

Magento	2	Developer’s	Guide

Table	of	Contents

Magento	2	Developer’s	Guide

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Understanding	the	Platform	Architecture

The	technology	stack

The	architectural	layers

The	top-level	filesystem	structure

The	module	filesystem	structure

Summary

2.	Managing	the	Environment

Setting	up	a	development	environment

VirtualBox

Vagrant

Vagrant	project

Provisioning	PHP

Provisioning	MySQL

Provisioning	Apache

Provisioning	Magento	installation

Setting	up	a	production	environment

Introduction	to	Amazon	Web	Services

Setting	up	access	for	S3	usage

Creating	IAM	users

Creating	IAM	groups

Setting	up	S3	for	database	and	media	files	backup

Bash	script	for	automated	EC2	setup

Setting	up	EC2

Setting	up	Elastic	IP	and	DNS

Summary

3.	Programming	Concepts	and	Conventions

Composer

Service	contracts

Code	generation

The	var	directory

Coding	standards

Summary

4.	Models	and	Collections

Creating	a	miniature	module

Creating	a	simple	model

Creating	an	EAV	model

Understanding	the	flow	of	schema	and	data	scripts

Creating	an	install	schema	script	(InstallSchema.php)

Creating	an	upgrade	schema	script	(UpgradeSchema.php)

Creating	an	install	data	script	(InstallData.php)

Creating	an	upgrade	data	script	(UpgradeData.php)

Entity	CRUD	actions

Creating	new	entities

Reading	existing	entities

Updating	existing	entities

Deleting	existing	entities

Managing	collections

Collection	filters

Summary

5.	Using	the	Dependency	Injection

The	object	manager

Dependency	injection

Configuring	class	preferences

Using	virtual	types

Summary

6.	Plugins

Creating	a	plugin

Using	the	before	listener

Using	the	after	listener

Using	the	around	listener

The	plugin	sort	order

Summary

7.	Backend	Development

Cron	jobs

Notification	messages

Session	and	cookies

Logging

The	profiler

Events	and	observers

Cache(s)

Widgets

Custom	variables

i18n

Indexer(s)

Summary

8.	Frontend	Development

Rendering	flow

View	elements

Ui	components

Containers

Blocks

Block	architecture	and	life	cycle

Templates

Layouts

Themes

Creating	a	new	theme

JavaScript

Creating	a	custom	JS	component

CSS

Summary

9.	The	Web	API

User	types

Authentication	methods

REST	versus	SOAP

Hands-on	with	token-based	authentication

Hands-on	with	OAuth-based	authentication

OAuth-based	Web	API	calls

Hands-on	with	session-based	authentication

Creating	custom	Web	APIs

API	call	examples

The	getById	service	method	call	examples

The	getList	service	method	call	examples

The	save	(as	new)	service	method	call	examples

The	save	(as	update)	service	method	call	examples

The	deleteById	service	method	call	examples

Search	Criteria	Interface	for	list	filtering

Summary

10.	The	Major	Functional	Areas

CMS	management

Managing	blocks	manually

Managing	blocks	via	code

Managing	blocks	via	API

Managing	pages	manually

Managing	pages	via	code

Managing	pages	via	API

Catalog	management

Managing	categories	manually

Managing	categories	via	code

Managing	categories	via	API

Managing	products	manually

Managing	products	via	code

Managing	products	via	API

Customer	management

Managing	customers	manually

Managing	customers	via	code

Managing	customers	via	an	API

Managing	customer	address	via	code

Managing	customers	address	via	an	API

Products	and	customers	import

The	custom	product	types

Custom	offline	shipping	methods

Custom	offline	payment	methods

Summary

11.	Testing

Types	of	tests

Unit	testing

Integration	testing

Static	testing

Integrity	testing

Legacy	testing

Performance	testing

Functional	testing

Writing	a	simple	unit	test

Summary

12.	Building	a	Module	from	Scratch

Module	requirements

Registering	a	module

Creating	a	configuration	file	(config.xml)

Creating	e-mail	templates	(email_templates.xml)

Creating	a	system	configuration	file	(system.xml)

Creating	access	control	lists	(acl.xml)

Creating	an	installation	script	(InstallSchema.php)

Managing	entity	persistence	(model,	resource,	collection)

Building	a	frontend	interface

Creating	routes,	controllers,	and	layout	handles

Creating	blocks	and	templates

Handling	form	submissions

Building	a	backend	interface

Linking	the	access	control	list	and	menu

Creating	routes,	controllers,	and	layout	handles

Utilizing	the	grid	widget

Creating	a	grid	column	renderer

Creating	grid	column	options

Creating	controller	actions

Creating	unit	tests

Summary

Index

Magento	2	Developer’s	Guide

Magento	2	Developer’s	Guide
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1171215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-658-4

www.packtpub.com

http://www.packtpub.com

Credits
Author

Branko	Ajzele

Reviewer

Mitchell	Robles,	Jr

Commissioning	Editor

Neil	Alexander

Acquisition	Editor

Vinay	Argekar

Content	Development	Editor

Preeti	Singh

Technical	Editor

Gaurav	Suri

Copy	Editors

Vedangi	Narvekar

Jonathan	Todd

Project	Coordinator

Shweta	H.	Birwatkar

Proofreader

Safis	Editing

Indexer

Priya	Sane

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Branko	Ajzele	is	a	husband,	father	of	two,	son,	brother,	author,	and	a	software	developer.

He	has	a	degree	in	electrical	engineering.	A	lover	of	all	things	digital,	he	makes	a	living
from	software	development.	He	hopes	to	find	enough	quality	time	some	day	to	seriously
dive	into	hobby	electronics;	he	has	his	eye	on	Arduino	and	Raspberry	Pi.

He	has	years	of	hands-on	experience	with	full-time	software	development	and	team
management,	and	has	specializing	in	e-commerce	platforms.	He	has	been	working	with
Magento	since	2008;	he	has	been	knee-deep	in	it	since	its	very	first	beta	version.	Branko	is
regularly	in	touch	with	everything	related	to	PHP,	databases	(MySQL/MongoDB),
search/analytics	(Solr/Elasticsearch),	Node.js,	and	related	technologies.

He	has	a	strong	technical	knowledge	with	an	ability	to	communicate	those	technicalities
frequently	and	clearly	with	a	strong	direction.	He	feels	comfortable	proposing	alternatives
to	demands	which	he	feels	can	be	improved,	even	when	this	means	pulling	a	late	shift	to
meet	the	deadlines.

He	holds	several	respected	IT	certifications,	such	as	Zend	Certified	Engineer	(ZCE	PHP),
Magento	Certified	Developer	(MCD),	Magento	Certified	Developer	Plus	(MCD+),
Magento	Certified	Solution	Specialist	(MCSS),	and	JavaScript	Certified	Developer.

Instant	E-Commerce	with	Magento:	Build	a	Shop,	Packt	Publishing,	was	his	first
Magento-related	book	that	was	oriented	towards	Magento	newcomers.	After	writing	this
book,	he	wrote	Getting	Started	with	Magento	Extension	Development	for	developers.

Currently,	he	works	as	a	full-time	contractor	for	Lab	Lateral	Ltd,	an	award-winning	team
of	innovative	thinkers,	artists,	and	developers	who	specialize	in	customer-centric	websites,
digital	consultancy,	and	marketing.	He	is	the	Lead	Magento	Developer	and	Head	of	Lab’s
Croatia	office.

He	was	awarded	the	E-Commerce	Developer	of	the	Year	by	Digital	Entrepreneur	Awards
in	October	2014	for	his	excellent	knowledge	and	expertise	in	e-commerce	development.
His	work	is	second	to	none.	He	is	truly	dedicated	to	helping	the	Lab	Lateral	Ltd	team	and
his	fellow	developers	across	the	world.

About	the	Reviewer
Mitchell	Robles,	Jr,	is	a	solutions	architect	and	applications	engineer	who	has	worked	in
various	lead	roles	for	several	award-winning	digital	agencies	in	San	Diego,	CA,	USA.
Through	his	own	entrepreneurial	spirit,	he	founded	Mojo	Creative	&	Technical	Solutions
(for	more	information,	visit	http://www.mojomage.com/),	which	specializes	in	day-to-day
Magento	support	and	development	for	merchants,	agencies,	freelancers,	and	industry
partners.	As	a	certified	Magento	developer,	Mitchell	is	the	brainchild	and	lead	in
developing	several	must-have	Magento	extensions,	including	Mojo	Creative	&	Technical
Solutions’	Bundled	Mojo,	a	popular,	full-featured	Magento	extension	that	gives
administrators	total	control	over	how	they	display	and	sell	their	bundled	products.	When
he	is	not	in	the	digital	matrix,	Mitchell	enjoys	traveling	abroad,	exploring,	skateboarding,
scuba	diving,	and	tinkering	with	random	projects,	from	woodworking	to	3D	printing.

You	can	follow	Mitchell	on	the	Mojo	Creative	&	Technical	Solutions’	blog,	which	can	be
viewed	by	visiting	http://b.mojomage.com/.

http://www.mojomage.com/
http://b.mojomage.com/

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Building	Magento-powered	stores	can	be	a	challenging	task.	It	requires	a	great	range	of
technical	skills	that	are	related	to	the	PHP/JavaScript	programing	language,	development
and	production	environments,	and	numerous	Magento-specific	features.	This	book	will
provide	necessary	insights	into	the	building	blocks	of	Magento.

By	the	end	of	this	book,	you	should	be	familiar	with	configuration	files,	the	dependency
injection,	models,	collections,	blocks,	controllers,	events,	observers,	plugins,	cron	jobs,
shipping	methods,	payment	methods,	and	a	few	other	things.	All	of	these	should	form	a
solid	foundation	for	your	development	journey	later	on.

What	this	book	covers
Chapter	1,	Understanding	the	Platform	Architecture,	gives	a	high-level	overview	of	the
technology	stack,	architectural	layers,	top-level	system	structure,	and	individual	module
structure.

Chapter	2,	Managing	the	Environment,	gives	an	introduction	to	VirtualBox,	Vagrant,	and
Amazon	AWS	as	platforms	to	set	up	development	and	production	environments.	It	further
provides	hands-on	examples	to	set	up/script	Vagrant	and	Amazon	EC2	boxes.

Chapter	3,	Programing	Concepts	and	Conventions,	introduces	readers	to	a	few	seemingly
unrelated	but	important	parts	of	Magento,	such	as	composer,	service	contracts,	code
generation,	the	var	directory,	and	finally,	coding	standards.

Chapter	4,	Models	and	Collections,	takes	a	look	into	models,	resources,	collections,
schemas,	and	data	scripts.	It	also	shows	the	practical	CRUD	actions	that	are	applied	to	an
entity	alongside	filtering	collections.

Chapter	5,	Using	the	Dependency	Injection,	guides	readers	through	the	dependency
injection	mechanism.	It	explains	the	role	of	an	object	manager,	how	to	configure	class
preferences,	and	how	to	use	virtual	types.

Chapter	6,	Plugins,	gives	a	detailed	insight	into	the	powerful	new	concept	called	plugins.
It	shows	how	easy	it	is	to	extend,	or	add	to,	an	existing	functionality	using	the
before/after/around	listeners.

Chapter	7,	Backend	Development,	takes	readers	through	a	hands-on	approach	to	what	is
mostly	considered	backend-related	development	bits.	These	involve	cron	jobs,	notification
messages,	sessions,	cookies,	logging,	profiler,	events,	cache,	widgets,	and	so	on.

Chapter	8,	Frontend	Development,	uses	a	higher-level	approach	to	guide	the	reader
through	what	is	mostly	considered	frontend-related	development.	It	touches	on	rendering
the	flow,	view	elements,	blocks,	templates,	layouts,	themes,	CSS,	and	JavaScript	in
Magento.

Chapter	9,	The	Web	API,	takes	up	a	detailed	approach	to	the	powerful	Web	API	provided
by	Magento.	It	gives	hands-on	practical	examples	to	create	and	use	both	REST	and	SOAP,
either	through	the	PHP	cURL	library,	or	from	the	console.

Chapter	10,	The	Major	Functional	Areas,	adopts	a	high-level	approach	towards
introducing	readers	with	some	of	the	most	common	sections	of	Magento.	These	include
CMS,	catalog	and	customer	management,	and	products	and	customer	import.	It	even
shows	how	to	create	a	custom	product	type	and	a	shipping	and	payment	method.

Chapter	11,	Testing,	gives	an	overview	of	the	types	of	test	that	are	available	in	Magento.	It
further	shows	how	to	write	and	execute	a	custom	test.

Chapter	12,	Building	a	Module	from	Scratch,	shows	the	entire	process	of	developing	a
module,	which	uses	most	of	the	features	introduced	in	the	previous	chapters.	The	final
result	is	a	module	that	has	admin	and	storefront	interface,	an	admin	configuration	area,	e-

mail	templates,	installed	schema	scripts,	tests,	and	so	on.

What	you	need	for	this	book
In	order	to	successfully	run	all	the	examples	provided	in	this	book,	you	will	need	either
your	own	web	server	or	a	third-party	web	hosting	solution.	The	high-level	technology
stack	includes	PHP,	Apache/Nginx,	and	MySQL.	The	Magento	2	Community	Edition
platform	itself	comes	with	a	detailed	list	of	system	requirements	that	can	be	found	at
http://devdocs.magento.com/guides/v2.0/install-gde/system-requirements.html.	The	actual
environment	setup	is	explained	in	Chapter	2,	Managing	the	Environment.

http://devdocs.magento.com/guides/v2.0/install-gde/system-requirements.html

Who	this	book	is	for
This	book	is	intended	primarily	for	intermediate	to	professional	PHP	developers	who	are
interested	in	Magento	2	development.	For	backend	developers,	several	topics	are	covered
that	will	enable	you	to	modify	and	extend	your	Magento	store.	Frontend	developers	will
also	find	some	coverage	on	how	to	customize	the	look	of	a	site	in	the	frontend.

Given	the	massive	code	and	structure	changes,	Magento	version	2.x	can	be	described	as	a
platform	that	is	significantly	different	from	its	predecessor.	Keeping	this	in	mind,	this
book	will	neither	assume	nor	require	previous	knowledge	of	Magento	1.x.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
AbstractProductPlugin1	class	does	not	have	to	be	extended	from	another	class	for	the
plugin	to	work.”

A	block	of	code	is	set	as	follows:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:	

ObjectManager/etc/config.xsd">

				<type	name="Magento\Catalog\Block\Product\AbstractProduct">

								<plugin	name="foggyPlugin1"	

type="Foggyline\Plugged\Block\Catalog\Product\	AbstractProductPlugin1"	

disabled="false"	sortOrder="100"/>

								<plugin	name="foggyPlugin2"	

type="Foggyline\Plugged\Block\Catalog\Product\	AbstractProductPlugin2"	

disabled="false"	sortOrder="200"/>

								<plugin	name="foggyPlugin3"	

type="Foggyline\Plugged\Block\Catalog\Product\	AbstractProductPlugin3"	

disabled="false"	sortOrder="300"/>

				</type>

</config>

Any	command-line	input	or	output	is	written	as	follows:

php	bin/magento	setup:upgrade

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“In	the	Store	View
drop-down	field,	we	select	the	store	view	where	we	want	to	apply	the	theme.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Understanding	the	Platform
Architecture
Magento	is	a	powerful,	highly	scalable,	and	highly	customizable	e-commerce	platform
that	can	be	used	to	build	web	shops	and,	if	needed,	some	non-e-commerce	sites.	It
provides	a	large	number	of	e-commerce	features	out	of	the	box.

Features	such	as	product	inventory,	shopping	cart,	support	for	numerous	payment	and
shipment	methods,	promotion	rules,	content	management,	multiple	currencies,	multiple
languages,	multiple	websites,	and	so	on	make	it	a	great	choice	for	merchants.	On	the	other
hand,	developers	enjoy	the	full	set	of	merchant-relevant	features	plus	all	the	things	related
to	actual	development.	This	chapter	will	touch	upon	the	topic	of	robust	Web	API	support,
extensible	administration	interface,	modules,	theming,	embedded	testing	frameworks,	and
much	more.

In	this	chapter,	a	high-level	overview	of	Magento	is	provided	in	the	following	sections:

The	technology	stack
The	architectural	layers
The	top-level	filesystem	structure
The	module	filesystem	structure

The	technology	stack
Magento’s	highly	modular	structure	is	a	result	of	several	open	source	technologies
embedded	into	a	stack.	These	open	source	technologies	are	composed	of	the	following
components:

PHP:	PHP	is	a	server-side	scripting	language.	This	book	assumes	that	you	have
advanced	knowledge	of	the	object-oriented	aspects	of	PHP,	which	is	often	referred	to
as	PHP	OOP.
Coding	standards:	Magento	puts	a	lot	of	emphasis	on	coding	standards.	These
include	PSR-0	(the	autoloading	standard),	PSR-1	(the	basic	coding	standards),	PSR-
2	(the	coding	style	guide),	PSR-3,	and	PSR-4.
Composer:	Composer	is	a	dependency	management	package	for	PHP.	It	is	used	to
pull	in	all	the	vendor	library	requirements.
HTML:	HTML5	is	supported	out	of	the	box.
CSS:	Magento	supports	CSS3	via	its	in-built	LESS	CSS	preprocessor.
jQuery:	jQuery	is	a	mature	cross-platform	JavaScript	library	that	was	designed	to
simplify	the	DOM	manipulation.	It	is	one	of	the	most	popular	JavaScript	frameworks
today.
RequireJS:	RequireJS	is	a	JavaScript	file	and	module	loader.	Using	a	modular	script
loader	such	as	RequireJS	helps	improve	the	speed	and	quality	of	code.
Third-party	libraries:	Magento	comes	packed	with	lot	of	third-party	libraries,	with
the	most	notable	ones	being	Zend	Framework	and	Symfony.	It	is	worth	noting	that
Zend	Framework	comes	in	two	different	major	versions,	namely	version	1.x	and
version	2.x.	Magento	uses	both	of	these	versions	internally.
Apache	or	Nginx:	Both	Apache	and	Nginx	are	HTTP	servers.	Each	has	its	distinct
advantages	and	disadvantages.	It	would	be	unfair	to	say	one	is	better	than	another,	as
their	performance	widely	depends	on	the	entire	system’s	setup	and	usage.	Magento
works	with	Apache	2.2	and	2.4	and	Nginx	1.7.
MySQL:	MySQL	is	a	mature	and	widely	used	relational	database	management
system	(RDBMS)	that	uses	structured	query	language	(SQL).	There	are	both	free
community	versions	and	commercial	versions	of	MySQL.	Magento	requires	at	least
the	of	MySQL	Community	Edition	version	5.6.
MTF:	Magento	Testing	Framework	(MTF)	delivers	an	automated	testing	suite.	It
covers	various	types	of	tests,	such	as	performance,	functional,	and	unit	testing.	The
entire	MTF	is	available	on	GitHub,	which	can	be	viewed	by	visiting
https://github.com/magento/mtf	as	an	isolated	project.

Different	pieces	of	technology	can	be	glued	into	various	architectures.	There	are	different
ways	to	look	at	the	Magento	architecture—from	the	perspective	of	a	module	developer,
system	integrator,	or	a	merchant,	or	from	some	other	angle.

https://github.com/magento/mtf

The	architectural	layers
From	top	to	bottom,	Magento	can	be	divided	into	four	architectural	layers,	namely
presentation,	service,	domain,	and	persistence.

The	presentation	layer	is	the	one	that	we	directly	interact	with	through	the	browser.	It
contains	layouts,	blocks,	templates,	and	even	controllers,	which	process	commands	to	and
from	the	user	interface.	Client-side	technologies	such	as	jQuery,	RequireJS,	CSS,	and
LESS	are	also	a	part	of	this	layer.	Usually,	three	types	of	users	interact	with	this	layer,
namely	web	users,	system	administrators,	and	those	making	the	Web	API	calls.	Since	the
Web	API	calls	can	be	made	via	HTTP	in	a	manner	that	is	the	same	as	how	a	user	uses	a
browser,	there’s	a	thin	line	between	the	two.	While	web	users	and	Web	API	calls	consume
the	presentation	layer	as	it	is,	the	system	administrators	have	the	power	to	change	it.	This
change	manifests	in	the	form	of	setting	the	active	theme	and	changing	the	content	of	the
CMS	(short	for	content	management	system)	pages,	blocks,	and	the	products
themselves.

When	the	components	of	a	presentation	layer	are	being	interacted	with,	they	usually	make
calls	to	the	underlying	service	layer.

The	service	layer	is	the	bridge	between	the	presentation	and	domain	layer.	It	contains	the
service	contracts,	which	define	the	implementation	behavior.	A	service	contract	is
basically	a	fancy	name	for	a	PHP	interface.	This	layer	is	where	we	can	find	the
REST/SOAP	APIs.	Most	user	interaction	on	the	storefront	is	routed	through	the	service
layer.	Similarly,	the	external	applications	that	make	the	REST/SOAP	API	calls	also
interact	with	this	layer.

When	the	components	of	a	service	layer	are	being	interacted	with,	they	usually	make	calls
to	the	underlying	domain	layer.

The	domain	layer	is	really	the	business	logic	of	Magento.	This	layer	is	all	about	generic
data	objects	and	models	that	compose	the	business	logic.	The	domain	layer	models
themselves	do	not	contribute	to	data	persistence,	but	they	do	contain	a	reference	to	a
resource	model	that	is	used	to	retrieve	and	persist	the	data	to	a	MySQL	database.	A
domain	layer	code	from	one	module	can	interact	with	a	domain	module	code	from	another
module	via	the	use	of	event	observers,	plugins,	and	the	di.xml	definitions.	We	will	look
into	the	details	of	these	later	on	in	other	chapters.	Given	the	power	of	plugins	and	di.xml,
its	important	to	note	that	this	interaction	is	best	established	using	service	contracts	(the
PHP	interface).

When	the	components	of	the	domain	layer	are	being	interacted	with,	they	usually	make
calls	to	the	underlying	persistence	layer.

The	persistence	layer	is	where	the	data	gets	persisted.	This	layer	is	in	charge	of	all	the
CRUD	(short	for	create,	read,	update,	and	delete)	requests.	Magento	uses	an	active
record	pattern	strategy	for	the	persistence	layer.	The	model	object	contains	a	resource
model	that	maps	an	object	to	one	or	more	database	rows.	Here,	it	is	important	to
differentiate	the	cases	of	simple	resource	model	and	the	Entity-Attribute-Value	(EAV)

resource	models.	A	simple	resource	model	maps	to	a	single	table,	while	the	EAV	resource
models	have	their	attributes	spread	out	over	a	number	of	MySQL	tables.	As	an	example,
the	Customer	and	Catalog	resource	models	use	EAV	resource	models,	while	the
newsletter’s	Subscriber	resource	model	uses	a	simple	resource	model.

The	top-level	filesystem	structure
The	following	list	depicts	the	root	Magento	filesystem	structure:

.htaccess

.htaccess.sample

.php_cs

.travis.yml

CHANGELOG.md

CONTRIBUTING.md

CONTRIBUTOR_LICENSE_AGREEMENT.html

COPYING.txt

Gruntfile.js

LICENSE.txt

LICENSE_AFL.txt

app

bin

composer.json

composer.lock

dev

index.php

lib

nginx.conf.sample

package.json

php.ini.sample

phpserver

pub

setup

update

var

vendor

The	app/etc/di.xml	file	is	one	of	the	most	important	files	that	we	might	often	look	into
during	development.	It	contains	various	class	mappings	or	preferences	for	individual
interfaces.

The	var/magento/language-*	directories	is	where	the	registered	languages	reside.
Though	each	module	can	declare	its	own	translations	under
app/code/{VendorName}/{ModuleName}/i18n/,	Magento	will	eventually	fall	back	to	its
own	individual	module	named	i18n	in	case	translations	are	not	found	in	the	custom
module	or	within	the	theme	directory.

The	bin	directory	is	where	we	can	find	the	magento	file.	The	magento	file	is	a	script	that	is
intended	to	be	run	from	a	console.	Once	triggered	via	the	php	bin/magento	command,	it
runs	an	instance	of	the	Magento\Framework\Console\Cli	application,	presenting	us	with
quite	a	number	of	console	options.	We	can	use	the	magento	script	to	enable/disable	cache,

enable/disable	modules,	run	an	indexer,	and	do	many	other	things.

The	dev	directory	is	where	we	can	find	the	Magento	test	scripts.	We	will	have	a	look	at
more	of	those	in	later	chapters.

The	lib	directory	comprises	two	major	subdirectories,	namely	the	server-side	PHP	library
code	and	fonts	found	under	lib/internal	and	the	client-side	JavaScript	libraries	found	in
lib/web.

The	pub	directory	is	where	the	publicly	exposed	files	are	located.	This	is	the	directory	that
we	should	set	as	root	when	setting	up	Apache	or	Nginx.	The	pub/index.php	file	is	what
gets	triggered	when	the	storefront	is	opened	in	a	browser.

The	var	directory	is	where	the	dynamically	generated	group	type	of	files	such	as	cache,
log,	and	a	few	others	get	created	in.	We	should	be	able	to	delete	the	content	of	this	folder
at	any	time	and	have	Magento	automatically	recreate	it.

The	vendor	directory	is	where	most	of	the	code	is	located.	This	is	where	we	can	find
various	third-party	vendor	code,	Magento	modules,	themes,	and	language	packs.	Looking
further	into	the	vendor	directory,	you	will	see	the	following	structure:

.htaccess

autoload.php

bin

braintree

composer

doctrine

fabpot

justinrainbow

league

lusitanian

magento

monolog

oyejorge

pdepend

pelago

phpmd

phpseclib

phpunit

psr

sebastian

seld

sjparkinson

squizlabs

symfony

tedivm

tubalmartin

zendframework

Within	the	vendor	directory,	we	can	find	code	from	various	vendors,	such	as	phpunit,
phpseclib,	monolog,	symfony,	and	so	on.	Magento	itself	can	be	found	here.	The	Magento
code	is	located	under	vendor/magento	directory,	listed	(partially)	as	follows:

composer

framework

language-en_us

magento-composer-installer

magento2-base

module-authorization

module-backend

module-catalog

module-customer

module-theme

module-translation

module-ui

module-url-rewrite

module-user

module-version

module-webapi

module-widget

theme-adminhtml-backend

theme-frontend-blank

theme-frontend-luma

You	will	see	that	the	further	structuring	of	directories	follows	a	certain	naming	schema,
whereas	the	theme-*	directory	stores	themes,	the	module-*	directory	stores	modules,	and
the	language-*	directory	stores	registered	languages.

The	module	filesystem	structure
Magento	identifies	itself	as	a	highly	modular	platform.	What	this	means	is	that	there	is
literally	a	directory	location	where	modules	are	placed.	Let’s	take	a	peak	at	the	individual
module	structure	now.	The	following	structure	belongs	to	one	of	the	simpler	core	Magento
modules—the	Contact	module	that	can	be	found	in	vendor/magento/module-contact:

Block

composer.json

Controller

etc

acl.xml

adminhtml

system.xml

config.xml

email_templates.xml

frontend

di.xml

page_types.xml

routes.xml

module.xml

Helper

i18n

LICENSE_AFL.txt

LICENSE.txt

Model

README.md

registration.php

Test

Unit

Block

Controller

Helper

Model

view

adminhtml

frontend

layout

contact_index_index.xml

default.xml

templates

form.phtml

Even	though	the	preceding	structure	is	for	one	of	the	simpler	modules,	you	can	see	that	it
is	still	quite	extensive.

The	Block	directory	is	where	the	view-related	block	PHP	classes	are	located.

The	Controller	directory	is	where	the	controller-related	PHP	classes	are	stored.	This	is
the	code	that	responds	to	the	storefront	POST	and	GET	HTTP	actions.

The	etc	directory	is	where	the	module	configuration	files	are	present.	Here,	we	can	see
files	such	as	module.xml,	di.xml,	acl.xml,	system.xml,	config.xml,
email_templates.xml,	page_types.xml,	routes.xml,	and	so	on.	The	module.xml	file	is
an	actual	module	declaration	file.	We	will	look	into	the	contents	of	some	of	these	files	in
the	later	chapters.

The	Helper	directory	is	where	various	helper	classes	are	located.	These	classes	are	usually
used	to	abstract	various	store	configuration	values	into	the	getter	methods.

The	i18n	directory	is	where	the	module	translation	package	CSV	files	are	stored.

The	Module	directory	is	where	the	entities,	resource	entities,	collections,	and	various	other
business	classes	can	be	found.

The	Test	directory	stores	the	module	unit	tests.

The	view	directory	contains	all	the	module	administrator	and	storefront	template	files
(.phtml	and	.html)	and	static	files	(.js	and	.css).

Finally,	the	registration.php	is	a	module	registration	file.

Summary
In	this	chapter,	we	took	a	quick	look	at	the	technology	stack	used	in	Magento.	We
discussed	how	Magento,	being	an	open	source	product,	takes	extensive	use	of	other	open
source	projects	and	libraries	such	as	MySQL,	Apache,	Nginx,	Zend	Framework,	Symfony,
jQuery,	and	so	on.	We	then	learned	how	these	libraries	are	arranged	into	directories.
Finally,	we	explored	one	of	the	existing	core	modules	and	briefly	took	a	look	at	an
example	of	a	module’s	structure.

In	the	next	chapter,	we	are	going	to	tackle	the	environment	setup	so	that	we	can	get
Magento	installed	and	ready	for	development.

Chapter	2.	Managing	the	Environment
Throughout	this	chapter,	we	will	look	into	setting	up	our	development	and	production
environments.	The	idea	is	to	have	a	fully	automated	development	environment,	which	can
be	initiated	with	a	single	console	command.	For	a	production	environment,	we	will	turn
our	focus	to	one	of	the	available	cloud	services,	and	see	how	easy	it	is	to	set	up	Magento
for	simpler	production	projects.	We	will	not	be	covering	any	robust	environment	setups
like	auto-scaling,	caching	servers,	content	delivery	networks,	and	similar.	These	are	really
jobs	for	System	Administrator	or	DevOps	roles.	Our	attention	here	is	the	bare	minimum
needed	to	get	our	Magento	store	up	and	running;	a	milestone	we	will	achieve	throughout
the	following	sections	would	be:

Setting	up	a	development	environment

VirtualBox
Vagrant
Vagrant	project

Provisioning	PHP
Provisioning	MySQL
Provisioning	Apache
Provisioning	Magento	installation

Setting	up	a	production	environment

Introduction	to	Amazon	Web	Services	(AWS)
Setting	up	access	for	S3	usage

Creating	IAM	users
Creating	IAM	groups

Setting	up	S3	for	database	and	media	files	backup
Bash	script	for	automated	EC2	setup

Setting	up	EC2
Setting	up	Elastic	IP	and	DNS

Setting	up	a	development	environment
In	this	section,	we	will	build	a	development	environment	using	VirtualBox	and	Vagrant.

Note
Magento	official	requirements	call	for	Apache	2.2	or	2.4,	PHP	5.6.x	or	5.5.x	(PHP	5.4	is
not	supported),	and	MySQL	5.6.x.	We	need	to	keep	this	in	mind	during	the	environment
setup.

VirtualBox
VirtualBox	is	powerful	and	feature-rich	x86	and	AMD64/Intel64	virtualization	software.
It	is	free,	runs	on	a	large	number	of	platforms,	and	supports	a	large	number	of	guest
operating	systems.	If	we	are	using	Windows,	Linux,	or	OS	X	in	our	daily	development,
we	can	use	VirtualBox	to	spin	up	a	virtual	machine	with	an	isolated	guest	operating
system	in	which	we	can	install	our	server	software	needed	to	run	Magento.	This	means
using	MySQL,	Apache,	and	a	few	other	things.

Vagrant
Vagrant	is	a	high-level	software	wrapper	used	for	virtualization	software	management.
We	can	use	it	to	create	and	configure	development	environments.	Vagrant	supports	several
types	of	virtualization	software	such	as	VirtualBox,	VMware,	Kernel-based	Virtual
Machine	(KVM),	Linux	Containers	(LXC),	and	others.	It	even	supports	server
environments	like	Amazon	EC2.

Note
Before	we	start,	we	need	to	make	sure	we	have	VirtualBox	and	Vagrant	installed	already.
We	can	download	them	and	install	the	following	instructions	from	their	official	websites:
https://www.virtualbox.org	and	https://www.vagrantup.com.

https://www.virtualbox.org
https://www.vagrantup.com

Vagrant	project
We	start	by	manually	creating	an	empty	directory	somewhere	within	our	host	operating
system,	let’s	say	/Users/branko/www/B05032-Magento-Box/.	This	is	the	directory	we	will
pull	in	Magento	code.	We	want	Magento	source	code	to	be	external	to	Vagrant	box,	so	we
can	easily	work	with	it	in	our	favorite	IDE.

We	then	create	a	Vagrant	project	directory,	let’s	say	/Users/branko/www/magento-box/.

Within	the	magento-box	directory,	we	run	the	console	command	vagrant	init.	This
results	in	an	output	as	follows:

A	'Vagrantfile'	has	been	placed	in	this	directory.	You	are	now	ready	to	

'vagrant	up'	your	first	virtual	environment!	Please	read	the	comments	in	

the	Vagrantfile	as	well	as	documentation	on	'vagrantup.com'	for	more	

information	on	using	Vagrant.

The	Vagrantfile	is	actually	a	Ruby	language	source	file.	If	we	strip	away	the	comments,
its	original	content	looks	like	the	following:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

Vagrant.configure(2)	do	|config|

		config.vm.box	=	"base"

end

If	we	were	to	run	vagrant	up	now	within	the	magento-box	directory,	this	would	start	the
VirtualBox	in	headless	(no	GUI)	mode	and	run	the	base	operating	system.	However,	let’s
hold	off	running	that	command	just	now.

The	idea	is	to	create	a	more	robust	Vagrantfile	that	covers	everything	required	for
running	Magento,	from	Apache,	MySQL,	PHP,	PHPUnit,	composer,	and	full	Magento
installation	with	performance	fixture	data.

Though	Vagrant	does	not	have	a	separate	configuration	file	on	its	own,	we	will	create	one,
as	we	want	to	store	configuration	data	like	a	MySQL	user	and	password	in	it.

Let’s	go	ahead	and	create	the	Vagrantfile.config.yml	file,	alongside	a	Vagrantfile	in
the	same	directory,	with	content	as	follows:

ip:	192.168.10.10

s3:

		access_key:	"AKIAIPRNHSWEQNWHLCDQ"

		secret_key:	"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"

		bucket:	"foggy-project-dhj6"

synced_folder:

		host_path:	"/Users/branko/www/B05032-Magento-Box/"

		guest_path:	"/vagrant-B05032-Magento-Box/"

mysql:

		host:	"127.0.0.1"

		username:	root

		password:	user123

http_basic:

		repo_magento_com:

				username:	a8adc3ac98245f519ua0d2v2c8770ec8

				password:	a38488dc908c6d6923754c268vc41bc4

github_oauth:

		github_com:	"d79fb920d4m4c2fb9d8798b6ce3a043f0b7c2af6"

magento:

		db_name:	"magento"

		admin_firstname:	"John"

		admin_lastname:	"Doe"

		admin_password:	"admin123"

		admin_user:	"admin"

		admin_email:	"email@change.me"

		backend_frontname:	"admin"

		language:	"en_US"

		currency:	"USD"

		timezone:	"Europe/London"

		base_url:	"http://magento.box"

		fixture:	"small"

There	is	no	Vagrant-imposed	structure	here.	This	can	be	any	valid	YAML	file.	The	values
presented	are	merely	examples	of	what	we	can	put	in.

Magento	enables	us	to	generate	a	pair	of	32-character	authentication	tokens	that	can	use	to
access	the	Git	repository.	This	is	done	by	logging	in	to	Magento	Connect	with	a	user	name
and	password,	then	going	to	My	Account	|	Developers	|	Secure	Keys.	The	Public	Key
and	Private	Key	then	become	our	username	and	password	for	accessing	Magento	GitHub
repository.

Having	a	separate	configuration	file	means	we	can	commit	Vagrantfile	to	version
control	with	our	project,	while	leaving	the	Vagrantfile.config.yml	out	of	version
control.

We	now	edit	the	Vagrantfile	by	replacing	its	content	with	the	following:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

require	'yaml'

vagrantConfig	=	YAML.load_file	'Vagrantfile.config.yml'

Vagrant.configure(2)	do	|config|

		config.vm.box	=	"ubuntu/vivid64"

		config.vm.network	"private_network",	ip:	vagrantConfig['ip']

		#	Mount	local	"~/www/B05032-Magento-Box/"	path	into	box's	"/vagrant-

B05032-Magento-Box/"	path

		config.vm.synced_folder	vagrantConfig['synced_folder']['host_path'],	

vagrantConfig['synced_folder']['guest_path'],	owner:"vagrant",	group:	"www-

data",	mount_options:["dmode=775,	fmode=664"]

		#	VirtualBox	specific	settings

		config.vm.provider	"virtualbox"	do	|vb|

				vb.gui	=	false

				vb.memory	=	"2048"

				vb.cpus	=	2

		end

		#	<provisioner	here>

end

The	preceding	code	first	includes	the	yaml	library,	and	then	reads	the	content	of	the
Vagrantfile.config.yml	file	into	a	vagrantConfig	variable.	Then	we	have	a	config
block,	within	which	we	define	the	box	type,	fixed	IP	address,	shared	folder	between	our
host	and	guest	operating	system,	and	a	few	VirtualBox	specific	details	such	as	CPU	and
memory	allocated.

We	are	using	the	ubuntu/vivid64	box	that	stands	for	the	server	edition	of	Ubuntu	15.04
(Vivid	Vervet).	The	reason	is	that	this	Ubuntu	version	gives	us	the	MySQL	5.6.x	and	PHP
5.6.x,	which	stand	as	requirements	for	Magento	installation,	among	other	things.

We	further	have	a	configuration	entry	assigning	a	fixed	IP	to	our	virtual	machine.	Let’s	go
ahead	and	add	an	entry	in	the	hosts	file	of	our	host	operating	system	as	follows:

192.168.10.10	magento.box

Note
The	reason	why	we	are	assigning	the	fixed	IP	address	to	our	box	is	that	we	can	directly
open	a	URL	like	http://magento.box	within	our	host	operating	system,	and	then	access
Apache	served	page	within	our	guest	operating	system.

Another	important	part	of	the	preceding	code	is	the	one	where	we	defined	synced_folder.
Besides	source	and	destination	paths,	the	crucial	parts	here	are	owner,	group,	and
mount_options.	We	set	those	to	the	vagrant	user	the	www-data	user	group,	and	774	and
664	for	directory	and	file	permissions	that	play	nicely	with	Magento.

Let’s	continue	editing	our	Vagrantfile	adding	several	provisioners	to	it,	one	below	the
other.	We	do	so	by	replacing	the	#	<provisioner	here>	from	the	preceding	example,
with	content	as	follows:

config.vm.provision	"file",	source:	"~/.gitconfig",	destination:	

".gitconfig"

config.vm.provision	"shell",	inline:	"sudo	apt-get	update"

Here	we	are	instructing	Vagrant	to	pass	our	.gitconfig	file	from	the	host	to	the	guest
operating	system.	This	is	so	we	inherit	the	host	operating	system	Git	setup	to	the	guest
operating	system	Git.	We	then	call	for	apt-get	update	in	order	to	update	the	guest
operating	system.

Provisioning	PHP
Further	adding	to	Vagrantfile,	we	run	several	provisioners	that	will	install	PHP,	required
PHP	modules,	and	PHPUnit,	as	follows:

config.vm.provision	"shell",	inline:	"sudo	apt-get	-y	install	php5	php5-dev	

php5-curl	php5-imagick	php5-gd	php5-mcrypt	php5-mhash	php5-mysql	php5-

xdebug	php5-intl	php5-xsl"

config.vm.provision	"shell",	inline:	"sudo	php5enmod	mcrypt"

config.vm.provision	"shell",	inline:	"echo	\"xdebug.max_nesting_level=200\"	

>>	/etc/php5/apache2/php.ini"

config.vm.provision	"shell",	inline:	"sudo	apt-get	-y	install	phpunit"

Note
There	is	one	thing	worth	pointing	out	here	–	the	line	where	we	are	writing
xdebug.max_nesting_level=200	into	the	php.ini	file.	This	is	done	to	exclude	the
possibility	that	Magento	would	not	start	throwing	a	Maximum	Functions	Nesting	Level
of	‘100’	reached…	error.

Provisioning	MySQL
Further	adding	to	Vagrantfile,	we	run	provisioners	that	will	install	the	MySQL	server,	as
follows:

config.vm.provision	"shell",	inline:	"sudo	debconf-set-selections	<<<	

'mysql-server	mysql-server/root_password	password	#{vagrantConfig['mysql']

['password']}'"

config.vm.provision	"shell",	inline:	"sudo	debconf-set-selections	<<<	

'mysql-server	mysql-server/root_password_again	password	#

{vagrantConfig['mysql']['password']}'"

config.vm.provision	"shell",	inline:	"sudo	apt-get	-y	install	mysql-server"

config.vm.provision	"shell",	inline:	"sudo	service	mysql	start"

config.vm.provision	"shell",	inline:	"sudo	update-rc.d	mysql	defaults"

What	is	interesting	with	the	MySQL	installation	is	that	it	requires	a	password	and	a
password	confirmation	to	be	provided	during	installation.	This	makes	it	a	troubling	part	of
the	provisioning	process	that	expects	shell	commands	to	simply	execute	without	asking
for	input.	To	bypass	this,	we	use	debconf-set-selections	to	store	the	parameters	for
input.	We	read	the	password	from	the	Vagrantfile.config.yml	file	and	pass	it	onto
debconf-set-selections.

Once	installed,	update-rc.d	mysql	defaults	will	add	MySQL	to	the	operating	system
boot	process,	thus	making	sure	MySQL	is	running	when	we	reboot	the	box.

Provisioning	Apache
Further	adding	to	Vagrantfile,	we	run	the	Apache	provisioner	as	follows:

config.vm.provision	"shell",	inline:	"sudo	apt-get	-y	install	apache2"

config.vm.provision	"shell",	inline:	"sudo	update-rc.d	apache2	defaults"

config.vm.provision	"shell",	inline:	"sudo	service	apache2	start"

config.vm.provision	"shell",	inline:	"sudo	a2enmod	rewrite"

config.vm.provision	"shell",	inline:	"sudo	awk	'/<Directory	

\\/>/,/AllowOverride	None/{sub(\"None\",	\"All\",$0)}{print}'	

/etc/apache2/apache2.conf	>	/tmp/tmp.apache2.conf"

config.vm.provision	"shell",	inline:	"sudo	mv	/tmp/tmp.apache2.conf	

/etc/apache2/apache2.conf"

config.vm.provision	"shell",	inline:	"sudo	awk	'/<Directory	

\\/var\\/www\\/>/,/AllowOverride	None/{sub(\"None\",	\"All\",$0)}{print}'	

/etc/apache2/apache2.conf	>	/tmp/tmp.apache2.conf"

config.vm.provision	"shell",	inline:	"sudo	mv	/tmp/tmp.apache2.conf	

/etc/apache2/apache2.conf"

config.vm.provision	"shell",	inline:	"sudo	service	apache2	stop"

The	preceding	code	installs	Apache,	adds	it	to	the	boot	sequence,	starts	it,	and	turns	on	the
rewrite	module.	We	then	have	an	update	to	the	Apache	configuration	file,	as	we	want	to
replace	AllowOverride	None	with	AllowOverride	All,	or	else	our	Magento	won’t	work.
Once	the	changes	are	done,	we	stop	Apache	due	to	the	later	processes.

Provisioning	Magento	installation
Further	adding	to	Vagrantfile,	we	now	turn	our	attention	to	Magento	installation,	which
we	split	into	several	steps.	First,	we	link	our	host	folder,	/vagrant-B05032-Magento-
Box/,	with	the	guest,	/var/www/html,	using	Vagrant’s	synced	folder	feature:

config.vm.provision	"shell",	inline:	"sudo	rm	-Rf	/var/www/html"

config.vm.provision	"shell",	inline:	"sudo	ln	-s	#

{vagrantConfig['synced_folder']['guest_path']}	/var/www/html"

We	then	use	the	composer	create-project	command	to	pull	the	Magento	2	files	from	the
official	repo.magento.com	source	into	the	/var/www/html/	director:

config.vm.provision	"shell",	inline:	"curl	-sS	

https://getcomposer.org/installer	|	php"

config.vm.provision	"shell",	inline:	"mv	composer.phar	

/usr/local/bin/composer"

config.vm.provision	"shell",	inline:	"composer	clearcache"

config.vm.provision	"shell",	inline:	"echo	'{\"http-basic\":	

{\"repo.magento.com\":	{\"username\":	\"#{vagrantConfig	['http_basic']

['repo_magento_com']['username']}\",\"password\":	\"#

{vagrantConfig['http_basic']['repo_magento_com']['password']}	\"}},	

\"github-oauth\":	{\"github.com\":	\"#{vagrantConfig['github_oauth']

['github_com']}\"}}'	>>	/root/.composer/auth.json"

config.vm.provision	"shell",	inline:	"composer	create-project—repository-

url=https://repo.magento.com/	magento/project-	community-edition	

/var/www/html/"

We	then	create	a	database	in	which	Magento	will	be	installed	later	on:

config.vm.provision	"shell",	inline:	"sudo	mysql—user=#

{vagrantConfig['mysql']['username']}—password=#{vagrantConfig['mysql']

['password']}	-e	\"CREATE	DATABASE	#{vagrantConfig['magento']

['db_name']};\""

We	then	run	the	Magento	installation	from	the	command	line:

config.vm.provision	"shell",	inline:	"sudo	php	/var/www/html/bin/magento	

setup:install	--base-	url=\"#{vagrantConfig['magento']['base_url']}\"	--db-	

host=\"#{vagrantConfig['mysql']['host']}\"	--db-	user=\"#

{vagrantConfig['mysql']['username']}\"	--db-	password=\"#

{vagrantConfig['mysql']['password']}\"	--db-	name=\"#

{vagrantConfig['magento']['db_name']}\"	--admin-	firstname=\"#

{vagrantConfig['magento']['admin_firstname']}\"—admin-lastname=\"#

{vagrantConfig['magento']['admin_lastname']}\"	--admin-email=\"#

{vagrantConfig['magento']['admin_email']}\"—admin-user=\"#

{vagrantConfig['magento']['admin_user']}\"—admin-password=\"#

{vagrantConfig['magento']['admin_password']}\"	--backend-	frontname=\"#

{vagrantConfig['magento']['backend_frontname']}\"	-	-language=\"#

{vagrantConfig['magento']['language']}\"—currency=\"#

{vagrantConfig['magento']['currency']}\"—timezone=\"#

{vagrantConfig['magento']['timezone']}\""

config.vm.provision	"shell",	inline:	"sudo	php	/var/www/html/bin/magento	

deploy:mode:set	developer"

config.vm.provision	"shell",	inline:	"sudo	php	/var/www/html/bin/magento	

cache:disable"

config.vm.provision	"shell",	inline:	"sudo	php	/var/www/html/bin/magento	

cache:flush"

config.vm.provision	"shell",	inline:	"sudo	php	/var/www/html/bin/magento	

setup:performance:generate-fixtures	/var/www/html/setup/performance-

toolkit/profiles/ce/small.xml"

The	preceding	code	shows	we	are	installing	the	fixtures	data	as	well.

We	need	to	be	careful	during	the	Vagrantfile.config.yml	file	configuration.	Magento
installation	is	quite	sensible	around	provided	data.	We	need	to	make	sure	we	provide	valid
data	for	fields	like	mail	and	password	or	else	the	installation	will	fail	showing	errors
similar	to	the	following:

SQLSTATE[28000]	[1045]	Access	denied	for	user	'root'@'localhost'	(using	

password:	NO)

User	Name	is	a	required	field.

First	Name	is	a	required	field.

Last	Name	is	a	required	field.

'magento.box'	is	not	a	valid	hostname	for	email	address	

'john.doe@magento.box'

'magento.box'	appears	to	be	a	DNS	hostname	but	cannot	match	TLD	against	

known	list

'magento.box'	appears	to	be	a	local	network	name	but	local	network	names	

are	not	allowed

Password	is	required	field.

Your	password	must	be	at	least	7	characters.

Your	password	must	include	both	numeric	and	alphabetic	characters.

With	this,	we	conclude	our	Vagrantfile	content.

Running	the	vagrant	up	command	now	within	the	same	directory	as	Vagrantfile
triggers	the	box	creation	process.	During	this	process,	all	of	the	previously	listed
commands	will	get	executed.	The	process	alone	takes	up	to	an	hour	or	so.

Once	vagrant	up	is	complete,	we	can	issue	another	console	command,	vagrant	ssh,	to	log
in	to	the	box.

At	the	same	time,	if	we	open	a	URL	like	http://magento.box	in	our	browser,	we	should
see	the	Magento	storefront	loading.

The	preceding	Vagrantfile	simply	pulls	from	the	official	Magento	Git	repository	and
installs	Magento	from	the	ground	up.	Vagrantfile	and	Vagrantfile.config.yml	can	be
further	extended	and	tailored	to	suit	our	individual	project	needs,	like	pulling	the	code
from	the	private	Git	repository,	restoring	the	database	from	the	shared	drive,	and	so	on.

This	makes	for	a	simple	yet	powerful	scripting	process	by	which	we	can	prepare	fully
ready	per-project	machines	for	other	developers	in	a	team	to	be	able	to	quickly	spin	up.

Setting	up	a	production	environment
A	production	environment	is	the	client-facing	environment	that	focuses	on	good
performance	and	availability.	Setting	up	production	environments	is	not	really	something
we	developers	tend	to	do,	especially	if	there	are	robust	requirements	around	scaling,	load
balancing,	high	availability,	and	similar.	Sometimes,	however,	we	need	to	set	up	a	simple
production	environment.	There	are	various	cloud	providers	that	offer	quick	and	simple
solutions	to	this.	For	the	purpose	of	this	section,	we	will	turn	to	Amazon	Web	Services.

Introduction	to	Amazon	Web	Services
Amazon	Web	Services	(AWS)	is	a	collection	of	remote	computing	services	frequently
referred	to	as	web	services.	AWS	provides	on-demand	computing	resources	and	services
in	the	cloud,	with	pay-as-you-go	pricing.	Amazon	gives	a	nice	comparison	of	its	AWS
resources,	saying	that	using	AWS	resources	instead	of	your	own	is	like	purchasing
electricity	from	a	power	company	instead	of	running	your	own	generator.

If	we	stop	and	think	about	it	for	a	minute,	this	makes	it	interesting	to	not	only	system
operation	roles	but	also	for	developers	like	us.	We	(developers)	are	now	able	to	spin
various	databases,	web	application	servers,	and	even	complex	infrastructures	in	a	matter
of	minutes	and	a	few	mouse	clicks.	We	can	run	these	services	for	a	few	minutes,	hours,	or
days	then	shut	them	down.	Meanwhile,	we	only	pay	for	the	actual	usage,	not	the	full
monthly	or	yearly	price	as	we	do	with	most	of	the	hosting	services.	Although	the	overall
AWS	pricing	for	certain	services	might	not	be	the	cheapest	out	there,	it	certainly	provides
a	level	of	commodity	and	usability	unlike	many	other	services.	Commodity	comes	from
things	like	auto-scaling	resources,	a	feature	that	often	offers	significant	cost	savings
compared	to	the	equivalent	on-premises	infrastructure.

Quality	training	and	a	certification	program	is	another	important	aspect	of	the	AWS
ecosystem.	Certifications	are	available	for	Solutions	Architect,	Developer,	and	SysOps
Administrator,	across	associate	and	professional	levels.	Though	the	certification	is	not
mandatory,	if	we	deal	with	AWS	on	a	regular	basis,	we	are	encouraged	to	take	one.
Earning	the	certification	puts	the	seal	on	our	expertise	to	design,	deploy,	and	operate
highly	available,	cost-effective,	and	secure	applications	on	the	AWS	platform.

We	can	manage	our	AWS	through	a	simple	and	intuitive	web-based	user	interface	called
AWS	management	console,	which	is	available	at	https://aws.amazon.com/console.	Signing
into	AWS,	we	should	be	able	to	see	a	screen	similar	to	the	following	one:

The	preceding	image	shows	how	the	AWS	management	console	groups	the	AWS	services
visually	into	several	major	groups,	as	follows:

https://aws.amazon.com/console

Compute
Developer	Tools
Mobile	Services
Storage	&	Content	Delivery
Management	Tools
Application	Services
Database
Security	&	Identity
Networking
Analytics
Enterprise	Applications

As	part	of	this	chapter,	we	will	be	taking	a	look	at	the	EC2	service	found	under	the
Compute	group	and	the	S3	service	found	under	the	Storage	&	Content	Delivery	group.

Amazon	Elastic	Compute	Cloud	(Amazon	EC2)	is	a	web	service	that	provides	a	re-
sizable	compute	capacity	in	the	cloud.	We	can	think	of	it	as	a	virtual	computer	machine	in
the	cloud	that	we	can	turn	on	and	off	at	any	time,	within	minutes.	We	can	further
commission	one,	hundreds,	or	even	thousands	of	these	machine	instances	simultaneously.
This	makes	for	the	re-sizable	compute	capacity.

S3	provides	secure,	durable,	and	highly	scalable	object	storage.	It	is	designed	to	provide
durability	of	99.99%	of	objects.	The	service	provides	a	web	service	interface	to	store	and
retrieve	any	amount	of	data	from	anywhere	on	the	web.	S3	is	charged	only	per	storage	that
is	actually	used.	S3	can	be	used	alone	or	together	with	other	AWS	services	such	as	EC2.

Setting	up	access	for	S3	usage
As	part	of	our	production	environment,	it	is	good	to	have	reliable	storage	where	we	can
archive	database	and	media	files.	Amazon	S3	stands	out	as	a	possible	solution.

In	order	to	properly	set	access	to	the	S3	scalable	storage	service,	we	need	to	take	a	quick
look	into	AWS	Identity	and	Access	Management	(IAM	for	short).	IAM	is	a	web	service
that	helps	us	securely	control	access	to	AWS	resources	for	our	users.	We	can	use	IAM	to
control	authentication	(who	can	use	our	AWS	resources)	and	authorization	(what
resources	they	can	use	and	in	what	ways).	More	specifically,	as	we	will	soon	see,	we	are
interested	in	Users	and	Groups.

Creating	IAM	users
This	section	describes	how	to	create	IAM	users.	An	IAM	user	is	an	entity	that	we	create	in
AWS	to	represent	the	person	or	service	using	it	when	interacting	with	AWS.

Log	in	to	the	AWS	console.

Under	the	user	menu,	click	on	Security	Credentials	as	shown	in	the	following	screenshot:

This	opens	up	the	security	dashboard	page.

Clicking	on	the	Users	menu	should	open	a	screen	like	the	following	one:

On	the	Users	menu,	we	click	on	Create	New	User,	which	opens	a	page	like	the
following:

Here,	we	fill	in	the	desired	username	for	one	or	more	users,	something	like
foggy_s3_user1,	and	then	click	on	the	Create	button.

We	should	now	see	a	screen	like	the	following	one:

Here,	we	can	click	on	Download	Credentials	to	initiate	the	CSV	format	file	download	or
copy	and	paste	our	credentials	manually.

Note
Access	Key	ID	and	Secret	Access	Key	are	the	two	pieces	of	information	we	will	be	using

to	access	S3	storage.

Clicking	the	close	link	takes	us	back	to	the	Users	menu,	showing	our	newly	created	user
listed	as	shown	in	the	following	screenshot:

Creating	IAM	groups
This	section	describes	how	to	create	IAM	groups.	Groups	are	collections	of	IAM	users
that	we	can	manage	as	a	single	unit.	So	let’s	begin:

1.	 Log	in	to	the	AWS	console.
2.	 Under	the	user	menu,	click	on	Security	Credentials	as	shown	in	the	following

screenshot:

3.	 This	opens	up	the	security	dashboard	page.	Clicking	on	the	Groups	menu	should
open	a	screen	like	the	following	one:

4.	 On	the	Groups	menu,	we	click	on	Create	New	Group,	which	opens	a	page	like	the
following:

5.	 Here,	we	fill	in	the	desired	group	name,	something	like	FoggyS3Test.
6.	 We	should	now	see	a	screen	like	the	following	one,	where	we	need	to	select	the

group	Policy	Type	and	click	the	Next	Step	button:

7.	 We	select	the	AmazonS3FullAccess	policy	type	and	click	the	Next	Step	button.	The
Review	screen	is	now	shown,	asking	us	to	review	the	provided	information:

8.	 If	the	provided	information	is	correct,	we	confirm	it	by	clicking	the	Create	Group
button.	We	should	now	be	able	to	see	our	group	under	the	Groups	menu	as	shown	in
the	following	screenshot:

9.	 Mark	the	checkbox	to	the	left	of	Group	Name,	click	the	Group	Actions	dropdown,
and	then	select	Add	Users	to	Group	as	shown	in	the	following	screenshot:

10.	 This	opens	the	Add	Users	to	Group	page	as	shown	in	the	following	screenshot:

11.	 Mark	the	checkbox	to	the	left	of	User	Name	and	click	on	the	Add	Users	button.	This
should	add	the	selected	user	to	the	group	and	throw	us	back	to	the	Groups	listing.

The	result	of	this	user	and	group	creation	process	is	a	user	with	Access	Key	Id,	Secret
Access	Key,	and	assigned	user	group	with	the	AmazonS3FullAccess	policy.	We	will	use
this	information	later	on	when	we	demonstrate	backing	up	the	database	to	S3.

Setting	up	S3	for	database	and	media	files	backup
S3	consists	of	buckets.	We	can	think	of	a	bucket	as	the	first	level	directory	within	our	S3
account.	We	then	set	the	permissions	and	other	options	on	that	directory	(bucket).	In	this
section,	we	are	going	to	create	our	own	bucket,	with	two	empty	folders	called	database
and	media.	We	will	use	these	folders	later	on	during	our	environment	setup	in	order	to
back	up	our	MySQL	database	and	our	media	files.

We	start	by	logging	in	to	the	AWS	management	console.

 Under	the	Storage	&	Content	Delivery	group,	we	click	on	S3.	This	opens	a	screen
similar	to	the	following:

Click	on	the	Create	Bucket	button.	This	opens	a	popup	like	the	one	shown	in	the
following	screenshot:

Let’s	provide	a	unique	Bucket	Name,	preferably	something	identifying	the	project	for
which	we	will	be	backing	up	the	database	and	media	file,	and	click	the	Create	button.
For	the	purpose	of	this	chapter,	let’s	imagine	we	selected	something	like	foggy-project-
dhj6.

Our	bucket	should	now	be	visible	under	the	All	Buckets	list.	If	we	click	on	it,	a	new
screen	opens	like	the	one	shown	in	the	following	screenshot:

Here,	we	click	on	the	Create	Folder	button	and	add	the	necessary	database	and	media
folders.

While	still	within	the	root	bucket	directory,	click	on	the	Properties	button	and	fill	in	the
Permissions	section	as	shown	in	the	following	screenshot:

Here,	we	are	basically	assigning	all	permissions	to	Authenticated	Users.

We	should	now	have	an	S3	bucket	to	which	we	can	potentially	store	our	database	and
media	backups	using	the	s3cmd	console	tool	that	we	will	soon	reference.

Bash	script	for	automated	EC2	setup
Similar	to	the	Vagrantfile	shell	provisioners,	let’s	go	ahead	and	create	a	sequence	of
bash	shell	commands	we	can	use	for	a	production	setup.

The	first	block	of	commands	goes	as	follows:

#!/bin/bash

apt-get	update

apt-get	-y	install	s3cmd

Here,	start	with	the	#!/bin/bash	expression.	This	specifies	the	type	of	script	we	are
executing.	Then	we	have	a	system	update	and	s3cmd	tool	installation.	The	s3cmd	is	a	free
command-line	tool	and	client	for	uploading,	retrieving,	and	managing	data	in	Amazon	S3.
We	can	use	it	later	on	for	database	and	media	file	backups	and	restores.

We	then	install	the	postfix	mail	server,	using	the	following	commands.	Since	the	postfix
installation	triggers	a	graphical	interface	in	the	console,	asking	for	mailname	and
main_mailer_type,	we	bypass	those	using	sudo	debconf-set-selections.	Once
installed,	we	reload	postfix.

sudo	debconf-set-selections	<<<	"postfix	postfix/mailname	string	

magentize.me"

sudo	debconf-set-selections	<<<	"postfix	postfix/main_mailer_type	string	

'Internet	Site'"

sudo	apt-get	install	-y	postfix

sudo	/etc/init.d/postfix	reload

Using	mail	server	directly	on	the	EC2	box	is	fine	for	smaller	production	sites,	where	we
do	not	expect	high	traffic	or	a	large	number	of	customers.	For	more	intensive	production
sites,	we	need	to	pay	attention	to	Amazon,	possibly	putting	a	throttle	on	port	25,	thus
resulting	in	outgoing	e-mail	timeouts.	In	which	case	we	can	either	ask	Amazon	to	remove
the	limitation	on	our	account,	or	move	on	to	more	robust	services	like	Amazon	Simple
Email	Service.

We	then	install	all	things	related	to	PHP.	Notice	how	we	even	install	xdebug,	though
immediately	turning	it	off.	This	might	come	in	handy	for	those	very	rare	moments	when
we	really	need	to	debug	the	live	site,	then	we	can	turn	it	off	and	play	with	remote
debugging.	We	further	download	and	set	composer	to	the	user	path:

apt-get	-y	install	php5	php5-dev	php5-curl	php5-imagick	php5-gd	php5-	

mcrypt	php5-mhash	php5-mysql	php5-xdebug	php5-intl	php5-xsl

php5enmod	mcrypt

php5dismod	xdebug

service	php5-fpm	restart

apt-get	-y	install	phpunit

echo	"Starting	Composer	stuff"	>>	/var/tmp/box-progress.txt

curl	-sS	https://getcomposer.org/installer	|	php

mv	composer.phar	/usr/local/bin/composer

We	then	move	on	to	MySQL	installation.	Here,	we	are	also	using	debconf-set-
selections	to	automate	the	console	part	of	providing	input	parameters	to	the	installation.

Once	installed,	MySQL	is	started	and	added	to	the	boot	process.

debconf-set-selections	<<<	'mysql-server	mysql-server/root_password	

password	RrkSBi6VDg6C'

debconf-set-selections	<<<	'mysql-server	mysql-server/root_password_again	

password	RrkSBi6VDg6C'

apt-get	-y	install	mysql-server

service	mysql	start

update-rc.d	mysql	defaults

Alongside	MySQL,	another	major	component	is	Apache.	We	install	it	using	the	following
commands.	With	Apache,	we	need	to	pay	attention	to	its	apache2.conf	file.	We	need	to
change	AllowOverride	None	to	AllowOverride	All	for	the	Magento	directory:

apt-get	-y	install	apache2

update-rc.d	apache2	defaults

service	apache2	start

a2enmod	rewrite

awk	'/<Directory	\/>/,/AllowOverride	None/{sub("None",	"All",$0)}{print}'	

/etc/apache2/apache2.conf	>	/tmp/tmp.apache2.conf

mv	/tmp/tmp.apache2.conf	/etc/apache2/apache2.conf

awk	'/<Directory	\/var\/www\/>/,/AllowOverride	None/{sub("None",	"All",$0)}

{print}'	/etc/apache2/apache2.conf	>	/tmp/tmp.apache2.conf

mv	/tmp/tmp.apache2.conf	/etc/apache2/apache2.conf

service	apache2	restart

Now	that	we	have	MySQL	and	Apache	installed,	we	move	on	to	getting	the	source	code
files	in	place.	Next,	we	are	pulling	from	the	official	Magento	Git	repository.	This	is	not	the
same	as	repo.magento.com	we	used	when	setting	up	the	vagrant.	Though	in	this	case	the
Magento	Git	repository	is	public,	the	idea	is	to	be	able	to	pull	the	code	from	the	private
GitHub	repository.	Based	on	the	production	environment	we	tend	to	set	up,	we	can	easily
replace	the	next	part	with	pulling	from	any	other	private	Git	repository.

sudo	rm	-Rf	/var/www/html/*

git	clone	https://github.com/magento/magento2.git	/var/www/html/.

sudo	composer	config	--global	github-oauth.github.com	

7d6da6bld50dub454edc27db70db78b1f8997e6

sudo	composer	install	--working-dir="/var/www/html/"

mysql	-uroot	-pRrkSBi6VDg6C	-e	"CREATE	DATABASE	magento;"

PUBLIC_HOSTNAME="'wget	-q	-O	-	http://instance-data/latest/meta-	

data/public-hostname'"

Tip
To	pull	the	code	from	a	private	git	repository,	we	can	use	a	command	of	the	following
form,	Git	clone:	https://<user>:<OAuthToken>@github.com/<user>/<repo>.git.

The	PUBLIC_HOSTNAME	variable	stores	the	response	of	the	wget	command	that	calls	the
http://instance-data/latest/meta-data/public-hostname	URL.	This	URL	is	a
feature	of	AWS	that	allows	us	to	get	the	current	EC2	instance	metadata.	We	then	use	the
PUBLIC_HOSTNAME	variable	during	Magento	installation,	passing	it	as	the	--base-url
parameter:

php	/var/www/html/bin/magento	setup:install	--base-	

url="http://$PUBLIC_HOSTNAME"	--db-host="127.0.0.1"	--db-	user="root"	--db-

password="RrkSBi6VDg6C"	--db-name="magento"—admin-firstname="John"	--admin-

lastname="Doe"	--admin-	email="john.doe@change.me"	--admin-user="admin"	--

admin-	password="pass123"	--backend-frontname="admin"—language="en_US"	--

currency="USD"	--timezone="Europe/London"

The	preceding	command	takes	a	lot	of	per	project	specific	configuration	values,	so	we
need	to	be	sure	to	paste	in	our	own	information	here	appropriately	before	simply	copying
and	pasting	it.

Now	we	make	sure	the	Magento	mode	is	set	to	production,	and	cache	is	turned	on	and
flushed,	so	it	regenerates	fresh:

php	/var/www/html/bin/magento	deploy:mode:set	production

php	/var/www/html/bin/magento	cache:enable

php	/var/www/html/bin/magento	cache:flush

Finally,	we	reset	the	permissions	on	the	/var/www/html	directory	in	order	for	our	Magento
to	function	properly:

chown	-R	ubuntu:www-data	/var/www/html

find	/var/www/html	-type	f	-print0	|	xargs	-r0	chmod	640

find	/var/www/html	-type	d	-print0	|	xargs	-r0	chmod	750

chmod	-R	g+w	/var/www/html/pub

chmod	-R	g+w	/var/www/html/var

chmod	-R	g+w	/var/www/html/app

chmod	-R	g+w	/var/www/html/vendor

We	need	to	take	caution	with	the	preceding	Git	and	Magento	installation	example.	The
idea	here	was	to	show	how	we	could	automatically	set	Git	pull	from	the	public	or	private
repository.	The	Magento	installation	part	is	a	little	bonus	for	this	specific	case,	not
something	we	would	actually	do	on	our	production	machine.	The	whole	purpose	of	this
script	would	be	to	serve	as	a	blueprint	for	powering	up	new	AMI	images.	So	ideally	what
we	would	usually	do	once	the	code	is	pulled,	is	to	restore	the	database	from	some	private
storage	like	S3	and	then	attach	it	to	our	installation.	Thus	making	for	a	complete	restore	of
files,	database,	and	media	once	the	script	is	finished.

Putting	that	thought	aside,	let’s	get	back	to	our	script,	further	adding	the	daily	database
backup	using	the	set	of	command	as	follows:

CRON_CMD="mysql	--user=root	--password=RrkSBi6VDg6C	magento	|	gzip	-9	>	

~/database.sql.gz" CRON_JOB="30	2	*	*	*	$CRON_CMD"
(crontab	-l	|	grep	-v	"$CRON_CMD"	;	echo	"$CRON_JOB")	|	crontab	-

CRON_CMD="s3cmd		--access_key="AKIAINLIM7M6WGJKMMCQ"—

secret_key="YJuPwkmkhrm4HQwoepZqUhpJPC/yQ/WFwzpzdbuO"	put	~/database.sql.gz	

s3://foggy-project-ghj7/database/database_'date	+"%Y-%m-%d_%H-%M"'.sql.gz"

CRON_JOB="30	3	*	*	*	$CRON_CMD"

(crontab	-l	|	grep	-v	"$CRON_CMD"	;	echo	"$CRON_JOB")	|	crontab	-

Here,	we	are	adding	the	2:30	AM	cron	job	for	backing	up	the	database	into	the	home
directory	file	named	database.sql.gz.	Then	we	are	adding	another	cron	job	that	executes
at	3:30	AM,	which	pushes	the	database	backup	to	S3	storage.

Similar	to	the	database	backup,	we	can	add	media	backup	instructions	to	our	script	using
the	set	of	command	as	follows:

CRON_CMD="tar	-cvvzf	~/media.tar.gz	/var/www/html/pub/media/"

CRON_JOB="30	2	*	*	*	$CRON_CMD"

(crontab	-l	|	grep	-v	"$CRON_CMD"	;	echo	"$CRON_JOB")	|	crontab	-

CRON_CMD="s3cmd	--access_key="AKIAINLIM7M6WGJKMMCQ"—

secret_key="YJuPwkmkhrm4HQwoepZqUhpJPC/yQ/WFwzpzdbuO"	put	~/media.tar.gz	

s3://foggy-project-ghj7/media/media_'date	+"%Y-%m-	%d_%H-%M"'.tar.gz"

CRON_JOB="30	3	*	*	*	$CRON_CMD"

(crontab	-l	|	grep	-v	"$CRON_CMD"	;	echo	"$CRON_JOB")	|	crontab	-

The	preceding	commands	have	several	pieces	of	information	coded	in	them.	We	need	to
make	sure	to	paste	in	our	access	key,	secret	key,	and	S3	bucket	name	accordingly.	For
simplicity	sake,	we	are	not	addressing	security	implications	such	as	hardcoding	the	access
tokens	into	the	cron	jobs.	Amazon	provides	an	extensive	AWS	Security	Best	Practices
guide	that	can	be	downloaded	via	the	official	AWS	website.

Now	that	we	have	some	understanding	of	what	the	bash	script	for	automated	EC2	setup
could	look	like,	let’s	proceed	to	setting	up	the	EC2	instance.

Setting	up	EC2
Follow	these	steps	to	get	the	setting	done:

1.	 Log	in	to	the	AWS	console
2.	 Under	the	Compute	group,	click	on	EC2,	which	should	open	a	screen	like	the

following:

3.	 Click	on	the	Launch	Instance	button,	which	should	open	a	screen	like	the	following:

4.	 Click	on	the	Community	AMIs	tab	to	the	left,	and	type	in	Ubuntu	Vivid	into	the
search	field,	as	shown	in	the	following	screenshot:

Tip
The	Ubuntu	15.x	(Vivid	Vervet)	server	by	default	supports	MySQL	5.6.x	and	PHP
5.6.x,	which	makes	it	a	good	candidate	for	Magento	installation.

We	should	now	see	a	screen	like	the	following:

5.	 Choose	an	instance	type	and	click	the	Next:	Configure	Instance	Details	button.	We

should	now	see	a	screen	like	the	following:

Note
We	won’t	be	getting	into	the	details	of	each	of	these	options.	Suffice	to	say	that	if	we
are	working	on	smaller	production	sites,	chances	are	we	can	leave	most	of	these
options	with	their	default	values.

6.	 Make	sure	Shutdown	behavior	is	set	to	Stop.
7.	 While	still	on	the	Step	3:	Configure	Instance	Details	screen,	scroll	down	to	the

bottom	Advanced	Details	area	and	expand	it.	We	should	see	a	screen	like	the
following:

8.	 The	User	Data	input	is	where	we	will	copy	and	paste	the	auto-setup	bash	script
described	in	the	previous	section,	as	shown	in	the	following	screenshot:

9.	 Once	we	copy	and	paste	in	the	User	Data,	click	on	the	Next:	Add	Storage	button.
This	should	bring	up	the	screen	as	shown	in	the	following	screenshot:

10.	 Within	Step	4:	Add	Storage,	we	can	select	one	or	more	volumes	to	attach	to	our
EC2	instance.	Preferably,	we	should	select	the	SSD	type	of	storage	for	faster
performance.	Once	the	volume	is	set,	click	on	Next:	Tag	Instance.	We	should	now
see	a	screen	like	the	following:

11.	 The	Tag	Instance	screen	allows	us	to	assign	tags.	Tags	enable	us	to	categorize	our
AWS	resource	by	purpose,	owner,	environment,	or	some	other	way.	Once	we	have
assigned	one	or	more	tags,	we	click	on	the	Next:	Configure	Security	Group	button.
We	should	now	see	a	screen	like	the	following:

12.	 The	Configure	Security	Group	screen	allows	us	to	set	rules	for	inbound	and
outbound	traffic.	We	want	to	be	able	to	access	SSH,	HTTP,	HTTPs,	and	SMTP
services	on	the	box.	Once	we	add	the	rules	we	want,	click	on	the	Review	and
Launch	button.	This	opens	a	screen	like	the	following:

13.	 The	Review	Instance	Launch	screen	is	where	we	can	view	the	summary	of	the	box
we	configured	up	to	this	point.	If	needed,	we	can	go	back	and	edit	individual	settings.

Once	we	are	satisfied	with	the	summary,	we	click	on	the	Launch	button.	This	opens
a	popup	like	the	following:

14.	 Here,	we	get	to	choose	an	existing	security	key,	or	create	a	new	one.	Keys	are
provided	in	PEM	format.	Once	we	select	the	key,	we	click	on	the	Launch	Instance
button.

We	should	now	see	the	Launch	Status	screen	like	the	following:

15.	 Clicking	on	the	instance	name	link	should	throw	us	back	at	the	EC2	Dashboard	like
shown	in	the	following	screenshot:

With	regard	to	the	preceding	image,	we	should	now	be	able	to	connect	to	our	EC2	box
with	either	one	of	the	following	console	commands:

ssh	-i	/path/to/magento-box.pem	ubuntu@ec2-52-29-35-49.eu-central-

1.compute.amazonaws.com

ssh	-i	/path/to/magento-box.pem	ubuntu@52.29.35.49

It	might	take	some	time	for	our	EC2	box	to	execute	all	of	the	shell	commands	passed	to	it.
We	can	conveniently	SSH	into	the	box	and	then	execute	the	following	command	to	get	an
overview	of	current	progress:

sudo	tail	-f	/var/tmp/box-progress.txt

With	this,	we	conclude	our	instance	launch	process.

Setting	up	Elastic	IP	and	DNS
Now	that	we	have	an	EC2	box	in	place,	let’s	go	ahead	and	create	the	so-called	Elastic	IP
for	it.	The	Elastic	IP	address	is	a	static	IP	address	designed	for	dynamic	cloud	computing.
It	is	tied	to	the	AWS	account,	and	not	some	specific	instance.	This	makes	it	convenient	to
easily	re-map	it	from	one	instance	to	another.

Let’s	go	ahead	and	create	an	Elastic	IP	as	follows:

1.	 Log	in	to	the	AWS	console.
2.	 Under	the	Compute	group,	click	on	EC2,	which	should	get	us	to	the	EC2

Dashboard.
3.	 Under	the	EC2	Dashboard,	in	the	left	area	under	Network	and	Security	grouping,

click	on	Elastic	IPs.	This	should	open	a	screen	like	the	following:

4.	 Click	on	the	Allocate	New	Address	button,	which	should	open	a	popup	like	the
following:

5.	 Click	on	the	Yes,	Allocate	button,	which	should	open	another	popup	like	the
following:

6.	 Now	that	the	Elastic	IP	address	is	created,	right-clicking	on	it	within	the	table	listing
should	bring	up	the	options	menu	as	shown	in	the	following	screenshot:

7.	 Click	on	the	Associate	Address	link.	This	should	open	a	popup	like	the	following:

8.	 On	the	Associate	Address	popup,	we	select	the	Instance	to	which	we	want	to	assign
the	Elastic	IP	address	and	click	on	the	Associate	button.

At	this	point,	our	EC2	box	has	a	static	(Elastic	IP)	address	assigned.	We	can	now	log	in	to
our	domain	registrar	and	point	the	A-record	of	our	DNS	to	the	Elastic	IP	we	just	created.

Until	we	wait	for	the	DNS	change	to	kick	in,	there	is	one	more	thing	we	need	to	address.
We	need	to	SSH	into	our	box	and	execute	the	following	set	of	commands:

mysql	-uroot	-pRrkSBi6VDg6C	-e	"USE	magento;	UPDATE	core_config_data	SET	

value	=	'http://our-domain.something/'	WHERE	path	LIKE	

"%web/unsecure/base_url%";"

php	/var/www/html/bin/magento	cache:flush

This	will	update	the	Magento	URL,	so	we	can	access	it	via	a	web	browser	once	the	DNS
change	kicks	in.	With	a	little	bit	of	upfront	planning,	we	could	have	easily	made	this	bit	a
part	of	the	user	data	for	our	EC2	instance,	simply	by	providing	the	right	--base-url

parameter	value	in	the	first	place.

Summary
Throughout	this	chapter,	we	focused	on	two	main	things:	setting	up	development	and
production	environments.

As	part	of	the	development	environment,	we	embraced	free	software	such	as	VirtualBox
and	Vagrant	to	manage	our	environment	setup.	The	setup	alone	came	down	to	a	single
Vagrantfile	script	that	contained	the	necessary	set	of	commands	to	install	everything
from	the	Ubuntu	server,	PHP,	Apache,	MySQL,	and	even	Magento	itself.	We	should	by	no
means	look	at	this	script	as	final	and	only	as	a	valid	script	to	set	up	our	development
environment.	Investing	time	in	making	the	development	environment	closer	to	the	project-
specific	requirements	pays	off	in	terms	of	team	productivity.

We	then	moved	on	to	the	production	environment.	Here,	we	looked	into	Amazon	Web
Services,	utilizing	S3	and	EC2	along	the	way.	The	production	environment	also	came	with
its	own	scripted	installation	process	that	sets	most	of	the	things.	Similarly,	this	script	is	by
no	means	final	and	is	only	a	valid	way	to	set	things	up;	it’s	more	of	a	base	example	of	how
to	do	it.

In	the	next	chapter,	we	will	take	a	closer	look	at	some	of	programming	concepts	and
conventions.

Chapter	3.	Programming	Concepts	and
Conventions
With	years	of	experience,	the	Magento	platform	grew	up	to	implement	a	lot	of	industry
concepts,	standards,	and	conventions.	Throughout	this	chapter,	we	will	look	into	several	of
these	independent	sections	that	stand	out	in	day-to-day	interactions	with	Magento
development.

We	will	go	through	the	following	sections	in	this	chapter:

Composer
Service	contracts
Code	generation
The	var	directory
Coding	standards

Composer
Composer	is	a	tool	that	handles	dependency	management	in	PHP.	It	is	not	a	package
manager	like	Yum	and	Apt	on	Linux	systems	are.	Though	it	deals	with	libraries
(packages),	it	does	so	on	a	per-project	level.	It	does	not	install	anything	globally.
Composer	is	a	multiplatform	tool.	Therefore,	it	runs	equally	well	on	Windows,	Linux,	and
OS	X.

Installing	Composer	on	a	machine	is	as	simple	as	running	the	installer	in	the	project
directory	by	using	the	following	command:

curl	-sS	https://getcomposer.org/installer	|	php

More	information	about	the	installation	of	Composer	can	be	found	on	its	official	website,
which	can	be	viewed	by	visiting	https://getcomposer.org.

Composer	is	used	to	fetch	Magento	and	the	third-party	components	that	it	uses.	As	seen	in
the	previous	chapter,	the	following	composer	command	is	what	pulls	everything	into	the
specified	directory:

composer	create-project	--repository-url=https://repo.magento.com/	

magento/project-enterprise-edition	<installation	directory	name>

Once	Magento	is	downloaded	and	installed,	there	are	numerous	composer.json	files	that
can	be	found	in	its	directory.	Assuming	<installation	directory	name>	is	magento2,	if
we	were	to	do	a	quick	search	executing	command	such	as	find	magento2/	-name
'composer.json',	that	would	yield	over	100	composer.json	files.	Some	of	these	files	are
(partially)	listed	here:

/vendor/magento/module-catalog/composer.json

/vendor/magento/module-cms/composer.json

/vendor/magento/module-contact/composer.json

/vendor/magento/module-customer/composer.json

/vendor/magento/module-sales/composer.json

/...

/vendor/magento/theme-adminhtml-backend/composer.json

/vendor/magento/theme-frontend-blank/composer.json

/vendor/magento/theme-frontend-luma/composer.json

/vendor/magento/language-de_de/composer.json

/vendor/magento/language-en_us/composer.json

/...

/composer.json

/dev/tests/...

/vendor/magento/framework/composer.json

The	most	relevant	file	is	probably	the	composer.json	file	in	the	root	of	the	magento
directory.	Its	content	appears	like	this:

{

				"name":	"magento/project-community-edition",

				"description":	"eCommerce	Platform	for	Growth	(Community	Edition)",

				"type":	"project",

				"version":	"2.0.0",

https://getcomposer.org

				"license":	[

								"OSL-3.0",

								"AFL-3.0"

],

				"repositories":	[

								{

												"type":	"composer",

												"url":	"https://repo.magento.com/"

								}

],

				"require":	{

								"magento/product-community-edition":	"2.0.0",

								"composer/composer":	"@alpha",

								"magento/module-bundle-sample-data":	"100.0.*",

								"magento/module-widget-sample-data":	"100.0.*",

								"magento/module-theme-sample-data":	"100.0.*",

								"magento/module-catalog-sample-data":	"100.0.*",

								"magento/module-customer-sample-data":	"100.0.*",

								"magento/module-cms-sample-data":	"100.0.*",

								"magento/module-catalog-rule-sample-data":	"100.0.*",

								"magento/module-sales-rule-sample-data":	"100.0.*",

								"magento/module-review-sample-data":	"100.0.*",

								"magento/module-tax-sample-data":	"100.0.*",

								"magento/module-sales-sample-data":	"100.0.*",

								"magento/module-grouped-product-sample-data":	"100.0.*",

								"magento/module-downloadable-sample-data":	"100.0.*",

								"magento/module-msrp-sample-data":	"100.0.*",

								"magento/module-configurable-sample-data":	"100.0.*",

								"magento/module-product-links-sample-data":	"100.0.*",

								"magento/module-wishlist-sample-data":	"100.0.*",

								"magento/module-swatches-sample-data":	"100.0.*",

								"magento/sample-data-media":	"100.0.*",

								"magento/module-offline-shipping-sample-data":	"100.0.*"

				},

				"require-dev":	{

								"phpunit/phpunit":	"4.1.0",

								"squizlabs/php_codesniffer":	"1.5.3",

								"phpmd/phpmd":	"@stable",

								"pdepend/pdepend":	"2.0.6",

								"sjparkinson/static-review":	"~4.1",

								"fabpot/php-cs-fixer":	"~1.2",

								"lusitanian/oauth":	"~0.3	<=0.7.0"

				},

				"config":	{

								"use-include-path":	true

				},

				"autoload":	{

								"psr-4":	{

												"Magento\\Framework\\":	"lib/internal/Magento/Framework/",

												"Magento\\Setup\\":	"setup/src/Magento/Setup/",

												"Magento\\":	"app/code/Magento/"

								},

								"psr-0":	{

												"":	"app/code/"

								},

								"files":	[

												"app/etc/NonComposerComponentRegistration.php"

]

				},

				"autoload-dev":	{

								"psr-4":	{

												"Magento\\Sniffs\\":	

"dev/tests/static/framework/Magento/Sniffs/",

												"Magento\\Tools\\":	"dev/tools/Magento/Tools/",

												"Magento\\Tools\\Sanity\\":	"dev/build/publication/sanity/	

Magento/Tools/Sanity/",

												"Magento\\TestFramework\\Inspection\\":	

"dev/tests/static/framework/Magento/	TestFramework/Inspection/",

												"Magento\\TestFramework\\Utility\\":	

"dev/tests/static/framework/Magento/	TestFramework/Utility/"

								}

				},

				"minimum-stability":	"alpha",

				"prefer-stable":	true,

				"extra":	{

								"magento-force":	"override"

				}

}

Composer’s	JSON	file	follows	a	certain	schema.	You	will	find	a	detailed	documentation
of	this	schema	at	https://getcomposer.org/doc/04-schema.md.	Applying	to	the	schema
ensures	validity	of	the	composer	file.	We	can	see	that	all	the	listed	keys	such	as	name,
description,	require,	config,	and	so	on,	are	defined	by	the	schema.

Let’s	take	a	look	at	the	individual	module’s	composer.json	file.	One	of	the	simpler
modules	with	the	least	amount	of	dependencies	is	the	Contact	module	with	its
vendor/magento/module-contact/composer.json	content,	which	looks	like	this:

{

				"name":	"magento/module-contact",

				"description":	"N/A",

				"require":	{

								"php":	"~5.5.0|~5.6.0|~7.0.0",

								"magento/module-config":	"100.0.*",

								"magento/module-store":	"100.0.*",

								"magento/module-backend":	"100.0.*",

								"magento/module-customer":	"100.0.*",

								"magento/module-cms":	"100.0.*",

								"magento/framework":	"100.0.*"

				},

				"type":	"magento2-module",

				"version":	"100.0.2",

				"license":	[

								"OSL-3.0",

								"AFL-3.0"

],

				"autoload":	{

								"files":	[

												"registration.php"

],

								"psr-4":	{

https://getcomposer.org/doc/04-schema.md

												"Magento\\Contact\\":	""

								}

				}

}

You	will	see	that	the	modules	define	dependencies	on	the	PHP	version	and	other	modules.
Furthermore,	you	will	see	the	use	of	PSR-4	for	autoloading	and	the	direct	loading	of	the
registration.php	file.

Next,	let’s	take	a	look	at	the	contents	of	vendor/magento/language-
en_us/composer.json	from	the	en_us	language	module:

{

				"name":	"magento/language-en_us",

				"description":	"English	(United	States)	language",

				"version":	"100.0.2",

				"license":	[

								"OSL-3.0",

								"AFL-3.0"

],

				"require":	{

								"magento/framework":	"100.0.*"

				},

				"type":	"magento2-language",

				"autoload":	{

								"files":	[

												"registration.php"

]

				}

}

Finally,	let’s	take	a	look	at	the	contents	of	vendor/magento/theme-frontend-
luma/composer.json	from	the	luma	theme:

{

				"name":	"magento/theme-frontend-luma",

				"description":	"N/A",

				"require":	{

								"php":	"~5.5.0|~5.6.0|~7.0.0",

								"magento/theme-frontend-blank":	"100.0.*",

								"magento/framework":	"100.0.*"

				},

				"type":	"magento2-theme",

				"version":	"100.0.2",

				"license":	[

								"OSL-3.0",

								"AFL-3.0"

],

				"autoload":	{

								"files":	[

												"registration.php"

]

				}

}

As	mentioned	previously,	there	are	a	lot	more	composer	files	scattered	around	Magento.

Service	contracts
A	service	contract	is	a	set	of	PHP	interfaces	that	is	defined	by	a	module.	This	contract
comprises	data	interfaces	and	service	interfaces.

The	role	of	the	data	interface	is	to	preserve	data	integrity,	while	the	role	of	the	service
interface	is	to	hide	the	business	logic	details	from	service	consumers.

Data	interfaces	define	various	functions,	such	as	validation,	entity	information,	search
related	functions,	and	so	on.	They	are	defined	within	the	Api/Data	directory	of	an
individual	module.	To	better	understand	the	actual	meaning	of	it,	let’s	take	a	look	at	the
data	interfaces	for	the	Magento_Cms	module.	In	the	vendor/magento/module-
cms/Api/Data/	directory,	there	are	four	interfaces	defined,	as	follows:

BlockInterface.php

BlockSearchResultsInterface.php

PageInterface.php

PageSearchResultsInterface.php

The	CMS	module	actually	deals	with	two	entities,	one	being	Block	and	the	other	one	being
Page.	Looking	at	the	interfaces	defined	in	the	preceding	code,	we	can	see	that	we	have
separate	data	interface	for	the	entity	itself	and	separate	data	interface	for	search	results.

Let’s	take	a	closer	look	at	the	(stripped)	contents	of	the	BlockInterface.php	file,	which	is
defined	as	follows:

namespace	Magento\Cms\Api\Data;

interface	BlockInterface

{

				const	BLOCK_ID						=	'block_id';

				const	IDENTIFIER				=	'identifier';

				const	TITLE									=	'title';

				const	CONTENT							=	'content';

				const	CREATION_TIME	=	'creation_time';

				const	UPDATE_TIME			=	'update_time';

				const	IS_ACTIVE					=	'is_active';

				public	function	getId();

				public	function	getIdentifier();

				public	function	getTitle();

				public	function	getContent();

				public	function	getCreationTime();

				public	function	getUpdateTime();

				public	function	isActive();

				public	function	setId($id);

				public	function	setIdentifier($identifier);

				public	function	setTitle($title);

				public	function	setContent($content);

				public	function	setCreationTime($creationTime);

				public	function	setUpdateTime($updateTime);

				public	function	setIsActive($isActive);

}

The	preceding	interface	defines	all	the	getter	and	setter	methods	for	the	entity	at	hand
along	with	the	constant	values	that	denote	entity	field	names.	These	data	interfaces	do	not
include	management	actions,	such	as	delete.	The	implementation	of	this	specific
interface	can	be	seen	in	the	vendor/magento/module-cms/Model/Block.php	file,	where
these	constants	come	to	use,	as	follows	(partially):

public	function	getTitle()

{

				return	$this->getData(self::TITLE);

}

public	function	setTitle($title)

{

				return	$this->setData(self::TITLE,	$title);

}

Service	interfaces	are	the	ones	that	include	management,	repository,	and	metadata
interfaces.	These	interfaces	are	defined	directly	within	the	module’s	Api	directory.
Looking	back	at	the	Magento	Cms	module,	its	vendor/magento/module-cms/Api/
directory	has	two	service	interfaces,	which	are	defined	as	follows:

BlockRepositoryInterface.php

PageRepositoryInterface.php

A	quick	look	into	the	contents	of	BlockRepositoryInterface.php	reveals	the	following
(partial)	content:

namespace	Magento\Cms\Api;

use	Magento\Framework\Api\SearchCriteriaInterface;

interface	BlockRepositoryInterface

{

				public	function	save(Data\BlockInterface	$block);

				public	function	getById($blockId);

				public	function	getList(SearchCriteriaInterface	$searchCriteria);

				public	function	delete(Data\BlockInterface	$block);

				public	function	deleteById($blockId);

}

Here,	we	see	methods	that	are	used	to	save,	fetch,	search,	and	delete	the	entity.

These	interfaces	are	then	implemented	via	the	Web	API	definitions,	as	we	will	see	later	in
Chapter	9,	The	Web	API.	The	result	is	well-defined	and	durable	API’s	that	other	modules
and	third-party	integrators	can	consume.

Code	generation
One	of	the	neat	features	of	the	Magento	application	is	code	generation.	Code	generation,
as	implied	by	its	name,	generates	nonexistent	classes.	These	classes	are	generated	in
Magento’s	var/generation	directory.

The	directory	structure	within	var/generation	is	somewhat	similar	to	that	of	the	core
vendor/magento/module-*	and	app/code	directories.	To	be	more	precise,	it	follows	the
module	structure.	The	code	is	generated	for	something	that	is	called	Factory,	Proxy,	and
Interceptor	classes.

The	Factory	class	creates	an	instance	of	a	type.	For	example,	a
var/generation/Magento/Catalog/Model/ProductFactory.php	file	with	a
Magento\Catalog\Model\ProductFactory	class	has	been	created	because	somewhere
within	the	vendor/magento	directory	and	its	code,	there	is	a	call	to	the
Magento\Catalog\Model\ProductFactory	class,	which	originally	does	not	exist	in
Magento.	During	runtime,	when	{someClassName}Factory	is	called	in	the	code,	Magento
creates	a	Factory	class	under	the	var/generation	directory	if	it	does	not	exist.	The
following	code	is	an	example	of	the	(partial)	ProductFactory	class:

namespace	Magento\Catalog\Model;

/**

*	Factory	class	for	@see	\Magento\Catalog\Model\Product

*/

class	ProductFactory

{

				//...

				/**

				*	Create	class	instance	with	specified	parameters

				*

				*	@param	array	$data

				*	@return	\Magento\Catalog\Model\Product

				*/

				public	function	create(array	$data	=	array())

				{

								return	$this->_objectManager->create($this->_instanceName,	$data);

				}

}

Note	the	create	method	that	creates	and	returns	the	Product	type	instance.	Also,	note
how	the	generated	code	is	type	safe	providing	@return	annotation	for	integrated
development	environments	(IDEs)	to	support	the	autocomplete	functionality.

Factories	are	used	to	isolate	an	object	manager	from	the	business	code.	Factories	can	be
dependent	on	the	object	manager,	unlike	business	objects.

The	Proxy	class	is	a	wrapper	for	some	base	class.	Proxy	classes	provide	better
performance	than	the	base	classes	because	they	can	be	instantiated	without	instantiating	a
base	class.	A	base	class	is	instantiated	only	when	one	of	its	methods	is	called.	This	is

highly	convenient	for	cases	where	the	base	class	is	used	as	a	dependency,	but	it	takes	a	lot
of	time	to	instantiate,	and	its	methods	are	used	only	during	some	paths	of	execution.

Like	Factory,	the	Proxy	classes	are	also	generated	under	the	var/generation	directory.

If	we	were	to	take	a	look	at	the
var/generation/Magento/Catalog/Model/Session/Proxy.php	file	that	contains	the
Magento\Catalog\Model\Session\Proxy	class,	we	would	see	that	it	actually	extends
\Magento\Catalog\Model\Session.	The	wrapping	Proxy	class	implements	several
magical	methods	along	the	way,	such	as	__sleep,	__wakeup,	__clone,	and	__call.

Interceptor	is	yet	another	class	type	that	gets	autogenerated	by	Magento.	It	is	related	to	the
plugins	feature,	which	will	be	discussed	in	detail	later	in	Chapter	6,	Plugins.

In	order	to	trigger	code	regeneration,	we	can	use	the	code	compiler	that	is	available	on	the
console.	We	can	run	either	the	single-tenant	compiler	or	the	multi-tenant	compiler.

The	single-tenant	implies	one	website	and	store,	and	it	is	executed	by	using	the	following
command:

magento	setup:di:compile

The	multi-tenant	implies	more	than	one	independent	Magento	application,	and	it	is
executed	by	using	following	command.

magento	setup:di:compile-multi-tenant

Code	compilation	generates	factories,	proxies,	interceptors,	and	several	other	classes,	as
listed	in	the	setup/src/Magento/Setup/Module/Di/App/Task/Operation/	directory.

The	var	directory
Magento	does	a	lot	of	caching	and	autogeneration	of	certain	class	types.	These	caches	and
generated	classes	are	all	located	in	Magento’s	root	var	directory.	The	usual	contents	of	the
var	directory	is	as	follows:

cache

composer_home

generation

log

di

view_preprocessed

page_cache

During	development,	we	will	most	likely	need	to	periodically	clear	these	so	that	our
changes	can	kick	in.

We	can	issue	the	console	command	as	follows	to	clear	individual	directories:

rm	-rf	{Magento	root	dir}/var/generation/*

Alternatively,	we	can	use	the	built-in	bin/magento	console	tool	to	trigger	commands	that
will	delete	the	proper	directories	for	us,	as	follows:

bin/magento	setup:upgrade:	This	updates	the	Magento	database	schema	and	data.
While	doing	this,	it	truncates	the	var/di	and	var/generation	directories.
bin/magento	setup:di:compile:	This	clears	the	var/generation	directory.	After
doing	this,	it	compiles	the	code	in	it	again.
bin/magento	deploy:mode:set	{mode}:	This	changes	the	mode	from	the	developer
mode	to	the	production	mode	and	vice	versa.	While	doing	this,	it	truncates	the
var/di,	var/generation,	and	var/view_preprocessed	directories.
bin/magento	cache:clean	{type}:	This	cleans	the	var/cache	and	var/page_cache
directories.

It	is	important	to	keep	the	var	directory	in	mind	at	all	times	during	development.
Otherwise,	the	code	might	encounter	exceptions	and	function	improperly.

Coding	standards
Coding	standards	are	a	result	of	conventions	designed	to	produce	high-quality	code.
Adopting	certain	standards	yields	better	code	quality,	reduces	the	time	taken	to	develop,
and	minimizes	maintenance	cost.	Following	coding	standards	requires	knowing	the
standards	in	question	and	meticulously	applying	it	to	every	aspect	of	the	code	that	we
write.

There	are	several	coding	standards	that	Magento	abides	by,	such	as	the	following	ones:

The	code	demarcation	standard
The	PHP	coding	standard
The	JavaScript	coding	standard
The	jQuery	widget	coding	standard
The	DocBlock	standard
JavaScript	DocBlock	standard
The	LESS	coding	standard

The	code	demarcation	standard	speaks	of	decoupling	HTML,	CSS,	and	JS	from	PHP
classes.	By	doing	so,	the	backend-related	development	stays	unaffected	by	frontend
development	and	vice	versa.	This	means	that	we	can	make	business	logic	changes	without
fearing	a	broken	frontend.

The	PHP	coding	standard	refers	to	PSR-1:	Basic	Coding	Standard	and	PSR-2:	Coding
Style	Guide	that	are	described	at	http://www.php-fig.org.	PSR-1	touches	on	PHP
filenames,	class	names,	namespaces,	class	constant,	properties,	and	methods.	PSR-2
extends	the	PSR-1	by	touching	upon	the	actual	inners	of	a	class,	such	as	spaces,	braces,
method	and	properties	visibility,	control	structures,	and	so	on.

The	JavaScript	coding	standard	is	based	on	the	Google	JavaScript	Style	Guide	found	at
https://google.github.io/styleguide/javascriptguide.xml.	This	coding	standard	touches	on
the	JavaScript	language	and	coding	style	rules.	It	is	a	lot	like	PSR-1	and	PSR-2	for	PHP.

The	jQuery	widget	coding	standard	is	flagged	as	mandatory	for	Magento	core	developers
and	recommended	for	third-party	developers.	It	goes	without	saying	how	important
jQuery	UI	widgets	are	in	Magento.	The	standard	describes	several	things,	such	as	widget
naming,	instantiation,	extension,	DOM	event	bubbling,	and	so	on.

The	DocBlock	standard	touches	on	the	requirements	and	conventions	for	the	addition	of
inline	code	documentation.	The	idea	is	to	unify	the	usage	of	code	DocBlocks	for	all	files
regardless	of	the	programming	language	in	use.	However,	a	DocBlock	standard	for	that
particular	language	may	override	it.

The	JavaScript	DocBlock	standard	relates	to	the	JavaScript	code	files	and	their	inline
documentation.	It	is	a	subset	of	Google	JavaScript	Style	Guide	and	JSDoc,	which	can	be
found	at	http://usejsdoc.org.

The	LESS	coding	standard	defines	the	formatting	and	coding	style	when	working	with
LESS	and	CSS	files.

http://www.php-fig.org
https://google.github.io/styleguide/javascriptguide.xml
http://usejsdoc.org

Note
You	can	read	more	about	the	actual	details	of	each	standard	at
http://devdocs.magento.com,	as	they	are	too	extensive	to	be	covered	in	this	book.

http://devdocs.magento.com

Summary
In	this	chapter,	we	took	a	look	at	Composer,	which	is	one	of	the	first	things	that	we	will
interact	with	when	installing	Magento.	We	then	moved	on	to	service	contracts	as	one	of
the	strongest	Magento	architectural	parts,	which	turned	out	to	be	good	old	PHP	interfaces
in	use.	Further,	we	covered	some	bits	about	the	Magento	code	generation	feature.	Thus,
we	have	a	basic	knowledge	of	the	Factory	and	Proxy	classes.	We	then	had	a	look	at	the
var	directory	and	explored	its	role,	especially	during	development.	Finally,	we	touched
upon	the	coding	standards	used	in	Magento.

In	the	next	chapter,	we	will	discuss	the	dependency	injection,	which	is	one	of	the	most
important	architectural	parts	of	Magento.

Chapter	4.	Models	and	Collections
Like	most	modern	frameworks	and	platforms,	these	days	Magento	embraces	an	Object
Relational	Mapping	(ORM)	approach	over	raw	SQL	queries.	Though	the	underlying
mechanism	still	comes	down	to	SQL,	we	are	now	dealing	strictly	with	objects.	This	makes
our	application	code	more	readable,	manageable,	and	isolated	from	vendor-specific	SQL
differences.	Model,	resource,	and	collection	are	three	types	of	classes	working	together	to
allow	us	full	entity	data	management,	from	loading,	saving,	deleting,	and	listing	entities.
The	majority	of	our	data	access	and	management	will	be	done	via	PHP	classes	called
Magento	models.	Models	themselves	don’t	contain	any	code	for	communicating	with	the
database.

The	database	communication	part	is	decoupled	into	its	own	PHP	class	called	resource
class.	Each	model	is	then	assigned	a	resource	class.	Calling	load,	save,	or	delete
methods	on	models	get	delegated	to	resource	classes,	as	they	are	the	ones	to	actually	read,
write,	and	delete	data	from	the	database.	Theoretically,	with	enough	knowledge,	it	is
possible	to	write	new	resource	classes	for	various	database	vendors.

Next	to	the	model	and	resource	classes,	we	have	collection	classes.	We	can	think	of	a
collection	as	an	array	of	individual	model	instances.	On	a	base	level,	collections	extend
from	the	\Magento\Framework\Data\Collection	class,	which	implements
\IteratorAggregate	and	\Countable	from	Standard	PHP	Library	(SPL)	and	a	few
other	Magento-specific	classes.

More	often	than	not,	we	look	at	model	and	resource	as	a	single	unified	thing,	thus	simply
calling	it	a	model.	Magento	deals	with	two	types	of	models,	which	we	might	categorize	as
simple	and	EAV	models.

In	this	chapter,	we	will	cover	the	following	topics:

Creating	a	miniature	module
Creating	a	simple	model
The	EAV	model
Understanding	the	flow	of	schema	and	data	scripts
Creating	an	install	schema	script	(InstallSchema.php)
Creating	an	upgrade	schema	script	(UpgradeSchema.php)
Creating	an	install	data	script	(InstallData.php)
Creating	an	upgrade	data	script	(UpgradeData.php)
Entity	CRUD	actions
Managing	collections

Creating	a	miniature	module
For	the	purpose	of	this	chapter,	we	will	create	a	miniature	module	called
Foggyline_Office.

The	module	will	have	two	entities	defined	as	follows:

Department:	a	simple	model	with	the	following	fields:

entity_id:	primary	key
name:	name	of	department,	string	value

Employee:	an	EAV	model	with	the	following	fields	and	attributes:

Fields:

entity_id:	primary	key
department_id:	foreign	key,	pointing	to	Department.entity_id
email:	unique	e-mail	of	an	employee,	string	value
first_name:	first	name	of	an	employee,	string	value
last_name:	last	name	of	an	employee,	string	value

Attributes:

service_years:	employee’s	years	of	service,	integer	value
dob:	employee’s	date	of	birth,	date-time	value
salary	–	monthly	salary,	decimal	value
vat_number:	VAT	number,	(short)	string	value
note:	possible	note	on	employee,	(long)	string	value

Every	module	starts	with	the	registration.php	and	module.xml	files.	For	the	purpose	of
our	chapter	module,	let’s	create	the	app/code/Foggyline/Office/registration.php	file
with	content	as	follows:

<?php

\Magento\Framework\Component\ComponentRegistrar::register(

				\Magento\Framework\Component\ComponentRegistrar::MODULE,

				'Foggyline_Office',

				__DIR__

);

The	registration.php	file	is	sort	of	an	entry	point	to	our	module.

Now	let’s	create	the	app/code/Foggyline/Office/etc/module.xml	file	with	the
following	content:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module/	

etc/module.xsd">

				<module	name="Foggyline_Office"	setup_version="1.0.0">

								<sequence>

												<module	name="Magento_Eav"/>

								</sequence>

				</module>

</config>

We	will	get	into	more	details	about	the	structure	of	the	module.xml	file	in	later	chapters.
Right	now,	we	will	only	focus	on	the	setup_version	attribute	and	module	element	within
sequence.

The	value	of	setup_version	is	important	because	we	might	use	it	within	our	schema
install	script	(InstallSchema.php)	files,	effectively	turning	the	install	script	into	an
update	script,	as	we	will	show	soon.

The	sequence	element	is	Magento’s	way	of	setting	dependencies	for	our	module.	Given
that	our	module	will	make	use	of	EAV	entities,	we	list	Magento_Eav	as	a	dependency.

Creating	a	simple	model
The	Department	entity,	as	per	requirements,	is	modeled	as	a	simple	model.	We	previously
mentioned	that	whenever	we	talk	about	models,	we	implicitly	think	of	model	class,
resource	class,	and	collection	class	forming	one	unit.

Let’s	start	by	first	creating	a	model	class,	(partially)	defined	under	the
app/code/Foggyline/Office/Model/Department.php	file	as	follows:

namespace	Foggyline\Office\Model;

class	Department	extends	\Magento\Framework\Model\AbstractModel

{

				protected	function	_construct()

				{

								$this->	_init('Foggyline\Office\Model	\ResourceModel\Department');

				}

}

All	that	is	happening	here	is	that	we	are	extending	from	the
\Magento\Framework\Model\AbstractModel	class,	and	triggering	the	$this->_init
method	within	_construct	passing	it	our	resource	class.

The	AbstractModel	further	extends	\Magento\Framework\Object.	The	fact	that	our	model
class	ultimately	extends	from	Object	means	that	we	do	not	have	to	define	a	property	name
on	our	model	class.	What	Object	does	for	us	is	that	it	enables	us	to	get,	set,	unset,	and
check	for	a	value	existence	on	properties	magically.	To	give	a	more	robust	example	than
name,	imagine	our	entity	has	a	property	called	employee_average_salary	in	the
following	code:

$department->getData('employee_average_salary');

$department->getEmployeeAverageSalary();

$department->setData('employee_average_salary',	'theValue');

$department->setEmployeeAverageSalary('theValue');

$department->unsetData('employee_average_salary');

$department->unsEmployeeAverageSalary();

$department->hasData('employee_average_salary');

$department->hasEmployeeAverageSalary();

The	reason	why	this	works	is	due	to	Object	implementing	the	setData,	unsetData,
getData,	and	magic	__call	methods.	The	beauty	of	the	magic	__call	method
implementation	is	that	it	understands	method	calls	like	getEmployeeAverageSalary,
setEmployeeAverageSalary,	unsEmployeeAverageSalary,	and
hasEmployeeAverageSalary	even	if	they	do	not	exist	on	the	Model	class.	However,	if	we
choose	to	implement	some	of	these	methods	within	our	Model	class,	we	are	free	to	do	so
and	Magento	will	pick	it	up	when	we	call	it.

This	is	an	important	aspect	of	Magento,	sometimes	confusing	to	newcomers.

Once	we	have	a	model	class	in	place,	we	create	a	model	resource	class,	(partially)	defined
under	the	app/code/Foggyline/Office/Model/ResourceModel/Department.php	file	as
follows:

namespace	Foggyline\Office\Model\ResourceModel;

class	Department	extends	

\Magento\Framework\Model\ResourceModel\Db\AbstractDb

{

				protected	function	_construct()

				{

								$this->_init('foggyline_office_department',	'entity_id');

				}

}

Our	resource	class	that	extends	from
\Magento\Framework\Model\ResourceModel\Db\AbstractDb	triggers	the	$this->_init
method	call	within	_construct.	$this->_init	accepts	two	parameters.	The	first
parameter	is	the	table	name	foggyline_office_department,	where	our	model	will	persist
its	data.	The	second	parameter	is	the	primary	column	name	entity_id	within	that	table.

AbstractDb	further	extends
Magento\Framework\Model\ResourceModel\AbstractResource.

Note
The	resource	class	is	the	key	to	communicating	to	the	database.	All	it	takes	is	for	us	to
name	the	table	and	its	primary	key	and	our	models	can	save,	delete,	and	update	entities.

Finally,	we	create	our	collection	class,	(partially)	defined	under	the
app/code/Foggyline/Office/Model/ResourceModel/Department/Collection.php	file
as	follows:

namespace	Foggyline\Office\Model\ResourceModel\Department;

class	Collection	extends	\Magento\Framework\Model\ResourceModel	

\Db\Collection\AbstractCollection

{

				protected	function	_construct()

				{

								$this->_init(

												'Foggyline\Office\Model\Department',

												'Foggyline\Office\Model\ResourceModel\Department'

);

				}

}

The	collection	class	extends	from
\Magento\Framework\Model\ResourceModel\Db\Collection\AbstractCollection	and,
similar	to	the	model	and	resource	classes,	does	a	$this->_init	method	call	within
_construct.	This	time,	_init	accepts	two	parameters.	The	first	parameter	is	the	full
model	class	name	Foggyline\Office\Model\Department,	and	the	second	parameter	is	the
full	resource	class	name	Foggyline\Office\Model\ResourceModel\Department.

AbstractCollection	implements
Magento\Framework\App\ResourceConnection\SourceProviderInterface,	and	extends
\Magento\Framework\Data\Collection\AbstractDb.	AbstractDb	further	extends
\Magento\Framework\Data\Collection.

It	is	worth	taking	some	time	to	study	the	inners	of	these	collection	classes,	as	this	is	our
go-to	place	for	whenever	we	need	to	deal	with	fetching	a	list	of	entities	that	match	certain
search	criteria.

Creating	an	EAV	model
The	Employee	entity,	as	per	requirements,	is	modeled	as	an	EAV	model.

Let’s	start	by	first	creating	an	EAV	model	class,	(partially)	defined	under	the
app/code/Foggyline/Office/Model/Employee.php	file	as	follows:

namespace	Foggyline\Office\Model;

class	Employee	extends	\Magento\Framework\Model\AbstractModel

{

				const	ENTITY	=	'foggyline_office_employee';

				public	function	_construct()

				{

								$this->	_init('Foggyline\Office	\Model	\ResourceModel\Employee');

				}

}

Here,	we	are	extending	from	the	\Magento\Framework\Model\AbstractModel	class,
which	is	the	same	as	with	the	simple	model	previously	described.	The	only	difference	here
is	that	we	have	an	ENTITY	constant	defined,	but	this	is	merely	syntactical	sugar	for	later
on;	it	bears	no	meaning	for	the	actual	model	class.

Next,	we	create	an	EAV	model	resource	class,	(partially)	defined	under	the
app/code/Foggyline/Office/Model/ResourceModel/Employee.php	file	as	follows:

namespace	Foggyline\Office\Model\ResourceModel;

class	Employee	extends	\Magento\Eav\Model\Entity\AbstractEntity

{

				protected	function	_construct()

				{

								$this->_read	=	'foggyline_office_employee_read';

								$this->_write	=	'foggyline_office_employee_write';

				}

				public	function	getEntityType()

				{

								if	(empty($this->_type))	{

												$this->setType(\Foggyline\Office\Model	\Employee::ENTITY);

								}

								return	parent::getEntityType();

				}

}

Our	resource	class	extends	from	\Magento\Eav\Model\Entity\AbstractEntity,	and
sets	the	$this->_read,	$this->_write	class	properties	through	_construct.	These	are
freely	assigned	to	whatever	value	we	want,	preferably	following	the	naming	pattern	of	our
module.	The	read	and	write	connections	need	to	be	named	or	else	Magento	produces	an
error	when	using	our	entities.

The	getEntityType	method	internally	sets	the	_type	value	to

\Foggyline\Office\Model\Employee::ENTITY,	which	is	the	string
foggyline_office_employee.	This	same	value	is	what’s	stored	in	the	entity_type_code
column	within	the	eav_entity_type	table.	At	this	point,	there	is	no	such	entry	in	the
eav_entity_type	table.	This	is	because	the	install	schema	script	will	be	creating	one,	as
we	will	be	demonstrating	soon.

Finally,	we	create	our	collection	class,	(partially)	defined	under	the
app/code/Foggyline/Office/Model/ResourceModel/Employee/Collection.php	file	as
follows:

namespace	Foggyline\Office\Model\ResourceModel\Employee;

class	Collection	extends	

\Magento\Eav\Model\Entity\Collection\AbstractCollection

{

				protected	function	_construct()

				{

								$this->_init('Foggyline\Office\Model\Employee',	

'Foggyline\Office\Model\ResourceModel\Employee');

				}

}

The	collection	class	extends	from
\Magento\Eav\Model\Entity\Collection\AbstractCollection	and,	similar	to	the
model	class,	does	a	$this->_init	method	call	within	_construct.	_init	accepts	two
parameters:	the	full	model	class	name	Foggyline\Office\Model\Employee,	and	the	full
resource	class	name	Foggyline\Office\Model\ResourceModel\Employee.

AbstractCollection	has	the	same	parent	tree	as	the	simple	model	collection	class,	but	on
its	own	it	implements	a	lot	of	EAV	collection-specific	methods	like
addAttributeToFilter,	addAttributeToSelect,	addAttributeToSort,	and	so	on.

Note
As	we	can	see,	EAV	models	look	a	lot	like	simple	models.	The	difference	lies	mostly	in
the	resource	class	and	collection	class	implementations	and	their	first	level	parent
classes.	However,	we	need	to	keep	in	mind	that	the	example	given	here	is	the	simplest	one
possible.	If	we	look	at	the	eav_entity_type	table	in	the	database,	we	can	see	that	other
entity	types	make	use	of	attribute_model,	entity_attribute_collection,
increment_model,	and	so	on.	These	are	all	advanced	properties	we	can	define	alongside
our	EAV	model	making	it	closer	to	the	implementation	of	the	catalog_product	entity
type,	which	is	probably	the	most	robust	one	in	Magento.	This	type	of	advanced	EAV
usage	is	out	of	the	scope	of	this	book	as	it	is	probably	worth	a	book	on	its	own.

Now	that	we	have	simple	and	EAV	models	in	place,	it	is	time	to	look	into	installing	the
necessary	database	schema	and	possibly	pre-fill	it	with	some	data.	This	is	done	through
schema	and	data	scripts.

Understanding	the	flow	of	schema	and
data	scripts
Simply	put,	the	role	of	the	schema	scripts	is	to	create	a	database	structure	supporting	your
module	logic.	For	example,	creating	a	table	where	our	entities	would	persist	their	data.
The	role	of	the	data	scripts	is	to	manage	the	data	within	existing	tables,	usually	in	the	form
of	adding	some	sample	data	during	module	installation.

If	we	look	a	few	steps	back,	we	can	notice	how	schema_version	and	data_version	from
the	database	match	the	setup_version	number	from	our	module.xml	file.	They	all	imply
the	same	thing.	If	we	were	to	now	change	the	setup_version	number	in	our	module.xml
file	and	run	the	php	bin/magento	setup:upgrade	console	command	again,	our	database
schema_version	and	data_version	would	get	updated	to	this	new	version	number.

This	is	done	through	module’s	install	and	upgrade	scripts.	If	we	take	a	quick	look	at	the
setup/src/Magento/Setup/Model/Installer.php	file,	we	can	see	a	function,
getSchemaDataHandler,	with	content	as	follows:

private	function	getSchemaDataHandler($moduleName,	$type)

{

				$className	=	str_replace('_',	'\\',	$moduleName)	.	'\Setup';

				switch	($type)	{

								case	'schema-install':

												$className	.=	'\InstallSchema';

												$interface	=	self::SCHEMA_INSTALL;

												break;

								case	'schema-upgrade':

												$className	.=	'\UpgradeSchema';

												$interface	=	self::SCHEMA_UPGRADE;

												break;

								case	'schema-recurring':

												$className	.=	'\Recurring';

												$interface	=	self::SCHEMA_INSTALL;

												break;

								case	'data-install':

												$className	.=	'\InstallData';

												$interface	=	self::DATA_INSTALL;

												break;

								case	'data-upgrade':

												$className	.=	'\UpgradeData';

												$interface	=	self::DATA_UPGRADE;

												break;

								default:

												throw	new	\Magento\Setup\Exception("$className	does	not	

exist");

				}

				return	$this->createSchemaDataHandler($className,	$interface);

}

This	is	what	tells	Magento	which	classes	to	pick	up	and	run	from	the	individual	module

Setup	directory.	We	will	ignore	the	Recurring	case	for	the	moment,	as	only	the
Magento_Indexer	module	uses	it.

For	the	first	time,	we	run	php	bin/magento	setup:upgrade	against	our	module;	while	it
still	has	no	entries	under	the	setup_module	table,	Magento	will	execute	the	files	within	the
module	Setup	folder	in	following	order:

InstallSchema.php

UpgradeSchema.php

InstallData.php

UpgradeData.php

Notice	that	this	is	the	same	order,	top	to	bottom,	as	in	the	getSchemaDataHandler	method.

Every	subsequent	upper	module	version	number	change,	followed	by	the	console	php
bin/magento	setup:upgrade	command,	would	result	in	the	following	files	being	run	in
the	order	as	listed:

UpgradeSchema.php

UpgradeData.php

Additionally,	Magento	would	record	the	upped	version	number	under	the	setup_module
database.	Magento	will	only	trigger	install	or	upgrade	scripts	when	the	version	number	in
the	database	is	less	than	the	version	number	in	the	module.xml	file.

Tip
We	are	not	required	to	always	provide	these	install	or	upgrade	scripts,	if	ever.	They	are
only	needed	when	we	need	to	add	or	edit	existing	tables	or	entries	in	a	database.

If	we	look	carefully	at	the	implementation	of	the	install	and	update	methods	within	the
appropriate	scripts,	we	can	see	they	both	accept	ModuleContextInterface	$context	as	a
second	parameter.	Since	upgrade	scripts	are	the	ones	triggering	on	every	upped	version
number,	we	can	use	$context->getVersion()	to	target	changes	specific	to	the	module
version.

Creating	an	install	schema	script
(InstallSchema.php)
Now	that	we	understand	the	flow	of	schema	and	data	scripts	and	their	relation	to	the
module	version	number,	let	us	go	ahead	and	start	assembling	our	InstallSchema.	We	start
by	defining	the	app/code/Foggyline/Office/Setup/InstallSchema.php	file	with
(partial)	content	as	follows:

namespace	Foggyline\Office\Setup;

use	Magento\Framework\Setup\InstallSchemaInterface;

use	Magento\Framework\Setup\ModuleContextInterface;

use	Magento\Framework\Setup\SchemaSetupInterface;

class	InstallSchema	implements	InstallSchemaInterface

{

				public	function	install(SchemaSetupInterface	$setup,	

ModuleContextInterface	$context)

				{

								$setup->startSetup();

								/*	#snippet1	*/

								$setup->endSetup();

				}

}

InstallSchema	conforms	to	InstallSchemaInterface,	which	requires	the
implementation	of	the	install	method	that	accepts	two	parameters	of	type
SchemaSetupInterface	and	ModuleContextInterface.

The	install	method	is	all	that	is	required	here.	Within	this	method,	we	would	add	any
relevant	code	we	might	have	to	create	the	tables	and	columns	we	need.

Looking	through	the	code	base,	we	can	see	that	Magento\Setup\Module\Setup	is	the	one
extending	\Magento\Framework\Module\Setup	and	implementing
SchemaSetupInterface.	The	two	methods	seen	in	the	preceding	code,	startSetup	and
endSetup,	are	used	to	run	additional	environment	setup	before	and	after	our	code.

Going	further,	let’s	replace	the	/*	#snippet1	*/	bit	with	code	that	will	create	our
Department	model	entity	table	as	follows:

$table	=	$setup->getConnection()

				->newTable($setup->getTable('foggyline_office_department'))

				->addColumn(

								'entity_id',

								\Magento\Framework\DB\Ddl\Table::TYPE_INTEGER,

								null,

								['identity'	=>	true,	'unsigned'	=>	true,	'nullable'	=>	false,	

'primary'	=>	true],

								'Entity	ID'

)

				->addColumn(

								'name',

								\Magento\Framework\DB\Ddl\Table::TYPE_TEXT,

								64,

								[],

								'Name'

)

				->setComment('Foggyline	Office	Department	Table');

$setup->getConnection()->createTable($table);

/*	#snippet2	*/

Here,	we	are	instructing	Magento	to	create	a	table	named	foggyline_office_department,
add	entity_id	and	name	columns	to	it,	and	set	the	comment	on	the	table.	Assuming	we
are	using	the	MySQL	server,	when	code	executes,	the	following	SQL	gets	executed	in	the
database:

CREATE	TABLE	'foggyline_office_department'	(

		'entity_id'	int(10)	unsigned	NOT	NULL	AUTO_INCREMENT	COMMENT	'Entity	ID',

		'name'	varchar(64)	DEFAULT	NULL	COMMENT	'Name',

		PRIMARY	KEY	('entity_id')

)	ENGINE=InnoDB	AUTO_INCREMENT=3	DEFAULT	CHARSET=utf8	COMMENT='Foggyline	

Office	Department	Table';

The	addColumn	method	is	the	most	interesting	one	here.	It	takes	five	parameters,	from
column	name,	column	data	type,	column	length,	array	of	additional	options,	and	column
description.	However,	only	column	name	and	column	data	type	are	mandatory!	Accepted
column	data	types	can	be	found	under	the	Magento\Framework\DB\Ddl\Table	class,	and
go	as	follows:

boolean					smallint				integer					bigint

float							numeric					decimal					date

timestamp			datetime				text								blob

varbinary

An	additional	options	array	might	contain	some	of	the	following	keys:	unsigned,
precision,	scale,	unsigned,	default,	nullable,	primary,	identity,	auto_increment.

Having	gained	insight	into	the	addColumn	method,	let’s	go	ahead	and	create	the
foggyline_office_employee_entity	table	for	the	Employee	entity	as	well.	We	do	so	by
replacing	the	/*	#snippet2	*/	bit	from	the	preceding	code	with	the	following	code:

$employeeEntity	=	\Foggyline\Office\Model\Employee::ENTITY;

$table	=	$setup->getConnection()

				->newTable($setup->getTable($employeeEntity	.	'_entity'))

				->addColumn(

								'entity_id',

								\Magento\Framework\DB\Ddl\Table::TYPE_INTEGER,

								null,

								['identity'	=>	true,	'unsigned'	=>	true,	'nullable'	=>	false,	

'primary'	=>	true],

								'Entity	ID'

)

				->addColumn(

								'department_id',

								\Magento\Framework\DB\Ddl\Table::TYPE_INTEGER,

								null,

								['unsigned'	=>	true,	'nullable'	=>	false],

								'Department	Id'

)

				->addColumn(

								'email',

								\Magento\Framework\DB\Ddl\Table::TYPE_TEXT,

								64,

								[],

								'Email'

)

				->addColumn(

								'first_name',

								\Magento\Framework\DB\Ddl\Table::TYPE_TEXT,

								64,

								[],

								'First	Name'

)

				->addColumn(

								'last_name',

								\Magento\Framework\DB\Ddl\Table::TYPE_TEXT,

								64,

								[],

								'Last	Name'

)

				->setComment('Foggyline	Office	Employee	Table');

$setup->getConnection()->createTable($table);

/*	#snippet3	*/

Following	good	database	design	practices,	we	might	notice	one	thing	here.	If	we	agree
that	every	employee	can	be	assigned	a	single	department,	we	should	add	a	foreign	key	to
this	table’s	department_id	column.	For	the	moment,	we	will	purposely	skip	this	bit,	as	we
want	to	demonstrate	this	through	the	update	schema	script	later	on.

EAV	models	scatter	their	data	across	several	tables,	three	at	a	minimum.	The	table
foggyline_office_employee_entity	that	we	just	created	is	one	of	them.	The	other	one	is
the	core	Magento	eav_attribute	table.	The	third	table	is	not	a	single	table,	rather	a	list	of
multiple	tables;	one	for	each	EAV	type.	These	tables	are	the	result	of	our	install	script.

Information	stored	within	the	core	Magento	eav_attribute	table	is	not	the	value	of	an
attribute	or	anything	like	it;	information	stored	there	is	an	attribute’s	metadata.	So	how
does	Magento	know	about	our	Employee	attributes	(service_years,	dob,	salary,
vat_number,	note)?	It	does	not;	not	yet.	We	need	to	add	the	attributes	into	that	table
ourselves.	We	will	do	so	later	on,	as	we	demonstrate	the	InstallData.

Depending	on	the	EAV	attribute	data	type,	we	need	to	create	the	following	tables:

foggyline_office_employee_entity_datetime

foggyline_office_employee_entity_decimal

foggyline_office_employee_entity_int

foggyline_office_employee_entity_text

foggyline_office_employee_entity_varchar

The	names	of	these	attribute	value	tables	come	from	a	simple	formula,	which	says	{name
of	the	entity	table}+{_}+{eav_attribute.backend_type	value}.	If	we	look	at	the	salary

attribute,	we	need	it	to	be	a	decimal	value,	thus	it	will	get	stored	in
foggyline_office_employee_entity_decimal.

Given	the	chunkiness	of	code	behind	defining	attribute	value	tables,	we	will	focus	only	on
a	single,	decimal	type	table.	We	define	it	by	replacing	/*	#snippet3	*/	from	the
preceding	code	with	the	following	bit:

$table	=	$setup->getConnection()

				->newTable($setup->getTable($employeeEntity	.	'_entity_decimal'))

				->addColumn(

								'value_id',

								\Magento\Framework\DB\Ddl\Table::TYPE_INTEGER,

								null,

								['identity'	=>	true,	'nullable'	=>	false,	'primary'	=>	true],

								'Value	ID'

)

				->addColumn(

								'attribute_id',

								\Magento\Framework\DB\Ddl\Table::TYPE_SMALLINT,

								null,

								['unsigned'	=>	true,	'nullable'	=>	false,	'default'	=>	'0'],

								'Attribute	ID'

)

				->addColumn(

								'store_id',

								\Magento\Framework\DB\Ddl\Table::TYPE_SMALLINT,

								null,

								['unsigned'	=>	true,	'nullable'	=>	false,	'default'	=>	'0'],

								'Store	ID'

)

				->addColumn(

								'entity_id',

								\Magento\Framework\DB\Ddl\Table::TYPE_INTEGER,

								null,

								['unsigned'	=>	true,	'nullable'	=>	false,	'default'	=>	'0'],

								'Entity	ID'

)

				->addColumn(

								'value',

								\Magento\Framework\DB\Ddl\Table::TYPE_DECIMAL,

								'12,4',

								[],

								'Value'

)

				//->addIndex

				//->addForeignKey

				->setComment('Employee	Decimal	Attribute	Backend	Table');

$setup->getConnection()->createTable($table);

Notice	the	//->addIndex	part	within	code	above.	Lets	replace	it	with	the	following	bit.

->addIndex(

				$setup->getIdxName(

								$employeeEntity	.	'_entity_decimal',

								['entity_id',	'attribute_id',	'store_id'],

								\Magento\Framework\DB\Adapter\AdapterInterface::INDEX_TYPE_UNIQUE

),

				['entity_id',	'attribute_id',	'store_id'],

				['type'	=>	

\Magento\Framework\DB\Adapter\AdapterInterface::INDEX_TYPE_UNIQUE]

)

->addIndex(

				$setup->getIdxName($employeeEntity	.	'_entity_decimal',	['store_id']),

				['store_id']

)

->addIndex(

				$setup->getIdxName($employeeEntity	.	'_entity_decimal',	

['attribute_id']),

				['attribute_id']

)

The	preceding	code	adds	three	indexes	on	the
foggyline_office_employee_entity_decimal	table,	resulting	in	a	SQL	as	follows:

UNIQUE	KEY

'FOGGYLINE_OFFICE_EMPLOYEE_ENTT_DEC_ENTT_ID_ATTR_ID_STORE_ID'

('entity_id','attribute_id','store_id')

KEY	'FOGGYLINE_OFFICE_EMPLOYEE_ENTITY_DECIMAL_STORE_ID'	('store_id')

KEY	'FOGGYLINE_OFFICE_EMPLOYEE_ENTITY_DECIMAL_ATTRIBUTE_ID'

('attribute_id')

Similarly,	we	replace	the	//->addForeignKey	part	from	the	preceding	code	with	the
following	bit:

->addForeignKey(

				$setup->getFkName(

								$employeeEntity	.	'_entity_decimal',

								'attribute_id',

								'eav_attribute',

								'attribute_id'

),

				'attribute_id',

				$setup->getTable('eav_attribute'),

				'attribute_id',

				\Magento\Framework\DB\Ddl\Table::ACTION_CASCADE

)

->addForeignKey(

				$setup->getFkName(

								$employeeEntity	.	'_entity_decimal',

								'entity_id',

								$employeeEntity	.	'_entity',

								'entity_id'

),

				'entity_id',

				$setup->getTable($employeeEntity	.	'_entity'),

				'entity_id',

				\Magento\Framework\DB\Ddl\Table::ACTION_CASCADE

)

->addForeignKey(

				$setup->getFkName($employeeEntity	.	'_entity_decimal',	'store_id',	

'store',	'store_id'),

				'store_id',

				$setup->getTable('store'),

				'store_id',

				\Magento\Framework\DB\Ddl\Table::ACTION_CASCADE

)

The	preceding	code	adds	foreign	key	relations	into	the
foggyline_office_employee_entity_decimal	table,	resulting	in	a	SQL	as	follows:

CONSTRAINT	'FK_D17982EDA1846BAA1F40E30694993801'	FOREIGN	KEY

('entity_id')	REFERENCES	'foggyline_office_employee_entity'

('entity_id')	ON	DELETE	CASCADE,

CONSTRAINT

'FOGGYLINE_OFFICE_EMPLOYEE_ENTITY_DECIMAL_STORE_ID_STORE_STORE_ID'

FOREIGN	KEY	('store_id')	REFERENCES	'store'	('store_id')	ON	DELETE

CASCADE,

CONSTRAINT

'FOGGYLINE_OFFICE_EMPLOYEE_ENTT_DEC_ATTR_ID_EAV_ATTR_ATTR_ID'	FOREIGN

KEY	('attribute_id')	REFERENCES	'eav_attribute'	('attribute_id')	ON

DELETE	CASCADE

Notice	how	we	added	the	store_id	column	to	our	EAV	attribute	value	tables.	Though	our
examples	won’t	find	use	of	it,	it	is	a	good	practice	to	use	store_id	with	your	EAV	entities
to	scope	the	data	for	a	possible	multi-store	setup.	To	clarify	further,	imagine	we	had	a
multi-store	setup,	and	with	EAV	attribute	tables	set	up	like	the	preceding	one,	we	would
be	able	to	store	a	different	attribute	value	for	each	store,	since	the	unique	entry	in	the	table
is	defined	as	a	combination	of	entity_id,	attribute_id,	and	store_id	columns.

Tip
For	the	reasons	of	performance	and	data	integrity,	it	is	important	to	define	indexes	and
foreign	key	as	per	good	database	design	practice.	We	can	do	so	within	InstallSchema
when	defining	new	tables.

Creating	an	upgrade	schema	script
(UpgradeSchema.php)
During	the	first-time	module	install,	an	upgrade	schema	is	what	gets	run	immediately	after
an	install	schema.	We	define	upgrade	schema	within	the
app/code/Foggyline/Office/Setup/UpgradeSchema.php	file	with	(partial)	content	as
follows:

namespace	Foggyline\Office\Setup;

use	Magento\Framework\Setup\UpgradeSchemaInterface;

use	Magento\Framework\Setup\ModuleContextInterface;

use	Magento\Framework\Setup\SchemaSetupInterface;

class	UpgradeSchema	implements	UpgradeSchemaInterface

{

				public	function	upgrade(SchemaSetupInterface	$setup,	

ModuleContextInterface	$context)

				{

								$setup->startSetup();

										/*	#snippet1	*/

								$setup->endSetup();

				}

}

UpgradeSchema	conforms	to	UpgradeSchemaInterface,	which	requires	the
implementation	of	the	upgrade	method	that	accepts	two	parameters	of	type
SchemaSetupInterface	and	ModuleContextInterface.

This	is	quite	similar	to	InstallSchemaInterface,	except	the	method	name.	The	update
method	is	run	when	this	schema	gets	triggered.	Within	this	method,	we	would	add	any
relevant	code	we	might	want	to	execute.

Going	further,	let’s	replace	the	/*	#snippet1	*/	part	from	the	preceding	code	with	the
following	code:

$employeeEntityTable	=	\Foggyline\Office\Model\Employee::ENTITY.	'_entity';

$departmentEntityTable	=	'foggyline_office_department';

$setup->getConnection()

				->addForeignKey(

								$setup->getFkName($employeeEntityTable,	'department_id',	

$departmentEntityTable,	'entity_id'),

								$setup->getTable($employeeEntityTable),

								'department_id',

								$setup->getTable($departmentEntityTable),

								'entity_id',

								\Magento\Framework\DB\Ddl\Table::ACTION_CASCADE

);

Here,	we	are	instructing	Magento	to	create	a	foreign	key	on	the
foggyline_office_employee_entity	table,	more	precisely	on	its	department_id

column,	pointing	to	the	foggyline_office_department	table	and	its	entity_id	column.

Creating	an	install	data	script
(InstallData.php)
An	install	data	script	is	what	gets	run	immediately	after	upgrade	schema.	We	define	install
data	schema	within	the	app/code/Foggyline/Office/Setup/InstallData.php	file	with
(partial)	content	as	follows:

namespace	Foggyline\Office\Setup;

use	Magento\Framework\Setup\InstallDataInterface;

use	Magento\Framework\Setup\ModuleContextInterface;

use	Magento\Framework\Setup\ModuleDataSetupInterface;

class	InstallData	implements	InstallDataInterface

{

				private	$employeeSetupFactory;

				public	function	__construct(

								\Foggyline\Office\Setup\EmployeeSetupFactory	$employeeSetupFactory

)

				{

								$this->employeeSetupFactory	=	$employeeSetupFactory;

				}

				public	function	install(ModuleDataSetupInterface	$setup,	

ModuleContextInterface	$context)

				{

								$setup->startSetup();

								/*	#snippet1	*/

								$setup->endSetup();

				}

}

InstallData	conforms	to	InstallDataInterface,	which	requires	the	implementation	of
the	install	method	that	accepts	two	parameters	of	type	ModuleDataSetupInterface	and
ModuleContextInterface.

The	install	method	is	run	when	this	script	gets	triggered.	Within	this	method,	we	would
add	any	relevant	code	we	might	want	to	execute.

Going	further,	let’s	replace	the	/*	#snippet1	*/	part	from	the	preceding	code	with	the
following	code:

$employeeEntity	=	\Foggyline\Office\Model\Employee::ENTITY;

$employeeSetup	=	$this->employeeSetupFactory->create(['setup'	=>	$setup]);

$employeeSetup->installEntities();

$employeeSetup->addAttribute(

				$employeeEntity,	'service_years',	['type'	=>	'int']

);

$employeeSetup->addAttribute(

				$employeeEntity,	'dob',	['type'	=>	'datetime']

);

$employeeSetup->addAttribute(

				$employeeEntity,	'salary',	['type'	=>	'decimal']

);

$employeeSetup->addAttribute(

				$employeeEntity,	'vat_number',	['type'	=>	'varchar']

);

$employeeSetup->addAttribute(

				$employeeEntity,	'note',	['type'	=>	'text']

);

Using	the	addAttribute	method	on	the	instance	of
\Foggyline\Office\Setup\EmployeeSetupFactory,	we	are	instructing	Magento	to	add	a
number	of	attributes	(service_years,	dob,	salary,	vat_number,	note)	to	its	entity.

We	will	soon	get	to	the	inners	of	EmployeeSetupFactory,	but	right	now	notice	the	call	to
the	addAttribute	method.	Within	this	method,	there	is	a	call	to	the	$this-
>attributeMapper->map($attr,	$entityTypeId)	method.	attributeMapper	conforms
to	Magento\Eav\Model\Entity\Setup\PropertyMapperInterface,	which	looking	at
vendor/magento/module-eav/etc/di.xml	has	a	preference	for	the
Magento\Eav\Model\Entity\Setup\PropertyMapper\Composite	class,	which	further
initializes	the	following	mapper	classes:

Magento\Eav\Model\Entity\Setup\PropertyMapper

Magento\Customer\Model\ResourceModel\Setup\PropertyMapper

Magento\Catalog\Model\ResourceModel\Setup\PropertyMapper

Magento\ConfigurableProduct\Model\ResourceModel\Setup\PropertyMapper

Since	we	are	defining	our	own	entity	types,	the	mapper	class	we	are	mostly	interested	in	is
Magento\Eav\Model\Entity\Setup\PropertyMapper.	A	quick	look	inside	of	it	reveals	the
following	mapping	array	in	the	map	method:

[

				'backend_model'	=>	'backend',

				'backend_type'	=>	'type',

				'backend_table'	=>	'table',

				'frontend_model'	=>	'frontend',

				'frontend_input'	=>	'input',

				'frontend_label'	=>	'label',

				'frontend_class'	=>	'frontend_class',

				'source_model'	=>	'source',

				'is_required'	=>	'required',

				'is_user_defined'	=>	'user_defined',

				'default_value'	=>	'default',

				'is_unique'	=>	'unique',

				'note'	=>	'note'

				'is_global'	=>	'global'

]

Looking	at	the	preceding	array	keys	and	value	strings	gives	us	a	clue	as	to	what	is
happening.	The	key	strings	match	the	column	names	in	the	eav_attribute	table,	while
the	value	strings	match	the	keys	of	our	array	passed	to	the	addAttribute	method	within
InstallData.php.

Let’s	take	a	look	at	the	EmployeeSetupFactory	class	within	the
app/code/Foggyline/Office/Setup/EmployeeSetup.php	file,	(partially)	defined	as
follows:

namespace	Foggyline\Office\Setup;

use	Magento\Eav\Setup\EavSetup;

class	EmployeeSetup	extends	EavSetup

{

				public	function	getDefaultEntities()

				{

								/*	#snippet1	*/

				}

}

What’s	happening	here	is	that	we	are	extending	from	the	Magento\Eav\Setup\EavSetup
class,	thus	effectively	telling	Magento	we	are	about	to	create	our	own	entity.	We	do	so	by
overriding	getDefaultEntities,	replacing	/*	#snippet1	*/	with	content	as	follows:

$employeeEntity	=	\Foggyline\Office\Model\Employee::ENTITY;

$entities	=	[

				$employeeEntity	=>	[

								'entity_model'	=>	'Foggyline\Office\Model\ResourceModel\Employee',

								'table'	=>	$employeeEntity	.	'_entity',

								'attributes'	=>	[

												'department_id'	=>	[

																'type'	=>	'static',

],

												'email'	=>	[

																'type'	=>	'static',

],

												'first_name'	=>	[

																'type'	=>	'static',

],

												'last_name'	=>	[

																'type'	=>	'static',

],

],

],

];

return	$entities;

The	getDefaultEntities	method	returns	an	array	of	entities	we	want	to	register	with
Magento.	Within	our	$entities	array,	the	key	$employeeEntity	becomes	an	entry	in	the
eav_entity_type	table.	Given	that	our	$employeeEntity	has	a	value	of
foggyline_office_employee,	running	the	following	SQL	query	should	yield	a	result:

SELECT	*	FROM	eav_entity_type	WHERE	entity_type_code	=	

"foggyline_office_employee";

Only	a	handful	of	metadata	values	are	required	to	make	our	new	entity	type	functional.
The	entity_model	value	should	point	to	our	EAV	model	resource	class,	not	the	model
class.	The	table	value	should	equal	the	name	of	our	EAV	entity	table	in	the	database.
Finally,	the	attributes	array	should	list	any	attribute	we	want	created	on	this	entity.
Attributes	and	their	metadata	get	created	in	the	eav_attribute	table.

If	we	look	back	at	all	those	foggyline_office_employee_entity_*	attribute	value	tables
we	created,	they	are	not	the	ones	that	actually	create	attributes	or	register	a	new	entity	type
in	Magento.	What	creates	attributes	and	a	new	entity	type	is	the	array	we	just	defined
under	the	getDefaultEntities	method.	Once	Magento	creates	the	attributes	and	registers
a	new	entity	type,	it	simply	routes	the	entity	save	process	to	proper	attribute	value	tables
depending	on	the	type	of	attribute.

Creating	an	upgrade	data	script
(UpgradeData.php)
The	upgrade	data	script	is	the	last	one	to	execute.	We	will	use	it	to	demonstrate	the
example	of	creating	the	sample	entries	for	our	Department	and	Employee	entities.

We	start	by	creating	the	app/code/Foggyline/Office/Setup/UpgradeData.php	file	with
(partial)	content	as	follows:

namespace	Foggyline\Office\Setup;

use	Magento\Framework\Setup\UpgradeDataInterface;

use	Magento\Framework\Setup\ModuleContextInterface;

use	Magento\Framework\Setup\ModuleDataSetupInterface;

class	UpgradeData	implements	UpgradeDataInterface

{

				protected	$departmentFactory;

				protected	$employeeFactory;

				public	function	__construct(

								\Foggyline\Office\Model\DepartmentFactory	$departmentFactory,

								\Foggyline\Office\Model\EmployeeFactory	$employeeFactory

)

				{

								$this->departmentFactory	=	$departmentFactory;

								$this->employeeFactory	=	$employeeFactory;

				}

				public	function	upgrade(ModuleDataSetupInterface	$setup,	

ModuleContextInterface	$context)

				{

								$setup->startSetup();

								/*	#snippet1	*/

								$setup->endSetup();

				}

}

UpgradeData	conforms	to	UpgradeDataInterface,	which	requires	the	implementation	of
the	upgrade	method	that	accepts	two	parameters	of	type	ModuleDataSetupInterface	and
ModuleContextInterface.	We	are	further	adding	our	own	__construct	method	to	which
we	are	passing	DepartmentFactory	and	EmployeeFactory,	as	we	will	be	using	them
within	the	upgrade	method	as	shown	next,	by	replacing	/*	#snippet1	*/	with	the
following	code:

$salesDepartment	=	$this->departmentFactory->create();

$salesDepartment->setName('Sales');

$salesDepartment->save();

$employee	=	$this->employeeFactory->create();

$employee->setDepartmentId($salesDepartment->getId());

$employee->setEmail('john@sales.loc');

$employee->setFirstName('John');

$employee->setLastName('Doe');

$employee->setServiceYears(3);

$employee->setDob('1983-03-28');

$employee->setSalary(3800.00);

$employee->setVatNumber('GB123456789');

$employee->setNote('Just	some	notes	about	John');

$employee->save();

The	preceding	code	creates	an	instance	of	the	department	entity	and	then	saves	it.	An
instance	of	employee	is	then	created	and	saved,	passing	it	the	newly	created	department
ID	and	other	attributes.

Tip
A	more	convenient	and	professional-looking	approach	for	saving	an	entity	could	be	given
as	follows:

$employee->setDob('1983-03-28')

				->setSalary(3800.00)

				->setVatNumber('GB123456789')

				->save();

Here,	we	are	utilizing	the	fact	that	each	of	the	entity	setter	methods	returns	$this	(an
instance	of	the	entity	object	itself),	so	we	can	chain	the	method	calls.

Entity	CRUD	actions
Up	to	this	point,	we	have	learned	how	to	create	a	simple	model,	an	EAV	model,	and	install
and	upgrade	types	of	schema	and	data	script.	Now,	let	us	see	how	we	can	create,	read,
update	and	delete	our	entities,	operations	that	are	commonly	referred	to	as	CRUD.

Though	this	chapter	is	about	models,	collections,	and	related	things,	for	the	purpose	of
demonstration,	let’s	make	a	tiny	detour	into	routes	and	controllers.	The	idea	is	to	create	a
simple	Test	controller	with	the	Crud	action	we	can	trigger	in	the	browser	via	a	URL.
Within	this	Crud	action,	we	will	then	dump	our	CRUD-related	code.

To	make	Magento	respond	to	the	URL	we	punch	into	the	browser,	we	need	to	define	the
route.	We	do	so	by	creating	the	app/code/Foggyline/Office/etc/frontend/routes.xml
file	with	the	following	content:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:App/	etc/routes.xsd">

				<router	id="standard">

								<route	id="foggyline_office"	frontName="foggyline_office">

												<module	name="Foggyline_Office"/>

								</route>

				</router>

</config>

Route	definition	requires	a	unique	ID	and	frontName	attribute	values,	which	in	our	case
both	equal	foggyline_office.	The	frontName	attribute	value	becomes	the	part	of	our
URL	structure.	Simply	put,	the	URL	formula	for	hitting	the	Crud	action	goes	like
{magento-base-url}/index.php/{route	frontName}/{controller	name}/{action	name}.

Note
For	example,	if	our	base	URL	were	http://shop.loc/,	the	full	URL	would	be
http://shop.loc/index.php/foggyline_office/test/crud/.	If	we	have	URL	rewrites
turned	on,	we	could	omit	the	index.php	part.

Once	the	route	has	been	defined,	we	can	go	ahead	and	create	the	Test	controller,	defined
in	the	app/code/Foggyline/Office/Controller/Test.php	file	with	(partial)	code	as
follows:

namespace	Foggyline\Office\Controller;

abstract	class	Test	extends	\Magento\Framework\App\Action\Action

{

}

This	really	is	the	simplest	controller	we	could	have	defined.	The	only	thing	worth	noting
here	is	that	the	controller	class	needs	to	be	defined	as	abstract	and	extend	the
\Magento\Framework\App\Action\Action	class.	Controller	actions	live	outside	of	the
controller	itself	and	can	be	found	under	the	subdirectory	on	the	same	level	and	named	as
controller.	Since	our	controller	is	called	Test,	we	place	our	Crud	action	under	the
app/code/Foggyline/Office/Controller/Test/Crud.php	file	with	content	as	follows:

namespace	Foggyline\Office\Controller\Test;

class	Crud	extends	\Foggyline\Office\Controller\Test

{

				protected	$employeeFactory;

				protected	$departmentFactory;

				public	function	__construct(

								\Magento\Framework\App\Action\Context	$context,

								\Foggyline\Office\Model\EmployeeFactory	$employeeFactory,

								\Foggyline\Office\Model\DepartmentFactory	$departmentFactory

)

				{

								$this->employeeFactory	=	$employeeFactory;

								$this->departmentFactory	=	$departmentFactory;

								return	parent::__construct($context);

				}

				public	function	execute()

				{

								/*	CRUD	Code	Here	*/

				}

}

The	Controller	action	class	is	basically	just	an	extension	of	the	controller	defining	the
execute	method.	Code	within	the	execute	method	is	what	gets	run	when	we	hit	the	URL
in	the	browser.	Additionally,	we	have	a	__construct	method	to	which	we	are	passing	the
EmployeeFactory	and	DepartmentFactory	classes,	which	we	will	soon	use	for	our	CRUD
examples.	Note	that	EmployeeFactory	and	DepartmentFactory	are	not	classes	created	by
us.	Magento	will	autogenerate	them	under	the	DepartmentFactory.php	and
EmployeeFactory.php	files	within	the	var/generation/Foggyline/Office/Model	folder.
These	are	factory	classes	for	our	Employee	and	Department	model	classes,	generated
when	requested.

With	this,	we	finish	our	little	detour	and	focus	back	on	our	entities.

Creating	new	entities
There	are	three	different	flavors,	if	we	might	call	them	that,	by	which	we	can	set	property
(field	and	attribute)	values	on	our	entity.	They	all	lead	to	the	same	result.	The	following
few	code	snippets	can	be	copied	and	pasted	into	our	Crud	class	execute	method	for
testing,	simply	by	replacing	/*	CRUD	Code	Here	*/	with	one	of	the	following	code
snippets:

//Simple	model,	creating	new	entities,	flavour	#1

$department1	=	$this->departmentFactory->create();

$department1->setName('Finance');

$department1->save();

//Simple	model,	creating	new	entities,	flavour	#2

$department2	=	$this->departmentFactory->create();

$department2->setData('name',	'Research');

$department2->save();

//Simple	model,	creating	new	entities,	flavour	#3

$department3	=	$this->departmentFactory->create();

$department3->setData(['name'	=>	'Support']);

$department3->save();

The	flavour	#1	approach	from	the	preceding	code	is	probably	the	preferred	way	of
setting	properties,	as	it	is	using	the	magic	method	approach	we	mentioned	previously.
Both	flavour	#2	and	flavour	#3	use	the	setData	method,	just	in	a	slightly	different
manner.	All	three	examples	should	yield	the	same	result	once	the	save	method	is	called	on
an	object	instance.

Now	that	we	know	how	to	save	the	simple	model,	let’s	take	a	quick	look	at	doing	the	same
with	the	EAV	model.	The	following	are	analogous	code	snippets:

//EAV	model,	creating	new	entities,	flavour	#1

$employee1	=	$this->employeeFactory->create();

$employee1->setDepartment_id($department1->getId());

$employee1->setEmail('goran@mail.loc');

$employee1->setFirstName('Goran');

$employee1->setLastName('Gorvat');

$employee1->setServiceYears(3);

$employee1->setDob('1984-04-18');

$employee1->setSalary(3800.00);

$employee1->setVatNumber('GB123451234');

$employee1->setNote('Note	#1');

$employee1->save();

//EAV	model,	creating	new	entities,	flavour	#2

$employee2	=	$this->employeeFactory->create();

$employee2->setData('department_id',	$department2->getId());

$employee2->setData('email',	'marko@mail.loc');

$employee2->setData('first_name',	'Marko');

$employee2->setData('last_name',	'Tunukovic');

$employee2->setData('service_years',	3);

$employee2->setData('dob',	'1984-04-18');

$employee2->setData('salary',	3800.00);

$employee2->setData('vat_number',	'GB123451234');

$employee2->setData('note',	'Note	#2');

$employee2->save();

//EAV	model,	creating	new	entities,	flavour	#3

$employee3	=	$this->employeeFactory->create();

$employee3->setData([

				'department_id'	=>	$department3->getId(),

				'email'	=>	'ivan@mail.loc',

				'first_name'	=>	'Ivan',

				'last_name'	=>	'Telebar',

				'service_years'	=>	2,

				'dob'	=>	'1986-08-22',

				'salary'	=>	2400.00,

				'vat_number'	=>	'GB123454321',

				'note'	=>	'Note	#3'

]);

$employee3->save();

As	we	can	see,	the	EAV	code	for	persisting	the	data	is	identical	to	the	simple	model.	There
is	one	thing	here	worth	noting.	The	Employee	entity	has	a	relation	defined	toward
department.	Forgetting	to	specify	department_id	on	a	new	employee	entity	save	would
result	in	an	error	message	similar	to	the	following:

SQLSTATE[23000]:	Integrity	constraint	violation:	1452	Cannot	add	or	update	

a	child	row:	a	foreign	key	constraint	fails	

('magento'.'foggyline_office_employee_entity',	CONSTRAINT	

'FK_E2AEE8BF21518DFA8F02B4E95DC9F5AD'	FOREIGN	KEY	('department_id')	

REFERENCES	'foggyline_office_department'	('entity_id')	ON),	query	was:	

INSERT	INTO	'foggyline_office_employee_entity'	('email',	'first_name',	

'last_name',	'entity_id')	VALUES	(?,	?,	?,	?)

Magento	saves	these	types	of	errors	under	its	var/report	directory.

Reading	existing	entities
Reading	an	entity	based	on	a	provided	entity	ID	value	comes	down	to	instantiating	the
entity	and	using	the	load	method	to	which	we	pass	the	entity	ID	as	shown	next:

//Simple	model,	reading	existing	entities

$department	=	$this->departmentFactory->create();

$department->load(28);

/*

				\Zend_Debug::dump($department->toArray());

				array(2)	{

						["entity_id"]	=>	string(2)	"28"

						["name"]	=>	string(8)	"Research"

				}

	*/

There	is	no	real	difference	between	loading	the	simple	model	or	EAV	model,	as	shown	in
the	following	EAV	model	example:

//EAV	model,	reading	existing	entities

$employee	=	$this->employeeFactory->create();

$employee->load(25);

/*

				\Zend_Debug::dump($employee->toArray());

				array(10)	{

						["entity_id"]	=>	string(2)	"25"

						["department_id"]	=>	string(2)	"28"

						["email"]	=>	string(14)	"marko@mail.loc"

						["first_name"]	=>	string(5)	"Marko"

						["last_name"]	=>	string(9)	"Tunukovic"

						["dob"]	=>	string(19)	"1984-04-18	00:00:00"

						["note"]	=>	string(7)	"Note	#2"

						["salary"]	=>	string(9)	"3800.0000"

						["service_years"]	=>	string(1)	"3"

						["vat_number"]	=>	string(11)	"GB123451234"

				}

	*/

Notice	how	the	EAV	entity	loads	all	of	its	field	and	attribute	values,	which	is	not	always
the	case	when	we	obtain	the	entity	through	EAV	collection,	as	we	will	show	later	on.

Updating	existing	entities
Updating	entities	comes	down	to	using	the	load	method	to	read	an	existing	entity,	reset	its
value,	and	calling	the	save	method	in	the	end,	like	shown	in	the	following	example:

$department	=	$this->departmentFactory->create();

$department->load(28);

$department->setName('Finance	#2');

$department->save();

Regardless	of	the	entity	being	the	simple	model	or	an	EAV,	the	code	is	the	same.

Deleting	existing	entities
Calling	the	delete	method	on	a	loaded	entity	will	delete	the	entity	from	the	database	or
throw	Exception	if	it	fails.	Code	to	delete	the	entity	looks	as	follows:

$employee	=	$this->employeeFactory->create();

$employee->load(25);

$employee->delete();

There	is	no	difference	in	deleting	the	simple	and	EAV	entities.	We	should	always	use
try/catch	blocks	when	deleting	or	saving	our	entities.

Managing	collections
Let’s	start	with	EAV	model	collections.	We	can	instantiate	the	collection	either	through	the
entity	factory	class	like	follows:

$collection	=	$this->employeeFactory->create()

																			->getCollection();

Or	we	can	use	object	manager	to	instantiate	the	collection	as	shown	next:

$collection	=	$this->_objectManager->create(

				'Foggyline\Office\Model\ResourceModel\Employee\Collection's

);

There	is	also	a	third	way,	which	might	be	the	preferred	one,	but	it	requires	us	to	define
APIs	so	we	will	skip	that	one	for	the	moment.

Once	we	instantiate	the	collection	object,	we	can	loop	through	it	and	do	some	variable
dumps	to	see	the	content	on	individual	$employee	entities,	like	shown	next:

foreach	($collection	as	$employee)	{

				\Zend_Debug::dump($employee->toArray(),	'$employee');

}

The	preceding	would	yield	results	like	the	following:

$employee	array(5)	{

		["entity_id"]	=>	string(2)	"24"

		["department_id"]	=>	string(2)	"27"

		["email"]	=>	string(14)	"goran@mail.loc"

		["first_name"]	=>	string(5)	"Goran"

		["last_name"]	=>	string(6)	"Gorvat"

}

Notice	how	the	individual	$employee	only	has	fields	on	it,	not	the	attributes.	Let’s	see
what	happens	when	we	want	to	extend	our	collection	by	using	addAttributeToSelect	to
specify	the	individual	attributes	to	add	to	it,	like	shown	next:

$collection->addAttributeToSelect('salary')

											->addAttributeToSelect('vat_number');

The	preceding	would	yield	results	like	the	following:

$employee	array(7)	{

		["entity_id"]	=>	string(2)	"24"

		["department_id"]	=>	string(2)	"27"

		["email"]	=>	string(14)	"goran@mail.loc"

		["first_name"]	=>	string(5)	"Goran"

		["last_name"]	=>	string(6)	"Gorvat"

		["salary"]	=>	string(9)	"3800.0000"

		["vat_number"]	=>	string(11)	"GB123451234"

}

Though	we	are	making	progress,	imagine	if	we	had	tens	of	attributes,	and	we	want	each
and	every	one	to	be	included	into	collection.	Using	addAttributeToSelect	numerous

times	would	make	for	cluttered	code.	What	we	can	do	is	pass	'*'	as	a	parameter	to
addAttributeToSelect	and	have	collection	pick	up	every	attribute,	as	shown	next:

$collection->addAttributeToSelect('*');

This	would	yield	results	like	the	following:

$employee	array(10)	{

				["entity_id"]	=>	string(2)	"24"

				["department_id"]	=>	string(2)	"27"

				["email"]	=>	string(14)	"goran@mail.loc"

				["first_name"]	=>	string(5)	"Goran"

				["last_name"]	=>	string(6)	"Gorvat"

				["dob"]	=>	string(19)	"1984-04-18	00:00:00"

				["note"]	=>	string(7)	"Note	#1"

				["salary"]	=>	string(9)	"3800.0000"

				["service_years"]	=>	string(1)	"3"

				["vat_number"]	=>	string(11)	"GB123451234"

}

Though	the	PHP	part	of	the	code	looks	seemingly	simple,	what’s	happening	in	the
background	on	the	SQL	layer	is	relatively	complex.	Though	Magento	executes	several
SQL	queries	prior	to	fetching	the	final	collection	result,	let’s	focus	on	the	last	three	queries
as	shown	next:

SELECT	COUNT(*)	FROM	'foggyline_office_employee_entity'	AS	'e'

SELECT	'e'.*	FROM	'foggyline_office_employee_entity'	AS	'e'

SELECT

		'foggyline_office_employee_entity_datetime'.'entity_id',

		'foggyline_office_employee_entity_datetime'.'attribute_id',

		'foggyline_office_employee_entity_datetime'.'value'

FROM	'foggyline_office_employee_entity_datetime'

WHERE	(entity_id	IN	(24,	25,	26))	AND	(attribute_id	IN	('349'))

UNION	ALL	SELECT

												'foggyline_office_employee_entity_text'.'entity_id',

												'foggyline_office_employee_entity_text'.'	attribute_id',

												'foggyline_office_employee_entity_text'.'value'

										FROM	'foggyline_office_employee_entity_text'

										WHERE	(entity_id	IN	(24,	25,	26))	AND	(attribute_id	IN	('352'))

UNION	ALL	SELECT

												'foggyline_office_employee_entity_decimal'.'	entity_id',

												'foggyline_office_employee_entity_decimal'.'	attribute_id',

												'foggyline_office_employee_entity_decimal'.'value'

										FROM	'foggyline_office_employee_entity_decimal'

										WHERE	(entity_id	IN	(24,	25,	26))	AND	(attribute_id	IN	('350'))

UNION	ALL	SELECT

												'foggyline_office_employee_entity_int'.'entity_id',

												'foggyline_office_employee_entity_int'.'attribute_id',

												'foggyline_office_employee_entity_int'.'value'

										FROM	'foggyline_office_employee_entity_int'

										WHERE	(entity_id	IN	(24,	25,	26))	AND	(attribute_id	IN	('348'))

UNION	ALL	SELECT

												'foggyline_office_employee_entity_varchar'.'	entity_id',

												'foggyline_office_employee_entity_varchar'.'	attribute_id',

												'foggyline_office_employee_entity_varchar'.'value'

										FROM	'foggyline_office_employee_entity_varchar'

										WHERE	(entity_id	IN	(24,	25,	26))	AND	(attribute_id	IN	('351'))

Note
Before	we	proceed	any	further,	it	is	important	to	know	that	these	queries	are	not	copy	and
paste	applicable.	The	reason	is	that	the	attribute_id	values	will	for	sure	differ	from
installation	to	installation.	Queries	given	here	are	for	us	to	gain	a	high-level	understanding
of	what	is	happening	in	the	backend	on	the	SQL	layer	when	we	use	Magento	collections
on	the	PHP	application	level.

The	first	query	select	simply	counts	the	number	of	entries	in	the	entity	table,	and	then
passes	that	info	to	the	application	layer.	The	second	select	fetches	all	entries	from
foggyline_office_employee_entity,	then	passes	that	info	to	the	application	layer	to	use
it	to	pass	entity	IDs	in	the	third	query	as	part	of	entity_id	IN	(24,	25,	26).	Second	and
third	queries	here	can	be	pretty	resource	intense	if	we	have	a	large	amount	of	entries	in	our
entity	and	EAV	tables.	To	prevent	possible	performance	bottlenecks,	we	should	always	use
the	setPageSize	and	setCurPage	methods	on	collection,	like	shown	next:

$collection->addAttributeToSelect('*')

											->setPageSize(25)

											->setCurPage(5);

This	would	result	in	the	first	COUNT	query	still	being	the	same,	but	the	second	query	would
now	look	like	the	following:

SELECT	'e'.*	FROM	'foggyline_office_employee_entity'	AS	'e'	LIMIT	25	OFFSET	

4

This	makes	for	a	much	smaller,	thus	performance-lighter	dataset	if	we	have	thousands	or
tens	of	thousands	of	entries.	The	point	here	is	to	always	use	setPageSize	and	setCurPage.
If	we	need	to	work	with	a	really	large	set,	then	we	need	to	page	through	it,	or	walk
through	it.

Now	we	know	how	to	limit	the	size	of	the	result	set	and	fetch	the	proper	page,	let’s	see
how	we	can	further	filter	the	set	to	avoid	overusing	PHP	loops	for	the	same	purpose.	Thus
effectively	passing	the	filtering	to	the	database	and	not	the	application	layer.	To	filter	the
EAV	collection,	we	use	its	addAttributeToFilter	method.

Let’s	instantiate	a	clean	new	collection	like	shown	next:

$collection	=	$this->_objectManager->create(

				'Foggyline\Office\Model\ResourceModel\Employee\Collection'

);

$collection->addAttributeToSelect('*')

											->setPageSize(25)

											->setCurPage(1);

$collection->addAttributeToFilter('email',	array('like'=>'%mail.loc%'))

											->addAttributeToFilter('vat_number',	array('like'=>'GB%'))

											->addAttributeToFilter('salary',	array('gt'=>2400))

											->addAttributeToFilter('service_years',	array('lt'=>10));

Notice	that	we	are	now	using	the	addAttributeToSelect	and	addAttributeToFilter
methods	on	collection.	We	have	already	seen	the	database	impact	of
addAttributeToSelect	on	a	SQL	query.	What	addAttributeToFilter	does	is	something
completely	different.

With	the	addAttributeToFilter	method,	the	count	query	now	gets	transformed	into	the
following	SQL	query:

SELECT	COUNT(*)

FROM	'foggyline_office_employee_entity'	AS	'e'

		INNER	JOIN	'foggyline_office_employee_entity_varchar'	AS	'at_vat_number'

				ON	('at_vat_number'.'entity_id'	=	'e'.'entity_id')	AND	

('at_vat_number'.'attribute_id'	=	'351')

		INNER	JOIN	'foggyline_office_employee_entity_decimal'	AS	'at_salary'

				ON	('at_salary'.'entity_id'	=	'e'.'entity_id')	AND	

('at_salary'.'attribute_id'	=	'350')

		INNER	JOIN	'foggyline_office_employee_entity_int'	AS	'at_service_years'

				ON	('at_service_years'.'entity_id'	=	'e'.'entity_id')	AND	

('at_service_years'.'attribute_id'	=	'348')

WHERE	('e'.'email'	LIKE	'%mail.loc%')	AND	(at_vat_number.value	LIKE	'GB%')	

AND	(at_salary.value	>	2400)	AND

						(at_service_years.value	<	10)

We	can	see	that	this	is	much	more	complex	than	the	previous	count	query,	now	we	have
INNER	JOIN	stepping	in.	Notice	how	we	have	four	addAttributeToFilter	method	calls
but	only	three	INNER	JOIN.	This	is	because	one	of	those	four	calls	is	for	e-mail,	which	is
not	an	attribute	but	a	field	within	the	foggyline_office_employee_entity	table.	That	is
why	there	is	no	need	for	INNER	JOIN	as	the	field	is	already	there.	The	three	INNER	JOIN
then	simply	merge	the	required	info	into	the	query	in	order	to	get	the	select.

The	second	query	also	becomes	more	robust,	as	shown	next:

SELECT

		'e'.*,

		'at_vat_number'.'value'				AS	'vat_number',

		'at_salary'.'value'								AS	'salary',

		'at_service_years'.'value'	AS	'service_years'

FROM	'foggyline_office_employee_entity'	AS	'e'

		INNER	JOIN	'foggyline_office_employee_entity_varchar'	AS	'at_vat_number'

				ON	('at_vat_number'.'entity_id'	=	'e'.'entity_id')	AND	

('at_vat_number'.'attribute_id'	=	'351')

		INNER	JOIN	'foggyline_office_employee_entity_decimal'	AS	'at_salary'

				ON	('at_salary'.'entity_id'	=	'e'.'entity_id')	AND	

('at_salary'.'attribute_id'	=	'350')

		INNER	JOIN	'foggyline_office_employee_entity_int'	AS	'at_service_years'

				ON	('at_service_years'.'entity_id'	=	'e'.'entity_id')	AND	

('at_service_years'.'attribute_id'	=	'348')

WHERE	('e'.'email'	LIKE	'%mail.loc%')	AND	(at_vat_number.value	LIKE	'GB%')	

AND	(at_salary.value	>	2400)	AND

						(at_service_years.value	<	10)

LIMIT	25

Here,	we	also	see	the	usage	of	INNER	JOIN.	We	also	have	three	and	not	four	INNER	JOIN,
because	one	of	the	conditions	is	done	against	email,	which	is	a	field.	The	result	of	the
query	is	a	flattened	piece	of	rows	where	the	attributes	vat_number,	salary,	and
service_years	are	present.	We	can	imagine	the	performance	impact	if	we	haven’t	used
setPageSize	to	limit	the	result	set.

Finally,	the	third	query	is	also	affected	and	now	looks	similar	to	the	following:

SELECT

		'foggyline_office_employee_entity_datetime'.'entity_id',

		'foggyline_office_employee_entity_datetime'.'attribute_id',

		'foggyline_office_employee_entity_datetime'.'value'

FROM	'foggyline_office_employee_entity_datetime'

WHERE	(entity_id	IN	(24,	25))	AND	(attribute_id	IN	('349'))

UNION	ALL	SELECT

												'foggyline_office_employee_entity_text'.'entity_id',

												'foggyline_office_employee_entity_text'.'	attribute_id',

												'foggyline_office_employee_entity_text'.'value'

										FROM	'foggyline_office_employee_entity_text'

										WHERE	(entity_id	IN	(24,	25))	AND	(attribute_id	IN	('352'))

Notice	here	how	UNION	ALL	has	been	reduced	to	a	single	occurrence	now,	thus	effectively
making	for	two	selects.	This	is	because	we	have	a	total	of	five	attributes	(service_years,
dob,	salary,	vat_number,	note),	and	three	of	them	have	been	pulled	in	through	second
query.	Out	of	the	preceding	three	queries	demonstrated,	Magento	basically	pulls	the
collection	data	from	second	and	third	query.	This	seems	like	a	pretty	optimized	and
scalable	solution,	though	we	should	really	give	it	some	thought	on	the	proper	use	of
setPageSize,	addAttributeToSelect,	and	addAttributeToFilter	methods	when
creating	collection.

During	development,	if	working	with	collections	that	have	lot	of	attributes,	filters,	and
possibly	a	future	large	dataset,	we	might	want	to	use	SQL	logging	to	record	actual	SQL
queries	hitting	the	database	server.	This	might	help	us	spot	possible	performance
bottlenecks	and	react	on	time,	either	by	adding	more	limiting	values	to	setPageSize	or
addAttributeToSelect,	or	both.

In	the	preceding	examples,	the	use	of	addAttributeToSelect	results	in	AND	conditions	on
the	SQL	layer.	What	if	we	want	to	filter	collection	using	OR	conditions?
addAttributeToSelect	can	also	result	in	SQL	OR	conditions	if	the	$attribute	parameter
is	used	in	the	following	way:

$collection->addAttributeToFilter([

				['attribute'=>'salary',	'gt'=>2400],

				['attribute'=>'vat_number',	'like'=>'GB%']

]);

Without	going	into	the	details	of	actual	SQL	queries	this	time,	it	is	suffice	to	say	that	they
are	near	identical	to	the	previous	example	with	the	AND	condition	use	of
addAttributeToFilter.

Using	collection	methods	like	addExpressionAttributeToSelect,	groupByAttribute,
and	addAttributeToSort,	collections	offer	further	gradient	filtering	and	even	shift	some

calculations	from	the	PHP	application	layer	to	the	SQL	layer.	Getting	into	the	ins	and	outs
of	those	and	other	collection	methods	is	beyond	the	scope	of	this	chapter,	and	would
probably	require	a	book	on	its	own.

Collection	filters
Looking	back	at	the	preceding	addAttributeToFilter	method	call	examples,	questions
pop	out	as	to	where	can	we	see	the	list	of	all	available	collection	filters.	If	we	take	a	quick
look	inside	the	vendor/magento/framework/DB/Adapter/Pdo/Mysql.php	file,	we	can	see
the	method	called	prepareSqlCondition	(partially)	defined	as	follows:

public	function	prepareSqlCondition($fieldName,	$condition)

{

				$conditionKeyMap	=	[

								'eq'												=>	"{{fieldName}}	=	?",

								'neq'											=>	"{{fieldName}}	!=	?",

								'like'										=>	"{{fieldName}}	LIKE	?",

								'nlike'									=>	"{{fieldName}}	NOT	LIKE	?",

								'in'												=>	"{{fieldName}}	IN(?)",

								'nin'											=>	"{{fieldName}}	NOT	IN(?)",

								'is'												=>	"{{fieldName}}	IS	?",

								'notnull'							=>	"{{fieldName}}	IS	NOT	NULL",

								'null'										=>	"{{fieldName}}	IS	NULL",

								'gt'												=>	"{{fieldName}}	>	?",

								'lt'												=>	"{{fieldName}}	/*	AJZELE	*/	<	?",

								'gteq'										=>	"{{fieldName}}	>=	?",

								'lteq'										=>	"{{fieldName}}	<=	?",

								'finset'								=>	"FIND_IN_SET(?,	{{fieldName}})",

								'regexp'								=>	"{{fieldName}}	REGEXP	?",

								'from'										=>	"{{fieldName}}	>=	?",

								'to'												=>	"{{fieldName}}	<=	?",

								'seq'											=>	null,

								'sneq'										=>	null,

								'ntoa'										=>	"INET_NTOA({{fieldName}})	LIKE	?",

];

				$query	=	'';

				if	(is_array($condition))	{

								$key	=	key(array_intersect_key($condition,	$conditionKeyMap));

				...

}

This	method	is	what	eventually	gets	called	at	some	point	during	SQL	query	construction.
The	$condition	parameter	is	expected	to	have	one	of	the	following	(partially	listed)
forms:

array("from"	=>	$fromValue,	"to"	=>	$toValue)

array("eq"	=>	$equalValue)

array("neq"	=>	$notEqualValue)

array("like"	=>	$likeValue)

array("in"	=>	array($inValues))

array("nin"	=>	array($notInValues))

array("notnull"	=>	$valueIsNotNull)

array("null"	=>	$valueIsNull)

array("gt"	=>	$greaterValue)

array("lt"	=>	$lessValue)

array("gteq"	=>	$greaterOrEqualValue)

array("lteq"	=>	$lessOrEqualValue)

array("finset"	=>	$valueInSet)

array("regexp"	=>	$regularExpression)

array("seq"	=>	$stringValue)

array("sneq"	=>	$stringValue)

If	$condition	is	passed	as	an	integer	or	string,	then	the	exact	value	will	be	filtered	('eq'
condition).	If	none	of	the	conditions	is	matched,	then	a	sequential	array	is	expected	as	a
parameter	and	OR	conditions	will	be	built	using	the	preceding	structure.

The	preceding	examples	covered	EAV	model	collections,	as	they	are	slightly	more
complex.	Though	the	approach	to	filtering	more	or	less	applies	to	simple	model
collections	as	well,	the	most	notable	difference	is	that	there	are	no
addAttributeToFilter,	addAttributeToSelect,	and	addExpressionAttributeToSelect
methods.	The	simple	model	collections	make	use	of	addFieldToFilter,
addFieldToSelect,	and	addExpressionFieldToSelect,	among	other	subtle	differences.

Summary
In	this	chapter,	we	first	learned	how	to	create	simple	model,	its	resource,	and	collection
class.	Then	we	did	the	same	for	an	EAV	model.	Once	we	had	the	required	model,
resource,	and	collection	classes	in	place,	we	took	a	detailed	look	at	the	type	and	flow	of
schema	and	data	scripts.	Going	hands-on,	we	covered	InstallSchema,	UpgradeSchema,
InstallData,	and	UpgradeData	scripts.	Once	the	scripts	were	run,	the	database	ended	up
having	the	required	tables	and	sample	data	upon	which	we	based	our	entity	CRUD
examples.	Finally,	we	took	a	quick	but	focused	look	at	collection	management,	mostly
comprising	filtering	collection	to	get	the	desired	result	set.

The	full	module	code	can	be	downloaded	from	https://github.com/ajzele/B05032-
Foggyline_Office.

https://github.com/ajzele/B05032-Foggyline_Office

Chapter	5.	Using	the	Dependency
Injection
Dependency	injection	is	a	software	design	pattern	via	which	one	or	more	dependencies
are	injected	or	passed	by	reference	into	an	object.	What	this	exactly	means	on	a	practical
level	is	shown	in	the	following	two	simple	examples:

public	function	getTotalCustomers()

{

				$database	=	new	\PDO(…);

				$statement	=	$database->query('SELECT	…');

				return	$statement->fetchColumn();

}

Here,	you	will	see	a	simplified	PHP	example,	where	the	$database	object	is	created	in	the
getTotalCustomers	method.	This	means	that	the	dependency	on	the	database	object	is
being	locked	in	an	object	instance	method.	This	makes	for	tight	coupling,	which	has
several	disadvantages	such	as	reduced	reusability	and	a	possible	system-wide	effect
caused	by	changes	made	to	some	parts	of	the	code.

A	solution	to	this	problem	is	to	avoid	methods	with	these	sorts	of	dependencies	by
injecting	a	dependency	into	a	method,	as	follows:

public	function	getTotalCustomers($database)

{

				$statement	=	$database->query('SELECT…');

				return	$statement->fetchColumn();

}

Here,	a	$database	object	is	passed	(injected)	into	a	method.	That’s	all	that	dependency
injection	is—a	simple	concept	that	makes	code	loosely	coupled.	While	the	concept	is
simple,	it	may	not	be	easy	to	implement	it	across	large	platforms	such	as	Magento.

Magento	has	its	own	object	manager	and	dependency	injection	mechanism	that	we	will
soon	look	at	in	detail	in	the	following	sections:

The	object	manager
Dependency	injection
Configuring	class	preferences
Using	virtual	types

Note
To	follow	and	test	the	code	examples	given	in	the	following	sections,	we	can	use	the	code
available	at	https://github.com/ajzele/B05032-Foggyline_Di.	To	install	it,	we	simply	need
to	download	it	and	put	it	in	the	app/code/Foggyline/Di	directory.	Then,	run	the
following	set	of	commands	on	the	console	within	Magento’s	root	directory:

php	bin/magento	module:enable	Foggyline_Di

php	bin/magento	setup:upgrade

php	bin/magento	foggy:di

https://github.com/ajzele/B05032-Foggyline_Di

The	last	command	can	be	used	repeatedly	when	testing	the	snippets	presented	in	the
following	section.	When	php	bin/magento	foggy:di	is	run,	it	will	run	the	code	within
the	execute	method	in	the	DiTestCommand	class.	Therefore,	we	can	use	the	__construct
and	execute	methods	from	within	the	DiTestCommand	class	and	the	di.xml	file	itself	as	a
playground	for	DI.

The	object	manager
The	initializing	of	objects	in	Magento	is	done	via	what	is	called	the	object	manager.	The
object	manager	itself	is	an	instance	of	the
Magento\Framework\ObjectManager\ObjectManager	class	that	implements	the
Magento\Framework\ObjectManagerInterface	class.	The	ObjectManager	class	defines
the	following	three	methods:

create($type,	array	$arguments	=	[]):	This	creates	a	new	object	instance
get($type):	This	retrieves	a	cached	object	instance
configure(array	$configuration):	This	configures	the	di	instance

The	object	manager	can	instantiate	a	PHP	class,	which	can	be	a	model,	helper,	or	block
object.	Unless	the	class	that	we	are	working	with	has	already	received	an	instance	of	the
object	manager,	we	can	receive	it	by	passing	ObjectManagerInterface	into	the	class
constructor,	as	follows:

public	function	__construct(

				\Magento\Framework\ObjectManagerInterface	$objectManager

)

{

				$this->_objectManager	=	$objectManager;

}

Usually,	we	don’t	have	to	take	care	of	the	constructor	parameter’s	order	in	Magento.	The
following	example	will	also	enable	us	to	fetch	an	instance	of	the	object	manager:

public	function	__construct(

				$var1,

				\Magento\Framework\ObjectManagerInterface	$objectManager,

				$var2	=	[]

)

{

				$this->_objectManager	=	$objectManager;

}

Though	we	can	still	use	plain	old	PHP	to	instantiate	an	object	such	as	$object	=	new
\Foggyline\Di\Model\Object(),	by	using	the	object	manager,	we	can	take	advantage	of
Magento’s	advanced	object	features	such	as	automatic	constructor	dependency	injection
and	object	proxying.

Here	are	a	few	examples	of	using	object	manager’s	create	method	to	create	new	objects:

$this->_objectManager->create('Magento\Sales\Model\Order')

$this->_objectManager->create('Magento\Catalog\Model\Product\Image')

$this->_objectManager->create('Magento\Framework\UrlInterface')

$this->_objectManager->create('SoapServer',	['wsdl'	=>	$url,	'options'	=>	

$options])

The	following	are	a	few	examples	of	using	object	manager’s	get	method	to	create	new
objects:

$this->_objectManager->get('Magento\Checkout\Model\Session')

$this->_objectManager->get('Psr\Log\LoggerInterface')->critical($e)

$this->_objectManager->get('Magento\Framework\Escaper')

$this->_objectManager->get('Magento\Sitemap\Helper\Data')

The	object	manager’s	create	method	always	returns	a	new	object	instance,	while	the	get
method	returns	a	singleton.

Note	how	some	of	the	string	parameters	passed	to	create	and	get	are	actually	interface
names	and	not	strictly	class	names.	We	will	soon	see	why	this	works	with	both	class
names	and	interface	names.	For	now,	it	suffices	to	say	that	it	works	because	of	Magento’s
dependency	injection	implementation.

Dependency	injection
Until	now,	we	have	seen	how	the	object	manager	has	control	over	the	instantiation	of
dependencies.	However,	by	convention,	the	object	manager	isn’t	supposed	to	be	used
directly	in	Magento.	Rather,	it	should	be	used	for	system-level	things	that	bootstrap
Magento.	We	are	encouraged	to	use	the	module’s	etc/di.xml	file	to	instantiate	objects.

Let’s	dissect	one	of	the	existing	di.xml	entries,	such	as	the	one	found	under	the
vendor/magento/module-admin-notification/etc/adminhtml/di.xml	file	for	the
Magento\Framework\Notification\MessageList	type:

<type	name="Magento\Framework\Notification\MessageList">

				<arguments>

								<argument	name="messages"	xsi:type="array">

												<item	name="baseurl"	xsi:type="string">	

Magento\AdminNotification\Model\System	\Message\Baseurl</item>

												<item	name="security"	xsi:type="string">	

Magento\AdminNotification\Model\System\	Message\Security</item>

												<item	name="cacheOutdated"	xsi:type="string">	

Magento\AdminNotification\Model\System\	Message\CacheOutdated</item>

												<item	name="media_synchronization_error"	

xsi:type="string">Magento\AdminNotification\Model\	

System\Message\Media\Synchronization\Error</item>

												<item	name="media_synchronization_success"	

xsi:type="string">Magento\AdminNotification\Model\	

System\Message\Media\Synchronization\Success</item>

								</argument>

				</arguments>

</type>

Basically,	what	this	means	is	that	whenever	an	instance	of
Magento\Framework\Notification\MessageList	is	being	created,	the	messages
parameter	is	passed	on	to	the	constructor.	The	messages	parameter	is	being	defined	as	an
array,	which	further	consists	of	other	string	type	items.	In	this	case,	values	of	these	string
type	attributes	are	class	names,	as	follows:

Magento\Framework\ObjectManager\ObjectManager

Magento\AdminNotification\Model\System\Message\Baseurl

Magento\AdminNotification\Model\System\Message\Security

Magento\AdminNotification\Model\System\Message\CacheOutdated

Magento\AdminNotification\Model\System\Message\Media\Synchronization\Error

Magento\AdminNotification\Model\System\Message\Media\Synchronization\Success

If	you	now	take	a	look	at	the	constructor	of	MessageList,	you	will	see	that	it	is	defined	in
the	following	way:

public	function	__construct(

				\Magento\Framework\ObjectManagerInterface	$objectManager,

				$messages	=	[]

)

{

				//Method	body	here…

}

If	we	modify	the	MessageList	constructor	as	follows,	the	code	will	work:

public	function	__construct(

				\Magento\Framework\ObjectManagerInterface	$objectManager,

				$someVarX	=	'someDefaultValueX',

				$messages	=	[]

)

{

				//Method	body	here…

}

After	modification:

public	function	__construct(

				\Magento\Framework\ObjectManagerInterface	$objectManager,

				$someVarX	=	'someDefaultValueX',

				$messages	=	[],

				$someVarY	=	'someDefaultValueY'

)

{

				//Method	body	here…

}

However,	if	we	change	the	MessageList	constructor	to	one	of	the	following	variations,	the
code	will	fail	to	work:

public	function	__construct(

				\Magento\Framework\ObjectManagerInterface	$objectManager,

				$Messages	=	[]

)

{

				//Method	body	here…

}

Another	variation	is	as	follows:

public	function	__construct(

				\Magento\Framework\ObjectManagerInterface	$objectManager,

				$_messages	=	[]

)

{

				//Method	body	here…

}

The	name	of	the	$messages	parameter	in	the	constructor	of	the	PHP	class	has	to	exactly
match	the	name	of	the	argument	within	the	arguments’	list	of	di.xml.	The	order	of
parameters	in	the	constructor	does	not	really	matter	as	much	as	their	naming.

Looking	further	in	the	MessageList	constructor,	if	we	execute	func_get_args	somewhere
within	it,	the	list	of	items	within	the	$messages	parameter	will	match	and	exceed	the	one
shown	in	vendor/magento/module-admin-notification/etc/adminhtml/di.xml.	This	is
so	because	the	list	is	not	final,	as	Magento	collects	the	DI	definitions	from	across	entire
the	platform	and	merges	them.	So,	if	another	module	is	modifying	the	MessageList	type,
the	modifications	will	be	reflected.

If	we	perform	a	string	search	within	all	the	di.xml	files	across	the	entire	Magento	code
base	for	<type	name="Magento\Framework\Notification\MessageList">,	this	will	yield
some	additional	di.xml	files	that	have	their	own	additions	to	the	MessageList	type,	as
follows:

//vendor/magento/module-indexer/etc/adminhtml/di.xml

<type	name="Magento\Framework\Notification\MessageList">

				<arguments>

								<argument	name="messages"	xsi:type="array">

												<item	name="indexer_invalid_message"	

xsi:type="string">Magento\Indexer\Model\Message	\Invalid</item>

								</argument>

				</arguments>

</type>

//vendor/magento/module-tax/etc/adminhtml/di.xml

<type	name="Magento\Framework\Notification\MessageList">

				<arguments>

								<argument	name="messages"	xsi:type="array">

												<item	name="tax"	xsi:type="string">Magento	

\Tax\Model\System\Message\Notifications</item>

								</argument>

				</arguments>

</type>

What	this	means	is	that	the	Magento\Indexer\Model\Message\Invalid	and
Magento\Tax\Model\System\Message\Notifications	string	items	are	being	added	to	the
messages	argument	and	are	being	made	available	within	the	MessageList	constructor.

In	the	preceding	DI	example,	we	only	had	the	$messages	parameter	defined	as	one
argument	of	the	array	type,	and	the	rest	were	its	array	items.

Let’s	take	a	look	at	a	DI	example	for	another	type	definition.	This	time,	it	is	the	one	found
under	the	vendor/magento/module-backend/etc/di.xml	file	and	which	is	defined	as
follows:

<type	name="Magento\Backend\Model\Url">

				<arguments>

								<argument	name="scopeResolver"	xsi:type="object">	

Magento\Backend\Model\Url\ScopeResolver</argument>

								<argument	name="authSession"	xsi:type="object">	

Magento\Backend\Model\Auth\Session\Proxy</argument>

								<argument	name="formKey"	xsi:type="object">	

Magento\Framework\Data\Form\FormKey\Proxy</argument>

								<argument	name="scopeType"	xsi:type="const">	

Magento\Store\Model\ScopeInterface::SCOPE_STORE	</argument>

								<argument	name="backendHelper"	xsi:type="object">	

Magento\Backend\Helper\Data\Proxy</argument>

				</arguments>

</type>

Here,	you	will	see	a	type	with	several	different	arguments	passed	to	the	constructor	of	the
Magento\Backend\Model\Url	class.	If	you	now	take	a	look	at	the	constructor	of	the	Url
class,	you	will	see	that	it	is	defined	in	the	following	way:

public	function	__construct(

				\Magento\Framework\App\Route\ConfigInterface	$routeConfig,

				\Magento\Framework\App\RequestInterface	$request,

				\Magento\Framework\Url\SecurityInfoInterface	$urlSecurityInfo,

				\Magento\Framework\Url\ScopeResolverInterface	$scopeResolver,

				\Magento\Framework\Session\Generic	$session,

				\Magento\Framework\Session\SidResolverInterface	$sidResolver,

				\Magento\Framework\Url\RouteParamsResolverFactory	

$routeParamsResolverFactory,

				\Magento\Framework\Url\QueryParamsResolverInterface	

$queryParamsResolver,

				\Magento\Framework\App\Config\ScopeConfigInterface	$scopeConfig,

				$scopeType,

				\Magento\Backend\Helper\Data	$backendHelper,

				\Magento\Backend\Model\Menu\Config	$menuConfig,

				\Magento\Framework\App\CacheInterface	$cache,

				\Magento\Backend\Model\Auth\Session	$authSession,

				\Magento\Framework\Encryption\EncryptorInterface	$encryptor,

				\Magento\Store\Model\StoreFactory	$storeFactory,

				\Magento\Framework\Data\Form\FormKey	$formKey,

				array	$data	=	[]

)	{

				//Method	body	here…

}

The	__construct	method	here	clearly	has	more	parameters	than	what’s	defined	in	the
di.xml	file.	What	this	means	is	that	the	type	argument	entries	in	di.xml	do	not	necessarily
cover	all	the	class	__construct	parameters.	The	arguments	that	are	defined	in	di.xml
simply	impose	the	types	of	individual	parameters	defined	in	the	PHP	class	itself.	This
works	as	long	as	the	di.xml	parameters	are	of	the	same	type	or	descendants	of	the	same
type.

Ideally,	we	would	not	pass	the	class	type	but	interface	into	the	PHP	constructor	and	then
set	the	type	in	di.xml.	This	is	where	the	type,	preference,	and	virtualType	play	a	major
role	in	di.xml.	We	have	seen	the	role	of	type.	Now,	let’s	go	ahead	and	see	what
preference	does.

Configuring	class	preferences
A	great	number	of	Magento’s	core	classes	pass	interfaces	around	constructors.	The	benefit
of	this	is	that	the	object	manager,	with	the	help	of	di.xml,	can	decide	which	class	to
actually	instantiate	for	a	given	interface.

Let’s	imagine	the	Foggyline\Di\Console\Command\DiTestCommand	class	with	a
constructor,	as	follows:

public	function	__construct(

				\Foggyline\Di\Model\TestInterface	$myArg1,

				$myArg2,

				$name	=	null

)

{

				//Method	body	here…

}

Note	how	$myArg1	is	type	hinted	as	the	\Foggyline\Di\Model\TestInterface	interface.
The	object	manager	knows	that	it	needs	to	look	into	the	entire	di.xml	for	possible
preference	definitions.

We	can	define	preference	within	the	module’s	di.xml	file,	as	follows:

<preference

								for="Foggyline\Di\Model\TestInterface"

								type="Foggyline\Di\Model\Cart"/>

Here,	we	are	basically	saying	that	when	someone	asks	for	an	instance	of
Foggyline\Di\Model\TestInterface,	give	it	an	instance	of	the
Foggyline\Di\Model\Cart	object.	For	this	to	work,	the	Cart	class	has	to	implement
TestInterface	itself.	Once	the	preference	definition	is	in	place,	$myArg1	shown	in	the
preceding	example	becomes	an	object	of	the	Cart	class.

Additionally,	the	preference	element	is	not	reserved	only	to	point	out	the	preferred
classes	for	some	interfaces.	We	can	use	it	to	set	the	preferred	class	for	some	other	class.

Now,	let’s	have	a	look	at	the	Foggyline\Di\Console\Command\DiTestCommand	class	with
a	constructor:

public	function	__construct(

				\Foggyline\Di\Model\User	$myArg1,

				$myArg2,

				$name	=	null

)

{

				//Method	body	here…

}

Note	how	$myArg1	is	now	type	hinted	as	the	\Foggyline\Di\Model\User	class.	Like	in
the	previous	example,	the	object	manager	will	look	into	di.xml	for	possible	preference
definitions.

Let’s	define	the	preference	element	within	the	module’s	di.xml	file,	as	follows:

<preference

				for="\Foggyline\Di\Model\User"

				type="Foggyline\Di\Model\Cart"/>

What	this	preference	definition	is	saying	is	that	whenever	an	instance	of	the	User	class	is
requested,	pass	an	instance	of	the	Cart	object.	This	will	work	only	if	the	Cart	class
extends	from	User.	This	is	a	convenient	way	of	rewriting	a	class,	where	the	class	is	being
passed	directly	into	another	class	constructor	in	place	of	the	interface.

Since	the	class	__construct	parameters	can	be	type	hinted	as	either	classes	or	interfaces
and	further	manipulated	via	the	di.xml	preference	definition,	a	question	rises	as	to	what	is
better.	Is	it	better	to	use	interfaces	or	specific	classes?	While	the	answer	might	not	be	fully
clear,	it	is	always	preferable	to	use	interfaces	to	specify	the	dependencies	we	are	injecting
into	the	system.

Using	virtual	types
Along	with	type	and	preference,	there	is	another	powerful	feature	of	di.xml	that	we	can
use.	The	virtualType	element	enables	us	to	define	virtual	types.	Creating	a	virtual	type	is
like	creating	a	subclass	of	an	existing	class	except	for	the	fact	that	it’s	done	in	di.xml	and
not	in	code.

Virtual	types	are	a	way	of	injecting	dependencies	into	some	of	the	existing	classes
without	affecting	other	classes.	To	explain	this	via	a	practical	example,	let’s	take	a	look	at
the	following	virtual	type	defined	in	the	app/etc/di.xml	file:

<virtualType	name="Magento\Framework\Message\Session\Storage"	

type="Magento\Framework\Session\Storage">

				<arguments>

								<argument	name="namespace"	xsi:type="string">	message</argument>

				</arguments>

</virtualType>

<type	name="Magento\Framework\Message\Session">

				<arguments>

								<argument	name="storage"	xsi:type="object">	

Magento\Framework\Message\Session\Storage</argument>

				</arguments>

</type>

The	virtualType	definition	in	the	preceding	example	is
Magento\Framework\Message\Session\Storage,	which	extends	from
Magento\Framework\Session\Storage	and	overwrites	the	namespace	parameter	to	the
message	string	value.	In	virtualType,	the	name	attribute	defines	the	globally	unique
name	of	the	virtual	type,	while	the	type	attribute	matches	the	real	PHP	class	that	the
virtual	type	is	based	on.

Now,	if	you	look	at	the	type	definition,	you	will	see	that	its	storage	argument	is	set	to	the
object	of	Magento\Framework\Message\Session\Storage.	The	Session\Storage	file	is
actually	a	virtual	type.	This	allows	Message\Session	to	be	customized	without	affecting
other	classes	that	also	declare	a	dependency	on	Session\Storage.

Virtual	types	allow	us	to	effectively	change	the	behavior	of	a	dependency	when	it	is	used
in	a	specific	class.

Summary
In	this	chapter,	we	had	a	look	at	the	object	manager	and	dependency	injection,	which	are
the	foundations	of	Magento	object	management.	We	learned	the	meaning	of	the	type	and
preference	elements	of	dependency	injection	and	how	to	use	them	to	manipulate	class
construct	parameters.	Though	there	is	much	more	to	be	said	about	dependency	injection	in
Magento,	the	presented	information	should	suffice	and	help	us	with	other	aspects	of
Magento.

In	the	next	chapter,	we	will	extend	our	journey	into	di.xml	via	the	concept	of	plugins.

Chapter	6.	Plugins
In	this	chapter,	we	will	take	a	look	at	a	feature	of	Magento	called	plugins.	Before	we	start
with	plugins,	we	first	need	to	understand	the	term	interception	because	the	two	terms	are
used	somewhat	interchangeably	when	dealing	with	Magento.

Interception	is	a	software	design	pattern	that	is	used	when	we	want	to	insert	code
dynamically	without	necessarily	changing	the	original	class	behavior.	This	works	by
dynamically	inserting	code	between	the	calling	code	and	the	target	object.

The	interception	pattern	in	Magento	is	implemented	via	plugins.	They	provide	the	before,
after,	and	around	listeners,	which	help	us	extend	the	observed	method	behavior.

In	this	chapter,	we	will	cover	the	following	topics:

Creating	a	plugin
Using	the	before	listener
Using	the	after	listener
Using	the	around	listener
The	plugin	sort	order

Before	we	start	creating	a	plugin,	it	is	worth	noting	their	limitations.	Plugins	cannot	be
created	for	just	any	class	or	method,	as	they	do	not	work	for	the	following:

Final	classes
Final	methods
The	classes	that	are	created	without	a	dependency	injection

Let’s	go	ahead	and	create	a	plugin	using	a	simple	module	called	Foggyline_Plugged.

Creating	a	plugin
Start	by	creating	the	app/code/Foggyline/Plugged/registration.php	file	with	partial
content,	as	follows:

\Magento\Framework\Component\ComponentRegistrar::register(

				\Magento\Framework\Component\ComponentRegistrar::MODULE,

				'Foggyline_Plugged',

				__DIR__

);

Then,	create	the	app/code/Foggyline/Plugged/etc/module.xml	file	with	partial	content,
as	follows:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module/	

etc/module.xsd">

				<module	name="Foggyline_Plugged"	setup_version="1.0.0">

								<sequence>

												<module	name="Magento_Catalog"/>

								</sequence>

				</module>

</config>

The	preceding	file	is	simply	a	new	module	declaration	with	the	dependency	set	against	the
Magento_Catalog	module,	as	we	will	be	observing	its	class.	We	will	not	go	into	the	details
of	module	declaration	right	now,	as	that	will	be	covered	later	in	the	following	chapters.

Now,	create	the	app/code/Foggyline/Plugged/etc/di.xml	file	with	partial	content,	as
follows:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:	

ObjectManager/etc/config.xsd">

				<type	name="Magento\Catalog\Block\Product\AbstractProduct">

								<plugin	name="foggyPlugin1"	

type="Foggyline\Plugged\Block\Catalog\Product\	AbstractProductPlugin1"	

disabled="false"	sortOrder="100"/>

								<plugin	name="foggyPlugin2"	

type="Foggyline\Plugged\Block\Catalog\Product\	AbstractProductPlugin2"	

disabled="false"	sortOrder="200"/>

								<plugin	name="foggyPlugin3"	

type="Foggyline\Plugged\Block\Catalog\Product\	AbstractProductPlugin3"	

disabled="false"	sortOrder="300"/>

				</type>

</config>

Plugins	are	defined	within	the	module	di.xml	file.	To	define	a	plugin,	by	using	the	type
element	and	its	name	attribute,	we	first	map	the	class	that	we	want	to	observe.	In	this	case,
we	are	observing	the	Magento\Catalog\Block\Product\AbstractProduct	class.	Note
that	even	though	the	file	and	class	name	imply	an	abstract	type	of	class,	the
AbstractProduct	class	is	not	abstract.

In	the	type	element,	we	then	define	one	or	more	plugins	using	the	plugin	element.

The	plugin	element	has	the	following	four	attributes	assigned	to	it:

name:	Using	this	attribute,	you	can	provide	a	unique	and	recognizable	name	value	that
is	specific	to	the	plugin
sortOrder:	This	attribute	determines	the	order	of	execution	when	multiple	plugins
are	observing	the	same	method
disabled:	The	default	value	of	this	attribute	is	set	to	false,	but	if	it	is	set	to	true,	it
will	disable	the	plugin
type:	This	attribute	points	to	the	class	that	we	will	be	using	to	implement	the	before,
after,	or	around	listener

After	doing	this,	create	the
app/code/Foggyline/Plugged/Block/Catalog/Product/AbstractProductPlugin1.php

file	with	partial	content,	as	follows:

namespace	Foggyline\Plugged\Block\Catalog\Product;

class	AbstractProductPlugin1

{

				public	function	beforeGetAddToCartUrl(

								$subject,

								$product,	$additional	=	[]

)

				{

								var_dump('Plugin1	-	beforeGetAddToCartUrl');

				}

				public	function	afterGetAddToCartUrl($subject)

				{

								var_dump('Plugin1	-	afterGetAddToCartUrl');

				}

				public	function	aroundGetAddToCartUrl(

								$subject,

								\Closure	$proceed,

								$product,

								$additional	=	[]

)

				{

								var_dump('Plugin1	-	aroundGetAddToCartUrl');

								return	$proceed($product,	$additional);

				}

}

As	per	the	type	definition	in	the	di.xml	file,	the	plugin	observes	the
Magento\Catalog\Block\Product\AbstractProduct	class,	and	this	class	has	a	method
called	getAddToCartUrl,	which	is	defined	as	follows:

public	function	getAddToCartUrl($product,	$additional	=	[])

{

				//method	body	here…

}

The	AbstractProductPlugin1	class	does	not	have	to	be	extended	from	another	class	for

the	plugin	to	work.	We	define	the	before,	after	and	around	listeners	for	the
getAddToCartUrl	method	by	using	the	naming	convention,	as	follows:

<before>	+	<getAddToCartUrl>	=>	beforeGetAddToCartUrl

<after>	+	<getAddToCartUrl>	=>	afterGetAddToCartUrl

<around>	+	<getAddToCartUrl>	=>	aroundGetAddToCartUrl

We	will	go	into	the	details	of	each	listener	later.	Right	now	we	need	to	finish	the	module
by	creating	the	AbstractProductPlugin2.php	and	AbstractProductPlugin3.php	files	as
a	copy	of	AbstractProductPlugin1.php	and	along	with	that,	simply	changing	all	the
number	values	within	their	code	from	1	to	2	or	3.

It’s	a	good	practice	to	organize	the	listeners	into	folders	matching	the	structure	of	the
observed	class	location.	For	example,	if	a	module	is	called	Foggyline_Plugged	and	we
are	observing	the	method	in	the	Magento\Catalog\Block\Product\AbstractProduct
class,	we	should	consider	putting	the	plugin	class	into	the
Foggyline/Plugged/Block/Catalog/Product/AbstractProductPlugin.php	file.	This	is
a	not	a	requirement.	Rather,	it	is	a	nice	convention	for	other	developers	to	easily	manage
the	code.

Once	the	module	is	in	place,	we	need	to	execute	the	following	commands	on	the	console:

php	bin/magento	module:enable	Foggyline_Plugged

php	bin/magento	setup:upgrade

This	will	make	the	module	visible	to	Magento.

If	we	now	open	the	storefront	in	a	browser	for	a	category	page,	we	will	see	the	results	of
all	the	var_dump	function	calls.

Let’s	go	ahead	and	take	a	look	at	each	and	every	listener	method	in	detail.

Using	the	before	listener
The	before	listeners	are	used	when	we	want	to	change	the	arguments	of	an	original
method	or	add	some	behavior	before	an	original	method	is	called.

Looking	back	at	the	beforeGetAddToCartUrl	listener	method	definition,	you	will	see	that
it	has	three	properties	assigned	in	sequence—$subject,	$product,	and	$additional.

With	the	before	method	listener,	the	first	property	is	always	the	$subject	property,	which
contains	the	instance	of	the	object	type	being	observed.	Properties	following	the	$subject
property	match	the	properties	of	the	observed	getAddToCartUrl	method	in	a	sequential
order.

This	simple	rule	used	for	transformation	is	as	follows:

getAddToCartUrl($product,	$additional	=	[])

beforeGetAddToCartUrl($subject,	$product,	$additional	=	[])

The	before	listener	methods	do	not	need	to	have	a	return	value.

If	we	run	get_class($subject)	in	the	beforeGetAddToCartUrl	listener	method	that	we
previously	saw,	we	will	have	the	following	result:

\Magento\Catalog\Block\Product\ListProduct\Interceptor

				extends	\Magento\Catalog\Block\Product\ListProduct

								extends	\Magento\Catalog\Block\Product\AbstractProduct

What	this	shows	is	that	even	though	we	are	observing	the	AbstractProduct	class,	the
$subject	property	is	not	directly	of	that	type.	Rather,	it	is	of	the
ListProduct\Interceptor	type.	This	is	something	that	you	should	keep	in	mind	during
development.

Using	the	after	listener
The	after	listeners	are	used	when	we	want	to	change	the	values	returned	by	an	original
method	or	add	some	behavior	after	an	original	method	is	called.

Looking	back	at	the	afterGetAddToCartUrl	listener	method	definition,	you	will	see	that	it
has	only	one	$subject	property	assigned.

With	the	after	method	listener,	the	first	and	only	property	is	always	the	$subject
property,	which	contains	the	instance	of	the	object	type	being	observed	and	not	the	return
value	of	the	observed	method.

This	simple	rule	used	for	transformation	is	as	follows:

getAddToCartUrl($product,	$additional	=	[])

afterGetAddToCartUrl($subject)

The	after	listener	methods	do	not	need	to	have	a	return	value.

Like	the	before	interceptor	method,	the	$subject	property	in	this	case	is	not	directly	of
the	AbstractProduct	type.	Rather,	it	is	of	the	parent	ListProduct\Interceptor	type.

Using	the	around	listener
The	around	listeners	are	used	when	we	want	to	change	both	the	arguments	and	the
returned	values	of	an	original	method	or	add	some	behavior	before	and	after	an	original
method	is	called.

Looking	back	at	the	aroundGetAddToCartUrl	listener	method	definition,	you	will	see	that
it	has	four	properties	assigned	in	sequence—$subject,	$proceed,	$product,	and
$additional.

With	the	after	method	listener,	the	first	property	is	always	the	$subject	property,	which
contains	the	instance	of	the	object	type	being	observed	and	not	the	return	value	of	the
observed	method.	The	second	property	is	always	the	$proceed	property	of	\Closure.	The
properties	following	the	$subject	and	$proceed	match	the	properties	of	the	observed
getAddToCartUrl	method	in	the	sequential	order	too.

This	simple	rule	used	for	transformation	is	as	follows:

getAddToCartUrl($product,	$additional	=	[])

aroundGetAddToCartUrl(

				$subject,

				\Closure	$proceed,

				$product,

				$additional	=	[]

)

The	around	listener	methods	must	have	a	return	value.	The	return	value	is	formed	in	such
way	that	the	parameters	following	the	$closure	parameter	in	the	around	listener	method
definition	are	passed	to	the	$closure	function	call	in	a	sequential	order,	as	follows:

return	$proceed($product,	$additional);

//or

$result	=	$proceed($product,	$additional);

return	$result;

The	plugin	sort	order
Looking	back,	when	we	defined	a	plugin	in	the	di.xml	file,	one	of	the	attributes	that	we
set	for	every	plugin	definition	was	sortOrder.	It	was	set	to	100,	200	to	300	for
foggyPlugin1,	foggyPlugin2	and	foggyPlugin3	respectively.

The	flow	of	the	code	execution	for	the	preceding	plugins	is	as	follows:

Plugin1	-	beforeGetAddToCartUrl

Plugin1	-	aroundGetAddToCartUrl

Plugin2	-	beforeGetAddToCartUrl

Plugin2	-	aroundGetAddToCartUrl

Plugin3	-	beforeGetAddToCartUrl

Plugin3	-	aroundGetAddToCartUrl

Plugin3	-	afterGetAddToCartUrl

Plugin2	-	afterGetAddToCartUrl

Plugin1	-	afterGetAddToCartUrl

In	other	words,	if	multiple	plugins	are	listening	to	the	same	method,	the	following
execution	order	is	used:

The	before	plugin	functions	with	the	lowest	sortOrder	value
The	around	plugin	functions	with	the	lowest	sortOrder	value
The	before	plugin	functions	following	the	sortOrder	value	from	the	lowest	to	the
highest
The	around	plugin	functions	following	the	sortOrder	value	from	the	lowest	to	the
highest
The	after	plugin	functions	with	the	highest	sortOrder	value
The	after	plugin	functions	following	the	sortOrder	value	from	the	highest	to	the
lowest

Note
Special	care	needs	to	be	taken	when	it	comes	to	the	around	listener,	as	it	is	the	only
listener	that	needs	to	return	a	value.	If	we	omit	the	return	value,	we	risk	breaking	the
execution	flow	in	such	a	way	that	the	other	around	plugins	for	the	same	method	won’t	be
executed.

Summary
In	this	chapter,	we	had	a	look	at	a	powerful	feature	of	Magento	called	plugins.	We	created
a	small	module	with	three	plugins;	each	plugin	had	a	different	sort	order.	This	enabled	us
to	trace	the	execution	flow	of	multiple	plugins	that	observe	the	same	method.	We	explored
in	detail	the	before,	after,	and	around	listener	methods,	while	having	a	strong	emphasis
on	the	parameter	order.	The	finalized	module	used	in	this	chapter	can	be	found	at
https://github.com/ajzele/B05032-Foggyline_Plugged.

In	the	next	chapter,	we	are	going	to	dive	deep	into	backend	development.

https://github.com/ajzele/B05032-Foggyline_Plugged

Chapter	7.	Backend	Development
Backend	development	is	a	term	that	is	most	commonly	used	to	describe	work	closely
related	to	the	server	side.	This	usually	implies	the	actual	server,	application	code,	and	the
database.	For	example,	if	we	open	a	storefront	of	a	web	shop,	add	a	few	products	to	the
cart,	and	then	check	out,	the	application	will	store	the	information	provided.	This
information	is	managed	on	a	server	with	a	server-side	language,	such	as	PHP,	and	then
saved	in	a	database.	In	Chapter	4,	Models	and	Collections,	we	took	a	look	at	the	backbone
of	backend	development.	In	this	chapter,	we	will	explore	other	backend-related	aspects.

We	will	use	the	Foggyline_Office	module	that	was	defined	in	one	of	the	previous
chapters	as	we	go	through	the	following	topics:

Cron	jobs
Notification	messages
Sessions	and	cookies
Logging
The	profiler
Events	and	observers
Caches
Widgets
Custom	variables
i18n	(internationalization)
Indexers

These	individual	isolated	units	of	functionality	are	mostly	used	in	everyday	backend-
related	development.

Cron	jobs
Speaking	of	cron	jobs,	it	is	worth	noting	one	important	thing.	A	Magento	cron	job	is	not
the	same	as	an	operating	system	cron	job.	An	operating	system	cron	is	driven	by	a
crontab	(short	for	cron	table)	file.	The	crontab	file,	is	a	configuration	file	that	specifies
shell	commands	that	need	to	be	run	periodically	on	a	given	schedule.

A	Magento	cron	job	is	driven	by	a	periodic	execution	of	PHP	code	that	handles	entries	in
the	cron_schedule	table.	The	cron_schedule	table	is	where	Magento	cron	jobs	are
queued	once	they	are	picked	up	from	the	individual	crontab.xml	file.

The	Magento	cron	jobs	cannot	be	executed	without	the	operating	system	cron	job	being
set	to	execute	the	php	bin/magento	cron:run	command.	Ideally,	an	operating	system
cron	job	should	be	set	to	trigger	Magento's	cron:run	every	minute.	Magento	will	then
internally	execute	its	cron	jobs	according	to	the	way	an	individual	cron	job	is	defined	in
the	crontab.xml	file.

To	define	a	new	cron	job	in	Magento	cron,	we	first	need	to	define	a	crontab.xml	file	in
the	module.	Let’s	create	a	app/code/Foggyline/Office/etc/crontab.xml	file	with	the
following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation=	

"urn:magento:module:Magento_Cron:etc/crontab.xsd">

				<group	id="default">

								<job	name="foggyline_office_logHello"	instance=	

"Foggyline\Office\Model\Cron"	method="logHello">

												<schedule>*/2	*	*	*	*</schedule>

								</job>

				</group>

</config>

Note	that	the	XSD	schema	location	points	to	crontab.xsd	from	within	the	Magento_Cron
module.

The	id	attribute	of	a	group	element	is	set	to	the	default	value.	In	its	modules,	Magento
defines	two	different	groups,	namely	default	and	index.	We	used	the	default	value,	as	this
is	the	one	that	gets	executed	when	the	standard	php	bin/magento	cron:run	command	is
triggered	on	the	console.

Within	the	group	element,	we	have	individual	jobs	defined	under	the	job	element.	The
job	element	requires	us	to	specify	the	name,	instance,	and	method	attributes.	The	name
attribute	has	to	be	unique	within	the	group	element.	The	value	of	the	instance	and
method	attributes	should	point	to	the	class	that	will	be	instantiated	and	the	method	within
the	class	that	needs	to	be	executed.

The	schedule	element	nested	within	the	cron	job	specifies	the	desired	time	of	job
execution.	It	uses	the	same	time	expression	as	that	of	the	entries	in	an	operating	system
crontab	file.	The	specific	example	that	we	will	look	at	defines	an	expression	(*/2	*	*	*

*)	that	is	executed	every	two	minutes.

Once	we	have	defined	the	crontab.xml	file,	we	need	to	define	the
Foggyline\Office\Model\Cron	class	file,	as	follows:

namespace	Foggyline\Office\Model;

class	Cron

{

				protected	$logger;

				public	function	__construct(

								\Psr\Log\LoggerInterface	$logger

)

				{

								$this->logger	=	$logger;

				}

				public	function	logHello()

				{

								$this->logger->info('Hello	from	Cron	job!');

								return	$this;

				}

}

The	preceding	code	simply	defines	a	logHello	method	used	by	the	cron	job.	In	the
logHello	method,	we	used	the	logger	method	that	was	instantiated	via	the	constructor.
The	logger	method	will	make	a	log	entry	in	the	var/log/system.log	file	once	it	is
executed.

Once	the	command	is	executed,	you	will	see	the	Ran	jobs	by	schedule	message	in	the
console.	Additionally,	the	cron_schedule	table	should	get	filled	with	all	the	Magento
cron	jobs	that	were	defined.

At	this	point,	we	should	trigger	the	php	bin/magento	cron:run	command	in	the	console.

The	cron_schedule	table	contains	the	following	columns:

schedule_id:	The	auto-increment	primary	field.
job_code:	The	value	of	the	job	name	attribute,	as	defined	in	crontab.xml	file,	which
equals	to	foggyline_office_logHello	table	in	our	example.
status:	Defaults	to	the	pending	value	for	the	newly	created	entries	in	the	table	and
allows	for	a	pending,	running,	success,	missed	or	error	value.	Its	value	changes	as
the	cron	job	traverses	through	its	life	cycle.
messages:	Stores	the	possible	exception	error	message	if	the	exception	has	occurred
during	a	job’s	execution.
created_at:	The	timestamp	value	that	denotes	when	a	job	was	created.
scheduled_at:	The	timestamp	value	that	denotes	when	a	job	was	scheduled	for
execution.
executed_at:	The	timestamp	value	that	denotes	when	a	job’s	execution	started.
finished_at:	The	timestamp	value	that	denotes	when	a	job	has	finished	executing.

Unless	we	have	already	set	the	operating	system	cron	to	trigger	the	php	bin/magento

cron:run	command,	we	need	to	trigger	it	on	our	own	a	few	times	every	two	minutes	in
order	to	actually	execute	the	job.	The	first	time	a	command	is	run,	if	the	job	does	not	exist
in	the	cron_schedule	table,	Magento	will	merely	queue	it,	but	it	won’t	execute	it.	The
subsequent	cron	runs	will	execute	the	command.	Once	we	are	sure	that	the	cron	job	entry
in	the	cron_schedule	table	has	the	finished_at	column	value	filled,	we	will	see	an	entry
that	looks	like	[2015-11-21	09:42:18]	main.INFO:	Hello	from	Cron	job!	[]	[]	in
the	var/log/system.log	file.

Tip
While	developing	and	testing	cron	jobs	in	Magento,	we	might	need	to	truncate	the
cron_schedule	table,	delete	Magento's	var/cache	value,	and	execute	the	php
bin/magento	cron:run	command	repetitively	until	we	get	it	tested	and	working.

Notification	messages
Magento	implements	the	notification	message	mechanism	via	the	Messages	module.	The
Messages	module	conforms	to	\Magento\Framework\Message\ManagerInterface.
Though	the	interface	itself	does	not	impose	any	session	relation,	an	implementation	adds
interface-defined	types	of	messages	to	a	session	and	allows	access	to	those	messages	later.
In	the	app/etc/di.xml	file,	there	is	a	preference	defined	for
\Magento\Framework\Message\ManagerInterface	towards	the
Magento\Framework\Message\Manager	class.

Message\ManagerInterface	specifies	four	types	of	messages,	namely	error,	warning,
notice,	and	success.	The	types	of	messages	are	followed	by	several	key	methods	in	the
Message\Manager	class,	such	as	addSuccess,	addNotice,	addWarning,	addError,	and
addException.	The	addException	method	is	basically	a	wrapper	for	addError	that
accepts	an	exception	object	as	a	parameter.

Let’s	try	to	run	the	following	code	in	the	execute	method	of
app/code/Foggyline/Office/Controller/Test/Crud.php:

$resultPage	=	$this->resultPageFactory->create();

$this->messageManager->addSuccess('Success-1');

$this->messageManager->addSuccess('Success-2');

$this->messageManager->addNotice('Notice-1');

$this->messageManager->addNotice('Notice-2');

$this->messageManager->addWarning('Warning-1');

$this->messageManager->addWarning('Warning-2');

$this->messageManager->addError('Error-1');

$this->messageManager->addError('Error-2');

return	$resultPage;

Once	this	code	executed,	the	result,	as	shown	in	the	following	screenshot,	will	appear	on
the	page	in	the	browser:

Notification	messages	appear	both	in	the	frontend	and	admin	area.

The	frontend	layout	vendor/magento/module-
theme/view/frontend/layout/default.xml	file	defines	it	as	follows:

<page	layout="3columns"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"	xsi:noNamespaceSchemaLocation=	

"../../../../../../../lib/internal/Magento/Framework	

/View/Layout/etc/page_configuration.xsd">

				<update	handle="default_head_blocks"/>

				<body>

								<!--	...	-->

								<referenceContainer	name="columns.top">

												<container	name="page.messages"	htmlTag="div"	htmlClass="page	

messages">

																<block	class="Magento\Framework\View\Element	\Messages"	

name="messages"	as="messages"	template="Magento_Theme::messages.phtml"/>

												</container>

								</referenceContainer>

								<!--	...	-->

				</body>

</page>

The	template	file	that	renders	the	messages	is
view/frontend/templates/messages.phtml	in	the	Magento_Theme	module.	By	looking
at	the	Magento\Framework\View\Element\Messages	class,	you	will	see	that	the	_toHtml
method	branches	into	if-else	statements,	depending	on	whether	template	is	set	or	not.	In
case	the	template	is	not	set,	_toHtml	internally	calls	the	_renderMessagesByType	method,
which	renders	messages	in	the	HTML	format	that	are	grouped	by	type.

The	view/adminhtml/layout/default.xml	admin	layout	file	in	the
Magento_AdminNotification	module	defines	it	as	follows:

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:	

framework:View/Layout/etc/page_configuration.xsd">

				<body>

								<referenceContainer	name="notifications">

												<block	class="Magento\AdminNotification\Block	\System\Messages"	

name="system_messages"	as="system_messages"	before="-"	template=	

"Magento_AdminNotification::system/messages.phtml"/>

								</referenceContainer>

				</body>

</page>

The	template	file	that	renders	the	messages	is
view/adminhtml/templates/system/messages.phtml	in	the
Magento_AdminNotification	module.	When	you	look	at	the
Magento\AdminNotification\Block\System\Messages	class,	you	will	see	that	its
_toHtml	is	calling	the	_toHtml	parent	method,	where	the	parent	belongs	to	the
\Magento\Framework\View\Element\Template	class.	This	means	that	the	output	is
relying	on	the	view/adminhtml/templates/system/messages.phtml	file	in	the
Magento_AdminNotification	module.

Session	and	cookies
Sessions	in	Magento	conform	to
Magento\Framework\Session\SessionManagerInterface.	In	the	app/etc/di.xml	file,
there	is	a	definition	preference	for	the	SessionManagerInterface	class	which	points	to
the	Magento\Framework\Session\Generic	class	type.	The	Session\Generic	class	is	just
an	empty	class	that	extends	the	Magento\Framework\Session\SessionManager	class,
which	in	turn	implements	the	SessionManagerInterface	class.

There	is	one	important	object	that	gets	instantiated	in	the	SessionManager	instance	that
conforms	to	\Magento\Framework\Session\Config\ConfigInterface.	On	looking	at
app/etc/di.xml	file,	we	can	see	a	preference	for	ConfigInterface	pointing	to	a
Magento\Framework\Session\Config	class	type.

Tip
To	fully	understand	the	session	behavior	in	Magento,	we	should	study	the	inner	workings
of	both	the	SessionManager	and	Session\Config	classes.

Magento	uses	cookies	to	keep	track	of	a	session.	These	cookies	have	a	default	lifetime	of
3,600	seconds.	When	a	session	is	established,	a	cookie	with	the	name	of	PHPSESSID	is
created	in	the	browser.	The	value	of	the	cookie	equals	the	session	name.	By	default,
sessions	are	stored	in	files	in	the	var/session	directory	of	Magento‘s	root	installation.

If	you	have	a	look	at	these	session	files,	you	will	see	that	session	information	is	being
stored	in	serialized	strings	that	are	divided	into	groupings	such	as
_session_validator_data,	_session_hosts,	default,	customer_website_1,	and
checkout,	as	shown	in	the	following	screenshot:

This	is	not	the	finite	list	of	grouping.	Modules	that	implement	their	own	session	handling
bits	can	add	their	own	groups.

We	can	store	and	retrieve	information	in	a	session	by	simply	using	expressions	like	the
following	ones:

$this->sessionManager->setFoggylineOfficeVar1('Office1');

$this->sessionManager->getFoggylineOfficeVar1();

The	preceding	expressions	will	create	and	get	an	entry	from	the	session	under	the	default
group.

We	can	get	the	entire	content	of	the	default	session	group	simply	by	using	the	$this-
>sessionManager->getData()	expression,	which	will	return	an	array	of	data	that	is
similar	to	the	following	one:

array(3)	{

		["_form_key"]	=>	string(16)	"u3sNaa26Ii21nveV"

		["visitor_data"]	=>	array(14)	{

				["last_visit_at"]	=>	string(19)	"2015-08-19	07:40:03"

				["session_id"]	=>	string(26)	"8p82je0dkqq1o00lanlr6bj6m2"

				["visitor_id"]	=>	string(2)	"35"

				["server_addr"]	=>	int(2130706433)

				["remote_addr"]	=>	int(2130706433)

				["http_secure"]	=>	bool(false)

				["http_host"]	=>	string(12)	"magento2.loc"

				["http_user_agent"]	=>	string(121)	"Mozilla/5.0	…"

				["http_accept_language"]	=>	string(41)	"en-US,en;"

				["http_accept_charset"]	=>	string(0)	""

				["request_uri"]	=>	string(38)	"/index.php/foggyline_office/test/crud/"

				["http_referer"]	=>	string(0)	""

				["first_visit_at"]	=>	string(19)	"2015-08-19	07:40:03"

				["is_new_visitor"]	=>	bool(false)

		}

		["foggyline_office_var_1"]	=>	string(7)	"Office1"

}

As	you	can	see,	the	foggyline_office_var_1	value	is	right	there	among	other	session
values.

There	are	several	useful	methods	of	ConfigInterface	that	we	can	use	to	fetch	session
configuration	information;	a	few	of	these	methods	are	as	follows:

getCookieSecure

getCookieDomain

getCookieHttpOnly

getCookieLifetime

getName

getSavePath

getUseCookies

getOptions

Here’s	a	result	example	of	the	getOptions	method	call	on	the	Session\Config	instance:

array(9)	{

		["session.save_handler"]	=>	string(5)	"files"

		["session.save_path"]	=>	string(39)	

"/Users/branko/www/magento2/var/session/"

		["session.cookie_lifetime"]	=>	int(3600)

		["session.cookie_path"]	=>	string(1)	"/"

		["session.cookie_domain"]	=>	string(12)	"magento2.loc"

		["session.cookie_httponly"]	=>	bool(true)

		["session.cookie_secure"]	=>	string(0)	""

		["session.name"]	=>	string(9)	"PHPSESSID"

		["session.use_cookies"]	=>	bool(true)

}

Cookies	often	go	hand	in	hand	with	sessions.	Besides	being	used	to	link	to	a	certain
session,	cookies	are	often	used	to	store	some	information	on	the	client	side,	thus	tracking
or	identifying	the	return	users	and	customers.

Besides	the	pure	PHP	approach	with	the	setcookie	function,	we	can	manage	cookies	in
Magento	through	an	instance	of	Magento\Framework\Stdlib\CookieManagerInterface.
When	you	look	at	app/etc/di.xml	file,	you	will	see	that	the	preference	for
CookieManagerInterface	points	to	a	class	of	the
Magento\Framework\Stdlib\Cookie\PhpCookieManager	type.

The	following	restrictions	are	worth	noting	when	it	comes	to	Magento	cookies:

We	can	set	maximum	of	50	cookies	in	the	system.	Otherwise,	Magento	will	throw	an
Unable	to	send	the	cookie.	Maximum	number	of	cookies	would	be	exceeded

exception.
We	can	store	a	cookie	with	a	maximum	size	of	4096	bytes.	Otherwise,	Magento	will
throw	an	Unable	to	send	the	cookie.	Size	of	\'%name\'	is	%size	bytes
exception.

By	imposing	these	restrictions,	Magento	ensures	that	we	are	compatible	with	most
browsers.

The	CookieManagerInterface	class,	among	other	things,	specifies	the
setSensitiveCookie	method	requirement.	This	method	sets	a	value	in	a	private	cookie
with	the	given	$name	$value	pairing.	Sensitive	cookies	have	HttpOnly	set	to	true	and
thus	cannot	be	accessed	by	JavaScript.

As	we	will	soon	demonstrate	in	the	following	examples,	to	set	a	public	or	private	cookie,
we	can	help	ourselves	by	using	instances	of	the	following:

\Magento\Framework\Stdlib\Cookie\CookieMetadataFactory

\Magento\Framework\Stdlib\CookieManagerInterface

\Magento\Framework\Session\Config\ConfigInterface

We	can	set	public	cookies	in	the	following	way:

$cookieValue	=	'Just	some	value';

$cookieMetadata	=	$this->cookieMetadataFactory

				->createPublicCookieMetadata()

				->setDuration(3600)

				->setPath($this->sessionConfig->getCookiePath())

				->setDomain($this->sessionConfig->getCookieDomain())

				->setSecure($this->sessionConfig->getCookieSecure())

				->setHttpOnly($this->sessionConfig->getCookieHttpOnly());

$this->cookieManager

		->setPublicCookie('cookie_name_1',	$cookieValue,	$cookieMetadata);

The	preceding	code	will	result	in	a	cookie,	as	shown	in	the	following	screenshot:

We	can	set	private	cookies	in	the	following	way:

$cookieValue	=	'Just	some	value';

$cookieMetadata	=	$this->cookieMetadataFactory

				->createSensitiveCookieMetadata()

				->setPath($this->sessionConfig->getCookiePath())

				->setDomain($this->sessionConfig->getCookieDomain());

$this->cookieManager

		->setSensitiveCookie('cookie_name_2',	$cookieValue,	$cookieMetadata);

The	preceding	code	will	result	in	a	cookie,	as	shown	in	the	following	screenshot:

Interestingly,	both	the	public	and	private	cookies	in	the	preceding	example	show	that
HttpOnly	is	checked	off	because	by	default,	a	Magento	admin	has	Stores	|	Settings	|
Configuration	|	General	|	Web	|	Default	Cookie	Settings	|	Use	HTTP	Only	set	to	Yes.
Since	we	are	using	the	setHttpOnly	method	in	the	public	cookie	example,	we	simply
picked	up	the	config	value	via	$this->sessionConfig->getCookieHttpOnly()	and

passed	it	on.	If	we	comment	out	that	line,	we	will	see	that	the	public	cookie	does	not	really
set	HttpOnly	by	default.

Logging
Magento	supports	the	messages	logging	mechanism	via	its	\Psr\Log\LoggerInterface
class.	The	LoggerInterface	class	has	a	preference	defined	within	app/etc/di.xml	file
for	the	Magento\Framework\Logger\Monolog	class	type.	The	actual	crux	of
implementation	is	actually	in	the	Monolog	parent	class	named	Monolog\Logger,	which
comes	from	the	Monolog	vendor.

The	LoggerInterface	class	uses	the	following	eight	methods	to	write	logs	to	the	eight
RFC	5424	levels:

debug

info

notice

warning

error

critical

alert

emergency

To	use	a	logger,	we	need	to	pass	the	LoggerInterface	class	to	a	constructor	of	a	class
from	within	we	want	to	use	it	and	then	simply	make	one	of	the	following	method	calls:

$this->logger->log(\Monolog\Logger::DEBUG,	'debug	msg');

$this->logger->log(\Monolog\Logger::INFO,	'info	msg');

$this->logger->log(\Monolog\Logger::NOTICE,	'notice	msg');

$this->logger->log(\Monolog\Logger::WARNING,	'warning	msg');

$this->logger->log(\Monolog\Logger::ERROR,	'error	msg');

$this->logger->log(\Monolog\Logger::CRITICAL,	'critical	msg');

$this->logger->log(\Monolog\Logger::ALERT,	'alert	msg');

$this->logger->log(\Monolog\Logger::EMERGENCY,	'emergency	msg');

Alternatively,	the	preferred	shorter	version	through	individual	log	level	type	methods	is	as
follows:

$this->logger->debug('debug	msg');

$this->logger->info('info	msg');

$this->logger->notice('notice	msg');

$this->logger->warning('warning	msg');

$this->logger->error('error	msg');

$this->logger->critical('critical	msg');

$this->logger->alert('alert	msg');

$this->logger->emergency('emergency	msg');

Both	approaches	result	in	the	same	two	log	files	being	created	in	Magento,	which	are	as
follows:

var/log/debug.log

var/log/system.log

The	debug.log	file	contains	only	the	debug	level	type	of	the	log,	while	the	rest	are	saved
under	system.log.

Entries	within	these	logs	will	then	look	like	this:

[2015-11-21	09:42:18]	main.DEBUG:	debug	msg	{"is_exception":false}	[]

[2015-11-21	09:42:18]	main.INFO:	info	msg	[]	[]

[2015-11-21	09:42:18]	main.NOTICE:	notice	msg	[]	[]

[2015-11-21	09:42:18]	main.WARNING:	warning	msg	[]	[]

[2015-11-21	09:42:18]	main.ERROR:	error	msg	[]	[]

[2015-11-21	09:42:18]	main.CRITICAL:	critical	msg	[]	[]

[2015-11-21	09:42:18]	main.ALERT:	alert	msg	[]	[]

[2015-11-21	09:42:18]	main.EMERGENCY:	emergency	msg	[]	[]

Each	of	these	logger	methods	can	accept	an	entire	array	of	arbitrary	data	called	context,
as	follows:

$this->logger->info('User	logged	in.',	['user'=>'Branko',	'age'=>32]);

The	preceding	expression	will	produce	the	following	entry	in	system.log:

[2015-11-21	09:42:18]	main.INFO:	User	logged	in.	{"user":"Branko","age":32}	

[]

Tip
We	can	manually	delete	any	of	the	.log	files	from	the	var/log	directory,	and	Magento
will	automatically	create	it	again	when	needed.

Magento	also	has	another	logging	mechanism	in	place,	where	it	logs	the	following	actions
in	the	log_*	tables	in	a	database:

log_customer

log_quote

log_summary

log_summary_type

log_url

log_url_info

log_visitorz

log_visitor_info

log_visitor_online

It	is	worth	noting	that	this	database	logging	is	not	related	in	any	way	to	Psr	logger	that
was	described	previously.	While	Psr	logger	serves	developers	within	the	code	to	group
and	log	certain	messages	according	to	the	Psr	standard,	the	database	logging	logs	the	live
data	that	is	a	result	of	user/customer	interaction	in	the	browser.

By	default,	Magento	keeps	database	logs	for	around	180	days.	This	is	a	configurable
option	that	can	be	controlled	in	the	Magento	admin	area	under	the	Stores	|	Settings	|
Configuration	|	Advanced	|	System	|	Log	Cleaning	tab	with	other	log	related	options,	as
shown	in	the	following	screenshot:

Configuration	options	that	are	shown	in	the	preceding	screenshot	only	bare	meaning
operating	system	cron	is	triggering	Magento	cron.

Tip
We	can	execute	two	commands	on	terminal:	php	bin/magento	log:status	to	get	the
current	state	information	about	log	tables	and	php	bin/magento	log:clean	to	force	the
clearing	of	tables.

The	profiler
Magento	has	an	in-built	profiler	that	can	be	used	to	identify	performance	problems	on	the
server	side.	In	a	nutshell,	the	profiler	can	tell	us	the	execution	time	of	certain	chunks	of
code.	There	is	nothing	that	great	with	its	behavior.	We	can	only	get	the	execution	time	of
code	blocks	or	individual	expressions	that	have	been	wrapped	by	the	profiler’s	start	and
stop	methods.	On	its	own,	Magento	calls	for	the	profiler	extensively	across	its	code.
However,	we	can’t	see	it	in	effect	as	the	profiler	output	is	disabled	by	default.

Magento	supports	three	profiler	outputs,	namely	html,	csvfile,	and	firebug.

To	enable	the	profiler,	we	can	edit	.htaccess	and	add	one	of	the	following	expressions:

SetEnv	MAGE_PROFILER	"html"

SetEnv	MAGE_PROFILER	"csvfile"

SetEnv	MAGE_PROFILER	"firebug"

The	HTML	type	of	profiler	will	show	its	output	into	the	footer	area	of	a	page	that	we	open
in	the	browser,	as	shown	in	the	following	screenshot:

The	csv	file	type	of	profiler	will	output	into	var/log/profiler.csv,	as	shown	in	the
following	screenshot:

The	firebug	type	of	profiler	will	output	into	var/log/profiler.csv,	as	shown	in	the

following	screenshot:

The	profiler	outputs	the	following	pieces	of	information:

Time	profiler	shows	the	time	spent	from	Profiler::start	to	Profiler::stop.
Avg	profiler	shows	the	average	time	spent	from	Profiler::start	to	Profiler::stop
for	cases	where	Cnt	is	greater	than	one.
Cnt	profiler	shows	the	integer	value	of	how	many	times	we	have	started	the	profiler
with	the	same	timer	name.	For	example,	if	we	have	called
\Magento\Framework\Profiler::start('foggyline:office');	twice	somewhere
in	the	code,	then	Cnt	will	show	the	value	of	2.
Emalloc	profiler	stands	for	the	amount	of	memory	allocated	to	PHP.	It	is	a	mix	of	the
core	PHP	memory_get_usage	function	without	the	true	parameter	passed	to	it	and	the
timer	values.
RealMem	profiler	also	stands	for	the	amount	of	memory	allocated	to	PHP	whose	final
value	is	also	obtained	via	the	memory_get_usage	function	minus	the	timer	values,	but
this	time	with	the	true	parameter	passed	to	it.

We	can	easily	add	our	own	Profiler::start	calls	anywhere	in	the	code.	Every
Profiler::start	should	be	followed	by	some	code	expressions	and	then	finalized	with	a
Profiler::stop	call,	as	follows:

\Magento\Framework\Profiler::start('foggyline:office');

sleep(2);	/*	code	block	or	single	expression	here	*/

\Magento\Framework\Profiler::stop('foggyline:office');

Depending	on	where	we	call	the	profiler	in	the	code,	the	resulting	output	should	be	similar
to	the	one	shown	in	the	following	screenshot:

Events	and	observers
Magento	implements	the	observer	pattern	through
\Magento\Framework\Event\ManagerInterface.	In	app/etc/di.xml,	there	is	a
preference	for	ManagerInterface	that	points	to	the
Magento\Framework\Event\Manager\Proxy	class	type.	The	Proxy	class	further	extends
the	\Magento\Framework\Event\Manager	class	that	implements	the	actual	event	dispatch
method.

Events	are	dispatched	by	calling	a	dispatch	method	on	the	instance	of	the	Event\Manager
class	and	passing	the	name	and	some	data,	which	is	optional,	to	it.	Here’s	an	example	of	a
Magento	core	event:

$this->eventManager->dispatch(

				'customer_customer_authenticated',

				['model'	=>	$this->getFullCustomerObject($customer),	'password'	=>	

$password]

);

The	$this->eventManager	is	an	instance	of	the	previously	mentioned	Event\Manager
class.	In	this	case,	the	event	name	equals	to	customer_customer_authenticated,	while
the	data	passed	to	the	event	is	the	array	with	two	elements.	The	preceding	event	is	fired
when	the	authenticate	method	is	called	on
\Magento\Customer\Model\AccountManagement,	that	is,	when	a	customer	logs	in.

Dispatching	an	event	only	makes	sense	if	we	expect	someone	to	observe	it	and	execute
their	code	when	the	event	is	dispatched.	Depending	on	the	area	from	which	we	want	to
observe	events,	we	can	define	observers	in	one	of	the	following	XML	files:

app/code/{vendorName}/{moduleName}/etc/events.xml

app/code/{vendorName}/{moduleName}/etc/frontend/events.xml

app/code/{vendorName}/{moduleName}/etc/adminhtml/events.xml

Let’s	define	an	observer	that	will	log	an	e-mail	address	of	an	authenticated	user	into	a
var/log/system.log	file.	We	can	use	the	Foggyline_Office	module	and	add	some	code
to	it.	As	we	are	interested	in	the	storefront,	it	makes	sense	to	put	the	observer	in	the
etc/frontend/events.xml	module.

Let’s	define	the	app/code/Foggyline/Office/etc/frontend/events.xml	file	with
content,	as	follows:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:	

Event/etc/events.xsd">

				<event	name="customer_customer_authenticated">

								<observer	name="foggyline_office_customer_authenticated"	

instance="Foggyline\Office\Observer\LogCustomerEmail"	/>

				</event>

</config>

Here,	we	are	specifying	a	foggyline_office_customer_authenticated	observer	for	the

customer_customer_authenticated	event.	The	observer	is	defined	in	the
LogCustomerEmail	class	that	is	placed	in	the	Observer	module	directory.	The	Observer
class	has	to	implement	the	Magento\Framework\Event\ObserverInterface	class.	The
Observer	interface	defines	a	single	execute	method.	The	execute	method	hosts	the
observer	code	and	is	executed	when	the	customer_customer_authenticated	event	is
dispatched.

Let’s	go	ahead	and	define	the	Foggyline\Office\Observer\LogCustomerEmail	class	in
the	app/code/Foggyline/Office/Observer/LogCustomerEmail.php	file,	as	follows:

namespace	Foggyline\Office\Observer;

use	Magento\Framework\Event\ObserverInterface;

class	LogCustomerEmail	implements	ObserverInterface

{

				protected	$logger;

				public	function	__construct(

								\Psr\Log\LoggerInterface	$logger

)

				{

								$this->logger	=	$logger;

				}

				/**

					*	@param	\Magento\Framework\Event\Observer	$observer

					*	@return	self

					*/

				public	function	execute(\Magento\Framework\Event\Observer	$observer)

				{

								//$password	=	$observer->getEvent()->getPassword();

								$customer	=	$observer->getEvent()->getModel();

								$this->logger->info('Foggyline\Office:	'	.	$customer->	getEmail());

								return	$this;

				}

}

The	execute	method	takes	a	single	parameter	called	$observer	of	the
\Magento\Framework\Event\Observer	type.	The	event	that	we	are	observing	is	passing
two	pieces	of	data	within	the	array,	namely	the	model	and	password.	We	can	access	this	by
using	the	$observer->getEvent()->get{arrayKeyName}	expression.	The	$customer
object	is	an	instance	of	the	Magento\Customer\Model\Data\CustomerSecure	class,	which
contains	properties	such	as	email,	firstname,	lastname,	and	so	on.	Thus,	we	can	extract
the	e-mail	address	from	it	and	pass	it	to	logger’s	info	method.

Now	that	we	know	how	to	observe	existing	events,	let’s	see	how	we	can	dispatch	our	own
events.	We	can	dispatch	events	from	almost	anywhere	in	the	code,	with	or	without	data,	as
shown	in	the	following	example:

$this->eventManager->dispatch('foggyline_office_foo');

//	or

$this->eventManager->dispatch(

				'foggyline_office_bar',

				['var1'=>'val1',	'var2'=>'val2']

);

It	is	worth	noting	that	there	are	two	types	of	events;	we	can	group	them	in	the	following
way	according	to	the	way	their	name	is	assigned:

Static:	$this->eventManager->dispatch('event_name',	...)
Dynamic:	$this->eventManager->dispatch({expression}.'_event_name',	...)

The	static	events	have	a	fixed	string	for	a	name,	while	the	dynamic	ones	have	a	name	that
is	determined	during	the	runtime.	Here’s	a	nice	example	of	the	core	Magento	functionality
from	the	afterLoad	method	that	is	defined	under
lib/internal/Magento/Framework/Data/AbstractSearchResult.php,	which	showcases
how	to	use	both	types	of	events:

protected	function	afterLoad()

{

				$this->eventManager->dispatch	('abstract_search_result_load_after',	

['collection'	=>	$this]);

				if	($this->eventPrefix	&&	$this->eventObject)	{

								$this->eventManager->dispatch($this->eventPrefix	.	'_load_after',	

[$this->eventObject	=>	$this]);

				}

}

We	can	see	a	static	event	(abstract_search_result_load_after)	and	a	dynamic	event
($this->eventPrefix	.	'_load_after').	The	$this->eventPrefix	is	an	expression	that
gets	evaluated	during	the	runtime.	We	should	be	careful	when	using	dynamic	events	as
they	are	triggered	under	multiple	situations.	Some	interesting	dynamic	events	are	the	one
defined	on	classes	like	the	following	ones:

Magento\Framework\Model\AbstractModel

$this->_eventPrefix	.	'_load_before'

$this->_eventPrefix	.	'_load_after'

$this->_eventPrefix	.	'_save_commit_after'

$this->_eventPrefix	.	'_save_before'

$this->_eventPrefix	.	'_save_after'

$this->_eventPrefix	.	'_delete_before'

$this->_eventPrefix	.	'_delete_after'

$this->_eventPrefix	.	'_delete_commit_after'

$this->_eventPrefix	.	'_clear'

\Magento\Framework\Model\ResourceModel\Db\Collection\AbstractCollection

$this->_eventPrefix	.	'_load_before'

$this->_eventPrefix	.	'_load_after'

\Magento\Framework\App\Action\Action

'controller_action_predispatch_'	.	$request->	getRouteName()

'controller_action_predispatch_'	.	$request->	getFullActionName()

'controller_action_postdispatch_'	.	$request->	getFullActionName()

'controller_action_postdispatch_'	.	$request->	getRouteName()

Magento\Framework\View\Result\Layout

'layout_render_before_'	.	$this->request->	getFullActionName()

These	events	are	fired	on	the	model,	collection,	controller,	and	layout	classes,	which
are	probably	among	the	most	used	backend	elements	that	often	require	observing	and
interacting.	Even	though	we	can	say	that	the	full	event	name	is	known	during	the	runtime
along	with	the	dynamic	event,	this	can	be	assumed	even	before	the	runtime.

For	example,	assuming	that	we	want	to	observe	'controller_action_predispatch_'	.
$request->getFullActionName()	for	the	Foggyline_Office	module’s	Crud	controller
action,	the	actual	full	event	name	will	be
'controller_action_predispatch_foggyline_office_test_crud',	given	that
$request->getFullActionName()	will	resolve	to	foggyline_office_test_crud	during
the	runtime.

Cache(s)
Magento	has	eleven	out-of-the-box	cache	types,	according	to	the	following	list.	These	are
used	across	many	levels	within	the	system:

Configuration:	Various	XML	configurations	that	were	collected	across	modules	and
merged
Layouts:	Layout	building	instructions
Blocks	HTML	output:	Page	blocks	HTML
Collections	data:	Collection	data	files
Reflection	data:	API	interfaces	reflection	data
Database	DDL	operations:	Results	of	DDL	queries,	such	as	describing	tables	or
indexes
EAV	types	and	attributes:	Entity	types	declaration	cache
Page	cache:	Full	page	caching
Translations:	Translation	files
Integrations	configuration:	Integration	configuration	file
Integrations	API	configuration:	Integrations	API	configuration	file
Web	services	configuration:	REST	and	SOAP	configurations,	generated	WSDL	file

There	is	also	Additional	Cache	Management	that	manages	the	cache	for	the	following
files:

Previously	generated	product	image	files
Themes	JavaScript	and	CSS	files	combined	to	one	file
Preprocessed	view	files	and	static	files

Each	of	these	caches	can	be	cleared	separately.

We	can	easily	define	our	own	cache	type.	We	can	do	so	by	first	creating	an
app/code/Foggyline/Office/etc/cache.xml	file	with	content,	as	follows:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Cache/etc/	cache.xsd">

				<type	name="foggyline_office"

										instance="Foggyline\Office\Model\Cache">

								<label>Foggyline	Office	Example</label>

								<description>Example	cache	from	Foggyline	Office	module.

</description>

				</type>

</config>

When	defining	a	new	cache	type,	we	need	to	specify	its	name	and	instance	attributes.	The
name	attribute	of	the	type	element	should	be	set	to	foggyline_office	and	should	be
unique	across	Magento.	This	value	should	match	the	TYPE_IDENTIFIER	constant	value	on
the	Foggyline\Office\Model\Cache	class,	which	will	be	created	soon.	The	instance
attribute	holds	the	class	name	that	we	will	use	for	caching.

Then,	we	will	define	the	Foggyline\Office\Model\Cache	class	in	the
app/code/Foggyline/Office/Model/Cache.php	file	with	the	following	content:

namespace	Foggyline\Office\Model;

class	Cache	extends	\Magento\Framework\Cache\Frontend\Decorator\TagScope

{

				const	TYPE_IDENTIFIER	=	'foggyline_office';

				const	CACHE_TAG	=	'OFFICE';

				public	function	__construct(

								\Magento\Framework\App\Cache\Type\FrontendPool	$cacheFrontendPool

)

				{

								parent::__construct(

												$cacheFrontendPool->get(self::TYPE_IDENTIFIER),	self::CACHE_TAG

);

				}

}

The	Cache	class	extends	from	TagScope	and	specifies	its	own	values	for	TYPE_IDENTIFIER
and	CACHE_TAG,	passing	them	along	to	the	parent	constructor	in	the	__construct	method.
With	these	two	files	(cache.xml	and	Cache),	we	have	basically	defined	a	new	cache	type.

Once	we	have	specified	the	cache.xml	file	and	the	referenced	cache	class,	we	should	be
able	to	see	our	cache	type	in	the	Magento	admin	under	the	System	|	Tools	|	Cache
Management	menu,	as	shown	in	the	following	screenshot:

On	its	own,	simply	defining	a	new	cache	does	not	mean	that	it	will	get	filled	and	used	by
Magento.

If	you	would	like	to	use	the	cache	anywhere	within	your	code,	you	can	do	so	by	first
passing	the	instance	of	the	cache	class	to	the	constructor,	as	follows:

protected	$cache;

public	function	__construct(

				\Foggyline\Office\Model\Cache	$cache

)

{

				$this->cache	=	$cache;

}

Then,	you	can	execute	a	chunk	of	code,	as	follows:

$cacheId	=	'some-specific-id';

$objInfo	=	null;

$_objInfo	=	$this->cache->load($cacheId);

if	($_objInfo)	{

				$objInfo	=	unserialize($_objInfo);

}	else	{

				$objInfo	=	[

								'var1'=>	'val1',

								'var2'	=>	'val2',

								'var3'	=>	'val3'

];

				$this->cache->save(serialize($objInfo),	$cacheId);

}

The	preceding	code	shows	how	we	first	try	to	load	the	value	from	the	existing	cache	entry,
and	if	there	is	none,	we	save	it.	If	the	cache	type	is	set	to	disabled	under	the	Cache
Management	menu,	then	the	preceding	code	will	never	save	and	pull	the	data	from	the
cache,	as	it	is	not	in	effect.

If	you	take	a	look	at	the	var/cache	folder	of	Magento	at	this	point,	you	will	see	something
similar	to	what’s	shown	in	the	following	screenshot:

Magento	created	two	cache	entries	for	us,	namely	var/cache/mage-tags/mage---
a8a_OFFICE	and	var/cache/mage--f/mage---a8a_SOME_SPECIFIC_ID.	The	mage---
a8a_OFFICE	file	has	only	a	single	line	of	entry	in	this	specific	case,	and	the	entry	is	the
a8a_SOME_SPECIFIC_ID	string,	which	obviously	points	to	the	other	file.	The	mage---
a8a_SOME_SPECIFIC_ID	file	contains	the	actual	serialized	$objInfo	array.

The	a8a_	prefix	and	other	prefixes	in	the	cache	file	names	are	not	really	relevant	to	us;
this	is	something	that	Magento	adds	on	its	own.	What	is	relevant	to	us	is	the	passing	of
proper	individual	cache	tags	to	the	chunks	or	variables	that	we	want	to	cache,	like	in	the
preceding	example,	and	the	TYPE_IDENTIFIER	and	CACHE_TAG	tags	that	we	set	for	the
Cache	class.

Widgets
Magento	provides	support	for	widgets.	Though	the	word	“widget”	might	imply	frontend
development	skills	and	activities,	we	will	look	at	them	as	a	part	of	the	backend
development	flow	because	creating	useful	and	robust	widgets	requires	a	significant
amount	of	backend	knowledge.

Magento	provides	several	out-of-the-box	widgets;	some	of	them	are	as	follows:

CMS	page	link
CMS	static	block
Catalog	category	link
Catalog	new	products	list
Catalog	product	link
Catalog	products	list
Orders	and	returns
Recently	compared	products
Recently	viewed	products

To	create	a	fully	custom	widget,	we	start	by	defining
app/code/Foggyline/Office/etc/widget.xml	with	content,	as	follows:

<widgets	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:	

Magento_Widget:etc/widget.xsd">

				<widget	id="foggyline_office"

								class="Foggyline\Office\Block\Widget\Example"

												placeholder_image="Magento_Cms::images/	widget_block.png">

								<label	translate="true">Foggyline	Office</label>

								<description	translate="true">Example	Widget</description>

								<parameters>

												<parameter	name="var1"	xsi:type="select"	visible="true"	

source_model="Magento\Config\Model	\Config\Source\Yesno">

																<label	translate="true">Yes/No	var1</label>

												</parameter>

												<parameter	name="var2"	xsi:type="text"	required="true"	

visible="true">

																<label	translate="true">Number	var2</label>

																<depends>

																				<parameter	name="var1"	value="1"/>

																</depends>

																<value>5</value>

												</parameter>

								</parameters>

				</widget>

</widgets>

The	id	widget	has	been	set	to	foggyline_office,	while	the	class	powering	widget	has
been	set	to	Foggyline\Office\Block\Widget\Example.	the	widget	class	is	basically	a
block	class	that	extends	from	\Magento\Framework\View\Element\AbstractBlock	and
implements	\Magento\Widget\Block\BlockInterface.	The	label	and	description

element	set	values	appear	under	the	Magento	admin	when	we	select	the	widget	for	use.

The	parameters	of	a	widget	are	its	configurable	options	that	translate	into	HTML	form
elements,	depending	on	the	type	and	source_model	options	that	we	have	selected.	In	the
following	example,	we	will	demonstrate	the	usage	of	the	select	and	text	elements	to
retrieve	input	from	a	user,	as	shown	in	the	following	screenshot:

Let’s	proceed	by	creating	the	actual	Widget\Example	class	in	the
app/code/Foggyline/Office/Block/Widget/Example.php	file	with	content,	as	follows:

namespace	Foggyline\Office\Block\Widget;

class	Example	extends	\Magento\Framework\View\Element\Text	implements	

\Magento\Widget\Block\BlockInterface

{

				protected	function	_beforeToHtml()

				{

								$this->setText(sprintf(

												'example	widget:	var1=%s,	var2=%s',

												$this->getData('var1'),

												$this->getData('var2')

));

								return	parent::_beforeToHtml();

				}

}

What	is	happening	here	is	that	we	are	using	Element\Text	as	a	block	type	and	not
Element\Template	because	we	want	to	simplify	the	example,	as	Element\Template	will
require	the	phtml	template	to	be	defined	as	well.	By	using	Element\Text,	we	can	simply

define	_beforeToHtml	and	call	the	setText	method	to	set	the	text	string	of	the	block’s
output.	We	will	build	the	output	string	by	picking	up	the	var1	and	var2	variables,	which
were	passed	as	parameters	to	the	block.

Now,	if	we	open	the	Magento	admin	area,	go	to	Content	|	Elements	|	Pages,	and	select
Home	Page	to	edit,	we	should	be	able	to	click	on	the	Insert	Frontend	App	button	and
add	our	widget	to	the	page.	Alternatively,	if	we	are	not	editing	the	page	content	in	the
WYSIWYG	mode,	we	can	also	add	the	widget	manually	to	the	page	by	using	the	following
expression:

{{widget	type="Foggyline\\Office\\Block\\Widget\\Example"	var1="1"	

var2="5"}}

Finally,	we	should	see	the	example	widget:	var1=1,	var2=5	string	in	the	browser	while
visiting	the	home	page	of	the	storefront.

We	can	use	frontend	apps	to	create	highly	configurable	and	embeddable	widgets	that	users
can	easily	assign	to	a	CMS	page	or	block.

Custom	variables
Variables	are	a	handy	little	feature	of	a	core	Magento_Variable	module.	Magento	allows
you	to	create	custom	variables	and	then	use	them	in	e-mail	templates,	the	WYSIWYG	editor,
or	even	code	expressions.

The	following	steps	outline	how	we	can	create	a	new	variable	manually:

1.	 In	the	Magento	admin	area,	navigate	to	System	|	Other	Settings	|	Custom	Variables.
2.	 Click	on	the	Add	New	Variable	button.
3.	 While	keeping	in	mind	the	Store	View	switcher,	fill	in	the	required	Variable	Code

and	Variable	Name	options,	and	preferably	one	of	the	optional	options,	either
Variable	HTML	Value	or	Variable	Plain	Value.

4.	 Click	on	the	Save	button.

Now	that	we	have	created	the	custom	variable,	we	can	use	it	in	an	e-mail	template	or	the
WYSIWYG	editor	by	calling	it	using	the	following	expression:

{{customVar	code=foggyline_hello}}

The	preceding	expression	will	call	for	the	value	of	the	custom	variable	with	code
foggyline_hello.

Variables	can	be	used	within	various	code	expressions,	though	it	is	not	recommended	to
rely	on	the	existence	of	an	individual	variable,	as	an	admin	user	can	delete	it	at	any	point.
The	following	example	demonstrates	how	we	can	use	an	existing	variable	in	the	code:

$storeId	=0;

$variable	=	$this->_variableFactory->create()->setStoreId(

				$storeId

)->loadByCode(

				'foggyline_hello'

);

$value	=	$variable->getValue(

				\Magento\Variable\Model\Variable::TYPE_HTML

);

The	$this->_variableFactory	is	an	instance	of
\Magento\Variable\Model\VariableFactory.

If	used	in	the	right	way,	variables	can	be	useful.	Storing	information	such	as	phone
numbers	or	specialized	labels	that	are	used	in	CMS	pages,	blogs,	and	e-mail	templates	is	a
nice	example	of	using	custom	variables.

i18n
i18n	is	the	abbreviation	for	internationalization.	Magento	adds	i18n	support	out	of	the
box,	thus	adapting	to	various	languages	and	regions	without	application	changes.	Within
app/functions.php,	there	is	a	__()	translation	function,	which	is	defined	as	follows:

function	__()

{

				$argc	=	func_get_args();

				$text	=	array_shift($argc);

				if	(!empty($argc)	&&	is_array($argc[0]))	{

								$argc	=	$argc[0];

				}

				return	new	\Magento\Framework\Phrase($text,	$argc);

}

This	translation	function	accepts	a	variable	number	of	arguments	and	passes	them	to	a
constructor	of	the	\Magento\Framework\Phrase	class	and	returns	its	instance.	The	Phrase
class	has	the	__toString	method,	which	then	returns	the	translated	string.

Here	are	a	few	examples	of	how	we	can	use	the	__()	function:

__('Translate	me')

__('Var1	%1,	Var2	%2,	Var	%3',	time(),	date('Y'),	32)

__('Copyright	%1	Magento',	date('Y'),

'http://magento.com')

Strings	passed	through	the	translation	function	are	expected	to	be	found	under	the	local
CSV	files,	such	as	app/code/{vendorName}/{moduleName}/i18n/{localeCode}.csv.
Let’s	imagine	for	a	moment	that	we	have	two	different	store	views	defined	in	the	Magento
admin	area	under	Stores	|	Settings	|	All	Stores.	One	store	has	Store	|	Settings	|
Configuration	|	General	|	Locale	Options	|	Locale	set	to	English	(United	Kingdom)
and	the	other	one	to	German	(Germany).	The	local	code	for	English	(United	Kingdom)
is	en_GB,	and	for	German	(Germany),	it	is	de_DE.

For	the	de_DE	locale,	we	will	add	translation	entries	in	the
app/code/Foggyline/Office/i18n/de_DE.csv	file,	as	follows:

"Translate	me","de_DE	Translate	me"

"Var1	%1,	Var2	%2,	Var	%3","de_DE	Var1	%1,	Var2	%2,	Var	%3"

"Copyright	%1	Magento","de_DE	Copyright	%1	Magento"

For	the	en_GB	locale,	we	will	add	translation	entries	in	the
app/code/Foggyline/Office/i18n/en_GB.csv	file,	as	follows:

"Translate	me","en_GB	Translate	me"

"Var1	%1,	Var2	%2,	Var	%3",	"en_GB	Var1	%1,	Var2	%2,	Var	%3"

"Copyright	%1	Magento","en_GB	Copyright	%1	Magento"

Looking	at	the	two	CSV	files,	a	pattern	emerges.	We	can	see	that	the	CSV	files	function	in
the	following	way:

Individual	translation	strings	are	provided	according	to	every	line	of	CSV
Each	line	further	comprises	two	individual	strings	that	are	separated	by	a	comma
Both	individual	strings	are	surrounded	by	quotes
If	a	string	contains	quotes,	it	is	escaped	by	a	double	quote	so	that	it	does	not	break
translation
The	%1,	%2,	%3…%n	pattern	is	used	to	mark	variable	placeholders	that	we	provided
during	application	runtime	through	the	code

Magento	supports	several	commands	related	to	its	bin/magento	console	tool:

i18n

				i18n:collect-phrases			Discovers	phrases	in	the	codebase

				i18n:pack														Saves	language	package

				i18n:uninstall									Uninstalls	language	packages

If	we	execute	a	console	command	as	follows,	Magento	will	recursively	look	for
translatable	expressions	within	PHP,	PHTML,	or	XML	files	that	have	phrases	to	translate:

php	bin/magento	i18n:collect-phrases	-o	

"/Users/branko/www/magento2/app/code/Foggyline/Office/i18n/en_GB.csv"	

/Users/branko/www/magento2/app/code/Foggyline/Office

The	output	of	the	preceding	command	will	basically	overwrite	the
app/code/Foggyline/Office/i18n/en_GB.csv	file,	which	has	all	the	Foggyline/Office
module	translatable	phrases.	This	is	a	nice	way	of	aggregating	all	the	translatable	phrases
into	appropriate	locale	files,	such	as	en_GB.csv	in	this	case.

The	translation	CSV	files	can	also	be	placed	under	the	individual	theme.	For	example,
let’s	imagine	a	situation	where	we	add	content	to
app/design/frontend/Magento/blank/i18n/en_GB.csv,	as	follows:

"Translate	me","Theme_en_GB	Translate	me"

"Var1	%1,	Var2	%2,	Var	%3",	"Theme_en_GB	Var1	%1,	Var2	%2,	Var	%3"

"Copyright	%1	Magento","Theme_en_GB	Copyright	%1	Magento"

Now,	a	Translate	me	string	output	of	the	storefront	for	the	en_GB	locale	would	resolve	to
Theme_en_GB	Translate	me	and	not	to	the	en_GB	Translate	me	string.

Tip
Theme	CSV	translations	take	higher	precedence	than	module	CSV	translations,	thus
enabling	developers	to	override	individual	module	translations.

Along	with	CSV	translation	files,	Magento	also	supports	a	feature	called	inline
translation.	We	can	activate	the	inline	translation	in	the	Magento	admin	area	by
navigating	to	Store	|	Settings	|	Configuration	|	Advanced	|	Developer	|	Translate	Inline.
This	feature	can	be	turned	on	separately	for	admin	and	storefront,	as	shown	in	the
following	screenshot:

As	shown	in	the	preceding	screenshot,	when	a	feature	is	activated,	red	dotted	borders
appear	around	the	HTML	elements.	Hovering	over	an	individual	element	shows	a	little
book	icon	near	the	individual	element	at	the	bottom	left	corner.	Clicking	on	the	book	icon
opens	a	popup,	as	shown	in	the	following	screenshot:

It	is	important	to	note	that	these	red	dotted	borders	and	the	book	icon	will	only	appear	for
strings	that	we	passed	through	the	__()	translate	function.

Here,	we	can	see	various	pieces	of	information	about	the	string,	such	as	the	Shown,
Translated,	and	Original	string.	There	is	also	an	input	field	called	Custom,	where	we	can
add	a	new	translation.	Inline	translation	strings	are	stored	in	the	translation	table	in	the
database.

Tip
Inline	translation	takes	higher	precedence	than	theme	CSV	translation	files.

Indexer(s)
Indexing	is	the	process	of	transforming	data	by	reducing	it	to	flattened	data	with	less
database	tables.	This	process	is	run	for	products,	categories,	and	so	on	in	order	to	improve
the	performance	of	a	web	store.	Since	data	constantly	changes,	this	is	not	a	one-time
process.	Rather,	it	is	a	periodic	one.	The	Magento_Indexer	module	is	a	base	of	the
Magento	Indexing	functionality.

The	Magento	console	tool	supports	the	following	indexer	commands.

indexer

				indexer:info								Shows	allowed	Indexers

				indexer:reindex					Reindexes	Data

				indexer:set-mode				Sets	index	mode	type

				indexer:show-mode			Shows	Index	Mode

				indexer:status						Shows	status	of	Indexer

On	running	php	bin/magento	indexer:info,	you	will	get	a	list	of	all	the	Magento
indexers;	the	default	ones	are	as	follows:

catalog_category_product				Category	Products

catalog_product_category				Product	Categories

catalog_product_price							Product	Price

catalog_product_attribute			Product	EAV

foggyline_office_employee			Employee	Flat	Data

cataloginventory_stock						Stock

catalogrule_rule												Catalog	Rule	Product

catalogrule_product									Catalog	Product	Rule

catalogsearch_fulltext						Catalog	Search

You	will	see	all	the	indexers	listed	in	the	Magento	admin	in	the	System	|	Tools	|	Index
Management	menu.

From	within	the	admin	area,	we	can	only	change	the	indexer	mode.	There	are	two	modes
of	indexers:

Update	on	Save:	Index	tables	are	updated	right	after	the	dictionary	data	is	changed
Update	by	Schedule:	Index	tables	are	updated	by	cron	jobs	according	to	the
configured	schedule

Since	indexers	cannot	be	run	manually	from	admin,	we	have	to	rely	either	on	their	manual
execution	or	the	cron	execution.

Manual	execution	is	done	via	the	following	console	command:

php	bin/magento	indexer:reindex

The	preceding	command	will	run	all	the	indexers	at	once.	We	can	fine-tune	it	further	to
execute	individual	indexes	by	running	a	console	command	that	is	similar	to	the	following
line	of	code:

php	bin/magento	indexer:reindex	catalogsearch_fulltext

Cron-executed	indexers	are	defined	via	the	Magento_Indexer	module,	as	follows:

indexer_reindex_all_invalid:	This	will	execute	every	minute	of	every	hour	every
day.	It	runs	the	reindexAllInvalid	method	on	an	instance	of	the
Magento\Indexer\Model\Processor	class.
indexer_update_all_views:	This	will	execute	every	minute	of	every	hour	every
day.	It	runs	the	updateMview	method	on	an	instance	of	the
Magento\Indexer\Model\Processor	class.
indexer_clean_all_changelogs:	This	will	execute	the	0th	minute	of	every	hour
every	day.	It	runs	the	clearChangelog	method	on	an	instance	of	the
Magento\Indexer\Model\Processor	class.

These	cron	jobs	use	an	operating	system	cron	job	setup	in	such	a	way	that	the	Magento
cron	job	is	triggered	every	minute.

The	following	three	statuses	is	what	an	indexer	can	have:

valid:	The	data	is	synchronized	and	no	re-indexing	is	required
invalid:	The	original	data	was	changed	and	the	index	should	be	updated
working:	The	index	process	is	running

While	we	won’t	go	into	the	details	of	actually	creating	a	custom	indexer	within	this
chapter,	it	is	worth	noting	that	Magento	defines	its	indexers	in	the
vendor/magento/module-*/etc/indexer.xml	file.	This	might	come	in	handy	for	cases
where	we	want	a	deeper	understanding	of	the	inner	workings	of	an	individual	indexer.	For
example,	the	catalog_product_flat	indexer	is	implemented	via	the
Magento\Catalog\Model\Indexer\Product\Flat	class,	as	defined	within	the
vendor/magento/module-catalog/etc/indexer.xml	file.	By	studying	the	Flat	class
implementation	in	depth,	you	can	learn	how	data	is	taken	from	EAV	tables	and	flattened
into	a	simplified	structure.

Summary
In	this	chapter,	we	covered	some	of	the	most	relevant	aspects	of	Magento,	which	was
beyond	models	and	classes,	regarding	backend	development.	We	had	a	look	at
crontab.xml,	which	helps	us	schedule	jobs	(commands)	so	that	they	can	be	run
periodically.	Then,	we	tackled	notification	messages,	which	enable	us	to	push	styled
messages	to	users	via	a	browser.	The	Session	and	cookies	section	gave	us	an
understanding	of	how	Magento	tracks	user	information	from	a	browser	to	a	session.
Logging	and	profiling	showed	us	a	simple	yet	effective	mechanism	to	keep	track	of
performance	and	possible	issues	across	code.	The	Events	and	observers	section	introduced
us	to	a	powerful	pattern	that	Magento	implements	across	the	code,	where	we	can	trigger
custom	code	execution	when	a	certain	event	is	fired.	The	section	on	caching	guided	us
through	the	available	cache	types,	and	we	studied	how	to	create	and	use	our	own	cache
type.	Through	the	section	on	frontend	apps	(widgets),	we	learned	how	to	create	our	own
miniature	apps	that	can	be	called	into	CMS	pages	and	blocks.	Custom	variables	gave	us	an
insight	into	a	simple	yet	interesting	feature,	where	we	can	define	a	variable	via	the	admin
interface	and	then	use	it	within	CMS	page,	block,	or	e-mail	template.	The	section	on	i18n
showed	us	how	to	use	the	Magento	translation	feature	to	translate	any	string	on	three
different	levels,	namely	the	module	CSV	file,	the	theme	CSV	file,	and	inline	translation.
Finally,	we	had	a	look	at	indexers	and	their	mode	and	status;	we	learned	how	to	control
their	execution.

The	next	chapter	will	tackle	frontend	development.	We	will	learn	how	create	our	own
theme	and	use	blocks	and	layouts	to	affect	the	output.

Chapter	8.	Frontend	Development
Frontend	development	is	a	term	most	commonly	tied	to	producing	HTML,	CSS,	and
JavaScript	for	a	website	or	web	application.	Interchangeably,	it	addresses	accessibility,
usability,	and	performance	toward	reaching	a	satisfying	user	experience.	Various	levels	of
customization	we	want	to	apply	to	our	web	store	require	different	development	skill
levels.	We	can	make	relatively	simple	changes	to	our	store	using	just	CSS.	These	would
be	the	changes	where	we	accept	the	structure	of	the	store	and	focus	only	on	visuals	like
changing	colors	and	images.	This	might	be	a	good	starting	point	for	less	experienced
developers	and	those	new	to	the	Magento	platform.	A	more	involved	approach	would	be
to	make	changes	to	the	output	generated	by	Magento	modules.	This	usually	means	tiny
bits	of	PHP	knowledge,	mostly	copy-paste-modify	of	existing	code	fragments.	A	skill	level
above	this	one	would	imply	knowledge	of	making	structural	changes	to	our	store.	This
usually	means	mastering	Magento’s	moderately	sophisticated	layout	engine,	where	we
make	changes	through	XML	definitions.	The	final	and	highest	skill	level	for	Magento
frontend	development	implies	the	modification	of	existing	or	new	custom	functionality
development.

Throughout	this	chapter,	we	will	take	a	deep	dive	through	the	following	sections:

Rendering	flow
View	elements
Block	architecture	and	life	cycle
Templates
XML	layouts
Themes
JavaScript
CSS

Rendering	flow
The	Magento	application	entry	point	is	its	index.php	file.	All	of	the	HTTP	requests	go
through	it.

Let’s	analyze	the	(trimmed)	version	of	the	index.php	file	as	follows:

//PART-1-1

require	__DIR__	.	'/app/bootstrap.php';

//PART-1-2

$bootstrap	=	\Magento\Framework\App\Bootstrap::create(BP,	$_SERVER);

//PART-1-3

$app	=	$bootstrap->	createApplication('Magento\Framework\App\Http');

//PART-1-4

$bootstrap->run($app);

PART-1-1	of	the	preceding	code	simply	includes	/app/bootstrap.php	into	the	code.	What
happens	inside	the	bootstrap	is	the	inclusion	of	app/autoload.php	and
app/functions.php.	The	functions	file	contains	a	single	__()	function,	used	for
translation	purposes,	returning	an	instance	of	the	\Magento\Framework\Phrase	object.
Without	going	into	the	details	of	the	auto-load	file,	it	is	suffice	to	say	it	handles	the	auto-
loading	of	all	our	class	files	across	Magento.

PART-1-2	is	simply	a	static	create	method	call	to	obtain	the	instance	of	the
\Magento\Framework\App\Bootstrap	object,	storing	it	into	the	$bootstrap	variable.

PART-1-3	is	calling	the	createApplication	method	on	the	$bootstrap	object.	What	is
happening	within	createApplication	is	nothing	more	than	using	object	manager	to	create
and	return	the	object	instance	of	the	class	we	are	passing	to	it.	Since	we	are	passing	the
\Magento\Framework\App\Http	class	name	to	the	createApplication	method,	our	$app
variable	becomes	the	instance	of	that	class.	What	this	means,	effectively,	is	that	our	web
store	app	is	an	instance	of	Magento\Framework\App\Http.

PART-1-4	is	calling	the	run	method	on	the	$bootstrap	object,	passing	it	the	instance	of	the
Magento\Framework\App\Http	class.	Although	it	looks	like	a	simple	line	of	code,	this	is
where	things	get	complicated,	as	we	will	soon	see.

Let’s	analyze	the	(trimmed)	version	of	the	\Magento\Framework\App\Bootstrap	->	run
method	as	follows:

public	function	run(\Magento\Framework\AppInterface	$application)

{

				//PART-2-1

				$this->initErrorHandler();

				$this->initObjectManager();

				$this->assertMaintenance();

				$this->assertInstalled();

				//PART-2-2

				$response	=	$application->launch();

				//PART-2-3

				$response->sendResponse();

}

In	the	preceding	code,	PART-2-1	handles	the	sort	of	housekeeping	bits.	It	initializes	the
custom	error	handler,	initializes	the	object	manager,	checks	if	our	application	is	in
maintenance	mode,	and	checks	that	it	is	installed.

PART-2-2	looks	like	a	simple	line	of	code.	Here,	we	are	calling	the	launch	method	on
$application,	which	is	the	Magento\Framework\App\Http	instance.	Without	going	into
the	inner	workings	of	the	launch	method	for	the	moment,	let’s	just	say	it	returns	the
instance	of	the	Magento\Framework\App\Response\Http\Interceptor	class	defined
under	var/generation/Magento/Framework/App/Response/Http/Interceptor.php.
Note	that	this	is	an	automatically	generated	wrapper	class,	extending	the
\Magento\Framework\App\Response\Http	class.	Effectively,	ignoring	Interceptor,	we
can	say	that	$response	is	an	instance	the	\Magento\Framework\App\Response\Http
class.

Finally,	PART-2-3	calls	the	sendResponse	method	on	$response.	Though	$response	is	an
instance	of	the	\Magento\Framework\App\Response\Http	class,	the	actual	sendResponse
method	is	found	further	down	the	parent	tree	on	the
\Magento\Framework\HTTP\PhpEnvironment\Response	class.	The	sendResponse	method
calls	another	parent	class	method	called	send.	The	send	method	can	be	found	under	the
Zend\Http\PhpEnvironment\Response	class.	It	triggers	the	sendHeaders	and
sendContent	methods.	This	is	where	the	actual	output	gets	sent	to	the	browser,	as	the
sendHeaders	method	is	using	PHP’s	header	function	and	echo	construct	to	push	the
output.

To	reiterate	on	the	preceding,	the	flow	of	execution	as	we	understand	it	comes	down	to	the
following:

index.php

\Magento\Framework\App\Bootstrap	->	run
\Magento\Framework\App\Http	->	launch
\Magento\Framework\App\Response\Http	->	sendResponse

Though	we	have	just	made	it	to	the	end	of	the	bootstrap’s	run	method,	it	would	be	unfair
to	say	we	covered	the	rendering	flow,	as	we	barely	touched	it.

We	need	to	take	a	step	back	and	take	a	detailed	look	at	PART-2-2,	the	inner	workings	of
the	launch	method.	Let’s	take	a	look	at	the	(trimmed)	version	of	the
\Magento\Framework\App\Http	->	launch	method	as	follows:

public	function	launch()

{

				//PART-3-1

				$frontController	=	$this->_objectManager->get	

('Magento\Framework\App\FrontControllerInterface');

				//PART-3-2

				$result	=	$frontController->dispatch($this->_request);

				if	($result	instanceof	\Magento\Framework\Controller	\ResultInterface)	

{

								//PART-3-3

								$result->renderResult($this->_response);

				}	elseif	($result	instanceof	\Magento\Framework\App	

\Response\HttpInterface)	{

								$this->_response	=	$result;

				}	else	{

								throw	new	\InvalidArgumentException('Invalid	return	type');

				}

				//PART-3-4

				return	$this->_response;

}

PART-3-1	creates	the	instance	of	the	object	whose	class	conforms	to
\Magento\Framework\App\FrontControllerInterface.	If	we	look	under
app/etc/di.xml,	we	can	see	there	is	a	preference	for	FrontControllerInterface	in
favor	of	the	\Magento\Framework\App\FrontController	class.	However,	if	we	were	to
debug	the	code	and	check	for	the	actual	instance	class,	it	would	show
Magento\Framework\App\FrontController\Interceptor.	This	is	Magento	adding	an
interceptor	wrapper	that	then	extends	\Magento\Framework\App\FrontController,	which
we	expected	from	the	di.xml	preference	entry.

Now	that	we	know	the	real	class	behind	the	$frontController	instance,	we	know	where
to	look	for	the	dispatch	method.	The	dispatch	method	is	another	important	step	in
understanding	the	rendering	flow	process.	We	will	look	into	its	inner	workings	in	a	bit
more	detail	later	on.	For	now,	let’s	focus	back	on	the	$result	variable	of	PART-3-2.	If	we
were	to	debug	the	variable,	the	direct	class	behind	it	would	show	as
Magento\Framework\View\Result\Page\Interceptor,	defined	under	the	dynamically
created	var/generation/Magento/Framework/View/Result/Page/Interceptor.php	file.
Interceptor	is	the	wrapper	for	the	\Magento\Framework\View\Result\Page	class.	Thus,
it	is	safe	to	say	that	our	$result	variable	is	an	instance	of	the	Page	class.

The	Page	class	extends	\Magento\Framework\View\Result\Layout,	which	further
extends	\Magento\Framework\Controller\AbstractResult	and	implements
\Magento\Framework\Controller\ResultInterface.	Quite	a	chain	we	have	here,	but	it
is	important	to	understand	it.

Notice	PART-3-3.	Since	our	$result	is	an	instance	of
\Magento\Framework\Controller\ResultInterface,	we	fall	into	the	first	if	condition
that	calls	the	renderResult	method.	The	renderResult	method	itself	is	declared	within
the	\Magento\Framework\View\Result\Layout	class.	Without	going	into	the	details	of
renderResult,	suffice	to	say	that	it	adds	HTTP	headers,	and	content	to	the	$this-
>_response	object	passed	to	it.	That	same	response	object	is	what	the	launch	method
returns,	as	we	described	before	in	PART-2-2.

Though	PART-3-3	does	not	depict	any	return	value,	the	expression	$result-

>renderResult($this->_response)	does	not	do	any	output	on	its	own.	It	modifies
$this->_response	that	we	finally	return	from	the	launch	method	as	shown	in	PART-3-4.

To	reiterate	on	the	preceding,	the	flow	of	execution	as	we	understand	it	comes	down	to	the
following:

index.php

\Magento\Framework\App\Bootstrap	->	run
\Magento\Framework\App\Http	->	launch
\Magento\Framework\App\FrontController	->	dispatch
\Magento\Framework\View\Result\Page	->	renderResult
\Magento\Framework\App\Response\Http	->	sendResponse

As	we	mentioned	while	explaining	PART-3-2,	the	dispatch	method	is	another	important
step	in	the	rendering	flow	process.	Let’s	take	a	look	at	the	(trimmed)	version	of	the
\Magento\Framework\App\FrontController	->	dispatch	method	as	follows:

public	function	dispatch(\Magento\Framework\App\RequestInterface	$request)

{

				//PART-4-1

				while	(!$request->isDispatched()	&&	$routingCycleCounter++	<	100)	{

								//PART-4-2

								foreach	($this->_routerList	as	$router)	{

												try	{

																//PART-4-3

																$actionInstance	=	$router->match($request);

																if	($actionInstance)	{

																				$request->setDispatched(true);

																				//PART-4-4

																				$result	=	$actionInstance->dispatch($request);

																				break;

																}

												}	catch	(\Magento\Framework\Exception	\NotFoundException	$e)	{}

								}

				}

				//PART-4-4

				return	$result;

}

PART-4-1	and	PART-4-2	in	the	preceding	code	shows	(almost)	the	entire	dispatch	method
body	contained	within	a	loop.	The	loop	does	100	iterations,	further	looping	through	all
available	router	types,	thus	giving	each	router	100	times	to	find	a	route	match.

The	router	list	loop	includes	routers	of	the	following	class	types:

Magento\Framework\App\Router\Base

Magento\UrlRewrite\Controller\Router

Magento\Cms\Controller\Router

Magento\Framework\App\Router\DefaultRouter

All	of	the	listed	routers	implement	\Magento\Framework\App\RouterInterface,	making
them	all	have	the	implementation	of	the	match	method.

A	module	can	further	define	new	routers	if	they	choose	so.	As	an	example,	imagine	if	we

are	developing	a	Blog	module.	We	would	want	our	module	catching	all	requests	on	a	URL
that	starts	with	a	/blog/	part.	This	can	be	done	by	specifying	the	custom	router,	which
would	then	show	up	on	the	preceding	list.

PART-4-3	shows	the	$actionInstance	variable	storing	the	result	of	the	router	match
method	call.	As	per	RouterInterface	requirements,	the	match	method	is	required	to
return	an	instance	whose	class	implements	\Magento\Framework\App\ActionInterface.
Let’s	imagine	we	are	now	hitting	the	URL	/foggyline_office/test/crud/	from	the
module	we	wrote	in	Chapter	4,	Models	and	Collections.	In	this	case,	our	$router	class
would	be	\Magento\Framework\App\Router\Base	and	our	$actionInstance	would	be	of
the	class	\Foggyline\Office\Controller\Test\Crud\Interceptor.	Magento
automatically	adds	Interceptor,	through	the	dynamically	generated
var/generation/Foggyline/Office/Controller/Test/Crud/Interceptor.php	file.
This	Interceptor	class	further	extends	our	module
\Foggyline\Office\Controller\Test\Crud	class	file.	The	Crud	class	extends
\Foggyline\Office\Controller\Test,	which	further	extends
\Magento\Framework\App\Action\Action,	which	implements
\Magento\Framework\App\ActionInterface.	After	a	lengthy	parent-child	tree,	we	finally
got	to	ActionInterface,	which	is	what	our	match	method	is	required	to	return.

PART-4-4	shows	the	dispatch	method	being	called	on	$actionInstance.	This	method	is
implemented	within	\Magento\Framework\App\Action\Action,	and	is	expected	to	return
an	object	that	implements	\Magento\Framework\App\ResponseInterface.	Internal	to
dispatch,	the	execute	method	is	called,	thus	running	the	code	within	our	Crud	controller
action	execute	method.

Assuming	our	Crud	controller	action	execute	method	does	not	return	nothing,	the	$result
object	becomes	an	instance	of	Magento\Framework\App\Response\Http\Interceptor,
which	is	wrapped	around	\Magento\Framework\App\Response\Http.

Let’s	imagine	our	Crud	class	has	been	defined	as	follows:

/**

	*	@var	\Magento\Framework\View\Result\PageFactory

	*/

protected	$resultPageFactory;

public	function	__construct(

				\Magento\Framework\App\Action\Context	$context,

				\Magento\Framework\View\Result\PageFactory	$resultPageFactory

)

{

				$this->resultPageFactory	=	$resultPageFactory;

				return	parent::__construct($context);

}

public	function	execute()

{

				$resultPage	=	$this->resultPageFactory->create();

				//...

				return	$resultPage;

}

Debugging	the	$result	variable	now	shows	it’s	an	instance	of
\Magento\Framework\View\Result\Page\Interceptor.	This	Interceptor	gets
dynamically	generated	by	Magento	under
var/generation/Magento/Framework/View/Result/Page/Interceptor.php	and	is
merely	a	wrapper	for	\Magento\Framework\View\Result\Page.	This	Page	class	further
extends	the	\Magento\Framework\View\Result\Layout	class,	and	implements
\Magento\Framework\App\ResponseInterface.

Finally,	PART-4-4	shows	the	$result	object	of	type
\Magento\Framework\View\Result\Page	being	returned	from	the	FrontController
dispatch	method.

To	reiterate	on	the	preceding,	the	flow	of	execution	as	we	understand	it	comes	down	to	the
following:

index.php

\Magento\Framework\App\Bootstrap	->	run
\Magento\Framework\App\Http	->	launch
\Magento\Framework\App\FrontController	->	dispatch
\Magento\Framework\App\Router\Base	->	match
\Magento\Framework\App\Action\Action	->	dispatch
\Magento\Framework\View\Result\Page	->	renderResult
\Magento\Framework\App\Response\Http	->	sendResponse

In	a	nutshell,	what	we	as	frontend	developers	should	know	is	that	returning	the	Page	type
object	from	our	controller	action	will	automatically	call	the	renderResult	method	on	that
object.	Page	and	Layout	is	where	all	the	theme	translations,	layout,	and	template	loading
are	triggering.

View	elements
Magento’s	primary	view	elements	are	its	UI	Components,	containers,	and	blocks.	The
following	is	a	brief	overview	of	each	of	them.

Ui	components
Under	the	vendor/magento/framework/View/Element/	folder,	we	can	find
UiComponentInterface	and	UiComponentFactory.	The	full	set	of	Ui	components	is
located	under	the	vendor/magento/framework/View/Element/	directory.	Magento
implements	UiComponent	through	a	separate	module	called	Magento_Ui.	Thus,	the
components	themselves	are	located	under	the	vendor/magento/module-ui/Component/
directory.

Components	implement	UiComponentInterface,	which	is	defined	under	the
vendor/magento/framework/View/Element/UiComponentInterface.php	file	as	follows:

namespace	Magento\Framework\View\Element;

use	Magento\Framework\View\Element\UiComponent\ContextInterface;

interface	UiComponentInterface	extends	BlockInterface

{

				public	function	getName();

				public	function	getComponentName();

				public	function	getConfiguration();

				public	function	render();

				public	function	addComponent($name,	UiComponentInterface	$component);

				public	function	getComponent($name);

				public	function	getChildComponents();

				public	function	getTemplate();

				public	function	getContext();

				public	function	renderChildComponent($name);

				public	function	setData($key,	$value	=	null);

				public	function	getData($key	=	'',	$index	=	null);

				public	function	prepare();

				public	function	prepareDataSource(array	&	$dataSource);

				public	function	getDataSourceData();

}

Notice	how	BlockInterface	extends	BlockInterface,	whereas	BlockInterface	defines
only	one	method	requirement	as	follows:

namespace	Magento\Framework\View\Element;

interface	BlockInterface

{

				public	function	toHtml();

}

Since	Block	is	an	element	of	the	interface,	UiComponent	can	be	looked	at	as	an	advanced
block.	Let’s	take	a	quick	look	at	the	_renderUiComponent	method	of	the
\Magento\Framework\View\Layout	class,	(partially)	defined	as	follows:

protected	function	_renderUiComponent($name)

{

				$uiComponent	=	$this->getUiComponent($name);

				return	$uiComponent	?	$uiComponent->toHtml()	:	'';

}

This	shows	that	UiComponent	is	rendered	in	the	same	way	as	block,	by	calling	the	toHtml
method	on	the	component.	The	vendor/magento/module-
ui/view/base/ui_component/etc/definition.xml	file	contains	an	extensive	list	of
several	UiComponents	as	follows:

dataSource:	Magento\Ui\Component\DataSource
listing:	Magento\Ui\Component\Listing
paging:	Magento\Ui\Component\Paging
filters:	Magento\Ui\Component\Filters
container:	Magento\Ui\Component\Container
form:	Magento\Ui\Component\Form
price:	Magento\Ui\Component\Form\Element\DataType\Price
image:	Magento\Ui\Component\Form\Element\DataType\Media
nav:	Magento\Ui\Component\Layout\Tabs\Nav

…	and	many	more

These	components	are	mostly	used	to	construct	a	listing	and	filters	in	the	admin	area.	If
we	do	a	string	search	for	uiComponent	across	the	entire	Magento,	we	would	mostly	find
entries	like	the	one	in	vendor/magento/module-
cms/view/adminhtml/layout/cms_block_index.xml	with	content	as	follows:

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout	

/etc/page_configuration.xsd">

				<body>

								<referenceContainer	name="content">

												<uiComponent	name="cms_block_listing"/>

								</referenceContainer>

				</body>

</page>

The	value	cms_block_listing	of	uiComponent‘s	name	attribute	refers	to	the	name	of	the
vendor/magento/module-cms

/view/adminhtml/ui_component/cms_block_listing.xml	file.	Within	the
cms_block_listing.xml	file,	we	have	a	listing	component	defined	across	more	than	a	few
hundreds	lines	of	XML.	Listing	component	then	dataSource,	container,	bookmark,
filterSearch,	filters,	and	so	on.	We	will	not	go	into	the	details	of	these	declarations,	as
our	focus	here	is	on	more	general	frontend	bits.

Containers
Containers	have	no	block	classes	related	to	them.	Container	renders	all	of	its	children
automatically.	They	allow	the	configuration	of	some	attributes.	Simply	attach	any	element
to	a	container	and	it	will	render	it	automatically.	With	a	container,	we	can	define	wrapping
tags,	CSS	classes,	and	more.

We	cannot	create	instances	of	containers	because	they	are	an	abstract	concept,	whereas	we
can	create	instances	of	blocks.

Containers	are	rendered	via	the	_renderContainer	method	of	the
Magento\Framework\View\Layout	class,	defined	as	follows:

protected	function	_renderContainer($name)

{

				$html	=	'';

				$children	=	$this->getChildNames($name);

				foreach	($children	as	$child)	{

								$html	.=	$this->renderElement($child);

				}

				if	($html	==	''	||	!$this->structure->getAttribute($name,	

Element::CONTAINER_OPT_HTML_TAG))	{

								return	$html;

				}

				$htmlId	=	$this->structure->getAttribute($name,	

Element::CONTAINER_OPT_HTML_ID);

				if	($htmlId)	{

								$htmlId	=	'	id="'	.	$htmlId	.	'"';

				}

				$htmlClass	=	$this->structure->getAttribute($name,	

Element::CONTAINER_OPT_HTML_CLASS);

				if	($htmlClass)	{

								$htmlClass	=	'	class="'	.	$htmlClass	.	'"';

				}

				$htmlTag	=	$this->structure->getAttribute($name,	

Element::CONTAINER_OPT_HTML_TAG);

				$html	=	sprintf('<%1$s%2$s%3$s>%4$s</%1$s>',	$htmlTag,	$htmlId,	

$htmlClass,	$html);

				return	$html;

}

Containers	support	the	following	extra	attributes:	htmlTag,	htmlClass,	htmlId,	and	label.
To	make	a	little	demonstration	of	a	container	in	action,	let	us	make	sure	we	have	a	module
from	Chapter	4,	Models	and	Collections	in	place,	and	then	create	the
view/frontend/layout/foggyline_office_test_crud.xml	file	within	the	module	root
folder	app/code/Foggyline/Office/	with	content	as	follows:

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

layout="1column"

						xsi:noNamespaceSchemaLocation="urn:magento:framework:View	

/Layout/etc/page_configuration.xsd">

				<head>

								<title>Office	CRUD	#layout</title>

				</head>

				<body>

								<container	name="foobar"	htmlTag="div"	htmlClass="foo-	bar">

												<block	class="Magento\Framework\View\Element\Text"	name="foo">

																<action	method="setText">

																				<argument	name="text"	xsi:type="string">	<!

[CDATA[<p>The	Foo</p>]]></argument>

																</action>

												</block>

												<block	class="Magento\Framework\View\Element\Text"	name="bar">

																<action	method="setText">

																				<argument	name="text"	xsi:type="string">	<!

[CDATA[<p>The	Bar</p>]]></argument>

																</action>

												</block>

								</container>

				</body>

</page>

The	preceding	XML	defines	a	single	container	named	foobar,	and	within	the	container
there	are	two	block	elements	named	foo	and	bar.	It	should	kick	in	when	we	open
http://{our-shop-url}/index.php/foggyline_office/test/crud/	in	the	browser.

Notice	how	the	container	itself	is	not	nested	within	any	other	element,	rather	directly	into
the	body.	We	could	have	easily	nested	into	some	other	container	as	shown:

<body>

				<referenceContainer	name="content">

								<container	name="foobar"	htmlTag="div"	htmlClass="foo-	bar">

Either	way,	we	should	see	the	strings	The	Foo	and	The	Bar	shown	in	the	browser,	with	a
full-page	layout	loaded,	as	shown	in	the	following	screenshot:

Blocks
Although	containers	determine	the	layout	of	the	page,	they	do	not	contain	actual	content
directly.	Pieces	that	contain	the	content	and	are	nested	within	containers	are	called	blocks.
Each	block	can	contain	any	number	of	child	content	blocks	or	child	containers.	Thus,
mostly	every	web	page	in	Magento	is	formed	as	a	mix	of	blocks	and	containers.	Layout
defines	a	sequence	of	blocks	on	the	page,	not	their	location.	The	look	and	feel	of	the
blocks	is	determined	by	CSS	and	how	the	page	is	rendered.	When	we	speak	of	blocks,	we
almost	always	implicitly	refer	to	templates	as	well.	Templates	are	the	thing	that	actually
draw	elements	within	a	page;	blocks	are	the	thing	that	contain	the	data.	In	other	words,
templates	are	PHTML	or	HTML	files	pulling	data	through	variables	or	methods	sent	on	a
linked	PHP	block	class.

Magento	defines	the	Magento\Framework\View\Result\Page	type	under	app/etc/di.xml
as	follows:

<type	name="Magento\Framework\View\Result\Page">

				<arguments>

								<argument	name="layoutReaderPool"	

xsi:type="object">pageConfigRenderPool</argument>

								<argument	name="generatorPool"	

xsi:type="object">pageLayoutGeneratorPool</argument>

								<argument	name="template"	

xsi:type="string">Magento_Theme::root.phtml</argument>

				</arguments>

</type>

Notice	the	template	argument	is	set	to	Magento_Theme::root.phtml.	When	Page	gets
initialized,	it	picks	up	the	vendor/magento/module-
theme/view/base/templates/root.phtml	file.	root.phtml	is	defined	as	follows:

<!doctype	html>

<html	<?php	echo	$htmlAttributes	?>>

				<head	<?php	echo	$headAttributes	?>>

								<?php	echo	$requireJs	?>

								<?php	echo	$headContent	?>

								<?php	echo	$headAdditional	?>

				</head>

				<body	data-container="body"	data-mage-init='{"loaderAjax":	{},	

"loader":	{	"icon":	"<?php	echo	$loaderIcon;	?>"}}'	<?php	echo	

$bodyAttributes	?>>

								<?php	echo	$layoutContent	?>

				</body>

</html>

Variables	within	root.phtml	are	assigned	during	the
Magento\Framework\View\Result\Page	render	method	call	as	(partially)	as	shown:

protected	function	render(ResponseInterface	$response)

{

				$this->pageConfig->publicBuild();

				if	($this->getPageLayout())	{

								$config	=	$this->getConfig();

								$this->addDefaultBodyClasses();

								$addBlock	=	$this->getLayout()->getBlock	('head.additional');

								$requireJs	=	$this->getLayout()->getBlock('require.js');

								$this->assign([

												'requireJs'	=>	$requireJs	?	$requireJs->toHtml()	:	null,

												'headContent'	=>	$this->pageConfigRenderer->	

renderHeadContent(),

												'headAdditional'	=>	$addBlock	?	$addBlock->toHtml()	:	null,

												'htmlAttributes'	=>	$this->pageConfigRenderer->	

renderElementAttributes($config::ELEMENT_TYPE_HTML),

												'headAttributes'	=>	$this->pageConfigRenderer->	

renderElementAttributes($config::ELEMENT_TYPE_HEAD),

												'bodyAttributes'	=>	$this->pageConfigRenderer->	

renderElementAttributes($config::ELEMENT_TYPE_BODY),

												'loaderIcon'	=>	$this->getViewFileUrl('images/loader-	2.gif'),

]);

								$output	=	$this->getLayout()->getOutput();

								$this->assign('layoutContent',	$output);

								$output	=	$this->renderPage();

								$this->translateInline->processResponseBody($output);

								$response->appendBody($output);

				}	else	{

								parent::render($response);

				}

				return	$this;

}

The	expression	$this->assign	is	what	assigns	variables	like	layoutContent	to	the
root.phtml	template.	layoutContent	is	generated	based	on	base	layouts,	together	with	all
layout	updates	for	the	current	page.

Whereas	base	layouts	include	the	following	XMLs	within	vendor/magento/module-
theme/view/:

base/page_layout/empty.xml

frontend/page_layout/1column.xml

frontend/page_layout/2columns-left.xml

frontend/page_layout/2columns-right.xml

frontend/page_layout/3columns.xml

The	expression	$this->getLayout()->getOutput()	is	what	gets	all	blocks	marked	for
output.	It	basically	finds	elements	in	a	layout,	renders	them,	and	returns	the	string	with	its
output.	Along	the	way,	the	event	core_layout_render_element	gets	fired,	giving	us	one
possible	way	of	affecting	the	output	result.	At	this	point,	most	of	the	elements	on	the	page
are	rendered.	This	is	important	because	blocks	play	a	big	role	here.	The	rendering	system
will	take	empty.xml	into	account,	as	it	too	consists	of	a	list	of	containers,	and	every
container	has	some	blocks	attached	to	it	by	other	layout	updates.

Note
In	a	nutshell,	each	container	has	blocks	assigned	to	it.	Each	block	usually	(but	not	always)
renders	a	template.	The	template	itself	may	or	may	not	call	other	blocks,	and	so	on.	Blocks

are	rendered	when	they	are	called	from	the	template.

Block	architecture	and	life	cycle
Blocks	are	another	one	of	the	primary	view	elements	in	Magento.	At	the	root	of	the	parent
tree	structure,	blocks	extend	from	the	Magento\Framework\View\Element\AbstractBlock
class	and	implement	Magento\Framework\View\Element\BlockInterface.

BlockInterface	sets	only	one	requirement,	the	implementation	of	the	toHtml	method.
This	method	should	return	blocks	HTML	output.

Looking	inside	AbstractBlock,	we	can	see	it	has	a	number	of	methods	declared.	Among
the	most	important	ones	are	the	following	methods:

_prepareLayout:	Prepares	a	global	layout.	We	can	redefine	this	method	in	child
classes	for	changing	the	layout.
addChild:	Creates	a	new	block,	sets	it	as	a	child	of	the	current	block,	and	returns	the
newly	created	block.
_toHtml:	Returns	an	empty	string.	We	need	to	override	this	method	in	descendants	to
produce	HTML.
_beforeToHtml:	Returns	$this.	Executes	before	rendering	HTML,	but	after	trying	to
load	a	cache.
_afterToHtml:	Processing	block	HTML	after	rendering.	Returns	a	HTML	string.
toHtml:	Produces	and	returns	a	block’s	HTML	output.	This	method	should	not	be
overridden.	We	can	override	the	_toHtml	method	in	descendants	if	needed.

The	AbstractBlock	execution	flow	can	be	described	as	follows:

_prepareLayout

toHtml

_beforeToHtml

_toHtml

_afterToHtml

It	starts	with	_prepareLayout	and	flows	through	a	set	of	methods	until	it	reaches
_afterToHtml.	This	is,	in	essence,	what	we	need	to	know	about	block	execution	flow.

The	most	important	block	types	are:

Magento\Framework\View\Element\Text

Magento\Framework\View\Element\Text\ListText

Magento\Framework\View\Element\Messages

Magento\Framework\View\Element\Template

All	of	these	blocks	are	basically	an	implementation	of	an	abstract	block.	Since	the
_toHtml	method	in	AbstractBlock	returns	only	an	empty	string,	all	of	these	descendants
are	implementing	their	own	version	of	the	_toHtml	method.

To	demonstrate	the	usage	of	these	blocks,	we	can	use	our	previously	created
app/code/Foggyline/Office/view/frontend/layout/foggyline_office_test_crud.xml

file.

The	Text	block	has	a	setText	method	we	can	use	to	set	its	content.	The	way	we

instantiate	the	Text	block	and	set	its	text	value	through	the	layout	file	is	shown	as	follows:

<block	class="Magento\Framework\View\Element\Text"	name="example_1">

				<action	method="setText">

								<argument	name="text"	xsi:type="string"><![CDATA[<p>Text_1</p>]]>

</argument>

				</action>

</block>

The	ListText	block	extends	from	Text.	However,	it	does	not	really	support	the	use	of
setText	to	set	its	content.	This	is	obvious	just	by	looking	at	its	code,	where	the	$this-
>setText('')	expression	is	immediately	called	within	its	_toHtml	method
implementation.	Instead,	what	happens	is	that	the	_toHtml	method	loops	through	any	child
blocks	it	might	have	and	calls	the	layout’s	renderElement	method	on	it.	Basically,	we
might	compare	the	ListText	block	to	container,	as	it	has	nearly	the	same	purpose.
However,	unlike	container,	block	is	a	class	so	we	can	manipulate	it	from	PHP.	The
following	is	an	example	of	using	ListText,	containing	a	few	child	Text	blocks:

<block	class="Magento\Framework\View\Element\Text\ListText"	

name="example_2">

				<block	class="Magento\Framework\View\Element\Text"	name="example_2a">

								<action	method="setText">

												<argument	name="text"	xsi:type="string">	<!

[CDATA[<p>Text_2A</p>]]></argument>

								</action>

				</block>

				<block	class="Magento\Framework\View\Element\Text"	name="example_2b">

								<action	method="setText">

												<argument	name="text"	xsi:type="string">	<!

[CDATA[<p>Text_2B</p>]]></argument>

								</action>

				</block>

</block>

The	Messages	block	supports	four	methods	that	we	can	use	to	add	content	to	output:
addSuccess,	addNotice,	addWarning,	and	addError.	The	following	is	an	example
instantiating	the	Messages	block	through	the	layout	update	file:

<block	class="Magento\Framework\View\Element\Messages"	name="example_3">

				<action	method="addSuccess">

								<argument	name="text"	xsi:type="string">	<![CDATA[<p>Text_3A:	

Success</p>]]></argument>

				</action>

				<action	method="addNotice">

								<argument	name="text"	xsi:type="string">	<![CDATA[<p>Text_3B:	

Notice</p>]]></argument>

				</action>

				<action	method="addWarning">

								<argument	name="text"	xsi:type="string">	<![CDATA[<p>Text_3C:	

Warning</p>]]></argument>

				</action>

				<action	method="addError">

								<argument	name="text"	xsi:type="string">	<![CDATA[<p>Text_3D:	

Error</p>]]></argument>

				</action>

</block>

The	preceding	example	should	be	taken	with	caution,	since	calling	these	setter	methods	in
layout	is	not	the	proper	way	to	do	it.	The	default	Magento_Theme	module	already	defines
the	Messages	block	that	uses	vendor/magento/module-
theme/view/frontend/templates/messages.phtml	for	message	rendering.	Thus,	for
most	of	the	part	there	is	no	need	to	define	our	own	messages	block.

Finally,	let’s	look	at	the	example	of	the	Template	block	as	follows:

<block	class="Magento\Framework\View\Element\Template"

				name="example_4"	template="Foggyline_Office::office	

/no4/template.phtml"/>

The	preceding	XML	will	instantiate	the	Template	type	of	block	and	render	the	content	of
the	view/frontend/templates/office/no4/template.phtml	file	within	the
app/code/Foggyline/Office/	directory.

On	the	PHP	level,	instantiating	a	new	block	can	be	accomplished	using	the	layout	object,
or	directly	through	the	object	manager.	The	layout	approach	is	the	preferred	way.	With
regard	to	the	previous	examples	in	XML,	let’s	see	their	alternatives	in	PHP	(assuming
$resultPage	is	an	instance	of	\Magento\Framework\View\Result\PageFactory).

The	following	is	an	example	of	instantiating	the	Text	type	of	block	and	adding	it	as	a
child	of	the	content	container:

$block	=	$resultPage->getLayout()->createBlock(

				'Magento\Framework\View\Element\Text',

				'example_1'

)->setText(

				'<p>Text_1</p>'

);

$resultPage->getLayout()->setChild(

				'content',

				$block->getNameInLayout(),

				'example_1_alias'

);

The	ListText	version	is	done	in	PHP	as	follows:

$blockLT	=	$resultPage->getLayout()->createBlock(

				'Magento\Framework\View\Element\Text\ListText',

				'example_2'

);

$resultPage->getLayout()->setChild(

				'content',

				$blockLT->getNameInLayout(),

				'example_2_alias'

);

$block2A	=	$resultPage->getLayout()->createBlock(

				'Magento\Framework\View\Element\Text',

				'example_2a'

)->setText(

				'<p>Text_2A</p>'

);

$resultPage->getLayout()->setChild(

				'example_2',

				$block2A->getNameInLayout(),

				'example_2a_alias'

);

$block2B	=	$resultPage->getLayout()->createBlock(

				'Magento\Framework\View\Element\Text',

				'example_2b'

)->setText(

				'<p>Text_2B</p>'

);

$resultPage->getLayout()->setChild(

				'example_2',

				$block2B->getNameInLayout(),

				'example_2b_alias'

);

Notice	how	we	first	made	an	instance	of	the	ListText	block	and	assigned	it	as	a	child	of
an	element	named	content.	Then	we	created	two	individual	Text	blocks	and	assigned	them
as	a	child	of	an	element	named	example_2,	which	is	our	ListText.

Next,	let’s	define	the	Messages	block	as	follows:

$messagesBlock	=	$resultPage->getLayout()->createBlock(

				'Magento\Framework\View\Element\Messages',

				'example_3'

);

$messagesBlock->addSuccess('Text_3A:	Success');

$messagesBlock->addNotice('Text_3B:	Notice');

$messagesBlock->addWarning('Text_3C:	Warning');

$messagesBlock->addError('Text_3D:	Error');

$resultPage->getLayout()->setChild(

				'content',

				$messagesBlock->getNameInLayout(),

				'example_3_alias'

);

Finally,	let’s	look	at	the	Template	block	type,	which	we	initiate	as	follows:

$templateBlock	=	$resultPage->getLayout()->createBlock(

				'Magento\Framework\View\Element\Template',

				'example_3'

)->setTemplate(

				'Foggyline_Office::office/no4/template.phtml'

);

$resultPage->getLayout()->setChild(

				'content',

				$templateBlock->getNameInLayout(),

				'example_4_alias'

);

Whenever	possible,	we	should	set	our	blocks	using	XML	layouts.

Now	that	we	know	how	to	utilize	the	most	common	types	of	Magento	blocks,	let’s	see
how	we	can	create	our	own	block	type.

Defining	our	own	block	class	is	as	simple	as	creating	a	custom	class	file	that	extends
Template.	This	block	class	should	be	placed	under	our	module	Block	directory.	Using	our
Foggyline_Office	module,	let’s	create	a	file,	Block/Hello.php,	with	content	as	follows:

namespace	Foggyline\Office\Block;

class	Hello	extends	\Magento\Framework\View\Element\Template

{

				public	function	helloPublic()

				{

								return	'Hello	#1';

				}

				protected	function	helloProtected()

				{

								return	'Hello	#2';

				}

				private	function	helloPrivate()

				{

								return	'Hello	#3';

				}

}

The	preceding	code	simply	creates	a	new	custom	block	class.	We	can	then	call	this	block
class	through	our	layout	file	as	follows:

<block	class="Foggyline\Office\Block\Hello"

				name="office.hello"	template="office/hello.phtml"/>

Finally,	within	our	module	app/code/Foggyline/Office/	directory,	we	create	a	template
file,	view/frontend/templates/office/hello.phtml,	with	content	as	follows:

<?php	/*	@var	$block	Foggyline\Office\Block\Hello	*/	?>

<h1>Hello</h1>

<p><?php	echo	$block->helloPublic()	?></p>

<p><?php	//echo	$block->helloProtected()	?></p>

<p><?php	//echo	$block->helloPrivate()	?></p>

To	further	understand	what	is	happening	here	within	the	template	file,	let’s	take	a	deeper
look	at	templates	themselves.

Templates
Templates	are	snippets	of	HTML	mixed	with	PHP.	The	PHP	part	includes	elements	such
as	variables,	expressions,	and	class	method	calls.	Magento	uses	the	PHTML	file
extension	for	template	files.	Templates	are	located	under	an	individual	module’s
view/{_area_}/templates/	directory.

In	our	previous	example,	we	referred	to	our	module	template	file	with	an	expression	like
Foggyline_Office::office/hello.phtml.	Since	templates	can	belong	to	different
modules,	we	should	prepend	the	template	with	the	module	name	as	a	best	practice.	This
will	help	us	locate	template	files	and	avoid	file	conflicts.

A	simple	naming	formula	goes	like	this:	we	type	the	name	of	the	module,	double	single
colon,	and	then	the	name.	Thus	making	a	template	path	like	office/hello.phtml
equaling	to	Foggyline_Office::office/hello.phtml.

Within	the	PHTML	template	file	we	often	have	various	PHP	expressions	like	$block-
>helloPublic().	Notice	the	block	class	Foggyline\Office\Block\Hello	in	the
preceding	XML.	An	instance	of	this	block	class	becomes	available	to	us	in	hello.phtml
through	the	$block	variable.	Thus,	an	expression	like	$block->helloPublic()	is
effectively	calling	the	helloPublic	method	from	an	instance	of	the	Hello	class.	The
Hello	class	is	not	one	of	the	Magento	core	classes,	but	it	does	extend
\Magento\Framework\View\Element\Template.

Our	hello.phtml	template	also	has	two	more	expressions:	$block->helloProtected()
and	$block->helloPrivate().	However,	these	are	not	executed	as	template	files	can	only
see	public	methods	from	their	$block	instances.

The	$this	variable	is	also	available	within	the	PHTML	template	as	an	instance	of	the
Magento\Framework\View\TemplateEngine\Php	class.

In	the	preceding	template	code	example,	we	could	have	easily	replaced	$block-
>helloPublic()	with	the	$this->helloPublic()	expression.	The	reason	why	this	would
work	lies	in	the	template	engine	Php	class,	(partially)	defined	as	follows:

public	function	__call($method,	$args)

{

				return	call_user_func_array([$this->_currentBlock,	$method],	$args);

}

public	function	__isset($name)

{

				return	isset($this->_currentBlock->{$name});

}

public	function	__get($name)

{

				return	$this->_currentBlock->{$name};

}

Given	that	templates	are	included	in	the	context	of	the	engine	rather	than	in	the	context	of

the	block,	__call	redirects	methods	calls	to	the	current	block.	Similarly,	__isset	redirects
isset	calls	to	the	current	block	and	__get	allows	read	access	to	properties	of	the	current
block.

Though	we	can	use	both	$block	and	$this	for	the	same	purpose	within	the	template	file,
we	should	really	opt	for	using	$block.

Another	important	aspect	of	templates	is	their	fallback	mechanism.	Fallback	is	the	process
of	defining	a	full	template	path	given	only	its	relative	path.	For	example,
office/hello.phtml	falls	back	to	the
app/code/Foggyline/Office/view/frontend/templates/office/hello.phtml	file.

Path	resolution	starts	from	the	_toHtml	method	defined	on	the
Magento\Framework\View\Element\Template	class.	The	_toHtml	method	then	calls
getTemplateFile	within	the	same	class,	which	in	turn	calls	getTemplateFileName	on
resolver,	which	is	an	instance	of
\Magento\Framework\View\Element\Template\File\Resolver.	Looking	further,
resolver’s	getTemplateFileName	further	calls	getTemplateFileName	on
_viewFileSystem,	which	is	an	instance	of	\Magento\Framework\View\FileSystem.	The
method	getFile	is	further	called	on	an	instance	of
\Magento\Framework\View\Design\FileResolution\Fallback\TemplateFile.	getFile
further	triggers	the	resolve	method	on	the
Magento\Framework\View\Design\FileResolution\Fallback\Resolver\Simple

instance,	which	further	calls	the	getRule	method	on	the
Magento\Framework\View\Design\Fallback\RulePool	instance.	The	RulePoll	class	is
the	final	class	in	the	chain	here.	getRule	finally	calls	the	createTemplateFileRule
method,	which	creates	the	rule	that	detects	where	the	file	is	located.

While	running	the	getRule	method,	Magento	checks	against	the	following	types	of
fallback	rules:

file

locale

template

static

email

It	is	worth	spending	some	time	to	study	the	inner	workings	of	the	RulePool	class,	as	it
showcases	detailed	fallbacks	for	the	listed	rules.

Layouts
Up	to	this	point,	we	briefly	touched	on	layout	XMLs.	Layout	XML	is	a	tool	to	build	the
pages	of	the	Magento	application	in	a	modular	and	flexible	manner.	It	enables	us	to
describe	the	page	layout	and	content	placement.	Looking	at	XML	root	nodes,	we
differentiate	two	types	of	layouts:

layout:	XML	wrapped	in	<layout>
page:	XML	wrapped	in	<page>

Page	layouts	represent	a	full	page	in	HTML,	whereas	layout	layouts	represent	a	part	of	a
page.	The	layout	type	is	a	subset	of	the	page	layout	type.	Both	types	of	layout	XML	files
are	validated	by	the	XSD	schema	found	under	the
vendor/magento/framework/View/Layout/etc/	directory:

layout	–	layout_generic.xsd
page	–	page_configuration.xsd

Based	on	the	application	components	that	provide	<layout>	and	<page>	elements	,	we
can	further	section	them	as	base	and	theme	layouts.

The	base	layouts	are	provided	by	the	modules,	usually	at	the	following	locations:

<module_dir>/view/frontend/layout:	page	configuration	and	generic	layout	files
<module_dir>/view/frontend/page_layout:	page	layout	files

The	theme	layouts	are	provided	by	the	themes,	usually	at	the	following	locations:

<theme_dir>/<Namespace>_<Module>/layout:	page	configuration	and	generic
layout	files
<theme_dir>/<Namespace>_<Module>/page_layout:	page	layout	files

Magento	will	load	and	merge	all	module	and	theme	XML	files	on	the	appropriate	page.
Once	files	are	merged	and	XML	instructions	are	processed,	the	result	is	rendered	and	sent
to	the	browser	for	display.	Having	two	different	layout	XML	files,	where	both	reference
the	same	block,	means	that	the	second	one	with	the	same	name	in	the	sequence	will
replace	the	first	one.

When	the	XML	files	are	loaded,	Magento	applies	an	inheritance	theme	at	the	same	time.
We	can	apply	a	theme	and	it	will	look	for	the	parent	until	a	theme	without	a	parent	is
reached.

In	addition	to	the	merging	of	files	from	each	module,	layout	files	from	within	module
directories	can	also	be	extended	or	overridden	by	themes.	Overriding	layout	XML	is	not	a
good	practice,	but	it	might	be	necessary	sometimes.

To	override	the	base	layout	files	provided	by	the	module	within	the
<module_dir>/view/frontend/layout/directory.

We	need	to	create	an	XML	file	with	the	same	name	in	the
app/design/frontend/<vendor>/<theme>/<Namespace_Module>/layout/override/base/

To	override	the	theme	layout	files	provided	by	the	parent	theme	within	the
<parent_theme_dir>/<Namespace>_<Module>/layout/directory.

We	need	to	create	an	XML	file	with	the	same	name	in	the
app/design/frontend/<vendor>/<theme

>/<Namespace_Module>/layout/override/theme/<Parent_Vendor>/<parent_theme>/directory.

Layouts	can	be	both	overridden	and	extended.

The	recommended	way	to	customize	layout	is	to	extend	it	through	a	custom	theme.	We
can	do	so	by	simply	adding	a	custom	XML	layout	file	with	the	same	name	in	the
app/design/frontend/{vendorName}/{theme}/{vendorName}_{moduleName}/layout/

directory.

Layouts,	as	we	saw	in	previous	examples,	support	a	large	number	of	directives:	page	page,
head,	block,	and	so	on.	The	practical	use	of	these	directives	and	how	they	mix	together	is
a	challenge	on	its	own.	Giving	full	details	on	each	and	every	directive	is	beyond	the	scope
of	this	book.	However,	what	we	can	do	is	to	show	how	to	figure	out	the	use	of	an
individual	directive,	which	we	might	need	at	a	given	time.	For	that	purpose,	it	is	highly
recommended	to	use	an	IDE	environment	like	NetBeans	PHP	or	PhpStorm	that	provide
autocomplete	on	XMLs	that	include	XSD.

The	following	is	an	example	of	defining	an	external	schema	to	PhpStorm,	where	we	are
simply	saying	that	the
urn:magento:framework:View/Layout/etc/page_configuration.xsd	alias	belongs	to
the	vendor/magento/framework/View/Layout/etc/page_configuration.xsd	file:

This	way,	PhpStorm	will	know	how	to	provide	autocomplete	while	we	type	around	XML
files.

As	an	example,	let’s	take	a	look	at	how	we	could	use	the	css	directive	to	add	an	external
CSS	file	to	our	page.	With	an	IDE	that	supports	autocomplete	as	soon	as	we	type	the	css
directive	within	the	page	|	head	element,	autocomplete	might	throw	out	something	like	the
following:

A	list	of	available	attributes	is	shown,	such	as	src,	sizes,	ie_condtion,	src_type,	and	so
on.	IDEs	like	PhpStorm	will	allow	us	to	right-click	an	element	or	its	attribute	and	go	to	the
definition.	Looking	into	the	definition	for	the	src	attribute	gets	us	into	the
vendor/magento/framework/View/Layout/etc/head.xsd	file	that	defines	the	css
element	as	follows:

<xs:complexType	name="linkType">

				<xs:attribute	name="src"	type="xs:string"	use="required"/>

				<xs:attribute	name="defer"	type="xs:string"/>

				<xs:attribute	name="ie_condition"	type="xs:string"/>

				<xs:attribute	name="charset"	type="xs:string"/>

				<xs:attribute	name="hreflang"	type="xs:string"/>

				<xs:attribute	name="media"	type="xs:string"/>

				<xs:attribute	name="rel"	type="xs:string"/>

				<xs:attribute	name="rev"	type="xs:string"/>

				<xs:attribute	name="sizes"	type="xs:string"/>

				<xs:attribute	name="target"	type="xs:string"/>

				<xs:attribute	name="type"	type="xs:string"/>

				<xs:attribute	name="src_type"	type="xs:string"/>

</xs:complexType>

All	of	these	are	attributes	we	can	set	on	the	css	element,	and	as	such	get	their
autocomplete	as	shown:

Although	it	is	not	required	to	use	a	robust	IDE	with	Magento,	it	certainly	helps	to	have
one	that	understands	XML	and	XSD	files	to	the	level	of	providing	autocomplete	and
validation.

Themes
By	default,	Magento	comes	with	two	themes,	named	Blank	and	Luma.	If	we	log	in	to	the
Magento	admin	area,	we	can	see	a	list	of	available	themes	under	the	Content	|	Design	|
Themes	menu,	as	shown	in	the	following	screenshot:

Magento	themes	support	a	parent-child	relationship,	something	we	noted	previously,	that
is	visible	on	the	preceding	image	within	the	Parent	Theme	column.

Creating	a	new	theme
The	following	steps	outline	the	process	of	creating	our	own	theme:

1.	 Under	{Magento	root	directory}/app/design/frontend,	create	a	new	directory
bearing	our	vendor	name,	Foggyline.

2.	 Within	the	vendor	directory,	create	a	new	directory	bearing	the	theme	name,
jupiter.

3.	 Within	the	jupiter	directory,	create	the	registration.php	file	with	content	as
follows:

<?php

\Magento\Framework\Component\ComponentRegistrar::register(

				\Magento\Framework\Component\ComponentRegistrar::THEME,

				'frontend/Foggyline/jupiter',

				__DIR__

);

4.	 Copy	vendor/magento/theme-frontend-blank/theme.xml	into	our	theme,
app/design/frontend/Foggyline/jupiter/theme.xml,	changing	the	content	as
follows:

<theme	xmlns:xsi="http://www.w3.org/2001/XMLSchema-	instance"	

xsi:noNamespaceSchemaLocation="urn:magento:	

framework:Config/etc/theme.xsd">

				<title>Foggyline	Jupiter</title>

				<parent>Magento/blank</parent>

				<media>

								<preview_image>media/preview.jpg</preview_image>

				</media>

</theme>

5.	 Create	the	app/design/frontend/Foggyline/jupiter/media/preview.jpg	image
file	to	serve	as	the	theme	preview	image	(the	one	used	in	the	admin	area).

6.	 Optionally,	create	separate	directories	for	static	files	such	as	styles,	fonts,	JavaScript,
and	images.	These	are	stored	within	the	web	subdirectory	of	our	theme
app/design/frontend/Foggyline/jupiter/	folder	like	follows:

web/css/

web/css/source/

web/css/source/components/

web/images/

web/js/

Within	the	theme	web	directory,	we	store	general	theme	static	files.	If	our	theme
contains	module-specific	static	files,	these	are	stored	under	the	corresponding	vendor
module	subdirectories,	like
app/design/frontend/Foggyline/jupiter/{vendorName_moduleName}/web/.

7.	 Optionally,	we	can	create	the	theme	logo.svg	image	under	our	theme	web/images/
folder.

Once	we	are	done	with	the	preceding	steps,	looking	back	into	the	admin	area	under	the
Content	|	Design	|	Themes	menu,	we	should	now	see	our	theme	listed	as	shown	in	the
following	screenshot:

Whereas	clicking	on	the	row	in	the	table	next	to	our	theme	name	would	open	a	screen	like
the	following:

Notice	how	the	previous	two	screens	do	not	show	any	options	to	apply	the	theme.	They
are	only	listing	out	available	themes	and	some	basic	information	next	to	each	theme.	Our
custom	theme	shows	an	interesting	relationship,	where	a	parent	and	a	child	theme	can
belong	to	different	vendors.

Applying	the	theme	requires	the	following	extra	steps:

1.	 Make	sure	our	theme	appears	in	the	theme	list,	under	the	Content	|	Design	|	Themes
menu.

2.	 Go	to	Stores	|	Settings	|	Configuration	|	General	|	Design.
3.	 In	the	Store	View	drop-down	field,	we	select	the	store	view	where	we	want	to	apply

the	theme,	as	shown	in	the	upper-left	corner	of	the	following	image:

4.	 On	the	Design	Theme	tab,	we	select	our	newly	created	theme	in	the	Design	Theme
drop-down,	as	shown	on	the	right-hand	side	of	the	preceding	image.	Click	Save
Config.

5.	 Under	System	|	Tools	|	Cache	Management,	select	and	refresh	the	invalid	cache
types	and	click	on	the	Flush	Catalog	Images	Cache,	Flush	JavaScript/CSS	Cache,
and	Flush	Static	Files	Cache	buttons.

6.	 Finally,	to	see	our	changes	applied,	reload	the	storefront	pages	in	the	browser.

There	is	a	lot	more	to	be	said	about	themes	that	can	fit	in	a	book	of	its	own.	However,	we
will	move	on	to	the	other	important	bits.

JavaScript
Magento	makes	use	of	quite	a	large	number	of	JavaScript	libraries,	such	as:

Knockout:	http://knockoutjs.com
Ext	JS:	https://www.sencha.com/products/extjs/
jQuery:	https://jquery.com/
jQuery	UI:	https://jqueryui.com/
modernizr:	http://www.modernizr.com/
Prototype:	http://www.prototypejs.org/
RequireJS:	http://requirejs.org/
script.aculo.us:	http://script.aculo.us/
moment.js:	http://momentjs.com/
Underscore.js:	http://underscorejs.org/
gruntjs:	http://gruntjs.com/
AngularJS:	https://angularjs.org/
jasmine:	http://jasmine.github.io/

…	and	a	few	others

Though	a	frontend	developer	is	not	required	to	know	the	ins	and	outs	of	every	library,	it	is
recommended	to	at	least	have	a	basic	insight	into	most	of	them.

Tip
It	is	worth	running	find	{MAGENTO-DIR}/	-name	*.js	>	js-list.txt	on	the	console	to
get	a	full	list	of	each	and	every	JavaScript	file	in	Magento.	Spending	a	few	minutes
glossing	over	the	list	might	serve	as	a	nice	future	memo	when	working	with	JavaScript
bits	in	Magento.

The	RequireJS	and	jQuery	libraries	are	probably	the	most	interesting	ones,	as	they	often
step	into	the	spotlight	during	frontend	development.	RequireJS	plays	a	big	role	in
Magento,	as	it	loads	other	JavaScript	files.	Using	a	modular	script	loader	like	RequireJS
improves	the	speed	of	code.	Speed	improvement	comes	from	removing	JavaScript	from
the	header	and	asynchronously	or	lazy	loading	JavaScript	resources	in	the	background.

JavaScript	resources	can	be	specified	as	follows:

Library	level	for	all	libraries	in	the	Magento	code	base	(lib/web).
Module	level	for	all	libraries	in	a	module
(app/code/{vendorName}/{moduleName}/view/{area}/web).
Theme	for	all	libraries	in	a	theme
(app/design/{area}/{vendorName}/{theme}/{vendorName}_{moduleName}/web).
All	libraries	in	a	theme	(app/design/{area}/{vendorName}/{theme}/web).	Though
possible,	it	is	not	recommended	using	this	level	to	specify	JavaScript	resources.

It	is	recommended	to	specify	JavaScript	resources	in	the	templates	rather	than	in	the
layout	updates.	This	way,	we	ensure	processing	of	the	resources	through	RequireJS.

To	work	with	the	RequireJS	library,	specify	the	mapping	of	JavaScript	resources;	that	is,

http://knockoutjs.com
https://www.sencha.com/products/extjs/
https://jquery.com/
https://jqueryui.com/
http://www.modernizr.com/
http://www.prototypejs.org/
http://requirejs.org/
http://script.aculo.us/
http://momentjs.com/
http://underscorejs.org/
http://gruntjs.com/
https://angularjs.org/
http://jasmine.github.io/

assign	the	aliases	to	resources.	Use	requires-config.js	to	create	the	mapping.

To	make	our	configurations	more	precise	and	specific	for	different	modules/themes,	we
can	identify	mapping	in	the	requires-config.js	file	at	several	levels	depending	on	our
needs.	Configurations	are	collected	and	executed	in	the	following	order:

Library	configurations
Configurations	at	the	module	level
Configurations	at	the	theme	module	level	for	the	ancestor	themes
Configurations	at	the	theme	module	level	for	a	current	theme
Configurations	at	the	theme	level	for	the	ancestor	themes
Configurations	at	the	theme	level	for	the	current	theme

When	we	speak	of	JavaScript	in	Magento,	we	can	hear	various	terms	like	component	and
widget.	We	can	easily	divide	those	terms	by	describing	the	type	of	JavaScript	in	Magento
as	per	the	following	list:

JavaScript	component	(JS	component):	This	can	be	any	single	JavaScript	file
decorated	as	an	AMD	(short	for	Asynchronous	Module	Definition)	module
Ui	component:	A	JavaScript	component	located	in	the	Magento_Ui	module
jQuery	UI	widget:	A	JavaScript	component/widget	provided	by	the	jQuery	UI
library	used	in	Magento
jQuery	widget:	A	custom	widget	created	using	jQuery	UI	Widget	Factory	and
decorated	as	an	AMD	module

There	are	two	ways	we	can	initialize	a	JavaScript	component	in	template	files:

Using	the	data-mage-init	attribute
Using	the	<script>	tag

The	data-mage-init	attribute	is	parsed	on	a	DOM	ready	event.	Since	it	is	initialized	on	a
certain	element,	the	script	is	called	only	for	that	particular	element,	and	is	not
automatically	initialized	for	other	elements	of	the	same	type	on	the	page.	An	example	of
data-mage-init	usage	would	be	something	like	the	following:

<div	data-mage-init='{	"<componentName>":	{...}	}'></div>

The	<script>	tag	initialization	is	done	without	relation	to	any	specific	element,	or	in
relation	to	a	specific	element	but	no	direct	access	to	the	element.	The	script	tag	has	to	have
an	attribute,	type="text/x-magento-init".	An	example	of	<script>	tag	initialization
would	be	something	like	the	following:

<script	type="text/x-magento-init">

				//	specific	element	but	no	direct	access	to	the	element

				"<element_selector>":	{

								"<jsComponent1>":	...,

								"<jsComponent2>":	...

				},

				//	without	relation	to	any	specific	element

				"*":	{

								"<jsComponent3">:	...

				}

</script>

Depending	on	the	situation	and	desired	level	of	expressiveness,	we	can	either	opt	for
usage	of	data-mage-init	or	attribute	or	<script>	tag.

Creating	a	custom	JS	component
Let’s	go	through	a	practical	example	of	creating	a	JS	component	within	our
Foggyline_Office	module	in	a	form	of	the	jQuery	widget	as	follows:

First,	we	add	our	entry	to	app/code/Foggyline/Office/view/frontend/requirejs-
config.js,	as	shown:

var	config	=	{

				map:	{

								'*':	{

												foggylineHello:	'Foggyline_Office/js/foggyline-hello'

								}

				}

};

Then	we	add	the	actual	JavaScript
app/code/Foggyline/Office/view/frontend/web/js/foggyline-hello.js	with
content	as	follows:

define([

				"jquery",

				"jquery/ui"

],	function($){

				"use	strict";

				$.widget('mage.foggylineHello',	{

								options:	{

								},

								_create:	function	()	{

												alert(this.options);

												//my	code	here

								}

				});

				return	$.mage.foggylineHello;

});

Finally,	we	call	our	JavaScript	component	within	some	PHTML	template,	let’s	say
app/code/Foggyline/Office/view/frontend/templates/office/hello.phtml,	as
show:

<div	data-mage-init='{"foggylineHello":{"myVar1":	"myValue1",	"myVar2":	

"myValue2"}}'>Foggyline</div>

Once	we	refresh	the	frontend,	we	should	see	the	result	of	alert(this.options)	in	the
browser	showing	myVar1	and	myVar2.

The	data-mage-init	part	basically	triggers	as	soon	as	the	page	loads.	It	is	not	triggered
via	some	click	or	similar	event	on	top	of	the	div	element;	it	is	triggered	on	page	load.

If	we	don’t	see	the	desired	result	in	the	browser,	we	might	need	to	fully	clear	the	cache	in
the	admin	area.

CSS
Magento	uses	a	PHP	port	of	the	official	LESS	processor	to	parse	the	.less	files	into	.css
files.	LESS	is	a	CSS	preprocessor	that	extends	the	CSS	language	by	adding	various
features	to	it,	like	variables,	mixins,	and	functions.	All	of	this	makes	CSS	more
maintainable,	extendable,	and	easier	to	theme.	Frontend	developers	are	thus	expected	to
write	LESS	files	that	Magento	then	converts	to	appropriate	CSS	variants.

Tip
It	is	worth	running	find	{MAGENTO-DIR}/	-name	*.less	>	less-list.txt	on	the	console
to	get	a	full	list	of	each	and	every	LESS	file	in	Magento.	Spending	a	few	minutes	glossing
over	the	list	might	serve	as	a	nice	future	memo	when	working	with	style	sheet	bits	in
Magento.

We	can	customize	the	storefront	look	and	feel	through	one	of	the	following	approaches:

Override	the	default	LESS	files	–	only	if	our	theme	inherits	from	the	default	or	any
other	theme,	in	which	case	we	can	override	the	actual	LESS	files
Create	our	own	LESS	files	using	the	built-in	LESS	preprocessor
Create	our	own	CSS	files,	optionally	having	compiled	them	using	a	third-party	CSS
preprocessor

Within	the	individual	frontend	theme	directory,	we	can	find	style	sheets	at	the	following
locations:

{vendorName}_{moduleName}/web/css/source/

{vendorName}_{moduleName}/web/css/source/module/

web/css/

web/css/source/

CSS	files	can	be	included	in	a	page	through	templates	and	layout	files.	A	recommended
way	is	to	include	them	through	layout	files.	If	we	want	our	style	sheets	to	be	available
through	all	pages	on	the	frontend,	we	can	add	using	the	default_head_blocks.xml	file.	If
we	look	at	the	blank	theme,	it	uses	vendor/magento/theme-frontend-
blank/Magento_Theme/layout/default_head_blocks.xml	defined	as	follows:

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout	

/etc/page_configuration.xsd">

				<head>

								<css	src="css/styles-m.css"/>

								<css	src="css/styles-l.css"	media="screen	and	(min-width:	768px)"/>

								<css	src="css/print.css"	media="print"/>

				</head>

</page>

All	it	takes	is	for	us	to	copy	this	file	in	the	same	location	under	our	custom	theme;
assuming	it’s	the	jupiter	theme	from	the	preceding	examples,	that	would	be
app/design/frontend/Foggyline/jupiter/Magento_Theme/layout/default_head_blocks.xml

Then	we	simply	modify	the	file	to	include	our	CSS.

When	run,	Magento	will	try	to	find	the	included	CSS	files.	If	a	CSS	file	is	not	found,	it
then	searches	for	the	same	filenames	with	a	.less	extension.	This	is	part	of	the	built-in
preprocessing	mechanism.

Summary
In	this	chapter,	we	started	off	by	looking	into	the	three	aspects	of	the	rendering	flow
process:	the	view,	result	object,	and	pages.	Then	we	took	a	detailed	look	at	three	primary
view	elements:	ui-components,	containers,	and	blocks.	We	further	studied	blocks	in
depth,	looking	into	their	architecture	and	life	cycle.	We	moved	on	to	templates,	looking
into	their	locations,	rendering,	and	fallback.	Then	came	XML	layouts,	as	the	glue	between
blocks	and	templates.	All	of	this	gave	us	a	foundation	for	further	looking	into	theme
structure,	JavaScript	components,	and	CSS.	Along	the	way,	we	did	a	little	bit	of	hands-on
with	a	custom	theme	and	JavaScript	components	creation.	CSS	and	JavaScript	is	merely	a
fragment	of	what	the	Magento	frontend	is	all	about.	Technology-wise,	having	a	solid
understanding	of	XML	and	even	some	PHP	is	more	of	a	requirement	than	an	exception	for
frontend-related	development.

The	following	chapter	will	introduce	us	to	Magento’s	web	API	where	we	will	learn	how	to
authenticate,	make	API	calls,	and	even	build	our	own	APIs.

Chapter	9.	The	Web	API
Throughout	previous	chapters,	we	learned	how	to	use	some	of	the	backend	components	so
that	storeowners	can	manage	and	manipulate	the	data	such	as	customers,	products,
categories,	orders,	and	so	on.	Sometimes	this	is	not	enough,	like	when	we	are	pulling	data
in	or	out	from	third-party	systems.	In	cases	like	these,	the	Magento	Web	API	framework
makes	it	easy	to	call	Magento	services	through	REST	or	SOAP.

In	this	chapter,	we	will	cover	the	following	topics:

User	types
Authentication	methods
REST	versus	SOAP
Hands-on	with	token-based	authentication
Hands-on	with	OAuth-based	authentication
OAuth-based	Web	API	calls
Hands-on	with	session-based	authentication
Creating	custom	Web	APIs
Search	Criteria	Interface	for	list	filtering

Before	we	can	start	making	Web	API	calls,	we	must	authenticate	our	identity	and	have	the
necessary	permissions	(authorization)	to	access	the	API	resource.	Authentication	allows
Magento	to	identify	the	caller’s	user	type.	Based	on	the	user’s	(administrator,	integration,
customer,	or	guest)	access	rights,	the	API	calls’	resource	accessibility	is	determined.

User	types
The	list	of	resources	that	we	can	access	depends	on	our	user	type	and	is	defined	within	our
module	webapi.xml	configuration	file.

There	are	three	types	of	users	known	to	API,	listed	as	follows:

Administrator	or	integration:	Resources	for	which	administrators	or	integrators	are
authorized.	For	example,	if	administrators	are	authorized	for	the	Magento_Cms::page
resource,	they	can	make	a	POST	/V1/cmsPage	call.
Customer:	Resources	for	which	customers	are	authorized.	These	are	the	resources
with	anonymous	or	self	permission.
Guest	user:	Resources	for	which	guests	are	authorized.	These	are	the	resources	with
anonymous	permission.

Two	files	play	a	crucial	role	toward	defining	an	API:	our	module	acl.xml	and	webapi.xml
files.

acl.xml	is	where	we	define	our	module	access	control	list	(ACL).	It	defines	an	available
set	of	permissions	to	access	the	resources.	The	acl.xml	files	across	all	Magento	modules
are	consolidated	to	build	an	ACL	tree	that	is	used	to	select	allowed	admin	role	resources
or	third-party	integration’s	access	(System	|	Extensions	|	Integrations	|	Add	New
Integration	|	Available	APIs).

webapi.xml	is	where	we	define	Web	API	resources	and	their	permissions.	When	we	create
webapi.xml,	the	permissions	defined	in	acl.xml	are	referenced	to	create	access	rights	for
each	API	resource.

Let’s	take	a	look	at	the	following	(truncated)	webapi.xml	from	the	core	Magento_Cms
module:

<routes	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation=	

"urn:magento:module:Magento_Webapi:etc/webapi.xsd">

				...

				<route	url="/V1/cmsPage"	method="POST">

								<service	class="Magento\Cms\Api\PageRepositoryInterface"	

method="save"	/>

								<resources>

												<resource	ref="Magento_Cms::page"	/>

								</resources>

				</route>

				...

				<route	url="/V1/cmsBlock/search"	method="GET">

								<service	class="Magento\Cms\Api\BlockRepositoryInterface"	

method="getList"	/>

								<resources>

												<resource	ref="Magento_Cms::block"	/>

								</resources>

				</route>

				...

</routes>

In	the	preceding	webapi.xml	file	for	the	CMS	page	API,	only	a	user	with
Magento_Cms::page	authorization	can	access	POST	/V1/cmsPage	or	GET
/V1/cmsBlock/search.	We	will	get	back	to	a	more	detailed	explanation	of	route	later	on
in	our	examples;	for	the	moment,	our	focus	is	on	resource.	We	can	assign	multiple	child
resource	elements	under	resources.	In	cases	like	these,	it	would	be	sufficient	for	a	user	to
have	any	one	of	those	ACLs	assigned	to	be	able	to	make	an	API	call.

The	actual	authorization	is	then	granted	to	either	an	administrator	or	integration,	defined
in	the	Magento	admin,	with	full	group	or	a	specific	resource	selected	in	the	ACL	tree	as
shown	in	the	following	screenshot:

Given	that	webapi.xml	and	acl.xml	go	hand	in	hand,	let’s	take	a	look	at	the	(truncated)
acl.xml	file	from	the	core	Magento_Cms	module:

<resources>

				<resource	id="Magento_Backend::admin">

								<resource	id="Magento_Backend::content">

												<resource	id="Magento_Backend::content_elements">

																<resource	id="Magento_Cms::page"	...>

																				...

																</resource>

												</resource>

								</resource>

				</resource>

</resources>

Notice	how	the	position	of	the	Magento_Cms::page	resource	is	nested	under
Magento_Backend::content_elements,	which	in	turn	is	nested	under
Magento_Backend::content,	which	is	further	nested	under	Magento_Backend::admin.
This	tells	Magento	where	to	render	the	ACL	under	Magento	admin	when	showing	the

Roles	Resources	tree	as	shown	in	the	previous	screenshot.	This	does	not	mean	that	the
user	authorized	against	the	Magento_Cms::page	resource	won’t	be	able	to	access	the	API
if	all	those	parent	Magento_Backend	resources	are	granted	to	him	as	well.

Authorizing	against	a	resource	is	sort	of	a	flat	thing.	There	is	no	tree	check	when
authorizing.	Thus,	each	resource	is	required	to	have	a	unique	id	attribute	value	on	a
resource	element	when	defined	under	acl.xml.

The	resources	just	defined	are	what	we	listed	before	as	resources	for	which	administrators
or	integrators	are	authorized.

The	customer,	on	the	other	hand,	is	assigned	a	resource	named	anonymous	or	self.	If	we
were	to	do	a	full	<resource	ref="anonymous"	/>	string	search	across	all	Magento	core
modules,	several	occurrences	would	show	up.

Let’s	take	a	look	at	the	(truncated)	core	module	vendor/magento/module-
catalog/etc/webapi.xml	file:

<route	url="/V1/products"	method="GET">

				<service	class=	"Magento\Catalog\Api\ProductRepositoryInterface"	

method="getList"/>

				<resources>

								<resource	ref="anonymous"	/>

				</resources>

</route>

The	preceding	XML	defines	an	API	endpoint	path	with	a	value	of	/V1/products,
available	via	the	HTTP	GET	method.	It	further	defines	a	resource	called	anonymous,
which	means	either	the	currently	logged-in	customer	or	guest	user	can	call	this	API
endpoint.

anonymous	is	a	special	permission	that	doesn’t	need	to	be	defined	in	acl.xml.	As	such,	it
will	not	show	up	in	the	permissions	tree	under	Magento	admin.	This	simply	means	that	the
current	resource	in	webapi.xml	can	be	accessed	without	the	need	for	authentication.

Finally,	we	take	a	look	at	the	self	resource,	whose	example	we	can	find	under	the
(truncated)	vendor/magento/module-customer/etc/webapi.xml	file	as	follows:

<route	url="/V1/customers/me"	method="PUT">

				<service	class=	"Magento\Customer\Api\CustomerRepositoryInterface"	

method="save"/>

				<resources>

								<resource	ref="self"/>

				</resources>

				<data>

								<parameter	name="customer.id"	force="true">%customer_id%

</parameter>

				</data>

</route>

self	is	a	special	kind	of	access	that	enables	a	user	to	access	resources	they	own,	assuming
we	already	have	an	authenticated	session	with	the	system.	For	example,	GET
/V1/customers/me	fetches	the	logged-in	customer’s	details.	This	is	something	that	is

typically	useful	for	JavaScript-based	components/widgets.

Authentication	methods
Mobile	applications,	third-party	applications,	and	JavaScript	components/widgets
(storefront	or	admin)	are	the	three	main	types	of	clients	as	seen	by	Magento.	Though	a
client	is	basically	everything	communicating	with	our	APIs,	each	type	of	client	has	a
preferred	authentication	method.

Magento	supports	three	types	of	authentication	methods,	listed	as	follows:

Token-based	authentication
OAuth-based	authentication
Session-based	authentication

Token-based	authentication	is	most	suitable	for	mobile	applications,	where	a	token	acts
like	an	electronic	key	providing	access	to	the	Web	API’s.	The	general	concept	behind	a
token-based	authentication	system	is	relatively	simple.	The	user	provides	a	username	and
password	during	initial	authentication	in	order	to	obtain	a	time-limited	token	from	the
system.	If	a	token	is	successfully	obtained,	all	subsequent	API	calls	are	then	made	with
that	token.

OAuth-based	authentication	is	suitable	for	third-party	applications	that	integrate	with
Magento.	Once	an	application	is	authorized	through	the	OAuth	1.0a	handshake	process,
it	gains	access	to	Magento	Web	APIs.	There	are	three	key	terminologies	we	must
understand	here:	user	(resource	owner),	client	(consumer),	and	server	(service	provider).
The	user	or	resource	owner	is	the	one	who	is	being	asked	to	allow	access	to	its	protected
resource.	Imagine	a	customer	as	a	user	(resource	owner)	allowing	access	to	its	orders	to
some	third-party	applications.	In	such	a	case,	this	third-party	application	would	be	the
client	(consumer),	whereas	Magento	and	its	Web	API	would	be	the	server	(service
provider).

Session-based	authentication	is	probably	the	simplest	one	to	grasp.	As	a	customer,	you
log	in	to	the	Magento	storefront	with	your	customer	credentials.	As	an	admin,	you	log	in
to	the	Magento	admin	with	your	admin	credentials.	The	Magento	Web	API	framework
uses	your	logged-in	session	information	to	verify	your	identity	and	authorize	access	to	the
requested	resource.

REST	versus	SOAP
Magento	supports	both	SOAP	(short	for	Simple	Object	Access	Protocol)	and	REST
(short	for	Representational	State	Transfer)	types	of	communication	with	the	Web	API.
Authentication	methods	themselves	are	not	really	bound	to	any	of	them.	We	can	use	the
same	authentication	method	and	Web	API	method	calls	with	both	SOAP	and	REST.

Some	of	the	REST	specifics	we	might	outline	as	follows:

We	run	REST	Web	API	calls	through	cURL	commands	or	a	REST	client.
Requests	support	HTTP	verbs:	GET,	POST,	PUT,	or	DELETE.
A	HTTP	header	requires	an	authorization	parameter,	specifying	the	authentication
token	with	the	Bearer	HTTP	authorization	scheme,	Authorization:	Bearer
<TOKEN>.	<TOKEN>	is	the	authentication	token	returned	by	the	Magento	token	service.
We	can	use	the	HTTP	header	Accept:	application/<FORMAT>,	where	<FORMAT>	is
either	JSON	or	XML.

Some	of	the	SOAP	specifics	we	might	outline	as	follows:

We	run	SOAP	Web	API	calls	through	cURL	commands	or	a	SOAP	client.
A	Web	Service	Definition	Language	(WSDL)	file	is	generated	only	for	services
that	we	request.	There	is	no	one	big	merged	WSDL	file	for	all	services.
The	Magento	Web	API	uses	WSDL	1.2,	compliant	with	WS-I	2.0	Basic	Profile.
Each	Magento	service	interface	that	is	part	of	a	service	contract	is	represented	as	a
separate	service	in	the	WSDL.
Consuming	several	services	implies	specifying	them	in	the	WSDL	endpoint	URL	in	a
comma-separated	manner,	for	example
http://<magento.host>/soap/<optional_store_code>?wsdl&services=

<service_name_1>,<service_name_2>.
We	can	get	a	list	of	all	available	services	by	hitting	a	URL	like	http://<SHOP-
URL>/soap/default?wsdl_list	in	the	browser.

The	following	REST	and	SOAP	examples	will	make	extensive	use	of	cURL,	which	is
essentially	a	program	that	allows	you	to	make	HTTP	requests	from	the	command	line	or
different	language	implementations	(like	PHP).	We	can	further	describe	cURL	as	the
console	browser,	or	our	view	source	tool	for	the	web.	Anything	we	can	do	with	various
fancy	REST	and	SOAP	libraries,	we	can	do	with	cURL	as	well;	it	is	just	considered	to	be
a	more	low-level	approach.

Doing	SOAP	requests	with	cURL	or	anything	else	that	does	not	have	WSDL/XML	parsing
implemented	internally	is	cumbersome.	Thus,	using	PHP	SoapClient	or	something	more
robust	is	a	must.	SoapClient	is	an	integrated,	actively	maintained	part	of	PHP,	and	is	thus
generally	available.

With	negative	points	being	pointed,	we	will	still	present	all	of	our	API	calls	with	console
cURL,	PHP	cURL,	and	PHP	SoapClient	examples.	Given	that	libraries	abstract	so	much
functionality,	it	is	absolutely	essential	that	a	developer	has	a	solid	understanding	of	cURL,
even	for	making	SOAP	calls.

Hands-on	with	token-based	authentication
The	crux	of	token-based	authentication	is	as	follows:

Client	requests	access	with	a	username	and	password
Application	validates	credentials
Application	provides	a	signed	token	to	the	client

The	following	code	example	demonstrates	the	console	cURL	REST-like	request	for	the
customer	user:

curl	-X	POST	"http://magento2.ce/rest/V1/integration/customer/token"\

				-H	"Content-Type:application/json"\

				-d	'{"username":"john@change.me",	"password":"abc123"}'

The	following	code	example	demonstrates	the	PHP	cURL	REST-like	request	for	the
customer	user:

$data	=	array('username'	=>	'john@change.me',	'password'	=>	'abc123');

$data_string	=	json_encode($data);

$ch	=	curl_init('http://magento2.ce/rest/V1/integration	/customer/token');

		curl_setopt($ch,	CURLOPT_CUSTOMREQUEST,	'POST');

		curl_setopt($ch,	CURLOPT_POSTFIELDS,	$data_string);

		curl_setopt($ch,	CURLOPT_RETURNTRANSFER,	true);

		curl_setopt($ch,	CURLOPT_HTTPHEADER,	array(

				'Content-Type:	application/json',

				'Content-Length:	'	.	strlen($data_string))

);

$result	=	curl_exec($ch);

The	following	code	example	demonstrates	the	console	cURL	SOAP-like	request	for	the
customer	user:

curl	-X	POST	-H	'Content-Type:	application/soap+xml;

charset=utf-8;	action=	

"integrationCustomerTokenServiceV1CreateCustomerAccessToken"'

-d	@request.xml	http://magento2.ce/index.php/soap/default?services=	

integrationCustomerTokenServiceV1

Notice	the	-d	@request.xml	part.	Here,	we	are	saying	to	the	curl	command	to	take	the
content	of	the	request.xml	file	and	pass	it	on	as	POST	body	data	where	the	content	of	the
request.xml	file	for	the	preceding	curl	command	is	defined	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<env:Envelope	xmlns:env="http://www.w3.org/2003/05/soap-envelope"	

xmlns:ns1="http://magento2.ce/index.php/soap/default?	

services=integrationCustomerTokenServiceV1">

				<env:Body>

								<ns1:integrationCustomerTokenServiceV1CreateCustomer	

AccessTokenRequest>

												<username>john@change.me</username>

												<password>abc123</password>

								</ns1:integrationCustomerTokenServiceV1CreateCustomer	

AccessTokenRequest>

				</env:Body>

</env:Envelope>

The	following	code	example	demonstrates	the	PHP	cURL	SOAP-like	request	for	the
customer	user:

$data_string	=	file_get_contents('request.xml');

$ch	=	curl_init('http://magento2.ce/index.php/soap/default?services=	

integrationCustomerTokenServiceV1');

		curl_setopt($ch,	CURLOPT_CUSTOMREQUEST,	'POST');

		curl_setopt($ch,	CURLOPT_POSTFIELDS,	$data_string);

		curl_setopt($ch,	CURLOPT_RETURNTRANSFER,	true);

		curl_setopt($ch,	CURLOPT_HTTPHEADER,	array(

				'Content-Type:	application/soap+xml;	charset=utf-8;	

action="integrationCustomerTokenServiceV1	CreateCustomerAccessToken"',

				'Content-Length:	'	.	strlen($data_string))

);

$result	=	curl_exec($ch);

The	following	code	example	demonstrates	the	usage	of	PHP	SoapClient	to	make	a	Web
API	call:

$request	=	new	SoapClient(

				'http://magento2.ce/index.php/soap/default?wsdl&services=	

integrationCustomerTokenServiceV1',

				array('soap_version'	=>	SOAP_1_2,	'trace'	=>	1)

);

$token	=	$request->integrationCustomerTokenServiceV1Create	

CustomerAccessToken(array('username'	=>	'john@change.me',	'password'	=>	

'abc123'));

The	API	call	for	admin	user	authentication	is	nearly	identical,	and	depends	on	which	one
of	three	approaches	we	take.	The	difference	is	merely	in	using
https://magento2.ce/rest/V1/integration/admin/token	as	the	endpoint	URL	in	the
case	of	REST,	and	using	http://magento2.ce/index.php/soap/default?
services=integrationCustomerTokenServiceV1.	Additionally,	for	a	SOAP	call,	we	are
calling	integrationAdminTokenServiceV1CreateAdminAccessToken	on	the	$request
object.

In	the	case	of	successful	authentication,	for	both	the	customer	and	admin	API	call,	the
response	would	be	a	random-looking	32-characters-long	string	that	we	call	token.	This
token	is	further	saved	to	the	oauth_token	table	in	the	database,	under	the	token	column.

This	might	be	a	bit	confusing	with	regard	to	what	the	oauth_token	table	has	to	do	with
token	authentication.

Note
If	we	think	about	it,	token-based	authentication	can	be	looked	at	as	a	simplified	version	of

OAuth,	where	the	user	would	authenticate	using	a	username	and	password	and	then	give
the	obtained	time-expiring	token	to	some	third-party	application	to	use	it.

In	the	case	of	failed	authentication,	the	server	returns	HTTP	401	Unauthorized,	with	a
body	containing	a	JSON	message:

{"message":"Invalid	login	or	password."}

Notice	how	we	are	able	to	call	the	API	method,	though	we	are	not	already	authenticated?
This	means	we	must	be	calling	an	API	defined	by	the	anonymous	type	of	resource.	A
quick	look	at	the	API	endpoint	gives	us	a	hint	as	to	the	location	of	its	definition.	Looking
under	the	vendor/magento/module-integration/etc/webapi.xml	file,	we	can	see	the
following	(truncated)	XML:

<route	url="/V1/integration/admin/token"	method="POST">

				<service	class="Magento\Integration\Api\AdminTokenServiceInterface"	

method="createAdminAccessToken"/>

				<resources>

								<resource	ref="anonymous"/>

				</resources>

</route>

<route	url="/V1/integration/customer/token"	method="POST">

				<service	class="Magento\Integration\Api\	CustomerTokenServiceInterface"	

method="createCustomerAccessToken"/>

				<resources>

								<resource	ref="anonymous"/>

				</resources>

</route>

We	can	clearly	see	how	even	token-based	authentication	itself	is	defined	as	API,	using	the
anonymous	resource	so	that	everyone	can	access	it.	In	a	nutshell,	token-based
authentication	is	a	feature	of	the	Magento\Integration	module.

Now	that	we	have	our	authentication	token,	we	can	start	making	other	API	calls.
Remember,	token	simply	means	we	have	been	authenticated	against	a	given	username	and
password.	It	does	not	mean	we	get	full	access	to	all	Web	API	methods.	This	further
depends	on	whether	our	customer	or	user	has	the	proper	access	role.

Hands-on	with	OAuth-based
authentication
OAuth-based	authentication	is	the	most	complex,	yet	most	flexible	one	supported	by
Magento.	Before	we	get	to	use	it,	the	merchant	must	register	our	external	application	as
integration	with	the	Magento	instance.	Placing	ourselves	in	the	role	of	merchant,	we	do	so
in	the	Magento	admin	area	under	System	|	Extensions	|	Integrations.	Clicking	on	the
Add	New	Integration	button	opens	the	screen	as	shown	in	the	following	screenshot:

The	value	External	Book	App	is	the	freely	given	name	of	our	external	application.	If	we
were	connecting	it	with	Twitter,	we	could	have	easily	put	its	name	here.	Next	to	Name,	we
have	the	Email,	Callback	URL,	and	Identity	Link	URL	fields.	The	value	of	e-mail	is
not	really	that	important.	The	callback	URL	and	identity	link	URL	define	the	external
application	endpoint	that	receives	OAuth	credentials.	The	values	of	these	links	point	to
external	app	that	stands	as	the	OAuth	client.	We	will	come	back	to	it	in	a	moment.

In	the	API	tab	under	the	Available	APIs	pane,	we	set	Resource	Access	to	the	value	of	All
or	Custom.	If	set	to	Custom,	we	can	further	fine-tune	the	resources	in	the	Resources
option	we	want	to	allow	access	to	this	integration	as	shown	in	the	following	screenshot:

We	should	always	give	the	minimum	required	resources	to	the	external	application	we	are
using.	This	way,	we	minimize	possible	security	risks.	The	preceding	screenshot	shows	us
defining	only	Sales,	Products,	Customer,	and	Marketing	resources	to	the	integration.
This	means	that	the	API	user	would	not	be	able	to	use	content	resources,	such	as	save	or
delete	pages.

If	we	click	the	Save	button	now,	we	should	be	redirected	back	to	the	System	|	Extensions
|	Integrations	screen	as	shown	in	the	following	screenshot:

There	are	three	things	to	focus	our	attention	here.	First,	we	are	seeing	an	Integration	not
secure	message.	This	is	because	when	we	defined	our	callback	URL	and	identity	link
URL,	we	used	HTTP	and	not	HTTPS	protocol.	When	doing	real-world	connections,	for
security	reasons,	we	need	to	be	sure	to	use	HTTPS.	Further,	we	notice	how	the	Status
column	still	says	Inactive.

The	Activate	link,	to	the	right	of	the	Status	column,	is	the	preceding	step	before	the	two-
legged	OAuth	handshake	starts.	Only	an	administrator	with	access	to	integration	listing	in
the	backend	can	initiate	this.

At	this	point,	we	need	to	pull	the	entire	PHP	code	behind	the	External	Book	App	OAuth
client	from	here,	https://github.com/ajzele/B05032-BookAppOauthClient,	and	place	it	into
the	root	of	our	Magento	installation	under	the	pub/external-book-app/	folder	as	shown
in	the	following	screenshot:

https://github.com/ajzele/B05032-BookAppOauthClient

The	function	of	these	files	is	to	simulate	our	own	mini-OAuth	client.	We	will	not	go	into
much	detail	about	the	content	of	these	files,	It	is	more	important	to	look	at	it	as	an	external
OAuth	client	app.	The	callback-url.php	and	identity-link-url.php	files	will	execute
when	Magento	triggers	the	callback	and	identity	link	URL’s	as	configured	under	the
output	image	on	the	previous	page.

Once	the	OAuth	client	files	are	in	place,	we	go	back	to	our	integrations	listing.	Here,	we
click	on	the	Activate	link.	This	opens	a	modal	box,	asking	us	to	approve	access	to	the	API
resources	as	shown	in	the	following	screenshot:

Notice	how	API	resources	listed	here	match	those	few	we	set	under	the	API	tab	when

creating	integration.	There	are	only	two	actions	we	can	do	here	really:	either	click	Cancel
or	Allow	to	start	the	two-legged	OAuth	handshake.	Clicking	the	Allow	button	does	two
things	in	parallel.

First,	it	instantly	posts	the	credentials	to	the	endpoint	(callback	URL)	specified	when
creating	the	External	Book	App	integration.	The	HTTP	POST	from	Magento	to	the
callback	URL	contains	parameters	with	values	similar	to	the	following:

Array

(

				[oauth_consumer_key]	=>	cn5anfyvkg7sgm2lrv8cxvq0dxcrj7xm

				[oauth_consumer_secret]	=>	wvmgy0dmlkos2vok04k3h94r40jvi5ye

				[store_base_url]	=>	http://magento2-merchant.loc/index.php/

				[oauth_verifier]	=>	hlnsftola6c7b6wjbtb6wwfx4tow2x6x

)

Basically,	a	HTTP	POST	request	is	hitting	the	callback-url.php	file	whose	content
(partial)	is	as	follows:

session_id('BookAppOAuth');

session_start();

$_SESSION['oauth_consumer_key']	=	$_POST['oauth_consumer_key'];

$_SESSION['oauth_consumer_secret']	=	$_POST['oauth_consumer_secret'];

$_SESSION['store_base_url']	=	$_POST['store_base_url'];

$_SESSION['oauth_verifier']	=	$_POST['oauth_verifier'];

session_write_close();

header('HTTP/1.0	200	OK');

echo	'Response';

We	can	see	that	parameters	passed	by	Magento	are	stored	into	an	external	app	session
named	BookAppOAuth.	Later	on,	within	the	check-login.php	file,	these	parameters	will	be
used	to	instantiate	the	BookAppOauthClient,	which	will	further	be	used	to	get	a	request
token,	which	is	a	pre-authorized	token.

Parallel	to	Callback	URL	HTTP	POST,	we	have	a	popup	window	opening	as	shown	in
the	following	screenshot:

The	login	form	we	see	in	the	popup	is	just	some	dummy	content	we	placed	under	the
identity-link-url.php	file.	Magento	passes	two	values	to	this	file	via	HTTP	GET.
These	are	consumer_id	and	success_call_back.	The	consumer_id	value	is	the	ID	of	our
integration	we	created	in	the	admin	area.	It	is	up	to	the	OAuth	client	app	to	decide	if	it
wants	to	do	anything	with	this	value	or	not.	The	success_call_back	URL	points	to	our
Magento	admin	integration/loginSuccessCallback	path.	If	we	take	a	look	at	the	code
of	the	identity-link-url.php	file,	we	can	see	the	form	is	set	to	do	the	POST	action	on	the
URL	like	check-login.php?consumer_id={$consumerId}&callback_url=
{$callbackUrl}.

If	we	now	click	the	Login	button,	the	form	will	POST	data	to	the	check-login.php	file
passing	it	consumer_id	and	callback_url	within	the	URL	as	GET	parameters.

The	content	of	check-login.php	is	defined	(partially)	as	follows:

require	'../../vendor/autoload.php';

$consumer	=	$_REQUEST['consumer_id'];

$callback	=	$_REQUEST['callback_url'];

session_id('BookAppOAuth');

session_start();

$consumerKey	=	$_SESSION['oauth_consumer_key'];

$consumerSecret	=	$_SESSION['oauth_consumer_secret'];

$magentoBaseUrl	=	rtrim($_SESSION['store_base_url'],	'/');

$oauthVerifier	=	$_SESSION['oauth_verifier'];

define('MAGENTO_BASE_URL',	$magentoBaseUrl);

$credentials	=	new	\OAuth\Common\Consumer\Credentials($consumerKey,	

$consumerSecret,	$magentoBaseUrl);

$oAuthClient	=	new	BookAppOauthClient($credentials);

$requestToken	=	$oAuthClient->requestRequestToken();

$accessToken	=	$oAuthClient->requestAccessToken(

				$requestToken->getRequestToken(),

				$oauthVerifier,

				$requestToken->getRequestTokenSecret()

);

header('Location:	'.	$callback);

To	keep	thing	simple,	we	have	no	real	user	login	check	here.	We	might	have	added	one
above	the	OAuth-related	calls,	and	then	authenticate	the	user	against	some	username	and
password	before	allowing	it	to	use	OAuth.	However,	for	simplicity	reasons	we	omitted
this	part	from	our	sample	OAuth	client	app.

Within	the	check-login.php	file,	we	can	see	that	based	on	the	previously	stored	session
parameters	we	perform	the	following:

Instantiate	the	\OAuth\Common\Consumer\Credentials	object	passing	it	the

oauth_consumer_key,	oauth_consumer_secret,	store_base_url	stored	in	the
session
Instantiate	the	BookAppOauthClient	object	passing	its	constructor	the	entire
credentials	object
Use	the	OauthClient	object	to	get	the	request	token
Use	the	request	token	to	get	a	long-lived	access	token

If	everything	executes	successfully,	the	popup	window	closes	and	we	get	redirected	back
to	the	integrations	listing.	The	difference	now	is	that	looking	at	the	grid,	we	have	an
Active	status	and	next	to	it	we	have	a	Reauthorize	link,	as	shown	in	the	following
screenshot:

What	we	are	really	after	at	this	point	are	Access	Token	and	Access	Token	Secret.	We	can
see	those	if	we	edit	the	External	Book	App	integration.	These	values	should	now	be
present	on	the	Integration	Details	tab	as	shown	in	the	following	screenshot:

Access	Token	is	the	key	to	all	of	our	further	API	calls,	and	with	it	we	successfully	finish
our	authentication	bit	of	OAuth-based	authentication.

OAuth-based	Web	API	calls
Once	we	have	obtained	OAuth	access	token,	from	the	preceding	steps,	we	can	start
making	Web	API	calls	to	other	methods.	Even	though	the	Web	API	coverage	is	the	same
for	both	REST	and	SOAP,	there	is	a	significant	difference	when	making	method	calls.

For	the	purpose	of	giving	a	more	robust	example,	we	will	be	targeting	the	customer	group
save	method,	(partially)	defined	in	the	vendor/magento/module-
customer/etc/webapi.xml	file	as	follows:

<route	url="/V1/customerGroups"	method="POST">

				<service	class="Magento\Customer\Api\GroupRepositoryInterface"	

method="save"/>

				<resources>

								<resource	ref="Magento_Customer::group"/>

				</resources>

</route>

To	use	the	access	token	to	make	Web	API	calls,	like	POST	/V1/customerGroups,	we	need
to	include	these	request	parameters	in	the	authorization	request	header	in	the	call:

oauth_consumer_key,	available	from	the	Magento	admin	area,	under	the	integration
edit	screen.
oauth_nonce,	random	value,	uniquely	generated	by	the	application	for	each	request.
oauth_signature_method,	name	of	the	signature	method	used	to	sign	the	request.
Valid	values	are:	HMAC-SHA1,	RSA-SHA1,	and	PLAINTEXT.
Even	though	the	Outh	protocol	supports	PLAINTEXT,	Magento	does	not.	We	will	be
using	HMAC-SHA1.
oauth_timestamp,	integer	value,	Unix-like	timestamp.
oauth_token,	available	from	the	Magento	admin	area,	under	the	integration	edit
screen.
oauth_version,	Magento	supports	Oauth	1.0a,	thus	we	use	1.0.
oauth_signature,	generated	signature	value,	omitted	from	the	signature	generation
process.

To	generate	an	OAuth	1.0a	HMAC-SHA1	signature	for	a	HTTP	request	takes	focused
effort,	if	done	manually.

We	need	to	determine	the	HTTP	method	and	URL	of	the	request,	which	equals	to	POST
http://magento2-merchant.loc/rest/V1/customerGroups.	It	is	important	to	use	the
correct	protocol	here,	so	make	sure	that	the	https://	or	http://	portion	of	the	URL
matches	the	actual	request	sent	to	the	API.

We	then	gather	all	of	the	parameters	included	in	the	request.	There	are	two	such	locations
for	these	additional	parameters:	the	URL	(as	part	of	the	query	string)	and	the	request	body.

In	the	HTTP	request,	the	parameters	are	URL	encoded,	but	we	need	to	collect	the	raw
values.	In	addition	to	the	request	parameters,	every	oauth_*	parameter	needs	to	be
included	in	the	signature,	except	the	oauth_signature	itself.

The	parameters	are	normalized	into	a	single	string	as	follows:

Parameters	are	sorted	by	name,	using	lexicographical	byte	value	ordering.	If	two	or
more	parameters	share	the	same	name,	they	are	sorted	by	their	value.
Parameters	are	concatenated	in	their	sorted	order	into	a	single	string.	For	each
parameter,	the	name	is	separated	from	the	corresponding	value	by	an	=	character
(ASCII	code	61),	even	if	the	value	is	empty.	Each	name-value	pair	is	separated	by	an
&	character	(ASCII	code	38).

Further,	we	define	the	signing	key	as	a	value	of	{Consumer	Key}+{&}+{Access	Token
Secret}.

Once	we	apply	the	string	normalization	rules	to	parameters	and	determine	the	signing	key,
we	call	hash_hmac('sha1',	$data,	{Signing	Key},	true)	to	get	the	final
oauth_signature	value.

This	should	get	us	the	oauth_signature	as	a	random	28-characters-long	string,	similar	to
this	one	–	Pi/mGfA0SOlIxO9W30sEch6bjGE=.

Understanding	how	to	generate	the	signature	string	is	important,	but	getting	it	right	every
time	is	tedious	and	time	consuming.	We	can	help	ourselves	by	instantiating	the	objects	of
the	built-in	\OAuth\Common\Consumer\Credentials	and
\OAuth\OAuth1\Signature\Signature	classes,	like	(partially)	shown	as	follows:

$credentials	=	new	\OAuth\Common\Consumer\Credentials($consumerKey,	

$consumerSecret,	$magentoBaseUrl);

$signature	=	new	\OAuth\OAuth1\Signature\Signature($credentials);

$signature->setTokenSecret($accessTokenSecret);

$signature->setHashingAlgorithm('HMAC-SHA1');

echo	$signature->getSignature($uri,	array(

				'oauth_consumer_key'	=>	$consumerKey,

				'oauth_nonce'	=>	'per-request-unique-token',

				'oauth_signature_method'	=>	'HMAC-SHA1',

				'oauth_timestamp'	=>	'1437319569',

				'oauth_token'	=>	$accessToken,

				'oauth_version'	=>	'1.0',

),	'POST');

Now	that	we	have	the	oauth_signature	value,	we	are	ready	to	do	our	console	curl	REST
example.	It	comes	down	to	running	the	following	on	a	console:

curl	-X	POST	http://magento2.ce/rest/V1/customerGroups

-H	'Content-Type:	application/json'

-H	'Authorization:	OAuth

oauth_consumer_key="vw2xi6kaq0o3f7ay60owdpg2f8nt66g6",

oauth_nonce="per-request-token-by-app-1",

oauth_signature_method="HMAC-SHA1",

oauth_timestamp="1437319569",

oauth_token="cney3fmk9p5282bm1khb83q846l7dner",

oauth_version="1.0",

oauth_signature="Pi/mGfA0SOlIxO9W30sEch6bjGE="'

-d	'{"group":	{"code":	"The	Book	Writer",	"tax_class_id":	"3"}}'

Note	that	the	preceding	command	is	merely	visually	broken	into	new	lines.	It	should	all	be
single	line	on	a	console.	Once	executed,	the	API	call	will	create	a	new	customer	group
called	The	Book	Writer.	A	logical	question	one	might	ask	looking	at	the	curl	command
is	how	come	we	did	not	normalize	the	POST	data	passed	as	JSON	via	the	–d	flag	switch.
This	is	because	parameters	in	the	HTTP	POST	request	body	are	only	taken	into
consideration	for	signature	generation	if	content-type	is	application/x-www-form-
urlencoded.

The	console	cURL	SOAP	requests	do	not	require	usage	of	the	OAuth	signature.	We	can
execute	a	SOAP	request	passing	Authorization:	Bearer	{	Access	Token	value	}	into
the	request	header,	like	shown	in	the	following	example:

curl	-X	POST	http://magento2.ce/index.php/soap/default?services=	

customerGroupRepositoryV1	-H	'Content-Type:	application/soap+xml;	

charset=utf-8;	action="customerGroupRepositoryV1Save"'	-H	'Authorization:	

Bearer	cney3fmk9p5282bm1khb83q846l7dner'	-d	@request.xml

Where	request.xml	contains	content	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<env:Envelope	xmlns:env="http://www.w3.org/2003/05/soap-envelope"	

xmlns:ns1="http://magento2.ce/index.php/soap/default?	

services=customerGroupRepositoryV1">

				<env:Body>

								<ns1:customerGroupRepositoryV1SaveRequest>

												<group>

																<code>The	Book	Writer</code>

																<taxClassId>3</taxClassId>

												</group>

								</ns1:customerGroupRepositoryV1SaveRequest>

				</env:Body>

</env:Envelope>

The	following	code	example	demonstrates	the	PHP	cURL	SOAP-like	request	for	the
customer	group	save	method	call:

$request	=	new	SoapClient(

				'http://magento2.ce/index.php/soap/?wsdl&services=	

customerGroupRepositoryV1',

				array(

								'soap_version'	=>	SOAP_1_2,

								'stream_context'	=>	stream_context_create(array(

												'http'	=>	array(

																'header'	=>	'Authorization:	Bearer	

cney3fmk9p5282bm1khb83q846l7dner')

)

)

)

);

$response	=	$request->customerGroupRepositoryV1Save(array(

				'group'	=>	array(

								'code'	=>	'The	Book	Writer',

								'taxClassId'	=>	3

)

));

Notice	how	the	method	name	customerGroupRepositoryV1Save	actually	comprises
service	name	customerGroupRepositoryV1,	plus	the	Save	name	of	the	actual	method
within	the	service.

We	can	get	a	list	of	all	services	defined	by	opening	a	URL	like
http://magento2.ce/soap/default?wsdl_list	in	the	browser	(depending	on	our
Magento	installation).

Hands-on	with	session-based
authentication
Session-based	authentication	is	the	third	and	most	simple	type	of	authentication	in
Magento.	We	do	not	have	any	complexities	of	token-passing	here.	As	the	customer,	we	log
in	to	the	Magento	storefront	with	our	customer	credentials.	As	an	admin,	we	log	in	to	the
Magento	admin	with	our	admin	credentials.	Magento	uses	a	cookie	named	PHPSESSID	to
track	the	session	where	our	login	state	is	stored.	The	Web	API	framework	uses	our	logged-
in	session	information	to	verify	our	identity	and	authorize	access	to	the	requested
resource.

Customers	can	access	resources	that	are	configured	with	anonymous	or	self-permission	in
the	webapi.xml	configuration	file,	like	GET	/rest/V1/customers/me.

If	we	try	to	open	the	http://magento2.ce/rest/V1/customers/me	URL	while	in	the
browser,	but	not	logged	in	as	the	customer,	we	would	get	a	response	as	follows:

<response>

				<message>Consumer	is	not	authorized	to	access	%resources</message>

				<parameters>

								<resources>self</resources>

				</parameters>

</response>

If	we	log	in	as	the	customer	and	then	try	to	open	that	same	URL,	we	would	get	a	response
as	follows:

<response>

				<id>2</id>

				<group_id>1</group_id>

				<created_at>2015-11-22	14:15:33</created_at>

				<created_in>Default	Store	View</created_in>

				<email>john@change.me</email>

				<firstname>John</firstname>

				<lastname>Doe</lastname>

				<store_id>1</store_id>

				<website_id>1</website_id>

				<addresses/>

				<disable_auto_group_change>0</disable_auto_group_change>

</response>

Admin	users	can	access	resources	that	are	assigned	to	their	Magento	admin	profile.

Creating	custom	Web	APIs
Magento	comes	with	a	solid	number	of	API	methods	that	we	can	call.	However,
sometimes	this	is	not	enough,	as	our	business	needs	dictate	additional	logic,	and	we	need
to	be	able	to	add	our	own	methods	to	the	Web	API.

The	best	part	of	creating	our	own	API’s	is	that	we	do	not	have	to	be	concerned	about
making	them	REST	or	SOAP.	Magento	abstracts	this	so	that	our	API	methods	are
automatically	available	for	REST	and	for	SOAP	calls.

Adding	new	API’s	conceptually	evolves	around	two	things:	defining	business	logic
through	various	classes,	and	exposing	it	via	the	webapi.xml	file.	However,	as	we	will	soon
see,	there	is	a	lot	of	boilerplate	to	it.

Let’s	create	a	miniature	module	called	Foggyline_Slider,	on	which	we	will	demonstrate
create	(POST),	update	(PUT),	delete	(DELETE),	and	list	(GET)	method	calls.

Create	a	module	registration	file,	app/code/Foggyline/Slider/registration.php,	with
content	(partial)	as	follows:

\Magento\Framework\Component\ComponentRegistrar::register(

				\Magento\Framework\Component\ComponentRegistrar::MODULE,

				'Foggyline_Slider',

				__DIR__

);

Create	a	module	configuration	file,	app/code/Foggyline/Slider/etc/module.xml,	with
content	as	follows:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module	

/etc/module.xsd">

				<module	name="Foggyline_Slider"	setup_version="1.0.0"/>

</config>

Create	an	install	script	where	our	future	models	will	persist	module	data.	We	do	so	by
creating	the	app/code/Foggyline/Slider/Setup/InstallSchema.php	file	with	content
(partial)	as	follows:

namespace	Foggyline\Slider\Setup;

use	Magento\Framework\Setup\InstallSchemaInterface;

use	Magento\Framework\Setup\ModuleContextInterface;

use	Magento\Framework\Setup\SchemaSetupInterface;

class	InstallSchema	implements	InstallSchemaInterface

{

				public	function	install(SchemaSetupInterface	$setup,	

ModuleContextInterface	$context)

				{

								$installer	=	$setup;

								$installer->startSetup();

								/**

									*	Create	table	'foggyline_slider_slide'

									*/

								$table	=	$installer->getConnection()

												->newTable($installer-	>getTable('foggyline_slider_slide'))

												->addColumn(

																'slide_id',

																\Magento\Framework\DB\Ddl\Table::TYPE_INTEGER,

																null,

																['identity'	=>	true,	'unsigned'	=>	true,	'nullable'	=>	

false,	'primary'	=>	true],

																'Slide	Id'

)

												->addColumn(

																'title',

																\Magento\Framework\DB\Ddl\Table::TYPE_TEXT,

																200,

																[],

																'Title'

)

												->setComment('Foggyline	Slider	Slide');

								$installer->getConnection()->createTable($table);

								...

								$installer->endSetup();

				}

}

Now	we	specify	the	ACL	for	our	resources.	Our	resources	are	going	to	be	CRUD	actions
we	do	on	our	module	entities.	We	will	structure	our	module	in	a	way	that	slide	and	image
are	separate	entities,	where	one	slide	can	have	multiple	image	entities	linked	to	it.	Thus,
we	would	like	to	be	able	to	control	access	to	save	and	delete	actions	separately	for	each
entity.	We	do	so	by	defining	the	app/code/Foggyline/Slider/etc/acl.xml	file	as
follows:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Acl/etc/	acl.xsd">

				<acl>

								<resources>

												<resource	id="Magento_Backend::admin">

																<resource	id="Magento_Backend::content">

																				<resource	id=	"Magento_Backend::content_elements">

																								<resource	id="Foggyline_Slider::slider"	

title="Slider"	sortOrder="10">

																												<resource	id="Foggyline_Slider::slide"	

title="Slider	Slide"	sortOrder="10">

																																<resource	id=	

"Foggyline_Slider::slide_save"	title="Save	Slide"	sortOrder="10"	/>

																																<resource	id="Foggyline_Slider::	

slide_delete"	title="Delete	Slide"	sortOrder="20"	/>

																												</resource>

																												<resource	id="Foggyline_Slider::image"	

title="Slider	Image"	sortOrder="10">

																																<resource	id=	

"Foggyline_Slider::image_save"	title="Save	Image"	sortOrder="10"	/>

																																<resource	id=	

"Foggyline_Slider::image_delete"	title="Delete	Image"	sortOrder="20"	/>

																												</resource>

																								</resource>

																				</resource>

																</resource>

												</resource>

								</resources>

				</acl>

</config>

Now	that	the	ACL	has	been	set,	we	define	our	Web	API	resources	within	the
app/code/Foggyline/Slider/etc/webapi.xml	file	(partial)	as	follows:

<routes	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation=	

"urn:magento:module:Magento_Webapi:etc/webapi.xsd">

				<route	url="/V1/foggylineSliderSlide/:slideId"	method="GET">

								<service	class="Foggyline\Slider\Api\	SlideRepositoryInterface"	

method="getById"	/>

								<resources>

												<resource	ref="Foggyline_Slider::slide"	/>

								</resources>

				</route>

				<route	url="/V1/foggylineSliderSlide/search"	method="GET">

								<service	class="Foggyline\Slider\Api\	SlideRepositoryInterface"	

method="getList"	/>

								<resources>

												<resource	ref="anonymous"	/>

								</resources>

				</route>

				<route	url="/V1/foggylineSliderSlide"	method="POST">

								<service	class="Foggyline\Slider\Api\	SlideRepositoryInterface"	

method="save"	/>

								<resources>

												<resource	ref="Foggyline_Slider::slide_save"	/>

								</resources>

				</route>

				<route	url="/V1/foggylineSliderSlide/:id"	method="PUT">

								<service	class="Foggyline\Slider\Api\	SlideRepositoryInterface"	

method="save"	/>

								<resources>

												<resource	ref="Foggyline_Slider::slide_save"	/>

								</resources>

				</route>

				<route	url="/V1/foggylineSliderSlide/:slideId"	method="DELETE">

								<service	class="Foggyline\Slider\Api\	SlideRepositoryInterface"	

method="deleteById"	/>

								<resources>

												<resource	ref="Foggyline_Slider::slide_delete"	/>

								</resources>

				</route>

				<route	url="/V1/foggylineSliderImage/:imageId"	method="GET">

								<service	class="Foggyline\Slider\Api\	ImageRepositoryInterface"	

method="getById"	/>

								<resources>

												<resource	ref="Foggyline_Slider::image"	/>

								</resources>

				</route>

				<route	url="/V1/foggylineSliderImage/search"	method="GET">

								<service	class="Foggyline\Slider\Api\	ImageRepositoryInterface"	

method="getList"	/>

								<resources>

												<resource	ref="Foggyline_Slider::image"	/>

								</resources>

				</route>

				<route	url="/V1/foggylineSliderImage"	method="POST">

								<service	class="Foggyline\Slider\Api\	ImageRepositoryInterface"	

method="save"	/>

								<resources>

												<resource	ref="Foggyline_Slider::image_save"	/>

								</resources>

				</route>

				<route	url="/V1/foggylineSliderImage/:id"	method="PUT">

								<service	class="Foggyline\Slider\Api\	ImageRepositoryInterface"	

method="save"	/>

								<resources>

												<resource	ref="Foggyline_Slider::image_save"	/>

								</resources>

				</route>

				<route	url="/V1/foggylineSliderImage/:imageId"	method="DELETE">

								<service	class="Foggyline\Slider\Api\	ImageRepositoryInterface"	

method="deleteById"	/>

								<resources>

												<resource	ref="Foggyline_Slider::image_delete"	/>

								</resources>

				</route>

</routes>

Notice	how	each	of	those	service	class	attributes	point	to	the	interface,	not	the	class.	This
is	the	way	we	should	build	our	exposable	services,	always	having	an	interface	definition
behind	them.	As	we	will	soon	see,	using	di.xml,	this	does	not	mean	Magento	will	try	to
create	objects	from	these	interfaces	directly.

We	now	create	the	app/code/Foggyline/Slider/etc/di.xml	file	with	content	(partial)	as
follows:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation=	

"urn:magento:framework:ObjectManager/etc/config.xsd">

				<preference	for="Foggyline\Slider\Api\Data\SlideInterface"	

type="Foggyline\Slider\Model\Slide"/>

				<preference	for="Foggyline\Slider\Api\	SlideRepositoryInterface"	type=	

"Foggyline\Slider\Model\SlideRepository"/>

				...

</config>

What	is	happening	here	is	that	we	are	telling	Magento	something	like,	“hey,	whenever	you
need	to	pass	around	an	instance	that	conforms	to	the

Foggyline\Slider\Api\Data\SlideInterface	interface,	preferably	use	the
Foggyline\Slider\Model\Slide	class	for	it.”

At	this	point,	we	still	do	not	have	any	of	those	interfaces	or	model	classes	actually	created.
When	creating	APIs,	we	should	first	start	by	defining	interfaces,	and	then	our	models
should	extend	from	those	interfaces.

Interface	Foggyline\Slider\Api\Data\SlideInterface	is	defined	within	the
app/code/Foggyline/Slider/Api/Data/SlideInterface.php	file	(partial)	as	follows:

namespace	Foggyline\Slider\Api\Data;

/**

*	@api

*/

interface	SlideInterface

{

				const	PROPERTY_ID	=	'slide_id';

				const	PROPERTY_SLIDE_ID	=	'slide_id';

				const	PROPERTY_TITLE	=	'title';

				/**

				*	Get	Slide	entity	'slide_id'	property	value

				*	@return	int|null

				*/

				public	function	getId();

				/**

				*	Set	Slide	entity	'slide_id'	property	value

				*	@param	int	$id

				*	@return	$this

				*/

				public	function	setId($id);

				/**

				*	Get	Slide	entity	'slide_id'	property	value

				*	@return	int|null

				*/

				public	function	getSlideId();

				/**

				*	Set	Slide	entity	'slide_id'	property	value

				*	@param	int	$slideId

				*	@return	$this

				*/

				public	function	setSlideId($slideId);

				/**

				*	Get	Slide	entity	'title'	property	value

				*	@return	string|null

				*/

				public	function	getTitle();

				/**

				*	Set	Slide	entity	'title'	property	value

				*	@param	string	$title

				*	@return	$this

				*/

				public	function	setTitle($title);

}

We	are	going	for	ultimate	simplification	here.	Our	Slide	entity	only	really	has	ID	and	title
values.	The	id	and	slide_id	point	to	the	same	field	in	the	database	and	the
implementation	of	their	getters	and	setters	should	yield	the	same	results.

Although	API/Data/*.php	interfaces	become	blueprint	requirements	for	our	data	models,
we	also	have	Api/*RepositoryInterface.php	files.	The	idea	here	is	to	extract	create,
update,	delete,	search,	and	similar	data-handling	logic	away	from	the	data	model	class	into
its	own	class.	This	way,	our	model	classes	become	more	pure	data	and	business	logic
classes	while	the	rest	of	persistence	and	search-related	logic	moves	into	these	repository
classes.

Our	Slide	Repository	Interface	is	defined	within	the
app/code/Foggyline/Slider/Api/SlideRepositoryInterface.php	file	as	follows:

namespace	Foggyline\Slider\Api;

/**

*	@api

*/

interface	SlideRepositoryInterface

{

				/**

				*	Retrieve	slide	entity.

				*	@param	int	$slideId

				*	@return	\Foggyline\Slider\Api\Data\SlideInterface

				*	@throws	\Magento\Framework\Exception\NoSuchEntityException	If	slide	

with	the	specified	ID	does	not	exist.

				*	@throws	\Magento\Framework\Exception\LocalizedException

				*/

				public	function	getById($slideId);

				/**

				*	Save	slide.

				*	@param	\Foggyline\Slider\Api\Data\SlideInterface	$slide

				*	@return	\Foggyline\Slider\Api\Data\SlideInterface

				*	@throws	\Magento\Framework\Exception\LocalizedException

				*/

				public	function	save(\Foggyline\Slider\Api\Data\SlideInterface	$slide);

				/**

				*	Retrieve	slides	matching	the	specified	criteria.

				*	@param	\Magento\Framework\Api\SearchCriteriaInterface	$searchCriteria

				*	@return	\Magento\Framework\Api\SearchResultsInterface

				*	@throws	\Magento\Framework\Exception\LocalizedException

				*/

				public	function	getList(\Magento\Framework\Api\SearchCriteriaInterface	

$searchCriteria);

				/**

				*	Delete	slide	by	ID.

				*	@param	int	$slideId

				*	@return	bool	true	on	success

				*	@throws	\Magento\Framework\Exception\NoSuchEntityException

				*	@throws	\Magento\Framework\Exception\LocalizedException

				*/

				public	function	deleteById($slideId);

}

With	interfaces	in	place,	we	can	move	on	to	model	class.	In	order	to	persist	and	fetch	data
in	a	database,	our	Slide	entity	really	needs	three	files	under	the	Model	directory.	These	are
called	data	model,	resource	class,	and	collection	class.

The	data	model	class	is	defined	under	the
app/code/Foggyline/Slider/Model/Slide.php	file	(partial)	as	follows:

namespace	Foggyline\Slider\Model;

class	Slide	extends	\Magento\Framework\Model\AbstractModel

				implements	\Foggyline\Slider\Api\Data\SlideInterface { 				/**
				*	Initialize	Foggyline	Slide	Model

				*

				*	@return	void

				*/

				protected	function	_construct()

				{

								/*	_init($resourceModel)	*/

								$this->_init	('Foggyline\Slider\Model\ResourceModel\Slide');

				}

				/**

				*	Get	Slide	entity	'slide_id'	property	value

				*

				*	@api

				*	@return	int|null

				*/

				public	function	getId()

				{

								return	$this->getData(self::PROPERTY_ID);

				}

				/**

				*	Set	Slide	entity	'slide_id'	property	value

				*

				*	@api

				*	@param	int	$id

				*	@return	$this

				*/

				public	function	setId($id)

				{

								$this->setData(self::PROPERTY_ID,	$id);

								return	$this;

				}

				/**

				*	Get	Slide	entity	'slide_id'	property	value

				*

				*	@api

				*	@return	int|null

				*/

				public	function	getSlideId()

				{

								return	$this->getData(self::PROPERTY_SLIDE_ID);

				}

				/**

				*	Set	Slide	entity	'slide_id'	property	value

				*

				*	@api

				*	@param	int	$slideId

				*	@return	$this

				*/

				public	function	setSlideId($slideId)

				{

								$this->setData(self::PROPERTY_SLIDE_ID,	$slideId);

								return	$this;

				}

				/**

				*	Get	Slide	entity	'title'	property	value

				*

				*	@api

				*	@return	string|null

				*/

				public	function	getTitle()

				{

								return	$this->getData(self::PROPERTY_TITLE);

				}

				/**

				*	Set	Slide	entity	'title'	property	value

				*

				*	@api

				*	@param	string	$title

				*	@return	$this

				*/

				public	function	setTitle($title)

				{

								$this->setData(self::PROPERTY_TITLE,	$title);

				}

}

Following	the	model	data	class	is	the	model	resource	class,	defined	in	the
app/code/Foggyline/Slider/Model/ResourceModel/Slide.php	file	(partial)	as	follows:

namespace	Foggyline\Slider\Model\ResourceModel;

/**

*	Foggyline	Slide	resource

*/

class	Slide	extends	\Magento\Framework\Model\ResourceModel\Db\AbstractDb

{

				/**

				*	Define	main	table

				*

				*	@return	void

				*/

				protected	function	_construct()

				{

								/*	_init($mainTable,	$idFieldName)	*/

								$this->_init('foggyline_slider_slide',	'slide_id');

				}

}

Finally,	the	third	bit	is	the	model	collection	class,	defined	in	the
app/code/Foggyline/Slider/Model/ResourceModel/Slide/Collection.php	file	as
follows:

namespace	Foggyline\Slider\Model\ResourceModel\Slide;

/**

*	Foggyline	slides	collection

*/

class	Collection	extends	

\Magento\Framework\Model\ResourceModel\Db\Collection\	AbstractCollection

{

				/**

				*	Define	resource	model	and	model

				*

				*	@return	void

				*/

				protected	function	_construct()

				{

								/*	_init($model,	$resourceModel)	*/

								$this->_init('Foggyline\Slider\Model\Slide',	

'Foggyline\Slider\Model\ResourceModel\Slide');

				}

}

If	we	were	to	manually	instantiate	the	model	data	class	now,	we	would	be	able	to	persist
the	data	in	the	database.	To	complete	the	di.xml	requirements,	we	still	lack	one	more	final
ingredient	–	the	Model/SlideRepository	class	file.

Let	us	go	and	create	the	app/code/Foggyline/Slider/Model/SlideRepository.php	file
with	content	(partial)	as	follows:

namespace	Foggyline\Slider\Model;

use	Magento\Framework\Api\DataObjectHelper;

use	Magento\Framework\Api\SearchCriteriaInterface;

use	Magento\Framework\Exception\CouldNotDeleteException;

use	Magento\Framework\Exception\CouldNotSaveException;

use	Magento\Framework\Exception\NoSuchEntityException;

use	Magento\Framework\Reflection\DataObjectProcessor;

class	SlideRepository	implements	

\Foggyline\Slider\Api\SlideRepositoryInterface

{

				/**

				*	@var	\Foggyline\Slider\Model\ResourceModel\Slide

				*/

				protected	$resource;

				/**

				*	@var	\Foggyline\Slider\Model\SlideFactory

				*/

				protected	$slideFactory;

				/**

				*	@var	\Foggyline\Slider\Model\ResourceModel\Slide\	CollectionFactory

				*/

				protected	$slideCollectionFactory;

				/**

				*	@var	\Magento\Framework\Api\SearchResultsInterface

				*/

				protected	$searchResultsFactory;

				/**

				*	@var	\Magento\Framework\Api\DataObjectHelper

				*/

				protected	$dataObjectHelper;

				/**

				*	@var	\Magento\Framework\Reflection\DataObjectProcessor

				*/

				protected	$dataObjectProcessor;

				/**

				*	@var	\Foggyline\Slider\Api\Data\SlideInterfaceFactory

				*/

				protected	$dataSlideFactory;

				/**

				*	@param	ResourceModel\Slide	$resource

				*	@param	SlideFactory	$slideFactory

				*	@param	ResourceModel\Slide\CollectionFactory	$slideCollectionFactory

				*	@param	\Magento\Framework\Api\SearchResultsInterface	

$searchResultsFactory

				*	@param	DataObjectHelper	$dataObjectHelper

				*	@param	DataObjectProcessor	$dataObjectProcessor

				*	@param	\Foggyline\Slider\Api\Data\SlideInterfaceFactory	

$dataSlideFactory

				*/

				public	function	__construct(

								\Foggyline\Slider\Model\ResourceModel\Slide	$resource,

								\Foggyline\Slider\Model\SlideFactory	$slideFactory,

								\Foggyline\Slider\Model\ResourceModel\Slide\	CollectionFactory	

$slideCollectionFactory,

								\Magento\Framework\Api\SearchResultsInterface	

$searchResultsFactory,

								\Magento\Framework\Api\DataObjectHelper	$dataObjectHelper,

								\Magento\Framework\Reflection\DataObjectProcessor	

$dataObjectProcessor,

								\Foggyline\Slider\Api\Data\SlideInterfaceFactory	$dataSlideFactory

)

				{

								$this->resource	=	$resource;

								$this->slideFactory	=	$slideFactory;

								$this->slideCollectionFactory	=	$slideCollectionFactory;

								$this->searchResultsFactory	=	$searchResultsFactory;

								$this->dataObjectHelper	=	$dataObjectHelper;

								$this->dataObjectProcessor	=	$dataObjectProcessor;

								$this->dataSlideFactory	=	$dataSlideFactory;

				}

				...

}

It	might	appear	that	there	is	a	lot	going	on	here,	but	really	we	are	just	passing	on	some
class	and	interface	names	to	the	constructor	in	order	to	instantiate	the	objects	we	will	use
across	individual	service	methods	defined	in	the	webapi.xml	file.

The	first	service	method	on	our	list	is	getById,	defined	within	SlideRepository.php	as
follows:

/**

*	Retrieve	slide	entity.

*

*	@api

*	@param	int	$slideId

*	@return	\Foggyline\Slider\Api\Data\SlideInterface

*	@throws	\Magento\Framework\Exception\NoSuchEntityException	If	slide	with	

the	specified	ID	does	not	exist.

*	@throws	\Magento\Framework\Exception\LocalizedException

*/

public	function	getById($slideId)

{

				$slide	=	$this->slideFactory->create();

				$this->resource->load($slide,	$slideId);

				if	(!$slide->getId())	{

								throw	new	NoSuchEntityException(__('Slide	with	id	%1	does	not	

exist.',	$slideId));

				}

				return	$slide;

}

Then	we	have	the	save	method,	defined	within	SlideRepository.php	as	follows:

/**

*	Save	slide.

*

*	@param	\Foggyline\Slider\Api\Data\SlideInterface	$slide

*	@return	\Foggyline\Slider\Api\Data\SlideInterface

*	@throws	\Magento\Framework\Exception\LocalizedException

*/

public	function	save(\Foggyline\Slider\Api\Data\SlideInterface	$slide)

{

				try	{

								$this->resource->save($slide);

				}	catch	(\Exception	$exception)	{

								throw	new	CouldNotSaveException(__($exception-	>getMessage()));

				}

				return	$slide;

}

The	save	method	addresses	both	POST	and	PUT	requests	defined	in	webapi.xml,	thus
effectively	handling	the	creation	of	new	slides	or	an	update	of	existing	ones.

Going	further,	we	have	the	getList	method,	defined	within	SlideRepository.php	as
follows:

/**

*	Retrieve	slides	matching	the	specified	criteria.

*

*	@param	\Magento\Framework\Api\SearchCriteriaInterface	$searchCriteria

*	@return	\Magento\Framework\Api\SearchResultsInterface

*	@throws	\Magento\Framework\Exception\LocalizedException

*/

public	function	getList(\Magento\Framework\Api\SearchCriteriaInterface	

$searchCriteria)

{

				$this->searchResultsFactory->setSearchCriteria	($searchCriteria);

				$collection	=	$this->slideCollectionFactory->create();

				foreach	($searchCriteria->getFilterGroups()	as	$filterGroup)	{ 								
foreach	($filterGroup->getFilters()	as	$filter)	{

												$condition	=	$filter->getConditionType()	?:	'eq';

												$collection->addFieldToFilter($filter->getField(),	[$condition	

=>	$filter->getValue()]);

								}

				}

				$this->searchResultsFactory->setTotalCount($collection->	getSize());

				$sortOrders	=	$searchCriteria->getSortOrders();

				if	($sortOrders)	{

								foreach	($sortOrders	as	$sortOrder)	{

												$collection->addOrder(

																$sortOrder->getField(),

																(strtoupper($sortOrder->getDirection())	===	'ASC')	?	'ASC'	

:	'DESC'

);

								}

				}

				$collection->setCurPage($searchCriteria->getCurrentPage());

				$collection->setPageSize($searchCriteria->getPageSize());

				$slides	=	[];

				/**	@var	\Foggyline\Slider\Model\Slide	$slideModel	*/

				foreach	($collection	as	$slideModel)	{

								$slideData	=	$this->dataSlideFactory->create();

								$this->dataObjectHelper->populateWithArray(

												$slideData,

												$slideModel->getData(),

												'\Foggyline\Slider\Api\Data\SlideInterface'

);

								$slides[]	=	$this->dataObjectProcessor->	buildOutputDataArray(

												$slideData,

												'\Foggyline\Slider\Api\Data\SlideInterface'

);

				}

				$this->searchResultsFactory->setItems($slides);

				return	$this->searchResultsFactory;

}

Finally,	we	have	the	deleteById	method,	defined	within	SlideRepository.php	as
follows:

/**

*	Delete	Slide

*

*	@param	\Foggyline\Slider\Api\Data\SlideInterface	$slide

*	@return	bool

*	@throws	CouldNotDeleteException

*/

public	function	delete(\Foggyline\Slider\Api\Data\SlideInterface	$slide)

{

				try	{

								$this->resource->delete($slide);

				}	catch	(\Exception	$exception)	{

								throw	new	CouldNotDeleteException(__($exception->	getMessage()));

				}

				return	true;

}

/**

*	Delete	slide	by	ID.

*

*	@param	int	$slideId

*	@return	bool	true	on	success

*	@throws	\Magento\Framework\Exception\NoSuchEntityException

*	@throws	\Magento\Framework\Exception\LocalizedException

*/

public	function	deleteById($slideId)

{

				return	$this->delete($this->getById($slideId));

}

Keep	in	mind	that	we	only	covered	the	Slide	entity	in	the	preceding	partial	code
examples,	which	is	enough	to	progress	further	with	API	call	examples.

API	call	examples
Since	all	of	our	defined	API’s	are	resource	protected,	we	first	need	to	authenticate	as	the
admin	user,	assuming	the	admin	user	has	access	to	all	our	custom	resources	that
encompass	the	ones	we	defined.	For	simplicity	sake,	we	will	use	the	token-based
authentication	method,	examples	of	which	are	given	previously	in	this	chapter.	Once
authenticated,	we	should	have	a	32	random	characters	long	token	like
pk8h93nq9cevaw55bohkjbp0o7kpl4d3,	for	example.

Once	the	token	key	has	been	obtained,	we	will	test	the	following	API	calls	using	console
cURL,	PHP	cURL,	PHP	SoapClient,	and	console	SOAP	style	cURL	examples:

GET	/V1/foggylineSliderSlide/:slideId,	calls	the	getById	service	method,
requires	the	Foggyline_Slider::slide	resource
GET	/V1/foggylineSliderSlide/search,	calls	the	getList	service	method,	requires
the	Foggyline_Slider::slide	resource
POST	/V1/foggylineSliderSlide,	calls	the	save	service	method,	requires	the
Foggyline_Slider::slide_save	resource
PUT	/V1/foggylineSliderSlide/:id,	calls	the	save	service	method,	requires	the
Foggyline_Slider::slide_save	resource
DELETE	/V1/foggylineSliderSlide/:slideId,	calls	the	deleteById	service
method,	requires	the	Foggyline_Slider::slide_delete	resource

The	getById	service	method	call	examples
The	console	cURL	style	for	executing	GET	/V1/foggylineSliderSlide/:slideId	is	done
as	follows:

curl	-X	GET	-H	'Content-type:	application/json'	\

-H	'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'	\

http://magento2.ce/rest/V1/foggylineSliderSlide/1

The	PHP	cURL	style	for	executing	GET	/V1/foggylineSliderSlide/:slideId	is	done	as
follows:

$ch	=	curl_init('http://magento2.ce/rest/V1/foggylineSliderSlide/1');

curl_setopt($ch,	CURLOPT_CUSTOMREQUEST,	'GET');

curl_setopt($ch,	CURLOPT_RETURNTRANSFER,	true);

curl_setopt($ch,	CURLOPT_HTTPHEADER,	array(

				'Content-Type:	application/json',

				'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'

));

$result	=	curl_exec($ch);

The	response	for	console	and	PHP	cURL	style	should	be	a	JSON	string	similar	to	the
following	one:

{"slide_id":1,"title":"Awesome	stuff	#1"}

The	PHP	SoapClient	style	for	executing	GET	/V1/foggylineSliderSlide/:slideId	is
done	as	follows:

$request	=	new	SoapClient(

				'http://magento2.ce/index.php/soap/?	

wsdl&services=foggylineSliderSlideRepositoryV1',

				array(

								'soap_version'	=>	SOAP_1_2,

								'stream_context'	=>	stream_context_create(array(

																'http'	=>	array(

																				'header'	=>	'Authorization:	Bearer	

pk8h93nq9cevaw55bohkjbp0o7kpl4d3')

)

)

)

);

$response	=	$request->	

foggylineSliderSlideRepositoryV1GetById(array('slideId'=>1));

The	response	for	PHP	SoapClient	style	should	be	the	stdClass	PHP	object	as	follows:

object(stdClass)#2	(1)	{

				["result"]=>

				object(stdClass)#3	(2)	{

				["slideId"]=>

				int(1)

				["title"]=>

				string(16)	"Awesome	stuff	#1"

				}

}

The	console	SOAP	style	cURL	for	executing	GET	/V1/foggylineSliderSlide/:slideId
is	done	as	follows:

curl	-X	POST	\

-H	'Content-Type:	application/soap+xml;	charset=utf-8;	

action="foggylineSliderSlideRepositoryV1GetById"'	\

-H	'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'	\

-d	@request.xml	\

http://magento2.ce/index.php/soap/default?services=foggyline	

SliderSlideRepositoryV1

Where	request.xml	has	content	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<env:Envelope	xmlns:env="http://www.w3.org/2003/05/soap-envelope"	

xmlns:ns1="http://magento2.ce/index.php/soap/default?	

services=foggylineSliderSlideRepositoryV1">

				<env:Body>

								<ns1:foggylineSliderSlideRepositoryV1GetByIdRequest>

												<slideId>1</slideId>

								</ns1:foggylineSliderSlideRepositoryV1GetByIdRequest>

				</env:Body>

</env:Envelope>

Notice	how	we	did	not	really	do	GET,	rather	a	POST	type	of	request.	Also,	the	URL	to
which	we	are	pointing	our	POST	is	not	really	the	same	as	with	previous	requests.	This	is
because	Magento	SOAP	requests	are	always	POST	(or	PUT)	type,	as	the	data	is	submitted	in
XML	format.	XML	format	in	return	specifies	the	service,	and	the	request	header	action

specifies	the	method	to	be	called	on	the	service.

The	response	for	console	SOAP	style	cURL	should	be	an	XML	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<env:Envelope	xmlns:env="http://www.w3.org/2003/05/soap-envelope"	

xmlns:ns1="http://magento2.ce/index.php/soap/default?	

services=foggylineSliderSlideRepositoryV1">

				<env:Body>

								<ns1:foggylineSliderSlideRepositoryV1GetByIdResponse>

												<result>

																<slideId>1</slideId>

																<title>Awesome	stuff	#1</title>

												</result>

								</ns1:foggylineSliderSlideRepositoryV1GetByIdResponse>

				</env:Body>

</env:Envelope>

The	getList	service	method	call	examples
The	console	cURL	style	for	executing	GET	/V1/foggylineSliderSlide/search	is	done
as	follows:

curl	-X	GET	-H	'Content-type:	application/json'	\

-H	'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'	\

"http://magento2.ce/rest/V1/foggylineSliderSlide/search?

search_criteria%5Bfilter_groups%5D%5B0%5D%5Bfilters%5D%5B0%5D%5Bfield%5D=ti

tle&search_criteria%5Bfilter_groups%5D%5B0%5D%5Bfilters%5D%5B0%5D%5Bvalue%5

D=%25some%25&search_criteria%5Bfilter_groups%5D%5B0%5D%5Bfilters%5D%5B0%5D%

5Bcondition_type%5D=like&search_criteria%5Bcurrent_page%5D=1&search_criteri

a%5Bpage_size%5D=10&search_criteria%5Bsort_orders%5D%5B0%5D%5Bfield%5D=slid

e_id&search_criteria%5Bsort_orders%5D%5B0%5D%5Bdirection%5D=ASC"

The	PHP	cURL	style	for	executing	GET	/V1/foggylineSliderSlide/search	is	done	as
follows:

$searchCriteriaJSON	=	'{

		"search_criteria":	{

				"filter_groups":	[

						{

								"filters":	[

										{

												"field":	"title",

												"value":	"%some%",

												"condition_type":	"like"

										}

]

						}

],

				"current_page":	1,

				"page_size":	10,

				"sort_orders":	[

						{

								"field":	"slide_id",

								"direction":	"ASC"

						}

]

		}

}';

$searchCriteriaQueryString	=	

http_build_query(json_decode($searchCriteriaJSON));

$ch	=	curl_init('http://magento2.ce/rest/V1/foggylineSliderSlide/	search?'	

.	$searchCriteriaQueryString);

		curl_setopt($ch,	CURLOPT_CUSTOMREQUEST,	'GET');

		curl_setopt($ch,	CURLOPT_RETURNTRANSFER,	true);

		curl_setopt($ch,	CURLOPT_HTTPHEADER,	array(

						'Content-Type:	application/json',

						'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'

));

$result	=	curl_exec($ch);

The	response	for	console	and	PHP	cURL	style	should	be	a	JSON	string	similar	to	the
following	one:

{"items":[{"slide_id":2,"title":"Just	some	other	slider"},

{"slide_id":1,"title":"Awesome	stuff	#1"}],	"search_criteria":

{"filter_groups":[{"filters":	

[{"field":"title","value":"%some%","condition_type":"like"}]}],	

"sort_orders":[{"field":"slide_id","direction":"-	

1"}],"page_size":10,"current_page":1},"total_count":2}

The	PHP	SoapClient	style	for	executing	GET	/V1/foggylineSliderSlide/search	is	done
as	follows:

$searchCriteria	=	[

				'searchCriteria'	=>

								[

												'filterGroups'	=>

																[

																				[

																								'filters'	=>

																												[

																																[

																																				'field'	=>	'title',

																																				'value'	=>	'%some%',

																																				'condition_type'	=>	'like',

],

],

],

],

												'currentPage'	=>	1,

												'pageSize'	=>	10,

												'sort_orders'	=>

																[

																				[

																								'field'	=>	'slide_id',

																								'direction'	=>'ASC',

],

],

],

];

$request	=	new	SoapClient(

				'http://magento2.ce/index.php/soap/?wsdl&services=	

foggylineSliderSlideRepositoryV1',

				array(

								'soap_version'	=>	SOAP_1_2,

								'trace'=>1,

								'stream_context'	=>	stream_context_create(array(

																'http'	=>	array(

																				'header'	=>	'Authorization:	Bearer	

pk8h93nq9cevaw55bohkjbp0o7kpl4d3')

)

)

)

);

$response	=	$request->	

foggylineSliderSlideRepositoryV1GetList($searchCriteria);

The	response	for	PHP	SoapClient	style	should	be	the	stdClass	PHP	object	as	follows:

object(stdClass)#2	(1)	{

		["result"]=>

		object(stdClass)#3	(3)	{

				["items"]=>

				object(stdClass)#4	(0)	{

				}

				["searchCriteria"]=>

				object(stdClass)#5	(3)	{

						["filterGroups"]=>

						object(stdClass)#6	(1)	{

								["item"]=>

								object(stdClass)#7	(1)	{

										["filters"]=>

										object(stdClass)#8	(1)	{

												["item"]=>

												object(stdClass)#9	(2)	{

														["field"]=>

														string(5)	"title"

														["value"]=>

														string(6)	"%some%"

												}

										}

								}

						}

						["pageSize"]=>

						int(10)

						["currentPage"]=>

						int(1)

				}

				["totalCount"]=>

				int(0)

		}

}

The	console	SOAP	style	cURL	for	executing	GET	/V1/foggylineSliderSlide/search	is
done	as	follows:

curl	-X	POST	\

-H	'Content-Type:	application/soap+xml;	charset=utf-8;	

action="foggylineSliderSlideRepositoryV1GetList"'	\

-H	'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'	\

-d	@request.xml	\

http://magento2.ce/index.php/soap/default?services=foggyline	

SliderSlideRepositoryV1

Where	request.xml	has	content	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<env:Envelope	xmlns:env="http://www.w3.org/2003/05/soap-envelope"	

xmlns:ns1="http://magento2.ce/index.php/soap/default?	

services=foggylineSliderSlideRepositoryV1">

				<env:Body>

								<ns1:foggylineSliderSlideRepositoryV1GetListRequest>

												<searchCriteria>

																<filterGroups>

																				<item>

																								<filters>

																												<item>

																																<field>title</field>

																																<value>%some%</value>

																												</item>

																								</filters>

																				</item>

																</filterGroups>

																<pageSize>10</pageSize>

																<currentPage>1</currentPage>

												</searchCriteria>

								</ns1:foggylineSliderSlideRepositoryV1GetListRequest>

				</env:Body>

</env:Envelope>

Notice	we	did	not	really	do	GET,	rather	POST.	Also,	the	URL	to	which	we	are	pointing	our
POST	is	not	really	the	same	as	with	previous	requests.	This	is	because	Magento	SOAP
requests	are	always	POST	type,	as	the	data	is	submitted	in	XML	format.	XML	format	in
return	specifies	the	service,	and	the	request	header	action	specifies	the	method	to	be	called
on	the	service.

The	response	for	console	SOAP	style	cURL	should	be	an	XML	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<env:Envelope	xmlns:env="http://www.w3.org/2003/05/soap-envelope"	

xmlns:ns1="http://magento2.ce/index.php/soap/default?	

services=foggylineSliderSlideRepositoryV1">

				<env:Body>

								<ns1:foggylineSliderSlideRepositoryV1GetListResponse>

												<result>

																<items/>

																<searchCriteria>

																				<filterGroups>

																								<item>

																												<filters>

																																<item>

																																				<field>title</field>

																																				<value>%some%</value>

																																</item>

																												</filters>

																								</item>

																				</filterGroups>

																				<pageSize>10</pageSize>

																				<currentPage>1</currentPage>

																</searchCriteria>

																<totalCount>0</totalCount>

												</result>

								</ns1:foggylineSliderSlideRepositoryV1GetListResponse>

				</env:Body>

</env:Envelope>

The	save	(as	new)	service	method	call	examples
The	console	cURL	style	for	executing	POST	/V1/foggylineSliderSlide	is	done	as
follows:

curl	-X	POST	-H	'Content-type:	application/json'	\

-H	'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'	\

-d	'{"slide":	{"title":	"API	test"}}'	\

http://magento2.ce/rest/V1/foggylineSliderSlide/

The	PHP	cURL	style	for	executing	POST	/V1/foggylineSliderSlide	is	done	as	follows:

$slide	=	json_encode(['slide'=>['title'=>	'API	test']]);

$ch	=	curl_init('http://magento2.ce/rest/V1/foggylineSliderSlide');

		curl_setopt($ch,	CURLOPT_CUSTOMREQUEST,	'POST');

		curl_setopt($ch,	CURLOPT_POSTFIELDS,	$slide);

		curl_setopt($ch,	CURLOPT_RETURNTRANSFER,	true);

		curl_setopt($ch,	CURLOPT_HTTPHEADER,	array(

						'Content-Type:	application/json',

						'Content-Length:	'	.	strlen($slide),

						'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'

));

$result	=	curl_exec($ch);

The	response	for	console	and	PHP	cURL	style	should	be	a	JSON	string	similar	to	the
following	one:

{"slide_id":4,"title":"API	test"}

The	PHP	SoapClient	style	for	executing	POST	/V1/foggylineSliderSlide	is	done	as
follows:

$slide	=	['slide'=>['title'=>	'API	test']];

$request	=	new	SoapClient(

				'http://magento2.ce/index.php/soap/?wsdl&services=	

foggylineSliderSlideRepositoryV1',

				array(

								'soap_version'	=>	SOAP_1_2,

								'trace'=>1,

								'stream_context'	=>	stream_context_create(array(

																'http'	=>	array(

																				'header'	=>	'Authorization:	Bearer	

pk8h93nq9cevaw55bohkjbp0o7kpl4d3')

)

)

)

);

$response	=	$request->	foggylineSliderSlideRepositoryV1Save($slide);

The	response	for	PHP	SoapClient	style	should	be	the	stdClass	PHP	object	as	follows:

object(stdClass)#2	(1)	{

		["result"]=>

		object(stdClass)#3	(2)	{

				["slideId"]=>

				int(6)

				["title"]=>

				string(8)	"API	test"

		}

}

The	console	SOAP	style	cURL	for	executing	POST	/V1/foggylineSliderSlide	is	done	as
follows:

curl	-X	POST	\

-H	'Content-Type:	application/soap+xml;	charset=utf-8;	

action="foggylineSliderSlideRepositoryV1Save"'	\

-H	'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'	\

-d	@request.xml	\

http://magento2.ce/index.php/soap/default?services=foggyline	

SliderSlideRepositoryV1

Where	request.xml	has	content	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<env:Envelope	xmlns:env="http://www.w3.org/2003/05/soap-envelope"	

xmlns:ns1="http://magento2.ce/index.php/soap/default?	

services=foggylineSliderSlideRepositoryV1">

				<env:Body>

								<ns1:foggylineSliderSlideRepositoryV1SaveRequest>

												<slide>

																<title>API	test</title>

												</slide>

								</ns1:foggylineSliderSlideRepositoryV1SaveRequest>

				</env:Body>

</env:Envelope>

The	response	for	console	SOAP	style	cURL	should	be	an	XML	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<env:Envelope	xmlns:env="http://www.w3.org/2003/05/soap-envelope"	

xmlns:ns1="http://magento2.ce/index.php/soap/default?	

services=foggylineSliderSlideRepositoryV1">

				<env:Body>

								<ns1:foggylineSliderSlideRepositoryV1SaveResponse>

												<result>

																<slideId>8</slideId>

																<title>API	test</title>

												</result>

								</ns1:foggylineSliderSlideRepositoryV1SaveResponse>

				</env:Body>

</env:Envelope>

The	save	(as	update)	service	method	call	examples
The	console	cURL	style	for	executing	PUT	/V1/foggylineSliderSlide/:id	is	done	as
follows:

curl	-X	PUT	-H	'Content-type:	application/json'	\

-H	'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'	\

-d	'{"slide":	{"slide_id":	2,	"title":	"API	update	test"}}'	\

http://magento2.ce/rest/V1/foggylineSliderSlide/2

The	PHP	cURL	style	for	executing	PUT	/V1/foggylineSliderSlide/:id	is	done	as
follows:

$slideId	=	2;

$slide	=	json_encode(['slide'=>['slide_id'=>	$slideId,	'title'=>	'API	

update	test']]);

$ch	=	curl_init('http://magento2.ce/rest/V1/foggylineSliderSlide/'	.	

$slideId);

		curl_setopt($ch,	CURLOPT_CUSTOMREQUEST,	'PUT');

		curl_setopt($ch,	CURLOPT_POSTFIELDS,	$slide);

		curl_setopt($ch,	CURLOPT_RETURNTRANSFER,	true);

		curl_setopt($ch,	CURLOPT_HTTPHEADER,	array(

						'Content-Type:	application/json',

						'Content-Length:	'	.	strlen($slide),

						'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'

));

$result	=	curl_exec($ch);

The	response	for	console	and	PHP	cURL	style	should	be	a	JSON	string	similar	to	the
following	one:

{"id":2,"slide_id":2,"title":"API	update	test"}

The	PHP	SoapClient	style	for	executing	PUT	/V1/foggylineSliderSlide/:id	is	done	as
follows:

$slideId	=	2;

$slide	=	['slide'=>['slideId'=>	$slideId,	'title'=>	'API	update	test']];

$request	=	new	SoapClient(

				'http://magento2.ce/index.php/soap/?wsdl&services=	

foggylineSliderSlideRepositoryV1',

				array(

								'soap_version'	=>	SOAP_1_2,

								'trace'=>1,

								'stream_context'	=>	stream_context_create(array(

																'http'	=>	array(

																				'header'	=>	'Authorization:	Bearer	

pk8h93nq9cevaw55bohkjbp0o7kpl4d3')

)

)

)

);

$response	=	$request->	foggylineSliderSlideRepositoryV1Save($slide);

The	response	for	PHP	SoapClient	style	should	be	the	stdClass	PHP	object	as	follows:

object(stdClass)#2	(1)	{

		["result"]=>

		object(stdClass)#3	(2)	{

				["slideId"]=>

				int(2)

				["title"]=>

				string(15)	"API	update	test"

		}

}

The	console	SOAP	style	cURL	for	executing	PUT	/V1/foggylineSliderSlide/:id	is
done	as	follows:

curl	-X	PUT	\

-H	'Content-Type:	application/soap+xml;	charset=utf-8;	

action="foggylineSliderSlideRepositoryV1Save"'	\

-H	'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'	\

-d	@request.xml	\

http://magento2.ce/index.php/soap/default?services=	

foggylineSliderSlideRepositoryV1

Where	request.xml	has	content	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<env:Envelope	xmlns:env="http://www.w3.org/2003/05/soap-envelope"	

xmlns:ns1="http://magento2.ce/index.php/soap/default?	

services=foggylineSliderSlideRepositoryV1">

				<env:Body>

								<ns1:foggylineSliderSlideRepositoryV1SaveRequest>

												<slide>

																<slideId>2</slideId>

																<title>API	update	test</title>

												</slide>

								</ns1:foggylineSliderSlideRepositoryV1SaveRequest>

				</env:Body>

</env:Envelope>

The	response	for	console	SOAP	style	cURL	should	be	an	XML	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<env:Envelope	xmlns:env="http://www.w3.org/2003/05/soap-envelope"	

xmlns:ns1="http://magento2.ce/index.php/soap/default?	

services=foggylineSliderSlideRepositoryV1">

				<env:Body>

								<ns1:foggylineSliderSlideRepositoryV1SaveResponse>

												<result>

																<slideId>2</slideId>

																<title>API	update	test</title>

												</result>

								</ns1:foggylineSliderSlideRepositoryV1SaveResponse>

				</env:Body>

</env:Envelope>

The	deleteById	service	method	call	examples
The	console	cURL	style	for	executing	DELETE	/V1/foggylineSliderSlide/:slideId	is
done	as	follows:

curl	-X	DELETE	-H	'Content-type:	application/json'	\

-H	'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'	\

http://magento2.ce/rest/V1/foggylineSliderSlide/3

The	PHP	cURL	style	for	executing	DELETE	/V1/foggylineSliderSlide/:slideId	is
done	as	follows:

$slideId	=	4;

$ch	=	curl_init('http://magento2.ce/rest/V1/foggylineSliderSlide/'	.	

$slideId);

		curl_setopt($ch,	CURLOPT_CUSTOMREQUEST,	'DELETE');

		curl_setopt($ch,	CURLOPT_RETURNTRANSFER,	true);

		curl_setopt($ch,	CURLOPT_HTTPHEADER,	array(

						'Content-Type:	application/json',

						'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'

));

$result	=	curl_exec($ch);

The	response	for	console	and	PHP	cURL	style	should	be	a	JSON	string	similar	to	the
following	one:

true

The	PHP	SoapClient	style	for	executing	DELETE	/V1/foggylineSliderSlide/:slideId	is
done	as	follows:

$slideId	=	2;

$request	=	new	SoapClient(

				'http://magento2.ce/index.php/soap/?wsdl&services=	

foggylineSliderSlideRepositoryV1',

				array(

								'soap_version'	=>	SOAP_1_2,

								'trace'=>1,

								'stream_context'	=>	stream_context_create(array(

																'http'	=>	array(

																				'header'	=>	'Authorization:	Bearer	

pk8h93nq9cevaw55bohkjbp0o7kpl4d3')

)

)

)

);

$response	=	$request->	

foggylineSliderSlideRepositoryV1DeleteById(array('slideId'=>	$slideId));

The	response	for	PHP	SoapClient	style	should	be	the	stdClass	PHP	object	as	follows:

object(stdClass)#2	(1)	{

		["result"]=>

		bool(true)

}

The	console	SOAP	style	cURL	for	executing	DELETE
/V1/foggylineSliderSlide/:slideId	is	done	as	follows:

curl	-X	POST	\

-H	'Content-Type:	application/soap+xml;	charset=utf-8;	

action="foggylineSliderSlideRepositoryV1DeleteById"'	\

-H	'Authorization:	Bearer	pk8h93nq9cevaw55bohkjbp0o7kpl4d3'	\

-d	@request.xml	\

http://magento2.ce/index.php/soap/default?services=	

foggylineSliderSlideRepositoryV1

Where	request.xml	has	content	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<env:Envelope	xmlns:env="http://www.w3.org/2003/05/soap-envelope"	

xmlns:ns1="http://magento2.ce/index.php/soap/default?	

services=foggylineSliderSlideRepositoryV1">

				<env:Body>

								<ns1:foggylineSliderSlideRepositoryV1DeleteByIdRequest>

												<slideId>5</slideId>

								</ns1:foggylineSliderSlideRepositoryV1DeleteByIdRequest>

				</env:Body>

</env:Envelope>

The	response	for	console	SOAP	style	cURL	should	be	an	XML	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<env:Envelope	xmlns:env="http://www.w3.org/2003/05/soap-envelope"	

xmlns:ns1="http://magento2.ce/index.php/soap/default?	

services=foggylineSliderSlideRepositoryV1">

				<env:Body>

								<ns1:foggylineSliderSlideRepositoryV1DeleteByIdResponse>

												<result>true</result>

								</ns1:foggylineSliderSlideRepositoryV1DeleteByIdResponse>

				</env:Body>

</env:Envelope>

The	preceding	API	call	examples	cover	all	of	our	custom-defined	APIs	for	the	Slide
entity.

Looking	back	at	the	$searchCriteria	variable,	we	used	the	GET	type	of	HTTP	method,
passing	the	entire	variable	as	a	query	string.	If	we	think	about	it,	we	could	have	specified

POST	during	the	Web	API	resource	definition	and	packed	the	content	of	the
$searchCriteria	variable	into	the	request	body.	Although	the	GET	method	approach
might	look	a	bit	dirtier,	imagine	if	we	assigned	the	anonymous	or	self	role	to	the	resource:
we	would	be	able	to	simply	open	a	lengthy	URL	in	the	browser	and	have	the	search
results.	Think	of	a	possible	widget	use,	where	a	widget	would	simply	do	an	AJAX	request
to	the	URL	and	fetch	the	results	for	guests	or	the	customer.

The	full	module	source	code	can	be	found	here:	https://github.com/ajzele/B05032-
Foggyline_Slider.	Aside	from	the	Slide	entity,	the	full	module	code	includes	the	Image
entity	as	well.	Since	each	slide	can	contain	multiple	images,	we	can	further	test	the	Image
API	calls	analogous	to	the	preceding	calls.

https://github.com/ajzele/B05032-Foggyline_Slider

Search	Criteria	Interface	for	list	filtering
Knowing	how	to	do	a	proper	list	filtering	to	fetch	the	entities	that	match	a	certain	lookup
is	essential	for	the	effective	use	of	getList	services	across	core	Magento	and	possibly
custom-coded	API’s.	An	example	is	fetching	the	list	of	customers	registered	within	the
last	24	hours	for	the	latest	added	product.

Let’s	take	a	look	back	at	our	app/code/Foggyline/Slider/etc/webapi.xml	file,	the	bit
where	we	defined	the	service	method="getList".	The	service	class	is	defined	as
Foggyline\Slider\Api\SlideRepositoryInterface,	which	is	defined	as	a	preference
for	the	Foggyline\Slider\Model\SlideRepository	class.	Finally,	within	the
SlideRepository	class,	we	have	the	actual	getList.	Method	getList	is	defined	as
follows:

getList(\Magento\Framework\Api\SearchCriteriaInterface	$searchCriteria);

We	can	see	that	the	getList	method	takes	only	one	parameter,	object	instance,	that
complies	with	SearchCriteriaInterface	called	$searchCriteria.

What	this	means	is	we	already	have	the	(incomplete)	JSON	object	of	the	following	type	to
pass	to	the	getList	method:

{

		"search_criteria":	{

		}

}

In	order	to	further	understand	the	inner	workings	of	search_criteria,	we	need	to
understand	SearchCriteriaInterface,	which	is	(partially)	defined	as	follows:

interface	SearchCriteriaInterface

{

				/*	@param	\Magento\Framework\Api\Search\FilterGroup[]	$filterGroups	*/

				public	function	setFilterGroups(array	$filterGroups	=	null);

				/*	@param	\Magento\Framework\Api\SortOrder[]	$sortOrders	*/

				public	function	setSortOrders(array	$sortOrders	=	null);

				/*	@param	int	$pageSize	*/

				public	function	setPageSize($pageSize);

				/*	@param	int	$currentPage	*/

				public	function	setCurrentPage($currentPage);

}

Every	interface	getter	and	setter	method	expects	the	values	to	be	found	in	passed	API
parameters.	What	this	means	is	that	the	getPageSize()	and	setPageSize()	methods
would	expect	search_criteria	to	have	an	integer	type	page_size	property	on	it.
Similarly,	the	getFilterGroups()	and	setFilterGroups()	methods	would	expect
search_criteria	to	have	an	array	of	\Magento\Framework\Api\Search\FilterGroup
passed	to	it.	These	insights	bring	us	to	an	(incomplete)	JSON	object	of	the	following	type
to	pass	to	the	getList	method:

{

		"search_criteria":	{

				"filter_groups":	[

],

				"current_page":	1,

				"page_size":	10,

				"sort_orders":	[

]

		}

}

Now	we	have	got	to	the	point	where	we	need	to	determine	what	goes	into	filter_groups
and	sort_orders,	since	these	are	not	simple	types	but	compound	values.

Looking	further	into	\Magento\Framework\Api\Search\FilterGroup,	we	see	the
definition	of	the	getFilters()	and	setFilters()	methods	that	work	with	an	array	of
\Magento\Framework\Api\Filter	objects.	What	this	means	is	that	filter_groups	has	a
property	filter	that	is	an	array	of	individual	filter	objects	defined	as
\Magento\Framework\Api\Filter.	With	this	in	mind,	we	are	now	down	to	the	following
form	of	the	search_criteria	JSON	object:

{

		"search_criteria":	{

				"filter_groups":	[

						{

								"filters":	[

]

						}

],

				"current_page":	1,

				"page_size":	10,

				"sort_orders":	[

]

		}

}

Looking	further	into	individual	\Magento\Framework\Api\Filter,	through	its	getters	and
setters	it	defines	we	can	conclude	properties	like	field,	value,	and	condition_type.	This
brings	us	one	step	further	to	finalizing	our	search_criteria	JSON	object,	which	is	now
structured	as	follows:

{

		"search_criteria":	{

				"filter_groups":	[

						{

								"filters":	[

										{

												"field":	"title",

												"value":	"%some%",

												"condition_type":	"like"

										}

]

						}

],

				"current_page":	1,

				"page_size":	10,

				"sort_orders":	[

]

		}

}

Let	us	take	a	look	at	sort_orders	as	the	last	outstanding	bit.	sort_orders	is	of	type
\Magento\Framework\Api\SortOrder,	which	has	getters	and	setters	for	the	field	and
direction	properties.	Knowing	this,	we	are	able	to	fully	construct	our	search_criteria
JSON	object	(or	array)	that	we	would	be	passing	to	the	getList()	service	method	call,	as
follows:

{

		"search_criteria":	{

				"filter_groups":	[

						{

								"filters":	[

										{

												"field":	"title",

												"value":	"%some%",

												"condition_type":	"like"

										}

]

						}

],

				"current_page":	1,

				"page_size":	10,

				"sort_orders":	[

						{

								"field":	"slide_id",

								"direction":	-1

						}

]

		}

}

What	happens	when	we	define	multiple	entries	under	filter_groups,	filters,	or
sort_orders?	The	logical	expectation	would	be	that	these	break	into	AND	and	OR	operators
in	SQL	when	they	hit	the	database.	Surprisingly,	this	is	not	always	the	case,	at	least	not
with	our	preceding	example.	Since	the	actual	implementation	of	the	getList	method	is
left	for	us	to	handle,	we	can	decide	how	we	want	to	handle	the	filter	groups	and	filters.

Looking	back	at	our	getList	method,	as	(partially)	shown	next,	we	are	not	doing	anything
to	imply	an	OR	operator,	so	everything	ends	up	with	an	AND	condition	on	the	database:

foreach	($searchCriteria->getFilterGroups()	as	$filterGroup)	{

				foreach	($filterGroup->getFilters()	as	$filter)	{

								$condition	=	$filter->getConditionType()	?:	'eq';

								$collection->addFieldToFilter($filter->getField(),	[$condition	=>	

$filter->getValue()]);

		}

}

The	preceding	code	simply	loops	through	all	filter	groups,	pulling	in	all	filters	within	the

group	and	calling	the	same	addFieldToFilter	method	for	everything.	Similar	behavior	is
implemented	across	core	Magento	modules.	Although	the	filtering	itself	follows	the
\Magento\Framework\Api\SearchCriteriaInterface	interface,	there	is	no	unified
Magento-wide	approach	to	force	AND	and	OR	operators	in	filtering.

However,	Magento	core	API’s	like	GET	products	do	implement	both	AND	and	OR
conditions.	In	cases	like	these,	filter	groups	result	in	OR	and	filters	within	the	group	result
in	AND	conditions.

Tip
Following	best	practices,	we	should	make	sure	our	modules	that	implement	search	criteria
do	so	respecting	the	filter_groups/filters	and	OR/AND	relationship.

Summary
In	this	chapter,	we	covered	a	lot	of	ground	relating	to	Magento	API’s.	There	is	much	more
left	to	be	said,	but	the	steps	outlined	here	should	be	enough	to	get	us	started	even	with
more	advanced	API	usage.	We	started	the	chapter	with	learning	about	types	of	users	and
the	authentication	methods	supported.	Strong	emphasis	was	placed	on	making	several
types	of	API	calls,	like	console	cURL,	PHP	cURL,	PHP	SoapClient,	and	console	cURL
SOAP.	This	was	to	encourage	developers	to	understand	the	inner	workings	of	API	calls
more	deeply	than	just	using	high-level	libraries.

Throughout	the	next	chapter,	we	will	look	into	some	of	the	major	sections	of	Magento.

Chapter	10.	The	Major	Functional	Areas
The	Magento	platform	comprises	various	modules	that	deliver	various	bits	of
functionality.	Developers	are	often	more	in	touch	with	one	group	of	functionality	than
others.	Examples	of	some	of	the	most	commonly	used	functionalities	include	those	related
to	CMS	blocks	and	pages,	categories,	products,	customers,	imports,	custom	product	types,
custom	payment,	and	shipping	modules.	This	is	not	to	say	that	other	functionalities	are
less	important.	In	this	chapter,	we	will	take	a	quick	look	at	the	functionalities	in	the
Magento	admin	area,	PHP	code,	and	API	calls.	The	chapter	is	divided	into	the	following
sections:

CMS	management
Catalog	management
Customer	management
Products	and	customer	import
Custom	product	types
Custom	offline	shipping	methods
Custom	offline	payment	methods

The	intention	is	not	to	go	into	the	details	of	each	functional	area.	Rather,	the	aim	is	to
show	the	admin	interface	and	the	corresponding	programmatic	and	API	approach	towards
basic	management.

CMS	management
Content	is	what	helps	differentiate	one	store	from	another.	Quality	content	can	boost	a
store’s	visibility	on	search	engines,	provide	informative	insight	to	the	customers	who	buy
products,	and	provide	credibility	and	trust.	Magento	provides	a	solid	content	management
system,	which	can	be	used	to	create	rich	content	for	a	store.	We	can	use	it	to	manage
blocks	and	pages	too.

Managing	blocks	manually
A	CMS	block	is	a	small	modular	unit	of	content	that	can	be	positioned	almost	anywhere
on	a	page.	They	can	even	be	called	into	another	blocks.	Blocks	support	HTML	and
JavaScript	as	its	content.	Therefore,	they	are	able	to	display	static	information	such	as	text,
images,	and	embedded	video	as	well	as	dynamic	information.

Blocks	can	be	created	via	an	admin	interface,	APIs,	or	code.

The	following	steps	outline	the	block	creation	process	from	within	an	admin	interface:

1.	 Log	in	to	the	Magento	admin	area.
2.	 In	the	Content	|	Elements	|	Blocks	menu,	click	on	Add	New	Block.	This	opens	a

screen	that	is	similar	to	the	one	shown	in	the	following	screenshot:

3.	 Fill	in	some	values	for	the	required	fields	(Block	Title,	Identifier,	Store	View,
Status,	and	Content)	and	click	on	the	Save	Block	button.

Once	the	block	is	saved,	you	will	see	the	You	saved	the	block.	success	message	in	the
browser.	CMS	blocks	are	stored	in	the	cms_block	and	cms_block_store	tables	in	a
database.

The	Identifier	value	is	probably	the	most	interesting	aspect	here.	We	can	use	it	in	a	CMS
page,	another	CMS	block,	or	some	code	to	fetch	the	block	that	we	have	just	created.

Assuming	that	we	have	created	a	block	with	the	Identifier	value	of	foggyline_hello,	we
can	call	it	in	the	CMS	page	or	another	block	by	using	the	following	expression:

{{widget	type="Magento\\Cms\\Block\\Widget\\Block"	

template="widget/static_block/default.phtml"	block_id="foggyline_hello"}}

We	can	also	pass	the	actual	integer	ID	value	of	a	block	to	the	preceding	expression,	as
follows:

{{widget	type="Magento\\Cms\\Block\\Widget\\Block"	

template="widget/static_block/default.phtml"	block_id="2"}}

However,	this	approach	requires	us	to	know	the	actual	integer	ID	of	a	block.

The	preceding	expressions	show	that	blocks	are	included	in	a	page	or	another	block	via	a
widget,	which	is	also	known	as	a	frontend	app.	A	widget	of	the
Magento\Cms\Block\Widget\Block	class	type	is	using	the
widget/static_block/default.phtml	template	file	to	render	the	actual	CMS	block.

Managing	blocks	via	code
Besides	the	manual	creation	of	blocks	via	the	admin	interface,	we	can	create	CMS	blocks
by	using	code,	as	shown	in	the	following	code	snippet:

$model	=	$this->_objectManager->create('Magento\Cms\Model\Block');

$model->setTitle('Test	block');

$model->setIdentifier('test_block');

$model->setContent('Test	block!');

$model->setIsActive(true);

$model->save();

Here,	we	used	the	instance	manager	to	create	a	new	model	instance	of	the
Magento\Cms\Model\Block	class.	Then,	we	set	some	properties	through	defined	methods
and	finally	called	the	save	method.

We	can	load	and	update	the	existing	blocks	using	a	code	snippet	that	is	similar	to	the
following	code:

$model	=	$this->_objectManager->create('Magento\Cms\Model\Block');

//$model->load(3);

$model->load('test_block');

$model->setTitle('Updated	Test	block');

$model->setStores([0]);

$model->save();

The	block’s	load	method	accepts	either	an	integer	value	of	a	block	ID	or	a	string	value	of
a	block	identifier.

Finally,	we	can	manage	the	creation	and	updating	of	blocks	through	the	available	APIs
method.	The	following	code	snippet	shows	how	a	CMS	block	is	created	via	a	console
cURL	REST	API	call:

curl	-X	POST	"http://magento2.ce/index.php/rest/V1/cmsBlock"	\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	lcpnsrk4t6al83lymhfs86jabbi9mmt8"	\

					-d	'{"block":	{"identifier":	"test_api_block",	"title":	"Test	API	

Block",	"content":	"API	Block	Content"}}'

The	bearer	string	is	just	a	login	token	that	we	obtain	by	first	running	the	authentication
API	call,	as	described	in	the	previous	chapter.	Once	we	have	the	authentication	token,	we
can	make	a	V1/cmsBlock	POST	request,	passing	a	JSON	object	as	data.

Managing	blocks	via	API
We	can	get	the	newly	created	CMS	block	through	an	API	by	executing	a	snippet	of	code
that	looks	like	this:

curl	-X	GET	"http://magento2.ce/index.php/rest/V1/cmsBlock/4"	\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	lcpnsrk4t6al83lymhfs86jabbi9mmt8"

We	can	update	the	existing	CMS	block	by	using	an	API	and	executing	a	snippet	of	code
that	is	similar	to	this:

curl	-X	PUT	"http://magento2.ce/index.php/rest/V1/cmsBlock/4"	\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	lcpnsrk4t6al83lymhfs86jabbi9mmt8"	\

					-d	'{"block":	{"title":	"Updated	Test	API	Block"}}'

Here,	we	used	the	HTTP	PUT	method	and	passed	the	integer	4	as	a	part	of	the
V1/cmsBlock/4	URL.	The	number	4	represents	the	ID	value	of	the	block	in	the	database.

Managing	pages	manually
CMS	pages	are	robust	content	units	unlike	CMS	blocks,	which	are	simply	embedded	into
certain	pages.	The	CMS	page	can	have	its	own	URL.	Examples	of	CMS	pages	are	pages
such	as	404	Not	Found,	Home	page,	Enable	Cookies,	and	Privacy	and	Cookie	Policy.
The	idea,	when	it	comes	to	dealing	with	CMS	pages,	is	that	we	can	control	the	content
area	of	a	page	without	affecting	site-wide	elements	such	as	the	header,	footer,	or	sidebars.
Magento	does	not	really	come	with	many	out-of-the-box	CMS	pages	other	than	the	ones
that	were	listed	previously.

Like	blocks,	pages	can	also	be	created	via	the	admin	interface,	APIs,	or	code.

The	following	steps	outline	the	page	creation	process	from	within	the	admin	interface:

1.	 Log	in	to	Magento	admin	area.
2.	 In	the	Content	|	Elements	|	Pages	menu,	click	on	Add	New	Page.	This	opens	a

screen	that	is	similar	the	one	shown	in	the	following	screenshot:

3.	 Fill	in	some	values	for	the	required	fields	(Page	Title,	Store	View,	Status,	and
Content)	and	click	on	the	Save	Block	button.

Once	the	page	is	saved,	you	will	see	the	You	saved	this	page.	success	message	in	the
browser.	CMS	pages	are	stored	in	the	cms_page	and	cms_page_store	tables	in	the
database.

Assuming	that	we	have	created	a	page	with	Page	Title	value	Info,	we	can	access	this	page
in	a	browser	via	a	URL	such	as	http://magento2.ce/info.	Though	we	could	have	to
specify	the	URL	Key	value	in	the	New	Page	edit	screen,	Magento	automatically	assigns
URL	Key	that	matches	Page	Title.

Managing	pages	via	code
Besides	the	manual	creation	through	the	admin	interface,	we	can	create	CMS	pages	via
code,	as	shown	in	the	following	code	snippet:

$model	=	$this->_objectManager->create('Magento\Cms\Model\Page');

$model->setTitle('Test	page');

$model->setIdentifier('test-page');

$model->setPageLayout('1column');

$model->setContent('Test	page!');

$model->setIsActive(true);

$model->setStores([0]);

$model->save();

Here,	we	used	the	instance	manager	to	create	a	new	model	instance	of	the
Magento\Cms\Model\Page	class.	Then,	we	set	some	properties	through	the	defined
methods	and	finally	called	the	save	method.	The	URL	Key	that	we	set	through	the	admin
interface	is	actually	an	identifier	that	we	set	via	the	setIdentifier	method	call.

Managing	pages	via	API
We	can	load	and	update	the	existing	pages	by	using	a	code	snippet	that	is	similar	to	the
following	one:

$model	=	$this->_objectManager->create('Magento\Cms\Model\Page');

//$model->load(6);

$model->load('test-page');

$model->setContent('Updated	Test	page!');

$model->save();

The	page	model	load	method	accepts	either	an	integer	ID	value	of	a	page	identifier	(URL
Key).

Finally,	we	can	manage	the	creation	and	updating	of	pages	through	the	available	APIs
method.	The	following	code	snippet	shows	how	a	CMS	page	is	created	via	a	console
cURL	REST	API	call:

curl	-X	POST	"http://magento2.ce/index.php/rest/V1/cmsPage"	\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	lcpnsrk4t6al83lymhfs86jabbi9mmt8"	\

					-d	'{"page":	{"identifier":	"test-api-page",	"title":	"Test	API	Page",	

"content":	"API	Block	Content"}}'

Once	we	have	the	authentication	token,	we	can	make	a	V1/cmsPage	POST	request,	passing
on	the	JSON	object	as	data.

We	can	get	the	newly	created	CMS	page	through	an	API	by	executing	a	snippet	of	code
that	is	similar	to	the	following	one:

curl	-X	GET	"http://magento2.ce/index.php/rest/V1/cmsPage/7"	\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	lcpnsrk4t6al83lymhfs86jabbi9mmt8"

We	can	update	the	existing	CMS	page	through	an	API	by	executing	a	snippet	of	code	that
is	similar	to	the	following	one:

curl	-X	PUT	"http://magento2.ce/index.php/rest/V1/cmsPage/7"	\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	lcpnsrk4t6al83lymhfs86jabbi9mmt8"	\

					-d	'{"page":	{"content":	"Updated	Test	API	Page",	

"identifier":"updated-page"}}'

Here,	we	used	the	HTTP	PUT	method,	passing	the	integer	7	as	a	part	of	the	V1/cmsPage/7
URL.	The	number	7	represents	the	ID	value	of	the	page	in	the	database.

Catalog	management
The	Magento_Catalog	module	is	one	of	the	backbones	of	the	entire	Magento	platform.	It
provides	robust	support	for	the	inventory	management	of	various	product	types.	This
module	is	what	manages	products,	categories	and	their	attributes,	the	display	on	the
frontend,	and	many	more	things.

Managing	categories	manually
We	can	access	the	catalog	functionality	within	the	Magento	admin	area	by	navigating	to
Products	|	Inventory	|	Catalog	or	Products	|	Inventory	|	Category.

If	we	start	with	a	blank	Magento	installation,	we	will	probably	start	with	categories	as	one
of	the	first	entities	to	be	created.	We	can	manually	create	categories	by	performing	the
following	steps:

1.	 Log	in	to	the	Magento	admin	area.
2.	 Go	to	the	Products	|	Inventory	|	Category	menu.	This	opens	a	screen	that	is	similar

to	the	one	shown	in	the	following	screenshot:

3.	 On	the	left-hand	side	of	the	screen,	click	on	Default	Category.	Then,	when	the	page
reloads,	click	on	the	Add	Subcategory	button.

4.	 Though	it	may	seem	that	nothing	has	happened,	as	the	screen	content	does	not
change,	we	should	now	fill	in	the	required	options	in	the	General	Information	tab,
setting	Name	to	some	string	value	and	Is	Active	to	Yes.

5.	 Finally,	click	on	the	Save	Category	button.

The	new	category	should	now	be	created.	To	the	left	screen	area,	if	you	click	on	the	name
of	the	newly	created	category,	you	will	see	its	ID	value	above	the	General	Information
tab,	as	shown	in	the	following	screenshot:

Note
Knowing	the	category	ID	enables	you	to	directly	test	it	on	a	storefront	simply	by	opening
a	URL	such	as	http://magento2.ce/index.php/catalog/category/view/id/3	in	the
browser,	where	the	number	3	is	the	ID	of	the	category.	You	will	see	a	loaded	category
page	that	probably	shows	the	We	can’t	find	products	matching	the	selection.	message,
which	is	good,	as	we	haven’t	assigned	products	to	a	category.

Though	we	will	not	go	into	its	details,	it	is	worth	noting	that	we	have	simply	scratched	the
surface	here,	as	categories	enable	us	to	provide	many	additional	options	using	the	Display
Settings,	Custom	Design	tabs.

Given	that	categories	are	EAV	entities,	their	data	is	stored	across	several	tables	in	the
database,	as	follows:

catalog_category_entity

catalog_category_entity_datetime

catalog_category_entity_decimal

catalog_category_entity_int

catalog_category_entity_text

catalog_category_entity_varchar

There	are	a	few	additional	tables	that	link	categories	to	products:

catalog_category_product

catalog_category_product_index

catalog_category_product_index_tmp

catalog_url_rewrite_product_category

Managing	categories	via	code
Besides	the	manual	creation	through	the	admin	interface,	we	can	create	categories	via
code,	as	shown	in	the	following	code	snippet:

$parentId	=	\Magento\Catalog\Model\Category::TREE_ROOT_ID;

$parentCategory	=	$this->_objectManager

																							->create('Magento\Catalog\Model\Category')

																							->load($parentId);

$category	=	$this->_objectManager

																->create('Magento\Catalog\Model\Category');

$category->setPath($parentCategory->getPath());

$category->setParentId($parentId);

$category->setName('Test');

$category->setIsActive(true);

$category->save();

What	is	specific	here	is	that	when	creating	a	new	category,	we	first	created	a
$parentCategory	instance,	which	represents	the	root	category	object.	We	used	the
Category	model	TREE_ROOT_ID	constant	as	the	ID	value	of	a	parent	category	ID.	Then,	we
created	an	instance	of	the	category,	set	its	path,	parent_id,	name,	and	is_active	value.

Managing	categories	via	API
We	can	further	manage	category	creation	through	the	available	APIs	method.	The
following	code	snippet	shows	category	creation	via	the	console	cURL	REST	API	call:

curl	-X	POST	"http://magento2.ce/index.php/rest/V1/categories"	\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	lcpnsrk4t6al83lymhfs86jabbi9mmt8"	\

					-d	'{"category":	{"parent_id":	"1",	"name":	"Test	API	Category",	

"is_active":	true}}'

The	bearer	string	is	just	a	login	token	that	we	obtain	by	first	running	the	authentication
API	call,	as	described	in	the	previous	chapter.	Once	we	have	the	authentication	token,	we
can	make	a	/V1/categories	POST	request,	passing	a	JSON	object	as	data.

We	can	get	the	newly	created	category	as	a	JSON	object	through	an	API	by	executing	a
snippet	of	code	that	looks	like	the	following	one:

curl	-X	GET	"http://magento2.ce/index.php/rest/V1/categories/9"	\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	lcpnsrk4t6al83lymhfs86jabbi9mmt8"

Managing	products	manually
Now,	let’s	take	a	look	at	how	to	create	a	new	product.	We	can	manually	create	products	by
performing	the	following	steps:

1.	 Log	in	to	the	Magento	admin	area.
2.	 In	the	Products	|	Inventory	|	Catalog	menu,	click	on	the	Add	Product	button.	This

opens	a	screen	similar	to	the	one	shown	in	the	following	screenshot:

3.	 Now,	fill	in	the	required	options	on	the	Product	Details	tab.
4.	 Finally,	click	on	the	Save	button.

If	it	is	successfully	saved,	the	page	reloads	and	shows	the	You	saved	the	product.
message.

Like	categories,	we	have	barely	scratched	the	surface	of	products	here.	Looking	at	the
other	available	tabs,	there	are	a	large	number	of	additional	options	that	can	be	assigned	to
a	product.	Simply	assigning	the	required	options	should	be	enough	for	us	to	see	the
product	on	the	store’s	frontend	on	a	URL	such	as
http://magento2.ce/index.php/catalog/product/view/id/4,	where	the	number	4	is
the	ID	value	of	a	product.

Products	are	also	EAV	entities,	whose	data	is	stored	across	several	tables	in	a	database,	as
follows:

catalog_product_entity

catalog_product_entity_datetime

catalog_product_entity_decimal

catalog_product_entity_gallery

catalog_product_entity_group_price

catalog_product_entity_int

catalog_product_entity_media_gallery

catalog_product_entity_media_gallery_value

catalog_product_entity_text

catalog_product_entity_tier_price

catalog_product_entity_varchar

There	are	also	a	large	number	of	other	table	referencing	products,	such	as
catalog_product_bundle_selection,	but	these	are	mostly	used	to	link	bits	of
functionalities.

Managing	products	via	code
Besides	the	manual	creation	through	the	admin	interface,	we	can	create	products	via	code,
as	shown	in	the	following	code	snippet:

$catalogConfig	=	$this->_objectManager

				->create('Magento\Catalog\Model\Config');

$attributeSetId	=	$catalogConfig->getAttributeSetId(4,	'Default');

$product	=	$this->_objectManager

				->create('Magento\Catalog\Model\Product');

$product

				->setTypeId(\Magento\Catalog\Model\Product\Type::TYPE_SIMPLE)

				->setAttributeSetId($attributeSetId)

				->setWebsiteIds([$this->storeManager->getWebsite()->getId()])

				->setStatus(\Magento\Catalog\Model\Product\Attribute	

\Source\Status::STATUS_ENABLED)

				->setStockData(['is_in_stock'	=>	1,	'manage_stock'	=>	0])

				->setStoreId(\Magento\Store\Model\Store::DEFAULT_STORE_ID)

				->setVisibility(\Magento\Catalog\Model\Product	

\Visibility::VISIBILITY_BOTH);

$product

				->setName('Test	API')

				->setSku('tets-api')

				->setPrice(19.99);

$product->save();

Managing	products	via	API
The	following	example	uses	the	REST	API	to	create	a	new	simple	product:

curl	-X	POST	"http://magento2.ce/index.php/rest/V1/products"	\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	lcpnsrk4t6al83lymhfs86jabbi9mmt8"	\

					-d	'{"product":{"sku":"test_api_1","name":"Test	API	

#1","attribute_set_id":4,"price":19.99,"status":1,	

"visibility":4,"type_id":"simple","weight":1}}'

The	Bearer	token	should	have	been	previously	obtained	by	using	an	authentication
request.	The	response	should	be	a	JSON	object	that	contains	all	the	exposed	product	data.

We	can	get	the	existing	product	as	information	through	an	API	that	executes	a	snippet	of
code,	as	follows:

curl	-X	GET	"http://magento2.ce/index.php/rest/V1/products	

/product_dynamic_125"	\

					-H	"Content-Type:application/json"

The	product_dynamic_125	part	in	the	preceding	URL	stands	for	this	specific	product
SKU	value.	The	response	is	a	JSON	object	that	contains	all	the	exposed	product	data.

The	entire	list	of	the	available	catalog	APIs	can	be	seen	in	the	vendor/magento/module-
catalog/etc/webapi.xml	file.

Customer	management
Managing	customers	is	another	important	aspect	of	the	Magento	platform.	Most	of	the
time,	customer	creation	is	something	that	is	left	for	a	new	customer	to	do.	A	new	customer
who	visits	a	store	initiates	the	registration	process	and	finishes	up	with	a	customer	account
being	created.	Once	registered,	customers	can	then	further	edit	their	account	details	on	the
storefront	under	the	My	Account	page,	which	is	usually	available	on	a	link	such	as
http://magento2.ce/index.php/customer/account/index/.

As	a	part	of	this	section,	we	are	interested	in	the	possibility	of	managing	customer
accounts	by	using	the	admin	area,	code,	and	API.

Managing	customers	manually
The	following	steps	outline	the	customer	account	creation	process	from	within	the	admin
interface:

1.	 Log	in	to	Magento	admin	area.
2.	 In	the	Customers	|	All	Customers	menu,	click	on	the	Add	New	Customer	button.

This	opens	a	screen	that	looks	similar	to	the	one	shown	in	the	following	screenshot:

3.	 Fill	in	some	values	for	the	required	fields	(Associate	to	Website,	Group,	First
Name,	Last	Name,	and	Email)	and	click	on	the	Save	Customer	button.

Once	the	customer	is	saved,	you	will	see	the	You	saved	the	customer.	success	message	in
the	browser.

The	Associate	to	Website	value	is	probably	the	most	important	value	for	cases	like	this
one,	where	customer	accounts	are	being	indirectly	created	by	a	user	who’s	not	a	customer.

Note
Since	Magento	supports	the	setting	up	of	multiple	websites,	customer	accounts	can	be	set
to	either	the	Global	or	Per	Website	value,	depending	on	the	Stores	|	Settings	|
Configuration	|	Customers	|	Customer	Configuration	|	Account	Sharing	Option	|
Share	Customer	Accounts	option.	Thus,	if	the	Share	Customer	Accounts	option	has
been	set	to	Per	Website,	it	is	of	the	utmost	important	to	point	the	Associate	to	Website

value	to	the	proper	website.	Otherwise,	a	customer	account	will	be	created	but	the
customer	won’t	be	able	to	log	in	to	it	on	the	storefront.

The	Magento_Customer	module	uses	the	EAV	structure	to	store	customer	data.	Thus,	there
is	no	single	table	that	stores	customer	information.	Rather,	multiple	tables	exist,	depending
on	the	customer	property	and	its	data	type.

The	following	list	comprises	tables	that	store	customer	entity:

customer_entity

customer_entity_datetime

customer_entity_decimal

customer_entity_int

customer_entity_text

customer_entity_varchar

Customer	accounts	will	not	really	be	complete	without	a	customer	address.	The	address
can	be	added	via	the	Addresses	tab	under	the	customer	edit	screen	in	the	admin	area,	as
shown	in	the	following	screenshot:

Note	that	Magento	enables	us	to	set	one	of	the	addresses	as	Default	Shipping	Address
and	Default	Billing	Address.

Like	the	customer	entity,	the	customer	address	entity	also	uses	the	EAV	structure	to	store
its	data.

The	following	list	comprises	tables	that	store	the	customer	address	entity:

customer_address_entity

customer_address_entity_datetime

customer_address_entity_decimal

customer_address_entity_int

customer_address_entity_text

customer_address_entity_varchar

Managing	customers	via	code
Besides	the	manual	creation	via	the	admin	interface,	we	can	create	customers	via	code,	as
shown	in	the	following	code	snippet:

$model	=	$this->_objectManager->	create('Magento\Customer\Model\Customer');

$model->setWebsiteId(1);

$model->setGroupId(1);

$model->setFirstname('John');

$model->setLastname('Doe');

$model->setEmail('john.doe@mail.com');

$model->save();

Here,	we	are	using	the	instance	manager	to	create	a	new	model	instance	of	the
Magento\Customer\Model\Customer	class.	We	can	then	set	some	properties	through	the
defined	methods	and	finally	call	the	save	method.

We	can	load	and	update	an	existing	customer	by	using	a	code	snippet	that	is	similar	to	the
following	one:

$model	=	$this->_objectManager->	create('Magento\Customer\Model\Customer');

$model->setWebsiteId(1);

//$model->loadByEmail('john.doe@mail.com');

$model->load(1);

$model->setFirstname('Updated	John');

$model->save();

We	can	use	either	the	load	or	loadByEmail	method	call.	The	load	method	accepts	the
integer	ID	value	of	the	existing	customer	entity,	while	loadByEmail	accepts	a	string	e-mail
address.	It	is	worth	noting	that	setWebsiteId	has	to	be	called	prior	to	any	of	the	load
methods.	Otherwise,	we	will	get	an	error	message	that	says	A	customer	website	ID	must
be	specified	when	using	the	website	scope.

Managing	customers	via	an	API
Finally,	we	can	manage	the	creation	and	updating	of	customer	information	using	the
available	API	method.	The	following	code	snippet	shows	how	to	create	a	customer	via	a
console	cURL	REST	API	call:

curl	-X	POST	"http://magento2.ce/index.php/rest/V1/customers"	\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	r9ok12c3wsusrxqomyxiwo0v7etujw9h"	\

					-d	'{"customer":	{"website_id":	1,	"group_id":	1,	"firstname":	"John",	

"lastname":	"Doe",	"email":	"john.doe@mail.com"},	"password":"abc123"}'

Once	we	have	the	authentication	token,	we	can	make	a	V1/customers	POST	request,
passing	a	JSON	object	as	data.

We	can	get	the	newly	created	customer	via	an	API	by	executing	a	snippet	of	code	that	is
similar	to	the	following	one:

curl	-X	GET	"http://magento2.ce/index.php/rest/V1/customers/24"	\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	lcpnsrk4t6al83lymhfs86jabbi9mmt8"

We	can	update	an	existing	customer	through	an	API	by	executing	a	snippet	of	code	that	is
similar	to	the	following	one:

curl	-X	PUT	"http://magento2.ce/index.php/rest/V1/customers/24"	\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	r9ok12c3wsusrxqomyxiwo0v7etujw9h"	\

					-d	'{"customer":	{"id":24,	"website_id":	1,	"firstname":	"John	

Updated",	"lastname":	"Doe",	"email":	"john2@mail.com"},	

"password_hash":"cda57c7995e5f03fe07ad52d99686ba130e0d3e	

fe0d84dd5ee9fe7f6ea632650:cEf8i1f1ZXT1L2NwawTRNEqDWGyru6h3:1"}'

Here,	we	used	the	HTTP	PUT	method,	passing	the	integer	24	as	a	part	of	the
V1/customers/24	and	as	part	of	the	body	URL.	The	number	24	represents	the	ID
value	of	a	customer	in	the	database.	Also,	note	the	password_hash	value;	without	it,	the
update	will	fail.

Managing	customer	address	via	code
Similar	to	customers,	we	can	create	a	customer	address	using	code,	as	shown	in	the
following	code	snippet:

$model	=	$this->_objectManager->	create('Magento\Customer\Model\Address');

//$model->setCustomer($customer);

$model->setCustomerId(24);

$model->setFirstname('John');

$model->setLastname('Doe');

$model->setCompany('Foggyline');

$model->setStreet('Test	street');

$model->setCity('London');

$model->setCountryId('GB');

$model->setPostcode('GU22	7PY');

$model->setTelephone('112233445566');

$model->setIsDefaultBilling(true);

$model->setIsDefaultShipping(true);

$model->save();

Here,	we	used	the	instance	manager	to	create	a	new	model	instance	of	the
Magento\Customer\Model\Address	class.	We	then	set	some	properties	through	the
defined	methods	and	finally	called	the	save	method.

We	can	load	and	update	the	existing	customer	address	by	using	a	code	snippet	that	is
similar	to	the	following	one:

$model	=	$this->_objectManager->	create('Magento\Customer\Model\Address');

$model->load(22);

$model->setCity('Update	London');

$model->save();

Here,	we	used	the	load	method	to	load	an	existing	address	by	its	ID	value.	Then,	we
called	the	setCity	method	passing	it	the	updated	string.	After	the	save	method	is
executed,	the	address	should	reflect	the	change.

Managing	customers	address	via	an	API
Surprisingly,	a	customer	address	cannot	be	created	or	updated	directly	via	an	API	call,	as
there	is	no	POST	or	PUT	REST	API	defined.	However,	we	can	still	get	the	existing	customer
address	information	by	using	an	API,	as	follows:

curl	-X	GET	"http://magento2.ce/index.php/rest/V1/customers	/addresses/22"	

\

					-H	"Content-Type:application/json"	\

					-H	"Authorization:	Bearer	lcpnsrk4t6al83lymhfs86jabbi9mmt8"

The	entire	list	of	available	customer	APIs	can	be	seen	in	the	vendor/magento/module-
customer/etc/webapi.xml	file.

Products	and	customers	import
Magento	provides	an	out-of-the-box	mass	import	and	export	functionality	via	the
following	modules:

AdvancedPricingImportExport

BundleImportExport

CatalogImportExport

ConfigurableImportExport

CustomerImportExport

GroupedImportExport

ImportExport

TaxImportExport

The	heart	of	the	import	functionality	actually	lies	in	the	ImportExport	module,	while
other	modules	provide	individual	import	and	export	entities	through	the
vendor/magento/module-{partialModuleName}-import-export/etc/import.xml	and
vendor/magento/module-{partialModuleName}-import-export/etc/export.xml	files.

These	functionalities	can	be	accessed	from	the	Magento	admin	area	from	the	System	|
Data	Transfer	menu.	They	enable	us	to	export	and	import	several	entity	types,	such	as
Advanced	Pricing,	Products,	Customers	Main	File,	and	Customer	Addresses.

The	following	screenshot	shows	the	Entity	Type	options	for	the	Import	Settings	screen:

Next	to	Import	Settings,	when	we	select	Entity	Type	for	import,	the	Import	Behavior
section	appears,	as	shown	in	the	following	screenshot:

Most	entity	types	have	similar	options	for	Import	Behavior.	Most	of	the	time,	we	will	be
interested	in	the	Add/Update	behavior.

Since	importing	is	a	bit	more	complicated	process	than	exporting,	we	will	focus	on
importing	and	the	CSV	file	format.	More	specifically,	our	focus	is	on	Products,
Customers	Main	File,	and	Customer	Addresses	imports.

When	working	with	a	clean	Magento	installation,	the	following	columns	are	required
during	the	product	import	in	order	to	make	the	product	visible	on	the	storefront
afterwards:

sku	(for	example,	“test-sku”):	This	can	have	almost	any	value	as	long	as	it	is	unique
across	Magento.
attribute_set_code	(for	example,	“Default”):	This	can	have	any	of	the	values
found	in	a	database	when	the	SELECT	DISTINCT	attribute_set_name	FROM
eav_attribute_set;	query	is	executed.
product_type	(for	example,	“simple”):	This	can	have	the	values	of	simple,
configurable,	grouped,	virtual,	bundle,	or	downloadable.	Additionally,	if	we
create	or	install	a	third-party	module	that	adds	a	new	product	type,	we	can	use	that
one	as	well.
categories	(for	example,	“Root/Shoes”):	Create	a	full	category	path	using	the
“Root	category	name/Child	category	name/Child	child	category	name”	syntax.	If
there	are	multiple	categories,	then	a	pipe	(“|”)	is	used	to	separate	them.	An	example
of	this	is	“Root	category	name/Child	category	name/Child	child	category	name|	Root
category	name/Child_2	category	name”.
product_websites	(for	example,	“base”):	This	can	have	the	values	found	in	a
database	when	the	SELECT	DISTINCT	code	FROM	store_website;	query	is	executed.
name	(for	example,	“Test”):	This	can	have	almost	any	value.
product_online	(for	example,	“1”):	This	can	be	either	1	for	visible	or	0	for	not
visible

visibility	(for	example,	“Catalog,	Search”):	This	can	have	the	values	of	“Not
Visible	Individually”,	“Catalog”,	“Search”,	or	“Catalog,	Search”.
price	(for	example,	“9.99”):	This	can	be	an	integer	or	a	decimal	value.
qty	(for	example,	“100”):	This	can	be	an	integer	or	a	decimal	value.

Though	the	products	will	get	imported	just	with	the	preceding	list	that	comprises	a	set	of
columns,	we	usually	would	like	to	assign	additional	information	to	them,	such	as
descriptions	and	images.	We	can	do	so	with	the	help	of	the	following	columns:

description	(for	example,	“The	description”):	This	can	have	any	string	value.
HTML	and	JavaScript	are	supported.
short_description	(for	example,	“The	short	description”):	This	can	have	any	string
value.	HTML	and	JavaScript	are	supported.
base_image	(for	example,	butterfly.jpg):	This	is	the	final	import	image	name.
small_image	(for	example,	galaxy.jpg)
thumbnail_image	(for	example,	serenity.jpg)

Regarding	the	importing	of	images,	we	only	need	to	provide	the	final	image	name	as	long
as	the	Images	File	Directory	path	is	set	during	the	import.	We	can	use	a	relative	path	for
the	Magento	installation,	such	as	var/export,	var/import,	var/export/some/dir.

Once	the	import	is	finished,	it	is	suggested	to	run	the	php	bin/magento	indexer:reindex
command	via	the	console.	Otherwise,	the	products	won’t	be	visible	on	the	storefront	until
the	indexer	is	run.

Once	the	reindexing	is	done,	we	can	try	opening	the	storefront	URL,	which	looks	like
http://magento2.ce/index.php/catalog/product/view/id/1.	The	number	1	in	this
case	is	a	newly	imported	product	ID.

When	working	with	a	clean	Magento	installation,	the	following	columns	are	required
during	a	customer’s	main	file	import	in	order	for	our	customer	to	be	able	to	successfully
log	in	to	the	storefront	afterwards:

email	(for	example,	<john.doe@fake.mail>):	an	e-mail	address	as	a	string	value
_website	(for	example,	base):	This	can	have	any	of	the	values	found	in	the	database
when	the	SELECT	DISTINCT	code	FROM	store_website;	query	is	executed
firstname	(for	example,	John):	a	string	value
lastname	(for	example,	Doe):	a	string	value
group_id	(for	example,	1):	This	can	have	any	of	the	values	found	in	the	database
when	the	SELECT	customer_group_id	code	FROM	customer_group	WHERE
customer_group_id	!=	0;	query	is	executed

Though	a	customer	will	be	able	to	log	in	to	the	storefront	with	just	the	previously	listed	set
of	columns,	we	usually	would	like	to	assign	other	relevant	pieces	of	information.	We	can
do	so	with	the	help	of	the	following	columns:

gender	(for	example,	Male):	This	can	be	either	Male	or	Female
taxvat	(for	example,	HR33311122299):	any	valid	VAT	number,	though	an	import
will	accept	even	the	invalid	ones
dob	(for	example,	1983-01-16):	date	of	birth
prefix	(for	example,	Mr):	any	string	value
middlename	(for	example,	the	dev	guy):	any	string	value
suffix	(for	example,	engineer):	any	string	value
password	(for	example,	123abc):	any	string	value	that	has	a	minimum	length	of	6
characters,	as	defined	via
\Magento\CustomerImportExport\Model\Import\Customer::MIN_PASSWORD_LENGTH

We	need	to	pay	special	attention	to	the	password	column.	This	is	a	clear	text	password.
Therefore,	we	need	to	be	careful	not	to	distribute	a	CSV	file	in	a	nonsecure	manner.
Ideally,	we	can	provide	the	password_hash	column	instead	of	password.	However,	entries
under	the	password_hash	column	will	need	to	be	hashed	via	the	same	algorithm	as	the	one
that	was	called	within	the	hashPassword	method	of	the
Magento\Customer\Model\Customer	class.	This	further	calls	the	getHash	method	on	an
instance	of	the	Magento\Framework\Encryption\Encryptor	class,	which	finally	resolves
to	the	md5	or	sha256	algorithm.

mailto:john.doe@fake.mail

When	working	with	a	clean	Magento	installation,	the	following	columns	are	required
during	the	customer	address	import	in	order	for	our	customers	to	be	able	to	successfully
use	the	addresses	on	the	storefront	afterwards:

_website	(for	example,	base):	This	can	have	any	of	the	values	found	in	the	database
when	the	SELECT	DISTINCT	code	FROM	store_website;	query	is	executed
_email	(for	example,	<john@change.me>):	an	e-mail	address	as	a	string	value
_entity_id

firstname	(for	example,	John):	any	string	value
lastname	(for	example,	Doe):	any	string	value
street	(for	example,	Ashton	Lane):	any	string	value
city	(for	example,	Austin):	any	string	value
telephone	(for	example,	00	385	91	111	000):	any	string	value
country_id	(for	example,	GB):	the	country	code	in	the	ISO-2	format
postcode	(for	example,	TX	78753):	any	string	value

Though	a	customer	will	be	able	to	use	the	addresses	on	the	storefront	with	just	a	listed	set
of	columns,	we	usually	would	like	to	assign	other	relevant	pieces	of	information.	We	can
do	so	with	the	help	of	the	following	columns:

region	(for	example,	California):	This	can	be	blank,	a	free	form	string,	or	a	specific
string	that	matches	any	of	the	values	found	in	the	database	when	the	SELECT
DISTINCT	default_name	FROM	directory_country_region;	query	is	executed.	On
running	SELECT	DISTINCT	country_id	FROM	directory_country_region;,	13
different	country	codes	that	have	entries	within	the	directory_country_region	table
are	shown—AT,	BR,	CA,	CH,	DE,	EE,	ES,	FI,	FR,	LT,	LV,	RO,	US.	This	means	that	countries
with	that	code	need	to	have	a	proper	region	name	assigned.
company	(for	example,	Foggyline):	This	can	be	any	string	value.
fax	(for	example,	00	385	91	111	000):	This	can	be	any	string	value.
middlename	(for	example,	the	developer):	This	can	be	any	string	value.
prefix	(for	example,	Mr):	This	can	be	any	string	value.
suffix	(for	example,	engineer):	This	can	be	any	string	value.
vat_id	(for	example,	HR33311122299):	This	can	be	any	valid	VAT	number,	though
import	will	accept	even	the	non-valid	ones.
_address_default_billing_	(for	example,	“1”):	This	can	be	either	“1”	as	yes	or	“0”
as	no,	to	flag	the	address	as	being	the	default	billing	address.
_address_default_shipping_	(for	example,	“1”):	This	can	be	either	“1”	as	yes	or
“0”	as	no,	to	flag	the	address	as	being	default	shipping	address.

While	CSV	imports	are	a	great	and	relatively	fast	way	to	mass	import	products,	customers,
and	their	addresses,	there	are	some	limitations	to	it.	CSV	is	simply	flat	data.	We	cannot
apply	any	logic	to	it.	Depending	on	how	clean	and	valid	the	data	is,	the	CSV	import	might
do	just	fine.	Otherwise,	we	might	want	to	opt	for	APIs.	We	need	to	keep	in	mind	that	a
CSV	import	is	much	faster	than	the	API	creation	of	products	and	customers	because	CSV
imports	work	directly	by	bulk	inserting	on	the	database,	while	APIs	instantiate	full
models,	respect	the	event	observers,	and	so	on.

mailto:john@change.me

The	custom	product	types
Magento	provides	the	following	six	out-of-the-box	product	types:

Simple	products
Configurable	products
Grouped	products
Virtual	products
Bundle	products
Downloadable	products

Each	product	has	its	specifics.	For	example,	the	virtual	and	downloadable	products	do	not
have	the	weight	attribute.	Therefore,	they	are	excluded	from	the	standard	shipping
calculations.	With	custom	coding	around	built-in	product	types,	by	using	observers	and
plugins	we	can	achieve	almost	any	functionality.	However,	this	is	not	enough	sometimes
or	there	is	no	solution	to	the	requirement.	In	cases	such	as	these,	we	might	need	to	create
our	own	product	type	that	will	match	the	project	requirements	in	a	more	streamlined	way.

Let’s	create	a	miniature	module	called	Foggyline_DailyDeal	that	will	add	a	new	product
type	to	Magento.

Start	by	creating	a	module	registration	file	named
app/code/Foggyline/DailyDeal/registration.php	that	has	the	following	partial
content:

\Magento\Framework\Component\ComponentRegistrar::register(

				\Magento\Framework\Component\ComponentRegistrar::MODULE,

				'Foggyline_DailyDeal',

				__DIR__

);

Then,	create	an	app/code/Foggyline/DailyDeal/etc/module.xml	with	the	following
content:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module	

/etc/module.xsd">

				<module	name="Foggyline_DailyDeal"	setup_version="1.0.0">

								<sequence>

												<module	name="Magento_Catalog"/>

								</sequence>

				</module>

</config>

Now,	create	an	app/code/Foggyline/DailyDeal/etc/product_types.xml	file	that	has
the	following	content:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:	

Magento_Catalog:etc/product_types.xsd">

				<type	name="foggylinedailydeal"

										label="Daily	Deal"

										modelInstance="Foggyline\DailyDeal\Model\Product\Type	\DailyDeal"

										composite="false"

										isQty="true"

										canUseQtyDecimals="false">

								<priceModel	instance="Foggyline\DailyDeal\Model	\Product\Price"/>

								<indexerModel	instance="Foggyline\DailyDeal\Model	

\ResourceModel\Indexer\Price"/>

								<stockIndexerModel	instance="Foggyline\DailyDeal\Model	

\ResourceModel\Indexer\Stock"/>

								<!--	customAttributes	parsed	by	

Magento\Catalog\Model\ProductTypes\Config	-->

								<customAttributes>

												<attribute	name="is_real_product"	value="true"/>

												<attribute	name="refundable"	value="false"/>

												<attribute	name="taxable"	value="true"/>

								</customAttributes>

				</type>

</config>

The	customAttributes	element	is	parsed	by	vendor/magento/module-
catalog/Model/ProductTypes/Config.php.

Create	an	app/code/Foggyline/DailyDeal/Model/Product/Type/DailyDeal.php	file
with	partial	content,	as	follows:

namespace	Foggyline\DailyDeal\Model\Product\Type;

class	DailyDeal	extends	\Magento\Catalog\Model\Product\Type\AbstractType

{

				const	TYPE_DAILY_DEAL	=	'foggylinedailydeal';

				public	function	deleteTypeSpecificData	(\Magento\Catalog\Model\Product	

$product)

				{

								//	TODO:	Implement	deleteTypeSpecificData()	method.

				}

}

Now,	create	an	app/code/Foggyline/DailyDeal/Model/Product/Price.php	file	with
partial	content,	as	follows:

namespace	Foggyline\DailyDeal\Model\Product;

class	Price	extends	\Magento\Catalog\Model\Product\Type\Price

{

}

After	this	is	done,	create	an
app/code/Foggyline/DailyDeal/Model/ResourceModel/Indexer/Price.php	file	with
partial	content,	as	follows:

namespace	Foggyline\DailyDeal\Model\ResourceModel\Indexer;

class	Price	extends	\Magento\Catalog\Model\ResourceModel\Product	

\Indexer\Price\DefaultPrice

{

}

Then,	create	an
app/code/Foggyline/DailyDeal/Model/ResourceModel/Indexer/Stock.php	file	with
partial	content,	as	follows:

namespace	Foggyline\DailyDeal\Model\ResourceModel\Indexer;

class	Stock	extends	\Magento\CatalogInventory\Model\ResourceModel	

\Indexer\Stock\DefaultStock

{

}

Finally,	create	an	app/code/Foggyline/DailyDeal/Setup/InstallData.php	file	with
partial	content,	as	follows:

namespace	Foggyline\DailyDeal\Setup;

class	InstallData	implements	\Magento\Framework\Setup\InstallDataInterface

{

				private	$eavSetupFactory;

				public	function	__construct(\Magento\Eav\Setup\EavSetupFactory	

$eavSetupFactory)

				{

								$this->eavSetupFactory	=	$eavSetupFactory;

				}

				public	function	install(

								\Magento\Framework\Setup\ModuleDataSetupInterface	$setup,

								\Magento\Framework\Setup\ModuleContextInterface	$context

)

				{

								//	the	"foggylinedailydeal"	type	specifics

				}

}

Extend	the	install	method	from	within	the	InstallData	class	by	adding	the	following
foggylinedailydeal	type	specifics	to	it:

$eavSetup	=	$this->eavSetupFactory->create(['setup'	=>	$setup]);

$type	=	\Foggyline\DailyDeal\Model\Product\Type\	

DailyDeal::TYPE_DAILY_DEAL;

$fieldList	=	[

				'price',

				'special_price',

				'special_from_date',

				'special_to_date',

				'minimal_price',

				'cost',

				'tier_price',

				'weight',

];

//	make	these	attributes	applicable	to	foggylinedailydeal	products

foreach	($fieldList	as	$field)	{

				$applyTo	=	explode(

								',',

								$eavSetup->getAttribute	(\Magento\Catalog\Model\Product::ENTITY,	

$field,	'apply_to')

);

				if	(!in_array($type,	$applyTo))	{

								$applyTo[]	=	$type;

								$eavSetup->updateAttribute(

												\Magento\Catalog\Model\Product::ENTITY,

												$field,

												'apply_to',

												implode(',',	$applyTo)

);

				}

}

Now,	run	php	bin/magento	setup:upgrade	from	the	console.

If	you	now	open	the	Products	|	Inventory	|	Catalog	menu	in	the	admin	area	and	click	on
the	dropdown	icon	next	to	the	Add	Product	button,	you	will	see	the	Daily	Deal	product
type	on	the	list,	as	shown	in	the	following	screenshot:

Clicking	on	the	Daily	Deal	product	type	in	the	dropdown	list	should	open	the	product	edit
page,	as	shown	in	the	following	screenshot:

There	is	no	noticeable	difference	between	the	custom	product	type	edit	screen	and	one	of
the	built-in	product	types.

Assuming	that	we	have	named	the	product	Daily	Deal	Test	Product	and	saved	it,	we
should	be	able	to	see	it	on	the	storefront,	as	shown	in	the	following	screenshot:

If	we	add	the	product	to	the	cart	and	perform	a	checkout,	an	order	should	be	created	just	as
with	any	other	product	type.	Within	the	admin	area,	on	the	order	view	page,	under	Items
Ordered,	we	should	be	able	to	see	the	product	on	the	list,	as	shown	in	the	following
screenshot:

Again,	there	is	no	noticeable	difference	between	the	custom	product	type	and	the	built-in
product	type	that	is	rendering	under	the	Items	Ordered	section.

Finally,	we	should	run	the	php	bin/magento	indexer:reindex	command	on	the	console.
Even	though	we	haven’t	really	implemented	any	code	within	the	indexers,	this	is	just	to
ensure	that	none	of	the	existing	indexers	broke.

The	entire	module	code	can	be	downloaded	from	https://github.com/ajzele/B05032-
Foggyline_DailyDeal.

https://github.com/ajzele/B05032-Foggyline_DailyDeal

Custom	offline	shipping	methods
Magento	provides	several	out-of-the-box	offline	shipping	methods,	such	as	Flatrate,
Freeshipping,	Pickup,	and	Tablerate.	We	can	see	those	in	the	vendor/magento/module-
offline-shipping/Model/Carrier	directory.

However,	project	requirements	quite	often	are	such	that	we	need	a	custom	coded	shipping
method	where	a	special	business	logic	is	applied.	Thus,	the	shipping	price	calculation	can
be	controlled	by	us.	In	such	cases,	knowing	how	to	code	our	own	offline	shipping	method
might	come	in	handy.

Let’s	go	ahead	and	create	a	small	module	called	Foggyline_Shipbox	that	provides
Magento	an	extra	offline	shipping	method.

Start	by	creating	a	module	registration	file	named
app/code/Foggyline/Shipbox/registration.php	with	partial	content,	as	follows:

\Magento\Framework\Component\ComponentRegistrar::register(

				\Magento\Framework\Component\ComponentRegistrar::MODULE,

				'Foggyline_Shipbox',

				__DIR__

);

Then,	create	an	app/code/Foggyline/Shipbox/etc/module.xml	file	with	the	following
content:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module	

/etc/module.xsd">

				<module	name="Foggyline_Shipbox"	setup_version="1.0.0">

								<sequence>

												<module	name="Magento_OfflineShipping"/>

								</sequence>

				</module>

</config>

Now,	create	an	app/code/Foggyline/Shipbox/etc/config.xml	file	with	content,	as
follows:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Store	

:etc/config.xsd">

				<default>

								<carriers>

												<shipbox>

																<active>0</active>

																<sallowspecific>0</sallowspecific>

																<model>	Foggyline\Shipbox\Model\Carrier\Shipbox</model>

																<name>Shipbox</name>

																<price>4.99</price>

																<title>Foggyline	Shipbox</title>

																<specificerrmsg>This	shipping	method	is	not	available.	To	

use	this	shipping	method,	please	contact	us.</specificerrmsg>

												</shipbox>

								</carriers>

				</default>

</config>

After	this	is	done,	create	an	app/code/Foggyline/Shipbox/etc/adminhtml/system.xml
file	with	content,	as	follows:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:	

Magento_Config:etc/system_file.xsd">

				<system>

								<section	id="carriers">

												<group	id="shipbox"	translate="label"	type="text"	

sortOrder="99"	showInDefault="1"	showInWebsite="1"	showInStore="1">

																<label>Foggyline	Shipbox</label>

																<field	id="active"	translate="label"	type="select"	

sortOrder="1"	showInDefault="1"	showInWebsite="1"	showInStore="0">

																				<label>Enabled</label>

																				<source_model>	Magento\Config\Model\Config\Source\Yesno	

</source_model>

																</field>

																<field	id="name"	translate="label"	type="text"	

sortOrder="3"	showInDefault="1"	showInWebsite="1"	showInStore="1">

																				<label>Method	Name</label>

																</field>

																<field	id="price"	translate="label"	type="text"	

sortOrder="5"	showInDefault="1"	showInWebsite="1"	showInStore="0">

																				<label>Price</label>

																				<validate>validate-number	validate-zero-or-

greater</validate>

																</field>

																<field	id="title"	translate="label"	type="text"	

sortOrder="2"	showInDefault="1"	showInWebsite="1"	showInStore="1">

																				<label>Title</label>

																</field>

																<field	id="sallowspecific"	translate="label"	type="select"	

sortOrder="90"	showInDefault="1"	showInWebsite="1"	showInStore="0">

																				<label>Ship	to	Applicable	Countries</label>

																				<frontend_class>shipping-applicable-country	

</frontend_class>

																				<source_model>	Magento\Shipping\Model\Config\Source	

\Allspecificcountries	</source_model>

																</field>

																<field	id="specificcountry"	translate="label"	

type="multiselect"	sortOrder="91"	showInDefault="1"	showInWebsite="1"	

showInStore="0">

																				<label>Ship	to	Specific	Countries</label>

																				<source_model>	Magento\Directory\Model	

\Config\Source\Country	</source_model>

																				<can_be_empty>1</can_be_empty>

																</field>

												</group>

								</section>

				</system>

</config>

Now,	create	an	app/code/Foggyline/Shipbox/Model/Carrier/Shipbox.php	file	with
partial	content,	as	follows:

namespace	Foggyline\Shipbox\Model\Carrier;

use	Magento\Quote\Model\Quote\Address\RateRequest;

class	Shipbox	extends	\Magento\Shipping\Model\Carrier\AbstractCarrier

				implements	\Magento\Shipping\Model\Carrier\CarrierInterface

{

				protected	$_code	=	'shipbox';

				protected	$_isFixed	=	true;

				protected	$_rateResultFactory;

				protected	$_rateMethodFactory;

				public	function	__construct(

								\Magento\Framework\App\Config\ScopeConfigInterface	$scopeConfig,

								\Magento\Quote\Model\Quote\Address\RateResult\ErrorFactory	

$rateErrorFactory,

								\Psr\Log\LoggerInterface	$logger,

								\Magento\Shipping\Model\Rate\ResultFactory	$rateResultFactory,

								\Magento\Quote\Model\Quote\Address\RateResult	\MethodFactory	

$rateMethodFactory,

								array	$data	=	[]

)

				{

								$this->_rateResultFactory	=	$rateResultFactory;

								$this->_rateMethodFactory	=	$rateMethodFactory;

								parent::__construct($scopeConfig,	$rateErrorFactory,	$logger,	

$data);

				}

				public	function	collectRates(RateRequest	$request)

				{

								//implement	business	logic

				}

				public	function	getAllowedMethods()

				{

								return	['shipbox'	=>	$this->getConfigData('name')];

				}

}

Extend	the	collectRates	method	in	the	Carrier\Shipbox	class,	as	follows:

public	function	collectRates(RateRequest	$request)

{

				if	(!$this->getConfigFlag('active'))	{

								return	false;

				}

				//Do	some	filtering	of	items	in	cart

				if	($request->getAllItems())	{

								foreach	($request->getAllItems()	as	$item)	{

												//$item->getQty();

												//$item->getFreeShipping()

												//$item->isShipSeparately()

												//$item->getHasChildren()

												//$item->getProduct()->isVirtual()

												//...

								}

				}

				//After	filtering,	start	forming	final	price

				//Final	price	does	not	have	to	be	fixed	like	below

				$shippingPrice	=	$this->getConfigData('price');

				$result	=	$this->_rateResultFactory->create();

				$method	=	$this->_rateMethodFactory->create();

				$method->setCarrier('shipbox');

				$method->setCarrierTitle($this->getConfigData('title'));

				$method->setMethod('shipbox');

				$method->setMethodTitle($this->getConfigData('name'));

				$method->setPrice($shippingPrice);

				$method->setCost($shippingPrice);

				$result->append($method);

				return	$result;

}

In	the	Magento	admin	area,	if	you	now	look	under	Stores	|	Settings	|	Configuration	|
Sales	|	Shipping	Methods,	you	will	see	Foggyline	Shipbox	on	the	list,	as	shown	in	the
following	screenshot:

Set	the	Enabled	option	to	Yes	and	click	the	Save	Config	button.

If	you	now	run	the	SELECT	*	FROM	core_config_data	WHERE	path	LIKE	"%shipbox%";
query	on	the	MySQL	server,	you	will	see	results	that	are	similar	to	the	ones	shown	in	the
following	screenshot:

Note	how	there	is	no	direct	code	within	the	code	snippets	in	the	preceding	screenshot	that
is	related	to	the	Ship	to	Applicable	Countries	and	Ship	to	Specific	Countries	options,
because	the	handling	of	these	options	is	built	into	the	parent	AbstractCarrier	class.
Thus,	simply	by	adding	the	sallowspecific	option	in	config.xml	and	system.xml,	we
enabled	a	feature	where	the	shipping	method	can	be	shown	or	hidden	from	certain
countries.

The	crux	of	the	implementation	comes	down	to	the	collectRates	method.	This	is	where
we	implement	our	own	business	logic	that	should	calculate	the	shipping	price	based	on	the
items	in	the	cart.	We	can	use	the	$request->getAllItems()in	the	collectRates	method
to	fetch	the	collection	of	all	the	cart	items,	traverse	through	them,	form	a	final	shipping
price	based	on	various	conditions,	and	so	on.

Now,	let’s	go	ahead	and	jump	to	the	storefront	in	order	to	test	the	checkout.	We	should	be
able	to	see	our	method	on	the	checkout,	as	shown	in	the	following	screenshot:

If	we	complete	one	order,	we	should	further	see	the	shipping	method	details	on	the	order
itself.	Within	the	admin	area,	under	Sales	|	Operations	|	Orders,	if	we	View	our	order	in
the	Payment	&	Shipping	Method	section,	we	should	see	the	shipping	method,	as	shown
in	the	following	screenshot:

Similarly,	in	the	Order	Totals	section,	we	should	see	the	shipping	amount	in	Shipping	&
Handling,	as	shown	in	the	following	screenshot:

With	this,	we	conclude	our	custom	offline	shipping	method	module.	The	full	module	can
be	found	at	https://github.com/ajzele/B05032-Foggyline_Shipbox.

https://github.com/ajzele/B05032-Foggyline_Shipbox

Custom	offline	payment	methods
Magento	provides	several	out-of-the-box	offline	payment	methods,	such	as	Banktransfer,
Cashondelivery,	Checkmo,	and	Purchaseorder.	You	can	see	them	in	the
vendor/magento/module-offline-payments/Model	directory.

When	it	comes	to	payment	methods,	it	is	more	common	to	use	an	online	payment	provider
(gateway),	such	as	PayPal	or	Braintree.	Sometimes,	project	requirements	may	be	such	that
we	may	need	a	custom	coded	payment	method.	You	will	need	to	think	of	programmatic
product	import	and	order	creation	script	that	might	specialize	in	some	specifically	labeled
payment	method.	Thus,	the	payment	process	will	be	controlled	by	us.

In	such	cases,	knowing	how	to	code	our	own	offline	payment	method	might	come	in
handy.	It	is	worth	noting	that	while	we	can	make	an	offline	payment	that	will	grab	a	user’s
credit	card	information,	it	is	not	really	advisable	to	do	so	unless	our	infrastructure	is	PCI-
compliant.

Let’s	go	ahead	and	create	a	small	module	called	Foggyline_Paybox	that	provides	Magento
an	extra	offline	payment	method.

Start	by	creating	a	module	registration	file	named
app/code/Foggyline/Paybox/registration.php	with	partial	content,	as	follows:

\Magento\Framework\Component\ComponentRegistrar::register(

				\Magento\Framework\Component\ComponentRegistrar::MODULE,

				'Foggyline_Paybox',

				__DIR__

);

Then,	create	an	app/code/Foggyline/Paybox/etc/module.xml	file	with	the	following
content:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module	

/etc/module.xsd">

				<module	name="Foggyline_Paybox"	setup_version="1.0.0">

								<sequence>

												<module	name="Magento_OfflinePayments"/>

								</sequence>

				</module>

</config>

After	this	is	done,	create	an	app/code/Foggyline/Paybox/etc/config.xml	file	with	the
following	content:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:	

Magento_Store:etc/config.xsd">

				<default>

								<payment>

												<paybox>

																<active>0</active>

																<model>Foggyline\Paybox\Model\Paybox</model>

																<order_status>pending</order_status>

																<title>Foggyline	Paybox</title>

																<allowspecific>0</allowspecific>

																<group>offline</group>

												</paybox>

								</payment>

				</default>

</config>

Then,	create	the	app/code/Foggyline/Paybox/etc/payment.xml	file	with	the	following
content:

<payment	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:	

Magento_Payment:etc/payment.xsd">

				<methods>

								<method	name="paybox">

												<allow_multiple_address>1</allow_multiple_address>

								</method>

				</methods>

</payment>

Now,	create	an	app/code/Foggyline/Paybox/etc/adminhtml/system.xml	file	with	the
following	content:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:	

Magento_Config:etc/system_file.xsd">

				<system>

								<section	id="payment">

												<group	id="paybox"	translate="label"	type="text"	sortOrder="30"	

showInDefault="1"	showInWebsite="1"	showInStore="1">

																<label>Paybox</label>

																<field	id="active"	translate="label"	type="select"	

sortOrder="1"	showInDefault="1"	showInWebsite="1"	showInStore="0">

																				<label>Enabled</label>

																				<source_model>	Magento\Config\Model\Config\Source\Yesno	

</source_model>

																</field>

																<field	id="order_status"	translate="label"	type="select"	

sortOrder="20"	showInDefault="1"	showInWebsite="1"	showInStore="0">

																				<label>New	Order	Status</label>

																				<source_model>	Magento\Sales\Model\Config	

\Source\Order\Status\NewStatus	</source_model>

																</field>

																<field	id="sort_order"	translate="label"	type="text"	

sortOrder="100"	showInDefault="1"	showInWebsite="1"	showInStore="0">

																				<label>Sort	Order</label>

																				<frontend_class>	validate-number</frontend_class>

																</field>

																<field	id="title"	translate="label"	type="text"	

sortOrder="10"	showInDefault="1"	showInWebsite="1"	showInStore="1">

																				<label>Title</label>

																</field>

																<field	id="allowspecific"	translate="label"	

type="allowspecific"	sortOrder="50"	showInDefault="1"	showInWebsite="1"	

showInStore="0">

																				<label>Payment	from	Applicable	Countries	</label>

																				<source_model>	Magento\Payment\Model\	

Config\Source\Allspecificcountries	</source_model>

																</field>

																<field	id="specificcountry"	translate="label"	

type="multiselect"	sortOrder="51"	showInDefault="1"	showInWebsite="1"	

showInStore="0">

																				<label>Payment	from	Specific	Countries</label>

																				<source_model>	Magento\Directory\Model	

\Config\Source\Country	</source_model>

																				<can_be_empty>1</can_be_empty>

																</field>

																<field	id="payable_to"	translate="label"	sortOrder="61"	

showInDefault="1"	showInWebsite="1"	showInStore="1">

																				<label>Make	Check	Payable	to</label>

																</field>

																<field	id="mailing_address"	translate="label"	

type="textarea"	sortOrder="62"	showInDefault="1"	showInWebsite="1"	

showInStore="1">

																				<label>Send	Check	to</label>

																</field>

																<field	id="min_order_total"	translate="label"	type="text"	

sortOrder="98"	showInDefault="1"	showInWebsite="1"	showInStore="0">

																				<label>Minimum	Order	Total</label>

																</field>

																<field	id="max_order_total"	translate="label"	type="text"	

sortOrder="99"	showInDefault="1"	showInWebsite="1"	showInStore="0">

																				<label>Maximum	Order	Total</label>

																</field>

																<field	id="model"></field>

												</group>

								</section>

				</system>

</config>

Create	an	app/code/Foggyline/Paybox/etc/frontend/di.xml	file	with	the	following
content:

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:	

ObjectManager/etc/config.xsd">

				<type	name="Magento\Checkout\Model\CompositeConfigProvider">

								<arguments>

												<argument	name="configProviders"	xsi:type="array">

																<item	name=	"offline_payment_paybox_config_provider"	

xsi:type="object">

																				Foggyline\Paybox\Model\PayboxConfigProvider

																</item>

												</argument>

								</arguments>

				</type>

</config>

After	this	is	done,	create	an	app/code/Foggyline/Paybox/Model/Paybox.php	file	with
the	following	content:

namespace	Foggyline\Paybox\Model;

class	Paybox	extends	\Magento\Payment\Model\Method\AbstractMethod

{

				const	PAYMENT_METHOD_PAYBOX_CODE	=	'paybox';

				protected	$_code	=	self::PAYMENT_METHOD_PAYBOX_CODE;

				protected	$_isOffline	=	true;

				public	function	getPayableTo()

				{

								return	$this->getConfigData('payable_to');

				}

				public	function	getMailingAddress()

				{

								return	$this->getConfigData('mailing_address');

				}

}

Now,	create	an	app/code/Foggyline/Paybox/Model/PayboxConfigProvider.php	file
with	the	following	content:

namespace	Foggyline\Paybox\Model;

class	PayboxConfigProvider	implements	

\Magento\Checkout\Model\ConfigProviderInterface

{

				protected	$methodCode	=	

\Foggyline\Paybox\Model\Paybox::PAYMENT_METHOD_PAYBOX_CODE;

				protected	$method;

				protected	$escaper;

				public	function	__construct(

								\Magento\Payment\Helper\Data	$paymentHelper

)

				{

								$this->method	=	$paymentHelper->getMethodInstance($this->	

methodCode);

				}

				public	function	getConfig()

				{

								return	$this->method->isAvailable()	?	[

												'payment'	=>	[

																'paybox'	=>	[

																				'mailingAddress'	=>	$this->	getMailingAddress(),

																				'payableTo'	=>	$this->getPayableTo(),

],

],

]	:	[];

				}

				protected	function	getMailingAddress()

				{

								$this->method->getMailingAddress();

				}

				protected	function	getPayableTo()

				{

								return	$this->method->getPayableTo();

				}

}

Copy	the	entire	vendor/magento/module-offline-
payments/view/frontend/layout/checkout_index_index.xml	Magento	core	file	into
the	app/code/Foggyline/Paybox/view/frontend/layout/checkout_index_index.xml
module.	Then,	edit	the	module’s	checkout_index_index.xml	file	by	replacing	the	entire
<item	name="offline-payments"	xsi:type="array">	element	and	its	children	with	the
following	code:

<item	name="foggline-offline-payments"	xsi:type="array">

				<item	name="component"	xsi:type="string">	

Foggyline_Paybox/js/view/payment/foggline-offline-payments	</item>

				<item	name="methods"	xsi:type="array">

								<item	name="paybox"	xsi:type="array">

												<item	name="isBillingAddressRequired"	

xsi:type="boolean">true</item>

								</item>

				</item>

</item>

Then,	create	an
app/code/Foggyline/Paybox/view/frontend/web/js/view/payment/offline-

payments.js	file	with	the	following	content:

/*browser:true*/

/*global	define*/

define(

				[

								'uiComponent',

								'Magento_Checkout/js/model/payment/renderer-list'

],

				function	(

								Component,

								rendererList

)	{

								'use	strict';

								rendererList.push(

												{

																type:	'paybox',

																component:	'Foggyline_Paybox/js/view/payment/method-	

renderer/paybox'

												}

);

								return	Component.extend({});

				}

);

After	this	is	done,	create	an
app/code/Foggyline/Paybox/view/frontend/web/js/view/payment/method-

renderer/paybox.js	file	with	the	following	content:

/*browser:true*/

/*global	define*/

define(

				[

								'Magento_Checkout/js/view/payment/default'

],

				function	(Component)	{

								'use	strict';

								return	Component.extend({

												defaults:	{

																template:	'Foggyline_Paybox/payment/paybox'

												},

												getMailingAddress:	function	()	{

																return	window.checkoutConfig.payment.	

paybox.mailingAddress;

												},

												getPayableTo:	function	()	{

																return	window.checkoutConfig.payment.	paybox.payableTo;

												}

								});

				}

);

Now,	create	an
app/code/Foggyline/Paybox/view/frontend/web/template/payment/paybox.html	file
with	the	following	content:

<div	class="payment-method"	data-bind="css:	{'_active':	(getCode()		==	

isChecked())}">

				<div	class="payment-method-title	field	choice">

								<input	type="radio"

															name="payment[method]"

															class="radio"

															data-bind="attr:	{'id':	getCode()},	value:	getCode(),	

checked:	isChecked,	click:	selectPaymentMethod,	visible:	

isRadioButtonVisible()"/>

								<label	data-bind="attr:	{'for':	getCode()}"	class="label"><span	

data-bind="text:	getTitle()"></label>

				</div>

				<div	class="payment-method-content">

								<div	class="payment-method-billing-address">

												<!--	ko	foreach:	$parent.getRegion(getBillingAddressFormName())	

-->

												<!--	ko	template:	getTemplate()	--><!--	/ko	-->

												<!--/ko-->

								</div>

								<!--	ko	if:	getMailingAddress()	||	getPayableTo()	-->

								<dl	class="items	check	payable">

												<!--	ko	if:	getPayableTo()	-->

												<dt	class="title"><!--	ko	i18n:	'Make	Check	payable	toooooo:'	-

-><!--	/ko	--></dt>

												<dd	class="content"><!--	ko	i18n:	getPayableTo()	-->	<!--	/ko	-

-></dd>

												<!--	/ko	-->

												<!--	ko	if:	getMailingAddress()	-->

												<dt	class="title"><!--	ko	i18n:	'Send	Check	toxyz:'—><!--	/ko	-

-></dt>

												<dd	class="content">

																<address	class="paybox	mailing	address"	data-bind	="html:	

$t(getMailingAddress())"></address>

												</dd>

												<!--	/ko	-->

								</dl>

								<!--	/ko	-->

								<div	class="checkout-agreements-block">

												<!--	ko	foreach:	$parent.getRegion('before-place-	order')	-->

												<!--	ko	template:	getTemplate()	--><!--	/ko	-->

												<!--/ko-->

								</div>

								<div	class="actions-toolbar">

												<div	class="primary">

																<button	class="action	primary	checkout"

																								type="submit"

																								data-bind="

																								click:	placeOrder,

																								attr:	{title:	$t('Place	Order')},

																								css:	{disabled:	!isPlaceOrderActionAllowed()},

																								enable:	(getCode()	==	isChecked())

																								"

																								disabled>

																				

																</button>

												</div>

								</div>

				</div>

</div>

With	this,	we	conclude	our	custom	offline	payment	method	module.	The	entire	module
can	be	found	at	https://github.com/ajzele/B05032-Foggyline_Paybox.

https://github.com/ajzele/B05032-Foggyline_Paybox

Summary
In	this	chapter,	we	touched	upon	some	of	the	most	common	bits	of	functionality	that
developers	come	in	contact	with.	We	learned	where	to	look	in	the	admin	area	and	how	to
programmatically	manage	the	entities	behind	these	functionalities.	Thus,	we	were
effectively	able	to	manually	and	programmatically	create	and	fetch	CMS	pages,	blocks,
categories,	and	products.	We	also	learned	how	to	create	product	and	customer	import
scripts.	Finally,	we	studied	how	to	create	our	own	custom	product	type,	simple	payment,
and	shipment	module.

The	following	chapter	will	guide	us	through	Magento’s	in-built	tests	and	how	we	can	use
them	to	effectively	QA	an	application	to	keep	it	healthy.

Chapter	11.	Testing
Software	testing	can	be	defined	as	a	critical	step	in	the	development	life	cycle.	This	step	is
often	silently	overlooked	by	a	number	of	developers	because	a	certain	amount	of	time
need	to	be	invested	into	writing	a	decent	test	suite	for	a	code	base.	Rather	than	being	a
single	one-time	activity,	writing	tests	is	a	process	that	follows	our	code	as	it	grows	and
changes.	Test	results	should,	at	any	given	time,	validate	and	verify	that	our	software	works
as	expected,	thus	meeting	the	business	and	technical	requirements.	Writing	tests	should
follow	writing	the	actual	application	code	early	on	in	the	life	cycle.	This	helps	prevent
defects	from	being	introduced	in	the	code.

On	a	high	level,	we	can	divide	tests	into	the	following	categories:

Static:	Application	code	is	not	executed	during	testing.	Possible	errors	are	found	by
inspecting	the	application	code	files	and	not	on	their	execution.
Dynamic:	Application	code	is	executed	during	testing.	Possible	errors	are	found
while	checking	for	functional	behavior	of	an	application.

In	this	chapter,	we	will	take	a	look	at	the	testing	options	that	Magento	offers.	Along	the
way,	we	will	build	a	basic	module	with	some	testing	features	in	it.

Types	of	tests
Magento	provides	several	types	of	tests	out	of	the	box.	We	can	see	a	list	of	these	tests	on
running	the	following	command	on	the	console	in	the	Magento	root	folder:

php	bin/magento	dev:tests:run	–help

The	result	of	the	command	is	an	output	that	looks	like	this:

Usage:

	dev:tests:run	[type]

Arguments:

	type	Type	of	test	to	run.	Available	types:	all,	unit,	integration,	

integration-all,	static,	static-all,	integrity,	legacy,	default	(default:	

"default")

This	output	originates	from	the	Console/Command/DevTestsRunCommand.php	file	in	the
core	Magento_Developer	module.	Looking	at	the	output,	we	might	say	that	there	are
actually	nine	types	of	tests,	which	are	as	follows:

all

unit

integration

integration-all

static

static-all

integrity

legacy

default

However,	these	are	not	unique	types	of	tests;	these	are	combinations,	as	we	will	soon	see.

Let’s	take	a	closer	look	at	the	code	in	the	DevTestsRunCommand	class	and	its
setupTestInfo	method.

The	setupTestInfo	method	defines	the	internal	commands	property,	as	follows:

$this->commands	=	[

				'unit'																			=>	['../tests/unit',	''],

				'unit-performance'							=>	['../tests/performance/	

framework/tests/unit',	''],

				'unit-static'												=>	['../tests/static/	framework/tests/unit',	

''],

				'unit-integration'							=>	['../tests/integration/	

framework/tests/unit',	''],

				'integration'												=>	['../tests/integration',	''],

				'integration-integrity'		=>	['../tests/integration',	'	

testsuite/Magento/	Test/Integrity'],

				'static-default'									=>	['../tests/static',	''],

				'static-legacy'										=>	['../tests/static',	'	

testsuite/Magento/Test/Legacy'],

				'static-integration-js'		=>	['../tests/static',	'	

testsuite/Magento/Test/	Js/Exemplar'],

];

Furthermore,	we	can	see	the	types	property	in	the	setupTestInfo	method	defined	in	the
following	way:

$this->types	=	[

				'all'													=>	array_keys($this->commands),

				'unit'												=>	['unit',	'unit-performance',	'unit-	static',	

'unit-integration'],

				'integration'					=>	['integration'],

				'integration-all'	=>	['integration',	'integration-integrity'],

				'static'										=>	['static-default'],

				'static-all'						=>	['static-default',	'static-legacy',	'static-

integration-js'],

				'integrity'							=>	['static-default',	'static-legacy',	'integration-

integrity'],

				'legacy'										=>	['static-legacy'],

				'default'									=>	[

								'unit',

								'unit-performance',

								'unit-static',

								'unit-integration',

								'integration',

								'static-default',

],

];

The	types	property	logically	groups	one	or	more	tests	into	a	single	name	that	is	found
under	the	commands	property.	We	can	see	how	like	unit	single	type	encompasses	the	unit,
unit-performance,	unit-static,	and	unit-integration	tests	in	it.	The	commands
property	points	to	the	disk	location	of	the	actual	test	library.	Relative	to	the	Magento	root
installation	folder,	tests	can	be	found	in	the	dev/tests/	directory.

Unit	testing
Unit	tests	are	designed	to	test	individual	class	methods	in	isolation,	asserting	all	possible
combinations	and	taking	care	of	the	smallest	testable	part	of	an	application.	Magento	uses
the	PHPUnit	testing	framework	for	its	unit	tests.	Being	highly	focused,	unit	tests	make	it
easy	to	identify	the	root	cause	of	issues	if	a	certain	test	fails.

We	can	specifically	trigger	the	unit	tests	from	the	root	of	the	Magento	installation	by	using
the	following	command:

php	bin/magento	dev:tests:run	unit

Once	triggered,	Magento	will	run	the	execute	command	in	the	vendor/magento/module-
developer/Console/Command/DevTestsRunCommand.php	file.	Since	the	unit	type	is
mapped	to	several	commands,	what	will	happen	internally	is	that	Magento	will	change	the
directories	from	one	directory	to	another,	as	follows:

dev/tests/unit

dev/tests/performance/framework/tests/unit

dev/tests/static/framework/tests/unit

dev/tests/integration/framework/tests/unit

We	can	say	that	all	of	these	directories	are	considered	unit	test	directories.

Within	each	of	those	directories,	Magento	internally	runs	the	passthru($command,
$returnVal)	method,	where	the	$command	parameter	gets	resolved	to	a	string	similar	to
the	following	one:

php	/www/magento2/./vendor/phpunit/phpunit/phpunit

The	PHPUnit	will	then	look	for	the	phpunit.xml	configuration	file	accordingly	in	each	of
these	directories.	If	phpunit.xml	does	not	exist,	we	need	to	copy	the	contents	of
phpunit.xml.dist	into	phpunit.xml.

Let’s	take	a	closer	look	at	the	dev/tests/unit/phpunit.xml	file	for	testsuite,	filter,
whitelist,	and	other	configuration	elements.

The	following	default	testsuite	directory	list	is	found	in	the
dev/tests/unit/phpunit.xml	file,	which	lists	the	directories	in	which	you	need	to	look
for	tests	files	prefixed	with	Test.php:

../../../app/code/*/*/Test/Unit

../../../dev/tools/*/*/Test/Unit

../../../dev/tools/*/*/*/Test/Unit

../../../lib/internal/*/*/Test/Unit

../../../lib/internal/*/*/*/Test/Unit

../../../setup/src/*/*/Test/Unit

../../../update/app/code/*/*/Test/Unit

../../../vendor/*/module-*/Test/Unit

../../../vendor/*/framework/Test/Unit

../../../vendor/*/framework/*/Test/Unit

The	list	is	relative	to	the	dev/tests/unit/	directory.	For	example,	if	we	take	a	look	at	the
first	line	in	the	preceding	code	and	then	look	at	the	Magento_Catalog	module,	it	is	clear
that	the	Test	files	are	found	under	the	app/code/<vendorName>/<moduleName>/Test/
directory	and	its	subdirectories.	Everything	suffixed	with	Test.php	in	these	folders	will
get	executed	as	a	part	of	a	unit	test.

Tip
If	we	were	building	our	own	module,	we	could	easily	make	a	copy	of
dev/tests/unit/phpunit.xml.dist,	properly	edit	testsuite	and	filter	>	whitelist
to	quickly	execute	only	our	module’s	unit	tests,	thus	saving	some	time	on	avoiding
frequent	execution	of	entire	Magento	unit	tests.

Integration	testing
Integration	tests	test	the	interaction	between	individual	components,	layers,	and	an
environment.	They	can	be	found	in	the	dev/tests/integration	directory.	Like	unit	tests,
Magento	also	uses	PHPUnit	for	integration	tests.	Thus,	the	difference	between	a	unit	and
an	integration	test	is	not	that	much	of	a	technical	nature;	rather,	it’s	of	a	logical	nature.

To	specifically	trigger	integration	tests	only,	we	can	execute	the	following	command	on
the	console:

php	bin/magento	dev:tests:run	integration

When	executed,	Magento	internally	changes	the	directory	to	dev/tests/integration	and
executes	a	command	that	is	similar	to	the	following	one:

php	/Users/branko/www/magento2/./vendor/phpunit/phpunit/phpunit

The	integration	directory	has	its	own	phpunit.xml.dist	file.	Looking	at	its	testsuite
definition,	we	can	see	that	it	is	pointing	to	all	the	Test.php	suffixed	files	that	are	found	in
the	dev/tests/integration/testsuite	directory.

Static	testing
Static	tests	do	not	really	run	the	code;	they	analyze	it.	They	are	used	to	verify	that	the
code	conforms	to	certain	coding	standards,	such	as	PSR-1.	We	can	find	them	under	the
dev/tests/static	directory.

To	specifically	trigger	static	tests	only,	we	can	execute	the	following	command	on	the
console:

php	bin/magento	dev:tests:run	static

When	executed,	Magento	internally	changes	the	directory	to	dev/tests/static	and
executes	a	command	that	is	similar	to	the	following	one:

php	/Users/branko/www/magento2/./vendor/phpunit/phpunit/phpunit

The	static	directory	has	its	own	phpunit.xml.dist	file.	Looking	at	its	testsuite
definition,	you	will	see	the	following	four	test	suites	defined:

JavaScript	static	code	analysis
PHP	coding	standard	verification
Code	integrity	tests
XSS	unsafe	output	test

JSHint,	a	JavaScript	code	quality	tool,	is	used	for	JavaScript	static	code	analysis.	For	PHP
code	standard	verification,	the	elements	of	PHP_CodeSniffer	libraries	are	used.
PHP_CodeSniffer	tokenizes	PHP,	JavaScript,	and	CSS	files	and	detects	violations	of	a
defined	set	of	coding	standards.

Integrity	testing
Integrity	tests	check	how	an	application	is	linked.	They	check	for	things	such	as	merged
configuration	validation.	Basically,	they	tell	us	if	your	application	should	be	able	to	run.

We	can	specifically	trigger	the	integrity	tests	from	the	root	of	the	Magento	installation	by
using	the	following	command:

php	bin/magento	dev:tests:run	integrity

When	this	is	executed,	Magento	first	internally	changes	the	directory	to
dev/tests/static	and	then	executes	two	commands	that	are	similar	to	the	following
ones:

php	/Users/branko/www/magento2/./vendor/phpunit/phpunit/phpunit

php	/Users/branko/www/magento2/./vendor/phpunit/phpunit/phpunit	

testsuite/Magento/Test/Legacy

Then,	Magento	internally	changes	the	directory	to	dev/tests/integration	and	executes
a	command	that	is	similar	to	the	following	one:

php	/Users/branko/www/magento2/./vendor/phpunit/phpunit/phpunit	

testsuite/Magento/Test/Integrity

Integration	tests	also	utilize	the	PHPUnit	to	write	the	actual	tests.

Legacy	testing
Legacy	tests	comprise	fragments	of	libraries	that	help	developers	port	their	modules	to	a
new	version	of	Magento.

We	can	trigger	legacy	tests	specifically	from	the	root	of	the	Magento	installation	by	using
the	following	command:

php	bin/magento	dev:tests:run	legacy

When	this	is	executed,	Magento	first	internally	changes	the	directory	to
/dev/tests/static	and	then	executes	a	command,	which	is	similar	to	the	following	one:

php	/Users/branko/www/magento2/./vendor/phpunit/phpunit/phpunit	

testsuite/Magento/Test/Legacy

Once	this	is	triggered,	the	code	runs	a	check	for	obsolete	access	lists,	connections,	menus,
responses,	system	configuration,	and	a	few	other	things.

Performance	testing
Performance	tests	can	be	found	under	the	setup/performance-toolkit/	directory.	These
tests	require	Apache	JMeter	to	be	installed	and	are	available	on	the	console	via	the	jmeter
command.	Apache	JMeter	can	be	downloaded	and	installed	by	following	the	instructions
at	http://jmeter.apache.org.

The	crux	of	the	performance	test	is	defined	in	the	benchmark.jmx	file,	which	can	be
opened	in	the	JMeter	GUI	tool,	as	shown	in	the	following	screenshot:

As	shown	in	the	preceding	screenshot,	the	default	benchmark.jmx	tests	are	sectioned	into
three	thread	groups	that	are	named	setUp	Thread	Group,	Customer	Checkout,	and
tearDown	Thread	Group.	We	might	want	to	additionally	click	on	each	group	and
configure	it	with	some	extra	parameters,	thus	possibly	changing	Number	of	Threads
(users),	as	shown	in	the	following	screenshot.	We	can	then	simply	save	the	changes	as
modifications	to	the	benchmark.jmx	file	or	a	file	with	new	name:

http://jmeter.apache.org

We	can	manually	trigger	a	performance	test	from	the	console	without	using	a	GUI
interface	by	running	the	following	command:

jmeter	-n	\

-t	/Users/branko/www/magento2/setup/performance-toolkit/benchmark.jmx	\

-l	/Users/branko/Desktop/jmeter-tmp/results.jtl	\

-Jhost="magento2.ce"	\

-Jbase_path="/"	\

-Jreport_save_path="/Users/branko/report"	\

-Jloops=2	\

-Jurl_suffix=".html"	\

-Jcustomer_email="john.doe@email.loc"	\

-Jcustomer_password="abc123"	\

-Jadmin_path="/admin_nwb0bx"	\

-Jadmin-user="john"	\

-Jadmin-password="abc123"	\

-Jresponse_time_file_name="/Users/branko/report/AggregateGraph.csv"	\

-Jsimple_product_url_key="simple-product-1"	\

-Jsimple_product_name="Simple	Product	1"	\

-Jconfigurable_product_url_key="configurable-product-1"	\

-Jconfigurable_product_name="Configurable	Product	1"	\

-Jcategory_url_key="category-1"	\

-Jcategory_name="Category	1"	\

-Jsleep_between_steps=50

The	console	parameters	that	are	listed	here	and	which	start	with	-J	also	match	the	names
of	the	Used	Defined	Variables	test	toolkit,	as	shown	in	the	preceding	screenshot.	We	need
to	be	careful	and	set	them	according	to	the	Magento	installation.	The	-n	parameter
instructs	jmeter	to	run	in	the	run	nongui	mode.	The	-t	parameter	is	where	we	set	the	path
of	the	test	(.jmx)	file	to	run.	The	-l	parameter	sets	the	file	where	we	need	to	log	samples
to.

Functional	testing
Functional	tests	mimic	the	user	interaction	with	our	application.	They	literally	mean
testing	in	the	form	of	browser	interaction,	which	involves	clicking	on	the	page,	adding
products	to	the	cart,	and	so	on.	For	this	purpose,	Magento	uses	Magento	Testing
Framework	(MTF).	It’s	a	PHP	wrapper	around	Selenium,	which	is	a	portable	software
testing	framework	for	web	applications.	MTF	is	not	available	out	of	the	box	via	the
console.	It	can	be	downloaded	at	https://github.com/magento/mtf.

The	following	requirements	need	to	be	met	before	installing	MTF:

Git	must	be	installed.
The	Firefox	browser	must	be	installed.
The	PHP	openssl	extension	must	be	installed	and	enabled.
Java	version	1.6	or	later	is	required	and	it’s	JAR	executable	must	be	in	the	system
PATH.
The	Selenium	standalone	server,	which	is	available	at	http://www.seleniumhq.org/,
needs	to	be	downloaded.	The	download	should	provide	a	JAR	file	that	we	will	later
need	to	refer	to.
Magento	must	be	installed	and	configured	to	not	use	the	secret	URL	key.	We	can	set
the	secret	URL	key	option	by	navigating	to	Stores	|	Configuration	|	Advanced	|
Admin	|	Security	|	Add	Secret	Key	to	URLs	[Yes/No]	and	setting	it	to	No.

Once	the	minimal	requirements	are	met,	we	can	install	MTF,	as	follows:

1.	 Run	the	composer	install	command	from	the	dev/tests/functional/	directory.
This	creates	a	new	directory	named	vendor;	MTF	is	pulled	from	the	Git	repository	at
https://github.com/magento/mtf.	We	should	see	a	new	directory	named	vendor	that	is
created	with	the	checked	off	MTF.	The	vendor	directory	contains	the	content	that	is
shown	in	the	following	screenshot:

https://github.com/magento/mtf
http://www.seleniumhq.org/
https://github.com/magento/mtf

2.	 Run	the	generate.php	file	from	the	dev/tests/functional/utils/	directory.	This
should	give	us	a	console	output	that	is	similar	to	the	following	one:

||	Item															||	Count	||	Time	||

||	Page	Classes							||	152			||	0				||

||	Fixture	Classes				||	46				||	0				||

||	Repository	Classes	||	67				||	0				||

||	Block														||	475			||	0				||

||	Fixture												||	100			||	0				||

||	Handler												||	3					||	0				||

||	Page															||	165			||	0				||

||	Repository									||	67				||	0				||

Note
The	generator	tool	creates	factories	for	fixtures,	handlers,	repositories,	page	objects,
and	block	objects.	When	MTF	is	initialized,	the	factories	are	pregenerated	to
facilitate	the	creation	and	running	of	tests.

Before	we	can	actually	run	the	tests,	there	are	a	few	more	things	that	we	need	to	configure,
as	follows:

1.	 Edit	the	dev/tests/functional/phpunit.xml	file.	Under	the	php	element,	for
name="app_frontend_url",	set	the	value	of	the	actual	URL	for	the	Magento
storefront	under	test.	For	name="app_backend_url",	set	the	value	of	the	actual	URL
for	the	Magento	admin	URL	under	test.	For	name="credentials_file_path",	set	the
value	of	./credentials.xml.

Tip
If	phpunit.xml	does	not	exist,	we	need	to	create	it	and	copy	the	contents	of
dev/tests/functional/phpunit.xml.dist	into	it	and	then	edit	it	afterwards.

2.	 Edit	the	dev/tests/functional/etc/config.xml	file.	Under	the	application
element,	find	and	edit	the	information	about	backendLogin,	backendPassword,	and
appBackendUrl	so	that	it	matches	that	of	our	store.

Tip
If	config.xml	does	not	exist,	we	need	to	create	it	and	copy	the	contents	of
dev/tests/functional/etc/config.xml.dist	into	it	and	then	edit	it	afterwards.

3.	 Edit	the	dev/tests/functional/credentials.xml	file.	Chances	are	that	we	will	not
need	this	on	a	blank	Magento	installation,	as	we	can	see	by	default	the	entries	for	the
fedex,	ups,	dhl	US,	and	dhl	EU	carriers,	which	haven’t	been	set	on	the	freshly
installed	Magento.

Tip
If	credentials.xml	does	not	exist,	we	need	to	create	it	and	copy	the	contents	of
dev/tests/functional/credentials.xml.dist	into	it	and	then	edit	it	afterwards.

4.	 Run	the	java	-jar	{selenium_directory}/selenium-server.jar	command	via

the	console.	This	is	to	ensure	that	the	Selenium	server	is	running.
5.	 Open	a	new	console	or	a	console	tab	and	execute	the	phpunit	command	in	the

dev/tests/functional/	directory.	This	command	should	open	the	Firefox	browser
and	start	running	test	cases	in	it,	simulating	a	user	clicking	on	the	browser	window
and	filling	in	the	form	inputs.

While	a	test	is	running,	Magento	will	log	all	the	failed	tests	under	the
dev/tests/functional/var/log	directory	in	a	structure	that	is	similar	to	the	one	shown
in	the	following	screenshot:

The	log	path	can	be	configured	in	the	dev/tests/functional/phpunit.xml	file	under	the
php	element	with	name="basedir".

If	we	want	to	target	a	specific	test	within	the	entire	test	suite,	we	can	simply	trigger	a
command	like	the	following	one	in	the	dev/tests/functional/	directory:

phpunit	tests/app/Magento/Customer/Test/TestCase	

/RegisterCustomerFrontendEntityTest.php

The	preceding	command	will	run	a	single	test	called
RegisterCustomerFrontendEntityTest.php.	We	can	also	use	a	shorter	form	expression
for	the	same	thing,	as	follows:

phpunit	--filter	RegisterCustomerFrontendEntityTest

Once	this	is	executed,	the	browser	should	open	and	simulate	the	customer	registration
process	on	the	storefront.

Writing	a	simple	unit	test
Now	that	we	took	a	quick	look	at	all	the	type	of	tests	that	Magento	offers,	let’s	take	a	step
back	and	look	at	unit	tests	again.	In	practice,	unit	tests	are	probably	the	ones	that	we	will
be	writing	most	of	the	time.	With	this	in	mind,	let’s	grab	the	Foggyline_Unitly	module
from	https://github.com/ajzele/B05032-Foggyline_Unitly	and	start	writing	unit	tests	for	it.

If	you	do	not	already	have	the	Foggyline_Unitly	module	in	the	code	base	that	was	a	part
of	the	previous	chapters,	then	you	need	to	place	its	content	under
app/code/Foggyline/Unitly	and	execute	the	following	commands	on	the	console	from
the	root	of	the	Magento	directory:

php	bin/magento	module:enable	Foggyline_Unitly

php	bin/magento	setup:upgrade

The	tests	that	we	will	write	reside	in	the	module’s	Test/Unit	directory.	This	makes	the
entire	path	of	the	test	directory	look	like	app/code/Foggyline/Unitly/Test/Unit/.
Magento	knows	that	it	needs	to	look	inside	this	folder	simply	because	of	the	test	suite
directory	definitions	found	in	the	dev/tests/unit/phpunit.xml	file,	as	shown	in	the
following	piece	of	code:

<directory	suffix="Test.php">

				../../../app/code/*/*/Test/Unit

</directory>

The	structure	of	files	and	the	folder	within	the	individual	module	Test/Unit	directory	also
follows	the	structure	of	that	module’s	files	and	folders.	The	following	screenshot	shows	a
structure	of	the	Test/Unit	directory	for	the	Magento_Catalog	module:

This	shows	that	almost	any	PHP	class	can	be	unit	tested	irrespective	of	the	fact	that	it	is	a
controller,	block,	helper,	module,	observer,	or	something	else.	To	keep	things	simple,	we
will	focus	on	the	controller	and	block	unit	tests	in	relation	to	the	Foggyline_Unitly
module,	which	is	structured	as	follows:

https://github.com/ajzele/B05032-Foggyline_Unitly

Let’s	start	by	first	writing	a	test	for	the	Foggyline\Unitly\Controller\Hello\Shout
controller	class.	The	Shout	class,	ignoring	the	__construct,	has	only	one	method	called
execute.

We	will	write	a	test	for	it	under	the	same	directory	structure,	relative	to	the	module’s
Test\Unit	directory,	placing	the	test	under	the
app/code/Foggyline/Unitly/Test/Unit/Controller/Hello/ShoutTest.php	file	with
(partial),	as	follows:

namespace	Foggyline\Unitly\Test\Unit\Controller\Hello;

class	ShoutTest	extends	\PHPUnit_Framework_TestCase

{

				protected	$resultPageFactory;

				protected	$controller;

				public	function	setUp()

				{

								/*	setUp()	code	here	*/

				}

				public	function	testExecute()

				{

								/*	testExecute()	code	here	*/

				}

}

Every	unit	test	in	the	Magento	module	directory	extends	from	the

\PHPUnit_Framework_TestCase	class.	The	setUp	method	is	called	before	the	test	is
executed;	we	can	think	of	it	as	PHP’s	__construct.	Here,	we	would	usually	set	up	the
fixtures,	open	a	network	connection,	or	perform	similar	actions.

The	testExecute	method	name	is	actually	formed	from	test	+	the	method	name	from	the
class	that	we	are	testing.	Since	the	Shout	class	has	an	execute	method,	the	test	method
formed	becomes	test	+	execute.	By	capitalizing	the	first	letter	of	the	class	method	name,
the	final	name	is	testExecute.

Now,	let’s	go	ahead	and	replace	/*	setUp()	code	here	*/	with	content.	as	follows:

$request	=	$this->getMock(

				'Magento\Framework\App\Request\Http',

				[],

				[],

				'',

				false

);

$context	=	$this->getMock(

				'\Magento\Framework\App\Action\Context',

				['getRequest'],

				[],

				'',

				false

);

$context->expects($this->once())

				->method('getRequest')

				->willReturn($request);

$this->resultPageFactory	=	$this->	getMockBuilder	

('Magento\Framework\View\Result\PageFactory')

				->disableOriginalConstructor()

				->setMethods(['create'])

				->getMock();

$this->controller	=	new	\Foggyline\Unitly\Controller\Hello\Shout(

				$context,

				$this->resultPageFactory

);

The	whole	concept	of	tests	is	based	on	mocking	the	objects	that	we	need	to	work	with.	We
use	the	getMock	method	that	returns	a	mock	object	for	a	specified	class.	Besides	the	class
name,	the	getMock	method	accepts	quite	a	bit	of	other	arguments.	The	second	$methods
parameter	marks	the	names	of	the	methods	that	are	replaced	with	a	test	double.	Providing
null	for	the	$methods	parameter	means	that	no	methods	will	be	replaced.	The	third
parameter	for	the	getMock	method	stands	for	$arguments,	which	are	parameters	that	are
passed	to	the	original	class	constructor.

We	can	see	from	the	preceding	code	that	the	$request	mock	object	does	not	provide	any
$methods	or	$arguments	parameters	to	its	getMock	method.	On	the	other	hand,	the
$context	object	passes	on	the	array	with	a	single	getRequest	element	in	it.	Once	the

$context	object	is	initialized,	it	then	calls	the	expects	method,	which	registers	a	new
expectation	in	the	mock	object	and	returns	InvocationMocker	on	which	we	call	method
and	willReturn.	In	this	case,	the	instance	on	the	previously	initiated	$request	object	is
passed	to	willReturn.	We	used	getMockBuilder	to	create	a	Result\PageFactory	mock
object	and	instantiated	the	Shout	controller	action	class,	passing	the	context	and	result
page	mocks	to	it.

All	the	code	in	this	setUp	method	served	a	purpose	in	getting	out	the	controller	instance,
which	will	be	used	in	the	testExecute	method.

Tip
The	final,	private,	and	static	methods	cannot	be	mocked.	They	are	ignored	by
PHPUnit’s	test	functionality	because	they	retain	their	original	behavior.

Let’s	go	ahead	and	replace	the	/*	testExecute()	code	here	*/	with	content,	as	follows:

$title	=	$this->	getMockBuilder('Magento\Framework\View\Page\Title')

				->disableOriginalConstructor()

				->getMock();

$title->expects($this->once())

				->method('set')

				->with('Unitly');

$config	=	$this->	getMockBuilder('Magento\Framework\View\Page\Config')

				->disableOriginalConstructor()

				->getMock();

$config->expects($this->once())

				->method('getTitle')

				->willReturn($title);

$page	=	$this->	getMockBuilder('Magento\Framework\View\Result\Page')

				->disableOriginalConstructor()

				->getMock();

$page->expects($this->once())

				->method('getConfig')

				->willReturn($config);

$this->resultPageFactory->expects($this->once())

				->method('create')

				->willReturn($page);

$result	=	$this->controller->execute();

$this->assertInstanceOf('Magento\Framework\View\Result\Page',	$result);

In	the	preceding	code,	we	checked	into	the	page	title,	page,	and	result	page	object.	To	get
to	the	page	title	from	within	the	controller	code,	we	would	normally	use	an	expression
such	as	$resultPage->getConfig()->getTitle().	This	expression	involves	three
objects.	The	$resultPage	object	calls	the	getConfig()	method,	which	returns	the
instance	of	the	Page\Config	object.	This	object	calls	for	the	getTitle	method,	which
returns	the	instance	of	the	Page\Title	object.	Thus,	we	are	mocking	and	testing	all	the
three	objects.

Now	that	we	took	a	look	at	the	controller	test	case,	let’s	see	how	we	can	make	one	for	the
block	class.	Create	an
app/code/Foggyline/Unitly/Test/Unit/Block/Hello/ShoutTest.php	file	with	partial
content,	as	follows:

namespace	Foggyline\Unitly\Test\Unit\Block\Hello;

class	ShoutTest	extends	\PHPUnit_Framework_TestCase

{

				/**

					*	@var	\Foggyline\Unitly\Block\Hello\Shout

					*/

				protected	$block;

				protected	function	setUp()

				{

								$objectManager	=	new	\Magento\Framework\TestFramework\Unit	

\Helper\ObjectManager($this);

								$this->block	=	$objectManager->	

getObject('Foggyline\Unitly\Block\Hello\Shout');

				}

				public	function	testGreeting()

				{

								$name	=	'Foggyline';

								$this->assertEquals(

												'Hello	'.$this->block->escapeHtml($name),

												$this->block->greeting($name)

);

				}

}

Here,	we	have	also	defined	the	setUp	method	and	testGreeting.	The	testGreeting
method	is	used	as	a	test	for	the	greeting	method	on	the	Shout	block	class.

Conceptually,	there	is	no	difference	between	unit	testing	a	controller,	block,	or	model
class.	Therefore,	we	will	omit	the	model	unit	test	in	this	example.	What’s	important	for
you	to	realize	is	that	the	test	is	what	we	make	of	it.	Technically	speaking,	we	can	test	a
single	method	for	various	cases	or	just	the	most	obvious	one.	However,	to	serve	the
purpose	of	the	tests	in	a	better	way,	we	should	test	it	for	any	possible	number	of	result
combinations.

Let’s	go	ahead	and	create	a	dev/tests/unit/foggyline-unitly-phpunit.xml	file	with
content,	as	follows:

<phpunit	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="http://schema.phpunit.de	/4.1/phpunit.xsd"

									colors="true"

									bootstrap="./framework/bootstrap.php"

								>

				<testsuite	name="Foggyline_Unitly	-	Unit	Tests">

								<directory	suffix="Test.php">

												../../../app/code/Foggyline/Unitly/Test/Unit

								</directory>

				</testsuite>

				<php>

								<ini	name="date.timezone"	value="Europe/Zagreb"/>

								<ini	name="xdebug.max_nesting_level"	value="200"/>

				</php>

				<filter>

								<whitelist	addUncoveredFilesFromWhiteList="true">

												<directory	suffix=".php">

																../../../app/code/Foggyline/Unitly/*

												</directory>

								</whitelist>

				</filter>

				<logging>

								<log	type="coverage-html"	

target="coverage_dir/Foggyline_Unitly/test-	reports/coverage"	charset="UTF-

8"	yui="true"	highlight="true"/>

				</logging>

</phpunit>

Finally,	we	can	execute	only	our	own	module	unit	tests	by	running	a	command	such	as
phpunit	-c	foggyline-unitly-phpunit.xml.

Once	tests	are	executed,	we	should	be	able	to	see	the	entire	code	coverage	report	in	the
dev/tests/unit/coverage_dir/Foggyline_Unitly/test-

reports/coverage/index.html	file,	as	shown	in	the	following	screenshot:

The	preceding	screenshot	demonstrates	how	detailed	the	code	coverage	is,	which	shows
even	the	percentages	and	lines	of	code	covered	with	test.

Summary
In	this	chapter,	we	took	a	look	at	the	testing	facility	embedded	in	Magento	through	the
libraries	in	the	root	dev/tests/	directory	and	the	Magento_Developer	module.	We
learned	how	to	run	all	of	its	test	types	and	studied	a	simple	example	of	writing	our	own
unit	tests.	The	examples	that	are	given	here	do	not	do	justice	to	PHPUnit,	given	its
robustness.	More	information	on	PHPUnit	can	be	found	at	https://phpunit.de/.

We	will	now	move	on	to	the	final	chapter	of	this	book,	where	we	will	reiterate	the	things
that	we	learned	so	far	and	develop	a	functional	miniature	module	that	involves	some	basic
testing.

https://phpunit.de/

Chapter	12.	Building	a	Module	from
Scratch
Based	on	the	knowledge	acquired	from	previous	chapters,	we	will	now	build	a	miniature
Helpdesk	module.	Though	miniature,	the	module	will	showcase	the	usage	of	several
important	Magento	platform	features	as	we	go	through	the	following	sections:

Registering	a	module	(registration.php	and	module.xml)
Creating	a	configuration	file	(config.xml)
Creating	e-mail	templates	(email_templates.xml)
Creating	a	system	configuration	file	(system.xml)
Creating	access	control	lists	(acl.xml)
Creating	an	installation	script	(InstallSchema.php)
Managing	entity	persistence	(model,	resource,	collection)
Building	a	frontend	interface
Building	a	backend	interface
Creating	unit	tests

Module	requirements
Module	requirements	are	defined	as	follows:

Name	used,	Foggyline/Helpdesk
Data	to	be	stored	in	table	is	called	foggyline_helpdesk_ticket
Tickets	entity	will	contain	ticket_id,	customer_id,	title,	severity,	created_at,
and	status	properties
The	customer_id	property	is	to	be	foreign	key	on	the	customer_entity	table
There	will	be	three	available	ticket	severity	values:	low,	medium,	and	high
If	not	specified,	the	default	severity	value	for	new	tickets	is	low
There	will	be	two	available	ticket	statuses:	opened	and	closed
If	not	specified,	the	default	status	value	for	new	tickets	is	opened
Two	e-mails	templates:	store_owner_to_customer_email_template	and
customer_to_store_owner_email_template	are	to	be	defined	for	pushing	e-mail
updates	upon	ticket	creation	and	status	change
Customers	will	be	able	to	submit	a	ticket	through	their	My	Account	section
Customers	will	be	able	to	see	all	of	their	previously	submitted	tickets	under	their	My
Account	section
Customers	will	not	be	able	to	edit	any	existing	tickets
Once	a	customer	submits	a	new	ticket,	transactional	e-mail	(let’s	call	it	Foggyline	–
Helpdesk	–	Customer	|	Store	Owner)	is	sent	to	the	store	owner
Configurable	option	is	required	for	possibly	overriding	Foggyline	–	Helpdesk	–
Customer	|	Store	Owner	e-mail
Admin	users	will	be	able	to	access	a	list	of	all	tickets	under	Customers	|	Helpdesk
Tickets
Admin	users	will	be	able	to	change	ticket	status	from	Opened	to	Closed	and	other
way	round
Once	an	admin	user	changes	the	ticket	status,	transactional	e-mail	(let’s	call	it
Foggyline	–	Helpdesk	–	Store	Owner	|	Customer)	is	sent	to	the	customer
Configurable	option	is	required	for	possibly	overriding	Foggyline	–	Helpdesk	–
Store	Owner	|	Customer	e-mail

With	the	requirements	outlined,	we	are	ready	to	begin	our	module	development.

Registering	a	module
We	first	start	by	defining	the	app/code/Foggyline/Helpdesk/registration.php	file
with	the	following	content:

<?php

\Magento\Framework\Component\ComponentRegistrar::register(

				\Magento\Framework\Component\ComponentRegistrar::MODULE,

				'Foggyline_Helpdesk',

				__DIR__

);

We	then	define	the	app/code/Foggyline/Helpdesk/etc/module.xml	file	with	the
following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module	

/etc/module.xsd">

				<module	name="Foggyline_Helpdesk"	setup_version="1.0.0">

								<sequence>

												<module	name="Magento_Store"/>

												<module	name="Magento_Customer"/>

								</sequence>

				</module>

</config>

Looking	at	the	preceding	file,	if	we	strip	away	the	boilerplate	that	repeats	itself	across	all
modules,	we	are	left	with	three	important	things	here:

The	module	name	attribute,	defined	as	Foggyline_Helpdesk.	We	need	to	be	sure	to
follow	a	certain	pattern	when	naming	our	modules,	like	Vendor	+	_	+	Module	name.
The	module	name	attribute	can	contain	only	letters	and	numbers	[A-Z,	a-z,	0-9,	_].
The	schema	setup_version	attribute	that	defines	our	module	version.	Its	value	can
contain	only	numbers	[0-9].	Our	example	sets	the	value	of	1.0.0	for	the
setup_version	attribute.
The	sequence	module	name	attribute,	which	defines	module	dependencies.	Our
module	basically	says	it	requires	Magento_Store	and	Magento_Customer	modules	to
be	enabled.

Once	this	file	is	in	place,	we	need	to	go	to	the	command	line,	change	the	directory	to	that
of	Magento	installation,	and	simply	execute	the	following	command:

php	bin/magento	module:enable	Foggyline_Helpdesk

However,	if	we	now	open	either	the	admin	of	the	frontend	area	in	our	browser,	we	might
get	an	error	page,	which	generates	the	following	error	under	the	var/reports/	folder:

Please	upgrade	your	database:	Run	"bin/magento	setup:upgrade"	from	the	

Magento	root	directory.

Luckily,	the	error	is	pretty	self-descriptive	so	we	simply	move	back	to	the	console,	change
the	directory	to	the	Magento	root	folder,	and	execute	the	following	command:

php	bin/magento	setup:upgrade

Executed	commands	will	activate	our	module.

We	can	confirm	that	by	looking	under	the	app/etc/config.php	file,	as	shown	in	the
following	screenshot	(on	line	33):

Further	if	we	log	in	to	the	admin	area,	and	go	to	Stores	|	Configuration	|	Advanced	|
Advanced,	we	should	see	our	module	listed	there,	as	shown	in	the	following	screenshot:

Creating	a	configuration	file	(config.xml)
Now	we	will	create	an	app/code/Foggyline/Helpdesk/etc/config.xml	file	with	the
content,	as	follows:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Store:	

etc/config.xsd">

				<default>

								<foggyline_helpdesk>

												<email_template>

																<customer>

																				foggyline_helpdesk_email_template_customer

																</customer>

																<store_owner>

																				foggyline_helpdesk_email_template_store_owner

																</store_owner>

												</email_template>

								</foggyline_helpdesk>

				</default>

</config>

This	might	look	confusing	at	first	as	to	where	the	default	|	foggyline_helpdesk	|
email_template	structure	comes	from.	The	structure	itself	denotes	the	position	of	our
configuration	values	that	we	will	map	to	the	administrative	interface	visible	in	our	browser
under	the	Stores	|	Configuration	section.	Given	that	all	things	visual	regarding	the	Stores
|	Configuration	section	originate	from	system.xml	files,	this	structure	we	have	now	in
config.xml	will	then	map	to	another	system.xml	file	we	will	define	soon.

Right	now,	just	remember	the	structure	and	the	values	contained	within	the	customer	and
store_owner	attributes.	These	values	will	further	map	to	another	email_templates.xml
file,	which	we	will	soon	create.

There	is	one	more	important	thing	regarding	the	config.xml	file.	We	need	to	be	very
careful	of	the	xsi:noNamespaceSchemaLocation	attribute	value.	This	value	needs	to	be	set
to	urn:magento:module:Magento_Store:etc/config.xsd.	It’s	an	alias	that	actually
points	to	the	vendor/magento/module-store/etc/config.xsd	file.

Creating	e-mail	templates
(email_templates.xml)
Our	module	requirements	specify	that	two	e-mail	templates	need	to	be	defined.	Hints	to
this	have	already	been	given	in	the	app/code/Foggyline/Helpdesk/etc/config.xml	file
previously	defined.	The	actual	definition	of	e-mail	templates	available	to	our	modules	is
done	through	the	app/code/Foggyline/Helpdesk/etc/email_templates.xml	file,	with
the	content	as	follows:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:	

Magento_Email:etc/email_templates.xsd">

				<template	id="foggyline_helpdesk_email_template_customer"	

label="Foggyline	Helpdesk	-	Customer	Email"

														file="store_owner_to_customer.html"	type="html"	

module="Foggyline_Helpdesk"	area="frontend"/>

				<template	id="foggyline_helpdesk_email_template_store_owner"	

label="Foggyline	Helpdesk	-	Store	Owner	Email"

														file="customer_to_store_owner.html"	type="html"	

module="Foggyline_Helpdesk"	area="frontend"/>

</config>

Looking	into	email_templates.xsd,	we	can	conclude	that	the	values	for	id,	label,	file,
type,	and	module	are	all	required.	id	should	be	defined	unique	to	our	module,	giving
some	sensible	and	reasonable	code	name	to	our	e-mail	templates,	as	this	code	name	is
going	to	be	used	further	in	other	XML	files	or	in	code.

What	we	defined	as	ID	values	here,	can	be	found	under
app/code/Foggyline/Helpdesk/etc/config.xml,	as	the	value	of	default	|
foggyline_helpdesk	|	email_template	|	customer	and	default	|	foggyline_helpdesk	|
email_template	|	store_owner	elements.

If	it	is	not	yet	fully	clear	what	the	connection	between	the	two	is;	we	will	get	to	it	when
we	start	building	our	system.xml	file	soon.

The	value	of	the	label	attribute	is	something	that	is	visible	later	on,	within	the	Magento
admin	area	under	Marketing	|	Communications	|	Email	Templates,	so	be	sure	to	put
something	user	friendly	and	easily	recognizable	here.

Further,	the	values	of	the	file	attribute	point	to	the	location	of	the	following	files:

app/code/Foggyline/Helpdesk/view/frontend/email/customer_to_store_owner.html

app/code/Foggyline/Helpdesk/view/frontend/email/store_owner_to_customer.html

The	content	of	the	files	will	be	set	such	that	later	on,	in	the	code,	we	will	need	to	pass	it	on
certain	variables	in	order	to	fill	in	the	variable	placeholders.

The	customer_to_store_owner.html	e-mail	template,	with	content	as	follows,	will	be
triggered	later	on	in	the	code	when	a	customer	creates	a	new	ticket:

<!--@subject	New	Ticket	Created	@-->

<h1>Ticket	#{{var	ticket.ticket_id}}	created</h1>

				Id:	{{var	ticket.ticket_id}}

				Title:	{{var	ticket.title}}

				Created_at:	{{var	ticket.created_at}}

				Severity:	{{var	ticket.severity}}

Later	on,	we	will	see	how	to	pass	the	ticket	object	as	a	variable	into	the	template,	in
order	to	enable	calls	like	{{var	ticket.title}}	within	the	HTML	template.

The	store_owner_to_customer.html	e-mail	template,	with	content	as	follows,	will	be
triggered	later	on	in	the	code	when	the	store	owner	changes	the	status	of	a	ticket:

<!--@subject	Ticket	Updated	@-->

<h1>Ticket	#{{var	ticket.ticket_id}}	updated</h1>

<p>Hi	{{var	customer_name}}.</p>

<p>Status	of	your	ticket	#{{var	ticket.ticket_id}}	has	been	updated</p>

				Title:	{{var	ticket.title}}

				Created_at:	{{var	ticket.created_at}}

				Severity:	{{var	ticket.severity}}

If	we	now	log	in	to	the	Magento	admin	area,	go	under	Marketing	|	Communications	|
Email	Templates,	click	on	the	Add	New	Template	button,	and	we	should	be	able	to	see
our	two	e-mail	templates	under	the	Template	drop-down,	as	shown	in	the	following
screenshot:

If	we	look	back	at	our	config.xml	and	email_templates.xml,	there	is	still	no	clear
connection	as	to	what	default	|	foggyline_helpdesk	|	email_template	|	customer	and
default	|	foggyline_helpdesk	|	email_template	|	store_owner	under	config.xml

actually	do.	That	is	because	we	still	lack	two	more	ingredients	that	will	link	them	together:
the	app/code/Foggyline/Helpdesk/etc/adminhtml/system.xml	and
app/code/Foggyline/Helpdesk/etc/acl.xml	files.

Creating	a	system	configuration	file
(system.xml)
The	system.xml	file	is	essentially	the	Stores	|	Configuration	interface	builder.	Entries	we
define	in	our	module’s	system.xml	file	will	render	certain	parts	of	the	Stores	|
Configuration	interface	under	the	Magento	admin	area.

Unlike	the	previous	two	XML	files,	this	configuration	file	is	located	under	an	additional
subfolder,	so	its	full	path	goes	like
app/code/Foggyline/Helpdesk/etc/adminhtml/system.xml,	with	content	as	follows:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:	

Magento_Config:etc/system_file.xsd">

				<system>

								<tab	id="foggyline"	translate="label"	sortOrder="200">

												<label>Foggyline</label>

								</tab>

								<section	id="foggyline_helpdesk"	translate="label"	type="text"	

sortOrder="110"	showInDefault="1"

																	showInWebsite="1"	showInStore="1">

												<label>Helpdesk</label>

												<tab>foggyline</tab>

												<resource>Foggyline_Helpdesk::helpdesk</resource>

												<group	id="email_template"	translate="label"	type="text"	

sortOrder="1"	showInDefault="1"	showInWebsite="1"	showInStore="1">

																<label>Email	Template	Options</label>

																<field	id="customer"	translate="label"	type="select"	

sortOrder="1"	showInDefault="1"	showInWebsite="1"	showInStore="1">

																				<label>

																								Store	Owner	to	Customer	Email	Template

																				</label>

																				<source_model>

																								Magento\Config\Model\Config\Source\	Email\Template

																				</source_model>

																</field>

																<field	id="store_owner"	translate="label"	type="select"	

sortOrder="1"	showInDefault="1"	showInWebsite="1"	showInStore="1">

																				<label>

																								Customer	to	Store	Owner	Email	Template

																				</label>

																				<source_model>

																								Magento\Config\Model\Config\Source\	Email\Template

																				</source_model>

																</field>

												</group>

								</section>

				</system>

</config>

Even	though	we	have	a	lot	going	on	in	this	file,	it	can	all	be	summed	up	in	a	few	important

bits.

Note
Determining	where	we	want	to	show	our	module	configuration	options	is	a	matter	of
choice.	Either	we	define	and	use	our	own	tab	or	we	use	an	existing	tab	from	one	of	the
core	modules.	It	really	comes	down	to	where	we	decide	to	put	our	configuration	options.

system.xml	defines	one	tab,	as	noted	by	the	tab	element	assigned	id	attribute	value	of
foggyline.	We	can	have	multiple	tabs	defined	under	a	single	system.xml	file.	The	tab
element	attribute	id	needs	to	be	unique	under	all	tabs,	not	just	those	defined	within	our
module.	Within	the	tab	element,	we	have	a	label	element	with	the	value	of	Foggyline.
This	value	is	what	shows	up	under	the	Magento	admin	Stores	|	Configuration	area.

The	final	results	should	be	as	shown	in	the	following	image:

Tip
Magento	has	six	pre-existing	tabs	defined	(General,	Service,	Advanced,	Catalog,
Customer,	Sales)	across	its	core	modules.	We	can	easily	get	a	list	of	all	defined	tabs	in
Magento	just	by	doing	a	search	for	the	tab	string,	filtering	only	on	files	named
system.xml.

Next	to	the	tab	element,	we	have	the	config	|	system	|	section	element.	This	is	the
element	within	which	we	further	define	what	are	to	become	HTML	input	fields	for
accepting	configuration	options,	as	visible	on	the	previous	image.

We	can	have	multiple	sections	defined	within	a	single	system.xml	file.	The	actual
section	element	attributes	require	us	to	specify	the	id	attribute	value,	which	in	our
example	is	set	to	foggyline_helpdesk.	Other	important	section	element	attributes	are
showInWebsite	and	showInStore.	These	can	have	either	0	or	1	as	a	value.	Depending	on

our	module	business	logic,	we	might	find	a	good	reason	for	choosing	one	value	over	the
other.

Looking	further,	the	elements	contained	within	our	section	element	are:

label:	This	specifies	the	label	we	will	see	under	the	Magento	admin	Store	|
Configuration	area.
tab:	This	specifies	the	ID	value	of	a	tab	under	which	we	want	this	section	to	appear,
which	in	our	case	equals	to	foggyline.
resource:	This	specifies	the	ACL	resource	ID	value.
group:	This	specifies	the	group	of	fields.	Similar	to	the	section	element,	it	also	has
id,	sortOrder,	showInWebsite,	and	showInStore	attributes.	Further,	the	group
element	has	child	field	elements,	which	translate	to	HTML	input	fields	under	the
Magento	admin	Store	|	Configuration	area.

We	defined	two	fields,	customer	and	store_owner.	Similar	to	section	and	group,	field
elements	also	have	id,	sortOrder,	showInWebsite,	and	showInStore	attributes.

Notice	how	field	further	contains	child	elements	that	define	its	options.	Given	that	our
field	element	type	attribute	was	set	to	select	with	both	fields,	we	needed	to	define	the
source_model	element	within	each	field.	Both	fields	have	the	same	source_model	value
which	points	to	the	Magento	core	class,
Magento\Config\Model\Config\Source\Email\Template.	Looking	into	that	class,	we
can	see	it	implements	\Magento\Framework\Option\ArrayInterface	and	defines	the
toOptionArray	method.	During	rendering	the	admin	Stores	|	Configuration	area,
Magento	will	call	this	method	to	fill	in	the	values	for	the	select	HTML	element.

Tip
Understanding	what	we	can	do	with	system.xml	comes	down	to	understanding	what	is
defined	under	vendor/magento/module-config/etc/system_file.xsd	and	studying
existing	Magento	core	module	system.xml	files	to	get	some	examples.

As	noted	previously,	our	system.xml	has	a	resource	element	that	points	to	the
app/code/Foggyline/Helpdesk/etc/acl.xml	file,	which	we	will	now	look	into.

Creating	access	control	lists	(acl.xml)
The	app/code/Foggyline/Helpdesk/etc/acl.xml	file	is	where	we	define	our	module
access	control	list	resources.	Access	control	list	resources	are	visible	under	the	Magento
admin	System	|	Permissions	|	User	Roles	area,	when	we	click	on	the	Add	New	Role
button,	as	shown	in	the	following	screenshot:

Looking	at	the	preceding	screenshot,	we	can	see	our	Helpdesk	Section	under	Stores	|
Settings	|	Configuration.	How	did	we	put	it	there?	We	have	defined	it	in	our
app/code/Foggyline/Helpdesk/etc/acl.xml	file	with	content	as	follows:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Acl/	etc/acl.xsd">

				<acl>

								<resources>

												<resource	id="Magento_Backend::admin">

																<resource	id="Magento_Customer::customer">

																				<resource	id="Foggyline_Helpdesk::	ticket_manage"	

title="Manage	Helpdesk	Tickets"	/>

																</resource>

																<resource	id="Magento_Backend::stores">

																				<resource	id="Magento_Backend::	stores_settings">

																								<resource	id="Magento_Config::config">

																												<resource	id=	"Foggyline_Helpdesk::helpdesk"	

title="Helpdesk	Section"	/>

																								</resource>

																				</resource>

																</resource>

												</resource>

								</resources>

				</acl>

</config>

Looking	at	the	provided	code,	the	immediate	conclusion	is	that	resources	can	be	nested
into	each	other.	It	is	unclear	how	we	should	know	where	to	nest	our	custom-defined
resource	with	an	ID	value	of	Foggyline_Helpdesk::helpdesk.	The	simple	answer	is	we
followed	the	Magento	structure.	By	looking	into	a	few	of	the	Magento	core	modules
system.xml	files	and	their	acl.xml	files,	a	pattern	emerged	where	modules	nest	their
resource	under	Magento_Backend::admin	|	Magento_Backend::stores	|
Magento_Backend::stores_settings	|	Magento_Config::config.	These	are	all	existing
resources	defined	in	core	Magento,	so	we	are	merely	referencing	them,	not	defining	them.
The	only	resource	we	are	defining	in	our	acl.xml	file	is	our	own,	which	we	are	then
referencing	from	our	system.xml	file.	We	can	define	other	resources	within	acl.xml	and
not	all	would	be	nested	into	the	same	structure	as	Foggyline_Helpdesk::helpdesk.

The	value	of	the	title	attribute	we	assign	to	a	resource	element	is	shown	in	the	admin
area,	as	in	the	previous	screenshot.

Tip
Be	sure	to	use	a	descriptive	label	so	that	our	module	resource	is	easily	recognizable.

Creating	an	installation	script
(InstallSchema.php)
InstallSchema,	or	install	script,	is	a	way	for	us	to	set	up	tables	in	the	database	that	will	be
used	to	persist	our	models	later	on.

If	we	look	back	at	the	module	requirements,	the	following	fields	need	to	be	created	in	the
foggyline_helpdesk_ticket	table:

ticket_id

customer_id

title

severity

created_at

status

Our	InstallSchema	is	defined	under	the
app/code/Foggyline/Helpdesk/Setup/InstallSchema.php	file	with	(partial)	content	as
follows:

<?php

namespace	Foggyline\Helpdesk\Setup;

use	Magento\Framework\Setup\InstallSchemaInterface;

use	Magento\Framework\Setup\ModuleContextInterface;

use	Magento\Framework\Setup\SchemaSetupInterface;

/**

	*	@codeCoverageIgnore

	*/

class	InstallSchema	implements	InstallSchemaInterface

{

				public	function	install(SchemaSetupInterface	$setup,	

ModuleContextInterface	$context)

				{

								$installer	=	$setup;

								$installer->startSetup();

								$table	=	$installer->getConnection()

												->newTable($installer->	getTable('foggyline_helpdesk_ticket'))

												/*	->addColumn…		*/

												/*	->addIndex…		*/

												/*	->addForeignKey…		*/

												->setComment('Foggyline	Helpdesk	Ticket');

								$installer->getConnection()->createTable($table);

								$installer->endSetup();

				}

}

The	InstallSchema	class	conforms	to	InstallSchemaInterface	by	implementing	a
single	install	method.	Within	this	method,	we	start	the	installer,	create	new	tables,	create
new	fields,	add	indexes	and	foreign	keys	to	the	table,	and	finally	end	the	installer,	as
shown	in	the	following	(partial)	code:

->addColumn(

				'ticket_id',

				\Magento\Framework\DB\Ddl\Table::TYPE_INTEGER,

				null,

				['identity'	=>	true,	'unsigned'	=>	true,	'nullable'	=>	false,	'primary'	

=>	true],

				'Ticket	Id'

)

->addColumn(

				'customer_id',

				\Magento\Framework\DB\Ddl\Table::TYPE_INTEGER,

				null,

				['unsigned'	=>	true],

				'Customer	Id'

)

->addColumn(

				'title',

				\Magento\Framework\DB\Ddl\Table::TYPE_TEXT,

				null,

				['nullable'	=>	false],

				'Title'

)

->addColumn(

				'severity',

				\Magento\Framework\DB\Ddl\Table::TYPE_SMALLINT,

				null,

				['nullable'	=>	false],

				'Severity'

)

->addColumn(

				'created_at',

				\Magento\Framework\DB\Ddl\Table::TYPE_TIMESTAMP,

				null,

				['nullable'	=>	false],

				'Created	At'

)

->addColumn(

				'status',

				\Magento\Framework\DB\Ddl\Table::TYPE_SMALLINT,

				null,

				['nullable'	=>	false],

				'Status'

)

->addIndex(

				$installer->getIdxName('foggyline_helpdesk_ticket',	['customer_id']),

				['customer_id']

)

->addForeignKey(

				$installer->getFkName('foggyline_helpdesk_ticket',	'customer_id',	

'customer_entity',	'entity_id'),

				'customer_id',

				$installer->getTable('customer_entity'),

				'entity_id',

				\Magento\Framework\DB\Ddl\Table::ACTION_SET_NULL

)

The	provided	code	shows	each	of	the	fields	from	the	module	requirement	being	added	to
the	database	using	the	addColumn	method	call	and	passing	it	certain	parameters	such	as	the
field	type	and	nullable	state.	It	is	worth	getting	familiar	with	the	addColumn,
addIndex,	and	addForeignKey	methods	as	these	are	most	commonly	used	when
specifying	new	tables	for	our	modules.

Tip
We	could	further	deepen	our	understanding	of	the	installation	script	by	studying	how	other
core	modules	handle	the	InstallSchema.php	file.	Following	a	good	database	design
practice,	we	should	always	create	indexes	and	foreign	keys	on	our	table	when	referencing
data	from	other	tables.

Managing	entity	persistence	(model,
resource,	collection)
With	InstallSchema	in	place,	we	now	have	conditions	for	entity	persistence.	Our	next
step	is	to	define	model,	resource,	and	collection	classes	for	the	Ticket	entity.

The	Ticket	entity	model	class	is	defined	under	the
app/code/Foggyline/Helpdesk/Model/Ticket.php	file	with	content	as	follows:

<?php

namespace	Foggyline\Helpdesk\Model;

class	Ticket	extends	\Magento\Framework\Model\AbstractModel

{

				const	STATUS_OPENED	=	1;

				const	STATUS_CLOSED	=	2;

				const	SEVERITY_LOW	=	1;

				const	SEVERITY_MEDIUM	=	2;

				const	SEVERITY_HIGH	=	3;

				protected	static	$statusesOptions	=	[

								self::STATUS_OPENED	=>	'Opened',

								self::STATUS_CLOSED	=>	'Closed',

];

				protected	static	$severitiesOptions	=	[

								self::SEVERITY_LOW	=>	'Low',

								self::SEVERITY_MEDIUM	=>	'Medium',

								self::SEVERITY_HIGH	=>	'High',

];

				/**

					*	Initialize	resource	model

					*	@return	void

					*/

				protected	function	_construct()

				{

								$this->_init('Foggyline\Helpdesk\Model\	ResourceModel\Ticket');

				}

				public	static	function	getSeveritiesOptionArray()

				{

								return	self::$severitiesOptions;

				}

				public	function	getStatusAsLabel()

				{

								return	self::$statusesOptions[$this->getStatus()];

				}

				public	function	getSeverityAsLabel()

				{

								return	self::$severitiesOptions[$this->getSeverity()];

				}

}

Reading	the	preceding	code,	we	see	it	extends	the
\Magento\Framework\Model\AbstractModel	class,	which	further	extends	the
\Magento\Framework\Object	class.	This	brings	a	lot	of	extra	methods	into	our	Ticket
model	class,	such	as	load,	delete,	save,	toArray,	toJson,	toString,	toXml,	and	so	on.

The	only	actual	requirement	for	us	is	to	define	the	_construct	method	that,	through	the
_init	function	call,	specifies	the	resource	class	the	model	will	be	using	when	persisting
data.	We	have	set	this	value	to	Foggyline\Helpdesk\Model\ResourceModel\Ticket,
which	will	be	the	next	class	we	will	define,	the	so-called	resource	class.

We	have	further	defined	several	constants,	STATUS_*	and	SEVERITY_*,	as	a	sign	of	good
programming	practice	and	not	to	hardcode	values	that	we	will	use	across	the	code,	which
we	can	centralize	into	a	class	constant.	These	constants,	in	a	way,	map	to	our	module
requirements.

Additionally,	we	have	three	additional	methods	(getSeveritiesOptionArray,
getStatusAsLabel,	and	getSeverityAsLabel)	that	we	will	use	later	on	in	our	block	class
and	template	file.

The	Ticket	entity	resource	class	is	defined	under
app/code/Foggyline/Helpdesk/Model/ResourceModel/Ticket.php	with	content	as
follows:

<?php

namespace	Foggyline\Helpdesk\Model\ResourceModel;

class	Ticket	extends	\Magento\Framework\Model\ResourceModel\Db\AbstractDb

{

				/**

					*	Initialize	resource	model

					*	Get	table	name	from	config

					*

					*	@return	void

					*/

				protected	function	_construct()

				{

								$this->_init('foggyline_helpdesk_ticket',	'ticket_id');

				}

}

We	can	see	the	code	extends	the
\Magento\Framework\Model\ResourceModel\Db\AbstractDb	class,	which	further
extends	the	\Magento\Framework\Model\ResourceModel\AbstractResource	class.	This
brings	a	lot	of	extra	methods	into	our	Ticket	resource	class,	such	as	load,	delete,	save,
commit,	rollback,	and	so	on.

The	only	actual	requirement	for	us	is	to	define	the	_construct	method,	through	which	we

call	the	_init	function	that	accepts	two	parameters.	The	first	parameter	of	the	_init
function	specifies	the	table	name	foggyline_helpdesk_ticket	and	the	second	parameter
specifies	identifying	the	ticket_id	column	within	that	table	where	we	will	be	persisting
data.

Finally,	we	define	the	Ticket	entity	collection	class	under
app/code/Foggyline/Helpdesk/Model/ResourceModel/Ticket/Collection.php	with
content	as	follows:

<?php

namespace	Foggyline\Helpdesk\Model\ResourceModel\Ticket;

class	Collection	extends	\Magento\Framework\Model\	

ResourceModel\Db\Collection\AbstractCollection

{

				/**

					*	Constructor

					*	Configures	collection

					*

					*	@return	void

					*/

				protected	function	_construct()

				{

								$this->_init('Foggyline\Helpdesk\Model\Ticket',	

'Foggyline\Helpdesk\Model\ResourceModel\Ticket');

				}

}

The	collection	class	code	extends	the
\Magento\Framework\Model\ResourceModel\Db\Collection\AbstractCollection

class,	which	further	extends	the	\Magento\Framework\Data\Collection\AbstractDb
class,	which	further	extends	\Magento\Framework\Data\Collection.	The	final	parent
collection	class	then	implements	the	following	interfaces:	\IteratorAggregate,
\Countable,	Magento\Framework\Option\ArrayInterface,	and
Magento\Framework\Data\CollectionDataSourceInterface.	Through	this	deep
inheritance,	a	large	number	of	methods	become	available	to	our	collection	class,	such	as
count,	getAllIds,	getColumnValues,	getFirstItem,	getLastItem,	and	so	on.

With	regard	to	our	newly	defined	collection	class,	the	only	actual	requirement	for	us	is	to
define	the	_construct	method.	Within	the	_construct	method,	we	call	the	_init	function
to	which	we	pass	two	parameters.	The	first	parameter	specifies	the	Ticket	model	class
Foggyline\Helpdesk\Model\Ticket	and	the	second	parameter	specifies	the	Ticket
resource	class	Foggyline\Helpdesk\Model\ResourceModel\Ticket.

The	three	classes	we	just	defined	(model,	resource,	collection)	act	as	an	overall	single
entity	persistence	mechanism.	With	the	currently	defined	code,	we	are	able	to	save,	delete,
update,	lookup	with	filtering,	and	list	our	Ticket	entities,	which	we	demonstrate	in	the
upcoming	sections.

Building	a	frontend	interface
Now	that	we	have	defined	the	necessary	minimum	for	data	persistence	functionality,	we
can	move	forward	to	building	a	frontend	interface.	The	module	requirement	says	that
customers	should	be	able	to	submit	a	ticket	through	their	My	Account	section.	We	will
therefore	add	a	link	called	Helpdesk	Tickets	under	the	customer’s	My	Account	section.

The	following	are	needed	for	a	fully	functional	frontend:

A	route	that	will	map	to	our	controller
A	controller	that	will	catch	requests	from	a	mapped	route
A	controller	action	that	will	load	the	layout
Layout	XMLs	that	will	update	the	view	making	it	look	as	if	we	are	on	the	My
Account	section	while	providing	content	of	our	own
A	block	class	to	power	our	template	file
A	template	file	that	we	will	render	into	the	content	area	of	a	page
A	controller	action	that	will	save	the	New	Ticket	form	once	it	is	posted

Creating	routes,	controllers,	and	layout	handles
We	start	by	defining	a	route	within	the
app/code/Foggyline/Helpdesk/etc/frontend/routes.xml	file	with	content	as	follows:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:App/	etc/routes.xsd">

				<router	id="standard">

								<route	id="foggyline_helpdesk"	frontName="foggyline_helpdesk">

												<module	name="Foggyline_Helpdesk"/>

								</route>

				</router>

</config>

Note	that	the	route	element	id	and	frontName	attributes	have	the	same	value,	but	they	do
not	serve	the	same	purpose,	as	we	will	see	soon.

Now	we	define	our	controller	app/code/Foggyline/Helpdesk/Controller/Ticket.php
file	with	content	as	follows:

<?php

namespace	Foggyline\Helpdesk\Controller;

abstract	class	Ticket	extends	\Magento\Framework\App\Action\Action

{

				protected	$customerSession;

				public	function	__construct(

								\Magento\Framework\App\Action\Context	$context,

								\Magento\Customer\Model\Session	$customerSession

)

				{

								$this->customerSession	=	$customerSession;

								parent::__construct($context);

				}

				public	function	dispatch(\Magento\Framework\App	\RequestInterface	

$request)

				{

								if	(!$this->customerSession->authenticate())	{

												$this->_actionFlag->set('',	'no-dispatch',	true);

												if	(!$this->customerSession->getBeforeUrl())	{

																$this->customerSession->setBeforeUrl($this->	_redirect-

>getRefererUrl());

												}

								}

								return	parent::dispatch($request);

				}

}

Our	controller	loads	the	customer	session	object	through	its	constructor.	The	customer
session	object	is	then	used	within	the	dispatch	method	to	check	if	the	customer	is
authenticated	or	not.	If	the	customer	is	not	authenticated,	all	frontend	actions	in	the

Internet	browser	that	lead	to	this	controller	will	result	in	the	customer	being	redirected	to
the	login	screen.

Once	the	controller	is	in	place,	we	can	then	define	the	actions	that	extend	from	it.	Each
action	is	a	class	file	on	its	own,	extending	from	the	parent	class.	We	will	now	define	our
index	action,	the	one	that	will	render	the	view	under	My	Account	|	Helpdesk	Tickets,
within	the	app/code/Foggyline/Helpdesk/Controller/Ticket/Index.php	file	with
content	as	follows:

<?php

namespace	Foggyline\Helpdesk\Controller\Ticket;

class	Index	extends	\Foggyline\Helpdesk\Controller\Ticket

{

				public	function	execute()

				{

								$resultPage	=	$this->resultFactory->create(\Magento	

\Framework\Controller\ResultFactory::TYPE_PAGE);

								return	$resultPage;

				}

}

Controller	action	code	lives	within	the	execute	method	of	its	class.	We	simply	extend
from	the	\Foggyline\Helpdesk\Controller\Ticket	controller	class	and	define	the
necessary	logic	within	the	execute	method.	Simply	calling	loadLayout	and	renderLayout
is	enough	to	render	the	page	on	the	frontend.

The	frontend	XML	layout	handles	reside	under	the
app/code/Foggyline/Helpdesk/view/frontend/layout	folder.	Having	the	route	ID,
controller,	and	controller	action	is	enough	for	us	to	determine	the	handle	name,	which
goes	by	formula	{route	id}_{controller	name}_{controller	action	name}.xml.	Thus,	we
define	an	index	action	layout	within	the
app/code/Foggyline/Helpdesk/view/frontend/layout/foggyline_helpdesk_ticket_index.xml

file	with	content	as	follows:

<?xml	version="1.0"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout	

/etc/page_configuration.xsd">

				<update	handle="customer_account"/>

				<body>

								<referenceContainer	name="content">

												<block	class="Foggyline\Helpdesk\Block\Ticket\Index"	

name="foggyline.helpdesk.ticket.index"	template=	

"Foggyline_Helpdesk::ticket/index.phtml"	cacheable="false"/>

								</referenceContainer>

				</body>

</page>

Notice	how	we	immediately	call	the	update	directive,	passing	it	the	customer_account
handle	attribute	value.	This	is	like	saying,	“Include	everything	from	the

customer_account	handle	into	our	handle	here.”	We	are	further	referencing	the	content
block,	within	which	we	define	our	own	custom	block	type
Foggyline\Helpdesk\Block\Ticket\Index.	Though	a	block	class	can	specify	its	own
template,	we	are	using	a	template	attribute	with	a	module-specific	path,
Foggyline_Helpdesk::ticket/index.phtml,	to	assign	a	template	to	a	block.

Simply	including	the	customer_acount	handle	is	not	enough;	we	need	something	extra	to
define	our	link	under	the	My	Account	section.	We	define	this	extra	something	under	the
app/code/Foggyline/Helpdesk/view/frontend/layout/customer_account.xml	file
with	content	as	follows:

<?xml	version="1.0"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/	

Layout/etc/page_configuration.xsd">

				<head>

								<title>Helpdesk	Tickets</title>

				</head>

				<body>

								<referenceBlock	name="customer_account_navigation">

												<block	class="Magento\Framework\View\Element\Html	

\Link\Current"	name="foggyline-helpdesk-ticket">

																<arguments>

																				<argument	name="path"	xsi:type="string">	

foggyline_helpdesk/ticket/index	</argument>

																				<argument	name="label"	xsi:type="string">	Helpdesk	

Tickets	</argument>

																</arguments>

												</block>

								</referenceBlock>

				</body>

</page>

What	is	happening	here	is	that	we	are	referencing	an	existing	block	called
customer_account_navigation	and	defining	a	new	block	within	it	of	class
Magento\Framework\View\Element\Html\Link\Current.	This	block	accepts	two
parameters:	the	path	that	is	set	to	our	controller	action	and	the	label	that	is	set	to	Helpdesk
Tickets.

Creating	blocks	and	templates
The	Foggyline\Helpdesk\Block\Ticket\Index	block	class	we	pointed	to	from
foggyline_helpdesk_ticket_index.xml	is	defined	under	the
app/code/Foggyline/Helpdesk/Block/Ticket/Index.php	file	with	content	as	follows:

<?php

namespace	Foggyline\Helpdesk\Block\Ticket;

class	Index	extends	\Magento\Framework\View\Element\Template

{

				/**

					*	@var	\Magento\Framework\Stdlib\DateTime

					*/

				protected	$dateTime;

				/**

					*	@var	\Magento\Customer\Model\Session

					*/

				protected	$customerSession;

				/**

					*	@var	\Foggyline\Helpdesk\Model\TicketFactory

					*/

				protected	$ticketFactory;

				/**

					*	@param	\Magento\Framework\View\Element\Template\Context	$context

					*	@param	array	$data

					*/

				public	function	__construct(

								\Magento\Framework\View\Element\Template\Context	$context,

								\Magento\Framework\Stdlib\DateTime	$dateTime,

								\Magento\Customer\Model\Session	$customerSession,

								\Foggyline\Helpdesk\Model\TicketFactory	$ticketFactory,

								array	$data	=	[]

)

				{

								$this->dateTime	=	$dateTime;

								$this->customerSession	=	$customerSession;

								$this->ticketFactory	=	$ticketFactory;

								parent::__construct($context,	$data);

				}

				/**

					*	@return	\Foggyline\Helpdesk\Model\ResourceModel	\Ticket\Collection

					*/

				public	function	getTickets()

				{

								return	$this->ticketFactory

												->create()

												->getCollection()

												->addFieldToFilter('customer_id',	$this->	customerSession-

>getCustomerId());

				}

				public	function	getSeverities()

				{

								return	\Foggyline\Helpdesk\Model\	

Ticket::getSeveritiesOptionArray();

				}

}

The	reason	why	we	defined	the	Foggyline\Helpdesk\Block\Ticket	block	class	instead
of	using	just	\Magento\Framework\View\Element\Template	is	because	we	wanted	to
define	some	helper	methods	we	could	then	use	in	our	index.phtml	template.	These
methods	are	getTickets	(which	we	will	use	for	listing	all	customer	tickets)	and
getSeverities	(which	we	will	use	for	creating	a	dropdown	of	possible	severities	to
choose	from	when	creating	a	new	ticket).

The	template	is	further	defined	under	the
app/code/Foggyline/Helpdesk/view/frontend/templates/ticket/index.phtml	file
with	content	as	follows:

<?php	$tickets	=	$block->getTickets()	?>

<form

				id="form-validate"

				action="<?php	echo	$block->	getUrl('foggyline_helpdesk/ticket/save')	?

>"

				method="post">

				<?php	echo	$block->getBlockHtml('formkey')	?>

				<div	class="field	title	required">

								<label	class="label"	for="title">	<?php	echo	__('Title')	?>

</label>

								<div	class="control">

												<input

																id="title"

																type="text"

																name="title"

																data-validate="{required:true}"

																value=""

																placeholder="<?php	echo	__('Something	descriptive')	?>"/>

								</div>

				</div>

				<div	class="field	severity">

								<label	class="label"	for="severity"><?php	echo	__('Severity')	

?></label>

								<div	class="control">

												<select	name="severity">

																<?php	foreach	($block->getSeverities()	as	$value	=>	$name):	

?>

																				<option	value="<?php	echo	$value	?>"><?php	echo	$this-

>escapeHtml($name)	?></option>

																<?php	endforeach;	?>

												</select>

								</div>

				</div>

				<button	type="submit"	class="action	save	primary">

								<?php	echo	__('Submit	Ticket')	?>

				</button>

</form>

<script>

				require([

								'jquery',

								'mage/mage'

],	function	($)	{

								var	dataForm	=	$('#form-validate');

								dataForm.mage('validation',	{});

				});

</script>

<?php	if	($tickets->count()):	?>

				<table	class="data-grid">

								<?php	foreach	($tickets	as	$ticket):	?>

												<tr>

																<td><?php	echo	$ticket->getId()	?></td>

																<td><?php	echo	$block->escapeHtml($ticket->	getTitle())	?>

</td>

																<td><?php	echo	$ticket->getCreatedAt()	?></td>

																<td><?php	echo	$ticket->getSeverityAsLabel()	?>	</td>

																<td><?php	echo	$ticket->getStatusAsLabel()	?></td>

												</tr>

								<?php	endforeach;	?>

				</table>

<?php	endif;	?>

Though	this	is	a	big	chunk	of	code,	it	is	easily	readable	as	it	is	divided	into	a	few	very
different	role-playing	chunks.

The	$block	variable	is	actually	the	same	as	if	we	wrote	$this,	which	is	a	reference	to	the
instance	of	the	Foggyline\Helpdesk\Block\Ticket	class	where	we	defined	the	actual
getTickets	method.	Thus,	the	$tickets	variable	is	first	defined	as	a	collection	of	tickets
that	belong	to	the	currently	logged-in	customer.

We	then	specified	a	form	with	a	POST	method	type	and	an	action	URL	that	points	to	our
Save	controller	action.	Within	the	form,	we	have	a	$block->getBlockHtml('formkey')
call,	which	basically	returns	a	hidden	input	field	named	form_key	whose	value	is	a
random	string.	Form	keys	in	Magento	are	a	means	of	preventing	against	Cross-Site
Request	Forgery	(CSRF),	so	we	need	to	be	sure	to	use	them	on	any	form	we	define.	As
part	of	the	form,	we	have	also	defined	a	title	input	field,	severity	select	field,	and	submit
button.	Notice	the	CSS	classes	tossed	around,	which	guarantee	that	our	form’s	look	will
match	those	of	other	Magento	forms.

Right	after	the	closing	form	tag,	we	have	a	RequireJS	type	of	JavaScript	inclusion	for
validation.	Given	that	our	form	ID	value	is	set	to	form-validate,	the	JavaScript	dataForm
variable	binds	to	it	and	triggers	a	validation	check	when	we	press	the	Submit	button.

We	then	have	a	count	check	and	a	foreach	loop	that	renders	all	possibly	existing	customer
tickets.

The	final	result	of	the	template	code	can	be	seen	in	the	following	image:

Handling	form	submissions
There	is	one	more	piece	we	are	missing	in	order	to	complete	our	frontend	functionality	–	a
controller	action	that	will	save	the	New	Ticket	form	once	it	is	posted.	We	define	this
action	within	the	app/code/Foggyline/Helpdesk/Controller/Ticket/Save.php	file
with	content	as	follows:

<?php

namespace	Foggyline\Helpdesk\Controller\Ticket;

class	Save	extends	\Foggyline\Helpdesk\Controller\Ticket

{

				protected	$transportBuilder;

				protected	$inlineTranslation;

				protected	$scopeConfig;

				protected	$storeManager;

				protected	$formKeyValidator;

				protected	$dateTime;

				protected	$ticketFactory;

				public	function	__construct(

								\Magento\Framework\App\Action\Context	$context,

								\Magento\Customer\Model\Session	$customerSession,

								\Magento\Framework\Mail\Template\TransportBuilder	

$transportBuilder,

								\Magento\Framework\Translate\Inline\StateInterface	

$inlineTranslation,

								\Magento\Framework\App\Config\ScopeConfigInterface	$scopeConfig,

								\Magento\Store\Model\StoreManagerInterface	$storeManager,

								\Magento\Framework\Data\Form\FormKey\Validator	$formKeyValidator,

								\Magento\Framework\Stdlib\DateTime	$dateTime,

								\Foggyline\Helpdesk\Model\TicketFactory	$ticketFactory

)

				{

								$this->transportBuilder	=	$transportBuilder;

								$this->inlineTranslation	=	$inlineTranslation;

								$this->scopeConfig	=	$scopeConfig;

								$this->storeManager	=	$storeManager;

								$this->formKeyValidator	=	$formKeyValidator;

								$this->dateTime	=	$dateTime;

								$this->ticketFactory	=	$ticketFactory;

								$this->messageManager	=	$context->getMessageManager();

								parent::__construct($context,	$customerSession);

				}

				public	function	execute()

				{

								$resultRedirect	=	$this->resultRedirectFactory->create();

								if	(!$this->formKeyValidator->validate($this->	getRequest()))	{

												return	$resultRedirect->setRefererUrl();

								}

								$title	=	$this->getRequest()->getParam('title');

								$severity	=	$this->getRequest()->getParam('severity');

								try	{

												/*	Save	ticket	*/

												$ticket	=	$this->ticketFactory->create();

												$ticket->setCustomerId($this->customerSession->	

getCustomerId());

												$ticket->setTitle($title);

												$ticket->setSeverity($severity);

												$ticket->setCreatedAt($this->dateTime->	formatDate(true));

												$ticket->setStatus(\Foggyline\Helpdesk\Model\	

Ticket::STATUS_OPENED);

												$ticket->save();

												$customer	=	$this->customerSession->getCustomerData();

												/*	Send	email	to	store	owner	*/

												$storeScope	=	\Magento\Store\Model\ScopeInterface::SCOPE_STORE;

												$transport	=	$this->transportBuilder

																->setTemplateIdentifier($this->scopeConfig->	

getValue('foggyline_helpdesk/email_template/	store_owner',	$storeScope))

																->setTemplateOptions(

																				[

																								'area'	=>	\Magento\Framework\App\	

Area::AREA_FRONTEND,

																								'store'	=>	$this->storeManager->	getStore()-

>getId(),

]

)

																->setTemplateVars(['ticket'	=>	$ticket])

																->setFrom([

																				'name'	=>	$customer->getFirstname()	.	'	'	.	$customer-

>getLastname(),

																				'email'	=>	$customer->getEmail()

])

																->addTo($this->scopeConfig->getValue(

'trans_email/ident_general/email',	$storeScope))

																->getTransport();

												$transport->sendMessage();

												$this->inlineTranslation->resume();

												$this->messageManager->addSuccess(__('Ticket	successfully	

created.'));

								}	catch	(Exception	$e)	{

												$this->messageManager->addError(__('Error	occurred	during	

ticket	creation.'));

								}

								return	$resultRedirect->setRefererUrl();

				}

}

First,	we	look	at	__construct	to	see	what	parameters	are	passed	to	it.	Given	that	the	code
we	run	in	the	execute	method	needs	to	check	if	the	form	key	is	valid,	create	a	ticket	in	the

database,	pass	on	the	ticket	and	some	customer	info	to	the	e-mail	that	is	being	sent	to	the
store	owner;	then,	we	get	an	idea	of	what	kind	of	objects	are	being	passed	around.

The	execute	method	starts	by	checking	the	validity	of	the	form	key.	If	the	form	key	is
invalid,	we	return	with	a	redirection	to	the	referring	URL.

Passing	the	form	key	check,	we	grab	the	title	and	severity	variables	as	passed	by	the	form.
We	then	instantiate	the	ticket	entity	by	the	ticket	factory	create	method	and	simply	set	the
ticket	entity	values	one	by	one.	Note	that	the	Ticket	entity	model
Foggyline\Helpdesk\Model\Ticket	does	not	really	have	methods	like	setSeverity	on
its	own.	This	is	the	inherited	property	of	its	\Magento\Framework\Object	parent	class.

Once	the	ticket	entity	is	saved,	we	initiate	the	transport	builder	object,	passing	along
all	of	the	required	parameters	for	successful	e-mail	sending.	Notice	how
setTemplateIdentifier	uses	our	system.xml	configuration	option
foggyline_helpdesk/email_template/store_owner.	This,	if	not	specifically	set	under
the	admin	Store	|	Configuration	|	Foggyline	|	Helpdesk	area,	has	a	default	value	defined
under	config.xml	that	points	to	the	e-mail	template	ID	in	the	email_templates.xml	file.

setTemplateVars	expects	the	array	or	instance	of	\Magento\Framework\Object	to	be
passed	to	it.	We	pass	the	entire	$ticket	object	to	it,	just	nesting	it	under	the	ticket	key,
thus	making	the	properties	of	a	Ticket	entity,	like	a	title,	become	available	in	the	e-mail
HTML	template	as	{{var	ticket.title}}.

When	a	customer	now	submits	the	New	Ticket	form	from	My	Account	|	Helpdesk
Tickets,	the	HTTP	POST	request	will	hit	the	save	controller	action	class.	If	the	preceding
code	is	successfully	executed,	the	ticket	is	saved	to	the	database	and	redirection	back	to
My	Account	|	Helpdesk	Tickets	will	occur	showing	a	Ticket	successfully	created
message	in	the	browser.

Building	a	backend	interface
Until	now,	we	have	been	dealing	with	setting	up	general	module	configuration,	e-mail
templates,	frontend	route,	frontend	layout,	block,	and	template.	What	remains	to	complete
the	module	requirements	is	the	admin	interface,	where	the	store	owner	can	see	submitted
tickets	and	change	statuses	from	open	to	closed.

The	following	are	needed	for	a	fully	functional	admin	interface	as	per	the	requirements:

ACL	resource	used	to	allow	or	disallow	access	to	the	ticket	listing
Menu	item	linking	to	tickets	listing	the	controller	action
Route	that	maps	to	our	admin	controller
Layout	XMLs	that	map	to	the	ticket	listing	the	controller	action
Controller	action	for	listing	tickets
Full	XML	layout	grid	definition	within	layout	XMLs	defining	grid,	custom	column
renderers,	and	custom	dropdown	filter	values
Controller	action	for	closing	tickets	and	sending	e-mails	to	customers

Linking	the	access	control	list	and	menu
We	start	by	adding	a	new	ACL	resource	entry	to	the	previously	defined
app/code/Foggyline/Helpdesk/etc/acl.xml	file,	as	a	child	of	the
Magento_Backend::admin	resource	as	follows:

<resource	id="Magento_Customer::customer">

				<resource	id="Foggyline_Helpdesk::ticket_manage"	title="Manage	Helpdesk	

Tickets"/>

</resource>

On	its	own,	the	defined	resource	entry	does	not	do	anything.	This	resource	will	later	be
used	within	the	menu	and	controller.

The	menu	item	linking	to	the	tickets	listing	the	controller	action	is	defined	under	the
app/code/Foggyline/Helpdesk/etc/adminhtml/menu.xml	file	as	follows:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:	

Magento_Backend:etc/menu.xsd">

				<menu>

								<add	id="Foggyline_Helpdesk::ticket_manage"	title="Helpdesk	

Tickets"	module="Foggyline_Helpdesk"

													parent="Magento_Customer::customer"	

action="foggyline_helpdesk/ticket/index"

													resource="Foggyline_Helpdesk::ticket_manage"/>

				</menu>

</config>

We	are	using	the	menu	|	add	element	to	add	a	new	menu	item	under	the	Magento	admin
area.	The	position	of	an	item	within	the	admin	area	is	defined	by	the	attribute	parent,
which	in	our	case	means	under	the	existing	Customer	menu.	If	the	parent	is	omitted,	our
item	would	appear	as	a	new	item	on	a	menu.	The	title	attribute	value	is	the	label	we	will
see	in	the	menu.	The	id	attribute	has	to	uniquely	differentiate	our	menu	item	from	others.
The	resource	attribute	references	the	ACL	resource	defined	in	the
app/code/Foggyline/Helpdesk/etc/acl.xml	file.	If	a	role	of	a	logged-in	user	does	not
allow	him	to	use	the	Foggyline_Helpdesk::ticket_manage	resource,	the	user	would	not
be	able	to	see	the	menu	item.

Creating	routes,	controllers,	and	layout	handles
Now	we	add	a	route	that	maps	to	our	admin	controller,	by	defining	the
app/code/Foggyline/Helpdesk/etc/adminhtml/routes.xml	file	as	follows:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:App/etc	/routes.xsd">

				<router	id="admin">

								<route	id="foggyline_helpdesk"	frontName="foggyline_helpdesk">

												<module	name="Foggyline_Helpdesk"/>

								</route>

				</router>

</config>

The	admin	route	definition	is	almost	identical	to	the	frontend	router	definition,	where	the
difference	primarily	lies	in	the	router	ID	value,	which	equals	to	the	admin	here.

With	the	router	definition	in	place,	we	can	now	define	our	three	layout	XMLs,	under	the
app/code/Foggyline/Helpdesk/view/adminhtml/layout	directory,	which	map	to	the
ticket	listing	the	controller	action:

foggyline_helpdesk_ticket_grid.xml

foggyline_helpdesk_ticket_grid_block.xml

foggyline_helpdesk_ticket_index.xml

The	reason	we	define	three	layout	files	for	a	single	action	controller	and	not	one	is
because	of	the	way	we	use	the	listing	in	control	in	the	Magento	admin	area.

The	content	of	the	foggyline_helpdesk_ticket_index.xml	file	is	defined	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout	

/etc/page_configuration.xsd">

				<update	handle="formkey"/>

				<update	handle="foggyline_helpdesk_ticket_grid_block"/>

				<body>

								<referenceContainer	name="content">

												<block	class="Foggyline\Helpdesk\Block	\Adminhtml\Ticket"	

name="admin.block.helpdesk.ticket.grid.container">

								</block>

								</referenceContainer>

				</body>

</page>

Two	update	handles	are	specified,	one	pulling	in	formkey	and	the	other	pulling	in
foggyline_helpdesk_ticket_grid_block.	We	then	reference	the	content	container	and
define	a	new	block	of	the	Foggyline\Helpdesk\Block\Adminhtml\Ticket	class	with	it.

Utilizing	the	grid	widget
We	could	have	used	Magento\Backend\Block\Widget\Grid\Container	as	a	block	class
name.	However,	given	that	we	needed	some	extra	logic,	like	removing	the	Add	New
button,	we	opted	for	a	custom	class	that	then	extends
\Magento\Backend\Block\Widget\Grid\Container	and	adds	the	required	logic.

The	Foggyline\Helpdesk\Block\Adminhtml\Ticket	class	is	defined	under	the
app/code/Foggyline/Helpdesk/Block/Adminhtml/Ticket.php	file	as	follows:

<?php

namespace	Foggyline\Helpdesk\Block\Adminhtml;

class	Ticket	extends	\Magento\Backend\Block\Widget\Grid\Container

{

				protected	function	_construct()

				{

								$this->_controller	=	'adminhtml';

								$this->_blockGroup	=	'Foggyline_Helpdesk';

								$this->_headerText	=	__('Tickets');

								parent::_construct();

								$this->removeButton('add');

				}

}

Not	much	is	happening	in	the	Ticket	block	class	here.	Most	importantly,	we	extend	from
\Magento\Backend\Block\Widget\Grid\Container	and	define	_controller	and
_blockGroup,	as	these	serve	as	a	sort	of	glue	for	telling	our	grid	where	to	find	other
possible	block	classes.	Since	we	won’t	have	an	Add	New	ticket	feature	in	admin,	we	are
calling	the	removeButton	method	to	remove	the	default	Add	New	button	from	the	grid
container.

Back	to	our	second	XML	layout	file,	the	foggyline_helpdesk_ticket_grid.xml	file,
which	we	define	as	follows:

<?xml	version="1.0"?>

<layout	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout	

/etc/layout_generic.xsd">

				<update	handle="formkey"/>

				<update	handle="foggyline_helpdesk_ticket_grid_block"/>

				<container	name="root">

								<block	class="Magento\Backend\Block\Widget\Grid\Container"	

name="admin.block.helpdesk.ticket.grid.container"	

template="Magento_Backend::widget/grid/container	/empty.phtml"/>

				</container>

</layout>

Notice	how	the	content	of	foggyline_helpdesk_ticket_grid.xml	is	nearly	identical	to

that	of	foggyline_helpdesk_ticket_index.xml.	The	only	difference	between	the	two	is
the	value	of	the	block	class	and	the	template	attribute.	The	block	class	is	defined	as
Magento\Backend\Block\Widget\Grid\Container,	where	we	previously	defined	it	as
Foggyline\Helpdesk\Block\Adminhtml\Ticket.

If	we	look	at	the	content	of	the	\Magento\Backend\Block\Widget\Grid\Container	class,
we	can	see	the	following	property	defined:

protected	$_template	=	'Magento_Backend::widget/grid/container.phtml';

If	we	look	at	the	content	of	the	vendor/magento/module-
backend/view/adminhtml/templates/widget/grid/container.phtml	and
vendor/magento/module-

backend/view/adminhtml/templates/widget/grid/container/empty.phtml	files,	the
difference	can	be	easily	spotted.	container/empty.phtml	only	returns	grid	HTML,
whereas	container.phtml	returns	buttons	and	grid	HTML.

Given	that	foggyline_helpdesk_ticket_grid.xml	will	be	a	handle	for	the	AJAX	loading
grid	listing	during	sorting	and	filtering,	we	need	it	to	return	only	grid	HTML	upon	reload.

We	now	move	on	to	the	third	and	largest	of	XML’s	layout	files,	the
app/code/Foggyline/Helpdesk/view/adminhtml/layout/foggyline_helpdesk_ticket_grid_block.xml

file.	Given	the	size	of	it,	we	will	split	it	into	two	code	chunks	as	we	explain	them	one	by
one.

The	first	part,	or	initial	content	of	the	foggyline_helpdesk_ticket_grid_block.xml	file,
is	defined	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout	

/etc/page_configuration.xsd">

				<body>

								<referenceBlock	name=	"admin.block.helpdesk.ticket.grid.container">

												<block	class="Magento\Backend\Block\Widget\Grid"	

name="admin.block.helpdesk.ticket.grid"	as="grid">

																<arguments>

																				<argument	name="id"	xsi:type="string">	

ticketGrid</argument>

																				<argument	name="dataSource"	xsi:type="object">	

Foggyline\Helpdesk\Model\ResourceModel	\Ticket\Collection

																				</argument>

																				<argument	name="default_sort"	

xsi:type="string">ticket_id</argument>

																				<argument	name="default_dir"	

xsi:type="string">desc</argument>

																				<argument	name="save_parameters_in_session"	

xsi:type="boolean">true</argument>

																				<argument	name="use_ajax"	

xsi:type="boolean">true</argument>

																</arguments>

																<block	class="Magento\Backend\Block	\Widget\Grid\ColumnSet"	

name=	"admin.block.helpdesk.ticket.grid.columnSet"	as="grid.columnSet">

																				<!--	Column	definitions	here	-->

																</block>

												</block>

								</referenceBlock>

				</body>

</page>

Notice	<!--	Column	definitions	here	-->;	we	will	come	back	to	that	soon.	For	now,
let’s	analyze	what	is	happening	here.	Right	after	a	body	element,	we	have	a	reference	to
admin.block.helpdesk.ticket.grid.container,	which	is	a	content	block	child	defined
under	the	foggyline_helpdesk_ticket_grid.xml	and
foggyline_helpdesk_ticket_index.xml	files.	Within	this	reference,	we	are	defining
another	block	of	class	Magento\Backend\Block\Widget\Grid,	passing	it	a	name	of	our
choosing	and	an	alias.	Further,	this	block	has	an	arguments	list	and	another	block	of	class
Magento\Backend\Block\Widget\Grid\ColumnSet	as	child	elements.

Through	the	arguments	list	we	specify	the:

id:	Set	to	the	value	of	ticketGrid,	we	can	set	any	value	we	want	here,	ideally
sticking	to	formula	{entity	name}.
dataSource:	Set	to	the	value	of
Foggyline\Helpdesk\Model\ResourceModel\Ticket\Collection,	which	is	the
name	of	our	Ticket	entity	resource	class.
default_sort:	Set	to	the	value	of	ticket_id,	which	is	the	property	of	the	Ticket
entity	by	which	we	want	to	sort.
default_dir:	Set	to	the	value	of	desc,	to	denote	a	descending	order	of	sorting.	This
value	functions	together	with	default_sort	as	a	single	unit.
save_parameters_in_session:	Set	to	true,	this	is	easiest	to	explain	using	the
following	example:	if	we	do	some	sorting	and	filtering	on	the	Ticket	grid	and	then
move	on	to	another	part	of	the	admin	area,	then	come	back	to	Ticket	grid,	if	this
value	is	set	to	yes,	the	grid	we	see	will	have	those	filters	and	sorting	set.
use_ajax:	Set	to	true,	when	grid	filtering	and	sorting	is	triggered,	an	AJAX	loader
kicks	in	and	reloads	only	the	grid	area	and	not	the	whole	page.

Right	after	the	grid	blocks	argument	list,	we	have	the	grid	column	set.	This	brings	us	to
the	second	part	of	foggyline_helpdesk_ticket_grid_block.xml	content.	We	simply
replace	the	<!--	Columns	here	-->	comment	with	the	following:

<block	class="Magento\Backend\Block\Widget\Grid\Column"	as="ticket_id">

				<arguments>

								<argument	name="header"	xsi:type="string"	

translate="true">ID</argument>

								<argument	name="type"	xsi:type="string">number</argument>

								<argument	name="id"	xsi:type="string">ticket_id</argument>

								<argument	name="index"	xsi:type="string">ticket_id</argument>

				</arguments>

</block>

<block	class="Magento\Backend\Block\Widget\Grid\Column"	as="title">

				<arguments>

								<argument	name="header"	xsi:type="string"	

translate="true">Title</argument>

								<argument	name="type"	xsi:type="string">string</argument>

								<argument	name="id"	xsi:type="string">title</argument>

								<argument	name="index"	xsi:type="string">title</argument>

				</arguments>

</block>

<block	class="Magento\Backend\Block\Widget\Grid\Column"	|		as="severity">

				<arguments>

								<argument	name="header"	xsi:type="string"	

translate="true">Severity</argument>

								<argument	name="index"	xsi:type="string">severity</argument>

								<argument	name="type"	xsi:type="string">options</argument>

								<argument	name="options"	xsi:type="options"	

model="Foggyline\Helpdesk\Model\Ticket\Grid\Severity"/>

								<argument	name="renderer"	xsi:type="string">	

Foggyline\Helpdesk\Block\Adminhtml\Ticket\Grid\Renderer	\Severity

								</argument>

								<argument	name="header_css_class"	xsi:type="string">	col-

form_id</argument>

								<argument	name="column_css_class"	xsi:type="string">	col-

form_id</argument>

				</arguments>

</block>

<block	class="Magento\Backend\Block\Widget\Grid\Column"	as="status">

				<arguments>

								<argument	name="header"	xsi:type="string"	

translate="true">Status</argument>

								<argument	name="index"	xsi:type="string">status</argument>

								<argument	name="type"	xsi:type="string">options</argument>

								<argument	name="options"	xsi:type="options"

																		model="Foggyline\Helpdesk\Model\Ticket	\Grid\Status"/>

								<argument	name="renderer"	xsi:type="string">	

Foggyline\Helpdesk\Block\Adminhtml\Ticket\Grid	\Renderer\Status

								</argument>

								<argument	name="header_css_class"	xsi:type="string">	col-

form_id</argument>

								<argument	name="column_css_class"	xsi:type="string">	col-

form_id</argument>

				</arguments>

</block>

<block	class="Magento\Backend\Block\Widget\Grid\Column"	as="action">

				<arguments>

								<argument	name="id"	xsi:type="string">action</argument>

								<argument	name="header"	xsi:type="string"	

translate="true">Action</argument>

								<argument	name="type"	xsi:type="string">action</argument>

								<argument	name="getter"	xsi:type="string">getId</argument>

								<argument	name="filter"	xsi:type="boolean">false</argument>

								<argument	name="sortable"	xsi:type="boolean">false</argument>

								<argument	name="actions"	xsi:type="array">

												<item	name="view_action"	xsi:type="array">

																<item	name="caption"	xsi:type="string"	

translate="true">Close</item>

																<item	name="url"	xsi:type="array">

																				<item	name="base"	xsi:type="string">*/*/close</item>

																</item>

																<item	name="field"	xsi:type="string">id</item>

												</item>

								</argument>

								<argument	name="header_css_class"	xsi:type="string">	col-

actions</argument>

								<argument	name="column_css_class"	xsi:type="string">	col-

actions</argument>

				</arguments>

</block>

Similar	to	grid,	column	definitions	also	have	arguments	that	define	its	look	and	behavior:

header:	Mandatory,	the	value	we	want	to	see	as	a	label	on	top	of	the	column.
type:	Mandatory,	can	be	anything	from:	date,	datetime,	text,	longtext,	options,
store,	number,	currency,	skip-list,	wrapline,	and	country.
id:	Mandatory,	a	unique	value	that	identifies	our	column,	preferably	matching	the
name	of	the	entity	property.
index:	Mandatory,	the	database	column	name.
options:	Optional,	if	we	are	using	a	type	like	options,	then	for	the	options	argument
we	need	to	specify	the	class	like
Foggyline\Helpdesk\Model\Ticket\Grid\Severity	that	implements
\Magento\Framework\Option\ArrayInterface,	meaning	it	provides	the
toOptionArray	method	that	then	fills	the	values	of	options	during	grid	rendering.
renderer:	Optional,	as	our	Ticket	entities	store	severity	and	status	as	integer	values
in	the	database,	columns	would	render	those	integer	values	into	columns,	which	is
not	really	useful.	We	want	to	turn	those	integer	values	into	labels.	In	order	to	do	so,
we	need	to	rewrite	the	rendering	bit	of	a	single	table	cell,	which	we	do	with	the	help
of	the	renderer	argument.	The	value	we	pass	to	it,
Foggyline\Helpdesk\Block\Adminhtml\Ticket\Grid\Renderer\Severity,	needs
to	be	a	class	that	extends
\Magento\Backend\Block\Widget\Grid\Column\Renderer\AbstractRenderer	and
does	its	own	implementation	of	the	render	method.
header_css_class:	Optional,	if	we	prefer	to	specify	a	custom	header	class.
column_css_class:	Optional,	if	we	prefer	to	specify	a	custom	column	class.

Creating	a	grid	column	renderer
The	Foggyline\Helpdesk\Block\Adminhtml\Ticket\Grid\Renderer\Severity	class,
defined	in	the
app/code/Foggyline/Helpdesk/Block/Adminhtml/Ticket/Grid/Renderer/Severity.php

file,	is	as	follows:

<?php

namespace	Foggyline\Helpdesk\Block\Adminhtml\Ticket\Grid\Renderer;

class	Severity	extends	\Magento\Backend\Block\Widget\Grid	

\Column\Renderer\AbstractRenderer

{

				protected	$ticketFactory;

				public	function	__construct(

								\Magento\Backend\Block\Context	$context,

								\Foggyline\Helpdesk\Model\TicketFactory	$ticketFactory,

								array	$data	=	[]

)

				{

								parent::__construct($context,	$data);

								$this->ticketFactory	=	$ticketFactory;

				}

				public	function	render(\Magento\Framework\DataObject	$row)

				{

								$ticket	=	$this->ticketFactory->create()->load($row->	getId());

								if	($ticket	&&	$ticket->getId())	{

												return	$ticket->getSeverityAsLabel();

								}

								return	'';

				}

}

Here,	we	are	passing	the	instance	of	the	ticket	factory	to	the	constructor	and	then	using
that	instance	within	the	render	method	to	load	a	ticket	based	on	the	ID	value	fetched	from
the	current	row.	Given	that	$row->getId()	returns	the	ID	of	the	ticket,	this	is	a	nice	way
to	reload	the	entire	ticket	entity	and	then	fetch	the	full	label	from	the	ticket	model	by	using
$ticket->getSeverityAsLabel().	Whatever	string	we	return	from	this	method	is	what
will	be	shown	under	the	grid	row.

Another	renderer	class	that	is	referenced	within	the
foggyline_helpdesk_ticket_grid_block.xml	file	is
Foggyline\Helpdesk\Block\Adminhtml\Ticket\Grid\Renderer\Status,	and	we	define
its	content	under	the
app/code/Foggyline/Helpdesk/Block/Adminhtml/Ticket/Grid/Renderer/Status.php

file	as	follows:

<?php

namespace	Foggyline\Helpdesk\Block\Adminhtml\Ticket\Grid\Renderer;

class	Status	extends	\Magento\Backend\Block\Widget\Grid\Column	

\Renderer\AbstractRenderer

{

				protected	$ticketFactory;

				public	function	__construct(

								\Magento\Backend\Block\Context	$context,

								\Foggyline\Helpdesk\Model\TicketFactory	$ticketFactory,

								array	$data	=	[]

)

				{

								parent::__construct($context,	$data);

								$this->ticketFactory	=	$ticketFactory;

				}

				public	function	render(\Magento\Framework\DataObject	$row)

				{

								$ticket	=	$this->ticketFactory->create()->load($row->	getId());

								if	($ticket	&&	$ticket->getId())	{

												return	$ticket->getStatusAsLabel();

								}

								return	'';

				}

}

Given	that	it	too	is	used	for	a	renderer,	the	content	of	the	Status	class	is	nearly	identical	to
the	content	of	the	Severity	class.	We	pass	on	the	ticket	factory	object	via	the	constructor,
so	we	have	it	internally	for	usage	within	the	render	method.	Then	we	load	the	Ticket
entity	using	the	ticket	factory	and	ID	value	fetched	from	a	$row	object.	As	a	result,	the
column	will	contain	the	label	value	of	a	status	and	not	its	integer	value.

Creating	grid	column	options
Besides	referencing	renderer	classes,	our	foggyline_helpdesk_ticket_grid_block.xml
file	also	references	the	options	class	for	the	Severity	field.

We	define	the	Foggyline\Helpdesk\Model\Ticket\Grid\Severity	options	class	under
the	app/code/Foggyline/Helpdesk/Model/Ticket/Grid/Severity.php	file	as	follows:

<?php

namespace	Foggyline\Helpdesk\Model\Ticket\Grid;

class	Severity	implements	\Magento\Framework\Option\ArrayInterface

{

				public	function	toOptionArray()

				{

								return	\Foggyline\Helpdesk\Model	

\Ticket::getSeveritiesOptionArray();

				}

}

The	options	value	from	XML	layouts	refers	to	a	class	that	has	to	implement	the
toOptionArray	method,	which	returns	an	array	of	arrays,	such	as	the	following	example:

return	[

				['value'=>'theValue1',	'theLabel1'],

				['value'=>'theValue2',	'theLabel2'],

];

Our	Severity	class	simply	calls	the	static	method	we	have	defined	on	the	Ticket	class,
the	getSeveritiesOptionArray,	and	passes	along	those	values.

Creating	controller	actions
Up	to	this	point,	we	have	defined	the	menu	item,	ACL	resource,	XML	layouts,	block,
options	class,	and	renderer	classes.	What	remains	to	connect	it	all	are	controllers.	We
will	need	three	controller	actions	(Index,	Grid,	and	Close),	all	extending	from	the	same
admin	Ticket	controller.

We	define	the	admin	Ticket	controller	under	the
app/code/Foggyline/Helpdesk/Controller/Adminhtml/Ticket.php	file	as	follows:

<?php

namespace	Foggyline\Helpdesk\Controller\Adminhtml;

class	Ticket	extends	\Magento\Backend\App\Action

{

				protected	$resultPageFactory;

				protected	$resultForwardFactory;

				protected	$resultRedirectFactory;

				public	function	__construct(

								\Magento\Backend\App\Action\Context	$context,

								\Magento\Framework\View\Result\PageFactory	$resultPageFactory,

								\Magento\Backend\Model\View\Result\ForwardFactory	

$resultForwardFactory

)

				{

								$this->resultPageFactory	=	$resultPageFactory;

								$this->resultForwardFactory	=	$resultForwardFactory;

								$this->resultRedirectFactory	=	$context->	

getResultRedirectFactory();

								parent::__construct($context);

				}

				protected	function	_isAllowed()

				{

								return	$this->_authorization->	

isAllowed('Foggyline_Helpdesk::ticket_manage');

				}

				protected	function	_initAction()

				{

								$this->_view->loadLayout();

								$this->_setActiveMenu(

												'Foggyline_Helpdesk::ticket_manage'

)->_addBreadcrumb(

												__('Helpdesk'),

												__('Tickets')

);

								return	$this;

				}

}

There	are	a	few	things	to	note	here.	$this->resultPageFactory,	$this-

>resultForwardFactory	and	$this->resultRedirectFactory	are	objects	to	be	used	on
the	child	(Index,	Grid,	and	Close),	so	we	do	not	have	to	initiate	them	in	each	child	class
separately.

The	_isAllowed()	method	is	extremely	important	every	time	we	have	a	custom-defined
controller	or	controller	action	that	we	want	to	check	against	our	custom	ACL	resource.
Here,	we	are	the	isAllowed	method	call	on	the
\Magento\Framework\AuthorizationInterface	type	of	object	($this-
>_authorization).	The	parameter	passed	to	the	isAllowed	method	call	should	be	the	ID
value	of	our	custom	ACL	resource.

We	then	have	the	_initAction	method,	which	is	used	for	setting	up	logic	shared	across
child	classes,	usually	things	like	loading	the	entire	layout,	setting	up	the	active	menu	flag,
and	adding	breadcrumbs.

Moving	forward,	we	define	the	Index	controller	action	within	the
app/code/Foggyline/Helpdesk/Controller/Adminhtml/Ticket/Index.php	file	as
follows:

<?php

namespace	Foggyline\Helpdesk\Controller\Adminhtml\Ticket;

class	Index	extends	\Foggyline\Helpdesk\Controller\Adminhtml\Ticket

{

				public	function	execute()

				{

								if	($this->getRequest()->getQuery('ajax'))	{

												$resultForward	=	$this->resultForwardFactory->	create();

												$resultForward->forward('grid');

												return	$resultForward;

								}

								$resultPage	=	$this->resultPageFactory->create();

								$resultPage->	setActiveMenu('Foggyline_Helpdesk::ticket_manage');

								$resultPage->getConfig()->getTitle()->	prepend(__('Tickets'));

								$resultPage->addBreadcrumb(__('Tickets'),	__('Tickets'));

								$resultPage->addBreadcrumb(__('Manage	Tickets'),	__('Manage	

Tickets'));

								return	$resultPage;

				}

}

Controller	actions	execute	within	their	own	class,	within	the	execute	method.	Our
execute	method	first	checks	if	the	coming	request	is	the	AJAX	parameter	within	it.	If
there	is	an	AJAX	parameter,	the	request	is	forwarded	to	the	Grid	action	of	the	same
controller.

If	there	is	no	AJAX	controller,	we	simply	create	the	instance	of	the
\Magento\Framework\View\Result\PageFactory	object,	and	set	title,	active	menu	item,
and	breadcrumbs	in	it.

A	logical	question	at	this	point	would	be	how	does	all	of	this	work	and	where	can	we	see
it.	If	we	log	in	to	the	Magento	admin	area,	under	the	Customers	menu	we	should	be	able
to	see	the	Helpdesk	Tickets	menu	item.	This	item,	defined	previously	within
app/code/Foggyline/Helpdesk/etc/adminhtml/menu.xml,	says	the	menu	action
attribute	equals	to	foggyline_helpdesk/ticket/index,	which	basically	translates	to	the
Index	action	of	our	Ticket	controller.

Once	we	click	on	the	Helpdesk	Tickets	link,	Magento	will	hit	the	Index	action	within	its
Ticket	controller	and	try	to	find	the	XML	file	that	has	the	matching	route	{id}+
{controller	name	}+{controller	action	name	}+{xml	file	extension	},	which	in	our	case
translates	to	{foggyline_helpdesk}+{ticket}+{index}+{.xml}.

At	this	point,	we	should	be	able	to	see	the	screen,	as	shown	in	the	following	screenshot:

However,	if	we	now	try	to	use	sorting	or	filtering,	we	would	get	a	broken	layout.	This	is
because	based	on	arguments	defined	under	the
foggyline_helpdesk_ticket_grid_block.xml	file,	we	are	missing	the	controller	Grid
action.	When	we	use	sorting	or	filtering,	the	AJAX	request	hits	the	Index	controller	and
asks	to	be	forwarded	to	the	Grid	action,	which	we	haven’t	defined	yet.

We	now	define	the	Grid	action	within	the
app/code/Foggyline/Helpdesk/Controller/Adminhtml/Ticket/Grid.php	file	as
follows:

<?php

namespace	Foggyline\Helpdesk\Controller\Adminhtml\Ticket;

class	Grid	extends	\Foggyline\Helpdesk\Controller\Adminhtml\Ticket

{

				public	function	execute()

				{

								$this->_view->loadLayout(false);

								$this->_view->renderLayout();

				}

}

There	is	only	one	execute	method	with	the	Grid	controller	action	class,	which	is
expected.	The	code	within	the	execute	method	simply	calls	the	loadLayout(false)
method	to	prevent	the	entire	layout	loading,	making	it	load	only	the	bits	defined	under	the
foggyline_helpdesk_ticket_grid.xml	file.	This	effectively	returns	the	grid	HTML	to
the	AJAX,	which	refreshes	the	grid	on	the	page.

Finally,	we	need	to	handle	the	Close	action	link	we	see	on	the	grid.	This	link	was	defined
as	part	of	the	column	definition	within	the	foggyline_helpdesk_ticket_grid_block.xml
file	and	points	to	*/*/close,	which	translates	to	“router	as	relative	from	current	URL	/
controller	as	relative	from	current	URL	/	close	action”,	which	further	equals	to	our	Ticket
controller	Close	action.

We	define	the	Close	controller	action	under	the
app/code/Foggyline/Helpdesk/Controller/Adminhtml/Ticket/Close.php	file	as
follows:

<?php

namespace	Foggyline\Helpdesk\Controller\Adminhtml\Ticket;

class	Close	extends	\Foggyline\Helpdesk\Controller\Adminhtml\Ticket

{

				protected	$ticketFactory;

				protected	$customerRepository;

				protected	$transportBuilder;

				protected	$inlineTranslation;

				protected	$scopeConfig;

				protected	$storeManager;

				public	function	__construct(

								\Magento\Backend\App\Action\Context	$context,

								\Magento\Framework\View\Result\PageFactory	$resultPageFactory,

								\Magento\Backend\Model\View\Result\ForwardFactory	

$resultForwardFactory,

								\Foggyline\Helpdesk\Model\TicketFactory	$ticketFactory,

								\Magento\Customer\Api\CustomerRepositoryInterface	

$customerRepository,

								\Magento\Framework\Mail\Template\TransportBuilder	

$transportBuilder,

								\Magento\Framework\Translate\Inline\StateInterface	

$inlineTranslation,

								\Magento\Framework\App\Config\ScopeConfigInterface	$scopeConfig,

								\Magento\Store\Model\StoreManagerInterface	$storeManager

)

				{

								$this->ticketFactory	=	$ticketFactory;

								$this->customerRepository	=	$customerRepository;

								$this->transportBuilder	=	$transportBuilder;

								$this->inlineTranslation	=	$inlineTranslation;

								$this->scopeConfig	=	$scopeConfig;

								$this->storeManager	=	$storeManager;

								parent::__construct($context,	$resultPageFactory,	

$resultForwardFactory);

				}

				public	function	execute()

				{

								$ticketId	=	$this->getRequest()->getParam('id');

								$ticket	=	$this->ticketFactory->create()->load($ticketId);

								if	($ticket	&&	$ticket->getId())	{

												try	{

																$ticket->setStatus(\Foggyline	

\Helpdesk\Model\Ticket::STATUS_CLOSED);

																$ticket->save();

																$this->messageManager->addSuccess(__('Ticket	successfully	

closed.'));

																/*	Send	email	to	customer	*/

																$customer	=	$this->customerRepository->	getById($ticket-

>getCustomerId());

																$storeScope	=	\Magento\Store\Model\	

ScopeInterface::SCOPE_STORE;

																$transport	=	$this->transportBuilder

																				->setTemplateIdentifier($this->scopeConfig->	

getValue('foggyline_helpdesk/email_template	/customer',	$storeScope))

																				->setTemplateOptions(

																								[

																												'area'	=>	

\Magento\Framework\App\Area::AREA_ADMINHTML,

																												'store'	=>	$this->storeManager-	>getStore()-

>getId(),

]

)

																				->setTemplateVars([

																								'ticket'	=>	$ticket,

																								'customer_name'	=>	$customer->	getFirstname()

])

																				->setFrom([

																								'name'	=>	$this->scopeConfig->	

getValue('trans_email/ident_general	/name',	$storeScope),

																								'email'	=>	$this->scopeConfig->	

getValue('trans_email/ident_general	/email',	$storeScope)

])

																				->addTo($customer->getEmail())

																				->getTransport();

																$transport->sendMessage();

																$this->inlineTranslation->resume();

																$this->messageManager->addSuccess(__('Customer	notified	via	

email.'));

												}	catch	(Exception	$e)	{

																$this->messageManager->addError(__('Error	with	closing	

ticket	action.'));

												}

								}

								$resultRedirect	=	$this->resultRedirectFactory->create();

								$resultRedirect->setPath('*/*/index');

								return	$resultRedirect;

				}

}

The	Close	action	controller	has	two	separate	roles	to	fulfill.	One	is	to	change	the	ticket
status;	the	other	is	to	send	an	e-mail	to	the	customer	using	the	proper	e-mail	template.	The
class	constructor	is	being	passed	a	lot	of	parameters	that	all	instantiate	the	objects	we	will
be	juggling	around.

Within	the	execute	action,	we	first	check	for	the	existence	of	the	id	parameter	and	then	try
to	load	a	Ticket	entity	through	the	ticket	factory,	based	on	the	provided	ID	value.	If	the
ticket	exists,	we	set	its	status	label	to
\Foggyline\Helpdesk\Model\Ticket::STATUS_CLOSED	and	save	it.

Following	the	ticket	save	is	the	e-mail-sending	code,	which	is	very	similar	to	the	one	that
we	already	saw	in	the	customer	New	Ticket	save	action.	The	difference	is	that	the	e-mail
goes	out	from	the	admin	user	to	the	customer	this	time.	We	are	setting	the	template	ID	to
the	configuration	value	at	path	foggyline_helpdesk/email_template/customer.	The
setTemplateVars	method	is	passed	to	the	member	array	this	time,	both	ticket	and
customer_name,	as	they	are	both	used	in	the	e-mail	template.	The	setFrom	method	is
passed	the	general	store	username	and	e-mail,	and	the	sendMessage	method	is	called	on
the	transport	object.

Finally,	using	the	resultRedirectFactory	object,	the	user	is	redirected	back	to	the	tickets
grid.

With	this,	we	finalize	our	module	functional	requirement.

Though	we	are	done	with	the	functional	requirement	of	a	module,	what	remains	for	us	as
developers	is	to	write	tests.	There	are	several	types	of	tests,	such	as	unit,	functional,
integration,	and	so	on.	To	keep	things	simple,	within	this	chapter	we	will	cover	only	unit
tests	across	a	single	model	class.

Creating	unit	tests
This	chapter	assumes	that	we	have	PHPUnit	configured	and	available	on	the	command
line.	If	this	is	not	the	case,	PHPUnit	can	be	installed	using	instructions	from	the
https://phpunit.de/	website.

To	build	and	run	tests	using	the	PHPUnit	testing	framework,	we	need	to	define	test
locations	and	other	configuration	options	via	an	XML	file.	Magento	defines	this	XML
configuration	file	under	dev/tests/unit/phpunit.xml.dist.	Let’s	make	a	copy	of	that
file	under	dev/tests/unit/phpunit-foggyline-helpdesk.xml,	with	adjustments	as
follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<phpunit	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="http://schema.phpunit.de/4.1	/phpunit.xsd"

									colors="true"

									bootstrap="./framework/bootstrap.php"

								>

				<testsuite	name="Foggyline_Helpdesk	-	Unit	Tests">

								<directory	suffix="Test.php">	

../../../app/code/Foggyline/Helpdesk/Test/Unit	</directory>

				</testsuite>

				<php>

								<ini	name="date.timezone"	value="Europe/Zagreb"/>

								<ini	name="xdebug.max_nesting_level"	value="200"/>

				</php>

				<filter>

								<whitelist	addUncoveredFilesFromWhiteList="true">

												<directory	suffix=".php">	

../../../app/code/Foggyline/Helpdesk/*</directory>

												<exclude>

																<directory>	../../../app/code/Foggyline/Form/Helpdesk	

</directory>

												</exclude>

								</whitelist>

				</filter>

				<logging>

								<log	type="coverage-html"	

target="coverage_dir/Foggyline_Helpdesk/test-	reports/coverage"	

charset="UTF-8"	yui="true"	highlight="true"/>

				</logging>

</phpunit>

Tip
We	are	making	a	special	XML	configuration	file	for	our	module	alone	because	we	want	to
quickly	run	a	few	of	the	tests	contained	within	our	module	alone	and	not	the	entire
Magento	app/code	folder.

Given	that	the	actual	art	of	writing	unit	tests	is	beyond	the	scope	of	this	book	and	writing
the	full	unit	test	with	100	percent	code	coverage	for	this	simple	module	would	require	at
least	a	dozen	more	pages,	we	will	only	write	a	single	test,	one	that	covers	the	Ticket

https://phpunit.de/

entity	model	class.

We	define	our	Ticket	entity	model	class	test	under	the
app/code/Foggyline/Helpdesk/Test/Unit/Model/TicketTest.php	file	as	follows:

<?php

namespace	Foggyline\Helpdesk\Test\Unit\Model;

class	TicketTest	extends	\PHPUnit_Framework_TestCase

{

				protected	$objectManager;

				protected	$ticket;

				public	function	setUp()

				{

								$this->objectManager	=	new	

\Magento\Framework\TestFramework\Unit\Helper	\ObjectManager($this);

								$this->ticket	=	$this->objectManager->	

getObject('Foggyline\Helpdesk\Model\Ticket');

				}

				public	function	testGetSeveritiesOptionArray()

				{

								$this->	assertNotEmpty(\Foggyline	

\Helpdesk\Model\Ticket::getSeveritiesOptionArray());

				}

				public	function	testGetStatusesOptionArray()

				{

								$this->assertNotEmpty(\Foggyline	

\Helpdesk\Model\Ticket::getStatusesOptionArray());

				}

				public	function	testGetStatusAsLabel()

				{

								$this->ticket->setStatus(\Foggyline\Helpdesk	

\Model\Ticket::STATUS_CLOSED);

								$this->assertEquals(

												\Foggyline\Helpdesk\Model\Ticket::$statusesOptions	

[\Foggyline\Helpdesk\Model\Ticket::STATUS_CLOSED],

												$this->ticket->getStatusAsLabel()

);

				}

				public	function	testGetSeverityAsLabel()

				{

								$this->ticket->setSeverity(\Foggyline	

\Helpdesk\Model\Ticket::SEVERITY_MEDIUM);

								$this->assertEquals(

												\Foggyline\Helpdesk\Model\Ticket::$severitiesOptions	

[\Foggyline\Helpdesk\Model\Ticket::SEVERITY_MEDIUM],

												$this->ticket->getSeverityAsLabel()

);

				}

}

The	location	of	test	files	should	map	those	of	the	files	being	tested.	The	naming	of	the	test
file	should	also	follow	the	naming	of	the	file	being	tested	with	the	suffix	Test	attached	to
it.	This	means	that	if	our	Ticket	model	is	located	under	the	modules	Model/Ticket.php
file,	then	our	test	should	be	located	under	Test/Unit/TicketTest.php.

Our	Foggyline\Helpdesk\Test\Unit\Model\TicketTest	extends	the
\PHPUnit_Framework_TestCase	class.	There	is	a	setUp	method	we	need	to	define,	which
acts	like	a	constructor,	where	we	set	up	the	variables	and	everything	that	requires
initializing.

Using	Magento	ObjectManager,	we	instantiate	the	Ticket	model,	which	is	then	used
within	the	test	methods.	The	actual	test	methods	follow	a	simple	naming	pattern,	where
the	name	of	the	method	from	the	Ticket	model	matches	the	{test}+{method	name}	from
the	TicketTest	class.

We	defined	four	test	methods:	testGetSeveritiesOptionArray,
testGetStatusesOptionArray,	testGetStatusAsLabel,	and	testGetSeverityAsLabel.
Within	the	test	methods,	we	are	using	only	assertEquals	and	assertNotEmpty	methods
from	the	PHPUnit	testing	framework	library	to	do	basic	checks.

We	can	now	open	a	console,	change	the	directory	to	our	Magento	installation	directory,
and	execute	the	following	command:

phpunit	-c	dev/tests/unit/phpunit-foggyline-helpdesk.xml

After	the	command	executes,	the	console	should	show	an	output	as	shown:

PHPUnit	4.7.6	by	Sebastian	Bergmann	and	contributors…..

Time:	528	ms,	Memory:	11.50Mb

OK	(4	tests,	4	assertions)

Generating	code	coverage	report	in	HTML	format…	done

Looking	back	at	our	dev/tests/unit/phpunit-foggyline-helpdesk.xml	file,	under	the
target	attribute	of	the	phpunit	>	logging	>	log	element,	we	can	see	that	the	test	report	is
dumped	into	the	coverage_dir/Foggyline_Helpdesk/test-reports/coverage	folder
relative	to	the	XML	file.

If	we	open	the	dev/tests/unit/coverage_dir/Foggyline_Helpdesk/test-
reports/coverage/	folder,	we	should	see	a	whole	lot	of	files	generated	there,	as	shown	in
the	following	screenshot:

Opening	the	index.html	file	in	the	browser	should	give	us	a	page	as	shown	in	the
following	screenshot:

We	can	see	the	code	coverage	report	showing	60%	on	lines	and	methods	for	our	Model
folder	and	0%	for	the	rest.	This	is	because	we	only	wrote	the	test	for	the	Ticket	entity
model	class,	whereas	the	rest	remain	untested.

Summary
This	chapter	gave	a	full	step-by-step	guide	to	writing	a	simple	yet	functional	Magento
module.	Seemingly	simple	in	terms	of	functionality,	we	can	see	that	the	module	code	is
significantly	scattered	across	multiple	PHP,	XML,	and	PHMTL	files.

With	this	simple	module,	we	covered	quite	a	lot	of	various	Magento	platform	parts,	from
routes,	ACLs,	controllers,	blocks,	XML	layouts,	grids,	controller	actions,	models,
resources,	collections,	install	scripts,	interactions	with	session,	e-mail	templates,	e-mail
transport,	and	layout	objects.

At	the	end,	we	wrote	a	few	simple	unit	tests	for	our	models.	Although	the	practice	is	to
write	unit	tests	for	all	of	our	PHP	code,	we	opted	for	a	shorter	version	or	else	we	would
need	more	pages	to	cover	everything.

The	full	module	code	is	available	here:	https://github.com/ajzele/B05032-
Foggyline_Helpdesk.

With	this	being	the	last	chapter,	let	us	look	at	a	short	overview	of	the	things	we	learned
throughout	the	whole	book.	Our	journey	started	by	grasping	the	Magento	platform
architecture,	where	we	gained	significant	insight	into	the	technology	stack	behind	it.	We
then	progressed	to	environment	management.	Although	it	might	seem	like	a	wrong	order
of	things,	we	opted	for	this	next	step	in	order	to	quickly	get	us	set	for	development.	We
then	looked	into	programming	concepts	and	conventions,	which	served	as	a	precursor	to
actual	hands-on	development	bits.	Details	of	entity	persistence	were	shown	through
model,	resource,	collection	classes,	and	indexers.	We	further	covered	the	importance	and
practical	details	of	dependency	injection	and	interception.	Backend	and	frontend-related
development	was	covered	in	their	own	two	chapters,	outlining	the	most	common	bits	and
pieces	for	making	customizations	to	our	Magento	platform.	We	then	dug	into	details	of	the
web	API,	showing	how	to	make	authenticated	API	calls	and	even	define	our	own	APIs.
Along	the	way,	we	covered	a	few	major	functional	areas	as	well,	such	as	customers,
reports,	import	export,	cart,	and	so	on.	The	testing	and	QA	took	up	a	significant	chunk	as
we	briefly	covered	all	forms	of	available	tests.	Finally,	we	used	what	we	learned	to	build	a
fully	functional	module.

Although	we	have	covered	a	significant	path	on	our	journey,	this	is	merely	a	first	step.
Given	its	massive	code	base,	diverse	technology	stacks,	and	feature	list,	Magento	is	not	an
easy	platform	to	master.	Hopefully,	this	book	will	give	enough	incentive	to	take	further
steps	into	profiling	ourselves	as	true	Magento	experts.

https://github.com/ajzele/B05032-Foggyline_Helpdesk

Index
A

access	control	list	(ACL)
about	/	User	types

access	control	lists	(acl.xml)
creating	/	Creating	access	control	lists	(acl.xml)

after	listener
using	/	Using	the	after	listener

Amazon	Elastic	Compute	Cloud	(Amazon	EC2)
about	/	Introduction	to	Amazon	Web	Services

Amazon	Web	Services	(AWS)	/	Introduction	to	Amazon	Web	Services
AngularJS

URL	/	JavaScript
Apache	JMeter

URL	/	Performance	testing
API	call	examples

getById	service	method	call	examples	/	The	getById	service	method	call
examples
getList	service	method	call	examples	/	The	getList	service	method	call	examples
save	(as	new)	service	method	call	examples	/	The	save	(as	new)	service	method
call	examples
save	(as	update)	service	method	call	examples	/	The	save	(as	update)	service
method	call	examples
deleteById	service	method	call	examples	/	The	deleteById	service	method	call
examples
references	/	The	deleteById	service	method	call	examples

Apt
about	/	Composer

around	listener
using	/	Using	the	around	listener

authentication	methods
defining	/	Authentication	methods
token-based	authentication	/	Authentication	methods
OAuth-based	authentication	/	Authentication	methods
session-based	authentication	/	Authentication	methods

AWS	management	console
URL	/	Introduction	to	Amazon	Web	Services

B
backend	interface

building	/	Building	a	backend	interface
access	control	list	and	menu,	linking	/	Linking	the	access	control	list	and	menu
routes,	creating	/	Creating	routes,	controllers,	and	layout	handles
controllers,	creating	/	Creating	routes,	controllers,	and	layout	handles
layout	handles,	creating	/	Creating	routes,	controllers,	and	layout	handles
grid	widget,	utilizing	/	Utilizing	the	grid	widget
grid	column	renderer,	creating	/	Creating	a	grid	column	renderer
grid	column	options,	creating	/	Creating	grid	column	options
controller	actions,	creating	/	Creating	controller	actions

Bearer	HTTP	authorization	scheme
about	/	REST	versus	SOAP

before	listener
using	/	Using	the	before	listener

blocks
about	/	Blocks

C
cache(s)

defining	/	Cache(s)
catalog	management

about	/	Catalog	management
categories,	managing	manually	/	Managing	categories	manually
categories,	managing	via	code	/	Managing	categories	via	code
categories,	managing	via	API	/	Managing	categories	via	API
products,	managing	manually	/	Managing	products	manually
products,	managing	via	code	/	Managing	products	via	code
products,	managing	via	API	/	Managing	products	via	API

class	preferences
configuring	/	Configuring	class	preferences

CMS	(content	management	system)
about	/	The	architectural	layers

CMS	management
defining	/	CMS	management
blocks,	managing	manually	/	Managing	blocks	manually
blocks,	managing	via	code	/	Managing	blocks	via	code
blocks,	managing	via	API	/	Managing	blocks	via	API
pages,	managing	manually	/	Managing	pages	manually
pages,	managing	via	code	/	Managing	pages	via	code
pages,	managing	via	API	/	Managing	pages	via	API

code	demarcation
about	/	Coding	standards

code	generation
about	/	Code	generation

coding	standards
about	/	Coding	standards

collection	filters
about	/	Collection	filters

collections
managing	/	Managing	collections

components,	open	source	technologies
PHP	/	The	technology	stack
Coding	standards	/	The	technology	stack
Composer	/	The	technology	stack
HTML	/	The	technology	stack
CSS	/	The	technology	stack
jQuery	/	The	technology	stack
RequireJS	/	The	technology	stack
third-party	libraries	/	The	technology	stack
Apache	or	Nginx	/	The	technology	stack

MySQL	/	The	technology	stack
MTF	/	The	technology	stack

Composer
defining	/	Composer
URL	/	Composer
references	/	Composer

configuration	file	(config.xml)
creating	/	Creating	a	configuration	file	(config.xml)

cookies
about	/	Session	and	cookies

Cron	jobs
defining	/	Cron	jobs

Cross-Site	Request	Forgery	(CSRF)
about	/	Creating	blocks	and	templates

CRUD	(create,	read,	update,	and	delete)
about	/	The	architectural	layers

CSV	files
defining	/	i18n

customer	management
about	/	Customer	management
customers,	managing	manually	/	Managing	customers	manually
customers,	managing	via	code	/	Managing	customers	via	code
customers,	managing	via	API	/	Managing	customers	via	an	API
customer	address,	managing	via	code	/	Managing	customer	address	via	code
customer	address,	managing	via	API	/	Managing	customers	address	via	an	API

custom	offline	payment	methods
defining	/	Custom	offline	payment	methods
URL	/	Custom	offline	payment	methods

custom	offline	shipping	methods
defining	/	Custom	offline	shipping	methods
URL	/	Custom	offline	shipping	methods

custom	product	types
defining	/	The	custom	product	types
URL	/	The	custom	product	types

custom	variables
defining	/	Custom	variables

custom	Web	APIs
creating	/	Creating	custom	Web	APIs
API	call	examples	/	API	call	examples

D
data	interfaces

about	/	Service	contracts
data	scripts

defining	/	Understanding	the	flow	of	schema	and	data	scripts
dependency	injection

about	/	Dependency	injection
development	environment

setting	up	/	Setting	up	a	development	environment
VirtualBox	/	VirtualBox
Vagrant	/	Vagrant
Vagrant	project	/	Vagrant	project

DNS
setting	up	/	Setting	up	Elastic	IP	and	DNS

DocBlock	standard
about	/	Coding	standards

E
e-mail	templates	(email_templates.xml)

creating	/	Creating	e-mail	templates	(email_templates.xml)
EC2	instance

setting	up	/	Setting	up	EC2
Elastic	IP

setting	up	/	Setting	up	Elastic	IP	and	DNS
Elastic	IP	address

about	/	Setting	up	Elastic	IP	and	DNS
Entity-Attribute-Value	(EAV)

about	/	The	architectural	layers
entity	CRUD	actions

defining	/	Entity	CRUD	actions
references	/	Entity	CRUD	actions

entity	persistence	(Model,	Resource,	Collection)
managing	/	Managing	entity	persistence	(model,	resource,	collection)

events
defining	/	Events	and	observers
static	/	Events	and	observers
dynamic	/	Events	and	observers

existing	entities
reading	/	Reading	existing	entities
updating	/	Updating	existing	entities
deleting	/	Deleting	existing	entities

Ext	JS
URL	/	JavaScript

F
factories

about	/	Code	generation
flow

rendering	/	Rendering	flow
Foggyline_Unitly	module

URL	/	Writing	a	simple	unit	test
frontend	interface

building	/	Building	a	frontend	interface
routes,	creating	/	Creating	routes,	controllers,	and	layout	handles
controllers,	creating	/	Creating	routes,	controllers,	and	layout	handles
layout	handles,	creating	/	Creating	routes,	controllers,	and	layout	handles
blocks,	creating	/	Creating	blocks	and	templates
templates,	creating	/	Creating	blocks	and	templates
form	submissions,	handling	/	Handling	form	submissions

functional	testing
defining	/	Functional	testing

G
gruntjs

URL	/	JavaScript

I
i18n	(internationalization)

defining	/	i18n
IAM	groups

creating	/	Creating	IAM	groups
IAM	users

creating	/	Creating	IAM	users
Identity	and	Access	Management	(IAM)

about	/	Setting	up	access	for	S3	usage
indexing

about	/	Indexer(s)
inline	translation

about	/	i18n
installation	script	(InstallSchema.php)

creating	/	Creating	an	installation	script	(InstallSchema.php)
install	data	script	(InstallData.php)

creating	/	Creating	an	install	data	script	(InstallData.php)
install	schema	script	(InstallSchema.php)

creating	/	Creating	an	install	schema	script	(InstallSchema.php)
integrated	development	environments	(IDEs)

about	/	Code	generation
integration	testing

defining	/	Integration	testing
integrity	testing

defining	/	Integrity	testing

J
jasmine

URL	/	JavaScript
JavaScript

about	/	JavaScript
custom	JS	component,	creating	/	Creating	a	custom	JS	component

JavaScript	coding	standard
URL	/	Coding	standards

JavaScript	component	(JS	component)
about	/	JavaScript

JavaScript	DocBlock	standard
about	/	Coding	standards
URL	/	Coding	standards

jQuery
URL	/	JavaScript

jQuery	UI
URL	/	JavaScript

jQuery	UI	widget
about	/	JavaScript

jQuery	widget
about	/	JavaScript

jQuery	widget	coding	standard
about	/	Coding	standards

K
Kernel-based	Virtual	Machine	(KVM)

about	/	Vagrant
Knockout

URL	/	JavaScript

L
layouts

about	/	Layouts
legacy	testing

defining	/	Legacy	testing
LESS	coding	standard

about	/	Coding	standards
logging

about	/	Logging

M
Magento

architectural	layers	/	The	architectural	layers
presentation	layer	/	The	architectural	layers
service	layer	/	The	architectural	layers
domain	layer	/	The	architectural	layers
persistence	layer	/	The	architectural	layers
top-level	filesystem	structure	/	The	top-level	filesystem	structure
module	filesystem	structure	/	The	module	filesystem	structure

Magento	Testing	Framework	(MTF)
about	/	The	technology	stack,	Functional	testing
URL	/	The	technology	stack,	Functional	testing
requirements	/	Functional	testing

miniature	module
creating	/	Creating	a	miniature	module
simple	model,	creating	/	Creating	a	simple	model
EAV	model,	creating	/	Creating	an	EAV	model

modernizr
URL	/	JavaScript

module
registering	/	Registering	a	module

module	requirements
defining	/	Module	requirements

moment.js
URL	/	JavaScript

N
NetBeans	PHP

about	/	Layouts
new	entities

creating	/	Creating	new	entities
notification	messages

defining	/	Notification	messages

O
OAuth-based	authentication

defining	/	Hands-on	with	OAuth-based	authentication
OAuth-based	Web	API	calls

defining	/	OAuth-based	Web	API	calls
OAuth	1.0a	handshake	process

about	/	Authentication	methods
OAuth	client

URL	/	Hands-on	with	OAuth-based	authentication
object	manager

about	/	The	object	manager
observers

defining	/	Events	and	observers

P
performance	testing

defining	/	Performance	testing
PHP

URL	/	Coding	standards
PHP	coding	standard

about	/	Coding	standards
PHP	OOP

about	/	The	technology	stack
PhpStorm

about	/	Layouts
PHPUnit

URL	/	Creating	unit	tests
PHPUnit	testing	framework

about	/	Unit	testing
plugin

creating	/	Creating	a	plugin
plugin	sort	order

about	/	The	plugin	sort	order
production	environment

setting	up	/	Setting	up	a	production	environment
Amazon	Web	Services	(AWS)	/	Introduction	to	Amazon	Web	Services
access,	setting	up	for	S3	usage	/	Setting	up	access	for	S3	usage
S3,	setting	up	for	database	and	media	files	backup	/	Setting	up	S3	for	database
and	media	files	backup
bash	script,	for	automated	EC2	setup	/	Bash	script	for	automated	EC2	setup

products	and	customers	Import
defining	/	Products	and	customers	import

profiler
about	/	The	profiler
enabling	/	The	profiler
defining	/	The	profiler

Prototype
URL	/	JavaScript

R
relational	database	management	system	(RDBMS)

about	/	The	technology	stack
RequireJS

URL	/	JavaScript
REST

versus	SOAP	/	REST	versus	SOAP

S
schema	flow

defining	/	Understanding	the	flow	of	schema	and	data	scripts
script.aculo.us

URL	/	JavaScript
Search	Criteria	Interface

used,	for	list	filtering	/	Search	Criteria	Interface	for	list	filtering
Selenium

about	/	Functional	testing
Selenium	standalone	server

URL	/	Functional	testing
service	contract

about	/	The	architectural	layers,	Service	contracts
session

about	/	Session	and	cookies
session-based	authentication

defining	/	Hands-on	with	session-based	authentication
Slide	Repository	Interface

about	/	Creating	custom	Web	APIs
SOAP

versus	REST	/	REST	versus	SOAP
SoapClient

about	/	REST	versus	SOAP
standards

URL	/	Coding	standards
static	testing

defining	/	Static	testing
Symfony

about	/	The	technology	stack
system	configuration	file	(system.xml)

creating	/	Creating	a	system	configuration	file	(system.xml)

T
templates	/	Templates
test	types

defining	/	Types	of	tests
themes,	view	elements

about	/	Themes
new	theme,	creating	/	Creating	a	new	theme

token-based	authentication
defining	/	Hands-on	with	token-based	authentication

U
Ui	component

about	/	JavaScript
Underscore.js

URL	/	JavaScript
unit	test

writing	/	Writing	a	simple	unit	test
unit	testing

defining	/	Unit	testing
unit	tests

creating	/	Creating	unit	tests
upgrade	data	script	(UpgradeData.php)

creating	/	Creating	an	upgrade	data	script	(UpgradeData.php)
upgrade	schema	script	(UpgradeSchema.php)

creating	/	Creating	an	upgrade	schema	script	(UpgradeSchema.php)
user	types

about	/	User	types
administrator	or	integration	/	User	types
customer	/	User	types
guest	user	/	User	types

V
Vagrant

about	/	Vagrant
URL	/	Vagrant

Vagrant	project
about	/	Vagrant	project
PHP,	provisioning	/	Provisioning	PHP
MySQL,	provisioning	/	Provisioning	MySQL
Apache,	provisioning	/	Provisioning	Apache
Magento	installation,	provisioning	/	Provisioning	Magento	installation

var	directory
about	/	The	var	directory

view	elements
about	/	View	elements
Ui	components	/	Ui	components
containers	/	Containers
blocks	/	Blocks
block	architecture	/	Block	architecture	and	life	cycle
life	cycle	/	Block	architecture	and	life	cycle
templates	/	Templates
layouts	/	Layouts
themes	/	Themes
JavaScript	/	JavaScript
CSS	/	CSS

VirtualBox
about	/	VirtualBox
URL	/	Vagrant

virtual	types
using	/	Using	virtual	types
about	/	Using	virtual	types

VMware
about	/	Vagrant

W
Web	Service	Definition	Language	(WSDL)

about	/	REST	versus	SOAP
widgets

defining	/	Widgets

Y
Yum

about	/	Composer

Z
Zend	Framework

about	/	The	technology	stack

	Magento 2 Developer's Guide
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Understanding the Platform Architecture
	The technology stack
	The architectural layers
	The top-level filesystem structure
	The module filesystem structure
	Summary
	2. Managing the Environment
	Setting up a development environment
	VirtualBox
	Vagrant
	Vagrant project
	Provisioning PHP
	Provisioning MySQL
	Provisioning Apache
	Provisioning Magento installation
	Setting up a production environment
	Introduction to Amazon Web Services
	Setting up access for S3 usage
	Creating IAM users
	Creating IAM groups
	Setting up S3 for database and media files backup
	Bash script for automated EC2 setup
	Setting up EC2
	Setting up Elastic IP and DNS
	Summary
	3. Programming Concepts and Conventions
	Composer
	Service contracts
	Code generation
	The var directory
	Coding standards
	Summary
	4. Models and Collections
	Creating a miniature module
	Creating a simple model
	Creating an EAV model
	Understanding the flow of schema and data scripts
	Creating an install schema script (InstallSchema.php)
	Creating an upgrade schema script (UpgradeSchema.php)
	Creating an install data script (InstallData.php)
	Creating an upgrade data script (UpgradeData.php)
	Entity CRUD actions
	Creating new entities
	Reading existing entities
	Updating existing entities
	Deleting existing entities
	Managing collections
	Collection filters
	Summary
	5. Using the Dependency Injection
	The object manager
	Dependency injection
	Configuring class preferences
	Using virtual types
	Summary
	6. Plugins
	Creating a plugin
	Using the before listener
	Using the after listener
	Using the around listener
	The plugin sort order
	Summary
	7. Backend Development
	Cron jobs
	Notification messages
	Session and cookies
	Logging
	The profiler
	Events and observers
	Cache(s)
	Widgets
	Custom variables
	i18n
	Indexer(s)
	Summary
	8. Frontend Development
	Rendering flow
	View elements
	Ui components
	Containers
	Blocks
	Block architecture and life cycle
	Templates
	Layouts
	Themes
	Creating a new theme
	JavaScript
	Creating a custom JS component
	CSS
	Summary
	9. The Web API
	User types
	Authentication methods
	REST versus SOAP
	Hands-on with token-based authentication
	Hands-on with OAuth-based authentication
	OAuth-based Web API calls
	Hands-on with session-based authentication
	Creating custom Web APIs
	API call examples
	The getById service method call examples
	The getList service method call examples
	The save (as new) service method call examples
	The save (as update) service method call examples
	The deleteById service method call examples
	Search Criteria Interface for list filtering
	Summary
	10. The Major Functional Areas
	CMS management
	Managing blocks manually
	Managing blocks via code
	Managing blocks via API
	Managing pages manually
	Managing pages via code
	Managing pages via API
	Catalog management
	Managing categories manually
	Managing categories via code
	Managing categories via API
	Managing products manually
	Managing products via code
	Managing products via API
	Customer management
	Managing customers manually
	Managing customers via code
	Managing customers via an API
	Managing customer address via code
	Managing customers address via an API
	Products and customers import
	The custom product types
	Custom offline shipping methods
	Custom offline payment methods
	Summary
	11. Testing
	Types of tests
	Unit testing
	Integration testing
	Static testing
	Integrity testing
	Legacy testing
	Performance testing
	Functional testing
	Writing a simple unit test
	Summary
	12. Building a Module from Scratch
	Module requirements
	Registering a module
	Creating a configuration file (config.xml)
	Creating e-mail templates (email_templates.xml)
	Creating a system configuration file (system.xml)
	Creating access control lists (acl.xml)
	Creating an installation script (InstallSchema.php)
	Managing entity persistence (model, resource, collection)
	Building a frontend interface
	Creating routes, controllers, and layout handles
	Creating blocks and templates
	Handling form submissions
	Building a backend interface
	Linking the access control list and menu
	Creating routes, controllers, and layout handles
	Utilizing the grid widget
	Creating a grid column renderer
	Creating grid column options
	Creating controller actions
	Creating unit tests
	Summary
	Index

