previous Hop     Probe Status
    1   300608  LDP         10.0.0.8    (null)           Success
    2        3  LDP         10.0.0.2    10.0.0.8         Egress
(...)
juniper@P3> traceroute mpls ldp 172.16.0.11/32 mrt-red
  ttl    Label  Protocol    Address     Previous Hop     Probe Status
    1   300576  LDP         10.0.0.13   (null)           Success
    2   300144  LDP         10.0.0.10   10.0.0.13        Success
    3   300704  LDP         10.0.0.4    10.0.0.10        Success
    4        3  LDP         10.0.0.0    10.0.0.4         Egress
juniper@P3> traceroute mpls ldp 172.16.0.11/32 mrt-blue
  ttl    Label  Protocol    Address     Previous Hop     Probe Status
    1   300368  LDP         10.0.0.15   (null)           Success
    2   300400  LDP         10.0.0.29   10.0.0.15        Success
    3   300528  LDP         10.0.0.32   10.0.0.29        Success
    4   300688  LDP         10.0.0.34   10.0.0.32        Success
    5        3  LDP         10.0.0.2    10.0.0.34        Egress
(...)

Figure 18-14. Forwarding paths from P3 to PE1 Using SPF, MRT-red, and MRT-blue
forwarding topologies

As you can see, MPLS-red and MPLS-blue use disjointed paths to reach PE1 from P3.
In this particular case, neither MRT-red nor MRT-blue uses the same path as the SPF
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path. Depending on the actual topology, though, it may happen that one of the MRT
paths equals the SPF path.

But why does forwarding over (nonshortest) MRT paths not cause loops? For example,
the shortest paths from P5 to PE1 is via P3; thus, theoretically, the packet destined to
PE1 arriving from P3 at P5 should be sent back to P3 causing a loop. The trick that
MRT uses, as we’ve briefly mentioned, is the allocation of three MPLS labels for each
loopback. And, of course, implementation of appropriate extensions to LDP to ensure
that the three labels for each prefix can be advertised.

Example 18-55. LDP SPF and MRT FECs on P3 (Junos)

juniper@P3> show ldp database | match "Input|Output|172.16.0.11/32"
Input label database, 172.16.0.3:0--172.16.0.1:0
 300608      172.16.0.11/32
 300752      172.16.0.11/32, MRT Red
 300688      172.16.0.11/32, MRT Blue
Output label database, 172.16.0.3:0--172.16.0.1:0
 299872      172.16.0.11/32
 300064      172.16.0.11/32, MRT Red
 299968      172.16.0.11/32, MRT Blue
Input label database, 172.16.0.3:0--172.16.0.4:0
 300336      172.16.0.11/32
 300576      172.16.0.11/32, MRT Red
 300848      172.16.0.11/32, MRT Blue
Output label database, 172.16.0.3:0--172.16.0.4:0
 299872      172.16.0.11/32
 300064      172.16.0.11/32, MRT Red
 299968      172.16.0.11/32, MRT Blue
Input label database, 172.16.0.3:0--172.16.0.5:0
 300320      172.16.0.11/32
 300512      172.16.0.11/32, MRT Red
 300368      172.16.0.11/32, MRT Blue
Output label database, 172.16.0.3:0--172.16.0.5:0
 299872      172.16.0.11/32
 300064      172.16.0.11/32, MRT Red
 299968      172.16.0.11/32, MRT Blue

The computation algorithms to calculate SPF, MRT-red, and MRT-blue forwarding
trees are consistent on all routers. It means that each forwarding topology (SPF,
MRT-red, and MRT-blue) is loop-free. Based on the forwarding topology calculation,
appropriate forwarding states are configured in the forwarding plane. The forward‐
ing states for SPF topology uses SPF labels, whereas the forwarding states for the
MRT-red or MRT-blue topologies use labels allocated for MRT-red or MRT-blue,
respectively. As soon as the packet is sent with, for example, an MRT-blue label, it is
switched (loop-free) through the network using MRT-blue labels only.
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Now, when the standard LFA backup next hop cannot be found, the MRT next hop
(either from MRT-red or MRT-blue—whichever is different from SPF next hop) will
be used as the backup LFA next hop. Let’s have a look for example at PE3.

Example 18-56. MRT—LDP routes on PE3 (Junos)

juniper@PE3> show ldp route | find 172.16.0.1/32
 172.16.0.1/32  ge-0/0/6.0                  10.0.0.34 IP
                ge-0/0/2.0                  10.0.0.24 IP
                ge-0/0/4.0                  10.0.0.33 MRT Red
                ge-0/0/6.0                  10.0.0.34 MRT Blue
 172.16.0.2/32  ge-0/0/6.0                  10.0.0.34 IP
                MRT Backup->10.0.0.33(no LDP tunneling)MRT Backup LSP
                ge-0/0/4.0                  10.0.0.33 MRT Red
                ge-0/0/6.0                  10.0.0.34 MRT Blue
 172.16.0.3/32  ge-0/0/4.0                  10.0.0.33 IP
                ge-0/0/2.0                  10.0.0.24 IP
                ge-0/0/4.0                  10.0.0.33 MRT Red
                ge-0/0/6.0                  10.0.0.34 MRT Blue
 172.16.0.4/32  ge-0/0/4.0                  10.0.0.33 IP
                ge-0/0/2.0                  10.0.0.24 IP
                ge-0/0/4.0                  10.0.0.33 MRT Red
                ge-0/0/6.0                  10.0.0.34 MRT Blue
 172.16.0.5/32  ge-0/0/4.0                  10.0.0.33 IP
                ge-0/0/2.0                  10.0.0.24 IP
                ge-0/0/4.0                  10.0.0.33 MRT Red
                ge-0/0/6.0                  10.0.0.34 MRT Blue
 172.16.0.6/32  ge-0/0/4.0                  10.0.0.33 IP
                MRT Backup->10.0.0.34(no LDP tunneling)MRT Backup LSP
                ge-0/0/4.0                  10.0.0.33 MRT Red
                ge-0/0/6.0                  10.0.0.34 MRT Blue
 172.16.0.11/32 ge-0/0/6.0                  10.0.0.34 IP
                MRT Backup->10.0.0.33(no LDP tunneling)MRT Backup LSP
                ge-0/0/4.0                  10.0.0.33 MRT Red
                ge-0/0/6.0                  10.0.0.34 MRT Blue
 172.16.0.22/32 ge-0/0/6.0                  10.0.0.34 IP
                MRT Backup->10.0.0.33(no LDP tunneling)MRT Backup LSP
                ge-0/0/4.0                  10.0.0.33 MRT Red
                ge-0/0/6.0                  10.0.0.34 MRT Blue
 172.16.0.33/32 lo0.0                       IP
 172.16.0.44/32 ge-0/0/4.0                  10.0.0.33 IP
                ge-0/0/2.0                  10.0.0.24 IP
                ge-0/0/4.0                  10.0.0.33 MRT Red
                ge-0/0/6.0                  10.0.0.34 MRT Blue

As you can see, for the five loopbacks (P1, P3, P4, P5, and PE4) the basic LFA pro‐
vides backup next hops (you see two IP next hops for each of these loopbacks). For
the other four loopbacks (P2, P6, PE1, and PE2), the backup next hop is provided by
MRT. The backup next hop for P2, PE1, and PE2 is inherited from MRT-red. MRT-
blue cannot be used as a backup next hop, because the MRT-blue next-hop matches
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the SPF next hop for these loopbacks in this particular topology. For the P6 loopback,
it is just the opposite. The SPF next hop matches the MRT-red next hop; thus, the
MRT-blue is used as the backup next hop. This is confirmed with the following
detailed backup SPF output:

Example 18-57. LFA states for P6 loopback on PE3 (Junos)

juniper@PE3> show ospf backup spf 172.16.0.6
(...)
172.16.0.6
  Self to Destination Metric: 600
  Parent Node: 172.16.0.44
  Primary next-hop: ge-0/0/4.0 via 10.0.0.33
  Backup next-hop: Push 300336
  Backup Neighbor: 172.16.0.1
  Alternate Source: MRT Blue
   Neighbor to Destination Metric: 0, Neighbor to Self Metric: 1000
   Self to Neighbor Metric: 1000, Backup preference: 0x0
   Eligible, Reason: Contributes backup next-hop
  Backup Neighbor: 172.16.0.44
  Alternate Source: LFA
   Neighbor to Destination Metric: 200, Neighbor to Self Metric: 400
   Self to Neighbor Metric: 400, Backup preference: 0x0
   Not eligible, Reason: Primary next-hop node fate sharing
  Backup Neighbor: 172.16.0.5
  Alternate Source: LFA
   Neighbor to Destination Metric: 300, Neighbor to Self Metric: 500
   Self to Neighbor Metric: 500, Backup preference: 0x0
   Not eligible, Reason: Primary next-hop node fate sharing
  Backup Neighbor: 172.16.0.1
  Alternate Source: LFA
   Neighbor to Destination Metric: 900, Neighbor to Self Metric: 1000
   Self to Neighbor Metric: 1000, Backup preference: 0x0
   Not eligible, Reason: Primary next-hop node fate sharing

juniper@PE3> show ldp database session 172.16.0.1 | match ...
Input label database, 172.16.0.33:0--172.16.0.1:0
 300384      172.16.0.6/32, MRT Red
 300336      172.16.0.6/32, MRT Blue
Output label database, 172.16.0.33:0--172.16.0.1:0
 300960      172.16.0.6/32, MRT Red
 300752      172.16.0.6/32, MRT Blue

In case of the primary link or primary node (PE4) failure, traffic destined for P6 will
be switched to the MRT-blue forwarding topology and forwarded with the MRT-blue
label over interfaces towards P1. P1, again using the MRT-blue forwarding topology,
not SPF forwarding topology, forwards the traffic further over the appropriate inter‐
face.
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And, what is a very important aspect of MRT, Table 18-8 shows that full backup cov‐
erage is always achieved, regardless of the network topology.

Example 18-58. LFA backup coverage with MRT extensions on PE3 (Junos)

juniper@PE3> show ospf backup coverage
(...)
Area             Covered  Total  Percent
                   Nodes  Nodes  Covered
0.0.0.0                9      9  100.00%

Route Coverage:

Path Type  Covered   Total  Percent
            Routes  Routes  Covered
Intra           20      24   83.33%
Inter            0       0  100.00%
Ext1             0       0  100.00%
Ext2             0       0  100.00%
All             20      24   83.33%

The coverage output for routes does not reach 100 percent, because
local prefixes (in the case of the three PE3 link prefixes and one
loopback prefix) are always counted as noncovered.

Table 18-8. Backup coverage for LFA with MRT extensions

P1 P2 P3 P4 P5 P6 PE1 PE2 PE3 PE4

9 9 9 9 9 9 9 9 9 9

100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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CHAPTER 19

Transit Fast Restoration Based on RSVP-TE

Until now, the discussion has been about various IP Fast ReRoute (FRR) protection
techniques. Let’s focus now on protection in RSVP-TE. As in the previous cases, there
are a variety of options to provide protection with RSVP transport, just not as many:

• Path protection
• Facility protection (RFC 4090, Section 3.2)
• One-to-one protection (RFC 4090, Section 3.1)

These options are discussed in the three sections of this chapter.

RSVP-TE Path Protection
The concept of path protection is very simple: for each RSVP LSP that requires path
protection, an operator defines two (or more) paths. During normal conditions, the
primary path is used to forward the traffic for any given LSP. If some failure on the
primary path happens, the head-end router can switch the traffic to the secondary
path, as illustrated in Figure 19-1.

You can see that the LSP from PE3 to PE1 is configured with two path options. The
primary path uses the PE3→P1→PE1 route, whereas the secondary path uses the
PE3→PE4→P5→P3→P1→PE1 route. A simple configuration to achieve these desired
results is presented Example 19-1.

739



Figure 19-1. RSVP path protection concepts

Example 19-1. RSVP multiple path configuration on PE3 (Junos)

protocols {
    mpls {
        label-switched-path PE3--->PE1 {
            to 172.16.0.11;
            primary PE3-P1-PE1;
            secondary PE3-PE4-P5-P3-P1-PE1;
        }
        path PE3-P1-PE1 {
            10.0.0.34 strict;
            10.0.0.2 strict;
        }
        path PE3-PE4-P5-P3-P1-PE1 {
            10.0.0.33 strict;
            10.0.0.28 strict;
            10.0.0.14 strict;
            10.0.0.8 strict;
            10.0.0.2 strict;
}}}

The appropriate RIB entries are installed and traffic uses the primary path.
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Example 19-2. Primary path forwarding verification on PE3 (Junos)

juniper@PE3> show mpls lsp name PE3--->PE1 detail | match <pattern>
  From: 172.16.0.33, State: Up, ActiveRoute: 0, LSPname: PE3--->PE1
  ActivePath: PE3-P1-PE1 (primary)
 *Primary   PE3-P1-PE1       State: Up
  Secondary PE3-PE4-P5-P3-P1-PE1 State: Dn

juniper@PE3> show route table inet.3 172.16.0.11/32
(...)
172.16.0.11/32     *[RSVP/7/1] 00:07:24, metric 1050
                    > to 10.0.0.34 via ge-2/0/6.0,
                                   label-switched-path PE3--->PE1

juniper@PE3> traceroute mpls rsvp PE3--->PE1 | match RSVP-TE
  ttl    Label  Protocol   Address     Previous Hop   Probe Status
    1   303440  RSVP-TE    10.0.0.34   (null)         Success
    2        3  RSVP-TE    10.0.0.2    10.0.0.34      Egress

Now, as Example 19-3 shows, when a failure occurs (e.g., the link between P1 and
PE3 fails), the secondary path is signaled by RSVP, and the new next hop is subse‐
quently used.

Example 19-3. Secondary path forwarding verification on PE3 (Junos)

juniper@PE3> show mpls lsp name PE3--->PE1 detail | match <pattern>
  From: 172.16.0.33, State: Up, ActiveRoute: 0, LSPname: PE3--->PE1
  ActivePath: PE3-PE4-P5-P3-P1-PE1 (secondary)
  Primary   PE3-P1-PE1       State: Dn
 *Secondary PE3-PE4-P5-P3-P1-PE1 State: Up

juniper@PE3> show route table inet.3 172.16.0.11/32
(...)
172.16.0.11/32     *[RSVP/7/1] 00:02:22, metric 1150
                    > to 10.0.0.33 via ge-2/0/4.0,
                                   label-switched-path PE3--->PE1

juniper@PE3> traceroute mpls rsvp PE3--->PE1 | except "FEC|Hop"

ttl    Label  Protocol  Address      Previous Hop   Probe Status
  1    24032  RSVP-TE   10.0.0.33    (null)         Success
  2   301168  Unknown   10.0.0.28    10.0.0.33      Non-compliant
  3                     172.16.0.3   10.0.0.28      Non-compliant
  4                     172.16.0.1   172.16.0.3     Non-compliant
  5                     172.16.0.11  172.16.0.1     Egress

As of this writing, some level of interoperability inconsistency between Junos and IOS
XR could be observed in MPLS RSVP-TE LSP Ping (RFC 4379 and RFC 6424). You
can see the manifestation of this problem in Label (missing), Protocol (missing or
Unknown) and Probe Status (Non-compliant) output fields. Because this issue didn’t
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cause any disturbance to the traffic itself, we didn’t dwell on it for a detailed analysis
of the problem.

For the sake of completeness, let’s configure multiple paths for a RSVP-TE tunnel ini‐
tiated on an IOS XR device. In this example, we configure an RVSP-TE LSP from PE4
to PE2.

Example 19-4. RSVP multiple path configuration on PE4 (IOS XR)

explicit-path name PE4-P6-P4-P2-PE2
 index 10 next-address strict ipv4 unicast 10.0.0.26
 index 20 next-address strict ipv4 unicast 10.0.0.16
 index 30 next-address strict ipv4 unicast 10.0.0.10
 index 40 next-address strict ipv4 unicast 10.0.0.4
!
explicit-path name PE4-P5-P3-P4-P2-PE2
 index 10 next-address strict ipv4 unicast 10.0.0.28
 index 20 next-address strict ipv4 unicast 10.0.0.14
 index 30 next-address strict ipv4 unicast 10.0.0.13
 index 40 next-address strict ipv4 unicast 10.0.0.10
 index 50 next-address strict ipv4 unicast 10.0.0.4
!
interface tunnel-te22
 apply-group GR-LSP
 signalled-name PE4--->PE2
 destination 172.16.0.22
 path-option 1 explicit name PE4-P5-P3-P4-P2-PE2
 path-option 2 explicit name PE4-P6-P4-P2-PE2

Based on this configuration, an LSP using the primary path is established and appro‐
priate entries are populated. As is discussed in Chapter 2, the IGP metric for destina‐
tions reachable via RSVP-TE tunnels equals the cost of the shortest hop-by-hop path
to the destination (in this example, PE4→P5→P3→P1→PE1→PE2; cost: 800).
Because this shortest path is not always equal to the path taken by LSP, the reported
metric values (line 7, versus 13 and 15 in Example 19-5) might differ. This is true for
both Junos and IOS XR devices (with nuances described in the final sections of Chap‐
ter 3).

Example 19-5. Primary path forwarding verification on PE4 (IOS XR)

1     RP/0/0/CPU0:PE4#show mpls traffic-eng tunnels destination 172.16.0.22
2                     role head detail | include <pattern>
3     Name: tunnel-te22  Destination: 172.16.0.22  Ifhandle:0x1080
4       Signalled-Name: PE4--->PE2
5         Admin:    up Oper:   up   Path:  valid   Signalling: connected
6         path option 1,  type explicit PE4-P5-P3-P4-P2-PE2
7                                       (Basis for Setup, path weight 950)
8         path option 2,  type explicit PE4-P6-P4-P2-PE2
9         Outgoing Interface: Gi0/0/0/3, Outgoing Label: 301360
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10
11    RP/0/0/CPU0:PE4#show route 172.16.0.22/32
12    (...)
13      Known via "isis core", distance 115, metric 800, type level-2
14        172.16.0.22, from 172.16.0.22, via tunnel-te22
15          Route metric is 800
16
17    RP/0/0/CPU0:PE4#traceroute mpls traffic-eng tunnel-te 22
18    (...)
19      0 10.0.0.29 MRU 1500 [Labels: 301584 Exp: 0]
20    L 1 172.16.0.5 MRU 1514 [Labels: 302448 Exp: 7] 30 ms
21    L 2 172.16.0.3 MRU 1514 [Labels: 24010 Exp: 7] 220 ms
22    L 3 10.0.0.13 MRU 1500 [Labels: 24011 Exp: 0] 10 ms
23    L 4 10.0.0.10 MRU 1500 [Labels: implicit-null Exp: 0] 10 ms
24    ! 5 10.0.0.4 10 ms

The trace output is as expected. There are some differences, however, in the reported
addresses (loopbacks versus link addresses) or Maximum Receive Unit (MRU) sizes
(including or excluding the Layer 2 header) depending on whether the reporting
node is Junos or IOS XR.

After a network failure occurs (e.g., on the P3-P5 link) traffic shifts to the secondary
path, as demonstrated in Example 19-6. This time, the LSP metric (line 7) and the
IGP metric (lines 13 and 15) are equal, because after failure of the P3-P5 link, the
shortest path to the destination equals the secondary path.

Example 19-6. Secondary path forwarding verification on PE4 (IOS XR)

1     RP/0/0/CPU0:PE4#show mpls traffic-eng tunnels destination 172.16.0.22
2                     role head detail | include <pattern>
3     Name: tunnel-te22  Destination: 172.16.0.22  Ifhandle:0x480
4       Signalled-Name: PE4--->PE2
5         Admin:    up Oper:   up   Path:  valid   Signalling: connected
6         path option 2,  type explicit PE4-P6-P4-P2-PE2 (Basis for Setup,
7                         path weight 1250)
8         path option 1,  type explicit PE4-P5-P3-P4-P2-PE2
9         Outgoing Interface: Gi0/0/0/2, Outgoing Label: 24012
10
11    RP/0/0/CPU0:PE4#show route 172.16.0.22/32
12    (...)
13      Known via "isis core", distance 115, metric 1250, type level-2
14        172.16.0.22, from 172.16.0.22, via tunnel-te22
15          Route metric is 1250
16
17    RP/0/0/CPU0:PE4#traceroute mpls traffic-eng tunnel-te 22
18    (...)
19      0 10.0.0.27 MRU 1500 [Labels: 24012 Exp: 0]
20    L 1 10.0.0.26 MRU 1500 [Labels: 24010 Exp: 0] 10 ms
21    L 2 10.0.0.16 MRU 1500 [Labels: 24011 Exp: 0] 10 ms
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22    L 3 10.0.0.10 MRU 1500 [Labels: implicit-null Exp: 0] 0 ms
23    ! 4 10.0.0.4 10 ms

So far, so good. But what traffic restoration times could you imagine in your design?
When a failure happens, the following sequence of events are executed:

1. Failure detection
2. The secondary path is signaled via RSVP-TE
3. Installation of a new next hop in the RIB/FIB structures

If the failure occurs close to the head-end router (e.g., the PE3-P1 link fails on the
primary path used by LSP from PE3 to PE1), failure detection can be rather quick.
Failure of directly connected links or neighbors can be discovered rapidly.

If the failure is farther away from the head-end router (e.g., the P3-P4 link fails on the
primary path used by LSP from PE4 to PE2), information about the failure can be
propagated to the head-end or tail-end routers (PE4 or PE2) via RSVP-TE signaling
messages (PathErr, ResvTear) generated by the router that detects the failure. Alterna‐
tively, after IGP global convergence, all the routers in the domain (including head-
end and tail-end routers) gain knowledge about the failed link or node. This failure
detection can be quite long (several hundred milliseconds), and for certain applica‐
tions, too long. This problem is discussed a little later in this chapter.

For now, let’s check the second and third element of the overall time required for traf‐
fic restoration. When a network failure affects the primary path, a secondary path
must be signaled and a new next hop installed in RIB/FIB. This certainly takes time,
especially in scaled environments with large numbers of LSPs. Therefore you can use
the same trick as discussed in the Loop-Free Alternates (LFA) scenarios: preinstalling
backup next hops.

Obviously, to preinstall a backup next hop, the secondary path must be presignaled.
So, let’s do that. You simply designate the secondary path as a standby path, as shown
in Example 19-7. A standby path is presignaled and corresponds to the next hop pre‐
installed in the RIB/FIB. But it is only a backup next hop—just like in the LFA case.

Example 19-7. RSVP-TE secondary standby path configuration—PE3 (Junos)

protocols{
    mpls {
        label-switched-path PE3--->PE1 {
            secondary PE3-PE4-P5-P3-P1-PE1 {
                standby;
}}}

Now let’s check what’s the difference in the various states related to the PE3--->PE1
LSP.
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Example 19-8. Primary/standby path states on PE3 (Junos)

juniper@PE3> show mpls lsp name PE3--->PE1 detail | match <pattern>
  From: 172.16.0.33, State: Up, ActiveRoute: 0, LSPname: PE3--->PE1
  ActivePath: PE3-P1-PE1 (primary)
 *Primary   PE3-P1-PE1       State: Up
  Standby   PE3-PE4-P5-P3-P1-PE1 State: Up

juniper@PE3> show route table inet.3 172.16.0.11/32 detail | match ...
    *RSVP   Preference: 7/1
            Next hop: 10.0.0.34 via ge-2/0/6.0 weight 0x1, selected
            Label-switched-path PE3--->PE1
            Next hop: 10.0.0.33 via ge-2/0/4.0 weight 0x2001
            Label-switched-path PE3--->PE1
            Age: 23:15      Metric: 1050

You can see the secondary path is presignaled (state is up) and the backup next hop is
preinstalled. This time, though, the weight for the backup next hop is 0x2001 (in the
LFA case, it was 0xf000, 0x100, or 0x8000, depending on the LFA style used). As long
as it is greater than 0x1, it is a backup next hop.

Let’s also do the same on the IOS XR device, as shown in Example 19-9. Enabling the
path-protection feature and designating one of the path options (e.g., path option
2) to protect the primary path (path option 1) causes the protecting path (path option
2) to be presignaled.

Example 19-9. Primary/standby path configuration and states—PE4 (IOS XR)

interface tunnel-te22
 path-protection
 path-option 1 explicit name PE4-P5-P3-P4-P2-PE2 protected-by 2
 path-option 2 explicit name PE4-P6-P4-P2-PE2

RP/0/0/CPU0:PE4#show mpls traffic-eng tunnels destination 172.16.0.22
                role head detail | include <pattern>
Name: tunnel-te22  Destination: 172.16.0.22  Ifhandle:0x480
  Signalled-Name: PE4--->PE2
    Admin:    up Oper:   up   Path:  valid   Signalling: connected
    path option 1,  type explicit PE4-P5-P3-P4-P2-PE2
                    (Basis for Setup, path weight 950)
    path option 2,  type explicit PE4-P6-P4-P2-PE2
                    (Basis for Standby, path weight 1250)
    Standby Path: User defined [explicit path option: 2],
    Outgoing Interface: Gi0/0/0/3, Outgoing Label: 301360
    Outgoing Interface: Gi0/0/0/2, Outgoing Label: 24012

Manually designing and explicitly configuring primary and secondary path options
might be a challenging task, especially in large networks. Furthermore, as your net‐
work changes during its lifetime (typically networks grow and sometimes network
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topologies are modified), keeping track of the most optimal primary and secondary
paths could become an operational nightmare. To cope, you can establish primary
and secondary paths dynamically.

In typical designs, the primary path is restricted to use only certain links (e.g., links
with the smallest delay)—the required techniques for this are discussed in Chapters
Chapter 13 and Chapter 15, so they are not covered here.

Let’s simply configure two dynamic paths—primary and secondary—without any
explicit constraints.

Example 19-10. Dynamic primary/secondary standby path—PE3 (Junos)

1     protocols {
2         mpls {
3             label-switched-path PE3--->PE2 {
4                 to 172.16.0.22;
5                 primary PRIMARY;
6                 secondary SECONDARY {
7                     standby;
8                 }
9             }
10            path PRIMARY;
11            path SECONDARY;
12    }}

Lines 10 and 11 demonstrate how you can define path options without specifying any
next hops. They are basically empty path options. These path options become popu‐
lated with explicit lists of next hops by a constrained SPF algorithm during the LSP
creation time. (This is discussed in Chapter 2.) But what is new here is the way in
which these paths are calculated by CSPF.

First, the path options that are designated as primary, named PRIMARY in the example,
follow standard CSPF rules, which in the end produce paths based on the lowest total
cost to the destination (because no constraints are imposed on the primary path in
the example). This cost is 1100, as shown in Figure 19-2 and in Example 19-11, line 5.

Example 19-11. States for primary/standby paths on PE3 (Junos)

1     juniper@PE3> show mpls lsp name PE3--->PE2 detail | match <pattern>
2      From: 172.16.0.33, State: Up, ActiveRoute: 0, LSPname: PE3--->PE2
3      ActivePath: PRIMARY (primary)
4     *Primary   PRIMARY          State: Up
5       Computed ERO (S [L] denotes strict [loose]): (CSPF metric: 1100)
6      10.0.0.34 S 10.0.0.2 S 10.0.0.1 S
7      Standby   SECONDARY        State: Up
8       Computed ERO (S [L] denotes strict [loose]): (CSPF metric: 1350)
9      10.0.0.33 S 10.0.0.28 S 10.0.0.14 S 10.0.0.13 S 10.0.0.10 S
10     10.0.0.4 S
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Figure 19-2. RSVP path protection—dynamic PE3--->PE2 LSPs

Conversely, the path option designated as secondary standby (called SECONDARY in
the example) is calculated using different rules. You can discover those rules by ena‐
bling and monitoring logs for CSPF events, as shown in Example 19-12, and
Example 19-13, respectively.

Example 19-12. Enabling logs for CSPF events on PE3 (Junos)

protocols {
    mpls {
        traceoptions {
            file cspf size 100m;
            flag cspf;
            flag cspf-link;
            flag cspf-node;
}}}

Example 19-13. Monitoring logs for CSPF events on PE3 (Junos)

1     juniper@PE3> monitor start cspf
2     (...)
3     <timestamp> CSPF for path PE3--->PE2(secondary SECONDARY)
4     <timestamp> CSPF final destination 172.16.0.22
5     <timestamp> CSPF starting from PE3.00 (172.16.0.33) to 172.16.0.22
6     <timestamp> constraint avoid primary path
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7     <timestamp> Node PE3.00 (172.16.0.33) metric 0, hops 0,
8                 avail 32000 32000 32000 32000
9     <timestamp>   Link 10.0.0.35->10.0.0.34(P1.00/172.16.0.1,
10          Link IDs 338->335) metric 1000 color 0x0 bw 900Mbps
11    <timestamp> link passes constraints
12    <timestamp> Link overlap with primary path, adding cost 8000000
13    (...)

When checking the logs, you can spot an entry that indicates the start of CSPF for the
secondary path (line 3). CSPF for the secondary path tries to avoid the primary path
(line 6), so that the primary and secondary paths are distinct to the highest possible
degree. Recall from the discussion about MRTs in Chapter 18, the logic was similar:
MRT-red and MRT-blue forwarding topologies should be distinct, whenever possible.
Now, the primary and secondary paths should be diverse, to the highest possible
degree. Whereas MRT uses a sophisticated algorithm to find dissimilar paths for
MRT-red and MRT-blue forwarding, Junos CSPF for the secondary path uses a more
basic approach, as visible in line 12. Put simply, the cost of links used by the primary
path is temporarily increased by 8 million. Thus, in this particular example, link
PE3→P1 (line 9) is considered by CSPF with a total cost of 8001000: IGP metric 1000
(line 10) + extra cost 8 million (line 12). In this way, CSPF temporarily increases the
cost for all the links used by the primary path.

You can see the results of the primary and secondary path computation in
Figure 19-2, and in Example 19-11 (line 6 for primary, lines 9 and 10 for secondary).
The primary is a path with the smallest total cost (PE3→P1→PE1→PE2; total cost:
1100), whereas the secondary is a completely distinct path
(PE4→P5→P3→P4→P2→PE2; total cost: 1350). There are no common links between
primary and secondary paths. Also note that the secondary path is not the second
shortest path after the primary. The second shortest path in the example topology is
PE3→PE4→P5→P3→P1→PE1→PE2, with a total cost of 1200. This path is not
chosen for a secondary path option, though, because it shares some links
(P1→PE1→PE2) with the primary path. As you can see, the default algorithm to cal‐
culate paths for dynamic primary and secondary options provides very good results.

The results with IOS XR are similar. If path-protection is configured, you can sim‐
ply define one dynamic path option. The second dynamic path (to protect the first
one) will be automatically presignaled.

Example 19-14. Dynamic primary/secondary standby path—PE4 (IOS XR)

interface tunnel-te11
 path-protection
 path-option 1 dynamic

Figure 19-3 and Example 19-15 show the path computations. There is, however, a
slight difference between Junos and IOS XR behavior when it comes to calculating
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paths for secondary path options. Junos tries to avoid the links used by the primary
path by increasing, temporarily, metrics for these links. It might happen, however,
that the secondary path shares some links with the primary path. IOS XR, on the
other hand, completely avoids such links (and nodes) by temporarily removing these
links (nodes) from the database used as the input for CSPF calculations (see line 7 in
Example 19-15). Thus, in IOS XR, the secondary path must be completely distinct
from the primary path. If such a path cannot be found, the secondary path is not pre‐
signaled.

Example 19-15. States for primary/standby paths on PE4 (IOS XR)

1     RP/0/0/CPU0:PE4#show mpls traffic-eng tunnels 11 detail
2     Name: tunnel-te11  Destination: 172.16.0.11  Ifhandle:0x680
3      Signalled-Name: PE4--->PE1
4       Admin:    up Oper:   up   Path:  valid   Signalling: connected
5       path option 1,  type dynamic  (Basis for Setup, path weight 750)
6       path option 2,  type dynamic  (Basis for Standby, path weight 1300)
7       Standby Path: Node and Link Diverse [explicit path option: 2]
8       Outgoing Interface: Gi0/0/0/3, Outgoing Label: 301365
9       Outgoing Interface: Gi0/0/0/2, Outgoing Label: 24018
10    (...)
11      Path info (IS-IS core level-2):
12      Node hop count: 4
13      Hop0: 10.0.0.28               ## P5
14      Hop1: 10.0.0.14               ## P3
15      Hop2: 10.0.0.8                ## P1
16      Hop3: 10.0.0.2                ## PE1
17      Hop4: 172.16.0.11             ## PE1
18
19      Standby LSP Path info (IS-IS core level-2), Oper State: Up :
20      Node hop count: 5
21      Hop0: 10.0.0.26               ## P6
22      Hop1: 10.0.0.16               ## P4
23      Hop2: 10.0.0.10               ## P2
24      Hop3: 10.0.0.4                ## PE2
25      Hop4: 10.0.0.0                ## PE1
26      Hop5: 172.16.0.11             ## PE1

RSVP-TE Path Protection | 749



Figure 19-3. RSVP path protection—dynamic PE4--->PE1 LSPs

The last thing you should know about path protection is how RSVP-TE signals differ‐
ent paths belonging to same RSVP-TE tunnel. If you carefully study Chapter 2 and
RFC 3209 (RSVP-TE: Extensions to RSVP for LSP Tunnels), RSVP-TE maintains a
couple of IDs used for identification of tunnels and paths:

Tunnel ID
A 16-bit identifier used in the SESSION that remains constant over the life of the
tunnel.

LSP ID
A 16-bit identifier used in the SENDER_TEMPLATE and the FILTER_SPEC that
can be changed to allow a sender to share resources with itself.

In Junos, you can easily monitor RSVP-TE packet exchange by capturing packets
with IP protocol 46 (this is the IP protocol ID assigned to RSVP). If you sniff packets
on different interfaces (with Junos command monitor traffic interface <int>
size 2000 no-resolve detail), you can catch RSVP packets handling primary as
well as secondary paths of PE3--->PE2, as shown in Example 19-16.

Example 19-16. RVSP packets monitoring on PE3 (Junos)

1     /* Interface ge-2/0/6.0 */
2     RSVPv1 Path Message (1), Flags: [Refresh reduction capable]
3       Session Object (1) Flags: [reject if unknown], Class-Type:
4         Tunnel IPv4 (7), length: 16, IPv4 Tunnel EndPoint: 172.16.0.22,
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5         Tunnel ID: 0xb14d, Extended Tunnel ID: 172.16.0.33
6       Session Attribute Object (207) Flags: [ignore and forward if
7         unknown], Class-Type: Tunnel IPv4 (7), length: 20, Session
8         Name: PE3--->PE2, Setup Priority: 7, Holding Priority: 0,
9         Flags: [SE Style desired]
10      Sender Template Object (11) Flags: [reject if unknown],
11        Class-Type: Tunnel IPv4 (7), length: 12, IPv4 Tunnel Sender
12        Address: 172.16.0.33, LSP-ID: 0x0037
13
14    /* Interface ge-2/0/4.0 */
15    RSVPv1 Path Message (1), Flags: [Refresh reduction capable]
16      Session Object (1) Flags: [reject if unknown], Class-Type:
17        Tunnel IPv4 (7), length: 16, IPv4 Tunnel EndPoint: 172.16.0.22,
18        Tunnel ID: 0xb14d, Extended Tunnel ID: 172.16.0.33
19      Session Attribute Object (207) Flags: [ignore and forward if
20        unknown], Class-Type: Tunnel IPv4 (7), length: 20, Session
21        Name: PE3--->PE2, Setup Priority: 7, Holding Priority: 0,
22        Flags: [SE Style desired]
23      Sender Template Object (11) Flags: [reject if unknown],
24        Class-Type: Tunnel IPv4 (7), length: 12,  IPv4 Tunnel Sender
25        Address: 172.16.0.33, LSP-ID: 0x0038

The tunnel ID is the same for all paths of the same RSVP-TE tunnel. It is manually
assigned in IOS XR (the same as the configured interface tunnel ID) and automati‐
cally assigned in Junos. You can see that Tunnel ID 0xb14d (45389 in decimal) is used
in the RSVP-TE signaling messages by both the primary (line 5) and the secondary
(line 18) paths. The LSP ID, however, is different on both paths. The primary uses
0x0037 (line 12), whereas the secondary uses 0x0038 (line 25). Each time the path is
changed (e.g., due to reoptimization) or a new path added, the new LSP ID is auto‐
matically generated, maintaining multiple paths belonging to the same RSVP-TE tun‐
nel.

RSVP-TE Facility (Node-Link) Protection
Path protection is based on switchover between the primary and secondary standby
paths. The head-end router performs this switchover, so failure information must
first be propagated to the head-end router before any repair action can be executed. If
the failure happens close to the head-end router (failure of a directly connected link
or a directly connected node), failure detection is quite quick. If, however, failure
happens farther away from the head-end router, the following failure detection meth‐
ods can trigger path switchover:

• Notification from the IGP that the topology has changed (e.g., some of the transit
routers are no longer available)

• RSVP PathErr or ResvTear messages
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• Notification from the Bidirectional Forwarding Detection (BFD) protocol run‐
ning as the LSP’s OAM, which indicates that forwarding over the LSP is broken

Any of these events can result in a relatively slow failure detection, and thus path
switchover might by triggered relatively late after failure occurs. For certain loss-
sensitive applications this is undesirable.

Thus, RFC 4090 (Fast Reroute Extensions to RSVP-TE for LSP Tunnels) introduces two
options for protecting traffic flowing via RSVP-TE tunnels using the local-repair
paradigm. Similar to the protection cases available for LDP and SPRING (different
variants of LFA), traffic is repaired locally; thus, the failure propagation time to head-
end router no longer plays a significant role.

Because the terminology used for these two options across vendors can become a bit
confusing, Table 19-1 summarizes the terms used by Junos and IOS XR as well as by
the RFC (this book uses the RFC terms in all further discussions.)

Table 19-1. RSVP-TE protection terminology

RFC 4090 One-to-one backup Facility backup

Junos Fast ReRoute Link Protection
Node-Link Protection

IOS XR n/a Fast ReRoute Protection Any
Fast ReRoute Protection Node

One of the two options described in RFC 4090 is facility backup, whereby “facility” is
defined as a link or node. This option shows some similarities to per-link LFA dis‐
cussed earlier in this chapter. Namely, with facility backup, all eligible traffic flowing
through the protected facility (link or node) is rerouted by the means of local repair
over the same backup next hop when the facility (link or node) fails.

The problem with per-link LFA is its high dependency on topology, which results in
no loop-free backup next hop in many situations. This limitation does not affect
RSVP-TE protection. Because RSVP-TE has the capability to signal explicit paths,
after the path is signaled and states are created on all transit routers, packets do not
necessarily use the shortest-path for forwarding any longer. Explicit path specification
creates the opportunity to presignal any bypass path, which is completely independ‐
ent from the network topology or IGP metrics. You used this capability of RSVP-TE
in Chapter 18, when you extended LFA backup coverage with manual or dynamic
RSVP-TE tunnels. This chapter focuses on pure RSVP-TE scenarios.

So, let’s do it. But before getting under way with this section, you must set all RSVP-
TE tunnels (full mesh between PE routers) back to their basic state (single, dynamic
path option per tunnel.) Then, taking this book’s topology as a reference, this is the
path followed by each right-to-left tunnels:
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• PE3--->PE1 tunnel: PE3→P1→PE1
• PE3--->PE2 tunnel: PE3→PE4→P5→P3→P4→P2→PE2
• PE4--->PE1 tunnel: PE4→P5→P3→P1→PE1
• PE4--->PE2 tunnel: PE4→P5→P3→P4→P2→PE2

Remember that in the IGP and TE worlds, links are seen as two half-links. Let’s focus
on P5→P3, whose reverse half-link is P3→P5. According to the previous list, the fol‐
lowing three LSPs transit the (half-)link P5→P3: PE3--->PE2, PE4--->PE1, and
PE4--->PE2.

Manual Link Protection Bypass
Manual bypass LSPs are configured with a strict hop-by-hop ERO. The process is
tedious but it provides more control. Automatic bypass LSPs are discussed later in
this chapter.

Manual link protection bypass in Junos: P5→P3 link, PE4--->PE2 LSP
Figure 19-4 illustrates a manual bypass LSP, which protects the P5→P3 link. The fig‐
ure also depicts how this bypass LSP protects the PE4--->PE2 LSP in case of link fail‐
ure.

Figure 19-4. Facility (link) protection in Junos (P5→P3 link, PE4--->PE2 LSP)
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In the absence of failures, the PE4--->PE2 LSP follows the original path, represented
in Figure 19-4 with white labels. The bypass LSP (gray labels on top of the white
labels) are used only during local repair after a P5→P3 link failure.

The PE4--->PE1 LSP, which also transits the P5→P3 link, would be
protected by the same bypass LSP. Using the color code in
Figure 19-4, the PE4--->PE1 LSP would have different white labels,
but the same gray labels for P5→P3 local repair. This is an essential
property of facility protection: all the protected LSPs transiting a
protected resource rely on the same bypass LSP.

Example 19-17. Manual link protection bypass LSP on P5 (Junos)

1     protocols {
2         rsvp {
3             interface ge-2/0/4.0 {
4                 link-protection {
5                     bypass P5-PE3-P1-P3 {
6                         to 172.16.0.3;
7                         bandwidth 0;
8                         path {
9                             10.0.0.25 strict;
10                            10.0.0.34 strict;
11                            10.0.0.9 strict;
12    }}}}}}
13
14    juniper@P5> show rsvp interface ge-2/0/[234].0 extensive | match ...
15    ge-2/0/2.0 Index 333, State Ena/Up
16      Authentication, Aggregate, Reliable, NoLinkProtection
17      Protection: Off
18    ge-2/0/3.0 Index 334, State Ena/Up
19      Authentication, Aggregate, Reliable, NoLinkProtection
20      Protection: Off
21    ge-2/0/4.0 Index 335, State Ena/Up
22      Authentication, Aggregate, Reliable, LinkProtection
23      Protection: On, Bypass: 0, LSP: 0, Protected LSP: 0,
24                                         Unprotected LSP: 0

A quick verification shows that out of three interfaces for which RSVP is enabled,
only one has protection switched on. This is in line with the configuration just com‐
mitted. However, you also can see in line 23 that no bypass LSP is created and no LSP
is currently protected. This is unfortunate, because it means that the efforts are inef‐
fective at the moment.

The problem is that all traffic is considered as not eligible for protection by default in
RSVP-TE. This is just the opposite of LFA, for which by default all traffic is eligible for
protection and the system tries to install the backup next hop for as many prefixes/
labels as possible. In RSVP-TE, you need to explicitly designate the traffic that
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requires protection. Let’s do it initially for the traffic flowing over PE4--->PE2 and
PE3--->PE2 tunnels, following the syntax shown here:

Example 19-18. Local Protection request for PE4--->PE2 on PE4 (IOS XR)

interface tunnel-te22
 fast-reroute

Example 19-19. Local Protection request for PE3--->PE2 LSP on PE3 (Junos)

protocols {
    mpls {
        label-switched-path PE3--->PE2 {
            link-protection;
}}}

As illustrated in Example 19-20, the protection states on P5 (it might take some time
initially) now look much better.

Example 19-20. Facility (link) protection state on P5 (Junos)

1     juniper@P5> show rsvp interface ge-2/0/4.0 extensive | find ...
2     Protection: On, Bypass: 1, LSP: 2, Protected LSP: 2,
3                 Unprotected LSP: 0
4         1 Feb  5 21:36:29 New bypass P5-PE3-P1-P3
5       Bypass: P5-PE3-P1-P3, State: Up, Type: LP, LSP: 1, Backup: 0
6         3 Feb  5 21:36:31 Record Route:  10.0.0.25 10.0.0.34 10.0.0.9
7         2 Feb  5 21:36:31 Up
8         1 Feb  5 21:36:30 CSPF: computation result accepted

You can see that bypass LSP is now established. This bypass type (line 5) is LP (link
protection), and currently only two regular LSPs can use this bypass for protection
(just before, you requested protection for PE4--->PE2 and PE3--->PE2 tunnels only.)
You can verify the status of regular LSPs transiting P5 node, as well.

Example 19-21. Protection state of transit LSPs on P5 (Junos)

juniper@P5> show mpls lsp detail | match "name|protect"
  LSPname: PE4--->PE1
  LSPname: PE4--->PE2
    Link protection desired
    Type: Link protected LSP
  LSPname: PE3--->PE2, LSPpath: Primary
    Link protection desired
    Type: Link protected LSP
  LSPname: PE2--->PE3
  LSPname: PE2--->PE4
  LSPname: PE1--->PE4, LSPpath: Primary
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After configuring IOS XR fast-reroute option (Example 19-18) for the PE4--->PE2
LSP or Junos link-protection option (Example 19-19) for the PE3--->PE2 LSP,
these LSPs are signaled using special flags in the RSVP-TE Session Attribute Object.

Make a copy of Figure 19-4 and keep it handy throughout this
explanation.

Adding the hidden (and unsupported) knob write-file to the packet capturing
command from Example 19-16, this time on P5’s ge-2/0/3 interface, you can save the
RSVP packets into a file for further analysis by external tools (like Wireshark or
TShark). This gives you the option of inspecting RSVP packets in detail, including the
aforementioned flags. Let’s see a Path message for the PE4--->PE2 LSP
(Example 19-22).

Example 19-22. Collected RVSP packets decoding using TShark

1     [linux:~/Downloads] juniper% tshark -r rsvp-path-lp.pcap -V
2     (...)
3     Resource ReserVation Protocol (RSVP): PATH Message. SESSION:
4       IPv4-LSP, Destination 172.16.0.22, Short Call ID 0, Tunnel ID 22,
5       Ext ID ac10002c. SENDER TEMPLATE: IPv4-LSP, Tunnel Source:
6       172.16.0.44, Short Call ID: 0, LSP ID: 53.
7     (...)
8         SESSION ATTRIBUTE: SetupPrio 7, HoldPrio 7, Local Protection,
9                            Label Recording, SE Style,  [PE4--->PE2]
10    (...)
11                Flags: 0x07
12                    .... ...1 = Local protection: Desired
13                    .... ..1. = Label recording: Desired
14                    .... .1.. = SE style: Desired
15                    .... 0... = Bandwidth protection: Not Desired
16                    ...0 .... = Node protection: Not Desired

PE4 requests local protection for the PE4--->PE2 tunnel (line 12). PE4 requests nei‐
ther bandwidth nor node protection (lines 15-16), which means the bypass tunnel
does not need to satisfy those protection criteria.

Now let’s review how the protection is actually achieved.

Example 19-23. Status of PE4--->PE2 RSVP-TE tunnel on PE4 (IOS XR)

1     RP/0/0/CPU0:PE4#show mpls traffic-eng tunnels 22 detail
2     [...]
3     Outgoing Interface: GigabitEthernet0/0/0/3, Outgoing Label: 299920
4       Resv Info:
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5         Record Route:
6           IPv4 172.16.0.5, flags 0x21 (Node-ID, Protection: available)
7           IPv4 10.0.0.28, flags 0x1 (Protection: available)
8           Label 299920, flags 0x1
9           IPv4 172.16.0.3, flags 0x20 (Node-ID)
10          IPv4 10.0.0.14, flags 0x0
11          Label 306128, flags 0x1
12          IPv4 172.16.0.4, flags 0x20 (Node-ID)
13          Label 24023, flags 0x1
14          IPv4 10.0.0.13, flags 0x0
15          Label 24023, flags 0x1
16          IPv4 172.16.0.2, flags 0x20 (Node-ID)
17          Label 24011, flags 0x1
18          IPv4 10.0.0.10, flags 0x0
19          Label 24011, flags 0x1
20          IPv4 172.16.0.22, flags 0x20 (Node-ID)
21          Label 3, flags 0x1
22          IPv4 10.0.0.4, flags 0x0
23          Label 3, flags 0x1
24
25    [linux:~/Downloads] juniper% tshark -r rsvp-resv-lp.pcap -V
26      Resource ReserVation Protocol (RSVP): RESV Message [...]
27    [...]
28      RECORD ROUTE: IPv4 172.16.0.5 (Node-id), IPv4 10.0.0.28,
29       Label 299920,  (Node-id)... (Node-id) (Node-id) (Node-id)
30        Length: 148
31        Object class: RECORD ROUTE object (21)
32        C-type: 1
33        IPv4 Subobject - 172.16.0.5 (Node-id), Local Protection Avail.
34            Type: 1 (IPv4)
35            Length: 8
36            IPv4 hop: 172.16.0.5 (172.16.0.5)
37            Prefix length: 32
38            Flags: 0x21
39                .... ...1 = Local Protection: Available
40                .... ..0. = Local Protection: Not used
41                .... .0.. = Bandwidth Protection: Not available
42                .... 0... = Node Protection: Not available
43                ..1. .... = Address Specifies a Node-id Address: Yes
44        IPv4 Subobject - 10.0.0.28, Local Protection Available
45            Type: 1 (IPv4)
46            Length: 8
47            IPv4 hop: 10.0.0.28 (10.0.0.28)
48            Prefix length: 32
49            Flags: 0x01
50                .... ...1 = Local Protection: Available
51                .... ..0. = Local Protection: Not used
52                .... .0.. = Bandwidth Protection: Not available
53                .... 0... = Node Protection: Not available
54                ..0. .... = Address Specifies a Node-id Address: No
55        Label Subobject - 299920, The label will be understood if
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56                                  received on any interface
57     [...]

P5 can act as a PLR for the PE4--->PE2 LSP by providing the requested protection,
downstream from its position in the tunnel. For this reason, P5 sets the
“Local protection: Available” flag on the two RRO entries that it adds to the Resv
message. By looking at these flags, PE4 knows that P5 is able to provide local protec‐
tion in case failure downstream happens. On the other hand, flag
“Local protection: Use” is not set. Therefore, local protection is currently not
active.

It is essential for the head-end PE to be informed of the protection
available and active at each of the transit nodes. Otherwise, it
would tear down the LSP immediately upon failure detection.

At first glance, it might look strange that some protection capability for the 10.0.0.28
address (address from PE4-P5 link) is being reported. Did you configure any protec‐
tion for this link? No. So far only the simple bypass LSP to protect the P5→P3 link has
been configured. But if you carefully read RFC 4090, Section 4.4, you will note that
this protection flag indicates that the link downstream of this node is protected via a
local-repair mechanism. Therefore, it’s not that the PE4-P5 link (to which IP address
10.0.0.28 belongs) is protected, but the link downstream of the node with the
10.0.0.28 address is. In essence, we’re talking about the link downstream of the P5
node, which is P5→P3.

OK, so what happens on P5? Let’s check that.

Example 19-24. MPLS RIB entry on P5 (Junos)

1     juniper@P5> show route label 299920 detail | match "Pref|via|Label"
2       *RSVP   Preference: 7/1
3               Next hop: 10.0.0.14 via ge-2/0/4.0 weight 0x1, selected
4               Label-switched-path PE4--->PE2
5               Label operation: Swap 306128
6               Next hop: 10.0.0.25 via ge-2/0/2.0 weight 0x8001
7               Label-switched-path P5-PE3-P1-P3
8               Label operation: Swap 306128, Push 299856(top)

There are two next hops with different weights. It’s similar to the protection cases we
discussed previously. The first next hop is the standard one used for normal label
switching along the PE4--->PE2 tunnel. You can compare label 306128 (line 5 in the
previous example) with the label shown in line 11 of Example 19-23. Looks similar?
The second next hop, as the weight indicates, is the backup next hop. When P5 sends
a packet over the backup next hop, it uses two labels (line 8): the normal label for
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PE4--->PE2 tunnel (306128, the same as in line 5), and the additional top label
299856. What is this label? Check Figure 19-4 and Example 19-25.

Example 19-25. State for bypass LSP on P5 (Junos)

juniper@P5> show rsvp session ingress
To          From        State Rt Style Labelin Labelout LSPname
172.16.0.3  172.16.0.5  Up    0  1 SE       -   299856 P5-PE3-P1-P3

In Junos, ingress (head-end) bypass LSPs are not visible when you
use the show mpls lsp command. To display information about
ingress (head-end) bypass LSPs, you need to use the show rsvp
session command.

This is, in fact, the label for the bypass LSP created previously! So your regular LSP is
tunneled inside the bypass LSP in case of P5→P3 link failure. The last segment
(P1→P3) of the bypass LSP uses the implicit null label, meaning the traffic will arrive
at P3 with the label from the regular LSP (306128). Does the fact that packet arrives at
P3 on the wrong interface cause any problem (ge-2/0/3.0 instead of ge-2/0/4.0, which
is on the path for the regular PE4--->PE1 LSP)? If you look again at lines 8, 11, 13,
and 17 of Example 19-23, you will find that all labels on the path are advertised with
flag 0x1. What does it mean? Again, lines 55 and 56 of Example 19-23 provide the
answer: the label has global (per-node, not per-interface) significance, so packets with
this label are properly forwarded regardless of the interface on which they are
received. Perfect, you are now set.

If you check more entries in the MPLS RIB, such as in the next example, you can see
that out of three tunnels transiting the P5→P3 link, only two tunnels are protected
(have a backup next hop). These tunnels are PE3--->PE2 and PE4--->PE2. The
PE4--->PE1 tunnel was not configured to request protection, so it is not protected.

Remember that in RSVP-TE, protection needs to be explicitly
requested on a per-tunnel basis.

Example 19-26. MPLS RIB on P5 (Junos)

1     juniper@P5> show route table mpls.0 | find RSVP
2     299920 *[RSVP/7/1] 00:34:52, metric 1
3         > to 10.0.0.14 via ge-2/0/4.0, label-switched-path PE4--->PE2
4           to 10.0.0.25 via ge-2/0/2.0, label-switched-path P5-PE3-P1-P3
5     299952 *[RSVP/7/1] 00:10:33, metric 1
6         > to 10.0.0.14 via ge-2/0/4.0, label-switched-path PE3--->PE2
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7           to 10.0.0.25 via ge-2/0/2.0, label-switched-path P5-PE3-P1-P3
8     300000 *[RSVP/7/1] 00:09:20, metric 1
9         > to 10.0.0.14 via ge-2/0/4.0, label-switched-path PE4--->PE1
10    (...)

Manual link protection bypass in IOS XR: P4→P2 link, PE3--->PE2 LSP
To understand the complete picture about facility protection on both Junos and IOS
XR planes, let’s add a bypass LSP in the IOS XR plane (e.g., on router P4 to protect
the P4→P2 link), as shown in Figure 19-5.

Figure 19-5. Facility (link) protection in IOS XR (P4→P2 link, PE3--->PE2 LSP)

The following IOS XR configuration creates a manual link bypass on P4:

Example 19-27. Manual link protection bypass LSP on P4 (IOS XR)

1     explicit-path name P4-P3-P1-P2
2      index 10 next-address strict ipv4 unicast 10.0.0.12
3      index 20 next-address strict ipv4 unicast 10.0.0.8
4      index 30 next-address strict ipv4 unicast 10.0.0.7
5     !
6     interface tunnel-te2
7      ipv4 unnumbered Loopback0
8      signalled-name P4-P3-P1-P2
9      destination 172.16.0.2
10     record-route
11     path-option 1 explicit name P4-P3-P1-P2
12    !
13    mpls traffic-eng
14     interface GigabitEthernet0/0/0/3
15      backup-path tunnel-te 2
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Now, it’s time to verify the link protection status on P4 (IOS XR) by comparing
Figure 19-5 to Example 19-28 and Example 19-29.

Example 19-28. PE3--->PE2 RSVP-TE LSP with link-protection—PE3 (Junos)

1     juniper@PE3> show mpls lsp name PE3--->PE2 detail
2     (...)
3     172.16.0.22
4      From: 172.16.0.33, State: Up, ActiveRoute: 0, LSPname: PE3--->PE2
5      ActivePath:  (primary)
6      Link protection desired
7     *Primary                    State: Up
8       Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node
9                     10=SoftPreempt 20=Node-ID):
10       172.16.0.44(flag=0x20 Label=24021) 10.0.0.33(Label=24021)
11       172.16.0.5(flag=0x21) 10.0.0.28(flag=1 Label=299952)
12       172.16.0.3(flag=0x20) 10.0.0.14(Label=303888)
13       172.16.0.4(flag=0x21 Label=24010) 10.0.0.13(flag=1 Label=24010)
14       172.16.0.2(flag=0x20 Label=24012) 10.0.0.10(Label=24012)
15       172.16.0.22(flag=0x20 Label=3) 10.0.0.4(Label=3)

Example 19-29. Facility (link) protection state on P4 (IOS XR)

1     RP/0/0/CPU0:P4#show mpls traffic-eng tunnels 2 brief
2                TUNNEL NAME         DESTINATION      STATUS  STATE
3                 tunnel-te2          172.16.0.2          up  up
4
5     RP/0/0/CPU0:P4#show mpls traffic-eng tunnels role mid | match ...
6       Tunnel Name: PE4--->PE2 Tunnel Role: Mid
7           Session Attributes: Local Prot: Set, Node Prot: Not Set,
8                               BW Prot: Not Set
9       Tunnel Name: PE2--->PE3 Tunnel Role: Mid
10          Session Attributes: Local Prot: Not Set, Node Prot: Not Set,
11                              BW Prot: Not Set
12      Tunnel Name: PE2--->PE4 Tunnel Role: Mid
13          Session Attributes: Local Prot: Not Set, Node Prot: Not Set,
14                              BW Prot: Not Set
15      Tunnel Name: PE3--->PE2 Tunnel Role: Mid
16          Session Attributes: Local Prot: Set, Node Prot: Not Set,
17                              BW Prot: Not Set
18
19    RP/0/0/CPU0:P4#show mpls forwarding labels 24010 detail
20    Local  Outgoing  Prefix      Outgoing     Next Hop     Bytes
21    Label  Label     or ID       Interface                 Switched
22    ------ --------- ----------- ------------ ------------ --------
23    24010  24012     39732         Gi0/0/0/3    10.0.0.10    0
24         Path Flags: 0x400 [ BKUP-IDX:1 (0xa14d64e0) ]
25    (...)
26
27    RP/0/0/CPU0:P4#show mpls traffic-eng fast-reroute database
28    LSP midpoint FRR information:
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29    LSP Identifier         Local  Out Intf/        FRR Intf/  Status
30                           Label  Label            Label
31    ---------------------- ------ ---------------- ---------- -------
32    172.16.0.33 39732 [4]  24010  Gi0/0/0/3:24012  tt2:24012  Ready
33    172.16.0.44 22 [29]    24023  Gi0/0/0/3:24012  tt2:24012  Ready

Let’s analyze Example 19-29. As you can see, the bypass tunnel is up (line 3). Two
(out of four) transit (mid point) LSPs request protection, which is signaled via the
appropriate flags in Session Attributes Object (lines 7 and 16). Verifying the MPLS
forwarding entry (lines 19 through 24) for one of the transit tunnels (Lines 13 and 14
in Example 19-28 determine the incoming and outgoing labels at P4, which are 24010
and 24012, respectively), you can see the normal outgoing label (24012, as in line 23)
as well as some reference to the backup path (line 24). You can determine this backup
path by using the command in line 27, which shows protection for the PE3--->PE2
(line 32) LSP and the PE4--->PE2 LSP (line 33). Again, you can see the standard pri‐
mary outgoing interface and label as well as the backup next hop interface in different
columns. In essence, incoming packets with the label 24010 are forwarded over
Gi0/0/0/3 and the label is swapped to 24012. Or, if this interface is not available, pack‐
ets are forwarded via bypass tunnel 2 and the label swapped to 24012. Because the
bypass tunnel has its own label (see the gray labels in Figure 19-5), the end result is a
label stack of two labels after P4 performs swap 24012 and push 304004 (bypass label)
operations.

Unlike Junos, IOS XR always brings up the manual bypass tunnel,
even if there is no single regular LSP that requires protection.

Manual Node-Link Protection Bypass
By now, you should be familiar with how to deploy link protection. So, let’s create
additional bypass tunnels, but this time to provide protection not simply against link
failure, but also against downstream node failure, as well.

Manual node-link protection in IOS XR: P2 node, P4→P2 link, PE3--->PE2 LSP
So, for example, if you need a bypass tunnel from P4 to PE2 in order to protect
against P2 failure, the following path (see Figure 19-6) meets the requirements:
P4→P3→P1→PE1→PE2. The configuration of this bypass tunnel is similar to the one
presented in Example 19-27, but the termination point is the neighbor’s neighbor
(PE2); it is no longer the directly connected neighbor (P2), against whose failure we
want to protect. And, of course, the explicit path must not use the node being pro‐
tected (P2).
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Link protection bypass is often referenced as NHOP (next-hop)
bypass, whereas node-link protection bypass is often referenced as
NNHOP (next-next-hop) bypass.

Figure 19-6. Facility (node) protection in IOS XR (P2 node, P4→P2 link, PE3--->PE2
LSP)

After configuring the new bypass LSP (not shown for brevity), let’s see if some
changes are visible after configuring NNHOP bypasses.

Example 19-30. Facility (node) protection verification on P4 (IOS XR)

1     RP/0/0/CPU0:P4#show mpls traffic-eng fast-reroute database
2     LSP midpoint FRR information:
3     LSP Identifier         Local  Out Intf/        FRR Intf/  Status
4                            Label  Label            Label
5     ---------------------- ------ ---------------- ---------- -------
6     172.16.0.33 39732 [1]  24010  Gi0/0/0/3:24012  tt22:Pop   Ready
7     172.16.0.44 22 [53]    24023  Gi0/0/0/3:24012  tt22:Pop   Ready

If you carefully compare the output from Example 19-29 and Example 19-30, you will
realize that the tunnel used for protection has changed. Instead of tt2 (NHOP bypass
terminated on P2), tt22 (NNHOP bypass terminated on PE2) is used.

Figure 19-6 shows the resulting label operations for LSP PE3--->PE2 after P2-P4 link
failure, or after P2 node failure. Actually, P4 can protect the link P2-P4 with either a
NHOP bypass or a NNHOP bypass. P4 chooses the best option available (and
NNHOP is superior to NHOP). When the link P2-P4 fails, P4 does not know at first
whether it is a link or a node failure, so it reacts as if it had been a node failure.
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Before pushing the bypass LSP label, P4 pops the incoming label 24010. If you con‐
sider the bypass LSP as one hop, P4 is the penultimate hop and this label pop opera‐
tion is the result of PHP. But how does P4 know that the packet must arrive unlabeled
to PE2, if P4 and PE2 are not directly connected? The RRO included in the Resv mes‐
sages of the protected LSP (PE3--->PE2) contains a list of next hop, and also label
information (see Example 19-28). P4 knows that after swapping label 24010 for 24012
and sending a packet to P2, P2 will pop the label (Example 19-28, line 15) and send
the packet to PE2. So, when it programs the NNHOP protection for the PE3--->PE2
LSP, P4 programs a backup next hop based on the NHOP’s (not its own) label action.

Manual node-link protection in Junos: P3 node, P5→P3 link, PE3--->PE2 LSP
If you need a bypass tunnel from P5 to P4 in order to protect against P3 failure, one
option (but not necessarily the shortest one) is to use the P5→PE3→P1→P2→P4
path. The configuration of this bypass tunnel (not shown for brevity) is similar to the
one presented in Example 19-17, but the termination point is the neighbor’s neighbor
(P4).

After configuring the new bypass LSP, let’s check the state on P5 (Junos). If you issue
the operational commands from Example 19-20 and Example 19-26, you will see no
changes. NNHOP bypass is not up, and the two regular transit tunnels (PE3--->PE2
and PE4--->PE2) requesting local protection still use NHOP bypass as a backup next
hop. This means that the node (NNHOP) bypass is not working.

So, what is wrong here? Why does it work on P4 (IOS XR) but not on P5 (Junos)?
You have just discovered a slightly different interpretation of RFC 4090 as imple‐
mented in Junos and IOS XR. In Junos, NNHOP bypass tunnels are used only if one
or more regular LSPs request node protection in addition to local protection—in other
words, if the Node protection desired flag (RFC 4090, Section 4.3) is set. However, as
you can see in line 16 of Example 19-22, this is not currently the case for the
PE4--->PE2 LSP (and it is not the case for the PE3--->PE2 LSP either). IOS XR, on
the other hand, always attempts to provide the best possible protection (node protec‐
tion, and if not possible, then link protection), regardless of whether the Node protec‐
tion desired flag is set.

Let’s extend the configuration of the PE3--->PE2 tunnel to request node protection
(Example 19-31), which results in the Node protection desired flag being set in the Ses‐
sion Attribute object, as shown in Example 19-32.

Example 19-31. Node protection request for PE3→PE2 tunnel—PE3 (Junos)

protocols {
    mpls {
        label-switched-path PE3--->PE2 {
            node-link-protection;
}}}
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Example 19-32. Protection state of transit LSPs on P5 (Junos)

1     juniper@P5> show mpls lsp detail | match "name|protect"
2       LSPname: PE4--->PE1
3       LSPname: PE4--->PE2
4         Link protection desired
5         Type: Link protected LSP
6       LSPname: PE3--->PE2, LSPpath: Primary
7         Node/Link protection desired
8         Type: Node/Link protected LSP
9       LSPname: PE2--->PE3
10      LSPname: PE2--->PE4
11      LSPname: PE1--->PE4, LSPpath: Primary
12
13    juniper@P5> show rsvp interface ge-2/0/4.0 extensive | find ...
14    Protection: On, Bypass: 2, LSP: 2, Protected LSP: 2,
15                                       Unprotected LSP: 0
16        2 Feb 10 12:52:45 New bypass P5-PE3-P1-P2-P4
17        1 Feb  9 21:15:06 New bypass P5-PE3-P1-P3
18      Bypass: P5-PE3-P1-P3, State: Up, Type: LP, LSP: 1, Backup: 0
19        3 Feb  9 21:15:08 Record Route:  10.0.0.25 10.0.0.34 10.0.0.9
20        2 Feb  9 21:15:08 Up
21        1 Feb  9 21:15:07 CSPF: computation result accepted
22      Bypass: P5-PE3-P1-P2-P4, State: Up, Type: NP, LSP: 1, Backup: 0
23        3 Feb 10 12:52:46 Record Route:  10.0.0.25 10.0.0.34 10.0.0.7
24                                         10.0.0.11
25        2 Feb 10 12:52:46 Up
26        1 Feb 10 12:52:45 CSPF: computation result accepted
27
28    juniper@P5> show route table mpls.0 | find RSVP
29    299920 *[RSVP/7/1] 15:27:11, metric 1
30       > to 10.0.0.14 via ge-2/0/4.0, label-switched-path PE4--->PE2
31         to 10.0.0.25 via ge-2/0/2.0, label-switched-path P5-PE3-P1-P3
32    300048 *[RSVP/7/1] 00:13:07, metric 1
33       > to 10.0.0.14 via ge-2/0/4.0, label-switched-path PE3--->PE2
34         to 10.0.0.25 via ge-2/0/2.0, label-switched-path P5-PE3-P1-P2-P4
35    (...)

The NNHOP bypass tunnel (P5-PE3-P1-P2-P4) immediately went up (line 16).
Although two LSPs still require protection (line 14), one of the LSPs is now protected
by the NHOP bypass (line 18) and another by a NNHOP bypass (line 22). Because
the PE3--->PE2 tunnel is now protected via an NNHOP bypass, it is now protected
against both the P5→P3 link as well as the P3 node failure.

The configuration change from link-protection to node-link protection causes a
new LSP to be signaled. This results, for example, in a label change for the
PE3--->PE2 LSP (compare line 5 from Example 19-26 with line 32 from
Example 19-32). To avoid traffic interruption when switching from an old LSP (old
labels) to a new LSP (new labels), PE3 follows a make-before-break approach. For
some period of time, the two LSPs (with different LSP ID) belonging to the
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PE3--->PE2 tunnel are up. PE3 later switches traffic from the old LSP to the new LSP,
and eventually turns down the old LSP.

Following is the IOS XR configuration to request node protection:

Example 19-33. Node protection request for PE4→PE2 Tunnel—PE4 (IOS XR)

interface tunnel-te22
 fast-reroute protect node

This causes NNHOP bypass protection for the PE4→PE2 tunnel on P5, too. Because
the NHOP bypass is no longer used by any regular LSP, the NHOP bypass will even‐
tually time-out and will be torn down.

Facility Protection in Action
Most of the verifications thus far have been based on operational show commands in
the prefailure state. Let’s now simulate link failure events.

When a link or node fails, the traffic is locally repaired (redirected over the bypass
LSP), and the head-end router of the regular LSP is notified about the failure. While
traffic is locally repaired, the head-end router performs CSPF for the regular LSP in
order to eventually calculate and signal a new path that avoids the failed facility (link
or node). So, seeing a backup path on a traceroute output might be challenging, given
that the path might already be resignaled.

If, however, the regular LSP uses an explicit (not dynamic) path, which includes the
failed link or node, CSPF fails and it is not possible to resignal the tunnel. In this sit‐
uation, local repair is in action forever. Even the RSVP-TE Path and Resv messages of
the protected LSPs are tunneled through the bypass LSP, which is seen as one hop.

Manual node-link protection in Junos: P3 node, P5→P3 link, PE3--->PE2 LSP
Let’s get back to the PE3--->PE2 regular LSP. When the P5→P3 link (or the P3 node)
fails, the PLR (P5) removes the primary next hop (via ge-2/0/4 toward P3, label swap
303500), and only the backup next hop (using bypass LSP P5-PE3-P1-P2-P4)
remains, as visible in Figure 19-7 and in Example 19-34.
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Figure 19-7. Facility (node) protection in Junos (P3 node, P5→P3 link, PE3--->PE2 LSP)

Example 19-34. Routing entry for PE3--->PE2 LSP on P5 (Junos)

1     juniper@P5> show route label 301136 detail | match <pattern>
2     301136 (1 entry, 1 announced)
3                     Next hop: 10.0.0.25 via ge-2/0/2.0, selected
4                     Label-switched-path P5-PE3-P1-P2-P4
5                     Label operation: Swap 24024, Push 300080(top)

To maintain the local protection state shown in Figure 19-7, the definition of the
PE3--->PE2 LSP was changed to a strict ERO, and therefore global protection (new
path calculation performed at the head-end router) does not succeed. The following
traceroute is targeted to the VPN loopback prefix on PE2; thus, traffic follows the
PE3--->PE2 LSP (PE3→PE4→P5→P3→P4→P2→PE2), patched by the NNHOP
bypass LSP to avoid the failed P3 node (P5→PE3→P1→P2→P4). The bottom MPLS
label corresponds to the VPN service and is not shown in Figure 19-7.

Example 19-35. Facility protection in action (Junos)

juniper@PE3> traceroute 192.168.1.22 routing-instance VRF-A
traceroute to 192.168.1.22 (192.168.1.22), 30 hops max ...
 1  PE4 (10.0.0.33)  22.833 ms  ...
     MPLS Label=24022 CoS=0 TTL=1 S=0        ## PE3--->PE2
     MPLS Label=24021 CoS=0 TTL=1 S=1        ## VPN
 2  P5 (10.0.0.28)  14.382 ms  ...
     MPLS Label=301136 CoS=0 TTL=1 S=0       ## PE3--->PE2
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     MPLS Label=24021 CoS=0 TTL=2 S=1        ## VPN
 3  PE3 (10.0.0.25)  13.785 ms  ...
     MPLS Label=300080 CoS=0 TTL=1 S=0       ## NNHOP to avoid P3
     MPLS Label=24024 CoS=0 TTL=1 S=0        ## PE3--->PE2
     MPLS Label=24021 CoS=0 TTL=3 S=1        ## VPN
 4  P1 (10.0.0.34)  15.950 ms  ...
     MPLS Label=308672 CoS=0 TTL=1 S=0       ## NNHOP to avoid P3
     MPLS Label=24024 CoS=0 TTL=2 S=0        ## PE3--->PE2
     MPLS Label=24021 CoS=0 TTL=4 S=1        ## VPN
 5  P2 (10.0.0.7)  14.638 ms  ...
     MPLS Label=24029 CoS=0 TTL=1 S=0        ## NNHOP to avoid P3
     MPLS Label=24024 CoS=0 TTL=3 S=0        ## PE3--->PE2
     MPLS Label=24021 CoS=0 TTL=5 S=1        ## VPN
 6  P4 (10.0.0.11)  13.133 ms  ...
     MPLS Label=24024 CoS=0 TTL=1 S=0        ## PE3--->PE2
     MPLS Label=24021 CoS=0 TTL=6 S=1        ## VPN
 7  P2 (10.0.0.10)  12.445 ms  ...
     MPLS Label=24061 CoS=0 TTL=1 S=0        ## PE3--->PE2
     MPLS Label=24021 CoS=0 TTL=7 S=1        ## VPN
 8  PE2 (10.0.0.4)  13.066 ms ...

The first label (PE3--->PE2) is swapped on each node, whereas the second label
(VPN) remains constant. Now, when arriving at P5, traffic is redirected over the
NNHOP bypass LSP in order to avoid the P3 node. This bypass LSP terminates on
P4, so you can see up to P2 node (the penultimate node for the NNHOP bypass LSP)
three labels:

• The first label is the NNHOP bypass LSP label, and it is swapped at each hop.
• The second label is the PE3--->PE2 regular LSP label allocated by NNHOP node,

and it remains constant inside the bypass.
• The third label is the VPN label, and it remains constant end to end.

Before P2 sends the traffic to P4 along the NNHOP bypass LSP, it removes the
NNHOP label (PHP); thus, traffic arrives to P4 with only two labels (PE3--->PE2 +
VPN). From this point, it continues normally along the PE3--->PE2 regular LSP up
to PE2.

So, the protection works as expected! However, from what you can see, the path taken
during protection (PE3→PE4→P5→PE3→P1→P2→P4→P2→PE2) is certainly sub‐
optimal. Nodes PE3 and P2 are visited twice, for example. Such suboptimal paths are
typical in a facility protection scheme, because the bypass LSP simply patches the
failed facility (link or node). Facility protection does not try to make end-to-end opti‐
mal backup paths, but such a suboptimal forwarding state typically takes a relatively
short time for regular LSPs with dynamic path option. As already discussed, in the
meantime the head-end router performs CSPF for the regular LSP, so this LSP is
eventually signaled to a different, more optimal path that avoids failed links.
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But how does the head-end router realize that facility protection is active? It gets the
information via appropriate flags in the RECORD ROUTE object. Let’s check that.

Example 19-36. RECORD ROUTE object with “Local Protection in Use” flag (Junos)

1     juniper@PE3> show mpls lsp ingress name PE3--->PE2 detail
2     [...]
3       Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node
4                     10=SoftPreempt 20=Node-ID):
5         172.16.0.44(flag=0x29 Label=24021) 10.0.0.33(flag=9 Label=24021)
6         172.16.0.5(flag=0x2b) 10.0.0.28(flag=0xb Label=301136)
7         172.16.0.3(flag=0x29) 10.0.0.14(flag=9 Label=307424)
8         172.16.0.4(flag=0x29 Label=24024) 10.0.0.13(flag=9 Label=24024)
9         172.16.0.2(flag=0x21 Label=24061) 10.0.0.10(flag=1 Label=24061)
10        172.16.0.22(flag=0x20 Label=3) 10.0.0.4(Label=3)

You can see that 172.16.0.5 (loopback of P5) is reported with 0x2b flags. In other
words, the following flags are set (see RFC 4090, Section 4.4, and Example 19-23,
where meaning of these flags is shown):

0x01
Local protection available

0x02
Local protection in use

0x08
Node protection available

0x20
Address specifies a Node-ID address

0x01 + 0x02 + 0x08 + 0x20 = 0x2b. Because the flag 0x02 is set by the P5 node, PE3
knows that local protection is used (active) for forwarding at P5. Flag 0x02 is not set
at other nodes; thus, other nodes do not use local protection. However, because flag
0x01 is set on all the nodes, local protection is available (ready), and can be immedi‐
ately used, if downstream failure happens as per the reporting node. In other words,
there are bypass LSPs available to protect all the links, and one of these bypass LSPs is
currently active.

Manual node-link protection in IOS XR: P3 node, P5→P3 link, PE3--->PE2 LSP
Now, let’s examine facility protection in action on the IOS XR plane. For the purposes
of this verification, the PE4--->PE2 regular LSP is bound (via an explicit path option)
to the PE4→P6→P4→P2→PE1 path prior to simulating the P6→P4 link (or P4 node)
failure. To match Figure 19-8 to Example 19-37, remember that for space reasons
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Figure 19-8 does not show the VPN label, which remains constant all the way from
PE4 to PE2.

Figure 19-8. Facility (node) protection in IOS XR (P4 node, P6->P4 link, PE4-->PE2
LSP)

Example 19-37. Facility protection in action (IOS XR)

1     RP/0/0/CPU0:PE4#traceroute vrf VRF-A 192.168.1.22
2     (...)
3      1  10.0.0.26 [MPLS: Labels 24049/24021 Exp 0]
4      2  10.0.0.27 [MPLS: Labels 24029/24047/24021 Exp 0]
5      3  10.0.0.28 [MPLS: Labels 300496/24047/24021 Exp 0]
6      4  10.0.0.14 [MPLS: Labels 309728/24047/24021 Exp 0]
7      5  10.0.0.8 [MPLS: Labels 310240/24047/24021 Exp 0]
8      6  10.0.0.7 [MPLS: Labels 24047/24021 Exp 0]
9      7  10.0.0.4
10
11    RP/0/0/CPU0:PE4#show mpls traffic-eng tunnels 22 detail
12    [...]
13    Resv Info:
14     Record Route:
15       IPv4 172.16.0.6, flags 0x2b (Node-ID, Protection: available,
16                                    inuse, node)
17       Label 24049, flags 0x1
18       IPv4 10.0.0.26, flags 0xb (Protection: available, inuse, node)
19       Label 24049, flags 0x1
20       IPv4 172.16.0.2, flags 0x21 (Node-ID, Protection: available)
21       Label 24047, flags 0x1
22       IPv4 10.0.0.7, flags 0x1 (Protection: available)
23       Label 24047, flags 0x1
24       IPv4 172.16.0.22, flags 0x20 (Node-ID)
25       Label 3, flags 0x1

770 | Chapter 19: Transit Fast Restoration Based on RSVP-TE



26       IPv4 10.0.0.4, flags 0x0
27       Label 3, flags 0x1
28     Fspec: avg rate=0 kbits, burst=1000 bytes, peak rate=0 kbits
29
30    RP/0/0/CPU0:P6#show mpls traffic-eng fast-reroute database
31    (...)
32    LSP Identifier        Local  Out Intf/        FRR Intf/     Status
33                          Label  Label            Label
34    --------------------- ------ ---------------- ------------- -------
35    172.16.0.44 22 [63]    24049  tt111:24047                    Active

Similar to the previously observed Junos case, you can see traffic being redirected
over the NNHOP bypass LSP, which follows the P6→PE4→P5→P3→P1→P2 path.
You can also observe the flag 0x02 (Local protection in use) being set (line 15) in addi‐
tion to some other flags. And, finally, facility protection is now active on P6 router
(line 35).

Automatic Protection Bypass
Creating bypass LSPs manually, as done so far in this chapter, might be a very chal‐
lenging task. Fortunately, both IOS XR and Junos offer the possibility of automatic
bypass LSP creation, as configured in Example 19-38 and Example 19-39. This is sim‐
ilar to the automatic bypass tunnels for extending LFA coverage discussed in Chap‐
ter 18.

Example 19-38. Automatic bypass tunnel configuration (IOS XR)

group GR-MPLS-TE
 mpls traffic-eng
  interface 'GigabitEthernet.*'
   auto-tunnel backup
end-group
!
ipv4 unnumbered mpls traffic-eng Loopback0
!
mpls traffic-eng
 apply-group GR-MPLS-TE
 auto-tunnel backup
  tunnel-id min 101 max 199

Example 19-39. Automatic bypass tunnel configuration (Junos)

groups {
    GR-RSVP {
        protocols {
            rsvp {
                interface "<*[es]*>" {
                    link-protection;
}}}}}
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protocols {
    rsvp {
        apply-groups GR-RSVP;
}}

In both IOS XR and Junos, you enable automatic bypass tunnel creation on an inter‐
face basis, using the auto-tunnel backup or link-protection keywords, respec‐
tively. RSVP-TE auto tunneling has been already discussed in Chapter 2 and
Chapter 5. Using groups simplifies the configuration of multiple interfaces, and the
regular expression in Example 19-39 matches both Ethernet and SONET interfaces.

In IOS XR, manual and automatic bypass tunnel configuration
cannot coexist on the same interface. In Junos, they can, and man‐
ual bypass tunnel is preferred. If a manual bypass tunnel is not
operational (not configured or configured but in down state),
Junos establishes an automatic bypass tunnel.

Additionally, let’s request node-link protection (refer to Example 19-31 and
Example 19-33) for all regular tunnels and verify the state of the network, as demon‐
strated in Example 19-40.

Example 19-40. Bypass LSPs on PE1 (Junos)

juniper@PE1> show rsvp session | match <pattern>
Ingress RSVP: 7 sessions
To              From            LSPname
172.16.0.1      172.16.0.11     Bypass->10.0.0.3
172.16.0.3      172.16.0.11     Bypass->10.0.0.3->10.0.0.9
172.16.0.22     172.16.0.11     Bypass->10.0.0.1
172.16.0.33     172.16.0.11     Bypass->10.0.0.3->10.0.0.35
Egress RSVP: 6 sessions
To              From            LSPname
172.16.0.11     172.16.0.22     autob_PE2_t101_Gi0_0_0_3
172.16.0.11     172.16.0.33     Bypass->10.0.0.34->10.0.0.2
172.16.0.11     172.16.0.1      Bypass->10.0.0.2
Transit RSVP: 4 sessions
To              From            LSPname
172.16.0.2      172.16.0.22     autob_PE2_t103_Gi0_0_0_2
172.16.0.4      172.16.0.22     autob_PE2_t102_Gi0_0_0_2_172.16.0.2
172.16.0.22     172.16.0.2      autob_P2_t102_Gi0_0_0_2

As you can see, IOS XR and Junos (look at the column labeled From) follow different
naming conventions for automatic bypass tunnels. Let’s review the terminology:

NHOP (link protection) bypass tunnel
Junos: Bypass-><NHOP-LINK-IP>
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For example, the NHOP bypass tunnel started on PE1 to protect traffic forwar‐
ded via PE1→P1 (ge-2/0/2.0, NHOP-LINK-IP = 10.0.0.3) link:

Bypass->10.0.0.3

IOS XR: autob_<S-NODE>_t<ID>_<S-INTF>
For example, the NHOP bypass tunnel started on PE2 to protect traffic forwar‐
ded via PE2→P2 (Gi0/0/0/2, NHOP-LINK-IP = 10.0.0.5) link:

autob_PE2_t103_Gi0_0_0_2

NNHOP (node and link protection) bypass tunnel
Junos: Bypass-><NHOP-LINK-IP>-><NNHOP-LINK-IP>
For example, the NNHOP bypass tunnel started on PE1 to protect traffic forwar‐
ded through P1 node (NHOP-LOOPBACK-IP=172.16.0.1) via PE1→P1→P3
path (ge-2//0/2.0, NHOP-LINK-IP = 10.0.0.3, NNHOP-LINK-IP = 10.0.0.9):

Bypass->10.0.0.3->10.0.0.9

IOS XR: autob_<S-NODE>_t<ID>_<S-INTF>_<NHOP-LOOPBACK-IP>
For example, the NNHOP bypass tunnel started on PE2 to protect traffic forwar‐
ded through P2 node (NHOP-LOOPBACK-IP=172.16.0.2) via PE2→P2→P4
path (Gi0/0/0/2, NHOP-LINK-IP = 10.0.0.5, NNHOP-LINK-IP = 10.0.0.11):

autob_PE2_t102_Gi0_0_0_2_172.16.0.2

It’s noteworthy that the automatic bypass feature generates a single NHOP bypass
tunnel per protected link. However, multiple NNHOP tunnels might be created,
depending on the regular LSPs transiting the NHOP node. If in Figure 19-8 you tem‐
porarily change the metric of the P1-P2 to 200, regular tunnels from PE1 and PE2
will take following paths:

• PE1--->PE2 tunnel: PE1→P1→P2→PE2
• PE1--->PE3 tunnel: PE1→P1→PE3
• PE1--->PE4 tunnel: PE1→P1→P3→P5→PE4
• PE2--->PE1 tunnel: PE2→P2→P1→PE1
• PE2--->PE3 tunnel: PE2→P2→P1→PE3
• PE2--->PE4 tunnel: PE2→P2→P4→P3→P5→PE4

For all three regular tunnels starting from PE1, the NHOP is the same node (P1).
Similarly, for all three regular tunnels starting from PE2, the NHOP is P2. However,
three NNHOP automatic bypass tunnels are created on PE1, because NNHOPs are
different for each regular LSP started from PE1 (NNHOPs are P2, PE3, and P3,
respectively). On PE2, two NNHOP bypass tunnels are required, as two different
NNHOPs are used (P1 and P4). Let’s verify that in the following two examples:
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Example 19-41. NNHOP tunnel status on PE1 (Junos)

juniper@PE1> show rsvp interface ge-2/0/2.0 extensive | match ...
Protection: On, Bypass: 3, LSP: 3, Protected LSP: 3,
                                   Unprotected LSP: 0
  Bypass: Bypass->10.0.0.3->10.0.0.7, State: Up, Type: NP, LSP: 1
  Bypass: Bypass->10.0.0.3->10.0.0.9, State: Up, Type: NP, LSP: 1
  Bypass: Bypass->10.0.0.3->10.0.0.35, State: Up, Type: NP, LSP: 1

juniper@PE1> show route table inet.3 protocol rsvp
(...)
172.16.0.22/32 *[RSVP/7/1] 00:53:08, metric 300
      > to 10.0.0.3 via ge-2/0/2.0, LSP PE1--->PE2
        to 10.0.0.1 via ge-2/0/3.0, LSP Bypass->10.0.0.3->10.0.0.7
172.16.0.33/32 *[RSVP/7/1] 03:16:55, metric 1050
      > to 10.0.0.3 via ge-2/0/2.0, LSP PE1--->PE3
        to 10.0.0.1 via ge-2/0/3.0, LSP Bypass->10.0.0.3->10.0.0.35
172.16.0.44/32 *[RSVP/7/1] 03:16:54, metric 750
      > to 10.0.0.3 via ge-2/0/2.0, LSP PE1--->PE4
        to 10.0.0.1 via ge-2/0/3.0, LSP Bypass->10.0.0.3->10.0.0.9

Example 19-42. NNHOP tunnel status on PE2 (IOS XR)

RP/0/0/CPU0:PE2#show mpls traffic-eng tunnels auto-tunnel
                | include Name
Name: tunnel-te102  Destination: 172.16.0.4   (auto-tunnel backup)
  Signalled-Name: autob_PE2_t102_Gi0_0_0_2_172.16.0.2
Name: tunnel-te104  Destination: 172.16.0.1   (auto-tunnel backup)
  Signalled-Name: autob_PE2_t104_Gi0_0_0_2_172.16.0.2

RP/0/0/CPU0:PE2#show mpls traffic-eng fast-reroute database
Tunnel  Out Intf/        FRR Intf/        Status
        Label            Label
------- ---------------- ---------------- -------
tt11    Gi0/0/0/2:24041  tt104:307984     Ready
tt33    Gi0/0/0/2:24015  tt104:307968     Ready
tt44    Gi0/0/0/2:24014  tt102:24025      Ready

In Junos, you can easily determine for which NNHOP the bypass is established,
because NHOP and NNHOP link addresses are encoded in the bypass tunnel name.
In IOS XR, you need to execute more commands to find that out.

The RSVP-TE facility protection design is now final. All regular tunnels are protected
against transit node and link failures, and appropriate states (primary and backup
next hops) are created on all routers. There is 100% backup coverage for both node
and link failures. Compared to the much more extensive efforts required to achieve
100% backup coverage with LFA, you can see that RSVP-TE is much simpler. You
simply need to enable automatic bypass tunnels, and request node and link protec‐
tion for regular tunnels, and you are done.

774 | Chapter 19: Transit Fast Restoration Based on RSVP-TE



The semantics of the Junos node-link-protection keyword used
in LFA and RSVP-TE facility protection configurations is slightly
different. In LFA, backup next hop is selected only if it fulfills both
node and link-protection criteria. In RSVP-TE facility protection,
the backup next hop that fulfills node-protection criterion is pre‐
ferred, but if not found, the backup next hop that fulfills link pro‐
tection criterion is used. To achieve similar behavior in LFA, you
must additionally use the node-link-degradation keyword.

RSVP-TE One-to-One Protection
Whereas you can consider facility protection a rough equivalent of per-link LFA, you
can view one-to-one protection as a rough equivalent of per-prefix LFA (in the anal‐
ogy, replace prefixes with protected RSVP-TE LSPs). In one-to-one protection, each
eligible regular tunnel is protected independently with separate detour LSPs.

Facility backup uses bypass LSPs, whereas one-to-one backup uses
detour LSPs for protection.

With facility backup, during a failure event, traffic belonging to multiple regular tun‐
nels might be forwarded (tunneled) over a single bypass LSP. In one-to-one backup,
detour LSPs are associated with a single regular tunnel only; thus, traffic on that sin‐
gle tunnel might use its associated detour LSPs during a failure event. The native
merging feature, which will be explained soon, reduces the impact of these detours in
terms of scalability.

You can view one-to-one protection as an extension of the RSVP-TE path protection
concept discussed earlier in this chapter. In path protection, the head-end router cre‐
ates the primary and secondary (standby) LSP and performs switchover to the secon‐
dary LSP upon failure of the primary LSP. The head-end can detect a failure of the
directly connected neighbor relatively fast. However, detecting a failure of transit
nodes used by the primary path farther away from the head-end might take some
time. Thus, switchover to the secondary standby LSP might be delayed, which is a
clear limitation of the path protection scheme.

The one-to-one backup concept overcomes this limitation through automatic cre‐
ation of secondary standby LSPs at each transit node along the primary path. These
secondary standby LSPs are called detour LSPs in one-to-one backup architecture.
Apart from the name itself, another difference is that detour LSPs don’t need to be
completely disjointed from the primary path. It is enough if they are disjointed until
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the NNHOP only, because protection against failure of the NNHOP is handled by the
detour LSP initiated at the next hop. This concept is illustrated in Figure 19-9.

As of this writing, support for one-to-one backup was available in
Junos but not in IOS XR.

Figure 19-9. One-to-one backup with detour LSPs

From a configuration perspective, you simply need to enable one-to-one protection
for each LSP that you want to protect, as demonstrated in Example 19-43.

Before starting this section, all RSVP-TE tunnels (full mesh between PE routers) are
set back to their basic state (single, dynamic path option per tunnel) and all the
facility protection specific configurations removed.

Example 19-43. One-to-one protection configuration (Junos)

protocols {
    mpls {
        label-switched-path PE1--->PE4 {
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            fast-reroute;
}}}

The fast-reroute keyword used in RSVP-TE tunnel configura‐
tions in IOS XR and Junos has completely different meanings. In
IOS XR, it designates specific RSVP-TE tunnels as eligible for
facility (link or node) protection. Exactly the same keyword in
Junos results in enabling one-to-one protection for a specific
RSVP-TE tunnel. Consult Table 19-1 for the terminology used by
RFC 4090. Also check the documentation for both vendors.

The primary LSP for PE1--->PE4 tunnel is established via the shortest path, which is
PE1→P1→P3→P5→PE4. Additionally, the head-end router as well as each transit
(mid-point) router presignal the detour LSPs. Let’s verify, at least on three first nodes
from regular LSP, what paths are selected for these detour LSPs (see Example 19-44).

Example 19-44. Detour LSPs for PE1→PE4 LSP

1     juniper@PE1> show rsvp session name PE1--->PE4 extensive | match ...
2       Detour is Up
3       Detour Explct route: 10.0.0.1 10.0.0.5 10.0.0.11 10.0.0.12
4                            10.0.0.15 10.0.0.29
5       Detour Record route: <self> 10.0.0.1 10.0.0.5 10.0.0.11 10.0.0.12
6                            10.0.0.15 10.0.0.29
7       Detour Label out: 299952
8
9     juniper@P1> show rsvp session name PE1--->PE4 extensive | match ...
10      Detour is Up
11      Detour Explct route: 10.0.0.35 10.0.0.33
12      Detour Record route: 10.0.0.2 <self> 10.0.0.35 10.0.0.33
13      Detour Label out: 299952
14
15    juniper@P3> show rsvp session name PE1--->PE4 extensive | match ...
16      Detour is Up
17      Detour Explct route: 10.0.0.13 10.0.0.17 10.0.0.27
18      Detour Record route: 10.0.0.2 10.0.0.8 <self> 10.0.0.13 10.0.0.17
19                           10.0.0.27
20      Detour Label out: 300224
21    Detour branch from 10.0.0.0, to skip 172.16.0.1, Up
22      Explct route: 10.0.0.15 10.0.0.29
23      Record route: 10.0.0.0 10.0.0.4 10.0.0.10 10.0.0.13 <self>
24                    10.0.0.15 10.0.0.29
25      Label in: 300192, Label out: 300016
26    Detour branch from 10.0.0.15, to skip 172.16.0.44, Up
27      Explct route: 10.0.0.13 10.0.0.17 10.0.0.27
28      Record route: 10.0.0.2 10.0.0.8 10.0.0.14 10.0.0.15 <self>
29                    10.0.0.13 10.0.0.17 10.0.0.27
30      Label in: 300176, Label out: 300224

RSVP-TE One-to-One Protection | 777



The path for the detour LSP is by default the shortest path to the destination (PE4),
which avoids the primary next-hop node (or link to primary next-hop in case of the
penultimate node: P5). That is:

Detour from PE1:
PE1→PE2→P2→P4→P3→P5→PE4 (avoid P1 node, lines 3 through 6 and 21
through 24)

Detour from P1
P1→PE3→PE4 (avoid P3 node, lines 11 and 12)

Detour from P3
P3→P4→P6→PE4 (avoid P5 node, lines 17 and 18)

Detour from P5
P5→P3→P4→P6→PE4 (avoid P5→PE4 link, lines 26 through 29)

As you can see, the detour LSP to skip the NHOP node doesn’t necessarily traverse
the NNHOP node (in case of facility backup with node protection, automatic bypass
LSP always terminates on the NNHOP node). For example, the detour from P1 to
skip node P3 does not traverse P5 (which is the NNHOP node). Put simply, the short‐
est path from P1 to PE4 that avoids P3 is not via P5.

Another observation is the fact that some detour LSPs use (partially) overlapping
paths with another detour LSP or with a primary LSP. For example, the detour LSP
from P3 and the detour LSP from P5 have a common P3→P4→P6→PE4 segment
(lines 18, 19, 28, and 29). Similarly the detour LSP from PE1 shares the P3→P5→PE4
segment with the primary path.

One-to-one backup architecture is clever enough to realize this and merge LSPs (mul‐
tiple detour LSPs or the detour LSP with the primary LSP) to avoid wasting resour‐
ces. When the detour LSP from P3 and the detour LSP from P5 are merged together
in one LSP at P3 (the merge node), P3 uses one single RSVP Path message in the
downstream segment. Indeed, downstream from the merge node, there is only one
label allocated for the two merged LSPs (lines 20 and 30).

To signal detour LSPs and keep track of merged detour LSPs, RFC 4090 introduces an
additional RVSP-TE object: DETOUR object. The DETOUR object is basically a list
of [PLR_ID, Avoid_Node_ID] pairs. Each pair represents a single detour LSP. For
example, [10.0.0.12, 172.16.0.5] represents a detour LSP started at P3 (10.0.0.12) to
avoid P5 (172.16.0.5) node. Let’s see how a single RSVP-TE Path message, captured
on the P4→P6 link, is used for multiple (merged) detour LSPs (from P3, and from
P5).
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Example 19-45. RSVP-TE Path message with DETOUR object

[linux:~/Downloads] juniper% tshark -r rsvp-path-merge.pcap -V
(...)
 Resource ReserVation Protocol (RSVP): PATH Message. SESSION:
   IPv4-LSP, Destination 172.16.0.44, Short Call ID 0,
   Tunnel ID 54692, Ext ID ac10000b. SENDER TEMPLATE: IPv4-LSP,
   Tunnel Source: 172.16.0.11, Short Call ID: 0, LSP ID: 1.
(...)
     DETOUR:
         Length: 20
         Object class: DETOUR object (63)
         C-type: 7
         PLR ID 1: 10.0.0.12
         Avoid Node ID 1: 172.16.0.5
         PLR ID 2: 10.0.0.15
         Avoid Node ID 2: 172.16.0.44
         

Another way to verify the LSP merging operation is to check the MPLS routing
entries for incoming labels of different LSPs that are eligible for merging (in this case,
the primary path, and the detour from PE1).

Example 19-46. Merging operation at merge node P3

1     juniper@P3> show route label 300160 detail | match <pattern>
2     300160 (1 entry, 1 announced)
3            Next hop: 10.0.0.15 via ge-0/0/4.0 weight 0x1, selected
4              Label-switched-path PE1--->PE4
5              Label operation: Swap 300016
6            Next hop: 10.0.0.13 via ge-0/0/2.0 weight 0x4001
7              Label-switched-path PE1--->PE4
8              Label operation: Swap 300224
9
10    juniper@P3> show route label 300192 detail | match <pattern>
11    300192 (1 entry, 1 announced)
12           Next hop: 10.0.0.15 via ge-0/0/4.0 weight 0x1, selected
13             Label-switched-path PE1--->PE4
14             Label-operation: Swap 300016

In Example 19-46, the incoming label 300160 (primary LSP) is swapped to label
300016 (line 5) when sent via ge-0/0/4.0 (primary next hop). At the same time, label
300192 (detour LSP from PE1 to avoid P1) is swapped to label 300016 (line 14), too,
effectively merging two LSPs (primary + detour from PE1) downstream of the P3
node.

Example 19-47 simulates the P3→P5 link failure and performs traceroute to a PE4’s
VPN prefix for verification (again, during this verification the primary path was stati‐
cally fixed using an explicit path option). The VPN label is 16 and remains constant.
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Example 19-47. One-to-one protection in action (Junos)

juniper@PE1> traceroute 192.168.1.44 routing-instance VRF-A
 1  P1 (10.0.0.3)  13.831 ms  7.650 ms  6.315 ms
     MPLS Label=300288 CoS=0 TTL=1 S=0
     MPLS Label=16 CoS=0 TTL=1 S=1
 2  P3 (10.0.0.9)  6.668 ms  5.828 ms  6.962 ms
     MPLS Label=300160 CoS=0 TTL=1 S=0
     MPLS Label=16 CoS=0 TTL=2 S=1
 3  P4 (10.0.0.13)  8.084 ms  5.744 ms  7.895 ms
     MPLS Label=300224 CoS=0 TTL=1 S=0
     MPLS Label=16 CoS=0 TTL=3 S=1
 4  P6 (10.0.0.17)  5.673 ms  6.361 ms  7.924 ms
     MPLS Label=300048 CoS=0 TTL=1 S=0
     MPLS Label=16 CoS=0 TTL=4 S=1
 5 PE4-VRF-A (192.168.1.44) 6.075 ms 6.625 ms 6.421 ms
     

From traceroute, it is obvious that P3 realizes the link failure and uses a backup next
hop (lines 6 and 8 in Example 19-46) to forward the traffic via the P3→P4→P6→PE4
detour LSP. If you compare typical traceroute when facility protection is active
(Example 19-35 and Example 19-37) with traceroute when one-to-one protection is
active, you can spot two major differences:

• Facility protection results in an additional label (bypass LSP) being pushed on
the label stack; thus, the resulting label stack is bigger (increased from two to
three labels in the examples). One-to-one backup, on the other hand, doesn’t
cause label stack increase, because the label action on the backup next hop is
swap (line 8 in Example 19-46) and not swap/push (line 8 in Example 19-24). In
the PHP case, the label action in one-to-one is pop, as compared to swap in
facility protection.

• The path taken by traffic during active protection is typically more optimal with
one-to-one backup, because one-to-one detour LSPs are established over the
shortest post-convergence path to the final destination (avoiding protected
node). In facility backup, on the other hand, the bypass LSPs are established only
to the NHOP or NNHOP node, resulting typically in suboptimal traffic forward‐
ing during failures.

So, which is better: facility backup or one-to-one backup? The answer is: it depends!
One-to-one backup provides more optimal backup paths. Additionally, it has the
ability to spread backup paths of multiple regular LSPs using the same resource (link
and node), because detour LSPs are separate for each regular LSP. Thus, during fail‐
ure, traffic originally flowing along the same (failed) link might be forwarded over
different paths, minimizing the possible likelihood of intermittent congestion. In
facility protection, traffic is forwarded over the same bypass LSP; consequently, inter‐
mittent congestion might occur. Conversely, one-to-one protection results in more
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RSVP-TE states that need to be maintained in the network, because detours are spe‐
cific to each regular LSP. Table 19-2 provides a comparison between the total number
of RSVP sessions (first row: regular + bypass LSPs, second row: regular + detour
LSPs) that need to be maintained at each node using the example topology from this
section. The table assumes full mesh of regular LSPs between PE routers, and the
desire for both node and link protection.

Table 19-2. Comparison of facility protection and one-to-one protection

Type P1 P2 P3 P4 P5 P6 PE1 PE2 PE3 PE4

Facility 13 16 15 16 13 5 13 16 12 18

One to One 19 16 20 19 16 8 16 16 15 23

As more and more regular LSPs are added to the network, the differences might be
greater.

One-to-one protection is especially advantageous in ring topolo‐
gies, for which the suboptimal characteristic of facility backup is
quite remarkable, causing a two-stage U-turn effect. Grab a piece of
paper and a pencil and do the simulation yourself!

Transit Fast-Restoration Summary
A variety of local protection options to minimize traffic loss during transit link or
node failures were discussed in this chapter. Which is the best? Again, the answer is: it
depends. Each of the options has some advantages and disadvantages, and depending
on the focus in the particular deployment, you might choose one or the other. In typi‐
cal deployments, a mixture of protection technologies is used. For example, RSVP-TE
based in the core network, and LFA based in the edge.

Chapter 20 and Chapter 21 discuss additional protection features, this time related to
the failure of the egress PE node or egress PE-CE link.

Transit Fast-Restoration Summary | 781





CHAPTER 20

FIB Optimization for Fast Restoration

In Chapter 18 and Chapter 19, you discovered different ways to protect the traffic in
case of transit node or transit link failure. All the methods are based on preinstalling
a backup next hop in the hardware Forwarding Information Base (HW FIB). Upon
network failure, the primary next hop is removed from the HW FIB and traffic uses
the preinstalled backup next hop. The difference between each method lies in how
the backup next hop is determined and how the backup path is established.

This chapter explores additional FIB optimization techniques that you can implement
on the ingress PE to improve failover convergence. PE nodes typically hold a large
number of service prefixes. A prefix in this context can be a typical L3 VPN prefix,
but it can also be information required to forward traffic using other types of serv‐
ices, such as pseudowires (PWs) signaled by using BGP or LDP. When it comes to
optimization of failover times on the ingress PE, there are two main areas requiring
special attention:

• Optimization of next-hop structures in the hardware FIB
• Preinstallation of the next hop associated with the backup egress PE

These optimization techniques are explored in the next two sections.

Next-Hop Hierarchy
If you go back and reexamine Figure 18-1 carefully, you probably realize that failure
case number 3 is not exactly the same as failure case numbers 5 or 7. Similarly, failure
case number 4 is not quite the same as failure case number 6. What makes failure
cases 3 or 4 different from failure cases 5, 6, or 7? The scale!
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In failure cases 5, 6, and 7, the Point of Local Repair (PLR) is a pure-P router. The
pure-P router typically has a very limited number of prefixes. Only infrastructure
prefixes (loopback and link addresses of MPLS transport infrastructure network) are
present on the P router. Even in very large MPLS transport networks, with several
thousands of nodes, the number of infrastructure prefixes does not exceed 10,000 to
20,000. On PE routers, however, the number of service prefixes can reach several
hundred thousand, if not a million routes in very highly scaled designs.

Why is this scaling difference important from a failover perspective? The local repair
techniques discussed in previous chapters are based on the following:

• Preinstalling both primary and backup next hops in the HW FIB
• Removing primary next hops from the HW FIB after detecting failure

It’s easy to imagine that removing the primary next hops associated with 10,000
routes is much faster than removing the primary next hops associated with one mil‐
lion routes, unless some tricks are in place to ensure that the primary next-hop
removal does not depend on the number of prefixes.

And this trick is actually the hierarchical—that is, not flat—structure of next hops
installed in the HW FIB. In Junos, such hierarchical next-hop structures are called
indirect next hops or chained composite next hops, whereas in IOS XR, you can find the
term Prefix Independent Convergence (PIC) Core to describe this. Whatever term is
used, it is about next-hop hierarchy.

Topology used in Chapter 20 and in Chapter 21
As of this writing, some of the features discussed in Chapter 20 and Chapter 21 are
not implemented on the virtualized x86-based network operating system flavors. For
this reason, we used a physical topology, and because we only had one physical ASR
9000, the topology looked like in Figure 20-1. Fortunately, it was enough to test all the
features.
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Figure 20-1. Chapter 20 and Chapter 21 topology

In the topology shown in Figure 20-1, various MPLS services are implemented. These
are listed in Table 20-1. Configuration of these services is standard, as is discussed in
Chapter 3 and Chapter 6, and so the configurations are not covered in this chapter.
Additionally, in this topology, LDP with basic LFA (without R-LFA) provides the
MPLS transport with local repair style protection.

Table 20-1. Services on egress-protection topology

Service Customer edge (CE) nodes

L3VPN-B CE1-B, CE2-B, CE3-B, CE4-B, CE5-B, CE6-B

L3VPN-C CE1-C, CE2-C, CE3-C, CE4-C, CE5-C, CE6-C

LDP PW 413 CE1-D, CE3-D

LDP PW 424 CE2-D, CE4-D

LDP PW 456 CE5-D (dual-homed), CE6-D (dual-homed)

LDP PW 513 CE1-E, CE3-E

LDP PW 524 CE2-E, CE4-E

LDP PW 556 CE5-E (dual-homed), CE6-E (dual-homed)

BGP L2VPN-F CE1-F (single-homed), CE6-F (dual-homed)

BGP L2VPN-G CE2-G (single-homed), CE6-G (dual-homed)
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Flat Next-Hop Structures
Before discussing hierarchal next-hop structures, let’s first have a look at a simple, flat
FIB next-hop structure without any hierarchy, as depicted in Figure 20-2. Such flat
FIB structures were typically used in the past on some of the older router hardware
platforms.

Figure 20-2 shows some entries in the FIB from the perspective of the PE3 router, all
of them pointing to PE1. You can see three VPN prefixes (loopback of CE1-B, loop‐
back of VRF-B on PE1, and PE1→CE1-B link prefix). Furthermore, you can see FIB
entries corresponding to the LDP-based pseudowire 413 and pseudowire 513 estab‐
lished between PE3 and PE1. The last FIB entry corresponds to the BGP-based
L2VPN-F built between PE1 (attached to single-homed CE1-F) and PE3/PE4
(attached to dual-homed CE6-F). More FIB entries can exist, of course; these are just
some examples.

Now, thanks to LDP with LFA protection, each FIB entry has two next-hops: the pri‐
mary next-hop (with weight 0x0001) and backup next hop (with weight 0xF000). The
primary path to reach PE1 from PE3 is via P1 (via interface ge-2/0/7; path cost: 20),
and the loop-free backup path via P2 (via interface ge-2/0/6; path cost: 22). So far, the
FIB structure still reflects what was previously discussed in Chapter 18 and Chap‐
ter 19.

If the PE3→P1 link (or P1 node) fails, the primary next hop (associated with ge-2/0/7
interface) is removed from the FIB, and traffic continues to flow using the preinstal‐
led backup next hop (associated with ge-2/0/6 interface). How long does it take to
remove the primary next hop from the HW FIB? For these six example prefixes, you
need to remove six next hops, so it is rather quick. However, you can easily imagine
that PE1 doesn’t advertise only six service prefixes (L3VPN, L2VPN, etc.) to PE3; it
might have hundreds of thousands of service prefixes, which is frequently the case in
large-scale designs. Now, how long does it take to remove a few hundred thousand
next hops from HW FIB? Certainly much longer. Thus, despite the quick failure dis‐
covery and the preinstallation of backup next hops in FIB, the recovery time can be
very long.
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Figure 20-2. Legacy flat FIB next-hop structure on PE3 (Junos)
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Indirect Next Hop (Junos)
Here is where designs with hierarchical next-hop structures in the FIB come into
play. Similar to the example of the flat FIB in Figure 20-2, you can see an example of
hierarchical FIB structure on PE3 in Figure 20-3.

Figure 20-3. Hierarchical (indirect next hop) FIB structure on PE3 (Junos)

Flat FIB structures are no longer used or recommended. With
modern routers, the hierarchical FIB is enabled by default, and in
many cases it is not even possible to revert the FIB to a flat next-
hop structure.

Depending on the actual hardware, the indirect next hop might not be enabled by
default. In that case, it must be explicitly enabled, as demonstrated here:

Example 20-1. Indirect next-hop configuration (Junos)

1     routing-options {
2         forwarding-table {
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3             indirect-next-hop;
4     }}

This configuration is not required in MX routers with forwarding engines based on
the Trio architecture. These do not support flat next-hop structures and they have
indirect next-hop enabled by default. Let’s have a quick look at PE3’s next-hop struc‐
ture (Example 20-2).

Example 20-2. Indirect next hop of VRF-B routes advertised PE1→PE3 (Junos)

1     juniper@PE3> show route forwarding-table destination 192.168.2.1/32
2                  extensive | match "Destination|Index: [1-9]|weight"
3     Destination:  192.168.2.1/32
4       Next-hop type: indirect              Index: 1048675  Reference: 6
5       Next-hop type: unilist               Index: 1048674  Reference: 2
6       Next-hop type: Push 17, Push 300048(top) Index: 1579 Reference: 1
7       Next-hop interface: ge-2/0/7.0  Weight: 0x1
8       Next-hop type: Push 17, Push 299872(top) Index: 1580 Reference: 1
9       Next-hop interface: ge-2/0/6.0  Weight: 0xf000
10
11    juniper@PE3> show route forwarding-table destination 192.168.2.11/32
12                 extensive | match "Destination|Index: [1-9]|weight"
13    Destination:  192.168.2.11/32
14      Next-hop type: indirect              Index: 1048675  Reference: 6
15      Next-hop type: unilist               Index: 1048674  Reference: 2
16      Next-hop type: Push 17, Push 300048(top) Index: 1579 Reference: 1
17      Next-hop interface: ge-2/0/7.0  Weight: 0x1
18      Next-hop type: Push 17, Push 299872(top) Index: 1580 Reference: 1
19      Next-hop interface: ge-2/0/6.0  Weight: 0xf000
20
21    juniper@PE3> show route forwarding-table destination 10.2.1.0/31
22                 extensive | match "Destination|Index: [1-9]|weight"
23    Destination:  10.2.1.0/31
24      Next-hop type: indirect              Index: 1048675  Reference: 6
25      Next-hop type: unilist               Index: 1048674  Reference: 2
26      Next-hop type: Push 17, Push 300048(top) Index: 1579 Reference: 1
27      Next-hop interface: ge-2/0/7.0  Weight: 0x1
28      Next-hop type: Push 17, Push 299872(top) Index: 1580 Reference: 1
29      Next-hop interface: ge-2/0/6.0  Weight: 0xf000
30
31    juniper@PE3> request pfe execute target fpc2 command
32                 "show nhdb id 1048675 recursive"
33    GOT: 1048675(Indirect, IPv4, ifl:361:ge-2/0/7.0, pfe-id:0, i-ifl:0:-)
34    GOT:     1048674(Unilist, IPv4, ifl:0:-, pfe-id:0)
35    GOT:         1579(Unicast, IPv4->MPLS, ifl:361:ge-2/0/7.0, pfe-id:0)
36    GOT:         1580(Unicast, IPv4->MPLS, ifl:381:ge-2/0/6.0, pfe-id:0)
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In the title for Example 20-2, “Advertised PE1→PE3” stands for
routes advertised by PE1, installed on PE3’s FIB, and inspected
from PE3. This terminology is used for the remaining examples.

The first three commands (lines 1 through 29) show the PE3 FIB structure for three
VRF-B prefixes injected by PE1. The last command (lines 31 through 36) is the FPC
shell command to display the next-hop hierarchy programmed in the HW FIB itself.
As you can see, three levels of hierarchy are created in the FIB:

• First level: indirect next hop
• Second level: unilist next hop
• Third level: unicast next hop

Each next hop has an ID, which represents a next-hop data structure. You can build
next-hop hierarchy by appropriately linking next hops using the next hop IDs. You
can observe this in lines 31 through 36 back in Example 20-2.

Indirect next hop
Roughly speaking, this is a pseudo next hop representing the BGP protocol next
hop. Because PE1 injects all three mentioned VRF-B prefixes (loopback of CE1-
B, loopback of VRF-B on PE1, and PE1→CE1-B link prefix), the protocol next
hop is a loopback of PE1 for all three prefixes. Thus, these prefixes point to the
same indirect next hop, with ID: 1048675 (Example 20-2, lines 4, 14, and 24). The
indirect next hop points to a real forwarding next hop (e.g., unilist or unicast
next hop).

Unilist next hop
This is simply a container for the list of (possibly multiple) real forwarding next
hops. In Example 20-2, indirect next-hop 1048675 points to unilist next-hop
1048674.

Unicast next hop
This is the final direct physical next hop, containing the outgoing interface and
full encapsulation (e.g., full MPLS label stack) information. In the example, due
to LFA protection, the unilist next hop is a list of the two unicast next hops: pri‐
mary (ID: 1579, weight: 0x1) and backup (ID: 1580, weight: 0xF000). Now, when
failure happens (PE3→P1 link or P1 node fails), removal of only a single next
hop (with ID 1579) fixes the failover for the mentioned three VPN prefixes. In
the case of flat FIB, removal of the three next hops was required. So, with the
hierarchical next-hop structure, you can indeed reduce the number of next hops
that need to be removed upon failure detection. This is good, because it improves
the failover times.
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However, if you check some VPN prefixes in another VRF (VRF-C) or FIB entries for
Layer 2 (L2) services (see Example 20-3), you will realize that they use a separate
next-hop hierarchy, as presented in Figure 20-3.

Example 20-3. Indirect next hop of VRF-C and L2 routes announced PE1→PE3 (Junos)

1     juniper@PE3> show route forwarding-table destination 192.168.3.1/32
2                  extensive | match "Destination|Index: [1-9]|weight"
3     Destination:  192.168.3.1/32
4       Next-hop type: indirect              Index: 1048679  Reference: 6
5       Next-hop type: unilist               Index: 1048678  Reference: 2
6       Next-hop type: Push 18, Push 300048(top) Index: 1583 Reference: 1
7       Next-hop interface: ge-2/0/7.0  Weight: 0x1
8       Next-hop type: Push 18, Push 299872(top) Index: 1584 Reference: 1
9       Next-hop interface: ge-2/0/6.0  Weight: 0xf000
10
11    juniper@PE3> show route forwarding-table ccc ge-2/0/1.4 extensive |
12                 match "Destination|Index: [1-9]|weight"
13    Destination:  ge-2/0/1.4  (CCC)
14      Next-hop type: indirect              Index: 1048622  Reference: 2
15      Next-hop type: unilist               Index: 1048599  Reference: 2
16      Next-hop type: Push 299776, Push 300048(top) Index: 1505 Ref.: 1
17      Next-hop interface: ge-2/0/7.0  Weight: 0x1
18      Next-hop type: Push 299776, Push 299872(top) Index: 1524 Ref.: 1
19      Next-hop interface: ge-2/0/6.0  Weight: 0xf000
20
21    juniper@PE3> show route forwarding-table ccc ge-2/0/1.6 extensive |
22                 match "Destination|Index: [1-9]|weight"
23    Destination:  ge-2/0/1.6  (CCC)
24      Next-hop type: indirect              Index: 1048685  Reference: 2
25      Next-hop type: unilist               Index: 1048684  Reference: 2
26      Next-hop type: Push 800001, Push 300048(top) Index: 1587 Ref.: 1
27      Next-hop interface: ge-2/0/7.0  Weight: 0x1
28      Next-hop type: Push 800001, Push 299872(top) Index: 1589 Ref.: 1
29      Next-hop interface: ge-2/0/6.0  Weight: 0xf000

The problem is that the last level in the next-hop hierarchy contains full encapsula‐
tion, including a full label stack containing the service label. Thus, despite the fact
that the BGP protocol next hop is equal for all service prefixes presented in
Figure 20-3, the FIB creates separate next-hop hierarchy structures for service pre‐
fixes with different service labels.

Therefore, the indirect next hop actually represents the combination of the BGP proto‐
col next hop and the service label. Each protocol next hop plus service label pair
results in separate next-hop hierarchy structures in the FIB. It is also true for L3VPN
prefixes that belong to the same VRF but have different VPN labels. If you look at
Example 20-4 and some of its VRF-B prefixes advertised by the PE2 (IOS XR) router,
you will realize the VPN label (and thus the next-hop hierarchy) are different.
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In this configuration example, PE1 (Junos) is configured with vrf-
table-label, resulting in a single aggregate VPN label per VRF.
PE2 (IOS XR), on the other hand, uses the default label allocation
model (per-prefix for prefixes received from CEs plus per-VRF for
local VRF prefixes). Therefore, the VPN labels for 192.168.2.2/32
(CE2-B loopback) and 192.168.2.22/32 (loopback inside VRF-B on
PE2) are different.

Example 20-4. Indirect next hop of VRF-B routes announced PE2→PE3 (Junos)

1     juniper@PE3> show route forwarding-table destination 192.168.2.2/32
2                  extensive | match "Destination|Index: [1-9]|weight"
3     Destination:  192.168.2.2/32
4       Next-hop type: indirect              Index: 1048732  Reference: 2
5       Next-hop type: unilist               Index: 1048763  Reference: 2
6       Next-hop type: Push 16089, Push 300304(top) Index: 1617 Ref.: 1
7       Next-hop interface: ge-2/0/7.0  Weight: 0x1
8       Next-hop type: Push 16089, Push 300064(top) Index: 1618 Ref.: 1
9       Next-hop interface: ge-2/0/6.0  Weight: 0x1
10
11    juniper@PE3> show route forwarding-table destination 192.168.2.22/32
12                 extensive | match "Destination|Index: [1-9]|weight"
13    Destination:  192.168.2.22/32
14      Next-hop type: indirect              Index: 1048726  Reference: 5
15      Next-hop type: unilist               Index: 1048718  Reference: 2
16      Next-hop type: Push 16088, Push 300304(top) Index: 1612 Ref.: 1
17      Next-hop interface: ge-2/0/7.0  Weight: 0x1
18      Next-hop type: Push 16088, Push 300064(top) Index: 1613 Ref.: 1
19      Next-hop interface: ge-2/0/6.0  Weight: 0x1

The weight (lines 7, 9, 17, and 19) of direct, unicast next hops is equal now (0x1),
because PE3 can reach PE2 via two equal-cost paths: via P1 and via P2 (both with cost
21). Thus, instead of primary/backup next hops, PE3 performs load balancing.

Generally, you can conclude that the indirect next-hop FIB structure can bring opti‐
mization for the following:

• L3VPN prefixes, if per-VRF or per CE (per next hop) label allocation method is
used on the egress PE. Per-VRF allocation method results in a single next-hop
structure for all VPN prefixes from the same VPN received from the egress PE.
Per-CE allocation method results in multiple next-hop structures. However,
because the number of CEs connected to the egress PE is typically less than the
number of prefixes received from the egress PE, it is still better than a per-prefix
label allocation method

• Prefixes from the global routing table (typically Internet prefixes) use the proto‐
col next hop accessible via MPLS transport. This type of traffic does not have a
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service label; as a result, the single next-hop structure can serve all prefixes
reachable over a single egress PE.

However, for other types of deployments (L2 MPLS services, or L3VPNs with per-
prefix label allocation) indirect next hop does not improve restoration times. The
number of next hops that need to be removed during failure event does not change.
Therefore, Junos offers the next generation of hierarchical next-hop structures,
chained composite next hop, to address these issues.

Chained Composite Next Hop (Junos)
The problem with indirect next hop is the service label. The fact that it is imple‐
mented in the last level of next-hop hierarchy breaks entire next-hop hierarchy con‐
cepts. Different service labels advertised by the same egress PE results in completely
separate hierarchical next-hop structures being required in the FIB. Chained compo‐
site next hop removes that obstacle. Service labels are no longer associated with uni‐
cast next hops at the end of the next-hop hierarchy; instead, they are moved to the
very top level of the next-hop hierarchy. Figure 20-4 illustrates this concept.

Figure 20-4. Hierarchical (chained composite next hop) FIB Structure on PE3 (Junos)

Chained composite next hop is disabled by default (except for Ethernet VPN [EVPN]
where it is enabled by default) and must be explicitly enabled for the required address
families, as shown in Example 20-5.
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Example 20-5. Chained composite next hop configuration (Junos)

routing-options {
    forwarding-table {
        chained-composite-next-hop {
            ingress {
                l2vpn;
                l2ckt;
                l3vpn;
}}}}

To completely reinitialize FIB structures, all BGP sessions are drop‐
ped and subsequently reestablished when chained composite next
hop is enabled or disabled.

Let’s verify the states with operational commands for a couple of prefixes from differ‐
ent L3VPNs and other address families (LDP and BGP-based PWs); see
Example 20-6.

Example 20-6. Chained composite next hop of prefixes advertised PE1→PE3 (Junos)

1     juniper@PE3> show route forwarding-table destination 192.168.2.1/32
2                  extensive | match "Destination|Index: [1-9]|weight|Push"
3     Destination:  192.168.2.1/32
4       Next-hop type: composite             Index: 1539     Reference: 6
5       Load Balance Label: Push 17, None
6       Next-hop type: indirect              Index: 1048597  Reference: 3
7       Next-hop type: unilist               Index: 1048646  Reference: 3
8       Next-hop type: Push 300048           Index: 1630     Reference: 1
9       Next-hop interface: ge-2/0/7.0  Weight: 0x1
10      Next-hop type: Push 299872           Index: 1631     Reference: 1
11      Next-hop interface: ge-2/0/6.0  Weight: 0xf000
12
13    juniper@PE3> request pfe execute target fpc2 command
14                 "show nhdb id 1539 recursive"
15    GOT: 1539(Compst, IPv4->MPLS, ifl:0:-, pfe-id:0, comp-fn:Chain)
16    GOT:  1048597(Indirect, IPv4, ifl:361:ge-2/0/7.0, pfe-id:0, i-ifl:0:)
17    GOT:     1048646(Unilist, IPv4, ifl:0:-, pfe-id:0)
18    GOT:       1630(Unicast, IPv4->MPLS, ifl:361:ge-2/0/7.0, pfe-id:0)
19    GOT:       1631(Unicast, IPv4->MPLS, ifl:381:ge-2/0/6.0, pfe-id:0)
20
21    juniper@PE3> show route forwarding-table destination 192.168.3.1/32
22                 extensive | match "Destination|Index: [1-9]|weight|Push"
23    Destination:  192.168.3.1/32
24      Next-hop type: composite             Index: 1591     Reference: 6
25      Load Balance Label: Push 18, None
26      Next-hop type: indirect              Index: 1048597  Reference: 3
27      Next-hop type: unilist               Index: 1048646  Reference: 3
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28      Next-hop type: Push 300048           Index: 1630     Reference: 1
29      Next-hop interface: ge-2/0/7.0  Weight: 0x1
30      Next-hop type: Push 299872           Index: 1631     Reference: 1
31      Next-hop interface: ge-2/0/6.0  Weight: 0xf000
32
33    juniper@PE3> request pfe execute target fpc2 command
34                 "show nhdb id 1591 recursive"
35    GOT: 1591(Compst, IPv4->MPLS, ifl:0:-, pfe-id:0, comp-fn:Chain)
36    GOT:  1048597(Indirect, IPv4, ifl:361:ge-2/0/7.0, pfe-id:0, i-ifl:0:)
37    GOT:     1048646(Unilist, IPv4, ifl:0:-, pfe-id:0)
38    GOT:       1630(Unicast, IPv4->MPLS, ifl:361:ge-2/0/7.0, pfe-id:0)
39    GOT:       1631(Unicast, IPv4->MPLS, ifl:381:ge-2/0/6.0, pfe-id:0)
40
41    juniper@PE3> show route forwarding-table ccc ge-2/0/1.4 extensive |
42                 match "Destination|Index: [1-9]|weight|Push"
43    Destination:  ge-2/0/1.4  (CCC)
44      Next-hop type: composite             Index: 1580     Reference: 2
45      Load Balance Label: Push 299776, None
46      Next-hop type: indirect              Index: 1048736  Reference: 6
47      Next-hop type: unilist               Index: 1048646  Reference: 3
48      Next-hop type: Push 300048           Index: 1630     Reference: 1
49      Next-hop interface: ge-2/0/7.0  Weight: 0x1
50      Next-hop type: Push 299872           Index: 1631     Reference: 1
51      Next-hop interface: ge-2/0/6.0  Weight: 0xf000
52
53    juniper@PE3> request pfe execute target fpc2 command
54                 "show nhdb id 1580 recursive"
55    GOT: 1580(Compst, CCC->MPLS, ifl:0:-, pfe-id:0, comp-fn:Chain)
56    GOT:  1048736(Indirect, IPv4, ifl:361:ge-2/0/7.0, pfe-id:0, i-ifl:0:)
57    GOT:     1048646(Unilist, IPv4, ifl:0:-, pfe-id:0)
58    GOT:       1630(Unicast, IPv4->MPLS, ifl:361:ge-2/0/7.0, pfe-id:0)
59    GOT:       1631(Unicast, IPv4->MPLS, ifl:381:ge-2/0/6.0, pfe-id:0)
60
61    juniper@PE3> show route forwarding-table ccc ge-2/0/1.5 extensive |
62                 match "Destination|Index: [1-9]|weight|Push"
63    Destination:  ge-2/0/1.5  (CCC)
64      Next-hop type: composite             Index: 1583     Reference: 2
65      Load Balance Label: Push 299824, None
66      Next-hop type: indirect              Index: 1048736  Reference: 6
67      Next-hop type: unilist               Index: 1048646  Reference: 3
68      Next-hop type: Push 300048           Index: 1630     Reference: 1
69      Next-hop interface: ge-2/0/7.0  Weight: 0x1
70      Next-hop type: Push 299872           Index: 1631     Reference: 1
71      Next-hop interface: ge-2/0/6.0  Weight: 0xf000
72
73    juniper@PE3> request pfe execute target fpc2 command
74                 "show nhdb id 1583 recursive"
75    GOT: 1583(Compst, CCC->MPLS, ifl:0:-, pfe-id:0, comp-fn:Chain)
76    GOT:  1048736(Indirect, IPv4, ifl:361:ge-2/0/7.0, pfe-id:0, i-ifl:0:)
77    GOT:     1048646(Unilist, IPv4, ifl:0:-, pfe-id:0)
78    GOT:       1630(Unicast, IPv4->MPLS, ifl:361:ge-2/0/7.0, pfe-id:0)
79    GOT:       1631(Unicast, IPv4->MPLS, ifl:381:ge-2/0/6.0, pfe-id:0)
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As you can see, the service label is moved out to the top of the next-hop hierarchy
structure (lines 5, 25, 45, and 65). Furthermore, indirect next hop now represents the
BGP protocol next hop plus address family, because L3VPN (lines 6 and 26) and
L2VPN (lines 46 and 66) services are chained to another different indirect next hop.
But what is even more important, in the case of PE3→P1 link or P1 node failure,
removal of a single next hop (with ID 1630, lines 8, 28, 48, 68) is enough to fix all
nine prefixes presented in Figure 20-4. This is especially important in scaled environ‐
ments, with many hundreds of thousands of service prefixes. The repair action is
really prefix-independent; it now depends only on the number of egress PEs reacha‐
ble via the failed link.

In summary, chained composite next-hop hierarchy contains the following:

Composite next hop
For each service label, the FIB creates a separate composite next hop. This is true,
as well, for L3VPN prefixes belonging to the same VRF but advertised from the
egress PE with different VPN labels.

Indirect next hop
For each egress PE plus address family pair, the FIB creates separate indirect next
hops. Indirect next hops are separate per address family, because packet encapsu‐
lation requirements might be different for each address family. Composite next
hops for service labels from a common address family point to the same indirect
next hop, forming the second level of a next-hop hierarchy.

Unilist next hop
For each egress PE, the FIB creates a single unilist next hop. All indirect next
hops for a specific egress PE point to that unilist next hop. This is the third level
of the next-hop hierarchy, resulting in a single next hop per egress PE, regardless
of service labels and address families advertised by the egress PE.

Unicast next hop
Depending on the topology (load-balancing, protection) multiple direct unicast
next hops might be present.

An additional benefit of using chained composite next-hop structures is more effi‐
cient usage of FIB resources. If you calculate next hops used in the indirect and com‐
posite next-hop schemes (Figure 20-3 and Figure 20-4), you will find that the number
decreased from 20 to 10. Even with such a simple example with very limited number
of prefixes, that difference is an impressive 50%.

Link aggregation (LAG, IEEE 802.3ad) introduces an additional
level in the next-hop hierarchy: the unilist next hop points to (mul‐
tiple) aggregate next hop(s), whereas the aggregate next hop points
to its member links as unicast next hops.
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BGP PIC Core (IOS XR)
BGP PIC Core is the IOS XR term that describes hierarchical next-hop structures
programmed in the HW FIB. In principle, it is similar to the chained composite next-
hop structures discussed earlier on the Junos platform; however, the terminology
used is slightly different.

In IOS XR, hierarchical next-hop structures are enabled by default, therefore no spe‐
cial configuration is required. So, let’s verify the FIB states on PE2 (see Example 20-7).

Example 20-7. BGP PIC next hop for L3VPN routes announced PE4→PE2 (IOS XR)

1     RP/0/RSP0/CPU0:PE2#show cef 172.16.0.44/32 | include "  via|label"
2      via 10.0.0.27, Gi0/0/0/3, 3 dependencies, weight 0, class 0, backup
3       local label 16002      labels imposed {303200}
4     via 10.0.0.5, Gi0/0/0/2, 3 dependencies, weight 0, class 0, protected
5       local label 16002      labels imposed {302576}
6
7     RP/0/RSP0/CPU0:PE2#show cef vrf VRF-B 192.168.2.4/32 |
8                        include "  via|label|path-idx"
9      via 172.16.0.44, 4 dependencies, recursive [flags 0x6000]
10      path-idx 0 NHID 0x0 [0x72747364 0x0]
11       next hop 10.0.0.5/32 Gi0/0/0/2 labels imposed {302576 47}
12
13    RP/0/RSP0/CPU0:PE2# show cef vrf VRF-C 192.168.3.4/32 |
14                        include "  via|label|path-idx"
15     via 172.16.0.44, 4 dependencies, recursive [flags 0x6000]
16      path-idx 0 NHID 0x0 [0x72747364 0x0]
17       next hop 10.0.0.5/32 Gi0/0/0/2 labels imposed {302576 48}
18
19    RP/0/RSP0/CPU0:PE2#show cef vrf VRF-B 192.168.2.4/32 internal
20    (...)
21      label_info:[default [o-label:47 l-label:no-label type:0 (...)
22    (...)
23      [nh:172.16.0.44 ifh:NULLIFHNDL tbl:0xe0000000 (...)
24      [depth:2 flags:[recursive,resolved,ldi-preferred] resolves-via:
25        leaf:MPLS::0[0x71945050]:lsd:16002/0[(...)[0x72747364]
26    (...)
27          frr_nhinfo:[BKUP [type:prefix-backup link:link_MPLS
28            nh:10.0.0.27/32ifhandle:Gi0_0_0_3(0xe005640)
29            main-ifhandle:Gi0_0_0_3(0xe000680) tunid:0][0x72f11df0]
30    (...)
31          frr_nhinfo:[PROT [type:prefix-prot link:link_MPLS
32            nh:10.0.0.5/32ifhandle:Gi0_0_0_2(0xe0056c0)
33            main-ifhandle:Gi0_0_0_2(0xe000680) tunid:0][0x72f1268c]
34    (...)
35        0={
36            label_info:[default [o-label:303200 l-label:16002 (...)
37        1={
38            label_info:[default [o-label:302576 l-label:16002 (...)
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PE2 can reach the PE4 loopback with the primary (lines 4 and 5) and LFA backup
(lines 2 and 3) next hops. However, if you check the FIB entry for some VPN prefixes
resolved via PE4 loopback, you will see only a single next hop (lines 10 and 11, and
lines 16 and 17). At least the index of these next hops (lines 10 and 16) is the same,
indicating that VPN prefixes from different VRFs (with different VPN label; lines 11
and 17) actually share the same FIB next-hop structure.

Missing a backup next hop is mysterious, however. Fortunately, this is just a cosmetic
display issue. If you use the internal knob (line 19) to display FIB structure, you will
get much more information, although some of it can be difficult to understand. By
carefully reviewing this information, you can nonetheless reverse engineer the hier‐
archical FIB structure in IOS XR.

First of all, the outgoing service (VPN) label is at the top of the hierarchy (line 21).
The prefix resolves via the PE4 loopback (line 23) with the BGP protocol next-hop
index (line 25) matching the next-hop index observed previously (line 10 and 16).
Next in the hierarchy you can see two IGP next hops: protected primary next hop
(lines 31 through 33), and backup next hop (lines 27 through 29). Again, each next
hop has an associated next-hop index. Further, you can discover outgoing labels asso‐
ciated with these IGP next hops (lines 36 and 38).

To save a few pages, other VPN prefixes (from VRF-B or VRF-C) reachable via PE4
are not displayed with the internal knob. However, the next-hop structures (next-
hop indexes) are the same for all such prefixes. This confirms that IOS XR builds
hierarchical next-hop FIB structures, as outlined in Figure 20-5.

Figure 20-5. Hierarchical FIB structure for L3VPN on PE2 (IOS XR)

Each element in the hierarchy contains load information (LDI) with instructions
required for proper traffic forwarding.

The next-hop structures for L2 services look similar to the ones for L3 services.
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Example 20-8. PIC Core next hop for L2VPN routes advertised PE4→PE2 (IOS XR)

1     RP/0/RSP0/CPU0:PE2#show l2vpn forwarding interface Gi0/0/0/5.4
2                        hardware ingress location 0/0/CPU0 |
3                        include "State |--|mpls| ldi"
4     Segment 1                Segment 2                            State
5     ------------------------ ------------------------------------ ------
6     Gi0/0/0/5.4              mpls    172.16.0.44                  UP
7       XID: 0xc0008001, bridge: 0, MAC limit: 0, l2vpn ldi index: 0x0054,
8       vc label: 299840,
9
10    RP/0/RSP0/CPU0:PE2#show l2vpn forwarding interface Gi0/0/0/5.6
11                       hardware ingress location 0/0/CPU0 |
12                       include "State |--|mpls| ldi"
13    Segment 1                Segment 2                            State
14    ------------------------ ------------------------------------ ------
15    Gi0/0/0/5.6              mpls    172.16.0.44                  UP
16      XID: 0xc0008018, bridge: 0, MAC limit: 0, l2vpn ldi index: 0x0054,
17      vc label: 800003,

Now, instead of a BGP LDI index, the L2VPN LDI index is the same (lines 7 and 16),
indicating shared a FIB next-hop structure, as illustrated in Figure 20-6.

Figure 20-6. Hierarchical (PIC Core) FIB structure for L2 services on PE2 (IOS XR)

Preinstalled Next Hops to Multiple Egress PEs (PIC Edge)
The previous section focused on the optimization of next-hop structures in FIB. Dur‐
ing failure of upstream links or upstream nodes, the PE needs to remove only a limi‐
ted number of primary next hops from its FIB. The number of primary next hops is
independent from the number of prefixes. It depends only on the number of egress
PEs, thus removal of the primary next hops from the FIB can be executed quite
quickly.

In the previous section, all the examples were based on service prefixes (L3VPN,
L2VPN) reachable via the single egress PE. However, to increase network resiliency,
you can implement services in a redundant way, such that the CE device is dual-
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homed to two PE devices. If you look at Figure 20-1 again, this is the case for CE5-B/
CE5-C and CE6-B/CE6-C. Prefixes belonging to CE5-B are advertised by both PE1
and PE2. PE3, after receiving these prefixes, performs a selection process and chooses
one of them as the best. For example, via PE1, because the IGP cost from PE3 to PE1
is lower than that from PE3 to PE2. Only the best next hop is subsequently installed
in the FIB structures discussed previously. Similarly, the CE5-B prefixes advertised by
PE3 and PE4 arrive to PE2, but PE2 installs only one next hop in its FIB.

Let’s have a look at the RIB and FIB structures on PE3.

Example 20-9. RIB/FIB structures for CE5-B loopback on PE3 (Junos)

juniper@PE3> show route table VRF-B 192.168.2.5/32 active-path
(...)
192.168.2.5/32
     *[BGP/170] 00:08:44, MED 0, localpref 100, from 172.16.0.201
        AS path: ?, validation-state: unverified
      > to 10.0.0.8 via ge-2/0/7.0, Push 17, Push 300448(top)
        to 10.0.0.34 via ge-2/0/6.0, Push 17, Push 300144(top)

juniper@PE3> show route forwarding-table destination 192.168.2.5/32
             extensive | match "Destination|Index: [1-9]|weight|Push"
Destination:  192.168.2.5/32
  Next-hop type: composite             Index: 1572     Reference: 6
  Load Balance Label: Push 17, None
  Next-hop type: indirect              Index: 1048626  Reference: 3
  Next-hop type: unilist               Index: 1048703  Reference: 3
  Next-hop type: Push 300448           Index: 1598     Reference: 1
  Next-hop interface: ge-2/0/7.0  Weight: 0x1
  Next-hop type: Push 300144           Index: 1599     Reference: 1
  Next-hop interface: ge-2/0/6.0  Weight: 0xf000

juniper@PE3> request pfe execute target fpc2 command
             "show nhdb id 1572 recursive"
GOT: 1572(Compst, IPv4->MPLS, ifl:0:-, pfe-id:0, comp-fn:Chain)
GOT:  1048626(Indirect, IPv4, ifl:361:ge-2/0/7.0, pfe-id:0, i-ifl:0:)
GOT:     1048703(Unilist, IPv4, ifl:0:-, pfe-id:0)
GOT:       1598(Unicast, IPv4->MPLS, ifl:361:ge-2/0/7.0, pfe-id:0)
GOT:       1599(Unicast, IPv4->MPLS, ifl:381:ge-2/0/6.0, pfe-id:0)

Likewise, let’s verify that the RIB and FIB structures on PE2 IOS XR look very similar.

Example 20-10. RIB/FIB structures for CE6-B loopback on PE2 (IOS XR)

RP/0/RSP0/CPU0:PE2#show bgp vrf VRF-B 192.168.2.6/32 brief
(...)
   Network            Next Hop          Metric LocPrf Weight Path
Route Distinguisher: 172.16.0.22:102 (default for vrf VRF-B)
* i192.168.2.6/32     172.16.0.33            0    100      0 65506 ?
*>i                   172.16.0.44            0    100      0 65506 ?
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RP/0/RSP0/CPU0:PE2#show route vrf VRF-B 192.168.2.6/32
(...)
Routing entry for 192.168.2.6/32
  Known via "bgp 65000", distance 200, metric 0
  Tag 65506, type internal
  Routing Descriptor Blocks
    172.16.0.44, from 172.16.0.201
      Nexthop in Vrf: "default", Table: "default", IPv4 Unicast,
        Table Id: 0xe0000000
      Route metric is 0
  No advertising protos.

RP/0/RSP0/CPU0:PE2#show cef vrf VRF-B 192.168.2.6/32
192.168.2.6/32, version 99, internal 0x5000001 0x0 (ptr 0x72189714)
 Prefix Len 32, traffic index 0, precedence n/a, priority 3
   via 172.16.0.44, 4 dependencies, recursive [flags 0x6000]
    path-idx 0 NHID 0x0 [0x726d2ca4 0x0]
    recursion-via-/32
    next hop VRF - 'default', table - 0xe0000000
    next hop 172.16.0.44 via 16075/0/21
     next hop 10.0.0.5/32 Gi0/0/0/2 labels imposed {300208 47}

What failover times can you expect during failure of the primary egress PE? Rela‐
tively long ones. Here’s why:

IGP convergence
The ingress PE must realize the failure of the primary egress PE. Typically, this is
done by IGP. Upon primary egress PE failure, the IGP removes the primary
egress PE loopback from the IGP database and the corresponding RIB and FIB
structures on the ingress PE. IGP convergence is typically a few hundred milli‐
seconds, and potentially, up to seconds in very large IGP domains.

BGP convergence
This time factor is more critical. After realizing primary egress PE failure, the
ingress PE must remove indirect (recursive) next hops associated with the pri‐
mary egress PE and then install a new, indirect (recursive) next hop associated
with the backup egress PE. Again, this can take time. In highly scaled environ‐
ments, it could take as long as several seconds.

How can you improve this? By preinstalling the next-hop structures associated with
backup egress PE in the FIB. This concept has different flavors:

Active/Standby
Both next hops (toward primary and backup egress PE) are installed in the FIB.
The next hop associated with the primary egress PE is used actively for forward‐
ing, whereas the next hop associated with the backup egress PE is used only after
detection of primary egress PE failure and the removal of primary egress PE next
hop from the FIB. IOS XR calls this feature BGP PIC Edge Unipath; for Junos, it’s
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simply BGP PIC Edge. However, Junos uses protect core (not protect edge) to
configure this feature.

Active/Active
Both next hops (toward primary and backup egress PE) are installed in the FIB, if
the BGP path selection considers both BGP updates (from primary and backup
egress PE) as equal. This applies to IGP cost toward primary and backup egress
PE, as well, which must be equal. The router actively uses both next hops for traf‐
fic forwarding, effectively performing load-balancing toward the primary and
backup egress PE. IOS XR calls this feature BGP PIC Edge Multipath, whereas
Junos calls it simply VPN Multipath. Optionally, both IOS XR and Junos support
unequal-cost multipath, wherein IGP cost to the egress PE is not taken into
account by the BGP path selection process.

Active/Standby Next Hops to Egress PEs
Let’s first configure Active/Standby next-hops to egress PEs (see Examples
Example 20-11 and Example 20-12).

Example 20-11. Configuration of Active/Standby next hops to egress PEs on IOS XR

route-policy PL-BGP-BACKUP-PATH
  set path-selection backup 1 install
end-policy
!
router bgp 65000
 vrf VRF-B
  address-family ipv4 unicast
   additional-paths selection route-policy PL-BGP-BACKUP-PATH

Example 20-12. Configuration of Active/Standby next hops to egress PEs on Junos

routing-instances {
    VRF-B {
        routing-options {
            protect core;
}}}

By examining the following FIB next-hop structures, you can confirm that indeed
both Junos and IOS XR installed a backup next hop pointing to a backup egress PE in
the FIB.

Example 20-13. FIB structures for CE5-B loopback on PE3 (Junos)

1     juniper@PE3> show route forwarding-table destination 192.168.2.5/32
2                  extensive | match "Destination|Index: [1-9]|weight|Push"
3     Destination:  192.168.2.5/32
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4       Next-hop type: unilist               Index: 1048685  Reference: 1
5       Next-hop type: composite             Index: 1554     Reference: 6
6       Load Balance Label: Push 17, None
7       Next-hop type: indirect              Index: 1048623  Reference: 3
8                                         Weight: 0x1
9       Next-hop type: unilist               Index: 1048703  Reference: 3
10      Next-hop type: Push 300448           Index: 1598     Reference: 1
11      Next-hop interface: ge-2/0/7.0    Weight: 0x1
12      Next-hop type: Push 300144           Index: 1599     Reference: 1
13      Next-hop interface: ge-2/0/6.0    Weight: 0xf000
14      Next-hop type: composite             Index: 1582     Reference: 2
15      Load Balance Label: Push 16101, None
16      Next-hop type: indirect              Index: 1048621  Reference: 8
17                                        Weight: 0x4000
18      Next-hop type: unilist               Index: 1048707  Reference: 3
19      Next-hop type: Push 300464           Index: 1664     Reference: 1
20      Next-hop interface: ge-2/0/7.0    Weight: 0x1
21      Next-hop type: Push 300160           Index: 1665     Reference: 1
22      Next-hop interface: ge-2/0/6.0    Weight: 0x1
23
24    juniper@PE3> request pfe execute target fpc2 command
25                 "show nhdb id 1048685 recursive"
26    GOT: 1048685(Unilist, IPv4, ifl:0:-, pfe-id:0)
27    GOT:   1554(Compst, IPv4->MPLS, ifl:0:-, pfe-id:0, comp-fn:Chain)
28    GOT:     1048623(Indirect, IPv4, ifl:361:ge-2/0/7.0, pfe-id:0)
29    GOT:       1048703(Unilist, IPv4, ifl:0:-, pfe-id:0)
30    GOT:         1598(Unicast, IPv4->MPLS, ifl:361:ge-2/0/7.0, pfe-id:0)
31    GOT:         1599(Unicast, IPv4->MPLS, ifl:381:ge-2/0/6.0, pfe-id:0)
32    GOT:   1582(Compst, IPv4->MPLS, ifl:0:-, pfe-id:0, comp-fn:Chain)
33    GOT:      1048621(Indirect, IPv4, ifl:361:ge-2/0/6.0, pfe-id:0)
34    GOT:        1048707(Unilist, IPv4, ifl:0:-, pfe-id:0)
35    GOT:          1664(Unicast, IPv4->MPLS, ifl:361:ge-2/0/7.0, pfe-id:0)
36    GOT:          1665(Unicast, IPv4->MPLS, ifl:381:ge-2/0/6.0, pfe-id:0)

Example 20-14. FIB structures for CE6-B loopback on PE2 (IOS XR)

1     RP/0/RSP0/CPU0:PE2#show route vrf VRF-B 192.168.2.6/32 | include from
2         172.16.0.33, from 172.16.0.201, BGP backup path
3         172.16.0.44, from 172.16.0.201
4
5     RP/0/RSP0/CPU0:PE2#show cef vrf VRF-B 192.168.2.6/32 |
6                        include "  via|label|path-idx"
7     (...)
8        via 172.16.0.33, 5 dependencies, recursive, backup [flags 0x6100]
9         path-idx 0 NHID 0x0 [0x726d2d10 0x0]
10         next hop 10.0.0.27/32 Gi0/0/0/3 labels imposed {300432 37}
11         next hop 10.0.0.5/32 Gi0/0/0/2 labels imposed {300128 37}
12       via 172.16.0.44, 6 dependencies, recursive [flags 0x6000]
13        path-idx 1 NHID 0x0 [0x72747364 0x0]
14        next hop 10.0.0.5/32 Gi0/0/0/2 labels imposed {302576 47} 

Let’s use Figure 20-7 to interpret the next-hop structures displayed in Example 20-13.
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Figure 20-7. FIB structures with Active/Standby egress PE next hops on PE3 (Junos)

In the case of Junos (Example 20-13), you can see the hierarchical next-hop hierarchy
with five levels (lines 24 through 36). Junos differentiates between the primary (lines
7, 8, and 28) and the backup (lines 16, 17, and 33) egress PE with different weights
(0x0001 versus 0x4000). Furthermore, different weights are applied to the final, direct
unicast next hops (0x0001 + 0xF000 versus 0x0001 + 0x0001). Thus, traffic to the pri‐
mary egress PE (PE1, IGP cost PE3→PE1=20) uses only one link (the second link is
simply backup) and—after failure of PE1—traffic to the backup egress PE (PE2, IGP
cost PE3→PE2=21) is load-balanced. This is correct, and reflects the IGP metrics
used in the topology.

IOS XR (see Example 20-14 and Figure 20-8) behaves in a similar way in principle.
However, as already discussed in the BGP PIC Core section, Cisco Express Forward‐
ing (CEF) for VRF prefixes does not display backup LFA next hops. You need to use
the internal knob with the show cef vrf command to see the full picture (it is
omitted here, though, to save space).
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Figure 20-8. FIB structures with Active/Standby egress PE next hops on PE2 (IOS XR)

Active/Active Next Hops to Egress PEs
You can deploy Active/Active next hops to egress PEs in two variants, as mentioned
earlier: equal-cost and unequal-cost. From a configuration perspective, multipath
must be enabled in the respective VRFs, in both IOS XR and Junos, as presented next.

Example 20-15. Configuration of Active/Active next hops to egress PEs on IOS XR

router bgp 65000
  vrf VRF-C
    address-family ipv4 unicast
      maximum-paths ibgp 4 unequal-cost   !! unequal-cost optional

Example 20-16. Configuration of Active/Active next hops to egress PEs on Junos

routing-instances {
    VRF-C {
        routing-options {
            multipath {
                vpn-unequal-cost;          ## vpn-unequal-cost optional
}}}}

For multipath to work, the BGP selection process must consider
BGP updates received from two egress PEs as equal. Specifically, if
mixed Junos and IOS XR–based PEs are used, the values of MED
and ORIGIN attributes must be unified (the same values advertised
by both vendors’ PEs), because the default values are different.
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Outputs of the verification commands as well as the hierarchical next-hop structures
are very similar to those presented in the previous section (see Examples
Example 20-13 and Example 20-14). In Junos, the difference is simply in the weights
of indirect next hops (the weight is now 0x0000 for both the indirect next hops),
which results in load-balancing of traffic toward two egress PEs. In IOS XR, both
paths are marked as bgp-multipath instead of one path being marked as backup—
again resulting in load-balancing toward the two egress PEs. Let’s see that.

Example 20-17. FIB structures for CE5-C loopback on PE3 (Junos)

juniper@PE3> show route forwarding-table destination 192.168.3.5/32
             extensive | match "Destination|Index: [1-9]|weight|Push"
(...)
  Next-hop type: indirect              Index: 1048623  Reference: 3
                                    Weight: 0x0
(...)
  Next-hop type: indirect              Index: 1048621  Reference: 8
                                    Weight: 0x0
(...)

Example 20-18. FIB structures for CE6-C loopback on PE2 (IOS XR)

RP/0/RSP0/CPU0:PE2#show cef vrf VRF-C 192.168.3.6/32 |
                   include recursive
   via 172.16.0.33, 6 dependencies, recursive, bgp-multipath
   via 172.16.0.44, 6 dependencies, recursive, bgp-multipath

When Active/Active and Active/Standby mode are configured
together, both Junos and IOS XR try first to install multiple next
hops in Active/Active mode if possible. For example, if Active/
Active mode with equal-cost multipath is configured but IGP cost
to egress PEs is not equal, the Active/Standby mode is used.

The traceroutes shown in Example 20-19 and Example 20-20 confirm that in VPN-B
(configured for Active/Standby) no load-balancing between the two egress PEs takes
place, whereas in VPN-C (configured for Active/Active) traffic is load-balanced
toward the two egress PEs:

Example 20-19. Traceroute with Active/Standby next hops to egress PEs

juniper@CE5-B> traceroute 192.168.2.6
traceroute to 192.168.2.6 (192.168.2.6), 30 hops max, 40 byte packets
 1  PE2-VRF-B (10.2.5.2)  1.123 ms  0.827 ms  0.847 ms
 2  P1 (10.0.0.5)  0.690 ms  0.688 ms P2 (10.0.0.27)  1.011 ms
     MPLS Label=300496 CoS=0 TTL=1 S=0
     MPLS Label=37 CoS=0 TTL=1 S=1
 3  PE3-VRF-B (192.168.2.33)  0.715 ms  0.618 ms  0.595 ms
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 4  CE6-B (10.2.6.6)  1.415 ms *  1.554 ms

RP/0/RSP0/CPU0:CE6-B#traceroute 192.168.2.5
 1  10.2.6.3 0 msec
    10.2.6.4 0 msec  0 msec
 2  10.0.0.8 [MPLS: Labels 300544/16099 Exp 0] 0 msec  0 msec
    10.0.0.10 0 msec
 3  10.0.0.4 [MPLS: Label 16099 Exp 0] 0 msec  0 msec     ## PE2
    10.0.0.26 0 msec                                      ## PE2
 4  192.168.2.5 0 msec  0 msec  0 msec

Example 20-20. Traceroute with Active/Active next hops to egress PEs

juniper@CE5-C> traceroute 192.168.3.6
traceroute to 192.168.3.6 (192.168.3.6), 30 hops max, 40 byte packets
 1  PE2-VRF-C (10.3.5.2)  1.366 ms  0.864 ms  1.316 ms
 2  P1 (10.0.0.5)  0.722 ms  0.630 ms P2 (10.0.0.27)  0.645 ms
     MPLS Label=300496 CoS=0 TTL=1 S=0
     MPLS Label=48 CoS=0 TTL=1 S=1
 3  192.168.3.44  0.633 ms  0.602 ms 192.168.3.33  0.645 ms
 4  CE6-C (10.3.6.6)  1.568 ms *  1.462 ms

RP/0/RSP0/CPU0:CE6-C#traceroute 192.168.3.5
 1  10.3.6.3 1 msec
    10.3.6.4 0 msec  0 msec
 2  10.0.0.10 [MPLS: Labels 300288/16102 Exp 0] 0 msec
    10.0.0.32 0 msec
    10.0.0.8 0 msec
 3  10.0.0.26 [MPLS: Label 16102 Exp 0] 0 msec  0 msec     ## PE2
    192.168.3.11 0 msec                                    ## PE1
 4  192.168.3.5 0 msec  0 msec  0 msec

BGP Best External Failover
Installing next hops to multiple egress PEs (in Active/Active or Active/Standby
mode) requires, obviously, that the ingress PE has information about the prefix from
these egress PEs. If, for whatever reason, the ingress PE has updates from the single
egress PE, the multiple next hops are not possible.

Now, if you want to deploy the PE3/PE4 router pair in primary/backup fashion, you
can, for example, increase local preference for prefixes advertised by PE3 so that pre‐
fixes from PE3 are preferred over prefixes from PE4. However, when you verify the
routing state in ingress PE, you will realize that the ingress PE (e.g., PE2) no longer
has information from the backup egress PE (PE4).

Example 20-21. RIB entry for CE6-B loopback on PE2 (IOS XR)

RP/0/RSP0/CPU0:PE2#show route vrf VRF-B 192.168.2.6/32 | include from
    172.16.0.33, from 172.16.0.201
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If you compare the current RIB state (Example 20-21), with the RIB state observed
previously (lines 1 through 3 in Example 20-14), you will clearly see the missing
information from PE4. So, what happened? Well, let’s check the states on PE4.

Example 20-22. RIB entry for CE6-B loopback on PE4 (Junos)

1     juniper@PE4> show route table VRF-B 192.168.2.6/32 detail |
2                  match "Pref|reason|Protocol next hop|Source"
3          *BGP    Preference: 170/-201
4                  Source: 172.16.0.201
5                  Protocol next hop: 172.16.0.33
6                  Localpref: 200
7           BGP    Preference: 170/-201
8                  Source: 172.16.0.202
9                  Protocol next hop: 172.16.0.33
10                 Inactive reason: Not Best in its group - Update source
11                 Localpref: 200
12          BGP    Preference: 170/-101
13                 Source: 10.2.6.6
14                 Inactive reason: Local Preference
15                 Localpref: 100

PE4 receives updates about the CE6-B loopback from three sources, including two
updates from the route reflectors (lines 3 through 11), which are reflecting the origi‐
nal update from PE3. It is visible from the protocol next hop, which is the PE3 loop‐
back (lines 5 and 9). These two updates are in principle the same, only the update
sources (lines 4 and 8) are different (RR1 and RR2). The third update (lines 12
through 15) is received directly from CE6-B (line 13).

Now, as discussed previously, the configuration for PE3 is temporarily changed so
that PE3 advertises the updates with the higher (200) local preference (lines 5 and
10), whereas CE6-B updates inherits the default (100) local preference (line 15).
Therefore, the update from PE3 (reflected by two Route Reflectors [RRs]) is preferred
over the update received directly from CE6-B (line 14). Consequently, PE4 does not
use the update from CE6-B for routing or forwarding—this update remains inactive.

This is the problem. The update from CE6-B is inactive on PE4, therefore PE4 does
not send this update to the RRs, and thus PE2 does not receive updates from PE4. So,
PE2 cannot install the second next hop in its FIB, as PE2 is not even aware that CE6-
B connects not only to PE3, but also to PE4.

Such a scenario is very typical in real deployments, not only in L3VPN designs, but in
plain Internet designs as well. Service providers or big enterprises receive Internet
feeds over multiple Internet gateways (egress PEs). If the Internet gateways are con‐
figured in primary/backup fashion, only prefixes from primary Internet gateways are
visible to the rest of the network, preventing the BGP PIC Edge from functioning.
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Now, what can you do? You can implement a slight modification to the BGP behavior,
as described in draft-ietf-idr-best-external. In principle, with this small modification,
BGP advertises the best external route, even when that external route is not active; for
example, when a BGP internal route is better. This modification does not only allow
proper functionality for the BGP PIC Edge in primary/backup PE deployments, it
also helps to reduce interdomain churn (Section 9 of the Draft) and persistent IGP
route oscillation (Section 10 of the Draft).

Therefore, let’s enable this feature on all PEs, including PE4.

Example 20-23. Advertise best external path configuration on Junos

protocols {
    bgp {
        group IBGP-RR {
            advertise-external;
}}}

Example 20-24. Advertise best external path configuration on IOS XR

router bgp 65000
 address-family vpnv4 unicast
  advertise best-external

After these configuration changes, nothing changes on PE4 from a forwarding per‐
spective: the update from CE6-B is still inactive. However, PE4 starts to advertise this
inactive update toward the route reflectors, so it arrives at PE1 and PE2, making pre-
installation of the backup next hop possible.

Example 20-25. RIB entry for CE6-B loopback on PE2 (IOS XR)

RP/0/RSP0/CPU0:PE2#show route vrf VRF-B 192.168.2.6/32 | include from
    172.16.0.33, from 172.16.0.201
    172.16.0.44, from 172.16.0.201, BGP backup path

Understanding the next-hop structures is a great preparation for the next chapter,
which focuses on the egress protection feature set.
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CHAPTER 21

Egress Service Fast Restoration

During failure of a primary egress PE, preinstallation of the next hop associated with
the backup egress PE reduces the failover time from seconds to a few hundred milli‐
seconds. BGP convergence is no longer the contributing factor, because the second
BGP next hop is preinstalled in the FIB.

However, IGP convergence still contributes to the overall failover time, because the
ingress PE must discover failure of the primary egress PE to remove the associated
next hop from the FIB. To reduce the detection time to less than a few hundred milli‐
seconds (IGP convergence), you could deploy next-hop tracking or BGP session liv‐
eness detection mechanisms (using, for example, multihop Bidirectional Forwarding
Detection [BFD]) with very aggressive timers. Very aggressive timers on multihop
BFD sessions are, however, a questionable solution from a deployment (scaling) per‐
spective, especially in large-scale networks, where a large number of such BFD ses‐
sions would be required.

So, what can you do? The answer is to move the duty of fixing the problem from the
ingress PE (which is potentially far away from egress PE) to the network node closest
to the egress PE. If the network node (let’s call it Point of Local Repair [PLR]) directly
connects to the egress PE, a failure of the egress PE can be discovered very quickly,
without the need for IGP convergence. Upon failure of the primary egress PE, the
PLR node redirects the traffic. Therefore, traffic is locally repaired (redirected by the
PLR), and the ingress PE has time to detect the primary egress PE failure and make
changes in its FIB next-hop structures.

Service Mirroring Protection Concepts
At first sight, the concept of service mirroring protection seems to be easy enough,
but there are some challenges that must be solved:
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How does the PLR know to which node traffic should be redirected?
The PLR is a typical P node, without any knowledge about VPN prefixes or VPN
labels. Thus, based on VPN prefixes or VPN labels, the PLR is not able to cor‐
rectly determine the proper node to which the traffic should be redirected.

How does the backup egress PE handle traffic originally destined to the primary
egress PE?

Even assuming that the traffic is somehow redirected and eventually arrives at
the proper backup egress PE, how can such traffic be handled at the backup
egress PE? When simply redirecting the traffic, the VPN label of the packets
arriving to the backup egress PE is assigned by the primary egress PE. Each label
has local significance, so label X assigned by the primary egress PE can have a
completely different meaning than label X assigned by the backup egress PE. If
the now-redirected packet with label X arrives at the backup egress PE, it might
be dropped (the backup egress PE didn’t allocated label X at all), or it might be
forwarded to wrong destination.

To solve the first problem, both the primary egress PE and node where the traffic is
redirected to advertise a shared anycast IP address. This is conceptually similar to
anycast rendezvous points in multicast deployments, where the same IP address is
injected into IGP by multiple routers acting as rendezvous points. When PLR detects
the failure of the primary egress PE, using simple local-repair techniques (LFA or
RSVP-TE facility backup), traffic can be redirected because the IP address is the
same.

To solve the second problem, the primary egress PE and backup egress PE must send
(via a direct BGP session or using a BGP Route Reflector [RR]) their VPN bindings
(prefix plus label) to the node where the traffic is redirected to by the PLR. This node
protects the primary egress PE by translating VPN labels allocated by the primary
egress PE to the corresponding VPN labels allocated by the backup egress PE; there‐
fore, this node is called the protector in the overall concept. Because the protector
node can protect multiple primary egress PEs, the RIB/FIB structures required for
VPN label translation are created separately for each protected primary egress PE.
They are built in the context of the anycast IP address mentioned previously; conse‐
quently, this IP address is called context ID.

The entire concept is often called service mirroring because the primary egress PE
mirrors its VPN information to the protector node. It introduces the following net‐
work functions and uses the following terminology:

Ingress PE node
The ingress PE node receives the traffic from the locally connected VPN site,
encapsulates the traffic by using the VRF–specific MPLS label stack, and sends it
to the egress PE using context-ID anycast IP address.
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Primary egress PE node
The primary egress PE is a node that normally receives VPN traffic flows des‐
tined to a multihomed (connected to primary and backup egress PE) VPN site. If
the ingress PE performs load-balancing toward multiple egress PEs (this is the
Active/Active next hops to egress PEs model discussed in Chapter 20), it means
some of the flows are sent toward one egress PE, whereas the other flows are sent
toward the second egress PE. From the egress protection (service mirroring)
architecture perspective, the definition of primary egress PE is bound to actual
traffic flow.

Backup egress PE node
 The backup egress PE is a node that normally does not receive VPN traffic flows
destined to a multihomed (connected to primary and backup egress PE) VPN
site. Again, in the case of load-balancing performed by the ingress PE, the defini‐
tion of backup egress PE is bound to actual flow. Assuming perfect load-
balancing, for 50% of the flows, the first egress PE is the primary egress, whereas
the second egress PE is the backup egress. For the remaining 50% of flows, it is
just the opposite: the second egress PE is the primary egress, whereas the first
egress PE is the backup egress.

PLR node
This is the node directly connected to the primary egress PE. Upon failure detec‐
tion of the primary egress PE (or link toward the primary egress PE), the PLR
redirects the traffic toward the protector node. Redirection uses local-repair tech‐
niques (LFA or RSVP-TE facility protection), thus failover is very fast (~50 ms).

Protector node
This is the node accepting traffic redirected by the PLR and performing the VPN
label translation on received VPN packets. It translates the VPN label allocated
by the primary egress PE to the VPN label allocated by the backup egress PE, and
then sends the packet with translated VPN label to the backup egress PE. There‐
fore, the protector must receive appropriate BGP VPN updates from the primary
and backup egress PE nodes.

Context-ID
This is the anycast IP address advertised by the primary egress PE and the pro‐
tector node. Characteristics (e.g., IGP metric) of the anycast IP address adver‐
tised by the primary egress PE are better than those advertised by the protector
node. Thus, normally the traffic is routed through the network toward the pri‐
mary egress PE. The primary egress PE uses this anycast IP address as the BGP
protocol next hop in outbound BGP updates for NLRIs requiring egress protec‐
tion. The protector advertises the same anycast IP address in order to attract the
traffic in case of primary egress PE failure.
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This concept is described in draft-minto-2547-egress-node-fast-protection and illustra‐
ted in Figure 21-1.

Figure 21-1. Egress protection (service mirroring) topology—combined protector/backup
egress PE model

You can deploy egress protection (service mirroring) by using two major architec‐
tural models:

Combined protector/backup egress PE model
In the combined model, the protector function and the backup egress PE func‐
tions are combined on a single node. Thus, in this model no real translation of
VPN labels is required, because the traffic redirected by the PLR to the combined
protector/backup egress PE node can be immediately sent to the directly attached
multihomed VPN site. However, forwarding of redirected traffic must be based
on the VPN labels allocated by the primary egress PE.

Separate (centralized) protector and backup egress PE model
In the centralized protector model, the function of the backup egress PE and the
protector are implemented on physically separate nodes. Such a deployment
model creates the opportunity to implement egress protection (service mirror‐
ing) architecture without any specific support required on the PE nodes. VPN
label translation, demanding some sort of support in hardware, is implemented
exclusively on the dedicated protector node (or nodes). PEs are standard PEs
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without any knowledge about egress protection (service mirroring); they simply
receive VPN packets with their own VPN labels.

Figure 21-1 shows the combined protector/backup egress PE model only (the central‐
ized protector model is discussed later in this chapter). Traffic flows from right (CE3,
CE4, CE6) to left (CE5), flowing normally through the primary egress PE (PE2), are
protected by PE1 acting as a combined protector/backup egress PE.

As of this writing, IOS XR does not support the protector function
in the overall service mirroring architecture. All other node types
used in service mirroring architecture (ingress PE, primary egress
PE, backup egress PE, PLR) are supported on IOS XR.

Combined Protector/Backup Egress PE Model
Let’s begin this model discussion with the combined protector/backup egress PE
model. In this model, PE3 and PE4 are ingress PEs, PE2 (IOS XR) is deployed as the
primary egress PE, whereas PE1 is used as the combined protector/backup egress PE.
On PE2 (primary egress PE), the following modifications are required:

• BGP VPN NLRI updates advertised by PE2 have MED=0 (lower than on PE1) to
ensure that PE2 is the primary egress PE.

• The BGP protocol next hop for these updates is changed by the outbound policy
to the secondary address (172.17.0.22) of the loopback interface. This IP address
is the context-ID anycast address as mentioned previously.

• The secondary address of the loopback interface is injected into IS-IS (with met‐
ric 0) and LDP (with implicit null label).

Example 21-1 summarizes these small configuration changes required on PE2.

Example 21-1. Primary egress PE configuration on PE2 (IOS XR)

interface Loopback0
 ipv4 address 172.17.0.22 255.255.255.255 secondary
!
route-policy PL-BGP-UP-VPN-EXP
  set next-hop 172.17.0.22
  done
end-policy
!
router bgp 65000
neighbor-group RR
  address-family vpnv4 unicast
   route-policy PL-BGP-UP-VPN-EXP out
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Now, PE1 must act as the combined protector/backup egress PE. This results in the
following:

• BGP VPN NLRI updates advertised by PE1 have MED=1000 (higher than on
PE2), to ensure that the PE1 is backup egress PE

• The BGP protocol next hop remains the default (primary address of loopback
interface)

• The protector context-ID (172.17.0.22—the same IP address as used on the pri‐
mary egress PE) must be defined and injected into IS-IS with high metric (default
is 224-2=16777214) and into LDP (with real, and not implicit null label).

• The BGP sessions toward the RRs are enabled to support egress-protection for
the IPv4-VPN address family.

Again, here are the changes required on the combined protector/backup egress PE.

Example 21-2. Combined protector/backup egress PE configuration at PE1 (Junos)

protocols {
    mpls {
        egress-protection {
            context-identifier 172.17.0.22 protector;
        }
    }
    bgp {
        group IBGP-RR {
            family inet-vpn unicast {
                egress-protection;
}}}}
policy-options {
    policy-statement PL-VRF-B-EXP {  ## policy for other VRFs similar
        then {
            metric 1000;             ## higher than on PE2
            origin incomplete;       ## the same as on PE2
            community add RT-VPN-B;
            accept;
}}}
routing-instances {
    VRF-B {
        vrf-export PL-VRF-B-EXP;     ## other VRFs similar
}}

The context-ID IP address (172.17.0.22/32) is now originated by
PE1 and PE2. Thus, on Junos PLR routers (P1 and P2), LFA must
be prepared to handle protection of the prefixes originated by mul‐
tiple routers. You must enable the per-prefix-calculation, as
described in Chapter 18.
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After implementing the configuration changes, let’s verify the states in the network.

Example 21-3. IS-IS and LDP states for PE2 context-ID

1     RP/0/RSP0/CPU0:PE2#show isis database detail
2     (...)
3     PE1.00-00      0x0000006c   0xf808        479             0/0/0
4       Metric: 16777214   IP-Extended 172.17.0.22/32
5     (...)
6     PE2.00-00    * 0x00000097   0xaa59        883             0/0/0
7       Metric: 0          IP-Extended 172.17.0.22/32
8
9     RP/0/RSP0/CPU0:PE2#show mpls ldp bindings 172.17.0.22/32
10    172.17.0.22/32, rev 4
11            Local binding: label: ImpNull
12            Remote bindings: (5 peers)
13                Peer                Label
14                -----------------   ---------
15                172.16.0.1:0        300000
16                172.16.0.2:0        300176
17                172.16.0.11:0       332576
18                172.16.0.33:0       300192
19                172.16.0.44:0       300032

Verification confirms that the primary egress PE (PE2) advertises the context-ID IP
address with a low IGP metric (line 7) and an implicit null label (line 11). The protec‐
tor (PE1), on the other hand, advertises the same context-ID IP address with a high
IGP metric (line 4) and a real label (line 17). Apart from configuring the protector
context-ID on PE1, no special configuration is required to achieve this behavior.

The requirements for different IGP metrics are easy to understand: the ingress PEs
(PE3 and PE4) should prefer PE2 to reach 172.17.0.22, because in our design PE2 is
the primary egress PE. But why does the protector (PE1) advertise a real LDP label,
instead of advertising an implicit null, as the primary egress PE (PE2) does?

Let’s try to verify routing states on the path from an ingress PE, (e.g., PE3) to reach
the loopback of CE5-B (see Example 21-4).

Example 21-4. RIB/FIB states on the path from PE3 (ingress PE) to PE1 (protector)

juniper@PE3> show route forwarding-table destination 192.168.2.5/32
             extensive | match "Destination|Index: [1-9]|weight|Push"
Destination:  192.168.2.5/32
  Next-hop type: composite             Index: 1978     Reference: 2
  Load Balance Label: Push 16108, None
  Next-hop type: indirect              Index: 1048717  Reference: 8
  Next-hop type: unilist               Index: 1048657  Reference: 2
  Next-hop type: Push 300800           Index: 1974     Reference: 1
  Next-hop interface: ge-2/0/7.0  Weight: 0x1
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  Next-hop type: Push 300112           Index: 1912     Reference: 1
  Next-hop interface: ge-2/0/2.0  Weight: 0xf000

juniper@P1> show route label 300800
(...)
299952(S=0)        *[LDP/9] 02:34:57, metric 1
                    > to 10.0.0.26 via ge-2/0/3.0, Pop
                      to 10.0.0.2 via ge-2/0/2.0, Swap 332576

The FIB state observed on PE3 is standard, as already discussed in Chapter 18 and
Chapter 20. PE3 sends packets with a label stack (16108, 300800) via P1 (the primary
next hop to reach 172.17.0.22 used as a BGP next hop) or with a label stack (16108,
300112) via PE4 (the backup LFA next hop to reach 172.17.0.22). When the packet
arrives at P1, the top label is removed and the packet is sent via direct link to PE2 (the
primary next hop to reach 172.17.0.22), or the top label is swapped and the packet is
sent via direct link to PE1 (the backup LFA next hop to reach 172.17.0.22). Thus,
when PE2 (the primary PE) fails, P1 redirects the traffic to PE1 (the protector/backup
PE) very quickly—based on local repair.

Now, as mentioned earlier, when redirected packets arrive to PE1 (the protector/
backup egress PE), they need to be forwarded to the local CE devices based on VPN
labels allocated by PE2 (the primary egress PE). P1, which performs redirection, does
not alter the VPN label in any way, so the PE2 allocated VPN label is still in the MPLS
header of packets redirected to PE1. To achieve that, PE1 needs to do the following:

• Realize that packets arriving from the MPLS core require special treatment,
because they are not normal VPN packets, but packets originally destined to PE2
which are just redirected by P1 to PE1.

• Use VPN labels allocated by another PE (PE2) for traffic forwarding.

To achieve the desired functionality, the protector/backup egress PE creates multi‐
level, multifamily (MPLS and IP) RIB structures, as illustrated in Figure 21-2 as well
as the subsequent outputs from several Junos operational commands shown in
Example 21-5.

Figure 21-2. RIB structures on combined protector/backup egress PE node—PE1 (Junos)
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Example 21-5. RIB structures on combined protector/backup egress PE node—PE1
(Junos)

1     juniper@PE1> show route table mpls.0 label 332576
2     (...)
3     332576(S=0)        *[LDP/0] 00:07:58
4                           to table __172.17.0.22__.mpls.0
5
6     juniper@PE1> show route table __172.17.0.22__.mpls.0
7     (...)
8     16106              *[Egress-Protection/170] 19:42:05
9                           to table __172.17.0.22-VRF-B__.inet.0
10    16107              *[Egress-Protection/170] 19:42:05
11                          to table __172.17.0.22-VRF-B__.inet.0
12    16108              *[Egress-Protection/170] 19:42:05
13                          to table __172.17.0.22-VRF-B__.inet.0
14    16109              *[Egress-Protection/170] 19:42:05
15                          to table __172.17.0.22-VRF-C__.inet.0
16    16110              *[Egress-Protection/170] 19:42:05
17                          to table __172.17.0.22-VRF-C__.inet.0
18    16111              *[Egress-Protection/170] 19:42:05
19                          to table __172.17.0.22-VRF-C__.inet.0
20
21    juniper@PE1> show route table __172.17.0.22-VRF-B__.inet.0
22    (...)
23    10.2.5.0/24        *[Egress-Protection/170] 19:43:09
24                          to table VRF-B.inet.0
25    192.168.2.5/32     *[Egress-Protection/170] 19:43:09
26                        > to 10.2.5.5 via ge-2/0/5.2
27
28    juniper@PE1> show route table __172.17.0.22-VRF-C__.inet.0
29    (...)
30    10.3.5.0/24        *[Egress-Protection/170] 19:43:15
31                          to table VRF-C.inet.0
32    192.168.3.5/32     *[Egress-Protection/170] 19:43:15
33                        > to 10.3.5.5 via ge-2/0/5.3

First, you can see that the label allocated to the protector context-ID is a real label
(lines 1 through 4 in Example 21-5, and line 17 from Example 21-3). A real label (and
not an implicit null label) is required. Otherwise, PE1 is not able to determine that
the arriving packet requires some special treatment. Therefore, for every configured
protector context-ID, the protector generates a separate (real) label. In this example,
PE1 is configured with the single protector context-ID, but in more complex scenar‐
ios, you can configure multiple protector context-IDs. There are some examples of
those later in the chapter.

The (real) protector context-ID label is installed in mpls.0 table and points to an aux‐
iliary table called __172.17.0.22__.mpls.0. Therefore, when packets with the label
332576 arrive at PE1, PE1 removes (pops) the label and performs a next lookup in
this auxiliary table. But what is this table? This table collects all VPN labels allocated
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by the primary PE. Accordingly, this auxiliary table is called the context label table. If
you compare lines 6 through 19 in Example 21-5 with those from Example 21-6, you
will see the similarities.

Example 21-6. VPN labels of VRF-B and VRF-C routes received from PE2

1     juniper@RR1> show route receive-protocol bgp 172.16.0.22
2                  community target:65000:100[23] detail | match "VPN Label"
3          VPN Label: 16106
4          VPN Label: 16106
5          VPN Label: 16107
6          VPN Label: 16108
7          VPN Label: 16106
8          VPN Label: 16109
9          VPN Label: 16109
10         VPN Label: 16110
11         VPN Label: 16111
12         VPN Label: 16109

And that is the reason why the protector node allocates real (not implicit null) labels
when advertising protector context-IDs in LDP. Based on this real label, the protector
is able to determine that the packet needs special treatment, and performs a second
lookup in the context label table, where labels from the primary egress PE are collec‐
ted. How is this table built? It is based on received BGP NLRIs with the BGP protocol
next hop equal to the configured protector context-ID. Because the example’s primary
egress PE (PE2) uses 172.17.0.22 as a next hop (Example 21-1), the protector (PE1)
collects VPN labels of received VPN prefixes with the next hop 172.17.0.22 (protector
context-ID) and uses these VPN labels to build a context label table for 172.17.0.22
context-ID.

Entries in the context label table (__172.17.0.22__.mpls.0) point to (multiple)
context-ID/VRF specific IP auxiliary tables: __172.17.0.22-VRF-B__.inet.0 and
__172.17.0.22-VRF-C__.inet.0. These auxiliary tables are still built based on IP
VPN prefixes received from the primary egress PE. However, as opposed to the case
with the context label table, the backup egress PE only installs the prefix in the IP
auxiliary table if there is a match between the IP VPN prefix received from the pri‐
mary egress PE, and the prefix in the local VRF. In this particular case, for example,
PE1 installs only two prefixes in each IP auxiliary table (lines 21 through 33 in
Example 21-5). What are these two prefixes? They are the loopback of the dual-
homed CE5-B (or CE5-C) and the shared LAN prefix for PE1-PE2 connectivity
inside VRF-B and VRF-C. Other prefixes advertised by PE2 (e.g., the loopback of
CE2-B: 192.168.2.2/32) are not used by PE1 to populate the IP auxiliary tables. Put
simply, they cannot be used to protect traffic destined to such prefixes, because PE1 is
not connected to the CEs advertising these prefixes. In other words, there is no multi‐
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homed CE advertising 192.168.2.2/32 and connected to both the primary egress PE
(PE2) and the protector/backup egress PE (PE1).

If you carefully examine the content of the IP auxiliary tables, you should realize that
for some prefixes (the loopbacks of directly connected dual-homed CEs) the entry
points directly to the outgoing interface. So, this is the final lookup. For some other
prefixes (shared LAN prefixes connecting PE1, PE2, and dual-homed CE), the entry
points to the next table, which this time is the VRF table presented normally on the
(backup) egress PE. Why this difference? If the final destination, including L2 encap‐
sulation (destination MAC address) can be unambiguously determined from the pre‐
fix, the IP auxiliary table contains all this information, so no further lookup is needed.
If, however, it is not the case (e.g., on 10.2.5.0/24 subnet there could potentially be
254 hosts, each host with a different MAC address, so it is not possible to associate
the single destination MAC with the 10.2.5.0/24 prefix), the packet is handed over
(next lookup) to normal VRF for further processing. In normal VRF, all features
required for packet forwarding are available; for example, ARP machinery for LAN
segments to determine the MAC address.

The protector function in service mirroring architectures require
multilevel (up to four levels), multiprotocol (MPLS and IP), lookup
implementation in the hardware FIB (HW FIB). This functionality
is natively available in Junos in those hardware platforms based on
the Trio architecture (all types of MPC line cards for MX Series
router). In other Junos platforms, a virtual tunnel (VT) interface
implemented in the Packet Forwarding Engine (PFE) is required
on routers acting as the protector node.

You are almost done with your first egress protection (service mirroring) design.
There is, however, one issue that requires more attention. If you go back to the con‐
figuration of the primary egress PE (Example 21-1), you’ll see that for all VPN pre‐
fixes the next hop is changed to 172.17.0.22. Is this a correct design? What happens to
traffic destined to single-homed CEs (e.g., CE2-B) during network failure events?

For the purpose of the discussion, let’s temporarily disable the PE2-P1 and PE2-P2
links so that PE2 is reachable only via PE1. Therefore, all traffic from the MPLS core
destined for PE2 must flow over PE1. Now let’s check how you can reach the loop‐
back of CE2-B from PE3.

Example 21-7. RIB states on the path from PE3 (ingress PE) to PE1 (protector)

1     juniper@PE3> show route 192.168.2.2/32 table VRF-B active-path
2     (...)
3     192.168.2.2/32
4          *[BGP/170] 02:18:52, MED 101, localpref 100, from 172.16.0.201
5             AS path: ?, validation-state: unverified
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6           > to 10.0.0.8 via ge-2/0/7.0, Push 16107, Push 300800(top)
7             to 10.0.0.13 via ge-2/0/2.0, Push 16107, Push 300112(top)
8
9     juniper@P1> show route label 300800
10    (...)
11    300800 (S=0)       *[LDP/9] 00:00:32, metric 21
12                        > to 10.0.0.2 via ge-2/0/2.0, Swap 332576
13

PE3 attaches a standard label stack with two labels: VPN label 16107 (allocated by
primary PE—PE2) and transport LDP label 300800. Subsequently, PE3 sends the
packet toward P1. This time on P1, however, there is only one outgoing interface
pointing toward PE1, because due to the previously disabled links, PE2 is reachable
only via PE1. P1 uses the same label (332576), as discussed previously, when forward‐
ing the traffic toward PE1.

And what happens now to the traffic, when traffic arrives at PE1? If you go back to
the previous discussion (lines 1 through 4 in Example 21-5), you will realize that the
traffic is intercepted by PE1. It is not forwarded to PE2. What does that mean? It
means that the traffic is blackholed. Why? As discussed previously, PE1 installs label
16107 (used by PE2 for the loopback of CE2-B) in its context label table (lines 10 and
11 in Example 21-5). But PE1 does not install the loopback of CE2-B in its auxiliary
IP table (lines 21 through 26 in Example 21-5). It basically means, the third lookup
does not provide any results, and thus traffic is blackholed.

How can you prepare the design to defend the network against such failure scenarios?
You change the next hop to context-ID (secondary loopback address) with caution,
and only for prefixes advertised by multihomed CEs connected to both primary and
protector/egress PE nodes. All other prefixes should use the standard next hop (the
primary loopback address). In such a way, if traffic associated with the standard next
hop flows through the protector node, the protector node will not intercept it. The
protector node will simply forward the traffic toward the primary egress PE.

So, let’s slightly modify the configuration (Example 21-1) on the primary egress PE to
that shown in Example 21-8.

Example 21-8. Route-policies to support service mirroring on PE2 (IOS XR)

1     vrf VRF-B
2      address-family ipv4 unicast
3       export route-policy PL-VRF-B-EXP        ## other VRFs similar
4     !
5     community-set CM-MULTI-HOMED
6       65000:41201
7     end-set
8     !
9     route-policy PL-VRF-B-EXP           ## policy for other VRFs similar
10      if destination in (192.168.2.5/32, 10.2.5.0/24) then
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11        set community CM-MULTI-HOMED
12      endif
13      done
14    end-policy
15    !
16    route-policy PL-BGP-UP-VPN-EXP
17      if community matches-any CM-MULTI-HOMED then
18        set next-hop 172.17.0.22
19        delete community in CM-MULTI-HOMED
20        done
21      endif
22      done
23    end-policy

The configuration basically marks multihomed prefixes with a community (lines 5
through 7) using an extra VRF export policy (lines 9 through 14) in an affected VRF
(line 3). Then, it modifies the BGP export policy already defined in Example 21-1 to
ensure that only multihomed prefixes have their next hop changed to the secondary
loopback address (lines 17 through 21). All other VPN prefixes are advertised
without next hop modification (line 22), which results in the primary loopback
address being used as the BGP next hop.

With this small modification, the protector node, as verified by the outputs presented
in Example 21-9, no longer intercepts traffic destined to single-homed prefixes.

Example 21-9. RIB states on the path from PE3 (ingress PE) to PE2

1     juniper@PE3> show route 192.168.2.2/32 table VRF-B active-path
2     (...)
3     192.168.2.2/32
4          *[BGP/170] 00:23:17, MED 101, localpref 100, from 172.16.0.201
5             AS path: ?, validation-state: unverified
6           > to 10.0.0.8 via ge-2/0/7.0, Push 16107, Push 300880(top)
7             to 10.0.0.13 via ge-2/0/2.0, Push 16107, Push 300144(top)
8
9     juniper@PE3> show route 192.168.2.5/32 table VRF-B active-path
10    (...)
11    192.168.2.5/32
12         *[BGP/170] 00:23:42, MED 0, localpref 100, from 172.16.0.201
13            AS path: ?, validation-state: unverified
14          > to 10.0.0.8 via ge-2/0/7.0, Push 16108, Push 300800(top)
15            to 10.0.0.13 via ge-2/0/2.0, Push 16108, Push 300112(top)
16
17    juniper@P1> show route label 300880
18    (...)
19    300880(S=0)        *[LDP/9] 07:30:39, metric 20
20                        > to 10.0.0.2 via ge-2/0/2.0, Swap 332752
21
22    juniper@PE1> show route label 332752
23    (...)
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24    332752(S=0)        *[LDP/9] 07:30:49, metric 10
25                        > to 10.0.0.1 via ge-2/0/4.0, Pop

PE3 uses a different LDP transport label to reach the single-homed prefix (loopback
of CE2-B) and the multihomed prefix (loopback of CE5-B): 300880 (line 6) versus
300800 (line 14). This should be obvious, because the BGP protocol next hop adver‐
tised for these prefixes by PE2 is now different: 172.16.0.22 versus 172.17.0.22. Lines
17 through 25 confirm that P1 and PE1 simply forward the traffic to PE2 by perform‐
ing standard label operations: swap (P1, line 20) and pop (PE1, line 25). Therefore
packets arrive at PE2 with a single VPN label and can be forwarded without any
problems to the single-homed CE.

Separate (Centralized) Protector and Backup Egress
PE Model
The previous section discussed, in detail, the egress protection (service mirroring)
model, wherein the protector function and the backup egress PE function was imple‐
mented on the same node (PE1). This is not always the case, so let’s quickly discuss a
deployment model in which these two functions are implemented on different physi‐
cal nodes, as shown in Figure 21-3.

Figure 21-3. Egress protection (service mirroring) topology—centralized protector model
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In this scenario, flows from the left side (CE1, CE2, and CE5) to the right side (CE6)
are protected by a separate protector node: PR. Both ingress PEs (PE1 and PE2) per‐
form load-balancing (Active/Active next hops to egress PEs) toward both egress PEs
(PE3 and PE4). Therefore, for approximately half of the CE6-bound flows, PE3 is the
primary egress PE, whereas PE4 is the backup egress PE. For the remaining half of
the flows, it’s just the opposite: PE3 is the backup egress PE, whereas PE4 is the pri‐
mary egress PE. Figure 21-3 shows an example flow from PE2 to PE4 only. Both
egress PEs inject their context-IDs (172.17.0.33 and 172.17.0.44, respectively) with a
low (equal to 1) IGP metric and with an LDP implicit null label. The PR node is now
a separate protector node performing translation of VPN labels from the primary
egress PE to VPN labels allocated by the backup egress PE.

Let’s begin with the configuration adjustments on the PE routers (Example 21-10).

Example 21-10. Primary egress PE configuration on PE3 (Junos)

1     protocols {
2         mpls {
3             egress-protection {
4                 context-identifier 172.17.0.33 primary;
5             }
6         }
7         bgp {
8             group IBGP-RR {
9                 family inet-vpn {
10                    unicast {
11                        egress-protection;
12                    }
13                }
14                export PL-BGP-SET-CONTEXT-ID;
15                vpn-apply-export;
16    }}}
17    policy-options {
18        policy-statement PL-BGP-SET-CONTEXT-ID {
19            term MULTI-HOMED {
20                from tag2 41201;
21                then {
22                    next-hop 172.17.0.33;
23                    accept;
24                }
25            }
26        }
27        policy-statement PL-VRF-B-EXP { ## similar policy for other VRFs
28            term MULTI-HOMED {
29                from interface ge-2/0/5.2;
30                then tag2 41201;
31            }
32            then {
33                community add RT-VPN-B;
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34                accept;
35            }
36        }
37        community RT-VPN-B members target:65000:1002;
38    }
39    routing-instances {
40        VRF-B {
41            vrf-export PL-VRF-B-EXP;    ## other VRFs similar
42    }}

First, the context-ID must be specified. One option is to specify the primary context-
ID in the protocols mpls section (lines 2 through 6). With this option, the specified
context-ID is automatically advertised via IGP and LDP. Another viable option is to
specify the primary context-ID as the secondary loopback address—in a similar way
as was presented in Example 21-1 for IOS XR.

Next, you must enable egress protection functionality in BGP (line 11). At this con‐
figuration level, you can also specify the context-ID address (set protocols bgp
group IBGP-RR family inet-vpn unicast egress-protection context-

identifier 172.17.0.33). However, this is not advisable, if you have single-homed
and multihomed CEs connected to the PE. This command results in the BGP proto‐
col next hop being automatically changed to the context-ID for all VPN prefixes. As
discussed previously, changing the BGP protocol next hop for single-homed prefixes
might lead to traffic blackholing in certain situations.

Thus, you will manipulate the next hop only for multihomed prefixes. One option is
to use a special community, in a similar way as discussed in Example 21-8. Another
option is to use the interim tag2 parameter instead of the community. In this way,
you don’t need to remove the community (like in Example 21-8, line 19), because
tag2 has local significance only—it is not advertised to routing peers. So, you select
multihomed prefixes—the simplest way is to use the interface as selection criteria
(line 29) in the VRF export policy. All prefixes reachable via the interface connected
to the multihomed CE will be marked with some tag2 value (line 30). You don’t need
to know exactly what the prefixes are, just the interface. Next, on the BGP export pol‐
icy (line 14), you change next hop to context-ID for tagged prefixes only (lines 22),
while keeping the default next hop for other prefixes. The vpn-apply-export param‐
eter (line 15), discussed in Chapter 3, is required to ensure that the BGP export policy
affects VPN prefixes, as well.

The protector node PR configuration requires special attention. There are no local
VRFs on the PR (PR is not backup egress PE). Therefore, you need to specify a route
policy that will be the basis for egress protection (service mirroring) RIB/FIB struc‐
tures. The PR builds the RIB/FIB translation table only for VPN prefixes matching
the route policy. For scaling, you could, for example, designate the PR as the protec‐
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tor for VPN-B and VPN-C (as in the configuration shown in Example 21-11), while
designating some other router as the protector for other VPNs.

Example 21-11. Separate (centralized) protector configuration on PR (Junos)

1     protocols {
2         mpls {
3             egress-protection {
4                 context-identifier 172.17.0.33 {
5                     protector;
6                 }
7                 context-identifier 172.17.0.44 {
8                     protector;
9                 }
10            }
11        }
12        bgp {
13            group IBGP-RR {         ## group towards route reflectors
14                family inet-vpn {
15                    unicast {
16                        egress-protection {
17                            keep-import PL-BGP-EGRESS-PROTECTION-RT;
18    }}}}}}
19    policy-options {           ## protection for VPN-B and VPN-C only
20        policy-statement PL-BGP-EGRESS-PROTECTION-RT {
21            from community [ RT-VPN-B RT-VPN-C ];
22            then accept;
23        }
24        community RT-VPN-B members target:65000:1002;
25        community RT-VPN-C members target:65000:1003;
26    }

One additional important problem is the configuration of the BGP RR. Or, in general,
the configuration of BGP peers sending VPN prefixes to the protector node, if the
route reflector design is not used. If constrained route distribution (RFC 4364) is in
place (as is discussed in Chapter 3), BGP peers will not send anything to the protector
node. Why? Because on pure protector nodes, VRFs are not configured. Therefore
the protector node does not advertise toward BGP peers any Route Targets (RTs)
inside the RT address family. Thus, based on the constrained route distribution
operational model, these BGP peers (RRs) do not advertise any VPN routes to the
protector node.

If, on the other hand, the route-target address family is not configured between the
protector node and the BGP peers (RRs), these BGP peers send the full VPN table.
Whereas the first case prevents proper operation of the protector node (no VPN pre‐
fixes received), the second case is not optimal, either. Therefore, let’s configure static
RT constraints on the RRs (protector’s BGP peers) in order to send to the protector
only those VPN prefixes with specific RTs—as required by the protector.
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Example 21-12. Static RT constraint configuration on RR (Junos)

1     protocols {
2         bgp {
3             group IBGP-CLIENTS {
4                 neighbor 172.16.0.10 family inet-vpn unicast;   ## PR
5     }}}}
6     routing-options {
7         rib bgp.rtarget.0 {
8             static {          ## matches 65000:1002 and 65000:1003 only
9                 route-target-filter 65000:1002/63 neighbor 172.16.0.10;
10    }}}

OK, the configuration is complete; let’s verify network operation (see Example 21-13).

Example 21-13. RIB/FIB states on egress and ingress PE, and PLR

1     juniper@PE3> show route advertising-protocol bgp 172.16.0.201 table V
2
3     VRF-B.inet.0: 18 destinations, 38 routes (18 active, 0 holddown)
4       Prefix              Nexthop          MED     Lclpref    AS path
5     * 10.2.3.0/31         Self                     100        I
6     * 10.2.6.0/24         172.17.0.33              100        I
7     * 192.168.2.3/32      Self             100     100        I
8     * 192.168.2.6/32      172.17.0.33      0       100        65506 ?
9     * 192.168.2.33/32     Self                     100        I
10
11    VRF-C.inet.0: 18 destinations, 40 routes (18 active, 0 holddown)
12      Prefix              Nexthop          MED     Lclpref    AS path
13    * 10.3.3.0/31         Self                     100        I
14    * 10.3.6.0/24         172.17.0.33              100        I
15    * 192.168.3.3/32      Self             100     100        I
16    * 192.168.3.6/32      172.17.0.33      0       100        65506 ?
17    * 192.168.3.33/32     Self                     100        I
18
19    RP/0/RSP0/CPU0:PE2#show cef vrf VRF-B 192.168.2.3/32 | include ...
20       via 172.16.0.33, 4 dependencies, recursive [flags 0x6000]
21         next hop 10.0.0.27/32 Gi/0/0/0/3 labels imposed {301040 37}
22
23    RP/0/RSP0/CPU0:PE2#show cef vrf VRF-B 192.168.2.6/32 | include ...
24       via 172.17.0.33, 3 dependencies, recursive, bgp-multipath (...)
25         next hop 10.0.0.27/32 Gi/0/0/0/3 labels imposed {300624 37}
26       via 172.17.0.44, 3 dependencies, recursive, bgp-multipath (...)
27         next hop 10.0.0.5/32 Gi/0/0/0/2 labels imposed {300288 47}
28
29    juniper@P1> show route label 301040 detail | find ... | match ...
30    301040(S=0) (1 entry, 1 announced)
31                Next hop: 10.0.0.9 via ge-2/0/7.0 weight 0x1, selected
32                Label operation: Pop
33
34    juniper@P1> show route label 300624 detail | find ... | match ...
35    300624(S=0) (1 entry, 1 announced)
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36                Next hop: 10.0.0.9 via ge-2/0/7.0 weight 0x1, selected
37                Label operation: Pop
38                Next hop: 10.0.0.37 via ge-2/0/8.0 weight 0xf000
39                Label operation: Swap 299808
40
41    juniper@P2> show route label 300288 detail | find ... | match ...
42    300288(S=0) (1 entry, 1 announced)
43                Next hop: 10.0.0.11 via ge-2/0/7.0 weight 0x1, selected
44                Label operation: Pop
45                Next hop: 10.0.0.39 via ge-2/0/8.0 weight 0xf000
46                Label operation: Swap 299824

You can see that the egress PE routers (e.g., PE3) advertise multihomed prefixes with
the BGP protocol next hop set to the context-ID (172.17.0.33, in the case of PE3),
while using standard next hop (self, which is the address where the BGP session ter‐
minates: the primary loopback address) for all other prefixes (lines 1 through 17). On
the ingress PE (e.g., PE2) the FIB entry confirms that a different BGP protocol next
hop is used (line 20 versus lines 24 and 26), and consequently, a different transport
label is used, too (line 21 versus lines 25 and 27). For multihomed prefixes, PE2 load-
balances the traffic, because PE2 deploys Active/Active next hops to egress PEs.

On the PLR router (e.g., P1) you can see that the label associated with the primary
loopback address of PE3 (lines 20 and 21) is not protected by the LFA backup (lines
29 through 32). Given the network topology (Figure 21-3), this is obvious: there is no
loop-free backup path to reach PE3 from P1. You could eventually deploy some more
advanced LFA techniques (Remote LFA [RLFA], Topology-Independent Fast
ReRoute [TI-FRR]), as discussed in Chapter 18, to enhance backup coverage here.

What is important from this chapter’s perspective, however, is the forwarding state
for the label associated with the context-ID of PE3. Lines 38 and 39 show that in the
case of PE3 failure, P1 will redirect the traffic to the protector node PR performing
label swap operation. You can spot similar behavior on P2, with regard to the failure
of PE4 (lines 45 and 46).

You can perform similar investigations for other prefixes (e.g., prefixes from VRF-C)
as well as from the perspective of another ingress PE (PE1). In all cases, upon failure
detection of the directly connected egress PE router, PLR routers (P1 and P2) redirect
the traffic destined to the context-ID of PE3 or PE4 toward the PR node based on the
preinstalled LFA backup next hop.

And now, it is the task of the PR router to perform VPN label translation and send
the traffic to another (not failed) egress PE—the backup egress PE router in service
mirroring architecture. So, let’s check how it is performed now (see Example 21-14).
First, verify if the PR receives the proper NLRIs from the RR. As you remember, you
are designing the network to protect traffic only for VRF-B and VRF-C, so you made
a configuration (Example 21-12) to ensure that the RR only sends VPN prefixes for
these two VPNs to the PR.
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Example 21-14. VPN prefix propagation between RR and PR

1     juniper@RR1> show route table bgp.rtarget.0
2     (...)
3     65000:65000:1002/95
4                        *[RTarget/5] 2d 18:20:10
5                           Type Static
6                             for 172.16.0.10            ## PR loopback
7                           Local
8
9     juniper@RR1> show route summary table bgp.l3vpn.0
10    (...)
11    bgp.l3vpn.0: 55 destinations, 55 routes (55 active, 0 holddown)
12                     BGP:     55 routes,     55 active
13
14    juniper@RR1> show bgp neighbor 172.16.0.10 | match <pattern>
15      Table bgp.l3vpn.0 Bit: 20001
16        Advertised prefixes:          40
17      Table bgp.l2vpn.0 Bit: 30001
18        Advertised prefixes:          0
19
20    juniper@RR1> show route advertising-protocol bgp 172.16.0.10
21                 extensive | match target:65000:1002 | count
22    Count: 20 lines
23
24    juniper@RR1> show route advertising-protocol bgp 172.16.0.10
25                 extensive | match target:65000:1003 | count
26    Count: 20 lines
27
28    juniper@PR> show route summary table bgp.l3vpn.0
29    (...)
30    bgp.l3vpn.0: 40 destinations, 80 routes (40 active, 23 holddown)
31                     BGP:     80 routes,     40 active

Except where stated otherwise, all of the line numbers in the following two para‐
graphs refer to Example 21-14. It seems the static RT constraint configuration
(Example 21-12) is effective, because the RR installs the appropriate entry in
bgp.rtarget.0 RIB (lines 3 through 7). This basically means the RR will send to
172.16.0.10 (PR’s loopback) NLRIs that have a route target from the
65000:65000:1002/95 range. This range covers only two RTs—65000:65000:1002 and
65000:65000:1003—which perfectly covers the RTs used for VRF-B and VRF-C. Fur‐
thermore, you can see the RR has 55 active routes in bgp.l3vpn.0 RIB (line 11), but
only 40 routes are advertised to the PR node (line 16). Additional checks confirm that
20 of those prefixes have the RT for VRF-B (lines 20 through 22) and 20 have the RT
for VRF-C (lines 24 through 26). Given the network topology, this is expected
because each PE advertises five prefixes in each VPN: three loopbacks (single-homed
CE, multihomed CE, and VRF on PE) and two PE-CE links (single-homed CE and
multihomed CE).
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Therefore, we can conclude that the RR sends only NLRIs associated with VRF-B and
VRF-C to the PR. And, because the PR configuration allows reception of NLRIs with
these RTs (Example 21-11, lines 17 through 26), you can see the bgp.l3vpn.0 RIB
being populated (lines 28 through 31): 40 routes from each RR. So far, so good—the
PR has all information required to build VPN translation tables. To enhance scale,
you could further restrict the information advertised to the PR. The only information
the PR requires are NLRIs from multihomed CEs in VPN-B and VPN-C connected
to two egress PEs (PE3 and PE4). Information from single-homed CEs is not
required on PR. This optimization, though, is not configured here.

OK, let’s now verify (Figure 21-4, Example 21-15) the multilevel, multifamily (MPLS
and IP) RIB/FIB structures created on the protector node PR and used for VPN label
translation.

Figure 21-4. RIB structures on a standalone protector node—PR (Junos)

Both egress PEs (PE3 and PE4) advertise two multihomed prefixes within each VRF.
PE3 uses label 37 for VRF-B, and label 38 for VRF-C, whereas PE4 uses label 47 and
48, respectively. Therefore, the protector node PR translates VPN label 37 to VPN
label 47 (and back) as well as VPN label 38 to VPN label 48 (and back). Labels are
allocated dynamically, so it might even happen that VPN labels advertised by both
PE3 and PE4 are equal. Nevertheless, the protector node always performs translation,
even between numerically equal VPN labels.

We can verify with operational commands if the RIB structure outlined in previous
figure is correct.
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Example 21-15. RIB structures on standalone protector node—PR (Junos)

1     juniper@PR> show ldp database session 172.16.0.1 | find .. | match ..
2      299808      172.17.0.33/32
3      299824      172.17.0.44/32
4
5     juniper@PR> show route table mpls.0
6     (...)
7     299808(S=0)        *[LDP/0] 23:50:07
8                           to table __172.17.0.33__.mpls.0
9     299824(S=0)        *[LDP/0] 3d 02:17:52
10                          to table __172.17.0.44__.mpls.0
11
12    juniper@PR> show route receive-protocol bgp 172.16.0.201
13                next-hop 172.17.0.33 detail | match label
14         VPN Label: 37
15         VPN Label: 37
16         VPN Label: 38
17         VPN Label: 38
18
19    juniper@PR> show route receive-protocol bgp 172.16.0.201
20                next-hop 172.17.0.44 detail | match label
21         VPN Label: 47
22         VPN Label: 47
23         VPN Label: 48
24         VPN Label: 48
25
26    juniper@PR> show route table __172.17.0.
27
28    __172.17.0.33__.mpls.0: 2 destinations, 2 routes (2 active, ...)
29    + = Active Route, - = Last Active, * = Both
30
31    37                 *[Egress-Protection/170] 23:29:45
32                          to table __172.17.0.33-RT-VPN-B__.inet.0
33    38                 *[Egress-Protection/170] 23:29:45
34                          to table __172.17.0.33-RT-VPN-C__.inet.0
35
36    __172.17.0.44__.mpls.0: 2 destinations, 2 routes (2 active, )
37    + = Active Route, - = Last Active, * = Both
38
39    47                 *[Egress-Protection/170] 23:11:43
40                          to table __172.17.0.44-RT-VPN-B__.inet.0
41    48                 *[Egress-Protection/170] 23:11:43
42                          to table __172.17.0.44-RT-VPN-C__.inet.0
43
44    juniper@PR> show route table __172.17.0.33-RT-VPN-B__.inet.0 detail |
45                match "entry|weight|operation|Protocol next hop"
46    10.2.6.0/24 (1 entry, 1 announced)
47                Next hop: 10.0.0.38 via ge-2/0/2.0 weight 0x1, selected
48                Label operation: Push 47, Push 300288(top)
49                Next hop: 10.0.0.36 via ge-2/0/8.0 weight 0xf000
50                Label operation: Push 47, Push 300352(top)
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51                Protocol next hop: 172.17.0.44
52    192.168.2.6/32 (1 entry, 1 announced)
53                Next hop: 10.0.0.38 via ge-2/0/2.0 weight 0x1, selected
54                Label operation: Push 47, Push 300288(top)
55                Next hop: 10.0.0.36 via ge-2/0/8.0 weight 0xf000
56                Label operation: Push 47, Push 300352(top)
57                Protocol next hop: 172.17.0.44
58
59    juniper@PR> show route table __172.17.0.44-RT-VPN-B__.inet.0 detail |
60                match "entry|weight|operation|Protocol next hop"
61    10.2.6.0/24 (1 entry, 1 announced)
62                Next hop: 10.0.0.36 via ge-2/0/8.0 weight 0x1, selected
63                Label operation: Push 37, Push 300624(top)
64                Next hop: 10.0.0.38 via ge-2/0/2.0 weight 0xf000
65                Label operation: Push 37, Push 300144(top)
66                Protocol next hop: 172.17.0.33
67    192.168.2.6/32 (1 entry, 1 announced)
68                Next hop: 10.0.0.36 via ge-2/0/8.0 weight 0x1, selected
69                Label operation: Push 37, Push 300624(top)
70                Next hop: 10.0.0.38 via ge-2/0/2.0 weight 0xf000
71                Label operation: Push 37, Push 300144(top)
72                Protocol next hop: 172.17.0.33

Unless stated otherwise, all of the line numbers in the following three paragraphs cor‐
respond to Example 21-15. The PR node advertises real labels for its locally config‐
ured protector context-IDs (lines 2 and 3). And, as expected, these labels match the
labels already observed in earlier verifications (Example 21-13, lines 39 and 46). Simi‐
lar to the combined protector/backup egress PE case, the label associated with the
protector context-ID points to a context label table. But in this case, the two protector
context-IDs are configured on the PR, and the PR creates two context label tables
(lines 8 and 10): one table for each context-ID.

The PR extracts VPN labels from the received NLRIs (lines 12 through 24) and, based
on the BGP protocol next hop, places these VPN labels in the appropriate context
label table (lines 26 through 42). VPN labels, on the other hand, point to the appro‐
priate auxiliary IP tables, based on the RTs associated with the NLRI. The difference
between the previous case (combined protector/backup egress PE) and the current
case is that the name (lines 32, 34, 40, and 42) of these auxiliary IP tables is now based
on configured route-target names (Example 21-11, lines 24 and 25), and no longer on
VRF names. The separate protector node does not contain any VRFs, as already men‐
tioned.

The auxiliary IP tables contain VPN prefixes advertised by the backup egress PE.
How is the backup egress PE determined? For example, for NLRIs with BGP protocol
next hop 172.17.0.33 (the primary context-ID of PE3), the backup NLRIs have a dif‐
ferent BGP protocol next hop. If you look carefully, you will realize that the auxiliary
table __172.17.0.33-RT-VPN-B__.inet.0 contains prefixes with the BGP protocol
next hop 172.17.0.44 (lines 51 and 57), whereas table __172.17.0.44-RT-VPN-
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B__.inet.0 is just the opposite: with the BGP protocol next hop 172.17.0.33 (lines 66
and 72). Of course, these auxiliary IP tables contain new label stacks, including the
VPN label assigned by the backup egress PE, and the transport label to reach the
backup egress PE. Additionally, in this particular network topology, the protector
node connects to the network in a redundant way (two links); therefore, two direct
next hops to reach the backup egress PE can be found in the auxiliary IP tables: the
primary and the LFA backup.

Now, when PE3 fails, P1 redirects (using the preinstalled LFA backup next hop) traf‐
fic originally flowing via the PE2→P1→PE3 path to the PR. The PR performs label
translation based on previously discussed RIB structures. Subsequently, the PR sends
the traffic (with the VPN label assigned by PE4) via the PR→P2→PE4 path. PE4 has
no clue that anything out of the ordinary has happened on the network. From the
perspective of PE4, the received packet (redirected by P1 and translated by the PR)
looks like a normal VPN packet with the VPN label assigned by PE4. This confirms
that no special feature support is required on the PE nodes in centralized protector
designs. All the required intelligence is limited to the protector node.

Context-ID Advertisement Methods
In all the discussions so far about egress protection (service mirroring), IS-IS was dis‐
tributing context-IDs as some sort of links. To be more precise, both primary and
protector context-IDs were distributed via TLV 135 (Extended IP Reachability), as
already verified in lines 4 and 7 in Example 21-3. In addition, label bindings for these
context-IDs were distributed via LDP (implicit null label for primary context-ID, and
real label for protector context-ID). Therefore, this method of announcing context-
IDs in IGP is called stub-link. In general, there are three methods of distributing
context-ID information:

Stub-Link
The primary context-ID is advertised as a stub-link in the IS-IS database: Exten‐
ded IP Reachability (TLV type 135). Label binding for primary context-ID
(implicit null) is advertised via LDP.
The protector context-ID is advertised as a stub-link in the IS-IS database: Exten‐
ded IP Reachability (TLV type 135). Label binding for protector context-ID (real
label) is advertised via LDP.

Stub-alias
The primary context-ID is advertised as a stub-link in the IS-IS database: IP
Interface Address (TLV type 132) and Extended IP Reachability (TLV type 135).
Label binding for primary context-ID (implicit null label) is advertised via LDP.
The protector context-ID is advertised as an IPv4 FEC label binding element:
SID/Label Binding (TLV type 149). Thus, label-binding for protector context-ID
(real label) is advertised via IS-IS, not via LDP.
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Stub-proxy
The primary context-ID is advertised as a virtual context-ID node in the IS-IS
database: Extended IS Reachability (TLV type 22) from primary egress PE to vir‐
tual context-ID node + virtual context-ID node with a complete set of TLVs
(TLV: 1, 14, 129, 132, 134, 135, 137 and two TLVs type 22). Label binding for pri‐
mary context-ID (implicit null label) is advertised via LDP.
The protector context-ID is advertised as a link to the virtual context-ID node in
IS-IS: Extended IS Reachability (TLV type 22) from protector to virtual context-
ID node. Label binding for protector context-ID (real label) is advertised via LDP.

Note that the stub-link advertisement method has already been discussed in detail in
previous sections; therefore, the following section will concentrate on the stub-alias
and stub-proxy methods.

As of this writing, all three methods for advertising context-IDs
were supported by IS-IS in Junos. However, OSPF support was
limited to the stub-link method only, where the context-ID is
advertised as a stub network (Type 3).

Stub-Alias
The stub-link advertisement method has certain limitations, because it greatly
depends on the network topology to provide backup coverage for the context-ID. For
example, if in the topology outlined in Figure 21-1 the cross-links (PE1-P2 and PE2-
P1) are temporarily disabled, P2 has no backup coverage for context-ID 172.17.0.22,
as you can see here:

Example 21-16. LFA state for context-ID 172.17.0.22 with stub-link on P2 (Junos)

1     juniper@P2> show ldp database session 172.16.0.22 |
2                 find Output | match 172.17.0.22
3      299824      172.17.0.22/32
4
5     juniper@P2> show route label 299824 table mpls.0 | find S=0
6     299824(S=0)        *[LDP/9] 00:20:10, metric 20
7                         > to 10.0.0.4 via ge-2/0/2.0, Pop

The obvious reason for this situation is the lack of a loop-free backup LFA path. You
can, eventually, manipulate the metric of the context-ID advertised by the protector
node (PE1), or implement some more advanced LFA extensions (R-LFA, TI-FRR)
discussed earlier. Fortunately, there is another option: the protector node (PE1) can
advertise the context-ID in stub-alias mode.

You can enable the stub-alias method by using the stub-alias keyword, as shown in
Example 21-17. The stub-alias method uses the new IS-IS TLV type 149: SID/Label
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Binding TLV, as defined in draft-previdi-isis-segment-routing-extensions, Section 2.4.
This TLV includes the MPLS label that the PLR should use when redirecting the traf‐
fic to the protector. However, the transport label the PLR uses to reach the protector
is still the traditional LDP label associated with the normal loopback of the protector
node.

Example 21-17. Context-ID stub-alias configuration on PE1 (Junos)

protocols {
    mpls {
        egress-protection {
            context-identifier 172.17.0.22 {
                protector;
                advertise-mode stub-alias;
}}}}

So, let’s verify now how it works on the network.

Example 21-18. LFA state for context-ID 172.17.0.22 with stub-alias on P2 (Junos)

1     juniper@P2> show isis database PE1 detail | match FEC
2        IP FEC: 172.17.0.22/32               Label:    331776 Mirror
3
4     juniper@P2> show route 172.17.0.22/32 table inet.5
5     (...)
6     172.17.0.22/32
7          *[IS-IS/18] 00:01:32, metric 11, metric2 20
8             to 10.0.0.6 via ge-2/0/4.0, Push 331776, Push 300064(top)
9           > to 10.0.0.24 via ge-2/0/5.0, Push 331776, Push 300064(top)
10
11    juniper@P2> show ldp database session 172.16.0.1 | match <pattern>
12    Input label database, 172.16.0.2:0--172.16.0.1:0
13     300064      172.16.0.11/32
14    Output label database, 172.16.0.2:0--172.16.0.1:0
15     299984      172.16.0.11/32
16
17    juniper@P2> show route 172.17.0.22/32 table inet.0
18    (...)
19    172.17.0.22/32     *[IS-IS/18] 02:51:07, metric 11
20                        > to 10.0.0.4 via ge-2/0/2.0
21
22    juniper@P2> show route 172.17.0.22/32 table inet.3
23    (...)
24    172.17.0.22/32     *[LDP/9] 02:49:45, metric 11
25                        > to 10.0.0.4 via ge-2/0/2.0
26
27    juniper@P2> show route label 299824 table mpls.0 | find S=0
28    299824(S=0) *[LDP/9] 02:34:13, metric 11, metric2 20
29      > to 10.0.0.4 via ge-2/0/2.0, Pop
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30        to 10.0.0.6 via ge-2/0/4.0, Swap 331776, Push 300064(top)
31        to 10.0.0.24 via ge-2/0/5.0, Swap 331776, Push 300064(top)

As a result of enabling the stub-alias advertisement mode, PE1 stops advertising the
protector context-ID via IS-IS TLV 135 and via LDP. Instead, only IS-IS TLV 149 is
used (line 2), which includes both the IP prefix and corresponding label. Based on
this information, all routers in the network create routing entries in the new RIB,
called inet.5 (lines 4 through 9). The bottom label of this entry is the label advertised
in TLV 149, whereas the top label is the transport (LDP) label associated with the
originator of TLV 149: the PE1 loopback (line 13). The mirror label is quasi-tunneled
inside the LDP tunnel toward PE1.

P2 can reach the PE1 loopback via PE2 or P1 with equal cost (remember, cross-links
are temporarily disabled). However, PE2 is the primary node for 172.17.0.22; there‐
fore, P2 installs the path avoiding PE2 to reach 172.17.0.22 in inet.5. Conversely,
tables inet.0 and inet.3 have standard entries (lines 17 through 25) not affected by
the new TLV 149.

inet.5 is, like inet.3, an auxiliary RIB; therefore, it has no corre‐
sponding FIB and its entries are not used (natively) for traffic for‐
warding.

The trick now is with the entry for the local label bound to the context-ID
172.17.0.22. If you compare lines 5 through 7 in Example 21-16 with lines 27 through
31 in Example 21-18, you can spot the differences. The primary next hop (line 29) is
toward PE2, but there are also two backup next hops (parallel links) pointing to P1
(lines 30 and 31). P2 borrows the label stack for these backup next hops from the
inet.5 RIB table.

Now when PE2 fails, labeled traffic is protected, whereas native IP traffic is not. P2
redirects the labeled traffic to P1 based on the preinstalled backup next hops found in
the mpls.0 RIB (and corresponding FIB) table. P1 removes the top label, and finally,
traffic arrives to PE1 with the mirror label (advertised via TLV 149) on the top.

The rest of the story is the same. The protector node uses RIB/FIB structures (similar
to those outlined in Figure 21-2) to forward the traffic to the appropriate local CE,
based on VPN labels allocated by the primary egress PE. Or, the standalone (central‐
ized) protector node uses RIB/FIB structures similar to those outlined in Figure 21-4
to perform VPN label translation and send the packets to the backup egress PE.
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Stub-Proxy
The stub-proxy advertisement method brings a completely new approach. Instead of
adding some TLVs here or there, with the stub-proxy method, a completely new IS-IS
node is injected into the IS-IS database (Figure 21-5). Of course, it is not a real node,
just an emulated one. However, from the point of view of the other routers (e.g., PLR)
it looks like a real node, with the IP address equal to the context-ID. This emulated
context-ID node is dual-homed, with one emulated link connecting to the primary
egress PE, and the second emulated link connecting to the protector node.

Figure 21-5. Stub-proxy context ID advertisement mode

Therefore, from the view of other nodes in the network topology, the context-ID IP
address can either be reached via the primary egress PE or via the protector node.
The emulated context-ID node announces the overload bit, thus it cannot be used for
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transit traffic. This is good, because in reality there is no connection between the pri‐
mary egress PE and the protector node via context-ID node—it is all just virtual. Fur‐
thermore, the path to reach the emulated context-ID node via the primary egress PE
is always preferred over the path via the protector node. For the emulated link con‐
nected to the emulated context-ID node, the primary egress PE announces good link
characteristics (low metric, high bandwidth), whereas the protector node announces
bad link characteristics (high metric, low bandwidth).

Similar to enabling stub-alias mode, you can enable stub-proxy mode on the primary
egress PE and on the protector via a single knob, as shown in Example 21-19.

Example 21-19. Context-ID stub-proxy configuration on PE3 (Junos)

protocols {
    mpls {
        egress-protection {
            context-identifier 172.17.0.33 {
                primary;                    ##  'protector' on PR
                advertise-mode stub-proxy;
}}}}

So, let’s check what can be observed in the network now.

Example 21-20. Emulated LSPs/TLVs with stub-proxy (Junos)

1     juniper@PE3> show isis database | match 172.17
2     PE3-172.17.0.33.00-00      0x38   0x1453      772 L1 L2 Overload
3     PE4-172.17.0.44.00-00      0x51   0x3b38     1142 L1 L2 Overload
4
5     juniper@PE3> show isis database PE3-172.17.0.33 extensive | find TLVs
6       TLVs:
7         Area address: 49.0000 (3)
8         LSP Buffer Size: 1492
9         Speaks: IP
10        Speaks: IPV6
11        IP router id: 172.17.0.33
12        IP address: 172.17.0.33
13        Hostname: PE3-172.17.0.33
14        IP address: 172.17.0.33
15        IP extended prefix: 172.17.0.33/32 metric 0 up
16        IS extended neighbor: PE3.00, Metric: default 16777214
17          IP address: 172.17.0.33
18          Neighbor's IP address: 172.16.0.33
19          Local interface index: 1, Remote interface index: 2147618817
20          Traffic engineering metric: 16777214
21          Maximum reservable bandwidth: 0bps
22          Maximum bandwidth: 0bps
23        IS extended neighbor: PR.00, Metric: default 16777214
24          IP address: 172.17.0.33
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25          Neighbor's IP address: 172.16.0.10
26          Local interface index: 2, Remote interface index: 2147618818
27          Traffic engineering metric: 16777214
28          Maximum reservable bandwidth: 0bps
29          Maximum bandwidth: 0bps
30
31    juniper@PE3> show isis database PE3 extensive | find TLVs
32    (...)
33        IS extended neighbor: PE3-172.17.0.33.00, Metric: default 1
34          IP address: 172.16.0.33
35          Neighbor's IP address: 172.17.0.33
36          Local interface index: 2147618817, Remote interface index: 1
37          Traffic engineering metric: 1
38          Maximum reservable bandwidth: Infbps
39          Maximum bandwidth: Infbps
40
41    juniper@PR> show isis database PR extensive | find TLVs
42    (...)
43       IS extended neighbor: PE3-172.17.0.33.00, Metric: default 16777214
44          IP address: 172.16.0.10
45          Neighbor's IP address: 172.17.0.33
46          Local interface index: 2147618818, Remote interface index: 2
47          Traffic engineering metric: 16777214
48          Maximum reservable bandwidth: 0bps
49          Maximum bandwidth: 0bps
50    (...)
51       IS extended neighbor: PE4-172.17.0.44.00, Metric: default 16777214
52          IP address: 172.16.0.10
53          Neighbor's IP address: 172.17.0.44
54          Local interface index: 2147618818, Remote interface index: 2
55          Traffic engineering metric: 16777214
56          Maximum reservable bandwidth: 0bps
57          Maximum bandwidth: 0bps

After enabling stub-proxy on the primary egress PEs, you will realize that the addi‐
tional IS-IS nodes appear in the IS-IS database (lines 2 and 3). The names of these
nodes are derived from the real node (PE3 or PE4) and corresponding context-ID
associated for each real node (172.17.0.33 and 172.17.0.44). In reality, of course, there
are no new nodes! PE3 and PE4 are cheating, injecting not only their normal LSP, but
also the LSP for the emulated context-ID node, as well. As discussed, the overload bit
is set, so the emulated context-ID nodes cannot be used for transit.

Now, if you check the content for one of the emulated context-ID nodes, you’ll see
plenty of TLVs announced (lines 7 through 16, and 23)—just like in a normal IS-IS
node. There are two emulated links (neighbors): the primary egress PE (line 16), and
the protector (line 23). In addition to the overload bit, other characteristics (metric
and bandwidth) of these emulated links are bad (lines 20 through 22, and 27 through
29): metric high, bandwidth zero. This is just to ensure that no one tries to use this
emulated node for transit.
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Additionally, the primary egress PEs generate extra Extended IS Reachability (TLV
type 22) for the emulated link toward the emulated context-ID node. This time the
link from the primary egress PE to the emulated context-ID node has good character‐
istics (lines 37 through 39): low metric and high (infinite) bandwidth.

After enabling stub-proxy mode on the protector, the protector also generates addi‐
tional Extended IS Reachability (TLV type 22) for each emulated link toward each
emulated context-ID node. As you can see, the metrics (both default and TE metric)
for these links are set to a large value, whereas bandwidth is set to 0 (lines 47 through
49 and 55 through 57). So, basically, these links will be treated as a last resort, when
other routers in the network perform CSPF calculations to reach the emulated
context-ID node.

As of this writing, Junos only supported stub-proxy mode with
RSVP-TE.

Because stub-proxy mode is not supported with LDP, let’s configure the RSVP tun‐
nels from the Junos ingress PE: PE1, as provided in Example 21-21.

By default, IOS XR does not allow RSVP-TE tunnels destined to an
IS-IS node in overload state. Configuring path-selection ignore
overload under mpls traffic-eng stanza disables that check.

Example 21-21. RSVP tunnel configuration on ingress PE (Junos)

protocols {
    mpls {
        label-switched-path PE1--->PE3-CTX {
            to 172.17.0.33;
            node-link-protection;
            adaptive;
}}}

The RSVP-TE tunnel configuration on ingress PE is pretty standard. The important
feature that must be enabled is facility backup (node-link-protection), because this
feature accommodates local repair–style redirection of traffic at the PLR in case of
primary egress PE failure. The destination address this time is actually context-ID,
not the loopback of egress PE. Similarly, the tunnel, destined also to the context-ID,
must be created on the protector node, too, in order to resolve BGP protocol next-
hop addresses.

Context-ID Advertisement Methods | 841



Let’s verify RIB/FIB states on the path from the ingress PE (PE1) to the protector
(PR), as illustrated in Example 21-22.

Example 21-22. RIB/FIB states between ingress PE and protector with stub-proxy

1     juniper#PE1> show mpls lsp name PE1--->PE3-CTX detail | find RRO
2         Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node
3                       10=SoftPreempt 20=Node-ID):
4               172.16.0.1(flag=0x29) 10.0.0.3(flag=9 Label=300752)
5               172.16.0.33(flag=0x20) 10.0.0.9(Label=3)
6               172.17.0.33(flag=0x20) 172.17.0.33(Label=3)
7
8     juniper#P1> show route label 300752 | find S=0
9     300752(S=0) *[RSVP/7/1] 00:09:05, metric 1
10                 > to 10.0.0.9 via ge-2/0/7.0,
11                      label-switched-path PE1--->PE3-CTX
12                   to 10.0.0.37 via ge-2/0/8.0,
13                      label-switched-path Bypass->10.0.0.9->172.17.0.33
14
15    juniper#P1> show route forwarding-table label 300752 | find S=0
16    Destination  Type  Next hop    Type         Index     Netif
17    300752(S=0)  user              ulst         1048578
18                       10.0.0.9    Pop          1644      ge-2/0/7.0
19                       10.0.0.37   Swap 300432  1700      ge-2/0/8.0
20
21    juniper#PR> show route label 300432 | find S=0
22    300432(S=0)        *[MPLS/0] 00:26:35
23                          to table __172.17.0.33__.mpls.0

As you can see, verification shows that the RSVP-TE tunnel destined to the context-
ID of PE3 is established via the PE1→P1→PE3 path (lines 4 through 6). The label
used at the second hop (P1) is 300752. Now, by looking at the forwarding entry on
P1, packets arriving with this label use the primary next hop PE3 (line 10) with label
action pop (line 18). In case of PE3 failure, packets are forwarded via the node pro‐
tection bypass (line 13) toward the PR with label action swap (line 19). So far, every‐
thing is normal and matches the behavior described in Chapter 19, in which the
RSVP-TE facility backup was described in detail.

Now, packets with label 300432 (forwarded via the node protection bypass termi‐
nated on context-ID 172.17.0.33) arrive at the PR. And what happens? The PR inter‐
cepts these packets using egress protection (service mirroring) RIB/FIB structures
(lines 21 through 23)! Why? When the node protection bypass destined to the emula‐
ted context-ID node is established via the PR node the PR node actually cheats! As
discussed, the emulated context-ID node is not a real node. Therefore, forwarding
traffic to that node doesn’t make sense. The label from the node protection bypass is
actually the context label causing the arriving traffic to perform a lookup on the con‐
text label table, as discussed in all the previous cases.
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Let’s check the details of Explicit Route Object (ERO) and the Record Route object
(RRO), as shown in the Example 21-23.

Example 21-23. Node protection bypass ERO and RRO on PLR (Junos)

1     juniper#P1> show rsvp session name Bypass->10.0.0.9->172.17.0.33
2                 detail | match " route:"
3       Explct route: 10.0.0.37 172.17.0.33 (link-id=2)
4       Record route: <self> 10.0.0.37

When you carefully examine the ERO and the RRO information of the node protec‐
tion bypass, you can actually spot that there is something unusual with this bypass.
Namely, whereas the ERO (line 3) contains two links (P1 believes 172.17.0.33 is two
links away, based on IS-IS database content), RRO (line 4) lists only a single link,
which is, in fact, the only link present.

Junos supports egress protection (service mirroring) with LDP
using the stub-link or stub-alias mode, and with RSVP-TE, using
all three modes: stub-link, stub-alias, and stub-proxy.

L3VPN PE→CE Egress Link Protection
All discussions so far in this chapter concentrate on fast traffic restoration during fail‐
ure of the egress PE node. The last failure type is, however, failure of the egress
PE→CE link. Link failure is a more likely event than node failure, especially when the
AC is connected to a long-distance link. Let’s investigate what you can do to optimize
failover times during such failures.

Junos calls this type of protection Link Protection with Host Fast ReRoute (HFRR) for
protecting directly connected prefixes on broadcast interfaces, like Ethernet. Or sim‐
ply Provider Edge Link Protection for other types of PE-CE prefixes (e.g., eBGP). IOS
XR calls it BGP PIC Edge PE-CE Link Protection. Regardless of the terminology, the
goal is the same: to preinstall in the FIB the backup next hop that can be used during
failure of a primary PE→CE link.

Looking back at Figure 21-1 you can see dual-homed CEs connected to the PE1/PE2
pair as well as to the PE3/PE4 pair. If traffic destined to the CE5 arrives from the
MPLS core at PE2, it is forwarded over the direct PE2→CE5 link. Now, when this link
fails, ingress PE (PE3 or PE4) must wait for the BGP update from PE2, which with‐
draws the CE5 prefix. Only after that can the ingress PE switch to another egress PE
(PE1). This process is relatively long (it can take seconds in a scaled environment)
because it involves BGP convergence.
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You can optimize this behavior if per-VRF aggregated label assignment is enabled on
PE2. In that case, PE2 performs IP lookup inside VRF for packets arrived over an
MPLS cloud. Therefore, as soon as PE2 updates its RIB (and subsequently FIB) to use
the route from PE1 to reach CE5, traffic can be redirected by PE2 to PE1. However,
this is still not sub-100 millisecond failover, because a new next hop must be deter‐
mined and installed in HW FIB after PE→CE link failure.

Previously discussed techniques do not help now, because they rely on egress PE node
failure. Here, it is not the egress PE node that fails, but the egress PE→CE link. So,
let’s enable protection for this type of failure. In IOS XR, you don’t need to do any‐
thing, if the BGP PIC Edge is already enabled. The configuration shown in
Example 20-11 in the previoius chapter actually enables protection against both
egress PE node and egress PE→CE link failure. In Junos, however, you need to enable
this feature explicitly on a per PE-CE protocol basis. Following shows how you can
do it for directly connected hosts and for eBGP routes:

Example 21-24. Link protection with HFRR for direct routes on PE1 (Junos)

1     routing-instances {
2         VRF-B {
3             routing-options {
4                 interface ge-2/0/5.2 link-protection;
5     }}}

Example 21-25. Provider edge link protection for BGP routes on PE3 (Junos)

1     routing-instances {
2         VRF-B {
3             protocols {
4                 bgp {
5                     group EBGP {
6                         family inet unicast protection;
7     }}}}}

In the test topology, PE-CE link protection for only VRF-B has been enabled. There‐
fore, you will be able to see the differences in the FIB structures for VRF-B (PE-CE
link protection enabled) and VRF-C (PE-CE link protection not enabled).

Let’s begin verification with PE1.

Example 21-26. HFRR states on PE1 (Junos)

1     juniper@PE1> show route table VRF-C 10.3.5.5/32
2
3     juniper@PE1> show route table VRF-B 10.2.5.5/32
4     @ = Routing Use Only, # = Forwarding Use Only
5     10.2.5.5/32 @[ARP/4294967293] 11:12:09, from 10.2.5.0
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6                    Unusable
7                #[FRR/200] 11:12:09, from 10.2.5.0
8                > to 10.2.5.5 via ge-2/0/5.2
9                  to 10.0.0.1 via ge-2/0/4.0, Push 16390
10                 to 10.0.0.3 via ge-2/0/2.0, Push 16390, Push 299824(top)
11
12    juniper@PE1> show route forwarding-table destination 10.2.5.5/32
13                 extensive | match <pattern>
14    Destination:  10.2.5.5/32
15      Next-hop type: unilist               Index: 1048616  Reference: 2
16      Nexthop: 80:71:1f:c0:e9:f0
17      Next-hop type: unicast               Index: 1611     Reference: 5
18      Next-hop interface: ge-2/0/5.2   Weight: 0x1
19      Nexthop:
20      Next-hop type: composite             Index: 1797     Reference: 3
21      Next-hop type: indirect              Index: 1048611  Reference: 2
22                                        Weight: 0x4000
23      Next-hop type: unilist               Index: 1048607  Reference: 2
24      Nexthop: 10.0.0.1
25      Next-hop type: unicast               Index: 1790     Reference: 1
26      Next-hop interface: ge-2/0/4.0    Weight: 0x1
27      Nexthop: 10.0.0.3
28      Next-hop type: Push 299824           Index: 1792     Reference: 1
29      Next-hop interface: ge-2/0/2.0    Weight: 0xf000
30
31    juniper@PE1> request pfe execute target fpc2 command
32                 "show nhdb id 1048616 recursive"
33    (...)
34    GOT: 1048616(Unilist, IPv4, ifl:0:-, pfe-id:0)
35    GOT:  1611(Unicast, IPv4, ifl:473:ge-2/0/5.2, pfe-id:0)
36    GOT:  1797(Compst, IPv4->MPLS, ifl:0:-, pfe-id:0, comp-fn:Chain)
37    GOT:   1048611(Indirect, IPv4, ifl:432:ge-2/0/4.0, pfe-id:0, i-ifl:0)
38    GOT:     1048607(Unilist, IPv4, ifl:0:-, pfe-id:0)
39    GOT:       1790(Unicast, IPv4, ifl:432:ge-2/0/4.0, pfe-id:0)
40    GOT:       1792(Unicast, IPv4->MPLS, ifl:433:ge-2/0/2.0, pfe-id:0)

Nothing specific happened in the VRF-C (lines 1 and 2). Host route (/32) toward
CE5-C is not present in the VRF-C table. The CE5-C host can still be resolved (not
shown for brevity) via LAN prefix (10.3.5.0/24), as usual.

Conversely, in the VRF-B, we can observe some interesting things. The CE5-B host is
now reachable via two new protocols: Address Resolution Protocol (ARP) (line 5)
and Fast ReRoute (FRR) (line 7). The feature name, Host Fast ReRoute, is derived
from the fact that now the host routes—with corresponding fast reroute backup next-
hops—are created in the RIB/FIB structures. The ARP entry is a result of the ARP
machinery that discovers MAC addresses for each host (line 16). The router only uses
this entry on the control plane, however not for forwarding (observe mark @ and
Unusable). Instead, the FRR entry is used for traffic forwarding (observe mark #) and
is the basis for next-hop structures created in the FIB.

L3VPN PE→CE Egress Link Protection | 845



In the RIB/FIB, you can see that the hierarchical next-hop structure contains primary
(weight=0x1, lines 8, 16 through 18, and 35) direct unicast next hop pointing to CE5-
B. The unilist backup next hop (weight 0x4000, lines 22, 23, and 38) contains two
direct unicast next hops: the direct MPLS link from PE1 to PE2 (lines 9, 24 through
26, and 39) and the link via the MPLS cloud as backup (lines 10, 27 through 29, and
40). Therefore, when the PE1→CE5 link fails, the direct unicast next hop (line 35) is
removed, and traffic can be immediately forwarded via the preinstalled backup next
hops pointing to the MPLS network.

As of this writing, Junos doesn’t support PE-CE link protection for
static routes. Hence, CE5-B’s loopback address (192.168.2.5) is not
protected by the PE-CE link-protection feature on PE1.

After checking PE1 (Junos), let’s now verify PE2 (IOS XR).

Example 21-27. BGP PIC Edge PE-CE link protection on PE2 (IOS XR)

1     RP/0/RSP0/CPU0:PE2#show cef vrf VRF-C 192.168.3.5/32 |
2                        include "  via|labels"
3        via 10.3.5.5, 3 dependencies, recursive [flags 0x0]
4          next hop 10.3.5.5/32 Gi0/0/0/5.3 labels imposed {None}
5
6     RP/0/RSP0/CPU0:PE2#show cef vrf VRF-B 192.168.2.5/32 |
7                        include "  via|labels"
8        via 10.2.5.5, 3 dependencies, recursive [flags 0x0]
9          next hop 10.2.5.5/32 Gi0/0/0/5.2 labels imposed {None}
10       via 172.16.0.11, 7 dependencies, recursive, backup [flags 0x6100]
11         next hop 10.0.0.0/32 Gi0/0/0/0 labels imposed {ImplNull 17}

Similar to the Junos case, VRF-C contains only a single next hop. However, in VRF-B,
IOS XR installs the primary next hop pointing to the direct PE2→CE5 link and it also
installs the backup next hop pointing to the MPLS cloud. As discussed earlier, PE1
can be reached from PE2 via two next hops: the primary and the LFA backup. How‐
ever, only the primary is shown in CEF VRF entries. You would need to use the
internal keyword to display full CEF structure (omitted here for brevity).

As of this writing, IOS XR doesn’t support PE-CE link protection
for directly connected host routes. Hence, the CE5-B interface
address (10.2.5.5) is not protected by PE-CE link-protection feature
on PE2.
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Verifying PE-CE link protection for the BGP routes on PE3 (see Example 21-28) con‐
firms that hierarchical next-hop structures, similar to structures observed in
Example 21-26, are used to provide local repair during PE3→CE6 link failure.

Example 21-28. BGP PE-CE link protection states on PE3 (Junos)

1     juniper@PE3> show route table VRF-B 192.168.2.6/32
2     @ = Routing Use Only, # = Forwarding Use Only
3     192.168.2.6/32
4             @[BGP/170] 19:53:29, MED 0, localpref 100
5                AS path: 65506 ?, validation-state: unverified
6              > to 10.2.6.6 via ge-2/0/5.2
7              [BGP/170] 19:53:02, MED 0, localpref 100, from 172.16.0.201
8                AS path: 65506 ?, validation-state: unverified
9              > to 10.0.0.13 via ge-2/0/2.0, Push 17
10             [BGP/170] 19:52:58, MED 0, localpref 100, from 172.16.0.202
11               AS path: 65506 ?, validation-state: unverified
12             > to 10.0.0.13 via ge-2/0/2.0, Push 17
13            #[Multipath/255] 13:42:11, metric 0
14             > to 10.2.6.6 via ge-2/0/5.2
15               to 10.0.0.13 via ge-2/0/2.0, Push 17
16
17    juniper@PE3> show route forwarding-table destination 192.168.2.6/32
18                 extensive | match <pattern>
19
20    Destination:  192.168.2.6/32
21      Next-hop type: unilist               Index: 1048743  Reference: 2
22      Nexthop: 10.2.6.6
23      Next-hop type: unicast               Index: 1613     Reference: 5
24      Next-hop interface: ge-2/0/5.2    Weight: 0x1        Uflags: 0x2
25      Nexthop:
26      Next-hop type: composite             Index: 1894     Reference: 2
27      Next-hop type: indirect              Index: 1048742  Reference: 2
28                                        Weight: 0x4000
29      Nexthop: 10.0.0.13
30      Next-hop type: unicast               Index: 1811     Reference: 3
31      Next-hop interface: ge-2/0/2.0    Weight: 0x4000
32
33    juniper@PE3> request pfe execute target fpc2 command
34                 "show nhdb id 1048743 recursive"
35    (...)
36    GOT: 1048743(Unilist, IPv4, ifl:0:-, pfe-id:0)
37    GOT:  1613(Unicast, IPv4, ifl:419:ge-2/0/5.2, pfe-id:0)
38    GOT:  1894(Compst, IPv4->MPLS, ifl:0:-, pfe-id:0, comp-fn:Chain)
39    GOT:    1048742(Indirect, IPv4, ifl:413:ge-2/0/2.0, pfe-id:0,i-ifl:0)
40    GOT:      1811(Unicast, IPv4, ifl:413:ge-2/0/2.0, pfe-id:0)

OK, it looks like RIB/FIB states are now prepared to handle a PE→CE link failure
with local repair–style protection: the backup next hops are preinstalled in the HW
FIB. Some attention, however, is required on a loop issue.
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With PE-CE link protection deployed on the pair of PEs, a loop can occur during fail‐
ure of the multihomed CE or during the simultaneous failure of PE-CE links (on both
PEs) toward the multihomed CE. This loop is unavoidable. When one PE detects fail‐
ure of the connected PE→CE link, it removes the corresponding primary next hop
and redirects the traffic destined for the multihomed CE toward the second PE.
When the traffic arrives at the second PE, the primary next hop is missing, too. Con‐
sequently, a second PE redirects the traffic back to the first PE based on a still valid
backup next hop. This loop can continue until BGP from both PEs learns that the CE
is down and they withdraw their BGP routes.

Layer 2 VPN Service Mirroring
You should have learned by now the general concept of egress protection (service
mirroring) with L3VPN services. Similar to L3VPN services, these concepts can be
deployed for BGP and LDP-based Layer 2 VPN (L2VPN) services. There are, how‐
ever, some specific aspects that relate to L2VPN services.

BGP-Based L2VPN Service Mirroring
Let’s begin with the BGP-based L2VPN, where BGP is used for autodiscovery and sig‐
naling. You should be familiar with basic multihomed BGP L2VPN operations from
Chapter 6. Now, you will enhance multihomed BGP L2VPN architecture to ensure
fast traffic restoration based on egress-protection (service mirroring) concepts.

Following the topology outlined in Figure 20-1 at the beginning of the Chapter 20,
let’s create two multihomed point-to-point BGP L2VPNs, using standard configura‐
tions discussed in Chapter 6:

L2VPN-F
This includes CE1-F (connected to PE1) and CE6-F (connected to PE3/PE4 pair,
where PE3 is the primary PE, and PE4 is the protector/backup PE)

L2VPN-G
This includes CE2-G (connected to PE2) and CE6-G (connected to PE3/P4 pair,
where PE3 is the protector/backup PE, and PE4 is the primary PE)

As of this writing, Junos supports BGP L2VPN egress-protection
(service mirroring) using only combined protector/backup PE
architecture.

So for example, let’s extend L2VPN-G for egress-protection to provide fast traffic
restoration in the case of primary PE (PE4) failure. On the ingress PE (PE2, IOS XR)
no configuration changes are required. Example 21-29 and Example 21-30 present
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the full configurations with egress-protection extensions for PE4 and PE3, respec‐
tively.

Example 21-29. Egress-protected multihomed BGP L2VPN, primary PE4 (Junos)

1     protocols {
2         mpls {
3             egress-protection {
4                 context-identifier 172.18.0.44 primary;
5             }
6         }
7         bgp {
8             group IBGP-RR {
9                 family l2vpn signaling egress-protection;
10            }
11        }
12    }
13    routing-instances {
14        L2VPN-G {
15            instance-type l2vpn;
16            egress-protection context-identifier 172.18.0.44;
17            interface ge-2/0/5.8;
18            route-distinguisher 172.16.0.44:107;
19            vrf-target target:65000:1007;
20            protocols {
21                l2vpn {
22                    encapsulation-type ethernet-vlan;
23                    site CE6-G {
24                        site-identifier 6;
25                        site-preference primary;
26                        mtu 1500;
27                        interface ge-2/0/5.8 remote-site-id 2;
28                    }
29                    pseudowire-status-tlv;
30    }}}}

Example 21-30. Egress-protected multihomed BGP L2VPN, protector/backup, PE3
(Junos)

1     protocols {
2         mpls {
3             egress-protection {
4                 context-identifier 172.18.0.44 protector;
5             }
6         }
7         bgp {
8             group IBGP-RR {
9                 family l2vpn signaling egress-protection;
10            }
11        }
12    }
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13    routing-instances {
14        L2VPN-G {
15            instance-type l2vpn;
16            interface ge-2/0/5.8;
17            route-distinguisher 172.16.0.33:107;
18            vrf-target target:65000:1007;
19            protocols {
20                l2vpn {
21                    encapsulation-type ethernet-vlan;
22                    site CE6-G {
23                        site-identifier 6;
24                        site-preference backup;
25                        hot-standby;
26                        mtu 1500;
27                        interface ge-2/0/5.8 remote-site-id 2;
28                    }
29                    pseudowire-status-tlv;
30    }}}}

Context-ID must be configured on the primary PE as primary (Example 21-29, lines
2 through 6) and on the protector/backup PE as protector (Example 21-30, lines 2
through 6). Because the previously deployed egress protection for L3VPN used sepa‐
rate (centralized) mode (protector function was not deployed on either PE3 or PE4),
you now use a different context-ID. The primary PE uses this context-ID to set the
BGP protocol next hop during routing-instance export (Example 21-29, line 16),
whereas the protector/backup PE uses this context-ID for egress-protection functions
activated by the hot-standby keyword (Example 21-30, line 25).

Note that you can set the BGP protocol next hop to context-ID by using different
options:

• Via BGP export policy applied to multiprotocol BGP neighbor or group
• Via routing-instance (L3VPN or L2VPN) egress-protection context-ID configu‐

ration
• Via routing-instance (L3VPN or L2VPN) export policy
• Via egress-protection context-ID configuration in BGP address family (inet-vpn
unicast or l2vpn signaling)

All options are applicable to both L3VPN and L2VPN deployments. The first option
(BGP neighbor export policy) was used in the L3VPN examples in the previous sec‐
tion. It provides more granularity because you can set the BGP protocol next hop
only to specific prefixes. In L2VPN deployments, you typically don’t need such gran‐
ularity, so the second option is used in this section’s examples. Other options could be
used, as well. However, because of limited space in this book, we will leave those to
you to explore.
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What’s next? Similar to the L3VPN case, you need to enable egress-protection func‐
tionality in the appropriate address family (lines 7 through 11 in Examples
Example 21-29 and Example 21-30). And that’s it—you are done! The rest is standard
multihomed L2VPN configuration (discussed in Chapter 6), and is repeated here just
so you can see the egress-protection configuration from a full multihomed L2VPN
perspective (Example 21-31).

Example 21-31. BGP L2VPN verification on ingress PE (IOS XR)

1     RP/0/RSP0/CPU0:PE2#show l2vpn xconnect group PE3-PE4
2                        xc-name CE6-G.2:6 detail | include <pattern>
3       PW: neighbor 172.18.0.44, PW ID 131078, state is up ( established )
4           MPLS         Local                          Remote
5           Label        36810                          800003
6           CE-ID        2                              6
7
8     RP/0/RSP0/CPU0:PE2#show cef 172.18.0.44 | include "via|label"
9      via 10.0.0.27, Gi0/0/0/3, 3 dependencies, weight 0,class 0, backup
10       local label 16000      labels imposed {317040}
11     via 10.0.0.5, Gi0/0/0/5, 8 dependencies, weight 0,class 0, protected
12       local label 16000      labels imposed {304384}

Verification on the ingress PE shows the expected results. As anticipated, the ingress
PE sees the context-ID as next hop (line 3) and therefore uses the LDP transport label
associated with that context-ID address to forward frames over this L2VPN. Again,
due to the LFA backup, you can see the two direct next hops in the FIB (lines 8
through 12).

The story is the same now with LFA protection for the context-ID as in the case of
L3VPN egress protection. In fact, the PLR (P2 router in the topology outlined in
Figure 21-3) is not even aware of the type of traffic forwarded using the transport
label associated with context-ID 172.18.0.44. The PLR (P2) simply does LFA-style
redirection to PE3 during failure of PE4. So, following PE4 failure, traffic arrives at
PE3, with some label assigned by PE3 to the protector context-ID 172.18.0.44. Let’s
check what happens now.

Example 21-32. BGP L2VPN verification on protector/backup egress PE (Junos)

1     juniper@PE3> show ldp database session 172.16.0.2 | find .. | match ..
2      300688      172.18.0.44/32
3
4     juniper@PE3> show route label 300688 table mpls.0
5     (...)
6     300688(S=0)        *[MPLS/0] 01:46:47
7                           to table __172.18.0.44__.mpls.0
8
9     juniper@PE3> show route label 800003 table __172.18.0.44__.mpls.0
10    (...)
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11    800003             *[Egress-Protection/170] 01:48:04
12                        > via ge-2/0/5.8, Pop       Offset: 4
13
14    juniper@PE3> show route receive-protocol bgp 172.16.0.201
15                 table L2VPN-G.l2vpn.0 match-prefix 172.16.0.44:107:*
16                 detail | match "entries|base|hop|target"
17    *  172.16.0.44:107:6:1/96 (2 entries, 1 announced)
18         Label-base: 800002, range: 2, status-vector: 0x0, offset: 1
19         Nexthop: 172.18.0.44
20         Communities: target:65000:1007 Layer2-info: encaps: VLAN,
21           control flags:[0x2] Control-Word, mtu: 1500,
22           site preference: 65535

Unless specified otherwise, line numbers in the following three paragraphs refer to
Example 21-32. As you can see, the situation is very similar to the L3VPN case. The
protector maintains the label table associated with the protector context-ID (line 7).
Within that table, it collects labels from other PEs, just like in the L3VPN case. In this
particular example, PE4 (the primary egress PE) announces the NLRI (line 17) with
RT 65000:1007 (line 20). The RR reflects this NLRI to PE3 (the protector). PE3 veri‐
fies that it is for the protector for this egress PE, because the configured protector
context-ID matches the next hop in received NLRI (line 19); therefore, it installs the
corresponding label in its context-ID label table.

Just to refresh how the actual label is calculated, the PE3 configuration refers to the
remote site with ID = 2 (line 27 in Example 21-30). PE4 announces a label block
starting with 800002 and for site IDs starting with 1 (offset=1, line 18). Therefore, for
(nonexisting) site 1, the label is 800002, whereas the label for site 2 is 800003. You can
see this label being installed in the PE3 context-ID label table (lines 11 and 12). This
is also the label used by the ingress PE when sending traffic to PE4 (line 5 in
Example 21-31).

RT=65000:1007 (line 20) and site-ID=6 (line 17) advertised by PE4, match the local
configuration for L2VPN-G on PE3 (lines 18 and 23 in Example 21-30), and there‐
fore PE3 uses the corresponding PE-CE interface (line 12 in Example 21-32 as well as
line 27 in Example 21-30) to send redirected traffic to the locally attached multi‐
homed device. Thus, confirming that the states required for egress-protection to
work are correct.

Now, similar to the L3VPN case, let’s extend the protection to cover failure of the PE-
CE link, as well. Normally, the PE-CE link is not protected. There is only a single next
hop (pointing directly to the connected multihomed CE) installed in the FIB. To have
PE-CE link protection you need to have a backup next hop, as well, pointing to the
backup PE. What do you need to do? You need to create a special RSVP-TE LSP
(called Edge Protection LSP) that the primary PE (PE4 in the topology) can use to for‐
ward traffic to the backup PE (PE3 in the topology) in case of PE-CE link failure.
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Example 21-33. RSVP-TE Edge Protection LSP for PE-CE egress-protection (Junos)

1     protocols {
2         mpls {
3             label-switched-path PE4--->PE3-PROTECT {
4                 to 172.18.0.44;
5                 egress-protection;
6     }}}

Configuration of such an LSP on the primary PE is pretty simple: you use context-ID
(line 4) as the destination and you use the additional knob egress-protection (line
5) to designate this tunnel for egress-protection purposes. That’s it! Let’s see the out‐
come using verification from Example 21-34.

Example 21-34. Edge Protection LSP states on backup and primary PE (Junos)

1     juniper@PE4> show route label 800003 table mpls.0 detail | match ...
2                     Next hop: via ge-2/0/5.8 weight 0x1, selected
3                     Label operation: Pop       Offset: 4
4                     Next hop: 10.0.0.12 ge-2/0/2.0 weight 0x2
5                     Label-switched-path PE4--->PE3-PROTECT
6                     Label operation: Swap 800003, Push 301136(top)
7
8     juniper@PE3> show route label 301136 | find S=0
9     301136(S=0)        *[MPLS/0] 00:19:30
10                          to table __172.18.0.44__.mpls.0

As a result, the tunnel from the primary PE to the backup PE is established. This tun‐
nel is, in turn, used as the backup next hop (lines 4 through 6) on the primary PE for
PE-CE link protection. What is special about this tunnel? It’s missing the implicit null
label. The backup PE (PE3) actually assigns the real label (line 6), which then points
to the context-ID label table (lines 8 through 10), and the rest of the story is already
familiar.

As of this writing, Junos supports PE-CE link protection for
L2VPNs using RSVP-TE-based edge protection LSPs. LDP-based
and SPRING-based edge protection LSPs are not supported.

LDP-Based L2VPN Service Mirroring
In LDP-based L2VPN deployments, there are no BGP protocol next hops. As you
might remember, all egress-protection schemes discussed so far are based on manip‐
ulating the BGP protocol next hop, and advertising IP addresses corresponding to
manipulated BGP protocol next hops into IGP and MPLS transport (LDP or RSVP-
TE). Therefore, fast redirection can be done via LFA or RSVP-TE Facility Protection
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backup next hops. However, another draft (draft-ietf-pals-endpoint-fast-protection:
PW Endpoint Fast Failure Protection) describes egress-protection (service mirroring)
architecture adjusted to LDP-based pseudowire (PW) protection requirements.

The context-ID, and LFA or RSVP-TE Facility Protection–style failover during pri‐
mary egress PE failure remains the same. However, instead of the BGP protocol next-
hop manipulation, the ingress PE must now associate the transport tunnel used for
transporting frames of a given PW with the context-ID advertised by the primary and
protector/backup egress PE pair. As in previous cases, the transport tunnel itself can
be signaled via LDP or RSVP-TE.

As of this writing, IOS XR supports LDP-signaled PW association
only with arbitrary chosen RSVP-TE signaled transport tunnels,
but not with arbitrary chosen LDP-signaled transport tunnels.
Conversely, in Junos, association with a mix of arbitrary chosen
LDP and RSVP-TE–signaled tunnels is supported.

Another difference, when compared to BGP-signaled L2VPN protection, is the fact
that LDP-signaled multihomed L2VPNs can be deployed in revertive or nonrevertive
mode. In BGP-based L2VPNs, failover is always revertive: when the primary egress
PE restores from failure, traffic always switches back to the primary egress PE. In
LDP-based L2VPN, the default behavior is nonrevertive (you can change this default
behavior via configuration, if needed). That is, when the primary egress PE restores
from failure, the ingress PE still uses the backup egress PE for traffic forwarding until
this active PE (the PE that was originally the backup PE) fails.

Why is this difference important? Egress protection is important to protect the active
egress PE by redirecting traffic to the available standby egress PE.

• In BGP L2VPNs, if both primary and backup egress PEs are available, the pri‐
mary is always used as the active egress PE, whereas the backup is used as the
standby egress PE. Therefore, there is no need to deploy the egress-protection
scheme to protect the backup egress PE.

• In LDP-based L2VPNs, as already mentioned, you might need to protect both the
primary and the backup egress PE, because in nonrevertive mode, your active
egress PE can be actually the PE originally designated as the backup PE.

Apart from these two differences (no BGP protocol next hop and egress protection
for primary and backup egress PE), the overall concepts remain the same.
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As of this writing, Junos supports LDP L2VPN egress protection
(service mirroring) using combined protector/backup PE architec‐
ture only.

So, let’s configure egress protection for our LDP-based PW that provides connectivity
between the single-homed site CE2-I and the multihomed CE6-I site. As the trans‐
port, let’s use RSVP-TE tunnels, as IOS XR cannot set arbitrary transport LDP tunnel
and this capability is required by the egress protection for LDP signaled PWs. Let’s
begin with the configuration of PE2 (IOS XR), where the single-homed CE is connec‐
ted (Example 21-35).

Example 21-35. LDP PW ingress PE configuration on PE2 (IOS XR)

1     explicit-path name PE3-LOOSE
2      index 10 next-address loose ipv4 unicast 172.16.0.33
3     !
4     interface tunnel-te1833        !! similar tunnel to PE4 context-ID
5      ipv4 unnumbered Loopback0
6      signalled-name PE2--->PE3-CTX2
7      autoroute announce
8      !
9      destination 172.18.0.33
10     fast-reroute protect node
11     record-route
12     path-option 1 explicit name PE3-LOOSE
13    !
14    l2vpn
15     pw-class PW-L2CKT-ETH-CTX-PE3 !! similar pw-class for PE4 context-ID
16      encapsulation mpls
17       protocol ldp
18       transport-mode ethernet
19       preferred-path interface tunnel-te 1833
20      !
21      backup disable delay 10
22     !
23     xconnect group PE3-PE4
24       p2p CE6-I
25       interface Gi0/0/0/1.9
26       neighbor ipv4 172.16.0.33 pw-id 926
27        pw-class PW-L2CKT-ETH-CTX-PE3
28        backup neighbor 172.16.0.44 pw-id 926
29         pw-class PW-L2CKT-ETH-CTX-PE4

On the PE attached to the single-homed CE, you deploy almost the same configura‐
tion as that used in Chapter 6. However, the difference is that you need to use RSVP-
TE tunnels (lines 4 through 12) destined to the context-IDs (line 9) configured on the
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PEs connected to the multihomed CE. Because there are two egress PEs, you need to
define two such RSVP-TE tunnels (only one is shown here for brevity).

Normally, RSVP-TE tunnels can be established to IP addresses represented by TE
Router ID TLVs (TLV type 134). As discussed earlier, the context ID is advertised via
Extended IP Reachability (TLV type 135). Therefore, CSPF on your IOS XR device
will refuse to initialize the RSVP-TE tunnel. You need to cheat a little! How? By using
a path option with a loose next-hop (lines 1, 2, and 12). Your loose next-hop is
actually a primary loopback (TE Router ID) of the primary PE. Therefore, Con‐
strained Shortest-Path First (CSPF) is now fully satisfied. It is important to note that
the request is for node protection desired (line 10), not just for link protection, which
is the default in IOS XR with facility protection. Node protection is the key for egress-
protection functionality with RSVP-TE as a transport.

You can see a standard LDP-based L2VPN configuration with primary/secondary
PWs (lines 23 through 29). The L2VPN, however, refers to special PW-classes (lines
27 and 29) that force the PWs to use specific RSVP-TE tunnels (line 19). Only one of
these PW-classes is shown for brevity.

You must extend primary egress PE configuration with specific egress-protection
pieces (Example 21-36).

Example 21-36. LDP PW primary egress PE configuration on PE3 (Junos)

1     protocols {
2         mpls {
3             egress-protection context-identifier 172.18.0.33 primary;
4         }
5         ldp {
6             upstream-label-assignment;
7         }
8         l2circuit {
9             neighbor 172.16.0.22 {
10                interface ge-2/0/5.9 {
11                    virtual-circuit-id 926;
12                    encapsulation-type ethernet;
13                    pseudowire-status-tlv hot-standby-vc-on;
14                    egress-protection {
15                        protector-pe 172.16.0.44
16                          context-identifier 172.18.0.33;
17    }}}}}

You can see the context-ID configuration (line 3) and some extensions to LDP (lines
5 through 7) (they will be discussed later in this section). In LDP-based L2VPN con‐
figurations, you can see egress-protection–specific additions in lines 14 through 16.
You must specify the IP address of protector/backup egress PE (in this case, it is PE4)
and the context-ID used for protecting this L2VPN. As a result of this configuration,
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PE3 will try to establish targeted LDP sessions to PE4 in order to exchange additional
information required for egress protection functionality.

Optionally, you can enable forwarding (line 13) over a PW reported by the ingress PE
as hot-standby (PW Status TLV set to 0x20). Similarly, you can enable forwarding
over a hot-standby PW on the backup PE, as well. This provides faster traffic switch‐
over during PE failures. However, it also can cause multicast or broadcast traffic
duplication in the direction from the multihomed CE6-I to the single-homed CE2-I
because both PWs (PE3→PE2 and PE4→PE2) now actively forward traffic.

After configuring the primary egress PE, let’s turn our attention to the configuration
of protector/backup egress PE, outlined in Example 21-37.

Example 21-37. LDP PW protector/backup egress PE on PE4 (Junos)

1     protocols {
2         mpls {
3             egress-protection context-identifier 172.18.0.33 protector;
4         }
5         ldp {
6             upstream-label-assignment;
7         }
8         l2circuit {
9             neighbor 172.16.0.22 {
10                interface ge-2/0/5.9 {
11                    virtual-circuit-id 926;
12                    encapsulation-type ethernet;
13                    pseudowire-status-tlv hot-standby-vc-on;
14                    egress-protection {
15                       protected-l2circuit PE2-PE3 ingress-pe 172.16.0.22
16                           egress-pe 172.16.0.33 virtual-circuit-id 926;
17    }}}}}

The protector/backup egress PE configuration also contains some egress-protection–
related extensions for L2VPN (lines 14 through 16). Specifically, you can list IP
addresses of the ingress and primary egress PEs, as well as the VC ID from the ingress
to primary egress PE.

OK, that configuration is done, so let’s have a look at the states in the network.

Example 21-38. LDP L2VPN egress-protection states

1     RP/0/RSP0/CPU0:PE2#show l2vpn xconnect group PE3-PE4 xc-name CE6-I
2                        detail | include "PW: |Local|Label|tunnel"
3       PW: neighbor 172.16.0.33, PW ID 926, state is up ( established )
4         Preferred path tunnel TE 1833, fallback enabled
5           MPLS         Local                          Remote
6           Label        16050                          299936
7       PW: neighbor 172.16.0.44, PW ID 926, state is standby ( all ready )
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8         Preferred path tunnel TE 1844, fallback enabled
9           MPLS         Local                          Remote
10          Label        16051                          299936
11
12    RP/0/RSP0/CPU0:PE2#show mpls traffic-eng tunnels 1833 detail
13    [...] Resv Info:
14       Record Route:
15        IPv4 172.16.0.2, flags 0x29 (Node-ID, Protection: available, node)
16        IPv4 10.0.0.5, flags 0x9 (Protection: available, node)
17        Label 311152, flags 0x1
18        IPv4 172.16.0.33, flags 0x20 (Node-ID)
19        IPv4 10.0.0.35, flags 0x0
20        Label 3, flags 0x1
21        IPv4 172.18.0.33, flags 0x0
22        Label 3, flags 0x1
23
24    juniper@P2> show route label 311152 detail | find S=0 | match ...
25                 Next hop: 10.0.0.35 via ge-2/0/6.0 weight 0x1, selected
26                 Label-switched-path PE2--->PE3-CTX2
27                 Label operation: Pop
28                 Next hop: 10.0.0.11 via ge-2/0/7.0 weight 0x8001
29                 Label-switched-path Bypass->10.0.0.35->172.18.0.33
30                 Label operation: Swap 301648
31
32    juniper@PE4> show rsvp session name Bypass->10.0.0.35->172.18.0.33 |
33                 match "Label|Bypass"
34    To          From       Labelin Labelout LSPname
35    172.18.0.33 172.16.0.2  301648        3 Bypass->10.0.0.35->172.18.0.33
36
37    juniper@PE4> show route label 301648 | find S=0
38    301648(S=0)        *[MPLS/0] 00:02:57
39                          to table __172.18.0.33__.mpls.0
40
41    juniper@PE4> show route table __172.18.0.33__.mpls.0
42    (...)
43    299920             *[L2CKT/7] 01:10:39
44                        > via ge-2/0/5.8, Pop
45    299936             *[L2CKT/7] 01:10:45
46                        > via ge-2/0/5.9, Pop
47    800000             *[Egress-Protection/170] 01:10:00
48                        > via ge-2/0/5.6, Pop       Offset: 4

The ingress PE (PE2) establishes two PWs: the PW to primary neighbor (PE3), using
tunnel 1833 for transport (lines 3 and 4), and the PW to backup neighbor (PE4),
using tunnel 1844 as transport (lines 7 and 8). If you remember, these tunnels are
established toward the context-IDs (line 9 in Example 21-35), not to the primary
loopback addresses of PE3 or PE4. Looking at one of the tunnels, you can see that P2
provides node protection (line 15). And, indeed, if you check the P2 routing entry for
the label announced by P2 (lines 17 and 24) you can see the backup next hop point‐
ing to node-protection bypass (lines 28 through 30).
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So far, so good. But why is a node-protection (and not link-protection) bypass LSP
established from P2? P2 is only one hop away from PE3, which advertises
172.18.0.33/32, the destination for tunnel 1833. If you carefully check the RRO object
(lines 14 through 22), you should spot some unexpected entries. You see there are
actually three, not two, links on the path from PE2 to PE3:

• 10.0.0.5, label 311152
• 10.0.0.35, label 3
• 172.18.0.33, label 3

This means that PE3 is cheating. PE3 answered via the RRO object in the RSVP-TE
RESV message, that there is an additional hop from PE3 to reach the tunnel destina‐
tion. Therefore, P2 believes, it can initiate next-next-hop (NNHOP) bypass (to avoid
node 172.16.0.33) to protect the tunnel. If you go back to stub-proxy (Figure 21-5),
the situation is now slightly different. In stub-proxy context-ID advertising mode, the
primary and the protector nodes are cheating even in IS-IS, saying that some addi‐
tional IS-IS node exists. Now, they are only cheating in RSVP, because in the stub-link
context-ID advertising mode, context-IDs are advertised as additional links, not
nodes. The allocated label for the second link is 3 (implicit null), so arriving packets
will never make it to (nonexistent) hop 172.18.0.33.

Good. So, P2 requests NNHOP bypass to reach 172.18.0.33 and to avoid 10.0.0.35,
but to which node? To the protector node (PE4), of course (line 28), because the pro‐
tector node advertises 172.18.0.33, as well. The protector node completes the bypass
establishment, and advertises a real label (lines 30 and 35). This label points to the
context-ID table on protector node PE4 (lines 37 through 39).

The context-ID table is populated with labels. Do you remember how it was popula‐
ted? In previous cases using L3VPN and BGP-based L2VPN services, it was popula‐
ted via the BGP prefixes received from the primary node. Now, you don’t have BGP;
you have LDP. So now, the protector needs to receive information required for egress-
protection via LDP, not via BGP. As a result of the LDP PW egress-protection config‐
uration (lines 14 through 16 in Example 21-36, and in Example 21-37) the primary
PE and the protector/backup PE establish a targeted LDP session. Over this targeted
LDP session, the primary PE announces its own label that the primary PE uses for
PW being protected.

Example 21-39. Protection FEC element TLV advertised by PE3 (Junos)

1     Label Mapping Message (0x0400), length: 60, Message ID: 0x00000254
2       FEC TLV (0x0100), length: 20, Flags: (...)
3         L2 Protection FEC (0x83): Remote PE 172.16.0.22, Group ID 0,
4           PW ID 926, no Control Word, PW-Type: Ethernet
5       Upstream Assigned Label TLV (0x0204), length: 8, Flags: (...)
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6         Label: 299936
7       IPv4 Interface ID TLV (0x082d), length: 16, Flags: (...)
8         IPv4 Next/Previous Hop: 0.0.0.0, Logical Interface 0,
9           context ID: 172.18.0.33
10
11    juniper@PE4> show ldp database session 172.16.0.33 extensive
12    (...)
13     299936     L2PROTEC 172.16.0.22 ETHERNET VC 926
14                Context ID: 172.18.0.33 CtrlWord: No
15                State: Active

You can see a couple of new LDP TLVs, which have not been used before:

• L2 Protection FEC Element (Type 0x83, lines 3 and 4) introduced by the previ‐
ously mentioned: draft-ietf-pals-endpoint-fast-protection, as an element inside
RFC 5036’s FEC TLV (TLV 0x0100, line 2).

• Upstream Assigned Label TLV (TLV 0x0204, lines 5 and 6) introduced by RFC
6389 - MPLS Upstream Label Assignment for LDP, Section 4.

• IPv4 Interface ID TLV (TLV 0x082d, lines 7 through 9) introduced by RFC 3472
- Generalized Multi-Protocol Label Switching (GMPLS) Signaling.

Now it should be clear why you need to enable upstream label assignment mode
(lines 5 through 7 in Example 21-36 and Example 21-37). With a label mapping mes‐
sage that uses a combination of these TLVs, the primary egress PE tells the protector/
backup egress PE information required to populate the appropriate egress-protection
tables:

• Ingress PE (lines 3 and 13)
• VC ID (lines 4 and 13)
• Label used by primary egress PE (lines 6 and 13)
• Context-ID (lines 9 and 14)

Now, if you go back to the context-ID table, you will recognize the appropriate label
used for egress-protection (compare line 45 in Example 21-38 with lines 6 and 13 in
Example 21-39). The outgoing interface is the local Attachment Circuit (AC) used on
the protector/egress PE for the protected PW (Example 21-37 line 10). Thus, you can
confirm that states in the network are ready for egress-protection of your LDP sig‐
naled PW.

Just for completeness, Example 21-40 provides the configuration for Junos
ingress PE.
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Example 21-40. LDP PW ingress PE configuration on PE1 (Junos)

1     protocols {
2         mpls {
3             label-switched-path PE1--->PE3-CTX2 {
4                 to 172.18.0.33;
5                 node-link-protection;
6                 inter-domain;
7                 adaptive;
8             }
9         }
10        l2circuit {
11            neighbor 172.16.0.33 {
12                interface ge-2/0/1.8 {
13                    psn-tunnel-endpoint 172.18.0.33;
14                    virtual-circuit-id 816;
15                    pseudowire-status-tlv;
16                    revert-time 10;
17                    backup-neighbor 172.16.0.44 {
18                        virtual-circuit-id 816;
19                        psn-tunnel-endpoint 172.18.0.44;
20                        hot-standby;
21    }}}}}

In IOS XR, you must trick CSPF into using the path-option with a loose next hop
(lines 1, 2, and 12 in Example 21-35). In Junos, the corresponding trick is to specify
the inter-domain keyword (line 6). Then, you bind the LDP PW to the specific
MPLS transport tunnel (signaled via LDP or RSVP-TE) using psn-tunnel-endpoint
(lines 13 and 19). You also need to ensure that the IP address used as psn-tunnel-
endpoint is reachable via the appropriate tunnel. Fortunately, Junos creates the rout‐
ing entry by default, so that the IP address used as the tunnel destination (line 4) is
reachable via this tunnel. Therefore, the context-ID used as psn-tunnel-endpoint
binds the PW to the appropriate tunnel.

Finally, the PE-CE link-protection mechanism (see Example 21-41) is exactly the
same as in BGP-based L2VPN. The special egress-protection LSP tunnel redirects
traffic to the backup egress PE in case of a PE-CE link failure.

Example 21-41. Egress PE-CE link protection for LDP PW (Junos)

juniper@PE3> show route label 299936 table mpls.0 detail |
             match "via|oper|-path"
                Next hop: via ge-2/0/5.9 weight 0x1, selected
                Label operation: Pop
                Next hop: 10.0.0.13 via ge-2/0/2.0 weight 0x2
                Label-switched-path PE3--->PE4-PROTECT
                Label operation: Swap 299936, Push 300160(top)

juniper@PE4> show route label 300160 | find S=0
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(...)
300160(S=0)        *[MPLS/0] 03:14:32
                      to table __172.18.0.33__.mpls.0

Egress Peer Engineering Protection
Chapter 13 introduces Egress Peer Engineering (EPE), using BGP labeled IPv4 unicast
as the next hop. But what happens if your desired egress peer fails? Normally, in EPE
architecture, traffic would be blackholed until global convergence happens. Traffic
arrives with a BGP-LU label, which points to the outgoing interface facing the
selected egress peer. The router does not perform IP lookup (just label lookup), there‐
fore if the outgoing interface (peer) fails, there is no backup next hop.

In this section, you will enhance the EPE configuration with a protection mechanism.
You have two options from which to choose (or combine):

• Preinstall the backup next hop pointing to another directly connected egress peer
(or another link from the same peer)

• Remove the label from received packets and perform normal IP lookup

Figure 21-6 illustrates this scenario for EPE protection. All three peers (PEER1,
PEER2, and PEER3) advertise two prefixes: 192.168.20.100/32 and 192.168.20.200/32.
Both PE3 and PE4 readvertise these prefixes toward the RRs, without next-hop
change, as mandated by EPE architecture.
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Figure 21-6. Protection in EPE architecture

Let’s create a protection scheme on PE3, as follows:

• The upper PE3-PEER1 link should be protected by the bottom PE3-PEER1 link,
and IP lookup should be used as a fallback in case of complete PEER1 failure.

• The bottom PE3-PEER1 link should be protected by the PE3-PEER2 link (no IP
lookup as fallback).

• The PE3-PEER2 link should be protected with IP lookup only

OK, so let’s configure PE3 in order to meet these requirements (Example 21-42).

Example 21-42. EPE protection configuration on PE3 (Junos)

1     protocols bgp {
2         egress-te-backup-paths {
3             template BACKUP-FOR-PEER1-UPPER {
4                 peer 10.2.0.3;  ## bottom link to PEER1
5                 ip-forward;     ## IP lookup as fallback
6             }
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7             template BACKUP-FOR-PEER1-BOTTOM {
8                 peer 10.2.0.5;  ## link to PEER2
9             }
10            template BACKUP-FOR-PEER2 {
11                ip-forward;     ## IP lookup as fallback
12            }
13        }
14        group eBGP-PEER1-UPPER-LINK {
15            egress-te backup-path BACKUP-FOR-PEER1-UPPER;
16            neighbor 10.2.0.1 peer-as 65002;
17        }
18        group eBGP-PEER1-BOTTOM-LINK {
19            egress-te backup-path BACKUP-FOR-PEER1-BOTTOM;
20            neighbor 10.2.0.3 peer-as 65002;
21        }
22        group eBGP-PEER2 {
23            egress-te backup-path BACKUP-FOR-PEER2;
24            neighbor 10.2.0.5 peer-as 65002;
25        }
26    }

This configuration is somewhat self-explanatory. To reflect the requirements dis‐
cussed previously, you create three EPE protection templates (lines 2 through 13) by
using the peer (to specify backup peer) or ip-forward (to specify IP lookup as fall‐
back) keywords. For ip-forward, you can also specify the routing-instance, where the
IP lookup should be performed. If not specified, as in the Example 21-42, the default
master routing instance is used.

Next, you apply the previously defined EPE protection templates to the appropriate
BGP groups (lines 14 through 25). In this particular case, each BGP group has only a
single neighbor, but if multiple peers share an EPE protection template, there is a
good chance that you will see multiple BGP peers in the same group. Chapter 1 shows
how the iBGP-RR group, with two RRs, has the Add Path feature enabled for the ser‐
vice NLRI (IPv4 Unicast, in this example). Therefore, any PE router (including PE3)
can maintain multiple paths (maximum 6) to the same IP destination. This is crucial
in EPE architecture. Without multiple paths to the same destination, the remote PE
(e.g., PE1) will not be able to choose the egress link for the specific prefix. The remote
PE would receive only a single path. Other paths would be suppressed either by PE3
or by router reflectors.

This configuration example only covers the protection extension to
EPE architecture. For a full EPE configuration, refer to Chapter 13.

OK, let’s check the effect of your configuration (Example 21-43).
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Example 21-43. Prefixes advertised to RR from PE3 (Junos)

1     juniper@PE3> show route advertising-protocol bgp 172.16.201 extensive
2
3     inet.0: 68 destinations, 83 routes (68 active, ...)
4     * 192.168.20.100/32(3 entries, 3 announced)
5      BGP group iBGP-RR type Internal
6          Nexthop: 10.2.0.1
7          Localpref: 100
8          AS path: [65000] 65002 I
9          Addpath Path ID: 1
10     BGP group iBGP-RR type Internal
11         Nexthop: 10.2.0.3
12         Localpref: 100
13         AS path: [65000] 65002 I
14         Addpath Path ID: 2
15     BGP group iBGP-RR type Internal
16         Nexthop: 10.2.0.5
17         Localpref: 100
18         AS path: [65000] 65002 I
19         Addpath Path ID: 3
20    (...)
21    inet.3: 9 destinations, 9 routes (9 active, ...)
22
23    * 10.2.0.1/32 (1 entry, 1 announced)
24     BGP group iBGP-RR type Internal
25         Route Label: 299904
26    (...)
27    * 10.2.0.3/32 (1 entry, 1 announced)
28     BGP group iBGP-RR type Internal
29         Route Label: 299920
30    (...)
31    * 10.2.0.5/32 (1 entry, 1 announced)
32     BGP group iBGP-RR type Internal
33         Route Label: 299936
34    (...)

You can see that PE3 advertises to the RRs the prefixes received from the peering
routers. To save space, only a single prefix—192.168.20.100/32—is shown (lines 4
through 19). Because Addpath is used, PE3 advertises all different paths. They are dif‐
ferent because, based on EPE architecture, the next hop remains unchanged (lines 6,
11, and 16). Additionally, PE3 advertises MPLS labels for these next hops (lines 25,
29, and 33). Therefore, the remote PE (e.g., PE1) can engineer the traffic to the
appropriate egress PE by pushing the appropriate label. If PE1 wants to send traffic
destined to 192.168.20.100 via the bottom link toward PEER1 (next hop 10.2.0.3),
PE1 will encapsulate such packets with label 299920.

So far, so good. This is a typical EPE architecture. But let’s now have a closer look at
the EPE protection mechanism. So, let’s investigate the states associated with the
advertised next-hop labels (Example 21-44).
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Example 21-44. EPE protection RIB states on PE3 (Junos)

1     juniper@PE3> show route table mpls.0 extensive
2     (...)
3     299904 (1 entry, 1 announced)
4     (...)
5                 Next hop: 10.2.0.1 via ge-2/0/3.0 weight 0x1, selected
6                 Label operation: Pop
7     (...)
8                 Next hop: 10.2.0.3 via ge-2/0/4.0 weight 0x2
9                 Label operation: Pop
10    (...)
11                Next hop: via lsi.1 (master) weight 0x3
12                Label operation: Pop
13    (...)
14
15    299920 (1 entry, 1 announced)
16    (...)
17                Next hop: 10.2.0.3 via ge-2/0/4.0, weight 0x1, selected
18                Label operation: Pop
19    (...)
20                Next hop: 10.2.0.5 via ge-2/0/8.0 weight 0x2
21                Label operation: Pop
22    (...)
23    299936 (1 entry, 1 announced)
24    (...)
25                Next hop: 10.2.0.5 via ge-2/0/8.0, weight 0x1, selected
26                Label operation: Pop
27    (...)
28                Next hop: via lsi.1 (master) weight 0x3
29                Label operation: Pop
30    (...)

You can see in line 3 that label 299904 associated with next hop 10.2.0.1 (the upper
link to PEER1) has three next hops, all of them with different weights:

• The primary next hop (weight 0x1) pointing to the upper link to PEER1 (line 5)
• The secondary next hop (weight 0x2) pointing to the bottom link to PEER2 (line

8)
• The tertiary next hop (weight 0x3) pointing to the label switch interface (lsi) unit

1 (line 11)

This is exactly what you configured (Example 21-42, lines 3 through 6, and 15 and
16)! The label operation on all next hops is pop (lines 6, 9, and 12); therefore, packets
forwarded over these next hops will have the label removed. Thus, they will arrive to
the BGP peer without the label, which matches the peer expectation.

More explanations require the tertiary next hop pointing to lsi.1 interface. As is dis‐
cussed in Chapter 3, such an interface is used to remove the MPLS label from the
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received packet (pop action in lines 12 and 29), and points to some routing-instance
for further lookup. In Chapter 3, it is discussed in the context of L3VPN routing-
instances. Now, let’s verify to which routing-instance this interface actually belongs.

Example 21-45. Routing table verification for the lsi.1 interface on PE3 (Junos)

1     juniper@PE3> show interfaces lsi.1 extensive | match table | last 1
2         Generation: 227, Route table: 0
3
4     juniper@PE3> show route forwarding-table summary extensive |
5                  match "Index 0"
6     Routing table: default.inet [Index 0]
7     Routing table: default.iso [Index 0]
8     Routing table: default.inet6 [Index 0]
9     Routing table: default.mpls [Index 0]

Bingo! Interface lsi.1 points to the default routing table. If, after removing the label,
the remaining packet is an IPv4 one, the lookup will be performed in the default IPv4
(inet) table (line 6). Similarly, if the remaining packet is IPv6, the lookup is per‐
formed in the default IPv6 (inet6) table (line 8). So, your IP lookup fallback can
work with both IPv4 and IPv6 prefixes received from eBGP peers. If both the primary
and the secondary next hops fail (complete failure of PEER1), based on the IP lookup
in the global table and depending on the deployed BGP policies, PE3 may decide to
send the packet to the direct neighbor, PEER2, or to the remote PEER3 via PE4.

Together with the ip-forward knob, you can specify the routing-
instance name where the lookup should be performed. If omitted,
the default (master) instance is used, as discussed previously.

The second label (299920), associated with next hop 10.2.0.3 (the bottom link to
PEER1) has only two next hops: primary (Example 21-44, lines 17 and 18) pointing
to the bottom link to PEER1, and secondary (Example 21-44, lines 20 and 21) point‐
ing to PEER2. This again, reflects the requirements and the configuration. Therefore,
in case of PEER1 failure, packets will be sent unconditionally to PEER2 (without IP
lookup).

The third label (299936) again has only two next hops, which is in line with the
requirements. The backup next hop, similarly to the tertiary next hop in first exam‐
ple, points to the default routing table for lookup.

Egress Peer Engineering Protection | 867



Protection in Seamless MPLS Architecture
By now, you should be familiar with most of the use cases for fast traffic restoration.
You know, for example, how to protect against failure of transit links or transit P
nodes. Also, you should have discovered various options to protect the traffic against
failure of the egress PE node or the egress PE-CE links.

This section’s topic is Seamless MPLS architecture, which you might remember from
Chapter 16. If not, quickly have a look at Figure 16-6, which outlines the reference
architecture in Seamless MPLS deployments. This figure, along with the final config‐
uration for Seamless MPLS in Chapter 16, is the basis for the tutorial. As you will see,
there are some new network components that require protection too: border node
(Area Border Router [ABR] or AS Border Router [ASBR]), and ASBR-ASBR link.

Let’s begin the discussion with ASBR-ASBR link protection.

Border Link (ASBR-ASBR) Protection
Protection for the ASBR-ASBR link in Seamless MPLS architecture is very similar to
protection of egress PE-CE links. The only difference is that on the ASBR you need to
enable protection (backup paths) for the IPv4 (labeled) unicast address family in the
global routing context, not for the IPv4 VPN unicast address family inside the VRF.

Example 21-46. ASBR-ASBR link protection configuration (Junos)

1     protocols {
2         bgp {
3             group EBGP-UP:LU {
4                 family inet labeled-unicast protection;
5                 multipath;
6     }}}

Example 21-47. ASBR-ASBR link protection configuration (IOS XR)

1     route-policy PL-BGP-BACKUP-PATH
2       set path-selection backup 1 install
3     end-policy
4     !
5     router bgp 65001
6      address-family ipv4 unicast
7       additional-paths selection route-policy PL-BGP-BACKUP-PATH

A quick verification (see Example 21-48 and Example 21-49) confirms that the
backup next hops are now present. For example, the route to the loopback of PE1
shows on ASBR3 (Junos) and ASBR4 (IOS XR) with two preinstalled paths: the pri‐
mary path via the direct ASBR-ASBR link, and the backup path through another
ASBR reachable via the MPLS network.
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Example 21-48. ASBR-ASBR link protection verification (Junos)

1     juniper@ASBR3> show route 172.16.10.11/32 table inet.3 active-path
2     (...)
3     172.16.10.11/32
4       *[BGP/170] 00:05:26, MED 0, localpref 100, from 10.1.2.0
5          AS path: 65001 ?, validation-state: unverified
6        > to 10.1.2.0 via ge-2/0/1.0, Push 300752
7          to 10.0.20.9 via ge-2/0/3.0, label-switched-path ASBR3--->ASBR4

Example 21-49. ASBR-ASBR link protection verification (IOS XR)

1     RP/0/0/CPU0:ASBR4#show route 172.16.10.11/32 | include from
2         10.1.2.2, from 10.1.2.2, BGP external
3         172.16.20.103, from 172.16.20.103, BGP backup path

Border Node (ABR or ASBR) Protection
In case a border node (ABR or ASBR) fails, traffic must be redirected over the
remaining border node. As explained in Chapter 16, border nodes are inline RRs for
the IPv4 labeled unicast. Additionally, they change the next hop for the reflected IPv4
LU prefixes. Therefore, any failure to the border nodes causes rather long restoration
times (seconds) because traffic redirection is based on BGP global convergence.

Unless you perform some optimization. In this section, you will deploy egress protec‐
tion (service mirroring) concepts, not to protect IPv4 VPN unicast or L2VPN NLRIs,
as done previously; this time, you will protect with the service mirroring concept the
IPv4 labeled unicast NLRIs.

As of this writing, the primary border node or protector node
function in egress-protection (service mirroring) architecture for
IPv4 labeled unicast is not supported in IOS XR. Therefore, the
ABR2 node in this chapter’s Seamless MPLS topology runs Junos.

The topology for our border node egress-protection discussion is outlined in
Figure 21-7, similar to the Seamless MPLS topology used in Chapter 16, with the only
difference being that now both ABR1 and ABR2 are both Junos-based devices.
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Figure 21-7. ABR egress-protection architecture

You will deploy egress protection using the combined protector/backup border node
approach, meaning that ABR1 is the combined protector/backup node for ABR2; vice
versa, ABR2 is the combined protector/backup node for ABR1.

The approach to configure this is similar to that used in IPv4 VPN egress protection.
You need to do the following:

• Define the primary context-ID on the primary border node
• Define the protector context-ID on the backup border node
• Ensure that the primary border node changes the next hop to its primary

context-ID (and no longer to its own primary loopback address) for reflected
IPv4 LU prefixes

The base configuration is the same as in Chapter 16. Before configuring egress pro‐
tection, you must also extend this base configuration with LFA in area 49.0001 and
facility (node-link protection) for RSVP-TE in area 49.0002. These techniques were
discussed in Chapter 18 and Chapter 19, and are therefore not included in the follow‐
ing configuration, which concentrates only on egress protection specific additions.

Example 21-50. BGP-LU egress-protection configuration on ABR2 (Junos)

1     chassis {
2         fpc 2 pic 0 tunnel-services;
3     }
4     protocols {
5         rsvp {
6             tunnel-services;
7         }
8         mpls {
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9             egress-protection {
10                context-identifier 172.17.20.10 protector;
11                context-identifier 172.17.20.20 primary;
12            }
13        }
14        bgp {
15            group iBGP-RR:LU+VPN {
16                family inet labeled-unicast egress-protection;
17                export PL-BGP-RR-LU-EXP;
18            }
19            group iBGP-DOWN:LU+VPN {
20                family inet labeled-unicast egress-protection;
21                export PL-BGP-DOWN-LU-EXP;
22            }
23            group iBGP-UP:LU {
24                family inet labeled-unicast egress-protection;
25                export PL-BGP-UP-LU-EXP;
26            }
27        }
28    }
29    policy-options {
30        policy-statement PL-BGP-DOWN-LU-EXP {
31            term 201-LOOPBACKS {
32                from {
33                    rib inet.3;
34                    community CM-LOOPBACKS-201;
35                }
36                then reject;
37            }
38            term ALL-LOOPBACKS {
39                from {
40                    protocol bgp;
41                    rib inet.3;
42                    community CM-LOOPBACKS-ALL;
43                }
44                then {
45                    next-hop 172.17.20.20;      ## Primary context ID
46                    accept;
47                }
48            }
49            from rib inet.3;
50            then reject;
51        }
52        policy-statement PL-BGP-RR-LU-EXP {
53            term LOCAL-LOOPBACK {
54                from {
55                    protocol direct;
56                    rib inet.3;
57                    interface lo0.0;
58                    community CM-LOOPBACKS-200;
59                }
60                then {
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61                    aigp-originate;
62                    next-hop self;             ## Loopback
63                    accept;
64                }
65            }
66            term 201-LOOPBACKS {
67                from {
68                    protocol bgp;
69                    rib inet.3;
70                    community CM-LOOPBACKS-201;
71                }
72                then {
73                    next-hop 172.17.20.20;     ## Primary Context ID
74                    accept;
75                }
76            }
77            from rib inet.3;
78            then reject;
79        }
80        policy-statement PL-BGP-UP-LU-EXP {
81            term LOCAL-LOOPBACK {
82                from {
83                    protocol direct;
84                    rib inet.3;
85                    interface lo0.0;
86                    community CM-LOOPBACKS-200;
87                }
88                then {
89                    aigp-originate;
90                    next-hop self;             ## Loopback
91                    accept;
92                }
93            }
94            term 201-LOOPBACKS {
95                from {
96                    protocol bgp;
97                    rib inet.3;
98                    community CM-LOOPBACKS-201;
99                }
100               then {
101                   next-hop 172.17.20.20;     ## Primary Context ID
102                   accept;
103               }
104           }
105           from rib inet.3;
106           then reject;
107       }
108   }

Beginning with the configuration of the context-IDs, two additional IP addresses are
used as context-IDs (lines 10 and 11):
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• 172.17.20.10: the primary context-ID on ABR1 and protector context-ID on
ABR2

• 172.17.20.20: the primary context-ID on ABR2 and protector context-ID on
ABR1

Next, egress-protection functionality, as mentioned earlier, is enabled this time for
the IPv4 labeled unicast address family (lines 16, 20, and 24). The BGP outbound pol‐
icies deployed earlier (lines 17, 21, and 25) stay there—they are just slightly modified.

Existing policies (shown in full, to avoid any confusion) modify just the next-hop
parameter. For locally generated prefixes (local loopback) the next hop can still be the
local loopback (lines 62 and 90). Loopback is unique to ABR (no other node injects
the same loopback into BGP), so protection for ABR’s local loopback, even if ABR
fails, cannot be achieved anyway. And, as discussed earlier in the L3VPN egress-
protection section, protection for single-homed prefixes might cause blackholing in
certain failure scenarios, so it’s better not to configure it.

For reflected IPv4 labeled unicast prefixes, however, you change the next hop to the
primary context-ID configured at the beginning of the example (lines 45, 73, and
101). Because another ABR reflects the same prefixes and uses the same context-ID in
protector mode, these prefixes can be protected by the egress-protection architecture.

The specialty of ABR BGP-LU egress protection that is based on RSVP-TE transport
is the requirement for RSVP tunnel services (lines 5 through 7) and is not required in
any egress protection schemes discussed earlier (L3VPN or L2VPN). The require‐
ment for tunnel services in ABR BGP-LU protection will be explained later.

The ABR1 configuration is almost the same. You must configure the primary and any
protector context IDs (and of course, the next hop set to ABR1’s primary context-ID)
in the opposite way.

On an IOS XR router initializing a RSVP-TE tunnel (e.g., ASBR4) toward the
context-ID shared between ABR1 and ABR2, the configuration follows tricks already
discussed in the LDP L2VPN egress-protection section (lines 1 through 12 in
Example 21-35). Therefore, you will not see this configuration repeated here. This
time, however, you need to assign the traffic to these tunnels, not via some L2VPN
configuration statements, but via a simple static route as outlined in the following
configuration:

Example 21-51. Associating context-ID with RSVP-TE tunnels (IOS XR)

1     router static
2      address-family ipv4 unicast
3       172.17.20.10/32 tunnel-te1710
4       172.17.20.20/32 tunnel-te1720
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Perfect! The configuration is done, so let’s verify states in the network
(Example 21-52).

Example 21-52. ABR BGP-LU egress-protection verification

1     RP/0/0/CPU0:ASBR4#show cef 172.16.21.33 | include "via |labels"
2      via 172.17.20.10, 4 dependencies, recursive [flags 0x6000]
3       next hop 172.17.20.10 via 24015/0/21
4        next hop 0.0.0.0/32 tt1710       labels imposed {ImplNull 300032}
5      via 172.17.20.20, 4 dependencies, recursive, backup [flags 0x6100]
6       next hop 172.17.20.20 via 24017/0/21
7        next hop 0.0.0.0/32 tt1720       labels imposed {ImplNull 300048}
8
9     RP/0/0/CPU0:ASBR4#show mpls traffic-eng tunnels 1710 detail
10    (...)
11      IPv4 172.16.20.1, flags 0x29 (Node-ID, Protection: available, node)
12      IPv4 10.0.20.10, flags 0x9 (Protection: available, node)
13      Label 303296, flags 0x1
14      IPv4 172.17.20.10, flags 0x0
15      Label 3, flags 0x1
16    (...)
17
18    juniper@P1> show route label 303296 detail | find S=0 | match ...
19                Next hop: 10.0.20.5 via ge-2/0/3.0 weight 0x1, selected
20                Label-switched-path ASBR4--->ABR1-CTX
21                Label operation: Pop
22                Next hop: 10.0.20.11 via ge-2/0/1.0 weight 0x8001 (...)
23                Label-switched-path Bypass->10.0.20.5->172.17.20.10
24                Label operation: Swap 24013
25
26    juniper@ABR2> show rsvp session name Bypass->10.0.20.5->172.17.20.10
27    To           From       Labelin Labelout LSPname
28    172.17.20.10 172.16.20.1 300288     3 Bypass->10.0.20.5->172.17.20.10
29
30    juniper@ABR2> show route label 300288
31    (...)
32    300288  *[RSVP/7/1] 01:43:01, metric 1
33             > via vt-2/0/0.2097155, lsp Bypass->10.0.20.5->172.17.20.10
34    300288(S=0) *[MPLS/0] 01:43:01
35                  to table __172.17.20.10__.mpls.0
36
37    juniper@ABR2> show route table __172.17.20.10__.mpls.0
38    (...)
39    300032             *[Egress-Protection/170] 02:31:37
40                        > to 10.0.21.2 via ge-2/0/4.0, Swap 24003
41                          to 10.0.21.14 via ge-2/0/5.0, Swap 299776
42    303600             *[Egress-Protection/170] 02:31:37
43                        > to 10.0.21.2 via ge-2/0/4.0, Swap 24000
44                          to 10.0.21.14 via ge-2/0/5.0, Swap 299856
45
46    juniper@ABR2> show route receive-protocol bgp 172.16.20.10
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47                  table inet.3 detail | match "entries|Label|hop"
48      172.16.20.10/32 (6 entries, 3 announced)
49         Route Label: 3
50         Nexthop: 172.16.20.10
51      172.16.21.33/32 (5 entries, 5 announced)
52         Route Label: 300032
53         Nexthop: 172.17.20.10
54      172.16.21.44/32 (4 entries, 4 announced)
55         Route Label: 303600
56         Nexthop: 172.17.20.10

You can see that the PE3 loopback uses the ABR1 primary context-ID as the primary
next hop (lines 2 and 3). And, the ABR1 primary context-ID (which is the ABR2 pro‐
tector context-ID at the same time) uses, in turn, the 1710 RSVP-TE tunnel as the
primary next hop (line 4), apparently, as a result of the configuration from
Example 21-51. This tunnel is established via a dynamically chosen path that traver‐
ses P1 (lines 11 and 12). P1 is directly connected to ABR1 (where the RSVP-TE tun‐
nels terminate), so P1 is the PLR from an egress-protection perspective. The tunnel
requested node protection (Example 21-35, line 11); thus, you can see node protec‐
tion is actually available.

Checking the entries for the label assigned to the tunnel by P1 (lines 13 and 18), you
can see the node protection bypass LSP as the backup next hop (lines 22 through 24).
ABR2 assigns a label to this bypass LSP (line 28) that points to the context-ID label
table (lines 34 and 35), known to us from previous egress-protection discussions for
L3VPN and L2VPN. But, you can also see another entry (lines 32 and 33) pointing to
a VT (virtual tunnel) interface. This is something new.

What’s the difference between these two entries? Well, the second entry is for packets
with more than one MPLS label (S=0, so there is at least one additional label). Con‐
versely, the first entry is for packets with only a single label. Normally, packets arrive
to the protector with multiple labels (e.g., a context-ID label plus a BGP-LU label plus
a VPN label). Packets with a single label are packets used eventually for OAM pur‐
poses, such as ping or traceroute packets. We will discover later how such packets are
handled.

Back to the context-ID label table (lines 37 through 44) that contains currently two
labels; apparently these are the labels learned from ABR1 for PE3 and PE4 loopbacks
(compare line 39 with line 52, and line 42 with line 55). The outgoing labels are LDP
labels to reach PE3 or PE4 loopbacks inside area 49.0001.

Therefore, we can conclude that traffic going from left to right in the topology, des‐
tined to the PE3 or PE4 loopback, is protected in case of ABR failure with an egress-
protection scheme. If ABR1 fails, P1 redirects the traffic to ABR2. On ABR2, egress-
protection RIB/FIB structures ensure that traffic is forwarded appropriately toward
PE3 or PE4.
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Let’s now go back to the case with only the single label (lines 32 and 33), and try to
figure out the forwarding status here. The VT interface is an internal tunnel interface
connecting a displayed routing table (in this case, the context-ID table) with some
other routing table. So, first you need to figure out which table the other end of the
VT interface actually belongs to.

Example 21-53. VT loopback verification (Junos)

1     juniper@ABR2> show interfaces vt-2/0/0.2097155 detail | match ...
2         Protocol mpls, MTU: Unlimited, Maximum labels: 3,
3            Generation: 182, Route table: 0
4
5     juniper@ABR2> show route forwarding-table summary extensive |
6                   match "inet .*Index 0"
7     Routing table: default.inet [Index 0]

The packet goes to a normal global routing table. The label is actually popped, and
the router performs normal IP lookup in the global routing table. Therefore, ping or
traceroute to the context-ID can be appropriately handled by the protector during the
time when the primary node is not available.

So, is the ABR egress protection ready? Not yet! If you go back to lines 37 through 44
in Example 21-52, you’ll see two labels received from ABR1 and associated with PE3
and PE4 loopbacks. So, traffic from the left side to the right side across ABRs is pro‐
tected. What about traffic from the right side to the left side? Unfortunately, this traf‐
fic is not protected, because the context-ID table does not contain any labels
associated with loopback from the left side of the topology; for example, the loop‐
backs of PE1 and PE2.

Why are they not there? Let’s look again at the route policies deployed on the ABRs for
the IPv4 labeled unicast address family (Example 21-50). The ABRs send all BGP-LU
loopbacks (lines 38 through 48) downstream (in the direction of PE3 and PE4). How‐
ever, as of now, the exchange between the two ABRs is limited to local loopbacks, and
the loopbacks from area 49.0001, which are marked with the CM-LOOPBACKS-201
community (lines 52 through 79). Both ABRs receive loopbacks of nodes from the
left side in the topology from ASBR3 and ASBR4, so it was not really required to
exchange these loopbacks again over the direct ABR1-ABR2 session.

But now, the situation is different. To build egress-protection states, ABR1 and ABR2
need to have visibility of the BGP-LU updates advertised downstream. Let’s exchange
these BGP-LU prefixes between ABRs (Example 21-54).

Example 21-54. BGP-LU policy adjustment between ABRs (Junos)

1     policy-options {
2         policy-statement PL-BGP-RR-LU-EXP {
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3             term LOCAL-LOOPBACK {
4                 (...)
5             }
6             term 201-LOOPBACKS {
7                 (...)
8             }
9             term ALL-LOOPBACKS {
10                from {
11                    protocol bgp;
12                    rib inet.3;
13                    community CM-LOOPBACKS-ALL;
14                }
15                then {
16                    local-preference 90;
17                    community add CM-NO-ADVERTISE;
18                    next-hop 172.17.20.10;             ## Context-ID
19                    accept;
20                }
21            }
22            from rib inet.3;
23            then reject;
24        }
25        community CM-NO-ADVERTISE members no-advertise;
26    }

Prefixes exchanged between ABRs are solely for making egress-protection structures
possible. To avoid any unexpected forwarding patterns, they should not be readver‐
tised, and should be less preferred than the corresponding prefixes received from
upstream neighbors (ASBR3 or ASBR4). Therefore, you use the no-advertise com‐
munity (lines 17 and 25) and decrease the local preference from 100 to 90 (line 16)
when sending these prefixes to the neighboring ABR. Don’t forget to set the next hop
to the context-ID (line 18) so that the receiving ABR can install received labels in its
context-ID label table.

If you check the context-ID label table now, you will see many more labels, as shown
in Example 21-55.

Example 21-55. Context-ID label table on ABR2 (Junos)

juniper@ABR2> show route table __172.17.20.10__.mpls.0
(...)
300608          *[Egress-Protection/170] 00:44:14
                 > to 10.0.21.2 via ge-2/0/4.0, Swap 24005
                   to 10.0.21.14 via ge-2/0/5.0, Swap 299856
300688          *[Egress-Protection/170] 00:43:37
                 > to 10.0.20.6 via ge-2/0/3.0, Swap 24029
300704          *[Egress-Protection/170] 00:43:37
                 > to 10.0.20.6 via ge-2/0/3.0, Pop
                   to 10.0.20.12 via ge-2/0/2.0, Swap 300640
300720          *[Egress-Protection/170] 00:43:37
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                 > to 10.0.20.6 via ge-2/0/3.0, Swap 24002
                   to 10.0.20.12 via ge-2/0/2.0, Swap 300624
300736          *[Egress-Protection/170] 00:43:37
                 > to 10.0.20.6 via ge-2/0/3.0, Swap 24024
300752          *[Egress-Protection/170] 00:43:37, metric2 3000
                 > to 10.0.20.6 via ge-2/0/3.0, lsp ABR2--->ASBR3
300768          *[Egress-Protection/170] 00:43:37, metric2 2000
                 > to 10.0.20.6 via ge-2/0/3.0, lsp ABR2--->ASBR4
300784          *[Egress-Protection/170] 00:43:37, metric2 2000
                 > to 10.0.20.6 via ge-2/0/3.0, lsp ABR2--->ASBR4
300800          *[Egress-Protection/170] 00:44:15
                   to 10.0.21.2 via ge-2/0/4.0, Swap 24006
                 > to 10.0.21.14 via ge-2/0/5.0, Swap 299872
300992          *[Egress-Protection/170] 00:32:38, metric2 2000
                 > to 10.0.20.6 via ge-2/0/3.0, lsp ABR2--->ASBR4

The analysis of the IPv4 labeled unicast protection for the traffic from right side to
the left side of the network topology can also be done. Note that it is very similar to
the analysis already performed for traffic from left to right, so it will be skipped for
the sake of brevity.

How does ASBR node egress protection differ from ABR node egress protection? Not
much, actually. You can consider the pair of ASBR nodes (e.g., ASBR1 + ASBR2) as a
kind of ABR node for egress-protection perspective. And then, in the left side and in
the right side of such a combined node, you simply make the egress-protection con‐
figuration similar to the ABR egress configuration done before.

Summary
This chapter covered various egress service fast restoration mechanisms. By combin‐
ing these mechanisms with those presented in Chapter 18, Chapter 19, and Chap‐
ter 20, you can design networks with very low (below 100 milliseconds, or even below
50 milliseconds) failover times, during failure of any network component.
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