
Karl G. Kowalski

Learn to:
• Download the Mac App SDK and start

working with Xcode®

• Take advantage of Mac desktop features
to create amazing apps

• Submit your app to the Mac App Store
and navigate the approval process

IN FULL COLOR!

Mac®
Application Development

Making Everything Easier!™

 Open the book and find:

• The skills you’ll need to develop
Mac apps

• Where to find online assistance

• Sources and resources for a
Mac project

• Advice on testing a user interface

• How to use Model-View-Controller

• Ways to check your app for
memory leaks

• What Apple looks for in your app

• App development best practices

Karl G. Kowalski is the principal software engineer for RSA Security, where

he has worked on security software solutions for Apple devices since 2006.

He’s an expert Mac developer with experience in technologies ranging from

databases to text-to-speech integration.

Macintosh/Programming

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-1-118-03222-0

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Visit the companion website at www.
dummies.com/go/macapplication
development for valuable code samples

The Mac App Store is open for desktop business! You can get
in on the action with this easy-to-follow guide to developing a
Mac app from concept to completion. Here’s how to become
a registered Mac developer, plan an app that users will love,
work with Objective-C and code libraries, build and debug your
app, and market it through the App Store.

• Welcome to Mac land — learn about Mac apps in general, the tools
you need to start building them, and how to register as a Mac developer

• Learn the code — discover the basics of Objective-C ® programming,
the Cocoa ® Framework, and how to create a Mac app’s user interface

• It’s all about the user — learn strategies for supporting user
expectations and how to create a positive user experience

• Information, please — safely manage and store the information
users will provide

• The finishing touches — hunt down and banish the bugs and prepare
to ace Apple’s app review

Join the fun! Start developing
apps for the Mac desktop now —
this book shows you how!

In
Color

M
a

c
® A

p
p

lica
tio

n
 D

evelo
p

m
en

t
M

a
c

® A
p

p
lica

tio
n

 D
evelo

p
m

en
t

Kowalski
www.allitebooks.com

http://www.allitebooks.org

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/macapplicationdevelopment

Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

www.allitebooks.com

www.dummies.com/cheatsheet/macapplicationdevelopment
http://Dummies.com
http://Dummies.com
http://www.allitebooks.org

by Karl G. Kowalski

Mac® Application
Development

FOR
DUMmIES

‰

www.allitebooks.com

http://www.allitebooks.org

Mac® Application Development For Dummies®

Published by
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!,
The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates
in the United States and other countries, and may not be used without written permission. Dragon
NaturallySpeaking is a registered trademark Nuance Communications, Inc. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all
content that is available in standard print versions of this book may appear or be packaged in all book
formats. If you have purchased a version of this book that did not include media that is referenced by or
accompanies a standard print version, you may request this media by visiting http://booksupport.
wiley.com. For more information about Wiley products, visit us www.wiley.com.

Library of Congress Control Number: 2011937927

ISBN: 978-1-118-03222-0 (pbk); ISBN: 978-1-118-15999-6 (ebk); ISBN: 978-1-118-16001-5 (ebk);
ISBN: 978-1-118-16002-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://www.wiley.com
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.allitebooks.org

About the Author
Karl Kowalski has traveled the world of computers and software develop-
ment for far longer than he’s willing to admit. He has written programs for
airplanes, robots, games, and even particle accelerators, and he has devel-
oped software on platforms ranging from desktop computer to mainframes
and all the way down to smartphones. He is also the author of BlackBerry
Application Development For Dummies (John Wiley & Sons, Inc.). He lives
near Boston and works for RSA, the Security Division of EMC, where he
develops security solutions for mobile platforms such as BlackBerry and
iPhone, and desktop operating systems such as Windows and Mac OS X. In
his spare time, he develops software for smartphones as part of his startup,
BlazingApps LLC (www.blazingapps.com). And if there are any spare sec-
onds in the day, he does some voice-over work for one of his favorite jour-
nals, The Objective Standard.

www.allitebooks.com

http://www.blazingapps.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Dedication
To my parents, Constance and Stanley Kowalski, who have always encour-
aged me to do the best and at every step helped me to become who I am
today. Thanks, Mom, for making sure I eat right and especially enough.

To my family — Lee Anne, David, Rosemarie, Joseph, Candi, and Reese and
Mason — who helped me to keep focused and moving forward. Thanks for
letting me vent when things weren’t always perfect.

Finally, to the members of the RSA Credentials Everywhere team, past and
present: You have always been behind my efforts to express myself, 100 per-
cent. Thank you for keeping me sane during the non-book-writing hours.

Author’s Acknowledgments
I owe many thanks to Carole Jelen for her efforts to keep me writing. She is
everything I want in an agent, and she has set the bar very high.

Acquisitions Editor Kyle Looper kept me on top of my progress and gave
me more than a few ideas for things to think about and write about. Project
Editor Pat O’Brien has earned tremendous thanks for all his efforts to move
me above the level of apprentice-writer and for keeping me on track with all
my chapters and rewrites. Senior Copy Editor Barry Childs-Helton helped me
greatly by taking my letters and attempts at punctuation and polishing them
into something readable. And Dennis Cohen was phenomenal at keeping my
technical expertise sharpened and shiny.

Thanks to Daniel Bailey at EMC for his efforts to ensure that I maintained a
distinct separation between my EMC efforts and my writing efforts.

And very special thanks to Irina Furman (irina@igrafica.com) for her
work in creating a spectacular set of icons for DiabeticPad.

Lastly, I promised I would thank my supervisor, Jennifer Chong, who gave me
enough time to perform my duties at RSA as well as write another book.

www.allitebooks.com

mailto:irina@igrafica.com
http://www.allitebooks.org

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Vertical Websites

Project Editor: Pat O’Brien

Acquisitions Editor: Kyle Looper

Senior Copy Editor: Barry Childs-Helton

Technical Editor: Dennis Cohen

Editorial Manager: Kevin Kirschner

Vertical Websites Project Manager:
Laura Moss-Hollister

Vertical Websites Project Manager:
Jenny Swisher

Supervising Producer: Rich Graves

Vertical Websites Associate Producers:
Josh Frank, Marilyn Hummel, Douglas Kuhn,
and Shawn Patrick

Editorial Assistant: Amanda Graham

Sr. Editorial Assistant: Cherie Case

Cover Photo: © iStockphoto.com / Cary Westfall

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Patrick Redmond

Layout and Graphics: Samantha K. Cherolis

Proofreaders: Melissa Cossell,
Christine Sabooni

Indexer: Potomac Indexing, LLC

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Kathy Nebenhaus, Vice President and Executive Publisher

Composition Services

Debbie Stailey, Director of Composition Services

www.allitebooks.com

http://dummies.custhelp.com
http://the5thwave.com
http://www.allitebooks.org

Contents at a Glance
Introduction .. 1

Part I: Getting Started on Macintosh Apps 7
Chapter 1: Gathering What You Need to Develop Mac Apps 9
Chapter 2: Mac OS X Coding with Xcode ..39
Chapter 3: Giving Your App Something to Do .. 63
Chapter 4: Objective-C and Cocoa Applications .. 87

Part II: A View to an App ... 115
Chapter 5: Using Interface Builder to Lay Out Your Views 117
Chapter 6: Controlling Your Windows and Views ... 147
Chapter 7: Drawing Advanced Views .. 177

Part III: Focus on the User 207
Chapter 8: Maintaining Your Users’ Data ... 209
Chapter 9: Working in the Background ... 251
Chapter 10: Printing Your User’s Data .. 283

Part IV: Polishing and Supporting Your App 303
Chapter 11: Debugging Your App .. 305
Chapter 12: Putting On the Finishing Touches .. 337

Part V: The Part of Tens ... 367
Chapter 13: Ten Useful Apple Sample Apps ... 369
Chapter 14: Ten Macintosh Development Tips.. 377

Index .. 387

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Introduction ... 1

About This Book .. 1
Conventions Used in This Book ... 2
Foolish Assumptions ... 2
How This Book Is Organized .. 3

Part I: Getting Started on Macintosh Apps ... 3
Part II: A View to an App ... 4
Part III: Focus on the User ... 4
Part IV: Polishing and Supporting Your App 4
Part V: The Part of Tens .. 4

Icons Used in This Book ... 5
Where to Go from Here ... 5

Part I: Getting Started on Macintosh Apps 7

Chapter 1: Gathering What You Need to Develop Mac Apps9
Why Develop Macintosh Apps? ...10
Discovering Apps Like a User ..11

Understanding how users interact with their Mac 14
Seeing what your users see .. 17

Tooling Up .. 19
Buying a great development Mac .. 19
Downloading the software you need ... 21

Using Your Programming Skills ...25
Objective-C programming for Mac apps ...26
Debugging ...31
Using software patterns ..32

Understanding Macintosh Application Development Challenges 33
Targeting an OS X version .. 34
Programming defensively ...35

Stepping into a Brave, New World of Mac Apps ..36
Deciding what kind of app to create.. 37
Brainstorming, alone or in groups ...37
Becoming a Mac developer and App Store seller 38

x Mac Application Development For Dummies

Chapter 2: Mac OS X Coding with Xcode . .39
Getting Familiar with Xcode ...39
Creating a Macintosh Application with Xcode .. 41

What type of app are you? .. 42
Creating a new project .. 42
Xcode’s visual details .. 49

Chapter 3: Giving Your App Something to Do .63
Creating a Tip Calculator .. 63

Analysis of the changes to SimpleCocoaWindowApp 77
Analysis of the calculateTip: method .. 79
Dude, where’s my app? ... 80
Archiving your app .. 81

Setting Xcode to Your Preferred Preferences .. 83

Chapter 4: Objective-C and Cocoa Applications 87
Objective-C ... 88

Objects .. 93
Member variables ..95
Creating objects ...97
Methods .. 98
Protocols ... 100
Delegates ... 102
Managing memory ... 105

Using Cocoa Frameworks ... 109
Understanding the Application Life Cycle .. 112

Part II: A View to an App .. 115

Chapter 5: Using Interface Builder to Lay Out Your Views 117
Going with the Flow ... 118

From code to screen and back again... 119
Touring Interface Builder ... 121

Looking through the Library .. 125
The inspectors ... 130
Modifying your menus .. 132
Sizing up your windows .. 143

Chapter 6: Controlling Your Windows and Views 147
Opening Windows .. 148
Introducing MVC .. 151

xi Table of Contents

Using MVC in Your App .. 154
Starting with the Model ... 154
Creating the View component .. 159
Implementing a Controller .. 160

Adding a Preferences Window ... 167
Using notifications ... 174

Chapter 7: Drawing Advanced Views . .177
Reviewing Apple’s Component Collection ... 178
Understanding Cocoa’s Views ... 179

Drawing on the screen .. 181
Creating a Custom View .. 187
Drawing ... 189

Drawing with Beziér paths .. 191
Drawing text ... 196
Drawing images .. 199

Animating Views .. 201

Part III: Focus on the User .. 207

Chapter 8: Maintaining Your Users’ Data .209
Analyzing the Data ... 209
Storing the Data ... 210

Creating a data class ... 211
The DPData class ... 217
Storing data in files .. 218
Using Core Data to store information ... 222

Maintaining User Preferences .. 239
Exporting data .. 244
Importing data .. 248

Chapter 9: Working in the Background .251
Understanding Basic Threads .. 252

Knowing when to use a thread ... 254
Thread rules to keep in mind ... 256

Using Threads to Schedule Events .. 260
Setting up and executing a scheduled one-time event 261
Using an NSTimer to schedule repeated events 268
Using NSThread to retrieve data from a website 275

xii Mac Application Development For Dummies

Chapter 10: Printing Your User’s Data .283
Printing with Cocoa ... 283
Setting up a Page ... 286
Printing a Page ... 290
Printing Straight to PDF .. 294
Printing with Multiple Pages .. 295

Paging your own way... 296

Part IV: Polishing and Supporting Your App 303

Chapter 11: Debugging Your App . .305
Understanding Where Errors Happen .. 306
Using Xcode’s Debugger ... 309

Navigating the Debug area .. 310
Setting, deleting, and disabling breakpoints 313
Viewing intentional errors in the debugger.................................... 318
Doing even more useful things with the debugger 321
Setting conditional breakpoints ... 326

Using the Macintosh Logger ... 328
Introducing NSLog ... 328
Using NSLog .. 329
Removing NSLog statements .. 331

Keeping Track of Bugs .. 333
Identifying common solutions .. 334
Using a bug-tracking program .. 336

Chapter 12: Putting On the Finishing Touches 337
Working with Application and File Icons .. 337

Painting a good picture ... 338
Adding an application icon to your apps.. 340
Adding file icons to your apps ... 343

Creating Your Own About Panel .. 347
Tightening Your App’s Memory .. 354

Using Instruments to track down memory leaks 356
Viewing the line that created the leak ... 359

Localizing Your App .. 362

xiii Table of Contents

Part V: The Part of Tens .. 367

Chapter 13: Ten Useful Apple Sample Apps .369
ToolbarSample ... 371
CustomMenus .. 372
ButtonMadness .. 372
SimpleCocoaApp .. 372
NSTableViewBinding ... 373
IconCollection .. 373
PictureSharing .. 373
Squiggles ... 374
DictionaryController ... 374
ImageTransition ... 374

Chapter 14: Ten Macintosh Development Tips 377
Keep Track of Memory .. 378
Read Apple’s Documentation ... 379
Use Online Resources ... 380
Always Remember the Parent Class ... 381
Look Beyond the Current Problem ... 381
Follow Interface Builder’s Guidelines ... 382
Reduce, Reuse, Recycle .. 383
Use Keyboard Shortcuts ... 383
Set Xcode to Your Preferences .. 385
Stay Up to Date .. 385

Index ... 387

xiv Mac Application Development For Dummies

Introduction

T
he Apple Macintosh personal computer ushered in an age of powerful
computer capabilities combined with elegant user experience. More

than a quarter-century later, the Macintosh is still going strong, with even
more powerful features and more usability, allowing all kinds of users to take
advantage of their computers in new and productive ways. The engineers at
Apple could not achieve this all by themselves, and so they created and put
together tools and libraries of code to give independent software developers
the ability to craft Macintosh apps beyond the basic software Apple ships
with each Macintosh. And in January 2011, Apple went one step further: The
Macintosh App Store opened its virtual doors, giving Macintosh developers a
place to market, advertise, and sell their apps to Macintosh users all around
the world.

Macintosh Application Development For Dummies shows you how to develop
a Mac app from concept to completion, from coding to uploading to the
Macintosh App Store where users can find it and buy it.

About This Book
Macintosh Application Development For Dummies is a guide to developing
Macintosh applications for Apple’s Mac OS X. This book will show you the
paths through the basics of Mac app development so you can create apps
that extend the features and functionality of your Macintosh beyond what
Apple provides. No Macintosh development experience is required, but
familiarity with a programming language such as C, C++, or Java is assumed.
The libraries of code, also known as frameworks, that Apple supplies with
every Macintosh were created to work with a programming language called
Objective-C. Objective-C is an object-oriented language and is similar enough
to C and C++ that you’ll be able to pick it up fairly quickly if you’ve used
either of those languages. If you’re a Java programmer, you’ll also find
Objective-C to be relatively easy to understand, and you should have no dif-
ficulty figuring out the code examples.

Macintosh computers deliver powerful features to users who expect these
features to be easy to use and simple to figure out. The collection of all
the Apple-provided frameworks, known as the Cocoa framework, provides
you with the code necessary to deliver a user experience for your app that
Macintosh users have come to expect. And Apple provides tools to help you
put your app’s visual interface together in a way that adheres to the guide-
lines Apple has devised for how Macintosh apps should deliver a great user

2 Mac Application Development For Dummies

experience. Your app’s display is its primary means of communication with
your users, and you want your app to present itself to meet their expecta-
tions. This book will give you experience in putting together the visual
interface for your apps, so that you understand how to support your users
according to Apple’s interface guidelines.

This book will help you get started with the resources of Macintosh develop-
ment to show you only what’s absolutely necessary to start developing Mac
apps that are useful and rewarding for your users. And at the end, you’ll see
how to polish your apps to make them ready for submission and review at
the Macintosh App Store, so your apps can find Mac users worldwide, and
users can purchase and download your app with the click of their mouse.

Conventions Used in This Book
You’re going to come across a lot of code examples in this book, because
that’s one of the best ways I know to learn how to write code. The code exam-
ples in this book appear in a monospace font so they will stand out from the
surrounding descriptive text. A code block will look like this:

#import <Cocoa/Cocoa.h>

@interface MyAppDelegate : NSObject <NSApplicationDelegate>
{
}

@end

 Objective-C is a case-sensitive programming language, just like the C pro-
gramming language it derives from. When you use code that appears in this
book, type it exactly as it appears in the text. (You can find code samples for
this book at www.dummies.com/go/macintoshappdev — download the
code samples, and you won’t have to type in long code blocks!)

All the URLs referenced in this book also appear in a monospace font as well;
for example, www.apple.com.

Foolish Assumptions
In writing this book, I have to make certain assumptions about you, the
reader. I assume you have the following basic components for Macintosh
software development:

3 Introduction

 ✓ An Apple Macintosh computer with an Intel CPU

 ✓ Version 10.6 or later of Mac OS X

 ✓ Version 4.0 or later of Xcode

I assume that you’re comfortable and familiar with using a Macintosh com-
puter. I’ll cover what type of Mac hardware is useful in a later chapter, but
for now you don’t need to worry about the differences between an iMac,
a MacBook, or a Mac Pro. Apple makes OS X behave identically on all Mac
models, so your development efforts don’t have to target one machine sepa-
rate from another.

You’ll need some skills in using a Macintosh computer. You should be famil-
iar with the different aspects of working with Mac OS X as a user, including
how to launch applications, open and save files, work with the Finder, and
access online resources over the Internet. I also assume you have some kind
of Internet access so you can download the resources you need and also so
you can establish yourself at Apple online as a registered Macintosh devel-
oper. You’ll definitely need this to upload your Mac apps to Apple so they
can get onto a shelf at the App Store.

Lastly, I assume you have some programming knowledge and that you have at
least a basic understanding of object-oriented programming (OOP), either in
Java or C++. If you’d like a more comprehensive introduction to Objective-C,
consider Objective-C For Dummies by Neal Goldstein. Apple also provides many
helpful online tutorials for Objective-C and Macintosh development.

How This Book Is Organized
The chapters in Macintosh Application Development For Dummies are
divided into five parts.

Part I: Getting Started on Macintosh Apps
Part I opens and walks you through the door into the world of Macintosh
application development. You’ll discover what you need to know about
Macintosh apps in general and how to get ready for developing Mac apps.
Before the end of this part, you’ll also create a very basic Macintosh app.

If you aren’t a registered developer, Bonus Chapter 1 on the web site shows
how to get registered and download Xcode, if you don’t have it.

4 Mac Application Development For Dummies

Part II: A View to an App
In Part II, you’ll take the lid off of Mac programming and dive right into code.
Not the deep end, but not exactly shallow, either. You’ll learn the basics of
Objective-C programming and how to use the code libraries that make up the
Cocoa Framework. Then you’ll find out how to create a Mac app’s user inter-
face so you can effectively communicate with your users and give them a top-
notch experience when using your app.

Part III: Focus on the User
Part III gives you strategies and ideas for supporting users and their expecta-
tions about what your app is doing. You’ll learn how to manage and store the
information users will provide to your app, as well as how to print that infor-
mation when users want a hard copy. In addition, you’ll find out how to place
certain operations your app performs into the background so they don’t
detract from the user’s control over your app and their machine.

Part IV: Polishing and Supporting Your App
In Part IV I’ll show you the basics of one of the most important tasks you will
do while developing your app: hunting down and terminating the program-
ming anomalies — also known as bugs — that always appear in apps.

When your app is ready to submit to Apple, Bonus Chapter 2 and Bonus
Chapter 3 on the web site contain the steps you follow to organize all the files
and data you need to upload your app to Apple’s reviewers.

Part V: The Part of Tens
Part V provides some of the helpful tips and hints that you’d eventually dis-
cover on your own after you’ve developed many apps for the Macintosh —
only you’ll get them right at the start of your Mac app development path. You’ll
find ten of the sample apps that I’ve used to figure out how to get my Mac apps
to do things, so you can learn from code written by Apple’s engineers about
the right way to achieve your app’s goals. I’ve also included information about
some tools and some general programming techniques to help make your Mac
app development experience smoother and less challenging.

www.allitebooks.com

http://www.allitebooks.org

5 Introduction

Icons Used in This Book
 When you see this icon, you’re looking at a code example that is also avail-

able at the For Dummies website. You don’t have to type in all the code in
this book’s examples; instead, you can go to www.dummes.com/go/
macintoshappdev and save your fingers some wear and tear.

 This icon indicates a useful pointer that you shouldn’t skip. Tips make your
development effort easier by showing a shortcut or letting you know the
information provided gives you an easy approach to resolving a coding
problem.

 This icon represents a friendly reminder so that you are aware that this sec-
tion of a chapter contains important information you should keep in mind.

 You’ll see this icon when the accompanying information may be helpful or
even interesting, but is technical and is not required for your goal of under-
standing Mac application development. You can safely detour around these
pieces without losing any valuable information.

 This icon alerts you to potential challenges you may encounter on the way.
Read and obey these commentaries to avoid problems later on.

Where to Go from Here
You’re ready to start your Macintosh app development adventure. You can
turn the page and start your journey right at Chapter 1. If you’re anxious to
start doing some development, you can jump to Chapter 2 and get through
the registration and downloads sections so you’ve got the latest tools and
access to the online resources. If you have a particular question or problem,
check the Index or Table of Contents to find the information you need.

If you have questions or comments about this book or about Macintosh
app development in general, contact me at kgkfordummies@gmail.com.
You can also find additional information about my Macintosh application,
DiabeticPad, at www.diabeticpad.com. And you can find sample code for
this book at www.dummies.com/go/macintoshappdev.

Good luck, and happy coding!

6 Mac Application Development For Dummies

Part I
Getting Started on
Macintosh Apps

In this part . . .

Y
our objective is to develop an application that will
run on the most innovative, creative, and captivating

computer systems the world has ever seen — the Apple
Macintosh. You’ve got a fantastic idea for an app that will
astound and amaze everyone who runs it. So now what?

You start here. In this part, you’ll learn how to start devel-
oping Macintosh apps, including what tools you need and
how to use them.

Also in this part, you get a chance to learn about Xcode,
the main weapon in your arsenal of Macintosh application
development. You’ll also discover Cocoa and all the code
resources that Apple engineers have developed for your
battles to deliver a great user experience with as little
code as possible. Finally, you get to jump into coding a
simple application that will let you get comfortable with
Xcode and Cocoa and let you see just how easy it is to get
a Mac app up and running.

If you aren’t a registered developer, Bonus Chapter 1 on
the web site shows how to get registered and download
Xcode, if you don’t have it.

Chapter 1

Gathering What You Need to
Develop Mac Apps

In This Chapter
▶ Discovering Mac apps and why to develop them

▶ Collecting the right tools

▶ Sharpening the right skills

▶ Meeting the challenges of Mac app development

Y
ou’ve just awakened, gotten out of bed, and you want to check
your stocks because one of those big high-tech companies made an

announcement just after the market closed, and you want to see how the
overnight trading of some of your favorite high-tech stocks has turned out.
You look at your Mac laptop sitting on your dresser, and say, “Show me how
Apple is doing today.”

Your laptop speaks back at you: “Password.”

“Adam Smith,” is your response. The MacBook’s monitor comes alive and
shows the current pre-market trading trends for Apple stock. If you’d said
the wrong thing, the laptop would have remained off, and you wouldn’t know
how Apple stock was doing.

Does that sound like a dream? Everything I’ve mentioned above is possible
for a Mac application. A Mac application can hear you speak and analyze
your voice — Mac laptops and iMacs come with built-in microphones, and
a library of code to listen for and react to sounds. Saying specific words in
your voice such that an app can identify you as you would be the most dif-
ficult part of the scenario just described, but there are companies that sell
software that can understand what you say, so even that aspect would be
possible.

Apple’s Macintosh line of computers supports the needs of users by doing
just about anything you can think of. Macintosh applications now span all
the categories of apps that users have wanted to use on their Macs — and if

10 Part I: Getting Started on Macintosh Apps

the app isn’t there today, it soon will be. Users now use their Macs for every-
thing: e-mailing, web browsing, accounting, keeping track of dates, keeping
track of contacts, listening to music, watching videos — the list is endless.
And since today’s laptop computers have become smaller, lighter, and more
powerful, users now take them everywhere.

A Mac application is meant to be useful, fast, and responsive to its users,
because that’s what those users expect. Your app may not please all your
users, but you can develop apps that do useful work and do that job well.
Your app should provide the user with the kind of experience that standard
Mac apps deliver, so that your app will fit right into the elite set of must-use
apps, giving your users what they want and need.

In this chapter, I will show you what tools, skills, and ideas you need to
gather and discover to start developing Macintosh applications.

 On the web site, Bonus Chapter 1 shows how to become a Registered Apple
Developer, sign on to the Mac Dev Center website, download the latest Xcode
tools, and join the Mac Developer program.

Why Develop Macintosh Apps?
The Apple App Store now provides millions of Macintosh users with thou-
sands of apps they can download, just like the App Store does for millions of
iOS device users. Apple opened the store in January 2011, and although many
apps are available there already, a great many apps of all different kinds have
yet to be built. The Mac consumers are out there, and Apple has just created
a marketplace that will bring your software to them. You don’t need card-
board boxes, or shrink-wrap, or a machine to make millions of DVD-ROMs.
All you need to make the next Killer App is your idea and a Mac to develop it
with.

Apple takes care of the virtual shelf space your app sits on, and will accept
users’ payment for your app on your behalf, charging only 30 percent of the
price you choose to sell. Your users can feel safe and secure — they’re deal-
ing with Apple, so they don’t worry about handing credit card information to
a stranger on the other end of a wire. Users also know that Apple cares about
their experience, and will only allow well-behaved apps to be put up for sale.
Your app will sit with the thousands of others at the App Store, available to
everyone with a Macintosh and the latest version of OS X.

Here are a few other reasons why I see the Mac as a great development
opportunity:

11 Chapter 1: Gathering What You Need to Develop Mac Apps

 ✓ The Mac desktop App Store is new. There are millions of Mac users
out there, and until now they bought their software shrink-wrapped and
packaged, or found an online site they trusted to provide a safe down-
load. With the success of the iPhone App Store, Apple has brought the
same ease-of-use to the desktop. There’s still a lot of shelf space at the
App Store.

 ✓ Your app’s life cycle is now made easier. You no longer have to main-
tain your app via a website; when you make improvements to your app,
your users will know about it via the App Store. Upgrades are easy, and
you don’t have to keep in contact with your users to tell them about the
new things your app will do.

 ✓ The tools are free. You can do all your development on an Apple
Macintosh, but the tools to create Mac apps are free to download
from Apple. And your development machine also turns into your test
machine, because Apple makes sure that all Macs running the same ver-
sion of OS X provide your app with the same functionality. You can rest
assured that if you develop the next 3-D chess app on your MacBook Air
running OS X 10.7, it will work equally well on an iMac 21.5” with a 3GHz
processor also running OS X 10.7.

 ✓ There are millions of Mac users. This is a huge marketplace, and the
doors to the App Store have only just opened. This means only one
thing: huge demand.

 ✓ Apple provides the App Store for you to showcase and sell your app.
This venue takes care of the responsibility for credit card handling, host-
ing, downloading, and notifying your users of updates. The App Store
has a variety of pricing tiers, including free and try-and-buy. Apple keeps
30 percent of your application price to cover some of its costs. You will
have to pay a fee of $99 per year, but that’s all the payment you have to
make to Apple, no matter how many apps you put up for sale.

I love my Mac — it’s the first computer I use every day, and it’s the most
usable of all the computers I’ve ever used. Apple has made it into a great
machine, and now Apple has given developers a great way to deliver apps to
consumers. This is A Great Thing, and it’s a beautiful opportunity.

Discovering Apps Like a User
Apple introduced the Macintosh nearly three decades ago, and developers
have been making apps for the Mac ever since. The Mac popularized the con-
cept of a graphical user interface: Users were presented with “windows” that
they could move on the screen, along with switches and buttons and all kinds
of controls they could manipulate using a mouse. This was in stark contrast

12 Part I: Getting Started on Macintosh Apps

to the computer user’s world before the Mac. And now, nearly all computer
users expect to interact with their machines through the same approach, by
maneuvering a cursor and clicking buttons to make their apps do what they
need done.

Your app will have to live up to these expectations — you shouldn’t feel con-
fined to obeying the same look-and-feel as every other app out there, but you
should understand what users want, and anticipate their needs. You want
them to enjoy using your app so they’ll use it again and again, and as a result
you don’t want them to learn a completely new way of doing the same thing.

 If you’re just starting to use a Mac, run some of the Apple apps available on
every Macintosh so that you can get a good feel for how Apple sees its apps’
users — and how you can exploit all the user experience expertise Apple has
invested in its products.

The following apps all come with every Mac and are worthwhile to play with
in order to get a feel for how users see and use Apple apps:

 ✓ Safari. Safari is Apple’s web browser. It behaves like every other web
browser by rendering HTML for display. I recommend Safari because
you’re undoubtedly experienced with the other browsers, and you can
explore Safari while still retaining some familiarity with what it’s supposed
to be doing. Figure 1-1 shows the Dummies’ main page, and you can see
the different visual aspects of the Safari web browsing experience.

 ✓ Mail. Apple provides an e-mail app that users can set up to access their
mail from anywhere they connect to the Internet. Mail provides a rich user
experience for creating, reading, and searching their e-mail messages.

 ✓ Address Book. Address Book lets you store the contact information for
all the important people in your life. The Address Book provides a great
user experience — you don’t have to save the changes you make, you
simply make them and Address Book keeps track. Figure 1-2 shows you
an entry in the Address Book.

 ✓ iCal. My Professional Organizer keeps my life organized — and she has
introduced me to iCal. This calendar program syncs with my iPhone and
keeps on top of all my scheduled appointments. This is another great
app that will demonstrate a number of different design possibilities for
your user interface.

 ✓ iTunes. This is Apple’s most popular app — with good reason. iTunes
has been available on the Mac since the first iPod was created in 2001.
Ten years, millions of users, and billions of downloads later, iTunes is a
fantastic app for delivering songs, videos, and apps, and it offers a great
opportunity for you to see what Apple has done to provide iTunes users
with what they really want.

13 Chapter 1: Gathering What You Need to Develop Mac Apps

Figure 1-1: Buttons, scrollbars, and entry fields in Safari.

Figure 1-2: Users can quickly and easily navigate through their contacts
in the Address Book.

14 Part I: Getting Started on Macintosh Apps

 ✓ App Store. While the App Store is very similar to iTunes in many
respects, it also provides another look at how to do things for your
users. And it’s great for getting an advance look at how to present your
app when you’re ready to deliver.

 ✓ The Finder. The Finder is the main interface between the user and
the Macintosh. This is where users manage all of the items on their
computer — hard drives, folders containing files, all the day-to-day
bureaucratic tools that computers need. You should pay attention to the
different ways the Finder allows users to do things, because these are
the basic actions that users do all the time when they use their Macs.

Each of these apps, written and designed by Apple, demonstrates the basic
user interface components and interactions that Mac users expect to see in
your application. Mac users will be using the standard applications often, and
so you should become familiar with how users get things done with them.
The idea is to make sure your users feel at home with your app.

You can see in both Safari and Address Book some common user interface
components:

 ✓ Buttons for ordering the app to perform an action

 ✓ Icons for representing information in a compact form

 ✓ Text fields for displaying unchanging text information

 ✓ Text-entry fields, such as the search field

Understanding how users interact with their Mac
Your app will give users an improvement in their lives by giving them the
capability to store and manage their unique information in a way that is
comfortable and easy. To do this bit of magic, you’ll need to understand the
different ways that users interact with their Macs — and how your app can
accommodate their expectations and your app’s features and functionality.

 In general, users interact with their Macs in the following patterns:

 ✓ Moving a pointing device (PD). Apple popularized the use of a graphi-
cal user interface (GUI) to present information to Mac users, and also
provided the mouse as the first pointing device for interacting with the
GUI. When the user moves her mouse, the cursor on the screen moves
accordingly. Your app can track the user’s cursor movement, which is
useful for drawing apps as well as games.

www.allitebooks.com

http://www.allitebooks.org

15 Chapter 1: Gathering What You Need to Develop Mac Apps

 ✓ Clicking a button on a PD. The most direct form of interaction between
a user and her Mac is through the buttons on her PD. Clicking a button
can select commands from a menu, or any items displayed on the Mac
screen. Users click GUI buttons, click and drag files and windows, and
will try to click everything your app displays.

 ✓ Typing on the keyboard. Every Mac except the Mac mini comes with
a keyboard, and every app uses a keyboard to accept text information
from users. Mac apps allow users to enact menu commands via their
keyboards, as discussed in an upcoming subsection. Some games allow
users to control aspects of playing the game through their keyboards
(to take advantage of using ten fingers to deliver input to the game) in
addition to the motion of the pointing device and the actions of its
buttons.

 ✓ Speaking into a microphone. Mac OS X comes with the capability to
hear and understand spoken commands. Users with accessibility chal-
lenges can take advantage of this feature to perform many tasks with
their Macs that normally require a mouse or a keyboard. In addition,
some apps capture and record input from the microphone to create
podcasts or deliver network-based vocal communications.

Your apps can use any of these different forms for users to deliver informa-
tion to and command your apps. The majority of users will use the keyboard
and their favorite pointing device to interact with your app, and most apps
conform to these two interactions.

 Always think about ease of use when you’re designing and implementing
your apps. Mac users have been trained to expect the app they’re using
to be painless to interact with. Your users will be focused on entering and
retrieving their information using your app; you should design your app
to enable your users’ actions to do so smoothly and efficiently. Your app
should be easy to use with a pointing device in those areas where using a
PD makes the most sense, such as selecting items on the screen or moving
quickly through tables of data. Your app should likewise be easy to use
when users are entering data from the keyboard through a source like a
notepad app or a spreadsheet.

Pointing device (PD)
Your users’ PDs (of whatever type) are the primary way they interact with
the visual elements they see on the screen. Apple makes several different
types of pointing devices, and other vendors make their own kinds:

16 Part I: Getting Started on Macintosh Apps

 ✓ All PDs do the same basic thing: The user moves the device, and the
pointer moves around the screen. To interact with objects on the
screen: the user moves the mouse pointer over something and then
clicks.

 ✓ Each PD may have additional features — the new Apple Magic Trackpad,
for example, is a clickable pad that tracks finger movements and ges-
tures, like the screen of an iPhone.

Users will choose the PDs that suit them best — I happen to like trackballs
but I also like the Magic Trackpad. The end result is the same, no matter
which PD is connected; you don’t need to worry about how users are clicking
around in your app when they’re using the basic mouse-movement features
of their PDs. However, Mac OS X Lion now incorporates multi-touch gestures
similar to those available in iOS apps, so your app can take advantage of
users using a multi-touch device such as the Magic Trackpad or the Magic
Mouse.

Certain types of apps may be optimized to use particular types of pointing
devices; be sure you understand the best ways to use the information that
Mac OS X will provide your app for users and their interactions. Now that
Mac OS X Lion can provide multi-touch and gesture information to your app,
you can deliver an app that can use that information to deliver a better expe-
rience for your users.

Some types of apps that depend on a pointing device include these:

 ✓ Paint programs

 ✓ The Finder

 ✓ E-book readers

 ✓ Games

 ✓ DVD players

Keyboard
If your app will make use of text that the user types, then your users will be
using their keyboards. Apple has tried to nudge Mac users to doing things
with the PD more than with their keyboards, but so far users still love their
keyboards. Many of the actions that users can perform with the mouse can
also be performed with combinations of keys. An expert user will use the key-
board far more often than the PD — a keyboard offers much greater speed
for getting things done; after all, you’ve got ten fingers that can do ten differ-
ent things in a coordinated sequence — which is what they’re doing when
you type a sentence.

17 Chapter 1: Gathering What You Need to Develop Mac Apps

Types of apps that depend heavily on a keyboard include these:

 ✓ Spreadsheets

 ✓ Word processors

 ✓ Integrated development environments (IDEs)

 ✓ E-mail

 To keep your users happy while using your app, provide key-combinations for
the sets of actions they’ll perform most frequently using your app. It’s far
easier to hit Ô-S than it is to take my fingers off the keyboard while I’m typing
this document, reach for my favorite trackball, drag the mouse pointer to
select the Save menu item from the File menu, or click a Save toolbar button.
If I use the keyboard, the interruption is a split second, and I can save in the
middle of a sentence without losing track of what I want to write. The default
application template I introduce in Chapter 3 includes the standard key-
combinations for user actions such as creating, opening, closing, and saving
files; printing data; and the usual edit functions of cut, copy, and paste. Your
app should provide its own key-combinations for the actions that your app
adds to its menus.

Seeing what your users see
Your users will have display devices attached to their Macs; your app can
find that out and adjust accordingly. I’ll show you in Chapter 5 how to use
Interface Builder to make your screens’ contents handle different display
sizes automatically. What you need to know now is that your app will be run-
ning on screens of many different shapes and sizes.

Here are some of the different configurations possible:

 ✓ Old-fashioned 4:3. Not long ago, all screens had the same ratio of width
to height: each screen was 33 percent wider than it was tall. Some of
these are still out there. The first couple of generations of flat-panel LCD
displays still copied this aspect ratio, and, yes, there are still some CRT
screens around.

 ✓ Widescreen. This is the most common type of display; examples of it
come in several different sizes. In addition, users may be able to rotate
these displays to be taller than they are wide — your app should behave
appropriately if or when the aspect ratio (the ratio of the screen’s width
to its height) changes.

 ✓ Multiple. Some users demand the most screen real estate they can get,
and all Apple Macs come with multiple monitor ports to accommodate
this need.

18 Part I: Getting Started on Macintosh Apps

 You can see examples of the different screen types in Figure 1-3.

 Sometimes, working as a developer, you’ll want an extra monitor so you
can keep more of Xcode’s windows around without cluttering up any
one screen or jumping from one Desktop to another (Mission Control is
Apple’s app for creating virtual desktops).

Figure 1-3: The different screen types and configurations your app may
encounter on a Mac.

You may never need to think about how your users have configured their
visual real estate, but your app should be responsive to screen changes
whenever they occur. For instance, one app I use regularly on another OS
runs into trouble whenever I bring my laptop home from work. At work I
hook up an external monitor and this app’s window may end up displayed on
that screen. At home, however, I use only the laptop’s screen, and launching
this app causes its window to display off-screen. And there’s nothing I can
do about that. The app (obviously) remembers where I originally placed the
window, but an improvement would be to make certain that this specific loca-
tion is part of the area occupied by a physical screen. You’ll need to be aware
of the possibility for challenges such as this when creating your own apps.

19 Chapter 1: Gathering What You Need to Develop Mac Apps

Tooling Up
You are the most important tool in your software development toolkit. No
matter what project you work on, alone or in a team, your expertise is more
important than all the other tools you use to put together a Macintosh app.
Your skill in using those tools is what makes the tools useful.

But you need a good set of software and hardware tools at hand before you
start to do Mac development. The next sections cover the tools for making
Macintosh apps.

Buying a great development Mac
There’s no way around it: You’ll need an Apple Macintosh as your develop-
ment machine. The programming language you use (Objective-C) and the
compiler (LLVM) are available to run on many platforms, but only Apple has
the libraries and frameworks to run your apps on a Mac. And because you’re
creating a Mac app, you’ll have to run it on a Mac anyway to see that it runs
the way it should.

Your development machine will need to handle the following tasks when
you’re developing your Mac apps:

 ✓ Editing code. You’ll be typing and editing lots of code, and every Mac
available today — from a MacBook to an iMac to a Macintosh Pro —
will support this. However, larger screens — such as an iMac (Model
MC812LL/A) — are better than smaller — such as that on a 13-inch
MacBook (MC516LL/A).

 ✓ Editing the visual interface. This task isn’t much more draining than
editing code, but it’s always good to err on the side of higher speed and
larger screen size.

 ✓ Building the app. You will perform this task many times during the
development of each app, and this is one of the most power-hungry
tasks for a computer to do. Building your code into an app and packag-
ing it for delivery is very CPU- and memory-intensive, so you want a
machine that has good processor speed, and as much memory as you
can give it. Xcode 4 is optimized for running on the latest generation of
Mac hardware, so you’ll find newer Macs will build your apps faster than
older Macs.

 ✓ Executing and debugging the app. Before you’re ready to upload to the
App Store, you will want to test your app to make sure it’s got every-
thing it needs — and to make sure it doesn’t shatter into a thousand

20 Part I: Getting Started on Macintosh Apps

pieces. A debugging session also uses a lot of memory, and you want a
speedy processor capable of running Xcode, its Debugger, and your app
smoothly. Apple creates a wide range of different Macs for all users, but
as a developer you’ll benefit from a system that has these:

 • Fast processor: 3 GHz or better

 • Large amounts of memory: 8GB or higher

 • Large widescreen display: 1920 pixels wide by 1200 pixels high

 • Large hard drive: 1TB or more

 • External hard drive: 2TB or more, for backups using Apple’s
TimeMachine

 I prefer developing on Macintosh desktop machines rather than laptops —
this may be due to the time period in which I started developing, back when
a portable computer weighed 50 pounds and was carried in a suitcase. But
don’t let my bias prevent you from using a laptop. After all, a laptop allows
you to develop anywhere, including at 30,000 feet. If you prefer a portable
computer and can find a MacBook or MacBook Pro that’s fast enough and has
enough memory, don’t hesitate to get it.

Table 1-1 outlines the specifications of the development Macintosh I used
while writing the apps for this book.

Table 1-1 Requirements for a Development Macintosh
Equipment Optimum Requirements

Processor 3.0 GHz quad-core Intel CPU

RAM 16GB

Operating system OS X 10.7

Screen 27” widescreen

Hard drive 1TB

Network connection Broadband network access available today is all you
need. If you can afford something faster — get it!

 You must use a Mac that uses an Intel processor. Apple first introduced these
in 2006 and now the Apple Store only sells Intel Macs. However, you may
choose to purchase a used Mac instead; if you do, make sure the CPU inside
is Intel, as shown in Figure 1-4.

21 Chapter 1: Gathering What You Need to Develop Mac Apps

Figure 1-4: Intel Inside.

Downloading the software you need
If you’ve just opened your new Mac, you will discover that Xcode hasn’t been
installed. But that’s easy to rectify:

 ✓ Check for the latest and greatest version of Xcode available for down-
load from Apple’s App Store.

 At the time of this writing, the latest version of Xcode is 4.1.1, and it’s
free to download if you’re running OS X 10.7 Lion.

 Figure 1-5 shows you the App Store page for Xcode.

 Before you can download anything from http://developer.apple.
com, Apple requires you to be a registered Mac developer, which I go
over in Bonus Chapter 1 on the web site. Be sure you get that detail out
of the way before you start trying to install Xcode.

22 Part I: Getting Started on Macintosh Apps

Figure 1-5: Using the Mac OS X Install DVD to install Xcode on a new Mac.

Xcode tools
Your Mac app development efforts will require you to turn your ideas into
the correct sequence of instructions for a Mac to execute. In addition, your
app may need to use visual or audio resources and other data that will be
embedded within it. To create this package of executable code and data,
you’ll use several tools that are automatically installed with Xcode. And to
make sure your app works as perfectly as possible, Xcode also provides tools
that will help you ensure that your app will be careful with memory and its
performance.

The following are the major software tools you use to create Macintosh appli-
cations. All these tools are included with Xcode when you install it:

23 Chapter 1: Gathering What You Need to Develop Mac Apps

 ✓ Xcode. This is Apple’s integrated development environment. Xcode
includes the code editor, debugger, project manager, compiler, and
package-maker. Xcode provides all this capability within itself, so you
never need to leave Xcode to perform any of these functions.

 ✓ Interface Builder. You’ll need Interface Builder to assist with the devel-
opment of your app’s graphical user interface. While you can do every-
thing that IB does within code, you’ll find that using IB to put together
your screens graphically will save you a lot of time typing.

 ✓ Instruments. Apple has developed an app that can watch your app’s
use of memory — this is important while you’re developing your app so
you can avoid memory leaks. Apple will reject your app submission to
the App Store if your app is leaking memory. (I go over memory leaks in
Chapter 12; for now, just keep in mind that Instruments is instrumental
to your app’s successful appearance at the App Store.)

 ✓ Shark. You will use Shark to trace your app’s performance hurdles —
you will discover where your app is spending most of its time, and
this can help you to improve the code in those areas so that your app
doesn’t keep your users waiting. Shark is an Apple app that installs with
Xcode.

Other tools
Depending on what your app does, here are some other tools you should
consider adding to your collection:

 ✓ An image editor. While your app may not depend on images for buttons
or background screens, you will need to create an application icon for
Apple to display at the App Store.

 I recommend GIMP, the GNU Image Manipulation Program. It’s free,
and you can find it at www.gimp.org. Alternatively, you can purchase
Adobe’s Photoshop Elements, which provides most of the same fea-
tures at a price lower than the full version of Photoshop. You can find
Photoshop Elements at www.adobe.com.

 ✓ An audio editor. If your app makes use of sounds, you will want some-
thing that can record audio and let you edit it.

 If your audio needs are simple, such as providing audio help, I recom-
mend Apple’s GarageBand application. GarageBand is part of iLife, is
bundled on new Macs, and is very easy to use.

 ✓ A video editor. With the advent of small, HD-quality video cameras,
everyone today can be a video producer. If your app makes use of
video — for instance, to provide your users with a tutorial — you will
likely want a video editor app to assist with editing.

http://www.gimp.org
http://www.adobe.com

24 Part I: Getting Started on Macintosh Apps

 New Macs come with iMovie, a very useful — and free — video-
editing app.

 ✓ Backup software. Every new Mac comes with Time Machine, Apple’s
backup software. You should definitely consider using this app to back
up your work. Time Machine requires a separate hard disk, such as an
external drive. Along with OS X 10.7 Lion, Apple has announced the cre-
ation of iCloud, an online storage service that comes with 5GB of free
storage, which you can access from anywhere you have an Internet con-
nection. You can purchase additional storage space as needed. Amazon
(amazon.com) also has a cloud storage solution, and Mozy (mozy.com)
provides online backup services.

 Store your backups on a CD or DVD — hard drives do fail, and you will
regret relying solely on their correct operation to maintain copies of the
work you do.

 If you assume that all your work can be lost with one power outage — it’s
as simple as tripping over your Mac’s power cord — you will gain a healthy
paranoia about ensuring that your work gets saved, somewhere. Back up your
work — regularly. Your hours, days, or weeks of effort are worth the small
amount of time it takes to move them off your computer and onto some other
medium. Considering that you might be able to rewrite all your code in less
time than it took to create it from scratch, you still have to spend that time
rewriting it, instead of adding new features or fixing bugs. Do your backups.

Watching your language(s)
While the programming language of choice
for Mac development is Objective-C, and
while Objective-C is what I’ll use to develop
my Mac apps throughout this book, it isn’t the
only language available for use in developing
Mac applications. Your app should use only
the public APIs of Apple frameworks to avoid
rejection during the App Store review process.
In addition, your app cannot use optional tech-
nologies such as Java, as this will also cause a
rejection of your app.

 ✓ The compiler used by Xcode — LLVM —
supports the C and C++ programming
languages as well. In addition, you
aren’t restricted to using the Objective-C
Frameworks that Apple provides for you to
develop Mac apps.

 ✓ Nokia supports a cross-platform develop-
ment framework based on C++ called Qt;
you can find more information about it at
http://qt.nokia.com. If you are
fairly adept with C++ application develop-
ment, you may find Qt easier to handle,
rather than jumping into a noticeably dif-
ferent programming language. And Qt
was intended to assist in cross-platform
development — a Qt app you write for the
Mac is easy to move to Windows and Linux
platforms, something not easily done for an
Objective-C Mac app. Qt has its own limita-
tions, but the appeal of easily moving your
successful Mac app to another platform
may be worth the effort.

25 Chapter 1: Gathering What You Need to Develop Mac Apps

Using Your Programming Skills
You will need some general skills to develop Mac applications:

 ✓ Objective-C programming. The Objective-C programming language is
the primary development language used to develop Macintosh apps.
It’s based on the C programming language, so if you have a good back-
ground in C you’ll recognize most of the syntax and program structures
you encounter. In addition, you can create C-based source code mod-
ules, and Xcode will compile and integrate them into your app.

 Objective-C is an object-oriented language, so you will need some under-
standing of object-oriented programming — if you’re experienced with
C++, your knowledge of that language can help (not to worry — the
basics of Objective-C development show up later in this book). And
you’ll find that Objective-C can be used in conjunction with C++ source
code modules as well, so if you have a library of platform-neutral C++
sources you can make use of them with only a few modifications.

 In addition, Objective-C is a dynamic language, offering your app’s code
capabilities such as creating objects from just a class name, executing
a method using just its name, and the ability to extend the classes pro-
vided in the Apple frameworks to suit your app’s needs.

 ✓ Debugging. After you’ve implemented your app, there’s a statistical like-
lihood that it won’t be perfect. If you’re lucky, those imperfections will
make themselves apparent quickly and obviously. As you create more
apps, you’ll stop making the obvious and quickly fixed mistakes, which
leaves the subtle and more challenging bugs. Your skills at debugging —
looking at code as it runs, keeping track of what is going right and what
is going wrong, and so on — will play an important part in completing
your apps.

 ✓ Software design patterns. As with most modern computing platforms,
your app will benefit from using software patterns where appropri-
ate. You can create a functional and usable Mac application without
relying on any of the canonical design patterns, but applications that
are to have a long-duration existence will require a solid structure
for operation that the use of software patterns will support. The most
obvious of these is the Model-View-Controller (MVC) pattern, which
enforces the separation of your app into pieces that are easy to manage.
The basic Apple framework classes encourage using software design
patterns — one of the fundamental classes for your app will be an
NSViewController, which I describe along with MVC in Chapter 6.

26 Part I: Getting Started on Macintosh Apps

Objective-C programming for Mac apps
The Objective-C programming language was created in the 1980s to add
object-oriented features to the C language. Objective-C is the language I use
in this book to demonstrate how to program Mac apps, because it’s the lan-
guage used by Apple for all of its applications. You should be familiar with C
programming, and familiar with object-oriented programming in general. I’ll
go over some of the basic concepts here, but if you want a full experience,
you should check out Neal Goldstein’s Objective-C For Dummies (Wiley).

You may be familiar with procedural programming, where the computer
moves from one program statement to the next in a straight line. If so, you’re
probably used to thinking of the operations of an application as being linear,
one right after another. In object-oriented programming, your view of the
application’s operation will change: you will start to think of the app as a set
of objects, with each object representing functionality coupled with the data
that functionality will work with. The combination of this functionality and
data is a mini-library of code called a class; the data is represented as member
variables, and the code of a function in the class is called a method. The pro-
cess of executing a particular method with a specific object is called sending
a message to the object. Keep in mind that sending a message in Objective-C
is different from calling a method in other OO languages such as C++. In
Objective-C, the recipient of the message is determined when the code is exe-
cuting — and that recipient is responsible for executing the code associated
with the message or reporting an error to the OS. In C++, calling a method
on an object means that the sequence of code to be executed is determined
by the compiler, not the runtime environment. Because Objective-C puts the
responsibility for handling a message onto the object receiving it, Objective-C
classes can be more flexible in handling messages than C++ classes.

In addition to binding functionality and data together in one class, object-
oriented programming provides the capability to subclass — that is, create a
class that inherits data and functionality from a parent class. You create sub-
classes in order to

 ✓ Use the functionality and data of the parent class while adding your own
new functionality and new data

 ✓ Replace the functionality of the parent class with your own improvements

 ✓ Execute the parent’s functionality in addition to your own

Inheritance is a powerful programming concept, and you’ll use it frequently
during your development of Mac apps.

27 Chapter 1: Gathering What You Need to Develop Mac Apps

Each Objective-C class consists of two code files:

 ✓ Header: The header describes the structure of the class, including the
member variables it contains, and the methods that can be called. In
addition, the header provides information about the parent class. You
will create a header file for every class you create, and you will use the
header file to provide information to Xcode when it compiles the classes
that want to know about a particular class. For instance, you create a
class that represents a set of data values, such as the date, time, and
text of a Notepad note. Then, when you want to display the contents of
one set of those values in a View object, the view’s class needs to know
how to extract that information from a Note object — so you import the
header file of the Note class into the source module for the View class.

 Listing 1-1 shows a simple header file for a Note object data class.

 ✓ Source file: The source file for a class provides implementations for
the methods described by the header file. In addition, in order to over-
ride the implementation of a method in the parent class, you provide
your new and improved method in the source file. Because of how
Objective-C interprets inheritance, you only need to create declarations
of new methods in the header file. The source file contains all the source
code your class will execute.

 Listing 1-2 shows the Note object source code implementation.

Listing 1-1: A very simple data class header file, Note.h

//
// Note.h
// NotePadApp
//

#import <Cocoa/Cocoa.h>

@interface Note : NSObject
{
 NSString* m_text;
 NSDate* m_timestamp;
}

- (void)setText:(NSString*)inText;
- (void)setTimestamp:(NSDate*)inTimestamp;
- (NSString*)getText;
- (NSDate*)getTimestamp;

@end

28 Part I: Getting Started on Macintosh Apps

Listing 1-2: The very simple data class implementation, Note.m

//
// Note.m
// NotePadApp
//

#import “Note.h”

@implementation Note

- (id)init
{
 if (self = [super init])
 {
 // do some initialization
 }
 return (self);
}

- (void)setText:(NSString*)inText
{
 if (nil != m_text)
 {
 [m_text release];
 }
 m_text = inText;
 [m_text retain];
}

- (void)setTimestamp:(NSDate*)inTimestamp
{
 if (nil != m_ timestamp)
 {
 [m_text release];
 }
 m_ timestamp = inTimestamp;
 [m_ timestamp retain];
}

- (NSString*)getText
{
 return (m_text);
}

- (NSDate*)getTimestamp
{
 return (m_timestamp);
}

@end

29 Chapter 1: Gathering What You Need to Develop Mac Apps

 The important things to take away from Listing 1-1 and Listing 1-2 are these:

 ✓ Comment lines start with “//”. From that pair of characters onward
on the same line, the Xcode compiler will ignore anything typed. This
makes it really easy to remove a line of code that you might need to put
back, which can happen a lot during debugging. You can also remove
multiple lines of code by placing “/*” before the first line of code to be
removed and “*/” after the last.

 ✓ You reference header files through #import statements. In C and C++,
you would use #include; Objective-C understands that form as well,
but #import improves upon this by ensuring that any one header file
is included only once — eliminating the possibility of an infinite loop in
which header file A includes header file B which includes header file C
which includes header file A again.

 ✓ The declaration of the Note class starts with the @interface statement.

 ✓ The parent class of Note is the NSObject class, denoted to the right of
the colon “:”.

 ✓ In the header file, all member variables are enclosed by braces {}.

 ✓ In the header file, methods are declared and listed one line at a time,
starting with a dash “-” and ending with a semicolon “;”.

 Methods can span multiple lines, but I prefer the one-line-per-method
rule; it has the effect of keeping method names shorter, which means
each one is simpler to understand. However, multiline method declara-
tions and definitions can be easier to read, especially if you put each of
the method’s parameters on a separate line.

 ✓ The method declaration consists of a return value, such as
(NSString*), surrounded by parentheses, and followed by the method
name, which is a combination of its parameters and their types. Unlike
C and C++, Objective-C methods take their parameters separated by text
descriptions of what the parameter represents. The following code snip-
pet shows the difference between Objective-C and C or C++ in declaring
functions (in C) and methods (in C++ and Objective-C):

// C function or C++ method declaration
int addTwoValues(int value1, int value2);
// Objective-C method declaration
- (int)addValue:(int)value1 toValue:(int)value2;

 An example of a method that multiplies two Matrix objects by each
other and returns a Matrix object representing their product might
look like what you see in Listing 1-3. This is one of the major differences
between Objective-C and C and C++, and you’ll find yourself a little out of
sorts when you switch between the two, especially if you’ve gotten used
to the other’s way of doing things.

30 Part I: Getting Started on Macintosh Apps

 ✓ The declaration of the Note class ends with the @end statement.

 ✓ In the source file, the implementation for the Note class starts with the @
implementation statement.

 ✓ You can see all the four methods declared in the header file imple-
mented in the source module.

 ✓ You can see one new method, - (id)init, also implemented. Because
the exact same method is declared in the header file of the parent class
or any ancestor class, you need not declare that method again in Note’s
header file, although doing so won’t harm the app. The init method in
Note.m will override the parent’s method of the same name.

 init is declared for the root class of all Objective-C classes, NSObject.
You will never need to declare it in any Objective-C class you create as
long as your class is a subclass of NSObject or any of its descendants.

 ✓ In the init method, the code executes [super init]. This is how you
can execute a method declared in a parent class (also called the super-
class) from within the overriding method of the child class. In addition,
the brackets “[]” indicate that the code is sending the init message to
the super object.

 The return type for init is id. This is the type used to represent any
object type that inherits from NSObject. It is used as a pointer to some
object type, but without necessarily knowing what the actual type is. In
C and C++, this is the equivalent of void*.

You’ll get more of a handle on Objective-C and how to program Mac apps as I
show you how to develop using Xcode.

Listing 1-3: A Matrix-multiplication method in Objective-C

- (Matrix*)multiplyMatrix:(Matrix*)inMatrixA
byMatrix:(Matrix*)inMatrixB;

 In Objective-C, you only ever use pointers to objects. A pointer is just a fancy
name for the address in computer memory where an object exists. But since
you’ll only ever be able to use pointers to objects instead of the objects
themselves, you’ll start thinking — and I will continue writing — of these as
the objects. In Listing 1-3 you can see that Matrix* items are being passed
into, manipulated, and returned by the method. These are pointers to Matrix
objects, which is why the Matrix identifier is closely followed by an “*”
character. Even though these are pointers to Matrix objects, it’s easier to
just call them Matrix objects. And my editors will have fewer words to make
sure I spell correctly!

31 Chapter 1: Gathering What You Need to Develop Mac Apps

Your code can also include methods that take scalar values as parameters. A
scalar is a simple variable type, such as the following C types:

int

short

long

float

double

char

Debugging
Xcode comes with a source-level debugger that makes tracking down and
squashing bugs very easy. However, your own skills in debugging software
apps are what matter most.

I assume that in your software application development experience your
apps didn’t always work perfectly. I’m guessing that you’ve presumably spent
time analyzing code to find where the errors were hiding, and mercilessly
corrected them. In general, debugging is still more art than science. Your
tools can assist with shining light on the places where code goes wrong, but
you still need creativity and imagination to know where to start shining that
light. Small apps are usually easy to debug, but when your app has several
dozen classes and layers, bugs find more places to hide.

You can find resources online and in print regarding debugging, as well as
habits and approaches you can use to make your code easier to debug. I’ve
worked on very few apps where no debugging was required before they ran
flawlessly — that includes the sample apps I show you in the chapters that
follow. All of them had quirks and gotchas that required analysis and imagi-
nation to overcome.

One lesson I’ve learned in my software development experience is that
it’s easier to find bugs if I test my software while I’m implementing it. For
instance, usually after implementing a method for a class the first time, I
build my app and include simple code to test it, just to make sure the initial
implementation does exactly what I wanted it to do. Clearly, doing this for
each line of code I implement would add many days to my development
schedule, so normally I follow the implement-test-debug approach for meth-
ods that are more than a few lines of code. But you will find that testing
your code at appropriate stopping points during implementation can greatly
reduce the amount of time you spend debugging.

32 Part I: Getting Started on Macintosh Apps

Using software patterns
Programmers have been developing software for a long enough time that a
lot of the ways to solve problems have become standardized. Software pat-
terns are a collection of these standard solutions to certain kinds of program-
ming problems. You’ll find not only that Apple has used them (and provided
some of them as classes within the Mac app frameworks), but also that you
can use them yourself to resolve the issues you encounter while writing your
own apps.

You’ll find that using software patterns can greatly simplify your code, and
this leads you to developing code that’s easier to maintain. Patterns tend to
be simple and effective, focusing on delivering a limited set of functionality
within your app. A class in your application that is the implementation of a
particular software pattern for achieving a specific objective is straightfor-
ward and easy to test.

A simple example of a software pattern that you might use is one I use in
many of the apps I develop: the Observer pattern. An Observer is an object
that wants to know when another object has been modified — the Observer
will adjust its behavior based on the new set of data in the other object.
Apple provides classes within its core framework that support the Observer
pattern, and Listing 1-4 shows a code snippet that makes use of these classes
to support inter-object communication.

The initialize method of the class implementing the Observer behavior
demonstrates how to use NSNotificationCenter to register the Observer
to receive events named notifyObserver. In addition, the Observer pro-
vides the name of another method, methodToCallOnNotify:, when the
named notification event occurs.

Any other object posting an event notification to the NSNotificationCenter
will cause the Observer’s registered method to be executed. You can use
this type of software pattern to create apps that perform operations in the
background and update the display while the user has control over the
foreground.

 The use of the NSNotificationCenter method defaultCenter is an
example of another software pattern: the Singleton. Apple chose to use this
pattern because there is generally no reason why you should create multiple
notification managers in your app.

33 Chapter 1: Gathering What You Need to Develop Mac Apps

Listing 1-4: Using the NSNotification and NSNotificationCenter to
provide an Observer behavior

// in the Observer object class
- (void)initialize
{
 [[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(methodToCallOnNotify:)
name:@”notifyObserver” object:nil];

}

- (void)methodToCallOnNotify:(NSNotification*)inNotification
{
 // when a notification is broadcast by some other
 // object, this method gets executed
}

// in some other object class broadcasting a notification
- (void)updateObservers
{
 [[NSNotificationCenter defaultCenter] postNotificationNam

e:@”notifyObserver” object:nil];
}

Understanding Macintosh Application
Development Challenges

If writing solid Macintosh apps were easy, you wouldn’t need this book. So
you’ll want to be prepared for the hurtling boulders of difficulty that will
cross your path. Sometimes these challenges are caused by the limitations of
the Macintosh or its operating system, OS X — you’ll have to “code around”
these types of problems. Other times, you’ll find you’ve “coded yourself into
a corner”: for example, a decision of how to implement some part of your app
at an earlier phase of development may force responsibilities on your code in
later parts of your effort.

The following sections describe the challenges that you’ll face in writing
Macintosh applications.

34 Part I: Getting Started on Macintosh Apps

Targeting an OS X version
Apple has a habit of releasing a major new version of OS X once every 12-24
months. In 2009 it was Snow Leopard, OS X 10.6. In 2011, the next version is
Lion, OS X 10.7. Here are some of the improvements that Lion offers in OS X:

 ✓ Full Screen Apps. Lion provides users with the ability to launch an app
that takes over the entire screen. Your app can take advantage of having
every square pixel of screen real estate to itself.

 ✓ Aqua. Lion will improve the user interaction of Aqua, adding support for
popovers (small, window-like displays), Overlay Scrollbars (scrollbars
that appear when needed and disappear when not needed), and Multi-
Touch Gestures and Animations (Apple’s Magic Trackpad is available on
its current laptops and as a Bluetooth add-on, and the Magic Mouse is
also available). I imagine users will start expecting to take advantage of
these features — which first arrived for the iPhone and iPad — in their
Mac apps.

 ✓ AV Foundation. Apple is providing a new framework for Lion that
includes Objective-C classes to play, examine, and compose audio-visual
media from within your app. This will make it easier for you to capture
audio and video from the user. For instance, you could create a game
app that uses the user’s voice to talk to other characters in the game,
after reading through a script.

 ✓ Auto Save and Versions. In the old days — like, last week — users were
cautioned to save early, and save often. Lion provides a built-in auto-
save feature that will store changes to documents your app creates
without requiring the user to take any action. And Lion’s implementation
of Versions will provide an automatically recorded history of changes
made to documents, displaying a Time Machine–like interface that lets
users browse through all the changes they’ve made.

 ✓ Resume. Before Lion, your app would have to keep track of the windows
and their contents that users opened and left displayed onscreen when
the user logged out or restarted the machine — assuming your app was
considerate enough to do so. If it wasn’t so considerate, it would require
the users to re-open everything they could remember being open. Lion
allows users to restore your app exactly where they left it. Apps left run-
ning when the logout or restart occurred will relaunch automatically. In
addition, Lion will restore the state of an app that was terminated acci-
dentally, such as from an application crash or a power outage.

 ✓ File Coordination. When your app has multiple threads of execution (I
go over this in Chapter 9), accessing resources such as files from dif-
ferent threads could sometimes cause problems, such as one thread
trying to read data from a file while another is trying to write data into
it. Lion introduces File Coordination, which helps eliminate these kinds
of difficulties.

www.allitebooks.com

http://www.allitebooks.org

35 Chapter 1: Gathering What You Need to Develop Mac Apps

 ✓ Sandboxing and Privilege Separation. On the iPhone and iPad, apps
are sandboxed — your app can only access those parts of the file
system assigned to your app and nothing else. This helps to ensure
that well-behaved apps are not affected by apps misbehaving next
door. Lion now brings this capability to the Mac desktop. Similarly,
Privilege Separation helps system security by letting you factor your
application into smaller pieces, each of which has its own privileges
for operation on the machine. This enhances the overall security of the
user’s system and lets them feel comfortably in control over apps that
are not running wild.

Mac OS X 10.7 Lion is now available and will be on the screens of your users,
ready for your app to take advantage of its features.

 Log in to the Apple developer website often — I recommend weekly — to
keep on top of OS X releases. Doing so will save you from negative feedback
and aggravation.

Apple also releases free updates to OS X between major releases — and
because they’re free, most users will install them. These updates range from
simple bug-fixes for Apple apps up to major security fixes. Because your
users are installing these updates, you should do likewise. You must ensure
that your app runs on your users’ machines.

Programming defensively
You want your app downloaded and used by tens of thousands of people
worldwide. When that happens, each user becomes a quality assurance engi-
neer for your app. These users will intentionally and accidentally discover
new ways of breaking your application — causing unforeseen consequences
to occur — that you never thought of. Your users will be your next major
challenge.

Users follow a bell curve in terms of how they use your app. Most will behave
exactly as you expect, following the anticipated modes of operation where
they never encounter shortcomings in your app and never try to make the
app do something incorrect. But a small group of users will push your app,
by accident or on purpose, into a situation it can’t handle. If you work for
a large organization with a quality assurance department, a great many of
these situations can be discovered and resolved before your code gets to the
App Store. If you’re a solo entrepreneur, this burden falls on your shoulders.

 Most aberrant situations result from a user’s input of invalid data into your
app. This specific pathway to error can be prevented through the use of
fixed-input entry fields: Your user interface can incorporate elements that
restrict user input to particular data types or specific values. In addition,
your app should “sanitize” the data that users provide as input, to make sure
that nothing bad gets inside your app to wreak havoc.

36 Part I: Getting Started on Macintosh Apps

As an example, your app might act as a gateway to blogs that the user visits
often to contribute comments. You can hope that such websites do their own
sanitizing, but your app can do that work ahead of time. The idea is to reduce
the chance that the website will reject the data you transmit to it because of
invalid characters that are, say, incorrect HTML tags.

Another invalid input entry will occur when your app displays text-entry
fields for users to input data that your app will use. For instance, the follow-
ing are examples of valid textual dates:

 ✓ 2/27/11

 ✓ February 27, 2011

 ✓ 2011-02-27

If your app lets users enter arbitrary text data into a plain text-entry field,
you’ll have to devise code within your app that can convert the data into a
form more suitable for making comparisons and calculations. But a basic
text-entry field also lets your users enter miscellaneous text such as Karl’s
chapter due date.

If your app tries to convert that value to an NSDate object (the standard
Cocoa class for representing dates and times), the conversion will fail. A
better way to ensure that only valid data values are entered is to use UI com-
ponents that limit what a user is permitted to provide. In this case, using an
NSTextField and adding an NSDateFormatter object will ensure that only
dates can be entered into the field.

 Another potential cause of problems is a user who tries to load your app
with a set of data created by an older version of your app. The problems can
range from simple (your app refuses to load the data) to complex (your app
acts on data it doesn’t fully understand — and uses it incorrectly). Neither
of these outcomes will be pleasant for your users. I cover migration of older
data to newer versions in Chapter 8, but you will inevitably run into this
problem, and you’ll need to code appropriately.

Stepping into a Brave, New World of Mac Apps
Apple has had tremendous success with its iPhone and iPad and the iOS
App Store. With users now accustomed to using the App Store for download-
ing apps to their phones, Apple introduced the same capability for deliver-
ing desktop apps to their users — the Macintosh App Store. This online
marketplace combines the familiar App Store ease-of-use with the delivery
of high-quality, Apple-sanctioned desktop applications. The App Store pro-
vides many categories of apps for Mac users to download, such as Business,
Education, Games, News, Social Networking, and Utilities.

37 Chapter 1: Gathering What You Need to Develop Mac Apps

 For the complete list, please see Bonus Chapter 2 on the web site.

Some categories are further subdivided, to allow prospective buyers the abil-
ity to drill down through the store and find the app that’s right for them. You,
as a developer, should become familiar with the user’s experience of search-
ing and finding apps in the App Store, to place your app in the right category
and to make sure your app shows off its best face.

Deciding what kind of app to create
If you already have an idea for an app, great! You’re one giant step ahead on
the road to App Store fortune and fame! This can be one of the most challeng-
ing parts of creating a Mac app — figuring out what to create.

 Review the apps available at the App Store in a variety of different catego-
ries. Apple does suggest as part of their submission guidelines that there are
some types of apps that are already overpopulated, and Apple will at its dis-
cretion reject apps that duplicate other apps, if there are many of them. So
you’ll want to get an idea of what’s already available. Think of this exercise as
window shopping. Your imagination will work in the background while you
see what’s already on the shelves, and all it takes is one example to trigger
something wonderful. For instance, my app is intended to provide a logbook
for diabetics to populate with the information useful for managing their
diabetes on a daily basis. I found one app at the App Store, for about $40.
Now that app provided a lot of different features, while I was thinking that a
smaller app that did less would be useful, if I sold it for less. And that’s how
DiabeticPad was born.

After you’re a registered Mac developer, you’ll be able to access the Mac App
Store review guidelines at

http://developer.apple.com/appstore/resources/approval/guidelines.html

 I cover the process of becoming a registered Mac developer in Bonus
Chapter 1 on the web site.

Brainstorming, alone or in groups
I am a co-founder of a small startup, BlazingApps. The other co-founders and
I sit down irregularly for a brainstorming session: We go around the table
and contribute an idea or many about different apps we’ve thought about
since the previous meeting. I enjoy this kind of imaginative collaboration and
highly recommend it.

38 Part I: Getting Started on Macintosh Apps

For the solo entrepreneur, I highly recommend writing down any thoughts of
ideas somewhere you can easily find them again — e-mailing yourself an idea
is a great way to capture those ideas, especially if your e-mail is accessible
from anywhere you have Internet access. You should write down everything,
no matter how small or unimportant you might think it is. This way, you’ll
have a collection of thoughts and imaginings that you can use to spark more
of the same — and this is what brainstorming is all about: the unrestricted
generation of ideas. Some combination of these little pieces of your imagina-
tion, across a spectrum of your recorded notes, will gang up and prove to be
an app worth creating. As a solo engineer, talking with other developers or
even acquaintances can generate ideas. You can scan the many Macintosh
online forums to pick up on what issues users are running into and develop
ideas based on the problems they encounter and clearly want a solution for.

Becoming a Mac developer and App Store seller
Your first step toward Mac app development is to register with Apple as
a Mac OS developer. You then gain access to a treasure chest of all things
Macintosh, including

 ✓ Xcode downloads

 ✓ Sample code downloads

 ✓ All developer documentation

 ✓ Articles pertaining to Macintosh development

 ✓ The official Apple online development forums

 The developer registration process is pretty straightforward. I go over
the steps involved in Bonus Chapter 1 on the web site. Becoming an App
Store seller is a little more complicated and has more steps to follow: that’s
because (you guessed it) money is involved. I go over the details of becoming
an App Store seller of Macintosh apps as well in Bonus Chapter 1.

Read on!

Chapter 2

Mac OS X Coding with Xcode
In This Chapter
▶ Getting the hang of using Xcode

▶ Making Xcode work for you

▶ Getting familiar with the parts of a Macintosh project

Y
our best friend, worst enemy, helpful assistant, cryptic co-conspirator,
and all-around master toolbox of all Macintosh app development will

be: Xcode. Apple created Xcode to do nearly everything you will need to do
in order to create and support quality Macintosh applications. Those other
things that Xcode doesn’t handle for you, Xcode will ensure that you can get
to the tools that keep all the other parts of your app and your development
process in order.

In this chapter, I show you how to find and install the latest version of Xcode
and the full set of Apple development tools, straight from Apple. I also dem-
onstrate the construction of a more-than-simple application from start to
finish, so that you can see the basic approach to follow when you create your
own apps. I will also introduce Interface Builder, Xcode’s integrated graphical
tool that Apple designed to make your life easier when you create the visual
interface of your application.

 This book uses Xcode. On the web site, Bonus Chapter 1 shows how to
become a Registered Apple Developer, sign on to the Mac Dev Center web-
site, download the latest Xcode tools, and join the Mac Developer program.

Getting Familiar with Xcode
You will use Xcode for just about everything you need to create and build
your application. Xcode is an integrated development environment (IDE)
written and supported by Apple, which gives you the best possible tool to
develop Macintosh applications. You will use the following components of
Xcode for most of the work developing and testing your application:

40 Part I: Getting Started on Macintosh Apps

 ✓ Source Code Editor. You use Xcode’s text editor to create and edit the
Objective-C, C, and C++ source files for your Macintosh application.
You can use your own favorite editor (such as Emacs) if you prefer, but
Xcode’s editor incorporates context-sensitive help that can assist your
development tasks — and a third-party editor might not provide such
assistance. As you’ll see later in this chapter, Xcode allows you to cus-
tomize many of the visual aspects of your code as well.

 ✓ Interface Builder. Interface Builder is Apple’s user-interface editor, and
it gives you the capability to create and manipulate the visual portions
of your app. In addition, you use Interface Builder to make connections
between the code you write and the components of the visual interface.
Interface Builder is bundled as an editor within Xcode.

 ✓ Macintosh App Build Tool. Xcode 4 uses the LLVM (Low Level Virtual
Machine) compiler and linker to turn the human-readable source code
you type into machine-readable instructions that a Mac computer’s CPU
will interpret and execute. The compiler and all the tools are installed
when you install Xcode so it knows where to find them when you want
to turn your code into a running app. The build tool is really a set of sep-
arate tools to turn all your hard work into a quality product. I go over
the details of the build process later in this chapter.

 ✓ Source-Level Debugger. I make mistakes in my code, and the more
apps you create, the greater the chances that one of your apps will do
something you didn’t expect or intend. Figure 2-1 shows you one of the
results that a failure to do the right thing may lead to. You should make
every effort to ensure your users never see this coming out of your apps.
A debugger helps you track down and terminate with extreme prejudice
the mistakes in your code that otherwise will send your users to your
competition. Xcode’s debugging tools provide you with a GUI-based
approach to finding and fixing problems before your users see them. I
will introduce you to Xcode’s debugger later in this chapter and cover
the debugger more extensively in Chapter 11.

 ✓ CoreData Editor. If your application is like most apps, your users will
deliver their specific data into your app and your app will store it some-
where. CoreData is Apple’s recommended approach to managing your
users’ data. Xcode comes with a visual tool that enables you to create
structures for your data that CoreData can manage. You can even pro-
vide complex intra-structural relationships between different types
of data, similar to creating tables that depend on each other within a
relational database. You will find that CoreData offers many features for
your app to exploit, and I cover CoreData and its editor in Chapter 8.

41 Chapter 2: Mac OS X Coding with Xcode

Figure 2-1: An application behaving badly. You don’t want
your users to see this.

 You’ll always want the latest and greatest versions of all the tools that Xcode
comes with. I suggest that before you begin a new Xcode project you should
check the Macintosh Developer downloads (https://developer.apple.
com/devcenter/mac/index.action) to see whether there’s anything
new. In addition, you’ll want to stay current with prerelease versions of Mac
OS X — Apple may require that your app runs on upcoming versions of OS X
as a condition for your app’s presence in the App Store; this is certainly true
for iPhone/iOS development and likely will also occur with OS X. I definitely
recommend checking for new versions of Xcode and OS X just before your
app is delivered to Apple, to cover the possibility that Apple has changed
something that your app depends on.

 Be careful! Your app should not depend on prereleases of OS X; if Apple
hasn’t officially released the new OS X version and you’re building your app
to use a prerelease, the app often won’t run on users’ Macs. You should
develop your app for the version of OS X that will be available when your app
is up at the App Store.

Xcode version 4.0 was released in March 2011, and that’s what I use for the
examples in this book.

Creating a Macintosh Application with Xcode
With Xcode by your side, you are at the start of your path to creating
your first Macintosh app. The download and installation were both pretty
straightforward, but now it’s time to get interesting. The rest of this chapter
describes the following tasks:

 ✓ Creating a new project

 ✓ Discovering what files are produced by Xcode for your app

42 Part I: Getting Started on Macintosh Apps

 ✓ Creating and building a very basic display-type application using Xcode

 ✓ Creating and building a very basic document-type application using Xcode

 ✓ Using the Interface Builder to create the look of your app and connect it
to your code

 ✓ Downloading and building a sample application

What type of app are you?
Your app will probably fall into one of the following two categories. There are
other types of apps that Xcode can build, but these are the most common. I
will go over the details of building each of these in this chapter.

Cocoa Application, window-based
This is a basic application that does not provide any document-related sup-
port. This means your app will have no default Save or New operations. You
aren’t prevented from adding these features and functionality, but Xcode
does not add them automatically and you must manage them on your own.

Cocoa Application, document-based
This is a step up from the window-based application. Xcode will incorporate
the features for creating new and saving old documents for your app —
including managing multiple documents at the same time.

Cocoa is the name of the libraries of Objective-C code that you use to develop
Macintosh apps. I cover Cocoa in more detail in Chapter 4.

Creating a new project
Your journey to creating a new Macintosh app begins with Xcode, and here’s
how you do it:

 1. Launch Xcode.

 You can find Xcode in the Applications subfolder of the Developer folder
at the top level of your Mac’s hard drive.

 You see the Welcome to Xcode window, as shown in Figure 2-2.

 2. Click Create a new Xcode project.

 Figure 2-3 is the dialog you should see next, which asks you to choose
the type of project you want to create. Xcode provides several templates
for projects — since I develop both iOS and Mac OS X apps, both types
of templates are available for me.

43 Chapter 2: Mac OS X Coding with Xcode

Figure 2-2: The first step on your road to an app.

 The dialog that Xcode displays at this point will remember what you
selected the previous time you created a new project; if this is the first
time you’re running Xcode, you may see a dialog that doesn’t show any-
thing selected. Don’t panic! You make those selections next.

 Since this book is about Mac apps, you should review the items listed
under the left (Mac OS X) pane.

Figure 2-3: Choosing the appropriate project template for your new app.

44 Part I: Getting Started on Macintosh Apps

 3. Click Application in the Mac OS X pane.

 Doing so reveals the templates available for Mac apps.

 4. Select “Cocoa Application” and then click “Next”.

 Xcode will display the dialog shown in Figure 2-4. This is the place for
you to provide some high-level general information about the project
you want Xcode to create.

Figure 2-4: Xcode gives you several options for your app (this simple
app needs none of them).

 5. Enter the Product Name and if needed, the Company Identifier, then
click the Next button.

 You provide the product name here — I’ve left the other options
untouched, since I want to get you started building a simple app that’s
quick and easy to get up and running right away. The Company Identifier
field may be pre-populated; Xcode remembers it for you from any previ-
ous project you created. You should provide your Company Identifier in
this field in the form of a reverse domain name. For example, I use com.
karlgkowalski because I have registered that as a domain name for
myself. For a test app, you can just use the default Company Identifier
provided by Xcode.

 You must have a valid Company Identifier before you can submit an app
to the App Store. This identifier should be a domain name you’ve regis-
tered for yourself, reversed as shown in the example. You can use any
valid domain name for the Company Identifier, but you must register it
to ensure you have the legal right to use it.

45 Chapter 2: Mac OS X Coding with Xcode

 I’ve decided to call my simple Cocoa-window app SimpleCocoa
WindowApp. I’m proficient at writing Mac apps, but need some help
coming up with clever names (almost sounds like an app idea in itself).

 You’ll see the dialog shown in Figure 2-5. Xcode now asks you for a loca-
tion to place all the files and folders it needs to create in order to get
you started with a basic project.

Figure 2-5: Xcode asks you for the location in which to place all the
project files it will create.

 6. Select the location in which Xcode will create your project folder,
then click the Create button.

 Choose a good spot to store all your project information — Xcode will
create a folder using your project name and create all the files it needs.
Leave the checkbox next to Source Control unchecked.

 Xcode can create a version control system just for this project for you to
record and track changes to your code. I discuss that in Bonus Chapter 3
on the website.

 Xcode will create a set of files and then open a window with the new
project ready to go. Figure 2-6 shows you what you’ll see when Xcode
finishes getting everything ready. I will go over the details of the con-
tents of this window later in the chapter.

46 Part I: Getting Started on Macintosh Apps

Figure 2-6: The simplest project, with all its contents.

 7. Click the Run button at the left side of the toolbar at the top of the
window.

 The Run button looks like the “play” button on a DVD player. Get used to
this button, because you’ll be clicking it a lot. Xcode will perform several
operations, and will write out a text message in the activity viewer in the
center of the toolbar as each operation executes. For a simple app like
this one, running on an average-powered machine, you might not see
all of them flash by — larger apps with more source modules will take
longer for Xcode to build.

 I saw the following messages in my first build of
SimpleCocoaWindowApp:

Building…

Precompiling 1 of 1 prefix headers.

47 Chapter 2: Mac OS X Coding with Xcode

 A prefix header is a file that Xcode has created for your project,
and it will be automatically included into every source code file
you create for your app. Long ago someone came up with the
idea that a speedier build would result from using a header file in
nearly every compiled source file, compiling that file beforehand,
and including it by default in every source file. Xcode created the
file SimpleCocoaWindowApp_Prefix.pch and included it in the
project. Figure 2-7 shows the contents of this file. Notice Line 6 in
particular:

#import <Cocoa/Cocoa.h>

 This line is an instruction to Xcode that it should find the Cocoa.h
file in the Cocoa directory (the angle brackets <> are a hint to
Xcode regarding where it should look to find this directory) and
grab all its contents. This is the primary reason for the precompil-
ing step: The contents of Cocoa.h are very large, and they include
some executable code.

Figure 2-7: The contents of the prefix header file Xcode created.

 Your app’s source and header files will access other header files, so that
your code can use other classes that you create or classes provided by
Cocoa. #import is a compiler directive telling the compiler to retrieve
the contents of the file described in the remainder of the #import line.
An #import line will have one of the following two forms:

 #import “localHeaderFileName.h”

 Xcode first searches the directory created for the project to find
the file localHeaderFileName.h, and if it can’t find the file
there, Xcode searches the directories set in the Build Settings.

48 Part I: Getting Started on Macintosh Apps

 #import <systemHeaderFileName.h>

 Xcode uses a list of predefined search directories to find the file
systemHeaderFileName.h. The contents between the quotes
and angle brackets can also include directory paths. Generally, the
angle brackets are used for header files supplied by Xcode.

 Compiling x of 2 source modules.

 Xcode compiles each source file in your project and tells you
which one it’s currently compiling.

 Build succeeded.

 This is what you see when Xcode has done all the work it needs
to do to create your app. You’re also told if Xcode found anything
questionable in your app that you might want to take a look at.
I go over such warnings later in this chapter — right now, since
Xcode was responsible for writing all the code currently in the app,
you should see no warnings or errors. You should see two indica-
tions of success: a transient gray message with the text Build
Succeeded and a line of text in the activity viewer that reads No
Issues.

You can see in Figure 2-8 the window created when Xcode launches your app.

Figure 2-8: A plain-vanilla, incredibly boring app!

49 Chapter 2: Mac OS X Coding with Xcode

That’s all you need to do to create a basic window-based Cocoa project.
Your app will perform all the basic things that window apps perform, and it
comes with all the default menus. But there’s not much you can do with this
app — it doesn’t have anything interesting to tell or show you. I’ll get you
to add more features to this little app later on in this chapter, but next I go
over the basic features and displays of the Xcode project window — because
that’s where you’ll spend the majority of your time.

Xcode’s visual details
Figure 2-6 is a display of the Xcode project window. You’re interacting with
the project window for the greater bulk of all the time you spend working
on your Mac apps, and here’s where I explain all the important parts of this
window; it will be an indispensable part of your development experience.
Figure 2-9 is a re-creation of this window, complete with the specific areas
you need to know.

Figure 2-9: The parts of an Xcode project window. You can have many projects
open at the same time, and each will have its own version of this window.

50 Part I: Getting Started on Macintosh Apps

Those areas are

 ✓ The Toolbar. The buttons and other user interface (UI) controls you
use to perform actions in and on your project are located here. (Farther
along in this section, I explain each of the default controls and go over
how to customize the toolbar.)

 ✓ The Project navigator. The panel on the left side of the window contains
a set of items, some of which act like folders in a file system window.
This panel provides access to all the files of your project.

 ✓ The Editor area. Here’s where you’ll spend a lot of your time tinkering
with your app, editing source modules and other files (which include the
user interface components and any data models — I go over UI editing in
Chapter 5, and data model editing in Chapter 8).

The Toolbar
The top of your project window is a toolbar containing a set of UI controls
that you will use to do things for, with, and to your project. Figure 2-10 shows
the different components on the toolbar.

Figure 2-10: The Xcode Toolbar.

The default controls that Xcode displays are the following:

 ✓ The Run button. This button will build and run your app when you
click it.

 If you click and hold this button, you see several other choices for run-
ning: Test, Profile, and Analyze — which are development tasks beyond
the scope of this book. As a solo entrepreneur, I don’t use any of these
selections — I just want to build and run my app.

51 Chapter 2: Mac OS X Coding with Xcode

 ✓ The Stop button. After you click the Run button and Xcode launches
your app, this button becomes enabled — you can stop your app with-
out having to make it the foreground application. You might use this
button if your app was caught in an infinite loop and you couldn’t send
any input into it.

 ✓ The Scheme drop-down menu. This menu contains the selection for
some of the settings used in building your app. A scheme is simply a
named set of build settings — you would use a release scheme to build
a version of your app for distribution and a debug scheme while putting
your app together. (I cover basic scheme settings later in this chapter.)

 ✓ The Breakpoint State button. This button gives you a quick way to
enable and disable all breakpoints you set in your application. A break-
point is an instruction to the Xcode Debugger that you want it to halt
execution of your application when the CPU reaches the line of code
where you set the breakpoint.

 The Breakpoint State button is disabled when you create a new project
and enabled automatically when you add your first breakpoint. You can
then disable all breakpoints — which turns them off so the Debugger
won’t stop when it comes across them — by clicking the Breakpoint State
button. Clicking the button a second time enables all the breakpoints.

 ✓ The Activity Viewer. Xcode provides a variety of different text and
other visual messages in this pane in the center of the Toolbar. (I cover
some of the important messages in this chapter.)

 ✓ The Editor Selector. Three buttons switch between different editing
modes:

 • You’ll use the Standard editor (the left button) nearly all the time.

 • The Assistant editor (middle button) displays a separate editor
pane containing information that is logically related to the content
of the Standard editor. For instance, if you’ve selected a header
file from the Project navigator and you click the Assistant editor
button, Xcode will show the corresponding source file in a sepa-
rate pane. This can save you time when you’re making changes in a
header file such as adding a new method, because the source file is
opened right next to the header file.

 • The Version editor (right button) displays differences between the
selected file in one pane and another version of that same file in a
second pane.

 This is useful if you’ve set up this project to use source code con-
trol, so you can track changes to your code. Briefly, source code
control is a feature used to keep track of changes to your project

52 Part I: Getting Started on Macintosh Apps

files over time, so that you can track the evolution of your project
from start to finish. For instance, you might use the Version edi-
tor’s display of differences to discover where a change was made
that introduced a bug.

 ✓ The View selector. This is a collection of toggle buttons for displaying
or hiding selected views:

 • The left button is for displaying the Navigator area — that’s the
listing of files on the left side of the display. The Navigator area can
show several other types of navigators, but you’ll use the Project
navigator the most.

 Keeping the Navigator area visible is very helpful — I jump from
one module to the next fairly rapidly during my development.

 • The middle button displays the Debug area for your app when the
Debugger is running at the bottom of the Editor area.

 • The right button displays the Utility area, which provides more
information about the file shown as selected in the Navigator area.

 The Utility area also gives you some quick ways to add items to the
file you’re working on in the Standard editor — including code tem-
plates for Objective-C modules and UI components for Interface
Builder modules.

 I usually leave the Debug and Utility areas hidden unless I’m either run-
ning the Debugger or editing an Interface Builder file.

 ✓ The Organizer button. This button displays The Organizer Window,
which gives you a display of several different sets of information related
to general application development.

 For Mac development, this is the window to use when you want to look
up references in the documentation. I’ll cover the Organizer Window in
detail in this chapter.

Scheme settings
You can create different schemes for your app if you want to build different
versions of the same app with different build settings. Figure 2-11 shows you
the display of the build settings you see when you select Edit Scheme from
the Scheme drop-down menu.

 As a rule, I really only modify two of the settings in this scheme:

53 Chapter 2: Mac OS X Coding with Xcode

 ✓ The Destination. This build setting tells Xcode to build for either Mac
32-bit or Mac 64-bit, which means that Xcode is building your app to use
(respectively) 32-bit addresses or 64-bit addresses.

 I don’t recommend changing this setting, unless you really need to run
on a very old version of Mac OS X. All current Mac hardware is capable
of running 64-bit apps.

 ✓ The Build Configuration. This build setting tells Xcode whether to build
a Debug version of your app or a Release version.

 I use Debug when I’m creating the app and then shift to Release after all
the bugs have been caught and fixed and I’m about ready to upload my
app to the App Store. The Debug build of your app will contain some
extra information in the app itself for the Xcode Debugger to make use
of, and you don’t need that extra stuff in your released app.

Figure 2-11: The default scheme for SimpleCocoaWindowApp.

The Navigator area
The left pane of the Project window is what you use to navigate through the
files of your project and their contents in several different ways. Each naviga-
tion approach lets you view the components of your project in a manner that
suits a different task, and each is represented by a button in the Navigator
selector bar at the top of the pane, as shown in Figure 2-12.

54 Part I: Getting Started on Macintosh Apps

Figure 2-12: The Navigator area.

55 Chapter 2: Mac OS X Coding with Xcode

From left to right, the selector buttons are

 ✓ The Project navigator. You use this list to display all the files and
groups in your project. Selecting a file from this list displays the con-
tents in the Editor area. For instance, selecting a .m file displays the
contents of an Objective-C source file; selecting a .xib file displays the
contents of an Interface Builder UI file.

 ✓ The Symbol navigator. You see a list of the Objective-C classes in your
project when you click this button. Click the reveal-triangle to the left of
each class name to see a list of methods and member variables for each
class. Clicking a method or member variable takes you to its definition in
the class file.

 ✓ The Search navigator. This display lets you find any text quickly within
your project.

 ✓ The Issue navigator. Here’s where Xcode displays any warnings or
errors it finds when it opens, analyzes, or builds your project.

 ✓ The Debug navigator. While you’re debugging your app, this navigator
shows you information about the threads and the application stack.

 ✓ Breakpoint navigator. You can see all the breakpoints currently set in
your code when you use the Breakpoint navigator. (I cover this feature
in more detail in Chapter 11.)

 ✓ Log navigator. This display shows you the history of the tasks you’ve
performed on this project — including building, running, and debugging.
You can also review the details of the results. You might use this to see
when your last successful build was run, or the log messages sent to the
Debugger’s Console.

Address wars
For a long time, every Mac OS was 32-bit: the
OS used memory addresses that were 32 bits
in length, allowing apps to access up to 4 billion
bytes of memory, if that amount were available on
the machine. This was a lot of memory space —
more than necessary for apps other than some
scientific, graphics, or simulator apps.

Recent Macs have 64-bit hardware and ver-
sions of OS X that use 64-bit addresses to
access memory. OS X still retains the capability

to run 32-bit apps, but your app should be writ-
ten to use 64-bit addresses because every Mac
will support this size. Even if no one ever buys
16 quintillion bytes worth of memory, your app
can get to all of it.

Unless you know that your app’s audience
is using 32-bit Macs and you want to support
them, keep Xcode set to build your app as a
64-bit executable.

56 Part I: Getting Started on Macintosh Apps

I use the Project navigator display the most, because it lets me jump around
my code. All the different files in the project — and there are a lot of them —
will be displayed in the Project navigator. The major groups are the following:

 ✓ The App’s source files. The item in the Project navigator area that is
named with the App’s name, represented by a folder icon, contains all
the source files used to build the app. These include the following:

 • Objective-C sources (.m) and headers (.h)

 • Interface Builder (.xib) files

 • CoreData model files, if any (.xcmodeldata)

 • Precompiled header files (.pch)

 • Strings (.strings)

 • Property Lists (.plist)

 • Credits (.rtf)

 The folder icon in the Project navigator is a group. You create a group by
clicking on an item in the Project navigator and selecting File➪New➪
New Group. This will create a new item in the navigator area that with a
folder icon, and you can create new items and move other items inside
this group. You might want to do this if a set of your Objective-C classes
logically belong together.

 ✓ Frameworks. Your app will access a variety of Mac OS X code librar-
ies called Frameworks. This folder contains the Frameworks that Xcode
decided your project would need, and you can add more when you want
to use Mac OS X code that isn’t included by default. For instance, if your
app will interact with the user’s Address Book, you’ll have to add the
AddressBook framework to your application.

 ✓ Products. This folder contains the items that represent what your proj-
ect is going to create.

 For the SimpleCocoaWindowApp, there’s only one product:
SimpleCocoaWindowApp.

The Editor area
This is where you’ll spend most of your time: typing and manipulating your
app’s code, its UI, and its data models. When you select a file from the
Project navigator, the contents of that file will be displayed in the Editor
area. Figure 2-13 shows the contents of the only class Xcode created for
SimpleCocoaWindowApp, the file SimpleCocoaWindowAppAppDelegate.m.

57 Chapter 2: Mac OS X Coding with Xcode

Figure 2-13: The Editor area, ready to edit the SimpleCocoaWindowAppAppDelegate.m module.

 You can edit the contents of your files in a separate window. Instead of
selecting a file from the Project navigator pane, double-click the file. An
editor window will open up with that file’s contents displayed, ready for you
to work with. Figure 2-14 shows the SimpleCocoaWindowAppAppDelega
te.m file in its own window, ready for edits. This window contains a subset
of the components that the project window does, which means you’re less
likely to inadvertently click something you didn’t want to click.

Figure 2-14: The SimpleCocoaWindowAppAppDelegate.m in its own
editor window.

58 Part I: Getting Started on Macintosh Apps

Each Editor area (or window) that appears has a number of very small con-
trols lining the top of the area. Figure 2-15 shows the top part of a typical
Editor area more clearly while SimpleCocoaWindowAppAppDelegate.m is
being edited. The top part of the Editor area is called the Jump bar.

Figure 2-15: The controls in the Jump bar at the top of the Editor area.

You can see the different pieces, listed here as they appear on-screen from
left to right:

 ✓ The Related Items menu. Clicking this will reveal several menu items, as
you can see in Figure 2-16. Each active menu item comes with a submenu
full of the names of files related to the one in the Editor area. For instance,
the SimpleCocoaWindowAppAppDelegate.m file has one Counter-
part (SimpleCocoaWindowAppAppDelegate.h), one Superclass
(NSObject), and implements one Protocol (NSApplicationDelegate).
Selecting any of these will open that particular file into the Editor area.

 ✓ Back button. If you’ve been editing multiple files, clicking this button
will display the previous file you edited; it’s similar to a web browser’s
Back button. This is a very quick way of moving from one file to another,
which is helpful if you’re adding methods and member variables in both
the source and header files of a class.

 ✓ Forward button. You can move forward through the set of files you’ve
been working with by clicking this button; it’s similar to a web browser’s
Forward button.

 ✓ The File’s Project Location. The location of the file within the project is
laid out in a series of buttons. Each button allows you to access other
files at that part of the project. In Figure 2-14, the project location of Sim
pleCocoaWindowAppAppDelegate.m (the file in the Editor) starts at
the Project, which leads to the SimpleCocoaWindowApp folder, which
leads to the module itself. Clicking each of these buttons shows a menu
displaying the other items in that level of the project.

 ✓ Symbol drop-down menu. Your source and header files contain a
number of methods and member variables — these are called symbols.
Figure 2-17 shows you what the symbols are for the SimpleCocoa
WindowAppAppDelegate.m file.

59 Chapter 2: Mac OS X Coding with Xcode

Figure 2-16: The menu items listed in the Related Files menu.

Figure 2-17: The list of symbols (methods and member
variables) in the current file.

The Organizer window
You’ll use the Xcode Organizer window to perform some tasks that aren’t
directly related to creating and editing your project. You can see the
Organizer window displayed in Figure 2-18.

60 Part I: Getting Started on Macintosh Apps

Figure 2-18: The Xcode Organizer window.

There are five different organizers:

 ✓ Devices. This organizer lets you manage iOS devices, such as the
iPhone. This organizer will only appear if the iOS SDK is installed. You
won’t need to use this organizer for Mac development, but you should
always consider future development using iOS. You can find more
information on iOS development in iPhone Application Development For
Dummies, 3rd Edition, by Neal Goldstein (John Wiley & Sons, Inc.).

 ✓ Repositories. You can create and manage your project’s source code or
version control system from here. Xcode supports Git and Subversion
version control systems.

 ✓ Projects. This organizer lists all the projects you’ve created using Xcode
and lets you open them.

61 Chapter 2: Mac OS X Coding with Xcode

 ✓ Archives. You will use this part of the Organizer to manage the prod-
uct archives you create as a result of your Distribution Scheme. This
becomes important when you want to submit your app to the App Store.

 I cover the Archives in detail in Bonus Chapter 2 on the web site.

 ✓ Documentation. You’ll use this organizer to view information from the
Mac OS X reference library.

You’re now loaded with data about the different parts of the Xcode envi-
ronment. It’s the perfect time to give you some improvements to make to
SimpleCocoaWindowApp that will make use of all that info. Chapter 3 is the
place to be!

62 Part I: Getting Started on Macintosh Apps

Chapter 3

Giving Your App Something to Do
In This Chapter
▶ Developing a useful app

▶ Personalizing Xcode

H
ere I introduce to you one approach you can take for connecting your
app’s UI elements with the code that your app executes when it oper-

ates on the data that your users enter into the UI. This approach is explicit —
you’ll be adding all the code and making the connections yourself. Xcode 4
provides another approach as well, which I introduce after I walk you down
the more explicit path.

Creating a Tip Calculator
Here’s where I demonstrate the interaction between the UI and the code
through a very simple example: I turn SimpleCocoaWindowApp (as demon-
strated in Chapter 2) into a tip calculator with the following steps.

 1. Select SimpleCocoaWindowAppAppDelegate.h in the Project
navigator.

 This is the header file for our class, and it looks pretty bare-bones. The
header file contains declarations of the parts of a class — this file can be
#imported into other source modules as a “promise” of what the class
provides. You’re going to add some UI controls to the window, and this
is the place to do it.

 2. Enter the purple-colored text shown in Listing 3-1.

 I’m going to use purple to highlight the new code to add. You’re adding
four member variables and one new method. The member variables are
added between the braces of the @interface declaration — this tells
Xcode where to find the data portion of your class. The method is added

64 Part I: Getting Started on Macintosh Apps

after the braces surrounding the member variables — this tells Xcode
where to find the functions that operate on the data of your class. I will
explain in the next section what the different parts of the items you just
added are.

 3. Save the header file.

 I have a habit of saving everything — very often — as this reduces the
headaches and heartaches that come from power outages and the rare
Xcode crash. Your own experience with computers and saving your data
will determine how often you save your data. As computers have gotten
faster, saving is usually just a combo-keypress away, so I recommend
frequent saving.

 You can enable Auto-Saving in Xcode’s General preferences. Your
changes will automatically be saved whenever you do a build or quit.

 4. Select SimpleCocoaWindowAppAppDelegate.m from the Project
navigator.

 The editor pane will show the contents of the source file for this class.
A source file contains the implementation of the promises made in the
header file. You’re going to add the method you declared in the header
file.

 5. Enter the purple-colored text shown in Listing 3-2 and save the source
file.

 Save the source file. Save early, save often!

 6. Build the project but don’t run it now.

 You should see the Build Succeeded message in the Activity Viewer.

 The code you’ve added performs the following operations:

 1. It retrieves the data from the NSTextField called m_amount.

 The data is retrieved as an NSString object, because that’s how
NSTextField holds anything typed into the entry field on the screen.

 2. It retrieves the data from the NSTextField called m_tipPercentage.

 The assumption is, of course, that this number is somewhere between 0
and 100. And once again, the data is retrieved as an NSString object.

 3. It converts the two NSString objects into double values, so it’s easier
to multiply them together.

65 Chapter 3: Giving Your App Something to Do

 4. The two double values are multiplied to determine the tip amount.

 5. The tip amount is converted into an NSString object.

 6. The NSString object containing the tip amount is used to set the value
of the tip amount for the NSTextField m_tipAmount.

The code you’ve just added to the SimpleCocoaWindowAppAppDelegate
source and header files is to prepare for adding the user interface compo-
nents in the next set of steps. Your app is a combination of UI components
connected to your code; so far you’ve just added the code to the app.

Listing 3-1: Modifications for SimpleCocoaWindowAppAppDelegate.h

//
// SimpleCocoaWindowAppAppDelegate.h
// SimpleCocoaWindowApp
//
// Created by Karl Kowalski on 2/12/11
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import <Cocoa/Cocoa.h>

@interface SimpleCocoaWindowAppAppDelegate: NSObject
<NSApplicationDelegate>

{
@private
 NSWindow *window;
 IBOutlet NSTextField* m_amount;
 IBOutlet NSTextField* m_tipPercent;
 IBOutlet NSButton* m_calculate;
 IBOutlet NSTextField* m_tipAmount;
}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)calculateTip:(id)inSender;

@end

66 Part I: Getting Started on Macintosh Apps

Listing 3-2: Modifications for SimpleCocoaWindowAppAppDelegate.m

//
// SimpleCocoaWindowAppAppDelegate.m
// SimpleCocoaWindowApp
//
// Created by Karl Kowalski on 2/12/11
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import “SimpleCocoaWindowAppAppDelegate.h”

@implementation SimpleCocoaWindowAppAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification*)
aNotification

{
 // Insert code here to initialize your application
}

- (IBAction)calculateTip:(id)inSender
{
 NSString* amountValue = [m_amount stringValue];
 NSString* tipPercentage = [m_tipPercent stringValue];
 double amountValueD = [amountValue doubleValue];
 double tipPercentageD = [tipPercentage doubleValue];
 double tipAmount = amountValueD * tipPercentageD / 100.0;
 NSString* tipAmountString = [NSString

stringWithFormat:@”%.2f”, tipAmount];
 [m_tipAmount setStringValue:tipAmountString];
}

@end

Now you’re going to jump feet-first into building a user interface. Here’s how
you do that:

 1. In the Project navigator, select the MainMenu.xib item.

 This will display the Interface Builder file containing your user interface.
Figure 3-1 shows what Interface Builder’s Editor area looks like. The
Editor area contains the following items:

 • The Dock. The Dock contains the items you can edit using
Interface Builder. It’s divided into two sections: the top contains
proxy objects, which will reference real objects that will exist
when the application is running; and instance objects, which are
instances of objects that will be created when this XIB file is loaded

67 Chapter 3: Giving Your App Something to Do

by the application — each window object would come with its own
font manager object and SimpleCocoaWindowAppAppDelegate
object. A XIB file contains the information Cocoa needs to recre-
ate the visual components of your app that you put together using
Interface Builder.

 • The Application menubar. This menubar is what users will use
when the application is running; this is not the Xcode menubar.
You can add menu items to any of the menus in the application
menubar to give more functionality to your app.

Application
Menubar

Dock

Proxy Objects

Menu
Window
SimpleCocoaWindowApp
App Delegate

Proxy Objects

Figure 3-1: The MainMenu.xib file opened in the Editor area.

 2. Click the Window icon in the left sidebar of the IB Editor.

 This should be the fifth icon from the top — hold your mouse over
the icon to make Xcode display a hint, which should say Window —
SimpleCocoaWindowApp. It’s also the icon that looks like a tiny Mac
window.

 After you click it, the window should appear over the graph paper–like
background.

68 Part I: Getting Started on Macintosh Apps

 3. Click the Show Utility view button on the toolbar.

 This view gives you access to the library of UI components you can drag
and drop onto the window in your user interface.

 Since the Utility view occupies part of your Project window, you will
want to maximize this window to use all the available screen space.

 4. Click the Show the Object library button in the Utility view selector bar.

 Figure 3-2 shows the display of the Object library. You may want to
increase the vertical height of this display, to save on scrolling. You will
be doing a lot of drag-and-drop actions from this view into your window.

Figure 3-2: The Library window, displaying the UI components
for data input and data display.

 5. In the Utility view, select Object Library➪Cocoa➪Controls from the
drop-down menu.

 6. Drag a Label from the Object Library and drop it anywhere onto the
window.

 You can use the search field at the bottom of the Object Library area to
filter the set of UI components displayed. If you enter the word Label in
the field, the set of displayed components is reduced to two, making it
easier to grab.

69 Chapter 3: Giving Your App Something to Do

 7. Click the Attributes Inspector button at the top of the Utility view.

 8. Change the Title attribute to Amount.

 You can also double-click the Label and type the text directly into it.

 9. Resize the label on the screen.

 Xcode doesn’t auto-resize it for you when you change the text using
the Attributes Inspector, so here’s the drill: Click and drag one of the
blue dots on the side of the label in the window to resize the label hori-
zontally. Instead of using the Attributes Inspector, you can also change
the title attribute by double-clicking the label and editing the text right
on the window; this has the added bonus of forcing Xcode to auto-
resize the label to the new width.

 10. Drag a Text Field from the Object Library and drop it to the right of
the Amount label.

 The Interface Builder Editor will provide you some blue dashed lines,
called guides, as you move the text field control around the window near
the Amount label. This is Xcode offering you “help” by giving you indica-
tions of where you might consider dropping the control, as governed by
Apple’s knowledge about how human users like to see things. These are
hints, not requirements.

 11. Repeat Step 9 and Step 10 for a Tip Percentage label and its corre-
sponding text field. Place the pair just below the Amount label and its
corresponding text field.

 12. Drag a Push Button from the Object Library window and drop it onto
the SimpleCocoaWindowApp window, right below the Tip Percentage
text field.

 13. Modify the button’s text label to read Calculate.

 14. Drag two Labels from the Library window and drop both below the
Calculate button such that one is aligned with the Amount and Tip
Percentage labels and the other is aligned with the Amount and Tip
Percentage text fields.

 15. Change the Title of the left label to Tip Amount:.

 The label on the left is where the tip amount will be displayed; I’ve
changed its Title to <tipAmount> as a reminder of what the data will be.

 16. Save everything.

 The SimpleCocoaWindowApp window should look like the display in
Figure 3-3.

70 Part I: Getting Started on Macintosh Apps

Figure 3-3: The final look of the SimpleCocoaWindowApp.

You’ve now modified the UI display of SimpleCocoaWindowApp, but there’s
still one step missing: You need to connect the UI components — the labels,
button, and the text fields — to the code. In the next steps, you’ll be dragging
from components in the window to the SimpleCocoaWindowAppDelegate
instance, which represents the actual SimpleCocoaWindowAppDelegate
object created when the application is launched. This is the object whose
code, in source module SimpleCocoaWindowAppDelegate.m, you edited
in the procedure right before this one. You use this instance within the visual
editor as if it were the actual SimpleCocoaWindowAppDelegate object
containing the window that gets displayed on the screen. You can reference
the contents of that instance — the class members and methods — with the
instance in the editor. And that’s how you connect the visual elements of the
SimpleCocoaWindowApp window with the code you’ve implemented. So
let’s get to it.

 1. Control-Drag from the SimpleCocoaWindowApp instance to the text
field next to the Amount label and release.

 You should see a small window pop up, as shown in Figure 3-4. This
window contains the possible items within the SimpleCocoaWindow
AppAppDelegate member variables that you can connect to.

 2. Select m_amount from the choices in the small pop-up window.

 Congratulations! You’ve now connected the member variable m_amount
to its text field. This is how you connect member variables in the class

71 Chapter 3: Giving Your App Something to Do

to items on the window: by dragging from the class instance to the item
on the screen, and selecting the member variable from the pop-up
window.

Figure 3-4: The Connection Options window for the connection
to the amount. Choose any member variables from the
SimpleCocoaWindowApp class.

 3. Control-Drag from the instance to the text field next to the Tip
Percentage label and release.

 You’ll see another pop-up window, shown in Figure 3-5. Notice that the
m_amount item has a “-” next to it — this indicates that this member
variable is already connected to something.

Figure 3-5: The connection options window for the connection to
the tip percentage. You can see that m_amount is already con-
nected, so you will probably want to connect to a different item.

72 Part I: Getting Started on Macintosh Apps

 4. Select m_tipPercent.

 Another member variable connected!

 5. Control-Drag from the instance to the label next to the Tip Amount
label and release.

 6. Select the final remaining member variable, m_tipAmount, from the
list.

 7. Control-Drag from the instance to the button and release.

 8. Select the only option, the m_calculate member variable.

 Notice that the editor only lets you make connections between consis-
tent types of items: you cannot connect the m_amount member variable
to the Calculate button.

You have now connected the member variables of your class with the compo-
nents they represent in your interface. When Xcode compiles your app, the
information provided in the MainMenu.xib file will be available for your app
to use when your application is running. While you made these connections
visually using the visual editor, when your application is running and the
window is created and displayed, these connections are automatically made
programmatically by the code provided as part of the Cocoa Framework of
classes, from which SimpleCocoaWindowAppAppDelegate is created.
(Chapter 4 goes over the details of how applications create their visual inter-
faces when executing.)

The final steps to creating the functional tip calculator are these:

 1. Control-Drag from the button on the SimpleCocoaWindowApp
window to the instance, and then release.

 This operation is called setting the button’s action. When it’s done, you
see another little pop-up window revealed, as shown in Figure 3-6.

Figure 3-6: The pop-up shown when you connect a button
to a method inside the class.

73 Chapter 3: Giving Your App Something to Do

 2. Select calculateTip:.

 You’ve now told Xcode that when the button is pressed, the calcula-
teTip: method should be executed.

 3. Save the MainMenu.xib file to ensure that all your changes are
remembered.

 That’s it. Your app’s code and its data members are now connected to
the user interface.

Now it’s time to return to the Xcode project and get everything put together.

 If you want to see all the connections for the instance in MainMenu.xib, to
make sure that you didn’t leave anything disconnected accidentally, Control-
click the instance object. You see the complete set of member variables and
methods and what they’re connected to. Figure 3-7 shows you what the fin-
ished connections of SimpleCocoaWindowApp look like. You can see all the
different elements of the class — the Outlets — listed, as well as the method
that should be called when the button is clicked — the Received Action; a
little dot to the right of each element is filled in with solid white, indicating
that each one is connected.

Figure 3-7: The completely connected SimpleCocoaWindowApp
AppDelegate instance.

Now your only remaining task is to get back into Xcode and rebuild the proj-
ect. Just click the Run button. Your app launches, and you can calculate tips
from an amount and a percentage. Figure 3-8 shows what this looks like. Just
think: Now you can pull out your MacBook at every fine-dining establishment
you visit and be sure to calculate the proper amount for the tip.

74 Part I: Getting Started on Macintosh Apps

Figure 3-8: The SimpleCocoaWindowApp, improved to function
as a tip calculator.

Take a deep breath and relax. You’ve created a functional Macintosh appli-
cation, from (nearly) scratch. You’ve added UI components and connected
them to your code. Your code calculates tip values based on the data entered
in two text fields.

 Sometimes I need to follow my own advice. When I first built and ran the app,
the tip calculation didn’t happen! My instinct was to see whether I’d some-
how gotten the calculation part wrong, so I set a breakpoint at the beginning
of the calculateTip: method and launched the app with the Debugger.
The Debugger should have halted at the line of code where I’d put the break-
point — but it didn’t. It was almost like the button wasn’t connected to this
method. I knew I’d made the connection in Interface Builder from the button
to the SimpleCocoaWindowAppAppDelegate instance object, which should
have triggered the method to be called — except I forgot to save MainMenu.
xib. The Interface Builder Editor hadn’t recorded that particular information
for Xcode to know what it was supposed to do. It’s true, even experts make
simple mistakes. When I saved the MainMenu.xib file and rebuilt, the code
worked exactly as written. Save early, save often! Or else make sure you turn
on the Autosaving preference in Xcode so that your changes are saved when
you Build and Run.

www.allitebooks.com

http://www.allitebooks.org

75 Chapter 3: Giving Your App Something to Do

 The process you’ve just walked through here is a very explicit approach to
creating a user interface backed by code. Xcode 4 offers an improved way for
you to achieve the same result: Create the user interface with Interface
Builder first, and then Control-drag components from the user interface to the
source and header files of the application. Here’s what you can do:

 1. Create a new Project in Xcode, and call it SimpleCocoaWindowApp2.

 Use the exact same settings as before.

 2. Select MainMenu.xib from the Project navigator.

 3. Click the button to Show the Assistant editor.

 You’ll see Xcode open the header file, SimpleCocoaWindowApp2AppDe
legate.h in the Assistant’s side window as shown in Figure 3-9.

Figure 3-9: Interface Builder open to edit MainMenu.xib, with the Assistant view shown.

 4. Select the Window object in the Interface Builder Dock.

 5. Add a Label, a Button, and a Text Entry field to the window, as shown
in Figure 3-10.

76 Part I: Getting Started on Macintosh Apps

Figure 3-10: Three UI components added to the window in MainMenu.xib.

 6. Control-drag from the Label component into the header file, to the
end of the line containing the @interface directive, after the curly
brace.

 When you release the mouse button, you’ll see the small window in
Figure 3-11 appear. You’re creating a member variable for the Label
within the header file.

Figure 3-11: The Connection creator. Xcode will create an
IBOutlet in your header file and connect it to the UI component.

 7. Name the member variable m_label and click the Connect button.

 The header file will now have the following line added automatically:

IBOutlet NSTextField *m_label;

77 Chapter 3: Giving Your App Something to Do

 8. Control-drag from the Text Entry field into the header file, below the
@property directive.

 You’ll see another small window displayed.

 9. Name the member variable m_textField and click the Connect button.

 Xcode adds several lines of code to the header file:

 • A member variable declaration after the @private directive:

 NSTextField *m_textField;

 • An @property declaration for the new member variable:

 @property (assign) IBOutlet NSTextField
*m_textField;

 • A line into the source file SimpleCocoaWindowApp2App
Delegate.m:

 @synthesize m_textField;

 10. Control-drag from the Button into the header file below the
@property directive.

 Once again, the little window is displayed.

 11. Change the Connection drop-down menu to Action instead of Outlet.
Name the action clickButton and click the Connect button.

 Xcode adds the clickButton method declaration to the header file,
and adds the method definition to the source file. This method is empty,
which means you’ll still have to fill it with the code

Analysis of the changes to SimpleCocoaWindowApp
The modifications you made to SimpleCocoaWindowApp involved both the
header file and the source file. Your changes were the following:

 ✓ You added four new member variables, each with the qualifier
IBOutlet, to the header file. This qualifier is a hint to Xcode that these
variables are used in the Interface Builder Editor; when the Interface
Builder Editor reads the header file, it will pick up these variables and
allow you to reference them when making connections.

 ✓ You added a new method to the header file and also to the source file.
This method had a return type of IBAction, although no data is actu-
ally returned from the method. IBAction is a hint to Xcode that this
method is going to be referenced by the Interface Builder Editor. Like
the IBOutlet qualifier for the member variables, the Interface Builder
Editor allows you to reference the method when making connections.
Every method that you create to be called from a UI action will have the
pattern shown in Listing 3-3. This pattern is called a method signature.

78 Part I: Getting Started on Macintosh Apps

 If you opted to use the alternate approach for creating the UI components
first, here’s what happened:

 ✓ You added UI components to the app’s window.

 ✓ Xcode created the member variables for the Label and the Text Field
and set up the connection between the UI components and the member
variables for you. The member variable representing the Text Field
was added as a property, and both member variables were given the
IBOutlet qualifier.

 ✓ Xcode created the calculateTip: method declaration in the
header file with the qualifier IBAction. Xcode also implemented
an empty calculateTip; method in your source file and set up
the connection between the button and the method so that click-
ing the button would send the calculateTip; message to the
SimpleCocoaWindowApp2AppDelegate object.

Listing 3-3: A code snippet showing an IBAction method signature

- (IBAction)name_of_method:(id)inSender;

When a UI component in your application triggers a connected method,
the code in the application framework will call the method on the object to
which the method is connected. In the case of SimpleCocoaWindowApp, that
object is the SimpleCocoaWindowAppAppDelegate. In addition to calling
the method, the code in the application framework will pass a parameter to
the method, of type id. This parameter is always an object — it is the object
that triggered the method being called. When the calculateTip: method
is executed, the object passed in is the NSButton object m_calculate. Why
does the application framework provide the object when it calls the con-
nected method? Because it’s possible to assign multiple UI components to
trigger the same method, and while SimpleCocoaWindowApp doesn’t do this,
one of your future apps may take advantage of this capability. For instance,
you could remove the Tip Percentage text field, and replace the Calculate
button with three separate buttons, each with its own tip percentage value.
You then connect each button with the calculateTip: method, and you
can then calculate a different tip by determining which button was passed
into the method. Your user would then only have to enter the amount used to
calculate the tip and pick the percentage using the button that matches what
their chosen tip should be.

79 Chapter 3: Giving Your App Something to Do

Analysis of the calculateTip: method
You’ve absorbed a lot of information already in this chapter, but I would like
to go over the operations that take place when the user clicks the Calculate
button.

You (or Xcode) connected the button in the SimpleCocoaWindowApp
window to the method in the SimpleCocoaWindowAppAppDelegate
instance, so that when the button is pressed the application’s calculate
Tip: method will be called. Here are the details of what happens during the
execution of calculateTip:.

 1. The first operation is to get the value stored in the m_amount text field.
The NSTextField object has a stringValue method which returns an
NSString object.

 2. The code retrieves the value stored in the m_tipPercent text field as
an NSString.

 3. These two values are each converted to the primitive data type double.
An NSString object comes with a doubleValue method that performs
this conversion.

 4. The code calculates the tip amount by multiplying the two double
values and dividing by 100.

 5. An NSString object is created using the creation method string
WithFormat:. This method takes an NSString as a parameter hard-
coded to be @”%.2f”, which is the C-language formatter that creates a
numeric text string showing two decimal places in the resulting text.

 6. The tip amount NSString is set to be the value of the m_tipAmount
label.

Most of the work is done behind the scenes by the Cocoa application frame-
work. The framework manages the objects that make up your application,
including all the UI components and the other class objects that are available
for use such as NSString.

 Your code can use data in several different forms, but the two most used
will be objects and primitive data. A primitive data type is simply a basic
unit of data, such as the integer value 1, the letter K, or the floating-point
value 3.14159. An object is more complex, as it contains both data types
and code — methods — for working with that data. I will cover objects in
more detail in Chapter 4.

80 Part I: Getting Started on Macintosh Apps

Dude, where’s my app?
The Xcode project builds your app according to the code you write and
the UI components (and their connection information) you include using
Interface Builder. Now, where did that all go?

When you create a new project with Xcode, Xcode creates a folder named
with your project name and places all the files and folders it needs inside this
folder. In this folder are the following items:

 ✓ The SimpleCocoaWindowApp folder, which contains the source files
(as listed in Figure 3-12)

 ✓ The folder named SimpleCocoaWindowApp.xcodeproj

 Yes, you heard correctly: This item is a folder, even though it looks
like a file. This is an Apple construction called a Package — it’s actu-
ally a folder, but if you double-click it, you launch Xcode and open the
SimpleCocoaWindowApp project. You can display the contents by
right-clicking the file in the Finder and selecting Show Package Contents.
Doing so displays a standard Finder window with the files contained in
the folder.

Figure 3-12: Xcode puts all the source files and folders for your app into
one folder, so you always know where to find them.

When you perform a build or a run of your application with Xcode, the appli-
cation will be created in a location separate from the project. You can find
the app in the following location in the Finder:

81 Chapter 3: Giving Your App Something to Do

YourHomeFolder/Library/Developer/Xcode/DerivedData/
appName-uniqueID

This folder contains the following subfolder path to your application:

Build/Products/Debug/appName

If you double-click this app, you will launch it.

Normally you will launch your app from within Xcode while you’re working
on it. However, in order to deliver your app to another Macintosh for testing —
or (more important) to the App Store for money-making — you must Archive
your app.

Archiving your app
An application archive is a copy of your application as it exists at a particular
time, placed in a file that you can share with others or — when your app is
ready to submit to the App Store — upload to Apple. You create an applica-
tion archive using Xcode. Here’s how you do it:

 1. In the Xcode project window, select Product➪Archive.

 Doing so creates an Archive version of your app, which you can see in
the Organizer window, as shown in Figure 3-13.

Figure 3-13: The Xcode Organizer window, showing the archive of SimpleCocoaWindowApp.

82 Part I: Getting Started on Macintosh Apps

 2. Select the archive you just created in the Organizer window, and click
Share.

 You see the dialog shown in Figure 3-14.

Figure 3-14: You can share your app with others, such as beta-testers,
using an archive of your app.

 3. Select the Application radio button to make sure you create the
archive as a Mac app on your hard drive.

 4. Click Next; in the familiar Save dialog that appears, pick a good place
for your app to get delivered.

 5. Click Save.

 On my machine, I saved the app in the same folder that contains the project
folder, as shown in Figure 3-15. Your app is now ready to use on any Mac.

Figure 3-15: SimpleCocoaWindowApp saved as an application from an archive on my Mac.

83 Chapter 3: Giving Your App Something to Do

Setting Xcode to Your Preferred Preferences
Software development with an integrated development environment (IDE)
such as Xcode has evolved over the 20-plus years that IDEs have been
around. Apple provides Xcode with a variety of options, or preferences, that
you can modify to suit your preferred ways of doing things and your pre-
ferred ways of showing things. I won’t cover all the preferences available,
but will point you to some that I find useful; you can explore the rest on
your own.

 1. Select Xcode➪Preferences.

 This will display the Preferences window shown in Figure 3-16. It’s set to
display the General preferences, which is selected for you in the toolbar
at the top of the window. Xcode will remember where you left off the
next time you open this window.

Figure 3-16: The Xcode preferences window in its initial state the first
time you open it.

 2. Select Text Editing in the toolbar.

 You see the display shown in Figure 3-17.

 3. Select Fonts & Colors in the toolbar.

 This will show you the display in Figure 3-18. You can change the
colors and even the fonts of your text editor to correspond to the dif-
ferent kinds of text you type. I fell in love with this feature the first

84 Part I: Getting Started on Macintosh Apps

time I experienced it in the early 1990s. While I prefer all my code
to be in the standard Courier font (a legacy of my growing up with
dot-matrix printers), using color to highlight different syntactical ele-
ments was wonderful. I would know instantly when the name of the
member variable I typed was correct because the text would change
color from black to whatever color I chose for member variables. If the
color hadn’t changed by the time I’d finished typing, I knew I had typed
something wrong. And Xcode lets you create and store your own color
theme (essentially a color scheme) — you first duplicate the Basic
theme and give the duplicate a new name. Then you can modify the
duplicate to suit your color preferences.

Figure 3-17: The Text Editing preferences.

 4. Select the Documentation item.

 You’ll see the display as shown in Figure 3-19. As you’ll find in the course
of your Mac app development experience, the Apple reference documen-
tation is an absolute necessity. You can always get to it through the Apple
Developer website, but you can download it as well — which speeds
up searches. In Figure 3-19 you can see I’ve got the Mac OS X 10.6 Core
Library and Xcode 4.0 Developer Library already installed, and two others
are available for me to download. Now you can download all the informa-
tion you may need about programming a Mac without harming a tree.

85 Chapter 3: Giving Your App Something to Do

Figure 3-18: The Fonts & Colors preferences. You too can turn your
source code into a psychedelic delight.

Figure 3-19: The environmentally friendly documentation manager.

86 Part I: Getting Started on Macintosh Apps

Such are the most interesting and useful sets of preferences that you can
adjust to meet your perfect Xcode display. Your preferences are stored for
you automatically when you close this window.

Chapter 4

Objective-C and Cocoa
Applications

In This Chapter
▶ Introducing Objective-C

▶ Focusing on Classes, objects, methods, and member variables

▶ Managing how your app uses memory

▶ Introducing Cocoa and App Frameworks

▶ Analyzing a running app

F
rom the very beginning, Apple has always recommended Mac devel-
opers to create OS X Mac apps using the Objective-C programming

language. Although Apple provided an SDK called Carbon to assist develop-
ers from older Mac operating systems to transition their apps over to OS
X, Objective-C is the primary programming language used on the Mac for
the majority of its apps. You’ll need a good foundation in Objective-C to get
access to the greatest features and functionality that OS X has to offer you.
And Apple also provides several libraries of Objective-C classes known col-
lectively as Cocoa, which your apps will use to exploit all the capabilities of
the Mac platform. Objective-C and Cocoa together are the tools you use to
get your ideas running as apps on users’ Macs.

I’m going to cover the basics of Objective-C programming in this chapter,
so you’ll be ready to start coding in later chapters — and so you can tell the
difference between an alloc and an initWithFrame:. Here you get a look
at Cocoa and the different frameworks that your apps can use — as well as
those that Xcode adds to your project automatically. And finally, you’ll get an
anatomy of a running Mac app, from start to finish, so you’ll know why your
app is doing what it’s doing.

88 Part I: Getting Started on Macintosh Apps

 You can also create Mac apps using the C and C++ programming languages.
However, you’ll find the standard Cocoa frameworks are easier to use when
you’re programming in Objective-C — and that’s what I use in this book for
all examples. You can create source and header files for C functions — and
the classes you create using Objective-C can use these without any modifica-
tion. Using C++ code is a little more challenging, but Objective-C provides a
means for your apps to use C++ modules as well, using Objective-C++. The
use of Objective-C++ is beyond the scope of this book.

Objective-C
You’re going to spend a lot of time using Objective-C, so I’ll cover this first.
Objective-C is an object-oriented programming language based on the C pro-
gramming language. Because it’s object-oriented, you’ll create your apps as
collections of Objective-C classes. A class is a description of a set of data and
the functions that act on that data. As with the C++ programming language,
Objective-C classes usually consist of two files that contain the code for the
class:

 ✓ Source files: A source file contains the definition of the class. You’ll put
all the code that a class will execute within the source module for the
class. Source files use .m as their file extension, and Xcode knows that
the contents of an .m file are to be compiled using the LLVM compiler.

 ✓ Header files: A header file contains the declaration of the class. You use
this when you want other classes to know how to use the data and func-
tions of a particular class. Header files use .h as their file extension.

When you instruct Xcode to create a new Objective-C class, it creates both
the header file and the source file for you automatically. Depending on the
parent class, Xcode also provides a bare-bones minimum amount of code for
the class, to get you started.

In Objective-C, every Cocoa class is a subclass or child class of another Cocoa
class named NSObject. There may be a line of ancestor classes between
NSObject and your subclass, making your subclass a grandchild or great-
great-great grandchild, but every Cocoa class can trace its ancestry to
NSObject. Subclasses inherit their functionality and data from their ances-
tors, and this is part of what makes object-oriented programming so useful.
Each class you create as a subclass of a Cocoa class will come with data and
functions that are already built-in. And you can add your own data and func-
tionality to your class so your app can use these features. The data elements

89 Chapter 4: Objective-C and Cocoa Applications

of a class are called member variables. The functions in a class are called
methods. Your classes will declare their member variables and methods
within the header file, as you can see in Listing 4-1.

 Note the intentional colorization in the book’s code listings. I added it only in
this book — it’s not something Xcode did. Xcode does, however, provide the
capability to color different aspects of the textual display of your code in its
Preferences panel (which I go over in Chapter 3).

 Because Objective-C is based on C, you can program using all the standard
C programming concepts and constructs you’ve encountered if you’ve ever
programmed C. You can even use C code libraries in your projects, if you’ve
already got some. Because Mac OS X is Unix-based, it comes with all the stan-
dard Unix C libraries for your apps to use.

Listing 4-1: A simple Objective-C class header file

//
// VerySimpleClass.h
// CocoaWindows
//
// Created by Karl Kowalski on 4/28/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import <Foundation/Foundation.h>

@interface VerySimpleClass : NSObject {
 NSInteger m_anInt;
 NSString* m_aString;

@private
 NSString* m_propertyString;
}

- (NSString*)getString;
- (NSInteger)getInteger;
- (void)setString:(NSString*)inNewString;
- (void)setInteger:(NSInteger)inNewInt;

@property (assign) NSString* m_propertyString;

@end

90 Part I: Getting Started on Macintosh Apps

This is similar to what you’ll see when you make Xcode create a subclass of
NSObject. The header file consists of the following pieces:

 ✓ The introductory comments (blue). These include the name of the
header file, the app it was created for, and the copyright notice.

 ✓ The #import statement (green). For this class, the Foundation.h
header file is imported. An #import statement is similar to the
#include statement in C and C++, but it improves upon that older form
by checking for whether the header file being #imported has already
been #imported by some other header file. This removes a problem
that C and C++ code modules would sometimes encounter: the recursive
inclusion of a header file.

 ✓ The class declaration (orange). The declaration of every class starts
with the @interface directive and concludes with the @end directive.
Xcode does not create any member variables or methods for a class that
is directly descended from NSObject, but there are some classes you’ll
create where Xcode does add member variables and methods for you.

 The @ at the beginning of a statement is a compiler directive. You’ll use
compiler directives in your code to indicate to the compiler some-
thing it’s supposed to do that doesn’t get translated into executable
code. Objective-C uses the @ character preceding a keyword — for
example, @private, @interface, @end, @property, @synthesize,
and @implementation — as commands to the compiler. Objective-C
also includes standard C programming-language directives, such as
#include and #define.

 ✓ The member variables and methods (purple). You enter member vari-
ables between the braces and method declarations after the closing
brace but before the @end. Included in this group is the declaration
beginning with the compiler directive @property. This is a command to
the compiler to do some extra work for this member variable; I’ll cover
this command in more detail in the description of the source file.

 The @private is another compiler directive that you can use in Objective-C
to tell the compiler to restrict access to this member variable from other
parts of your code. I generally don’t use this feature — my apps and their
classes don’t have anything to hide — but there are times when you may
want to impose this restriction — as when you’re creating a library for other
developers to use in their apps, and you don’t want their code to be able
to use yours directly. You can find information about @private and other
Objective-C directives for member variable protection in Table 4-1.

91 Chapter 4: Objective-C and Cocoa Applications

The header file contains the information Xcode’s compiler needs to know in
order to reference the member variables and the methods in classes that will
make use of objects made from this class.

You can see the contents of the source module for this class in Listing 4-2.
Again, the colorization is from me, not Xcode.

Listing 4-2: The implementation of the VerySimpleClass

//
// VerySimpleClass.m
// CocoaWindows
//
// Created by Karl Kowalski on 4/28/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import “VerySimpleClass.h”

@implementation VerySimpleClass

@synthesize m_propertyString;

- (id)init
{
 self = [super init];
 if (self)
 {
 // Initialization code here.
 }

 return self;
}

- (void)dealloc
{
 [m_aString release];
 [super dealloc];
}

- (NSString*)getString
{
 return (m_aString);
}

(continued)

92 Part I: Getting Started on Macintosh Apps

Listing 4-2 (continued)

- (NSInteger)getInteger
{
 return (m_anInt);
}

- (void)setString:(NSString*)inNewString
{
 [m_aString release];
 m_aString = inNewString;
 [m_aString retain];
}

- (void)setInteger:(NSInteger)inNewInt
{
 m_anInt = inNewInt;
}

@end

I’ve divided up the source module into more colors than the header file,
because there’s a little more going on:

 ✓ The top of the module (blue) is once again the comments describing the
file and the copyright.

 ✓ The #import line (green) is for the class’s header file, so that when
Xcode compiles this module it gets a preview of what to expect. Xcode
will provide a warning if something you’ve declared in the header file is
not implemented in the source module. Xcode will flag an error if you’ve
implemented something in the source module that’s not declared in the
header file.

 ✓ The @synthesize directive (purple). This compiler directive is
required as a result of using the @property directive in the header file
for this member variable. By turning m_propertyString into a prop-
erty and adding this directive, you are giving a command to the compiler
to create getter and setter methods (described below) for this member
variable.

 If you declare a member variable in the header file with the compiler
directive @property, you must also declare it within the source file with
the compiler directive @synthesize.

93 Chapter 4: Objective-C and Cocoa Applications

 ✓ The first two methods (orange), init and dealloc, are implemented
for you by Xcode when the module is created. In addition, the
@implementation and @end directive bound the methods that are
implemented for this class — all the methods you declare for your
own classes must be implemented within the @implementation and
@end statements. I’ll go over the contents of these methods in the next
section.

 ✓ The next four methods (purple) are the implementations of the methods
I added to the header file for this class. These methods consist of two
getters (methods that return values) and two setters (methods that set
values) for the member variables. Since almost every class you’ll create
will have member variables holding information, you’ll want to provide a
way for other classes to modify and retrieve that information.

Objects
The source module and header file provide the declaration and definition
of the classes you’ll create. An object is what your app will create and use
to store the information that your classes are describing. An object is a
runtime instance of a class, a concrete version of the data and the code that
can manipulate that data. For example, you might make an app that stores
different audio recordings for users to store verbal notes, as a kind of audio
notepad. You could create a class to represent each recording, and make it
contain the following information:

 ✓ Date and time of the recording

 ✓ The length of the recording in seconds

 ✓ The recorded audio signal

 ✓ A list of text keywords describing the recording

Every time the user creates a recording and saves it, your app will create a
new object from your class definition and add the appropriate information
for that instance of the class. Each of the pieces of information listed above
would be stored as a member variable within the object. In this way, your
classes describe how each object behaves, while the member variables con-
tain the data that makes each object unique. As another example, you could
create a class to represent automobiles driving on a race track. Each car
would have its own number and color, and while the app was running a race,
each would have its own speed.

94 Part I: Getting Started on Macintosh Apps

Every Macintosh app built using Cocoa has many objects that are managed
by the app while it executes. There’s an NSApplication object which you
can consider to be the primary object, since its methods create and manage
all the other objects that the app uses.

 Every Cocoa app project that Xcode creates includes a main.m source
module. In this module is one function, main. This is the function that will
execute first when the app is launched. In this function Xcode will create one
line shown in this code snippet.

return NSApplicationMain(argc, (const char**)argv);

This code is the application’s starting point. NSApplicationMain is a func-
tion call that performs a variety of operations before handing over execution
to your code.

 Do not modify this code — your application depends on the operations it
performs to ensure that your app is set up properly.

In the init method of the class shown in Listing 4-2, you can see two items
in the code, self and super. self is code within a class for an object to
reference itself. If you’re familiar with Java or C++, self is the Objective-C
equivalent of the this pointer in those two languages. You use self when
you want to execute a method defined for your class from within another
method of your class. While in Java and C++ your code is not required to use
the this pointer to execute a class’s own methods, in Objective-C you must
do it this way. Your code will tell the object to execute one of its methods on
itself.

You will use the super object whenever you want to execute a method as it
was written for your class’s parent class. One of the features of an object-ori-
ented language is that you have the ability to override a method implemented
for a parent class of your subclass. In this way, you can provide behavior for
your objects that differs from the parent class’s behavior. For instance, you
might subclass the Cocoa class NSView, which is used to represent items
drawn on the screen, in order to draw the cars driving on the racetrack.
NSView comes with a method called drawRect: that’s executed by the app’s
code when it’s time to draw things on the screen. The app only knows it has a
bunch of NSView objects that need to be drawn; the app does not know that
some of those objects are of the CarView class, which your app created to
show its cars on the screen. Your CarView class, which subclasses NSView,
implements its own version of drawRect: so that when your app tells all
the displayed objects to draw themselves, the drawRect: of the CarView is
executed, instead of the drawRect: of the NSView.

95 Chapter 4: Objective-C and Cocoa Applications

But there may still be a need to execute the parent class’s method at some
point. So Objective-C uses the keyword super to provide a way for your code
to execute the method you’ve rewritten. In the dealloc method in Listing
4-2, the parent’s dealloc method is called, in order to ensure that the parent
class cleans itself up after the subclass has performed its own cleaning.

Member variables
Member variables are the data that an instance of a class contains. Each
instance has its own member variables that your app can modify as it
chooses. In the above example of the audio app, the date and time when
the recording was created would be stored in a member variable, of the
class NSDate. You can name your member variables as you prefer, with one
restriction:

A member variable’s name cannot start with a number, a math symbol, or a
punctuation character, with the single exception of the underscore (_).

 I use the following naming convention when creating member variables: I add
m_ to the beginning of each name. You will find a variety of other suggestions
to follow for naming member variables, methods, classes, and all the other
items you will name within your applications. You will eventually follow your
own conventions, but you should strive to be consistent. I’ve found that this
makes my code easier for me to read days, months, and years after I’ve first
written it. Your naming conventions can change over time, but you’ll find that
eventually they will stabilize.

The following are all valid names for member variables in Objective-C:

t

T

timeStamp

time_stamp

_timeStamP

Time_3_Stamp

The following are invalid names for member variables, which Xcode will note
as errors:

3Stamp (starts with a number)

&time (starts with punctuation)

=timestamp (starts with math symbol)

96 Part I: Getting Started on Macintosh Apps

 You can actually start a member variable’s name with an asterisk (*) and
Xcode will not inform you of an error, but the result will not be what you
might expect. Xcode treats an * in front of a member variable as an indica-
tion that the variable is an address of a block of memory, also known as a
pointer, described below.

Pointers
In Listing 4-1 (given earlier), the NSString member variable named m_
aString is declared as follows:

NSString* m_aString;

This declaration tells Xcode that my VerySimpleClass has a member vari-
able that is a pointer to an object of type NSString. A pointer is literally
an address in memory, and starting at that memory location is the contents
of the object or data type that the pointer is pointing to. In Objective-C and
Cocoa, every instance of a class in your app will be a pointer to an object.
Xcode will note an error if you ever write a line of code like this:

NSString m_aString; // error

The other member variable in Listing 4-1 is of type NSInteger. Xcode knows
that this type is not a class and so it doesn’t require an * in front of the name.
Cocoa provides renamings of the integer numeric types you would normally
find in C and C++:

 ✓ NSInteger for int

 ✓ NSUInteger for unsigned int

You can still use int and unsigned int in your code and Cocoa will know
that they’re equivalent to NSInteger and NSUInteger, respectively.

 The * character is used to declare a variable to be a pointer. You can use
either of the following forms to declare pointer variables — they are equiva-
lent. I prefer the first one, because I find it easier to read:

NSString* aString;
NSString *aString;

Protection of member variables
Your class member variables come with a level of protection that reduces
access to the member variables by code in other classes. Table 4-1 lists the
levels of member variable protection that exist in Objective-C:

97 Chapter 4: Objective-C and Cocoa Applications

Table 4-1 Levels of Member Variable Protection
Level Code Statement Description

Public @public The member variable is accessible to any
code that uses an instance of the class.

Protected @protected The member variable is accessible only
within methods of this class and any sub-
class. This is the default protection level.

Private @private The member variable is accessible only from
within the class that declares it.

You usually want your member variables to come with the default level of
protection, @protected. In order to gain access to protected member vari-
ables, you will also want to create methods that can retrieve the information
in the member variables (getters) as well as methods that can set the informa-
tion for member variables (setters).

Creating objects
Your app’s code will sometimes need to create instances of your classes or
Cocoa classes while your app runs. There are two ways to create objects in
Objective-C:

 ✓ By using the alloc method

 ✓ By using a class convenience method

alloc
You’ll use the alloc method most frequently. alloc is short for allocate,
which means to reserve space. Your code will create a new instance of a
class by allocating space out of the computer’s memory to hold the member
variables and the locations of the methods implemented for the class. An
example of creating an instance of the VerySimpleClass looks like this:

VerySimpleClass* anInstance = [VerySimpleClass alloc];

That’s all the code you need to write in order to create an instance of any
class in your app or in the Cocoa framework. The alloc method is a part of
the NSObject class implementation, so your code never needs to create its
own as long as your classes are descendants of NSObject. Since Xcode takes
care of this when you tell it to create a new class, you don’t have to do any-
thing extra.

98 Part I: Getting Started on Macintosh Apps

Convenience methods
Some classes come with methods built-in that take care of creating and ini-
tializing instances of themselves. You’ll find these methods to be convenient,
hence their designation as convenience methods. You’ll probably find yourself
using some of the following convenience methods in NSString very often:

 ✓ stringWithFormat: allows you to create an NSString instance with
data formatted using the same formatting characters as C.

 ✓ stringWithContentsOfFile: allows you to create an NSString
instance initialized with the text found in a file located in the file system.

 ✓ stringWithContentsOfURL: allows you to create an NSString
instance initialized with the stream of HTML coming from a URL.

Here’s a code example of creating an NSString instance by formatting some
data:

int temperatureInt = 75; // nice warm day
NSString* aString = [NSString stringWithFormat:@”Today’s temp

is: %d”, temperatureInt];

When the code just given here is executed in the app, the variable aString
will contain the text Today’s temp is: 75.

If convenience methods look kind of like class methods, you’re right: They are.

Methods
Whenever you want an object to do something, your application code calls
one of its methods. You’ll be doing this a lot, so I’m going to go over the
details here.

 Your app sends messages to Objective-C objects; this is similar to calling meth-
ods on objects in other object-oriented languages such as C++. The difference
between the two is subtle: In Objective-C, the object receiving the message deter-
mines at runtime whether it can execute a particular method — and if it cannot,
an exception is raised. In C++ and similar languages, the compiler determines
whether the object can perform the execution. For most of your Objective-C
development efforts, this difference is minimal and these two phrases — sending
a message and calling a method — can be used interchangeably.

You’ll create methods for your classes every time you want your class to
perform an operation, such as modifying the information contained in its

99 Chapter 4: Objective-C and Cocoa Applications

member variables. You’ll also execute methods on instances of classes
that Cocoa provides. In Objective-C, your code will execute a method on an
instance of a class as shown in this code snippet:

[instanceOfSomeClass methodName];

You will see the above syntax in almost every code example in this book,
and every sample code you download from Apple. The above code snippet
executes a method named methodName on the variable named instan-
ceOfSomeClass. This method takes no parameters and does not return any
values back to the code that called it. The declaration of this method in the
class header file would look like this:

- (void)methodName;

And in the source file, the implementation of this method would look like
this:

- (void)methodName
{
 // do something
}

You might implement a method like this for the audio recording example to
play the recording. Since the recorded audio signal is a member variable in
the class, you wouldn’t need to pass a parameter into the method in order
to play the sound. And since the method is only going to play a prerecorded
sound, there’s no need to return a value back to the code that called this
method.

You can see in the following code snippet a method that takes in two param-
eters and returns an integer value that indicates success or failure:

- (NSUInteger)writeData:(NSData*)inData toFile:(NSString*)
inFilePath

{
 //
 NSUInteger resultValue = 0; // assume successful
 // do something with the data
 // if it doesn’t work, resultValue will be > 0
 return (resultValue);
}

You can see that parameter values are passed into the method by using the
method’s name split up by colon (:) characters. The value returned by the
method is declared at the beginning of the method name.

100 Part I: Getting Started on Macintosh Apps

 When turning Objective-C code into machine-level executable instructions,
the compiler converts messages into a form called a selector. A selector is
simply a string that represents the concatenation of the method’s name,
without the arguments. So the selector for the method just given would be

 writeData:toFile:

When your code sends a message to an Objective-C object, the compiler
turns the executable statement into a function call, and passes the selector
for the message plus the values of the parameters into that function.

You can call the methods I’ve introduced so far on an instance created from
a class. There’s also a second type of method that you can implement, called
a class method. Class methods are different because you cannot call them
on instances of a class; you must call them independently of all instances.
The convenience methods mentioned here are class methods, and your code
executes them like this:

NSString* aStringObj = [NSString stringWithString:@”this is
an NSString”];

In addition, alloc is a class method of NSObject and therefore also of each
class you create in your app, so your code will execute a class method every
time you create an instance of a class. You declare a class method in your
own classes as shown in the following snippet from a header file:

+ (NSString*)getSomeValue;

 This method declaration and its implementation start with +, which differen-
tiates them from instance methods that start with –.

You execute this class method as follows:

NSString* valueString = [YourClass getSomeValue];

Protocols
You create some of your classes as simple descendants of classes that Apple
has created within Cocoa. However, sometimes you’ll want your classes to
provide specific behaviors that another class can make use of, without the
other class knowing the basic implementation of your class. A protocol is how
you declare one of your classes to provide specific methods for any other
class able to exercise the protocol. You might use a protocol to add methods

101 Chapter 4: Objective-C and Cocoa Applications

that update a modification date & time for several different data storage
classes so that your app can support a manager class that keeps track of
objects of different types — and update each object’s modification state —
without having to know the specific details of each object’s class.

 The Objective-C protocol is equivalent to the Java language interface.

A protocol gives you the capability to declare methods that any of your
classes can implement. You can define a protocol in a header file as simply
as this:

//
// NotificationBroadcaster.h
//
//
@protocol NotificationBroadcaster
 (void)sendNotification:(NSString*)inName

withObject:(NSObject*)inObj;
@end

The protocol in the snippet just given declares a method that classes
adopting the protocol must implement. A class adopting this protocol
is making a promise that it has a method that will be executed when the
sendNotification:withObject: message is received by an instance of
the class.

You can create a class to adopt a protocol by declaring it within its header
file:

//
// AdoptiveClass.h
//

#import “NotificationBroadcaster.h”

@interface AdoptiveClass : NSObject <NotificationBroadcaster>
{
 // add member variables here
}
// add properties and methods here
@end

AdoptiveClass does not need to declare the methods of the protocol, so
you’re saved some typing. You will need to implement the methods of the
protocol in the source file:

102 Part I: Getting Started on Macintosh Apps

//
// AdoptiveClass.m
//

#import “AdoptiveClass.h”

@implementation AdoptiveClass

- (void)sendNotification:(NSString*)inName
withObject:(NSObject*)inObj

{
 [[NSNotificationCenter defaultCenter]

postNotificationName:inName object:inObj];
}

@end

Your app can create multiple classes with this same protocol, and all
instances of those classes in your app will have a method that can be called
to broadcast notifications to objects listening for them. Your app can main-
tain a collection of objects of different classes, each of which adopts this
protocol, and can then iterate over the entire collection and have each object
in the collection broadcast a notification. For instance, an app that manages
library resources such as books, CDs, and DVDs could keep objects of each
of those different types in one huge collection, and then send a message to
each of them to broadcast to a display object the due-date status for each
checked-out item.

Protocol methods can be of two types:

 ✓ Required: The class must implement the method. This is the default
type.

 ✓ Optional: The class does not have to implement the method. You
can declare methods to be optional by placing the compiler directive
@optional before the list of methods that don’t have to be
implemented.

You’ve already encountered a class that adopts a protocol in Chapter 3: the
SimpleCocoaWindowAppAppDelegate class. Delegates are another power-
ful feature in Cocoa, so I discuss them next.

Delegates
A delegate is an object that can be used by another object to perform certain
actions when necessary. You can create delegate classes for your apps to
implement functionality for Cocoa classes used in your app, so that your

103 Chapter 4: Objective-C and Cocoa Applications

classes provide unique responses in certain situations. To do this, Cocoa pro-
vides you with a large number of delegate protocols that you can have your
classes adopt. Here are just a few of the delegates you can use:

 ✓ NSApplicationDelegate. This delegate is used in the NSApplication
class to give your app an opportunity to perform your own response to
certain messages sent to the application object.

 This is the protocol adopted by SimpleCocoaWindowAppAppDelegate
to give the Chapter 3 app a chance to do its unique operations. All of
NSApplicationDelegate’s methods are optional, so SimpleCocoa
WindowAppAppDelegate only implements applicationDidFinish
Launching:, which is called when the NSApplication has reached
the moment during its startup at which everything has been initialized
and the app is just about ready to display itself for the user.

 ✓ NSAnimationDelegate. Cocoa provides a delegate protocol your app
can use to perform operations at certain moments during the execution
of an animation.

 When Cocoa is executing an animation for your app, the animation code
will call methods of an NSAnimationDelegate object at moments such
as right before the animation is about to be started, right after it ended,
as well as at various points during the animation’s progression from
start to finish.

 ✓ NSImageDelegate. Because image files can be large, and because
images may be loaded from network-based locations, Cocoa provides
the NSImageDelegate class which gives you an approach for listening
in on the loading process for an NSImage.

 ✓ NSWindowDelegate. You can create a class to be a delegate of an
NSWindow so that your app can respond when certain actions take place
on an NSWindow. For instance, your app can keep track of a window that
a user moves, resizes, miniaturizes, closes, or has been placed on a dif-
ferent screen.

 ✓ NSTableViewDelegate. The NSTableView object is the visual repre-
sentation of a two-dimensional table displayed in an app’s window.

 When the user clicks in the table on the screen, the NSTableView
Delegate object assigned to the NSTableView will be sent messages
indicating what the user is doing. In addition, the NSTableView
Delegate object is also used by its NSTableView to provide the
NSTableView with information regarding visual and functional aspects
of the displayed table, such as whether a specific cell in the table can be
edited or whether a selection in a table cell will cause the entire row to
be selected.

104 Part I: Getting Started on Macintosh Apps

To create a delegate object to act as an NSWindowDelegate, you perform
the following steps:

 1. Create a class based on NSObject.

 In the code examples that follow, I’ve called the class
MyWindowDelegate.

 2. Adopt the NSWindowDelegate protocol in the header file of the class,
as shown in the following code snippet:

@interface MyWindowDelegate : NSObject <NSWindowDelegate>

 3. In the source file, implement the methods you want your delegate to
support.

 For instance, in MyWindowDelegate.m I’ve implemented two methods I
want my delegate to respond to:

- (void)windowDidChangeScreen:(NSNotification*)
inNotification

{
 // this will be called when the delegate’s window has
 // been moved to a different screen, so you can do
 // something important
}

- (void)windowDidDeminiaturize:(NSNotification*)
inNotification

{
 // the window has now been returned from its
 // miniaturized status, so maybe your app will
 // check the web feed for updated information
 // from the user’s favorite social networking
 // site
}

 4. Create an instance of your delegate class, and then assign it to an
object you want to receive delegate messages for.

 I want the NSWindow that comes with SimpleCocoaWindowAppApp
Delegate to use MyWindowDelegate when it changes screens or
deminiaturizes, so I add the following code to its applicationDid
FinishLaunching: method:

- (void)applicationDidFinishLaunching:(NSNotification*)
inNotification

{
 MyWindowDelegate* myDelegate = [[MyWindowDelegate

alloc] init];
 [window setDelegate:myDelegate];
 // now when the window changes screens or
 // deminiaturizes, the delegate’s methods
 // will be called
}

105 Chapter 4: Objective-C and Cocoa Applications

You use delegates to extend the behavior of Cocoa’s classes that accept del-
egates. You could accomplish this by using class inheritance, but delegates
are simpler and easier. Not every Cocoa class uses delegates, so you’re lim-
ited in where you can make use of this feature. But Apple has added delegate
capability to the Cocoa classes that can make good use of it.

 Before you choose to create a subclass of some Cocoa class whose behaviors
you want to change, check to see whether the class offers to accept a del-
egate object you can make for its delegate protocol methods. You’ll create a
leaner app by using delegates than creating subclasses.

Managing memory
Every time your app creates an instance of a class, your app is request-
ing and receiving a block of memory from the computer’s RAM. In the
Objective-C programming language, your app is responsible for keeping track
of each block of memory it requests and receives. Even though the amount
of memory available to apps on current Macintosh computers is pretty large,
your app should really be careful and very frugal when it comes to request-
ing memory. And your app should also be very diligent about freeing up that
memory when it’s no longer needed. Your app is responsible for cleaning up
the objects it creates when those objects are no longer in use.

 I first learned to do Macintosh development with Objective-C in the old days,
when memory management was the responsibility of the code that was
requesting the memory. Today you can set your Xcode project to do garbage
collection automatically while your app is running, as long as your app is
executing on Mac OS X version 10.5 or later. I still do Mac programming the
old-fashioned way, because I understand it better and because I know what’s
going on. The rest of this section will describe the details of the memory
management operations your code will need to implement if garbage collec-
tion isn’t turned on; this is the old-fashioned way. The technical note at the
end of the section describes how to turn on garbage collection in an Xcode
project.

The Cocoa framework does provide some assistance for you through the use
of a mechanism called the retain count — literally a count of how many differ-
ent places your app is maintaining a pointer to a specific instance of a class.
Unfortunately, Cocoa does not keep track of this count completely automati-
cally. Your app is partially responsible for making sure the retain count of
its objects is kept up to date. Your code can call the following methods to
manage the retain count of an object:

 ✓ retain. This method increments the object’s retain count by one.
Calling a class’s alloc method automatically also calls retain on the
object that is returned by alloc.

106 Part I: Getting Started on Macintosh Apps

 ✓ release. This method decrements the object’s retain count by one. If
the retain count is reduced to zero, Cocoa assumes that no piece of your
code is still keeping a pointer to this object — and the object’s memory
is returned to the pool of available memory to be used for satisfying
memory requests such as creating new objects.

 ✓ autorelease. This method temporarily gives the object an increment
in its retain count, but at some point in the future the object’s memory
will be returned to the pool of available memory, just as if its retain
count had gone to zero. The NSString object’s convenience method
stringWithString: (for example) calls autorelease on the object
that’s returned, as will other convenience methods.

The best way to demonstrate how to use these methods is with an example.
Listing 4-3 shows several methods in a class that create new objects and use
retain, release, and autorelease on the objects.

Listing 4-3: Code snippet of methods exercising retain, release,
and autorelease

- (void)setStringValue:(NSString*)inNewValue
{
 if (nil != m_memberString)
 {
 [m_memberString release];
 }
 m_memberString = inNewValue;
 [m_memberString retain];
}

- (NSString*)getStringValue
{
 return (m_memberString);
}

- (void)temporaryDataUsage
{
 NSString* filePathObj = [NSString

stringWithString:@”full_path_to_file”];
 NSData* dataFromFile = [NSData dataWithContentsOfFile:fil

ePathObj];
 // use the NSData object to do important stuff
 // the dataFromFile object is autoreleased
}

- (void)dealloc
{
 [m_memberString release];
 [super dealloc];
}

107 Chapter 4: Objective-C and Cocoa Applications

In the first method, setStringValue:, the code first checks to see whether
the member variable m_memberString has already been set to a value. If it
has a non-nil value, then the code presumes that the object that m_member
String points to was retained by this same code when it was the input
parameter to this method. Therefore the code executes release on this
object, so that its memory will be reclaimed by the OS the next time the
application checks for objects that need to have their memory freed up.
Next, the member variable is set to point to the incoming NSString object.
Finally, the retain method of m_memberString is called, indicating that the
incoming NSString object is being referenced by the object whose set
StringValue: method was executed.

I’ve shown the second method, getStringValue, as a means of counter-
example. When this class is asked to return the NSString object that its
member variable is pointing to, the code does not call retain or release. It
is the responsibility of the app code that is executing the getStringValue
method to retain the object that has been returned from this method.

 If you always implement your getter and setter methods as shown in
Listing 4-3 — and if you always assume that the calling code is responsible
for retaining the pointers that it receives from other getter methods — then
you will reduce the chances that your app is calling retain or release
incorrectly. The usual problem you’ll run into is when you call release on
an object that another part of your code is still expecting to use. This can
lead to your app crashing in unexpected ways.

 Implementing a getter method as shown above does not prevent the calling
code from executing the release method on the returned object. To reduce
the chances of calling release too early, you should only call release in the
dealloc method of your class, or within the setter methods you implement.

The third method of the code snippet, temporaryDataUsage, demonstrates
two class methods, one each for NSString and NSData. The NSString
convenience method stringWithString: will return a pointer to an
NSString object that holds the text full_path_to_file. In real code,
this text would be the full directory path to a file that the code is going to
load into an NSData object. The NSData convenience method dataWith
ContentsOfFile: will find the file at the path specified in the NSString
object, open it, and read its complete contents, returning a pointer to an
NSData object that your app can use to interpret the data. Both of these con-
venience methods return objects that have had the autorelease method
called upon them. This means that your code does not have to release them,
and they will both have their memory freed automatically at some point in
time after the method has finished executing. Your code can call the retain
method on either of these objects, but then your code would have to accept
responsibility for calling the release method at some future moment.

108 Part I: Getting Started on Macintosh Apps

 Your code is responsible for matching every retain method call your code
makes on an object with a call to that object’s release method. If you call
retain more than you call release, your app will reduce the amount of
memory it has available to store information. If you call release more than
you call retain, at some moment your app will try to use an object that has
had its memory taken away — and the usual result is a crash. To avoid these
problems, you must write your apps consistently, remembering the following:

 ✓ Convenience methods always call autorelease for you, meaning the
objects you receive are temporary unless you retain them yourself.

 ✓ alloc methods always call retain for you — meaning the objects you
receive are permanent and you have to release them explicitly.

 ✓ Every retain method you call must be matched by an explicit call to
release.

The final method in Listing 4-3 is the dealloc method, which will be called
automatically by a part of your Cocoa application when an object’s retain
count reaches zero. You can see that the member variable m_memberString
has its release method called within this method. The m_memberString
variable was retained when the assignment was made in a prior call to set
StringValue:.

 In the dealloc method, my code does not check for whether m_member
String contains a pointer to a valid NSString object. You can call any
method on an object even if the object is nil. All member variables of an
instance of a class are automatically assigned nil when the instance is cre-
ated. Cocoa ignores any method called on a nil object, without reporting
any error.

 Objective-C 2.0 and Mac OS X version 10.5 introduced automatic garbage col-
lection for Cocoa applications. This removes the strict requirement that your
app keep a solid track of all the memory it has requested from the OS. This
is a build setting you must select for the project after Xcode has created it —
the default is Unsupported, which means your code is responsible for manag-
ing its own memory. You can modify this setting by following these steps:

 1. Launch Xcode and open the project for which you want to turn on
automatic garbage collection.

 2. Select the Project in the Project navigator and the Build Settings tab in
the editor.

 3. Scroll down to the LLVM compiler 2.0 – Code Generation section.

109 Chapter 4: Objective-C and Cocoa Applications

 4. Change the setting for Objective-C Garbage Collection to Required (as
shown in Figure 4-1).

 Your project will now ignore all retain, release, and autorelease
messages sent to your app’s objects, and Cocoa will handle all of the
memory management for your app.

Figure 4-1: The build settings for an Objective-C app that performs its own memory management.

You’ve now completed the basics of the Objective-C programming language —
including classes, objects and instances, member variables, methods, and
memory management. You’ll make use of this knowledge in all your Mac apps,
with every class you create and with the Cocoa classes that your app creates
and uses.

Using Cocoa Frameworks
A Cocoa framework is a library of code and data that Apple has created and
which ships with Mac OS X. The latest version of Xcode will build using the
Cocoa frameworks that work with the latest version of OS X, although you

110 Part I: Getting Started on Macintosh Apps

can choose to build apps to run on an earlier version. For instance, Xcode
4.1 comes with the Cocoa frameworks for both OS X 10.7 Lion and OS X 10.6
Snow Leopard. When you create a minimalist Xcode project, Xcode creates
the project with the following frameworks already attached:

 ✓ Cocoa.framework. This contains the basic functions for Cocoa
applications.

 ✓ AppKit.framework. This framework contains the classes that make up
the core components of the user interface classes, such as NSControl
and NSDocument.

 ✓ Foundation.framework. This framework contains the classes that
provide some utility capabilities, such as NSString and NSData.

 ✓ CoreData.framework. This framework provides classes that
support data management, such as NSEntityDescription and
NSPersistentStore. Note that this framework is included in your
project even if you do not choose to make your project create a Core
Data-based app.

You should note that Xcode is not copying the entire libraries into your
app; the project is created with references to these frameworks so that your
app’s code knows where to find any of the classes that it needs to perform its
operations.

You can add other frameworks to your project if your app will need to access
other parts of Mac OS X that these basic frameworks do not contain. To add a
new framework, or just to see what frameworks are available in Xcode, follow
these steps:

 1. Launch Xcode and then open an existing project or create a new one.

 2. In the Project navigator, right-click the Frameworks folder and select
Add Files to YourProjectName.

 The Open File panel slides out over the window.

 3. Select the Developer folder at the top level of your hard disk.

 This is where Xcode keeps all of its files.

 4. Navigate through the following folder selections: SDKs➪MacOSX10.7.
sdk➪System➪Library ➪Frameworks.

 You should see a list of folders named FrameworkName.framework, as
shown in Figure 4-2.

 Each folder shown in the figure is a framework that you can add to your
project. For instance, if your app will access the user’s Address Book,
you would add the AddressBook.framework to your project.

111 Chapter 4: Objective-C and Cocoa Applications

Figure 4-2: The top of the list of frameworks you can add to your Xcode
projects.

The following list is a subset of some of the frameworks I’ve found useful in
some of my own Mac apps:

 ✓ AddressBook. Provides classes and functions for reading and writing
information into the user’s AddressBook collection of contacts. Your
app could use this to send group e-mails to everyone in the user’s set
of contacts who has a .mac account — with the user’s permission, of
course.

 ✓ CalendarStore. This framework gives you classes and functions to
read and write calendar information for the user’s iCal data. Your app
can create items in their calendars that remind them to take out the
trash or return a library book.

 ✓ CoreAudio. You can use the functions in this framework to record
audio from your user’s Mac microphone. You could create an app that
acts as an audio notepad.

 ✓ DVDPlayback. The functions in this framework provide your app with
access to the DVD player on the user’s Mac.

 ✓ IOKit. The functions in IOKit provide your app with access to all the
devices such as hard drives connected to the user’s Mac. Although there
are other classes you can use to retrieve similar information, the IOKit
gives you every bit of detail you will ever want regarding the inner work-
ings of the components of a user’s machine. For instance, a hard-drive
maintenance app would use the functions in IOKit to find out the manu-
facturer of a hard drive, the drive’s serial number, or the number of sec-
tors on a formatted disk.

112 Part I: Getting Started on Macintosh Apps

 ✓ OpenGL. This standard graphics library provides a consistent and
highly optimized approach for drawing and animating three-dimensional
images. Your app could use this to demonstrate solutions to 3-D puzzles.

 ✓ WebKit. Your app can use this set of classes to read and manipulate
HTML and other web-based forms of documents such as XML. You could
create your own browser app using WebKit.

Your projects can take advantage of any of these and many other frameworks
to add features that will set your apps apart from all the others available at
the App Store. Combinations of these features will give your apps unique
capabilities to generate a greater following of loyal users. Instead of just
directing your users to your app’s website for help, your app could provide
users with assistance in using your app by downloading HTML from your
app’s website and displaying it in an app window with the help of WebKit.
Even better, for help with specific menu items or components on your app’s
windows you could display the specific information from your website as the
user moves their mouse over different zones of your display. Your app could
provide audio feedback for users with vision challenges by announcing the
name of components when the user’s mouse hesitates over them. The pos-
sibilities are endless.

Understanding the Application Life Cycle
The general behavior of a Mac application follows this approach:

 1. The user double-clicks the app’s icon on their Desktop.

 2. The application is launched showing its main screen.

 3. The user manipulates the controls and menus and adds some
information.

 4. The user selects the Quit menu item.

 5. The application exits.

Figure 4-3 shows a more detailed display of what happens when an applica-
tion is launched.

As you saw earlier, the first code statement to be executed is in the main
function, in the module main.m. Here’s what that statement looks like, again:

return (NSApplicationMain(argc, (const char**)argv);

113 Chapter 4: Objective-C and Cocoa Applications

Event Loop

App Launch

App Timeline
App handles
button press

User
presses
button

NIB �le loads;
views created

App exits

App saves data
and closes

App enters
Event Loop

User selects
Quit

App processes
events received from

user interactions

Figure 4-3: The life of an application from launch to Quit.

Your application then follows this process:

 1. The NSApplicationMain function — provided for you in the Cocoa
frameworks — performs some basic initialization.

 2. NSApplicationMain creates an object that represents your applica-
tion, as a member of the class NSApplication.

 There can be only one NSApplication object in an executing app.

 3. The NSApplication object loads your app’s main XIB file, which is
usually MainMenu.xib.

 4. After loading the XIB file, the NSApplication object will display the
main window.

 5. The app creates and launches the main event loop.

 This is a method that loops within itself, until circumstances cause it to
stop.

114 Part I: Getting Started on Macintosh Apps

 6. In the event loop, your app retrieves events from an event queue.

 The queue holds all the events that the OS supplies it, such as the user
pressing a mouse key or a keyboard key. In addition, at the beginning of
each cycle through the event loop, objects that have a retain count of
zero have their dealloc method called.

 7. For each event, your app determines what happened and what the app’s
response should be.

 For instance, if the user selects an item from one of your app’s menus,
the app determines which method of which object has been targeted to
receive the menu-selection event, and executes it.

 8. If the user selects Quit from the application menu, the event loop is ter-
minated and the app begins the process of cleaning itself up.

 This process may include saving any data the user has provided.

 9. The app closes the windows presently on display and exits.

Your app will follow this process every time a user launches it. Usually you
won’t need to worry about what happens during the setup and shutdown
of your app, and you’ll concentrate on what happens when your users click
your app’s controls or make changes to the contents of your app’s windows.
But hopefully you’ll remember the process outlined above so you will under-
stand what your app does from start to finish, and you’ll know where every
operation your app performs occurs during its lifetime.

Part II
A View to an App

In this part . . .

A
fter you have the tools you need to develop Mac
apps, it’s time to explore more thoroughly the

pieces of a Macintosh application. The beginning of this
part expands your understanding of Interface Builder
and the user interface components of a Macintosh app:
buttons, menus, checkboxes, etc. Moving forward, you’ll
discover how to enhance that knowledge with a greater
understanding of Macintosh app views and the controllers
that manage them. In the last chapter of this part you’ll
see how you can create your own custom views, so you
can display your app’s information in your own fashion.
You can then give your Mac app a definitive user experi-
ence that no other app has.

Chapter 5

Using Interface Builder
to Lay Out Your Views

In This Chapter
▶ Learning Xcode’s UI Tool

▶ Starting from the defaults

▶ Adding views

▶ Adding UI elements

▶ Testing your UI

▶ Connecting to your app

A
pple has completely integrated Interface Builder, their graphical user
interface editing tool, into Xcode 4.0. This improvement means you

only need one tool, Xcode, to do all your creation and editing of your app.

Interface Builder is a visual tool that you use to create the graphical user
interfaces for your Mac apps. You’ll put your app’s appearance together visu-
ally, by simply dragging and dropping objects from the UI component Object
Library onto the windows and views of your app. The Object Library contains
all the different visual interface elements that Apple packs into OS X. You can
put together really clever and visually appealing displays for the information
you present to your app’s users. And best of all, you’ll be following the guid-
ance of Apple’s Human Interface Guidelines while using Interface Builder —
this will assist you in making sure that your Mac apps are likelier to survive
the scrutiny of the App Store submission review process. Most important,
you’ll be living up to the expectations of Mac users who’ve come to take
cleanly designed Macintosh apps for granted.

In this chapter, I take you on a tour of the IB Editor and show you how to
use its features and functionality by producing a new app. You’ll be explor-
ing how to use the IB Editor to create and lay out the visual interface of your
app and connect the components you’ll add to the code they work with. By

118 Part II: A View to an App

the end of the chapter, you’ll master the techniques of providing a visual and
interactive experience for your users and connecting that experience to your
app’s code that’s running behind the scenes.

Going with the Flow
Xcode gives you the opportunity to choose one of two general categories of
apps you can create with a UI:

 ✓ Single Window: Your app consists of a single window in which your
users perform all their interactions. This kind of app is easy to manage:
All your information is in one place, and selections from the menu are all
directed toward this window. One example of this type of app would be
a calculator: Your users only need one and want that one-and-only every
time they launch your app. Most games are examples of Single Window
apps. In Mac OS X 10.7 Lion, you’ll be able to create full-screen apps:
Your app will take advantage every pixel available on its screen.

 ✓ Document-Based: You can think of this type of app as multiple Single
Window apps. Each window displays information independently of other
sibling windows that might be visible. A web browser is a good example
of this type of app: Each window might display the contents downloaded
from a different web page. Each web window behaves the same way, ren-
dering the HTML data that came from the page’s URL, but each window
is showing different data.

 If your app is going to save information that the users provide in files on their
Macs’ hard drives, a Document-Based app is a better choice — for the most
part, this type of app takes care of managing the saving of information for
you. And I’m definitely in favor of letting Xcode put together all the details of
managing files and saving and reading them.

 Choosing a template for your project will lock you into a particular structure
for your app. This doesn’t mean you cannot change your mind later when
you run into challenges for implementing features in your app. But you
should spend some time scoping out the different things your app will do,
and use that information to choose wisely.

 One more handy consideration: Whichever template you choose, you’re not
limited to putting your data onscreen in only one type of display. Interface
Builder and the Cocoa UI classes let you create a variety of different views,
each of which can be tailored to show the information your users need to

119 Chapter 5: Using Interface Builder to Lay Out Your Views

see — in the best way possible. Each display of information can be presented
in a separate window, and both the Single Window and Document-Based app
templates can support this behavior.

You’ll have to decide which type of app is right for your goal before you
create the project. Figure 5-1 shows the Project Options screen where you
make this decision. The checkbox Create Document-Based Application
should be checked if your app falls into that category.

Figure 5-1: Set the option to Document-Based at this point.

From code to screen and back again
You’ll create, edit, and lay out the visual components of your windows using
Interface Builder. You’ll write code to support all your visual components,
so that when the user clicks a button, your app will do the right thing. This
means your visual components must be connected to your app’s code. And
the connection requires that your code be properly set up to

 ✓ Accept connections from the visual components created in Interface
Builder

 ✓ Deliver the results of code calculations back to the visual components

These connections have two types of end points:

120 Part II: A View to an App

 ✓ An IBOutlet is associated with member variables in your Objective-C
classes. This is a signal to the compiler that a specific member variable
should be made visible to Interface Builder for use as a connection end
point.

 An IBOutlet member variable represents the visual component when
the application is running. For instance, you could place a Text Field on
your app’s main window for use as a label to display text messages to
the user in an instant-messaging app. When a new text message comes
in, the code in your app selects the Text Field member variable and
sets its text to the new information. The communication happens from
the member variable to the component on display, and this is how the
connection will be made in Interface Builder: from the object that con-
tains the code to the visual component on the window. Each IBOutlet
member variable can point to only one visual component, but multiple
IBOutlet member variables can point to the same visual component.

 An IBAction is associated with methods in your Objective-C class. This
tells the compiler that a specific method should be made available for
components in Interface Builder to execute when the user causes the
component to perform an action.

 You would use an IBAction to assign a specific method to execute
when the user selects a button on your app’s window. Returning to our
instant-messaging app, after the user has read the new message, she
types in a response and clicks the Send button. Because you made a con-
nection from the button to your app’s sendMessage: method in your
window’s Objective-C class, that method will be executed whenever the
Send button is clicked. Each IBAction method can be executed by any
number of visual components.

 Interface Builder in Xcode 4 gives you the capability to automatically create
IBActions and IBOutlets by control-dragging from your UI directly into
the class header file. This will save you time when creating your UI compo-
nents and connecting them to your code files.

In Chapter 3 you developed a small application with a simple user interface
to familiarize yourself with Xcode. You’ll go a little deeper in implementing
a user interface in this chapter so that you become familiar with Interface
Builder and how it interacts with your source code modules. I cover different
aspects of creating and modifying user interfaces through the process of cre-
ating some simple applications.

121 Chapter 5: Using Interface Builder to Lay Out Your Views

Touring Interface Builder
Your first encounter with Interface Builder was with Chapter 3’s tip calcula-
tor app. Your first project in this chapter will introduce you to the details of
Interface Builder and its tools.

 1. Launch Xcode.

 2. Create a new Project using the Cocoa Application template. Leave the
Create Document-Based Application checkbox unchecked.

 I’ve named my app UISimple as shown in Figure 5-2.

Figure 5-2: Name your project but keep it simple.

 3. Click Next.

 4. Choose a location for your project and click Create.

 5. Select the MainMenu.xib file from the Project Navigator.

 Xcode displays Interface Builder with MainMenu.xib on display.

 Show the Utilities view; you’ll need to access it many times during this
session.

The MainMenu.xib file will contain all of the visual components you add to
create your user interface.

122 Part II: A View to an App

 The XIB file is a text file which lists all of your user interface in an XML-based
format. Although I think you should take a look at the contents of this file, I
believe you should obey the following rule: Look but Don’t Touch. The data
within the XIB file is loaded by your Cocoa app and is used to create objects
to represent in code the displayed components on the user’s screens.
Modifying the contents of this file can break your app in subtle ways that can
be difficult to track down. It’s okay to look, but one false deletion or addition
can confuse the Cocoa objects that are trying to build your app’s screens.

Figure 5-3 shows Interface Builder’s display of MainMenu.xib, with the
smaller panes separated to explain each one’s purpose.

Application
Menubar

Dock

Proxy Objects

File’s Owner

First Responder

Application

Instance
Objects

Editor
Canvas

Object Library
Components

Main Menu

Window

UISimple App Delegate

Font Manager

Library
pane

Inspector
pane

Figure 5-3: Interface Builder and its contents.

The four main panes are

 ✓ The Dock. This pane contains objects that will be automatically cre-
ated when the XIB file is loaded into your application to create the user
interface. You can see the seven objects that are created by default for a
Single-Window type application:

123 Chapter 5: Using Interface Builder to Lay Out Your Views

 • File’s Owner

 • First Responder

 • Application

 • Main Menu (where you edit the menus for your app)

 • Window (where you place your UI components)

 • UISimple App Delegate

 • Font Manager

 ✓ The Editor Canvas

 ✓ The Inspector pane

 ✓ The Library pane

Your next task is to add some UI components to the window so that they’ll be
on display when the user launches your app. Before you do this, I show you
the different pieces of Interface Builder you’ll be using to work with the UI
components.

 1. Select the Window icon in the Dock.

 You’ll see a small window displayed in the editor area, with the name
UISimple at the top. Figure 5-4 shows the Editor’s canvas area with the
UISimple window highlighted in blue.

Figure 5-4: Interface Builder displays the Window object, waiting to be filled.

124 Part II: A View to an App

 With the window highlighted, the buttons in the Inspector selector bar
(at the top of the Inspector pane) now show you a variety of informa-
tion about the window. The Inspector provides these different types of
data for the components you select from either the Dock or the Editor
Canvas. The Inspector selector bar contains the following items:

 • File inspector. You can find information about the file selected in
the Project navigator, which in this case is the MainMenu.xib.

 • Quick Help. You use Quick Help to get a capsule summary of the
object selected on the canvas, which includes links to documenta-
tion and programming guides where available.

 • Identity inspector. This inspector provides more information
regarding the class of the object selected in the Editor Canvas.
You won’t usually modify anything in this panel, but you will when
you want to force Interface Builder to use your preferred class for
a particular object, instead of its own default choice. Your object
must be a subclass of the object selected. For example, if you
create a custom view subclass of Cocoa’s NSView class, you would
add an NSView object to your app’s window and then change its
class to your custom class using the Identity inspector.

 • Attributes inspector. You can set options for the specific class
selected in the Editor Canvas. Figure 5-5 shows the attributes you
can set for the NSWindow class.

 • Size inspector. You can set various size and position attributes of
the selected object using this inspector. For UI components such
as labels and buttons, this panel includes settings that determine
how the components move and/or resize when the window’s size
changes.

 • Connections inspector. This inspector is for making connections
among your UI components on the window and between those
components and objects sitting in the Dock.

 • Bindings inspector. Certain types of objects support binding — a
mechanism within Cocoa applications that allows data to be repre-
sented in one object and used in a different object within the app.
You can use bindings to support a Model-View-Controller (MVC,
which I cover in Chapter 6) design: you can set up bindings to
provide links between your UI components (views) to your control-
ler object. For instance, you could add an NSArrayController
object into your XIB and then bind it to UI components in your
window so that a specific element of the NSArrayController
would provide requested information to the UI components. You
can set your UI components to reflect the data inside an item that
the NSArrayController selects.

125 Chapter 5: Using Interface Builder to Lay Out Your Views

 • View Effects inspector. You use this inspector to adjust some of
the visual characteristics of the selected UI component, such as
the component’s transparency or animation.

You’ll use the different Inspector options while you create your app’s visual
interface. Each one gives you different information about the UI component
selected in Interface Builder.

Figure 5-5: The UISimple window’s attributes.

Looking through the Library
The Object Library contains all the UI components you can drag and drop
onto your windows and views. You’ll also find some nonvisual components
in the Library, such as the NSArrayController I mentioned in the previous
section. To see all the items contained in the entire Library, do the following:

 1. Select the Object Library item in the drop-down menu at the top of the
Library panel.

126 Part II: A View to an App

 2. Select the Icon View button.

 What you get is a matrix of all the objects contained in the entire library.

 You can also choose the List View button to get a linear listing of the
same objects along with a short text description for each.

 3. Select any one of the items in either listing, and leave your mouse
hovering over the selection.

 Interface Builds displays a pop-up window containing more detailed
information about the item you’ve selected. Figure 5-6 shows the pop-up
window for the selection of the PDFThumbnailView.

 Click the Done button to close the pop-up window.

Figure 5-6: Descriptive text appears when you select and hover.

 You can reduce the number of components by selecting submenus from the
Object Library drop-down menu. I find this makes it easier and quicker to
find the particular component I’m looking for. (Of course, being adventurous,
I did enjoy scrolling through all the icons while writing this section. But that’s
just me.) You can also enter text into the search field at the bottom of the
pane to filter the contents, which can get you to a desired component faster.

When you’re building your app’s user interfaces for all your app’s windows,
you’ll make extensive use of the library and its components. So let’s add
something to the window.

 1. Drag a Label from the Library and hold it anywhere over the window.

 You see the window highlighted by a gradient blue color, and the Label
will display a green circle containing a plus sign to indicate that you’re
copying the Label to the window. In addition, a small label “View”
appears in the lower-right corner of the window. You use these visual
cues to confirm that you’re about to add the object to the window.

127 Chapter 5: Using Interface Builder to Lay Out Your Views

 2. While holding the Label, drag it to the center of the window.

 Figure 5-7 shows the Label held at the center of the window, just before
you drop it.

 You’ll know you’re at the center because you’ll see blue dashed guides
beneath the Label as you move it over the window — in particular, when
you cross the horizontal and vertical centers. When both lines are dis-
played, you’re at dead center. I recommend finding one of the guides
and then moving along it until you find the second.

Figure 5-7: A Label in the center of the window.

 3. Drop the Label at the center of the window.

 4. Click and drag the Label you just dropped to the top of the window.

 About one Label’s height away from the top, you’ll see another dashed
blue guide, indicating that Interface Builder believes that’s about as high
as you should go. You can go higher, and if you do, you see another
guideline appear when Interface Builder really thinks you should stop.
You can go even higher, until the lowest part of the Label’s text is just
below the title bar of the window. But that’s it. You’ll experience the
same guide behavior on all four sides of the window. Interface Builder
will guide you visually along what Apple’s Human Interface guidelines
suggest for placing UI components within views and windows. Place the
Label anywhere you like within the window.

 You should follow Interface Builder’s suggestions where they make
sense. By doing so, you’re adhering to Apple’s beliefs about what will
bring increased User Happiness (it helps to think of that concept in

128 Part II: A View to an App

caps). Since your goal is to get your app through Apple’s App Store
submission review, you don’t want your app rejected because of any
User Experience violations. However, you can push the User Experience
envelope — Apple will judge expensive apps more strictly than free
ones, for instance. And full-screen animated games clearly are going to
be judged differently from spreadsheet and word-processing apps.

 5. Double-click the Label.

 This action highlights the text Label so you can modify it.

 You can change this to any text you choose, but I recommend at this
point making the text longer than the original “Label” so you can see
how the Label resizes automatically to accommodate your new text.

 6. When you’ve modified the text to something larger, hit the Return key
to finish the editing.

 Your Label’s new text appears with the Label resized to fit. You should
see two blue dots, one at the left and one at the right of the Label. These
can also be used to resize the Label horizontally.

 7. Select another Label from the Library and drag it over the window
near the first Label.

 You can see Interface Builder display several additional guide lines as
you slowly move the new Label around the first one. Interface Builder is
giving you more hints about appropriate placement for this new Label,
based on Apple’s Human Interface guidelines, which you can find at
http://developer.apple.com/library/mac/#documentation/
UserExperience/Conceptual/AppleHIGuidelines/Intro/intro.
html. The rationale for each one should be fairly obvious, and if you move
the new Label slowly enough, you pick up some stickiness when the moving
Label is near a place that Interface Builder thinks is an appropriate posi-
tion. For instance, if you move the center of the new Label an inch or so
below the first and then slowly slide it to the right, you’ll see the blue guide
line appear when the right side of the new Label is in line with the right
side of the first one, and the new Label will seem to stick in place while the
mouse cursor moves along past it. Interface Builder is giving you an oppor-
tunity to leave the new Label aligned with the first one on their right sides.
You’ll see similar behavior regarding other possible alignments.

 I noticed that there seemed to be one alignment that was unique: when I
moved a component to be just below and to the right of a Label compo-
nent. It only happens for this specific combination. A dashed blue guide
line will appear to let you align one component to be indented below a
Label component. Apple is happy to let you know when you’re about to
do something they believe is a good User Experience.

 8. Drop the Label wherever you think is appropriate.

129 Chapter 5: Using Interface Builder to Lay Out Your Views

 You’re just testing out Interface Builder, so it won’t really matter — you
won’t be submitting this to Apple, so your window can look as beautiful
as you want.

 9. Drag and drop different UI components to different places on your
window.

 You’ll get a better feel for the dashed-blue guides and how they can
assist your placement of the different components. I recommend choos-
ing a wide variety of the different components. You’ve already got a
couple of Labels, so add some Buttons and Checkboxes.

 10. Single-click a component to select it. Press and hold the Option key
and move your cursor around the window.

 As your cursor passes over other components, the Interface Builder
displays guides and numbers to tell you about the distances between
the selected component and the one the cursor is over. If you move the
cursor over an area of the window where no other component lies, the
display shows the distance between each edge of the selected compo-
nent and the sides of the window.

 You can use the mouse to move items, but for really precise pixel-by-pixel
positioning you should use the arrow keys. Interface Builder will still display
guides to help you.

As mentioned before, the Library comes chock-full of UI components you can
add to windows and views. As you’ve seen, the Library groups these compo-
nents by their Frameworks, as shown in Table 5-1.

Table 5-1 UI Components in the Library
Framework Contains These Types of Components

Cocoa Windows, views, labels, menus, buttons, radio groups, sliders,
progress indicators, and others.

Address Book Address Book People Picker View

DiscRecorder MSF Formatter, an object for use with disc recording

Image Kit Views for use with peripheral devices such as scanners and
cameras

OSAKit Objects used to help make your application scriptable

PDFKit Views you use for displaying PDF documents

QTKit Views you can use to work with QuickTime movies.

Quartz Composer Objects for displaying Quartz Composer compositions

WebKit Views for displaying web content

Custom Objects Third-party controls or your own custom controls and objects

130 Part II: A View to an App

To further assist in tracking down some of the components you use most
often, the Library subdivides the Cocoa Framework into these groups:

 ✓ Controls. You’ll find Buttons and Labels here, as well as Checkboxes,
Radio Groups, and Sliders.

 ✓ Data Views. Here you’ll find some more complex views, including my
favorite, the Table View. You’ll also find controls that can be used within
these complex views, so that you can create a Table View that contains
checkboxes.

 ✓ Layout Views. The objects in this group will help you provide some
layout management for complicated views. In addition, the Custom
View object lives here, providing you with a way to save space for view
objects that you create classes for within your app.

 ✓ Objects & Controllers. The items in this group provide you with a way
to add objects to your XIB file that aren’t UI components themselves
but are used by UI components. For instance, you could use an Array
Controller to provide access to a collection of movie information, and
your UI would be populated with the name, release date, and runtime of
each movie when selected by the controller.

 ✓ Windows & Menus. You’ll find windows, menus, and toolbars in this
collection.

Because the User Experience is so important, you’ll find yourself editing
and refining the windows and views you create using the IB Editor very
frequently, to get the right look and feel for your app. As a result, expect to
spend some time dragging components out of the Library and manipulating
them on your windows. As I mention earlier, you’ll spend most of your time
in the Cocoa Framework with its collection of UI components.

The inspectors
In addition to the Library, you’ll also be manipulating the settings in the vari-
ous inspectors that live in the Inspector pane. Each time you select an object
in the Interface Builder, you can use the inspectors to find and modify the
various settings of that object. To see how the inspectors work, perform
these steps:

 1. Select the window object.

 You’ll see a blue highlight around the window when it’s the object that’s
selected. The best way to make sure you select the window and not any-
thing else is to click its title bar.

131 Chapter 5: Using Interface Builder to Lay Out Your Views

 2. Show the Attributes inspector by clicking its button in the Inspector
pane.

 Figure 5-8 shows the attributes for the selected window object. Different
objects will show different sets of attributes in the different inspectors.
For instance, the attributes of a Button are different from the attributes
of a window.

Figure 5-8: The Attribute inspector displaying the window’s
attributes.

132 Part II: A View to an App

 3. Show the Size inspector.

 The Size inspector provides details about the component’s size and, for
controls, lets you set options for determining how the control reacts
when the window containing it resizes. (I’ll go over this in detail in a
later section.)

 4. Show the Connections inspector.

 You use this inspector to list all connections made to or from the
selected object.

 5. Show the Bindings inspector.

 You use bindings to make Xcode populate your user interface automati-
cally with data from a specific source, such as the selected element of
an Array Controller. As mentioned earlier, bindings implement links
between a controller and its views in an MVC design. In Chapter 8, I
show you how to use bindings with UI components.

The inspectors deliver more details about the components in your user
interface than the visual display can provide you. The visual interaction —
dragging components around the display and dropping them in the right
spots — is great for the initial creation of your windows, but you’ll eventu-
ally have to use the inspectors to get all the finer details correct. You’ll
end up spending a lot of time working with both the visual part of Interface
Builder and its inspectors.

Modifying your menus
Nearly every Macintosh app comes with a menu — games are the major
exception, but I’ve played some that use a standard Mac menu bar just like
the one on a spreadsheet app. The Cocoa app projects you create with Xcode
will give you an XIB file that comes with a pre-populated menu bar.

 Interface Builder will show the application’s menu bar within the Xcode
project window; Xcode’s menu bar is at the top of your Mac screen. You use
Xcode’s menus to perform operations within Xcode, while you add menu
functionality to your apps with the application menu in Interface Builder.

The UISimple project you’ve created comes with a menu that includes the
following menus in the menu bar:

 ✓ UISimple. This is the standard app menu you’ve seen in nearly every
Macintosh app. If your app is going to be a standard Mac app, this menu
is a necessity.

 ✓ File. Your users will expect the standard menu items in this menu, such
as New, Open, and Save.

133 Chapter 5: Using Interface Builder to Lay Out Your Views

 ✓ Edit. If your app provides text entry or other forms of editing, you’ll
need an Edit menu because your users will expect it.

 ✓ Format. Users expect to find text-formatting submenus here, so if your
app allows users to change fonts and perform basic formatting, you’ll
need this menu’s help.

 ✓ View. The default items in this menu relate to the use of a toolbar. Your
app can add commands to this menu that manipulate your app’s views.
For instance, Xcode’s View menu provides menu items to display any of
its views such as Project navigator.

 ✓ Window. Users can use items in this menu to support some window opera-
tions. In Xcode, for example, this menu contains items that let you access
the Welcome to Xcode display you see when you launch Xcode, or the
windows of the various open projects. This menu is pre-populated with the
Minimize, Zoom, and Bring All to Front menu items; in a Document-Based
Cocoa app, each open document window appears as a menu item that
users can select to make it the active window.

 ✓ Help. You can provide menu items in this menu to support your users
when they’re looking for information about your app and how to do
things with it.

You’re free to add more top-level menus, and even remove those that don’t
apply. As I mentioned, there are some apps that don’t provide menus in a
menu bar at all. But if you’re going to provide menus for your users, here are
some rules to keep in mind:

 ✓ The app menu is not optional; you must provide one. This menu con-
tains items such as the About App item and the Quit item. Users expect
this menu and its items, and I believe that the Apple App Store submis-
sion reviewers will not be happy if this menu is missing, if your app is
providing any menus in the menu bar.

 ✓ The File menu is recommended. Most apps use files for some purpose
during their operation, so letting the user browse for, select, and save
files using the File menu is something just about every app will have
to do. In addition, the Print functionality is part of the File menu. An
example of an app that does not provide a File menu is Apple’s System
Preferences app.

 ✓ The Edit menu is strongly recommended. Even game apps can make
use of text editing — if your role-playing app lets your users name the
characters they create, your users might decide to search the web for
the coolest character name, then copy and paste that text into your
app’s name-entry field. The essential elements of the Edit menu are the
Cut, Copy, and Paste menu items — if you provide an Edit menu, your
users will expect these items and their associated behaviors.

134 Part II: A View to an App

To edit your app’s menus, here’s what you do:

 1. Click the Main Menu icon in Interface Builder’s Dock.

 The Menu editor can be dismissed by clicking the X in the gray circle
on the left side of the application menu display; clicking the Main Menu
icon brings it right back.

 2. Click the View menu.

 Doing so highlights the menu name in the menu bar, and the menu’s
contents appear as they would in the app.

 3. Delete the menu.

 This app will not require a View menu, and Apple won’t reject your app
if it has no View menu. You could Cut the menu, but that leaves a place-
holder for it in the menu bar, which puts a noticeable space between
the Format and Window menus. Use the Delete key on your keyboard to
completely remove both the menu and its contents.

 4. Drag a Submenu Menu Item object from the Library’s Windows &
Menus palette and drop it in the menu bar between the Format and
Window menus. In the Attributes inspector, set the Title to Colors.

 5. Click the Colors menu in the menu bar.

 The first item has already been added for you.

 6. Select the Item and change its text to Red.

 7. Drag a Menu Item from the Library and drop it just at the bottom of
the Red menu item.

 You see a blue line below the text Red, indicating where the new menu
item will be dropped. Change the text of this item to Green.

 8. Drag one more Menu Item from the Library and drop it below the
Green Menu Item. Change this item’s text to Blue.

 9. Choose File:Save to save your changes.

 10. Choose Editor:Simulate Document to launch the Cocoa Simulator and
display your interface.

 The Cocoa Simulator displays your window and menus as a test bed —
you have some limited default functionality, but nothing of what your
app does in its own code. The Colors menu is shown but its items are
grayed out. Your buttons also won’t execute any actions in your app.
You aren’t using the actual application; this is just a test display of
the user interface you’ve put together. In earlier days, this was useful
because it was faster to display the components of the interface than it
was to do a complete build-and-run. With today’s faster and more pow-
erful machines, however, you may find it just as quick to do a full build

135 Chapter 5: Using Interface Builder to Lay Out Your Views

of your app and run it as you do to simulate your interface. The benefit
of doing a full build is that you get all the functionality you added in your
code and made available through the connections.

 11. Quit the Cocoa Simulator and return to Xcode.

 12. Click the Run button to run your app.

You’ll probably notice right away that something’s wrong: The menu items
in the Colors menu are disabled. When your app is executing and you click
the Colors menu, the Cocoa framework displays the menu items you added,
but those menu items that are not connected to IBAction methods in your
app will be disabled — there’s no reason for a menu to be enabled if there’s
nothing that will execute when it’s selected. Part of the idea here is to reduce
confusion for the user — when a user selects a menu item, she is telling your
app to do something. If your app hasn’t connected that menu item to a spe-
cific method — giving it something to do — then the user won’t know what
just happened. By intentionally disabling those methods that are not set to
do anything, the Cocoa framework prevents this confusion. So let’s fix that:

 1. Click the Show the Assistant editor button.

 Xcode displays the header file UISimpleAppDelegate.h.

 2. Click the Colors menu to display its three menu items.

 3. Hold down the Control key and click the Red menu item. While hold-
ing the Control key down, drag a line from the menu item into the
UISimpleAppDelegate.h editor, right above the @end directive.

 4. In the Connection pop-up window, set the Connection type to Action,
and set the name to handleColorRed, and then click Connect.

 5. Control-drag from the Green menu item into the UISimpleApp
Delegate,h editor, set the Connection type to Action and the
name to handleColorGreen, and then click Connect.

 6. Control-drag from the Blue menu item into the UISimpleApp
Delegate,h editor, set the Connection type to Action and the name
to handleColorBlue, and click Connect.

 The contents of the UISimpleAppDelegate.h file should
look similar to that shown in Listing 5-1. And the contents of
UISimpleAppDelegate.m should look similar to that shown in Listing
5-2. Xcode has automatically added IBAction methods to your app’s
delegate class and connected them to the menu items.

 7. Click the Run button.

 Xcode saves, builds, and runs your application.

136 Part II: A View to an App

Figure 5-9 shows the Colors menu selected with all three menu items enabled.

Figure 5-9: UISimple’s Colors menu, fully enabled.

Listing 5-1: The three methods to be called by the three menu items

//
// UISimpleAppDelegate.h
// UISimple
//

#import <Cocoa/Cocoa.h>

@interface UISimpleAppDelegate : NSObject
<NSApplicationDelegate>

{
@private
 NSWindow* window;
}

@property (assign) IBOutlet NSWindow* window;

- (IBAction)handleColorRed:(id)inSender;
- (IBAction)handleColorGreen:(id)inSender;
- (IBAction)handleColorBlue:(id)inSender;

@end

137 Chapter 5: Using Interface Builder to Lay Out Your Views

Listing 5-2: The functional menu methods

//
// UISimpleAppDelegate.m
// UISimple
//

#import “UISimpleAppDelegate.h”

@implementation UISimpleAppDelegate
@synthesize window;
- (void)applicationDidFinishLaunching: (NSNotification*)

aNotification
{
 // Insert code to initialize your application
}

- (IBAction)handleColorRed:(id)inSender
{
}

- (IBAction)handleColorGreen:(id)inSender
{
}

- (IBAction)handleColorBlue:(id)inSender
{
}

@end

Your menu methods don’t have to do anything — the Cocoa framework only
checks to see that clicking a menu will cause the execution of some method
but doesn’t look into whether any code gets executed in the method. One
benefit of this arrangement is that you can create stub methods: Your code
will implement empty methods to support the menus to start with, and you
can add functionality piece by piece later on — which is what you’re going to
do next.

 1. If UISimple is running, quit it.

 2. In Xcode, select MainMenu.xib from the Project Navigator.

 3. Click the Colors menu to display the menu items.

 4. Click the Red menu item to select it. In the Attributes inspector, click
in the field next to Key Equivalent.

138 Part II: A View to an App

 You’re going to create a key combination to perform the menu action
when the user presses the correct keys.

 5. Press Ô-R.

 You should see the result as shown in Figure 5-10. You’ll also see the key
combination appear in the menu.

Figure 5-10: You’ve just assigned Ô-R to the Red menu item
in the Colors menu.

139 Chapter 5: Using Interface Builder to Lay Out Your Views

 6. Assign key combinations to the Green and Blue menus as well.

 And don’t forget to save your changes.

 Be careful: Ô-B and Ô-G are already in use by other menu items. You
can either find those menu items and remove their assigned key combi-
nations, remove the menu items themselves, or else choose something
other than Ô-B and Ô-G. Neither the IB Editor nor Xcode will complain if
two menu items have the same key combinations, but your app won’t
behave as you expect: When running, one of the menu items will
respond to the key combination and the other one will not. (Hint: That
won’t make the user happy.)

 7. Click the Run button.

 Xcode will launch UISimple and you can use the key combinations you
assigned to trigger the menus.

 You should see the Colors menu flash when you press the Ô-R key com-
bination to trigger the Red menu item.

The next step is to add some real functionality to those menu actions. Here
goes:

 1. If UISimple is still running, quit it.

 2. Select MainMenu.xib from the Project Navigator. If the Assistant
editor is not visible, click the Show the Assistant editor button.

 3. Add a Label to the window. Set the Label’s text to “Now is the time
for all good Colors to come to the aid of Interface
Builder”.

 4. Control-drag from the Label to the right of the “{” following the @
interface directive in UISimpleAppDelegate.h. In the pop-up
window, set the name to m_label and click Connect.

 Xcode creates a member variable in the UISimpleAppDelegate class
for the Label you just added to the window and makes the connection.
The header file UISimpleAppDelegate.h should look similar to the code
shown in Listing 5-3.

 5. Add the green code from Listing 5-4 into UISimpleAppDelegate.m.

 6. Click the Run button and test your color-changing app.

 The text will change to the colors you chose for each of the three meth-
ods, and you can use key combinations instead of a mouse to select the
particular menu item.

140 Part II: A View to an App

Listing 5-3: A member variable to reference the Label

//
// UISimpleAppDelegate.h
// UISimple
//

#import <Cocoa/Cocoa.h>

@interface UISimpleAppDelegate : NSObject
<NSApplicationDelegate>

{
 IBOutlet NSTextField* m_label;
@private
 NSWindow* window;
}

@property (assign) IBOutlet NSWindow* window;

- (IBAction)handleColorRed:(id)inSender;
- (IBAction)handleColorGreen:(id)inSender;
- (IBAction)handleColorBlue:(id)inSender;

@end

Listing 5-4: Responding to the menu items by changing the text color
as appropriate

//
// UISimpleAppDelegate.m
// UISimple
//

#import “UISimpleAppDelegate.h”

@implementation UISimpleAppDelegate
@synthesize window;
- (void)applicationDidFinishLaunching: (NSNotification*)

aNotification
{
 // Insert code to initialize your application
}

- (IBAction)handleColorRed:(id)inSender
{
 [m_label setTextColor:[NSColor redColor]];
}

141 Chapter 5: Using Interface Builder to Lay Out Your Views

- (IBAction)handleColorGreen:(id)inSender
{
 [m_label setTextColor:[NSColor greenColor]];
}

- (IBAction)handleColorBlue:(id)inSender
{
 [m_label setTextColor:[NSColor blueColor]];
}

@end

Your app uses menus to change the color of a field of text in its window. You
implemented this behavior with hardly any code — most of the work was
dragging and dropping items into the menus and the window, and making
connections between items in Interface Builder. Next we’re going to make the
code more interactive.

 1. Quit UISimple if it’s still running.

 2. Select MainMenu.xib from the Project Navigator. Click the Show the
Assistant editor button if the Assistant editor is not displayed.

 3. Drag and drop a Horizontal Slider onto the window.

 4. Control-drag from the Horizontal Slider into UISimple
AppDelegate.h editor, below the m_label member variable.

 5. In the pop-up Connection window, set the name to m_opacity, and
click Connect.

 6. Control-drag from the Horizontal Slider into UISimpleApp
Delegate.h editor, just before the @end directive.

 7. In the pop-up Connection window, select Action from the Connection
drop-down menu, and set the name to handleOpacitySlider. Click
Connect.

 You should now see the code in UISimpleAppDelegate.h as shown in
Listing 5-5.

 8. Add the green code lines as shown in Listing 5-6.

 9. Build and run UISimple.

 You can now change the transparency (or opacity) of the text in addi-
tion to its color. The Horizontal Slider’s values run from 0.0 through

142 Part II: A View to an App

100.0 for default; the opacity value is retrieved from the slider and
divided by 100.0 to set it to run from 0.0 to 1.00. This is used as the
alpha value for the NSColor object, which is what determines how
transparent the text will be.

Listing 5-5: Adding a slider to change the text transparency

//
// UISimpleAppDelegate.h
// UISimple
//

#import <Cocoa/Cocoa.h>

@interface UISimpleAppDelegate : NSObject
<NSApplicationDelegate>

{
 IBOutlet NSTextField* m_label;
 IBOutlet NSSlider* m_opacity;
@private
 NSWindow* window;
}

@property (assign) IBOutlet NSWindow* window;

- (IBAction)handleColorRed:(id)inSender;
- (IBAction)handleColorGreen:(id)inSender;
- (IBAction)handleColorBlue:(id)inSender;
- (IBAction)handleOpacitySlider:(id)inSender;

@end

Listing 5-6: Implementing the code to modify text transparency

//
// UISimpleAppDelegate.m
// UISimple
//

#import “UISimpleAppDelegate.h”

@implementation UISimpleAppDelegate
@synthesize window;
- (void)applicationDidFinishLaunching:(NSNotification*)

aNotification
{
 // Insert code to initialize your application

143 Chapter 5: Using Interface Builder to Lay Out Your Views

 [self handleColorRed:nil]; // set red as the initial
color

}

- (IBAction)handleColorRed:(id)inSender
{
 CGFloat opacity = [m_opacity doubleValue]/100.0;
 [m_label setTextColor:[NSColor colorWithDeviceRed:1.00

green:0.00 blue:0.00 alpha:opacity]];
}

- (IBAction)handleColorGreen:(id)inSender
{
 CGFloat opacity = [m_opacity doubleValue]/100.0;
 [m_label setTextColor:[NSColor colorWithDeviceRed:0.00

green:1.00 blue:0.00 alpha:opacity]];
}

- (IBAction)handleColorBlue:(id)inSender
{
 CGFloat opacity = [m_opacity doubleValue]/100.0;
 [m_label setTextColor:[NSColor colorWithDeviceRed:0.00

green:0.00 blue:1.00 alpha:opacity]];
}

- (IBAction)handleOpacitySlider:(id)inSender
{
 NSColor* textColor = [m_label textColor];
 CGFloat redValue = 0.00;
 CGFloat greenValue = 0.00;
 CGFloat blueValue = 0.00;
 CGFloat alphaValue = 0.00;
 [textColor getRed:&redValue green:&greenValue

blue:&blueValue alpha:&alphaValue];
 [m_label setTextColor:[NSColor

colorWithDeviceRed:redValue green:greenValue
blue:blueValue alpha:[m_opacity
doubleValue]/100.0]];

}

@end

Sizing up your windows
One of the benefits of using a large monitor for my Mac is that I can place
many windows in it and fill up the screen so that I can jump from one app to
the next just by clicking that app’s windows. Of course, the more apps I have

144 Part II: A View to an App

running, the more space gets used up by each one’s windows. I will end up
resizing my apps’ windows so that the most-used app gets the most space
and is thus more easily reached when I need to return to it. Your users can
also use multiple monitors, or make use of OS X Lion’s Mission Control and
multiple virtual Desktops to give all of their apps more space to grow into.

The default app window created for your project by Xcode is resizable,
so you don’t have to implement any code to give your users the ability to
change the size of the windows you display for them. However, you do have
to decide how you want the components within your windows to behave
when their containing window gets resized. A long time ago, you would
have to implement many lines of code for your app to execute every time a
window was resized, to calculate each component’s new size based on the
new size of the window. Interface Builder makes this aspect of app develop-
ment easy, and you can achieve a great deal of what you want without writing
a single line of code. And in OS X Lion, your app can become a full-screen
app, which will allow your app to be resized to the edges of the user’s moni-
tor, adjusting its contents according to the Size settings you select within
Interface Builder.

You do this bit of magic by using the Size inspector — for all the components
of your window, as well as the window itself.

 1. Quit the UISimple app if it’s still running.

 2. Select MainMenu.xib from the Project Navigator.

 3. Single-click the text label, and click the Show Size inspector button in
the Inspector panel.

 You should see something like what’s in Figure 5-11.

 4. In the Autosizing tool, click the I-shaped red bars to the right and
below the box in the middle.

 The display should look like each side of the smaller box is connected to
each side of the larger box by a red bar.

 5. Single-click the Horizontal Slider.

 6. In the Autosizing tool, click all four of the I-shaped red bars so that
only the bars to the right and below the box in the middle are solid
red. Save your changes.

 7. Single-click the window’s title bar to select it.

 8. Click the Minimum Size checkbox in the Constraints section.

145 Chapter 5: Using Interface Builder to Lay Out Your Views

 Doing so fixes the minimum size of the window to its current size; when
the window is resized, it will never be smaller than what you see at this
point in Interface Builder.

 9. Click the Run button.

 Alternatively, since you didn’t make any code changes, you could select
Editor: Simulate Document. Resize the window, and notice the effect of
the changes you’ve made.

Figure 5-11: The Size inspector, showing size information
about the label.

146 Part II: A View to an App

Congratulations — you’ve made a resizable window whose contents adjust
their positions and sizes depending on the settings you selected with the
Autosizing tool of the Size inspector. Your selections for the Autosizing tool
can create some interesting sizing relationships and help you lay out the
components within your windows and views. For instance, the Autosizing
settings are managed relative to the view that contains the component you’re
adjusting the settings for. In this example, the components were both within
a single window, but you could place a view within the window and put some
components within that view. Then you would assign Autosizing behav-
iors for the view with respect to the window that contains it, and assign
Autosizing behaviors for the components of the view with respect to that
view. (Got that?) By layering your views and architecting the resizing of those
views you can concoct some very elaborate resizing of views within views.

You’ve now got the basic skills to create the user interface of your app using
the components provided by Interface Builder. You’ve linked your code to
your UI components and adjusted the attributes for the components for dis-
play to the user. There’s a lot you can do with just the Interface Builder skills
in this chapter, and the code your UI components will execute when your
users interact with your UI.

Chapter 6

Controlling Your Windows
and Views

In This Chapter
▶ Introducing Cocoa’s windows

▶ Getting familiar with the Model-View-Controller (MVC) design pattern

▶ Creating and building a project using MVC

▶ Implementing a view and a controller

▶ Creating and sending notifications

I
n 1984, Apple revealed the Macintosh, the first mass-market computer
that introduced a new way for ordinary humans to interact with their com-

puters. The highlight of this new approach was the use of windows (framed
screen areas) to display the information that users would work with. Today,
you’ll find the use of computer windows everywhere, including an operating
system of that name. Apple lit the torch, and the world has followed.

Nearly all Macintosh apps provide windows, and chances are your apps
will also do so. In this chapter, I show you the basics of using windows in
your Mac apps. I’ll also cover views, which are objects that can be displayed
within a window. Every user interface component is a subclass of the Cocoa
class NSView. All the windows your app will create will contain views to
display your app’s information, or provide your users with controls and com-
ponents to interact with your app. You’ll also find information on a useful
architectural pattern, called Model-View-Controller (MVC), which your apps
can use to organize your windows and views and coordinate your users’
actions with changes to the data stored within your apps. Your next steps
will guide you to a much more structured approach to writing Mac apps —
which will help you keep your code easy to understand and easy to reuse.

148 Part II: A View to an App

 You can write Macintosh apps that don’t display windows to perform their
operations. For instance, a web server app does not require any user interac-
tion; it just sits and runs in the background. But in this chapter, I’m going to
limit my explanations and examples to the use of windows and views.

Opening Windows
Mac windows are distinctively familiar, and Cocoa apps you build with Xcode
will come with a standard Mac window ready for your app to use. Every
NSWindow object your app displays appears as a standard Mac window, like
that shown in Figure 6-1. Because your users expect to see windows like this,
and because your app must adhere to your users’ expectations, your apps
display windows just like this one, displaying your app’s own content. Of
course, there are exceptions to this principle, such as a full-screen game or
an app that shows movies using every available pixel. The standard Mac app
comes with a standard window, so I’ll give you the information you need to
create and manage windows in your apps.

Figure 6-1: The normal Mac window, recognized and loved by millions
of users worldwide.

149 Chapter 6: Controlling Your Windows and Views

There are several types of windows that Cocoa offers for your apps to use:

 ✓ Window: You’ll use this type of window most often. This is the basic
form of NSWindow.

 ✓ Panel: You can use panels for supporting your app’s main windows. For
instance, if your app has preferences for its behaviors that users may
want to personalize, such as the font size for the text in your app’s dis-
plays, you would use a preferences panel to give your users a separate
window in which to change those settings. NSPanel is the Cocoa class
that provides panel functionality. Panels are meant to assist your users
during their interaction with the main window of your app. As such,
panels are removed from the screen when your app is not active, that is,
when the user has selected another app to work with while yours is still
running.

 ✓ Textured Window: An NSWindow that comes with a textured background.

 ✓ HUD Window: This is an NSWindow that is semi-transparent, which
lets you create a window that acts like a Heads-Up-Display. You might
use this instead of an ordinary NSPanel for making changes to a main
window, in order to let your users see the changes as they make them.
For example, Interface Builder displays HUD Windows to show the con-
nections that are available or already connected for a UI component.
And Apple apps such as iDVD and iMovie use HUD windows as well.

 ✓ Window and Drawer: Your windows can come with drawers. Cocoa pro-
vides a class, NSDrawer, that acts as a slide-out component your apps
can connect with your windows. Each window has its own accompany-
ing drawer which can be used to contain components and information
your app provides for the specific window the drawer is attached to.
Each NSDrawer object has a custom NSView that contains all the UI
components the NSDrawer displays when open.

You can see examples of all of these windows in Figure 6-2.

State of your window
Apple has defined three different states that your app’s windows can be in
while your app is executing:

 ✓ Inactive: An inactive window is one that isn’t accepting input from the
user until the user clicks it. For example, your app may have multiple
windows displaying images downloaded from different web sites. Only
one window is active, while the rest are all inactive. An active window
can receive input from the keyboard; an inactive window won’t respond
to the user’s key presses.

150 Part II: A View to an App

Window

HUD Window

Window with Drawer

Textured Window

Panel

Figure 6-2: You can create a variety of different windows for your app
to display.

 ✓ Key: A key window is the window that receives keyboard input from
the user. Your app’s key window, if displayed, is the primary receiver
for all messages from menus and panels. Your app can have only one
key window at a time, and a window is made the key window when a
user clicks it. An example of a key window would be the panel that is
displayed in Apple’s TextEdit app when a user selects Edit ➪Find ➪Find.
When the user presses a key on the keyboard, this panel will receive it. If
the user clicks back in the main window, the panel becomes inactive but
is still visible; if the user switches to a different app, the main window
for TextEdit will be visible but the Find window will disappear.

 ✓ Main: A main window is the window where your user is currently work-
ing. A main window may also be the key window, but at other times it
may not. An example of this is the font window used in Apple’s TextEdit
app, as shown in Figure 6-3. The font window is the key window, while
the TextEdit document “Untitled” is the main window.

151 Chapter 6: Controlling Your Windows and Views

Figure 6-3: The TextEdit Font key window and the main window.

Generally, you won’t need to think too much about what state your windows
are in while your app is running, because the OS and the Cocoa framework
take care of that for you. This information will become useful for under-
standing the behavior of your app when multiple windows and panels are
displayed and menus are selected and keys are being pressed — you’ll need
to keep track of which window is the main and which is the key in order to
ensure that you know where the result of a menu selection or a key press will
appear. The following two pieces of information are important to remember:

 ✓ A user action such as a key press or a menu selection is first associated
with the key window.

 ✓ If the key window is a panel and it cannot handle the action, the action is
next associated with the main window.

If you keep that order straight, you can keep on top of what’s happening in
your views.

Introducing MVC
A software design pattern is a fancy term used to describe a consistent
architecture of code created to solve a particular type of problem that has
happened fairly often in software development. The Model-View-Controller
(MVC) concept, for example, is a design pattern that is useful for managing
the relationship between your app’s data, your app’s display of that data, and
your user’s interactions with that data on display. An app that implements
MVC incorporates three different types of objects:

152 Part II: A View to an App

 ✓ Model: An object that represents the data that your app will display and
allow the user to interact with. If your app uses Core Data, you’ll rely on
its data model to be the Model for your app.

 ✓ View: An object that displays data to your app’s users. DiabeticPad dis-
plays the data of a specific Core Data entity object using the UI compo-
nents of its main window, and this will be the View.

 ✓ Controller: An object that responds to the user’s interac-
tions with your app. The NSDocument subclass in DiabeticPad,
CoreDataDiabeticPadDoc acts as the Controller, because it’s the
object to which the user’s actions are directed.

Here’s a simple example of a real-world system that will help you understand
the components of MVC and how they work together. You’ve either driven or
been a passenger in an automobile, so this analogy should be very familiar:

 ✓ The car’s dashboard is the View, displaying the various pieces of infor-
mation to the driver.

 ✓ The systems and sensors tracking such data as the amount of gasoline
in the tank, the number of miles driven, and the temperature of the
water in the radiator represent the Model.

 ✓ The computer monitoring the data and responding to the driver’s inputs
is the Controller.

When the driver fills up her tank with gas, she resets the trip odometer to
zero. This causes the Controller to set a value in the Model. Sometime later,
when the driver wants to know how many miles she’s gone since the last fill-
up, she presses a button to show the trip odometer: the Controller instructs
the Model to retrieve a count of the mileage and display it in the View. In
addition, as she drives her car, the Model reports to the Controller the
amount of gasoline remaining in the tank and tells the View to display that
value; when she has topped the tank off, the View shows the gas tank to be
full, again as reported by the Model.

The MVC pattern separates the components of the app into three separate
parts, each of which has responsibility for and control over its own support-
ing elements. By using the MVC pattern and by strictly keeping the three
parts separate, you can easily adjust and modify each component indepen-
dently from the other two, without completely rewriting the other compo-
nents. Each part minimizes the interactions that the others can initiate upon
it, limiting the chances for errors to occur. In addition, should the need arise,
you can easily replace one part with a new and improved version — again
without disturbing the operation of the other parts. So when the driver

153 Chapter 6: Controlling Your Windows and Views

decides to take a break, she lets her friend drive her car, thus replacing the
original Controller with another, while the View and the Model both stay the
same. Some time later, the driver might decide to upgrade the dashboard
with a heads-up display like those used in aircraft; she thus would be chang-
ing the View without affecting the Model or the Controller.

Figure 6-4 shows you a picture of the MVC design pattern. The Controller
communicates directly with both the View and the Model, as indicated by the
solid lines connecting the Controller to the other two objects. This means
your classes that operate as Controllers maintain an Objective-C object that
is a member of a View class and a Model class. The Model and View both
connect back to the Controller indirectly, usually through an intermediate
class or operation. This is shown as a dashed line in Figure 6-4. Your View
and Model classes can communicate using NSNotifications in Cocoa, as
described in the last section in this chapter, “Using notifications.” Lastly,
note the solid line connecting the View and the Model: the View classes will
communicate with the Model directly, in order to speed the process of updat-
ing the View based on information stored in the Model.

Controller updates
View with app data

View retrieves app
data from Model

Model noti
es
Controller of app

data changes

View noti
es
Controller of user

actions

Controller
manipulates app
data through the

Model
CONTROLLER

VIEW

MODEL

Figure 6-4: The MVC design pattern, showing the interactions between
the three components.

Your apps will become more modular as you use the MVC design pattern.
Your apps will be composed of separate, indivisible parts, which you can
reuse in other places within an app or across several apps. For instance, a
calendar app might have a Model class that represents a user’s identity. This
same class could be used in an e-mail or voicemail app, to identify incoming
mail or calls, so that my wife’s phone calls get forwarded to my cell phone,
while her parents’ calls go to the “In-laws” voicemail repository.

154 Part II: A View to an App

Using MVC in Your App
MVC theory is great, but now it’s time to use that theory while you develop
your own app. In the rest of this chapter, I walk you through the creation of
an app that uses MVC to manage its displays, handle its users’ interactions,
and manipulate its stored data. Since it’s helpful to keep track of your stocks
in the stock market, you’re going to step through the creation of a simple
stock-trading app that you can use to track shares and the value you’ve
invested in one stock. You design the app to work like this:

 ✓ Your Model class will keep track of all the transactions in one stock.
The View class will act as the front end of the app (the part that’s facing
the user); as such, it displays the information stored in the Model and
accepts input from the user. The Controller will act as the middleman
between the Model and the View.

 ✓ Whenever the app needs to display the total number of shares owned
and the current share price, the Controller will retrieve that information
from the Model and deliver it to the View to show to the user.

 ✓ Any time the user makes a stock purchase or sale, he’ll use the View to
enter the data about the transaction and trigger the Controller to take
the information out of the user interface and hand it to the Model, allow-
ing the Model to update the information in its data store. The Controller
will then also request the updated information back from the Model, to
present it to the user in the View.

Starting with the Model
You’ll use the information just given to implement the underlying classes
used by the Model to support the information management tasks it performs.
Follow these steps:

 1. Launch Xcode and select File➪New➪New Project… from the menu.

 You’ll see the usual new Project window.

 2. Choose Mac OS X Application from the left column, choose Cocoa
Application from the list of templates, and click the Next button.

 3. Give the project a name and click the Next button.

 I called mine StockMarketer, as shown in Figure 6-5. There’s no need
to make this project use Core Data or be Document-based.

 4. Save the project in an appropriate location and click Create.

 You now have a basic project to which you’ll add components to sup-
port an MVC design.

155 Chapter 6: Controlling Your Windows and Views

Figure 6-5: Creating the StockMarketer project in Xcode.

 5. Select the StockMarketer group in the Project navigator and select
File➪New ➪New File.

 You’ll see the New File sheet slide out, shown in Figure 6-6.

Figure 6-6: Creating the StockAccount class in Xcode.

156 Part II: A View to an App

 6. Select Cocoa under Mac OS X in the left column and Objective-C class
from the list of classes and click the Next button.

 7. Select NSObject as the class you want to subclass in the next panel,
and click the Next button.

 8. Name the class StockAccount and save it in the default location.

 This will make Xcode put it in the same place as the other classes in the
project. Xcode creates both the header file (StockAccount.h) and the
source file (StockAccount.m) for this class, automatically.

 9. Select StockAccount.h in the Project navigator and add the code in
purple shown in Listing 6-1.

 This code defines the data representing a stock account — the amount
of cash for buying shares, the number of shares that have been pur-
chased, and the number of transactions.

 10. Select StockAccount.m in the Project navigator and add the code in
purple shown in Listing 6-2.

 This code is the implementation of the StockAccount class. This will
be the Model used by StockMarketer. In this sample app, the account
will be created with 1,000 shares and $10,000.00 cash to start with. The
Model will also keep track of the number of transactions. In a real stock
market application, you would provide an initializer method to set the
initial values of this data.

Listing 6-1: The contents of StockAccount.h

//
// StockAccount.h
// StockMarketer
//
// Created by Karl Kowalski on 4/24/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import <Foundation/Foundation.h>

@interface StockAccount : NSObject
{
@private
 NSUInteger m_shares;
 double m_cash;
 NSUInteger m_numberTransactions;
}

157 Chapter 6: Controlling Your Windows and Views

- (double)getCash;
- (NSUInteger)getShares;
- (BOOL)purchaseShares:(NSUInteger)inShares atPrice:(double)

inPrice;
- (BOOL)sellShares:(NSUInteger)inShares atPrice:(double)

inPrice;
- (NSUInteger)getNumberTransactions;

@end

Listing 6-2: The implementation code for StockAccount.m

//
// StockAccount.m
// StockMarketer
//
// Created by Karl Kowalski on 4/24/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import “StockAccount.h”

@implementation StockAccount

- (id)init
{
 self = [super init];
 if (self)
 {
 // initialize cash and shares
 m_cash = 10000.0;
 m_shares = 1000;
 m_numberTransactions = 0;
 }
 return (self);
}

- (void)dealloc
{ [super dealloc];
}

- (double)getCash
{
 return (m_cash);
}

(continued)

158 Part II: A View to an App

Listing 6-2 (continued)

- (NSUInteger)getShares
{
 return (m_shares);
}

- (BOOL)purchaseShares:(NSUInteger)inShares atPrice:(double)
inPrice

{
 double cost = (double)inShares * inPrice;
 BOOL success = (cost < m_cash);
 if (YES == success)
 {
 // can only buy with available cash
 m_cash = m_cash – cost;
 m_shares += inShares;
 m_ numberTransactions++;
 }
 return (success);
}

- (BOOL)sellShares:(NSUInteger)inShares atPrice:(double)
inPrice

{
 // can only sell if we have the shares
 BOOL success = (inShares < m_shares);
 if (YES == success)
 {
 m_cash = m_cash + (double)inShares*inPrice;
 m_shares -= inShares;
 m_ numberTransactions++;
 }
 return (success);
}

- (NSUInteger)getNumberTransactions
{
 return (m_numberTransactions);
}

@end

As the Model for StockMarketer, the StockAccount class acts as a book-
keeper for the user while she performs simple stock trades.

159 Chapter 6: Controlling Your Windows and Views

Creating the View component
This app will build and run but will only show you a blank window, because
you haven’t yet added the View that will provide information to and receive
inputs from the user. The code you implemented earlier is the Model part of
MVC; now you’re going to add the View. You can see what the end result will
look like in Figure 6-7.

 1. Select MainMenu.xib in Project navigator and select the Window in
the Interface Builder Dock. Click the View button to show the Utilities
if necessary.

Figure 6-7: The View that your stock account app will display.

 2. Drag a Label from the Object Library and drop it onto the window in
the upper-left corner. Set its text to Cash:.

 3. Drag a Label from the Object Library and drop it onto the window to
the right of the Cash: label. Set its text to $0.00.

 4. Drag a Label from the Object Library and drop it onto the window
below the Cash: label. Set its text to Shares:.

 5. Drag a Label from the Object Library and drop it onto the window to
the right of the Shares: label. Set its text to 0.

 6. Drag a Label from the Object Library and drop it onto the window
below the Shares: label. Set its text to Share Price:.

 7. Drag a Label from the Object Library and drop it onto the window to
the right of the Share Price: label. Set its text to $0.00.

160 Part II: A View to an App

 8. Drag a Label from the Object Library and drop it onto the window
below the Share Price: label. Set its text to Portfolio Value:.

 9. Drag a Label from the Object Library and drop it onto the window to
the right of the Portfolio Value: label. Set its text to $0.00.

 10. Drag a Label from the Object Library and drop it onto the window
below the Portfolio Value: label. Set its text to Number of Shares to
Buy/Sell:.

 11. Drag a Text Field from the Object Library and drop it onto the window
to the right of the Number of Shares to Buy/Sell: label.

 12. Drag a Label from the Object Library and drop it onto the window
below the Number of Shares to Buy/Sell: label. Set its text to Total # of
Transactions:.

 13. Drag a Label from the Object Library and drop it onto the window to
the right of the Total # of Transactions: label. Set its text to 0.

 14. Drag a Button from the Object Library and drop it onto the window at
the bottom-left corner. Set its text to Buy.

 15. Drag a Button from the Object Library and drop it onto the window at
the bottom-right corner. Set its text to Sell.

 16. Build the app.

 Make the labels you added to show numeric values — such as 0 or
$0.00 — large enough to display large values for the number of shares,
the total amount of cash, and so on. I recommend making the labels
about half the width of the window.

 You can run your app, and it will show the window you just created, but
the View and the Model aren’t communicating yet.

Implementing a Controller
You’re now two-thirds done with your implementation of an MVC-based
app: you’ve created a Model (StockAccount) and you’ve created a View
(the components in the window). Now you need to create the last piece, the
Controller class and object to perform the communications between the
Model and the View.

 1. Select the StockMarketer group in Project navigator and choose
File ➪New ➪New File from the menu.

 2. Create an NSObject subclass and name it StockAccountController.

 This will be your Controller class.

161 Chapter 6: Controlling Your Windows and Views

 3. Select the MainMenu.xib item in Project navigator.

 4. Drag an Object from the Object Library and drop it into the Interface
Builder Dock below the Font Manager object. Click the Show the
Utilities View button if necessary.

 5. Select the Object in the Interface Builder Dock and click the Show
the Identity inspector button in the Utilities view. In the Custom Class
pane, set the Class to StockAccountController in the drop-down
menu.

 6. Click the Show the Assistant Editor button.

 You’re going to use the Assistant to link the UI components to the
Controller.

 7. In the Jump Bar at the top of the Assistant Editor, click
the StockMarketerAppDelegate.h menu and select
StockAccountController.h instead.

 The Assistant defaults to the StockMarketerAppDelegate class, so
you have to change it.

 8. Control-drag from the $0.00 Label next to the Cash: Label into the
Assistant editor to a point just above the @end directive. In the pop-up
window, set the Name to m_cash and click the Connect button.

 9. Repeat Step 8 for the 0 Label next to the Shares: Label and set its
Name to m_shares.

 10. Repeat Step 8 for the $0.00 Label next to the Share Price: Label and
set its Name to m_sharePrice.

 11. Repeat Step 8 for the $0.00 Label next to the Portfolio Value: Label
and set its Name to m_portfolioValue.

 12. Repeat Step 8 for the Text Field next to the Number of Shares to Buy/
Sell: Label and set its Name to m_sharesToTrade.

 13. Repeat Step 8 for the 0 Label next to the Total # of Transactions: Label
and set its Name to m_totalTransactions.

 14. Control-drag from the Buy Button into the Assistant Editor to a point
right above the line containing the @end directive. In the pop-up
window, choose Action from the Connection drop-down menu and set
the Name to buyShares. Click the Connect button.

 15. Repeat Step 14 for the Sell Button and set the Name to sellShares.

 16. In the Assistant Editor, add the purple code from Listing 6-3.

 17. Select StockAccountController.m in the Project navigator and add
the purple code from Listing 6-4.

 18. Build your app.

162 Part II: A View to an App

You’ve added your Controller class, and connected it to its UI components.
Your Controller can now accept the user’s buy and sell orders and tell the
Model what to do. Then the Controller will take information from the Model
and update the View.

Listing 6-3: The contents of StockAccountController.h

//
// StockAccountController.h
// StockMarketer
//
// Created by Karl Kowalski on 4/24/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import <Foundation/Foundation.h>

#import “StockAccount.h”

@interface StockAccountController : NSObject
{
@private

 NSTextField *m_cash;
 NSTextField *m_shares;
 NSTextField *m_sharePrice;
 NSTextField *m_portfolioValue;
 NSTextField *m_sharesToTrade;
 NSTextField *m_totalTransactions;
 StockAccount *m_stockAccount;
}

@property (assign) IBOutlet NSTextField *m_cash;
@property (assign) IBOutlet NSTextField *m_shares;
@property (assign) IBOutlet NSTextField *m_sharePrice;
@property (assign) IBOutlet NSTextField *m_portfolioValue;
@property (assign) IBOutlet NSTextField *m_sharesToTrade;
@property (assign) IBOutlet NSTextField *m_totalTransactions;
- (IBAction)buyShares:(id)sender;
- (IBAction)sellShares:(id)sender;
- (void)updateDisplay;
@end

163 Chapter 6: Controlling Your Windows and Views

Listing 6-4: The source code for the Controller

//
// StockAccountController.m
// StockMarketer
//
// Created by Karl Kowalski on 4/24/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import “StockAccountController.h”

@implementation StockAccountController

@synthesize m_cash;
@synthesize m_shares;
@synthesize m_sharePrice;
@synthesize m_portfolioValue;
@synthesize m_sharesToTrade;
@synthesize m_totalTransactions;

- (id)init
{
 self = [super init];
 if (self) {
 // Initialization code here.
 m_stockAccount = [[StockAccount alloc] init];
 }

 return self;
}

- (void)dealloc
{
 [m_stockAccount release];
 [super dealloc];
}

- (IBAction)buyShares:(id)sender
{
 NSUInteger numberShares = [[m_sharesToTrade stringValue]

intValue];
 NSString* sharePriceString = [[m_sharePrice stringValue]

stringByReplacingOccurrencesOfString:@”$”
withString:@””];

 double sharePrice = [sharePriceString doubleValue];

(continued)

164 Part II: A View to an App

Listing 6-4 (continued)

 BOOL result = [m_stockAccount purchaseShares:numberShares
atPrice:sharePrice];

 if (NO == result)
 {
 NSAlert* alert = [[NSAlert alloc] init];
 [alert addButtonWithTitle:@”OK”];
 [alert setMessageText:@”You don’t have enough cash to

buy that many shares!”];
 [alert setAlertStyle:NSCriticalAlertStyle];
 [alert runModal];
 [alert release];
 }
 [self updateDisplay];
}

- (IBAction)sellShares:(id)sender
{
 NSUInteger numberShares = [[m_sharesToTrade stringValue]

intValue];
 NSString* sharePriceString = [[m_sharePrice stringValue]

stringByReplacingOccurrencesOfString:@”$”
withString:@””];

 double sharePrice = [sharePriceString doubleValue];
 BOOL result = [m_stockAccount sellShares:numberShares

atPrice:sharePrice];
 if (NO == result)
 {
 NSAlert* alert = [[NSAlert alloc] init];
 [alert addButtonWithTitle:@”OK”];
 [alert setMessageText:@”You don’t have that many

shares you can sell!”];
 [alert setAlertStyle:NSCriticalAlertStyle];
 [alert runModal];
 [alert release];
 }
 [self updateDisplay];
}

- (void)updateDisplay
{
 [m_sharePrice setStringValue:@”$10.00”];
 double cash = [m_stockAccount getCash];
 NSUInteger shares = [m_stockAccount getShares];
 NSUInteger transactions = [m_stockAccount

getNumberTransactions];
 double portfolioValue = 10.0 * (double)shares;
 [m_cash setStringValue:[NSString

stringWithFormat:@”$%.2f”, cash]];

165 Chapter 6: Controlling Your Windows and Views

 [m_shares setStringValue:[NSString
stringWithFormat:@”%d”, shares]];

 [m_portfolioValue setStringValue:[NSString
stringWithFormat:@”$%.2f”, portfolioValue]];

 [m_totalTransactions setStringValue:[NSString
stringWithFormat:@”%d”, transactions]];

}

@end

You need to perform one more sequence of steps before the app is all
connected — you have to connect the application delegate class Stock
MarketerAppDelegate to the StockAccountController to ensure it
updates its UI components right before the app displays its window. To do
this, follow these steps:

 1. Select StockMarketerAppDelegate.h in the Project navigator.

 2. Add the purple code from Listing 6-5 into StockMarketerAppDelegate.h.

 You’re adding a reference to the StockAccountController object so
that the StockMarketerAppDelegate object can access it.

 3. Select StockMarketerAppDelegate.m in the Project navigator.

 4. Add the purple code from Listing 6-6 into
StockMarketerAppDelegate.m.

 5. Build and run your StockMarketer app.

 You can now trade shares of stock, and the total number of shares your
account will increase or decrease to reflect each purchase and sale.
Your cash reserves will rise and fall, and the current stock price will be
randomly adjusted with each transaction.

Listing 6-5: The StockMarketerAppDelegate.h file’s contents

// StockMarketerAppDelegate.h
// StockMarketer
//
// Created by Karl Kowalski on 4/24/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import <Cocoa/Cocoa.h>

(continued)

166 Part II: A View to an App

Listing 6-5 (continued)

#import “StockAccountController.h”

@interface StockMarketerAppDelegate : NSObject
<NSApplicationDelegate>

{
 IBOutlet StockAccountController* m_controller;
@private
 NSWindow *window;
}

@property (assign) IBOutlet NSWindow *window;

@end

Listing 6-6: The source code for the app delegate

//
// StockMarketerAppDelegate.m
// StockMarketer
//
// Created by Karl Kowalski on 4/24/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import “StockMarketerAppDelegate.h”

@implementation StockMarketerAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)
aNotification

{
 // Insert code here to initialize your application
 [m_controller updateDisplay];
}

@end

You’ve now implemented an MVC pattern within a Cocoa app. The Model
keeps track of the amount of cash available for transactions and the total
number of shares, as well as the number of transactions; the View provides a
display of the information contained within the Model and the UI components
for a user to make changes; and the Controller sits between these two pieces

167 Chapter 6: Controlling Your Windows and Views

of the app. You could add more features to the Model — for instance, you
might want to keep track of each individual transaction and store the set in
an NSArray. The beauty of using the MVC design pattern is that you can use
the same View and Controller with an updated Model and provide a separate
View and Controller to make use of the additional features of the updated
Model.

Adding a Preferences Window
Many of the apps you use provide a way for you to modify aspects of the
apps’ behaviors to suit your preferred style. Xcode comes with its own
preferences panel, which you can display by selecting Xcode➪Preferences
from the menu bar. Figure 6-8 shows what the Xcode 4 Preferences Panel
looks like.

Figure 6-8: Xcode’s font preferences, where you can express your
choice of text display.

Your app can display its own Preferences Panel, if you want to give your
users a way to customize the presentation of information your app manages.
For example, you could provide your users with a means to set the fonts your
app uses to display text information to a size that makes the data easier to
see — this is especially helpful for those of us who are getting on in years. It’s
much easier for me to increase the size of the displayed text than it is for me
to remember where my glasses are.

168 Part II: A View to an App

You’re going to add a very simple preferences panel to the StockMarketer
app. There will be only one preference the user can set: the color of the
amount shown for the Portfolio Value label.

 1. Select the StockMarketer folder in Project navigator and choose
File➪New ➪New File from the menu bar.

 2. Create a subclass of NSWindowController, and name it
PreferencesController.

 3. Select PreferencesController.h in Project navigator and modify
its contents to include the purple code shown in Listing 6-7.

 4. Save your changes.

Listing 6-7: A PreferencesController object manages an NSColorWell

//
// PreferencesController.h
// StockMarketer
//
// Created by Karl Kowalski on 4/24/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import <Cocoa/Cocoa.h>

@interface PreferencesController : NSWindowController
<NSWindowDelegate>

{
 IBOutlet NSColorWell* m_textColor;
@private

}

- (NSColor*)getTextColor;

@end

 5. Select PreferencesController.m in Project navigator and modify
its contents to include the purple code shown in Listing 6-8.

 The PreferencesController class does only as much as it needs
to do.

 6. Save your changes.

169 Chapter 6: Controlling Your Windows and Views

Listing 6-8: The implementation of the PreferencesController is very
simple

//
// PreferencesController.m
// StockMarketer
//
// Created by Karl Kowalski on 4/24/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import “PreferencesController.h”

@implementation PreferencesController

- (id)init
{
 if (nil == [super initWithWindowNibName:@”Preferences”])
 {
 return (nil);
 }
 return (self);
}

- (id)initWithWindow:(NSWindow *)window
{
 self = [super initWithWindow:window];
 if (self) {
 // Initialization code here.
 }

 return self;
}

- (void)dealloc
{
 [super dealloc];
}

- (void)windowDidLoad
{
 [super windowDidLoad];

 // Implement this method to handle any initialization
 // after your window controller’s window has been
 // loaded from its nib file
 if (nil != [self window])
 {

(continued)

170 Part II: A View to an App

Listing 6-8 (continued)

 // set us to get notified when the window closes
 [[self window] setDelegate:self];
 }
}

- (NSColor*)getTextColor
{
 NSColor* textColor = [m_textColor color];
 return (textColor);
}

@end

Your app now contains a PreferencesController class that will manage
the contents and display of a Preferences Panel. The next step is to add the
XIB file that the PreferencesController is going to load.

 1. Choose File ➪New ➪ New File from the menu bar. Choose the User
Interface item from the left column and the Window template, as
shown in Figure 6-9. Click the Next button.

Figure 6-9: Creating a new XIB component for the project.

 2. Save the file as Preferences.xib.

 Xcode will create a new XIB file and add it to your project. The
Preferences.xib file will be shown in Interface Builder, with a

171 Chapter 6: Controlling Your Windows and Views

window already added to the Dock. The name of this file is very impor-
tant, as this is the filename that Cocoa will be asked to load when your
PreferencesController is created within your app.

 3. Show the Utilities view if necessary. Select the File’s Owner object
from the Dock and then open the Identity inspector. Set the object’s
class to PreferencesController.

 The File’s Owner object is a reference to the object for which the XIB
file was loaded. Your app’s App Delegate class will create and main-
tain that object.

 4. Drag an NSColorWell from the Object Library into the window in
Preferences.xib.

 I also added a Label to mine so I’ll remember what the color change is
going to affect.

 5. Select the window and open the Attributes inspector. Change the win-
dow’s title to Preferences.

 6. Control-drag from the File’s Owner to the NSColorWell.

 Since you set the File’s Owner object to be a PreferencesController
class, there should be one Outlet for you to connect.

 7. Control-drag the File’s Owner to the window.

 The PreferencesController has an IBOutlet named window, and
you have to connect this to the window object in the XIB file.

 8. Save your changes.

 9. Select StockMarketerAppDelegate.h in the Project navigator and
modify its contents to match the code found in Listing 6-9.

 You’re adding a PreferencesController as an IBOutlet member
variable. The new lines are in purple.

 10. Save your changes.

Listing 6-9: The App Delegate class for your project will maintain a
reference to a PreferencesController

//
// StockMarketerAppDelegate.h
// StockMarketer
//
// Created by Karl Kowalski on 4/24/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

(continued)

172 Part II: A View to an App

Listing 6-9 (continued)

#import <Cocoa/Cocoa.h>

#import “StockAccountController.h”
#import “PreferencesController.h”

@interface StockMarketerAppDelegate : NSObject
<NSApplicationDelegate>

{
 IBOutlet StockAccountController* m_controller;
 IBOutlet PreferencesController* m_prefsController;
@private
 NSWindow *window;
}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)showPreferences:(id)inSender;

@end

 11. Select StockMarketerAppDelegate.m in the Project navigator and
modify its contents to match the code found in Listing 6-10.

 You’re implementing the code to create the PreferencesController
and display it when needed. The original version of StockMarketer
AppDelegate.m did not include a dealloc method, so you’re adding
one now to clean up the PreferencesController the app delegate
now creates within the showPreferences: method. As usual, the new
lines are in purple.

 12. Save your changes.

Listing 6-10: The implementation of the showPreferences: method to
display the Preferences window

//
// StockMarketerAppDelegate.m
// StockMarketer
//
// Created by Karl Kowalski on 4/24/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

173 Chapter 6: Controlling Your Windows and Views

#import “StockMarketerAppDelegate.h”

@implementation StockMarketerAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)
aNotification

{
 [m_controller updateDisplay];
}

- (IBAction)showPreferences:(id)inSender
{
 if (nil == m_prefsController)
 {
 m_prefsController = [[PreferencesController alloc]

init];
 }
 [[m_prefsController window] makeKeyAndOrderFront:self];
}

- (void)dealloc
{
 [m_prefsController release];
 [super dealloc];
}

@end

 13. Select MainMenu.xib in the Project navigator.

 14. Click the StockMarketer menu to reveal all the menu items. Control-
drag from the Preferences menu item to the App Delegate object in
the Dock and connect it with the showPreferences: IBAction.

 15. Save your changes.

 Now when you select the Preferences menu item while the app is run-
ning, the Preferences window will appear.

 16. Build and run your app.

 When you select StockMarketer➪Preferences, you should see the dis-
play similar to that in Figure 6-10.

174 Part II: A View to an App

Figure 6-10: A Preferences window is displayed when you select
StockMarketer➪Preferences.

The last piece to this process is to change the color of the text label when
the preferences window has closed. In PreferencesController.m, the
windowDidLoad method set the PreferencesController as its window’s
delegate. Cocoa will now notify the PreferencesController when its
window has been closed, so that the PreferencesController can tell the
appropriate Label in the StockAccountController to change its color.
To do this, you’re going to implement notifications in the StockMarketer
project.

Using notifications
You’ve already implemented some notifications in StockMarketer: the
PreferencesController, as a result of being set as the delegate of its
window, has been set up to receive notifications from the window when cer-
tain events occur. When the user closes the PreferencesController’s
window, Cocoa will transmit an NSNotification which will be picked up
by the PreferencesController in its windowWillClose: method. You’ll
create this method and implement code to broadcast a notification out to any
other object that’s listening for it.

 1. Add the following code to PreferencesController.m:

- (void)windowWillClose:(NSNotification*)inNotification
{
 [[NSNotificationCenter defaultCenter] postNotificationName:@”changePort

folioColor” object:[self getTextColor]];
}

175 Chapter 6: Controlling Your Windows and Views

 2. Build your app to ensure the code change compiles with no errors.

 Now when the Preferences window is closed, the Preferences
Controller will post a notification. Nobody’s listening yet, but you’ll
change that next.

 3. Select StockAccountController.h in the Project navigator. Add the
following two lines of code at the end of the file, before the line con-
taining @end:

- (void)setPortfolioLabelColor:(NSColor*)inColor;
- (void)handleColorNotification:(NSNotification*)inNotification;

 4. Save your changes.

 5. Select StockAccountController.m in the Project navigator and add
the implementation of the setCashLabelColor: and handleColor
Notification: methods from the following code:

- (void)setPortfolioLabelColor:(NSColor*)inColor
{
 if (nil != inColor)
 {
 [m_portfolioValue setTextColor:inColor];
 [m_ portfolioValue setNeedsDisplay:YES];
 }
}

- (void)handleColorNotification:(NSNotification*)inNotification
{
 [self setPortfolioLabelColor:[inNotification object]];
}

 6. Add the following line to the init method, immediately following the
line that initializes the m_stockAccount member variable:

 [[NSNotificationCenter defaultCenter] addObserver:self selector:@
selector(handleColorNotification:) name:@”changePortfolioColor”
object:nil];

 7. Build and run the app.

 You see the main window; after selecting StockMarketer➪Preferences,
you see the Preferences window appear. When you select a color and
close the Preferences window, the color of the “Portfolio Value” label
changes, as shown in Figure 6-11.

176 Part II: A View to an App

Figure 6-11: A colorized Portfolio Value label.

Notifications provide a helpful way of communicating within your app, espe-
cially between a Model and its Controller, and a Controller and its View.
You can set up any object to listen for any notification of a particular name,
coming from a particular object or — as in the example — from any object in
the application. You can even set up to listen for any notification, period —
but this will cause your object’s notification handler to get called for every
notification, and there are a lot of them.

 Keep in mind that the delegate methods sometimes are implemented as
responses to notification broadcasts. It’s better to narrow the focus of your
notification recipients to specific messages or to messages coming from a
specific object.

Chapter 7

Drawing Advanced Views
In this chapter
▶ Playing with colors

▶ Creating a custom view

▶ Drawing lines and shapes

▶ Displaying text

▶ Displaying images

▶ Adding animation to your views

T
he Xcode Interface Builder Editor’s palette of UI components provides
you with the tools you need to create a great many different types of

apps. The standard Apple components give you a large collection of buttons,
sliders, and views to choose from so you can offer your users the best way
to interact with your app — whether your app takes information from your
users or delivers it to them. Using just the standard components, you can
make quality applications that users enjoy using. But why stop there? You
can modify the appearance of many of the components to make them look
new and unique while still retaining the same functionality.

Often, however, you’ll discover that the standard components just aren’t
enough. That’s when you’ll need to start rolling your own, custom-designed
components. You won’t be just adding a new look to old tools, you’ll be creat-
ing new ones that your app uses to express information in ways that the stan-
dard Apple components don’t. Custom components and views can add life
to your apps and make them stand out from the rest, especially if your new
components make your app more powerful or easier to use — which makes
for a better user experience.

In this chapter, I show you how to create your own custom views where
your code takes complete control over how its contents are drawn. In addi-
tion, I cover some interesting and fun animations that your app can display
for your user.

178 Part II: A View to an App

 Okay, sometimes I slip up and use the word “widget” instead of “component”.
The two are interchangeable for the purposes of this chapter. I forget at what
exact point the term widget came to mean “component used in a user inter-
face” but it has stuck. Don’t be surprised if you end up using it yourself.

Reviewing Apple’s Component Collection
I’m going to list some of the standard Apple UI components as provided by
the IB Editor in Xcode 4. Here’s a list of the widgets you can place on an app’s
screen:

 ✓ Push Button

 ✓ Disclosure Triangle

 ✓ Help Button

 ✓ Round Button

 ✓ Label

 ✓ Text Field

 ✓ Secure Text Field

 ✓ Text Field with Number Formatter

 ✓ Combo Box

 ✓ Date Picker

 ✓ Wrapping Label

 ✓ Wrapping Text Field

 ✓ Text View

 ✓ Check Box

 ✓ Pop Up Button

 ✓ Segmented Control

 ✓ Radio Group

 ✓ Stepper

 ✓ Horizontal Slider

 ✓ Vertical Slider

 ✓ Circular Slider

 ✓ Circular Progress Indicator

179 Chapter 7: Drawing Advanced Views

 ✓ Table View

 ✓ Browser

 ✓ Custom View

 ✓ Tab View

 ✓ Box

 ✓ Web View

 ✓ QuickTime Movie View

 ✓ PDF View

Quite a list — and you can make quite a range of different apps using just
these ordinary widgets. However, the more apps you make, the sooner you
discover that you have to create a few types of views yourself. The basic wid-
gets don’t provide (for example) the following:

 ✓ Graphing View: For my DiabeticPad app, it would be useful to display a
graph of the sugar levels against time. Apple’s components don’t come
with a view that can take two sets of numeric values and graph one
against the other. So I’ve had to create my own.

 ✓ Movie View: Apple provides a QuickTime Movie View as part of its
standard set, but what about other types of video formats? If your app
is going to display videos of a format that QuickTime doesn’t support,
you’ll have to devise your own view to display it.

 ✓ Non-uniform Geometric Shapes: The easiest object to draw on the
screen is a rectangle, followed closely by a circle. But a jigsaw-puzzle
app that uses rectangular puzzle pieces would be too easy to solve.
You’d need to create arbitrary geometric shapes for the user to fit
together into the puzzle picture — and you’d have to create each shape
as a custom view in your app.

Understanding Cocoa’s Views
Before I show you how to create your own custom view for your app, here’s
a rundown of the important details of how Cocoa views work in a Macintosh
application. In Figure 7-1, you can see a window containing several of the
basic UI widgets; see the same widgets listed in Cocoa’s view hierarchy.

 With the exception of an NSWindow, all items displayed on-screen are sub-
classes of the NSView class.

180 Part II: A View to an App

Figure 7-1: A window containing subviews representing the Cocoa View hierarchy.

 ✓ The top level of the hierarchy: the NSWindow. An NSWindow is not itself
a view object, as it’s not a subclass of NSView. However, the NSWindow
is at the top of the view hierarchy because it is the topmost container of
all the other views in your app.

 ✓ The NSWindow’s _contentView member variable. This is a private
member variable of type id, and is used to maintain a reference to
an NSView object that will contain the UI components placed in the
window.

 ✓ The NSButton “Outer” and the NSTextField “Label” and the NSBox
“Box”. These items are all subviews of the _contentView of the
NSWindow.

 ✓ The empty NSTextField, the NSButton “Inner”, and the NSTabView
are all subviews of the NSBox.

 ✓ The NSCheckBox is the only subview of the NSTabView.

Each of the UI components in the Apple palette is a subclass of NSView. This
means two things:

 ✓ Each NSView component can be a subview of an NSView.

 ✓ An NSView can itself contain NSView objects as subviews. Certain sub-
classes such as NSControl or any of its subclasses of NSView prevent
this behavior.

A view that contains subviews is called the parent view of the child sub-
views it contains. So in Figure 7-1 you will see that the NSBox is the parent
view of the NSTabView, which is itself the parent of the NSCheckBox. In
addition, the NSBox is a child view of the _contentView. You could call
the _contentView the “grandparent” of the NSTabView but I think that’s
taking the metaphor a little too far.

181 Chapter 7: Drawing Advanced Views

Your custom view classes will inherit basic functionality from NSView —
including the following:

 ✓ A method to draw itself: drawRect:. The Cocoa framework calls this
method when the app needs to redraw the contents of your view. You’ll
see this happen when your app with your custom view is “uncovered” —
that is, when another window placed on top of your view is moved away.
You can also trigger a redraw event programmatically by executing
[myCustomView setNeedsDisplay:YES];.

 ✓ Resizing according to the settings in the Interface Builder Editor Size
inspector. Your custom view subclass will take care of drawing its con-
tents, but you can set how the view will resize by using the Size inspec-
tor. That’s because your view is just an NSView at heart, and you won’t
need to adjust any of that code.

 ✓ Subview management. If your custom view subclasses NSView you’ll
get all the subview-management functionality for free. Adding and
removing subviews, drawing subviews — all of this is handled for you
automatically.

Nearly all of what you do in your custom NSView subclasses takes place in
the drawRect: method. So now is a good time to nail down the basics of
drawing things on a screen.

Drawing on the screen
Your Macintosh display is a big rectangle, filled with tiny dots called pixels.
On modern screens such as my main development iMac, you’ll find millions
of pixels, ready to do your bidding as you command them to display the
colors you want your app to show. When your app is drawing on the screen,
your app is telling the OS to tell the graphics hardware to set the colors of
various pixels. Your app is not setting the colors directly; instead, it’s provid-
ing instructions to the graphics hardware. But to ensure that those instruc-
tions aren’t gibberish, here’s a short course in how to speak Graphics.

Mac OS X uses a graphics engine called Quartz, which provides the classes
and methods your app will use to draw on Mac monitors.

 The first thing to keep in mind about Quartz and Macintosh drawing is: The
coordinate system of a Mac display has its origin in the bottom-left corner of
the screen, with the x-axis increasing to the right, and the y-axis increasing
upward.

If you’ve programmed on other platforms, or with Macs prior to OS X, you
may be used to having the display coordinate system’s origin in the top-
left corner, with the y-axis increasing as you go down. Personally, I find

182 Part II: A View to an App

Quartz’s coordinate system easy to use and very easy to think with, prob-
ably because it’s how I learned geometry and coordinate systems in 10th
grade. (It did take a while to stop thinking in terms of the earlier Mac coor-
dinate system.)

Points
Quartz provides the NSPoint structure for you to use when you’re working
with points in the coordinate system. The following is how Quartz defines an
NSPoint:

struct CGPoint
{
 CGFloat x;
 CGFloat y;
};

typedef CGPoint NSPoint;

As you can see, an NSPoint is not an Objective-C class, it’s just a plain
C-type struct. So you don’t have to alloc or init it, and you don’t have to
release it when you’re finished. You must declare it just as you would any
other variable or structure in your code:

NSPoint myCoordinate;

The CGFloat variable type is one of the primitive C types: if you’re creat-
ing a 64-bit app, Xcode defines this variable type as a double; otherwise it’s
defined as a float. For this chapter I’ll assume you’re writing 64-bit apps;
you won’t see any difference in behavior for the examples I present.

 If you’re going to be writing an app that depends on highly precise graphs,
say for 3-D modeling, you’ll want to ensure that your app is 64-bit in order
to get the precision of a double value used for graphic calculations with
NSPoints.

You can assign values to an NSPoint in your code in two ways:

NSPoint aSetPoint;
aSetPoint.x = 100.0;
aSetPoint.y = 200.0;
NSPoint aMadePoint = NSMakePoint(100.0, 200.0);

 Although they’re not required, I highly recommend adding the decimal-point
values to the end of any constant numbers you use. I’m pretty sure that the
Xcode compiler will automatically convert numbers without decimal points

183 Chapter 7: Drawing Advanced Views

to double values correctly — but keep in mind that the numbers my code is
dealing with are not integers (as they would have been in the pre-OS X coor-
dinate system).

Rectangles
Now you move into two-dimensional space. Rectangles are used every-
where in drawing things on the Mac screen. So Quartz provides another
structure, NSRect, to carry rectangle information around in a convenient
package. Not surprisingly, the NSRect structure contains an NSPoint as
one of its components.

Since a rectangle is 2-dimensional, an NSRect has a second component, an
NSSize structure:

struct
{
 CGFloat width;
 CGFloat height;
} CGSize;

typedef CGSize NSSize;

struct CGRect
{
 CGPoint origin;
 CGSize size;
};

typedef CGRect NSRect;

And once more, there are two ways to fill an NSRect with values:

NSRect aFixedRect;
aFixedRect.origin.x = 100.0;
aFixedRect.origin.y = 200.0;
aFixedRect.size.width = 125.0;
aFixedRect.size.height = 256.0;

NSRect aMadeRect = NSMakeRect(100.0, 200.0, 125.0, 256.0);

You can find the origin and size of an NSRect by treating it just like a C-type
struct:

CGFloat rectOriginX = aRect.origin.x;
CGFloat rectOriginY = aRect.origin.y;
CGFloat rectWidth = aRect.size.width;
CGFloat rectHeight = aRect.size.height;

184 Part II: A View to an App

You’ll get used to NSRects and NSPoints pretty quickly as you write more
custom views — or if you decide to put together views on the fly, instead of
setting them up with the Interface Builder Editor in an XIB file.

Colors
The last basic topic you’ll need to learn before I show you how to draw is the
care and feeding of colors. Quartz provides you with the NSColor class — no
more structs! — to give you an easy way to use colors within your app.

There are two different approaches you can use to create and work with colors
in your app: convenience colors and . . . inconvenience. (Just kidding — the
other approach is device-dependent. Read on.)

Using convenience colors
You’ll find that the quickest and easiest way to create an NSColor object is by
using one of the preset colors that come as class methods in the NSColor class.
For instance, if you wanted a bright red color, you can write code like this:

NSColor* myRedColor = [NSColor redColor];

And you’ll find that there are many other basic colors, as shown in Table 7-1.

Table 7-1 Convenience Colors
Preset NSColor Name Color on the screen

blackColor Black

blueColor Blue

brownColor Brown

clearColor Clear/transparent

cyanColor Light blue

darkGrayColor Dark gray

grayColor Medium gray

greenColor Green

lightGrayColor Light gray

magentaColor Pinkish-purple color

orangeColor Orange

purpleColor Purple

redColor Red

whiteColor White

yellowColor Yellow

185 Chapter 7: Drawing Advanced Views

If you look through NSColor.h, the header file that describes the
Objective-C class NSColor, you’ll discover even more convenience colors
that Cocoa uses for UI components such as a window’s frame or a table
view’s header.

Using device-dependent colors
If your app wants full control over the colors that it will display, you’ll find
that the convenience colors just aren’t enough. In this case, your app will
have to create its own colors more explicitly instead of depending on what
Cocoa has pre-built.

The NSColor class comes with three different ways to create your own
colors:

 ✓ Device-dependent (device) color: This approach depends on the colors
a particular device can display. A device color represents the best color
that a specific monitor will show. This means the color may not be the
same on a MacBook as it is on an iMac or on a third-party monitor. Put
two different monitors next to each other, showing the same colored
image, and you’ll notice that they aren’t showing colors exactly the
same way.

 I’m writing this chapter using two monitors on a Windows machine next
to my development iMac, and all three monitors show the same color
differently.

 ✓ Device-independent (calibrated) color: For certain graphics profes-
sions, the computer hardware and printer manufacturers created hard-
ware and software systems to calibrate their equipment so that their
users would see same color displayed, to the greatest degree possible,
no matter which type of device was used. Graphics professionals want
to be sure that the concert poster they designed on their high-resolution
iMac is printed with the precise colors they chose. The calibration is
responsible for adjusting the displayed color on different devices to
account for the differences in the hardware.

 ✓ Named color: The use of named colors is beyond the scope of this book.

You’ll be using the device-dependent approach to creating specific colors in
your apps. And you’ll find it pretty easy to do:

NSColor* redColor = [NSColor colorWithDeviceRed:1.0 green:0.0
blue:0.0 alpha:1.0];

NSColor* greenColor = [NSColor colorWithDeviceRed:0.0
green:1.0 blue:0.0 alpha:1.0];

NSColor* purpleColor = [NSColor colorWithDeviceRed:1.0
green:0.0 blue:1.0 alpha:1.0];

186 Part II: A View to an App

Just in case you haven’t been exposed to colors from a programming per-
spective, I’ll go over the basic ideas involved in the code just given. For
device-dependent colors, each color you want to create is built from four
separate values:

 ✓ Red

 ✓ Green

 ✓ Blue

 ✓ Alpha

This set of four values is sometimes called an RGB value. Sometimes you’ll
see it in print as an RGBA value, but both terms are equivalent.

 You probably already know that red, green, and blue are the primary colors
of visible light, and that combinations of each of these can generate all of the
colors of the spectrum including white (all 1.0’s) and black (all 0.0’s). The
alpha value represents transparency. Setting this value to 1.0 means that the
color is 100% opaque. Setting this value to 0.0 means that the color is 100%
transparent — and instead, the color of whatever is visually behind the item
being drawn is shown. With an alpha value somewhere between 0.0 and 1.0,
the color being drawn will be fainter than fully opaque.

In some apps (and online) you’ll see RGBA values listed as a set of integers,
each one ranging from 0 to 255. Cocoa uses floating-point values between 0.0
and 1.0, so you have to convert any color value you see listed as (127, 63, 159,
255) to (0.50, 0.25, 0.625, 1.0). One easy way to convert each integer value to
floating-point is to add 1 to the value and then divide by 256. So the values
just given would change as follows:

127 + 1 = 128/256 = 0.50
63 + 1 = 64/256 = 0.25
159 + 1 = 160/256 = 0.625
255 + 1 = 256/256 = 1.0

 There’s a minor problem with this handy numerical technique, however —
0 should translate to 0.0 — but in this example, it translates to 0.00390625.
The simplest solution would be to treat zero as a special case, and avoid the
math. (Whew. Close one.)

Finally, in Cocoa, you use colors in your custom drawings by setting the
color of the graphics pen when your app is executing its drawRect: method.
A graphics pen is the code-activated tool that Cocoa uses to draw within
NSViews. The pen has certain attributes you can manipulate, such as its

187 Chapter 7: Drawing Advanced Views

color or the width in pixels of the lines it draws. To change the color of the
graphics pen to the color purple in the code snippet just given, here’s all you
have to do:

 [purpleColor set];

After your app executes this line of code, everything that gets drawn will be
in purple. In the examples that follow you’ll get a better idea of how your app
can make color displays within your code.

Creating a Custom View
I’m going to walk you through the steps needed to set up a custom view so
you can learn how to create your own app-specific views. You’re going to
create a simple project that consists of one view that will function as a work-
bench for the different drawing you’ll do.

 1. Launch Xcode and choose File➪New➪Project, as shown in Figure 7-2.

 You won’t need a Document-Based Application or Core Data, and you
definitely don’t need Unit Tests. Be sure to save the project in an appro-
priate location.

Figure 7-2: Ready to create a new Cocoa project.

188 Part II: A View to an App

 2. Select MainMenu.xib from the Project navigator to open the file with
the Interface Builder Editor.

 3. Select the Window object in the Interface Builder Editor Dock.

 4. Show the Utilities view.

 You can use this view to work with the object palette.

 5. Drag a Custom View from the object palette and drop it onto the
window.

 You may want to resize it so it takes up more space to make the draw-
ings within the custom view more obvious. I chose to obey Apple’s blue
guidelines at all four sides, leaving a margin of space around the view.

 6. With the Custom View object still selected, show the Size inspector.

 7. Set the Autosizing options so that all the sizing red bars are lit.

 Doing so locks the position of the Custom View object in the window
and resizes it when the window is resized. Figure 7-3 shows what this
should look like.

Figure 7-3: Ready to create a new Cocoa project.

 8. Show the Identity inspector.

 9. Set the Custom Class to WorkbenchView by typing it into the
combo-box.

189 Chapter 7: Drawing Advanced Views

 You will create this class next.

 10. Right-click the folder containing your project’s code modules, and
select New File.

 11. Create a new class, WorkbenchView, and make it a subclass of NSView.

 12. Save your changes.

 You now have a custom view, named WorkbenchView, which gets cre-
ated when your app is launched and displays its main window.

If you build and run your app now, you won’t see it — because right now it
doesn’t do any drawing. Xcode did add the drawRect: method to your class,
in anticipation of how you’re going to make use of the WorkbenchView —
Xcode presumes that as a subclass of NSView, drawing is going to happen.
This class will serve as the scratch pad for the different kinds of graphics
drawing you do as you go through this chapter.

Drawing
Your custom view doesn’t do any drawing yet, so let’s change that. When I’m
putting together a custom view, I usually like to know where the edges of the
view are. I find it useful to draw a rectangle at the edge of the view, so that

 ✓ I can see where the application is placing my view.

 ✓ I know when something I’ve drawn has been drawn correctly, fully
within the view.

Each NSView subclass has a specific rectangle of space, within which any
drawing it does will occur. Sometimes your app will make calculations about
where it should draw next, and sometimes those calculations will tell Cocoa
to draw outside the rectangle — even though your calculations should
have made it draw only within the rectangle. When I added the custom
WorkbenchView to my project’s window, I didn’t resize it to fill the entire
window.

So now let’s draw a rectangle to show where the edges are.

 1. Select WorkbenchView in the Project navigator.

 2. Enter the code from Listing 7-1 into the drawRect: method.

 3. Save your changes.

190 Part II: A View to an App

 4. Build and run your app.

 You should see the result shown in Figure 7-4. If you resize your window,
you’ll see that the border resizes just as the window does, keeping the
margin constant.

Figure 7-4: The edges of your custom NSView on display.

The code you just implemented consists of two lines, which do the following:

 ✓ The code sets an NSColor convenience color, red, to be used for
drawing.

 ✓ An NSBezierPath object is told to draw the incoming NSRect by exe-
cuting a method called strokeRect:. The dirtyRect input parameter
is the rectangle within which Cocoa wants your custom view to draw.
For the WorkbenchView, this parameter contains the size and origin of
the bounds of the WorkbenchView.

When your custom view’s drawRect: method is invoked, it’s because
Cocoa has been told that some part of the custom view’s rectangle requires
redrawing. This can happen because your code called the setNeeds
Display: method on you custom view object with an input value of YES.
Another way to invoke this method is to remove some other view from in
front of your custom view, revealing the contents of your view — and pos-
sibly requiring them to be redrawn. For instance, if your custom view is

191 Chapter 7: Drawing Advanced Views

drawing a sequence of colors on a schedule, it will have to redraw the cur-
rent color if you open a mail message using Apple Mail and then close it
after you respond to the message. The drawRect: method (see Listing 7-1)
handles all the situations when Cocoa needs your app to draw the contents
of a custom view.

Listing 7-1: Creating a red border around your custom view

- (void)drawRect:(NSRect)dirtyRect
{
 // Drawing code here.
 [[NSColor redColor] set];
 [NSBezierPath strokeRect:dirtyRect];
}

Drawing with Beziér paths
To get a handle on paths, just draw on your extensive knowledge of playing
connect-the-dots. A path is simply a collection of points that represent a line,
or a series of connected lines. If the connected lines end up back at the start-
ing point, the path is a now a shape. Cocoa gives you the NSBezierPath
class to do all the drawing in your app.

 Okay, I lied a little bit: The NSBezierPath class isn’t the only way to do
drawing in your app. You can also use the OpenGL library, but that’s better
suited for drawing and manipulating 3-D shapes. Sorry I didn’t mention that,
but most of your drawing will be done using NSBezierPath. It’s a better tool
for this particular job.

The NSBezierPath class comes with several class methods you can use
directly to draw shapes on the user’s display within your custom view:

 ✓ fillRect:(NSRect). For a given NSRect, draw the rectangle filled
with the current color.

 ✓ strokeRect:(NSRect). For a given NSRect, draw the rectangle out-
line with the current color.

 ✓ strokeLineFromPoint:(NSPoint) toPoint:(NSPoint). Draw a
line from the first point to the second with the current color.

192 Part II: A View to an App

In addition to these methods, you can use the following NSBezierPath con-
venience methods to create an NSBezierPath object of a particular type:

 ✓ bezierPathWithRect:(NSRect). This method gives you an
NSBezierPath object that is initialized for drawing or filling the rect-
angle you pass in as an input parameter.

 ✓ bezierPathWithOvalInRect:(NSRect). This method gives you an
NSBezierPath object that is initialized for drawing or filling an ellipse
within the rectangle you pass into it.

 ✓ bezierPathWithRoundedRect:(NSRect) xRadius:(CGFloat)
yRadius:(CGFloat). You can create an NSBezierPath object that
is initialized for drawing or filling a rectangle that has rounded corners
(such as some standard buttons you see in Xcode). You have to provide
the vertical (yRadius) and horizontal (xRadius) distances for the
rounded corners.

In order to make the returned NSBezierPath object actually draw these
rectangles or the oval on the display, you must use one of the following meth-
ods on the object:

 ✓ stroke. This will cause the NSBezierPath object to draw outline of
the oval or rectangle using the current graphics pen color and width.

 ✓ fill. This method will cause the NSBezierPath object to fill in the
entire oval or rectangle using the current graphics pen color.

You can use the methods I’ve shown here to create simple rectangles and
ovals and draw them on the display. Here’s an example that creates a
blocky kind of vehicle in WorkbenchView. All the code is written within the
drawRect: method; all you have to do is rewrite drawRect: using the code
from Listing 7-2.

Listing 7-2: Drawing my family car with Cocoa

- (void)drawRect:(NSRect)dirtyRect
{
 CGFloat rectWidth = dirtyRect.size.width;
 CGFloat rectHeight = dirtyRect.size.height;
 // use 60% of the width as our body width
 // use 20% of the height for the height of the body
 CGFloat carWidth = 0.60*rectWidth;
 CGFloat carHeight = 0.20*rectHeight;
 CGFloat carXPos = 0.20*rectWidth;
 CGFloat carYPos = 0.40*rectHeight;

193 Chapter 7: Drawing Advanced Views

 NSRect bodyRect = NSMakeRect(carXPos, carYPos, carWidth,
carHeight);

 [[NSColor brownColor] set];
 [[NSBezierPath bezierPathWithRoundedRect:bodyRect

xRadius:5.0 yRadius:5.0] fill];
 // now create the wheels for our car
 // front wheel
 CGFloat wheelDiameter = 0.50 * carYPos;
 CGFloat frontWheelXOffset = 0.25*carWidth; // front axle

pos
 CGFloat frontWheelRectXPos = carXPos + frontWheelXOffset

- 0.50 * wheelDiameter;
 CGFloat frontWheelRectYPos = carYPos - wheelDiameter;
 NSRect frontWheelRect = NSMakeRect(frontWheelRectXPos,

frontWheelRectYPos, wheelDiameter, wheelDiameter
);

 // black tires
 [[NSColor blackColor] set];
 // draw outer part
 [[NSBezierPath bezierPathWithOvalInRect:frontWheelRect]

fill];
 // draw inner part
 [[NSColor whiteColor] set];
 frontWheelRect.origin.x += 10.0;
 frontWheelRect.origin.y += 10.0;
 frontWheelRect.size.width -= 20.0;
 frontWheelRect.size.height -= 20.0;
 [[NSBezierPath bezierPathWithOvalInRect:frontWheelRect]

fill];
 // back wheel
 CGFloat backWheelXOffset = 0.75*carWidth;
 CGFloat backWheelRectXPos = carXPos + backWheelXOffset -

0.50*wheelDiameter;
 NSRect backWheelRect = NSMakeRect(backWheelRectXPos,

frontWheelRectYPos, wheelDiameter, wheelDiameter);
 [[NSColor blackColor] set];
 // draw outer part
 [[NSBezierPath bezierPathWithOvalInRect:backWheelRect]

fill];
 // draw inner part
 [[NSColor whiteColor] set];
 backWheelRect.origin.x += 10.0;
 backWheelRect.origin.y += 10.0;
 backWheelRect.size.width -= 20.0;
 backWheelRect.size.height -= 20.0;
 [[NSBezierPath bezierPathWithOvalInRect:backWheelRect]

fill];
 // now the top part

(continued)

194 Part II: A View to an App

Listing 7-2 (continued)

 CGFloat topRectXPos = carXPos + 0.45*carWidth;
 CGFloat topRectYPos = carYPos + carHeight;
 CGFloat topRectWidth = 0.45* carWidth;
 CGFloat topRectHeight = carHeight;
 NSRect carUpper = NSMakeRect(topRectXPos, topRectYPos,

topRectWidth, topRectHeight);
 [[NSColor orangeColor] set];
 [NSBezierPath fillRect:carUpper];
 // windshield
 NSPoint windshieldBase;
 windshieldBase.x = topRectXPos - carHeight;
 windshieldBase.y = topRectYPos;
 NSPoint windshieldTop;
 windshieldTop.x = topRectXPos;
 windshieldTop.y = topRectYPos + topRectHeight;
 [NSBezierPath strokeLineFromPoint:windshieldBase

toPoint:windshieldTop];
 // and the antenna
 NSPoint antennaBase;
 antennaBase.x = carXPos + 0.92*carWidth;
 antennaBase.y = topRectYPos;
 NSPoint antennaTop;
 antennaTop.x = carXPos + 1.04*carWidth;
 antennaTop.y = 0.95*rectHeight;
 [[NSColor darkGrayColor] set];
 [NSBezierPath strokeLineFromPoint:antennaBase

toPoint:antennaTop];
 CGFloat knobXPos = antennaTop.x - 5.0;
 CGFloat knobYPos = antennaTop.y - 5.0;
 NSRect knobRect = NSMakeRect(knobXPos, knobYPos, 10.0,

10.0);
 [[NSColor blackColor] set];
 [[NSBezierPath bezierPathWithOvalInRect:knobRect] fill];
}

Figure 7-5 shows you what the family car looks like when drawn using the
WorkbenchView.

The code in Listing 7-2 should seem pretty straightforward. Everything is nice
sharp lines and corners, with a couple of circles and the rounded-corner rect-
angle thrown in.

195 Chapter 7: Drawing Advanced Views

 You could easily write a stick-figure game using just the code given here and
some of the ideas from Chapter 9 on background operations.

Figure 7-5: Time for a ride!

You can also draw non-rectangular shapes (such as, say, a triangle, a penta-
gon, or any geometric shape drawn from connected lines). Listing 7-3 con-
tains code to create an arbitrary shape, close it, and fill it with a light blue
color. Figure 7-6 shows what the app draws on the user’s screen.

Listing 7-3: A non-uniform two-dimensional shape drawn as a series
of points

- (void)drawRect:(NSRect)dirtyRect
{
 CGFloat rectWidth = dirtyRect.size.width;
 CGFloat rectHeight = dirtyRect.size.height;
 [[NSColor cyanColor] set];
 NSPoint p00, p01, p02, p03, p04, p05, p06, p07, p08, p09,

p10;
 p00.x = 0.10*rectWidth;
 p00.y = 0.50*rectHeight;
 p01.x = 0.25*rectWidth;
 p01.y = 0.40*rectHeight;
 p02.x = 0.30*rectWidth;

(continued)

196 Part II: A View to an App

Listing 7-3 (continued)

 p02.y = 0.48*rectHeight;
 p03.x = 0.45*rectWidth;
 p03.y = 0.31*rectHeight;
 p04.x = 0.75*rectWidth;
 p04.y = 0.45*rectHeight;
 p05.x = 0.55*rectWidth;
 p05.y = p04.y;
 p06.x = p05.x;
 p06.y = 0.70*rectHeight;
 p07.x = p04.x;
 p07.y = p06.y;
 p08.x = p03.x;
 p08.y = 0.90*rectHeight;
 p09.x = p02.x;
 p09.y = 0.65*rectHeight;
 p10.x = 0.20*rectWidth;
 p10.y = 0.70*rectHeight;
 NSBezierPath* objPath = [NSBezierPath bezierPath];
 [objPath moveToPoint:p00];
 [objPath lineToPoint:p01];
 [objPath lineToPoint:p02];
 [objPath lineToPoint:p03];
 [objPath lineToPoint:p04];
 [objPath lineToPoint:p05];
 [objPath lineToPoint:p06];
 [objPath lineToPoint:p07];
 [objPath lineToPoint:p08];
 [objPath lineToPoint:p09];
 [objPath lineToPoint:p10];
 [objPath closePath];
 [objPath fill];
}

 Here’s where math and art come together: If you can calculate points on a
coordinate system, you can draw any object you can sketch. The NSView is
your canvas, and your app can draw and color any kind of shape you need to
display.

Drawing text
In addition to drawing lines, rectangles, and ovals, Cocoa provides you with
the capability to display text in your views. You need only two items to draw
text on the screen:

197 Chapter 7: Drawing Advanced Views

 ✓ An NSString object containing the text you want to draw.

 ✓ An NSPoint containing the location where you want the text drawn.

Figure 7-6: You can draw a path from one point to the next
and create a solid object.

Use the following procedure to draw text on your custom view:

 1. Create an NSString object with the text you want to display.

 I’ve decided to add some graffiti to my family car.

NSString* graffitiString = @”Orange Rider”;

 2. Choose the location where you want the text to be drawn and set an
NSPoint with the x and y values:

NSPoint graffitiPoint;
graffitiPoint.x = carXPos + 0.05*rectWidth;
graffitiPoint.y = carYPos + 0.05*rectHeight;

 3. Draw the text using the NSString drawAtPoint:withAttributes:
method:

[graffitiString drawAtPoint:graffitiPoint withAttributes:nil];

In Figure 7-7 shows you the result of these instructions, if you add them to
the end of the code in Listing 7-2.

198 Part II: A View to an App

Figure 7-7: Drawing text on my family car.

The text is drawn in the default text color, using the default font. It looks like
I wrote on my family car with a black magic marker. I want big letters, and
colored bright white so the family car will stand out. To make this happen,
you add some attributes to the text string when it draws. Fortunately, the
withAttributes: parameter offers you the capability to do just that. The
parameter that the method expects is an NSDictionary, so you’ll need to
create one and put the text attributes you want to see into it. You’ll actually
be creating an NSMutableDictionary, since you’ll want to be changing its
contents between the time you create it and the time you use it.

Here are the steps you follow:

 1. Create an NSMutableDictionary variable in the code.

 I also autorelease it, so I don’t have to remember to release it after
I’m done.

NSMutableDictionary* textAttrs = [[[NSMutableDictionary alloc] init]
autorelease];

 2. Add an NSFont object to define what font to use:

[textAttrs setObject:[NSFont fontWithName:@”Helvetica” size:32]
forKey:NSFontAttributeName];

 3. Add an NSColor object to define what color the text should be:

[textAttrs setObejct:[NSColor whiteColor] forKey:NSForegroundColor
AttributeName];

199 Chapter 7: Drawing Advanced Views

 4. Set the withAttributes: parameter to be the NSMutable
Dictionary you created:

[graffitiString drawAtPoint:graffitiPoint withAttributes:textAttrs];

Now the car is nicely labeled, as you can see in Figure 7-8.

Figure 7-8: Now everyone in town will know when I’m riding around.

You can find more attribute types in the header file NSAttributedString.h.
You’ll find this file in the Project navigator by opening the Frameworks folder
in your project, then opening Other Frameworks, and finally the AppKit.
framework and its Headers folder.

Drawing images
In addition to letting you draw shapes and lines, Cocoa gives you a class,
NSImage, which you can use to draw images on your views. NSImage
will read in image data from an image file within your project. You can
easily add an image file to your project simply by dragging the file from
the Finder into the Project navigator in Xcode. In Figure 7-9, you can see
the result of my doing this with a photo of another Dummies book, named
BlackBerryForDummes.JPG.

200 Part II: A View to an App

Figure 7-9: Drag and drop an image file into your project so you can pull it into your code.

When you want to draw this image in your custom view, you follow these steps:

 1. Create an NSImage using the image file:

NSImage* myImage = [NSImage imageNamed:@”BlackBerryForDummies.JPG”];

 2. Draw the image in the view by using the drawInRect:fromRect:ope
ration:fraction: method:

 [myImage drawInRect:dirtyRect fromRect:NSZeroRect
operation:NSCompositeCopy fraction:1.0];

 The drawInRect:fromRect:operation:fraction: method oper-
ates like this:

 • The image will be drawn within the rectangle specified by the
parameter passed as drawInRect:.

 This is the view’s rectangle passed into the drawRect: method.

 • The fromRect: parameter specifies which part of the image’s own
rectangle to draw.

 By specifying this parameter as NSZeroRect, you’re telling the
graphics code to draw the entire image.

 • The operation: parameter indicates the type of drawing opera-
tion to use.

201 Chapter 7: Drawing Advanced Views

 By choosing NSCompositeCopy, you are telling the graphics code
to copy the image.

 • The fraction: parameter specifies the amount of transparency to
use, with 1.0 being fully opaque and 0.0 fully transparent. Figure 7-10
shows a half-transparent image, midway between those values.

Figure 7-10: A half-opaque image of my previous Dummies book.

You can now display images in your apps, anywhere you can draw them.

Animating Views
Now comes the fun part. Everything you’ve done so far has been pretty
static, drawing lines and shapes and text and images. It’s time to add some
motion. The Cocoa framework includes features that give you the oppor-
tunity to provide your displays with animation. This package of features is
called Core Animation, similar in its scope to the Core Data part of Cocoa.
You can use it to implement very simple animations such as motions across
your views, or even more complicated transitions. I’m going to show you the
simplest of these, just to introduce the basic concept. (Reader, meet concept.
Concept, meet reader.) Here are the steps:

202 Part II: A View to an App

 1. Create a new Project using Xcode.

 As in the previous examples, you only need a basic project with no Core
Data.

 2. Add a new File to the project.

 This will be an NSView subclass named AnimationView.

 3. Select the MainMenu.xib file from the Project navigator.

 4. Add one Custom View to the window.

 I recommend enlarging the view as large as you prefer.

 5. Using the Size inspector, set all the Autosizing options to on.

 6. Using the Identity inspector, set the Class to AnimationView.

 7. Save your changes.

 You’ve now got a window which will create and add an AnimationView
as its main subview.

 8. Select AnimationView.h from the Project navigator.

 Modify the code to match that shown in Listing 7-4.

Listing 7-4: The methods and member variables of the AnimationView
class

//
// AnimationView.h
// BasicAnimation
//
// Created by Karl Kowalski on 4/10/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import <Cocoa/Cocoa.h>

#import <QuartzCore/QuartzCore.h>

@interface AnimationView : NSView
{
 NSImageView* m_imageView;
@private

}

- (void)animateView;

@end

203 Chapter 7: Drawing Advanced Views

 9. Save your changes.

 Your AnimationView class now has a new method and a new member
variable.

 10. Add an image to your project.

 I’ve added the BlackBerryForDummies.JPG file once more.

 11. Select AnimationView.m from the Project navigator.

 Modify the code to match that shown in Listing 7-5.

Listing 7-5: The implementation of the AnimationView

//
// AnimationView.m
// BasicAnimation
//
// Created by Karl Kowalski on 4/10/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import “AnimationView.h”

@implementation AnimationView

- (id)initWithFrame:(NSRect)frame
{
 self = [super initWithFrame:frame];
 if (self)
 {
 // set image view to the lower left corner
 NSRect imageRect = NSMakeRect(0.0, 0.0, 121.0, 162.0

);

 m_imageView = [[NSImageView alloc]

initWithFrame:imageRect];
 [m_imageView setImageScaling:NSScaleToFit];
 [m_imageView setImage:[NSImage imageNamed:@”BlackBerr

yForDummies.JPG”]];
 [self addSubview:m_imageView];
 // start animation in 3 seconds
 [self performSelector:@selector(animateView)

withObject:nil afterDelay:3.0];
 [self performSelector:@selector(animateView)

withObject:nil afterDelay:7.0];
 }

(continued)

204 Part II: A View to an App

Listing 7-5 (continued)

 return self;
}

- (void)animateView
{
 if ([m_imageView frame].origin.y < 0.50*[self frame].

size.height)
 {
 NSPoint upperRight;
 upperRight.x = [self frame].size.width - [m_imageView

frame].size.width;
 upperRight.y = [self frame].size.height - [m_

imageView frame].size.height;
 [[m_imageView animator] setFrameOrigin:upperRight];
 }
 else
 {
 NSPoint lowerLeft = CGPointMake(0.0, 0.0);
 [[m_imageView animator] setFrameOrigin:lowerLeft];
 }
}

- (void)dealloc
{
 [super dealloc];
}

- (void)drawRect:(NSRect)dirtyRect
{
 // Drawing code here.
}

 12. Save your changes.

 13. Build and run your app.

 You should see the image you imported into your project move from the
lower-left corner to the upper-right, and then back again a few seconds
later.

Congratulations — you’ve just animated an image in your view! The process,
all in AnimationView.m, went like this:

205 Chapter 7: Drawing Advanced Views

 1. During the initialization of AnimationView, you created an NSImage
View containing the NSImage from the image file you added to your
project.

 The size of the NSImageView was a scaled-down size of my
BlackBerryForDummies.jpg image.

 2. You told the AnimationView to execute a specific selector, animate
View, three seconds later.

 3. You told it to do it again seven seconds later, four seconds after the first
time.

 Initialization was then complete.

 4. In the animateView method, you checked for whether the origin of the
NSImageView was above or below the center point of the view:

 • If it was below, you created an NSPoint that would place the
NSImageView up into the upper-right corner.

 • If it was above, you created an NSPoint that placed the view back
down in the lower-left corner.

 5. You invoked the setFrameOrigin: method of the animator part of
the NSImageView.

 This is the agent that handles the animation of the NSImageView.

Every NSView object comes with a basic animation object called animator.
You can use this object to perform operations on the NSView, only the ani-
mator will spread the operations out over time. In the example just given,
the animator was told to set the origin of the NSImageView’s frame to be
either the lower-left (if it was already in the upper-right) or the upper-right
(if it was currently in the lower-left). The upper-right origin was calculated
to be the upper-right of the AnimationView minus the width/height of the
NSImageView, so that the entire image would be bound to the limits of the
AnimationView.

This is the most basic animation you can do with an NSView subclass. Now
you can put together apps that do more than just draw — you can make your
apps dance. The world of app animation is now at your fingertips.

206 Part II: A View to an App

Part III
Focus on the User

In this part . . .

Y
our app’s primary purpose is to provide your users
with a means of improving their lives. If your app is

making users’ lives better, more users will buy your app.
This part gives you the foundation of code to support
your users while they use your app. You’ll first discover
how to store the data your users provide to your app to
make sure that your app retains the important data in
the best way possible. You’ll also learn how to keep your
users in control of your app, even when your app is doing
something lengthy and laborious. And the last chapter
of this part introduces you to delivering printed and PDF
document output for your users to share.

Chapter 8

Maintaining Your Users’ Data
In This Chapter
▶ Storing data in files

▶ Storing data in a database

▶ Storing your users’ preferences

▶ Exporting data to a text file

Y
our app is going to take all kinds of input from the users who download
it. Additionally, your users will expect your app to maintain this data

because that’s what computers do. Your app has to keep track of the impor-
tant pieces of information that your users provide.

Apple provides a number of options for storing and retrieving any data that
your app may need to store. Your app may not have to store every action a
user takes, but if necessary, you can do that, too, up to the limits of available
storage space. In this chapter, I show you the options you have for storing
data, giving you the information you’ll use to decide the best approach for
keeping your users’ information safe and sound. I also give you an example
of how to output your app’s data to a generic text format, so that your users
can make use of their data in other applications.

Analyzing the Data
Your app will likely use a variety of data, for all the different activities your
app allows users to perform. A word-processing app can maintain the follow-
ing pieces of information for an author writing a chapter in a book:

 ✓ Strings of alphanumeric text, ordered in paragraphs

 ✓ Text formatting information

 ✓ Images

 ✓ Footnotes

 ✓ Hyperlinks

210 Part III: Focus on the User

Your app has to manage the important data your users enter into your app.
My application is a logbook that helps diabetics record the important infor-
mation they need to manage their condition. This data includes

 ✓ The date and time of the log entry

 ✓ The blood glucose level value, if any

 ✓ The insulin dosage, if any

 ✓ The amount of carbohydrates to be consumed, if any

 ✓ The amount of exercise, if any

 ✓ Any notes to help a health care provider better understand what’s
happening

This data is the bare minimum of information that a diabetic log should con-
tain, and so this data will dictate the structure of the Objective-C class to
maintain this data. This chapter shows how to organize the data your app
will manage and how to save this data to and retrieve this data from storage.

Storing the Data
You’re going to create an app in this chapter similar to my DiabeticPad app
that allows users to enter data into a software version of a diabetic’s logbook.
Your app will provide an interface for users to enter their data and store it
first in memory while the app is running and save it into a file of their choos-
ing on their Mac. When your app is launched again, it will read data from
their file into memory so it’s ready for your users to add more log entries and
review and edit what they’ve entered previously. Your first task is to create
an app to support the data entry, storage, and retrieval goals:

 1. Launch Xcode and click the Create a new Xcode project button on the
opening screen.

 2. Select Application from the Mac OS X pane and Cocoa Application as
the project template and click the Next button.

 3. Give the project a name. Make sure the Create Document-Based
Application option is unchecked, and make sure the Use Core Data
option is unchecked. Click the Next button.

 I’ve used DiabeticPad as the name for my app.

 4. Choose an appropriate location for Xcode to store this project, and
click the Create button.

 Xcode will create a basic project with an app delegate class ready for
you to add data classes to.

211 Chapter 8: Maintaining Your Users’ Data

Now you’ve got a basic project to use for the next section, where you’ll add a
class to hold the basic information for each entry in the logbook.

Creating a data class
Create your own class for this data storage as follows:

 1. In the Project navigator, right--click the DiabeticPad folder icon and
choose New Group.

 A new folder named “New Group” appears as a subfolder under the
DiabeticPad folder. I named mine Data. I added this new Group because I
prefer to arrange modules that belong together within some sort of con-
tainer inside the project. Note, however, that Xcode does not create an
actual folder in the file system.

 2. Right-click the new folder and choose New File.

 The process of creating a new class within the project begins, and Xcode
organizes the project with the header and source files for the class
grouped in the Data folder.

 3. Select Cocoa from the left pane under Mac OS X.

 4. Select Objective-C class from the top-right pane and then click Next, as
shown in Figure 8-1.

Figure 8-1: Creating a new class for your project.

212 Part III: Focus on the User

 5. Select NSObject for the Subclass Of field and then click Next.

 Your new data class will be a subclass of NSObject because it’s just
a basic data class and doesn’t need additional features or functional-
ity. Xcode asks you to name your new class, where to store it in the file
system, and which Group it should be placed in.

 6. Keep the defaults, change the name to DPData.m, and then click Save.

 The main Xcode project window appears (as shown in Figure 8-2), and
the DPData header and source files are both selected in the left pane.
The source file contents display in the text editor, so you’re ready to
begin editing these files.

Figure 8-2: Xcode displays the new class you just created.

The two files that Xcode created are fairly empty. Because this class is a
subclass of NSObject, Xcode can add little else automatically — that’s your
job. You will add the purple lines shown in Listing 8-1 to the class header file,
DPData.h:

213 Chapter 8: Maintaining Your Users’ Data

Listing 8-1: The DPData.h file for the diabetic logbook

//// DPData.h
// DiabeticPad
//
// Created by Karl Kowalski on 1/21/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved
//
#import <Foundation/Foundation.h>

@interface DPData : NSObject <NSCoding>
{
 // the following items are the class member variables
@private
 NSDate* m_timestamp;
 NSUInteger m_bgLevel;
 NSUInteger m_carbs;
 NSString* m_exercise;
 NSString* m_notes;
 NSMutableArray* m_insulins;
}

@property(readwrite,copy) NSDate* m_timestamp;
@property(readwrite) NSUInteger m_bgLevel;
@property(readwrite) NSUInteger m_carbs;
@property(readwrite,copy) NSString* m_exercise;
@property(readwrite,copy) NSString* m_notes;
@property(readwrite,copy) NSMutableArray* m_insulins;

- (void)initialize;
// sets
// NSCoding methods
- (id)initWithCoder:(NSCoder*)inCoder;
- (void)encodeWithCoder:(NSCoder*)inCoder;

@end

The last member variable, m_insulins, is declared a pointer to an object of
the class NSMutableArray. This class will handle the storage of NSString
objects that represent an insulin type and the amount of insulin of that type.
In DiabeticPad, I use NSString objects to hold this information, and the
actual representation of this data is up to the app’s user.

Notice the NSCoding protocol declaration on the @interface line. This dec-
laration tells Xcode that this class will implement archiving. Archiving is the
process of putting the data contained in this object into a form that is easy
to store in a file. I’ve never tried to find out what the archived version of my

214 Part III: Focus on the User

data looks like; I just trust that Mac OS X will do the right thing and I’ve never
been disappointed. Mac OS X expects that a class declaring itself to support
the NSCoding protocol will provide two methods, initWithCoder and
encodeWithCoder, and I’ve added them to the end of the list of methods in
the DPData class.

The source code module that represents a logbook entry is shown in
Listing 8-2.

Listing 8-2: The contents of DPData.m, the source code for diabetic
log data

//
// DPData.m
// DiabeticPad
//
// Created by Karl Kowalski on 1/21/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import ”DPData.h”

// these are the key strings for archiving
NSString* ARCHIVE_DPDATA_NOTES = @”dpdata_notes”;
NSString* ARCHIVE_DPDATA_BGLEVEL = @”dpdata_bglevel”;
NSString* ARCHIVE_DPDATA_TIMESTAMP = @”dpdata_timestamp”;
NSString* ARCHIVE_DPDATA_INSULINS = @”dpdata_insulins”;
NSString* ARCHIVE_DPDATA_CARBS = @”dpdata_carbs”;
NSString* ARCHIVE_DPDATA_EXERCISE = @”dpdata_exercise”;

@implementation DPData

@synthesize m_timestamp;
@synthesize m_carbs;
@synthesize m_exercise;
@synthesize m_notes;
@synthesize m_bgLevel;
@synthesize m_insulins;

- (id)init
{
 self = [super init];
 if (self)
 {
 // perform any needed initialization
 [self initialize];
 }

215 Chapter 8: Maintaining Your Users’ Data

 return (self);
}

- (void)initialize
{
 // initialize the timestamp to now
 m_timestamp = [NSDate date];
 // initialize the other objects to their default values
 m_bgLevel = 0;
 m_notes = @””; // empty string for notes
 m_carbs = 0;
 m_exercise = @””; // empty string for exercise
 // since there are no insulin dosages to report,
 // no need to setup anything
}

- (id)initWithCoder:(NSCoder*)inCoder
{
 // since we’re being called with an NSCoder
 // that means we’re being UNarchived
 // so we do not call initialize
 m_timestamp = [inCoder decodeObjectForKey:ARCHIVE_DPDATA_

TIMESTAMP];
 m_notes = [inCoder decodeObjectForKey:ARCHIVE_DPDATA_

NOTES];
 m_bgLevel = [inCoder decodeIntegerForKey:ARCHIVE_DPDATA_

BGLEVEL];
 m_insulins = [inCoder decodeObjectForKey:ARCHIVE_DPDATA_

INSULINS];
 m_exercise = [inCoder decodeObjectForKey:ARCHIVE_DPDATA_

EXERCISE];
 m_carbs = [inCoder decodeIntegerForKey:ARCHIVE_DPDATA_

CARBS];
 return (self);
}

- (void)encodeWithCoder:(NSCoder*)inCoder
{
 // send the data into the NSCoder for archiving
 [inCoder encodeObject:m_timestamp forKey:ARCHIVE_DPDATA_

TIMESTAMP];
 [inCoder encodeObject:m_notes forKey:ARCHIVE_DPDATA_

NOTES];
 [inCoder encodeInteger:m_bgLevel forKey:ARCHIVE_DPDATA_

BGLEVEL];
 [inCoder encodeObject:m_insulins forKey:ARCHIVE_DPDATA_

INSULINS];
 [inCoder encodeObject:m_exercise forKey:ARCHIVE_DPDATA_

EXERCISE];

(continued)

216 Part III: Focus on the User

Listing 8-2 (continued)

 [inCoder encodeInteger:m_carbs forKey:ARCHIVE_DPDATA_
CARBS];

}

- (void)dealloc
{
 if (nil != m_timestamp)
 {
 [m_timestamp release];
 }
 if (nil != m_notes)
 {
 [m_notes release];
 }
 if (nil != m_insulins)
 {
 [m_insulins release];
 }
 if (nil != m_exercise)
 {
 [m_exercise release];
 }
 [super dealloc];
}
@end

This class, DPData, is the basic block of information that the DiabeticPad
app will maintain for my users. A DPData object will carry the information
for a logbook entry, which users may create to record any of the following
situations:

 ✓ A blood glucose measurement

 ✓ An insulin injection

 ✓ A meal

 ✓ Pre-exercise information

 ✓ Any information regarding health that might be useful to record

Records in the logbook will be maintained within a collection of DPData
objects while the application is running. Between runs, my application will
have to store this data within the file system of the Macintosh the app is
running on. My users are effectively making a recording of their diabetic

217 Chapter 8: Maintaining Your Users’ Data

health over time so they and their health care professionals can review this
information later. Your app may do something as simple as keep track of
a player’s high score in a maze game or maintain accounting records for a
quick-and-easy bookkeeping application. Almost all apps accept some form
of input from their users. Users expect the app to keep a record of this
input, and they rarely enjoy typing information into your app more than
once.

The DPData class
The logbook information listed above can be found as member variables
within the DPData class. If you look at the header file again in Listing 8-1, you
will find the following data types:

 ✓ NSDate, for the date and time of the logbook entry.

 ✓ NSUInteger, for the blood glucose level.

 Glucose meters display this value as a positive number. I chose to use a
data type that represents an unsigned (always zero or greater) integer. I
also used this to hold the value for carbohydrates in an upcoming meal.

 ✓ NSMutableArray, to store NSString objects that represent the insulin
type and dosage amount.

 A diabetic can inject one or more different types of insulin at once, and
it is important to keep track of both the kind of insulin and the amount.
The user will add this information as a string of text, such as “Regular
Insulin 12 units” or “R12,” whatever is most preferable for them.

 ✓ NSString, for any text notes. An NSString can hold nearly an unlim-
ited amount of text but the user interface of my app restricts the amount
of text to a manageable 1,024 characters. Additionally, I use an NSString
to hold information about any exercise.

 Why that number? I didn’t want to restrict the user to some overly small
amount, like 256 characters, which would limit the entry to 2–3 sen-
tences. I don’t believe users will write a book’s worth of information, but
I prefer they have a decent amount of space to put down any informa-
tion that might be useful. The app only stores the characters that a user
enters, so no memory is wasted.

The DPData class also provides methods that allow for the getting and set-
ting of these values. This is accomplished through the use of the @property
and @synthesize directives.

218 Part III: Focus on the User

The DPData class supports the archiving and un-archiving of its data:

 ✓ When it’s time to store my app’s data in a more permanent form, such as
onto the Mac’s hard drive or other permanent storage, the application
will archive the data into a stream of bytes that can then be written into
a file on the disk.

 ✓ When the application launches and wants to get the information from
the file, the un-archiving process is executed.

The NSCoder object provides methods that allow basic data types, such as
integers and floating-point numbers, to be encoded and decoded. Best of all,
classes such as NSString and NSArray implement the NSCoding protocol
themselves, and you can see that my code simply hands those member vari-
ables into the NSCoder object.

Storing data in files
Mac OS allows apps to keep users’ data in files. Nearly every application run-
ning on a Macintosh uses files to store information so that the information is
available the next time the app runs. Your users might keep their computers,
and your app, running 24 hours a day, seven days a week; therefore, your app
would never need to store its data in a file because the information would
always be present in memory. However, the app or the computer will eventu-
ally shut down, and your users are expecting the information they entered to
be ready to go the next time they launch your app.

The first version of my DiabeticPad app stores the logbook records in a
single file. Using one file to store all the data makes it very easy for users
to make copies of the file and keep the records stored as a backup, such as
burning it onto a writable disc. The one limitation with using a single file to
store all the data is that the larger the file becomes, the longer it takes to
read all the data into memory when the app starts up. I discuss ways of alle-
viating this problem in this section and the next.

Storing and retrieving data
I cover the process that stores the information first, so you know what to
expect when I cover the process that retrieves that information. I find it
easier to visualize the process of un-archiving if I know how data is archived.

I decided I didn’t want to require a user to save the information because
usability studies have convinced me the best way to ensure that the informa-
tion is saved is to just do it, and users will be able to delete any information
they later decide is unwanted. I provide a Save menu item, but the data is
saved when the user quits my application, too.

219 Chapter 8: Maintaining Your Users’ Data

When the user closes my app or chooses File➪Save, the application behaves
as follows:

 1. The app uses the NSKeyedArchiver class, providing it with
the NSArray that contains all the available DPData objects. An
NSKeyedArchiver class is a subclass of NSCoder and is the repository
for all of the data to be written into a file.

 The NSKeyedArchiver class comes with a class method (so there’s
no need to allocate an NSKeyedArchiver object) that takes in any
NSObject subclass. The result is an NSData object containing all the
data from all the DPData objects.

 2. The app creates a file in the file system, at a location the user specifies.

 3. The app writes all the data in the NSData object into the file. The app
closes the file when the last byte is written.

Figure 8-3 shows this process visually.

NSArray
containing

DPData objects

NSData
archive

Data
File

Archive
each

DPData

NSKeyedArchiver

Figure 8-3: Data flowing from the app to a file.

I decided I didn’t want to require a user to find the file that stores all the
information. Most users will only want to use one data file for all their log
readings. I provide an Open menu item in case they want to review a different
set of data. However, when a user launches my app or tells my app what file
to open, the application behaves as follows:

220 Part III: Focus on the User

 1. The app checks for whether the expected data file is available.

 If the app cannot find this file, no further action is taken. The app cre-
ates a new file when it’s time to save.

 2. The app attempts to read the data from the file.

 The entire contents of the file are read into an NSData object.

 3. Using the NSData object, the app creates the array of DPData objects
using the NSKeyedUnarchiver class.

 Like the NSKeyedArchiver class, the NSKeyedUnarchiver class
comes with a class method for retrieving information from an NSData
object and returning the original object — the NSArray containing the
DPData objects — that was used in the archive process above. The
NSKeyedUnarchiver reads the NSData object filled with the contents
of the data file and then returns an NSArray object containing all the
DPData objects that were stored when the file was created. Figure 8-4
shows a visual representation of this data retrieval process.

In Figure 8-5 you can see the general flow of operations the app executes
when reading data from a file and writing data out to a file.

NSData
archive

NSArray
containing

DPData objects

Data
File

Extract
DPData from

Archive

NSKeyedUnarchiver

Figure 8-4: Data flowing from a file into the app.

User Launches
App

App Reads
Data File

The App opens its
data �le, and loads the

information into
DPData objects

Every new
logbook entry
creates a new
DPData object

When the user
has �nished, the
app stores all the
DPData objects
back in the �le

User Adds
New Data

User Quits App App Saves
Data to File

Figure 8-5: Flow of operations an app follows for reading and writing data with files.

221 Chapter 8: Maintaining Your Users’ Data

Slowing down the app
As I mention above, reading all the data in from one file when the app starts up
and then writing it all back out to one file when the app finishes takes more and
more time as more and more logbook entries are added each day. I normally
add at least seven entries each day, two each for breakfast, lunch, and dinner,
and one more before bed (sometimes more if my day isn’t normal). Information
like this is helpful for my health care professionals and me to understand
what’s happening. Seven readings a day is approximately 2,500 readings per
year. The file just keeps getting bigger. Current Mac hardware can support
reading and writing this amount of data fairly rapidly, so the need to speed
things up is not desperate. However, you should always consider how well
your app will handle larger amounts of data. For example, I could extend this
app to record the logbook data of multiple users in a clinic or a research lab.

The following are some ways to manage this problem:

 ✓ Store the data in multiple files. This reduces the amount of time it takes
to read and write the data because individual files are smaller than one
file containing everything.

 This is the easiest to implement. The disadvantage to this approach is
that the user is required to specify which file to read in. The app can
name the separate files using the date and provide a visual interface
showing the dates for which information was recorded. This approach
requires more effort for implementing the code and more code, which
means increased potential for errors to sneak in.

 ✓ Store the data in one file, but load the data in a lazy fashion. For
instance, the app could write the data into the file with the most recent
data at the beginning and then load the most recent ten items for the
user to interact with. When the user wants to see older logbook entries,
the app can load another ten. This loads the data based on the user’s
search through the records; if the user is only interested in adding
another logbook entry, only the first ten entries need to be read in.

 This approach requires writing the data back out to the single file, which
makes the app more complicated.

 ✓ Store the data in one file, but load it as a background process. The
user operates under the illusion that the app is responsive to their con-
trol while the process retrieves all the available records similar to the
original approach.

 This approach causes the app to take a long time to write the data back
to the file.

 ✓ Use Core Data to manage the information. Apple provides the Core
Data framework to assist in developing applications that manage sets of
user data.

222 Part III: Focus on the User

The best way to manage data in a Macintosh app is to use the Cocoa frame-
work known as Core Data.

Using Core Data to store information
Many applications perform the following operations:

 ✓ Maintaining an array of objects that group data

 ✓ Writing the data for those objects to a file for storage

 ✓ Reading the data from the file storage

 ✓ Recreating the objects in memory

The DiabeticPad app follows this same pattern. Someone at Apple decided
to provide a framework within Mac OS to make this generalized set of opera-
tions easier for developers to implement, so that these kinds of apps can be
made quickly so you can spend your development time wisely on features
and functionality that are more important.

Cocoa includes a framework called Core Data that allows you to give your
app the capabilities of data management similar to those provided by apps
that rely on databases. A database is a set of data that contains records of
information stored in tables. A record is a collection of different pieces of
information bundled together (such as the set of member variables that make
up DPData objects). A set of records in a database is a table. Using Core Data
allows you to set up a description of the record that you want Core Data to
maintain, and Core Data does the grunt-level work for storing and retrieving
the structure of the information you describe. Core Data may use a database
to support the needs of your application, but you don’t have to worry about
how Core Data does the job.

 Cocoa also provides the Core Data framework to iOS, so you can take what
you learn here to develop Core Data apps for iOS too.

A database holds data, plain and simple. For the DiabeticPad app, this data
is in several tables, which consist of rows and columns like a spreadsheet,
as shown in Figure 8-6. The columns represent individual data values, called
fields, which contain a specific type of data. Each row of fields in the table is
called a record of data. Core Data provides a set of classes that enable your
app to manage and manipulate this data very easily.

223 Chapter 8: Maintaining Your Users’ Data

Figure 8-6: The logbook entries of DiabeticPad can be visualized as
records in a spreadsheet.

A CoreData version of DiabeticPad
A Mac application built to use Core Data is a little different from a regular
application — a few extra classes are necessary to support the interaction
between the Core Data components and the visual interface for displaying
and manipulating the data stored by your application. You need to start a
new project with the Core Data framework enabled to gain its benefits:

 1. In Xcode, choose File➪New ➪New Project.

 The New Project Assistant screen displays.

 2. Select Application under Mac OS X in the left pane, select Cocoa
Application in the top-right pane, and then click Next.

 3. Set the Product Name to CoreDataDiabeticPad to distinguish it from
the app that doesn’t use Core Data.

 4. Check the Create Document-Based Application and Use Core Data
checkboxes.

 5. Set the Document Class to CoreDataDiabeticPadDoc, set the
Document Extension to be dpdoc, and then click Next.

 6. Select a location for your new project and Click the Create button.

 Xcode creates the project for you, which should look similar to that
shown in Figure 8-7.

You can see some of the differences between a Core Data–based app and a
normal Document-based app.

 ✓ A new file, CoreDataDiabeticPadDoc.xcdatamodeld, is added to
the project and is visible in the Project navigator.

 Here you tell Core Data about the information it’s responsible to
maintain.

224 Part III: Focus on the User

Figure 8-7: The beginnings of a beautiful Core Data experience.

 ✓ Inside CoreDataDiabeticPadDoc.h, the class CoreDiabeticPadDoc
inherits from a parent class called NSPersistentDocument instead of
NSDocument.

 NSPersistentDocument is a subclass of NSDocument, so your app
gets all the same features and behaviors available in that class.

 ✓ The inclusion of CoreData.framework in your project’s Frameworks
group.

 A Core Data application uses this library of code to perform operations
on Core Data–based classes.

When I started writing the Core Data–based version of DiabeticPad, I
really enjoyed working with the model file, CoreDataDiabeticPadDoc.
xcdatamodeld, because the Xcode editor is very easy to use. Luckily, the
CoreDataDiabeticPadDoc app only has one type of record, but apps that are
more complex can make use of Core Data’s ability to create real relational
databases complete with records in one table referencing records in another.

225 Chapter 8: Maintaining Your Users’ Data

Creating the DiabeticPad logbook record
The only record in DiabeticPad is used to hold the same data used in the
DPData class in the beginning of this chapter. The Core Data classes will take
care of the following interactions with the records it will store:

 ✓ Creating new log entries

 ✓ Updating log entries with data

 ✓ Deleting log entries

 ✓ Archiving the log entries to a file

 ✓ Retrieving the log entries from a file

I use record to refer to the grouping of log entry data; Core Data uses the term
entity when referring to the representation of the data in the data model.
Your next task is to give Core Data and your app a model of the data your
app will be working with. Here’s how to create the logbook entry entity for
the CoreData DiabeticPad app.

 1. Select the CoreDataDiabeticPadDoc.xcdatamodeld item in the
Project navigator.

 The CoreData entity editor appears, with an empty display, as shown in
Figure 8-8.

 2. Click the Add Entity button at the bottom of the screen.

 An entry appears below the ENTITIES label.

 3. Rename the entry to LogEntry.

 All entity objects must begin with an uppercase letter.

 4. In the Attributes panel, click the + button.

 An attribute called attribute with Undefined as its type is created.

 5. Rename this attribute timestamp and set its type to Date.

 You’ve created the timestamp attribute for the logbook entry entity.

 6. Add the attributes listed in Figure 8-9.

 The creation of the logbook entry entity is complete.

That was almost too simple. Of course, you’re not finished yet. You need to
link this entity into your user interface to give your users something to work
with.

226 Part III: Focus on the User

Figure 8-8: Ready to create an entity in a Core Data data model.

Figure 8-9: The complete attributes of the logbook entry entity.

227 Chapter 8: Maintaining Your Users’ Data

Creating the CoreDataDiabeticPad user interface
After you create the structure of a CoreData entity, you need to add the UI
components that support a user interface that allows your users to

 ✓ Create new entries

 ✓ Navigate through existing entries

 ✓ Edit entries

 ✓ Delete entries

Here’s how:

 1. Select CoreDataDiabeticPadDoc.xib from the Project navigator
and show the Utilities view, if it’s not already visible.

 2. Remove the default “Your document contents here” label.

 You won’t need this. Figure 8-10 shows CoreDataDiabeticPad’s docu-
ment window in Interface Builder.

 3. From the Object Library, drag an Array Controller object onto the
object pane to the left of the window.

 This creates an instance of the Array Controller when the XIB file is
loaded. The Array Controller is used to manage the objects held in the
CoreData in-memory storage.

Figure 8-10: The CoreDataDiabeticPadDoc.xib file in Interface Builder.

228 Part III: Focus on the User

 4. Click the Show Bindings inspector button. Click the disclosure trian-
gle next to the Managed Object Context item in the Parameters pane.
Click the Bind to: checkbox and select File’s Owner from the drop-
down menu.

 Figure 8-11 shows the Parameters section of the Bindings inspector for
the Array Controller. In this step you are binding the Array Controller
object that gets created when the XIB file for the Document window is
created, to the File’s Owner object associated with this XIB file. In this
case, the File’s Owner will be a CoreDataDiabeticPadDoc object.

 In the next steps, you have these UI components to add to the window:

 • Text Fields to input and edit according to the information in each
logbook record

 • Labels to describe the data presented in the Text Fields

 • Buttons to add, remove, and use to navigate through the records
maintained by the app

Figure 8-11: Use the Bindings inspector to bind your Array
Controller to the NSPersistentDocument object that is the
owner of this XIB file.

 5. Drag a Label from the Object Library and drop it onto the window.
Change the Label’s text to Date & Time: and position it as shown in
Figure 8-10.

229 Chapter 8: Maintaining Your Users’ Data

 6. Drag a Text Field from the Object Library and drop it onto the window
to the right of the Date & Time: Label, as shown in Figure 8-10.

 7. Repeat Steps 5 and 6 for the Labels and Text Fields corresponding to
Blood Glucose, Carbohydrates, Exercise, Insulin Dosage, and Notes.

 I have placed the components in my window as shown in Figure 8-12. I
made the Notes Text Field larger than the others to allow users to see a
larger amount of text, since the Notes will usually hold more information.

 8. Drag a Button from the Object Library and drop it onto the window.
Position the button in the upper-right corner and change its text to
Add New.

 9. Drag a Button from the Object Library and drop it onto the window.
Position the button in the lower-right corner and change its text to Next.

 10. Drag a Button from the Object Library and drop it onto the window.
Position the button in the lower-left corner and change its text to
Previous.

 11. Drag a Button from the Object Library and drop it onto the window.
Position the button halfway between and slightly above the Previous
and Next Buttons. Change its text to Remove.

 Your window should look similar to that shown in Figure 8-12. You’ve
added the UI components for entering and editing data for a logbook
record, and next you’re going to connect these components to data and
actions in your app.

Figure 8-12: The document window that displays for the user’s
diabetic logbook entries.

230 Part III: Focus on the User

 12. Click the Show the Assistant editor button to display the
CoreDataDiabeticPadDoc.h file alongside Interface Builder.

 13. Control-drag from the Text Field next to Date & Time into the
CoreDataDiabeticPadDoc.h file in the Assistant editor to a point
between the closing brace } and the @end directive. In the pop-up
window, set the Name to m_timestamp and click the Connect button.

 14. Repeat Step 13 for the Blood Glucose, Carbohydrates, Exercise,
Insulin Dosage, and Notes Text Fields.

 I set the names to m_bgLevel, m_carbs, m_exercise, m_insulin
Dosages, and m_notes, respectively. These names are similar to those
you entered for the attributes of the LogEntry entity in the Core Data
model.

 15. Control-drag from the Previous Button into the CoreDataDiabetic
PadDoc.h file in the Assistant editor to a point between the closing
brace } and the @end directive. In the pop-up window, set the Name
to m_previous and click the Connect button.

 16. Control-drag from the Next Button into the CoreDataDiabetic
PadDoc.h file in the Assistant editor to a point between the closing
brace } and the @end directive. In the pop-up window, set the Name to
m_next and click the Connect button.

 17. Control-drag from the Remove Button into the
CoreDataDiabeticPadDoc.h file in the Assistant editor to a point
between the closing brace } and the @end directive. In the pop-up
window, set the Name to m_remove and click the Connect button.

 You’ve now created and connected the member variables for your
window to your CoreDataDiabeticPadDoc class, which allows you to
modify them from code within your class source code. Your next task is
to connect the Buttons to actions.

 18. Control-drag from the Add New button to the Array Controller in
Interface Builder’s Dock. Choose the add: method from the pop-up
list.

 When the user clicks the Add New button, the Array Controller will add
a new Core Data LogEntry object into its array.

 19. Control-drag from the Previous button to the Array Controller in
Interface Builder’s Dock. Choose the selectPrevious: method from
the pop-up list.

 20. Control-drag from the Next button to the Array Controller in Interface
Builder’s Dock. Choose the selectNext: method from the pop-up list.

231 Chapter 8: Maintaining Your Users’ Data

 21. Control-drag from the Remove button to the Array Controller in
Interface Builder’s Dock. Choose the remove: method from the
pop-up list.

 Now your window’s UI components are connected to your app and to
the Array Controller that will be created when the document window
is displayed. You now need to set the bindings of the Text Fields to
display the data available from the current logbook entry in the Array
Controller. Follow Steps 22-27.

 22. Select the Date & Time text field in the window and click the Show
the Bindings inspector button. Click the disclosure triangle next to
Value in the Value pane. Click the Bind To: checkbox and select Array
Controller from the drop-down menu. Enter timestamp into the
Model Key Path field.

 23. Select the Blood Glucose text field in the window. In the Bindings
inspector, click the Bind To: checkbox and select Array Controller
from the drop-down menu. Enter bgLevel into the Model Key Path
field.

 24. Select the Carbohydrates text field in the window. In the Bindings
inspector, click the Bind To: checkbox and select Array Controller
from the drop-down menu. Enter carbs into the Model Key Path
field.

 25. Select the Exercise text field in the window. In the Bindings inspec-
tor, click the Bind To: checkbox and select Array Controller from the
drop-down menu. Enter exercise into the Model Key Path field.

 26. Select the Insulin Dosage text field in the window. In the Bindings
inspector, click the Bind To: checkbox and select Array Controller
from the drop-down menu. Enter insulinDosages into the Model
Key Path field.

 27. Select the Notes text field in the window. In the Bindings inspector,
click the disclosure triangle next to the Data parameter. Click the Bind
To: checkbox and select Array Controller from the drop-down menu.
Enter notes into the Model Key Path field.

 All UI components that display information about a logbook entry
are now bound to data in the Array Controller’s selected LogEntry.
Next, you bind buttons to the Array Controller so that the buttons are
enabled or disabled depending on the selected LogEntry in the Array
Controller.

232 Part III: Focus on the User

 28. Select the Remove button in the window. In the Bindings inspec-
tor, click the disclosure triangle next to the Enabled parameter in
the Availability pane. Click the Bind To: checkbox and select Array
Controller from the drop-down menu. Enter canRemove in the
Controller Key field.

 29. Select the Previous button in the window. In the Bindings inspec-
tor, click the disclosure triangle next to the Enabled parameter in
the Availability pane. Click the Bind To: checkbox and select Array
Controller from the drop-down menu. Enter canSelectPrevious in
the Controller Key field.

 30. Select the Next button in the window. In the Bindings inspector,
click the disclosure triangle next to the Enabled parameter in the
Availability pane. Click the Bind To: checkbox and select Array
Controller from the drop-down menu. Enter canSelectNext in the
Controller Key field.

 Your Next, Previous, and Remove buttons are now enabled or disabled
based on the selected item from the Array Controller. For instance,
if the selected logbook entry is the very first in the set, the Previous
button will be disabled; if the selected entry is the very last in the set,
the Next button will be disabled. And if there are no entries in the Array
Controller, the Remove button will be disabled.

 One more step is needed: binding the Array Controller object to the
File’s Owner object so that the Array Controller knows where to find the
bindings for the UI components. Each UI component is looking to the
Array Controller for its information; you have to set the Array Controller
to retrieve that information from the File’s Owner. You do so in Step 31.

 31. Select the Array Controller in the Interface Builder Dock. In the
Bindings inspector, click the disclosure triangle next to the Managed
Object Context parameter in the Parameters pane. Click the Bind To:
checkbox and select File’s Owner from the drop-down menu. Set the
Model Key Path to managedObjectContext.

 You get a look at what a managed object context is in the next sequence
of steps. For now, setting this value is all that matters.

All the elements of the user interface are now bound to the Core Data entity
that is currently selected within the Array Controller.

Some of the layout decisions I made include these:

 ✓ All the text fields were sized identically, except for the Notes field.

 ✓ The Previous button is on the left, which is usually “the Past.”

233 Chapter 8: Maintaining Your Users’ Data

 ✓ The Next button is on the right, which is usually “the Future.”

 ✓ The Add New button is in the upper right, separated from the other but-
tons so that there’s less chance of a mistake.

 ✓ The Remove button is below the data, but above the Previous and Next
buttons, to ensure less chance of clicking it accidentally.

You need to do one more thing to get this sample application running cor-
rectly: modify some of the code in CoreDataDiabeticPadDoc to force
the Array Controller to bind to the Managed Object Context owned by the
CoreDataDiabeticPadDoc object. A Managed Object Context is respon-
sible for managing a collection of data objects within a Core Data application.
In the CoreDataDiabeticPad application, the CoreDataDiabeticPadDoc
object comes with a reference to an NSManageObjectContext object,
which is where you’ll connect your Array Controller to provide it with log-
book objects to control. To set your app’s Array Controller to manage the set
of LogEntry entities, follow these steps:

 1. Select CoreDataDiabeticPadDoc.xib in the Project navigator.
Click the Show the Assistant editor button to display the Assistant
if necessary.

 2. Control-drag from the Array Controller object in the Interface Builder
Dock into the CoreDataDiabeticPadDoc.h file in the Assistant
editor, to a point just before the end brace }. Set the Name to m_
arrayController in the pop-up window and click the Connect
button.

 Your CoreDataDiabeticPadDoc.h file should look similar to the code
shown in Listing 8-3. And you’ve now connected the Array Controller
object created for the window to the NSArrayController object in the
CoreDataDiabeticPadDoc object.

 3. Select CoreDataDiabeticPadDoc.m in the Project navigator.

 You can click the Show the Standard editor to remove the Assistant
editor and give yourself lots of space to code.

 4. Add the code in purple shown in Listing 8-4.

 5. Build your app.

When you implement the windowControllerDidLoadNib: method, its
code will tell the NSArrayController object to use the CoreData
DiabeticPadDoc’s NSManagedObjectContext object as the source of
the objects to be used in the array. In addition, the NSArrayController
will perform a fetch operation through its managed object context object to
retrieve the entities stored by Core Data.

234 Part III: Focus on the User

Listing 8-3: CoreDataDiabeticPadDoc.h with an NSArrayControllerObject
reference

//
// CoreDataDiabeticPadDoc.h
// CoreDataDiabeticPad
//
// Created by Karl Kowalski on 3/19/11
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import <Cocoa/Cocoa.h>

@interface CoreDataDiabeticPadDoc : NSPersistentDocument
{
@private
 NSTextField *m_timestamp;
 NSTextField *m_bgLevel;
 NSTextField *m_carbs;
 NSTextField *m_exercise;
 NSTextField *m_insulinDosages;
 NSTextField *m_notes;
 NSButton *m_previous;
 NSButton *m_next;
 NSButton *m_remove;
 IBOutlet NSArrayController* m_arrayController;
}
@property (assign) IBOutlet NSTextField *m_timestamp;
@property (assign) IBOutlet NSTextField *m_bgLevel;
@property (assign) IBOutlet NSTextField *m_carbs;
@property (assign) IBOutlet NSTextField *m_exercise;
@property (assign) IBOutlet NSTextField *m_insulinDosages;
@property (assign) IBOutlet NSTextField *m_notes;
@property (assign) IBOutlet NSButton *m_previous;
@property (assign) IBOutlet NSButton *m_next;
@property (assign) IBOutlet NSButton *m_remove;

@end

Listing 8-4: CoreDataDiabeticPadDoc.m using its NSArrayControllerObject
reference

//
// CoreDataDiabeticPadDoc.m
// CoreDataDiabeticPad
//
// Created by Karl Kowalski on 3/19/11

235 Chapter 8: Maintaining Your Users’ Data

// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import “CoreDataDiabeticPadDoc.h”

@implementation CoreDataDiabeticPadDoc

@synthesize m_timestamp;
@synthesize m_bgLevel;
@synthesize m_carbs;
@synthesize m_exercise;
@synthesize m_insulinDosages;
@synthesize m_notes;
@synthesize m_previous;
@synthesize m_next;
@synthesize m_remove;

- (id)init
{
 self = [super init];
 if (self)
 {
 // Add your subclass-specific initialization here
 }
 return (self);
}

- (NSString*)windowNibName
{
 // Xcode’s comments removed

return @”CoreDataDiabeticPadDoc”;
}

- (void)windowControllerDidLoadNib:(NSWindowController *)
aController

{
 [super windowControllerDidLoadNib:aController];
 // get our Document’s Managed Object Context
 NSManagedObjectContext* moc = [self

managedObjectContext];
 // check that we got it before using it
 if (nil != moc)
 {
 // set the Array Controller to use the MOC
 [m_arrayController setManagedObjectContext:moc];
 // set the AC to use LogEntry entities
 [m_arrayController setEntityName:@”LogEntry”];
 NSError* anError = nil;

(continued)

236 Part III: Focus on the User

Listing 8-4 (continued)

 // tell the AC to retrieve all the stored entities
 BOOL result = [m_arrayController fetchWithRequest:nil

merge:YES error:&anError];
 if (YES == result)
 {
 // success, select the first item
 result = [m_arrayController setSelectionIndex:0];
 }
 }
}

@end

That’s all that’s needed to sync the Array Controller with the Managed Object
Context.

 The Managed Object Context is the tip of a very large programmatic iceberg.
For instance, it manages the data being created, stores the data internally,
and handles saving this data to and reading this data from files. If you’re
going to use Core Data for your apps, I recommend reviewing Apple’s docu-
mentation for both Core Data and Cocoa Bindings. I also recommend search-
ing the Internet for references to this information. For instance, the solution
that led to the code in Listing 8-4 came as a result of entering “bind array con-
troller to managedobjectcontext” into Google.

Implementing your own array controller class in Xcode
After you finish the user interface display for the logbook data managed by
CoreData, it’s time to put the finishing touches on the app. You’re going to
create a subclass of NSArrayController and use it in place of the Array
Controller you added to the XIB file. Your app will be able to customize the
behavior of the array controller that manages all of the Core Data objects
representing each logbook entry. In this example, you’ll override the newOb-
ject method of NSArrayController so that you can preset the timestamp
to the current date and time when the user adds a new logbook entry. In
normal use of my DiabeticPad app, a user will create a new entry for a blood
glucose reading right when they make one.

Here’s what you do:

 1. Select File➪New ➪New File to display the New File assistant.

 2. Select Cocoa and the Objective-C class template and click Next.

237 Chapter 8: Maintaining Your Users’ Data

 3. Enter NSArrayController into the Subclass of field and click Next.

 4. Save the class as LogBookEntryArrayController and select the
CoreDataDiabeticPad group. Click the Save button.

 Xcode will add two files to your project.

 5. Clean the project by selecting Product➪Clean, and then Build the proj-
ect.

 This is just a precaution to make sure that all the editors are now aware
of the new class you’ve just added.

 6. Select the CoreDataDiabeticPadDoc.xib file in the Project naviga-
tor to display Interface Builder. Click the Show the Utilities view if
necessary.

 7. Select the Array Controller object in the Interface Builder Dock. Click
the Show the Identity inspector button. In the Custom Class section,
select LogBookEntryArrayController from the drop-down menu as
shown in Figure 8-13.

 8. Build the project.

 9. Select the LogBookEntryArrayController.m file for editing.

 You’re going to modify how it creates new objects.

 10. Add the code shown in Listing 8-5.

 This code ensures that a timestamp is created using the current date
and time, which is usually what a user wants to see when they enter new
log data.

 11. Build once more to make sure Xcode doesn’t find any problems.

Listing 8-5: The newObject method now also sets the current date and
time

- (id)newObject
{
 // call the superclass method to initiate
 id aNewObj = [super newObject];
 NSDate* rightNow = [NSDate date];
 // set the timestamp attribute to the current date and
 // time
 [aNewObj setValue:rightNow forKey:@”timestamp”];
 return (aNewObj);
}

238 Part III: Focus on the User

Figure 8-13: Changing the class used for the Array Controller
to one of your own devising.

The method you’ve just added to LogBookEntryArrayController is going
to intercept every newObject: message sent to the controller, such as when
the user clicks the Add New button. The parent class’s method newObject is
called first to create the new entry. After that, this new code sets the entry’s
timestamp attribute to the current date and time. Note that this only happens

239 Chapter 8: Maintaining Your Users’ Data

when a user tells the app to create a new logbook entry; entry objects created
when the app tells Core Data to load the entries from storage won’t have their
timestamps reset.

The application is now fully functional for the following operations:

 ✓ Creating new logbook entries

 ✓ Deleting logbook entries

 ✓ Retrieving the data stored in an entry

 ✓ Saving the entire set of data into a file

 ✓ Loading the set of data from a previous file

Users can create new files as they choose and separate their logbooks by
any time period they want. Core Data allows them to store the files in any of
these formats:

 ✓ XML: This format is easy to read, and you can see how the CoreData
library stores the information about both the entity objects that the user
creates and the database structure itself.

 The XML format is the easiest to deal with.

 ✓ Binary: This format is unreadable for most humans, but it makes for a
smaller file size.

 ✓ SQLite: A library of software that developers can incorporate into their
applications to provide database features and functionality. Core Data
can create files as SQLite databases so that other apps can interact with
the database using SQLite as well. This format is unreadable for most
humans, too.

Maintaining User Preferences
Many apps come with options for managing the different features of using the
application. A browser app might include the following choices (and more)
for a user:

 ✓ The font style and size for standard text

 ✓ The default search engine

 ✓ The home page to open when the browser is launched

 ✓ Whether to accept cookies

240 Part III: Focus on the User

Figure 8-14 shows my Appearance settings when I use Safari on my
Macintosh, and this is one of the smallest of the Preference displays for
Safari.

Figure 8-14: Preference options used to configure how Safari does
things for me.

My selection of my preferred options is called “preferences,” and each of
your users will have their own set of expectations and desires for your app to
fulfill, even for simple things. You are not required to deliver what your users
want, but they will happily leave you for someone else whose app caters to
their preferred way of doing things. Therefore, you want to look over your
application and decide what, if anything, can be better stored as a user’s
preference. In this section, I show you how to retain user’s preferences using
the classes that Apple provides for the job.

Your users’ preferences are not normally stored with each data set that is
saved into the file system. Your app could do this, and in the very ancient
days of Macintosh programming, that’s what developers sometimes did.
However, if your users’ preferences change, old files storing the preferences
they selected would not reflect today’s choices. Generally, preferences are
choices users make regarding the overall behavior of your app, and not the
specific behavior of your app for a particular set of data. The set of prefer-
ences for Safari cover a wide range of choices Safari users make when they
expect the browser to behave in a particular fashion. One of the most impor-
tant is how Safari should behave with respect to user privacy and security.
This is precisely the type of information that should be stored in a prefer-
ences container, and this information is used for each website I browse to.

Apple provides a very simple class, NSUserDefaults, to support set-
ting and retrieving all the preferences you may need to store and keep
track of for your users. Most applications can get by with using the simple
NSUserDefaults methods, including

241 Chapter 8: Maintaining Your Users’ Data

 ✓ Getting the shared NSUserDefaults instance. Your app will need to
gain access to the object owned by the OS that permits access to the
defaults database for your application.

 ✓ Storing user preferences. The NSUserDefaults class provides meth-
ods that permit you to create, by name, the preferences stored in the
NSUserDefaults data storage.

 ✓ Getting stored preferences. You can retrieve preferences, if any, that
your app has stored in the past.

Listing 8-6 shows sample code that retrieves the user’s preferences when
the app starts, and a second method that’s executed when the application is
about to exit.

Listing 8-6: Storing and retrieving optional preferences of DiabeticPad
users

// default storage path
NSString* DEFAULT_STORAGE_PATH = ”~/Library/Application

Support/DiabeticPad”;

// member variables from header
//
// NSString* m_defaultStorageFolder;
// path to store data files
// NSInteger m_bloodGlucoseLowValue;
// value to indicate too low
// NSInteger m_bloodGlucoseHighValue;
// value to indicate too high
//

- (void)initialize
{
 // get the global user defaults
 NSUserDefaults* prefs = [NSUserDefaults

standardUserDefaults];
 // retrieve, if available,
 // the default log storage location
 m_defaultStorageFolder = [prefs stringForKey:@”logbook

StoragePath”];
 // use the default if it’s not stored
 if (nil == m_defaultStorageFolder)
 {
 m_defaultStorageFolder = [DEFAULT_STORAGE_PATH

stringByExpandingTildeInPath];
 }

(continued)

242 Part III: Focus on the User

Listing 8-6 (continued)

 m_bloodGlucoseLowValue = [prefs
integerForKey:@”lowBGLevel”];

 m_bloodGlucoseHighValue = [prefs
integerForKey:@”highBGLevel”];

}

- (void)storeUserPreferences
{
 NSUserDefaults* prefs = [NSUserDefaults

standardUserDefaults];
 if (nil == m_defaultStorageFolder) // just in case
 {
 m_defaultStorageFolder = [DEFAULT_STORAGE_PATH

stringByExpandingTildeInPath];
 }
 [prefs setObject:m_defaultStorageFolder

forKey:@”logbookStoragePath”];
 [prefs setInteger:m_bloodGlucoseLowValue

forKey:@”lowBGLevel”];
 [prefs setInteger:m_bloodGlucoseHighValue

forKey:@”highBGLevel”];
}

The three member variables are retrieved from the user defaults in the
initialize method and stored using the storeUserPreferences
method. These preferences are

 ✓ The folder in which to store the data files. The user has the freedom to
change this location from the preferences panel (see Chapter 6) or when
a new file is first saved.

 ✓ A value representing a blood glucose level that is considered too
low. Low values are important to note when reviewing the daily log-
book entries, and users can set this value to cause the display of an
entry with a blood glucose reading below the value highlighted for
greater visibility.

 ✓ A value representing a blood glucose level that is considered too high.
Like low values, high blood glucose readings are also important to keep
track of. Setting this value displays logbook entries where the blood glu-
cose level is higher than the value.

243 Chapter 8: Maintaining Your Users’ Data

Your app is not limited to storing strings and basic data types (such as inte-
gers) as user preferences. You can use the NSUserDefaults class to store
just about any kind of value or object that your application uses. Here are the
data types your app can store as a user preference:

 ✓ Integer values.

 ✓ Floating-point values.

 ✓ Double values (higher precision floating-point numbers).

 ✓ Boolean values (true or false).

 ✓ NSString objects. String data can be pretty much anything. You can
represent just about anything using some form of string.

 ✓ NSURL objects. The Safari browser preference for the default home page
to be opened could be stored as an NSURL.

 ✓ NSData objects.

 ✓ NSNumber objects. Instead of the primitive types (see the first four
listed above), you can create objects that hold the primitive types and
store them instead. Using an NSNumber makes it easier to store sets of
numbers in an NSArray or an NSDictionary. The primitive data types,
such as integer values, must be contained in an NSNumber object before
it can be held in a collection.

 ✓ NSDate objects.

 ✓ NSArray objects. You can store an entire array of NSObjects in user
preferences. This makes it easier for your app to store a collection of
different types of objects together without having to set or get each one
individually.

 ✓ NSDictionary objects. An NSDictionary object can store key-value
pairs of NSObjects.

If your app needs to store any other type of object, you will need to archive
the object into an NSData object which can be stored as a default. The object
must implement the NSCoding protocol, as shown in the section “Creating
a data class” earlier in this chapter. This gives you freedom and flexibility
when your app needs to store preferences for your users.

 In Listing 8-6, I created an NSString called DEFAULT_STORAGE_PATH. This
is the file system location of where the app will store its output data files
by default. In OS X 10.7 Lion, the Library folder that this path refers to
is hidden, which can cause some frustration, especially if you’re trying to

244 Part III: Focus on the User

determine whether your app is saving data in the right place. While it’s not
simple to do, you can always navigate the entire file system by using Apple’s
Terminal app, available in Applications ➪Utilities.

Exporting data
Because your users will only ever look at or manipulate their data by using
your app, there’s no need to go into any detail regarding exporting their
data. Then reality sets in. As perfect as a Mac app is, your users will want
access to their data in ways you’ve never imagined. For DiabeticPad users, I
can easily envision their health care providers wanting to look at their data.
And as much as I wish everyone had a Macintosh, a few medical profession-
als out there haven’t realized just how wonderful Macs and Mac apps are.
Somewhere, someday, one of my users will have to present all their data to
a health care professional who’s using a Windows PC. That means exporting
the data.

The app data free trade agreement
No, this is not something Congress has dreamed up. Nor have Apple and
Microsoft entered into a pact. Your users are using your app to record their
data, but at some moment in the future, your users will want to explore that
data in some fashion you haven’t thought of or implemented. To do this, your
users could send you feedback and then wait for you to implement more
features and functionality to support their requests. Alternatively, you could
just give your users the raw data in a form that allows them to manipulate it
in ways you hadn’t considered.

DiabeticPad stores simple records of connected pieces of information:

 ✓ Date and time

 ✓ Blood glucose level

 ✓ Carbohydrates consumed

 ✓ Exercise

 ✓ Notes

 ✓ Insulin dosage and type

Most of the records will have the first two pieces of data, and other records
will contain additional data as users see fit. One of the first features missing
from DiabeticPad is a graph of the blood glucose levels over time. I left this
out intentionally; I did not want to spend the time and effort needed to do the

245 Chapter 8: Maintaining Your Users’ Data

basic job necessary to accommodate this kind of viewing of the data because
there are applications on the market designed by professionals and refined
over years of sales that can do the same job. Moreover, those applications
will import the data from my app, too, if the data is formatted properly. And
that’s the underlying concept in this section: the data your app exports is
going to be imported by someone else’s app. If you know or can guess what
app your users are most likely to use with the exported data, you can help
them immensely by determining the best way to deliver their information.

Exporting data from DiabeticPad
DiabeticPad has a pretty simple set of data records, and my expectation
is that my users will want to import the data into a spreadsheet. That’s a
relatively safe bet, and so DiabeticPad was written to export data into a text
file where the data values are separated by commas. This format is called
Comma Separated Values (CSV). All the major spreadsheet applications avail-
able can import this type of text file and convert it to their own preferred
format.

Figure 8-15 shows the Export panel a user sees when they choose File➪
Export from the menu in DiabeticPad. The file is saved using the code in
Listing 8-7.

Figure 8-15: Users can move their data from the internal
storage to a file that a spreadsheet app can import.

246 Part III: Focus on the User

Listing 8-7: MyDocument method that saves logbook records in CSV
format

- (IBAction)handleExportToCSV:(id)inSender
{
 // assumption: this method is in a
 // subclass of NSPersistentDocument
 NSSet* managedObjects = [self.managedObjectContext

registeredObjects];
 NSEnumerator* enumer = [managedObjects objectEnumerator];
 NSMutableData* outputData = [[NSMutableData alloc] init];
 id object; // placeholder
 NSDateFormatter* formatter = [[[NSDateFormatter alloc]

init] autorelease];
 // set a readable date/time format
 [formatter setDateFormat:@”yyyy-MM-dd HH:mm”]
 NSString* columnHeaders = @”Date/Time, Blood Glucose,

Carbs, Exercise, Insulin Dosages, Notes\n”;
 [outputData appendBytes:[columnHeaders UTF8String]

length:[columnHeaders length]];
 while (object = [enumer nextObject])
 {
 NSDate* timestamp = [object

valueForKey:@”timestamp”];
 NSString* bloodGlucose = [object

valueForKey:@”bgLevel”];
 NSString* carbs = [object valueForKey:@”carbs”];
 NSString* exercise = [object

valueForKey:@”exercise”];
 NSString* insulinDosages = [object

valueForKey:@”insulinDosages”];
 NSString* notes = [object valueForKey:@”notes”];
 NSString* dateString = [formatter

stringFromDate:timestamp];
 // check all objects for nil or zero-length values
 if (nil == notes)
 {
 notes = @””;
 }
 if (nil == bloodGlucose)
 {
 bloodGlucose = @”0”;
 }
 if (nil == carbs)
 {
 carbs = @”0”;
 }
 if (nil == exercise)
 {
 exercise = @”0”;
 }

247 Chapter 8: Maintaining Your Users’ Data

 NSString* outputString = [NSString stringWithFormat:
@”%@,%@,%@,%@,%@,%@,\n”, dateString, bloodGlucose,
carbs, exercise, insulinDosages, notes);

 [outputData appendBytes:[outputString UTF8String]
length:[outputString length]];

 }
 [self writeDataToFile:outputData];
 [outputData release];
}

The new method added to export the data as a CSV file works by looping
over all the available Core Data entity objects and appending their data as
text into an NSMutableData object. The data object is then passed to the
method used to write the data to the user-selected file. The details of the
method’s operations are as follows:

 1. Get the set of all the objects maintained by the Core Data store.

 If the app is not using Core Data to store its logbook entries, the collec-
tion object used to store the entries would be retrieved instead.

 2. Create the NSMutableData object to hold the text for output to the file.

 3. Create an NSDateFormatter object that will be used to properly
format the NSDate object representing the timestamp entity into a
readable form.

 4. Create a text string containing the column headers and then append the
text to the NSMutableData object.

 5. For every entity in the set, do the following

 a. Get the individual objects for each of the entity attributes main-
tained by Core Data.

 Each attribute is held by the Core Data entity in a subclass of
NSObject; the strings are NSString objects, the timestamp is an
NSData object, and the integers are NSNumber objects.

 b. Convert all the attribute objects into strings.

 For instance, the NSDate object used for the timestamp is con-
verted to an NSString object by the NSDateFormatter object.

 c. Put all the attribute objects in order into one string, separating the
values by commas and adding a newline character (\n) at the end.

 d. Append the text to the end of the NSMutableData object.

 6. After all the entities have been processed, deliver the NSMutableData
object to the method that will output the text data to the user’s file.

248 Part III: Focus on the User

Each record in the app’s storage is accessed and processed to turn it into
a text string that can be written to a text file. If your app is managing all its
objects, such as a DPData object as mentioned earlier in the chapter, you
could create a method for the DPData class that outputs an NSString object
that’s ready to be appended by an NSMutableData object. This would make
the above code less busy; you would do all the checks on the validity of the
data within the DPData method before delivering the NSString represent-
ing its contents. As in most programming efforts, there’s always a way to
improve things.

Importing data
Your users may also have the data your app can use stored in a neutral
format such as CSV exported from some other app. One of the blood glucose
monitoring devices I use allows its data to be exported to a CSV format so
other apps such as DiabeticPad can import the data. Importing data from
other apps requires some investigation: You need to know what’s in the
exported file and how it’s organized before you can implement code to read
the information and use it in your app. Since CSV is a text-based format,
Apple’s TextEdit app will show you what’s inside any CSV file you want your
app to import.

I’ll use the CSV file created by DiabeticPad in the previous section as an
example for importing a file. The code shown in Listing 8-8 will read data
from the file at the path specified in the method’s input parameter and create
Core Data objects from the records in the file.

Listing 8-8: MyDocument method to import logbook records stored as
CSV

- (BOOL)importFromCsv:(NSString*)inFilePath
{
 BOOL success = YES;
 if (nil != inFilePath)
 {
 NSError* error = nil;
 NSString* csv = [NSString stringWithContentsOfF

ile:inFilePath encoding:NSUTF8StringEncoding
error:&error];

 if (nil != csv)
 {
 // split input into separate records,
 // one per line
 NSArray* csvLines = [csv componentsSeparatedBy

String:@”\n”];

249 Chapter 8: Maintaining Your Users’ Data

 NSEnumerator* lineEnumer = [csvLines
objectEnumerator];

 NSString* csvRecord = nil;
 BOOL firstLine = YES;
 while (csvRecord = [lineEnumer nextObject])
 {
 if (YES == firstLine)
 {
 // first line is column headers
 firstLine = NO;
 continue;
 }
 // each csvRecord contains its data
 // separated by commas
 NSArray* dataArray = [csvRecord

componentsSeparatedByString:@”,”];
 // we know the ordering, since we created it
 // everything comes in as a String first
 NSString* timestampString = [dataArray

objectAtIndex:0];
 NSString* bgLevelString = [dataArray

objectAtIndex:1];
 NSString* carbsString = [dataArray

objectAtIndex:2];
 NSString* exerciseString = [dataArray

objectAtIndex:3];
 NSString* insulinDosagesString = [dataArray

objectAtIndex:4];
 NSString* notesString = [dataArray

objectAtIndex:5];
 // have all we need to make a data record
 // use the array controller to create a
 // new object
 NSObject* arrayObject = [m_arrayController

newObject];
 // set the data to that object
 [arrayObject setValue:bgLevelString

forKey:@”bgLevel”];
 [arrayObject setValue:carbsString

forKey:@”carbs”];
 [arrayObject setValue:exerciseString

forKey:@”exercise”];
 [arrayObject setValue:insulinDosagesString

forKey:@”insulinDosages”];
 [arrayObject setValue:notesString

forKey:@”notes”];
 // need to convert the timestamp string
 // to NSDate

(continued)

250 Part III: Focus on the User

Listing 8-8 (continued)

 // for CSV data we created, we know the
 // format; for unknown data, you have
 // to investigate
 NSDateFormatter* formatter

= [[[NSDateFormatter alloc]
initWithDateFormat:@”yyyy-MM-dd HH:mm”
allowNaturalLanguage:NO] autorelease];

 NSDate* timestamp = [formatter dateFromString
:timestampString];

 [arrayObject setValue:timestamp
forKey:@”timestamp”];

 }
 }
 else
 {
 // error occurred during read
 }
 }
 return (success);
}

At this point, you can create and manage the data objects that your app uses
on behalf of your users, and your app can output the data in a form that
other applications can pick up and process in ways that your app doesn’t
have to implement. For instance, one of the medical professionals I work with
likes to view my blood glucose readings as a graph. DiabeticPad can export
all the readings into a spreadsheet so my health care provider can see all the
readings and the points where I injected insulin to keep the blood glucose in
a tolerable range.

Chapter 9

Working in the Background
In This Chapter
▶ Understanding background operations

▶ Keeping your app’s events on schedule

▶ Using a thread to download web data

E
very current Macintosh comes with several CPUs, each of which can
perform independently of the others. The minimalist MacBook contains

an Intel Core 2 Duo CPU; the beefiest Macintosh Pro comes with two separate
six-core Intel CPUs (and yes, I dream about that one). OS X is written with
multitasking in mind, and the apps you run on your Mac can take advantage
of multiple CPUs without your having to tell them to do so. So iTunes is
downloading tonight’s video while playing its theme song, your e-mail app is
retrieving the latest messages from your office while you’re writing, and your
web browser is displaying the new messages from your friends at your favor-
ite social-networking site, while you’re translating some German.

Your Mac app can use all the CPUs on the machines where your users install
it. Normally, your app will operate on just one CPU, submitting its program-
ming instructions to the processor. But you can enhance your app’s perfor-
mance, even while running on just one CPU, if you set up some of your code
to operate in the background. Although your Mac can run multiple apps all
at the same time, your app can achieve something similar by performing
different tasks at the same time. A Mac application that executes different
tasks concurrently achieves this by launching different threads, each of which
represents one task. In this chapter, you find out about the threads that your
app can create with Cocoa and OS X, and you see how to exploit them to
make your app more accommodating for your users.

252 Part III: Focus on the User

Understanding Basic Threads
Hang on; you’re about to receive a crash course in threads. I cover the basic
concepts you need to know to get started and to overcome any fear of using
them, but a complete explanation is outside the scope of this book. You can
easily find quite a few online and written resources to fill in any gaps.

An application is a set of instructions that sits in your computer’s memory.
The instructions are fed one at a time to the computer’s central processing
unit (CPU). The CPU can execute only one instruction at a time. As CPUs
have gotten faster and faster, however, it has become possible for one CPU to
execute two or more sets of instructions practically simultaneously. Today,
CPUs come with multiple cores, each of which functions as an independent
CPU that can access the memory and the devices attached to the computer.
Modern OSes, such as OS X, juggle the different sets of instructions to be
executed together, either giving each set a short period of time to operate on
one CPU or lining up each set to be executed separately on multiple CPUs. A
thread is one of those sets of instructions.

By using threads, a developer can create an app that performs multiple
actions simultaneously in the background while the user is viewing the app’s
display. The user can interact with the UI of your app even while the app
is waiting for data to download (a common occurrence with the networked
apps of today). Your users will believe that they are in control of your app,
even though your app is operating in the background, performing tasks that
can take noticeable amounts of time; your app’s UI will remain responsive to
the users’ commands. If your app doesn’t use threads to perform data access
in the background, your users will be left staring at an unchanging display,
unable to interact with the app (and possibly even the computer itself) until
your code returns to interactive execution after the data is retrieved or fails
to be retrieved. This experience is not a very pleasant one for your users.

Three Cocoa classes provide your app the ability to execute code in the back-
ground of Mac OS X:

 ✓ NSTimer: An NSTimer allows you to schedule code to be executed at
some point in the future. An alarm-clock app would use an NSTimer to
wake up a napping user at a specific time or after a set amount of time.
Your app can also schedule the code to repeat the operation after a cer-
tain amount of time.

 ✓ NSTask: An NSTask is an object your app creates to execute a com-
pletely separate application. Your app has access to all the other apps
that run on the user’s Macintosh, and your app can launch these other

253 Chapter 9: Working in the Background

apps to perform various operations, assuming that your app has privi-
leges to do so. Instead of building your app complete with a user guide,
for example, you can host all that information on a website. When a
user selects the User’s Guide menu item from your app’s Help menu,
your app can launch the Safari web browser with the URL to your online
guide.

 ✓ NSThread: You use an NSThread when your app is going to process
information or perform operations in the background without involving
the user. If your app takes pictures using the Mac’s camera and then
provides a variety of images that are stretched, rotated, or blurred, your
app can use NSThread objects to process each image in a different way.
One NSThread could perform only stretch operations, and so on.

 OS X is based on Unix and comes with the standard Unix C-language thread
model: POSIX threads, also known as pthreads. If you’re coming from a Unix
or Linux OS, you can make use of pthreads in your app, just like you would
in a C-language application, because Objective-C can compile C code for
your app to use. So if you have a library of image-processing software that
your app can’t live without, for example, you can incorporate the C-code
into your app and use it just as your C-language apps do. Also, in case you
were wondering, the underlying implementation for threads in Mac OS X is
based on the POSIX threads API.

Your app will use the preceding classes for all the background operations
you want to perform. These operations generally fall into two categories:

 ✓ Fire and forget: This kind of operation is the easier of the two to imple-
ment and the simpler to understand. Your app will initialize a fire-and-
forget thread to perform a specific set of instructions, launch it, and let
it do its work. When the thread has completed its job, it just stops. One
example of an operation that’s suited for this type of thread is code that
writes information to a file or a network repository.

 ✓ Call me when you’re done: You’ll find this operation to be the kind
that you implement most often. Your users direct your app to perform
a lengthy operation, such a searching an online food forum for interest-
ing recipes containing garlic and pesto, after which your app reports
back some information about the results of the operation. This type of
operation requires some sort of callback mechanism to be set up for the
thread to execute after it finishes doing its job. Fire-and-forget opera-
tions are easy to create, but in a lot of cases, they also require a means
of reporting information back to the user. In the preceding example,
what happens if the thread can’t write to the file or connect to the net-
work repository?

254 Part III: Focus on the User

Knowing when to use a thread
For apps that have a visual interface, you use a thread to perform an opera-
tion in the background in only one situation:

When the operation that your app intends to execute will take too much
time away from your app’s paying attention to your users’ actions.

 For your apps that don’t have a visual interface, you use a thread to perform
operations that can be almost completely self-contained. For example, a web-
server app creates a separate thread for every incoming request to retrieve
a page from the site, so that each request is processed separately and isn’t
delayed while a prior request is still completing.

Your users are busy. They use their computers to make themselves more
productive and more efficient in doing their daily tasks. Today’s Macs have
multiple processors that are also very fast and come with an operating
system that enables multiple apps to execute at the same time. Your users
will browse the web, read and write e-mail, check their calendars, listen to
music, and also run your app. Your users expect your app to behave like a
butler, running around to perform chores for them. Further, users will expect
your app to do multiple chores, like a mansion full of butlers waiting for
orders. If I send one butler out to find all the garlic-and-pesto vegetarian reci-
pes, I may want to send another one out to find all the five-star-rated brus-
chetta-and-pepper-jack-cheese recipes. I don’t want to wait for the first butler
to finish before I send out the second. That would just waste my time.

So, how much time is “too much”? You may not like this answer: It depends.
Also, you may have to wait for feedback from your users before you can
determine whether you should run a particular operation as a background
thread. My own preference is to not leave users waiting, so if something
I want my app to do doesn’t finish really quickly (within a few tenths of a
second), that’s something I want to put in a separate thread and run in the
background.

Here are some types of operations for which you may want to consider imple-
menting your app’s code as a background thread:

 ✓ Hardware operations: Your app will have to use the hardware on your
users’ computers to perform some operations. Your app may play music
or display videos for your users. Both of these operations, and many
others, require your app to move information from storage to a speaker
(for sounds) or the display (for videos). If your app puts the code
required to do these operations in a thread separate from the main body
of your app, the performance of users’ computers will improve, and the
users will feel more in control of your app and their machines.

255 Chapter 9: Working in the Background

 ✓ Network operations: More and more information is available out on the
Internet, and users are sending out requests for this information and
retrieving it in greater amounts. But accessing the Internet is always a
chancy process; you can never be sure whether the service your app
needs to connect to is free to handle your request. Your app’s request
could end up in a queue, waiting for the service to finish the earlier 500
requests before it can handle yours. Even if your app is simply trying to
connect to another computer or mobile device on your local network,
your app can still find itself waiting for the results. You should definitely
place all code that connects your app to the Internet into a thread that
runs independently of the app’s main thread.

 ✓ Scheduled operations: A calendar app like Apple’s iCal can display
reminders when a scheduled appointment is imminent. Users can set
iCal to remind them of appointments at a specific time ahead of the
appointment, leaving them free to concentrate on more important tasks,
knowing that the trusty Macintosh will remind them when appropriate.
You should place any code that will execute at a specific moment in a
thread to run in the background.

 ✓ Repeated operations: Your app might display a clock that displays a
sweep second hand, such as the one shown in Figure 9-1. Users expect
the clock to be changing its display once per second — maybe more fre-
quently if your app is being used for Olympic tryouts or, less frequently,
if the app is being used to count down the remaining shopping days
before an anniversary. No matter how often your app updates its time
display, you need to put the update code inside a thread.

Figure 9-1: An example of a clock requiring
display updates every second.

256 Part III: Focus on the User

 ✓ Heavy calculation operations: Certain types of applications perform
intense mathematical calculations involving hundreds of equations.
The financial and scientific communities create and use apps of this
type to find answers to complex problems. If the solution to a problem
can be reduced to a repeatable sequence of steps, that sequence can
be written as a thread and executed independently of your app’s main
thread.

Thread rules to keep in mind
You will find that threads are easy to handle as long as you keep them
simple and focused on the one task they are programmed to do. As a rule, I
try to keep a thread’s code no larger than one screen’s worth of executable
statements. This makes it easy to see everything a thread is going to do and
encourages me to refrain from making a thread do too much. The following
sections provide a few other rules to keep handy when you’re implementing
your app’s threads.

Calling back to the thread’s origin
One part of your application will launch the thread. Usually, this occurs
somewhere within the main event thread of the application — the thread
that’s responsible for intercepting user inputs and delivering the data to the
appropriate code in your app. Your user has ordered your app to perform
some action, but this will take too much time to complete. In addition, the
action your app performs to satisfy the user’s request will require a result to
be returned to the user when the thread has finished. Because this thread is
separated from the main event thread and the rest of your app’s code, your
thread requires some mechanism to return data to your app.

The best way to accomplish this is to provide an object that will execute a
method when the thread is started, usually passed into the thread in its ini-
tializer method. The NSThread class provides an initialization method that
accepts a target object and a method for the code to execute on the target
object. You set up the target object to perform the long-duration activity in
its selected method, and as a result, the data is available within that object
when the activity has completed. You can provide both success and failure
methods to this object, to give it a way to tell the user that the activity com-
pleted successfully or explain why the activity resulted in failure. You can see
in Listing 9-1 that the LongDurationActivity creates an NSThread object
to perform a really long task and then reports its results to the user, who’s
looking at the screen.

257 Chapter 9: Working in the Background

Listing 9-1: The class LongDurationActivity uses an NSThread to
perform lengthy calculations

@implementation LongDurationActivity

- (void)launchActivity
{
 NSThread* activityThread = [[NSThread alloc] initWithTarget:self selector:

@sel(lengthyActivity:) argument:nil];
 [activityThread start]; // start the thread
}

- (void)lengthyActivity:(id)inArgument
{
 BOOL activityIsSuccessful = NO;
 NSString* failureMessage = nil;
 // pseudo-code
 // within this method will be lots of calculations,
 // downloads, processing, etc.
 // the BOOL will be set to YES if everything works
 // and if something goes wrong, the failureMessage
 // will be set appropriately
 if (YES == activityIsSuccessful)
 {
 [self activitySuccess];
 }
 else
 {
 [self activityFailure:failureMessage];
 }
 [NSThread exit]; // tell the current thread (us) that we’ve finished
}

- (void)activitySuccess
{
 // update the screen with the results of the
 // calculations
}

- (void)activityFailure:(NSString*)inMessage
{
 // handle the error, display the message
 // to the user to explain what happened
}

@end

258 Part III: Focus on the User

The code in Listing 9-1 is the simplest way to create and use an NSThread.
Your app creates the thread object, hands it the object to use when calling
the method for the thread to execute, and then sets it off. The thread’s code
will execute and call either the activitySuccess or activityFailure:
method. At the very end of the code, the NSThread class method exit is
called on the current thread, which removes the thread from the application
memory space so it’s no longer hanging around.

Synchronization
You’ll discover that the biggest challenge is keeping your thread’s opera-
tions synchronized with the other code running in your app. For an app that
launches multiple threads to retrieve the ten best rates on hotels in Berlin for
the week including July 4, for example, you’ll want to ensure that the display
of the top ten rates is kept in sync with the arrival of new data. Your app
should provide visual feedback to the user that the butlers are doing their
jobs.

You can reduce the likelihood of running into thread synchronization issues
by keeping your use of threads to a minimum and also by making your thread
code short and simple. But even if you’re careful, thread synchronization
problems can still arise. You’ll find that nearly all problems of thread synchro-
nization involve two separate threads both attempting to modify and use the
same resource. This situation is called a race condition. Fortunately, the Cocoa
framework provides a simple solution: the NSLock. You temporarily lock a sec-
tion of code within the thread that executes it to prevent other threads from
attempting to execute the same section of code at the same time.

Listing 9-2 shows two separate methods in a class. One method uses a lock
(incrementWithLock), and the other doesn’t (incrementWithoutLock).
The only difference between the two methods is that the first one will execute
the critical section of code guarded by the lock for the thread that has locked it
only until the lock is removed at the end of the method. In the second method,
the following problem can occur if multiple threads attempt to execute the
method:

 ✓ Thread A executes the method incrementWithoutLock.

 ✓ The CPU starts to perform the sequence of steps to increment the value
of the m_count variable contained by this object.

 ✓ Just before the increment is added, however, the OS pauses Thread A’s
execution and allows Thread B to resume its operations.

 ✓ Thread B is also executing incrementWithoutLock.

259 Chapter 9: Working in the Background

 ✓ The CPU performs the entire sequence of steps to increment the value
of the m_count variable. Thread B is completed, and the OS resumes
Thread A’s execution.

 ✓ Because the resumption of Thread A’s operations also resets the values
of everything Thread A had in memory when it was interrupted, includ-
ing the value of m_count right before Thread A was paused, the value
of m_count is returned to exactly what it was before Thread B incre-
mented it, eliminating Thread B’s result as though it never happened.
If both threads had used incrementWithLock instead, the problem
would not have happened. Thread A would have secured the right to
execute the code to increment m_count through the NSLock object,
and Thread B would have to wait for the unlocking before executing.

Listing 9-2: The difference between a method with a lock and one
without

@interface ThreadLockTest
{
 int m_count;
}
- (void)incrementWithLock;
- (void)incrementWithoutLock;

@end

@implementation ThreadLockTest

- (void)incrementWithLock
{
 NSLock* locker = [[NSLock alloc] init];
 [locker lock];
 m_count++;
 [locker unlock];
 [locker release];
}

- (void)incrementWithoutLock
{
 m_count++;
}

@end

Although the example in Listing 9-2 is very simplified and its resolution is fairly
simple, as your app becomes more complex and starts using more threads,
you’ll encounter more difficulty in tracking down this kind of problem.

260 Part III: Focus on the User

 Locks are one way of reducing the chance that one thread will violate the
same data another thread is trying to use. Your app does pay a price for
using locks, however: Depending on how many times you’re locking down
access to sections of your code, your app may suffer some performance pen-
alties. Be careful in spreading locks around your code, and always try to fully
understand the nature of the problem before rushing to lock another section
of your code. I recommend reviewing Apple’s Threading Programming Guide,
available at

http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/
Multithreading/Introduction/Introduction.html

Deadlocks
You may encounter situations in which one thread in your app is waiting for
access to a resource such as a file, but that resource is locked by another
thread, and this second thread is waiting to access a resource that’s unfor-
tunately locked by the first thread. Think of two children on a playground,
each holding a different color ball; neither will hand the other his ball before
receiving the one held by the other. This situation is called a deadlock.
Neither thread can continue because each is waiting for the other to finish.

 The best solution to this problem is to keep your threads’ operational code
to a minimum: Each thread should have only one task that it should be able
to complete independently of any other thread. The best way to do this is to
make sure that your app always executes only one thread apart from the main
event thread.

I hope that I haven’t scared you away from using threads. A thread is a
powerful tool that provides a solution to executing long-running tasks while
giving users a sense that they’re still in control of your app.

Using Threads to Schedule Events
Single-event scheduling is the easiest kind of threading. You won’t have to
create a new class to handle the execution; you simply do the following:

 1. Create a method in your class to be executed at some moment in the
future.

 2. Call the Cocoa method performSelector:withObject:after
Delay: on that class with that method selector.

That’s all that you need to do for this very simple example.

261 Chapter 9: Working in the Background

Setting up and executing a scheduled one-time event
The following example demonstrates how to set up and schedule an event —
namely, displaying a text string — to execute a user-entered number of sec-
onds (1–60) in the future. Follow these steps:

 1. Launch Xcode.

 2. Create a new project.

 You don’t need the project to be document-based, and it won’t use
Core Data. Just a simple window is all you need. I chose to name mine
OneTimeEvent, which creates one class (OneTimeEventAppDelegate)
to support the interaction between my code and the user interface.

 3. Select the MainMenu.xib file in the Project Navigator. Show the
Utilities panel if it’s not visible.

 Xcode displays the contents of MainMenu.xib using Interface Builder.

 4. Select the Window object from Interface Builder’s Dock if it’s not
visible.

 You’re going to add UI components to your app’s window so you can
see the app in action — and it should look like the window shown in
Figure 9-2. If you’re comfortable working with Interface Builder, you
can create the interface to match Figure 9-2 on your own — in which
case, you can skip ahead to Step 14.

Figure 9-2: The main window of the OneTimeEvent app.

262 Part III: Focus on the User

 5. Drag and drop a Label from the Object Library. Set its text to Text.

 6. Drag and drop a Text Field from the Object Library and place it next
to the Text Label. Resize the Text Field horizontally to extend to the
edge of the window.

 7. Drag and drop a Label from the Object Library and place it below the
Text Label. Set its text to Delay.

 8. Drag and drop a Text Field from the Object Library and place it next
to the Delay Label.

 9. Drag and drop a Label from the Object Library, place it to the right of
the Delay Label, and set its text to Seconds.

 10. Drag and drop a Button from the Object Library and place it next to
the Seconds Label. Set its text to Schedule.

 11. Drag and drop a Box from the Object Library and place it below the
Delay Label. Set its text to Scheduled Text Area. Resize the Box to take
up the rest of the window’s area.

 12. Drag and drop a Button from the Object Library and place it near the
lower-right corner of the Box. Set its text to Reset.

 13. Drag and drop a Label from the Object Library and place it within the
Box. Resize the Label so it occupies the full width of the Box.

 That completes all the visual elements this app will need. Your next task
is to connect the components to the OneTimeEventAppDelegate.

 14. Click the Show the Assistant editor button if the Assistant editor is not
open.

 Xcode will display the Assistant editor with OneTimeEventApp
Delegate.h ready to be modified.

 15. Control-drag from the topmost Text Field into OneTimeEvent
AppDelegate.h to the right of the “{” in the line containing the
@interface directive. In the pop-up window, set the name to
m_textToDisplay. Click Connect.

 16. Control-drag from the Delay Text Field into OneTimeEventApp
Delegate.h below the m_textToDisplay member variable. In the
pop-up window, set the name to m_delayValue. Click Connect.

 17. Control-drag from the Label within the Box into OneTimeEventApp
Delegate.h below the m_delayValue member variable. In the
pop-up window, set the name to m_displayLabel. Click Connect.

263 Chapter 9: Working in the Background

 Be careful. You need to be sure you’re dragging from the Label, and not
the Box.

 18. Control-drag from the Schedule Button into OneTimeEventApp
Delegate.h right above the @end directive. In the pop-up window,
set the connection type to Action and set the name to schedule
Event. Click Connect.

 19. Control-drag from the Reset Button into OneTimeEventApp
Delegate.h right above the @end directive. In the pop-up window,
set the connection type to Action and set the name to resetLabel.
Click Connect.

 20. Add the purple code in Listing 9-3 to OneTimeEventAppDelegate.h.

Listing 9-3: The contents of the header file OneTimeEventAppDelegate.h

//
// OneTimeEventAppDelegate.h
// OneTimeEvent
//
// Created by Karl Kowalski on 4/3/11
// Copyright 2011 Kowalski Software Enterprises. All rights reserved
//

#import <Cocoa/Cocoa.h>

@interface OneTimeEventAppDelegate : NSObject <NSApplicationDelegate> {
 IBOutlet NSTextField *m_textToDisplay;
 IBOutlet NSTextField *m_delayValue;
 IBOutlet NSTextField *m_displayLabel;
@private
 NSWindow* window;
}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)scheduleEvent:(id)inSender;
- (IBAction)resetLabel:(id)inSender;
- (void)displayText;

@end

 21. Select OneTimeEventAppDelegate.m from the Project Navigator.

 22. Enter the purple code from Listing 9-4.

264 Part III: Focus on the User

Listing 9-4: The code implementation for scheduling a single event at
a later moment

//
// OneTimeEventAppDelegate.m
// OneTimeEvent
//
// Created by Karl Kowalski on 4/3/11
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import “OneTimeEventAppDelegate.h”

@implementation OneTimeEventAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification*)aNotification
{
 // Insert code here to initialize your application
 // clear the label
 [m_displayLabel setStringValue:@””];
}

- (IBAction)scheduleEvent:(id)inSender
{
 NSTimeInterval delay = [m_delayValue doubleValue];
 // check the bounds of the value
 if (delay < 1.0)
 {
 delay = 1.0;
 }
 else if (delay > 60.0)
 {
 delay = 60.0;
 }
 // now schedule
 [self performSelector:@selector(displayText) withObject:nil

afterDelay:delay];
}

- (IBAction)resetLabel:(id)inSender
{
 [m_displayLabel setStringValue:@””];
 [m_displayLabel setNeedsDisplay];
}

265 Chapter 9: Working in the Background

- (void)displayText
{
 NSString* displayString = [m_textToDisplay stringValue];
 if (nil == displayString || [displayString length] == 0)
 {
 // Note: the text string here is just for the example
 // A robust app would retrieve text from a separate
 // file that can be localized
 displayString = [NSString stringWithString:@”you forgot to enter a text

string!”];
 }
 [m_displayLabel setStringValue:displayString];
 [m_displayLabel setNeedsDisplay];
}

@end

 23. Build and run the app.

 24. Enter text into the Text field and a delay value into the Delay field,
and then Click Schedule.

 You see the text displayed on schedule, as shown in Figure 9-3.

Figure 9-3: Your app can now change text labels several
seconds into the future.

The code you implemented from Listing 9-4 consists of three methods:

 ✓ A method (scheduleEvent) to schedule the text-change operation:
scheduleEvent checks the value of the delay and ensures that the
delay is between 1 and 60 seconds.

266 Part III: Focus on the User

 ✓ A method (resetLabel) to reset the text between scheduled events:
You could implement this method as part of the scheduleEvent
method, but I’m a bit of a control freak, and I always want to be able to
force the text label to reset itself.

 ✓ A method (displayText) to be scheduled for future execution:
displayText performs a check of the text entered (or not entered) in
the Text Field and then sets the text to be displayed appropriately.

You should feel free to play around with setting different values in the Text
Fields to see how the app responds. If you enter A in the Delay field, for
example, you find that the text changes 1 second later due to the delay value
check that occurs in scheduleEvent — the NSTextField member vari-
able is smart enough to convert a non-numeric value to 0.00 . You can also
schedule multiple future text changes, but you have to be careful: Each event
takes the text that’s currently in the Text Field m_textToDisplay, so
you have to change the text between the first scheduled event’s occurrence
and the next one. If you schedule two events to happen faster than you can
change the text value, you won’t see any change. You can improve the behav-
ior of your app by modifying the code as shown in purple in Listing 9-5 and
Listing 9-6.

Listing 9-5: Modifying the displayText Method to receive a parameter

//
// OneTimeEventAppDelegate.h
// OneTimeEvent
//
// Created by Karl Kowalski on 4/3/11
// Copyright 2011 Kowalski Software Enterprises. All rights reserved
//

#import <Cocoa/Cocoa.h>

@interface OneTimeEventAppDelegate : NSObject <NSApplicationDelegate> {
 IBOutlet NSTextField *m_textToDisplay;
 IBOutlet NSTextField *m_delayValue;
 IBOutlet NSTextField *m_displayLabel;
@private
 NSWindow* window;
}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)scheduleEvent:(id)inSender;
- (IBAction)resetLabel:(id)inSender;
- (void)displayText:(id)inText;

@end

267 Chapter 9: Working in the Background

The change in Listing 9-5 is simple: Your method displayText: will now
accept an object of type id passed to it, which will be the text to display. I
chose to use an id object to match the object parameter type of the method
performSelector:withObject:afterDelay: that the background
thread will execute.

Listing 9-6: Modifying the scheduleEvent method to pass a parameter
to displayText

- (IBAction)scheduleEvent:(id)inSender
{
 NSTimeInterval delay = [m_delayValue doubleValue];
 // check the bounds of the value
 if (delay < 1.0)
 {
 delay = 1.0;
 }
 else if (delay > 60.0)
 {
 delay = 60.0;
 }
 // now schedule
 [self performSelector:@selector(displayText) withObject:[m_textToDisplay

stringValue] afterDelay:delay];
}

- (void)displayText:(id)inText
{
 NSString* displayString = inText;
 if (nil == displayString || [displayString length] == 0)
 {
 displayString = [NSString stringWithString:@”you forgot to enter a text

string!”];
 }
 [m_displayLabel setStringValue:displayString];
 [m_displayLabel setNeedsDisplay];
}

Now when you run the app and schedule multiple events, you’ll see the text
changing for each event as scheduled.

You can see that this app is pretty simple, yet you’re already writing code for
background processing. You’re using the Cocoa method in NSObject to set
a timer that will count down a fixed amount of time and then execute code.
You can use this feature to create a clock or calendar app that will display an
alert or play an audible sound at a specified point in the future. Another way
to use this ability would be to add that kind of functionality to an app that
does something else. You could add a feature to DiabeticPad that keeps track
of and reminds users of their medical appointments, for example.

268 Part III: Focus on the User

Using an NSTimer to schedule repeated events
You now know that scheduling single events for future execution is pretty
easy and doesn’t require the creation or use of a separate class; it can be
done within the class you’re working with. Also, you could implement code
that schedules events repeatedly. You can schedule a method to be executed
a minute from now and within that method schedule to be executed 60 sec-
onds later. But the Cocoa framework provides a class that takes care of this
for you: NSTimer. Because this kind of behavior is used frequently in many
applications, the engineers at Apple created NSTimer to provide this func-
tionality consistently.

The next app you’re going to write demonstrates how to use an NSTimer to
repeatedly change the color of a view. So let’s get to it.

 1. Launch Xcode, if it’s not running.

 2. Create a new project.

 As with the OneTimeEvent project earlier in this chapter, you
don’t need Core Data or a Document-based app. I named mine
ColorizeTimer.

 3. Add a new class to the project, called ColorizedView.

 This is an Objective-C class, and it will be a subclass of NSView.

 4. Select the ColorizedView.h file in the Project Navigator.

 5. Modify ColorizedView.h to match the added purple code as shown
in Listing 9-7.

 Your app will use this class to set and draw different colors.

 6. Save your changes.

Listing 9-7: The ColorizedView.h header file

//
// ColorizedView.h
// ColorizeTimer
//
// Created by Karl Kowalski on 4/3/11
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import <Cocoa/Cocoa.h>

@interface ColorizedView : NSView
{
 NSColor* m_color;
@private

269 Chapter 9: Working in the Background

}

- (void)setColor:(NSColor*)inColor;

@end

 7. Select the ColorizedView.m file in the Project Navigator.

 8. Modify ColorizedView.m to match the code shown in Listing 9-8.

 Your code change is simply to add the code in purple from the listing.

 9. Save your changes.

Listing 9-8: The ColorizedView.m source module

//
// ColorizedView.m
// ColorizeTimer
//
// Created by Karl Kowalski on 4/3/11
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import “ColorizedView.h”

@implementation ColorizedView

- (id)initWithFrame:(NSRect)frame
{
 self = [super initWithFrame:frame];
 if (self)
 {
 // Initialization code here
 m_color = [NSColor grayColor];
 }
 return self;
}

- (void)dealloc
{
 [super dealloc];
}

- (void)setColor:(NSColor*)inColor
{
 m_color = inColor;
 // notify app that we need to redraw
 [self setNeedsDisplay:YES];
}

(continued)

270 Part III: Focus on the User

Listing 9-8 (continued)

- (void)drawRect:(NSRect)dirtyRect
{
 // set the color to be drawn
 [m_color set];
 // draw a filled rectangle
 [NSBezierPath fillRect:dirtyRect];
}

@end

 10. Select the MainMenu.xib file in the Project Navigator. Show the
Utilities view and Click the button to Show the Assistant editor.

 11. Click the Window object in Interface Builder’s Dock.

 12. Drag and drop a Label from the Object Library to the upper-left corner
of the window. Set the text of the Label to Change Frequency.

 13. Drag and drop a Text Field from the Object Library and place it to the
right of the Change Frequency Label.

 14. Drag and drop a Label from the Object Library and place it to the
right of the Text Field you just added. Set the text of the Label to Per
Minute.

 15. Drag and drop a Button from the Object Library and place it in the
window below the Text Field and Labels. Set the text of the Button to
Start.

 16. Drag and drop a Button from the Object Library and place it in the
window to the right of the Start Button. Set the text of this Button to
Stop.

 17. Drag and drop a Box from the Object Library and place it in the
window below the two Buttons. Resize the Box to fill the remainder of
the window, and set its text to Colorizer Space.

 I obeyed the blue guides that Interface Builder provides when resizing
the Box.

 18. Drag and drop a Custom View from the Object Library into the Box.
Center the Custom View within the Box, and resize it to fill the Box.

 Again, I obeyed the blue guides that Interface Builder provides when I
resized the Custom View.

 19. Drag and drop a Label from the Object Library into the Custom View.
Center the Label within the Custom View and set its text to Color &
Index. Resize the Label to be as wide as the Custom View.

 Your app’s window should look similar to that shown in Figure 9-4.

271 Chapter 9: Working in the Background

Figure 9-4: The window for the ColorizeTimer app.

 20. Select the Custom View you dropped into the Box and then Click the
Show the Identity inspector button. Set the Class in the Custom Class
group to ColorizedView.

 21. Control-drag from the Text Field into the ColorizeTimerApp
Delegate.h file in the Assistant editor to the right of the “{” at the
end of the line containing the @interface directive. In the pop-up
window, set the Name to m_frequency and click the Connect button.

 22. Control-drag from the Start Button into the ColorizeTimerApp
Delegate.h file in the Assistant editor below the m_frequency
member variable. In the pop-up window, set the Name to m_start
and click the Connect button.

 23. Control-drag from the Stop Button into the ColorizeTimerApp
Delegate.h file in the Assistant editor below the m_start member
variable. In the pop-up window, set the Name to m_stop and click the
Connect button.

 24. Control-drag from the Color & Index Label into the ColorizeTimer
AppDelegate.h file in the Assistant editor below the m_stop member
variable. In the pop-up window, set the Name to m_colorLabel and
click the Connect button.

272 Part III: Focus on the User

 25. Control-drag from the Custom View into the ColorizeTimerApp
Delegate.h file in the Assistant editor below the m_colorLabel
member variable. In the pop-up window, set the Name to m_color
View and click the Connect button.

 26. Control-drag from the Start Button into the ColorizeTimerApp
Delegate.h file in the Assistant editor to just above the line contain-
ing the @end directive. In the pop-up window, set the Connection
drop-menu to Action, set the Name to startTimer, and click the
Connect button.

 27. Control-drag from the Stop Button into the ColorizeTimerApp
Delegate.h file in the Assistant editor to just above the line contain-
ing the @end directive. In the pop-up window, set the Connection
drop-menu to Action, set the Name to stopTimer, and click the
Connect button.

 28. Select ColorizeTimerAppDelegate.h in the Project Navigator. Modify
the contents of the file to match that shown in Listing 9-9.

 The lines colored purple are the additions. You are adding two meth-
ods and four member variables to hold data the app will use for
setting colors. Most importantly, you’re adding the #import direc-
tive so that the compiler will know where to find the definition of a
ColorizedView.

Listing 9-9: The updated ColorizeTimerAppDelegate.h

//
// ColorizeTimerAppDelegate.h
// ColorizeTimer
//
// Created by Karl Kowalski on 4/3/11.
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import <Cocoa/Cocoa.h>
#import “ColorizedView.h”

@interface ColorizeTimerAppDelegate : NSObject <NSApplicationDelegate>
{
 IBOutlet NSTextField* m_frequency;
 IBOutlet NSButton* m_start;
 IBOutlet NSButton * m_stop;
 IBOutlet ColorizedView* m_colorView;
 IBOutlet NSTextField* m_colorLabel;

 NSTimer* m_timer;
 NSMutableArray* m_colorArray;

273 Chapter 9: Working in the Background

 NSMutableArray* m_nameArray;
 NSUInteger m_currentIndex;
@private
 NSWindow *window;
}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)startTimer:(id)inSender;
- (IBAction)stopTimer:(id)inSender;
- (void)changeColorView:(NSTimer*)inTimer;
- (void)updateColor:(NSUInteger)inIndex;

@end

 29. Select the ColorizeTimerAppDelegate.m file in the Project
Navigator.

 30. Modify ColorizeTimerAppDelegate.m to match the code shown in
Listing 9-10.

Listing 9-10: Implementing the code for ColorizeTimerAppDelegate

//
// ColorizeTimerAppDelegate.m
// ColorizeTimer
//
// Created by Karl Kowalski on 4/3/11
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import “ColorizeTimerAppDelegate.h”

@implementation ColorizeTimerAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification*)aNotification
{
 m_colorArray = [[NSMutableArray alloc] init];
 m_nameArray = [[NSMutableArray alloc] init];
 [m_colorArray addObject:[NSColor blueColor]];
 [m_colorArray addObject:[NSColor redColor]];
 [m_colorArray addObject:[NSColor greenColor]];
 [m_colorArray addObject:[NSColor yellowColor]];
 [m_colorArray addObject:[NSColor orangeColor]];
 [m_colorArray addObject:[NSColor purpleColor]];
 [m_nameArray addObject:@”Blue”];
 [m_nameArray addObject:@”Red”];

(continued)

274 Part III: Focus on the User

Listing 9-10 (continued)

 [m_nameArray addObject:@”Green”];
 [m_nameArray addObject:@”Yellow”];
 [m_nameArray addObject:@”Orange”];
 [m_nameArray addObject:@”Purple”];
 m_currentIndex = 0;
 [m_stop setEnabled:NO];
}

- (IBAction)startTimer:(id)inSender
{
 [m_stop setEnabled:YES];
 [m_start setEnabled:NO];
 double colorChangeFrequency = [m_frequency doubleValue];
 if (colorChangeFrequency < 1.0)
 {
 colorChangeFrequency=1.0;
 }
 else if (colorChangeFrequency > 30.0)
 {
 colorChangeFrequency=30.0;
 }
 NSTimeInterval interval=60.0/colorChangeFrequency;
 m_timer = [NSTimer scheduledTimerWithTimeInterval:interval target:self

selector:@selector(changeColorView:) userInfo:nil repeats:YES];
}

- (IBAction)stopTimer:(id)inSender
{
 [m_stop setEnabled:NO];
 [m_start setEnabled:YES];
 if (nil != m_timer)
 {
 [m_timer invalidate];
 [m_timer release];
 m_timer = nil;
 }
}

- (void)changeColorView:(NSTimer*)inTimer
{
 m_currentIndex++;
 [self updateColor:(m_currentIndex % [m_colorArray count])];
}

- (void)updateColor:(NSUInteger)inIndex
{
 [m_colorView setColor:[m_colorArray objectAtIndex:inIndex]];

275 Chapter 9: Working in the Background

 NSString* labelString = [NSString stringWithFormat:@”Color: %@, index: %d”,
[m_colorArray objectAtIndex:inIndex], inIndex];

 [m_colorLabel setStringValue:labelString
}

- (void)dealloc
{
 [m_colorArray release];
 [m_nameArray release];
 if (nil != m_timer)
 {
 [m_timer release];
 }
}

@end

 31. Build and run your app.

 When you click the Start button, the app will cycle through the colors
in the m_colorArray. You can set the frequency to any value between
1 and 30 changes per minute. I suggest setting it to 30 to see it cycle
through the colors very quickly.

You’ve now written an app that uses an NSTimer to schedule repeated dis-
play changes. You can use NSTimer to perform just about any kind of repeti-
tive operation that your app requires to occur on a regular basis.

You can use an NSTimer or the performSelector:withObject:afterD
elay: method of NSObject to accomplish a great deal of background pro-
cessing of data. But at some point, you’re going to need the full power of a
completely separate NSThread, as you see in the next section.

Using NSThread to retrieve data from a website
There are a couple of websites I scan on a daily basis. www.nytimes.com
always has interesting articles; my hometown newspaper at www.boston.com
always keeps me up to date on what’s happening around town; and I’ve always
been a fan of www.dilbert.com to keep me current with the cartoon that
laughs about life in a software developer’s career. Also, there’s always www.
dummies.com, where I can check out the new books in the For Dummies series.

For this example, you’re going to create an app that will go to the www.
dummies.com website (because I won’t have many copyright issues to deal
with, assuming that my editors are okay with this!) and, from its main page,
download all the JPEG images displayed there. Then the app will allow the
user to display the images separately, one at a time.

276 Part III: Focus on the User

 You can find the source code for this project and all the other projects in this
book at www.dummies.com/go/macintoshappdev.

The ForDummiesImages app will use an NSThread to retrieve the con-
tents of the www.dummies.com URL and then search through all the
items in the downloaded HTML for image tags (“img”). The downloaded
content is assumed to be in an XML format, so the app will use Cocoa’s
NSXMLDocument, NSXMLElement, and NSXMLNode classes to perform the
search. The NSXMLNode class provides a feature that allows you to search
the XML contents using a standardized inquiry. Don’t panic! You won’t need
to learn all the intricate details of this search process. The search for this
example is pretty simple, and I’ll point it out. Here are the steps:

 1. Launch Xcode, if it’s not already running.

 2. Create a new project.

 I named mine ForDummiesImages.

 3. Select MainMenu.xib in the Project Navigator. Show the Utilities view
and Click the Show the assistant editor button.

 4. Click the Window in Interface Builder’s Dock to display the app
window.

 5. Drag and drop a Button from the Object Library onto the app window.
Set the Button’s text to Previous and place the Button on the left side
of the window, about halfway between the top and the bottom.

 6. Drag and drop a Button from the Object Library onto the app window.
Set the Button’s text to Next and place the Button on the right side of
the window, about halfway between the top and the bottom.

 7. Drag and drop a Button from the Object Library onto the app window.
Set the Button’s text to Start Download and place the Button at the top
of the window, about halfway between the left and right sides.

 8. Drag and drop a Custom View from the Object Library onto the app
window. Place the Custom View at the center of the window and
resize it so that it fills the remaining space between the buttons.

 9. With the Custom View still selected, Click the Show the Identity
inspector button and change the Class of the Custom View to
NSImageView.

 Your window should look very similar to the one shown in Figure 9-5.

 10. Control-drag from the NSImageView into the ForDummiesImages
AppDelegate.h editor to a point just after the “{” on the same line
as the @interface directive. In the pop-up window, set the Name to
m_imageView and click Connect.

277 Chapter 9: Working in the Background

Figure 9-5: The window for displaying images downloaded from www.dummies.com.

 11. Control-drag from the Start Download Button into the ForDummies
ImagesAppDelegate.h editor to a point just above the line contain-
ing the @end directive. In the pop-up window, change the Connection
to Action and set the Name to startDownload. Click Connect.

 12. Control-drag from the Previous Button into the ForDummiesImages
AppDelegate.h editor to a point just above the line containing the
@end directive. In the pop-up window, change the Connection to
Action and set the Name to showPreviousImage. Click Connect.

 13. Control-drag from the Previous Button into the ForDummiesImages
AppDelegate.h editor a second time, this time to a point just below
the m_imageView member variable. In the pop-up window, set the
Name to m_previous and click Connect.

 14. Control-drag from the Next Button into the ForDummiesImages
AppDelegate.h editor to a point just above the line containing the
@end directive. In the pop-up window, change the Connection to
Action and set the Name to showNextImage. Click Connect.

278 Part III: Focus on the User

 15. Control-drag from the Next Button into the ForDummiesImagesApp
Delegate.h editor a second time, this time to a point just below the
m_imageView member variable. In the pop-up window, set the Name
to m_next and click Connect.

 16. Click the Show the Standard editor button to close the Assistant
window.

 17. Select ForDummiesImagesAppDelegate.h from the Project
Navigator. Add the purple code shown in Listing 9-11.

 18. Select ForDummiesImagesAppDelegate.m from the Project
Navigator. Add the purple code shown in Listing 9-12.

 19. Build and run your app.

Listing 9-11: The ForDummiesImagesAppDelegate.h header file

//
// ForDummiesImagesAppDelegate.h
// ForDummiesImages
//
// Created by Karl Kowalski on 4/3/11.
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import <Cocoa/Cocoa.h>

@interface ForDummiesImagesAppDelegate : NSObject <NSApplicationDelegate>
{
 IBOutlet NSImageView* m_imageView;

 NSMutableArray* m_images;
 NSUInteger m_currentImageIndex;
 NSThread* m_downloadThread;
@private
 NSWindow *window;
}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)startDownload:(id)inSender;
- (IBAction)showNextImage:(id)inSender;
- (IBAction)showPreviousImage:(id)inSender;
- (void)downloadImages:(id)inObject;
- (NSImage*)createImageFromUrl:(NSString*)inUrlString;

@end

279 Chapter 9: Working in the Background

Listing 9-12: The implementation of the code to download images from
www.dummies.com

//
// ForDummiesImagesAppDelegate.m
// ForDummiesImages
//
// Created by Karl Kowalski on 4/3/11.
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import “ForDummiesImagesAppDelegate.h”

@implementation ForDummiesImagesAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
 // Insert code here to initialize your application
 m_currentImageIndex=0;
 [m_next setEnabled:NO];
 [m_previous setEnabled:NO];
}

- (IBAction)startImageDownload:(id)inSender
{
// remove any images already stored
 if (nil != m_images)
 {
 [m_images release];
 }
 m_images = [[NSMutableArray alloc] init];
 if (nil != m_downloadThread)
 {
 [m_downloadThread cancel];
 }
 m_downloadThread = [[NSThread alloc] initWithTarget:self selector:@

selector(downloadImages:) object:nil];
 [m_downloadThread start];
}

- (IBAction)showNextImage:(id)inSender
{
 m_currentImageIndex++;
 if (m_currentImageIndex > [m_images count])
 {
 m_currentImageIndex = 0;
 }

(continued)

280 Part III: Focus on the User

Listing 9-12 (continued)

 [m_imageView setImage:[m_images objectAtIndex:m_currentImageIndex]];
}

- (IBAction)showPreviousImage:(id)inSender
{
 m_currentImageIndex--;
 // the index will wrap around to a number
 // larger than the image count if it was
 // zero before the subtraction
 if (m_currentImageIndex > [m_images count])
 {
 m_currentImageIndex = [m_images count] - 1;
 }
 [m_imageView setImage:[m_images objectAtIndex:m_currentImageIndex]];
}

- (void)downloadImages:(id)inObject
{
 // create a release pool to clean up memory
 NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
 NSString* retrievalUrl = [NSString stringWithString:@”http://www.dummies.

com”];
 NSURL* dummiesUrl = [NSURL URLWithString:retrievalUrl];
 NSError* error;
// create an XML document in memory
 NSXMLDocument* xmlDoc = [[NSXMLDocument alloc] initWithContentsOfURL:dummies

Url options:NSXMLDocumentTidyHTML error:&error];
// get the root element
 if (nil != xmlDoc)
 {
 NSXMLElement* rootElement = [xmlDoc rootElement];
 if (nil != rootElement)
 {
 NSArray* imageNodes = [rootElement nodesForXPath:@”//img”

error:&error];
 if (nil != imageNodes && [imageNodes count] > 0)
 {
 NSUInteger imageIndex=0;
 for (imageIndex=0; imageIndex<[imageNodes count]; ++imageIndex)
 {
 // watch for exceptions each time through loop
 @try
 {
 NSXMLElement* imageElement = [imageNodes

objectAtIndex:imageIndex];
 NSXMLNode* srcAttribute = [imageElement

attributeForName:@”src”];
 if (nil != srcAttribute)
 {
 NSString* srcAttributeValue = [srcAttribute

stringValue];

281 Chapter 9: Working in the Background

 if (nil != srcAttributeValue &&
 [srcAttributeValue rangeOfString:@”jpg”].location != NSNotFound)
 {
 NSImage* dummiesImage = [self createImageFromUrl

:srcAttributeValue];
 if (nil != dummiesImage)
 {
 [m_images addObject:dummiesImage];
 }
 }
 }
 }
 @catch (NSException* except)
 {
 // don’t care, just continue
 }
 }
 if ([m_images count] > 0)
 {
 m_currentImageIndex = 0;
 [m_imageView setImage:[m_images objectAtIndex:m_

currentImageIndex]];
 [m_imageView setNeedsDisplay:YES];
 [m_previous setEnabled:([m_images count] > 1)];
 [m_next setEnabled:([m_images count] > 1)];
 }
 }
 }
 }
// clean up all auto-released memory to avoid leaks
 [pool release];}

- (NSImage*)createImageFromUrl:(NSString*)inUrlString
{
 NSImage* image = nil;
 if (nil != inUrlString && [inUrlString length] > 0)
 {
 NSURL* imageUrl = [NSURL URLWithString:inUrlString];
 if (nil != imageUrl)
 {
 image = [[NSImage alloc] initWithContentsOfURL:imageUrl];
 }
 }
 return (image);
}

- (void)dealloc
{
 [m_images release];
 [super dealloc];
}

@end

282 Part III: Focus on the User

You should see the first JPEG image displayed a few moments after you click
the Start Download button.

Once again, the background thread is set to use a method on the object that
creates it: the ForDummiesImagesAppDelegate. This procedure is the
simplest approach to using NSThread objects. The class that needs to use
an NSThread is the one that creates it and comes with the method that the
NSThread object will execute. You can go further, such as creating a class
that’s a subclass of NSThread and thereby keeping the thread’s executable
code within that class. I chose not to do that in this case because the result
of the thread’s operation was going to set up the display of the images that it
downloaded, and all that information would have to be delivered to the visual
component of the app somehow. It was just easier to have the NSThread use
the method within the App Delegate object itself.

 The example makes use of a technology called XPath. XPath gives you
the ability to specify a search for information within an XML document in
memory — in this example, your app searched for HTML tags, which
contain links to image files. This example used XPath to perform a very
simple search, but there’s a whole language for XPath you can use to do
much more complicated searches.

 I first used the XML classes and XPath code in this example for a different
project, to scan images from another website I also browse regularly. When I
first ran the code using the dummies.com website, it crashed. Within the exe-
cution of the for loop in method downloadImages:, the call made to grab
the string associated with the “src” attribute from the NSXMLElement object
was throwing an exception, and I didn’t know why. I placed the Objective-C
exception-handling pieces around the offending code, and if an exception was
thrown, the code would simply go on to the next “img” element and see what
it contained. You can see the exception-handling block between the @try and
@catch statements in the downloadImages: method. When I got the work-
around implemented and got the code working, I took a look at the source of
the web page at www.dummies.com. I found the first JPEG image reference
and discovered an anomaly: Normally, attributes inside an XML tag should be
of the form attributeName=”attributeValue”. For this one item, an attri-
bute didn’t have double quotes around the value, which caused a problem for
the XML parser within NSXMLElement.

http://www.dummies.com

Chapter 10

Printing Your User’s Data
In This Chapter
▶ Getting familiar with the Cocoa printing process

▶ Fine-tuning the print settings

▶ Creating and running a print job

▶ Printing to PDF

T
he Apple Macintosh gives you and your users a wonderfully rich inter-
active experience with screens, menus, buttons, and many other visual

elements users can manipulate onscreen. Your apps will use the graphics
engine that Cocoa provides to draw their content on the users’ monitors
in clean, crisp pixels. But even though our world is becoming more virtual,
some of your users will still want printed output. And that means your apps
will have to deliver their content in a physical form, when appropriate. Cocoa
gives you the classes and methods you need to provide your users the same
pixels they see on the screen right on paper. This chapter will give you all the
details for giving your users the paper copies they want.

Cocoa makes it easy for you to add printing features to your applications.
The classes and methods you use to produce paper copies of your users’
data are simple, and you can generate professional printing results that your
users will appreciate.

Printing with Cocoa
You’ll find that there’s really only a small set of classes that Cocoa provides
for you to achieve all your printing goals in your Mac apps. Most of these
classes you’ll use just to get information from your users to perform the
printing of their information.

284 Part III: Focus on the User

You’ll use these classes to provide printing features in your apps:

 ✓ NSView: Cocoa makes printing to a page as simple for your app as draw-
ing text and graphics to one of your app’s NSViews. You learned how
to command the pixels of an NSView in Chapter 7, and the same skills
and techniques will work for printing as well, with only one exception:
Printers are still not capable of drawing animated displays, at least not
while they’re in motion. Cocoa’s printing code will draw onto a piece of
paper the same contents displayed in an NSView on the screen.

 ✓ NSPageLayout: When a user selects File➪Page Setup, your app uses the
NSPageLayout class to display the Page Setup panel. This is the stan-
dard OS X panel users expect; your users will adjust the layout options
for the pages they want to print. These options include the orienta-
tion of the page as well as the paper size and scale. When the user has
selected the desired printing options, your app can retrieve these set-
tings from an NSPrintInfo object. Note that you may encounter minor
differences from one version of OS X to the next.

 ✓ NSPrintInfo: Your app will use an NSPrintInfo object to retrieve
the settings that your user has selected from the Page Setup panel. Your
app can use a default shared NSPrintInfo object (created for your app
automatically) or create a new one. Apple recommends using a separate
NSPrintInfo object for each document in a document-based app. This
gives your app the capability to provide different print settings for each
document.

 ✓ NSPrintPanel: Selecting File➪Print from your app will display the stan-
dard Print panel, and this is handled by an NSPrintPanel object. Your
app doesn’t normally need to use this object. Similar to the Page Setup
dialog, Apple may modify the appearance of this dialog, but the API your
app uses to retrieve data from it will generally stay consistent.

 ✓ NSPrintOperation: Your app will create and use an NSPrint
Operation to manage the process of printing. The easiest approach for
your app to do printing is to use a default NSPrintOperation. Doing
so provides the basic flow of operations that users have come to expect,
which includes displaying an NSPrintPanel and then performing the
print job.

Your app will use the classes listed above to smoothly transition a user from
a screen display of their information to a printed one. The following is the
sequence of steps your app will follow while executing a printing process:

 1. Your app draws its information in an NSView.

 What your app draws to its views, Cocoa draws on a printed page. Even
if the NSView your app is going to print isn’t displayed on the screen,

285 Chapter 10: Printing Your User’s Data

Cocoa can still print it. The same goes for subviews: as long as the view
is a subclass of NSView, Cocoa can print what the view draws.

 2. The user selects File➪Page Setup.

 Your app displays the Page Setup panel, giving the user the option of
changing the page settings. You can see the standard Page Setup panel
in Figure 10-1.

Figure 10-1: The Page Setup panel gives the user an opportunity
to adjust settings for the pages in a print job.

 3. The user sets options for the page layout and dismisses the panel.

 Your app uses an NSPrintInfo object to store these settings.

 4. The user selects File➪Print to print the desired pages in hard copy.

 Your app displays the Print panel, the last step before the pages are
printed. Figure 10-2 shows a typical Print panel. When the user has made
selections from the Print panel, he can start the print job by clicking OK.

 Your app prints the view. Using the Page Setup and Print panel set-
tings stored in an NSPrintInfo object, your app launches an
NSPrintOperation that uses the drawRect: method of an NSView
object to draw the view’s contents on a printed page, using the same
drawing code used to draw its contents on the screen.

Your app follows these steps, letting the user determine properties of the
printed output and finally telling your app to print the data.

286 Part III: Focus on the User

Figure 10-2: Your app displays the Print panel for users to make further
adjustments and to execute the print job.

Setting up a Page
The default implementation of a window-based app does not enable the
Page Setup menu, and the basic implementation of the Print menu command
merely dumps a screen shot onto a printed page, as shown in Figure 10-3.
If you want your app to do more than just these defaults, you’ll have to do
some work to get your app to behave as you prefer.

You use the following process to enable the Page Setup menu item:

 1. Launch Xcode.

 2. Create a new basic project called BasicPrintApp and save it.

 The project comes with an App Delegate, a window, and all the standard
components that basic Cocoa apps come with.

287 Chapter 10: Printing Your User’s Data

Figure 10-3: You can print from a window, but you’ll just be
printing the window.

 3. Add a new class to the basic project: Create BasicPrintView as a
subclass of NSView.

 You add a new class by selecting New➪New File from the File menu.
This will start the process of creating files to represent the new class.

 4. Select. BasicPrintAppAppDelegate.h in the Project navigator,
modify the file to match that shown in Listing 10-1, and then save your
changes.

 The code in Listing 10-1 declares a method that your app delegate
class is going to implement for itself. Doing so gives the app delegate a
method to perform its own page setup, different from the default behav-
ior. The delegate class also will contain a reference to an NSPrintInfo
object to hold the settings that the user chooses.

 5. Click to select the MainMenu.xib file, which displays the file’s con-
tents in an Interface Builder editor.

 6. Drag a Custom View from the Object Library in the Utilities view into
the BasicPrintApp’s main window.

 I prefer to maximize the size of the view up to the blue guidelines that
Interface Builder shows me, and then use the Size inspector’s Autosizing
tool to “glue” the sides of the custom view to the sides of the window, so
that the customer view will resize as the window does.

288 Part III: Focus on the User

 7. In the Identity inspector, change the Class to BasicPrintView.

 Doing so makes the custom view you’ve just added an instance of your
BasicPrintView, so that Cocoa will use the code you provide in
BasicPrintView to perform the print operations you create.

 8. Select the App’s File menu in Interface Builder to open it for editing.
Control-drag from the Page Setup menu item to the BasicPrintApp
app delegate object in the Dock, and connect it to the pageSetup:
action.

 9. Save your changes.

 10. Select BasicPrintAppAppDelegate.m in the Project navigator.
Modify the file to match the code shown in Listing 10-2.

 The code in Listing 10-2 will override any code in a parent class of
BasicPrintAppAppDelegate. Your app delegate will now execute its
pageSetup: method when the user selects the Page Setup menu item.
In addition, the fact that the menu item is now connected to a method
causes Cocoa to enable this menu item while your app is running.

 11. Save your changes.

 If you build and run the project, your app will display the standard Page
Setup window when you select File➪Page Setup from the menu. And
your app will also store the user’s settings from the Page Setup window
in the m_printInfo object for future use.

Listing 10-1: The App Delegate header file, prepared to receive a Page
Setup command from the user and store the results in an NSPrintInfo
object that it maintains

//
// BasicPrintAppAppDelegate.h
// BasicPrintApp
//
// Created by Karl Kowalski on 4/17/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import <Cocoa/Cocoa.h>

@interface BasicPrintAppAppDelegate : NSObject
<NSApplicationDelegate> {

@private
 NSWindow *window;
 NSPrintInfo* m_printInfo;
}

289 Chapter 10: Printing Your User’s Data

@property (assign) IBOutlet NSWindow *window;

- (IBAction)pageSetup:(id)inSender;

@end

Listing 10-2: The implementation of the App Delegate code needed to
support Page Setup

//
// BasicPrintAppAppDelegate.m
// BasicPrintApp
//
// Created by Karl Kowalski on 4/17/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import “BasicPrintAppAppDelegate.h”

@implementation BasicPrintAppAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)
aNotification

{
 // Insert code here to initialize your application
}

- (IBAction)pageSetup:(id)inSender
{
 m_printInfo = [NSPrintInfo sharedPrintInfo];
 NSPageLayout* pageLayout = [NSPageLayout pageLayout];
 NSInteger response = [pageLayout runModalWithPrintInfo:

m_printInfo];
}

@end

When a user selects the File➪Page Setup menu item, Cocoa determines that
the action this menu item is going to execute is your BasicPrintAppApp
Delegate’s pageSetup: method. This method first gets the application’s
default NSPrintInfo object and then displays a Page Setup window to get

290 Part III: Focus on the User

selections from the user. Your app doesn’t do anything useful with this infor-
mation, but you’ll notice that any changes to the Page Setup are carried into
the next display of the information — indicating that your app is maintaining
the user’s selections. Now we’re going to add printing to your app.

 The NSInteger returned from the runModalWithPrintInfo: message
will either be NSCancelButton — if the user clicks the Page Setup dialog’s
cancel button — or NSOKButton — if the user clicks OK. This information is
not usually required by your app, so you can safely ignore it.

Printing a Page
To add printing, you’ll add another method to your project’s app delegate
class. Then you’ll connect the Print menu item to execute that method. You’ll
be doing pretty basic printing by handing an NSPrintOperation object
a reference to the app delegate’s BasicPrintView that you want to have
printed; Cocoa will take care of the rest.

 1. Select BasicPrintAppAppDelegate.h from the Project navigator,
add the new code shown in purple in Listing 10-3, and save your
changes.

 2. Select MainMenu.xib from the Project navigator.

 To keep things simple, I added a Label field to the BasicPrintView as
shown in Figure 10-4. This is similar to the image shown in Figure 10-3,
which demonstrated what the default Cocoa print operation does.

 You’re welcome to add whatever text you’d like.

 As in the case with adding the BasicPrintView to the window, I rec-
ommend setting the Label to a maximum size as shown by the blue
guidelines and also set it to resize with the window.

 3. Select the App’s File menu in Interface Builder, Control-drag from the
Print menu item to the BasicPrintApp app delegate object in the
Dock, and connect it to the printView: action. Save your changes.

 4. Select the Basic Print App App Delegate object in the Dock, Control-
drag from the app delegate object in the Dock, and connect it to the
BasicPrintView object in the window, selecting m_printView from
the list. Save your changes.

 You’ve now connected the BasicPrintView object that Cocoa creates
when the window is generated to the application delegate, so that your
app can use this view and draw its contents on a printed page.

291 Chapter 10: Printing Your User’s Data

Figure 10-4: Add a text Label containing a re-wording of some
famous quotation.

 5. Select BasicPrintAppAppDelegate.m from the Project navigator,
add the new code shown in purple in Listing 10-4, and save your
changes.

 6. Build and run your app.

 When you select the File➪Print menu item, you get the standard Print
panel, ready to send your view’s contents to a printer or PDF file. Your
app will now print the view’s contents at the touch of a menu or key-
board shortcut.

Listing 10-3: Add a reference to a BasicPrintView object and a method
to handle printing

//
// BasicPrintAppAppDelegate.h
// BasicPrintApp
//
// Created by Karl Kowalski on 4/17/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import <Cocoa/Cocoa.h>

(continued)

292 Part III: Focus on the User

Listing 10-3 (continued)

#import “BasicPrintView.h”

@interface BasicPrintAppAppDelegate : NSObject
<NSApplicationDelegate>

{
@private
 NSWindow *window;
 NSPrintInfo* m_printInfo;
 IBOutlet BasicPrintView* m_printView;
}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)pageSetup:(id)inSender;
- (IBAction)printView:(id)inSender;

@end

Listing 10-4: Implement the print code

//
// BasicPrintAppAppDelegate.m
// BasicPrintApp
//
// Created by Karl Kowalski on 4/17/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import “BasicPrintAppAppDelegate.h”

@implementation BasicPrintAppAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)
aNotification

{
 // Insert code here to initialize your application
}

- (IBAction)pageSetup:(id)inSender
{
 m_printInfo = [NSPrintInfo sharedPrintInfo];
 NSPageLayout* pageLayout = [NSPageLayout pageLayout];

293 Chapter 10: Printing Your User’s Data

 NSInteger response = [pageLayout runModalWithPrintInfo:m_
printInfo];

}

- (IBAction)printView:(id)inSender
{
 [[NSPrintOperation printOperationWithView:m_printView]

runOperation];
}

@end

Now your app will print the text you added in the Label to a page in the
printer. Your users can also save the output to a PDF file if they prefer, in
order to e-mail it to anyone else they feel might like to see their information
as printed by your app.

 While this app is pretty simple, your own apps can deliver much more com-
plex view-drawing code. The Cocoa framework will draw to a printer or PDF
file using the same instructions as your code draws to the screen in a view’s
drawRect: method. Your app doesn’t need to know that the end result is a
piece of paper instead of some pixels on a monitor.

 You can even determine in your drawRect: method whether your app is
drawing to the screen. You might want to know about where your view is
drawing if some of the things your view would draw on the screen wouldn’t
be appropriate for drawing to a piece of paper. For instance, if the user has
selected some text in one of your views and then tries to print the display,
you may not want the selection highlighting to be printed. The code snippet
below demonstrates how to tell whether your view is about to be drawn on
the screen or somewhere else:

- (void)drawRect:(NSRect)inRect
{
 if ([NSGraphicsContext currentContextDrawingToScreen] ==

YES)
 {
 // you’re drawing on the screen
 }
 else
 {
 // you’re not drawing on the screen
 }
}

294 Part III: Focus on the User

Printing Straight to PDF
You now have the basic knowledge you need to move anything you can
draw in an onscreen view onto a printed page. Your apps can print any view
you create and follow the standard Mac app approach to create hard-copy
output. But Cocoa also gives you the capability to print directly to a PDF
(Portable Document Format) file. PDF has become the standard for publish-
ing and printing documents and is also supported by almost all e-book read-
ers. On other platforms, I have used open-source solutions for creating PDF
files from within my applications. With Cocoa, it’s easy to move what your
app draws onscreen directly into a PDF file.

 Your users can always print directly to PDF from the Print panel itself. The
code you’re about to add to your app provides the same feature behind the
scenes, without requiring that users must select File➪Print.

 1. Select BasicPrintAppAppDelegate.h from the Project navigator.
Add the following new method declaration, right before @end:

- (IBAction)writeToPDF:(id)inSender;

 2. Save your changes.

 3. Select MainMenu.xib from the Project navigator.

 You’re going to add a button that will create a PDF document from the
view.

 4. Resize the BasicPrintView to make room for a button at the bottom.

 5. Add a Button below the BasicPrintView, as shown in Figure 10-5.

 6. Control-drag from the Button to the App Delegate method writeToPDF;.

 7. Save your changes.

 8. Select BasicPrintAppAppDelegate.m from the Project navigator.
Implement the new method from the code shown below, right before
@end:

- (IBAction)writeToPDF:(id)inSender
{
 // get the view rectangle
 NSRect viewRect = [m_printView bounds];
 // now get the PDF data for the view in its rectangle
 NSData* viewData = [m_printView dataWithPDFInsideRect:viewRect];
 // now write to a file in the user’s home directory
 [viewData writeToFile:[@”~/BasicPrintView.pdf”
stringByExpandingTildeInPath] atomically:YES];
}

 9. Build and run the app. If you click the button, you will create a PDF
file named BasicPrintView.pdf in your home directory.

295 Chapter 10: Printing Your User’s Data

Figure 10-5: Adding a button to just print the view’s contents
directly to a PDF file.

You’ve now streamlined the users’ experience — they no longer need to jump
through hoops to get your screens written to a form they can move more
easily. (Of course, you may also want to provide a way to let your users name
the files more appropriately. Chapter 8 covers this.)

Printing with Multiple Pages
The preceding examples in this chapter give you the basic skills and tech-
niques you’ll need to write apps that can send their information to a printer
or PDF files for users to work with. But one of the first questions I asked
about printing was: What happens when what I want to print goes beyond
one page?

The DiabeticPad app will require multiple pages to be printed, if my users
want a printed copy of their entire history of entries. Users might also want
a subset of the entire history, possibly just the most recent couple of pages’
worth of data. I could provide an interface that would print whatever set of
entries were on display when the user selects File➪Print, but the user experi-
ence would suffer because most apps give users the capability to select any
or all pages of a set to be printed.

296 Part III: Focus on the User

The NSView class supports pagination automatically for views that are larger
than the printable area for the user’s selected printer. If your app’s NSView
subclass displays a high-detail map of the United States, for instance, you
have the following options available for printing:

 ✓ The view can be clipped either horizontally or vertically, or both.
Clipping both directions would cause just the top-left rectangle’s worth
of the display to be printed.

 ✓ The view can be tiled either horizontally or vertically, or both. This is
sufficient for most views such as maps.

 ✓ The view can be resized either horizontally or vertically, or both. Resizing
both directions would scale the entire display to fit onto one page.

 ✓ The view can perform its own custom pagination.

 This approach is my preferred way to handle printing data whose con-
tent is unknown ahead of time. For instance, since DiabeticPad doesn’t
know how many entries are available to print, the printing code will
have to calculate this information when a printing request comes in.

Paging your own way
Implementing a custom paging scheme can seem a bit intimidating, but it’s
really pretty straightforward. Your view subclass will need to override two
methods of NSView:

 ✓ - (BOOL)knowsPageRange:(NSRangePointer)inRange. This
method should return YES for an NSView subclass that will provide its
own pagination. In addition, your subclass method must also fill in the
range of pages, starting at 1, that the complete view will be divided into.
A user can then select a page range from this minimum and maximum.

 ✓ - (NSRect)rectForPage:(int)inPageNumber. Your app will over-
ride this method to provide the boundaries of the rectangle to be drawn
for the desired page.

To demonstrate how DiabeticPad prints out its own pages using custom pagi-
nation, I’m going to show you example code that mimics what DiabeticPad
does. Although fairly simple, this app provides you with the basics for under-
standing how to deliver multipage printing to your apps.

 1. Launch Xcode if it isn’t still running.

 2. Create a new Document-based project with a document class named
PagedDoc, and then save it in a convenient place.

 Xcode create the basic set of files for a Document-based app.

297 Chapter 10: Printing Your User’s Data

 3. Select PagedDoc.xib in the Project navigator and select the Window
from the Dock. Remove the Your document contents here label
from the window. Save your changes.

 This will give you an empty view in your app.

 4. Create a new file as a subclass of NSView. Call the subclass
PagedDocView.

 As mentioned earlier, you create a new class and its files by selecting
New➪New File from Xcode’s File menu.

 5. Select PagedDocView.h from the Project navigator, modify its code to
match that shown in Listing 10-5, and save your changes.

 The new code from Listing 10-5 includes the set of member variables
and the one new method, initWithArray:.

 6. Select PagedDocView.m from the Project navigator, modify its code to
match that shown in Listing 10-6, and save your changes.

 Listing 10-6 contains the code that the Mac executes to display your
view when it’s on the screen, and to print the contents of that view
when the user selects the Print menu item. The initialize method —
initWithArray: — retains a copy of the NSArray passed into the
method and creates a font attribute to be used when drawing text; the
drawRect: method draws the text to be displayed for the current page;
the knowsPageRange: method calculates information about the print-
able area and sets the beginning and end of the range of possible pages;
and the rectForPage: method remembers the current page number
for use by a subsequent call to drawRect: and also returns the rectan-
gular area available for drawing.

 7. Select PagedDoc.m from the Project navigator and add the purple
code found in Listing 10-7.

 8. Build and run your app.

 The display will be empty because your app doesn’t draw anything in its
window — you removed the default window contents in Step 3 above.
But when you print, the preview will show you the strings you passed
into the view you created on the fly in the printOperationWith
Settings:error: method.

 The default methods in the PagedDoc.m file are provided by Xcode as
part of the Document-based app template. When you added the print
OperationWithSettings: method to the PagedDoc class, you cre-
ated code that Cocoa would execute that created a PagedDocView
object and an NSPrintOperation object that would use it to perform
multi-page printing. Cocoa will execute this code after a user selects
Print from the File menu and clicks the OK button to start printing.

298 Part III: Focus on the User

Listing 10-5: The header file for the view that will be printed

//
// PagedDocView.h
// PagedDocPrint
//
// Created by Karl Kowalski on 4/17/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import <Cocoa/Cocoa.h>

@interface PagedDocView : NSView
{
 NSArray* m_stringArray;
 NSMutableDictionary* m_attributes;
 NSRect m_pageRect;
 NSInteger m_currentPage;
@private

}

- (id)initWithArray:(NSArray*)inArray;

@end

Listing 10-6: The code implemented for the view to be printed

//
// PagedDocView.m
// PagedDocPrint
//
// Created by Karl Kowalski on 4/17/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import “PagedDocView.h”

@implementation PagedDocView

- (id)initWithArray:(NSArray*)inArray
{
 self = [super initWithFrame:NSMakeRect(0.0, 0.0, 100.0,

100.0)];

299 Chapter 10: Printing Your User’s Data

 m_stringArray = inArray;
 [m_stringArray retain];
 m_attributes = [[NSMutableDictionary alloc] init];
 NSFont* stringFont = [[NSFont fontWithName:@”Helvetica”

size:18.0] retain];
 [m_attributes setObject:stringFont

forKey:NSFontAttributeName];
 return (self);
}

- (void)dealloc
{
 [m_stringArray release];
 [m_attributes release];
 [super dealloc];
}

- (void)drawRect:(NSRect)dirtyRect
{
 // get the string to be drawn
 NSString* textString = [m_stringArray objectAtIndex:

m_currentPage];
 if (nil == textString)
 {
 textString = [NSString stringWithFormat:@”unknown

current index [%d] for array count [%d]”,
m_currentPage, [m_stringArray count]];

 }
 CGSize textSize = [textString sizeWithAttributes:

m_attributes];
 CGFloat yPos = 0.50 * m_pageRect.size.height;
 CGFloat xPos = 0.50 * (m_pageRect.size.width - textSize.

width);
 NSRect textRect = NSMakeRect(xPos, yPos, textSize.width,

textSize.height);
 [textString drawInRect:textRect withAttributes:

m_attributes];
}

- (BOOL)knowsPageRange:(NSRangePointer)inRangePointer
{
 NSPrintOperation* currentOp = [NSPrintOperation

currentOperation];
 NSPrintInfo* printInfo = [currentOp printInfo];
 m_pageRect = [printInfo imageablePageBounds];
 inRangePointer->location = 1;
 inRangePointer->length = [m_stringArray count];
 return (YES);
}

(continued)

300 Part III: Focus on the User

Listing 10-6 (continued)

- (NSRect)rectForPage:(NSInteger)inPage
{
 // Remember the current page
 m_currentPage = inPage - 1;
 return (m_pageRect);
}

- (BOOL)isFlipped
{
 return (YES);
}

@end

Listing 10-7: Your document supports multi-page printing with a virtual
view

//
// PagedDoc.m
// PagedDocPrint
//
// Created by Karl Kowalski on 4/17/11.
// Copyright 2011 Kowalski Software Enterprises.
// All rights reserved.
//

#import “PagedDoc.h”

#import “PagedDocView.h”

@implementation PagedDoc

- (id)init
{
 self = [super init];
 if (self) {
 // Add your subclass-specific initialization here.
 // If an error occurs here, send a [self release]
 // message
 // and return nil.
 }
 return self;
}

- (NSString *)windowNibName
{
 // Override returning the nib file name of the document

301 Chapter 10: Printing Your User’s Data

 // If you need to use a subclass of NSWindowController
 // or if your document supports multiple
 // NSWindowControllers, you should remove this method
 // and override -makeWindowControllers instead.
 return @”PagedDoc”;
}

- (void)windowControllerDidLoadNib:(NSWindowController *)
aController

{
 [super windowControllerDidLoadNib:aController];
 // Add any code here that needs to be executed once the
 // windowController has loaded the document’s window.
}

- (NSData *)dataOfType:(NSString *)typeName error:(NSError
**)outError {

 /*
 Insert code here to write your document to data of the

specified type. If outError != NULL, ensure that
you create and set an appropriate error when
returning nil.

 You can also choose to override -fileWrapperOfType:error:,
-writeToURL:ofType:error:, or -writeToURL:ofType:
forSaveOperation:originalContentsURL:error: instead.

 */
 if (outError) {
 *outError = [NSError errorWithDomain:NSOSStatusErrorD

omain code:unimpErr userInfo:NULL];
 }
 return nil;
}

- (BOOL)readFromData:(NSData *)data ofType:(NSString *)
typeName error:(NSError **)outError {

 /*
 Insert code here to read your document from the given

data of the specified type. If outError != NULL,
ensure that you create and set an appropriate
error when returning NO.

 You can also choose to override -readFromFileWrapper:ofTy
pe:error: or -readFromURL:ofType:error: instead.

 */
 if (outError) {
 *outError = [NSError errorWithDomain:NSOSStatusErrorD

omain code:unimpErr userInfo:NULL];
 }
 return YES;
}

(continued)

302 Part III: Focus on the User

Listing 10-7 (continued)

- (NSPrintOperation*)printOperationWithSettings:(NSDictionary
*)inPrintSettings error:(NSError **)outError

{
 NSArray* stringArray = [NSArray arrayWithObjects:@”Page

One”, @”Page Two”, @”Page Three”, @”Page Four”,
@”Page Five”, @”Page Six”, nil];

 NSPrintOperation* printOp = [NSPrintOperation pri
ntOperationWithView:[[[PagedDocView alloc]
initWithArray:stringArray] autorelease]];

 return (printOp);
}

@end

So here’s what’s happening:

 1. When the user selects File➪Print for the document on display, Cocoa
finds the correct document object and sends it the printOperation
WithSettings:error: method.

 2. The PagedDoc object creates an array of strings and uses it to create
a PagedDocView, which is then set as the view to be printed by the
NSPrintOperation that it creates and returns to the calling code.

 3. Cocoa then executes the NSPrintOperation.

 4. Cocoa asks the PagedDocView for the range of pages.

 In this case, the range is 1 to 6.

 5. Cocoa displays the Print panel for the user.

 As part of this display, Cocoa asks the PagedDocView for the display
rectangle of page 1, since that’s what the Print panel will display in its
preview box. Then Cocoa tells PagedDocView to draw the contents of
the preview page’s rectangle. Since PagedDocView remembers the page
whose rectangle was just requested, the drawRect: method uses that
page number to determine which string from the array to draw.

 6. The user prints the desired pages.

 7. The output, either paper or PDF, shows each page displaying its page
number in the center.

That’s all there is to handling the printing of multiple pages. The example
above uses a virtual view subclass of NSView — the view is never displayed
onscreen, but Cocoa doesn’t need to know that. Cocoa just needs your view
to tell it what to draw and where.

Part IV
Polishing and

Supporting Your App

In this part . . .

A
fter you’ve put together all the parts of your
Macintosh app, you’ll need to make certain that

it runs with no surprises. In this part, you find out how
to track down and eliminate any pesky bugs that have
sneaked into your code, including how to plug any
memory leaks your app may have. You’ll also discover
how to add application and file icons to your app so that
users can recognize both the app and the files it uses
when looking for them in the Mac Finder or on the Dock.

When your app is ready to submit to Apple, Bonus
Chapter 2 and Bonus Chapter 3 on the web site contain
the steps you follow to organize all the files and data you
need to upload your app to Apple’s reviewers.

Chapter 11

Debugging Your App
In This Chapter
▶ Discovering the types of errors that arise

▶ Finding coding errors

▶ Learning to use Xcode’s debugger

▶ Finding bugs and banishing them

▶ Using logging to track the execution of your app

▶ Tracking bugs

I
n an application developer’s fantasy world, apps are flawlessly crafted,
code is written perfectly, and users experience an awesome application

that does everything exactly as it’s supposed to. The data that the app stores
is always crisp and fresh, and it never gets corrupted. Visuals are stunning
and display perfectly on every screen attached to any Macintosh.

In the real world, however, applications don’t always execute correctly.
Sometimes they don’t even build correctly, and the dream gets cut short
before you can even build a release version. You need to find a way to fix
things; you need to understand the tools that will assist you in moving closer
to the dream world of a solid application.

Xcode comes with two built-in debuggers: the debugger called gdb and the
new LLDB debugger. If you’ve ever worked with a debugger for any other
platform, you’ll find that Xcode provides all the tools you need to track down
those pesky bugs and wash them right out of your code. Using the Xcode
debugger is very easy. Debugging can be a long process, however, and can be
very frustrating at times. Your application will be used by millions of users,
who will ensure that every piece of code is exercised in ways that you never
expected when you first wrote it. By using Xcode’s debugger, you’ll be able
to lock down the obvious defects in your application, as well as look at all the
other parts of your code with a more critical eye.

306 Part IV: Polishing and Supporting Your App

In this chapter, I show you how to use the Xcode debugger and how to use
the debugger’s Console window to display messages that you can include in
your code.

Understanding Where Errors Happen
Xcode comes with tools and windows you can use to analyze your applica-
tion while you’re coding it and while it’s running on a Macintosh. As you
develop more Macintosh apps, you’ll find errors during both of these phases.
Here’s a look at what defects in your code can cause for each phase:

 ✓ While you’re writing code: You’re going to make typing mistakes.
Accept it. Sometimes those mistakes are obvious, and sometimes they’re
not. Xcode 4’s code editor works with the LLVM compiler to find obvi-
ous typing errors and indicate where these mistakes are, without having
to build your app first. And you’ll find that for certain errors Xcode will
display a list of available solutions for fixing the error just by clicking
the error indicator. Apple calls this feature Fix-It; you can see in Figure
11-1 Xcode’s Fix-It display on a typing error in an app.

Figure 11-1: Fix-It offers to replace a missing semicolon.

 When Xcode compiles your Objective-C source files, it may complain
about dozens (or even hundreds!) of errors when only one part of your
code is actually broken. You should start your review of Xcode’s com-
plaints from the first one in its list of errors, because fixing this first one
may resolve all the other messages that Xcode wants you to clear up.

 ✓ While you’re executing in the debugger: The debugger is the best place
to run into defects, because you can get a great deal of information
about precisely where and how the error occurred. When you’re run-
ning your app in the debugger, you may not always know where or when
a defect is going to cause a failure that halts your app, but you can gain
a better understanding if you see what’s also happening nearby. It’s kind

307 Chapter 11: Debugging Your App

of like finding out that the reason why a car crashed into a snow bank
may have something to do with the kids having a snowball fight just
down the street.

 ✓ While your app is executing independently of Xcode: Even though
running your application in Xcode’s debugger is 99 percent like run-
ning it on a Macintosh, that 1 percent difference may be enough to trip
and crash your app. When you launch an app in Xcode’s debugger, it
does a lot of extra work to set up how the app is going to run — work
that doesn’t get done when your app is launched by a user or by you
apart from the debugger. I’ve experienced problems that became
apparent only when I didn’t use the debugger to launch my app. In one
case, the debugger was cleaning the memory (setting all the bytes to
zeros) before the app was launched, which the app wasn’t doing when
I launched it from the Desktop. This became a problem because part of
the app was checking whether a piece of memory was zero; it was when
the debugger launched the app but wasn’t when the app was launched
normally.

Xcode displays any code syntax errors you made when you built your appli-
cation, as well as warning messages about certain things you’re doing in your
code that the compiler isn’t sure you should do. Warnings are not fatal —
they won’t prevent the compiler from building your app. But you should
investigate warnings and remove as many as possible. Figure 11-2 shows sev-
eral yellow warning indicators.

Figure 11-2: Warning, warning. Xcode isn’t happy about what you’ve written.

308 Part IV: Polishing and Supporting Your App

You may have to click all the icons to display the warning messages:

 ✓ On the left and right sides of line 11: Xcode uses a small, yellow tri-
angle icon with an exclamation point to indicate that it found something
wrong with this line, and it leaves a message on the right side of the
screen as well. These warnings are a quick visual indication of where
Xcode believes that you may have made a mistake. On this line, Xcode
is letting you know that the source file for this class don’t contain imple-
mentations for all the methods declared in the header file.

 ✓ On the left and right sides of lines 22 and 23: You can find more informa-
tion about Xcode’s warnings on the lines where Xcode found a problem. If
you resize the window to make it smaller, the code will be realigned within
the window to accommodate the warnings flowing below each line. For
these two warnings, Xcode is trying to tell you that your code isn’t using
the variables you declared after you assigned values to them. You may
simply have forgotten to use them, or you may have used them earlier, took
away the reason for using them, and forgot to remove them from the code.

 ✓ In the activity viewer at the top of the window: The panel tells you
about warnings by displaying a yellow triangle with a number next to it
that tells you how many warnings there are (three, in Figure 11-2) some-
where in your project. Clicking this little triangle displays the Issue navi-
gator (see Figure 11-3), which gives you a little more information about
the individual warnings.

 ✓ On the right side of the window, in the Editor jump bar: You can click
the left and right arrows to move through successive warnings. Xcode
will shift to and animate each message on the right side of the screen as
you move to each warning.

Figure 11-3: The Issue navigator is a great way to see details
about the warnings and errors Xcode found in your project.

309 Chapter 11: Debugging Your App

 You must fix errors, and you should fix warnings. Errors make it impossible
for Xcode to turn your code statements into machine language, which is why
it won’t build your app if it finds errors. Warnings aren’t roadblocks that stop
Xcode from creating your app, but you should investigate their causes
because they can lead to app misbehavior.

Using Xcode’s Debugger
You debug your application by launching it from within Xcode. I follow this
procedure when I want to debug my apps:

 1. Click the Hide or Show the Debug Area View button in the toolbar to
reveal the Debug area if it’s not already visible.

 The Debug area opens in your project window (see Figure 11-4).

Figure 11-4: You see this window when you’re ready to dive into your code line by line.

310 Part IV: Polishing and Supporting Your App

 2. Click the Run button to launch your app.

 You probably want to resize the project window so that you can see
your app and the project window next to each other (which is one of
the many reasons why bigger screens and multiple displays are better).
Figure 11-5 shows you what SimpleCocoaWindowApp looks like next to
the Project window.

 If you’ve modified your code since the last time you launched the app,
Xcode will rebuild it for you before launching. Xcode won’t launch your
app if there are any errors in your code, but warnings are okay, even if
your app may crash as a result.

Figure 11-5: The launch of SimpleCocoaWindowApp, ready for debugging.

Navigating the Debug area
Figure 11-6 shows the Debug area of the project window.

 You can resize the Debug area vertically at the cost of reducing the size of
source code display. You might do this if the number of variables you want to
display is large, for instance when opening certain variables using their drop-
triangles to view their contents.

The window is divided into the following parts, each described in its own
subsection.

311 Chapter 11: Debugging Your App

Debug Bar

Variables Console

Figure 11-6: The Debug area is where you can find information about
the state of your application while you have it paused.

The Debug bar
The Debug bar contains controls for executing your program and for navigat-
ing your program’s threads and the threads’ corresponding stacks.

From left to right, the five buttons at the left end of the Debug bar let you per-
form the following actions:

 ✓ Minimize the Debug area. Minimizing the area lets you see more of the
code for the module in the editor. You may want to do this if the method
where the debugger stopped for a breakpoint is larger than one screen.

 ✓ Pause or continue the application. You can make Xcode pause your app
in whatever thread is operating — usually, the main application thread.
When your app is paused, the icon changes shape to indicate that click-
ing this button again will cause the app to continue.

 Don’t confuse the Run button (at the top of the Xcode project window)
with the Continue button (in the Debug bar). I did this a lot while learning
Xcode. The Run button tells Xcode, “I’d really like to start this app from the
beginning.” While I was debugging, though, restarting usually wasn’t what I
wanted; I wanted the app to continue execution after the breakpoint.

 ✓ Step over the line of code that the debugger is paused on. Click this button
to step through your program’s source code one statement at a time.
You will be executing your app statement by statement and you do this
to watch what your app is doing at each step. This button is disabled if
the app is executing.

 ✓ Step into the line of code that the debugger is paused on. Some lines of
code are methods that your app calls, using objects to do work. Rather
than step over one of these lines, you may find it useful to step into the
code of the method. When you click this button, the debugger will go

312 Part IV: Polishing and Supporting Your App

into and pause just before the first line within the method. Note that this
is useful only for methods within your own code, and not code provided
by Mac OS X. This button is disabled if the app is executing.

 ✓ Step out of a method. When you’ve stepped into an object’s method from
another method you’ve implemented, you’ll eventually want to step out
of the method and back up to the code that made the call. Once again,
this button is disabled if the app is executing.

The Variables pane
When you’ve paused your app, the Variables pane displays a list of the vari-
ables that are available to the code at the place where the app is paused. You
can choose to list the following items:

 ✓ Local variables: These variables are all the variables that the method
can access. This includes the self variable as well as the _cmd variable
which is the selector of the method.

 This does not include member variables of the object.

 ✓ Auto variables: These variables are those that have been accessed up
to this point in the code. This includes member variables as well as the
self variable.

 ✓ All variables: Selecting All shows the local variables as well as the con-
tents of the CPU registers.

 I haven’t needed to know what the CPU registers contain in my recent
Mac programming efforts, but in the past, the information has proved to
be useful, especially when I was using libraries developed by someone
else.

The Console pane
You see information coming from the debugger posted in the Console pane
while your app is running. In the section “Using the Macintosh Logger,” I
cover how you can send messages to this pane from within your code. When
the app is paused, you can also issue commands to the gdb or LLDB debug-
ger from within the Console pane.

 The pop-up menu lets you switch among different types of output, but I rec-
ommend showing all of it.

You can copy all the contents from the Console pane and paste them in
an empty file to search for specific messages. The Clear button clears the
pane, and the three buttons on the right side let you control whether the
Variables pane, the Console pane, or both are visible. (At least one is always
displayed.)

313 Chapter 11: Debugging Your App

Setting, deleting, and disabling breakpoints
In this section, I go over breakpoints in depth because they’re very useful
tools for figuring out what your code is up to.

A breakpoint is a location where Xcode places a flag that the debugger will
detect while it’s running your app. The debugger pauses your app just before
it tries to execute that line of code. You use breakpoints to stop the opera-
tion of your app before it does something incorrect so that you can check the
values of all the variables involved in upcoming operations and be sure of
what should happen before your app makes it happen.

 Objective-C will let you place multiple executable statements on one line.
However, I prefer to keep each statement on its own line. When I set a break-
point, and the debugger stops at it, I know exactly which statement is about
to be executed.

Figure 11-7 shows you what the debugger window looks like when Xcode
encounters a breakpoint during the execution of the app.

If your application is storing data in files and then retrieving that data later
(for example) — but somehow the data that your app reads in from a file
doesn’t match the data that your app wrote out — you could set a pair of
breakpoints: one in the code that writes the data and another in the code
that reads it in. With your app stopped at either breakpoint, just before the
read or the write operation takes place, you can step through each code
statement and check the data at each step to make sure that everything is
as it should be. If your app is doing something wrong, some part of the data
at one of the steps won’t be what you expect. At that moment, you can track
down the code that’s causing the problem.

Setting a breakpoint in your application is simple. Just follow these steps:

 1. Select a source file in Xcode.

 2. Position the cursor over the left margin of the line you want to set a
breakpoint on, and click the mouse.

 A blue flag indicator appears, pointing to the line where you set the
breakpoint.

 Alternatively, you can choose Product➪Debug➪Add Breakpoint at Current
Line. I find it easier to use the key combination Ô-\ (backslash) to add or
remove breakpoints.

314 Part IV: Polishing and Supporting Your App

Figure 11-7: Xcode has stopped running my app because I set a breakpoint at the first line of
code to be executed when the user clicks the Calculate button.

One of the reasons I really like having the line numbers visible is because line
numbers make it much easier to know exactly which line I’m placing a break-
point on.

Breakpoints have evolved beyond the simple “stop when you get here”
behavior that they’re mostly used for. Here’s how to see what Xcode pro-
vides for improving what you can do with breakpoints:

 1. Put a breakpoint at a line of code in a source file.

 2. Right-click the breakpoint flag.

 A menu appears, containing the elements shown in Figure 11-8.

315 Chapter 11: Debugging Your App

Figure 11-8: The list of operations you can use to modify the
behavior of a breakpoint.

 3. Choose one of the items in this menu:

 • Edit Breakpoint: You can add actions to be executed when the
debugger encounters a breakpoint. Your breakpoints can become
conditional, meaning that the debugger will pause your app when
the conditions attached to the breakpoint are true. I cover this topic
in a later section of this chapter, “Setting conditional breakpoints.”

 • Disable/Enable Breakpoint: You can use this item to disable a
breakpoint without removing it, such as to prevent a breakpoint
from stopping your code while you’re debugging it. When you’re
working with a large app, you may have dozens of breakpoints set
for several bugs you’re investigating. You can disable those that
aren’t directly related to a particular bug you’re trying to fix right
now and enable them again when you turn your attention to the
next bug.

 • Delete Breakpoint: You can delete a breakpoint from your code,
such as when you’ve determined the cause of a bug and fixed it.

 • Reveal in Breakpoint Navigator: Choosing this item displays the
Breakpoint navigator and all the breakpoints you’ve set in your
project, with the particular breakpoint from which you selected
the menu item selected in the window.

 You can also quickly deactivate all breakpoints in your code by clicking the
Breakpoints button in the Project window toolbar. To reactivate all your
breakpoints, click the button a second time.

316 Part IV: Polishing and Supporting Your App

Note that you can deactivate a disabled breakpoint and reactivate, but the
breakpoint will still be disabled after reactivation.

In the following code, I’ve added some complications to the SimpleCocoa
WindowApp since its debut in Chapter 3. The header file has two new meth-
ods, as shown in purple in Listing 11-1.

Listing 11-1: The new SimpleCocoaWindowAppAppDelegate.h

//
// SimpleCocoaWindowAppAppDelegate.h
// SimpleCocoaWindowApp
//
// Created by Karl Kowalski on 2/12/11
// Copyright 2011 Kowalski Software Enterprises. All rights reserved
//

#import <Cocoa/Cocoa.h>

@interface SimpleCocoaWindowAppAppDelegate : NSObject <NSApplicationDelegate>
{
 NSWindow *window;
 IBOutlet NSTextField* m_amount;
 IBOutlet NSTextField* m_tipPercent;
 IBOutlet NSButton* m_calculate;
 IBOutlet NSTextField* m_tipAmount;
}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)calculateTip:(id)inSender;
- (double)retrieveAmount;
- (double)retrieveTipPercentage;

@end

The two new methods get the data that the user entered in the Amount and
Tip Percentage fields. When Xcode compiles the SimpleCocoaWindow
AppAppDelegate.m source module, it looks for these two methods. As
you see in Listing 11-2, however, these two methods aren’t implemented,
and Xcode is unable to find them. It doesn’t issue an error for missing meth-
ods, however, even though I’m lying about their existence. Xcode assumes
that they’ll show up somewhere. (Xcode is rather trusting sometimes.) The
changes I made in the source module appear in purple.

317 Chapter 11: Debugging Your App

Listing 11-2: The modified source module, SimpleCocoaWindowApp
AppDelegate.m

//
// SimpleCocoaWindowAppAppDelegate.m
// SimpleCocoaWindowApp
//
// Created by Karl Kowalski on 2/12/11
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import “SimpleCocoaWindowAppAppDelegate.h”

@implementation SimpleCocoaWindowAppAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification*)aNotification
{
 // Insert code here to initialize your application
}

- (IBAction)calculateTip:(id)inSender
{
 NSString* amountValue = [m_amount stringValue];
 NSString* tipPercentage = [m_tipPercentage stringValue];
 //double amountValueD = [amountValue doubleValue];
 double amountValueD = [self retrieveAmount];
 //double tipPercentageD = [tipPercentage doubleValue];
 double tipPercentageD = [self retrieveTipPercentage];
 double tipAmount = amountValueD * tipPercentageD / 100.0;
 NSString* tipAmountString = [NSString stringWithFormat:@”%.2f”, tipAmount];
 [m_tipAmount setStringValue:tipAmountString];
}

@end

The modifications to SimpleCocoaWindowAppAppDelegate.m are minor:
instead of getting each of the input values from the text entry fields, the
method calculateTip: calls the two methods mentioned in the header file.
Because those methods haven’t been implemented, of course, the debugger
halts the app when it can’t do what my code tells it to do.

 Objective-C allows your app to declare and use methods that you have not
implemented because it uses dynamic typing to determine what code to
execute when your app is running. Dynamic typing allows your code to send

318 Part IV: Polishing and Supporting Your App

a message to an object that does not have that message specified in its inter-
face. This provides increased flexibility for your objects to respond to any
message by forwarding the message to another object that can handle the
message.

Viewing intentional errors in the debugger
In this section, you get to watch the code intentionally misbehave. Follow
these steps:

 1. Make the changes to SimpleCocoaWindowAppAppDelgate.h and
SimpleCocoaWindowAppAppDelegate.m shown in Listing 11-1 and
Listing 11-2, earlier in this chapter.

 2. Build the app.

 Xcode displays warnings that some variables are unused and that the
class is incomplete because of the missing methods.

 3. Set a breakpoint within the calculateTip: method at the first state-
ment that will execute.

 4. Set the Debug area to be visible.

 5. Click the Run button.

 SimpleCocoaWindowApp should launch with the screen in Figure 11-9.

Figure 11-9: The application launches.

319 Chapter 11: Debugging Your App

 6. Enter a value in each text entry field.

 I prefer to use values that will make what I see in the debugger easy to
understand, so my amount for this example is 100.00, and my tip per-
centage is 15.

 7. Click the Calculate button.

 The debugger stops at the breakpoint you set, waiting to execute. Looking
back at Figure 11-7, you see that the debugger stopped the app at the first
line in the calculateTip: method; that’s the green arrow on top of the
blue breakpoint indicator in the left margin of the window. In addition,
the gray bar highlighting the line that will be executed next is another
reminder and is much easier to see. Finally, if all that weren’t enough, the
message Thread 1: Stopped at breakpoint 1 on the right side of
the screen definitely tells you what’s going on and what to do:

 • Look at the Debug navigator, which was displayed automatically in
place of the Project navigator. There are two threads, but for this
app, you’re concerned only with Thread 1. The top item is item
#0: [SimpleCocoaWindowAppAppDelegate calculateTip:].
This method is the one where the breakpoint is set, and the items
below it are the call stack of Thread 1 — the list of methods
and functions that have been called down to the method con-
taining the breakpoint. Item #1, for example, [NSApplication
sendAction:to:from:], is the method that called [Simple
CocoaWindowAppAppDelegate calculateTip:].

 • Look at the Variables pane. This pane shows the variables that the
current method is able to access. (I always want to know what
my code’s local variables are up to, as well as see the arguments
passed in, so I always keep both the Variables and Console panes
unfolded and visible.) Because the first line hasn’t executed, only
a few of the values have been set. The _cmd and the self vari-
ables, for example, have valid values (each set before the debug-
ger stopped in this method), but all the others are random values.
Even though tipPercentageD is set to 0, tipAmount is set to
465, and amountValueD is set to 135 because these variables are
given places in memory that’s being used as scratch space, and
there’s no telling what was there before the app was paused.

 8. Click the Step Over button.

 Now amountValue gets set to the text representation of the value
typed in the SimpleCocoaWindowApp main window. You also see the
Variables pane change some of the elements to black from red, which
is an indication that their values didn’t change. The amountValue vari-
able did receive a new value, and the Variables pane shows this modifi-
cation by making both the Value and Summary fields red.

320 Part IV: Polishing and Supporting Your App

 9. Click the Step Over button again.

 The amountValue variable remains the same and is colored black,
whereas the tipPercentage variable is modified to match the value
typed in the main window. So far, so good. The red arrow is pointing to a
line where the code will try to execute a method that doesn’t exist.

 10. Click the Step Over button once more.

 The green arrow disappears, and the Console pane has a message for
you, as shown in Figure 11-10.

Figure 11-10: The CPU is unable to find the method you told it to execute.

 Because you know that the method is unimplemented, the message
is easy to interpret: An unrecognized selector (the method named
retrieveAmount) was sent to the SimpleCocoaWindowAppApp
Delegate instance, which is a failure.

 11. Click the Stop button to end the application.

 There’s no way to recover from this failure during debugging. The code
will always fail when the CPU tries to execute this instruction.

As a consequence of Objective-C’s dynamic typing, the result of an attempt
to execute a method that doesn’t exist does not cause your app to crash.
Instead, while running within the debugger a message is delivered to the
Console pane and the app continues as before. If you run this misbehaving
app outside of the debugger, it simply fails silently.

321 Chapter 11: Debugging Your App

Doing even more useful things with the debugger
Now that you know how the debugger can assist you in your efforts to track
down problems in your code, this section shows you some other useful
things that you can do with the debugger. Follow these steps:

 1. Select SimpleCocoaWindowAppAppDelegate.m to edit.

 2. Modify the calculateTip: method so that it looks like the code in
Listing 11-3.

 You’ll be removing some of the code that causes warnings.

 3. Add the two methods from the code shown in Listing 11-4.

 You’re implementing the code that the header file promised Xcode that
you’d provide.

 4. Save your code changes.

 5. Build your app.

 This step makes sure that you didn’t make any typing mistakes.

 6. Set a breakpoint at the first executable line in calculateTip:.

 I have you stepping through the code again to see what happens for
each line.

 7. Show the Debug area.

 You won’t need the Console pane, but you can show it if you want.

 8. Click Run.

 The app should launch, ready for your input.

 Move the app’s window out of the way of the debugger window so that
you can see both at the same time.

 9. Enter values in the Amount and Tip Percentage fields, and click the
Calculate button.

 The Debugger window should display the first line of calculateTip:,
ready for you to step through the code.

 10. Set a breakpoint within retrieveAmount at the first line of the
method.

 You can set breakpoints anywhere within your code while the app is
paused, and the debugger will obey them.

322 Part IV: Polishing and Supporting Your App

 11. Click the Continue button.

 You can see the result in Figure 11-11: The Debugger paused the app
before executing the first line of retrieveAmount. The program’s call
stack pane has updated to show that the method in which the debugger
is paused is [SimpleCocoaWindowAppAppDelegate retrieve
Amount], and the Variables pane has updated to show the local vari-
ables of this method.

Figure 11-11: Going deeper into the code to see what’s happening.

 12. Click Step Over twice.

 This step takes you to the return statement after retrieving the text
from the Amount field and converts it to a double value.

 13. Click Step Out.

 The debugger returns the green arrow to the first line of calculate
Tip:. Even though that line has already executed, the assignment of the
double value calculated in retrieveAmount hasn’t happened; it’s the
last operation the CPU will make.

 14. Click Step Over to move to the next statement.

 The amountValueD variable has the value that was returned by the
retrieveAmount method.

323 Chapter 11: Debugging Your App

 15. Click Step Into.

 You’ve paused the debugger on the first line of the retrieveTip
Percentage method.

 16. Click Step Over twice to reach the return statement.

 You’re not happy with the tip that was entered, so you’re going to
change it.

 17. Double-click the value for the tipPercentage in the Variables pane.

 You can change that value to a better tip now. Figure 11-12 shows you
what the Variables pane looks like when you change a variable’s value.

 18. Press the Return key on your keyboard to set the new value.

Figure 11-12: Editing the tipPercentage value while the app is running.

 19. Click Step Out and then click Step Over to move to the next statement.

 I assume that everything to this point has executed correctly (or at least
as the app is programmed to do), that the tip percentage was retrieved
successfully, and that the tip amount is ready to be calculated.

324 Part IV: Polishing and Supporting Your App

 20. Click Step Over twice more to calculate the tip amount and create a
string representation of the value; then click Continue.

 The result of your tip calculations is displayed in the SimpleCocoa
WindowApp. Figure 11-13 shows the final tip for a very expensive meal.
You can see that the tip percentage hasn’t changed, but the tip amount
was calculated with a different value — the one you edited in the
debugger.

Figure 11-13: The tip amount of a much better tipper.

Listing 11-3: The modified, warning-free calculateTip: method

- (IBAction)calculateTip:(id)inSender
{
 double amountValueD = [self retrieveAmount];
 double tipPercentageD = [self retrieveTipPercentage];
 double tipAmount = amountValueD * tipPercentageD / 100.0;
 NSString* tipAmountString = [NSString stringWithFormat:@”%.2f”, tipAmount];
 [m_tipAmount setStringValue:tipAmountString];
}

325 Chapter 11: Debugging Your App

Listing 11-4: The two missing methods

- (double)retrieveAmount
{
 NSString* amountString = [m_amount stringValue];
 double amount = [amountString doubleValue];
 return (amount);
}

- (double)retrieveTipPercentage
{
 NSString* tipPercentageString = [m_tipPercent stringValue];
 double tipPercentage = [tipPercentageString doubleValue];
 return (tipPercentage);
}

 If you look closely at the two methods you added in Listing 11-4, you may
notice that they look very similar. Here’s a breakdown of what each one does,
abstractly:

 1. Get a string from a text field in the window.

 2. Convert that string to a double value.

 3. Return that double value to whatever called the method.

 When you see a repeating pattern of behavior in your code, replace the
repeating pattern with a method that can perform the same sequence of
steps, but with a parameter passed in as an argument to the method. If you
discover later that you want to improve the code for retrieving these values,
you have to make changes in both the retrieveAmount method and the
retrieveTipPercentage method. That process may seem fairly trivial
for methods as simple as these, but as your apps become larger and the pat-
terns repeat in more source files, you’ll find it difficult to ensure that you’ve
made all the changes you need to make in all the places where you need to
make them.

Listing 11-5 shows a consolidation of the two retrieval methods and their
uses.

326 Part IV: Polishing and Supporting Your App

Listing 11-5: Collapsing two retrieval methods into one more-generic
method

- (double)retrieveValue:(NSTextField*)inField
{
 double value = 0.00;
 if (nil != inField)
 {
 value = [[inField stringValue] doubleValue];
 }
 return (value);
}

- (IBAction)calculateTip:(id)inSender
{
 double amountValueD = [self retrieveValue:m_amount];
 double tipPercentageD = [self retrieveValue:m_tipPercent];
 double tipAmount = amountValueD * tipPercentageD / 100.00;
 NSString* tipAmountString = [NSString stringWithFormat:@”%.2f”, tipAmount];
 [m_tipAmount setStringValue:tipAmount];
}

As you’ll note, the retrieveValue: method presumes that an
NSTextField object was passed in as an argument. After checking to make
sure the object is valid, the code extracts a double value from the string
entered in the field and returns that value to the calling code.

Setting conditional breakpoints
Originally, breakpoints were stopping points. The debugger would stop when
it encountered a breakpoint and wait for the programmer to tell it what to do
next. As projects grew larger and apps became more complex, simply halting
the app whenever the debugger encountered a breakpoint made software
debugging somewhat unproductive, especially if only certain conditions were
causing the problem. If a bug was triggered in a web-server application when-
ever some process attempted to download an image file larger than 1MB, for
example, having the debugger stop the application when any size of image
file was requested would elongate the session, because the programmer
would have to tell the debugger to continue if the file was smaller than 1MB.

To assist your debugging efforts in this situation, Xcode provides condi-
tional breakpoints. A conditional breakpoint is just like a normal breakpoint,
but it comes with a condition: Use the values of variables available where
the breakpoint is set to determine whether the debugger should halt. In the

327 Chapter 11: Debugging Your App

image-file-size example, you’d set a breakpoint after the size is determined
and then place a condition on the breakpoint indicating that only if the size is
larger than 1MB should the breakpoint pause the execution of the app.

To set a conditional breakpoint, follow these steps:

 1. Edit SimpleCocoaWindowAppAppDelegate.m in the project window.

 2. Select the code at line 25 in the calculateTip: method, and set a
breakpoint.

 This line is where the calculated tip amount is converted to an
NSString object.

 3. Right-click the breakpoint flag, and choose Edit Breakpoint.

 You should see the message bubble shown in Figure 11-14.

Figure 11-14: This breakpoint will pause the debugger only if
the condition is true.

 4. Type tipPercentageD > 10.0 in the Condition field. Click the Done
button in the message bubble.

 5. Click the Build and Debug button.

 6. Enter any tip amount, and enter a tip percentage greater than 10.0.

 7. Click the Calculate button.

 The debugger halts execution at the breakpoint you set, and the value of
the variable tipPercentageD should be greater than 10.0.

 8. Click the Continue button.

 The tip is calculated correctly.

 9. In the SimpleCocoaWindowApp window, change the tip percentage to
9, and click the Calculate button.

 The debugger doesn’t halt the execution of the app this time, and the tip
amount is calculated and updated onscreen.

328 Part IV: Polishing and Supporting Your App

Conditional breakpoints can make finding bugs much easier, because the
debugger halts only for the specific conditions you set. By using conditional
breakpoints, you’re filtering the parameters of the situation you’re trying to
re-create, thereby reducing your investigation to just those scenarios you’re
interested in.

Using the Macintosh Logger
My favorite approach for debugging desktop apps involves printing text to a
screen or, better still, a file. I call this approach printf-debugging, after the
venerable C-language function printf. I realize that it’s very retro, from a
time before integrated development environments such as Xcode and before
source-level debuggers. It’s also very reliable, however, and it works with just
about every programming language or development platform. Luckily for me,
Xcode provides a way to support this debugging approach.

Introducing NSLog
Listing 11-6 shows you the format of the NSLog function. It’s pretty simple
and very similar to the printf function.

Listing 11-6: The format of the NSLog function

void NSLog(NSString* messageString {,…});

The NSLog function takes an NSString object as its first parameter, and
optionally accepts more parameters that the contents of the NSString
parameter can format — this is represented by the {,…} shown in the func-
tion format above.

Apple’s documentation describes the function this way: “Logs an error mes-
sage to the Apple System Log facility.”

When the debugger encounters a call to NSLog, the NSString message is
printed in Xcode’s Console pane, even if the window isn’t visible. Optionally,
your code can also provide a variable number of parameters in addition
to the NSString parameter, separated by commas. If you’re going to add
parameters to be included in the output to the Console pane, the NSString
must contain formatting information to tell Xcode how to create the final

329 Chapter 11: Debugging Your App

textual result. You can use formatting parameters identical to those used in
printf. In addition, you can use a special formatting character used specifi-
cally for NSObject objects, such as NSString.

Using NSLog
The next example demonstrates how to use NSLog and some formatting.
Follow these steps:

 1. Select SimpleCocoaWindowAppAppDelegate.m for editing in the
project window.

 You may want to remove any breakpoints, because they won’t be
needed.

 2. Add the purple code shown in Listing 11-7 to the three separate
methods.

 3. Display the Console pane, and click the Clear Log button.

 This step starts the log from a clean slate.

 4. Click the Build and Debug button to launch SimpleCocoaWindowApp.

 5. Enter an amount and a tip percentage, and click the Calculate button.

 The tip should be calculated correctly, and the Console pane should
display the messages shown in Figure 11-15.

Figure 11-15: The Console pane writes out these messages
when the app calls NSLog.

330 Part IV: Polishing and Supporting Your App

Listing 11-7: Adding NSLog messages to be displayed during execution

- (IBAction)calculateTip:(id)inSender
{
 double amountValueD = [self retrieveAmount];
 double tipPercentageD = [self retrieveTipPercentage];
 double tipAmount = amountValueD * tipPercentageD / 100.0;
 NSString* tipAmountString = [NSString stringWithFormat:@”%.2f”, tipAmount];
 [m_tipAmount setStringValue:tipAmountString];
 NSLog(@”Leaving calculateTip: with the tip amount[%@]”, tipAmountString];
}

- (double)retrieveAmount
{
 NSString* amountString = [m_amount stringValue];
 double amount = [amountString doubleValue];
 NSLog(@”retrieved amount[%.2f]”, amount);
 return (amount);
}

- (double)retrieveTipPercentage
{
 NSString* tipPercentageString = [m_tipPercent stringValue];
 double tipPercentage = [tipPercentageString doubleValue];
 NSLog(@”retrieved tip percentage[%.2f]”, tipPercentage);
 return (tipPercentage);
}

 Here are some points to note about the code changes and the results in the
Console pane:

 ✓ The format character %@ is used to tell the NSLog function that it should
call a specific method on the object that’s passed in to be displayed.
That method is description, which is defined for NSObject and
returns an NSString. Then NSLog uses the NSString object as the
text to be printed in the Console pane. You’re not required to create
a description method for each of your classes, but doing so can be
helpful for displaying the values of an object’s member variables while
the app is running.

 ✓ I recommend that you place square brackets [] around any variable
data that you plan to display, which helps define the space in which
the information is displayed. It can be helpful to demonstrate that an
NSString object that you believe to contain text actually contains noth-
ing.

 ✓ The Console pane places a time stamp and your app’s name ahead of
every message.

331 Chapter 11: Debugging Your App

Removing NSLog statements
NSLog is a useful tool for providing you with information while your app is
running within the debugger. Each NSLog message is also sent to the Mac
OS X system logs, and your app will send its messages into the users’ system
logs if you leave active NSLog statements in your app. This can be useful for
providing your users with information about your app while it’s running, but
you may not want to deluge your users with too much information. You may
want to remove the NSLog statements from your code before you publish it
at the Mac App Store.

 You can view the messages sent to the system logs using the Console app
found in the Applications➪Utilities folder. Be warned: There are lots of mes-
sages sent into the logs every minute your Mac is powered on.

Here’s one way to remove NSLog statements:

 1. Modify the code in the retrieveAmount method so that it matches
Listing 11-8.

 You’re placing a test for the existence of a preprocessor macro (a stan-
dard C programming technique) around the call to NSLog. This test
tells the compiler to check whether the macro named DEBUG has been
defined and, if it has, to compile the code containing the NSLog function.

Why use NSLog instead of the debugger
and breakpoints?

For small apps, you can debug your app fairly
easily by using the debugger and judicious
placement of breakpoints. As apps get larger
and perform a larger variety of different tasks,
however, I’ve found that I’d rather generate
information in many different places and have
it logged to the Console pane, so that I can go
back over the information and trace the flow
during the app’s entire execution.

Another time to use NSLog is when your
application uses multiple threads to perform
its tasks. You may have one thread handling
the user’s mouse clicks and key presses while

another thread is searching a database and a
third is off pulling data from a network connec-
tion. In a multiple-thread scenario, each thread
may hit a breakpoint at a different time, which
can make debugging confusing.

In general, I find it easier to review what’s hap-
pening over the entire app rather than what’s
happening in one or two places at one particular
moment during the app’s execution. You’ll find
that each approach is better in some situations
than in others and use a variety of methods to
eliminate the misbehaving parts of your code.

332 Part IV: Polishing and Supporting Your App

 2. In the Project navigator, select the top item, SimpleCocoaWindowApp.

 This step displays the settings for both the project and its individual tar-
gets, even though there’s only one target for this project.

 3. Select the SimpleCocoaWindowApp item below the project listing, as
shown in Figure 11-16.

Figure 11-16: The project info screen displaying the build settings for a debug build.

 4. Select the Build tab, and scroll down to the LLVM compiler 2.0 –
Preprocessing set of information.

 You can see that the Preprocessor Macros list shows one macro already
defined for Debug builds: DEBUG. (This macro isn’t set in release builds.)

 5. Run your app.

 The Console pane should still display the text from all the NSLog state-
ments in debug mode.

 If you change to a release scheme and run once more, the NSLog state-
ments from retrieveAmount no longer appear. Also, your app’s size is
reduced, which can save a lot of space if you have many of these state-
ments sprinkled throughout a large application.

333 Chapter 11: Debugging Your App

Listing 11-8: Using a preprocessor macro to conditionally include or
exclude code

- (double)retrieveAmount
{
 NSString* amountString = [m_amount stringValue];
 double amount = [amountString doubleValue];
#ifdef DEBUG
 NSLog(@”retrieved amount[%.2f]”, amount);
#endif
 return (amount);
}

 Although I prefer to log messages to the Console pane as my main debugging
approach, this method does have limitations. My primary concern about
this method is performance. If I write information to the Xcode debugger’s
Console pane at every step of an app’s execution, the app is going to slow
down. For some applications, such as real-time games, this can adversely
affect the app’s behavior and operation while I’m trying to pin down the loca-
tion of misbehaving code. Therefore, I use Console-pane logging to narrow
the scope of examining my application’s behavior, ideally drilling down to
one method in one class, where I can heavily log events and inspect just that
one area of my application. This method prolongs the debugging experience,
as I have to create log statements, execute, review the log, and repeat until
I’ve discovered and fixed the bad code.

Keeping Track of Bugs
Though it would be wonderful to write completely bug-free code, your app
will eventually encounter a situation somewhere, on someone’s Mac, that
causes it to malfunction. Maybe your app refuses to run because the user
updated his OS to the latest version automatically, and Apple pulled out
some feature that your app was using, so now the OS can’t execute your
app because it can no longer find that OS code. Then again, the bug may be
more subtle, executing only at noon on the first Friday of every month that
has an n in its name and taking out the entire set of accumulated data at that
moment, leaving you with some very unhappy users and an inability to reli-
ably reproduce the error.

Small development efforts don’t require a full-featured bug-tracking database
to keep tabs on all the things that go wrong. The sooner you start taking app
development seriously, however, the sooner you’ll find yourself delivering
high-quality apps. Serious development efforts require equally serious bug-
maintenance efforts. The more apps you write and the more code you type,

334 Part IV: Polishing and Supporting Your App

the more bugs you and your users will find. Although you may find it easier
to list all the known issues of all your apps in a simple text file, at some point
it’s worth the effort to create a more structured repository to list all issues
that you or your users encounter.

Identifying common solutions
I know several ways to manage the business of tracking bugs:

 ✓ Purchase bug-tracking software from a reliable vendor. You run this
software on your own machines, and it keeps track of the bugs you enter
in its own database. The major drawback to this approach is the cost,
which may prohibit its use by a developer who’s just starting out. Some
free bug-tracking apps are available, so be sure to search them all.

 ✓ Use an online bug-tracking service. Both free and subscription ser-
vices are available. The only drawback of this approach that I can think
of (other than the cost of the paid services) is the fact that your bugs
aren’t completely under your control. If you’re writing an app that needs
to maintain some degree of secrecy — one that uses a new encryption
algorithm, for example — this method may not be the best choice.

 ✓ Use a web-based bug-tracking system. Bugzilla (www.bugzilla.org)
is my favorite option because I get to keep the information secure on my
own machines and because it’s free. The disadvantage is that you need
to provide both a web-server application and a database application
to support Bugzilla’s operations. For more information, see the section
“Using a bug-tracking program,” later in this chapter.

 The most important action you can take to keep track of your app’s bugs is
writing everything down. This sounds simple, but you’ll find it very challeng-
ing to discipline yourself to do this when you’re running your app and some-
thing unexpected happens.

Simple bugs are easy to reproduce, and they generally happen because of
one particular set of circumstances that occurred at the last moment before
your app did something that caused the bad thing to happen. This feature is
what makes them easy to resolve. The more challenging bugs are subtle and
may depend on a sequence of events that must occur in a specific order. You
may not pick up on all the pieces of the sequence or their proper order when
the bug causes your app to go wrong. Sometimes you see only the result
and lose track of all the steps that were taken on the way to that result. Even
worse, the subtle bugs typically show up only when you’re trying to solve or
see something else, and your focus is on something other than the problem
that shows up. Nobody ever said this was going to be easy.

335 Chapter 11: Debugging Your App

Here’s a list of the information you’ll want to record when you find an anom-
aly in your code:

 ✓ Steps to reproduce: This information is the most crucial piece of
information you’ll need for describing a bug. Recording the steps that
reproduce an issue provides you two pieces of useful data: what it takes
to cause the problem and how to know when the problem has been
resolved.

 ✓ OS version: The application you write will be built to use a specific OS
version. Normally, you can expect that your app will run in all the future
revisions of that OS version. If you built your app to use OS X 10.6, for
example, your app should run on 10.6.1 through 10.6.9. When running on
OS X 10.7, however, your app may encounter challenges. Apple gener-
ally doesn’t remove features without warning, and usually, you have one
major OS release cycle in which to update your app. Apple may provide
information indicating that a certain feature available in 10.6 is depre-
cated in 10.7 and will be completely removed in 10.8, for example.

Because an app can go wrong in so many ways, you want to establish the
boundaries of the problem to “fence in” the bug’s behavior. Following are a
few common situations that bring bugs into existence:

 ✓ Improper initialization of variables: This situation is probably the
biggest cause of bugs, and it happens more frequently than any other
cause. In Objective-C, a member variable can be initialized in any
method of the class. If a class has several member variables, you may
want to provide an initialize method that handles setting all the
member variables to a default value. When you’re reviewing the vari-
ables and their values while debugging the code, anything assigned a
default value clearly hasn’t been set separately from the initialize
method. As any member variable can be modified during the execution
of any method in that class, however, you can restrict access to internal
member variables through the disciplined use of getter and setter meth-
ods. This technique won’t prevent invalid values, but you’ll be able to
find where your code is executing the methods to set and retrieve the
values, such as by setting a breakpoint in a setter method.

 ✓ Improper timing of threads: You can avoid this error by avoiding the
use of all threads, all the time. Still, if you use threads to perform back-
ground tasks, this error will happen eventually. This situation occurs
when your app has multiple threads running at the same time (such as
for retrieving multiple hotel-booking options over a network) and you
haven’t prepared for the possibility that the first thread to finish won’t
be the one you expected.

336 Part IV: Polishing and Supporting Your App

 ✓ Failure to check an object for being nil: This particular behavior was
prevalent in the early days of the Macintosh, before OS X. Generally, this
problem was caused by a lack of available memory: The OS would return
a big 0 (zero) when you requested a new object from a framework API. In
today’s 64-bit-app world, this problem is less likely to occur as a result
of a lack of memory, but it can still happen for other reasons. One cause
in particular is forgetting to connect a member variable representing
a control to its counterpart in Interface Builder. Because the stitching-
together of the interface elements with the member variables happens
during the build process, this lack of a connection may go unnoticed.

Using a bug-tracking program
Using a bug-tracking solution helps you solve the problem of keeping track
of all the things that can go wrong with your applications. In addition, bug-
tracking services enable you to track progress in fixing things. Ideally, your
app will have hundreds of thousands of users stress-testing your app in a
multitude of environments, which means that they’ll start finding more bugs
for you. Users are a lot like unpaid quality-assurance engineers: They’ll exer-
cise your application in ways you never considered.

As I mention earlier in this chapter, my favorite bug-tracking solution is
Bugzilla. Getting it up and running is fairly easy, and if you do this on your
development Macintosh, the web server is included as part of OS X. You may
have to configure your Mac to get the web server operational; check your
user guide for more information. You will have to download and install a
database server such as MySQL (www.mysql.com) to support Bugzilla.

You can find documentation for setting up Bugzilla at its website, www.
bugzilla.org. I like Bugzilla because it’s free, fun to use, and supported
by expert developers who like to keep it fun. Because Bugzilla is an open-
source product, however, getting support for it can be a bit challenging.
The support web page (www.bugzilla.org/support) provides a link
to some Bugzilla consultants whom you can contact for paid support of
the issues you encounter. Alternatively, you can visit the Bugzilla wiki
(https://wiki.mozilla.org/Bugzilla) for more information.

You can get away without using a bug-tracking system for a while, but the
more prolific you are, the more apps you develop, and the more users you
sell to, the more necessary it is to get organized in this aspect of software
development. Your development machine itself will suffice to support what
Bugzilla needs to do its job.

 Implementing a solution ahead of time and disciplining yourself to use it cor-
rectly is an investment in the future that will reward you in the end.

Chapter 12

Putting On the Finishing Touches
In This Chapter
▶ Adding application and file icons

▶ Adding a custom About panel

▶ Locking down memory leaks

▶ Getting local

A
t this point in your Mac app development, everything works. Your
app has no known bugs; it does everything your users will make it do;

and you’ve added all the nifty features you can think of to keep your users
coming back for more. What’s next?

In this chapter, I introduce some of the finishing touches you can apply to
polish up your apps. These touches are some of the little things that users
have come to expect, as well as the important items Apple will check to make
sure that your app includes during the App Store submission review. You
see how to add an application icon and file icons for any data files your app
creates. You also create a custom About panel for your app, to add some
flourish beyond the standard dialog that Xcode provides. In addition, I show
you how to communicate with your users in their preferred language. Finally,
I show you how to track down and plug those areas in your apps where
memory is leaking away. You won’t need to spend a lot of time or money
incorporating the features in this chapter, but the more you include in your
app, the more your users will appreciate the work you’ve done.

Working with Application and File Icons
I was hooked on the Mac when a colleague showed me how to double-click
something that looked like a piece of paper with a picture on it, and the app
that created this file was launched with that file open, ready to go. I was
impressed because I’d no longer have to remember the correct spelling of
the name of the app that created my Whiz-Bang.kgk file. Double-clicking

338 Part IV: Polishing and Supporting Your App

the file would launch it for me, all by itself. Also, the picture on the file was
related to the picture of the app’s icon, so I’d always be able to tell which file
was a Microsoft Word document and which one was my saved game of Space
Invaders. This enchantment I felt about the use of icons for relating data files
and the apps they came from led me on a quest to do the same for my apps.
That was the first goal of writing my first Macintosh app: creating an icon for
the app and one for its data files, and using the magic of the OS to bring the
two together.

You’ll find it much easier to do the same with your apps in the 21st century
than ever before. Apple has continued its support of linking an app and its
data files, and today’s users can’t imagine what using computers was like
before this feature existed. Your app will have to give the users what they
want: an icon that makes your app stand out visually on a user’s Mac Desktop
or is easy to find in the user’s Dock or Launchpad. Most important, your app
must provide an application icon for Apple to display on its Mac App Store
page. An icon is one of the requirements for App Store submissions, so you
have to add it to your app.

Painting a good picture
I freely admit that I’m not an artist. Creating an application icon is the last
thing I do for my apps. Apple prides itself on creating very good looking icons
for its own apps and expects you to put some time and effort into making
yours visually appealing. You can look around the App Store for examples of
the styles and displays of apps that Apple has accepted for sale. Figure 12-1
shows the Apple Staff Favorites on the date I started writing this chapter. You
can see icons ranging from very simple shapes to very rich images.

Figure 12-1: Apple Staff Favorites apps.

339 Chapter 12: Putting On the Finishing Touches

 Relax, and don’t be daunted. Check out the productivity apps, and you’ll find
quite a few simpler app icons that are easy to put together. Your own app
icons may be as simple as a few words on a colored background or a picture
that represents the basic concept or theme of your app. You can even use a
photograph or a collage.

For DiabeticPad, I wanted a high-quality app icon, so I engaged the services
of a colleague who works with me and actually is an artist. I wanted to make
sure that my app’s first contact point was striking and impressive. If you can
afford the expense, I highly recommend hiring a professional.

 You can find artists of varying skill all around you if you keep your eyes and
ears open. Your relatives, friends, and neighbors can recommend people
whom they know. The more you network, the more you discover. A very inex-
pensive way to find an inexpensive artist is to visit a college that has an art
school and post a flyer or two in the art school’s main building, asking for art
students who are interested in adding to their portfolio. These young adults
are just starting in their art careers, and everything they work on is something
they can add to the growing collection of their work.

You have to provide the following icons with your app when you submit it to
the App Store:

 ✓ A 512-pixels-wide-by-512-pixels-high icon: This icon is the image that
will be on display at the App Store.

 ✓ A 128-pixels-wide-by-128-pixels-high icon: This icon is the image that
your app will display when it’s installed on a user’s Macintosh. You can
make this icon a scaled-down version of the 512 x 512 icon.

You see some of the standard Apple apps’ icons in Figure 12-2, and in Figure
12-3, you can see the different file icons that Xcode uses for the files it takes
care of.

In addition, your icons must be files of one of the following types:

 ✓ JPEG or JPG

 ✓ PNG

 ✓ TIFF or TIF

You’re free to use any tool you prefer on a Mac or other computer to gener-
ate your image files.

 ZIP-compressed TIFF images are not supported.

340 Part IV: Polishing and Supporting Your App

Figure 12-2: Icons for Apple apps.

Figure 12-3: Icons for different file types that Xcode uses.

 Apple suggests keeping the icon files you supply as small as possible. I prefer
to use PNG formats for my image files, but JPEG usually generates files that
are smaller.

Apart from the preceding constraints, your creativity is unlimited when it
comes to designing your app’s icons. In the following section, I show you how
to put an app icon and a file icon in an app.

Adding an application icon to your apps
I’m going to work with the StockMarketer app from Chapter 6. You can use
that project also, or one of your own. If you already have your own applica-
tion’s icon, you can use it instead, or you can download the app icon avail-
able for this book at www.dummies.com.

To add an application icon to StockMarketer, follow these steps:

341 Chapter 12: Putting On the Finishing Touches

 1. Launch Icon Composer.

 This app is installed with Xcode, and you can find it by choosing
Developer➪Applications➪Utilities.

 2. Drag and drop your app icon file into the large rectangle.

 3. Repeat Step 3 for all the other rectangles.

 You see the Icon Composer window, shown in Figure 12-4.

 You can see that the smaller icons make the text impossible to read —
and this is a good reason why you should avoid using text in your appli-
cation icon. Apple provides suggestions for creating application icons at
the Mac Developer Center website.

Figure 12-4: Icon Composer creates a file of type ICNS that provides
scaled versions of your app icon.

 4. Save your changes.

 5. Name the file StockMarketerAppIcons.icns, and save it to the
folder that contains the StockMarketer Xcode project.

 6. Launch Xcode, and open the StockMarketer project.

 7. Select the StockMarketer project item at the top of the Project
Navigator and click the StockMarketer target in the Project editor.
Select the Summary tab.

342 Part IV: Polishing and Supporting Your App

 8. Outside of Xcode, open a Finder window and navigate to show the
StockMarketerAppIcons.icns file. Make sure you can see both
the file in the Finder window and the Summary tab view in the Xcode
project window.

 9. Drag the StockMarketerAppIcons.icns file from the Finder
window and drop it into the square labeled App Icon in the Xcode
project editor. In the Xcode window, click Finish.

 You should see the display shown in Figure 12-5, with the
StockMarketer application icon.

 10. Choose Product➪Clean.

 This step removes all the compiled code files and all the other files used
in building the app. You’re ensuring that the new icon file will be used.

 11. Build your app.

 12. Open the Products group in the Project Navigator, and select
StockMarketer.app.

 You should see a display similar to Figure 12-6.

 13. If you’d like to confirm the results, right-click the StockMarketer.
app item in the Project Navigator, and choose Show in Finder from the
contextual menu.

 The Finder displays a window containing StockMarketer app with its
new icon, just the way a user will see it.

Figure 12-5: Adding the app icon to the StockMarketer project.

343 Chapter 12: Putting On the Finishing Touches

Figure 12-6: The StockMarketer app, displaying its icon.

That’s all you need to do to add an icon to your app.

 If you’re curious, you can create different icons for the different sizes you
find using Icon Composer. Then you’ll see which icon is used when your app
is displayed in the Finder. Using different icons can help you figure out which
icon is being used and when, which can assist your understanding of why a
particular icon display looks great, whereas another looks less good. OS X
will perform some amount of scaling if the icon size that your user selected
to display your app’s icon isn’t a perfect match.

Adding file icons to your apps
Your next step in rounding out the details of your Mac apps is adding icons
that your app’s files will display so that your users can tell those documents
from the other documents they create. Figure 12-3 shows the different files
that Xcode provides file icons for:

 ✓ The project file

 ✓ .h files (class headers)

344 Part IV: Polishing and Supporting Your App

 ✓ .m files (source modules)

 ✓ .pch files (precompiled headers)

 ✓ .xcdatamodel files (CoreData models)

 Xcode actually provides icon files for even more file types. If you’re curious,
you can right-click the Xcode application (choose Developer➪Applications)
and choose Show Package Contents from the contextual menu. Drill down into
the Contents➪Resources folder, and you see the list of all the icns files con-
tained in the app, as well as other files containing resources used by the app.

If your app creates data files for your users, you have to assign each kind of
data file a different file extension (set of letters that follows the decimal point
in a file’s name), as follows:

 ✓ Application files have the extension .app.

 ✓ PNG files have the extension .png.

 ✓ Icon Set files have the extension .icns.

Figure 12-7 shows an icon of a StockMarketer data file. In the next exercise,
you use this file to add file icons to the StockMarketer app.

Figure 12-7: The StockMarketer data file icon.

345 Chapter 12: Putting On the Finishing Touches

Here’s what you need to do:

 1. Launch Icon Composer.

 2. Drag the image file for your app’s file icon into the 128-pixel size box.

 3. Repeat Step 3 for the smaller sizes.

 You should see something similar to Figure 12-8.

Figure 12-8: The StockMarketer data file icons. You need only the
128-pixel and smaller sizes.

 4. Save the file.

 I called mine StockMarketerDataFile.icns and placed it next to the
Xcode project file for StockMarketer.

 5. Launch Xcode, and open the StockMarketer app.

 6. Add your new file-icon ICNS file to the project in the Supporting
Files group.

 7. Select the StockMarketer project item at the top of the Project
Navigator. Select the StockMarketer target and Click the Info tab.

 You’re going to modify the Document Types and Exported UTIs
properties.

346 Part IV: Polishing and Supporting Your App

 8. Click the drop-down triangle next to Document Types.

 9. Click and hold the Add button in the lower-right corner of the Project
editor and select Add Document Type from the pop-up menu.

 10. Click the drop-down triangle next to the Untitled document type you
just added.

 11. Add the information shown in Figure 12-9.

Figure 12-9: The Document Type for a StockMarketer data file.

 12. Choose Product➪Clean.

 13. Build your app.

 Figure 12-10 shows what a custom application’s file icon looks like.

Figure 12-10: StockMarketer and a StockMarketer data file.

 StockMarketer isn’t written to create or read data files. To test the custom-
file icon steps you just executed, you modify any data file’s extension to
match the extension you assigned to your app’s data files. I used the PNG file
that I created for Figure 12-1 in this chapter and changed its extension from

347 Chapter 12: Putting On the Finishing Touches

.png to .smdata. Double-clicking this file launches StockMarketer, but no
file opens because StockMarketer isn’t able to handle open-file requests
from OS X. But OS X now associates the file extension .smdata with the
StockMarketer app!

Creating Your Own About Panel
When you create a new project with Xcode, Xcode provides a really basic,
boring About box for you. You can see StockMarketer’s default About box
in Figure 12-11. If this Xcode-created About box is all you want, you don’t
need to do anything more. You may want to modify the basic information in
the About box, but that’s pretty easy. Just follow these steps:

Figure 12-11: The standard Xcode-provided About box for
StockMarketer.

 1. Launch Xcode, and open the StockMarketer project.

 2. Open the Supporting Files folder, and select the Credits.rtf file in
the Project Navigator.

348 Part IV: Polishing and Supporting Your App

 You see the same text you saw in the default About box. This file is what
Xcode uses to populate the About box’s scrollable text area. The file
contains Rich Text Format text, so you can do some basic formatting of
the text that you display.

 3. Modify the text to your satisfaction.

 4. Select StockMarketer-Info.plist in the Project Navigator.

 5. Change the value of the Bundle version string, short to 2.0.

 6. Change the value of the Bundle version to 2A001.

 7. Build and run the application.

 When you display the About box, you should see that the text has
changed to the data you added in the Credits.rtf file. In addition, the
version data should have changed to say Version 2.0 (2A001), due
to your modifications of the Bundle version data in StockMarketer-
Info.plist. Through these two files you can create content for your
About box, so long as your content is text-only.

 Xcode 4 lets you change the Bundle version in the Project editor summary
tab, but not the Bundle versions string.

An About box is a way of providing users information about your app and
your business. You can put just about anything you want in the standard
About box, but it’s limited to text. What if you want something more? Simple:
You create your own About panel, which contains an NSView that you can
customize, and then add any content you choose. Here’s how to do that:

 1. Launch Xcode, and open your project.

 Once more, I’m using StockMarketer.

 2. Right-click the StockMarketer folder, and choose New File from the
contextual menu.

 3. Select User Interface below Mac OS X.

 4. Select the Window template, and click Next.

 5. Name your new XIB file, and save it.

 I chose AboutStockMarketer.xib.

 Xcode creates the new XIB file with an empty window inside and then
opens the Interface Builder Editor with the XIB file’s contents.

 6. Add a Custom View object to the window in your XIB file.

349 Chapter 12: Putting On the Finishing Touches

 7. Change the Custom View’s class to NSImageView using the Identity
inspector.

 You will be adding an image file to the project to display in your
custom About window. You can find the image file I used at this book’s
website at www.dummies.com. I recommend setting the size of the
NSImageView to the same size of the image in the file so that no scaling
or stretching is involved.

 8. Add a copyright notice and some information about your business,
using Label objects.

 Figure 12-12 shows the new About panel.

Figure 12-12: A custom About panel.

 9. Save your changes.

 10. Right-click the StockMarketer folder, and choose New File from the
contextual menu.

 11. Create a new source module and header file for the About panel, and
make the class a subclass of NSWindowController.

 I named this class AboutStockMarketerController.

 12. Modify the AboutStockMarketerController header file to add the
purple code shown in Listing 12-1.

 The change is fairly simple: You’re just adding a member variable to ref-
erence the NSImageView and a method that will be called when the OK
button is clicked.

 13. Save your changes.

350 Part IV: Polishing and Supporting Your App

 14. Select the AboutStockMarketer.xib file in the Project navigator to
edit it in Interface Builder.

 15. Select the top icon — File’s Owner — in the Interface Builder Dock,
and open the utilities view so that you can modify its parameters.

 16. Show the Identity inspector, and select
AboutStockMarketerController to be the File’s Owner class.

 17. Save your changes.

 18. Control-drag from the File’s Owner object to the NSImageView in
the window and select the m_aboutImage IBOutlet to make the con-
nection.

 19. Control-drag from the File’s Owner object to the window and select
the window Outlet from the list.

 I find it easiest to Control-drag to the window’s title so I don’t acciden-
tally make a connection to the wrong UI component.

 20. Save your changes.

 21. Modify the AboutStockMarketerController source module to add
the purple code shown in Listing 12-2.

 22. Save your changes.

 23. Modify the StockMarketerAppDelegate header file to add the
purple code shown in Listing 12-3.

 You’re adding a method for showing the new About panel and a member
variable that will give the delegate a reference to the controller you just
created.

 24. Save your changes.

 25. Modify the StockMarketerAppDelegate source file to add the
purple code shown in Listing 12-4.

 26. Save your changes.

 27. Select the MainMenu.xib file in the Project Navigator.

 28. Connect the About StockMarketer menu item to the showAbout
Window: in the StockMarketerAppDelegate object in the Dock.

 29. Save your changes.

 30. Build and run your app.

 StockMarketer launches, and if you choose StockMarketer➪About
StockMarketer, you see the customized About panel instead of the stan-
dard Xcode window.

351 Chapter 12: Putting On the Finishing Touches

Listing 12-1: The contents of the header file for the class
AboutStockMarketerController

//
// AboutStockMarketerController.h
// StockMarketer
//
// Created by Karl Kowalski on 5/8/11.
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import <Cocoa/Cocoa.h>

@interface AboutStockMarketerController : NSWindowController
{
 IBOutlet NSImageView* m_aboutImage;
@private

}

@end

Listing 12-2: The contents of the source module for the class
AboutStockMarketerController

//
// AboutStockMarketerController.m
// StockMarketer
//
// Created by Karl Kowalski on 5/8/11.
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import “AboutStockMarketerController.h”

@implementation AboutStockMarketerController

- (id)init
{
 if (nil == [super initWithWindowNibName:@”AboutStockMarketer”])
 {
 return (nil);
 }
 return (self);
}

(continued)

352 Part IV: Polishing and Supporting Your App

Listing 12-2 (continued)

- (id)initWithWindow:(NSWindow *)window
{
 self = [super initWithWindow:window];
 if (self)
 {
 }

 return self;
}

- (void)dealloc
{
 [super dealloc];
}

- (void)windowDidLoad
{
 [super windowDidLoad];

 // Implement this method to handle any initialization after your window
 // controller’s window has been loaded from its nib file.
 // load NSImageView with proper image
 NSImage* stockGraphImage = [NSImage imageNamed:@”AboutBoxGraphic.png”];
 [m_aboutImage setImage:stockGraphImage];
 [m_aboutImage setNeedsDisplay:YES];
}

@end

Listing 12-3: Modifications to the StockMarketerAppDelegate header file

//
// StockMarketerAppDelegate.h
// StockMarketer
//
// Created by Karl Kowalski on 4/24/11.
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import <Cocoa/Cocoa.h>

#import “StockAccountController.h”
#import “PreferencesController.h”

@interface StockMarketerAppDelegate : NSObject <NSApplicationDelegate>
{
 IBOutlet PreferencesController* m_prefsController;

353 Chapter 12: Putting On the Finishing Touches

@private
 NSWindow *window;
}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)showPreferences:(id)inSender;
- (IBAction)showAboutWindow:(id)inSender;

@end

Listing 12-4: The updated StockMarketerAppDelegate source module,
showing its own about window

//
// StockMarketerAppDelegate.m
// StockMarketer
//
// Created by Karl Kowalski on 4/24/11.
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import “StockMarketerAppDelegate.h”

@implementation StockMarketerAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
}

- (IBAction)showPreferences:(id)inSender
{
 if (nil == m_prefsController)
 {
 m_prefsController = [[PreferencesController alloc] init];
 }
 [[m_prefsController window] makeKeyAndOrderFront:self];
}

- (IBAction)showAboutWindow:(id)inSender
{
 AboutStockMarketerController* aboutController =

[[AboutStockMarketerController alloc] init];
 [[aboutController window] makeKeyAndOrderFront:[self window]];
}

(continued)

354 Part IV: Polishing and Supporting Your App

Listing 12-4 (continued)

- (void)dealloc
{
 [m_prefsController release];
 [super dealloc];
}

@end

If you’ve already gone through Chapter 6, you’ve probably noticed that dis-
playing the About panel in this section is almost exactly like displaying the
Preferences panel in that chapter. One key difference exists, however: The
AboutStockMarketerController object is created and initialized in the
StockMarketerAppDelegate, but the object is never released.

The PreferencesController object is created as a member variable main-
tained within the StockMarketerAppDelegate object and is created only
if it doesn’t already exist, but the AboutStockMarketerController object
is created new every time the showAboutWindow: method is executed.
Also, that method is executed every time you choose StockMarketer➪About
StockMarketer. This is an example of a memory leak, which happens when
your app requests memory from OS X, but does not free up that memory
when it no longer needs it. A memory leak isn’t a flagrantly dangerous behav-
ior, but you should do your best to avoid creating one where possible —
which is the subject of the next section.

Tightening Your App’s Memory
When your app creates a new object, it’s requesting memory from the OS to
store that object’s information. When your app is done with that object, it
makes a call to the OS to mark that object as no longer needed, which causes
the OS to reclaim the memory at a future moment. But this situation forces
your app to keep track of which objects are in use and which ones are no
longer needed. Sometimes, your app leaks memory: It creates a new object
and then misplaces the reference to that memory. Mistakes do happen, and
you’ll make some.

Here’s the memory-leaking code from the custom About panel sample code in
the preceding section:

AboutStockMarketerController* aboutController =
[[AboutStockMarketerController alloc] init];

[[aboutController window] makeKeyAndOrderfront:[self window]];

355 Chapter 12: Putting On the Finishing Touches

The AboutStockMarketerController object is created from OS memory
as a result of calling the alloc method, but it’s a local variable — one that’s
not remembered outside the method that the code is contained within. When
that method exits, the access to the local variable is lost. You have no way to
find it or get it back. Because the alloc method automatically calls retain
on the object that it returns, the OS considers that object to be still in use
by your app, and because your code can’t access that object again, your app
can’t call its release method to signal the OS you’re no longer using the
object.

Memory leaks such as this one can be very difficult to track down just by
reading the source code. Apple has developed a tool that’s included in Xcode
to help keep track of your app’s memory use, however. This tool is called
Instruments, and you’ll find it very helpful when you’re looking for leaking
memory while your application is running. Using Instruments is very simple.
Just follow these steps:

 1. Launch Instruments.

 You can find the app by choosing Developer➪Applications. (Applications
is the same folder where you find Xcode.)

 2. Select a template.

 3. Select Memory below the Mac OS X heading.

 4. Choose Leaks.

 Figure 12-13 shows what you should see at this point.

 5. If your app is already running, choose Attach To Process from the
Choose Target drop-down menu and then choose your app’s name
from the submenu that opens.

 or

 If your app isn’t running, choose Choose Target from the Choose
Target drop-down menu, and navigate through the file system to find
and select your app.

 You can see where it is in the Finder by opening the Products folder in
the Project Navigator, right-clicking the app item, and choosing Show in
Finder from the contextual menu.

 6. Click the Record button.

 Instruments starts keeping track of all the memory allocations, retains,
and releases during your app’s execution. It monitors every piece
of your app that you exercise and checks it for memory leaks. While
Instruments is recording your app’s memory use, you should exercise
every part of your app.

356 Part IV: Polishing and Supporting Your App

Figure 12-13: Instruments will help you find leaks in your apps.

 Write down the sequence of steps you will follow while exercising each
part of your app so you can coordinate what you did with Instruments’
recording of your app’s responses.

 7. Click the Stop button.

 Instruments halts its recording of your app’s memory manipulations.
You’ll be able to see all the items where Instruments detected a memory
leak, as well as the analysis Instruments did to determine where the
leaks occurred.

Using Instruments to track down memory leaks
In this section, I demonstrate how to use Instruments with a very simple
Xcode project that simply leaks memory by allocating objects that never get
released.

357 Chapter 12: Putting On the Finishing Touches

 Xcode 3 would build the app for your project in a subfolder called Build
inside your project’s main folder. Xcode 4 puts the app in a new place:
Navigate in the Finder to your Home directory and then choose Library➪
Developer➪Xcode➪Derived Data➪{project_name}-{identifier}➪Build➪
Products➪{Debug, Release, or some other scheme}. In OS X 10.7 Lion, the
Library folder in your home directory is now hidden, so you will need to
select Go➪Go To Folder . . . in the Finder menu and enter ~/Library to
show this folder in a Finder window.

To get a good idea of how to track down memory leaks, follow these steps:

 1. Launch Xcode.

 2. Create a new Mac OS X project, and call it Leaker.

 Xcode creates a default window-based project. You won’t need the frills
of CoreData or a document-based app.

 3. Select LeakerAppDelegate.h in the Project navigator, and add the
purple lines shown in Listing 12-5.

 4. Select MainMenu.xib in the Project navigator, and add a button and
four labels, as shown in Figure 12-14.

Figure 12-14: The Leaker main window. Each click of the
button creates new objects and loses track of them all.

 5. Connect the LeakerAppDelegate’s IBOutlet variables to the two
labels representing the number of objects created and the amount of
memory leaked.

 6. Connect the window’s button to the LeakerAppDelegate’s IBAction
method leakObjects:.

 7. Save your changes.

358 Part IV: Polishing and Supporting Your App

 8. Select LeakerAppDelegate.m in the Project navigator, and modify
the source code to add the purple lines shown in Listing 12-6.

 You’re implementing the code for the leakObjects: method and can
leave everything else alone.

 9. Save your changes.

 10. Build and run your app.

 Every time you click the Leak! button, a random number of 2KB memory
allocations occurs. The window displays the current amount of memory
that was allocated and leaked, as well as the total number of objects that
were allocated.

 11. Launch Instruments, and create a session that will look for leaks.

 I find it easier to launch Leaker first and then tell Instruments to look for
leaks in the running process.

 12. Click the Record button to start the Instruments memory-watch
recording session.

 13. Click the Leak! button several times in Leaker.

 Figure 12-15 shows that my session created almost 1,000 objects and
leaked almost 2MB of memory.

Figure 12-15: The Leaker main window after 953 leaks.

 14. Click the Stop button in Instruments.

 Figure 12-16 shows the result. The third line in the list of statistics in the
Category column, Malloc 2.00KB, shows that 953 objects were allocated,
which matches what Leaker said it had created. It also shows the total
number of bytes allocated in the column titled Overall Bytes.

 15. In the Instruments pane, just below the Record button, Click the Leaks
Instrument.

359 Chapter 12: Putting On the Finishing Touches

 You see one entry in the Leaked Blocks list, but you can click its
drop-down triangle and get the full list of 2KB leaks. Each leak that
Instruments has recorded is shown, and included in each item is the
name of the object and its method where the leak occurred. Figure 12-17
shows the top portion of this list.

Figure 12-16: Instruments watching all the leaking going on in Leaker.

Figure 12-17: The list of leaks.

Viewing the line that created the leak
One useful feature of Instruments is that when you find a leak, and
Instruments lists the class and method that caused the leak, you can jump
right into the code to see the line that was executed to create the leak. To do
this, follow these steps:

360 Part IV: Polishing and Supporting Your App

 1. In Instruments, with the list of leaked objects on display (refer to
Figure 12-17), select one of the individual leak items.

 In the Address column, you should see a circle with an arrow inside.

 2. Click the circled arrow.

 Instruments shows you the leaked item.

 3. Double-click the leaked item.

 Instruments displays the code within the object’s method where the
memory was allocated. This gives you a starting point for determining
where and how leaks are created in your apps.

The location in your source code that Instruments displays may not
show you why the leak is happening, but it gives you a place to start look-
ing around. In the leakObjects: method, the leak is intentional, and
Instruments is displaying precisely where the memory is being allocated: at
the call to malloc(2048L) within the while loop. If this application were a
real one, I’d definitely want to clean it up.

Listing 12-5: The LeakerAppDelegate header file with its member
variables and sole method

//
// LeakerAppDelegate.h
// Leaker
//
// Created by Karl Kowalski on 5/8/11.
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import <Cocoa/Cocoa.h>

@interface LeakerAppDelegate : NSObject <NSApplicationDelegate>
{
 IBOutlet NSTextField* m_objectsCreated;
 IBOutlet NSTextField* m_memoryLeaked;
@private
 NSWindow *window;
}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)leakObjects:(id)inSender;

@end

361 Chapter 12: Putting On the Finishing Touches

Listing 12-6: The LeakerAppDelegate source that will intentionally leak
memory

//
// LeakerAppDelegate.m
// Leaker
//
// Created by Karl Kowalski on 5/8/11.
// Copyright 2011 Kowalski Software Enterprises. All rights reserved.
//

#import “LeakerAppDelegate.h”

#include <stdlib.h>

@implementation LeakerAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
 // Insert code here to initialize your application
}

- (IBAction)leakObjects:(id)inSender
{
 // generate a random number between 1 and 100
 long randomNumber = random() % 100 + 1;
 // make that many calls to malloc
 char* randomArray = 0L;
 NSUInteger allocCount = 0;
 NSUInteger memCount = 0;
 while (randomNumber > 0)
 {
 randomNumber--;
 randomArray = malloc(2048L);
 allocCount++;
 memCount += 2048;
 }
 NSInteger currentObjectCount = [m_objectsCreated integerValue];
 currentObjectCount += allocCount;
 [m_objectsCreated setIntegerValue:currentObjectCount];
 NSInteger currentMemoryLeak = [m_memoryLeaked integerValue];
 currentMemoryLeak += memCount;
 [m_memoryLeaked setIntegerValue:currentMemoryLeak];
}

@end

362 Part IV: Polishing and Supporting Your App

Memory leaks are a nuisance in any app. When the app exits, all memory
leaks disappear; your app is no longer running, so it has no memory to leak.
You should make an effort to reduce all the memory leaks that your app cre-
ates to make sure you’re not running your users out of memory. Small leaks
may not have a great effect on your app’s performance, but you really ought
to clean them up, no matter how small they are.

 The most important rules of memory management are these:

 ✓ Every call to retain should be matched to a call to release.

 ✓ Every call to alloc automatically calls retain.

 ✓ If a class needs to keep a reference to an input parameter, call retain
on the incoming parameter and then call release on the previous refer-
ence.

 ✓ Convenience methods return objects that have had autorelease
called on them. If you want to keep a reference to them, you must also
call retain.

 ✓ Call release on all the member variables within an object’s dealloc
method.

Keeping these rules in mind while you’re writing your apps will take you
a long way toward reducing the memory leaks that creep up on you while
you’re not looking.

Localizing Your App
If you’re planning to sell your app only to English-speaking users in the US,
this section isn’t for you. But if you’re looking to increase your sales and your
app’s penetration among Mac users worldwide, you should seriously con-
sider creating an app that speaks the native languages of your users.

For my previous Dummies book, BlackBerry Application Development
For Dummies, I wrote a BlackBerry application and put it up for free at
BlackBerry App World. Although the app is English-only and has enjoyed
thousands of downloads throughout the BlackBerry realm, I can only imag-
ine how many more downloads would have resulted if I’d simply added the
native languages of the countries where large numbers of users live, such as
France, Germany, and India. Although the users in these countries are com-
fortable using an English-only app, as I write more apps, the benefits of using
a native-speaking app could make the difference between my app’s being
downloaded and a competitor’s app being downloaded. If your app has lim-
ited displays of text — and especially if most of your app’s text strings are in

363 Chapter 12: Putting On the Finishing Touches

the user-interface sections of your app — you’ll find that enabling your app
to speak a foreign language is important, and it’s easier than it seems.

During my years of public school and college education, I made several
attempts to learn French and German. I don’t know either language well
enough to translate my apps into those languages. A couple of websites,
however, can do translations of simple (and some not-so-simple) phrases and
sentences for free:

www.babelfish.com
www.google.com/language_tools

I’ve experimented with both sites and found that each has advantages and
drawbacks. For short phrases and single words that you might use for but-
tons, labels, and menu items, both sites offer fairly good translations. I rec-
ommend having a real person who knows the language review the results,
but for the most part, you can trust that the translations done for your apps
will be reasonably correct. Also, your users will be happy to correct Google’s
or BabelFish’s grammatical mistakes, so be sure to pay attention to your
e-mails, and review feedback.

 You can also download the Language Translator Dashboard widget from
Apple, which uses Google’s language translation service.

Xcode makes it very easy to create a localized version of your XIB file where
all your UI text resources reside. To get started, here’s what you need to do:

 1. Launch Xcode, and open the project to which you want to add a new
language.

 I’ll be working with Leaker, because I still have it open in Xcode, and it’s
pretty simple.

 2. Select MainMenu.xib in the Project navigator.

 The main window of Leaker is displayed in the editor.

 3. Display Utilities view, if it’s not already visible, and select the File
Inspector.

 You should see the display shown in Figure 12-18.

364 Part IV: Polishing and Supporting Your App

Figure 12-18: The File Inspector, showing the details of
MainMenu.xib.

 4. Click the drop-down triangle in the Localization section to open it if
it’s closed.

 English is the default language, and now you’re going to add French.

365 Chapter 12: Putting On the Finishing Touches

 5. Click the + button at the bottom of the Localization section.

 A menu pops up, displaying a basic set of foreign languages.

 6. Choose French from the menu to add French as an optional language.

 Xcode copies the MainMenu.xib file from the English folder (en.
lproj) in your project folder to the French folder (fr.lproj). Now
your app is ready to support the display of French-language text in
your user interface (UI) when your app is run on a French-language
Macintosh. If you open your project’s folder in the Finder, you see the
folder fr.lproj and its contents: a copy of MainMenu.xib.

 Xcode didn’t translate any of the text in this alternative XIB file to French; it
merely provided a separate file containing all the UI components in the origi-
nal XIB file, which will be loaded instead of the English-language components
when your app is launched on a French-speaking Mac.

When you want to modify this file’s contents, here’s what you do:

 1. In the Project Navigator, click the drop-down triangle next to
MainMenu.xib.

 This step should reveal the two language-specific files: MainMenu.xib
(English) and MainMenu.xib (French).

 2. Select the MainMenu.xib (French) item in the Project navigator.

 You’re looking at the UI components that will be loaded, with their even-
tual French-language text, when this app is run on a French-speaking
Mac. Now all you have to do is translate the window title, the button
text, and the two labels.

 Figure 12-19 shows you my limited efforts toward achieving something
that my high-school French teachers would fail me for.

Figure 12-19: I’m not a native French speaker, but if it helps my
users and encourages them to buy my apps, I’ll make it happen.

366 Part IV: Polishing and Supporting Your App

 You should clean your project and then build before running. In addition, to
test your non-English-language UI, you need to choose Settings➪Language &
Text Setting so that the language you want to test is at the top of the list.

That’s all there is to making a localized version of your app’s UI. You need to
do a little more work if your app generates text within its code, but for most
projects, this won’t be a problem. Your apps will soon speak your users’
native languages — all the languages that a Mac can speak.

Part V
The Part of Tens

In this part . . .

M
ac app development can be filled with joy and frus-
tration, sometimes only minutes apart. This part

is filled with examples and tips to make your life as a Mac
app developer somewhat more productive and less chal-
lenging. In addition, you’ll find a list of tools that can make
your development efforts more rewarding.

Chapter 13

Ten Useful Apple Sample Apps

I
 began my adventures in programming when I was handed a book of source
code, in the BASIC programming language, containing more than 100

games. This book was page after page of the computer instructions needed to
program apps like roulette, blackjack, craps — apparently games of chance
were a big hit — as well as mazes, puzzles, and other interesting and strange
ways to explore what a computer program could do. The book did not go over
theory, data structures, or anything remotely philosophical — object-oriented
programming was still not mainstream. Most of the games worked as written,
some required a workaround, and (of course) there was one that I never did
get to run. But after reading through all the games, and trying to get them all
to work, I learned the basics of programming from those examples. And so I
learned the best lesson about programming: Sample Code.

Xcode does not come with code examples of the many different things you
can implement within your apps. The Apple Developer website, however,
provides hundreds of examples of sample Mac app code that you can down-
load and get up and running on your development machine. When you search
the Developer Library for Core Data, for example, your search will return
Sample Code resources, in addition to Tutorials and Guides about Core Data.
The website delivers a great deal of material on each sample app. You can
look at all the code through web pages without having to download the app;
this is helpful if you’re only looking to see how a particular class is being
used. You can also download the project and build the app. Each sample app
is contained within a complete Xcode project. Most of the sample apps are
small, and you’ll find them focused on demonstrating one or two fundamental
concepts. This chapter describes the ten sample apps that I find the most
interesting and useful.

 Apple is constantly adding improvements to its Macintosh OS, and conse-
quently Apple is also constantly adding new sample apps to demonstrate the
new features and functionality. As great as that is, you must keep in mind that
some of the sample apps you find at the Apple Developer website may be out
of date — and this can lead to some difficulties in getting an app to work. Like
the games in the book that required me to find a workaround, you can learn a
lot from downloading a sample app that was written for a version of OS X that’s
older than what you’re running Xcode on. But stay calm, cool, and collected
when the app doesn’t build. You just might learn something new.

370 Part V: The Part of Tens

 You can find all of the Apple Sample apps at the following URL:

https://developer.apple.com/library/mac/navigation/#section=Resource%20
Types&topic=Sample%20Code

Figure 13-1 shows just the top lines of the result — note the “753 of 3085”
documents in the list: you’ve got lots of sample apps to choose from, and it’s
a safe bet that somewhere in the full set is the example you’re looking for.
Make sure you pay attention to the Topic column in this list — while most
of the samples are written in Objective-C, there are a few Java-based and
AppleScript app projects as well.

Apple is constantly updating its sample code, so you may find an updated list
of sample apps when you check out the URL above.

Figure 13-1: Some of the Sample Mac Apps added or updated in the
beginning of 2011.

You’ll also find Sample code as a result of a search — when you’re looking
for information on an Objective-C class such as NSTableView, the search
results will show links to sample code, as shown in Figure 13-2. So always
be on the lookout for the words “Sample Code” whenever you’re looking
through web pages at the Apple developer website.

371 Chapter 13: Ten Useful Apple Sample Apps

Figure 13-2: Seven Sample Mac Apps that show you how to use NSTableView.

No more preliminaries. Let’s meet my favorite sample apps.

ToolbarSample
Many apps that you use today come with a toolbar. Toolbars are a great
way to provide functionality that used to be contained within menus —
your app still provides a multitude of menu items, but for those operations
that users are using most frequently, your app can provide a toolbar button
to perform the same task. You’re likely to use all the toolbar buttons that
Xcode provides for building, running, and debugging your apps. An app that
displays an NSToolbar for its users must implement NSToolbarDelegate
methods — and you’ll find this done in the code, nicely separated out from
the other methods in the Controller class implementation. I like this
sample because it’s small and focused on demonstrating how to provide
toolbar features to your users — which is a great way to demonstrate your
app takes your users’ needs and expectations into consideration.

372 Part V: The Part of Tens

CustomMenus
This sample app demonstrates how to create your own customized menus.
While that may sound overly simple, you’ll find other nuggets of code within
this app. You’ll see how to create a pop-up menu that displays its own
custom view for selecting from a set of images. I was surprised by the level of
effort needed to implement this view; you can learn a lot just from the com-
ments in the code. There’s also a search field that will list image files avail-
able from the current folder when the user types a single letter. For an app
named “CustomMenus”, this sample app demonstrates not only menus but a
whole lot more.

ButtonMadness
There’s always something special about sample apps that come with “mad-
ness” in the name. And if you want to see buttons coded like crazy, this is
the sample app for you. One of the best lessons you can learn from this app
is that you don’t have to use the Interface Builder Editor to create buttons
and link them into your app. Apple recommends using Interface Builder as
much as possible, but you can learn a lot about how to adjust your app’s user
interface while your code is running by creating connections in code. The
ButtonMadness project demonstrates how to do both: you can see how to set
up buttons using Interface Builder, and you can also see how to do the exact
same things programmatically.

SimpleCocoaApp
Apple provides a simple app to demonstrate how to use Cocoa and
Objective-C at a beginning level. It’s great for reinforcing the ideas and con-
cepts you learned in this book, and you can always find it online so you don’t
have to carry this book around with you everywhere. You’ll discover that this
sample app is really not so simple — you encounter some subtleties about
the messages that one Objective-C object sends to another, including creat-
ing messages on the fly to be sent programmatically. You’ll need to spend
time reviewing both the code and the connections made through Interface
Builder to come to a complete understanding of what’s going on.

373 Chapter 13: Ten Useful Apple Sample Apps

NSTableViewBinding
Sooner or later you’ll create an app that displays collections of information
using an NSTableView. I did so for one of my first Mac OS X products, and
it was (as they say) a learning experience. This sample app was created
to demonstrate how to use Cocoa Bindings with an NSTableView so that
your app’s data source — in the app, an NSArrayController using an
NSMutableDictionary to hold the data — will be displayed as both rows
of records in the NSTableView and as individual pieces when a row in the
table is selected. As always, a lot of different aspects of Mac app program-
ming are present in this sample app; I recommend you study it closely to see
exactly how this app does what it does. The comments are especially helpful,
so you should read them as well.

IconCollection
This sample app demonstrates interactions between several different XIB
files in creating a window that displays icons. You’ll see how to use an
NSCollectionView for displaying the collection of icons — or anything,
really — within the app. As always, Apple’s sample app delivers far more
than its name suggests. You’ll see how an NSArrayController keeps track
of all the icons, and you’ll learn how to use an NSSortDescriptor to manip-
ulate how the array of icons is sorted for display.

PictureSharing
Today’s fast-paced users are connected users: They are using the Internet not
simply on a daily basis but on a moment-to-moment basis. When I started
learning how to program, I used a telephone to connect my dumb-terminal to
a remote computer, using audible signals. Today users are communicating
billions of bytes across electrical cables or through the air, thousands (or
even millions) of times faster. These Apple sample apps — both a server
and a client — will show you how to provide and access a network service
using Bonjour, Apple’s protocol for broadcasting, discovering, and inter-
acting with services over a network. This sample provides a server app —
PictureSharing — and a client app — PictureSharingBrowser. To see them in
action, build and launch the server app, and then build and launch the client.
The client will find the Bonjour services available on the network — which
had better be the PictureSharing service! These sample apps also demon-
strate the use of NSStream objects to move data across a network.

374 Part V: The Part of Tens

Squiggles
If you write only data-management-and-display apps, you’ll be making use
of standard components and Cocoa classes. But your app will stand above
the crowd if you make use of the users’ screens by displaying information in
a more visual way — and that means creating custom NSView classes that
draw their data in a different way. Squiggles is one such app; its display looks
like those old Etch-a-Sketch™ toys, only you can draw in color and then
rotate the colored lines you’ve drawn into a circular pattern that gets drawn
again and again onto the screen. This sample app introduces you to creating
a custom view that uses custom objects that contain information about how
to draw themselves. In addition, you’ll learn about applying visual transforms
when drawing two-dimensional images; then you can rotate any particular
drawing your apps do through 360 degrees.

DictionaryController
You will use many different collection classes in your Mac apps. The
NSDictionary and NSMutableDictionary classes let you store objects
in a key-value mechanism: each value object (a subclass of NSObject) is
mapped to a key object, and this form of collection storage has a variety
of uses. The DictionaryController sample app shows you how to use an
NSDictionaryController object to manage the data your app stores in an
NSDictionary or NSMutableDictionary so that your app’s visual compo-
nents can access and display the information contained within a collection.
You’ll find examples of Cocoa Bindings in this app as well.

ImageTransition
The Apple iPhone brought animations to apps to wow the users. Apple gave
its iOS developers some programmatic tools that made animation easy to add
to their apps. And you can add similar animations to your Mac apps as well.
ImageTransition shows the various animated transition types, applied to a
view that changes one image to another via a transition animation. You’ll also
learn how to find out what animation types are available from the OS — these
will change over time, but you can query the system

 When I first used ImageTransition, before Xcode 4 was released, the app built
and ran fine. After I installed Xcode 4, the build ran into a snag — Xcode 4
didn’t get along with some setting in the build files for the Xcode 3 project —
the problem was in the settings for the machine architecture, which reflects
on the specifics of the Mac’s CPU and the libraries for it. This is one of the

375 Chapter 13: Ten Useful Apple Sample Apps

most-likely problems with using older sample apps in a newer version of
Xcode. In Figure 13-3, you can see the changes I made in the Xcode 4 display
of Build Settings — which you display by clicking the top-level item in the left
pane. In the Architectures group, I modified the following items:

Figure 13-3: Sometimes elderly sample apps need a few tweaks. This app was last updated in
August 2010.

 ✓ Architectures. I set this value to Native Architecture of Build Machine.
I wanted Xcode to build the app only for the machine on which Xcode
was running. I didn’t want Xcode to worry about coding for some other
kind of machine.

 ✓ Base SDK. This value tells Xcode which SDK — which set of OS libraries —
to use for the app. I set it to Latest Mac OS X (Mac OS X 10.7). As with
Architectures, I didn’t want Xcode to go out of its way to accommodate
a technology from the past that the app’s users probably wouldn’t be
running.

 ✓ Valid Architectures. Since I knew there was only one machine archi-
tecture on which I would execute the sample app, I reset this value to
x86_64.

Once these changes were made, the app built and executed just fine.

376 Part V: The Part of Tens

Chapter 14

Ten Macintosh Development Tips
In This Chapter
▶ Keeping track of memory

▶ Reading the documentation

▶ Using online resources

▶ Remembering the parent class

▶ Looking beyond the current problem

▶ Following Interface Builder’s guides

▶ Reducing, reusing, recycling (code, that is)

▶ Using keyboard shortcuts

▶ Setting Xcode to your preferences

▶ Staying up to date

Y
ou’ll discover that programming a Macintosh app is, in general, very
similar to programming an app for any other type of computer. There

are certain unique aspects to Mac programming with Cocoa that you’ll need
to keep in mind, however — and in this chapter, I point out and remind you
of some of the most important ones.

I find that developing Mac apps provides a variety of challenges with each
app I write. Sometimes these challenges are simple and easy to overcome;
other times the challenges are difficult enough that I am forced to choose
another approach for accomplishing my goals. Most development effort falls
between these two extremes, and I think you’ll find the information in this
chapter helpful to move your own challenges from the Difficult end of the
spectrum closer to the Easy side.

378 Part V: The Part of Tens

Keep Track of Memory
Your app is going to need to take system memory to do everything. Your app’s
windows require memory to keep track of their contents, where they’re located
and how big they appear on the screen. Every part of your app uses memory to
perform the feats of application magic you’ve designed it to perform. Today’s
computers now come with billions of bytes of system memory — but today’s
users make their computers do ever more things. Your app should keep a tight
rein on its memory requests; to get it to do this, you’ll have to be careful about
how you request memory, how you hold onto it, and how you send it back to
the system. Chapter 4 provides a basic course in OS X memory handling, and
I think this is important enough to remind you here of where you’ll find that
information quickly. Table 14-1 provides you with a quick-hit list of memory
functions you’ll use when your app creates Objective-C objects.

Table 14-1 Objective-C Memory Functions
Function Name When To Use It

retain When your app needs to use the retained object outside
of the method in which it was created. A retain call is
made automatically during an alloc call.

release When your app is finished with a retained object and no
longer requires access to it. Usually this happens during
the dealloc method of a class.

autorelease When your app needs an object to behave as if you
had called retain on it, but which is scheduled to be
released automatically at a future point. Cocoa classes
that provide convenience methods such as NSString
stringWithString: will call autorelease automati-
cally before handing the object to your app.

 When you create a setter method for a member variable object such as an
NSString, always obey the following rules:

 ✓ Retain the incoming object first.

 ✓ Release the old object stored in the member variable second.

 ✓ Assign the incoming object to the member variable.

Memory leaks can cause problems and even lead to your app being rejected
by Apple. Calling a method on an object that was released and whose memory
was returned to the system will cause a crash — which will definitely get your

379 Chapter 14: Ten Macintosh Development Tips

app rejected by Apple if they discover it and will make your users unhappy
with your app if it happens to them. Chapter 12 provides an introduction to the
diagnostic tools such as Instruments that come with Xcode and can help you
track down memory leaks.

Read Apple’s Documentation
I know very few professional programmers, myself included, who go to the
development documentation first. But although I wrote this book to assist in
getting you started with Mac app programming, Apple’s engineers have writ-
ten thousands of pages of documentation — discussing every different class
and OS function that your apps will use. Apple’s documentation is complete,
and is very good at explaining each class and the methods your apps can use
in that class to achieve your apps’ goals. Use that documentation.

When I started Macintosh programming, the documentation was all in book
form, costing several hundred dollars for the complete set. Now you can
access all the details over the Internet, for free. Apple’s documentation can
be challenging to understand (and that’s another reason I wrote this book —
to help you bypass some of the overwhelming details that Apple delivers and
get right to the core information you need to get the job done). But Apple’s
documentation will always be the definitive answer for all Mac programming
inquiries, and you’ll get to know an invaluable resource by reading Apple’s
docs.

Apple’s documentation is divided into multiple categories; the following are
the ones I find to be the most useful:

 ✓ Reference, where you find the specifics of Cocoa classes, methods, and
OS X functions.

 ✓ Guides where you can follow, step by step, how to use various aspects
of the Cocoa frameworks — for instance, how to use Core Data for stor-
ing information in your application.

 ✓ Sample code, where you see how Apple’s engineers used the Cocoa
frameworks to perform specific tasks, and which you can use to build
working apps that demonstrate how particular features can be imple-
mented.

 ✓ Getting Started, where you learn how to start using different features of
Mac OS X programming in your apps.

 ✓ Xcode Tasks, which gives you assistance in all the different things that
you can do with Xcode.

380 Part V: The Part of Tens

 Sometimes the sample code projects are not updated for the current version
of either OS X or Xcode.

Apple’s Macintosh programming online documentation sources can be found
here:

http://developer.apple.com/library/mac/navigation/

Use Online Resources
In addition to Apple’s online documentation, you will find a wealth of infor-
mation online, both at Apple and spread all over the Internet. Apple provides
Developer Forums where you can ask questions, answer questions, and find
answers to your questions regarding all aspects of Macintosh development.
Access to the Apple Developer Forums is free, and you should definitely take
advantage of this. Remember, there are tens of thousands of developers just
like you, writing Macintosh apps and hitting problems identical or similar to
yours. Sometimes you’ll be answered by Apple engineers. You should search
through the forums before posting a question, to ensure that your particular
challenge has not already been addressed.

You can reach the Apple Developer Forums here: https://devforums.
apple.com/index.jspa. You will need to be logged into your registered
developer account to access them.

In addition to Apple’s Developer Forums, several other non-Apple forums
have arisen on the Internet: the Internet is a great place for everyone to find
information, and for everyone to share information they’ve encountered —
especially solutions to challenging problems. Some of my favorite third-party
Mac developer forums are

 ✓ Cocoa Builder: www.cocoabuilder.com

 ✓ Cocoa Dev: www.cocoadev.com

 ✓ Cocoa Dev Central: www.cocoadevcentral.com

 ✓ MacTech: www.mactech.com

Finally, you can find a large amount of information on individual develop-
ers’ blogs and websites that are not specifically forums. You’ll have to use
your favorite search engine to find them, so you’ll need to carefully select the
proper words to define the problem you’re looking to solve. The following sites
offer the blogs of Mac developers who provide a great deal of information:

http://www.cocoadevcentral.com

381 Chapter 14: Ten Macintosh Development Tips

 ✓ Cocoa Is My Girlfriend: www.cimgf.com

 ✓ Theocacao: www.theocacao.com

 ✓ Domain of the Bored: www.boredzo.org/blog

Always Remember the Parent Class
Objective-C gives you an object-oriented way to develop Macintosh apps.
Your apps and the classes you create for them get to take advantage of the
code that Apple’s engineers have written and tested and proven to work,
without you having to write any of it. Every class in the Cocoa framework,
with the sole exception of the NSObject class, is a subclass of some other
class in the Cocoa framework. Consequently, every class has access to func-
tionality and data that its parent (and grandparent, great-grandparent, and so
on) classes provide. This feature of object-oriented languages, called inheri-
tance, is a gift from the Apple engineers to you — and to all developers of
Macintosh apps.

For example, the Cocoa UI class you would use to allow the user to enter
or see text is usually the NSTextField class or the NSTextView class.
Both are grandchildren of NSView, but they have different parent classes:
NSTextView is a subclass of NSText, while NSTextField is a subclass of
NSControl. Interestingly enough, neither of these two classes comes with
a method for setting the text they each display. To find those, you have to
move up one level to the respective parent classes for each class:

 ✓ NSText comes with the setString: method.

 ✓ NSControl provides the setStringValue: method.

 If a class does not come with a method you want to use, make sure you check
its parent class’s methods. In Xcode, if you enable the Code Completion pref-
erences, you’ll be presented with a list of methods while you’re entering the
code, so you’ll find all of a class’s methods, including the methods of its par-
ents, grandparents, great-grandparents, and so on back into time.

Look Beyond the Current Problem
I find it very easy to get focused on solving the immediate coding prob-
lem when I run into one. I will narrow the problem’s scope, dream up an
approach to getting the code to do what I want, and implement my solution,
moving on to the next problem once the current one is fixed. While this

382 Part V: The Part of Tens

works great for simple problems, you will find that complex problems gener-
ally require more thought, including looking outside the little circle of scope
where the problem resides.

In addition to looking beyond where the current problem exists within your
code, consider the future effects of your solution: Look outside the little
circle of time where the problem exists. At some point in the future, you’ll
return to your code, either to fix a bug found by one of your users or to
implement a feature you hadn’t thought of when you first wrote the code.

Objective-C and the Cocoa framework will support you in your efforts to go
beyond just solving the immediate problem. Objective-C’s object-oriented
feature of class inheritance enables you to maintain your existing classes
while adding onto them in the future — you can modify your code incremen-
tally by creating subclasses that do more.

You’ll find it useful to take a few moments and just think about how you’re
solving a new problem instead of acting on it right away. This can be difficult
if you’re under pressure to release your app within a certain time period, but
it’s almost always better to consider options now rather than face them later
when your code has been implemented and you’ve committed to a specific
design.

Follow Interface Builder’s Guidelines
Apple requires you to follow its Human Interface Guidelines (HIG) to develop
your apps, and they’re likely to reject your app submission if your app does
not comply with the HIG. If you look through the online documentation of the
HIG, you’ll find rules that govern just about everything you’re going to dis-
play in your app’s windows. I cannot keep them all straight in my head, there
are simply too many. Luckily, Interface Builder gives you some assistance
when it comes to laying out your app’s windows with the standard controls
that Apple provides in Xcode: When you drag a control from the Interface
Builder Editor’s Object Library onto your window or view, you will see guides
appear when you move the control to a boundary or position of interest
within the HIG. These guides assist you in lining up controls and placing them
within the HIG-preferred bounds of the window or view.

You’re not required to obey these guides, but you really should. Apple takes
their UI very seriously, and they have many rules about how your interface
should work to deliver a positive and pleasant experience for users. Nothing
stops you (technically, anyway) from ignoring or violating the guidelines that
Apple has established and that Interface Builder indicates, but your users will

383 Chapter 14: Ten Macintosh Development Tips

be happier if you remain consistent with their experiences with other HIG-
compliant apps. And Apple is more likely to accept your App Store submis-
sion because your app is well-behaved in its interface.

Reduce, Reuse, Recycle
Object-oriented software development was, in part, designed to help save
you from having to reinvent the (code) wheel. Before you create a new class,
one of the most important things you can do is to search the Apple documen-
tation to see whether someone in Apple’s engineer corps has already done
it for you. And moving from one app to your next, you will encounter coding
problems that you’ve encountered in the past. Your code in one of your
apps can be reused in future apps, especially when Objective-C allows you
to subclass to implement greater functionality to address the slightly differ-
ent new problem you’ve just encountered. For example, if you create a class
to manage access to users’ contacts in their Address Book, you can use that
manager class in every app you write that requires that access. This reduces
the time you’d spend to re-implement the code.

It’s easy to reuse class files; all you need to do is drag the class header file
(.h) and source module (.m) from your old project into your new one, or just
from the old project’s folder in the Finder into the new project’s Project navi-
gator. And you can reuse XIB files exactly the same way.

Use Keyboard Shortcuts
Apple popularized the user interface for applications, giving users the ability
to control their computers without having to memorize or type in an endless
supply of text-based commands. But the engineers at Apple also were aware
that the keyboard is still the primary means of commanding computers,
because it is a consistent physical interface that nearly everyone who types
regularly has memorized — including programmers. Because your program-
ming hands are always on or near the keyboard, Apple has added keyboard
shortcuts for the most familiar and well-used operations in Xcode. You’ll
speed up your development by pressing a set of keys instead of moving your
hands from the keyboard to the mouse to engage in an operation, then back
again to the keyboard.

Table 14-2 lists the keyboard shortcuts for the most frequently used
operations.

384 Part V: The Part of Tens

Table 14-2 Highly Used Keyboard Shortcuts
Shortcut What it does

Ô+S Saves a file

Ô+O Opens a file

Ô+M Minimizes the project file to the Macintosh Dock or into
Xcode’s icon in the Dock

Ô+B Builds the project’s app

Ô+R Launches the project’s app after building it (if necessary)

Ô+Z Undoes the previous change

Shift+Ô+Z Redoes the previous change (undo the undo)

Shift+Ô+K Cleans the project’s binaries

Ô+, Opens the Xcode preferences

Shift+Ô+Y Shows or hides the debug area

Option+Ô+W Closes the file displayed in the main editor window

Option+Ô+? Displays the Organizer documentation screen

Shift+Ô+2 Displays the Organizer window

In addition to keyboard shortcuts, Xcode also has support for gestures.
If you’ve used an iOS device such as an iPad, you’re familiar with using a
touchscreen interface to access your apps. Apple Mac laptops are already
equipped with multi-touch trackpads, and the Magic Mouse and Magic
Trackpad can be used with Mac desktops. All of these input devices allow
users to perform certain operations that involve multiple fingers touching
and moving on the device, and Xcode is set to support the following gestures:

 ✓ Two-finger swipe: Scrolls vertically for up/down motion, horizontally for
left/right.

 This is very useful for large source files.

 ✓ Three-finger swipe: In the source editor, swaps a source file (.m) with its
associated header file (.h).

 ✓ Two-finger tap: Opens a context menu, identical to right-clicking a
mouse.

 Gestures are only possible when using a multi-touch input device such as the
Apple Magic Trackpad, Magic Mouse, and the trackpads on MacBooks made
since 2009.

385 Chapter 14: Ten Macintosh Development Tips

Set Xcode to Your Preferences
Xcode comes with nine categories of preferences — each of which comes
with its own subset of modifications you can make to change the way Xcode
does everything it does. You should look over all of these to make sure
Xcode is behaving as you want it to behave, instead of just acting the way
the Apple defaults want Xcode to behave. The little things you can do with
Xcode’s preferences can make your software development experience much
better. I have my favorite formatting preferences all set to my proper speci-
fications; I also make use of code coloring to give me the best display of my
code. You should at least play around with the settings in Fonts & Colors to
come up with your favorite: definitely cycle through the different themes,
such as Presentation and Midnight. Presentation is starting to appeal to me
personally, since my eyesight is getting incrementally worse. But Midnight
looks pretty cool, too.

You’ll find the preferences that suit your style and taste, and remember, you
can change them as often (or as seldom) as you prefer. Xcode’s preferences
are for you to choose.

Stay Up to Date
Apple is changing things — often. The most important changes regarding
your Macintosh apps will come within OS X, which seems to get a major
upgrade approximately once every 18 months. These upgrades generally
add new functionality that your apps can take advantage of. But sometimes
the upgrades remove functionality, replacing it with something new and dif-
ferent. Thus your app written for (say) OS X Snow Leopard may use features
that aren’t available in OS X Lion. When your users upgrade their Mac OS X
to Apple’s newer version, your app may crash. The most important thing for
you to do is make sure your currently-shipping app will run on the latest and
greatest OS X. As a registered developer, you’ll have access to early editions
of the next version of OS X. You should take advantage of these early access
editions where possible.

Minor upgrades happen several times in between the major upgrades.
Usually these just fix bugs, so your app written for OS X 10.6.5 will run on OS
X 10.6.6 without any changes. But it’s good to check and make sure that your
app runs on these minor upgrades — which is something you can inform
your prospective users about on your app’s App Store description.

386 Part V: The Part of Tens

Apple holds the Apple Worldwide Developers Conference (WWDC) every
year in California. This is a great opportunity to learn about Mac OS X and
iOS development. The conference this year was sold out very quickly, but
as a registered developer you can access the session videos from the con-
ference. As of this writing, the WWDC 2011 Session Videos are available at
https://developer.apple.com/videos/wwdc/2011/.

https://developer.apple.com/videos/wwdc/2011/

Symbols and Numerics
{} (braces), 29
: (colon), 99
- (dash), 29
- (minus), 100
() (parentheses), 29
+ (plus), 100
; (semicolon), 29
[] (square brackets), 330
_ (underscore), 95
4:3, 17–18

• A •
About panel, 347–354
AboutStockMarketerController class,

351–352, 355
accessing Mac App Store review

guidelines, 37
active window, 149
Activity Viewer, 51
adding

application icons to apps, 340–343
file icons to apps, 343–347
functionality to menu actions, 139–141
items to app windows, 126–129
NSLog messages to display, 330
Preferences window, 167–176
references to BasicPrintView objects,

291–292
sliders, 142
XIB file, 170–171

Address Book (Objects Library), 129
Address Book app, 12, 13
AddressBook framework, 111
addresses (memory), 55
Adobe Photoshop Elements (website), 23

AdoptiveClass class, 101–102
advanced views

about, 177–178
animating views, 201–205
Apple’s component collection, 178–179
Cocoa views, 179–187
creating custom views, 187–189
drawing, 189–201

all variables, 312
alloc method, 97, 100, 105, 355, 362
Amazon (website), 24
analyzing user data, 209–210
ancestor class, 88
animating views, 201–205
AnimationView class, 202–205
animator, 205
app data free trade agreement, 244–245
App Store (Apple)

about, 10–11
app, 14
becoming a seller in, 38
icons requirements for, 339

AppKit.framework framework, 110
Apple

components, 178–179
documentation, 379–380
sample apps, 369–375

Apple App Store. See App Store (Apple)
Apple Developer Forum, 380
Apple Macintosh, buying, 19–21
Apple Worldwide Developer Conference

(WWDC), 386
Apple’s GarageBand, 23
Apple’s Human Interface guidelines

(website), 128
Apple’s TextEdit app, 150
application archive, 81–82
application icon, 23, 337–343

Index

388 Mac Application Development For Dummies

applications (apps). See also debugging
about, 9–10
adding application icons, 340–343
adding items to windows, 126–129
Address Book, 12, 13
Apple sample, 369–375
archiving, 81–82
building, 19
built-in, 12–14
ButtonMadness, 372
categories, 118
choosing templates, 118
connections, 119–120
creating new projects, 42–49
creating with Xcode, 41–61
CustomMenus, 372
defined, 252
development challenges, 33–36
DictionaryController, 374
editing menus, 134–135
executing, 19–20
ForDummiesImages, 276–282
frameworks of, 56
full screen, 34
getting started with developing, 36–38
iCal, 12
IconCollection, 373
ImageTransition, 374–375
iTunes, 12
language, 24
life cycle, 11, 112–114
localizing, 362–366
Mail, 12
memory, 354–362
menubar, 67
menus, 134–135
NSTableViewBinding, 373
Objective-C programming for, 26–31
PictureSharing, 373
products of, 56
programming skills for developing, 25–33
reasons for developing, 10–11
Safari, 12, 13
SimpleCocoaApp, 372
single window, 118
slowing down, 221–222
source files, 56
Squiggles, 374
tip calculator, 63–82

ToolbarSample, 371
tools for developing, 19–24
types, 42
updating, 385–386
users, 11–18
using Model-View-Controller (MVC)

pattern in, 154–167
what to create, 37–38
Xcode visual details, 49–61

Aqua, 34
architectural pattern, 147
Architectures setting, 375
Archives organizer, 61
archiving, 81–82, 213
Assistant editor, 51
Attributes inspector (Inspector pane),

124, 131
audio editor, 23
Auto Save, 34
auto variables, 312
autorelease method, 106, 108, 362, 378
AV Foundation, 34

• B •
Back button, 58
background, working in

about, 251
scheduling events with threads, 260–282
thread basics, 252–260

background process, loading data as, 221
backup software, 24
Base SDK setting, 375
BasicPrintAppAppDelegate, 289–290
BasicPrintView object, 290–293
Beziér curves, 191–196
bezierPathWithOvalInRect:

method, 192
bezierPathWithRect: method, 192
bezierPathWithRoundedRect:

method, 192
Binary format, 239
binding, 124
Bindings inspector (Inspector pane), 124
BlackBerry Application Development For

Dummies (Kowalski), 362
braces ({}), 29
brainstorming, 37–38
Breakpoint navigator, 55

389 Index

Breakpoint State button, 51
breakpoints

defined, 51
setting, deleting, and disabling in Xcode

Debugger, 313–318
Bugzilla, 334, 336
Build Configuration setting, 53
building apps, 19
built-in apps, 12–14
ButtonMadness app, 372
buttons

about, 14
Back, 58
Breakpoint State, 51
Forward, 58
Organizer, 52
Run, 50
selector, 55–56
Stop, 51

• C •
calculateTip: method, 74, 78, 79, 324
CalendarStore framework, 111
‘call me when you’re done’ operation, 253
calling methods, 98–99
CarView class, 94
@catch statement, 282
child class, 88
child subview, 180
choosing templates for apps, 118
class convenience method, 98
class declaration, 90
class methods, 100
classes. See also objects
AboutStockMarketerController,

351–352, 355
AdoptiveClass, 101–102
ancestor, 88
AnimationView, 202–205
CarView, 94
child, 88
Controller, 152, 160–167, 371
data, 27, 28, 211–217
defined, 88
DPData, 214, 216–218, 219, 220, 248
Model, 152, 154–158
Note, 27, 29, 30
NSArray, 218, 219, 243

NSBezierPath, 190–196
NSBox, 180
NSButton, 180
NSCancelButton, 290
NSCheckBox, 180
NSColor, 184–187, 190
NSColorWell, 168
NSCompositeCopy, 201
NSControl, 180, 381
NSDrawer, 149
NSImage, 199–201
NSKeyedArchiver, 219, 220
NSKeyedUnarchiver, 220
NSNotification, 33
NSNotificationCenter, 32, 33
NSObject, 29, 30, 88, 90, 97,

100, 212, 267, 381
NSPageLayout, 284
NSPanel, 149
NSPrintInfo, 284, 285, 289–290
NSPrintOperation, 284, 285,

290–293, 297
NSPrintPanel, 284
NSString, 96, 98, 106–108, 197, 213–218,

243, 248, 328–330, 378
NSTableView, 370, 373
NSTask, 252–253
NSTextField, 180, 381
NSTextView, 381
NSThread, 253, 256–257, 275–282
NSTimer, 252, 268–275
NSUserDefaults, 240–241, 243
NSView, 94, 179, 180, 181, 189, 196, 205,

284, 296, 302
NSXMLDocument, 276
NSXMLElement, 276, 282
NSXMLNode, 276
@optional, 102
PagedDoc, 297
parent, 26, 381
StockAccount, 154–158
VerySimpleClass, 91–92, 96
View, 27, 152, 159–160

Cocoa
Objects Library, 129
printing user data with, 283–286
views, 179–187

Cocoa Application, 42
Cocoa Builder (website), 380

390 Mac Application Development For Dummies

Cocoa Dev (website), 380
Cocoa Dev Central (website), 380
Cocoa frameworks

about, 109–112
defined, 1
groups, 130

Cocoa Is My Girlfriend (blog), 381
Cocoa.framework framework, 110
code

editing, 19
interactiveness of, 141–142

code samples
adding NSLog messages to displays, 330
adding references to BasicPrintView

objects, 291–292
adding sliders to change text

transparency, 142
App Delegate header file, 288–289
collapsing two retrieval methods into one

method, 326
ColorizedView.h header file, 268–269
ColorizedView.m source module,

269–270
CoreDataDiabeticPadDoc.h with

an NSArrayControllerObject
reference, 234

CoreDataDiabeticPadDoc.m using
its NSArrayControllerObject
reference, 234–236

creating red borders around custom
view, 191

data class header file, 27
data class implementation, 28
difference between methods with and

without locks, 259
document supports multi-page printing

with virtual view, 300–302
DPData.h file, 213
DPData.m, 214–216
drawing family car with Cocoa, 192–194
ForDummiesImagesAppDelegate.h

header file, 278
format of NSLog function, 328
functional menu methods, 137
header file for

AboutStockMarketerController
class, 351

header file for view to be printed, 298

header file
OneTimeEventAppDelegate.h, 263

IBAction method signature, 78
implementating code for

StockAccount.m, 157–158
implementating scheduling of single

events, 264–265
implementation for view to be printed,

298–300
implementating AnimationView,

203–204
implementating App Delegate code,

289
implementating of code to download

images from Dummies website,
279–281

implementating
PreferencesController, 169–170

implementating showPreferences:
method to display Preferences
window, 172–173

implementating VerySimpleClass,
91–92

implementing code for
ColorizeTimerAppDelegate,
273–275

implementing code to modify text
transparency, 142–143

implementing print code, 292–293
LeakerAppDelegate header file, 360, 361
LongDurationActivity class uses

NSThread, 257
maintaining reference to

PreferencesController, 171–172
Matrix-multiplication method, 30
member variables to reference labels, 140
method to be called by menu items, 136
methods and member variables of

AnimationView class, 202
methods exercising retain, release,

and autorelease, 106
missing methods, 325
modifications for SimpleCocoaWindowA

ppAppDelegate.h, 65
modifications for SimpleCocoaWindowA

ppAppDelegate.m, 66
modifications to

StockMarketerAppDelegate header
file, 352–353

391 Index

modified, warning-free calculateTip:
method, 324

modified source module SimpleCocoaWi
ndowAppAppDelegate.m, 317

modifying displayText method to
receive parameters, 266

modifying scheduleEvent method to
pass parameters to displayText, 267

MyDocument method, 246–250
newObject: method, 237–238
non-uniform two-dimensional shapes

drawn as series of points, 195–196
NSNotification, 33
NSNotificationCenter, 33
Objective-C class header file, 89
PreferencesController object

manages an NSColorWell, 168
responding to menu items by changing

text color, 140–141
SimpleCocoaWindowAppApp

Delegate.h, 316
source code for app delegate, 166
source code for Controller, 163–165
source model for

AboutStockMarketerController
class, 351–352

StockAccountController.h, 162
StockAccount.h, 156–157
StockMarketerAppDelegate.h file’s

contents, 165–166
storing and retrieving optional

preferences of DiabeticPad users,
241–242

updated
ColorizeTimerAppDelegate.h,
272–273

updated StockMarketerAppDelegate
source module, 353–354

using preprocessors macros to
conditionally include/exclude code, 333

colon (:), 99
ColorizedView.h header file, 268–269
ColorizedView.m source module,

269–270
ColorizeTimerAppDelegate, 272–275
colors, 184–187
Comma Separated Values (CSV), 245
comment lines, 29
Company Identifier, 44

compiler directive, 90
components

Apple, 178–179
Interface Builder, 121–146

conditional breakpoints, 326–328
Connections inspector (Inspector pane),

124
Console pane (Xcode Debugger), 312
Controller class, 152, 160–167, 371
Controls (Cocoa Framework), 130
convenience colors, 184–185
convenience methods, 98, 107
conventions, explained, 2
Core Animation, 201–205
Core Data, 221–239
CoreAudio framework, 111
CoreData Editor, 40
CoreDataDiabeticalPad.h, 234
CoreDataDiabeticalPad.m, 234–236
CoreData.framework framework, 110
creating

About panel, 347–354
CoreDataDiabeticPad user interface,

227–236
custom views, 187–189
data classes, 211–217
delegate objects, 104–105
DiabeticPad logbook record, 225–226
Macintosh Applications with Xcode,

41–61
objects, 97–98
projects, 42–49
red borders around custom view, 191
stub methods, 137–139
tip calculators, 63–82
View component in apps, 159–160

CSV (Comma Separated Values), 245
Custom Objects (Objects Library), 129
custom views, 187–189
CustomMenus app, 372

• D •
dash (-), 29
data (user), maintaining

analyzing data, 209–210
storing data, 210–239
user preferences, 239–250

392 Mac Application Development For Dummies

data (user), printing
about, 283
with Cocoa, 283–286
printing pages, 290–293
printing straight to PDF, 294–295
printing with multiple pages, 295–302
setting up pages, 286–290

data classes, 27, 28, 211–217
Data Views (Cocoa Framework), 130
database, 222
dataWithContentsOfFile: method, 107
deadlocks, 260
dealloc method, 93, 95, 107, 108
Debug area (Xcode Debugger), 310–312
Debug bar (Xcode Debugger), 311–312
Debug navigator, 55
debugging

about, 25, 31, 305–306
apps, 19–20
errors, 306–309
Macintosh Logger, 328–333
NSLog, 331
tracking bugs, 333–336
Xcode’s Debugger, 309–328

declaration, 88
defaultCenter method, 32
#define statements, 90
definition, 88
delegate objects, creating, 104–105
delegates, 102–105
deleting

breakpoints in Xcode Debugger, 313–318
NSLog statements, 331–333

description method, 330
Destination setting, 53
development. See also specific topics

challenges, 33–36
tips, 377–386

device-dependent colors, 185–187
device-independent (calibrated) color, 185
Devices organizer, 60
DictionaryController app, 374
dirtyRect parameter, 190
disabling breakpoints in Xcode Debugger,

313–318
DiscRecorder (Objects Library), 129
displaying warning messages, 308–309
displayText method, 266, 267

Dock, 67
Dock pane (Interface Builder), 122–123
documentation (Apple), 379–380
Documentation organizer, 61
document-based apps, 118
document-based Cocoa Application, 42
Domain of the Bored (blog), 381
downloadImages: method, 282
downloading software, 21–24
DPData class, 214, 216–218, 219, 220, 248
DPData.h file, 213
drawers, 149
drawing

about, 189–191
advanced views, 189–201
with Beziér curves, 191–196
colors, 184–187
images, 199–201
points, 182–183
rectangles, 183–184
on the screen, 181–187
text, 196–199

drawInRect: method, 200–201
drawRect: method, 94, 181, 186–187,

189–194, 200–201, 285, 293
DVDPlayback framework, 111
dynamic language, 25
dynamic typing, 317–318

• E •
Edit menu, 133
editing

app menus, 134–135
code, 19
visual interface, 19

editor area (Xcode project window), 50,
56–59

Editor Canvas pane (Interface Builder), 123
Editor Selector, 51–52
enabling

menu items, 135–136
Page Setup menu, 286–288

encodeWithCoder method, 214
@end statement, 30, 90, 93
entity, 225
errors, 306–309
events, scheduling with threads, 260–282

393 Index

executing
apps, 19–20
scheduled one-time events, 261–267

exporting data, 244–248

• F •
fields, 222
File Coordination, 34
file extension, 344
file icons, 337–338, 343–347
File inspector (Inspector pane), 124
File menu, 132
files. See also specific files
DPData.h, 213
header, 88
Project Location of, 58
source, 27, 56, 88
storing data in, 218–222
XIB, 121–122, 170–171

fill method, 192
fillRect: method, 191
Finder app, 14
‘fire and forget’ operation, 253
ForDummiesImages app, 276–282
ForDummiesImagesAppDelegate.h

header file, 278
Format menu, 133
Forward button, 58
Foundation.framework framework, 110
4:3, 17–18
fraction: parameter, 201
Framework (Objects Library), 129
frameworks, Cocoa

about, 1, 109–112, 130
AddressBook, 111
AppKit.framework, 110
of apps, 56
CalendarStore, 111
Cocoa.framework, 110
CoreAudio, 111
CoreData.framework, 110
defined, 1
DVDPlayback, 111
Foundation.framework, 110
IOKit, 111
OpenGL, 112
WebKit, 112

fromRect: parameter, 200–201

full screen apps, 34
functions. See specific functions

• G •
GarageBand (Apple), 23
garbage collection, 105
gdb built-in debugger, 305. See also

debugging
gestures, 16, 384
getStringValue method, 107
getter methods, 92, 93, 97
GIMP (GNU Image Manipulation

Program), 23
Goldstein, Neal (author)

iPhone Application Development For
Dummies, 3rd Edition, 60

Objective-C For Dummies, 3, 26
graphical user interface (GUI), 11–12, 14
graphics pen, 186
Graphing View, 179

• H •
hardware operations, 254
header, 27
header files, 88. See also specific header

files
heavy calculation operations, 256
Help menu, 133
HUD window, 149
Human Interface guidelines (Apple), 128

• I •
IBAction method, 77, 78, 120, 135
IBOutlet qualifier, 77, 120
iCal app, 12
iCloud, 24
IconCollection app, 373
icons

about, 14
application, 337–343
file, 337–338, 343–347
requirements for App Store, 339

icons (book), explained, 5
IDE (integrated development

environment), 39
identifying common bug solutions, 334–336

394 Mac Application Development For Dummies

Identity Inspector (Inspector pane), 124
image editors, 23
Image Kit (Objects Library), 129
images, drawing, 199–201
ImageTransition app, 374–375
iMovie, 24
@implementation statement, 30, 93
implementing

an array controller class in Xcode, 236–239
code for ColorizeTimerAppDelegate,

273–275
code for scheduling single events, 264–265
code for StockAccount.m, 157–158
code for view to be printed, 298–300
code samples of AnimationView, 203–204
code samples of App Delegate code, 289
code samples of

PreferencesController, 169–170
code samples to download images from

Dummies website, 279–281
code to modify text transparency, 142–143
Controller in apps, 160–167
print code, 292–293
showPreferences: method to display

Preferences window, 172–173
VerySimpleClass, 91–92

#import statements, 29, 47–48, 90, 92
importing data, 248–250
inactive window, 149
#include statements, 29, 90
incrementWithLock method, 258, 259
incrementWithoutLock method, 258, 259
initialize method, 30, 32, 93,

94, 242, 335
initWithCoder method, 214
Inspector pane (Interface Builder),

123, 124–125
inspectors, 130–132
installing Xcode, 21
instance objects, 67, 93
Instruments

about, 23
tracking down memory leaks with,

356–359
integers, 186
integrated development environment

(IDE), 39

interactiveness of code, 141–142
Interface Builder

about, 23, 40, 117–118
app category choices, 118–120
components, 121–146
guidelines, 382–383
inspectors, 130–132
modifying menus, 132–143
Object Library, 125–130
panes, 122–123
sizing windows, 143–146

@interface statement, 29, 90
IOKit framework, 111
iPhone Application Development For

Dummies, 3rd Edition (Goldstein), 60
Issue navigator, 55
iTunes app, 12

• K •
key window, 150
keyboard, 15, 16–17
keyboard shortcuts, 383–384
key-combinations, 17
knowsPageRange: (NSRangePointer)

inRange method, 296
Kowalski, Karl (author)

BlackBerry Application Development For
Dummies, 362

contact information, 5

• L •
language, 24
Language Translator Dashboard

widget, 363
Layout Views (Cocoa Framework), 130
LeakerAppDelegate header file, 360–361
Library pane (Interface Builder), 123
life cycle (app), 11, 112–114
LLDB debugger, 305. See also debugging
LLVM (Low Level Virtual Machine), 40
local variables, 312, 355
localizing apps, 362–366
Log navigator, 55
LongDurationActivity, 256–257
Low Level Virtual Machine (LLVM), 40

395 Index

• M •
Mac App Store review guidelines,

accessing, 37
Mac apps. See applications (apps)
Mac OS developers, becoming, 38
machine architecture, 374–375
Macintosh (Apple), buying, 19–21
Macintosh App Build Tool, 40
Macintosh Developer downloads, 41
Macintosh Logger, 328–333
MacTech (website), 380
Magic Mouse, 34
Magic Trackpad, 16, 34
Mail app, 12
main function, 94, 112–114
main window, 150
maintaining

information with Core Data, 221
memory, 105–109
references to PreferencesController,

171–172
user data, 209–250
user preferences, 239–250

managed object context, 232–233
managing

information with Core Data, 221
memory, 105–109
references to PreferencesController,

171–172
user data, 209–250
user preferences, 239–250

Matrix object, 29
Matrix-multiplication method, 30
m_count variable, 258–259
member variables

about, 26, 88–90, 95–96
NSInteger, 96, 290
NSWindow’s_contentView, 180
pointers, 30, 96
protection of, 96–97

memory
of apps, 354–362
managing, 105–109
tracking, 378–379

memory addresses, 55
memory leaks, 23
menubar (app), 67

menus
app, 134–135
Edit, 133
editing, 134–135
enabling items, 135–136
File, 132
Format, 133
Help, 133
modifying, 132–143
Page Setup, 286–288
Related Items, 58, 59
Scheme drop-down, 51
Symbol drop-down, 58, 59
UISimple, 132
View, 133
Window, 133

method signature, 77
methods

about, 29, 90, 98–100
alloc, 97, 100, 105, 355, 362
autorelease, 106, 108, 362, 378
bezierPathWithOvalInRect:, 192
bezierPathWithRect:, 192
bezierPathWithRoundedRect:, 192
calculateTip:, 74, 78, 324
calling, 98–99
class convenience, 98
collapsing two to one, 326
convenience, 98
dataWithContentsOfFile:, 107
dealloc, 93, 95, 107, 108
defaultCenter, 32
defined, 26
description, 330
displayText, 266, 267
downloadImages:, 282
drawInRect:, 200–201
drawRect:, 94, 181, 186–187, 189–194,

200–201, 285, 293
encodeWithCoder, 214
fill, 192
fillRect:, 191
getStringValue, 107
getter, 92, 93, 97
IBAction, 77, 78, 120, 135
incrementWithLock, 258, 259
incrementWithoutLock, 258, 259
initialize, 30, 32, 93, 94, 242, 335

396 Mac Application Development For Dummies

methods (continued)
initWithCoder, 214
knowsPageRange: (NSRangePointer)

inRange, 296
locks, 259
methodToCallOnNotify, 32
MyDocument, 246–250
newObject:, 237–238
Objective-C programming, 98–100
overriding, 94
pageSetup:, 289–290
printOperationWithSettings:

error:, 297
protocol, 102
rectForPage: (init)

inPageNumber, 296
release, 106, 107, 108, 362, 378
resetLabel, 266
retain, 105, 106, 107, 108, 355, 362, 378
runModalWithPrintInfo:, 290
scheduleEvent, 265, 267
setNeedsDisplay:, 190
setString:, 381
setStringValue:, 107, 381
setter, 92, 93, 97
showPreferences:, 172–173
storeUserPreferences, 242
stringWithContentsOfFile:, 98
stringWithContentsOfUrl:, 98
stringWithFormat:, 98
stringWithString:, 106, 107
stroke, 192
strokeLineFromPoint:, 191
strokeRect:, 190, 191
stub, 137–139
windowDidLoad:, 174
windowWillClose:, 174

methodToCallOnNotify method, 32
microphone, 15
minus (-), 100
Model class, 152, 154–158
Model-View-Controller (MVC) pattern

about, 25, 147, 151
object types, 152
using bindings to support, 124
using in apps, 154–167

modifying
displayText method, 266
menus, 132–143
scheduleEvent method, 267

Movie View, 179
Mozy (website), 24
multiple screens, 17–18
multi-touch gestures, 16
Multi-Touch Gestures and Animations, 34
MVC pattern. See Model-View-Controller

(MVC) pattern
MyDocument method, 246–250
MySQL, 336

• N •
named color, 185
navigating Debug area in Xcode Debugger,

310–312
network operations, 255
newObject: method, 237–238
Nokia, 24
Non-uniform Geometric Shapes, 179
Note class, 27, 29, 30
notifications, 174–176
NotifyObserver, 32
NSAnimationDelegate object, 103
NSApplication object, 94
NSApplicationDelegate object, 103
NSApplicationMain function, 94, 113
NSArray class, 218, 219, 243
NSArrayController object, 124,

234–239, 373
NSBezierPath class, 190–196
NSBox class, 180
NSButton class, 180
NSCancelButton class, 290
NSCheckBox class, 180
NSCoder object, 218, 219
NSCoding protocol, 213–214, 218, 243
NSCollectionView, 373
NSColor class, 184–187, 190
NSColorWell class, 168
NSCompositeCopy class, 201
NSControl class, 180, 381
NSData object, 107, 220, 243

397 Index

NSDate object, 36, 217, 243
NSDateFormatter object, 36
NSDictionary objects, 198, 243, 374
NSDictionaryController object, 374
NSDrawer class, 149
NSImage class, 199–201
NSImageDelegate object, 103
NSImageView, 205
NSInteger member variable, 96, 290
NSKeyedArchiver class, 219, 220
NSKeyedUnarchiver class, 220
NSLog function, 328–333
NSMutableArray, 217
NSMutableData object, 247–248
NSMutableDictionary parameter, 198,

373, 374
NSNotification class, 33
NSNotificationCenter class, 32, 33
NSNumber objects, 243
NSObject class, 29, 30, 88, 90, 97, 100, 212,

267, 381
NSOKButton, 290
NSPageLayout class, 284
NSPanel class, 149
NSPoint object, 182–183, 197
NSPrintInfo class, 284, 285, 289–290
NSPrintOperation class, 284, 285,

290–293, 297
NSPrintPanel class, 284
NSRect structure, 183–184, 190
NSSize structure, 183–184
NSSortDescriptor, 373
NSStream objects, 373
NSString class, 96, 98, 106–108, 197,

213–218, 243, 248, 328–330, 378
NSTableView class, 370, 373
NSTableViewBinding app, 373
NSTableViewDelegate object, 103
NSTabView, 180
NSTask class, 252–253
NSText, 381
NSTextField class, 180, 381
NSTextView subclass, 381
NSThread class, 253, 256–257, 275–282
NSTimer class, 252, 268–275
NSToolbar, 371

NSUInteger, 217
NSURL objects, 243
NSUserDefaults class, 240–241, 243
NSView class, 94, 179, 180, 181, 189, 196,

205, 284, 296, 302
NSWindow object, 148–151, 179, 180
NSWindowDelegate object, 103
NSWindow’s_contentView member

variable, 180
NSXMLDocument class, 276
NSXMLElement class, 276, 282
NSXMLNode class, 276
NSZeroRect parameter, 200–201

• O •
Object Library, 125–130
Objective-C

about, 24
classes, 88–89
code files, 27–31
defined, 1
memory functions, 378

Objective-C For Dummies (Goldstein), 3, 26
Objective-C programming

about, 25, 87–93
creating objects, 97–98
delegates, 102–105
for Mac apps, 26–31
managing memory, 105–109
member variables, 26, 30, 88–90, 95–97
methods, 98–100
objects, 93–95
protocols, 100–102

object-oriented language, 25
object-oriented programming, 26
objects. See also classes

about, 79, 93–95
AboutStockMarketController, 355
BasicPrintView, 290–293
creating, 97–98
instance, 67, 93
Matrix, 29
NSAnimationDelegate, 103
NSApplication, 94

398 Mac Application Development For Dummies

NSApplicationDelegate, 103
NSCoder, 218, 219
NSData, 107, 220, 243
NSDate, 36, 217, 243
NSDateFormatter, 36
NSDictionary, 198, 243, 374
NSDictionaryController, 374
NSImageDelegate, 103
NSMutableData, 247–248
NSNumber, 243
NSPoint, 182–183, 197
NSStream, 373
NSTableViewDelegate, 103
NSURL, 243
NSWindow, 148–151, 179, 180
NSWindowDelegate, 103
Objective-C programming, 93–95
PreferencesController, 168–172, 354
proxy, 67
super, 94, 95

Objects & Controllers (Cocoa Framework),
130

Observer, 32–33
off-screen, 18
OneTimeEventAppDelegate.h, 263
online resources, 380–381
OpenGL framework, 112
opening windows, 148–151
operation: parameter, 200–201
@optional class, 102
Organizer button, 52
Organizer window, 59–61
OS X version, targeting, 34–35
OSAKit (Objects Library), 129
Overlay Scrollbars, 34
overriding methods, 94

• P •
Package, 80
Page Setup menu, enabling, 286–288
PagedDoc class, 297
pages

printing, 290–293, 295–302
setting up to print, 286–290

pageSetup: method, 289–290
panel, 149
parameters
dirtyRect, 190
fraction:, 201
fromRect:, 200–201
NSMutableDictionary, 198, 373, 374
NSZeroRect, 200–201
operation:, 200–201
withAttributes:, 198
Workbenchview, 189, 190

parent class, 26, 381
parent view, 180
parentheses (), 29
path, 191
PD (pointing device), 14, 15–16
PDF, printing straight to, 294–295
PDFKit (Objects Library), 129
Photoshop Elements (Adobe), 23
PictureSharing app, 373
plus (+), 100
pointers, 30, 96, 94
pointing device (PD), 14, 15–16
points, 182–183
preferences

defined, 83
setting Xcode to preferred, 83–86

Preferences window, 167–176
PreferencesController object,

168–172, 354
prefix header, 47
primitive data, 79
printing user data

about, 283
with Cocoa, 283–286
printing pages, 290–293
printing straight to PDF, 294–295
printing with multiple pages, 295–302
setting up pages, 286–290

printOperationWithSettings:erro
r: method, 297

@private statement, 90, 97
Privilege Separation, 35
procedural programming, 26
products of apps, 56

399 Index

programming. See also Objective-C
programming

defensively, 35–36
procedural, 26
skills, 25–33

Project Location, 58
project navigator

about, 55
Xcode project window, 50

Projects organizer, 60
properties, 92
@property statement, 90, 92, 217
@protected statement, 97
protecting member variables, 96–97
protocols

about, 100–102
methods, 102
NSCoding, 213–214, 218, 243
Objective-C programming, 100–102

proxy objects, 67
pthreads, 253
@public statement, 97

• Q •
QTKit (Objects Library), 129
Quartz Composer (Objects Library), 129
Quartz graphics engine, 181–187
Quick Help (Inspector pane), 124

• R •
race condition, 258
record, 222
rectangles, 183–184
rectForPage: (int) inPageNumber

method, 296
Related Items menu, 58, 59
release method, 106, 107, 108, 362, 378
removing

breakpoints in Xcode Debugger, 313–318
NSLog statements, 331–333

repeated operations, 255
Repositories organizer, 60
requirements for Development

Macintosh, 20
resetLabel method, 266

Resume, 34
retain count, 105
retain method, 105, 107, 108,

355, 362, 378
retrieving data, 218–222
reusing class files, 383
reverse domain name, 44
RGB value, 186
RGBA value, 186
Run button, 50
runModalWithPrintInfo: method, 290

• S •
Safari app, 12, 13
sample apps, 369–375
Sandboxing, 35
scalar values, 31
scheduled operations, 255
scheduleEvent method, 265, 267
scheduling events with threads, 260–282
scheme, 51
Scheme drop-down menu, 51
scheme settings, 52–53
screens

drawing on the, 181–187
multiple, 17–18

Search navigator, 55
selector, 100
selector buttons, 55–56
self, 94
semicolon (;), 29
sending a message, 26, 98–99
setNeedsDisplay: method, 190
setString: method, 381
setStringValue: method, 107, 381
setter methods, 92, 93, 97
setting(s)

Architecture, 375
Base SDK, 375
breakpoints in Xcode Debugger, 313–318
Build Configuration, 53
conditional breakpoints, 326–328
Destination, 53
scheme, 52–53
Valid Architectures, 375
Xcode to preferred preferences,

83–86, 385

400 Mac Application Development For Dummies

setup
pages to print, 286–290
scheduled one-time events, 261–267

Shark, 23
shortcuts (keyboard), 383–384
showPreferences: method, 172–173
SimpleCocoaApp app, 372
SimpleCocoaWindowAppApp

Delegate.h, 65, 316
SimpleCocoaWindowAppApp

Delegate.m, 66, 317
single window apps, 118
Size inspector (Inspector pane),

124, 144–146, 287
sizing windows, 143–146
skills programming, 25–33
sliders, 142
slowing down apps, 221–222
software

backup, 24
design patterns, 25, 151
downloading, 21–24
patterns, 32–33

source code control, 51–52
Source Code Editor, 40
source files

of apps, 56
defined, 27, 88

Source-Level Debugger, 40
SQLite format, 239
square brackets ([]), 330
Squiggles app, 374
src attribute, 282
Standard editor, 51
statements
@catch, 282
#define, 90
@end, 30, 90, 93
@implementation, 30, 93
#import, 29, 47–48, 90, 92
#include, 29, 90
@interface, 29, 90
@private, 90, 97
@property, 90, 92, 217
@protected, 97
@public, 97

@synthesize, 92, 217
@try, 282

StockAccount class, 154–158
StockAccountController.h, 162
StockAccount.h, 156–157
StockAccount.m, 157–158
StockMarketer, 154–158
StockMarketerAppDelegate header file,

165–166, 352–354
Stop button, 51
storeUserPreferences method, 242
storing

data in files, 218–222
user data, 210–239

stringWithContentsOfFile:
method, 98

stringWithContentsOfUrl: method, 98
stringWithFormat: method, 98
stringWithString: method, 106, 107
stroke method, 192
strokeLineFromPoint: method, 191
strokeRect: method, 190, 191
structures. See specific structures
stub methods, 137–139
super object, 94, 95
super.self, 94
swipes, 384
Symbol drop-down menu, 58, 59
Symbol navigator, 55
symbols, 58
synchronizing threads, 258–260
@synthesize statement, 92, 217

• T •
table, 222
taps, 384
templates (apps), 118
text

drawing, 196–199
transparency, 142

text fields, 14
TextEdit app (Apple), 150
text-entry fields, 14
textured window, 149

401 Index

TFHpple, 282
Theocacao (blog), 381
this pointer, 94
threads

about, 252–253
rules for using, 256–260
scheduling events with, 260–282
synchronizing, 258–260
when to use, 254–256

three-finger swipe, 384
Time Machine, 24
tip calculators, 63–82
toolbar, 50–53
ToolbarSample app, 371
tools

about, 11, 19
Apple Macintosh, 19–21
downloading software, 21–24
language, 24
Xcode, 22–23

tracking
bugs, 333–336
memory, 378–379

transparency, 142, 186
@try statement, 282
two-finger swipe, 384
two-finger tap, 384

• U •
UI components, 129
UISimple menu, 132
underscore (_), 95
updating apps, 385–386
user data, maintaining

analyzing data, 209–210
storing data, 210–239
user preferences, 239–250

user data, printing
about, 283
with Cocoa, 283–286
printing pages, 290–293
printing straight to PDF, 294–295
printing with multiple pages, 295–302
setting up pages, 286–290

user preferences, maintaining
about, 239–244
exporting data, 244–248
importing data, 248–250

users
configurations for, 17–18
interactions with Macs, 14–17

• V •
Valid Architectures setting, 375
Variables pane (Xcode Debugger), 312
Version editor, 51
Versions, 34
VerySimpleClass class, 91–92, 96
video editor, 23
View class, 27, 152, 159–160
View Effects inspector (Inspector pane),

125
View menu, 133
viewing

code lines that created leaks, 359–362
intentional errors in Xcode Debugger,

318–320
items in Objects Library, 125–126

views
animating, 201–205
creating custom, 187–189
defined, 147
parent, 180

views, advanced
about, 177–178
animating views, 201–205
Apple’s component collection, 178–179
Cocoa views, 179–187
creating custom views, 187–189
drawing, 189–201

visual interface, 19

• W •
warning messages, 308–309
WebKit (Objects Library), 129
WebKit framework, 112

402 Mac Application Development For Dummies

websites
Adobe Photoshop Elements, 23
Amazon, 24
Apple Developer Forum, 380
Apple documentation, 380
Apple sample apps, 370
Apple’s Human Interface guidelines, 128
Bugzilla, 334, 336
Cocoa Builder, 380
Cocoa Dev, 380
Cocoa Dev Central, 380
Cocoa Is My Girlfriend (blog), 381
Domain of the Bored (blog), 381
For Dummies series, 275–276
GIMP, 23
Macintosh Developer downloads, 41
MacTech, 380
Mozy, 24
MySQL, 336
Nokia, 24
Theocacao (blog), 381
Worldwide Developer Conference

(WWDC), 386
widescreen, 17–18
Window menu, 133
window-based Cocoa Application, 42
windowDidLoad: method, 174
windows

about, 149
active, 149
adding items to app, 126–129
drawers, 149
HUD, 149
inactive, 149
key, 150
main, 150
opening, 148–151
Organizer, 59–61
Preferences, 167–176
sizing, 143–146
state of, 149–151
textured, 149

Windows & Menus (Cocoa Framework),
130

windowWillClose: method, 174
withAttributes: parameter, 198
WorkbenchView parameter, 189, 190
Worldwide Developer Conference

(WWDC), 386
WWDC (Apple Worldwide Developer

Conference), 386

• X •
Xcode

about, 39–41
creating Macintosh applications with,

41–61
Debugger, 309–328
defined, 23
implementing an array controller class in,

236–239
installing, 21
setting to preferred preferences,

83–86, 385
tools, 22–23
visual details, 49–61

XIB file, 121–122, 170–171
XML format, 239
XPath technology, 282
xRadius, 192

• Y •
yRadius, 192

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/macapplicationdevelopment

Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

http://www.Dummies.com/go/mobile
http://www.Dummies.com/go/iphone/apps

	Mac® Application Development For Dummies®
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Getting Started on Macintosh Apps
	Chapter 1: Gathering What You Need to Develop Mac Apps
	Why Develop Macintosh Apps?
	Discovering Apps Like a User
	Tooling Up
	Using Your Programming Skills
	Understanding Macintosh Application Development Challenges
	Stepping into a Brave, New World of Mac Apps

	Chapter 2: Mac OS X Coding with Xcode
	Getting Familiar with Xcode
	Creating a Macintosh Application with Xcode

	Chapter 3: Giving Your App Something to Do
	Creating a Tip Calculator
	Setting Xcode to Your Preferred Preferences

	Chapter 4: Objective-C and Cocoa Applications
	Objective-C
	Using Cocoa Frameworks
	Understanding the Application Life Cycle

	Part II: A View to an App
	Chapter 5: Using Interface Builder to Lay Out Your Views
	Going with the Flow
	Touring Interface Builder

	Chapter 6: Controlling Your Windows and Views
	Opening Windows
	Introducing MVC
	Using MVC in Your App
	Adding a Preferences Window

	Chapter 7: Drawing Advanced Views
	Reviewing Apple’s Component Collection
	Understanding Cocoa’s Views
	Creating a Custom View
	Drawing
	Animating Views

	Part III: Focus on the User
	Chapter 8: Maintaining Your Users’ Data
	Analyzing the Data
	Storing the Data
	Maintaining User Preferences

	Chapter 9: Working in the Background
	Understanding Basic Threads
	Using Threads to Schedule Events

	Chapter 10: Printing Your User’s Data
	Printing with Cocoa
	Setting up a Page
	Printing a Page
	Printing Straight to PDF
	Printing with Multiple Pages

	Part IV: Polishing and Supporting Your App
	Chapter 11: Debugging Your App
	Understanding Where Errors Happen
	Using Xcode’s Debugger
	Using the Macintosh Logger
	Keeping Track of Bugs

	Chapter 12: Putting On the Finishing Touches
	Working with Application and File Icons
	Creating Your Own About Panel
	Tightening Your App’s Memory
	Localizing Your App

	Part V: The Part of Tens
	Chapter 13: Ten Useful Apple Sample Apps
	ToolbarSample
	CustomMenus
	ButtonMadness
	SimpleCocoaApp
	NSTableViewBinding
	IconCollection
	PictureSharing
	Squiggles
	DictionaryController
	ImageTransition

	Chapter 14: Ten Macintosh Development Tips
	Keep Track of Memory
	Read Apple’s Documentation
	Use Online Resources
	Always Remember the Parent Class
	Look Beyond the Current Problem
	Follow Interface Builder’s Guidelines
	Reduce, Reuse, Recycle
	Use Keyboard Shortcuts
	Set Xcode to Your Preferences
	Stay Up to Date

	Index

