

Magento	2	Development	Cookbook

Table	of	Contents

Magento	2	Development	Cookbook

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Sections

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Upgrading	from	Magento	1

Introduction

Creating	a	Magento	1	website	with	sample	data

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	Magento	2	website

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Preparing	an	upgrade	from	Magento	1

Getting	ready

How	to	do	it…

How	it	works…

Upgrading	the	database

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	an	IDE

Getting	ready

How	to	do	it…

There’s	more…

Writing	clean	code	with	PHP	MD	and	PHP	CS

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

2.	Working	with	Products

Introduction

Configuring	the	catalog	defaults

Getting	ready

How	to	do	it

How	it	works

Working	with	attribute	sets

Getting	ready

How	to	do	it

How	it	works

Working	with	product	types

Getting	ready

How	to	do	it

How	it	works…

There’s	more…

A	simple	product

A	configurable	product

A	bundle	product

A	grouped	product

A	virtual	product

A	downloadable	product

Adding	social	media	buttons

Getting	ready

How	to	do	it

How	it	works

Embedding	an	HTML	object

Getting	ready

How	to	do	it

How	it	works

Changing	the	URL	of	a	product	page

Getting	ready

How	to	do	it

How	it	works

There’s	more

3.	Theming

Introduction

Exploring	the	default	Magento	2	themes

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	Magento	2	theme

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Customizing	the	HTML	output

Getting	ready

How	to	do	it…

How	it	works…

Adding	extra	files	to	the	theme

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Working	with	LESS

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Changing	a	page	title

How	to	do	it…

How	it	works…

Working	with	translations

Getting	ready

How	to	do	it…

How	it	works…

Adding	widgets	to	the	layout

Getting	ready

How	to	do	it…

How	it	works…

Customizing	email	templates

Getting	ready

How	to	do	it…

How	it	works…

4.	Creating	a	Module

Introduction

Creating	the	module	files

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	controller

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Adding	layout	updates

Getting	ready

How	to	do	it…

How	it	works…

Adding	a	translation	file

Getting	ready

How	to	do	it…

How	it	works…

Adding	a	block	of	new	products

Getting	ready

How	to	do	it…

How	it	works…

Adding	an	interceptor

Getting	ready

How	to	do	it…

How	it	works…

See	also

Adding	a	console	command

Getting	ready

How	to	do	it…

How	it	works…

See	also…

5.	Databases	and	Modules

Introduction

Creating	an	install	and	upgrade	script

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	flat	table	with	models

Getting	ready

How	to	do	it…

How	it	works…

Working	with	Magento	collections

Getting	ready

How	to	do	it…

How	it	works…

Programmatically	adding	product	attributes

Getting	ready

How	to	do	it…

How	it	works…

Repairing	the	database

Getting	ready

How	to	do	it…

How	it	works…

6.	Magento	Backend

Introduction

Registering	a	backend	controller

Getting	ready

How	to	do	it…

How	it	works…

Extending	the	menu

Getting	ready

How	to	do	it…

How	it	works…

Adding	an	ACL

Getting	ready

How	to	do	it…

How	it	works…

Adding	configuration	parameters

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	grid	of	a	database	table

Getting	ready

How	to	do	it…

How	it	works…

Working	with	backend	components

Getting	ready

How	to	do	it…

How	it	works…

Adding	customer	attributes

Getting	ready

How	to	do	it…

How	it	works…

Working	with	source	models

Getting	ready

How	to	do	it…

How	it	works…

7.	Event	Handlers	and	Cronjobs

Introduction

Understanding	event	types

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	your	own	event

Getting	ready

How	to	do	it…

How	it	works…

Adding	an	event	observer

Getting	ready

How	to	do	it…

How	it	works…

Introducing	cronjobs

Getting	ready

How	to	do	it…

How	it	works…

Creating	and	testing	a	new	cronjob

Getting	ready

How	to	do	it…

How	it	works…

8.	Creating	a	Shipping	Module

Introduction

Initializing	module	configurations

Getting	ready

How	to	do	it…

How	it	works…

See	also

Writing	an	adapter	model

Getting	ready

How	to	do	it…

How	it	works…

Extending	the	shipping	method	features

Getting	ready

How	to	do	it…

How	it	works…

Adding	the	module	in	the	frontend

Getting	ready

How	to	do	it…

How	it	works…

9.	Creating	a	Product	Slider	Widget

Introduction

Creating	an	empty	module

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	widget	configuration	file

Getting	ready

How	to	do	it…

How	it	works…

Creating	the	block	and	template	files

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	custom	configuration	parameter

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Finalizing	the	theming

Getting	ready

How	to	do	it…

How	it	works…

10.	Performance	Optimization

Introduction

Benchmarking	a	website

Getting	ready

How	to	do	it…

How	it	works…

Optimizing	the	frontend	of	the	website

Getting	ready

How	it	works…

How	it	works…

There’s	more…

Optimizing	the	database	and	MySQL	configurations

Getting	ready

How	to	do	it…

How	it	works…

Optimizing	the	Apache	web	server

How	to	do	it…

How	it	works…

Finding	performance	leaks	in	Magento

Getting	ready

How	to	do	it…

How	it	works…

Configuring	OPcache,	Redis,	and	Memcached

Getting	ready

Zend	OPcache

Memcached

Redis

How	to	do	it…

How	it	works…

Optimizing	the	PHP	configurations

Getting	ready

How	to	do	it…

How	it	works…

11.	Debugging	and	Unit	Testing

Introduction

Logging	into	Magento	2

Getting	ready

How	to	do	it…

How	it	works…

Getting	started	with	Xdebug

Getting	ready

How	to	do	it…

How	it	works…

Running	automated	tests	from	Magento

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	Magento	test	case

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Index

Magento	2	Development	Cookbook

Magento	2	Development	Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1171215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-219-7

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Bart	Delvaux

Reviewers

Karen	Kilroy

Pankaj	Pareek

David	Parloir

Marius	Strajeru

Commissioning	Editor

Veena	Pagare

Acquisition	Editor

Prachi	Bisht

Content	Development	Editor

Aparna	Mitra

Technical	Editor

Abhishek	R.	Kotian

Copy	Editor

Pranjali	Chury

Project	Coordinator

Izzat	Contractor

Proofreader

Safis	Editing

Indexer

Mariammal	Chettiyar

Graphics

Disha	Haria

Production	Coordinator

Conidon	Miranda

Cover	Work

Conidon	Miranda

About	the	Author
Bart	Delvaux	is	an	experienced	web	developer	with	several	years	of	experience	in	the
PHP	world.	He	has	worked	with	the	most	important	frameworks	in	PHP,	such	as	Drupal
and	Zend	Framework,	but	Magento	is	his	specialization.

Bart	has	obtained	all	the	Magento	developer	certifications:	Front	End	Developer,
Developer,	as	well	as	Developer	Plus.	He	currently	works	for	ISAAC	Software	Solutions,
a	company	that	specializes	in	software	solutions	such	as	web	shops,	apps,	system
integrations,	and	more.

Bart	finished	a	large	variety	of	Magento	projects	in	his	Magento	career	that	started	in	2010
with	the	principle	“quality	above	quantity”.	Having	gone	from	handling	a	basic	shop	to
shipping	modules	and	large,	complex	Magento	stores,	Magento	holds	no	secrets	from	him.

Bart	has	also	worked	on	Magento	1.8	Development	Cookbook,	Packt	Publishing.	Now	that
Magento	2	is	out,	it	is	time	for	the	next	one!

I	want	to	thank	everyone	who	made	it	possible	for	me	to	complete	this	book.	I	would	like
to	extend	thanks	to	the	people	at	Packt	Publishing	for	the	support	and	to	my	colleagues	for
their	vision	and	support.

Lastly,	I	want	to	thank	the	people	who	contributed	to	Magento	2.	They	did	a	good	job
creating	a	new	version	of	the	popular	Magento	system,	which	is	future-proof!

About	the	Reviewers
Karen	Kilroy	is	a	highly	experienced	developer,	administrator,	and	instructor.	She	is	a
Magento-certified	Front	End	Developer.	As	a	hands-on	developer	and	systems
administrator	with	more	than	25	years	of	experience	in	IT,	which	includes	20	years	in	web
development,	Karen	has	focused	primarily	on	Magento	for	the	past	7	years.	Currently,	she
is	employed	at	Amplifi	as	a	Magento	technical	lead	and	works	on	several	well-known
commerce	sites.

Karen	got	her	start	in	Magento	at	a	direct	marketing	company	selling	EdenPURE	Heaters
(edenpure.com),	a	site	that	generates	millions	of	dollars	in	sales.	Additionally,	she	was	a
courseware	author	and	instructor	for	Magento’s	official	training	arm,	Magento	U,	between
2010	and	2014.	Karen	is	also	a	reviewer	of	Mastering	Magento,	2nd	Edition,	Packt
Publishing.

Prior	to	becoming	involved	with	Magento,	she	customized	LAMP	content	management
systems,	such	as	Joomla,	Drupal,	and	WordPress.	In	the	early	days	of	web	development,
Karen	led	her	own	company,	where	she	employed	20	developers	doing	Java	and	Lotus
Notes/Domino	work	for	large	clients.

In	her	spare	time,	she	is	also	a	professional	dragon	boat	coach	and	steersperson.

Pankaj	Pareek	is	a	certified	software	professional	who	has	expertise	in	Magento,	PHP,
and	other	frameworks.	He	has	provided	his	professional	services	in	this	field	for	more	than
7	years.

A	true	professional,	Pankaj	works	with	the	motto	that	knowledge	increases	when	you
share	it	with	others.	He	is	a	person	who	has	explored	different	aspects	of	the	software	field
suo	moto.	Pankaj	is	a	quick,	curious	learner	who	received	various	recognized
certifications	in	the	IT	field	in	a	very	short	span	of	time,	namely	Magento	Developer
(2013),	Magento	Solution	Specialist	(2015),	and	Zend	Certified	Engineer	(2014).

I	would	like	to	express	my	gratitude	toward	my	loving	grandmother,	family,	colleagues,
and	the	almighty	god.

David	Parloir	has	been	a	freelance	Magento	developer	since	the	first	version	was	released
in	2008,	and	through	this,	he	has	also	been	the	lead	developer	for	several	large	global
projects.	Prior	to	this,	David	worked	for	several	companies	that	focused	on	the
development	of	e-commerce	websites	and	even	worked	as	a	teacher	of	Magento	for	a
short	period.	He	is	a	self-taught	developer	who	sees	web	development	as	more	than	a	job
—he	sees	it	as	a	passion.	David	considers	himself	a	craftsman,	keeping	up	to	date	with	the
latest	trends	in	this	area	while	balancing	the	new	skills	he	develops,	with	a	desire	for	his
code	to	be	efficient,	simple,	and	elegant.

Marius	Strajeru	is	32	years	old	and	finished	as	a	faculty	of	computer	science	in	Iasi,
Romania,	in	2006.	Since	then,	he	has	worked	as	a	PHP	developer	for	various	software
companies.

Marius’	area	of	expertise	is	Magento;	he	has	been	working	with	Magento	since	version	1.0

http://edenpure.com

came	out	in	2008.	He	started	looking	at	Magento	2	as	soon	as	he	heard	that	the	source
code	is	available	in	a	dev	version.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Magento	is	one	of	the	most	popular	e-commerce	platforms	on	the	market.	It	contains	a	lot
of	e-commerce	functionality,	it	is	stable,	and	it	is	free.	This	means	that	a	lot	of	people
choose	Magento	for	their	online	business.

The	first	stable	version	of	Magento	was	released	in	2008.	The	later	releases	were	based	on
the	first	version	of	Magento.	Technology	changes	quickly	and	Magento	needed	a	big
update—a	big	release	Magento	2	is	now	ready.

Developing	in	Magento	is	not	as	easy	as	you	would	expect.	Even	if	you	have	knowledge
of	Magento	1,	a	good	guide	with	practical	examples	that	shows	you	the	best	practice	is	a
must	have,	and	this	is	exactly	what	this	book	will	do.

With	Magento	2	Development	Cookbook,	we	will	cover	the	most	important	topics	that
will	help	you	become	a	good	Magento	2	developer.	We	will	start	with	the	basics	and	we
will	end	with	the	more	advanced	topics.

This	book	is	divided	into	several	recipes,	which	show	you	which	steps	to	take	to	complete
a	specific	action.	In	each	recipe,	we	have	a	section	that	explains	how	everything	works.

We	will	start	this	book	with	the	creation	of	a	good	development	environment.	For	a	good
development	environment,	we	need	the	right	tools.	We	will	install	Magento	and	we	will
discuss	how	we	can	migrate	data	from	a	Magento	1	to	a	Magento	2	shop.	Next,	we	will
see	some	functional	stuff.	You	will	learn	how	the	catalog	system	works,	which	product
types	are	available,	and	a	lot	more.

After	this,	you	will	learn	how	we	can	create	a	Magento	theme	to	change	the	look	and	feel
of	the	Magento	shop.	But	the	main	focus	of	this	book	will	be	the	development	part.	We
will	create	a	custom	module	that	we	will	extend	with	a	lot	of	common	features	that	are
used	in	Magento	projects,	such	as	extra	controller	pages,	database	integrations,	custom
shipping	methods,	and	extra	backend	interfaces.

At	the	end	of	this	book,	we	will	see	how	we	can	improve	the	performance	of	a	Magento
shop.	Finally,	we	will	see	some	debugging	techniques,	such	as	Xdebug	and	creating	unit
tests	using	the	Magento	test	framework.

What	this	book	covers
Chapter	1,	Upgrading	from	Magento	1,	provides	an	introduction	to	how	you	can	install
and	migrate	the	data	from	a	Magento	1	to	a	Magento	2	shop.	We	will	also	prepare	our
development	environment	in	this	chapter.

Chapter	2,	Working	with	Products,	gives	you	a	more	functional	information	about	the
possibilities	of	displaying	products	in	your	Magento	shop.

Chapter	3,	Theming,	explains	how	you	can	customize	the	look	and	feel	of	your	webshop
using	a	custom	Magento	theme.

Chapter	4,	Creating	a	Module,	describes	how	to	create	a	basic	Magento	module;	how	to
extend	that	module	with	custom	configurations,	such	as	a	custom	page,	translations,	and
blocks;	and	how	to	change	behavior	of	standard	Magento	classes.

Chapter	5,	Databases	and	Modules,	demonstrates	how	you	can	extend	a	Magento	module
with	database	interactions,	such	as	install	and	upgrade	scripts,	a	custom	entity	that
represents	a	database	table.

Chapter	6,	Magento	Backend,	shows	you	how	to	integrate	a	Magento	module	with	the
backend,	such	as	adding	configuration	pages,	creating	overview	pages,	and	extending	the
admin	menu.

Chapter	7,	Event	Handlers	and	Cronjobs,	describes	how	the	event-driven	architecture	is
implemented	in	Magento	and	how	to	integrate	this	in	your	module.	Later	in	this	chapter,
you	will	learn	how	to	create	cronjobs	and	how	to	test	them.

Chapter	8,	Creating	a	Shipping	Module,	shows	you	how	to	create	a	module	with	the
configurations	that	are	required	for	a	new	shipping	method.

Chapter	9,	Creating	a	Product	Slider	Widget,	will	cover	how	to	create	a	module	with	a
custom	widget,	how	to	build	the	backend	interface,	and	how	to	provide	a	good	UI	in	the
frontend	of	that	widget.

Chapter	10,	Performance	Optimization,	describes	how	to	benchmark	a	site	to	explore	the
limits	and	how	to	improve	the	performance	using	different	techniques	such	as	Redis	and
Memcached.

Chapter	11,	Debugging	and	Unit	Testing,	shows	you	how	to	use	the	PHP	debugger
Xdebug	and	how	we	can	create	automated	tests	using	the	Magento	2	testing	framework.

What	you	need	for	this	book
Magento	2	source	code
A	virtual	Linux	server	(Ubuntu	15.10	or	higher)
On	that	virtual	server,	you	need	the	following:

Apache	2.4
PHP	5.5	or	higher
MySQL	Server	5.6	or	higher
SSH	access

NetBeans	IDE	(or	any	other	good	PHP	editor	like	PhpStorm)
A	database	client	(such	a	phpMyAdmin)
A	standard	web	browser
Xdebug
Git	SCM

Who	this	book	is	for
This	book	is	for	web	programmers	who	are	familiar	with	PHP	and	want	to	start	with
Magento	2.	This	book	is	also	for	Magento	1	developers	who	want	to	know	how	everything
works	in	Magento	2.

This	book	will	start	with	the	basics	of	Magento	2	development	and	will	end	with	the	more
advanced	topics.	Even	if	you	knowledge	about	Magento	development,	this	book	is	a	good
reference	if	you	want	to	more	about	a	particular	topic	in	Magento.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it,	How	it	works,	There’s	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.

There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
widget.xml	file	is	used	to	define	widgets	in	the	Magento	installation.”

A	block	of	code	is	set	as	follows:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:App/etc/routes.xsd">

				<router	id="standard">

								<route	id="helloworld"	frontName="helloworld">

												<module	name="Packt_HelloWorld"	/>

								</route>

				</router>

</config>

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Clicking	the	Next
button	moves	you	to	the	next	screen.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Upgrading	from	Magento	1
In	this	chapter,	we	will	cover:

Creating	a	Magento	1	website	with	sample	data
Creating	a	Magento	2	website
Preparing	an	upgrade	from	Magento	1
Upgrading	the	database
Using	an	IDE
Writing	clean	code	with	PHP	MD	and	PHP	CS

Introduction
Magento	is	one	of	the	most	complete	e-commerce	platforms	on	the	open	source	market.
With	a	default	Magento	installation,	all	the	common	e-commerce	features,	such	as	catalog
navigation,	promotion	rules,	tax	settings,	online	payments,	and	so	on	are	available.

The	first	version	of	Magento	was	released	in	2008	after	one	year	of	development.
Magento	was	initially	designed	as	an	e-commerce	system	that	could	be	used	for	a	wide
range	of	uses.	In	later	years,	Magento	became	very	popular	as	an	out-of-the-box	e-
commerce	system	and	a	lot	of	minor	versions	of	the	1.x	series	have	been	released	in	the
last	few	years.

To	be	future	proof,	Magento	started	the	development	of	a	major	upgrade	of	the	system,
also	known	as	Magento	2.	Magento	2	is	a	big	improvement	on	every	part	of	Magento.
Every	aspect	is	analyzed	and	rewritten	with	up-to-date	technologies	to	be	ready	for	the
future.	Everything,	including	the	developer	experience,	maintainability,	performance,	and
technologies	will	be	improved.

In	this	chapter,	we	will	upgrade	the	data	of	a	Magento	1	installation	to	a	Magento	2
installation.	We	will	also	prepare	some	tools	that	we	can	use	in	the	following	chapters	of
this	book.

Creating	a	Magento	1	website	with	sample
data
To	start	a	Magento	2	upgrade,	we	need	a	Magento	1	webshop	with	some	data.	In	this
recipe,	we	will	install	the	latest	Magento	version,	1.9,	with	the	sample	data	for	the	new
responsive	theme.

Getting	ready
To	install	a	Magento	1	website,	we	need	the	following	stuff:

A	web	server	(Linux,	Apache2,	PHP,	or	MySQL)
The	Magento	1.9	codebase
The	Magento	1.9	sample	data

Note
The	Magento	1.9	codebase	and	sample	data	can	be	downloaded	from	the	Magento	site	at
http://www.magentocommerce.com/download.

The	following	stuff	is	recommended	for	the	installation:

Command-line	access
A	virtual	host	(domain	name)	that	is	going	to	be	your	web	root

Note
We	recommend	that	you	use	a	test	server	that	is	on	your	development	machine.	If	you	use
a	Linux	or	a	Mac	operating	system,	you	can	install	the	webserver	on	your	local	machine.
If	you	have	a	Windows	machine,	you	can	use	a	virtual	Linux	server	for	your	development.

http://www.magentocommerce.com/download

How	to	do	it…
1.	 Extract	the	Magento	code	archive	in	your	webroot	(the	directory	of	the	virtualhost).

An	ls	-la	command	should	give	you	the	following	output:

api.php

app

cron.php

cron.sh

downloader

errors

favicon.ico

get.php

includes

index.php

index.php.sample

install.php

js

lib

LICENSE_AFL.txt

LICENSE.html

LICENSE.txt

mage

media

php.ini.sample

pkginfo

RELEASE_NOTES.txt

shell

skin

var

2.	 Extract	the	sample	data	archive	to	a	different	folder	from	the	webroot.	Copy	the
contents	of	the	media	and	skin	folders	to	the	media	and	skin	folders	in	your	webroot.
We	can	do	this	by	using	the	following	cp	command:

cp	–R	<path_to_sampledata_folder>/media/*	

<path_to_magento_folder>/media/

cp	–R	<path_to_sampledata_folder/skin/*	<path_to_magento_folder>/skin/

3.	 Create	a	database	for	the	Magento	1	installation	and	name	it	magento1.	We	can	do
this	by	running	the	following	commands:

mysql	-u	<username>	-p

create	database	magento1;

exit;

4.	 Import	the	sql	file	that	is	in	the	sample	data	directory.	This	file	contains	a	database
that	we	will	import	into	the	magento1	database.	We	can	do	this	by	running	the
following	command:

mysql	-u	<username>	-p	magento1<	"path_to_sample_data.sql"

Tip
To	avoid	permission	problems,	ensure	that	all	files	and	folders	have	the	right

permissions.	For	security	reasons,	it	is	recommended	that	all	files	have	just	enough
permissions	so	that	only	the	right	users	can	access	the	right	files.	When	you	give	all
the	rights	(777),	you	don’t	have	permission	problems	because	each	user	can	read,
write	and,	execute	each	file	of	your	application.	More	information	about	file
permissions	can	be	found	at	http://devdocs.magento.com/guides/m1x/install/installer-
privileges_after.html.

5.	 When	the	files	are	in	the	right	place	and	the	database	is	imported,	we	can	run	the
Magento	installer.	Open	your	browser	and	go	to	the	domain	that	is	configured	for
your	website.	You	should	see	the	installer	as	in	the	following	screenshot:

6.	 Continue	with	the	installation	process	by	accepting	the	terms	and	conditions.
7.	 On	the	next	screen,	choose	the	correct	language,	locale,	and	currency	for	your	store.
8.	 On	the	configuration	page,	fill	in	the	form	with	the	right	data:

Database	Type:	MySQL.
Host:	Enter	the	hostname	or	IP	address	of	your	database	server	(localhost	if	it
is	on	the	same	machine).
Database	name:	Enter	magento1	in	this	field	(or	another	name	if	you	have	a
different	name	for	your	database).
User	name:	Enter	your	database	username.
User	password:	Enter	your	database	password.
Tables	prefix:	Leave	this	field	empty	(the	string	in	this	field	will	be	used	to
prefix	all	tables	of	your	database).
Base	URL:	Enter	the	URL	of	your	website	in	this	field.
Admin	path:	Enter	admin	in	this	field.	This	will	be	the	path	of	the	backend.
Enable	charts:	For	development,	it	is	recommended	that	this	be	unchecked.
Skip	Base	URL	Validation	Before	the	Next	Step:	When	checked,	the	wizard

http://devdocs.magento.com/guides/m1x/install/installer-privileges_after.html

will	check	for	a	valid	URL	when	processing	this	form.
Use	Web	Server	(Apache)	rewrites:	Check	this	when	the	apache	module
mod_rewrite	is	enabled.
Use	Secure	URL’s	(SSL):	This	checkbox	must	be	unchecked	if	you	don’t	use
HTTPS.

9.	 Submit	this	form	and	we	will	be	forwarded	to	the	next	step.	In	this	step,	you	can
configure	the	administrator	account.	Fill	in	the	right	data	and	remember	the	username
and	password	because	this	is	required	to	manage	the	store.	Leave	the	encryption	key
field	empty.

10.	 After	submitting	this	form,	the	installation	is	complete.	Optionally,	you	can	submit
the	Magento	survey.	At	the	bottom	of	the	page,	there	are	buttons	to	navigate	to	the
frontend	and	backend.	When	going	to	the	frontend,	you	can	see	a	demo	shop	with
sample	data	as	in	the	following	screenshot:

11.	 The	layout	is	responsive.	When	scaling	your	browser	to	a	smaller	width,	the	website
will	switch	to	the	mobile	layout	like	in	the	following	screenshot:

How	it	works…
We	have	just	created	a	fully	functional	Magento	1	store.	The	webshop	is	fully	configured
and	filled	with	data	about	products,	customers,	and	orders,	just	the	data	we	need	to
migrate	to	Magento	2	(in	the	upcoming	recipes).

When	installing	a	new	shop,	you	have	to	follow	the	installer.	This	interface	creates	a
configuration	file	app/etc/local.xml.	If	the	file	doesn’t	exist,	Magento	will	launch	the
installer	wizard.	If	the	file	is	there,	Magento	will	run	the	shop.

With	a	valid	local.xml	file,	it	is	technically	possible	to	install	a	new	Magento	shop,	but
this	is	not	recommended	because	some	settings	such	as	a	backend	user,	time	zone,	and
currency	are	not	set.	These	are	actions	that	you	have	to	do	manually	when	choosing	for
this	method.

Creating	a	Magento	2	website
In	the	previous	recipe,	we	created	a	Magento	1	website	with	sample	data	that	we	will	use
for	an	upgrade.	In	this	recipe,	we	will	do	the	same,	but	we	will	create	a	Magento	2	website
with	the	sample	data	for	Magento	2.

Getting	ready
To	install	Magento	2,	we	need	the	newest	tools	to	run	that	application.	Make	sure	your
webserver	has	the	following	stuff	installed:

PHP	5.5	or	higher
MySQL	5.6	or	higher
Apache	2.2	or	higher
Command	line	access
Composer

We	can	install	Magento	2	in	different	ways.	In	this	recipe,	we	will	install	Magento	2	using
Composer.	The	advantage	of	this	is	that	we	can	use	GIT	to	add	version	control	to	our
custom	development.

How	to	do	it…
1.	 We	will	install	Magento	2	with	Composer.	For	this,	we	need	authentication	keys.

With	an	account	on	the	magento.com	site,	go	to	Developers	|	Secure	keys	in	the	My
Account	section.	On	this	page,	you	can	generate	public	and	private	keys	that	will	be
your	username	and	password	in	the	next	step.

2.	 To	install	Magento	2	with	composer,	we	have	to	run	the	following	command:

composer	create-project	--repository-url=https://repo.magento.com	

magento/project-community-edition	<installation_dir>

3.	 You	will	be	prompted	for	a	username	and	password.	The	username	is	the	public	key
and	the	password	is	the	private	key	that	we	generated	in	the	previous	step.	When	the
command	has	run,	the	installation	directory	will	have	the	following	structure:

app

bin

CHANGELOG.md

composer.json

composer.lock

CONTRIBUTING.md

CONTRIBUTOR_LICENSE_AGREEMENT.html

COPYING.txt

dev

.gitignore

Gruntfile.js

.htaccess

.htaccess.sample

index.php

lib

LICENSE_AFL.txt

LICENSE.txt

nginx.conf.sample

package.json

.php_cs

php.ini.sample

pub

README.md

setup

.travis.yml

update

var

vendor

Tip
Check	that	the	user	and	group	of	these	files	are	the	same	as	your	Apache	user.	One
recommendation	is	to	execute	all	the	commands	as	your	apache	user.

4.	 We	have	installed	the	codebase	with	composer.	Now	we	can	run	the	installation
wizard.	Open	your	browser	and	enter	the	URL	of	your	site.	You	should	see	the
following	welcome	screen:

http://magento.com

5.	 Hit	the	Agree	and	Setup	Magento	button	and	start	the	environment	check.
6.	 Click	on	Next	and	enter	your	database	information	as	follows:

Database	Server	Host:	The	hostname	or	IP	address	of	the	database	server
Database	Server	Username:	The	username	of	the	database	account
Database	Server	Password:	The	password	for	the	account
Database	Name:	The	name	of	the	database
Table	Prefix:	Optionally,	you	can	give	a	prefix	for	each	table

7.	 Go	to	the	next	step	and	check	if	the	right	information	is	filled	for	the	URL	part.	In	the
advanced	section,	you	can	optionally	configure	HTTPS,	apache	rewrites,	and	your
encryption	key.	For	our	test	environment,	we	can	leave	these	settings	as	they	are
configured.

Note
Make	sure	that	the	mod_rewrite	option	is	enabled	for	the	apache	server.	When	not
enabled,	the	URL	rewrites	will	not	work	correctly.

8.	 In	the	next	step,	you	can	configure	your	time	zone,	currency,	and	default	language.
9.	 In	the	last	step,	you	can	configure	your	administration	account.	After	clicking	on	the

Next	button,	you	are	ready	to	install.	Click	on	the	Install	Now	button	and	the
installer	will	start.	This	will	take	some	time	because	the	installer	will	add	the	sample
data	during	the	installation.	You	can	open	the	Console	Log	to	see	what	is	currently
happening.

10.	 When	the	installer	is	ready,	you	will	see	the	following	success	message:

11.	 Run	the	following	commands	in	your	Magento	installation	directory	to	configure	the
sample	data:

php	bin/magento	sampledata:deploy

composer	update

php	bin/magento	setup:upgrade

12.	 The	preceding	commands	will	download	and	install	the	sample	data	packages.
Because	they	contain	a	lot	of	images,	this	could	take	some	time.	The	setup:upgrade
command	will	install	the	sample	data,	and	this	also	takes	some	time.

13.	 The	installation	of	the	webshop	is	now	complete.	You	now	have	an	up-and-running
Magento	2	webshop.	When	you	navigate	to	the	category	Gear	|	Bags,	you	should	see
something	like	in	the	following	screenshot:

How	it	works…
We	have	now	installed	a	Magento	2	website.	Like	we	did	in	the	previous	recipe	for
Magento	1.9,	we	downloaded	the	codebase	(using	composer),	created	a	database,	and
installed	Magento.

For	Magento	2,	we	used	composer	to	download	the	codebase.	Composer	is	a	PHP
dependency	manager.	All	the	dependencies	are	set	in	the	composer.json	file.	For	this
recipe,	there	are	the	Magento	and	the	magento-sample-data	dependencies	in	the
composer.json	file.	There	is	also	a	composer.lock	file	generated.	In	that	file,	the	versions
of	the	installed	dependencies	are	stored.

Note
When	working	with	GIT,	we	only	have	to	commit	the	composer.json,	composer.lock,
and	.gitignore	files	for	a	working	Magento	2	project.	When	another	person	does	a	Git
clone	of	the	repository	and	runs	the	composer’s	install	command,	Magento	2	will	be
installed	with	the	version	that	is	in	the	composer.lock	file.

The	sample	data	for	Magento	2	is	now	a	script	that	will	be	executed	after	the	installation
of	Magento.	That	script	will	add	products,	customers,	orders,	CMS	data,	and	more
configurations	to	populate	the	shop.

The	shop	is	installed	and	the	configuration	settings	(database,	encryption	key,	and	so	on)
are	now	stored	in	app/etc/env.php	instead	of	in	the	app/etc/local.xml	file	in	Magento
1.

There’s	more…
When	installing	Magento	2,	here	are	some	common	issues	that	can	occur	and	their	fixes:

When	you	don’t	see	CSS	in	your	browser,	you	have	to	check	the	following	things:

Make	sure	the	pub/	folder	is	writable
Run	the	command	php	bin/magento	setup:static-content:deploy	to
generate	the	static	content

You	forget	to	install	the	sample	data:

You	can	install	the	sample	data	after	the	installation	of	Magento	with	the
command	php	bin/magento	sampledata:deploy

The	installation	is	not	responding	anymore:

This	could	be	caused	by	an	Apache	timeout.	If	this	occurs,	you	can	maybe	try
the	command-line	installation.	This	works	as	follows:

To	run	the	Magento	installer	from	the	command	line,	we	can	use	the	command	php
bin/magento	setup:install.	We	have	to	add	the	following	required	parameters	to	the
command	to	configure	the	installation:

base-url:	The	base	URL,	for	example	http://magento2.local/
db-host:	The	database	host	or	IP	address
db-user:	The	database	username
db-name:	The	database	name
db-password:	The	database	password
admin-firstname:	The	first	name	of	the	administrator	user
admin-lastname:	The	last	name	of	the	admin	user
admin-email:	The	e-mail	address	of	the	admin	user
admin-user:	The	username	(login	name)	of	the	admin	user
admin-password:	The	password	for	the	admin	user
language:	The	language	of	the	shop
currency:	The	currency	code	of	the	shop
timezone:	The	time	zone	of	the	shop
use-rewrites:	Whether	to	use	the	apache	rewrites	or	not
use-sample-data:	Install	the	sample	data	(optional)

Look	at	the	following	code	for	a	working	example	of	the	install	command:

php	bin/magento	setup:install	--base-url=http://magento2.local/	--db-

host=localhost	--db-user=magento2	--db-name=magento2	--db-

password=yourpassword	--admin-firstname=John	--admin-lastname=Doe	--admin-

email=john.doe@example.com	--admin-user=admin	--language=en_US	--

currency=USD	--timezone=UTC	--use-rewrites=1	

http://magento2.local/

Preparing	an	upgrade	from	Magento	1
The	differences	between	Magento	1	and	Magento	2	are	huge.	The	code	has	a	whole	new
structure	with	a	lot	of	improvements	but	there	is	one	big	disadvantage.	What	do	I	do	if	I
want	to	upgrade	my	Magento	1	shop	to	a	Magento	2	shop?

Magento	created	an	upgrade	tool	that	migrates	the	data	from	a	Magento	1	database	to	the
right	structure	for	a	Magento	2	database.

The	custom	modules	in	your	Magento	1	shop	will	not	work	in	Magento	2.	It	is	possible
that	some	of	your	modules	will	have	a	Magento	2	version,	and	depending	on	the	module,
the	module	author	will	have	a	migration	tool	to	migrate	the	data	that	is	in	the	module.

Getting	ready
Before	we	get	started,	make	sure	you	have	an	empty	(without	sample	data)	Magento	2
installation	with	the	same	version	as	the	Migration	tool	that	is	available	at:

https://github.com/magento/data-migration-tool-ce.

https://github.com/magento/data-migration-tool-ce

How	to	do	it…
1.	 In	your	Magento	2	version	(with	the	same	version	as	the	migration	tool),	run	the

following	commands:

composer	config	repositories.data-migration-tool	git	

https://github.com/magento/data-migration-tool-ce

composer	require	magento/data-migration-tool:2.0.0

2.	 Install	Magento	2	with	an	empty	database	by	running	the	installer.	Make	sure	you
configure	it	with	the	right	time	zone	and	currencies.

3.	 When	these	steps	are	done,	you	can	test	the	tool	by	running	the	following	command:

php	bin/magento	migrate:data	--help

4.	 The	next	thing	is	creating	the	configuration	files.	Examples	of	the	configuration	files
are	in	vendor/magento/data-migration-tool/etc/<version>.	We	can	create	a
copy	of	this	folder	where	we	can	set	our	custom	configuration	values.	For	a	Magento
1.9	installation,	we	have	to	run	the	following	cp	command:

cp	–R	vendor/magento/data-migration-tool/etc/ce-to-ce/1.9.1.0/	

vendor/magento/data-migration-tool/etc/ce-to-ce/packt-migration

5.	 Open	the	vendor/magento/data-migration-tool/etc/ce-to-ce/packt-
migration/config.xml.dist	file	and	search	for	the	source/database	and
destination/database	tags.	Change	the	values	of	these	database	settings	to	your
database	settings	like	in	the	following	code:

<source>

		<database	host="localhost"	name="magento1"	user="root"/>

</source>

<destination>

		<database	host="localhost"	name="magento2_migration"	user="root"/>

</destination>

6.	 Rename	that	file	to	config.xml	with	the	following	command:

mv	vendor/magento/data-migration-tool/etc/ce-to-ce/packt-

migration/config.xml.dist	vendor/magento/data-migration-tool/etc/ce-to-

ce/packt-migration/config.xml

How	it	works…
By	adding	a	composer	dependency,	we	installed	the	data	migration	tool	for	Magento	2	in
the	codebase.	This	migration	tool	is	a	Magento	console	command	that	will	handle	the
migration	steps	from	a	Magento	1	shop.

In	the	etc	folder	of	the	migration	module,	there	is	a	sample	configuration	of	an	empty
Magento	1.9	shop.

If	you	want	to	migrate	an	existing	Magento	1	shop,	you	have	to	customize	these
configuration	files	so	it	matches	your	preferred	state.

In	the	next	recipe,	we	will	learn	how	we	can	use	the	script	to	start	the	migration.

Upgrading	the	database
In	the	previous	recipe,	we	configured	the	database	migration	tool.	In	this	recipe,	we	will
run	the	migration	tool	so	that	we	can	migrate	parts	from	a	Magento	1	shop	to	a	Magento	2
shop.

Getting	ready
You	need	a	Magento	1	website	and	a	Magento	2	website.	The	Magento	2	website	needs	to
have	the	database	migration	tool	installed	and	configured	as	described	in	the	previous
recipe.

In	this	recipe,	we	will	do	a	migration	from	a	clean	Magento	1	site,	to	a	Magento	2	site
without	sample	data.

We	did	a	migration	from	a	clean	Magento	1	database	with	some	test	products.	Make	sure
you	have	a	cleanly	installed	Magento	1	shop	with	some	test	data	(products,	orders,	and	so
on)	in	it.

How	to	do	it…
1.	 First	we	need	to	make	sure	that	the	database	settings	are	correct	in	the

vendor/magento/data-migration-tool/etc/ce-to-ce/packt-

migration/config.xml	file.	Open	that	file	and	check	that	the	database	credentials
are	correct.	We	created	this	file	in	the	previous	recipe:

<source	version="1.9.1">

<database	host="localhost"	name="magento1_migration"	user="root"/>

</source>

<destination	version="2.0.0.0">

<database	host="localhost"	name="magento2_migration"	user="root"/>

</destination>

Note
If	you	have	a	database	prefix	in	your	source	or	destination	database,	you	can
optionally	configure	source_prefix	and	dest_prefix	in	the	<options>	section	of
the	same	configuration	file.

Tip
Test	the	migration	first	with	a	clean	Magento	1.9	database.	The	mapping	that	we	will
use	in	this	recipe	is	for	a	clean	Magento	1.9	installation.	With	an	existing	shop,	you
will	have	custom	attributes	and	entities	that	need	more	configuration	to	make	the
migration	work.

2.	 If	these	settings	are	correct,	we	can	run	the	upgrade	tool.	Run	the	following
command:

php	bin/magento	migrate:data	--help

3.	 This	gives	us	the	following	output:

4.	 To	start	or	test	a	migration,	we	have	to	run	the	following	command:

php	bin/magento	migrate:data	vendor/magento/data-migration-tool/etc/ce-

to-ce/packt-migration/config.xml

5.	 The	migration	will	start	and	will	give	the	following	output:

6.	 The	migration	is	now	complete.	If	you	check	your	database	for	the	Magento	2
website,	you	will	see	that	the	data	(products,	categories,	and	so	on)	is	migrated	from
Magento	1.

Tip
If	you	want	to	rerun	the	migration	tool,	you	have	to	remove	the	var/migration-
tool-progress.lock	file.

7.	 We	can	also	migrate	the	settings	from	the	Magento	1	website.	To	do	this,	you	have	to
replace	the	data	parameter	in	the	command	using	settings.

8.	 To	check	if	the	upgrade	works,	you	have	to	look	at	the	data	of	the	Magento	2
installation.	We	can	check	the	following	things	in	the	backend:

The	orders	(Sales	|	Orders)
The	products	(Products	|	Catalog)
The	customers	(Customers	|	All	Customers)

9.	 You	can	also	check	in	the	database	if	you	look	at	the	following	tables:

sales_order

customer_entity

catalog_product_entity

url_rewrite

How	it	works…
When	the	migration	tool	starts,	it	starts	checking	all	the	configurations	that	are	in	the
configuration	files	of	the	migration	tool.	If	there	are	more	things	available	in	the	Magento
1	database	than	the	things	that	are	configured,	the	migration	tool	will	give	a	notification
and	stop	the	migration.

It’s	likely	that	every	existing	Magento	1	shop	works	with	custom	attributes,	custom
entities,	and	so	on.	Each	entity,	attribute,	and	so	on	needs	to	be	declared	in	the
configuration	files.

The	most	time-consuming	part	of	a	migration	is	to	create	a	good	configuration	file	so	that
the	migration	tool	won’t	fail	on	missing	stuff.	It	is	on	you	to	decide	what	to	ignore	and
what	to	migrate.	If	the	configuration	files	are	valid,	the	migration	will	start	and	the	data
will	come	into	the	Magento	2	database.	The	same	principle	applies	when	migrating	the
settings,	but	you	have	to	think	about	whether	you	want	it.

Note
With	the	migration	tool,	it	is	only	possible	to	migrate	data	and	settings.	The	code	of
Magento	1	modules	will	not	work	in	Magento	2.	So	for	your	modules,	you	need	to	see	if
there	is	a	Magento	2	version/alternative	available.

There’s	more…
In	this	recipe,	we	did	a	migration	of	a	clean	Magento	1	installation	to	a	clean	Magento	2
installation.	However	almost	every	running	Magento	1	shop	is	not	clean.	It	contains
custom	attributes,	custom	modules,	and	a	custom	configuration.

When	migrating	such	a	shop	to	a	new	shop,	the	migration	is	a	bit	more	complex.	The	first
question	is:	What	needs	to	be	migrated?	With	the	tool,	you	can	migrate	every	entity,	from
products,	customers,	and	orders	to	reviews,	settings,	and	more.

If	you	want	to	skip	data	that	must	be	migrated,	you	can	use	the	map.xml	file.	If	you	open
the	file	vendor/magento/data-migration-tool/etc/ce-to-ce/packt-
migration/map.xml,	you	see	that	a	lot	of	entities	are	ignored	in	the
map/source/document_rules	tag.

Tip
If	you	want	to	change	something	in	the	map.xml	file,	you	have	to	make	sure	that	the	right
map.xml	file	is	loaded.	This	file	is	configured	in	the	config.xml	file	(where	you	did	your
database	configuration).	In	that	file,	you	have	to	look	for	the	XML	tag
config/options/map_file.

If	you	have	an	error	such	as	Source	documents	not	mapped,	you	have	to	add	the
configuration	for	these	entities	in	the	map/source/document_rules	tag	of	the	map.xml
file.	If	the	error	is	something	like	Destination	documents	not	mapped,	you	have	to	add
configuration	in	the	map/destination/document	tag	of	the	map.xml	file.

To	solve	errors	such	as	Source	fields	not	mapped	you	have	to	add	configuration	in	the
map-eav.xml	file.

See	also
Migrating	configuration	files	is	the	most	time	consuming	part	of	a	data	migration.	If	you
want	more	information	on	the	migration	tool,	you	can	have	a	look	at	the	Magento
Migration	Whitepaper,	available	at	http://magento.com/resources/magento-2-migration-
whitepaper.

http://magento.com/resources/magento-2-migration-whitepaper

Using	an	IDE
Writing	good	code	starts	with	a	good	development	environment.	An	Integrated
Development	Environment	(IDE)	is	the	main	part	of	a	good	development	environment.
NetBeans	is	a	free	and	open	source	PHP	editor	that	can	be	used	for	Magento
development.	In	this	recipe,	we	will	set	up	a	Magento	2	project	in	NetBeans.

Getting	ready
Install	the	latest	version	of	NetBeans	IDE	on	your	computer.	You	can	download	it	from
the	following	URL:

https://netbeans.org/downloads/

For	PHP	development,	you	need	to	download	the	HTML5	&	PHP	bundle.

https://netbeans.org/downloads/

How	to	do	it…
1.	 To	create	a	new	project,	open	NetBeans	and	navigate	to	File	|	New	Project.
2.	 A	window	like	the	one	in	the	following	screenshot	will	appear	on	your	screen.	Click

on	PHP	and	PHP	Application	with	Existing	Sources.

3.	 Click	on	Next	and	configure	the	following	settings:

Source	Folder:	This	field	is	set	to	the	location	of	your	Magento	code	(like
/var/www/html/magento2/)
Project	Name:	The	NetBeans	project	name	is	entered	in	this	field
PHP	Version:	This	field	is	set	to	PHP	5.5
Default	Encoding:	This	field	is	set	to	UTF-8

4.	 In	the	next	screenshot,	you	can	see	how	everything	is	configured:

Tip
When	you	are	working	with	a	version	control	system	like	GIT,	it	is	recommended
that	you	check	the	checkbox.	Put	NetBeans	metadata	into	a	separate	directory.	If	not
checked,	a	.nbproject	folder	is	created	in	your	Magento	root,	and	you	don’t	want	to
have	that	folder	in	your	version	control	system.	Another	possibility	is	to	add	the
.nbproject	folder	in	the	.gitignore	file.

5.	 Click	on	Next	and	configure	the	final	settings:

Run	as:	If	you	are	developing	on	a	local	PC,	choose	Local	Web	Server
Project	URL:	The	URL	of	your	website
Index	file:	Set	this	to	index.php

The	settings	are	shown	in	the	following	screenshot:

6.	 Click	on	the	Finish	button	and	your	NetBeans	project	is	ready.	You	can	now	start
developing.

There’s	more…
In	this	recipe,	we	used	the	free	code	editor	NetBeans,	but	there	are	also	some	other	good
alternatives	on	the	market,	such	as:

PHPStorm
Eclipse	with	PDT	(PHP	Development	Tools)
Zend	Studio

Writing	clean	code	with	PHP	MD	and
PHP	CS
Maintaining	clean	code	is	much	more	efficient	than	maintaining	spaghetti	code,	but
writing	clean	code	is	not	as	easy	as	it	sounds.	These	days	there	are	some	tools	that	help
you	with	writing	clean	code,	such	as	PHPMD	and	PHP_CodeSniffer.

PHPMD	stands	for	PHP	Mess	Detector;	this	tool	will	check	your	code	on	complexity	and
how	variables	are	used	and	will	detect	some	possible	bugs.	It	goes	a	bit	further	than	the
syntax	check	in	your	IDE.

PHP_CodeSniffer	or	PHPCS	checks	your	code	on	coding	standards	such	as	PSR-1	and
PSR-2.

Getting	ready
We	will	install	PHPMD	and	PHP_CodeSniffer	in	our	development	environment.	Make
sure	you	have	command-line	access	to	your	development	environment.

How	to	do	it…
1.	 Before	installing	PHPMD	and	PHP_CodeSniffer,	we	have	to	make	sure	that	PHP	is

installed	on	our	development	machine.	Especially	if	you	are	developing	on	a	remote
server,	it	could	be	that	PHP	is	not	installed.

2.	 Download	and	install	PHPMD.	Depending	on	your	OS,	the	protocol	could	be
different.	You	can	find	instructions	at:

http://phpmd.org/download/index.html

3.	 Download	and	install	PHP_CodeSniffer.	You	can	find	the	installation	instructions	at:

https://github.com/squizlabs/PHP_CodeSniffer

4.	 Everything	is	installed,	so	we	can	run	a	test	for	PHPMD.	For	the	PHPMD	command,
these	are	the	required	options:

Filename	or	directory
The	format	of	the	report
The	ruleset

5.	 Let’s	run	the	following	command	to	check	the	file	on	clean	code	and	output	text:

phpmd	app/code/Magento/Cms/Model/Observer.php	text	cleancode

6.	 It	gives	us	the	following	output:

/var/www/magento2/app/code/Magento/Cms/Model/Observer.php:70				Avoid	

using	static	access	to	class	'\Magento\Cms\Helper\Page'	in	method	

'noCookies'

/var/www/magento2/app/code/Magento/Cms/Model/Observer.php:71				Avoid	

using	static	access	to	class	'\Magento\Store\Model\ScopeInterface'	in	

method	'noCookies'.

/var/www/magento2/app/code/Magento/Cms/Model/Observer.php:77				The	

method	noCookies	uses	an	else	expression.	Else	is	never	necessary	and	

you	can	simplify	the	code	to	work	without	else.

7.	 There	are	a	lot	of	errors,	but	Magento	2	defines	its	own	rules	for	PHPMD.	To	run	a
test	with	these	rules,	we	can	run	the	following	command:

phpmd	app/code/Magento/Cms/Model/Observer.php	text	

dev/tests/static/testsuite/Magento/Test/Php/_files/phpmd/ruleset.xml

8.	 This	command	gives	empty	output,	which	means	that	this	file	is	valid.
9.	 We	will	now	run	a	test	on	the	same	file	with	PHP_CodeSniffer.	With	the	next

command,	we	will	run	a	test	on	the	same	file	we	used	for	PHPMD.

phpcs	app/code/Magento/Cms/Model/Observer.php

10.	 This	test	gives	us	the	following	output:

FILE:	/var/www/magento2/app/code/Magento/Cms/Model/Observer.php

--

FOUND	22	ERRORS	AND	2	WARNINGS	AFFECTING	12	LINES

--

http://phpmd.org/download/index.html
https://github.com/squizlabs/PHP_CodeSniffer

		5	|	WARNING	|	[]	PHP	version	not	specified

		5	|	ERROR			|	[]	Missing	@category	tag	in	file	comment

		5	|	ERROR			|	[]	Missing	@package	tag	in	file	comment

		5	|	ERROR			|	[]	Missing	@author	tag	in	file	comment

		5	|	ERROR			|	[]	Missing	@license	tag	in	file	comment

		5	|	ERROR			|	[]	Missing	@link	tag	in	file	comment

	10	|	ERROR			|	[]	Missing	@category	tag	in	class	comment

	10	|	ERROR			|	[]	Missing	@package	tag	in	class	comment

	10	|	ERROR			|	[]	Missing	@author	tag	in	class	comment

	10	|	ERROR			|	[]	Missing	@license	tag	in	class	comment

	10	|	ERROR			|	[]	Missing	@link	tag	in	class	comment

	18	|	ERROR			|	[]	Protected	member	variable	"_cmsPage"	must	not	be

				|									|					prefixed	with	an	underscore

	25	|	ERROR			|	[]	Protected	member	variable	"_scopeConfig"	must	not

				|									|					be	prefixed	with	an	underscore

	27	|	ERROR			|	[]	Missing	short	description	in	doc	comment

	28	|	ERROR			|	[]	Missing	parameter	comment

	28	|	ERROR			|	[x]	Expected	27	spaces	after	parameter	type;	1	found

	29	|	ERROR			|	[]	Missing	parameter	comment

	42	|	ERROR			|	[]	Missing	parameter	comment

	42	|	ERROR			|	[x]	Tag	value	indented	incorrectly;	expected	2	spaces

				|									|					but	found	1

	43	|	ERROR			|	[]	Tag	cannot	be	grouped	with	parameter	tags	in	a

				|									|					doc	comment

	62	|	ERROR			|	[]	Missing	parameter	comment

	62	|	ERROR			|	[x]	Tag	value	indented	incorrectly;	expected	2	spaces

				|									|					but	found	1

	63	|	ERROR			|	[]	Tag	cannot	be	grouped	with	parameter	tags	in	a

				|									|					doc	comment

	78	|	WARNING	|	[]	Line	exceeds	85	characters;	contains	94

				|									|					characters

--

PHPCBF	CAN	FIX	THE	3	MARKED	SNIFF	VIOLATIONS	AUTOMATICALLY

--

Time:	28ms;	Memory:	3.75Mb

Note
If	the	phpmd	command	is	not	working,	you	have	to	find	the	path	to	the	phpmd
executable	and	run	it	from	there.

11.	 When	we	specify	the	ruleset	of	Magento	2,	we	have	the	following	command:

phpcs	app/code/Magento/Cms/Model/Observer.php	--

standard=dev/tests/static/testsuite/Magento/Test/Php/_files/phpcs/rules

et.xml

12.	 This	command	gives	us	the	following	output:

FILE:	/var/www/magento2/app/code/Magento/Cms/Model/Observer.php

--

FOUND	5	ERRORS	AFFECTING	5	LINES

--

	18	|	ERROR	|	Missing	variable	doc	comment

	25	|	ERROR	|	Missing	variable	doc	comment

	31	|	ERROR	|	Missing	function	doc	comment

	45	|	ERROR	|	Missing	function	doc	comment

	65	|	ERROR	|	Missing	function	doc	comment

--

Time:	35ms;	Memory:	3.75Mb

How	it	works…
PHPMD	and	PHP_CodeSniffer	are	tools	that	checks	PHP	files	on	code	style.	These	tools
have	defined	their	default	rulesets	for	common	usage.

Magento	has	created	its	own	rulesets;	they	can	be	found	in	the	directory
dev/tests/static/testsuite/Magento/Test/Php/_files/phpcs/ruleset.xml.

When	developing	custom	code	in	Magento	2,	it	is	recommended	that	you	configure	these
rulesets	when	working	with	PHPMD	and	PHP_CodeSniffer.

There’s	more…
Some	IDE’s	have	built-in	support	for	PHPMD	and	PHP_CodeSniffer.	These	plugins	will
run	a	test	when	saving	a	file.

In	NetBeans,	you	have	the	phpcsmd	plugin	that	allows	you	to	integrate	these	tools	in	your
IDE.	For	more	details	visit	the	following	URL:

http://plugins.netbeans.org/plugin/40282/phpmd-php-codesniffer-plugin

In	PHPStorm,	there	is	built-in	support	for	PHPMD	and	PHP_CodeSniffer.	If	it	is
configured,	there	is	a	color	indicator	that	says	how	clean	your	code	is.	More	information
can	be	found	at	https://www.jetbrains.com/phpstorm/help/using-php-mess-detector.html.

Tip
When	configuring	PHPMD	and	PHP_CodeSniffer	in	an	IDE,	these	tools	and	PHP	need	to
be	installed	on	the	machine	on	which	the	IDE	is	running.

http://plugins.netbeans.org/plugin/40282/phpmd-php-codesniffer-plugin
https://www.jetbrains.com/phpstorm/help/using-php-mess-detector.html

Chapter	2.	Working	with	Products
In	this	chapter,	we	will	cover	the	following	recipes:

Configuring	the	catalog	defaults
Working	with	attribute	sets
Working	with	product	types
Adding	social	media	buttons
Embedding	an	HTML	object
Changing	the	URL	of	a	product	page

Introduction
How	products	are	displayed	in	the	frontend	is	very	important	for	making	a	web	shop	with
good	usability.	Convincing	the	visitors	to	buy	something	from	the	shop	is	the	main	target
of	every	shop	owner.

Products	need	to	be	set	in	such	a	way	that	a	visitor	can	quickly	find	what	he	is	looking	for.
With	good	product	content,	a	shop	looks	reliable,	due	to	which	a	visitor	is	more	likely	to
buy	something.

In	this	chapter,	we	will	explain	what	you	can	do	to	display	products	in	your	shop,	and	we
will	see	some	extra	things,	such	as	a	video	and	add	to	cart	links,	to	raise	conversion	from	a
prospective	buyer	to	an	actual	buyer.

The	goal	of	this	chapter	is	to	make	your	shop	more	user-friendly	with	just	a	little
development.

Configuring	the	catalog	defaults
One	of	the	first	things	is	to	configure	some	default	catalog	settings	to	the	preferred	values.
We	will	cover	all	the	configuration	values	that	are	possible	in	a	Magento	2	installation.

We	will	go	through	the	available	configurations	and	change	some	values	to	the
recommended	settings.

Getting	ready
Open	your	frontend	and	log	into	the	backend	in	a	separate	browser	tab.	We	will	modify
some	configuration	values	to	the	recommended	settings.	When	changing	a	configuration
value,	we	can	check	what	happens	in	the	frontend.

How	to	do	it
In	the	next	steps,	we	will	take	a	look	at	the	catalog	settings:

1.	 In	the	backend,	navigate	to	Stores	|	Settings	|	Configuration.	Open	the	Catalog
menu,	as	we	can	see	in	the	following	screenshot:

2.	 Open	the	Product	Fields	Auto-Generation	section.	In	this	section,	we	can	configure
the	behavior	of	the	generation	of	SKU	and	metadata.	When	we	add	the	following
values	for	the	Mask	for	Meta	Keywords,	the	SKU,	name,	and	the	string	“Magento”
will	be	generated	when	saving	a	product:

{{sku}},	{{name}},	Magento

3.	 Open	the	Storefront	section	and	set	the	following	values:

List	mode:	grid	(by	default,	this	shows	the	products	in	a	grid	or	list)
Products	per	page	on	Grid	allowed	values:	12,	24,	36
Products	per	page	on	Grid	default	value:	24

Note
When	changing	the	allowed	and	default	value	for	a	grid	page,	ensure	that	you
can	divide	the	numbers	by	the	number	of	products	that	fit	in	a	row	in	your
theme.	Otherwise,	the	last	row	of	products	will	not	be	complete.

Products	per	page	on	List	allowed	values:	10,	20,	30,	40
Products	per	page	on	List	default	value:	10

Allow	all	products	per	page:	No

Note
When	you	have	a	large	number	of	products,	it	is	not	recommended	to	set	the
Allow	all	products	per	page	option	to	Yes.	When	you	have	2000	products	and
you	want	to	show	all	the	products	on	a	single	page,	you	will	generate	an
enormous	HTML	output	that	can	cause	memory	issues.

Product	listing	Sort	by:	price
Use	Flat	Catalog	Category:	No
Use	Flat	Catalog	Product:	No
Allow	Dynamic	Media	URL’s	in	Products	and	Categories:	Yes

4.	 Enable	the	product	reviews	for	guests.	This	allows	everyone	to	write	a	review	about	a
product.	When	this	is	enabled,	a	review	form	will	appear	on	the	product	review	page.

5.	 Open	the	Product	Alerts	section	to	configure	product	alert	e-mails	that	will	be	sent
when	the	price	or	stock	changes.

6.	 We	will	configure	a	stock	alert	with	the	following	settings:

Allow	alert	when	product	price	changes:	No
Allow	alert	when	product	comes	back	in	stock:	Yes

Note
The	previous	configurations	will	send	stock	alert	e-mails	(a	stock	alert	is	triggered
when	a	product	becomes	available	in	stock)	to	the	subscribed	e-mail	addresses.

7.	 We	can	set	the	values	for	Product	Alerts	Run	settings	in	the	next	section.	We	will
configure	a	daily	task	at	04:00	hours	to	send	the	alert	e-mails:

Frequency:	Daily
Start	time:	04:00:00

8.	 Leave	the	Product	Image	Placeholders	options	as	they	are.	If	we	want,	we	can	set	a
default	image	that	will	be	shown	when	a	product	has	no	image	or	the	image	is	not
found.	The	best	way	is	to	set	the	placeholder	images	in	the	theme.

9.	 In	the	Recently	Viewed/Compared	Products	tab,	set	the	following	values:

Show	for	current:	Website

Note
This	will	show	the	recent	products	you	viewed	over	all	stores	and	store	views	in
the	website.

Default	recently	viewed	count:	5
Default	recently	compared	count:	5

10.	 In	the	Price	tab,	set	the	Catalog	Price	Scope	option	as	Global.	For	this	tutorial,	we
don’t	need	different	prices	for	each	store	view.	When	Price	Scope	is	set	to	Global,
we	can	only	configure	one	global	price	for	a	product,	which	will	be	the	same	in	all
store	views.

11.	 In	the	Layered	Navigation	section,	we	will	modify	some	settings	to	customize	the
left	navigation	for	the	category	pages:

Display	product	count:	Yes
Price	navigation	step	calculation:	Automatic	(this	will	equalize	price	ranges)

12.	 By	making	these	settings,	the	price	steps	will	always	have	the	same	increment.
13.	 Open	the	Category	Top	Navigation	section,	and	set	Maximal	Depth	to	3.	This

means	that	the	navigation	will	be	shown	with	a	maximum	of	three	levels.
14.	 In	the	Changing	the	URL	of	a	product	page	recipe,	we	will	look	at	the	Search

Enginge	Optimization	step.
15.	 Configure	the	Catalog	Search	section	as	follows:

Minimal	Query	Length:	3
Maximum	Query	Length:	128
Search	Engine:	MySQL
Apply	Layered	Navigation	if	Search	Results	are	Less	Than:	0

Note
If	a	search	result	shows	a	lot	of	products,	the	generation	of	the	layered	navigation
slows	down	the	pageload.	With	this	setting,	you	can	disable	the	layered	navigation	if
the	results	count	is	higher	than	the	configured	value.

16.	 Don’t	forget	to	save	the	configuration	by	clicking	on	the	Save	Config	button.

How	it	works
All	these	settings	are	saved	in	the	configuration	table	of	Magento.	The	frontend	files	for
the	catalog	pages	will	pick	up	these	settings	and	render	the	output	based	on	these	settings.

When	you	add	extra	functionality	to	the	category	page,	you	can	easily	extend	the
configuration	with	extra	parameters.	More	information	about	extending	the	configurations
is	given	in	the	Extending	the	system	configuration	recipe	of	Chapter	6,	Magento	Backend.

Working	with	attribute	sets
Magento	has	a	flexible	system	to	work	with	products.	When	you	sell,	for	example,	a	board
game	or	a	computer,	the	specifications	of	each	product	are	different.	For	a	board	game,
information	such	as	age	and	duration	is	relevant.	For	a	computer,	a	lot	of	technical
specifications	are	relevant,	such	as	the	CPU	power,	disc	size,	and	so	on.

To	cover	this,	Magento	2	comes	with	a	system	called	product	templates,	which	can	be
compared	with	attribute	sets	in	Magento	1.

A	product	template	is	a	specification	of	product	attributes	that	you	can	assign	to	products.

Getting	ready
In	the	backend,	we	will	use	the	pages	Stores	|	Attributes	|	Product	and	Stores	|
Attributes	|	Attribute	Set.

We	will	create	a	newproduct	attribute	and	a	new	product	template	(such	as	an	attribute	set)
that	we	can	use	in	new	products.

How	to	do	it
In	the	following	steps,	we	will	create	an	extra	product	attribute	that	we	can	use	in	a
product	template:

1.	 Navigate	to	Stores	|	Attributes	|	Product	in	the	backend,	and	click	on	the	Add	New
Attribute	button.

2.	 Populate	the	form	with	the	following	instructions:

Default	label:	Available	from	(This	label	will	be	used	to	identify	the	attribute)
Catalog	Input	Type	for	Store	Owner:	Date	(this	is	the	type	of	the	attribute)

3.	 Click	on	Save	and	Continue	Edit	and	the	attribute	will	be	saved.	You	will	see	that
the	Attribute	Code	field	is	prepopulated	with	a	code	that	is	generated	from	the	label.

4.	 Additionally,	we	can	set	the	following	values:

Values	required:	No
Scope:	Store	View	(with	this	setting,	we	create	the	possibility	to	specify
separate	values	for	each	store	view)
Default	value:	Leave	this	field	empty
Unique	value:	No

5.	 In	the	Manage	Labels	tab,	we	can	set	the	label	that	will	be	displayed	on	the	product
detail	page.	If	left	empty,	the	attribute	label	will	be	used.

6.	 In	the	Storefront	Properties	tab,	we	can	set	the	following	properties:

Use	in	search:	No
Comparable	on	Storefront:	No
Use	for	Promo	Rule	Conditions:	No
Allow	HTML	Tags	on	frontend:	No
Visible	on	Catalog	Pages	on	Storefront:	No
Used	in	Product	Listing:	No
Used	for	Sorting	in	Product	Listing:	No

7.	 Click	on	Save	Attribute;	this	will	save	the	attribute.
8.	 The	next	step	is	to	create	an	Attribute	Set	to	which	will	assign	a	product	to.	In	the

backend,	navigate	to	Stores	|	Attributes	|	Attribute	Set.
9.	 Click	on	the	Add	Attribute	Set	button	and	fill	in	the	form,	as	follows:

10.	 Clicking	on	Save	will	open	the	overview	page.
11.	 Create	a	group	named	Game	specific	data	and	drag	the	available_from	and

manufacturer	attributes	to	it.	The	overview	will	look	as	follows:

12.	 Save	the	Attribute	Set.
13.	 Navigate	to	Product	|	Catalog	and	create	a	new	product	by	clicking	on	the	New

Product	button.
14.	 Select	the	right	Attribute	Set	in	the	form,	as	shown	in	the	following	screenshot:

15.	 When	selecting	the	product	template,	you	will	see	that	the	Game	specific	data	tab
appears	in	the	product	tab,	as	shown	in	the	following	screenshot:

How	it	works
Product	attributes	and	Attribute	Sets	are	used	when	you	work	with	multiple	families	of
products.	In	the	sample	data	of	our	shop,	there	are	more	attribute	sets	available	for	bags,
clothing,	and	more.

With	Attribute	Sets,	you	can	make	groups	of	attributes	for	every	product	family.	When
creating	a	product	attribute,	you	have	to	choose	the	type	of	the	attribute,	which	can	be	one
of	the	following:

Text	field
Text	area
Date
Yes/No
Multiple	select
Dropdown
Price
Media	image
Fixed	Product	Tax

Tip
When	you	want	to	use	an	attribute	as	a	filter	in	the	left	navigation	on	the	category	pages,
this	attribute	must	have	the	type	Dropdown,	Multiple	Select	or	Price.

Working	with	product	types
In	Magento	2,	it	is	still	possible	to	work	with	different	types	of	products.	The	standard
product	is	a	simple	product,	which	is	used	to	sell	basic	products,	but	there	are	more	types
available,	such	as	products,	where	you	can	choose	a	size	and	other	options,	or	download
products,	virtual	products	(such	as	a	license),	and	product	combinations.

Getting	ready
In	this	recipe,	we	will	create	a	configurable	product,	for	example,	you	want	to	buy	a	pair
of	shoes	where	you	can	choose	their	size	and	color.	Open	the	Magento	backend	and
navigate	to	Products	|	Catalog.

How	to	do	it
In	the	following	steps,	we	will	create	a	product	where	we	can	specify	a	size	on	the	product
detail	page:

1.	 Navigate	to	Products	|	Catalog,	click	on	the	arrow	near	the	Add	Product	button,
and	choose	Configurable	Product	as	shown	in	the	following	screenshot:

2.	 Choose	a	name,	SKU,	and	price	for	the	product.
3.	 The	next	step	is	to	decide	the	attribute	on	which	we	want	to	configure	our	product.

Scroll	down	through	the	New	Products	page,	and	click	on	the	Create
Configurations	button.	In	the	grid,	select	the	Size	attribute	and	click	on	Next.

4.	 Select	the	sizes	for	your	products	and	click	on	Next.
5.	 On	the	next	screen,	you	can	add	images,	prices,	and	quantities	for	the	products,	or

you	can	do	this	later.
6.	 When	you	click	on	Next,	you	will	get	an	overview.	When	you	click	on	Generate

Products,	the	products	will	be	displayed	as	shown	in	the	following	screenshot:

7.	 Click	on	the	Save	button	and	a	popup	will	show	up	to	create	a	specific	attribute	set
for	this	configuration.	Select	the	Add	configurable	attributes	to	the	new	set	based
on	current	option	and	select	a	Size	for	the	name.

8.	 Click	on	Confirm	to	save	the	products	in	the	database.
9.	 On	the	Product	Edit	page,	select	the	category	where	you	want	to	add	the	product,

click	on	Save,	and	search	for	the	product	in	the	right	category	in	the	frontend.	The
product	detail	page	will	look	as	follows:

How	it	works…
A	configurable	product	is	a	product	where	you	can	select	one	or	more	options	on	the
product	detail	page.	Each	combination	of	selections	leads	to	a	simple	product	in	the
database.	The	customer	chooses	the	options,	and	when	adding	the	configurable	product	to
the	cart,	a	simple	product	is	also	added	in	the	background.

This	is	the	reason	why	we	have	generated	simple	products	to	be	shown	as	options	in	our
configurable	product.	The	configurable	product	is	a	parent	wrapper	that	is	used	to	display
in	the	frontend.	The	simple	products	are	hidden	in	the	frontend	by	the	Visibility
attribute.

When	a	product	is	sold,	the	SKU	of	the	selected	child	product	will	be	used	to	process	the
order.	That’s	the	reason	why	we	have	to	configure	a	stock	on	the	child	products.

There’s	more…
In	Magento,	we	can	create	six	types	of	product.	The	following	overview	gives	a	short
description	of	what	is	possible	with	the	different	product	types.

A	simple	product
A	simple	product	is	just	a	product	that	you	can	sell	in	your	web	shop.	Every	product	in
Magento	has	a	unique	ID	(SKU)	that	mostly	has	the	same	value	as	the	article	code	of	the
suppliers.

A	configurable	product
In	this	recipe,	we	created	a	configurable	product.	This	product	has	child	products	that	you
can	configure	on	the	product	page	(for	example,	to	configure	the	size).	The	child	products
are	simple	products.

A	bundle	product
A	bundled	product	is	like	a	configurable	product,	but	with	this	one,	you	can	(optionally)
specify	more	options.

In	the	sample	data,	you	can	find	a	good	example	by	navigating	to	Gear	|	Fitness
Equipment	|	Sprite	Yoga	Companion	Kit.

Note
Every	option	of	a	bundle	represents	another	product	in	the	shop.	When	you	add	a	bundle
product	to	the	cart,	the	products	of	the	chosen	configuration	will	also	be	added	to	the	cart
in	the	background.

A	grouped	product
A	grouped	product	is	a	product	that	represents	a	set	in	which	you	can	specify	the	number
of	child	products.	A	good	example	of	this	can	be	found	by	navigating	to	Gear	|	Fitness
Equipment	|	Set	of	Sprite	Yoga	Straps.

In	a	grouped	product,	you	assign	simple	products.	When	adding	a	grouped	product	to	the
cart,	the	child	products	will	be	added	as	separate	products	with	the	configured	quantity.

A	virtual	product
A	virtual	product	is	like	a	simple	product	but	it	is	not	physical.	It	has	no	inventory	and
can’t	be	shipped.	A	good	example	of	a	virtual	product	is	a	software	license.

A	downloadable	product
A	downloadable	product	is	a	product	that	is	not	physical.	When	a	customer	buys	a
downloadable	product,	a	download	link	will	be	sent	to	the	customer	so	that	they	can
download	their	product,	which	is	in	the	form	of	a	PDF,	MP3,	ZIP	file,	or	any	other	type	of
file.

Adding	social	media	buttons
These	days,	an	increasing	number	of	people	are	sharing	their	minds	through	different
social	media,	such	as	Facebook,	Twitter,	and	many	more.

Every	social	media	platform	has	the	option	to	share	pages	on	their	platform.	The	most
famous	examples	of	this	are	the	share	buttons,	such	as	the	Like	button	of	Facebook,	the
Tweet	button,	the	Google	Plus	button,	and	many	more.

Getting	ready
In	this	recipe,	we	will	add	share	buttons	for	the	following	platforms.	You	can	take	a	look
at	the	developer	documentation	of	each	platform	as	a	preparatory	step:

Facebook	(https://developers.facebook.com/docs/plugins/like-button)
Twitter	(https://about.twitter.com/resources/buttons)
Google	Plus	(https://developers.google.com/+/web/+1button/)

To	show	a	button	on	every	product	page,	we	have	to	do	some	code	changes.	Ensure	that
you	have	access	to	the	code	with	your	IDE.

https://developers.facebook.com/docs/plugins/like-button
https://about.twitter.com/resources/buttons
https://developers.google.com/+/web/+1button/

How	to	do	it
The	following	steps	show	you	how	to	add	social	media	buttons	to	the	description	of	your
product:

1.	 Open	the	page	of	the	product	where	you	want	to	add	the	social	media	buttons.
2.	 We	will	start	with	the	Like	button	of	Facebook.	Visit

https://developers.facebook.com/docs/plugins/like-button	and	configure	the
following	form	with	your	data:

3.	 When	clicking	the	Get	Code	button,	you	will	see	the	code	of	the	button.	Place	this
code	in	the	product	description	field.

4.	 Save	the	product	and	open	the	Product	Detail	page	of	that	product	in	the	frontend.
You	will	see	a	Like	button	in	the	description	field	of	the	product.

5.	 We	can	also	add	buttons	for	sharing	on	other	social	media	using	the	same	principle.
For	Twitter,	we	can	get	the	code	of	a	button	at
https://about.twitter.com/resources/buttons.	From	here,	copy	the	code	and	paste	it
after	the	code	of	the	Facebook	Like	button.

6.	 Similarly,	for	Google	Plus,	we	can	get	a	button	at
https://developers.google.com/+/web/+1button/	from	where	we	can	copy	the	code
and	paste	it	in	the	description	field	of	the	product.

7.	 When	reloading	the	frontend,	we	can	see	the	buttons	on	the	detail	page	of	that
product.	If	we	want	to	show	it	on	every	page,	we	will	have	to	make	a	change	in	the
code	of	the	product	detail	template.

8.	 If	you	have	a	custom	theme,	copy	and	paste	the
app/code/Magento/Catalog/view/frontend/templates/product/view/description.phtml

file	to	the	configured
app/design/frontend/<package>/<theme>/Magento_Catalog/templates/product/view/description.phtml

theme.

Note

https://developers.facebook.com/docs/plugins/like-button
https://about.twitter.com/resources/buttons
https://developers.google.com/+/web/+1button/

If	you	have	no	custom	theme	installed,	take	a	look	at	the	Creating	a	Magento	2	theme
recipe	of	Chapter	3,	Theming.	In	that	recipe,	all	the	steps	are	explained	on	how	to	do
this.

9.	 Add	the	code	of	the	social	media	buttons	at	the	end	of	the	file.	You	generate	the
product	URL	with	the	following	code:	$block->getProduct()->getProductUrl().
Use	this	code	to	generate	the	URL	for	the	button.	The	code	for	the	Facebook	Like
button	code	will	look	as	follows:

<div	class="fb-like"

				data-href="<?php	echo	$block->getProduct()->getProductUrl()	?>"

				data-width="450"

				data-layout="standard"

				data-action="like"

				data-show-faces="true"

				data-share="true">

</div>

10.	 Save	the	file,	clean	the	cache,	and	you	will	see	the	Like	button	on	every	page.

How	it	works
A	social	media	button	is	mostly	a	piece	of	external	HTML	that	will	render	in	your	website.
With	this	button,	a	page	can	be	shared.

To	render	these	buttons,	external	static	resources	from	the	social	media	website	will	be
loaded.	When	you	read	the	code	of	the	buttons,	you	can	see	that	additional	JavaScript
libraries	are	included	in	the	code.

When	sharing	a	page,	the	social	media	crawls	the	page	to	look	for	a	title,	image,	and
description	for	the	post.	In	the	first	case,	the	crawler	will	search	for	the	Open	Graph	meta
tags.

These	tags	are	generated	by	Magento	on	a	product	detail	page,	so	a	good	title,	image,	and
description	will	be	displayed	for	the	post.

Embedding	an	HTML	object
In	a	product	description,	we	can	add	HTML	tags	so	that	we	can	use	the	<object>	tag.
With	an	<object>	tag,	we	can	embed	widgets,	such	as	a	YouTube	video,	social	widgets,
and	more.

In	this	recipe,	we	will	focus	on	how	to	add	a	YouTube	video	in	a	product	description.

Getting	ready
Go	to	http://www.youtube.com,	and	choose	a	video	that	you	want	to	show	on	the	product
detail	page.

http://www.youtube.com

How	to	do	it
The	next	steps	shows	you	how	to	embed	a	YouTube	video	on	a	product	detail	page.

1.	 On	the	YouTube	video	page,	click	on	the	Embed	button.	When	you	click	this	button,
the	following	screen	shows	up:

2.	 Copy	the	HTML	code	and	paste	it	in	the	description	of	the	product.
3.	 Save	the	product.
4.	 Go	to	the	product	in	the	frontend.	You	will	see	the	video	on	the	Product	page.

How	it	works
The	ability	to	use	HTML	tags	in	product	descriptions	gives	a	lot	of	flexibility	for	this
field.	It	is	possible	to	use	a	WYSIWYG	editor	for	the	content	because	this	allows	us	to	use
widgets,	such	as	a	YouTube	video	or	other	third-party	widgets.

On	a	YouTube	video	page,	we	opened	the	embed	options	where	we	can	configure	the	code
that	we	will	include	in	our	site.	We	can	specify	options	such	as	width,	height,	color	and
more.

When	everything	is	configured,	we	can	paste	the	Embed	code	in	the	HTML	of	the	product
description,	and	the	video	will	be	visible	in	the	description	of	the	product.

Changing	the	URL	of	a	product	page
When	you	are	on	a	product	page,	the	URL	of	every	product	always	looks	clean.	The	name
in	the	URL	makes	it	very	SEO	friendly.

In	this	recipe,	we	will	explore	the	possibilities	of	URL	rewrites	in	Magento.

Getting	ready
In	the	backend,	navigate	to	Products	|	Inventory	|	Catalog	and	look	for	a	simple	product
with	visibility	Catalog,	Search.	This	recipe	is	based	on	the	Endeavor	Daytrip	Backpack
product	from	the	sample	data.

How	to	do	it
In	the	following	steps,	we	will	see	the	procedure	for	changing	a	URL	of	a	product	detail
page.

1.	 Find	the	appropriate	product	in	the	frontend.	You	can	find	by	navigating	to	Gear	|
Bags.	If	you	open	the	product	detail	page,	you	will	see	the	URL	/endeavor-
daytrip-backpack.html.

2.	 In	the	backend,	change	the	URL	key	attribute	to	buy-now-endeavor-daytrip-
backpack.

3.	 Reload	the	product	in	the	frontend.	The	URL	will	change	to	the	one	we	have	just
entered	in	the	backend.

Tip
When	you	select	the	Create	Permanent	Redirect	option	for	an	old	URL	checkbox,
Magento	will	create	a	permanent	301	redirect	response	for	the	old	URL	of	the
product.	The	checkbox	is	located	in	the	product	edit	page	in	the	backend	under	the
URL	Key	attribute.

4.	 Empty	the	URL	key	attribute	at	the	backend	and	save	the	product	again.	You	will	see
that	Magento	autogenerates	the	URL	key	attribute	based	on	the	name	of	the	product.

5.	 At	the	backend,	navigate	to	Stores	|	Configuration	|	Catalog	|	Search	Engine
Optimizations.	Clear	the	product	URL	Suffix	field	and	save	the	configuration.

6.	 Clear	the	cache	by	navigating	to	System	|	Cache	Management.
7.	 Reload	the	product	in	the	frontend,	and	you	will	see	that	the	.html	suffix	is	gone.

Note
In	Magento	1,	there	was	a	URL	rewrite	index,	in	Magento	2,	this	index	is	replaced	by
a	new	system	to	generate	the	URLs.

How	it	works
In	Magento,	there	is	a	URL	rewrite	system	that	maps	an	SEO-friendly	URL	to	the
system’s	URL.	In	technical	terms,	this	is	also	called	routing.	In	the	backend,	you	can	see
all	the	URL	rewrites	that	are	available	in	the	installation.

You	can	see	this	by	navigating	to	Marketing	|	SEO	&	Search	|	URL	Rewrites	in	the
backend.	On	this	page,	you	can	see	the	complete	list	of	the	URLs	that	are	available	in	the
web	shop.	If	we	search	for	endeavor-daytrip-backpack,	we	will	see	a	list	of	all	the
URLs,	which	looks	like	this.

What	we	see	is	the	following:

Permanent	301	redirect	responses	(rows	where	the	Redirect	Type	column	is
Permanent	(301))
The	Product	URL
The	URL	of	a	product	in	every	category

All	the	URLs	are	generated	separately	for	each	store	views.	When	a	product	is	enabled	in
multiple	stores,	it	is	normal	that	a	product	has	more	than	one	URL.

There’s	more
On	the	URL	rewrite	page,	it	is	also	possible	to	add	custom	URL	rewrites.	For	example,	a
URL	rewrite	for	the	contact	page.

When	adding	the	Add	new	URL	Rewrite	button,	a	form	shows	up.	The	following
screenshot	shows	us	how	we	can	create	an	alias	from	the	contact-us.html	URL	to	the
/contact	page:

In	the	Store	option,	you	can	configure	the	store	for	the	URL	rewrite.

The	value	in	the	Request	Path	field	is	the	path	that	you	want	to	rewrite;	in	this	case,	we
want	to	rewrite	something	on	the	/contact-us.html	path.

The	value	in	the	Target	Path	field	is	the	path	where	the	request	will	end;	in	this	case,	it	is
the	/contact	page.

If	the	value	in	Redirect	Type	is	set	to	No,	the	target	path	will	be	rendered	on	the	request
path	(so,	the	URL	doesn’t	change).	You	also	have	the	choice	to	redirect	the	page	with	a
permanent	(301)	or	temporary	(302)	redirect.

Chapter	3.	Theming
In	this	chapter,	we	will	cover:

Exploring	the	default	Magento	2	themes
Creating	a	Magento	2	theme
Customizing	the	HTML	output
Adding	extra	files	to	the	theme
Working	with	LESS
Changing	a	page	title
Working	with	translations
Adding	widgets	to	the	layout
Customizing	email	templates

Introduction
The	most	common	customization	on	a	Magento	shop	is	the	theming.	Making	a	good	first
impression	to	your	customers	is	an	important	point	to	raise	the	conversion.	Almost	every
store	owner	wants	a	look	and	feel	of	their	company	in	their	shop.

In	this	chapter,	we	will	cover	all	the	things	you	need	to	customize	a	Magento	theme.	We
will	see	how	we	can	customize	the	templates,	CSS,	JavaScript,	translations,	and	more.

Exploring	the	default	Magento	2	themes
When	Magento	2	is	installed,	there	are	two	themes	available.	You	have	the	Luma	theme
that	you	can	see	in	the	sample	data,	and	you	have	the	Blank	theme	that	is	developed	as	a
starting	point	to	customize	your	theme.

Getting	ready
Log	in	to	the	backend	and	open	the	design	configuration.	We	can	find	this	in	Stores	|
Configuration	|	Design.

How	to	do	it…
The	following	instructions	describe	how	we	can	configure	the	theme	settings	for	a
Magento	2	store:

1.	 When	you	look	at	the	theme	settings	on	the	configuration	page,	we	see	that	the
Magento	Luma	theme	is	selected	in	the	Design	Theme	section.	Select	the	Magento
Blank	option	in	the	dropdown,	save	the	configuration,	and	reload	the	frontend.	You
should	see	something	like	the	following	screenshot:

2.	 We	have	now	configured	the	Magento	Blank	theme	for	the	store.	The	Magento	Blank
theme	is	the	default	theme	where	the	Magento	Luma	theme	will	extend	from.

3.	 Open	the	page	Content	|	Themes	in	the	backend	and	you	will	see	an	overview	of	the
available	themes	in	Magento.	When	Magento	2	is	installed	without	modules,	the
following	themes	are	available:

Magento	Blank	(used	as	the	default	theme)

Magento	Luma	(used	in	the	sample	data	store)

4.	 When	clicking	on	Magento	Luma,	we	will	see	the	details	of	the	theme	like	the
following	screenshot:

5.	 We	see	that	the	Parent	Theme	is	Magento	Blank.	This	means	that	this	theme	will
extend	the	Magento	Blank	theme.

6.	 In	the	backend,	open	the	page	Content	|	Schedule.	When	clicking	the	Add	Design
Change	button,	we	can	configure	a	design	change	with	a	from	and	to	date.

How	it	works…
In	Magento	2	the	concept	of	themes	is	much	easier	than	in	Magento	1.	There	are	no
packages	any	more,	and	no	skins.

In	Magento	2,	a	theme	can	have	a	parent	theme	and	that’s	all.	When	a	theme	has	a	parent
theme,	it	will	inherit	everything	from	that	parent	theme	except	you	can	override	it	in	your
theme.	This	means	that	if	your	theme	is	empty,	all	the	settings	of	the	parent	theme	will	be
used.

Like	in	Magento	1,	you	can	override	the	theme	settings	in	different	ways	such	as	the
following:

By	a	User	Agent	Exception	on	the	Stores	|	Configuration	|	Design	page
By	a	scheduled	theme	setting	on	the	Content	|	Schedule	page
On	a	specific	CMS	page	(can	be	configured	on	the	Design	section	of	a	CMS	edit
page)
On	a	specific	product	detail	page	(this	can	be	configured	on	the	Design	section	of	a
product	edit	page)
On	a	specific	category	page	(this	can	be	configured	on	the	Custom	Design	step	of	a
category)

Creating	a	Magento	2	theme
We	will	start	customizing	the	look	and	feel	of	the	shop	by	creating	a	custom	theme.	The
purpose	of	a	custom	theme	is	that	we	don’t	have	to	modify	the	core	files	delivered	by
Magento.

Getting	ready
Open	your	Magento	webroot	in	your	favorite	IDE.	We	will	create	a	theme	and,	for	this,	we
will	work	in	the	app/design/frontend	folder.

Before	you	start,	disable	the	full-page	cache	because	this	will	save	you	a	lot	of	trouble.
You	can	do	this	in	the	backend	on	the	page	System	|	Cache	Management.	Click	on	the
Flush	Magento	Cache	button	after	you	have	disabled	the	Full	page	caching.

How	to	do	it…
The	following	procedure	shows	you	which	actions	are	required	to	create	a	custom	theme:

1.	 For	our	theme,	we	will	create	a	vendor	namespace.	We	can	do	this	by	creating	the
folder	app/design/frontend/Packt.

Note
A	theme	namespace	is	always	written	in	CamelCase	such	as	Magento,	Packt.

2.	 In	that	namespace,	we	will	create	a	theme	called	cookbook.	First,	create	the	folder
app/design/frontend/Packt/cookbook.

Note
A	theme	is	always	written	in	small	letters	such	as	luma,	cookbook,	blank.

3.	 To	register	the	theme,	we	have	to	create	the	file	with	the	following	content:

<?php

\Magento\Framework\Component\ComponentRegistrar::register(

				\Magento\Framework\Component\ComponentRegistrar::THEME,

				'frontend/Packt/cookbook',

				__DIR__

);

4.	 At	this	point,	we	have	to	create	a	theme	configuration	file.	We	can	do	this	by	creating
the	file	app/design/frontend/Packt/cookbook/theme.xml	with	the	following
content:

<theme	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Config/etc/theme.x

sd">

				<title>Packt	Cookbook</title>

				<parent>Magento/blank</parent>

</theme>

5.	 It	is	also	possible	to	add	a	preview	image	to	the	theme.	In	the	theme	folder,	create	a
media	folder	in	the	theme	folder	and	add	an	image	of	your	choice	that	we	want	to	use
as	a	preview.

6.	 To	set	the	preview	image,	we	have	to	add	the	highlighted	XML	configuration	to	the
theme.xml	file:

...

				<title>Packt	Cookbook</title>

				<parent>Magento/blank</parent>

				<media>

								<preview_image>media/preview.png</preview_image>

				</media>

</theme>

7.	 Clear	the	cache	and	run	the	composer	install	to	register	the	theme.
8.	 To	test	whether	the	theme	exists,	navigate	to	the	page	Content	|	Themes	in	the

Magento	backend.	You	should	see	the	theme	in	the	list.	When	we	click	on	the	theme,
we	can	see	the	details	that	we	have	configured	in	the	theme.xml	file.

9.	 The	last	step	is	to	configure	the	theme.	Go	to	the	page	Stores	|	Configuration	|
Design	and	configure	the	theme	like	the	following	screenshot:

10.	 Flush	the	cache	and	reload	the	frontend.	Your	shop	will	now	have	the	look	and	feel	of
the	Blank	theme.

Note
If	you	want	to	uninstall	a	theme,	you	can	use	the	command	php	bin/magento
theme:uninstall.

How	it	works…
We	have	just	created	an	empty	theme	that	inherits	everything	from	the	Magento	base
theme.	When	we	want	to	change	stuff	on	the	theme,	we	can	do	it	in	this	theme	without
overriding	the	core.

When	we	want	to	customize	some	aspects	of	the	theme,	we	can	copy	a	file	from	the
Magento/Blank	theme	and	paste	it	in	our	theme.	When	copying	a	file,	the	directory
structure	needs	to	be	the	same	as	the	structure	of	the	parent	theme.

Note
Changing	code	in	the	Magento	core	will	also	work,	but	this	is	not	recommended.	When
you	want	to	upgrade	your	store,	all	the	core	files	will	be	overwritten	and	then	all	your
changes	will	be	lost.

We	created	a	theme.xml	file	in	our	theme	where	we	have	set	the	default	settings	of	the
theme	such	as	the	name	and	parent	theme.	Magento	will	store	this	data	in	the	theme	table
of	the	database.

Note
All	the	XML	configurations	will	be	cached	by	Magento.	So	when	the	caches	are	enabled
and	you	change	something	in	the	config	files,	make	sure	you	clean	and	flush	the	caches.
You	can	also	disable	the	caches	when	developing.	You	can	clean	the	cache	using	the
command	php	bin/magento	cache:clean	or	you	can	do	it	in	the	backend.

There’s	more…
In	Magento,	it	is	possible	to	enable	template	hints	in	the	frontend.	When	this	is	enabled,
containers	will	be	shown	around	blocks	of	HTML	with	the	reference	to	the	file	and	class
that	is	loaded.

To	enable	this,	navigate	to	Stores	|	Configuration	|	Advanced	|	Developer	and	change
the	configuration	scope	dropdown	to	Main	Website	like	the	following	screenshot:

In	the	Debug	section,	you	can	enable	the	hints	by	setting	the	dropdown	values	to	Yes	for
the	following	fields:	Template	Path	Hints	and	Add	Block	Names	to	Hints.

When	this	is	done,	reload	your	frontend	and	you	will	see	red	borders	around	each	block	of
HTML.

Customizing	the	HTML	output
You	can	customize	a	theme	in	two	ways.	We	can	only	change	some	styles	to	make	a	shop
look	different.	The	second	way	is	to	customize	the	HTML	output,	which	is	what	we	will
cover	in	this	recipe.

It	is	very	common	to	want	to	change	some	stuff	on	the	HTML	structure	to	make	your	shop
look	unique.

Getting	ready
Make	sure	you	have	the	theme	installed	and	configured	like	we	have	done	in	the	previous
recipe.

If	you	don’t	have	the	theme	installed,	you	can	install	the	start	files	for	this	recipe.

How	to	do	it…
In	the	next	steps,	we	will	change	the	logo,	change	a	template,	and	we	will	add	extra	blocks
to	the	footer:

1.	 First	we	will	change	the	logo.	If	you	look	at	the	frontend	of	the	webshop,	you	will	see
that	the	default	Magento	logo	is	used.	This	is	an	SVG	image	but	what	if	I	have	a
PNG	image?	Create	a	logo.png	file	in	the	folder
app/design/frontend/Packt/cookbook/web/images.	If	this	folder	doesn’t	exist,
create	one.

2.	 The	second	step	is	to	create	a	layout	configuration	file	in	the	folder
app/design/frontend/Packt/cookbook/Magento_Theme/layout.

3.	 In	that	folder,	create	a	default.xml	configuration	with	the	following	content:

<?xml	version="1.0"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout/etc/pa

ge_configuration.xsd">

				<body>

								<referenceBlock	name="logo">

												<action	method="setLogoFile">

																<argument	name="logo_file"	

xsi:type="string">images/logo.png</argument>

												</action>

								</referenceBlock>

								<referenceBlock	name="logo"	remove="true"	/>

				</body>

</page>

4.	 Flush	the	cache	and	reload	the	frontend.	You	should	see	that	the	logo	is	changed	to
the	specified	file.

5.	 Next	we	will	change	the	toolbar	on	the	category	pages.	In	the	frontend,	navigate	to	a
category	page	with	products	such	as	Women	|	Tops.

6.	 To	change	the	output	of	a	category	page,	we	have	to	override	the	template.	To	know
what	template	is	used,	we	can	enable	the	template	hints.	Enabling	the	template	hints
is	described	in	the	There’s	more	section	of	the	previous	recipe	Creating	a	Magento	2
theme.

7.	 With	the	template	hints	enabled,	we	see	the	template	located	in
app/code//Magento/Catalog/view/frontend/templates/product/list.phtml.	To
override	this	template,	copy	and	paste	that	file	in
app/design/frontend/Packt/cookbook/Magento_Catalog/templates/product/.	If
that	folder	doesn’t	exist,	create	it.

8.	 Clean	the	cache	and	reload	the	page.	In	the	template	hints,	you	will	see	that	the	file
we	just	copied	is	used	instead	of	the	default	one.

Tip
If	you	don’t	see	any	changes	to	the	frontend,	you	have	to	flush	the	Magento	cache.
Also	disable	the	full-page	cache	when	developing.

9.	 In	this	file,	we	can	change	what	we	want	without	overriding	the	core.
10.	 At	last,	we	will	add	an	extra	menu	with	links	in	the	footer.	For	this,	we	need	to	edit

the	file:
app/design/frontend/Packt/cookbook/Magento_Theme/layout/default.xml.

11.	 Paste	the	following	highlighted	code	in	that	XML	file:

...

												</action>

								</referenceBlock>

								<referenceBlock	name="footer">

												<block	class="Magento\Framework\View\Element\Html\Links"	

name="footer_links_account"	after="footer_links">

																<arguments>

																				<argument	name="css_class"	xsi:type="string">footer	

links</argument>

																</arguments>

																<block	

class="Magento\Framework\View\Element\Html\Link\Current"	name="my-

account-link">

																				<arguments>

																								<argument	name="label"	xsi:type="string">My	

account</argument>

																								<argument	name="path"	

xsi:type="string">customer/account</argument>

																				</arguments>

																</block>

																<block	

class="Magento\Framework\View\Element\Html\Link\Current"	name="my-cart-

link">

																				<arguments>

																								<argument	name="label"	xsi:type="string">My	

cart</argument>

																								<argument	name="path"	

xsi:type="string">checkout/cart</argument>

																				</arguments>

																</block>

												</block>

								</referenceBlock>

				</body>

</page>

12.	 You	have	to	paste	the	highlighted	code	as	a	child	of	the	<body>	tag.
13.	 Clean	the	cache	and	reload	the	frontend.	You	should	now	see	an	extra	column	in	the

footer	with	two	links	in	it.
14.	 To	end	this	recipe,	we	will	add	a	link	to	the	menu	we	have	just	created	but	that	menu

item	is	only	visible	on	the	cart	page.	To	realize	this,	we	have	to	add	the	file
app/design/frontend/Packt/cookbook/Magento_Theme/layout/checkout_cart_index.xml

15.	 In	that	file,	add	the	following	content:

<?xml	version="1.0"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

layout="1column"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout/etc/pa

ge_configuration.xsd">

				<body>

								<referenceContainer	name="footer_links_account">

												<block	

class="Magento\Framework\View\Element\Html\Link\Current"	

name="checkout-link">

																<arguments>

																				<argument	name="label"	xsi:type="string">Go	to	

checkout</argument>

																				<argument	name="path"	

xsi:type="string">checkout/onepage</argument>

																</arguments>

												</block>

								</referenceContainer>

				</body>

</page>

16.	 Clean	the	cache	and	go	to	the	cart	page.	You	will	see	that	there	is	an	extra	link	in	the
menu.

How	it	works…
With	the	template	hints	on,	we	see	that	a	lot	of	HTML	blocks	are	used	to	build	the	page.
All	these	blocks	are	configured	in	the	layout	XML	files.

Every	block	in	the	page	is	from	a	specific	type.	This	type	is	the	class	that	is	used	to
generate	the	block.	The	block	class	contains	functions	that	could	be	called	in	the	template
by	calling	the	$block	variable.

In	the	layout	XML	files,	the	type	of	the	block	is	specified	with	the	class	attribute.

For	changing	the	logo	file,	we	have	changed	a	parameter	of	the	block	class	that	is	used	for
the	logo.	With	the	XML	configuration	in	the	default.xml	page,	we	have	modified	the
logo_file	parameter	of	that	class	for	all	pages.	Every	block	has	a	name	and	by	using	the
<referenceBlock	name="block_name">	tag,	we	can	modify	the	contents	of	the	block.	We
can	modify	page	arguments	like	we	have	done	with	the	logo	or	we	can	add	child	blocks
like	we	have	done	with	the	extra	footer	menu.

The	extra	footer	menu	is	a	new	block	that	we	have	specified	as	a	child	of	the	footer	block.
In	the	footer	menu	block,	we	have	specified	the	links	that	are	also	implemented	as	a	block.

We	add	the	new	block	in	the	default.xml	file.	This	means	that	the	configuration	is	loaded
on	all	pages.

If	you	want	to	add	a	configuration	that	is	only	for	a	specific	page,	you	have	to	put	that
configuration	in	a	different	file.	The	name	of	the	file	is	the	layout	handle	that	is	used	such
as	checkout_cart_index	for	the	cart	page.

Adding	extra	files	to	the	theme
In	the	previous	recipe,	we	learned	how	we	can	make	structural	changes	to	the	HTML
output.	However	an	HTML	output	is	not	a	completed	website.	With	JavaScript	and	CSS,
we	can	theme	the	HTML	output.

Getting	ready
We	will	learn	how	we	can	add	CSS	and	JavaScript	files	to	our	theme.	This	is	a	common
case	when	integrating	an	external	JavaScript	plugin.	To	do	this,	we	have	to	work	in	the
theme	folder	that	we	created	in	the	recipe	Creating	a	Magento	2	theme	earlier	in	this
chapter.

How	to	do	it…
The	following	steps	describe	how	we	can	add	extra	files	to	a	theme:

1.	 Open	the	frontend	and	open	the	HTML	source	of	a	page,	and	have	a	look	at	the
<head>	section.	We	see	that	the	included	JS	and	CSS	files	are	located	in	the
pub/static	map.

2.	 If	we	want	to	add	an	extra	CSS	file	we	have	to	configure	that	in	the	layout	XML
files.	Open	or	create	the	file
app/design/frontend/Packt/cookbook/Magento_Theme/layout/default_head_blocks.xml

3.	 In	that	file	add	the	following	content:

<?xml	version="1.0"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout/etc/pa

ge_configuration.xsd">

				<head>

								<css	src="css/cookbook.css"	/>

				</head>

</page>

4.	 Create	the	file	app/design/frontend/Packt/cookbook/web/css/cookbook.css	and
add	the	following	content	in	it:

body	{

				background-color:#dcdcdc;

}

5.	 Clean	the	cache	and	reload	the	frontend.	You	will	see	that	the	background	color	is
changed	to	light	gray	and	that	the	cookbook.css	file	is	included	in	the	<head>
section.

Note
In	the	next	recipe,	we	will	see	how	we	can	generate	CSS	using	the	LESS	pre-
processor	in	Magento	2.	This	method	is	recommended	when	you	want	to	add	a	3rd
party	CSS	such	as	the	CSS	of	a	jQuery	plugin.

6.	 The	next	thing	is	to	add	a	JavaScript	file	to	the	<head>	section.	This	works	the	same
way	as	with	the	CSS	file.

7.	 Open	the	file
app/design/frontend/Packt/cookbook/Magento_Theme/layout/default_head_blocks.xml

and	add	the	highlighted	code	as	a	child	of	the	<head>	tag:

<head>

				<css	src="css/cookbook.css"	/>

				<script	src="js/cookbook.js"	/>

</head>

8.	 Create	the	file	cookbook.js	in	the	folder
app/design/frontend/Packt/cookbook/web/js/.

9.	 Clean	the	cache	and	reload	the	source	of	the	frontend.	You	will	see	that	the

cookbook.js	file	is	added	in	the	<head>.

How	it	works…
Like	in	the	previous	recipe,	we	did	some	layout	XML	configurations	to	add	the	CSS	and
JavaScript	file.	In	the	configuration	file	default_head_blocks.xml,	we	added	XML
configurations	to	add	a	CSS	file	and	a	JS	file.

When	rendering	the	HTML	output,	Magento	will	look	for	all	<head>	configuration	entries
and	will	generate	a	list	of	CSS	and	JS	files.

We	created	the	CSS	and	JavaScript	files	in	the	theme	folder.	But	if	we	look	at	the	HTML
source,	we	see	that	Magento	loads	the	file	from	a	different	location.	The	files	are	loaded
from	the	pub/static	folder.

Magento	builds	a	symbolic	link	from	the	pub	folder	to	the	web	folder	in	the	theme.	When
we	have	static	files	such	as	CSS,	JavaScript,	images,	web	fonts,	and	more,	we	have	to
place	these	files	in	the	web	folder	of	the	theme.

There’s	more…
In	this	recipe	we	learned	how	we	can	add	CSS	and	JavaScript	files	to	the	HTML	head,
but	with	the	same	system	we	can	also	add	meta	link	and	title	tags	to	the	head.	The
following	code	snippet	shows	you	how	this	works.	This	is	an	example	of	the
default_head_blocks.xml:

<?xml	version="1.0"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="../../../../../../../lib/internal/Magento/Fr

amework/View/Layout/etc/page_configuration.xsd">

				<head>

								<css	src="css/cookbook.css"	/>

								<script	src="js/cookbook.js"	/>

								<link	rel="publisher"	src="https://www.packtpub.com/"	/>

								<meta	name="author"	content="Packt	Publishing"	/>

				</head>

</page>

The	<title>	configuration	is	missing	in	this	configuration.	How	to	change	a	page	title	is
explained	in	the	recipe	Changing	a	page	title	in	this	chapter.

Tip
If	you	want	to	explore	which	configurations	are	possible	in	a	particular	XML	file,	have	a
look	at	the	XSD	file	that	is	declared	at	the	top	of	the	file	and	you	will	see	which
configurations	you	can	use	in	your	config	file.

Working	with	LESS
In	Magento	1,	the	CSS	of	a	Magento	theme	was	stored	in	one	big	CSS	file	(the
styles.css)	but	in	Magento	2,	it	is	completely	different.	The	big	CSS	file	has	been
replaced	by	a	collection	of	LESS	files.

LESS	is	a	language	that	is	used	to	generate	CSS.	CSS	is	very	static.	You	can’t	use
functions,	variables,	nesting,	and	so	on	but	with	LESS,	you	can.

Magento	has	a	LESS	pre-processor	that	generates	a	CSS	file	from	the	LESS	files	in	the
theme.

Getting	ready
Open	your	favorite	IDE	and	navigate	to	the	theme	folder	of	the	Packt/cookbook	theme
that	we	have	created	in	the	previous	recipes.

Access	to	a	command	line	is	also	useful	to	work	with	Grunt.

How	to	do	it…
The	following	steps	describe	how	we	can	change	the	layout,	such	as	how	Magento	2	does
it:

1.	 Copy	the	file	app/design/frontend/Magento/blank/web/css/source/_theme.less
to	the	folder
app/design/frontend/Packt/cookbook/web/css/source/_theme.less.

Note
If	you	installed	Magento	2	using	composer,	you	have	to	copy	the	_theme.less	file
from	the	folder	vendor/magento/theme-frontend-blank/web/css/source/.

2.	 In	that	file,	add	the	following	content:

@cookbook_primary_color:	#FECA5C;

@cookbook_dark_color:	#373C40;

@text__color:	@cookbook_dark_color;

@navigation__background:	@cookbook_primary_color;

@button-primary__background:	@cookbook_primary_color;

@button-primary__border:	1px	solid	@cookbook_dark_color;

@button-primary__color:	@cookbook_dark_color;

3.	 Reload	the	page.	Normally	you	will	see	no	layout	changes	because	we	have	to	clear
the	pre-generated	file.	Remove	the	following	folders	with	pre-generated	CSS:

rm	–rf	pub/static/*

rm	–rf	var/view_preprocessed

Also	don’t	forget	to	flush	the	cache	before	rendering	the	page.

4.	 Reload	the	page	and	your	page	will	look	like	the	following	screenshot.	The	load	time
of	the	page	is	a	bit	longer	because	the	CSS	needs	to	be	generated:

Note
If	you	get	a	page	without	styling,	an	error	occurred	when	rendering	the	CSS	file.	If
this	happens,	flush	the	cache	and	remove	the	folders	again,	as	described	in	step	3.

Another	thing	that	can	happen	is	that	the	pub	and	var	folders	do	not	have	enough	file
permissions.

5.	 When	we	want	to	add	some	CSS	entries	to	the	header,	we	have	to	copy	the	file
app/design/frontend/Magento/blank/Magento_Theme/web/css/source/_module.less

to
app/design/frontend/Packt/cookbook/Magento_Theme/web/css/source/_module.less

6.	 Add	the	following	highlighted	code	in	that	file	around	line	293.	This	will	give	the	top
menu	a	darker	color:

...	

.page-header	{

				border:	0;

				margin-bottom:	0;

				.panel.wrapper	{

								background-color:	@cookbook_dark_color;

								li	{

												a	{

																color:	@color-white;

												}

								}

								border-bottom:	1px	solid	@secondary__color;

				}

				.header.panel	{

								padding-top:	@indent__s;

								padding-bottom:	@indent__s;

								&:extend(.abs-add-clearfix-desktop	all);

				}

				.switcher	{

								display:	inline-block;

				}

}

...	

7.	 Clean	the	cache	and	remove	the	folders	pub/static/*	and	var/view_preprocessed,
and	reload	the	page.	You	will	see	that	the	top	bar	is	now	in	a	dark	color.

How	it	works…
When	working	with	LESS,	there	are	a	few	ways	of	doing	it.	The	goal	is	to	avoid	duplicate
CSS	code	that	is	loaded	in	the	browser.

First,	we	did	some	styling	by	changing	some	variables	that	are	defined	by	Magento.	The
purpose	of	the	theme.less	file	in	the	web/css/source	directory	is	to	override	the	default
variables	of	the	Magento	theme.	The	LESS	compiler	converts	the	right	values	to	the	right
CSS	entries.

If	you	want	to	know	which	variables	are	available,	have	a	look	in	the	folder
lib/web/css/source/lib/variables.	In	this	folder,	the	variables	of	the	default	Magento
components	are	initialized.	One	folder	above	in	the	web/css/source/lib,	the	CSS
structure	of	these	components	is	defined.

The	second	thing	we	did	was	to	override	a	theme	LESS	file	from	the	Magento_Theme
module.	We	copied	the	original	file	to	our	theme.	This	means	that	the	file	of	our	theme	is
loaded	instead	of	the	default	theme.

This	process	is	called	the	fallback	mechanism.	When	a	file	is	loaded,	Magento	will	look
for	it	in	the	following	order:

Theme	folder	(app/design/frontend/<Vendor>/<Theme>/web/css)
Parent	theme	folders	(app/design/frontend/<Vendor>/<Theme>/web/css)
Module	folder	(app/code/<Vendor>/<Module>/view/frontend/web/css)

Note
If	you	installed	Magento	2	using	composer,	the	default	and	Luma	theme	of	Magento	are	in
the	vendor/magento	folder.

When	there	is	a	change	in	a	LESS	file,	we	have	to	clear	two	folders.	The	first	one	is	the
var/view_preprocessed	folder.	In	this	folder,	all	the	particular	LESS	files	are	merged	in	a
large	file.

That	large	file	will	be	compiled	in	the	folder	pub/static/frontend.	So	that’s	the	reason
why	we	had	to	clear	both	the	folders.

When	Magento	loads	files	from	the	pub/static/frontend	folder	that	doesn’t	exist,
Magento	will	look	in	its	core	folders	to	make	those	files	available	in	this	folder.	For	CSS
files,	Magento	will	start	the	generation	of	them.	For	other	files	such	as	images,	Magento
will	create	symlinks	to	the	source	file.

Changing	files	in	the	pub	folder	is	not	a	good	idea	because	you	have	to	do	it	in	the	app
folder	and	regenerate	the	files	in	pub.

Tip
It	is	also	possible	to	use	the	JavaScript	compiler.	In	the	backend,	you	can	enable	it	on	the
page	Stores	|	Configuration	|	Advanced	|	Developer	|	Front-end	development
workflow.

There’s	more…
When	working	in	LESS,	it	is	not	convenient	to	always	clear	the	contents	of	the
pub/static	and	var/view_preprocessed	folders	when	testing	the	result	of	a	change.

For	normal	LESS,	you	can	install	a	LESS	watcher,	but	with	the	modular	architecture	of
Magento,	we	can	use	the	JavaScript	task	runner	Grunt.

With	Grunt,	we	can	configure	a	watcher	for	our	theme.	When	there	is	a	change	in	a	LESS
file,	Grunt	will	regenerate	the	public	file	following	the	rules	of	Magento.

To	use	Grunt,	we	first	have	to	install	nodejs	and	grunt-cli.	We	can	do	this	with	the
following	commands	(on	a	Ubuntu	server):

sudo	apt-get	update

apt-get	install	nodejs

sudo	apt-get	install	npm

sudo	npm	install	-g	grunt-cli

When	Grunt	is	installed,	we	can	configure	it	for	our	demo	shop.	Open	your	terminal	and
change	to	the	Magento	project	root.	In	this	directory,	run	the	following	commands:

npm	install	grunt	--save-dev

npm	install

npm	update

npm	install	grunt-contrib-less

Note
These	installation	instructions	are	tested	on	an	Ubuntu	Server.	If	you	want	to	install	this	on
other	operating	systems,	you	can	find	more	information	on	the	following	URL:
http://gruntjs.com/installing-grunt.

Add	your	theme	by	adding	the	following	configuration	to	the	file
dev/tools/grunt/configs/themes.js:

cookbook:	{

				area:	'frontend',

				name:	'Packt/cookbook',

				locale:	'en_US',

				files:	[

								'css/styles-m',

								'css/styles-l'

],

				dsl:	'less'

},

When	running	the	command	grunt	exec:cookbook,	the	files	will	be	generated	for	the
cookbook	theme.

When	running	grunt	watch,	these	files	will	automatically	be	generated	after	a	file	change.

http://gruntjs.com/installing-grunt

Changing	a	page	title
Changing	a	page	title	helps	you	to	improve	the	SEO	of	your	website.	For	product	pages,
we	can	manage	that	with	the	backend	but	on	other	pages,	such	as	the	contact	page,	we
can’t	do	that.

In	this	recipe,	we	will	change	the	page	title	of	the	contact	page	that	is	available	at	the
/contact	path.

How	to	do	it…
To	change	the	page	title	of	the	contact	page,	have	a	look	at	the	following	steps:

1.	 Go	to	the	contact	page	in	the	frontend.	This	is	available	at	the	path	/contact.
2.	 You	see	that	the	page	title	is	set	to	Contact	Us.	We	will	change	this	to	Give	us	a

message.
3.	 Create	the	file	contact_index_index.xml	in	the	folder

app/design/frontend/Packt/cookbook/Magento_Contact/layout.	If	that	folder
doesn’t	exist,	create	it.

4.	 In	the	contact_index_index.xml	file,	paste	the	following	content:

<?xml	version="1.0"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

layout="1column"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout/etc/pa

ge_configuration.xsd">

				<head>

								<title>Give	us	a	message!</title>

				</head>

</page>

5.	 Clean	the	cache	and	reload	the	frontend.	You	will	see	that	the	page	title	is	changed	to
Give	us	a	message!.

How	it	works…
The	<title>	and	other	tags	in	the	head	are	generated	in	the	class
lib/internal/Magento/Framework/Page/Config/Renderer.php.	When	you	look	for	the
renderTitle()	function,	you	see	the	following	code:

public	function	renderTitle()

{

				return	'<title>'	.	$this->pageConfig->getTitle()->get()	.	'</title>'	.	

"\n";

}

This	function	looks	in	the	pageConfig	for	a	title	tag.	The	pageConfig	looks	in	the	<head>
tag	of	the	XML	configuration	file.

For	other	types	of	pages,	such	as	a	product	detail	page	where	we	can	set	the	title	in	the
backend,	the	pageConfig	values	will	be	overwritten	after	loading	the	layout	XML
configuration.	But	for	the	contact	page,	this	is	not	the	case.

Working	with	translations
Magento	has	the	ability	to	run	a	store	in	multiple	languages.	Every	store	view	has	a
language,	and	Magento	has	a	system	to	translate	the	interface	into	that	particular	language.

Getting	ready
Open	the	backend	and	go	to	the	store	configuration	at	Stores	|	Configuration	|	General.
We	will	configure	the	French	language	for	the	default	store	view.

How	to	do	it…
The	following	steps	show	how	we	can	translate	the	interface	of	Magento	in	a	specific
language:

1.	 First,	we	will	configure	the	default	language	of	the	store	view.	In	the	backend,	go	to
Stores	|	Configuration	|	General	and	change	the	locale	to	the	preferred	value.	In
Magento,	the	following	language	packs	are	installed:

en_US—English	(United	States)
de_DE—German	(Germany)
es_ES—Spanish	(Spain)
fr_FR—French	(France)
nl_NL—Dutch	(Netherlands)
pt_BR—Portuguese	(Brazil)
zh_CN—Chinese	(China)

This	recipe	works	with	a	shop	in	the	French	language.

2.	 When	cleaning	the	cache	and	reloading	the	frontend,	you	will	see	that	the	interface
texts	are	translated	into	French.

3.	 When	you	want	to	translate	existing	strings,	we	can	do	this	by	the	Inline	Translation
tool	and	we	can	do	it	in	the	theme.	We	can	enable	the	Inline	Translation	tool	in	the
backend	on	the	page	Stores	|	Configuration	|	Advanced	|	Developer	|	Translate
Inline.

4.	 Reload	the	frontend	and	you	will	see	red	frames	around	each	interface	text.	When
hovering	over	a	frame,	an	icon	will	appear.	Click	on	it	and	a	pop-up	window	will	be
shown	with	the	translation	form:

5.	 When	submitting	this	form	(by	clicking	SOUMETTRE),	and	after	clearing	the
cache,	you	will	see	that	the	value	you	entered	in	this	form	is	used.

6.	 The	second	way	of	translating	the	interface	is	to	use	a	theme	translation.	For	adding
custom	translations	for	a	theme,	we	have	to	create	the	following	file:
app/design/frontend/Packt/cookbook/i18n/fr_FR.csv.

7.	 When	we	want	to	translate	the	string	Panier	on	the	shopping	cart	page,	we	have	to
know	the	original	string.	You	can	find	the	original	string	in	the	Inline	Translation
popup	or	in	the	templates:

The	original	string	for	Panier	is	Shopping	Cart.	When	we	add	the	

following	line	in	the	CSV	file	we	have	just	created,	the	string	will	be	

translated	to	that	value	Shopping	Cart,	Votre	panier.

8.	 Clean	the	cache	and	reload	the	shopping	cart	page.	You	will	see	that	the	title	is
changed	from	Panier	to	Votre	panier.

How	it	works…
Magento	has	a	powerful	translate	function.	To	make	a	string	translatable	through	that
function,	we	have	to	use	the	following	syntax:

__('Translatable	string')

When	using	this	syntax,	the	following	fallback	mechanism	will	be	used:

First,	Magento	will	look	in	the	database	table	translation.	This	table	is	used	to	save
the	values	translated	with	Inline	Translation.
If	the	string	is	not	found	in	the	translation	table,	Magento	will	look	for	it	in	the
theme.	It	will	search	to	see	whether	the	string	is	present	in	the	file
app/design/frontend/<VendorName>/<ThemeName>/i18n/<locale>.csv.
The	last	fallback	is	the	translation	files	of	the	modules.	These	are	located	in
i18n/<locale.csv	of	the	module.
If	no	matching	string	is	found,	the	translate	function	will	return	the	original	string
that	is	passed	as	an	argument	to	the	translate	function.

Adding	widgets	to	the	layout
Magento	has	a	set	of	predefined	widgets	that	you	can	configure	and	show	on	the	different
pages.	With	the	Magento	widget	interface,	we	can	configure	different	widgets	on	different
pages.

Getting	ready
We	will	add	a	block	of	products	on	the	content	area	of	the	homepage.	Go	to	the	backend
and	navigate	to	Content	|	Widgets.

How	to	do	it…
In	the	following	steps,	we	will	configure	a	widget	for	the	category	pages:

1.	 Click	on	the	button	Add	Widget.
2.	 In	the	form,	set	the	following	values:

Type:	Catalog	Products	List
Design	Theme:	Packt	cookbook

3.	 Click	continue	and	the	following	screen	shows	up:

4.	 Complete	the	Storefront	Properties	tab	with	the	following	values:

Widget	Instance	Title:	Widget-home-products
This	is	the	title	of	the	widget	in	the	backend.	A	structural	name	is	easy	when

working	with	a	lot	of	widgets
Assign	to	Store	Views:	All	Store	Views

5.	 Complete	the	Widget	Options	tab	with	the	following	values:

Title:	Featured	products
Number	of	Products	to	Display:	10
Conditions:	Choose	a	specific	category	like	the	following	screenshot:

6.	 Save	the	widget	by	clicking	Save	and	Continue	Edit.	The	widget	instance	is	now
saved	but	nothing	will	show	up	in	the	frontend	because	there	is	no	layout	update	set.

7.	 We	have	to	create	a	layout	update	before	the	widget	will	show	up	in	the	frontend.	On
the	widget	page,	open	the	Frontend	Properties	and	complete	the	Layout	Updates
section	as	follows:

8.	 Clear	the	cache	and	reload	the	home	page.	You	will	see	a	list	with	products	from	the
configured	category.

How	it	works…
In	the	Main	Content	Area,	a	new	block	is	added	to	the	frontend.	Like	any	other	block	in
the	frontend,	this	block	has	a	block	class	and	a	template	similar	to	other	blocks.

The	only	difference	is	that	this	block	is	not	generated	by	an	XML	file	but	by	an	XML
layout	instruction	in	the	database.

The	widget	interface	will	generate	a	layout	XML	that	is	stored	in	the	database.	The	block
class	and	template	are	similar	to	other	blocks	in	the	XML	files.

Customizing	email	templates
Magento	has	a	lot	of	functionality	that	sends	emails	on	particular	actions,	such	as	a	new
order,	customer	information,	newsletter,	and	many	more.

When	customizing	the	look	and	feel	of	your	website,	it	is	nice	that	your	email	templates
have	the	same	look	and	feel.

In	this	recipe,	we	will	learn	how	we	can	do	this.	We	will	customize	the	new	account	email
and	we	will	learn	how	we	can	edit	the	generic	header	and	footer	of	the	transactional
emails.

Getting	ready
We	will	customize	email	templates.	To	test	this,	make	sure	your	development	environment
can	send	emails.

Like	the	previous	recipes,	we	will	build	the	code	further	on	the	things	that	we	have	done
in	the	previous	recipes.	If	you	don’t	have	the	complete	code,	you	can	install	the	start	files
for	this	recipe.

How	to	do	it…
The	following	steps	show	how	we	can	customize	the	email	templates	without	overriding
the	standard	templates:

1.	 The	email	templates	are	located	in	the	view	folder	of	each	module.	If	we	want	to
change	the	new	account	email,	we	have	to	copy	the	original	file	to	your	theme.	Copy
the	file	app/code/Magento/Customer/view/email/account_new.html	and	paste	this
in	the	folder	app/design/frontend/Packt/cookbook/Magento_Customer/email/.

Note
If	you	installed	Magento	with	composer,	you	have	to	copy	the	file
vendor/magento/module-customer/view/frontend/email/account_new.html.

2.	 When	opening	the	new	file,	you	can	modify	the	content	of	the	email	in	any	way	you
want.	We	can	use	the	following	variables	to	make	the	file	dynamic:

{{store	url='<path>'}}	The	URL	of	the	store.	You	can	also	give	a	path
between	the	quotes.
{{var	customer.<field>}}	The	customer	object.	After	the	dot,	you	can	specify
the	attribute	of	the	customer	object.
{{var	store.<field>}}	The	store	object	where	the	email	is	sent	from.
{{config	path='<config	path>'}}	A	value	of	the	configuration	table
core_config_data.

3.	 Save	the	file	and	create	a	new	account	in	the	frontend	with	your	email	address.	You
will	receive	an	email	of	a	new	account.	If	you	open	it,	you	will	see	that	the	variables
are	replaced	by	the	information	of	Magento.

4.	 When	we	look	in	the	template,	we	see	that	an	email	header	is	included	in	the
template.	If	we	want	to	change	the	header,	we	have	to	copy	the	file
app/code/Magento/Email/view/frontend/email/header.html	to	the	folder
app/design/frontend/Packt/cookbook/Magento_Email/email/.

5.	 To	modify	the	footer,	we	have	to	copy	the
app/code/Magento/Email/view/frontend/email/footer.html	file	to	the	same
folder.

Note
If	you	installed	Magento	with	composer,	you	can	find	the	header	and	footer	files	in	the
folder	vendor/magento/module-email/view/frontend/email/.

How	it	works…
When	an	email	is	sent	in	Magento,	the	general	email	function	is	used.	This	function	sends
an	email	with	the	right	template	and	email	headers	such	as	subject,	sender.

The	email	function	needs	a	template	and	that	template	is	configured	in	the	configuration
XML	files	and	uses	a	file	from	the	email	folder.

When	an	email	template	is	configured	through	the	configuration	XML,	it	is	also	possible
to	overwrite	this	email	template	in	the	backend.	This	can	be	managed	on	the	page
Marketing	|	Email	Templates.

New	in	Magento	2	is	the	ability	to	work	with	a	header	and	footer	template	that	is	used	in
all	the	transactional	emails.	In	the	older	versions	of	Magento	1,	this	was	not	possible	and
when	you	wanted	to	change	something	in	the	email	header,	you	had	to	edit	all	the	email
template	files.

Also	new	in	Magento	2	is	that	you	don’t	have	an	email	template	for	each	locale.	With	the
{{trans	"Your	string	to	translate"}}	code,	you	can	use	the	Magento	translation	files
to	make	your	emails	multilingual.

These	two	features	make	it	a	lot	easier	to	develop	the	transactional	emails	in	Magento	2.

Email	templates	are	now	part	of	a	module.	In	the	view/<area>/email	folder	are	the	email
templates	stored.	To	modify	a	template,	you	can	copy	the	file	and	paste	it	in	the	<module
name>/email	folder	in	the	theme.

Chapter	4.	Creating	a	Module
In	this	chapter,	we	will	cover	the	following	recipes:

Creating	the	module	files
Creating	a	controller
Adding	layout	updates
Adding	a	translation	file
Adding	a	block	of	new	products
Adding	an	interceptor
Adding	a	console	command

Introduction
When	you	look	in	the	app/code	folder	(the	core	of	Magento),	you	see	the	modular
architecture.	Every	concept	in	the	e-commerce	flow	is	stored	in	a	module.	The	Magento
application	is	a	combination	of	all	these	modules.

One	of	the	advantages	of	a	modular	architecture	is	the	extendibility.	It	is	easy	to	add
modules	that	add	to	or	modify	the	native	behavior	of	Magento.

In	this	chapter,	we	will	create	a	module	with	the	most	important	things	you	need	to	know
when	writing	code	in	Magento.

Creating	the	module	files
When	creating	a	module,	the	first	step	is	to	create	the	files	and	folders	to	register	the
module.	At	the	end	of	this	recipe,	we	will	have	a	registered	module	but	without
functionality.

In	the	next	recipes,	we	will	add	extra	features	to	that	module.

Getting	ready
Open	the	root	folder	of	your	Magento	2	website.	The	app/code/	folder	is	the	folder	where
all	the	module	development	needs	to	be	done.

Access	to	a	command	line	is	also	recommended	because	Magento	2	has	a	built-in	console
tool	with	a	lot	of	commands	that	we	can	use	during	the	development.

How	to	do	it…
In	the	following	steps,	we	will	create	the	required	files	to	register	a	Magento	module:

1.	 We	will	create	a	HelloWorld	module	in	the	Packt	namespace.	In	your	Magento	root,
create	the	following	folders:

app/code/Packt

app/code/Packt/HelloWorld

app/code/Packt/HelloWorld/etc

2.	 In	the	etc	folder	of	the	module,	create	a	file	called	module.xml	with	the	following
content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module/etc/module.

xsd">

				<module	name="Packt_HelloWorld"	setup_version="2.0.0">

								<sequence>

												<module	name="Magento_Catalog"/>

								</sequence>

				</module>

</config>

Note
In	Magento	2,	there	are	XML	Style	Definition	(XSD)	files	that	describes	the
structure	of	the	configuration	XML	files.	In	the	<config>	tag,	the	correct	XSD	file	is
configured.

3.	 To	register	the	module,	we	have	to	create	a	registration.php	file	in	the
app/code/Packt/HelloWorld/	folder	with	the	following	content:

<?php

\Magento\Framework\Component\ComponentRegistrar::register(

				\Magento\Framework\Component\ComponentRegistrar::MODULE,

				'Packt_HelloWorld',

				__DIR__

);

4.	 Open	your	terminal	and	go	to	the	Magento	directory.	In	this	directory,	run	the
following	commands:

composer	install

php	bin/magento	cache:clean

php	bin/magento	setup:upgrade

5.	 When	everything	is	OK,	you	can	see	the	name	of	the	module	in	the	output	of	the	last
command.

6.	 To	test	that	the	module	is	installed,	open	the	backend	and	navigate	to	Stores	|
Configuration	|	Advanced	|	Advanced,	and	check	that	the	module	is	present	in	the

list.	Ensure	that	you	have	cleaned	the	Magento	caches.

How	it	works…
Module	development	in	Magento	2	is	much	easier	than	in	Magento	1.	The	concept	of	code
pools	is	gone,	everything	is	stored	in	a	single	folder	(code,	translations,	templates,	CSS,
and	more).	These	things	make	it	a	lot	easier	to	develop	and	maintain	a	Magento	module.

To	initialize,	we	have	to	create	the	folders	and	the	module.xml	file	in	the	etc	folder	of	the
module.	In	the	module.xml	file,	we	initialize	the	Packt_HelloWorld	name,	the	version
number,	and	the	sequence.

When	we	created	the	module	files,	we	executed	the	setup:upgrade	command.	By	running
this	command,	we	will	run	the	install	or	upgrade	procedure	of	all	the	modules.	In	this
process,	a	lot	of	generated	classes	are	created	in	the	var/generation	folder.

We	used	the	bin/magento	tool	for	cleaning	the	cache	and	running	the	upgrade	scripts.
This	tool	was	introduced	in	Magento	2	and	is	a	replacement	of	third-party	tools	from
Magento	1	(such	as	n98magerun	and	wiz).

When	running	the	php	bin/magento	command,	you	can	see	a	list	of	all	available
commands.	It	is	easy	to	add	your	own	commands	in	a	module.

Creating	a	controller
In	your	Magento	root,	create	the	following	folders:	We	will	add	an	extra	page	that	we	can
use	for	several	purposes.

Getting	ready
We	build	further	on	the	Packt_HelloWorld	module	that	we	created	in	the	previous	recipe.
Ensure	that	you	have	this	module	in	your	Magento	instance.	Also,	ensure	that	the	full	page
cache	is	disabled	when	you	are	developing.	You	can	disable	this	in	the	backend	by
navigating	to	System	|	Cache	Management.

How	to	do	it…
The	following	steps	show	how	to	add	extra	pages	using	controllers	and	controller	actions:

1.	 Create	the	following	folders:

app/code/Packt/HelloWorld/etc/frontend

app/code/Packt/HelloWorld/Controller

app/code/Packt/HelloWorld/Controller/Index

2.	 In	the	app/code/Packt/HelloWorld/etc/frontend	folder,	create	a	routes.xml	file
with	the	following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:App/etc/routes.xsd

">

				<router	id="standard">

								<route	id="helloworld"	frontName="helloworld">

												<module	name="Packt_HelloWorld"	/>

								</route>

				</router>

</config>

3.	 In	the	last	folder,	that	is,	app/code/Packt/HelloWorld/Controller/Index,	create
the	Index.php	file	with	the	following	content:

<?php

namespace	Packt\HelloWorld\Controller\Index;

class	Index	extends	\Magento\Framework\App\Action\Action

{

				/**

					*	Index	action

					*

					*	@return	$this

					*/

				public	function	execute()

				{

				}

}

4.	 Clean	the	cache	using	the	php	bin/magento	cache:clean	command.
5.	 Open	your	browser	and	navigate	to	the	/helloworld	URL	of	the	shop.	You	will	see	a

white	page.	This	is	normal	because	the	controller	action	is	empty.
6.	 To	load	the	layout	of	the	shop,	add	the	following	code	in	the	index.php	file:

				/**	@var	\Magento\Framework\View\Result\PageFactory		*/

				protected	$resultPageFactory;

				public	function	__construct(

								\Magento\Framework\App\Action\Context	$context,

								\Magento\Framework\View\Result\PageFactory	$resultPageFactory

)	{

								$this->resultPageFactory	=	$resultPageFactory;

								parent::__construct($context);

				}

				public	function	execute()

				{

								$resultPage	=	$this->resultPageFactory->create();

								return	$resultPage;

				}

Note
If	you	still	see	a	white	page,	the	page	is	cached.	You	have	to	flush	the	cache	using	the
php	bin/magento	cache:flush	command.	It	is	recommended	that	you	disable	the
Full	Page	Cache,	as	explained	in	the	beginning	of	this	recipe.

7.	 We	will	now	create	an	extra	action	that	redirects	us	to	the	HelloWorld	page	and
create	the	app/code/Packt/HelloWorld/Controller/Index/Redirect.php	file.

8.	 In	this	file,	add	the	following	content:

<?php

namespace	Packt\HelloWorld\Controller\Index;

class	Redirect	extends	\Magento\Framework\App\Action\Action

{

				public	function	execute()

				{

								$this->_redirect('helloworld');

				}

}

9.	 Clean	the	cache	and	go	to	the	URL	/helloworld/index/redirect.	We	will	be
redirected	to	the	index	action.

10.	 We	can	also	change	the	content	of	the	execute()	method	to	$this-
>_forward('index').	We	will	see	the	same	output	but	the	URL	doesn’t	change	in	the
browser	bar.

How	it	works…
All	pages	in	Magento	are	executed	by	controller	actions.	All	the	controllers	are	placed	in
modules,	and	each	controller	can	have	multiple	controller	actions.	This	gives	us	the
following	structure	of	the	URL:	<modulename	or
frontname>/<controllerName>/<actionName>.

When	you	compare	the	controller	part	with	Magento	1,	a	lot	of	things	have	been	changed
and	made	easier.

In	Magento	2,	every	controller	action	is	written	in	a	separate	class.	This	class	extends	the
Magento\Framework\App\Action\Action	class.	The	controller	is	the	folder	where	the
actions	are	placed.

Note
It	is	also	possible	that	the	controller	is	in	a	separate	class,	but	this	is	only	done	when	there
are	generic	functions	that	the	actions	will	use.	A	good	example	can	be	found	in	the
ProductController	of	the	Magento_Catalog	module.

In	a	controller	action,	the	execute()	method	is	used	to	start	the	rendering	of	the	page.
When	we	have	nothing	in	this	method,	the	page	will	have	an	empty	output	(blank	screen).

If	we	want	to	render	the	layout,	we	will	initialize	the	resultPageFactory	instance	in	the
__construct()	method	of	the	controller.	This	factory	class	is	used	to	start	the	layout
rendering	of	the	page.

The	second	controller	action	we	created	was	one	that	does	a	redirect	to	another	page.
When	calling	the	_redirect()	method	in	a	controller	action,	a	301	redirect	will	be
returned	to	the	given	URL.

The	_forward()	method	does	likely	the	same,	but	this	internally	forwards	the	action	to
another	controller.	This	means	that	the	output	of	another	controller	action	will	be	rendered
on	the	page	but	the	URL	won’t	change.	This	method	is	used	to	translate	an	SEO-friendly
URL	(such	as	a	product	URL)	to	the	right	controller	action	with	the	right	parameters.

There’s	more…
When	things	are	not	working	as	you	expect,	you	can	use	the	following	tips	to	make	it
work:

Clean	the	cache.	You	can	do	this	using	the	php	bin/magento	cache:clean
command.
Flush	the	cache.	You	can	do	this	using	the	php	bin/magento	cache:flush
command.
Remove	the	var/generation	folder.	Sometimes,	the	the	generated	classes	in	this
folder	needs	to	be	regenerated.

Adding	layout	updates
In	the	previous	recipe,	we	created	a	page	without	content.	In	this	recipe,	we	will	modify
the	content	of	that	page	with	layout	updates.

With	layout	updates,	we	can	arrange	the	structure	of	the	page	as	we	have	seen	in	the
Customizing	the	HTML	output	recipe	of	Chapter	3,	Theming.	But	here,	we	will	see	how
we	can	do	that	in	a	module.

Getting	ready
This	recipe	builds	further	on	the	previous	recipe.	You	need	the	install	the	module	that	we
created	in	the	previous	recipes	of	this	chapter.

How	to	do	it…
In	the	next	steps,	we	will	see	how	we	can	modify	the	block	layout	with	our	module:

1.	 Create	the	app/code/Packt/HelloWorld/view/frontend/layout	folder.
2.	 In	this	folder,	create	a	file	called	default.xml	with	the	following	content:

<?xml	version="1.0"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout/etc/pa

ge_configuration.xsd">

				<body>

								<referenceBlock	name="footer_links">

												<block	

class="Magento\Framework\View\Element\Html\Link\Current"	

name="helloworld-link">

																<arguments>

																				<argument	name="label"	translate="true"	

xsi:type="string">Helloworld	landing</argument>

																				<argument	name="path"	

xsi:type="string">helloworld/index/index</argument>

																</arguments>

												</block>

								</referenceBlock>

				</body>

</page>

3.	 Clean	the	cache	using	the	php	bin/magento	cache:clean	command	and	reload	the
frontend.	In	the	footer,	you	will	see	an	extra	link	leading	to	the	page	that	we	created
in	the	previous	recipe.

4.	 The	layout	update	we	just	created	is	applied	to	all	pages.	If	we	want	updates	on	the
helloworld	index	page,	we	have	to	create	the
app/code/Packt/HelloWorld/view/frontend/layout/helloworld_index_index.xml

file.
5.	 In	this	file,	paste	the	following	content:

<?xml	version="1.0"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

layout="2columns-left"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout/etc/pa

ge_configuration.xsd">

				<head>

								<title>Helloworld	Landingspage</title>

				</head>

				<body>

								<remove	name="wishlist_sidebar"	/>

				</body>

</page>

6.	 We	also	need	to	register	the	page.	For	this,	create	the
app/code/Packt/HelloWorld/etc/frontend/page_types.xml	file	with	the
following	content:

<?xml	version="1.0"?>

<page_types	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout/etc/pa

ge_types.xsd">

				<type	id="helloworld_index_index"	label="HelloWorld	landing	page"/>

</page_types>

7.	 Clean	the	cache	and	reload	the	/helloworld	page.	You	will	see	that	the	title	is	similar
to	what	we	configured	in	the	XML	file	and	the	wishlist	block	is	not	present	in	the
left-hand	side	column.

8.	 To	finish	this	recipe,	we	will	add	a	custom	template	with	a	custom	Block	class.
Create	the	app/code/Packt/HelloWorld/Block/Landingspage.php	file	with	the
following	content:

<?php

namespace	Packt\HelloWorld\Block;

use	Magento\Framework\View\Element\Template;

class	Landingspage	extends	Template

{

				public	function	getLandingsUrl()

				{

								return	$this->getUrl('helloworld');

				}

				public	function	getRedirectUrl()

				{

								return	$this->getUrl('helloworld/index/redirect');

				}

9.	 Now,	we	have	to	create	the	template	where	we	will	call	the	method	from	the
Landingspage	class.	Create	the
app/code/Packt/HelloWorld/view/frontend/templates/landingspage.phtml	file
with	the	following	content:

<h2>Hello	World</h2>

<p>

				<a	href="<?php	echo	$block->getLandingsUrl();	?>">Go	to	landings	

URL

</p>

<p>

				<a	href="<?php	echo	$block->getRedirectUrl();	?>">Go	to	redirect	

URL

</p>

10.	 As	the	last	step,	we	have	to	add	the	block	with	our	layout	XML.	Add	the	following
configuration	to	the
app/code/Packt/HelloWorld/view/frontend/layout/helloworld_index_index.xml

file	as	a	child	of	the	<body>	tag:

<referenceContainer	name="content">

				<block	class="Packt\HelloWorld\Block\Landingspage"	

name="landingsblock"	template="Packt_HelloWorld::landingspage.phtml"	/>

</referenceContainer>

11.	 Clean	the	cache	and	reload	the	/helloworld	URL.	You	will	see	something	like	the
following:

How	it	works…
Layout	updates	can	be	placed	in	modules	and	themes.	In	the	Customizing	the	HTML
output	of	Chapter	3,	Theming,	we	explained	how	to	layout	updates	work	in	Magento
themes,	but	it	is	also	possible	to	do	the	same	principle	in	a	module.

Every	Magento	2	folder	has	a	view	folder.	In	the	view	folder,	all	the	stuff	to	render	the
page	is	stored,	such	as	LESS	(CSS),	JavaScript,	templates,	and	layout	files.

In	the	view	folder,	we	can	have	the	following	subfolders:

adminhtml

base

frontend

As	the	name	suggests,	the	adminhtml	folder	is	used	for	the	Magento	backend,	the
frontend	folder	is	used	for	the	frontend,	and	the	base	folder	is	used	for	both	(frontend	and
backend).

In	these	folders,	the	following	structure	is	the	internal	folder	structure	that	is	used:

layout	(for	layout	update	XML	files)
templates	(for	.phtml	templates)
web	(for	static	files,	such	as	LESS,	JavaScript,	and	images)

In	the	layout	folder,	we	can	place	layout	XML	files.	For	every	layout	handle,	we	can	apply
layout	updates	in	a	separate	file.

We	have	placed	a	layout	file	for	the	default	handle	(these	instructions	are	loaded	on	all
pages).	Every	page	also	has	its	own	handle	in	the	structure	<module	front
name>_<controllername>_<actionname>.	For	the	helloworld	landingspage,	is	this
helloworld_index_index	file.	In	the	helloworld_index_index.xml	file,	we	have	placed
the	layout	instructions	of	that	page.	The	default	handle,	default.xml,	is	loaded	on	all
pages.

In	that	file,	we	created	a	layout	instruction	that	defines	a	custom	block	with	template	on	a
page.	The	landingspage.phtml	template	of	the	Packt_HelloWorld	module	is	used	to
render	the	output.	With	the	$block	variable,	we	can	call	the	methods	of	the
Packt\HelloWorld\Block\Landingspage	class.

Tip
In	Magento	1,	we	used	the	$this	command	to	call	methods	from	the	block	class.	In
Magento	2,	we	will	use	the	$block	variable	for	this.

The	guideline	is	to	use	the	.phtml	files	for	the	rendering	of	the	HTML	output.	These	files
may	not	contain	a	log	of	th	ePHP	code.	The	PHP	code	is	written	in	the	block	files	and	the
HTML	code	in	the	.phtml	files.	In	the	.phtml	files,	we	can	call	methods	from	the	block
class.

Adding	a	translation	file
Magento	is	made	to	run	in	multiple	languages.	This	means	that	the	interface	and	content
needs	to	be	translatable	in	the	configured	languages.

In	this	recipe,	you	will	learn	how	to	make	the	strings	in	our	module	translatable	in
different	languages.

Getting	ready
We	will	create	translation	files	for	the	module	that	we	created	in	the	previous	recipes	of
this	chapter.	Ensure	that	you	have	the	code	in	your	Magento	instance.

How	to	do	it…
The	following	procedure	demonstrates	how	we	can	manage	translations	in	our	module:

1.	 To	make	a	test	translation,	we	can	create	a	test	translation	in	the	template	file	that	we
created	in	the	previous	recipe.	Add	the	following	code	at	the	end	of	the	file
app/code/Packt/HelloWorld/view/frontend/templates/landingspage.phtml:

<p>

				<?php	echo	__('Test	translation')	?>

</p>

2.	 Go	to	the	/helloworld	page	and	you	will	see	that	the	text	Test	translation	is
added	on	the	page.

3.	 To	translate	this	string,	we	have	to	create	the	app/code/Packt/HelloWorld/i18n
folder.

4.	 In	this	folder,	create	the	en_US.csv	file.
5.	 Add	the	following	line	in	the	CSV	file:

"Test	translation","Translation	to	test"

6.	 Clean	the	cache	and	reload	the	page.	If	the	language	of	your	shop	is	set	to	English
(United	States),	you	will	see	that	the	output	is	set	to	Translation	to	test.

7.	 If	we	want,	for	example,	a	French	translation,	we	have	to	create	the	fr_FR.csv	file
with	the	following	content:

"Test	translation","Test	traduction"

8.	 Change	the	language	of	the	store	to	French,	clean	the	cache,	and	you	will	see	the
French	translation.

Tip
If	you	want	to	know	all	the	translations	of	a	module,	you	can	run	the	php
bin/magento	i18n:collect-phrases	app/code/<Vendor	name>/<Module	name>

command	and	you	will	get	a	CSV	list	of	all	the	translations.

How	it	works…
When	calling	the	__('translate	string')	function,	Magento	will	search	for	a
translation	for	that	string	in	the	current	language.	Magento	will	look	for	the	strings	in	the
following	order:

The	database	translation	table
The	theme	translation	files
(app/design/fronted/<Package>/<theme>/i18n/<locale_code>.csv)
The	module	translation	files
(app/code/<Vendor>/<Module>/i18n/<locale_code>.csv)

When	a	string	is	found,	Magento	doesn’t	look	further	for	other	matching	strings.	If	no
matching	string	is	found	for	the	current	language,	Magento	will	return	the	string	that	is
present	in	the	first	parameter	of	the	translate	function	(that	is,	the	untranslated	string).

The	implementation	of	translations	in	Magento	2	is	much	easier	than	in	Magento	1.
Everything	is	stored	in	the	module	folder,	and	you	don’t	have	to	add	configuration	XML
instructions	to	the	module	where	you	can	do	mistakes	with.

Also,	the	translate	function	has	now	been	moved	to	a	global	function.	You	don’t	need	a
helper	class	to	call	the	__()	function.	The	__()	function	is	implemented	as	a	global
function	that	is	available	everywhere	in	the	application.

Adding	a	block	of	new	products
In	the	previous	recipes,	we	prepared	the	module	for	the	real	work.	We	added	the	most
common	features	to	the	module	so	that	we	can	easily	extend	it	with	the	new	functionality.

In	this	recipe,	we	will	create	a	block	of	new	products	to	the	page	we	created	in	the
previous	recipes.

Getting	ready
In	our	module,	we	will	create	a	block	that	will	load	a	product	collection.	This	product
collection	will	be	used	in	the	template,	which	will	show	the	newest	products	of	the	shop.

Ensure	that	you	have	the	module	of	the	previous	recipe	installed.

How	to	do	it…
The	following	steps	demonstrate	how	to	start	with	adding	the	block	with	new	products:

1.	 To	create	the	block	class,	we	have	to	create	the	Newproducts.php	file	in	the
app/code/Packt/HelloWorld/Block/	folder.

2.	 Add	the	following	content	to	that	file:

<?php

namespace	Packt\HelloWorld\Block;

use	Magento\Framework\View\Element\Template;

class	Newproducts	extends	Template

{

}

3.	 Create	a	template	in	the	module	folder.	We	can	do	this	by	creating	the
newproducts.phtml	file	in	the
app/code/Packt/HelloWorld/view/frontend/templates/	folder.

4.	 Add	some	HTML	content	to	that	template	file	such	as	<h2>New	Products</h2>.
5.	 To	add	the	block	to	the	page,	we	have	to	create	a	layout	update.	In	the

app/code/Packt/HelloWorld/view/frontend/layout/helloworld_index_index.xml

file,	add	the	following	code	as	a	child	of	<referenceContainer	name="content">:

<block	class="Packt\HelloWorld\Block\Newproducts"	name="new_products"	

template="Packt_HelloWorld::newproducts.phtml"/>

6.	 Clean	the	cache	and	reload	the	/helloworld	page.	You	will	see	that	the	New
Products	title	is	visible.

7.	 Create	a	constructor	in	the	block	class	that	initializes	the	product	collection	factory.
We	can	do	this	by	adding	the	following	code	in	that	class	(the
app/code/Packt/HelloWorld/Block/Newproducts.php	file):

private	$_productCollectionFactory;

public	function	__construct(

				Template\Context	$context,

				\Magento\Catalog\Model\ResourceModel\Product\CollectionFactory	

$productCollectionFactory,

				array	$data	=	[])

{

				parent::__construct($context,	$data);

				$this->_productCollectionFactory	=	$productCollectionFactory;

}

8.	 Create	the	getProducts()	method	in	the	same	block	class.	This	method	will	return
the	five	latest	products	of	the	shop.	The	code	for	the	getProducts()	method	will
look	as	follows:

public	function	getProducts()	{

				$collection	=	$this->_productCollectionFactory->create();

				$collection

								->addAttributeToSelect('*')

								->setOrder('created_at')

								->setPageSize(5);

				return	$collection;

}

9.	 The	last	step	is	to	call	the	method	in	the	template	and	generate	an	HTML	file	for	it.
The	code	of	the	template	is	as	follows:

<h2>New	products</h2>

<?php	foreach	($block->getProducts()	as	$product):	?>

				<?php	echo	$product->getName()	?>

<?php	endforeach;	?>

10.	 Reload	the	/helloworld	page	and	you	will	see	a	list	with	the	names	of	the	latest
products.

How	it	works…
What	we	have	done	in	this	recipe	is	a	basic	extension	of	Magento.	We	added	a	custom
block	that	uses	the	Magento	framework	to	render	the	content.

We	created	a	block	class	that	has	the	getProducts()	method.	This	method	returns	the
latest	five	products	of	the	webshop.	In	this	method,	we	created	a	query	that	uses	the
Magento	collections.	With	Magento	collections,	we	can	get	data	from	the	database.	A
collection	builds	a	SQL	query	in	the	background.

The	purpose	of	collections	is	that	there	is	an	easy	interface	to	get	the	right	entities.	A
product	is	not	stored	in	one	database	table	because	it	uses	the	Entity	Attribute	Value
system	(EAV).	The	Magento	collections	generate	an	SQL	query	that	returns	the	values	of
that	tables.	This	saves	us	the	programming	of	very	complex	SQL	queries.

To	work	with	the	collections,	we	used	the	CollectionFactory	product	to	work	with	the
collection	functions.	We	initialized	this	class	in	the	constructor	and	used	it	in	the
getProducts()	method.

When	we	run	the	create()	function	on	CollectionFactory,	a	product	collection	will	be
returned.	It	is	like	doing	a	collection	using	the	getCollection()	method	on	a	Magento
model,	but	because	this	method	is	deprecated,	we	have	to	use	CollectionFactory.

Adding	an	interceptor
One	of	the	major	things	that	has	changed	in	Magento	2	is	that	there	is	no	Mage	class.	To
replace	this,	all	objects	are	passed	to	the	classes	with	dependency	injection.

Dependency	injection	is	a	powerful	tool	that	adds	a	lot	of	flexibility	to	add	or	change
behavior	in	Magento.

Getting	ready
To	explore	the	possibilities	of	dependency	injection	of	Magento	2,	we	need	the	module
that	we	created	in	the	previous	recipes.

How	to	do	it…
The	following	steps	describe	how	we	can	modify	the	behavior	of	some	classes,	which	is	a
new	concept	in	Magento	2	that	replaces	the	rewriting	of	classes	in	Magento	1:

1.	 Create	the	app/code/Packt/HelloWorld/etc/di.xml	file	and	paste	the	following
content	in	it:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:ObjectManager/etc/

config.xsd">

				<type	name="Magento\Catalog\Model\Product">

								<plugin	name="Packt_HelloWorld::productName"	

type="Packt\HelloWorld\Plugin\Catalog\ProductAround"	sortOrder="1"	/>

				</type>	

</config>

Note
The	letters	di	in	the	di.xml	file	stands	for	Dependency	Injection.

2.	 Create	a	plugin	class	by	creating	the
app/code/Packt/HelloWorld/Plugin/Catalog/ProductAround.php	file	with	the
following	content:

<?php

namespace	Packt\HelloWorld\Plugin\Catalog;

use	Magento\Catalog\Model\Product;

class	ProductAround

{

				public	function	aroundGetName($interceptedInput)

				{

								return	"Name	of	product";

				}

}

Note
It	is	highly	recommended	that	you	use	around	in	the	method	name	because	you	can
also	write	interceptors	that	are	executed	before	or	after	a	method.

3.	 Clean	the	caches	and	regenerate	the	classes	by	removing	the	var/generation	folder.
4.	 Reload	a	product	page	and	you	will	see	that	every	product	name	is	changed	to	Name

of	product.
5.	 To	undo	this,	comment	the	<type>	tag	and	contents	of	the	di.xml	file	and	regenerate

the	classes	by	removing	the	var/generation	folder.	Also,	don’t	forget	to	clean	the
cache.

6.	 Reload	the	product	page	and	you	will	see	the	normal	product	names.

How	it	works…
In	this	recipe,	we	added	a	dependency	injection	into	the
Magento\Catalog\Model\Product	class.	We	did	an	override	of	an	existing	method	in
Magento.

 With	interception,	we	can	execute	the	code	before,	after,	and	around	any	method	of	a
class.	This	gives	a	lot	of	possibilities	to	add	behavior	to	Magento.

In	the	di.xml	file,	we	initialized	a	plugin	that	could	override	methods	of	the
Magento\Catalog\Model\Product	class.

The	overrides	are	done	in	the	Packt\HelloWorld\Plugin\Catalog\ProductAround	class.
In	this	class,	we	did	a	modification	of	the	getName()	method	of	the	original	class	using	the
aroundGetName()	method.

To	test	our	code,	we	had	to	create	the	generated	classes.	We	can	do	this	by	removing	the
var/generation	folder	or	by	running	the	php	bin/magento	setup:di:compile
command.	The	cache	also	needs	to	be	cleaned	because	we	changed	things	in	the
configuration	XML	files.

This	command	creates	generated	classes	that	will	be	placed	in	the	var/generation	folder.
Without	generating	the	classes,	the	configuration	in	the	di.xml	file	will	not	load.	This	is
also	the	reason	why	you	have	to	do	this	when	installing	or	upgrading	a	new	module.

Dependency	injection	replaces	the	class	rewrite	system	in	Magento	1.	With	dependency
injection,	you	can	intercept	every	method	that	is	called	in	a	class.	With	the	rewrite	system
of	Magento	1,	you	could	not	do	this	with	abstract	classes.

It	is	also	possible	to	execute	code	before	and	after	a	method	is	called.

See	also
A	lot	of	things	are	possible	with	Dependency	Injection.	For	more	information	how	it	is
integrated	in	Magento,	you	can	read	the	documentation	on	the	Magento	site:

http://devdocs.magento.com/guides/v2.0/extension-dev-guide/depend-inj.html.

Note
More	information	about	the	dependency	injection	design	pattern	can	be	found	on	the
following	URL:

https://en.wikipedia.org/wiki/Dependency_injection.

http://devdocs.magento.com/guides/v2.0/extension-dev-guide/depend-inj.html
https://en.wikipedia.org/wiki/Dependency_injection

Adding	a	console	command
Another	new	thing	in	Magento	2	is	the	built-in	command-line	tool.	In	this	chapter,	we
used	this	tool	to	clean	the	cache,	for	example.

Within	a	module,	it	is	possible	to	extend	this	tool	with	custom	commands,	and	this	is	the
thing	that	we	will	do	in	this	recipe.

Getting	ready
This	recipe	will	build	further	on	the	module	that	we	have	created	in	this	chapter.	If	you
don’t	have	the	code,	you	can	install	the	starter	files.

How	to	do	it…
In	the	next	steps,	we	will	create	a	simple	console	command	that	will	print	some	output	to
the	console.	Using	this	principle,	you	can	create	your	own	commands	to	automate	some
tasks:

1.	 For	a	custom	console	command,	we	have	to	add	the	following	configuration	in	the
di.xml	file	of	the	module.	Paste	the	following	code	in	that	file	as	child	of	the
<config>	tag:

<type	name="Magento\Framework\Console\CommandList">

				<arguments>

								<argument	name="commands"	xsi:type="array">

												<item	name="helloWorldCommand"	

xsi:type="object">Packt\HelloWorld\Console\Command\HelloWorldCommand</i

tem>

								</argument>

				</arguments>

</type>

2.	 Next,	we	will	create	the
app/code/Packt/HelloWorld/Console/Command/HelloWorldCommand.php	file	with
the	following	content:

<?php

namespace	Packt\HelloWorld\Console\Command;

use	Symfony\Component\Console\Command\Command;

use	Symfony\Component\Console\Input\InputInterface;

use	Symfony\Component\Console\Output\OutputInterface;

use	Symfony\Component\Console\Input\InputOption;

class	HelloWorldCommand	extends	Command

{

}

3.	 In	the	previous	step,	we	created	the	class	for	the	command.	To	initialize	the
command,	we	have	to	add	the	following	content	to	it:

const	INPUT_KEY_EXTENDED	=	'extended';

protected	function	configure()

{

				$options	=	[

								new	InputOption(

												self::INPUT_KEY_EXTENDED,

												null,

												InputOption::VALUE_NONE,

												'Get	extended	info'

),

];

				$this->setName('helloworld:info')

								->setDescription('Get	info	about	installation')

								->setDefinition($options);

				parent::configure();

}

protected	function	execute(InputInterface	$input,	OutputInterface	

$output)

{

				$output->writeln('<error>'	.	'writeln	surrounded	by	error	tag'	.	

'</error>');

				$output->writeln('<comment>'	.	'writeln	surrounded	by	comment	tag'	

.	'</comment>');

				$output->writeln('<info>'	.	'writeln	surrounded	by	info	tag'	.	

'</info>');

				$output->writeln('<question>'	.	'writeln	surrounded	by	question	

tag'	.	'</question>');

				$output->writeln('writeln	with	normal	output');

				if	($input->getOption(self::INPUT_KEY_EXTENDED))	{

								$output->writeln('');

								$output->writeln('<info>'.'Extended	parameter	is	

given'.'</info>');

				}

				$output->writeln('');

}

4.	 Clean	the	cache,	remove	the	var/generation	folder,	and	run	the	php	bin/magento
command.	You	will	see	that	the	helloworld:info	command	will	be	in	the	list.

5.	 When	you	run	the	command,	you	will	see	the	following	output:

6.	 When	you	run	the	command	with	the	extended	parameter,	you	will	see	some	extra
output.	To	do	this,	we	have	to	run	the	command	as	follows:

php	bin/magento	helloworld:info	--extended

How	it	works…
To	register	the	console	class	to	the	command	list,	we	had	to	create	an	extra	argument	for
the	Magento\Framework\Console\CommandList	class	in	the	di.xml	file.	In	this	file,	we
refer	to	the	Packt\HelloWorld\Console\Command\HelloWorldCommand	class	for	our
custom	command.

In	the	configure()	method,	we	registered	the	name	of	the	command,	the	description,	and
the	other	options.	In	this	case,	we	initialized	an	optional	input	option.

The	execute()	method	is	made	to	execute	the	command.	The	$input	parameter	contains
the	input	of	the	command,	such	as	the	options	and	arguments.	With	the	$output
parameter,	we	can	modify	the	output	of	the	command.	This	parameter	is	used	to	write
output	to	the	console	with	the	write()	and	writeln()	methods.

In	this	recipe,	we	worked	with	some	colors	to	style	the	console	output.	The	text	between
the	error,	comment,	information,	and	question	tags	will	be	rendered	in	a	different	color,	as
we	have	seen	in	this	recipe.

We	also	had	an	optional	parameter	called	extended.	To	get	the	value	of	this	parameter,	we
can	use	the	getOption()	method	of	the	$input	parameter.	When	the	parameter	is	set
without	value,	it	will	return	true.	If	the	parameter	isn’t	set,	it	will	return	false.	If	a	text	is
given	to	the	parameter,	it	will	return	the	text.

See	also…
The	Magento	console	is	built	using	the	Symfony	console	component.	More	information
about	how	to	use	the	Symfony	console	can	be	found	at	the	following	URL:

http://symfony.com/doc/current/components/console/introduction.html

http://symfony.com/doc/current/components/console/introduction.html

Chapter	5.	Databases	and	Modules
In	this	chapter,	we	will	cover:

Registering	database	connections
Creating	an	install	and	upgrade	script
Creating	a	flat	table	with	models
Working	with	Magento	collections
Programmatically	adding	product	attributes
Repairing	the	database

Introduction
In	the	previous	chapter,	we	learned	how	to	create	a	module	and	how	we	can	do	some	basic
stuff.

In	this	recipe,	we	will	learn	how	we	can	integrate	a	module	with	the	database	of	Magento.
For	this,	we	need	the	Magento	module	that	we	have	created	in	Chapter	4,	Creating	a
Module.

We	will	learn	how	we	can	run	queries,	add	our	own	entities,	and	automate	the	installation
of	configurations	in	the	database.

Creating	an	install	and	upgrade	script
In	some	cases,	you	need	to	update	the	database	to	finish	your	work.	Common	cases	are	an
extra	column	to	a	table,	a	new	product	attribute,	or	a	setting.

If	you	have	a	development,	staging,	and	production	environment,	you	have	to	make	sure
that	the	right	updates	are	done	when	deploying	to	these	environments.

Magento	has	a	way	to	automatically	trigger	the	execution	of	certain	scripts	for	an	update.
That’s	the	thing	we	will	learn	in	this	recipe.	Common	things	to	automate	are	settings	in	the
Store	|	Configuration	page	in	the	backend.

Getting	ready
We	will	create	a	new	module	where	we	will	add	an	install	and	upgrade	script.	We	will	also
use	the	command	line	to	run	the	scripts.

In	Magento	2,	the	principle	of	installing	and	upgrading	scripts	is	the	same	as	in	Magento	1
but	some	things	have	changed	in	the	way	of	working.	In	this	recipe,	we	will	see	how	it
works	to	save	some	data	in	the	database	with	an	install	script.

How	to	do	it…
The	following	steps	describe	how	we	can	create	an	automated	script:

1.	 Create	a	new	module	called	Packt_SEO.	We	can	do	this	by	creating	the	file
app/code/Packt/SEO/etc/module.xml	with	the	following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module/etc/module.

xsd">

		<module	name="Packt_SEO"	setup_version="2.0.0">

		<sequence>

		<module	name="Magento_Backend"/>

		</sequence>

		</module>

</config>

2.	 Next,	create	a	file	called	registration.php	in	the	folder	app/code/Packt/SEO/	with
the	following	content:

<?php

\Magento\Framework\Component\ComponentRegistrar::register(

				\Magento\Framework\Component\ComponentRegistrar::MODULE,

				'Packt_SEO',

				__DIR__

);

3.	 The	following	step	is	to	create	the	install	script.	We	can	do	this	by	creating	the	file
app/code/Packt/SEO/Setup/InstallData.php	with	the	following	content:

<?php

namespace	Packt\SEO\Setup;

use	Magento\Framework\Setup\InstallDataInterface;

use	Magento\Framework\Setup\ModuleContextInterface;

use	Magento\Framework\Setup\ModuleDataSetupInterface;

class	InstallData	implements	InstallDataInterface	{

		protected	$resourceConfig;

		public	function	

__construct(\Magento\Config\Model\ResourceModel\Config	$resourceConfig)	

{

				$this->resourceConfig	=	$resourceConfig;

		}

		public	function	install(ModuleDataSetupInterface	$setup,	

ModuleContextInterface	$context)	{

				$setup->startSetup();

				$this->resourceConfig->saveConfig(

						'catalog/seo/category_canonical_tag',

						true,

						\Magento\Config\Block\System\Config\Form::SCOPE_DEFAULT,

						0

);

				$this->resourceConfig->saveConfig(

						'catalog/seo/product_canonical_tag',

						true,

						\Magento\Config\Block\System\Config\Form::SCOPE_DEFAULT,

						0

);

				$setup->endSetup();

		}

}

4.	 When	we	want	to	run	the	script,	we	have	to	install	the	module.	We	can	do	this	by
running	the	following	command:

php	bin/magento	setup:upgrade

Note
The	previous	script	will	enable	the	canonical	tags	on	the	product	and	category	pages.

5.	 If	we	want	to	add	a	new	script	to	the	existing	module,	we	have	to	create	an	upgrade
script.	We	can	do	this	by	creating	the	file
app/code/Packt/SEO/Setup/UpgradeData.php	with	the	following	content:

<?php

namespace	Packt\SEO\Setup;

use	Magento\Framework\Setup\UpgradeDataInterface;

use	Magento\Framework\Setup\ModuleContextInterface;

use	Magento\Framework\Setup\ModuleDataSetupInterface;

class	UpgradeData	implements	UpgradeDataInterface	{

		protected	$resourceConfig;

		public	function	

__construct(\Magento\Config\Model\ResourceModel\Config	$resourceConfig)	

{

				$this->resourceConfig	=	$resourceConfig;

		}

		public	function	upgrade(ModuleDataSetupInterface	$setup,	

ModuleContextInterface	$context)	{

				if	(version_compare($context->getVersion(),	'2.0.1')	<	0)	{

						$this->resourceConfig->saveConfig(

								'web/cookie/cookie_lifetime',

								'7200',

								\Magento\Config\Block\System\Config\Form::SCOPE_DEFAULT,

								0

);

				}

		}

}

6.	 This	script	will	run	for	version	2.0.1	so	we	have	to	configure	our	module	to	that
version.	We	can	do	this	by	raising	the	version	number	in	the	file
app/code/Packt/SEO/etc/module.xml	in	the	setup_version	attribute.	The	file	will
have	the	following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module/etc/module.

xsd">

		<module	name="Packt_SEO"	setup_version="2.0.1">

		<sequence>

		<module	name="Magento_Backend"/>

		</sequence>

		</module>

</config>

7.	 To	run	the	script,	we	have	to	run	the	same	command	php	bin/magento
setup:upgrade.

8.	 When	the	upgrade	script	has	finished,	look	at	the	page	Stores	|	Configuration	|	Web
|	Default	Cookie	Settings	and	you	will	see	that	the	lifetime	has	the	value	7200.

How	it	works…
Every	Magento	module	has	a	version	number	that	is	stored	in	the	module.xml	file.	When
we	look	in	the	database	table	setup_module,	we	see	the	version	numbers	of	every	module.

When	running	the	command	php	bin/magento	setup:upgrade,	Magento	will	check,	for
every	module,	the	version	number	in	the	module.xml	file	and	the	database	table
setup_module.

Note
If	you	want	to	re-run	an	install	or	upgrade	script,	you	can	delete	or	change	the	version
number	of	the	module	in	the	table	setup_module.

If	a	module	is	not	in	the	list,	the	InstallData.php	script	will	be	executed.	After	that,	the
UpgradeData.php	script	is	always	executed.

With	an	if	statement,	we	can	manage	what	things	need	to	be	executed	in	a	specific
upgrade.

In	the	database	table	setup_module,	we	see	the	following	three	columns:

module	(the	name	of	the	module)
schema_version	(the	installed	schema	script)
data_version	(the	installed	data	script)

There	are	two	different	types	of	install	scripts.	A	schema	install	and	a	data	install.	A
schema	install	is	used	to	install	database	structures	such	as	new	tables,	columns,	and
relations.

A	data	install	or	upgrade	is	used	to	add	data	to	the	database	such	as	a	setting,	page,
category,	stores,	and	many	more.

All	the	schema	scripts	are	executed	before	the	data	upgrade	scripts	will	start.	This	means
that	we	can	use	the	Magento	models	in	the	data	scripts.	This	is	not	always	possible	in	a
schema	script	because	it	could	be	that	the	database	structure	is	not	completely	installed
when	running	your	script.

In	the	scripts,	we	used	the	resourceConfig	object	to	save	configuration	parameters.	With
this	code,	data	is	updated	in	the	configuration	pages	that	you	can	find	in	the	backend	at
Stores	|	Configuration.

The	values	of	these	pages	are	saved	in	the	table	core_config_data.

Creating	a	flat	table	with	models
When	you	want	to	save	data	in	a	module,	you	may	want	to	store	that	in	a	custom	entity.
That	entity	needs	a	database	table	and	a	model	that	talks	with	that	database	table.

We	will	create	a	subscriptions	entity	where	we	can	store	subscriptions.

Getting	ready
In	this	recipe,	we	will	extend	the	module	of	Chapter	4,	Creating	a	Module,	with	an	entity
with	a	database	table.	Make	sure	you	have	the	starter	files	for	this	recipe	installed.

How	to	do	it…
In	the	next	steps,	we	will	learn	how	we	can	add	entities	to	an	existing	module:

1.	 When	installing	a	new	entity,	we	have	to	create	a	resource	model.	We	can	do	this	by
creating	the	file
app/code/Packt/HelloWorld/Model/ResourceModel/Subscription.php	with	the
following	content:

<?php

namespace	Packt\HelloWorld\Model\ResourceModel;

class	Subscription	extends	

\Magento\Framework\Model\ResourceModel\Db\AbstractDb	{

		public	function	_construct()	{

				$this->_init('packt_helloworld_subscription',	'subscription_id');

		}

}

2.	 The	second	step	is	to	create	the	table	with	a	schema	upgrade	script.	We	have	to	create
the	script	app/code/Packt/HelloWorld/Setup/UpgradeSchema.php	with	the
following	content:

<?php

namespacePackt\HelloWorld\Setup;

use	Magento\Framework\Setup\UpgradeSchemaInterface;

use	Magento\Framework\Setup\ModuleContextInterface;

use	Magento\Framework\Setup\SchemaSetupInterface;

classUpgradeSchema	implements	UpgradeSchemaInterface	{

public	function	upgrade(SchemaSetupInterface	$setup,	

ModuleContextInterface	$context)	{

		if	(version_compare($context->getVersion(),	'2.0.1')	<	0)	{

				$installer	=	$setup;

				$installer->startSetup();

				$connection	=	$installer->getConnection();

				//Install	new	database	table

				$table	=	$installer->getConnection()->newTable(

						$installer->getTable('packt_helloworld_subscription')

)->addColumn(

						'subscription_id',

						\Magento\Framework\DB\Ddl\Table::TYPE_INTEGER,

						null,[

								'identity'	=>	true,	

								'unsigned'	=>	true,	

								'nullable'	=>	false,	

								'primary'	=>	true

],

						'Subscription	Id'

)->addColumn(

						'created_at',

						\Magento\Framework\DB\Ddl\Table::TYPE_TIMESTAMP,

						null,[

								'nullable'	=>	false,	

								'default'	=>	\Magento\Framework\DB\Ddl\Table::TIMESTAMP_INIT

],

						'Created	at'

)->addColumn(

						'updated_at',

						\Magento\Framework\DB\Ddl\Table::TYPE_TIMESTAMP,

						null,

						[],

						'Updated	at'

)->addColumn(

						'firstname',

						\Magento\Framework\DB\Ddl\Table::TYPE_TEXT,

						64,

						['nullable'	=>	false],

						'First	name'

)->addColumn(

						'lastname',

						\Magento\Framework\DB\Ddl\Table::TYPE_TEXT,

						64,

						['nullable'	=>	false],

						'Last	name'

)->addColumn(

						'email',

						\Magento\Framework\DB\Ddl\Table::TYPE_TEXT,

						255,

						['nullable'	=>	false],

						'Email	address'

)->addColumn(

						'status',

						\Magento\Framework\DB\Ddl\Table::TYPE_TEXT,

						255,[

								'nullable'	=>	false,

								'default'	=>	'pending',

],

						'Status'

)->addColumn(

						'message',

						\Magento\Framework\DB\Ddl\Table::TYPE_TEXT,

						'64k',[

								'unsigned'	=>	true,

								'nullable'	=>	false

],

						'Subscription	notes'

)->addIndex(

						$installer->getIdxName('packt_helloworld_subscription',	

['email']),

						['email']

)->setComment(

						'Cron	Schedule'

);

				$installer->getConnection()->createTable($table);

				$installer->endSetup();

		}

}

3.	 Raise	the	module	version	number	in	the	file
app/code/Packt/HelloWorld/etc/module.xml	to	2.0.1.

4.	 Run	the	following	command	to	execute	the	upgrade	script:

php	bin/magento	setup:upgrade

5.	 Check	that	the	table	is	installed	in	the	database.	We	can	do	this	by	running	the	query
describe	packt_helloworld_subscription;	on	a	MySQL	command	line.	This	will
give	the	following	output:

6.	 The	next	part	is	to	create	a	model	that	interacts	with	the	database	table.	To	create	a
model,	we	have	to	create	the	file
app/code/Packt/HelloWorld/Model/Subscription.php	with	the	following	content:

<?php

namespacePackt\HelloWorld\Model;

class	Subscription	extends	\Magento\Framework\Model\AbstractModel	{

constSTATUS_PENDING	=	'pending';

constSTATUS_APPROVED	=	'approved';

constSTATUS_DECLINED	=	'declined';

public	function	__construct(

		\Magento\Framework\Model\Context	$context,

		\Magento\Framework\Registry	$registry,

		\Magento\Framework\Model\ResourceModel\AbstractResource	$resource	=	

null,

		\Magento\Framework\Data\Collection\AbstractDb	$resourceCollection	=	

null,

array	$data	=	[]

)	{

				parent::__construct($context,	$registry,	$resource,	

$resourceCollection,	$data);

		}

		public	function	_construct()	{

				$this->_init('Packt\HelloWorld\Model\ResourceModel\Subscription');

		}

}

7.	 The	last	class	that	we	have	to	create	is	the	collection	class.	Create	the	file
app/code/Packt/HelloWorld/Model/ResourceModel/Subscription/Collection.php

with	the	following	content:

<?php

namespacePackt\HelloWorld\Model\ResourceModel\Subscription;

/**

	*	Subscription	Collection

	*/

class	Collection	extends	

\Magento\Framework\Model\ResourceModel\Db\Collection\AbstractCollection	

{

		/**

		*	Initialize	resource	collection

		*

		*	@return	void

		*/

		public	function	_construct()	{

				$this->_init('Packt\HelloWorld\Model\Subscription',	

'Packt\HelloWorld\Model\ResourceModel\Subscription');

		}

}

8.	 All	the	files	are	in	the	right	place	to	start	a	test.	To	perform	a	simple	test,	we	can
create	a	controller	action	in	the	IndexController	of	the	HelloWorld	module	that	we
have	created	in	the	previous	recipe.	Add	the	file
app/code/Packt/HelloWorld/Controller/Index/Subscription.php	with	the
following	content:

<?php

namespace	Packt\HelloWorld\Controller\Index;

class	Subscription	extends	\Magento\Framework\App\Action\Action	{

		public	function	execute()	{

				$subscription	=	$this->_objectManager-

>create('Packt\HelloWorld\Model\Subscription');

				$subscription->setFirstname('John');

				$subscription->setLastname('Doe');

				$subscription->setEmail('john.doe@example.com');

				$subscription->setMessage('A	short	message	to	test');

				$subscription->save();

				$this->getResponse()->setBody('success');

		}

}

9.	 Open	the	browser	and	go	to	the	URL	/helloworld/index/subscription	of	your
Magento.	When	you	see	the	word	success,	this	will	mean	that	a	new	subscription	is
added	to	the	database	table.

10.	 When	you	look	in	your	database	and	run	the	query	select	*	from
packt_helloworld_subscription;,	we	will	see	the	following	output:

How	it	works…
When	we	work	with	the	previous	setup	of	entities,	the	Magento	ORM	makes	the	link
between	the	entity	and	the	database.	All	the	SQL	queries,	security,	and	more	are	managed
by	the	ORM.

The	first	step	we	did	was	to	create	a	resource	model.	A	resource	model	is	used	for	the	link
between	the	model	and	the	database.	This	class	is	initialized	by	specifying	the	database
table	and	the	primary	key	of	that	table.

The	second	part	was	to	create	a	script	that	automatically	creates	a	database	table.	A
database	table	is	created	with	the	schema	installer.	Because	this	module	was	already
installed,	we	had	to	create	an	upgrade	script	and	we	had	to	raise	the	version	number.

The	third	step	was	the	creation	of	the	model.	In	a	model,	a	lot	of	business	logic	is
available	in	functions	and	variables.	An	important	thing	to	mention	is	the	initialization	of
the	resource	model	that	is	done	in	the	_construct()	method	of	the	model.

The	last	part	to	finish	the	model	setup	was	to	create	the	collection	class.	This	class	is
responsible	for	allowing	us	to	work	with	Magento	collections	in	our	model.	The	principle
of	collections	is	explained	in	the	next	recipe	Working	with	Magento	collections.

To	test	the	model,	we	created	a	test()	method	in	a	controller	action.	To	load	a	Magento
entity,	we	have	to	use	the	ObjectManager	interface.	In	a	controller	action,	this	interface	is
available	in	the	variable	_objectManager.

Note
In	the	controller	action,	we	used	the	object	manager	to	get	the	model	and	save	a	record	to
the	table.	This	was	just	for	debugging	purposes.	In	the	real	world,	the	controller	is	used	for
controller	actions	such	as	redirects,	adding	messages,	rendering	the	page,	and	more.	The
save	of	an	entity	is	mostly	done	in	a	separate	model	but,	for	simplicity,	we	did	it	in	the
controller.

To	create	a	Magento	entity,	we	have	to	use	the	create()	method	of	the	object	manager.
The	parameter	is	a	string	with	the	namespace	and	class	name	of	the	entity	such	as	the
following:

$this->_objectManager->create('Packt\HelloWorld\Model\Subscription');

With	our	Magento	entity,	we	can	use	the	following	methods	to	interact	with	the	database:

load($entityId)

save()

delete()

All	these	methods	are	implemented	in	the	\Magento\Framework\Model\AbstractModel
class.	All	the	entities	that	use	the	Magento	ORM	framework	will	extend	this	class.

Working	with	Magento	collections
When	you	want	to	retrieve	a	set	of	entities	of	the	same	type,	we	usually	use	a	query	to	get
the	data	of	a	table.

But	in	Magento	not	every	entity	is	stored	in	a	single	table	and	that	means	that	a	very
complex	query	is	required	to	get	the	data.	A	generic	system/language	to	create	queries	for
Magento	entities	was	the	solution.

For	this	solution,	Magento	has	created	a	system	called	collections.	A	collection	is	a	set	of
entities	of	the	same	type	where	you	can	add	filters	to	it	to	customize	your	result.

In	this	recipe,	we	will	see	what	we	can	do	with	Magento	collections.

Getting	ready
For	this	recipe,	it	is	required	to	have	the	Packt_HelloWorld	module	installed	with	the
code	of	the	previous	recipe	Creating	a	flat	table	with	models.

How	to	do	it…
The	next	examples	show	the	possibilities	of	working	with	Magento	collections:

1.	 Create	a	Collection	controller	action	by	creating	the	file
app/code/Packt/HelloWorld/Controller/Index/Collection.php	with	the
following	content:

<?php

namespace	Packt\HelloWorld\Controller\Index;

class	Collection	extends	\Magento\Framework\App\Action\Action	{

		public	function	execute()	{

		}

}

2.	 Paste	the	following	code	in	the	execute()	method	of	that	class:

public	function	execute()	{

		$productCollection	=	$this->_objectManager

		->create('Magento\Catalog\Model\ResourceModel\Product\Collection')

		->setPageSize(10,1);

		$output	=	'';

		foreach	($productCollection	as	$product)	{

				$output	.=	\Zend_Debug::dump($product->debug(),	null,	false);

		}

		$this->getResponse()->setBody($output);

}

3.	 When	loading	the	page	/helloworld/index/collection,	we	see	a	dump	of	the	first
10	products	like	the	following	array:

array(9)	{

		["entity_id"]=>

		string(1)	"1"

		["attribute_set_id"]=>

		string(2)	"15"

		["type_id"]=>

		string(6)	"simple"

		["sku"]=>

		string(7)	"24-MB01"

		["has_options"]=>

		string(1)	"0"

		["required_options"]=>

		string(1)	"0"

		["created_at"]=>

		string(19)	"2015-07-16	12:36:24"

		["updated_at"]=>

		string(19)	"2015-07-16	12:36:24"

		["is_salable"]=>

		string(1)	"1"

}

4.	 When	we	look	at	the	array,	we	see	no	product	attributes	in	the	dump.	To	add	an
attribute	to	a	collection,	we	have	to	use	the	method
addAttributeToSelect('<attribute_code>').	Add	the	following	code	in	the
execute()	method	and	we	will	see	the	name,	price,	and	image	of	the	products:

public	function	execute()	{

		$productCollection	=	$this->_objectManager

		->create('Magento\Catalog\Model\ResourceModel\Product\Collection')

		->addAttributeToSelect([

				'name',

				'price',

				'image',

])

		->setPageSize(10,1);

		$output	=	'';

		foreach	($productCollection	as	$product)	{

				$output	.=	\Zend_Debug::dump($product->debug(),	null,	false);

		}

		$this->getResponse()->setBody($output);

}

5.	 When	reloading	the	page,	we	will	see	an	array	of	each	product	with	the	three
attributes	in	it	like	the	following	code:

array(12)	{

		["entity_id"]	=>string(1)	"2"

		["attribute_set_id"]	=>string(2)	"15"

		["type_id"]	=>string(6)	"simple"

		["sku"]	=>string(7)	"24-MB04"

		["has_options"]	=>string(1)	"0"

		["required_options"]	=>string(1)	"0"

		["created_at"]	=>string(19)	"2015-07-16	12:36:25"

		["updated_at"]	=>string(19)	"2015-07-16	12:36:25"

		["name"]	=>string(20)	"Strive	Shoulder	Pack"

		["image"]	=>string(33)	"/sample_data/m/b/mb04-black-0.jpg"

		["price"]	=>string(7)	"32.0000"

		["is_salable"]	=>string(1)	"1"

}

6.	 We	will	now	create	a	filter	on	the	product	collection	with	the
addAttributeToFilter()	method.	The	next	code	shows	how	you	can	filter	the
products	with	the	name	Overnight	Duffle:

public	function	execute()	{

		$productCollection	=	$this->_objectManager

		->create('Magento\Catalog\Model\ResourceModel\Product\Collection')

		->addAttributeToSelect([

				'name',

				'price',

				'image',

])

		->addAttributeToFilter('name',	'Overnight	Duffle');

		$output	=	'';

		foreach	($productCollection	as	$product)	{

				$output	.=	\Zend_Debug::dump($product->debug(),	null,	false);

		}

		$this->getResponse()->setBody($output);

}

Note
The	code	in	this	statement	will	create	a	WHERE	name	=	'Overnight	Duffle'
statement	to	the	query,	so	all	the	items	where	the	name	is	Overnight	Duffle	will	be
returned.

7.	 With	the	addAttributeToFilter()	method,	we	can	do	more.	The	following	code
shows	you	how	you	can	create	a	WHERE	entity_id	IN	(159,	160,	161)	statement:

public	function	execute()	{

		$productCollection	=	$this->_objectManager

		->create('Magento\Catalog\Model\ResourceModel\Product\Collection')

		->addAttributeToSelect([

				'name',

				'price',

				'image',

])

		->addAttributeToFilter('entity_id',	array(

				'in'	=>	array(159,	160,	161)

));

		$output	=	'';

		foreach	($productCollection	as	$product)	{

				$output	.=	\Zend_Debug::dump($product->debug(),	null,	false);

		}

		$this->getResponse()->setBody($output);

}

8.	 The	next	filter	that	we	will	use	is	the	like	filter.	Add	the	following	code	to	make	a
query	with	the	WHERE	name	LIKE	'%Sport%'	statement:

public	function	execute()	{

		$productCollection	=	$this->_objectManager

		->create('Magento\Catalog\Model\ResourceModel\Product\Collection')

		->addAttributeToSelect([

				'name',

				'price',

				'image',

])

		->addAttributeToFilter('name',	array(

				'like'	=>	'%Sport%'

));

		$output	=	'';

		foreach	($productCollection	as	$product)	{

				$output	.=	\Zend_Debug::dump($product->debug(),	null,	false);

		}

		$this->getResponse()->setBody($output);

}

9.	 When	the	queries	become	more	complex,	sometimes	it	is	nice	to	know	what	SQL
query	will	be	generated	to	get	the	collection.	To	print	the	SQL	query,	which	is	used
for	a	collection,	we	can	use	the	following	line	of	code:

$productCollection->getSelect()->__toString();

10.	 When	we	add	the	following	code,	we	can	see	the	query	for	the	previous	collection:

public	function	execute()	{

		$productCollection	=	$this->_objectManager

		->create('Magento\Catalog\Model\ResourceModel\Product\Collection')

		->addAttributeToSelect([

				'name',

				'price',

				'image',

])

		->addAttributeToFilter('name',	array(

				'like'	=>	'%Sport%'

));

		$output	=	$productCollection->getSelect()->__toString();

		$this->getResponse()->setBody($output);

}

11.	 This	code	will	output	the	following	SQL	query:

SELECT

				e.*,

IF(at_name.value_id>	0,	at_name.value,	at_name_default.value)	AS	`name`

FROM	catalog_product_entity`	AS	e

				INNER	JOIN	catalog_product_entity_varchar	AS	`at_name_default

								ON	(at_name_default.entity_id	=	e.entity_id)

								AND	(at_name_default.attribute_id	=	'69')

								AND	at_name_default.store_id	=	0

				LEFT	JOIN	catalog_product_entity_varchar	AS	at_name

								ON	(at_name.entity_id	=	e.entity_id)

								AND	(at_name.attribute_id	=	'69')

								AND	(at_name.store_id	=	1)

WHERE	(IF(at_name.value_id>	0,	at_name.value,	at_name_default.value)	

LIKE	'%Sport%')

12.	 When	you	run	the	previous	query	in	an	SQL	prompt	such	as	phpMyAdmin,	we	can
see	the	response	with	all	the	attributes	that	are	used	for	the	product	collection.

13.	 With	the	previous	code	examples,	we	can	only	read	data	from	the	database.	By	using
the	setDataToAll()	method,	we	can	update	some	attributes	for	all	the	entities	in	the

collection.	Use	the	next	code	to	update	all	the	prices	in	the	collection:

public	function	execute()	{

		$productCollection	=	$this->_objectManager

		->create('Magento\Catalog\Model\ResourceModel\Product\Collection')

		->addAttributeToSelect([

				'name',

				'price',

				'image',

])

		->addAttributeToFilter('entity_id',	array(

				'in'	=>	array(159,	160,	161)

));

		$output	=	'';

		$productCollection->setDataToAll('price',	20);

		foreach	($productCollection	as	$product)	{

				$output	.=	\Zend_Debug::dump($product->debug(),	null,	false);

		}

		$this->getResponse()->setBody($output);

}

14.	 When	you	use	the	setDataToAll()	method,	nothing	will	be	changed	in	the	database
until	you	have	called	the	save()	method.	Add	the	following	code	after	the
setDataToAll()	method	to	save	the	collection:

$productCollection->save();

How	it	works…
When	we	want	a	collection	of	Magento	entities,	we	can	do	this	by	calling	the	collection
class	of	the	model.	This	class	is	located	in	the	resource	model	folder	of	a	module
(Model/ResourceModel/<Model	name>/Collection.php).

To	get	a	collection,	we	can	use	the	getCollection()	method	of	a	model.	When	we	use
that	method,	an	instance	of	the	collection	class	is	returned.	A	better	way	is	to	directly	call
the	collection	class	like	we	did	in	this	recipe.

A	collection	class	always	extends	from	the	\Magento\Framework\Data\Collection	class,
which	gives	access	to	all	the	methods	to	work	with	collections.	The	result	of	a	collection	is
always	returned	as	an	iterable	object	so	we	can	loop	through	the	objects	in	the	collection.

When	working	with	collections,	we	have	two	types	of	collections.	The	collections
working	with	flat	entities,	and	the	collections	working	with	EAV	entities	(such	as
products).

The	difference	between	a	flat	and	an	EAV	collection	is	that,	with	a	flat	collection,	all	the
fields	of	the	table	are	included	in	the	collection.	With	an	EAV	collection,	we	have	to	use
the	method	addAttributeToSelect()	to	include	the	EAV	attributes	that	we	want	in	our
collection.

This	is	because	EAV	data	is	stored	in	multiple	tables	for	a	single	entity.	For	a	product,	the
values	of	every	type	of	attribute	are	stored	in	a	different	table	(the
catalog_product_entity_*	tables).

With	the	addAttributeToFilter()	method,	we	can	create	conditions	on	the	SQL
statement.	With	flat	collections,	we	can	also	use	the	addFieldToFilter()	method.

For	this	recipe,	we	used	the	\Zend_Debug::dump()	method	to	create	dumps	of	our	objects.
We	use	this	method	because	this	adds	<pre>	tags	around	the	dump	so	we	can	easily	read	it
in	a	browser.

In	that	dump	statement,	we	set	the	third	parameter	to	false.	This	means	that	this	method
will	return	the	data	instead	of	printing	it.	To	correctly	add	a	response	to	a	controller,	we
need	to	use	the	$this->getResponse()->setData()	method	at	the	end	of	the	controller
action.

Programmatically	adding	product
attributes
In	the	recipe	Creating	an	install	and	upgrade	script,	we	learned	how	we	can	automate	the
execution	of	database	changes.

In	these	install	scripts,	we	can	also	add	attributes	to	products,	as	we	will	learn	in	this
recipe.

Getting	ready
We	will	work	further	on	the	Packt_HelloWorld	module	that	we	have	created	in	the
previous	recipes.	Make	sure	you	have	the	module	installed.

How	to	do	it…
The	following	steps	describe	the	procedure	to	create	an	upgrade	script	that	adds	a	product
attribute	to	all	products:

1.	 The	module	Packt_HelloWorld	is	already	installed	in	our	system	so	we	have	to
create	an	upgrade	script.	Create	the	file	UpgradeData.php	in	the	folder
app/code/Packt/HelloWorld/Setup.	Add	the	following	content	in	that	file:

<?php

namespace	Packt\HelloWorld\Setup;

use	Magento\Framework\Setup\UpgradeDataInterface;

use	Magento\Framework\Setup\ModuleContextInterface;

use	Magento\Framework\Setup\ModuleDataSetupInterface;

class	UpgradeData	implements	UpgradeDataInterface	{

		protected	$categorySetupFactory;

		public	function	

__construct(\Magento\Catalog\Setup\CategorySetupFactory	

$categorySetupFactory)	{

				$this->categorySetupFactory	=	$categorySetupFactory;

		}

		public	function	upgrade(ModuleDataSetupInterface	$setup,	

ModuleContextInterface	$context)	{

				if	(version_compare($context->getVersion(),	'2.0.2')	<	0)	{

						$categorySetup	=	$this->categorySetupFactory->create(['setup'	=>	

$setup]);

						$entityTypeId	=	$categorySetup-

>getEntityTypeId(\Magento\Catalog\Model\Product::ENTITY);

						$categorySetup->addAttribute($entityTypeId,	'helloworld_label',	

array(

								'type'	=>	'varchar',

								'label'	=>	'HeloWorld	label',

								'input'	=>	'text',

								'required'	=>	false,

								'visible_on_front'	=>	true,

								'apply_to'	=>	

'simple,configurable,virtual,bundle,downloadable',

								'unique'	=>	false,

								'group'	=>	'HelloWorld'

));

				}

		}

}

2.	 Update	the	version	number	in	the	module.xml	file.	Open	the	file
app/code/Packt/HelloWorld/etc/module.xml	and	change	the	setup_version
attribute	of	the	<module>	tag	to	2.0.2.	This	file	will	look	as	follows:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module/etc/module.

xsd">

		<module	name="Packt_HelloWorld"	setup_version="2.0.2">

				<sequence>

						<module	name="Magento_Catalog"/>

				</sequence>

		</module>

</config>

3.	 Run	the	command	php	bin/magento	setup:upgrade	in	your	command	line	to	run
the	upgrade	scripts.

4.	 Log	in	to	the	backend	and	look	for	a	product.	You	will	see	that	the	attribute	is	added
to	the	HelloWorld	tab	like	in	the	following	screenshot:

Note
The	first	version	of	Magento	2	has	an	issue	that	the	product	edit	page	will	not	load
correctly	after	adding	a	new	attribute.	If	the	product	edit	page	doesn’t	load	correctly,	you
have	to	save	the	product	template	(attribute	set)	of	the	product	manually.	After	saving	this,
the	page	will	load	correctly.

How	it	works…
Installing	a	product	attribute	is	done	in	the	data	install	or	upgrade	scripts.	In	that	script,
we	use	the	categorySetup	class	to	add	the	attributes.	In	this	class,	the	addAttribute()
method	is	available	for	adding	attributes.

The	addAttribute()	method	will	create	an	EAV	attribute	that	will	be	stored	in	the	table
eav_attribute.	Every	EAV	attribute	is	from	a	specific	entity	type.	That’s	the	reason	why
we	have	retrieved	the	entity	type	with	the	method	$categorySetup-
>getEntityTypeId(\Magento\Catalog\Model\Product::ENTITY);.

For	a	product,	some	information	of	the	attribute	(such	as	the	visible_on_front,
used_in_product_listing,	and	more)	is	stored	in	a	separate	table.	This	table	is	the
catalog_eav_attribute	table	where	all	the	extended	information	of	the	catalog	attributes
is	saved.	With	the	attribute_id	parameter,	every	row	is	related	to	an	EAV	attribute	from
the	table	eav_attribute.

Repairing	the	database
Sometimes,	it	can	happen	that	your	Magento	database	is	broken	or	corrupt.	This	can	be
caused	by	various	reasons	such	as	a	hack	or	a	server	crash.	When	the	database	is	broken,
everyone	wants	to	repair	it	as	quickly	as	possible.

Common	examples	of	a	corrupt	database	are	missing	tables	or	columns	after	running	an
unsaved	query,	or	missing	relations	after	an	import	of	a	dump	without	the	relations.

Magento	has	a	database	repair	tool	that	compares	database	A	with	database	B	and	this	tool
can	fix	the	missing	structures	between	them.

In	this	recipe,	we	will	make	our	database	corrupt	and	we	will	repair	it	with	the	repair	tool.

Getting	ready
To	prepare	yourselves,	download	the	database	repair	tool	from	the	Magento	site	at
http://www.magentocommerce.com	and	place	the	PHP	file	in	your	webroot.

http://www.magentocommerce.com

How	to	do	it…
The	next	steps	show	you	how	you	can	break	your	database	and	how	to	fix	it	using	the
database	repair	tool:

1.	 Create	a	backup	of	your	existing	Magento	2	database.
2.	 Create	a	new	empty	database	that	we	will	use	as	the	reference	database.	Let’s	say	we

call	it	magento2_dev_repair.
3.	 Configure	Magento	to	use	this	empty	database	in	the	app/etc/env.php	file.
4.	 Run	the	command	php	bin/magento	setupsetupsetup:upgrade	in	the	Magento

root.	This	will	install	an	empty	Magento	in	the	database.
5.	 Make	your	original	database	corrupt.	You	can	do	this	by	running	the	following

queries	that	remove	a	foreign	key	and	a	table:

ALTER	TABLE	store	DROP	FOREIGN	KEY	

STORE_WEBSITE_ID_STORE_WEBSITE_WEBSITE_ID;

DROP	TABLE	catalog_product_index_price;

6.	 Browse	to	the	repair	tool	in	your	browser,	and	configure	your	original	and	reference
database	as	shown	in	the	following	screenshot:

7.	 Submit	the	form	and	the	script	will	repair	your	database.	On	the	next	page,	you	will
see	what	changes	are	made	to	your	original	database.

8.	 Switch	the	database	back	to	the	original	one	in	app/etc/env.php,	flush	the	cache,
and	your	store	is	back	up	and	running.

How	it	works…
The	database	repair	tool	of	Magento	compares	the	structure	of	two	databases	with	each
other	and	will	fix	the	differences.

We	created	an	empty	database	where	we	installed	a	new	empty	Magento	with	the	install
scripts.	This	database	was	used	as	the	reference	database.

In	the	database	repair	tool,	we	entered	the	original	database	as	the	corrupted	database.

The	tool	will	compare	the	structure	of	the	reference	database	with	the	corrupted	database.
When	the	comparisons	are	done,	the	tool	will	make	the	structure	of	the	corrupted	database
the	same	as	the	structure	of	the	reference	database.

When	this	is	done,	all	broken	structures	(such	as	missing	relations,	tables,	columns,	and
more)	are	fixed	in	the	corrupted	database.

The	compare	tool	only	fixes	structural	issues	with	your	database.	If	you	miss	some	of	your
data,	this	is	not	the	right	tool	to	get	it	back.

Chapter	6.	Magento	Backend
In	this	chapter,	we	will	cover:

Registering	a	backend	controller
Extending	the	menu
Adding	an	ACL
Adding	configuration	parameters
Creating	a	grid	of	a	database	table
Working	with	backend	components
Adding	customer	attributes
Working	with	source	models

Introduction
For	a	store	owner,	the	backend	is	the	interface	to	manage	everything	in	their	store.	It	is
very	important	for	everything	to	be	secured	against	visitors	with	bad	intentions.	The
backend	of	a	standard	Magento	installation	is	extendible	in	many	ways	(like	the	frontend),
so	everyone	can	extend	it	with	custom	pages,	configuration,	roles,	and	so	on.

By	following	the	best	practices	of	Magento,	all	security	risks	are	managed	by	Magento
like	the	access	for	anonymous	users.

The	recipes	in	this	chapter	describe	the	most	common	ways	in	which	you	can	extend	your
backend	using	the	best	practices	of	Magento	2.

Registering	a	backend	controller
The	first	thing	that	we	will	learn	is	how	to	extend	the	backend	with	a	custom	controller
action.	We	need	a	controller	that	is	secured	so	that	only	logged-in	backend	users	can	see
the	contents	of	this	page.

A	backend	controller	is	required	when	you	want	to	add	an	extra	page	to	the	backend	of
Magento.	This	is	mostly	the	case	when	you	are	working	with	a	custom	form	or	overview
that	you	need	for	your	module.

Getting	ready
For	development	purposes,	it	is	recommended	that	we	remove	the	secret	key	(the	hash	in
the	URL)	from	the	admin	URLs.	You	can	configure	this	in	Stores	|	Configuration	|
Advanced	|	Admin	|	Security.	Change	the	configuration	as	shown	in	the	following
screenshot:

How	to	do	it…
When	you	want	to	add	an	extra	page	to	your	backend,	you	have	to	follow	these	steps:

1.	 Create	the	file	routes.xml	in	the	folder
app/code/Packt/HelloWorld/etc/adminhtml	with	the	following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:App/etc/routes.xsd

">

				<router	id="admin">

								<route	id="helloworld"	frontName="helloworld">

												<module	name="Packt_HelloWorld"	before="Magento_Backend"	/>

								</route>

				</router>

</config>

2.	 In	the	folder	app/code/Packt/HelloWorld/Controller/Adminhtml/Index,	create	a
file	called	Index.php	with	the	following	content:

<?php

namespace	Packt\HelloWorld\Controller\Adminhtml\Index;

use	Magento\Backend\App\Action\Context;

use	Magento\Framework\View\Result\PageFactory;

class	Index	extends	\Magento\Backend\App\Action

{

				protected	$resultPageFactory;

				public	function	__construct(

								Context	$context,

								PageFactory	$resultPageFactory

)	{

								parent::__construct($context);

								$this->resultPageFactory	=	$resultPageFactory;

				}

				public	function	execute()

				{

				}

}

Note
Make	sure	that	your	controller	action	extends	from	the
\Magento\Backend\App\Action	class.	This	will	cover	the	access	for	authorized
users.

3.	 Clean	the	cache	using	the	command	php	bin/magento	cache:clean	and	navigate	to
the	URL	/admin/helloworld/index.	You	will	see	a	white	page,	which	is	normal
because	the	action	is	empty.

4.	 When	you	add	the	following	code	in	the	execute()	function	of	that	class,	you	will
see	that	the	backend	interface	is	there	with	an	empty	page:

public	function	execute()

{

				$resultPage	=	$this->resultPageFactory->create();

				return	$resultPage;

}

How	it	works…
Backend	controllers	work	similar	to	frontend	controllers.	The	main	difference	between
them	is	that	a	backend	controller	action	will	extend	from	the	class
\Magento\Backend\App\Action	where	a	frontend	controller	will	extend	from	the	class
\Magento\Framework\App\Action\Action.

The	class	where	the	backend	action	extends	from	manages	all	the	security	so	that	the	page
is	only	accessible	for	authenticated	backend	users.

The	route	for	the	backend	controller	is	initialized	in	the	routes.xml	file	for	adminhtml.	In
this	file,	the	route	name	is	configured	for	the	Packt_HelloWorld	module.	We	called	this
route	helloworld.

The	controller	action	files	are	placed	in	the	Adminhtml	subfolder	of	the	Controller	folder
of	the	module.	Magento	knows	that	it	has	to	look	in	the	Adminhtml	folder	for	backend
controllers	and	actions.

In	the	configuration,	we	disabled	the	secret	keys	to	the	admin	URLs	so	it	is	easy	to	debug
new	URLs.	The	structure	of	a	backend	URL	is	likely	the	same	as	in	the	frontend.	The	only
difference	is	that	backend	controller	actions	always	start	with	the	adminhtml	prefix.	When
this	prefix	is	admin,	the	URLs	will	have	the	following	structure:
<path_to_backend>/<route_name>/<controller_name>/<action_name>

Extending	the	menu
In	the	previous	recipe,	we	added	a	new	page	to	the	backend,	but	it	is	important	that	you
are	able	to	easily	navigate	to	your	custom	pages.	Not	everyone	knows	the	URL,	and	if	the
secret	keys	are	enabled	for	the	administrator	URLs,	it	is	likely	impossible	to	build	a
correct	URL	because	you	have	to	know	the	key.

Getting	ready
This	recipe	builds	further	on	the	previous	one.	Make	sure	you	have	the	code	of	the
previous	recipe	installed.

How	to	do	it…
The	following	steps	describe	how	we	can	add	extra	menu	items	to	the	Admin	menu:

1.	 First	we	have	to	think	about	where	we	will	get	an	extra	menu	item	in	the	Admin
menu.	For	this	tutorial,	we	will	add	an	extra	item	in	the	Marketing	menu.	For	this	we
need	to	know	the	ID	of	the	marketing	menu.

2.	 Create	the	file	app/code/Packt/HelloWorld/etc/adminhtml/menu.xml	with	the
following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Backend:etc/m

enu.xsd">

				<menu>

								<add	

												id="Packt_HelloWorld::helloworld"	

												title="HelloWorld"	

												module="Packt_HelloWorld"	

												sortOrder="50"	

												parent="Magento_Backend::marketing"	

												resource="Packt_HelloWorld::helloworld"

								/>

								<add	

												id="Packt_HelloWorld::index"	

												title="Helloworld	Index"	

												module="Packt_HelloWorld"	

												sortOrder="55"	

												parent="Packt_HelloWorld::helloworld"	

												action="helloworld/index/"	

												resource="Packt_HelloWorld::index"

								/>

				</menu>

</config>

3.	 Clean	the	cache	and	reload	the	backend.	When	opening	the	marketing	menu,	you	will
see	that	there	is	a	HelloWorld	group	with	a	link,	like	in	the	following	screenshot:

4.	 To	change	the	position	of	the	links,	we	can	play	with	the	sortOrder	attribute	of	the
configuration.

How	it	works…
The	Admin	menu	of	Magento	is	based	on	all	the	menu.xml	files	of	all	the	modules.	The
standard	menu	contains	the	following	root	items:

Dashboard
Sales
Products
Customers
Marketing
Content
Reports
Stores
System

All	these	items	are	defined	in	the	file
app/code/Magento/Backend/etc/adminhtml/menu.xml,	so	if	you	need	an	identifier	of	the
root	items,	you	have	to	look	in	that	file.	If	a	link	is	not	configured	in	that	file,	you	have	to
look	in	the	menu.xml	files	of	the	other	modules,	such	as	catalog,	customer,	and	reports.

We	added	an	item	to	the	menu	with	a	custom	menu.xml	file.	In	that	file,	we	configured	two
statements	that	add	a	menu	item.	The	first	one	is	used	to	configure	the	HelloWorld
heading	of	the	menu.	This	item	has	no	action	attribute,	and	the	parent	is
Magento_Backend::marketing	(the	ID	of	the	parent	menu	item).	The	second	one	is	used
to	configure	the	link.	In	the	action	attribute,	the	URL	is	configured.	The	parent	attribute	is
the	ID	of	the	HelloWorld	heading	(Packt_HelloWorld::helloworld).

An	<add	/>	statement	can	have	the	following	attributes:

id:	The	identifier	of	the	menu	item
title:	The	title	of	the	menu	item
module:	The	module	that	the	menu	item	will	refer	to
sortOrder:	The	sequence	by	which	all	the	menu	items	will	be	ordered
parent:	The	parent	menu	item
action:	If	the	item	contains	a	link,	this	is	the	URL	leading	to	the	controller	action
resource:	The	identifier	of	the	ACL	resource	explained	in	the	recipe	Adding	an	ACL

Adding	an	ACL
In	the	previous	recipes	of	this	chapter,	we	created	a	backend	controller	action	that	is
accessible	using	the	admin	menu.	However,	when	you	want	to	configure	a	custom	admin
role,	you	can’t	restrict	the	access	to	this	page	for	a	specific	role.	In	this	recipe,	we	will
create	an	Access	Control	List	(ACL)	for	the	backend	page	and	create	a	role	with
restricted	permissions	so	an	admin	user	can	only	view	a	restricted	set	of	pages.

Getting	ready
Each	admin	user	is	a	member	of	an	admin	role.	These	roles	have	access	permissions	that
manage	the	access	to	certain	pages	in	the	backend.

In	this	recipe,	we	will	add	new	permissions	for	the	page	we	created	in	the	previous	recipes
of	this	chapter.	Make	sure	you	have	installed	the	files	of	the	previous	recipes.

How	to	do	it…
The	following	steps	describe	how	you	can	limit	the	access	to	a	page	for	a	role	of	users:

1.	 Open	the	backend	and	navigate	to	System	|	Permissions	|	User	Roles.	Click	on	the
button	Add	New	Role	and	open	the	Role	Resources	tab.	You	will	see	a	tree	with	all
the	available	ACLs	in	this	Magento	installation.

2.	 The	second	step	is	to	add	an	extra	ACL	to	that	page.	For	this	we	need	to	create	the
file	app/code/Packt/HelloWorld/etc/acl.xml	with	the	following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Acl/etc/acl.xsd">

				<acl>

								<resources>

												<resource	id="Magento_Backend::admin">

																<resource	id="Magento_Backend::marketing">

																				<resource	id="Packt_HelloWorld::helloworld"	

title="HelloWorld"	sortOrder="60">

																								<resource	id="Packt_HelloWorld::index"	

title="HelloWorld	index"	/>

																				</resource>

																</resource>

												</resource>

								</resources>

				</acl>

</config>

3.	 Clean	the	cache	and	navigate	to	System	|	Permissions	|	User	Roles,	click	on	the	Add
New	Role	button,	and	open	the	Role	Resources	tab.	When	you	search	for
HelloWorld,	you	will	see	that	that	the	ACLs	we	have	just	created	are	in	the	list,	as
you	can	see	in	the	following	screenshot:

4.	 Submit	this	form	to	add	a	new	role	with	the	HelloWorld	index	checkbox	checked.
Let’s	say	we	call	this	role	Test	HelloWorld.

5.	 Create	a	new	backend	user	in	System	|	Permissions	|	All	Users.	Fill	in	the	required
fields	and	add	the	user	to	the	role	that	we	have	just	created,	as	shown	in	the	following
screenshot:

6.	 We	have	just	created	an	ACL	for	the	page	that	is	available	at
/admin/helloworld/index/index.	We	have	to	add	the	following	function	to	that
controller	so	the	controller	action	knows	which	ACL	is	active	for	that	page.	Open
app/code/Packt/HelloWorld/Controller/Adminhtml/Index/Index.php	and	add
the	following	function	in	class	of	that	file:

protected	function	_isAllowed()

{

				return	$this->_authorization->isAllowed('Packt_HelloWorld::index');

}

7.	 Log	into	the	backend	with	the	new	user	and	you	will	see	that	this	user	has	only	access
to	the	pages	that	we	have	configured	for	the	specific	role	of	that	user.

How	it	works…
With	the	Magento	ACLs,	it	is	possible	to	restrict	the	access	of	backend	pages	to	a	specific
user	role.	For	example,	the	product	manager	role	can	only	access	the	products,	categories,
and	promotion	rules	pages,	and	the	logistic	partner	only	has	access	to	the	order	pages.

When	you	don’t	create	the	ACLs	for	custom	pages,	only	the	roles	that	have	access	to	all
the	resources	can	access	the	pages.	In	most	cases,	this	is	the	administrator.	For	other	roles,
it	is	not	possible	to	access	pages	with	no	ACLs.

Tip
In	the	Magento	Community	Editions,	it	is	not	possible	to	restrict	the	access	to	the	data	of	a
specific	store.	For	example,	a	logistic	partner	can	only	see	the	orders	of	store	1.	The	ACL
restrictions	are	only	based	on	controller	actions.

That’s	the	reason	that	we	have	configured	the	ACLs	in	the	acl.xml	file	of	the	module.	In
this	file,	we	define	new	ACLs	in	a	tree	structure.	These	ACLs	haves	an	identifier	that	is
used	to	manage	the	access	to	the	menu	and	controller	page.

In	the	controller	action,	we	have	created	an	_isAllowed()	function	that	checks	the	access
to	the	given	ACL.

In	the	menu.xml	file	of	the	module,	the	ACL	for	every	menu	item	is	configured	in	the
resource	attribute	of	the	configurations	(like	the	highlighted	code	shown	here):

<add	

				id="Packt_HelloWorld::helloworld"

				title="HelloWorld"	

				module="Packt_HelloWorld"	

				sortOrder="50"	

				parent="Magento_Backend::marketing"	

				resource="Packt_HelloWorld::helloworld"

/>

Adding	configuration	parameters
When	you	want	to	save	some	configuration	parameters	for	your	module,	you	can	use	the
Magento	configuration	table	to	save	your	configuration	in	it.	You	can	find	all	the
configuration	forms	under	Stores	|	Configuration	in	the	Magento	backend.	In	this	recipe,
we	will	add	an	extra	page	with	some	configuration	parameters.

Getting	ready
Like	the	previous	recipes	in	this	chapter,	we	will	build	further	on	the	module	that	we	have
created	in	the	previous	recipes.	Make	sure	you	have	the	module	files	installed.

How	to	do	it…
The	following	instructions	describe	what	you	have	to	do	when	you	want	to	add	some
custom	configuration	parameters:

1.	 The	system	configuration	is	always	configured	in	the	system.xml	file	of	the	module.
So	create	the	file	app/code/Packt/HelloWorld/etc/adminhtml/system.xml	with
the	following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Config:etc/sy

stem_file.xsd">

				<system>

								

				</system>

</config>

2.	 To	add	a	new	tab	to	the	configuration	menu,	we	have	to	add	the	following
configuration	XML	in	the	system.xml	file.	Paste	the	following	code	as	a	child	of	the
<system>	tag:

<tab	id="packt"	translate="label"	sortOrder="500">

				<label>Packt</label>

</tab>

3.	 The	next	thing	to	do	is	to	create	an	ACL	for	the	new	configuration	page.	Add	the
following	configuration	in	the	file	app/code/Packt/HelloWorld/etc/acl.xml.	Paste
the	following	code	as	a	child	of	the	<resource	id="Magento_Backend::admin">	tag:

<resource	id="Magento_Backend::stores">

				<resource	id="Magento_Backend::stores_settings">

								<resource	id="Magento_Config::config">

												<resource	id="Packt_HelloWorld::config_helloworld"	

title="HelloWorld	Section"	/>

								</resource>

				</resource>

</resource>

4.	 Clean	the	cache	and	open	System	|	Permissions	|	User	Roles.	Click	on	the	Add	New
Role	button	and	open	the	Role	Resources	tab.	If	everything	is	OK,	you	will	see
HelloWorld	Section	in	the	list,	like	in	the	following	screenshot:

5.	 When	HelloWorld	Section	is	in	the	list,	it	means	that	the	ACL	is	added.	Don’t	save
the	new	role;	this	step	was	just	to	verify	that	the	ACL	settings	are	right.

6.	 With	the	right	ACL	settings	installed,	we	can	add	the	right	code	for	a	new	Magento
configuration	page.	Open	the	file
app/code/Packt/HelloWorld/etc/adminhtml/system.xml	and	add	the	following
code	as	a	child	of	the	<system>	tag:

<section	id="helloworld"	translate="label"	type="text"	sortOrder="100"	

showInDefault="1"	showInWebsite="1"	showInStore="1">

				<label>HelloWorld</label>

				<tab>packt</tab>

				<resource>Packt_HelloWorld::config_helloworld</resource>

				<group	id="hellopage"	translate="label"	type="text"	sortOrder="1"	

showInDefault="1"	showInWebsite="1"	showInStore="1">

								<label>HelloWorld	page	settings</label>

								<field	id="is_enabled"	translate="label"	type="select"	

sortOrder="10"	showInDefault="1"	showInWebsite="1"	showInStore="1">

												<label>Is	Enabled</label>

												

<source_model>Magento\Config\Model\Config\Source\Yesno</source_model>

								</field>

								<field	id="header_title"	translate="label"	type="text"	

sortOrder="20"	showInDefault="1"	showInWebsite="1"	showInStore="1">

												<label>Header	title</label>

								</field>

				</group>

</section>

7.	 Clean	the	cache	and	open	Stores	|	Configuration.	If	everything	went	well,	you	will
see	the	PACKT	group	in	the	menu.	When	you	click	on	it,	you	will	see	the
configuration	fields	Is	Enabled	and	Header	title,	as	shown	in	the	following
screenshot:

8.	 When	we	want	to	configure	a	default	value	for	this	field,	we	have	to	create	the	file
app/code/Packt/HelloWorld/etc/config.xml	with	the	following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Store:etc/con

fig.xsd">

				<default>

								<helloworld>

												<hellopage>

																<is_enabled>1</is_enabled>

																<header_title>HelloWorld	title</header_title>

												</hellopage>

								</helloworld>

				</default>

</config>

9.	 Clean	the	cache	and	reload	the	configuration	page.	You	will	see	that	the	default
values	are	filled	as	specified	in	the	config.xml	file	that	we	just	created.

How	it	works…
All	the	values	of	the	Magento	configuration	are	specified	in	the	system.xml	file	of	the
module.	Magento	reads	each	file	and	merges	them	together	when	building	the
configuration	page.

The	first	thing	we	did	was	to	create	a	tab	in	the	menu	of	the	configuration	pages.	The	tab
has	an	ID	attribute	that	is	used	to	link	a	section	to	a	tab.

The	second	thing	was	to	add	a	new	page	with	configuration	parameters.	Because	a	new
page	requires	access	permissions,	we	had	to	create	a	new	ACL	for	that	page.	We	extended
the	acl.xml	file	with	an	ACL	for	the	new	configuration	page.

After	the	ACL,	we	created	the	configuration	to	show	the	two	configuration	fields.	The
XML	tree	starts	to	define	the	section.	A	section	is	used	to	define	a	new	configuration	page.
In	this	tutorial,	we	have	created	a	section	with	the	identifier	helloworld.

Each	section	is	divided	into	groups.	These	are	the	accordions	that	you	can	open	and	close
on	the	configuration	page.	We	created	a	group	with	the	ID	hellopage.

In	a	group,	we	can	configure	the	configuration	fields.	In	this	recipe,	we	created	two	fields.
The	first	field	was	a	field	with	a	dropdown	to	say	whether	it	is	enabled	or	not.	The	second
one	was	a	text	field	to	configure	the	title.

With	the	<source_model>	tag,	we	configured	the	values	for	the	dropdown	menu	by
specifying	the	class	of	the	source	model.	More	information	about	source	models	can	be
found	in	the	recipe	Working	with	source	models	in	this	chapter.

The	last	thing	we	did	in	this	recipe	was	to	provide	some	default	values	for	the
configuration	parameters.	The	default	values	are	set	in	the	config.xml	file	of	the	module.
In	the	<default>	tag,	you	can	specify	a	default	value	for	a	configuration	parameter.	Let’s
take	a	look	at	the	following	code	snippet:

<section_id>

				<group_id>

								<field_id>Value</field_id>

				</group_id>

</section_id>

Make	sure	you	replace	section_id,	group_id	and	field_id	so	it	matches	the
configuration	for	your	field.

Each	section,	group,	and	field	has	the	attributes	showInDefault,	showInWebsite,	and
showInStore.	With	these	attributes,	you	can	specify	that	the	configuration	option	is	visible
when	configuring	something	for	that	scope.

In	Magento,	there	are	three	levels	of	configuration	scopes	available.	These	scopes	are	used
when	you	run	multiple	stores	on	the	same	Magento	installation.	The	following
configuration	scopes	are	available	in	Magento:

Global	configuration	(showInDefault)
Website	configuration	(showInWebsite)

Store	view	configuration	(showInStore)

When	you	want	to	change	the	scope	of	the	configuration	page,	you	can	use	the	Store	View
dropdown	on	the	configuration	page,	as	shown	in	the	following	screenshot:

When	you	save	the	configuration	form,	the	values	are	stored	in	the	database	table
core_config_data.	When	you	open	that	table,	you	see	the	following	columns:

config_id:	The	configuration	ID
scope:	By	default,	this	is	website	or	store
scope_id:	The	ID	of	the	website	or	store
path:	The	configuration	path
value:	The	configuration	value

The	path	column	is	the	combination	of	the	section	id,	group	id,	and	field	id
columns.	For	the	fields	that	we	created	in	this	recipe,	the	paths	will	be	as	shown	here:

helloworld/hellopage/is_enabled

helloworld/hellopage/header_title

Creating	a	grid	of	a	database	table
In	the	previous	chapter,	we	created	a	Magento	entity	that	was	linked	to	a	database	table.	In
this	recipe,	we	will	create	a	backend	interface	so	that	the	backend	users	can	see	the	data
from	this	table	in	the	backend.

Getting	ready
Make	sure	you	have	the	right	files	for	this	recipe	installed	in	your	Magento	instance.

We	will	create	an	overview	that	will	use	the	standard	Magento	backend	grid	widget.	This
widget	is	used	for	a	lot	of	grids	in	the	backend,	such	as	the	products,	orders,	CMS	pages,
and	more.

How	to	do	it…
Follow	these	steps	to	create	backend	grids:

1.	 When	we	want	a	new	page,	we	need	a	controller	with	a	controller	action.	So	we	need
to	add	an	ACL	for	that	page.	Open	the	file
app/code/Packt/HelloWorld/etc/acl.xml,	and	add	the	following	line	of	code	as	a
child	of	the	<resource	id="Packt_HelloWorld::helloworld"
title="HelloWorld"	sortOrder="60">	tag:

<resource	id="Packt_HelloWorld::subscription"	title="HelloWorld	

subscription"	/>

2.	 We	need	some	navigation	to	the	new	page.	We	can	do	this	by	creating	a	menu	item
for	the	page.	Open	app/code/Packt/HelloWorld/etc/adminhtml/menu.xml	and	add
the	following	code	as	a	child	of	the	<menu>	tag:

<add	

				id="Packt_HelloWorld::subscription"

				title="Subscriptions"

				module="Packt_HelloWorld"

				sortOrder="70"

				parent="Packt_HelloWorld::helloworld"

				action="helloworld/subscription/"

				resource="Packt_HelloWorld::subscription"

/>

3.	 As	previously,	we	need	to	create	the	controller	action.	Create	the	file
app/code/Packt/HelloWorld/Controller/Adminhtml/Subscription/Index.php

with	the	following	content:

<?php

namespace	Packt\HelloWorld\Controller\Adminhtml\Subscription;

use	Magento\Backend\App\Action\Context;

use	Magento\Framework\View\Result\PageFactory;

class	Index	extends	\Magento\Backend\App\Action

{

				protected	$resultPageFactory;

				public	function	__construct(

								Context	$context,

								PageFactory	$resultPageFactory

)	{

								parent::__construct($context);

								$this->resultPageFactory	=	$resultPageFactory;

				}

				public	function	execute()

				{

								$resultPage	=	$this->resultPageFactory->create();

								

								$resultPage->setActiveMenu('Packt_HelloWorld::subscription');

								$resultPage->addBreadcrumb(__('HelloWorld'),	__('HelloWorld'));

								$resultPage->addBreadcrumb(__('Manage	Subscriptions'),	

__('Manage	Subscriptions'));

								$resultPage->getConfig()->getTitle()-

>prepend(__('Subscriptions'));

								return	$resultPage;

				}

				

				protected	function	_isAllowed()

				{

								return	$this->_authorization-

>isAllowed('Packt_HelloWorld::subscription');

				}

}

4.	 Clean	the	cache	and	open	the	Marketing	menu	in	the	backend.	You	will	see	that
there	is	a	new	menu	item	added	under	the	HelloWorld	section.	When	you	click	on
the	link	Subscriptions,	you	will	be	redirected	to	the	page	that	we	have	just	created.

5.	 The	backend	page	is	now	up	and	running.	In	the	next	steps,	we	will	complete	this
recipe	by	adding	a	grid	on	this	page.

6.	 To	add	a	grid,	we	have	to	add	the	grid	container	block.	To	create	this	block,	we	have
to	create	the	file
app/code/Packt/HelloWorld/Block/Adminhtml/Subscription.php	with	the
following	content:

<?php

namespace	Packt\HelloWorld\Block\Adminhtml;

class	Subscription	extends	\Magento\Backend\Block\Widget\Grid\Container

{

				protected	function	_construct()

				{

								$this->_blockGroup	=	'Packt_HelloWorld';

								$this->_controller	=	'adminhtml_subscription';

								parent::_construct();

				}

}

7.	 In	the	grid	container	block,	we	have	to	add	the	grid	block.	For	this,	we	need	to	create
the	file	app/code/Packt/HelloWorld/Block/Adminhtml/Subscription/Grid.php
with	the	following	content:

<?php

namespace	Packt\HelloWorld\Block\Adminhtml\Subscription;

use	Magento\Backend\Block\Widget\Grid	as	WidgetGrid;

class	Grid	extends	\Magento\Backend\Block\Widget\Grid\Extended

{

				/**

					*	@var	\Packt\HelloWorld\Model\Resource\Subscription\Collection

					*/

				protected	$_subscriptionCollection;

				/**

					*	@param	\Magento\Backend\Block\Template\Context	$context

					*	@param	\Magento\Backend\Helper\Data	$backendHelper

					*	@param	

\Packt\HelloWorld\Model\ResourceModel\Subscription\Collection	

$subscriptionCollection

					*	@param	array	$data

					*/

				public	function	__construct(

								\Magento\Backend\Block\Template\Context	$context,

								\Magento\Backend\Helper\Data	$backendHelper,

								\Packt\HelloWorld\Model\ResourceModel\Subscription\Collection	

$subscriptionCollection,

								array	$data	=	[]

)	{

								$this->_subscriptionCollection	=	$subscriptionCollection;

								parent::__construct($context,	$backendHelper,	$data);

								$this->setEmptyText(__('No	Subscriptions	Found'));

				}

				/**

					*	Initialize	the	subscription	collection

					*

					*	@return	WidgetGrid

					*/

				protected	function	_prepareCollection()

				{

								$this->setCollection($this->_subscriptionCollection);

								return	parent::_prepareCollection();

				}

}

8.	 The	blocks	are	created,	but	we	have	to	add	them	to	the	controller	with	a	layout
update.	Create	the	file
app/code/Packt/HelloWorld/view/adminhtml/layout/helloworld_subscription_index.xml

with	the	following	content	to	create	the	layout	update:

<?xml	version="1.0"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout/etc/pa

ge_configuration.xsd">

				<body>

								<referenceContainer	name="content">

												<block	

class="Packt\HelloWorld\Block\Adminhtml\Subscription"	

name="adminhtml.block.helloworld.subscription.container">

																<block	

class="Packt\HelloWorld\Block\Adminhtml\Subscription\Grid"	

name="adminhtml.block.helloworld.subscription.grid"	as="grid"	/>

												</block>

								</referenceContainer>

				</body>

</page>

9.	 Clean	the	cache	and	reload	the	Subscriptions	page	in	the	backend.	You	will	see
something	like	the	following	screenshot:

10.	 In	the	screenshot,	we	see	the	filter	buttons	of	the	grid,	but	if	we	want	to	show	the
grid,	we	need	to	define	the	columns.	We	can	do	this	by	adding	the	following	function
to	the	file
app/code/Packt/HelloWorld/Block/Adminhtml/Subscription/Grid.php.	Paste	the
function	in	the	existing	class.

/**

	*	Prepare	grid	columns

	*

	*	@return	$this

	*/

protected	function	_prepareColumns()

{

				$this->addColumn(

								'subscription_id',

								[

												'header'	=>	__('ID'),

												'index'	=>	'subscription_id',

]

);

				$this->addColumn(

								'firstname',

								[

												'header'	=>	__('Firstname'),

												'index'	=>	'firstname',

]

);

				$this->addColumn(

								'lastname',

								[

												'header'	=>	__('Lastname'),

												'index'	=>	'lastname',

]

);

				$this->addColumn(

								'email',

								[

												'header'	=>	__('Email	address'),

												'index'	=>	'email',

]

);

				$this->addColumn(

								'status',

								[

												'header'	=>	__('Status'),

												'index'	=>	'status',

]

);

				return	$this;

}

11.	 When	you	reload	the	page,	you	will	see	that	a	grid	appears	with	the	content	of	the
database	table.

12.	 When	we	want	to	decorate	the	status	column	to	improve	the	visibility	of	the	statuses,
we	have	to	create	a	frame_callback	parameter.	Add	the	frame_callback	parameter
to	the	addColumn()	function	of	the	status	so	it	looks	like	this:

$this->addColumn(

				'status',

				[

								'header'	=>	__('Status'),

								'index'	=>	'status',

								'frame_callback'	=>	[$this,	'decorateStatus']

]

);

Tip
Add	the	highlighted	line	of	code.

13.	 frame_callback	refers	to	the	function	decorateStatus().	Add	the	following
function	to	the	class	that	we’re	editing:

public	function	decorateStatus($value)	{

				$class	=	'';

				switch	($value)	{

								case	'pending':

												$class	=	'grid-severity-minor';

												break;

								case	'approved':

												$class	=	'grid-severity-notice';

												break;

								case	'declined':

								default:

												$class	=	'grid-severity-critical';

												break;

				}

				return	''	.	$value	.	'

';

}

14.	 Reload	the	page,	and	you	should	have	an	output	like	that	shown	in	the	following
screenshot:

How	it	works…
The	backend	grid	is	one	of	the	backend	widgets	that	is	available	in	Magento.	Other
widgets	that	are	widely	used	are	the	forms	to	edit	data	or	the	tabbed	menu	on	the	left-hand
side.

The	grid	widget	is	made	to	display	the	content	of	a	collection	in	a	grid.	By	using	the	grid
widget	of	Magento,	it	is	possible	to	sort	and	filter	the	columns	that	are	visible	in	the	grid.
A	pager	is	automatically	included	when	you	have	a	lot	of	data.	This	prevents	out-of-
memory	exceptions	when	there	are	a	large	number	of	records	in	a	collection.

A	grid	widget	is	always	placed	inside	a	grid	container.	We	started	this	recipe	by	creating	a
container	widget	in	which	we	will	place	a	grid.	The	container	widget	is	used	to	show	the
heading	and	buttons	like	the	Add	New	button	(which	has	currently	no	action).	A	grid
container	block	always	extends	from	the	class
\Magento\Backend\Block\Widget\Grid\Container.

In	that	container,	we	created	a	Grid	block	that	is	responsible	for	showing	the	grid.	A	grid
block	always	extends	from	the	class	\Magento\Backend\Block\Widget\Grid.	In	this
recipe,	our	class	extends	from	\Magento\Backend\Block\Widget\Grid\Extended.	This
class	adds	the	filters	to	the	grid.	A	grid	needs	a	collection.	This	collection	is	passed	as	a
parameter	in	the	__construct()	method	of	the	class.	In	the	_prepareCollection()
method,	the	collection	is	assigned	to	the	class.	A	grid	needs	also	a	specification	of	the
columns	to	be	shown.	The	columns	are	specified	in	the	_prepareColumns()	function	of
that	class.	In	that	function,	the	addColumn()	function	is	used	to	specify	the	columns.

The	addColumn()	function	has	two	parameters.	The	first	one	is	the	identifier,	and	the
second	one	is	a	key-value	array	with	the	specifications	of	the	column.	In	this	recipe,	we
used	the	following	parameters:

header:	The	name	of	the	column
index:	The	column	in	the	database

The	previous	options	are	required,	while	the	following	ones	are	optional:

frame_callback	(A	function	call	to	render	the	value	of	a	cell)
type	(This	defines	the	filter	widget	like	number,	datetime,	and	options)
options	(This	defines	a	source	model	when	the	type	is	options)

Working	with	backend	components
The	Magento	backend	exists	with	a	lot	of	reusable	components,	such	as	a	button,	menus,
forms,	and	more.	When	creating	backend	extensions,	you	can	use	these	components	to
build	you	custom	pages.	In	this	recipe,	we	will	create	a	page	where	we	can	play	with	the
components	available	.

Getting	ready
We	will	extend	the	existing	Packt_HelloWorld	module	with	a	new	page	where	we	can
play	with	the	backend	components.

How	to	do	it…
In	the	following	steps,	we	will	create	a	page	that	uses	some	backend	components:

1.	 We	will	make	some	tests	in	a	new	controller	action.	Create	a	file
app/code/Packt/HelloWorld/Controller/Adminhtml/Component/Index.php	with
the	following	content:

<?php

namespace	Packt\HelloWorld\Controller\Adminhtml\Component;

use	Magento\Backend\App\Action\Context;

use	Magento\Framework\View\Result\PageFactory;

class	Index	extends	\Magento\Backend\App\Action

{

				protected	$resultPageFactory;

				public	function	__construct(

								Context	$context,

								PageFactory	$resultPageFactory

)	{

								parent::__construct($context);

								$this->resultPageFactory	=	$resultPageFactory;

				}

				public	function	execute()

				{

								$resultPage	=	$this->resultPageFactory->create();

								

								$resultPage->setActiveMenu('Packt_HelloWorld::component');

								$resultPage->addBreadcrumb(__('HelloWorld'),	__('HelloWorld'));

								$resultPage->addBreadcrumb(__('Components'),	__('Components'));

								$resultPage->getConfig()->getTitle()-

>prepend(__('Components'));

								return	$resultPage;

				}

				

				protected	function	_isAllowed()

				{

								return	$this->_authorization-

>isAllowed('Packt_HelloWorld::helloworld');

				}

}

2.	 Create	a	menu	item	for	the	page	by	adding	the	following	XML	in	the	file
app/code/Packt/HelloWorld/etc/adminhtml/menu.xml.	Paste	the	code	as	a	child
of	the	<menu>	tag:

<add

				id="Packt_HelloWorld::component"

				title="Components"

				module="Packt_HelloWorld"

				sortOrder="80"

				parent="Packt_HelloWorld::helloworld"

				action="helloworld/component/"

				resource="Packt_HelloWorld::helloworld"

/>

3.	 Clean	the	cache	and	reload	the	backend.	In	the	menu,	you	will	see	an	item	that	leads
to	the	component	page	that	we	have	just	created.	This	menu	item	is	visible	in	the
Marketing	menu.	When	you	open	that	page,	we	see	an	empty	page.

4.	 To	add	some	buttons	to	the	page,	we	have	to	create	the	file
app/code/Packt/HelloWorld/view/adminhtml/templates/component/toolbar/buttons.phtml

with	the	following	content:

<div	class="page-actions">

				<div	class="page-actions-inner">

								<div	class="page-actions-buttons">

												<button

																class="action-primary"

																title="<?php	echo	__('Primary	button')	?>">

																				<?php	echo	__('Primary	button')	?>

												</button>

												<button

																class="action-secondary"

																title="<?php	echo	__('Secondary	button')	?>">

																				<?php	echo	__('Secondary	button')	?>

												</button>

												<button

																class="action-secondary	back"

																title="<?php	echo	__('Back')	?>">

																				<?php	echo	__('Back')	?>

												</button>

								</div>

				</div>

</div>

5.	 To	add	this	file	to	the	components	page,	we	have	to	add	the	file
app/code/Packt/HelloWorld/view/adminhtml/layout/helloworld_component_index.xml

with	the	following	content:

<?xml	version="1.0"?>

<page	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:View/Layout/etc/pa

ge_configuration.xsd">

				<body>

								<referenceContainer	name="page.main.actions">

												<block	class="Magento\Backend\Block\Template"	

name="component_buttons"	

template="Packt_HelloWorld::component/toolbar/buttons.phtml"/>

								</referenceContainer>

				</body>

</page>

6.	 Clean	the	cache	and	reload	the	page.	You	will	now	see	something	like	in	the
following	screenshot:

7.	 We	will	continue	with	adding	the	content	of	the	page.	The	following	code	is	an
example	of	the	possibilities	for	form	components.	Add	it	in	the	file
app/code/Packt/HelloWorld/view/adminhtml/templates/component/index.phtml

<div	class="col-m-4">

				<fieldset	class="fieldset	admin__fieldset	"	id="theme">

								<div	class="admin__field	field"	data-ui-id="theme-edit-tabs-

tab-general-section-fieldset-element-form-field-theme-path">

												<label	class="label	admin__field-label">Label

</label>

												<div	class="admin__field-control	control">

																<div	class="control-value">A	value</div>

												</div>

								</div>

								

								<div	class="admin__field	field	">

												<label	class="label	admin__field-label"	for="test_input">

Test	input</label>

												<div	class="admin__field-control	control">

																<input	name="design[test_input]"	id="test_input"	

value=""	title="Test	input"	type="text"	class="input-text	

admin__control-text"	/>

												</div>

								</div>

				</fieldset>

</div>

8.	 To	add	this	file	to	the	page,	add	the	following	line	of	code	to	the	file
app/code/Packt/HelloWorld/view/adminhtml/layout/helloworld_component_index.xml

as	a	child	of	the	<body>	tag:

<referenceContainer	name="content">

				<block	class="Magento\Backend\Block\Template"	

name="adminhtml.block.helloworld.component"	

template="Packt_HelloWorld::component/index.phtml"	/>

</referenceContainer>

9.	 Clean	the	cache	and	reload	the	page.	You	will	see	that	a	form	appears	on	the	screen.

Note
Magento	also	has	a	form	API	that	generates	the	elements	for	you.	This	API	is	widely
used	for	backend	forms	such	as	for	the	CMS	pages	(and	many	other	forms).

10.	 The	following	code	shows	how	to	add	a	small	data	table	to	a	page.	Add	it	to	the	end
of	the	file
app/code/Packt/HelloWorld/view/adminhtml/templates/component/index.phtml

<div	class="col-m-4">

				<table	class="admin__table-secondary">

								<tr>

												<th><?php	echo	__('First	name')	?></th>

												<td>John</td>

								</tr>

								<tr>

												<th><?php	echo	__('Last	name')	?></th>

												<td>Doe</td>

								</tr>

								<tr>

												<th><?php	echo	__('Email')	?></th>

												<td>john.doe@example.com</td>

								</tr>

								<tr>

												<th><?php	echo	__('Phone')	?></th>

												<td>000	000	000</td>

								</tr>

				</table>

</div>

11.	 Reload	the	page,	and	you	will	see	a	small	table	near	the	form.

How	it	works…
In	this	recipe,	we	created	some	HTML	that	is	used	to	render	backend	components.	The
Magento	backend	is	a	combination	of	many	of	these	components,	such	as	the	button	bar,
forms,	tables,	grids,	and	many	more.

In	the	first	steps,	we	created	a	controller	action	that	uses	an	existing	ACL.	On	this
controller	action,	we	placed	a	block	that	contains	the	buttons.	The	button	bar	is	placed	in
the	page.main.actions	block.	This	block	is	the	gray	action	bar	that	appears	on	many
pages	in	the	backend.

Later,	we	created	a	template	that	contains	some	backend	components.	The	first	one	was	a
form	with	a	fieldset	element.	This	fieldset	element	contains	a	textbox,	a	label,	and	an
on-off	button.

The	last	thing	we	did	was	to	create	a	small	table	with	data	in	a	new	column.	For	these
columns,	we	used	the	class	col-m-4.	By	using	this	class,	the	div	instance	will	have	a
width	of	four	columns.	The	standard	Magento	backend	is	divided	into	12	columns,	so	four
columns	is	a	third	of	the	width	of	the	backend	page.

Adding	customer	attributes
In	some	cases,	it	could	be	that	we	need	extra	attributes	for	a	customer	like	we	did	for
products.	Because	a	customer	is	an	EAV	object,	it	is	possible	to	add	attributes	to	it,	but
there	is	no	interface	for	that	in	the	Community	Edition	of	Magento.	When	we	want	to	do
that,	we	need	to	install	the	attributes	by	code,	and	that’s	the	thing	that	we	will	do	in	this
recipe.	We	will	add	a	new	field	loyaltynumber	to	the	customer.

Getting	ready
To	add	a	customer	attribute,	we	need	to	create	an	installation	or	upgrade	script.	In	this
recipe,	we	will	create	a	new	module	that	will	install	the	attribute	with	the	installation
script	so	we	don’t	need	to	install	starter	files	in	Magento.

How	to	do	it…
In	the	following	steps,	we	will	create	a	small	module	that	adds	a	customer	attribute:

1.	 Create	a	module	Packt_CustomerAttribute	by	creating	a	file
app/code/Packt/CustomerAttribute/etc/module.xml	with	the	following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module/etc/module.

xsd">

				<module	name="Packt_CustomerAttribute"	setup_version="2.0.0">

								<sequence>

												<module	name="Magento_Customer"/>

								</sequence>

				</module>

</config>

2.	 In	app/code/Packt/HelloWorld/,	create	a	file	called	registration.php	with	the
following	content:

<?php

\Magento\Framework\Component\ComponentRegistrar::register(

				\Magento\Framework\Component\ComponentRegistrar::MODULE,

				'Packt_CustomerAttribute',

				__DIR__

);

3.	 Create	a	data	installation	script	by	creating	a	file
app/code/Packt/CustomerAttribute/Setup/InstallData.php	with	the	following
content:

<?php

namespace	Packt\CustomerAttribute\Setup;

use	Magento\Framework\Setup\InstallDataInterface;

use	Magento\Framework\Setup\ModuleContextInterface;

use	Magento\Framework\Setup\ModuleDataSetupInterface;

class	InstallData	implements	InstallDataInterface

{

				private	$customerSetupFactory;

				public	function	

__construct(\Magento\Customer\Setup\CustomerSetupFactory	

$customerSetupFactory)

				{

								$this->customerSetupFactory	=	$customerSetupFactory;

				}

				public	function	install(ModuleDataSetupInterface	$setup,	

ModuleContextInterface	$context)

				{

								/**	@var	CustomerSetup	$customerSetup	*/

								$customerSetup	=	$this->customerSetupFactory->create(['setup'	

=>	$setup]);

								$setup->startSetup();

								$customerSetup->addAttribute('customer',	'loyaltynumber',	[

												'label'	=>	'Loyaltynumber',

												'type'	=>	'static',

												'frontend_input'	=>	'text',

												'required'	=>	false,

												'visible'	=>	true,

												'position'	=>	105,

]);

								

								$loyaltyAttribute	=	$customerSetup->getEavConfig()-

>getAttribute('customer',	'loyaltynumber');

								

								$loyaltyAttribute->setData('used_in_forms',	

['adminhtml_customer']);

								$loyaltyAttribute->save();

								$setup->endSetup();

				}

}

4.	 To	add	the	attribute	to	the	backend,	we	have	to	create	a	ui_component	XML	file.
Create	a	file
app/code/Packt/CustomerAttribute/view/base/ui_component/customer_form.xml

with	the	following	content:

<?xml	version="1.0"	encoding="UTF-8"?>

<form	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Ui:etc/ui_con

figuration.xsd">

				<fieldset	name="customer">

								<field	name="loyaltynumber">

												<argument	name="data"	xsi:type="array">

																<item	name="config"	xsi:type="array">

																				<item	name="dataType"	xsi:type="string">text</item>

																				<item	name="formElement"	

xsi:type="string">input</item>

																				<item	name="source"	

xsi:type="string">customer</item>

																</item>

												</argument>

								</field>

				</fieldset>

</form>

5.	 To	install	the	attribute	in	the	database,	run	the	command	php	bin/magento
setup:upgrade.

6.	 In	the	backend,	create	a	new	customer.	You	will	see	the	Loyaltynumber	attribute	in
the	form	like	in	the	following	screenshot:

How	it	works…
We	started	to	create	a	simple	module	with	a	data	installation	script	like	we	did	in	Chapter
4,	Creating	a	Module,	and	Chapter	5,	Databases	and	Modules.

In	the	installation	script,	we	placed	some	code	that	installs	a	customer	attribute.	This
works	in	likely	the	same	way	as	adding	a	product	attribute.	The	main	difference	is	the	first
parameter	of	the	addAttribute()	function.

To	add	a	customer	attribute,	we	have	to	place	the	value	customer	in	that	parameter.	The
options	of	the	third	parameter	are	also	different	when	you	compare	it	with	a	product.

The	configuration	of	a	customer	attribute	is	saved	in	the	following	two	tables:

eav_attribute

customer_eav_attribute

In	the	table	eav_attribute,	the	generic	data	of	the	attribute,	such	as	the	entity	type	and
the	attribute	code,	is	saved.

In	the	table	customer_eav_attribute,	the	specific	data	for	a	customer	attribute,	such	as
the	position	and	validation	rules,	is	saved.

The	attribute	is	added	to	the	database	with	the	addAttribute()	function.	To	add	the
attribute	to	the	customer	form,	we	have	to	save	that	configuration	in	the	database	with	the
following	code:

$loyaltyAttribute->setData('used_in_forms',	['adminhtml_customer']);

With	the	preceding	code,	the	attribute	will	be	linked	to	the	adminhtml_customer	form.
This	is	the	customer	form	of	the	backend.

Another	required	step	is	to	add	the	attribute	in	the	ui_component	XML	configuration.	This
configuration	works	like	the	layout	XML	files.	This	layout	XML	file	works	as	a	layout
handle.	When	you	look	in	the	file
app/code/Magento/Customer/view/adminhtml/layout/customer_index_edit.xml,	you
will	see	the	following	code	that	initializes	the	layout	update	of	the	ui_component:

<uiComponent	name="customer_form"/>

With	our	custom	customer_form	UI	component,	we	extended	the	fields	of	the	customer
entity.

Working	with	source	models
Magento	works	with	a	lot	of	dropdown	fields	that	you	can	select	in	the	forms	of	the
application.	We	can	see	dropdowns	in	the	configuration,	product,	customer,	and	many
more	pages.

Magento	has	a	system	to	set	the	options	of	the	dropdown	and	multiselect	fields.	Magento
uses	a	model	that	returns	the	values	and	labels	to	render	the	options	of	a	dropdown	or
multiselect	field.	These	models	are	called	source	models.

In	this	recipe,	we	will	see	which	source	models	Magento	uses	and	how	we	can	create	a
custom	source	model	for	a	custom	configuration	field.

Getting	ready
In	this	recipe,	we	will	extend	the	Packt_HelloWorld	module	that	we	created	in	the
previous	recipes.	Make	sure	you	have	the	right	version	installed	for	this	recipe.

How	to	do	it…
The	following	steps	describe	how	you	can	create	your	custom	source	models	for	your
custom	form	fields:

1.	 First	we	will	create	an	extra	field	in	the	system	configuration	to	run	some	tests.	The
following	code	adds	a	new	field	to	the	HelloWorld	configuration	page.	Add	it	to	the
file	app/code/Packt/HelloWorld/etc/adminhtml/system.xml	as	a	child	of	the
<group	id="hellopage"	translate="label"	type="text"	sortOrder="1"

showInDefault="1"	showInWebsite="1"	showInStore="1">	tag.

<field	id="source_model_test"	translate="label"	type="text"	

sortOrder="30"	showInDefault="1"	showInWebsite="1"	showInStore="1">

				<label>Source	model	test</label>

</field>

2.	 In	the	backend,	open	Stores	|	Configuration	|	Packt	|	HelloWorld.	You	will	see	a
new	text	field	called	Source	model	test.

3.	 If	we	want	to	change	that	field	to	a	dropdown,	we	have	to	change	the	type	attribute
to	select	like	in	the	following	code	snippet:

<field	id="source_model_test"	translate="label"	type="select"	

sortOrder="30"	showInDefault="1"	showInWebsite="1"	showInStore="1">

				<label>Source	model	test</label>

</field>

4.	 Clean	the	cache	and	reload	the	page.	You	will	now	see	a	field	with	an	empty
dropdown.

5.	 To	add	options	to	the	dropdown,	we	have	to	specify	a	source	model.	We	can	do	this
by	adding	the	<source_model>	tag	as	in	the	following	code:

<field	id="source_model_test"	translate="label"	type="select"	

sortOrder="30"	showInDefault="1"	showInWebsite="1"	showInStore="1">

				<label>Source	model	test</label>

				

<source_model>Magento\Config\Model\Config\Source\Locale</source_model>

</field>

6.	 If	we	want	to	create	a	custom	source	model,	we	have	to	create	a	custom	model	class.
Create	a	file	app/code/Packt/HelloWorld/Model/Config/Source/Relation.php
with	the	following	content:

<?php

namespace	Packt\HelloWorld\Model\Config\Source;

class	Relation	implements	\Magento\Framework\Option\ArrayInterface

{

				public	function	toOptionArray()

				{

								return	[

												[

																'value'	=>	null,	

																'label'	=>	__('--Please	Select--')

],

												[

																'value'	=>	'bronze',	

																'label'	=>	__('Bronze')

],

												[

																'value'	=>	'silver',

																'label'	=>	__('Silver')

],

												[

																'value'	=>	'gold',

																'label'	=>	__('Gold')

],

];

				}

}

7.	 To	assign	the	previously	created	source	model	to	the	test	configuration	field,	we	have
to	change	the	line	<source_model>	in	the	system.xml	file.	Change	it	to	the
following:

<source_model>Packt\HelloWorld\Model\Config\Source\Relation</source_mod

el>

8.	 Clean	your	cache	and	you	will	see	that	the	options	of	the	field	are	changed	based	on
the	output	from	the	source	model.	You	can	see	this	in	the	following	screenshot:

How	it	works…
A	source	model	is	a	model	instance	with	a	toOptionArray()	function.	This	function
returns	an	array	with	all	the	items	of	the	source	array.	This	array	has	the	following	format:

[

				'value'	=>	'0',

				'label'	=>	'Label	option	0'

],

[

				'value'	=>	'1',

				'label'	=>	'Label	option	1'

]

The	value	key	is	the	value	of	the	<option>	element	in	the	dropdown	list.	The	label	key	is
the	text	that	appears	in	the	dropdown	list.

In	this	recipe,	we	configured	a	source	model	for	a	configuration	field.	We	can	also	use
source	models	in	the	following	cases:

A	product	attribute	in	the	backend
A	customer	attribute	in	the	backend
Dropdown	filters	in	backend	grids
Magento	forms	in	the	frontend	and	backend	(like	the	country	dropdown	at	checkout
and	so	on)

The	configuration	of	the	source	model	is	mostly	done	in	the	XML	configuration	of	the
field.	For	EAV	fields,	the	information	of	the	source	model	is	stored	in	the	attribute
configuration,	which	is	stored	in	the	database.

When	a	dropdown	field	or	multiselect	field	is	saved,	it	is	always	saved	in	a	single	field	of
the	database.	If	a	field	is	a	dropdown,	the	value	will	be	stored	for	that	field.	When	the	field
is	a	multiselect	field,	a	comma-separated	list	of	the	selected	values	will	be	saved	in	that
field.

Chapter	7.	Event	Handlers	and	Cronjobs
In	this	chapter,	we	will	cover	the	following	topics:

Understanding	event	types
Creating	your	own	event
Adding	an	event	observer
Introducing	cronjobs
Creating	and	testing	a	new	cronjob

Introduction
In	the	Magento	application,	there	are	a	lot	of	events	that	happen	when	visitors	are
browsing	through	your	website.	The	visitor	can	add	something	to	the	cart,	log	in,	create	an
order,	and	do	a	lot	more.

Magento	has	an	event	system	that	fires	events	when	some	actions	happens	in	your	shop.
With	a	configuration,	it	is	possible	to	execute	some	code	when	an	event	occurs.	It’s	like
hooking	into	a	click	event	in	JavaScript.

The	observer	design	pattern	is	used	to	implement	the	event	handling	system.	When	an
event	is	triggered,	Magento	looks	for	event	observers	that	hook	into	that	event	and	execute
the	right	method	that	is	configured	for	that	event	handler.

Another	similar	system	in	Magento	is	a	cronjob.	In	the	configuration,	you	can	create	a
cronjob	that	will	be	executed	on	a	specific	timestamp.	When	it	is	the	right	time,	Magento
will	execute	the	code	that	is	configured	for	that	cronjob.

In	this	chapter,	we	will	explore	the	possibilities	of	using	these	two	systems	(Event
handlers	and	cronjobs).

Understanding	event	types
Working	with	event	types	is	better	than	overwriting	a	function	with	dependency	injection.
When	analyzing	a	process,	it	is	good	to	think	about	how	you	can	solve	your	problem.	It	is
better	to	execute	extra	code	instead	of	rewriting	the	standard	functions	of	Magento.

With	events,	it	is	possible	to	execute	code	when	something	happens,	but	before	we	can	do
that,	we	have	to	know	which	events	are	available,	when	they	are	dispatched,	and	which
parameters	are	available.

Getting	ready
In	this	recipe,	we	will	debug	the	events	that	are	fired	in	Magento.	Ensure	that	you	have
access	to	the	command	line	because	we	will	debug	using	the	Magento	log	files.

How	to	do	it…
The	following	steps	describe	how	we	can	create	a	list	from	the	dispatched	events	in	a
Magento	request:

1.	 Magento	events	are	dispatched	using	the	dispatch()	method	of	the	eventManager
interface.	When	we	want	to	debug	this	function,	we	have	to	modify	the
Magento\Framework\Event\Manager	class.	The	first	thing	to	do	is	to	enable	the
logger	interface.	Create	the	$_logger	variable	in	the
lib/internal/Magento/Framework/Event/Manager.php	file,	as	shown	by	the
highlighted	code.

...	

protected	$_eventConfig;

/**

	*	Logger	interface

	*	@var	\Psr\Log\LoggerInterface	$logger

	*/

protected	$_logger;

/**

	*	@param	InvokerInterface	$invoker

	*	@param	ConfigInterface	$eventConfig

	*/

public	function	__construct(InvokerInterface	$invoker,	ConfigInterface	

$eventConfig)	{

		$this->_invoker	=	$invoker;

...

Note
If	you	have	installed	Magento	with	composer,	you	will	have	to	edit	the
vendor/magento/framework/Event/Manager.php	file.

2.	 Add	the	logger	interface	to	the	constructor	and	initialize	the	parameter	that	we	have
just	created.	Replace	the	constructor	of	that	class	with	the	following	code:

/**

	*	@param	InvokerInterface	$invoker

	*	@param	ConfigInterface	$eventConfig

	*	@param	\Psr\Log\LoggerInterface	$logger

	*/

public	function	__construct(InvokerInterface	$invoker,	ConfigInterface	

$eventConfig,	\Psr\Log\LoggerInterface	$logger)	{

		$this->_invoker	=	$invoker;

		$this->_eventConfig	=	$eventConfig;

		$this->_logger	=	$logger;

}

3.	 In	the	same	class,	go	to	the	dispatch()	function.	In	the	first	line,	we	will	add	a	log
statement	to	print	the	event	name	in	the	log	file	when	an	event	is	fired.	Add	the
highlighted	line	of	code	to	that	function:

public	function	dispatch($eventName,	array	$data	=	[])	{

		$this->_logger->debug($eventName);

		\Magento\Framework\Profiler::start('EVENT:'	.	$eventName,	['group'	=>	

'EVENT',	'name'	=>	$eventName]);

		foreach	($this->_eventConfig->getObservers($eventName)	as	

$observerConfig)	{

				$event	=	new	\Magento\Framework\Event($data);

				$event->setName($eventName);

				$wrapper	=	new	Observer();

				$wrapper->setData(array_merge(['event'	=>	$event],	$data));

				\Magento\Framework\Profiler::start('OBSERVER:'	.	

$observerConfig['name']);

...

4.	 Take	a	look	at	the	log	file	that	you	can	find	in	the	var/log/debug.log	folder.	Using
the	tail	-f	command,	you	can	see	what	text	will	be	added	to	that	file.	In	your
Magento	installation,	change	the	directory	to	Magento	root	and	run	the	following
command:

tail	-f	var/log/debug.log

5.	 When	you	load	a	page,	you	will	see	a	lot	of	output	in	the	log	file	as	shown	in	the
following	screenshot.	These	are	all	the	events	that	are	dispatched	when	loading	a
page:

6.	 Enough	debugging	for	now.	It	is	time	to	revert	the
lib/internal/Magento/Framework/Event/Manager.php	file.	Undo	your	changes,	or
if	you	use	Git,	you	can	use	the	git	checkout
lib/internal/Magento/Framework/Event/Manager.php	command	to	undo	the	local
changes	in	that	file.

How	it	works…
In	this	recipe,	we	used	the	Magento	debug	logger	to	print	the	names	of	the	fired	events.
This	is	an	alternative	for	printing	the	names	directly	in	the	browser.	The	main	advantage
of	this	method	is	that	the	debug	messages	doesn’t	affect	the	output	of	your	browser.

If	you	are	aware	about	the	system	of	Magento	1,	you	will	notice	that	logging	in	Magento	2
is	changed.	In	Magento	1,	we	had	the	Mage::log()	function,	but	this	function	doesn’t
exist	in	Magento	2.	In	Magento	2,	we	have	to	use	the	logger	interface	that	we	initialize	in
the	constructor	of	a	class.

To	debug	the	event	names,	we	used	the	debug()	function	of	the	logger	interface	that
writes	a	message	to	the	var/log/debug.log	file.	In	the	logger	interface,	the	following
functions	are	available:

alert()

critical()

debug()

emergency()

error()

info()

log()

notice()

warning()

The	debug()	function	writes	to	the	var/log/debug.log	file,	and	the	exception()
function	writes	to	the	var/log/exception.log	file.	The	other	functions	write	to
var/log/system.log.

We	placed	the	log	statement	in	the	dispatch()	function	of	the
lib/internal/Magento/Framework/Event/Manager.php	class.	This	function	is	called
every	time	an	event	is	dispatched.	By	logging	the	name,	we	can	see	all	the	events	that	are
called	in	a	Magento	request.

On	all	these	events,	we	can	write	hooks	that	execute	the	code	when	an	event	is	dispatched.
As	you	can	see,	this	function	doesn’t	return	something	to	the	parent,	so	it	is	not	possible	to
send	data	back	to	the	initiator	of	the	event.	However,	you	can	modify	the	objects	that	are
sent	with	the	event.

For	debugging	purposes,	we	modified	a	core	class	of	Magento.	At	the	end,	we	reverted	the
class	to	the	original	code.	Modifying	the	core	of	Magento	is	not	recommended,	but	for
debugging,	you	can	do	it	if	you	revert	your	code	when	the	debugging	is	done.

See	also
Magento	2	is	currently	new	and	does	not	have	a	lot	of	documentation,	but	you	can	find
more	information	about	some	of	the	available	events	in	Magento	2	at
http://cyrillschumacher.com/magento2-list-of-all-dispatched-events/.

http://cyrillschumacher.com/magento2-list-of-all-dispatched-events/

Creating	your	own	event
When	we	create	our	own	event,	we	have	to	dispatch	it	with	a	custom	name.	In	this	recipe,
you	will	learn	how	events	are	dispatched	and	what	we	can	do	with	parameters	that	are	sent
with	the	event.

Getting	ready
We	will	create	an	event	that	is	fired	when	a	visitor	opens	the	/helloworld/index/event
page.

The	code	in	this	recipe	builds	further	on	the	Packt_HelloWorld	module	that	we	created	in
Chapter	4,	Creating	a	Module,	Chapter	5,	Databases	and	Modules	and	Chapter	6,
Magento	Backend.	Ensure	that	you	have	installed	the	start	files.

How	to	do	it…
The	following	steps	describe	how	we	can	dispatch	our	own	event:

1.	 First,	we	will	create	the	event	page.	For	this,	we	need	a	controller	action.	Create	the
app/code/Packt/HelloWorld/Controller/Index/Event.php	file	with	the	following
content:

<?php

namespace	Packt\HelloWorld\Controller\Index;

class	Event	extends	\Magento\Framework\App\Action\Action	{

		/**	@var	\Magento\Framework\View\Result\PageFactory		*/

		protected	$resultPageFactory;

		public	function	__construct(

				\Magento\Framework\App\Action\Context	$context,

				\Magento\Framework\View\Result\PageFactory	$resultPageFactory

)	{

				$this->resultPageFactory	=	$resultPageFactory;

				parent::__construct($context);

		}

		public	function	execute()	{

				$resultPage	=	$this->resultPageFactory->create();

				return	$resultPage;

		}

}

2.	 Clean	the	cache	and	navigate	to	the	/helloworld/index/event	page.	You	will	see	a
Magento	page	without	any	content.

3.	 When	we	want	to	dispatch	an	event	on	the	pageview,	we	have	to	add	the	highlighted
code	in	the	execute()	action:

public	function	execute()	{

		$resultPage	=	$this->resultPageFactory->create();

		$this->_eventManager->dispatch('helloworld_register_visit');

		return	$resultPage;

}

4.	 It	is	also	possible	to	send	some	parameters	with	the	event.	We	will	send	a	product	and
category	with	the	event.	To	send	the	event,	we	have	to	pass	the	following	key-value
array	to	the	event:

public	function	execute()	{

		$resultPage	=	$this->resultPageFactory->create();

		$parameters	=	[

				'product'	=>	$this->_objectManager-

>create('Magento\Catalog\Model\Product')->load(50),

				'category'	=>	$this->_objectManager-

>create('Magento\Catalog\Model\Product')->load(10),

];

		$this->_eventManager->dispatch('helloworld_register_visit',	

$parameters);

		return	$resultPage;

}

Note
Ensure	that	the	product	ID	and	category	ID	exists	in	your	installation.	If	not,	you	can
choose	another	ID	that	exists	in	your	installation.

How	it	works…
The	dispatch()	function	of	the	eventManager	method	fires	an	event	in	Magento.	The
event	manager	is	created	in	the	construct	of	the	controller	class	(in	this	example,	it	is	the
controller	action)	and	stored	in	the	$_eventManager	variable.	This	is	an	instance	of	the
\Magento\Framework\Event\ManagerInterface	class.

When	this	function	is	fired,	Magento	will	look	into	the	configuration	to	see	which	event
listeners	are	watching	for	that	event.	If	there	are	matching	listeners,	Magento	will	execute
the	code	of	the	observer.

Adding	an	event	observer
If	you	read	the	previous	recipe,	you	know	how	to	fire	an	event	using	the	dispatch()
function.	In	this	recipe,	you	will	learn	how	to	execute	some	code	when	an	event	is
dispatched	and	what	we	can	do	with	it.

Getting	ready
In	this	recipe,	we	will	add	two	event	observers.	The	first	one	will	catch	the	event	that	we
created	in	the	previous	recipe.	The	second	event	listener	(observer)	will	hook	into	the	add
to	cart	action	of	a	product.

In	this	recipe,	we	will	work	further	on	the	Packt_HelloWorld	module	from	the	previous
recipes.	Ensure	that	you	have	the	right	code	files	installed	for	this	recipe.

How	to	do	it…
In	this	tutorial,	you	will	discover	how	to	listen	for	an	event	and	execute	your	code	by
performing	these	steps:

1.	 When	we	want	to	add	an	event	observer	for	the	helloworld_register_visit	event,
we	have	to	add	the	following	configuration	to	the
app/code/Packt/HelloWorld/etc/events.xml	file	with	the	following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Event/etc/events.x

sd">

		<event	name="helloworld_register_visit">

				<observer	name="register_helloworld_visit"	

instance="Packt\HelloWorld\Observer\RegisterVisitObserver"	/>

		</event>

</config>

2.	 The	configuration	of	the	previous	file	executes	the	registerVisit()	function	in	the
Packt\HelloWorld\Observer\RegisterVisitObserver	class.	To	create	this	class,
we	have	to	add	the	app/code/Packt/HelloWorld/Model/Observer.php	file	with	the
following	content:

<?php

namespace	Packt\HelloWorld\Observer;

use	Magento\Framework\Event\ObserverInterface;

class	RegisterVisitObserver	implements	ObserverInterface

{

				/**	@var	\Psr\Log\LoggerInterface	$logger	*/

				protected	$logger;

				

				public	function	__construct(\Psr\Log\LoggerInterface	$logger)

				{

								$this->logger	=	$logger;

				}

				

				public	function	execute(\Magento\Framework\Event\Observer	

$observer)

				{

								$this->logger->debug('Registered');

				}

}

3.	 Now,	it	is	time	to	test	our	event.	Clean	the	cache	and	open	your	terminal	and	execute
the	tail	-f	var/log/debug.log	command	in	your	Magento	root.	When	you	load
the	/helloworld/index/event	page,	you	will	see	that	the	Registered	message
appears	in	the	log	file.

4.	 Let’s	look	at	the	parameters	that	are	sent	with	the	event.	These	parameters	are	stored
in	the	$observer	variable	that	is	passed	to	the	execute()	method.	Add	the	following

code	to	this	method	to	debug	the	product	and	category	that	is	passed	to	that	event:

public	function	execute(\Magento\Framework\Event\Observer	$observer)

{

		$product	=	$observer->getProduct();

		$category	=	$observer->getCategory();

		

		$this->logger->debug(print_r($product->debug(),	true));

		$this->logger->debug(print_r($category->debug(),	true));

}

5.	 When	you	reload	the	/helloworld/index/event	page,	you	will	see	that	a	dump	of
products	and	categories	appears	in	the	log	file.

Tip
When	nothing	appears	in	your	log	file,	it	is	possible	that	your	full	page	cache	is
active.	If	this	is	so,	you	can	disable	it	and	flush	the	cache	after	disabling	it.	You	can
also	flush	the	cache	each	time	you	are	testing.

6.	 For	the	next	part,	we	will	hook	into	the	add	to	cart	event.	When	a	user	adds	a
product	to	the	cart,	we	need	to	check	that	the	quantity	is	odd.	If	not,	we	will	have	to
show	an	error	message	that	the	product	can’t	be	added	to	the	cart.

7.	 We	can	do	this	by	creating	an	event	observer	for	the
checkout_cart_product_add_after	event.	To	create	an	event	listener	for	this	event,
add	the	following	code	in	the
app/code/Packt/HelloWorld/etc/frontend/events.xml	file:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Event/etc/events.x

sd">

				<event	name="checkout_cart_product_add_after">

								<observer	name="check_cart_qty"	

instance="Packt\HelloWorld\Observer\CheckCartQtyObserver"	/>

				</event>

</config>

8.	 Create	the	app/code/Packt/HelloWorld/Observer/CheckCartQtyObserver.php	file
with	the	following	content:

<?php

namespace	Packt\HelloWorld\Observer;

use	Magento\Framework\Event\ObserverInterface;

class	CheckCartQtyObserver	implements	ObserverInterface

{

				public	function	execute(\Magento\Framework\Event\Observer	

$observer)

				{

								if	($observer->getProduct()->getQty()	%2	!=	0)	{

												//Odd	qty

												throw	new	\Exception('Qty	must	be	even');

								}

				}

}

9.	 Clean	the	cache	and	try	to	add	something	to	the	cart	with	an	even	and	odd	quantity.
You	will	see	that	an	error	occurs	when	you	add	an	odd	quantity.	When	you	add	an
even	quantity.

How	it	works…
Event	listeners	are	configured	in	the	events.xml	file.	When	we	look	at	the	structure	of	the
XML	file,	we	can	say	the	following	things	about	tags	and	attributes	when	we	have	the
following	code:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Event/etc/events.xsd">

				<event	name="checkout_cart_product_add_after">

								<observer	name="check_cart_qty"	

instance="Packt\HelloWorld\Observer\CheckCartQtyObserver"	/>

				</event>

</config>

The	root	tag	is	the	<config>	tag.	This	tag	can	have	one	or	more	<event>	subtags.

The	<event>	subtag	defines	a	new	event	observer.	With	the	name	attribute,	we	configure
the	name	of	the	event	that	will	be	observed.	In	this	recipe,	we	used	the
checkout_cart_product_add_after	event	to	check	the	quantity.	This	event	is	dispatched
in	the	app/code/Magento/Checkout/Model/Cart.php	file.

The	<event>	tag	can	have	one	or	more	<observer>	subtags.	With	this	tag,	we	configure
the	event	observer.	The	name	attribute	is	the	name	of	the	observer.	This	name	must	be
unique.	The	instance	attribute	is	the	class	that	will	be	called.

For	the	previous	example,	this	means:

The	checkout_cart_product_add_after	event	will	be	observed
The	name	of	the	observer	is	check_cart_qty
The	execute()	method	will	be	executed	from	the	class
Packt\HelloWorld\Observer\CheckCartQtyObserver

With	an	event	observer,	there	is	one	object	passed	that	contains	an	array	of	data	that	is	sent
with	the	event	in	the	dispatch()	function.

In	the	previous	recipe,	we	dispatched	an	event	called	helloworld_register_visit.	With
that	dispatch,	we	added	a	product	and	category	to	that	event.

In	this	recipe,	we	extracted	a	product	and	category	from	the	$observer	parameter,	which
is	the	first	argument	of	the	observed	event	function.

Introducing	cronjobs
Cronjobs,	or	scheduled	tasks,	are	background	processes	that	keep	your	Magento	webshop
running	by	automating	some	tasks.	Some	examples	of	cronjobs	are	as	follows:

Sending	newsletters
Recalculating	catalog	promotion	rules
Cleaning	visitor	logs
Sending	price	and	stock	alert	e-mails
Updating	currency	rates

When	the	Magento	cron	is	not	configured	correctly,	you	will	see	that	some	features	of
your	Magento	shop	will	not	work	as	expected.

Getting	ready
In	this	recipe,	you	will	learn	how	you	can	configure	cronjobs	on	the	server	and	how	you
can	verify	that	they	are	working.	Open	your	SSH	client	and	change	to	the	Magento	folder.

How	to	do	it…
Using	the	following	steps,	we	will	configure	cronjobs	on	the	server:

1.	 The	Magento	cron	needs	to	be	executed	on	periodic	timestamps,	for	example,	every
five	minutes.	To	run	the	crons,	the	following	command	is	used:

php	bin/magento	cron:run

Tip
To	avoid	permission	problems,	you	have	to	run	this	command	as	the	user	that	Apache
uses	to	serve	HTTP	requests.	On	a	basic	apache	setup,	this	user	is	www-data,	but	this
can	be	different	on	other	setups.

2.	 When	you	execute	the	previous	command,	the	cronjob	table,	cron_schedule,	is
updated	with	the	recent	cronjobs.	When	you	run	the	following	command	in	your
database	client,	you	can	see	the	content	of	that	table:

SELECT	*	FROM	cron_schedule;

This	query	gives	the	following	output:

3.	 In	the	scheduled_at	column,	we	can	see	when	the	cronjob	is	planned	to	run.	Run	the
last	command	again	after	a	minute.	Magento	will	run	the	cronjobs	where	the
scheduled_at	time	is	in	the	past	and	the	status	is	pending.	The	content	of	the
cron_schedule	table	will	look	as	follows:

4.	 When	we	want	to	configure	that	the	cron	command	will	be	executed	every	minute,
we	have	to	use	the	crontab	file	of	the	Linux	server.	First,	switch	to	the	www	user	of
your	project.	For	a	standard	Apache	2	webserver,	it	is	www-data.	We	can	change	the
user	with	the	following	command:

sudo	su	www-data

5.	 The	next	thing	to	do	is	to	open	the	crontab	file.	We	can	do	this	by	running	the
crontab	-e	command.	This	will	open	a	file	where	we	have	to	put	the	content,	as
shown	in	the	following	screenshot:

6.	 Save	the	file	and	your	cronjob	will	run	after	every	minute.

How	it	works…
The	Magento	cron	will	be	executed	with	the	Magento	2	command-line	tool.	The	command
to	run	the	cron	(the	cron.sh	script	in	Magento	1)	is	as	follows:

php	bin/magento	cron:run

This	will	start	the	Magento	cron	process.	The	cron	command	will	execute	the	PHP	code
over	the	Command	Line	Interface	(CLI).	This	means	that	the	php-cli	settings	are	used
to	execute	the	cronjobs	instead	of	the	apache	PHP	settings	that	are	used	by	apache.

When	the	cron	process	is	initialized,	Magento	looks	at	the	cron_schedule	table.	Every
scheduled	cronjob	with	the	scheduled_at	field	in	the	past	and	with	the	status	pending
will	be	executed.	When	a	job	starts,	the	executed_at	field	will	be	updated	with	the	current
timestamp	and	the	status	will	be	changed.

When	a	job	is	finished,	the	finished_at	field	is	updated	with	the	current	timestamp.	Also,
the	status	will	be	updated.	When	the	status	is	an	error,	the	message	field	will	be	updated
with	the	error	message.

When	the	process	is	finished,	Magento	will	create	a	queue	for	the	next	period.	Based	on
the	configuration	files,	Magento	knows	when	it	has	to	schedule	each	cronjob.

Creating	and	testing	a	new	cronjob
In	Magento	2,	cronjobs	are	defined	in	the	crontab.xml	file	of	each	module.	Like	every
configuration	in	the	Magento	modules,	the	configuration	of	the	cronjobs	is	easy	to	extend
in	custom	modules.	And	that’s	what	we	will	do	in	this	recipe.	We	will	create	a	new
cronjob	for	our	module.

Testing	a	cronjob	is	a	bit	tricky.	You	can	wait	while	the	cron	will	is	executed,	but	in	this
recipe,	we	will	see	how	we	can	trigger	it	for	development	purposes.

Getting	ready
The	workflow	to	create	a	new	cronjob	is	mostly	the	same	as	working	with	event
observers.	We	have	to	configure	a	new	cronjob	that	will	start	a	function	in	a	configured
class.

For	the	creation	of	a	new	cronjob,	we	will	use	the	existing	Packt_HelloWorld	module.
Make	sure	you	have	the	latest	version	installed.

How	to	do	it…
In	the	next	steps,	we	will	create	the	configuration	for	a	new	cronjob:

1.	 The	first	thing	is	to	create	the	configuration	file.	Create	the
app/code/Packt/HelloWorld/etc/crontab.xml	file	with	the	following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Cron:etc/cron

tab.xsd">

		<group	id="default">

				<job	name="helloworld_check_subscriptions"	

instance="Packt\HelloWorld\Model\Cron"	method="checkSubscriptions">

				<schedule>*	*	*	*	*</schedule>

				</job>

		</group>

</config>

2.	 The	next	thing	is	to	create	the	cron	class	with	the	function	that	will	be	executed.
Create	the	app/code/Packt/HelloWorld/Model/Cron.php	file	with	the	following
content:

<?php

namespace	Packt\HelloWorld\Model;

class	Cron	{

		/**	@var	\Psr\Log\LoggerInterface	$logger	*/

		protected	$logger;

		/**	@var	\Magento\Framework\ObjectManagerInterface	*/

		protected	$objectManager;

		public	function	__construct(

				\Psr\Log\LoggerInterface	

$logger,\Magento\Framework\ObjectManagerInterface$objectManager

)	{

				$this->logger	=	$logger;

				$this->objectManager	=	$objectManager;

		}

		public	function	checkSubscriptions()	{

				$subscription	=	$this->objectManager-

>create(''Packt\HelloWorld\Model\Subscription'');

				$subscription->setFirstname(''Cron'');

				$subscription->setLastname(''Job'');

				$subscription->setEmail(''cron.job@example.com'');

				$subscription->setMessage(''Created	from	cron'');

				$subscription->save();

				$this->logger->debug(''Test	subscription	added'');

		}

}

3.	 When	we	want	to	test	our	cronjob,	we	can	create	a	cron	group	to	run	the	test	with.	To
create	a	cron	group,	we	have	to	create	the
app/code/Packt/HelloWorld/etc/cron_groups.xml	file	with	the	following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Cron:etc/cron

_groups.xsd">

		<group	id="packt">

				<schedule_generate_every>1</schedule_generate_every>

				<schedule_ahead_for>4</schedule_ahead_for>

				<schedule_lifetime>2</schedule_lifetime>

				<history_cleanup_every>10</history_cleanup_every>

				<history_success_lifetime>60</history_success_lifetime>

				<history_failure_lifetime>600</history_failure_lifetime>

				<use_separate_process>1</use_separate_process>

		</group>

</config>

4.	 The	next	thing	to	do	is	to	link	the	cronjob	to	the	group.	In	the
app/code/Packt/HelloWorld/etc/crontab.xml	file,	change	the	id	attribute	of	the
<group>	tag	to	the	following:

<group	id="packt">

5.	 Clean	the	cache	and	run	the	following	command:

php	bin/magento	cron:run	--group="packt"

6.	 When	you	look	at	the	contents	of	the	cron_schedule	table,	you	can	see	that	a	new
pending	job	is	added.	The	job_code	instance	of	this	is
helloworld_check_subscriptions	as	we	have	configured	in	the	crontab.xml	file.

7.	 Run	the	same	command	again	and	the	job	will	be	executed.	When	you	look	into	the
var/log/debug.log	file,	you	will	see	that	the	Test	subscription	added	message	is
logged	at	the	end	of	the	file.

8.	 When	we	look	at	the	subscriptions	table	in	the	backend	of	Magento	(Marketing	|
HelloWorld	|	Subscriptions),	we	see	that	a	new	subscription	with	name	Cron	Job	is
added.

9.	 Now,	we	know	that	the	cronjob	is	working.	To	finish	it,	we	can	add	the	job	to	the
default	group	and	schedule	it	in	such	a	way	that	it	runs	every	night	at	2:30	a.m.	For
this,	we	have	to	change	the	highlighted	lines	of	code	from	the
app/code/Packt/HelloWorld/etc/crontab.xml:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Cron:etc/cron

tab.xsd">

		<group	id="default">

				<job	name="helloworld_check_subscriptions"	

instance="Packt\HelloWorld\Model\Cron"	method="checkSubscriptions">

				<schedule>30	2	*	*	*</schedule>

				</job>

		</group>

</config>

10.	 Clean	the	cache	and	your	cron	will	run	in	the	default	group.	The	job	will	be
scheduled	for	2:30	a.m.

How	it	works…
Cronjobs	are	always	configured	in	the	crontab.xml	file.	Like	in	Magento	1,	a	cronjob	has
a	name	with	a	class	and	method	that	will	be	executed.	For	every	cronjob,	you	have	to	give
a	schedule	in	the	cron	time	format	to	specify	the	interval.

Tip
The	name	of	a	cronjob	is	always	written	using	lowercase	and	underscores.

Another	new	thing	in	Magento	2	is	that	you	need	to	associate	a	cronjob	to	a	group.	A
group	is	always	specified	in	the	cron_groups.xml	file.	By	default,	Magento	2	has	the
following	cron	groups:

default

index

In	a	cron	group,	you	can	specify	settings	for	how	crons	will	be	handled	in	the
cron_schedule	table.	You	can	make	settings,	such	as	the	lifetime	of	errors,	cleanup,	and
schedule.	For	the	development	group,	we	used	a	setting	that	always	schedules	a	new
cronjob	when	the	previous	cronjob	is	executed.

You	have	two	advantages	when	you	use	a	cron	group	for	development	stuff.

The	first	one	is	that	you	can	use	specific	settings	about	the	scheduling	of	the	cronjob.	The
second	one	is	that	you	can	use	the	cron	command	to	run	only	the	cronjobs	of	a	specific
group.

With	the	--group	parameter,	you	can	specify	the	group	for	which	the	jobs	need	to	be
executed	and	scheduled.	When	this	parameter	is	empty,	all	the	groups	will	be	executed
and	scheduled.

In	every	cronjob	tag	(the	<job>	tag),	there	is	a	<schedule>	subtag.	In	this	subtag,	you	can
configure	the	interval	of	the	cronjob.	This	configuration	contains	five	parameters	that
represent	the	following	configurations:

Minute
Hour
Day
Month
Year

When	you	have	a	configuration	like	0	10	*	*	*,	this	means	that	this	cron	runs	at	minute
0,	hour	10,	all	days,	all	months,	all	years.	So	the	time	at	which	this	runs	is	at	10	a.m.

Chapter	8.	Creating	a	Shipping	Module
In	this	chapter,	we	will	cover:

Initializing	module	configurations
Writing	an	adapter	model
Extending	the	shipping	method	features
Adding	the	module	in	the	frontend

Introduction
Shipping	the	ordered	products	to	the	customers	is	one	of	the	key	parts	of	the	e-commerce
flow.	In	most	cases,	a	store	owner	has	a	contract	with	a	shipping	handler,	and	every
shipping	handler	has	their	own	business	rules.

In	Magento	2,	the	following	shipping	handlers	have	an	extension:

DHL
FedEx
UPS
USPS

If	your	handler	is	not	on	this	list,	check	whether	your	shipping	handler	has	a	Magento
module.	If	not,	you	can	configure	a	standard	shipping	method	or	you	can	create	your	own
shipping	method,	as	you	will	learn	to	do	in	this	chapter.

Initializing	module	configurations
In	Chapter	4,	Creating	a	Module,	you	learned	how	to	create	a	custom	module.	In	this
recipe,	we	will	create	a	new	module	where	we	will	add	the	required	settings	for	a	shipping
module.

In	the	later	recipes	of	this	chapter,	we	will	extend	this	module	with	more	shipping
features.

Getting	ready
Open	your	IDE	with	the	Magento	2	project.	We	will	also	need	the	backend,	where	we	will
check	some	configurations.

How	to	do	it…
The	following	steps	describe	how	we	can	create	the	configuration	for	a	shipping	module:

1.	 First,	we	have	to	create	the	following	folders:

app/code/Packt/

app/code/Packt/Shipme/

app/code/Packt/Shipme/etc/

app/code/Packt/Shipme/Model/

app/code/Packt/Shipme/Model/Carrier/

2.	 Create	a	module.xml	file	in	the	app/code/Packt/Shipme/etc/	folder	with	the
following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module/etc/module.

xsd">

		<module	name="Packt_Shipme"	setup_version="2.0.0">

				<sequence>

						<module	name="Magento_Shipping"/>

				</sequence>

		</module>

</config>

3.	 Create	a	registration.php	file	in	the	app/code/Packt/Shipme/	folder	with	the
following	content:

<?php

\Magento\Framework\Component\ComponentRegistrar::register(

		\Magento\Framework\Component\ComponentRegistrar::MODULE,

		'Packt_Shipme',

		__DIR__

);

4.	 With	this	file,	we	can	install	the	module	by	running	the	php	bin/magento
setup:upgrade	command.

5.	 To	check	that	the	module	is	active,	open	the	backend	and	navigate	to	Stores	|
Configuration	|	Advanced	|	Advanced	and	check	whether	Packt_Shipme	is	in	the
list	and	is	enabled.

6.	 At	this	point,	the	module	is	initialized	and	active.	We	can	now	create	a	system.xml
file	in	the	app/code/Packt/Shipme/etc/adminhtml/	folder.

7.	 When	the	previous	file	is	created,	add	the	following	content	to	it.	This	will	create	the
shipping	configuration	parameters	near	all	the	other	shipping	methods:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Config:etc/sy

stem_file.xsd">

		<system>

				<section	id="carriers">

						<group	id="shipme"	translate="label"	type="text"	sortOrder="50"	

showInDefault="1"	showInWebsite="1"	showInStore="1">

								<label>Shipme</label>

								<field	id="active"	translate="label"	type="select"	

sortOrder="10"	showInDefault="1"	showInWebsite="1"	showInStore="0">

										<label>Enabled</label>

										

<source_model>Magento\Config\Model\Config\Source\Yesno</source_model>

								</field>

								<field	id="name"	translate="label"	type="text"	sortOrder="20"	

showInDefault="1"	showInWebsite="1"	showInStore="1">

										<label>Method	Name</label>

								</field>

								<field	id="title"	translate="label"	type="text"	sortOrder="20"	

showInDefault="1"	showInWebsite="1"	showInStore="1">

										<label>Method	Title</label>

								</field>

						</group>

				</section>

		</system>

</config>

8.	 Next,	we	can	configure	some	default	settings.	Create	a	config.xml	file	in	the
app/code/Packt/Shipme/etc/	folder	with	the	following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Store:etc/con

fig.xsd">

		<default>

				<carriers>

						<shipme>

								<model>Packt\Shipme\Model\Carrier\Shipme</model>

								<active>1</active>

								<name>Shipme	Shipping</name>

								<title>Shipme	Shipping</title>

						</shipme>

				</carriers>

		</default>

</config>

9.	 Clean	the	cache	and	navigate	to	Stores	|	Configuration	|	Sales	|	Shipping	Methods.
You	will	see	that	an	extra	group	is	added,	as	shown	in	the	following	screenshot:

10.	 Now,	when	the	configuration	is	working,	we	can	extend	the	configuration	with	some
extra	values.	Modify	the	system.xml	file	so	that	it	looks	as	follows	(the	highlighted
code	is	added	in	this	step):

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Config:etc/sy

stem_file.xsd">

		<system>

				<section	id="carriers">

						<group	id="shipme"	translate="label"	type="text"	sortOrder="50"	

showInDefault="1"	showInWebsite="1"	showInStore="1">

								<label>Shipme</label>

								<field	id="active"	translate="label"	type="select"	

sortOrder="10"	showInDefault="1"	showInWebsite="1"	showInStore="0">

										<label>Enabled</label>

										

<source_model>Magento\Config\Model\Config\Source\Yesno</source_model>

								</field>

								<field	id="name"	translate="label"	type="text"	sortOrder="20"	

showInDefault="1"	showInWebsite="1"	showInStore="1">

										<label>Method	Name</label>

								</field>

								<field	id="title"	translate="label"	type="text"	sortOrder="20"	

showInDefault="1"	showInWebsite="1"	showInStore="1">

										<label>Method	Title</label>

								</field>

								<field	id="express_enabled"	translate="label"	type="select"	

sortOrder="30"	showInDefault="1"	showInWebsite="1"	showInStore="0">

										<label>Enable	express</label>

										

<source_model>Magento\Config\Model\Config\Source\Yesno</source_model>

								</field>

								<field	id="express_title"	translate="label"	type="text"	

sortOrder="40"	showInDefault="1"	showInWebsite="1"	showInStore="1">

										<label>Title	express</label>

								</field>

								<field	id="express_price"	translate="label"	type="text"	

sortOrder="50"	showInDefault="1"	showInWebsite="1"	showInStore="1">

										<label>Price	express</label>

								</field>

								<field	id="business_enabled"	translate="label"	type="select"	

sortOrder="60"	showInDefault="1"	showInWebsite="1"	showInStore="0">

										<label>Enable	business</label>

										

<source_model>Magento\Config\Model\Config\Source\Yesno</source_model>

								</field>

								<field	id="business_title"	translate="label"	type="text"	

sortOrder="70"	showInDefault="1"	showInWebsite="1"	showInStore="1">

										<label>Title	business</label>

								</field>

								<field	id="business_price"	translate="label"	type="text"	

sortOrder="80"	showInDefault="1"	showInWebsite="1"	showInStore="1">

										<label>Price	business</label>

								</field>

								<field	id="specificerrmsg"	translate="label"	type="textarea"	

sortOrder="90"	showInDefault="1"	showInWebsite="1"	showInStore="1">

										<label>Displayed	Error	Message</label>

								</field>

						</group>

				</section>

		</system>

</config>

11.	 To	configure	the	default	values,	add	the	highlighted	code	into	the	config.xml	file	of
the	module:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Store:etc/con

fig.xsd">

		<default>

				<carriers>

						<shipme>

								<model>Packt\Shipme\Model\Carrier\Shipme</model>

								<active>1</active>

								<name>Shipme	Shipping</name>

								<title>Shipme	Shipping</title>

								<express_enabled>1</express_enabled>

								<express_title>Express	delivery</express_title>

								<express_price>4</express_price>

								<business_enabled>1</business_enabled>

								<business_title>Business	delivery</business_title>

								<business_price>5</business_price>

								<specificerrmsg>This	shipping	method	is	currently	unavailable.	

If	you	would	like	to	ship	using	this	shipping	method,	please	contact	

us.</specificerrmsg>

						</shipme>

				</carriers>

		</default>

</config>

12.	 Clean	the	cache	and	reload	the	shipping	method	configuration	page	in	the	backend.
You	will	see	that	the	extra	fields	are	available	under	the	Shipme	section,	as	shown	in
the	following	screenshot:

How	it	works…
In	the	first	steps	of	this	recipe,	we	created	the	necessary	files	to	initialize	the	module.	To
initialize	a	module,	we	need	a	module.xml	file	in	the	etc	folder	of	the	module.

In	the	module.xml	file,	we	configured	the	name	and	version	in	the	<module>	tag.	In	the
<sequence>	subtag,	we	configured	the	dependencies	of	the	module.

The	<sequence>	configuration	checks	whether	the	Magento_Shipping	and
Magento_OfflineShipping	modules	are	active.	Otherwise,	the	module	cannot	be	installed.

When	the	module	was	installed,	we	extended	the	module	with	the	configurations	for	a
shipping	method.	All	the	Magento	shipping	methods	are	configurable	on	the	Shipping
Methods	page	in	the	configuration.	So,	to	create	an	extra	shipping	method,	we	have	to
create	an	extra	section	on	that	page.

We	created	a	shipping	handler	that	has	a	Method	Name	option.	In	that	handler,	we	created
two	shipping	options:	express	and	business.	For	those	two	options,	we	created	the	name,
enabled,	and	price	fields.

The	configuration	parameters	are	configured	in	the	system.xml	file	of	the	module.	For
every	configuration	parameter,	there	is	a	default	value.	These	values	are	configured	in	the
config.xml	file.

In	this	config.xml	file,	there	is	also	a	model	configured.	This	is	the	adapter	model	that	we
will	create	in	the	next	recipe,	Writing	an	adapter	model.

See	also
In	this	recipe,	we	used	the	system.xml	file	of	the	module	to	create	the	configuration
values.	More	information	about	configuration	values	is	explained	in	the	Adding
configuration	parameters	recipe	of	Chapter	6,	Magento	Backend.

Writing	an	adapter	model
In	the	previous	recipe,	we	enabled	a	new	module	with	the	settings	for	a	new	shipping
method.	This	was	a	preparation	for	the	business	part,	which	we	will	do	in	this	recipe.

We	will	add	a	model	with	the	business	logic	for	the	shipping	method.	The	model	is	called
an	adapter	class	because	Magento	requires	an	adapter	class	for	each	shipping	method.

The	adapter	class	will	be	used	for	the	following	things:

Making	the	shipping	method	available
Calculating	the	shipping	costs
Setting	the	title	in	the	frontend	of	the	shipping	methods

Getting	ready
Ensure	that	you	have	installed	the	module	that	we	created	in	the	previous	recipe	because
we	need	this	for	creating	the	adapter	class.

How	to	do	it…
The	following	steps	describe	how	you	can	write	an	adapter	class	for	a	shipping	method:

1.	 Create	the	app/code/Packt/Shipme/Model/Carrier/	folder	if	it	doesn’t	already
exist.

2.	 In	this	folder,	create	a	file	called	Shipme.php	with	the	following	content:

<?php

namespace	Packt\Shipme\Model\Carrier;

use	Magento\Shipping\Model\Rate\Result;

class	Shipme	extends	\Magento\Shipping\Model\Carrier\AbstractCarrier	

implements

\Magento\Shipping\Model\Carrier\CarrierInterface	{

		protected	$_code	=	'shipme';

		/**

		*	@var	\Magento\Shipping\Model\Rate\ResultFactory

		*/

		protected	$_rateResultFactory;

		/**

		*	@var	\Magento\Quote\Model\Quote\Address\RateResult\MethodFactory

		*/

		protected	$_rateMethodFactory;

		public	function	__construct(

				\Magento\Framework\App\Config\ScopeConfigInterface	$scopeConfig,

				\Magento\Quote\Model\Quote\Address\RateResult\ErrorFactory	

$rateErrorFactory,

				\Psr\Log\LoggerInterface	$logger,

				\Magento\Shipping\Model\Rate\ResultFactory	$rateResultFactory,

				\Magento\Quote\Model\Quote\Address\RateResult\MethodFactory	

$rateMethodFactory,

				array	$data	=	[]

)	{

				$this->_rateResultFactory	=	$rateResultFactory;

				$this->_rateMethodFactory	=	$rateMethodFactory;

				parent::__construct($scopeConfig,	$rateErrorFactory,	$logger,	

$data);

		}

		public	function	

collectRates(\Magento\Quote\Model\Quote\Address\RateRequest	$request)	{

				if	(!$this->getConfigFlag('active'))	{

						return	false;

				}

				$result	=	$this->_rateResultFactory->create();

				//Check	if	express	method	is	enabled

				if	($this->getConfigData('express_enabled'))	{

						$method	=	$this->_rateMethodFactory->create();

						$method->setCarrier($this->_code);

						$method->setCarrierTitle($this->getConfigData('name'));

						$method->setMethod('express');

						$method->setMethodTitle($this->getConfigData('express_title'));

						$method->setPrice($this->getConfigData('express_price'));

						$method->setCost($this->getConfigData('express_price'));

						$result->append($method);

				}

				//Check	if	business	method	is	enabled

				if	($this->getConfigData('business_enabled'))	{

						$method	=	$this->_rateMethodFactory->create();

						$method->setCarrier($this->_code);

						$method->setCarrierTitle($this->getConfigData('name'));

						$method->setMethod('business');

						$method->setMethodTitle($this->getConfigData('business_title'));

						$method->setPrice($this->getConfigData('business_price'));

						$method->setCost($this->getConfigData('business_price'));

						$result->append($method);

				}

				return	$result;

		}

		public	function	getAllowedMethods()	{

				return	['shipme'	=>	$this->getConfigData('name')];

		}

}

3.	 Save	the	file	and	clear	the	cache.	Your	adapter	model	is	now	created.

How	it	works…
The	class	that	we	created	in	this	recipe	handles	all	the	business	logic	that	is	needed	for	the
shipping	method.	Because	this	adapter	class	extends	from	the
\Magento\Shipping\Model\Carrier\AbstractCarrier	class,	we	can	overwrite	some
methods	to	customize	the	business	logic	of	the	standard	class.

This	class	implements	the	\Magento\Shipping\Model\Carrier\CarrierInterface
interface.	When	we	look	in	this	class,	we	see	that	the	following	methods	must	be	available
in	the	adapter	class:

isTrackingAvailable()

getAllowedMethods()

These	methods	are	set	in	the	AbstractCarrier	class—the	class	where	the	adapter	model
extends	from.	This	means	that	the	class	is	valid.	In	that	class,	there	is	also	the
isAvailable()method.	In	this	method,	there	is	decided	that	the	shipping	method	is	active
or	not.	If	you	want,	you	can	overwrite	this	method	with	your	custom	code.

The	second	and	most	important	function	is	the	collectRates()	function.	This	function
decides	which	methods	are	available	and	the	shipping	costs.

In	Magento,	a	shipping	method	has	a	carrier.	The	carrier	from	the	methods	of	this	recipe	is
Shipme.	Every	carrier	can	have	multiple	methods,	such	as	Express	and	Business
delivery.

In	the	collectRates()	function,	we	create	a	rateResult	variable	to	which	you	can	assign
shipping	methods.	In	this	recipe,	we	added	two	methods	to	this:	Express	and	Business
delivery.

A	method	is	created	form	the	rateMethodFactory	instance	and	this	can	have	the	following
options:

Carrier	(shipme)
Title	of	the	carrier
Method	(code	of	the	method)
Method	title
Price
Cost

When	these	options	are	set,	the	method	is	added	to	the	rateResult	instance	using	the
append()	function.

The	next	function	that	we	used	is	the	getAllowedMethods()	function.	In	this	function,	we
add	the	methods	of	the	Shipme	carrier	to	the	allowed	shipping	methods.

Extending	the	shipping	method	features
Now	that	all	the	files	are	installed,	we	can	add	more	features	to	the	shipping	method.	In
this	recipe,	we	will	add	a	country	configuration	and	enable	tracking	codes	for	the	shipping
method.

Getting	ready
Similar	to	all	recipes	in	this	chapter,	we	will	build	further	on	the	module	that	we	created	in
the	previous	recipes	of	this	chapter.	Ensure	that	you	have	the	right	files	installed.

How	to	do	it…
In	the	following	steps,	you	will	learn	how	we	can	enable	tracking	codes	and	country
configurations	for	the	shipping	method:

1.	 Open	the	shipping	adapter	file,
app/code/Packt/Shipme/Model/Carrier/Shipme.php.

2.	 Add	the	following	function	to	that	class	to	enable	tracking	codes:

public	function	isTrackingAvailable()	{

		return	true;

}

3.	 Next,	we	will	enable	the	country-specific	options.	In	the
app/code/Packt/Shipme/etc/adminhtml/system.xml	file,	add	the	following
content:

<field	id="sallowspecific"	translate="label"	type="select"	

sortOrder="100"	showInDefault="1"	showInWebsite="1"	showInStore="0">

		<label>Ship	to	Applicable	Countries</label>

		<frontend_class>shipping-applicable-country</frontend_class>

		

<source_model>Magento\Shipping\Model\Config\Source\Allspecificcountries

</source_model>

</field>

<field	id="specificcountry"	translate="label"	type="multiselect"	

sortOrder="110"	showInDefault="1"	showInWebsite="1"	showInStore="0">

		<label>Ship	to	Specific	Countries</label>

		

<source_model>Magento\Directory\Model\Config\Source\Country</source_mod

el>

		<can_be_empty>1</can_be_empty>

</field>

4.	 Clean	the	cache	and	open	the	configuration	page	of	the	shipping	method.	You	will
see	that	there	are	two	new	configuration	options.	When	you	change	the	value	of	the
Ship	to	Applicable	Countries	field	to	Specific	Countries,	you	can	select	from
multiple	countries,	as	you	can	see	in	the	following	screenshot:

How	it	works…
In	this	recipe,	we	extended	the	shipping	method	with	two	new	features.	The	first	feature
was	to	add	the	possibility	to	create	tracking	codes	for	the	Shipme	shipping	method.	We
overwrote	the	isTrackingAvailable()	function,	which	returns	false	by	default.	By
overwriting	this	function	and	returning	true,	we	enable	the	tracking	codes.

The	second	thing	that	we	did	was	to	enable	country-specific	shipping.	We	added	two
fields	with	a	standard	naming	convention.	Using	the	following	names	for	the	two	fields,
Magento	recognises	the	configuration	for	countries:

sallowspecific

specificcountry

When	we	enable	this	configuration	in	the	backend,	the	shipping	method	is	only	available
when	the	country	of	the	shipping	address	is	one	of	the	selected	countries	in	the	Ship	to
Specific	Countries	configuration	of	the	shipping	method.

Adding	the	module	in	the	frontend
In	the	previous	recipes,	we	created	configurations	for	a	new	shipping	method.	We	have
seen	that	we	can	configure	this	in	the	backend.	Now,	it	is	time	to	test	the	shipping	method
in	the	frontend.	We	will	create	a	test	order	with	the	shipping	method	that	we	have	created
in	this	chapter.

Getting	ready
We	need	the	shipping	module	that	we	created	in	the	previous	recipes.	Ensure	you	have	the
right	files	installed.

How	to	do	it…
The	following	steps	describe	how	the	order	flow	works	in	Magento:

1.	 Log	in	to	the	backend.
2.	 Navigate	to	the	configuration	of	the	shipping	method.	You	can	find	this	by	navigating

to	Stores	|	Configuration	|	Sales	|	Shipping	Methods	|	Shipme.
3.	 Check	whether	all	the	values	are	correct	for	the	Shipme	-	Express	method.	Ensure

that	everything	is	enabled.
4.	 Save	the	configuration.
5.	 In	the	frontend,	add	a	product	to	the	shopping	cart	and	proceed	to	checkout.

Note
In	Chapter	7,	Event	Handlers	and	Cronjobs,	we	created	an	event	that	checks	whether
the	quantity	is	odd	or	even	when	adding	something	to	the	cart.	When	you	get	the	We
can’t	add	this	item	to	your	shopping	cart	right	now.	message,	you	have	to	add	an
even	quantity	or	you	have	to	disable	that	code.

6.	 When	you	are	on	the	checkout	page,	fill	in	the	right	data	for	the	shipping	address.
7.	 In	the	Shipping	Methods	section,	the	new	methods	will	appear	as	shown	in	the

following	screenshot:

8.	 Select	one	of	the	Shipme	Shipping	methods	and	click	on	the	Next	button.
9.	 Check	your	payment	information.	Ensure	that	you	have	checked	the	Check	/	Money

order	method	if	there	is	more	than	one	method	available.

Tip
If	you	don’t	see	the	Check	\	Money	order	payment	method,	you	have	to	enable	it	in

the	stores	configuration.

10.	 Click	on	the	Place	Order	button	and	your	order	will	be	created.	You	will	see	the
order	success	page	where	you	optionally	can	create	an	account	for	the	website.

11.	 When	you	look	into	the	backend	by	navigating	to	Sales	|	Orders,	you	can	see	the
order	that	we	have	created.	Click	on	the	View	link	of	that	order	and	you	will	see	all
the	details	of	that	order.

12.	 To	process	the	order,	we	can	create	an	invoice	for	it	to	confirm	that	the	order	is	paid.
When	you	click	on	the	Invoice	button,	you	will	be	forwarded	to	the	form	where	you
can	submit	the	invoice	for	that	order.

13.	 When	the	invoice	is	saved,	you	will	see	that	the	status	of	the	order	is	changed	to
Processing.	To	create	a	shipment	for	this	order,	we	can	click	on	the	Ship	button.	You
will	see	the	following	screen:

14.	 When	you	click	on	the	Add	Tracking	Number	button,	you	can	create	a	tracking
code	for	that	shipment.	In	the	Carrier	dropdown,	select	the	Shipme	Shipping	option
and	add	a	sample	tracking	code,	such	as	1234567890.

15.	 When	you	click	on	the	Submit	Shipment	button,	your	shipment	is	processed	and	the
status	of	the	order	will	change	to	Complete.

How	it	works…
In	this	recipe,	we	tested	the	shipping	method	that	we	created	in	this	chapter.	We	placed	an
order	with	the	new	shipping	method	to	check	that	everything	works	as	expected.

When	the	order	is	placed,	it	is	the	task	of	the	store	owner	to	complete	the	order.	The
payment	method	of	the	order	is	Check	/	Money	order.	This	means	that	the	payment	will
happen	later.

When	the	order	is	paid,	you	can	set	the	paid	amount	by	creating	an	invoice.	The	status	will
change	from	Pending	to	Processing.	Processing	means	that	the	order	is	ready	to	be
processed.	When	you	look	at	the	order	totals	on	the	order	page,	you	see	that	Total	Paid	is
the	same	as	the	Grand	Total	(if	you	have	marked	the	invoice	as	paid).

When	the	order	can	be	shipped,	we	can	create	a	shipment	of	the	order.	All	the	shipping
information	can	be	stored	in	the	shipment	such	as	the	tracking	code(s),	comments,	status
updates,	and	much	more.

When	there	is	an	invoice	and	shipment	for	all	the	order	items,	the	order	is	Complete	in
Magento.	When	the	order	is	complete,	it	is	always	possible	to	create	a	Credit	Memo
receipt	for	special	cases	in	the	order	flow	(damaged	shipping,	a	returning	order,	and	so
on).

Chapter	9.	Creating	a	Product	Slider
Widget
In	this	chapter,	we	will	cover	the	following	recipes:

Creating	an	empty	module
Creating	a	widget	configuration	file
Creating	the	block	and	template	files
Creating	a	custom	configuration	parameter
Finalizing	the	theming

Introduction
The	Magento	widgets	system	is	a	graphical	interface	where	you	can	configure	blocks	in
the	frontend.	For	every	widget,	there	is	a	configuration	page	available	where	you	can	set
the	required	values	for	that	widget.

With	a	Magento	widget,	you	can	configure	the	layout	instructions	to	show	the	widget	at
several	places	in	the	frontend.

In	this	chapter,	we	will	create	a	new	module	in	which	we	will	create	our	own	widget.	We
will	create	a	product	slider	with	the	products	of	a	category	that	we	can	configure	in	that
widget.

When	we	are	done	with	the	technical	part	(configuration	page,	block	class,	template
initialization),	we	can	finish	with	its	representation	in	the	frontend.	We	will	create	a
product	list	that	we	will	style	with	a	jQuery	slider	script.

Creating	an	empty	module
As	we	did	in	the	previous	chapter	and	fully	explained	in	Chapter	4,	Creating	a	Module,	we
will	create	the	required	files	to	create	an	empty	module	that	we	will	extend	with	widget
configurations	in	further	chapters.	We	will	start	with	an	empty	Magento	module	that	we
will	create	in	this	recipe.	We	will	create	all	the	required	files	to	initialize	a	new	module
that	can	be	used	for	the	creation	of	a	widget.

Getting	ready
We	will	create	new	module	called	Packt_ProductSlider.	Open	your	IDE	to	add	some
code	to	it.

How	to	do	it…
Using	the	following	steps,	we	will	create	an	empty	module	called	Packt_ProductSlider:

1.	 Create	the	following	folders	in	your	Magento	root:

app/code/Packt/

app/code/Packt/ProductSlider/

app/code/Packt/ProductSlider/etc/

2.	 In	the	app/code/Packt/ProductSlider/etc/	folder,	create	a	file	called	module.xml.
3.	 In	this	file,	paste	the	following	code:

<?xml	version="1.0"?>

<configxmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="urn:magento:framework:Module/etc/module.

xsd">

		<module	name="Packt_ProductSlider"	setup_version="2.0.0">

				<sequence>

						<module	name="Magento_Catalog"/>

						<module	name="Magento_Widget"/>

				</sequence>

		</module>

</config>

4.	 In	the	app/code/Packt/ProductSlider/	folder,	create	a	registration.php	file	with
the	following	content:

<?php

\Magento\Framework\Component\ComponentRegistrar::register(

		\Magento\Framework\Component\ComponentRegistrar::MODULE,

		'Packt_ProductSlider',

		__DIR__

);

5.	 To	install	the	module,	run	the	following	command:

php	bin/magento	setup:upgrade

6.	 To	check	whether	the	module	is	installed,	open	the	backend	and	navigate	to	the
configuration	page	(Stores	|	Configuration	|	Advanced	|	Advanced).	Check	whether
the	Packt_ProductSlider	module	is	in	the	list.

7.	 You	can	alternatively	run	the	following	command	to	get	a	list	of	all	installed	and
enabled	modules:

php	bin/magento	module:status

How	it	works…
We	have	just	created,	installed,	and	enabled	a	new	module	called	Packt_ProductSlider.
To	initialize	a	module,	we	need	a	module.xml	file	in	the	etc	folder	of	the	module.

In	the	module.xml	file,	we	configured	the	name	and	version	in	the	<module>	tag.	In	the
<sequence>	subtag,	we	configured	the	dependencies	of	the	module.

The	<sequence>	configuration	checks	whether	the	Magento_Widget	and	Magento_Catalog
modules	are	active.	Otherwise,	the	module	cannot	be	installed.

Practically,	this	module	does	nothing,	but	we	will	extend	this	in	the	next	recipes	of	this
chapter.

Creating	a	widget	configuration	file
In	this	recipe,	we	will	extend	the	features	of	the	Packt_ProductSlider	module	with	a
widget	configuration	file.	In	this	configuration	file,	we	will	declare	a	new	widget	or
frontend	app	type.

For	a	new	frontend	app,	we	need	to	configure	the	following	things:

Name	of	the	widget	(used	in	the	backend)
Widget	configuration	parameters
Widget	block	type
Widget	templates	(the	.phtml	files)

Getting	ready
We	will	extend	the	module	that	we	created	in	the	previous	recipe	with	a	widget
configuration.	Ensure	that	you	have	the	right	files	installed.

How	to	do	it…
Using	the	following	steps,	you	can	explore	the	purpose	of	a	widget.xml	configuration	file:

1.	 Create	the	app/code/Packt/ProductSlider/etc/widget.xml	file	using	the
following	code:

<?xml	version="1.0"	encoding="UTF-8"?>

<widgets	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Widget:etc/wi

dget.xsd">

		<widget

				id="category_product_slider"

				class="Magento\Catalog\Block\Product\List"

				is_email_compatible="false"

				placeholder_image="Magento_Widget::placeholder.gif">

				<label	translate="true">Category	product	slider</label>

				<description	translate="true">List	of	Products	for	a	given	category	

in	a	slider	widget</description>

		</widget>

</widgets>

2.	 Clean	the	cache	and	check	whether	the	configuration	works.	We	can	check	this	in
two	ways:

1.	 The	first	method	is	to	navigate	to	Content	|	Widgets	in	the	backend.	When	you
click	on	the	Add	Widget	button,	you	can	see	the	new	widget	type	in	the	list,	as
shown	in	the	following	screenshot:

2.	 The	second	way	to	test	the	widget	types	is	to	add	a	widget	to	a	CMS	page.
Navigate	to	Content	|	Elements	|	Pages	and	click	on	the	Add	New	Page	button.

In	the	Content	tab,	click	on	the	highlighted	button	in	the	WYSIWYG	editor,	as
shown	in	the	following	screenshot:

3.	 When	clicking	on	that	button,	an	overlay	shows	up	where	you	can	choose	a	widget.
In	the	Widget	Type	dropdown,	you	can	select	Category	product	slider	when	the
configuration	is	right.

4.	 Now	that	the	widget	works,	it’s	time	to	add	some	configuration	parameters	to	the
widget.	When	we	add	the	following	highlighted	code	to	the	widget.xml	file,	we	will
create	a	parameter	for	the	title:

<widget

		id="category_product_slider"

		class="Magento\Catalog\Block\Product\List"

		is_email_compatible="false"

		placeholder_image="Magento_Widget::placeholder.gif">

		<label	translate="true">Category	product	slider</label>

		<description	translate="true">List	of	Products	for	a	given	category	

in	a	slider	widget</description>

		<parameters>

				<parameter	name="title"	xsi:type="text"	required="true"	

visible="true">

						<label	translate="true">Title	(frontend)</label>

				</parameter>

		</parameters>

</widget>

5.	 Clean	the	cache	and	open	the	widget	configuration	page.	We	can	do	this	by
navigating	to	Content	|	Elements	|	Widgets.	Click	on	the	Add	Widget	button	and
choose	the	following	configuration	in	the	form:

Type:	Category	product	slider
Design	Theme:	Magento	Luma	(the	theme	of	your	shop)

6.	 When	you	click	on	the	Continue	button,	you	will	land	on	the	widget	configuration
page.	When	you	click	on	Widget	Options,	you	will	see	the	title	parameter,	as	shown
in	the	following	screenshot:

7.	 When	we	want	to	show	products	for	a	category,	we	have	to	create	a	configuration
field	where	we	can	set	the	category	ID.	When	we	want	to	add	a	text	field	where	we
can	configure	the	right	category	ID,	we	need	to	add	the	highlighted	code	to	the
widget.xml	file.	The	highlighted	code	needs	to	be	pasted	as	the	child	of	the
<parameters>	tag:

<parameters>

		<parameter	name="title"	xsi:type="text"	required="true"	

visible="true">

				<label	translate="true">Title	(frontend)</label>

		</parameter>

		<parameter	name="category_id"	xsi:type="text"	required="true"	

visible="true">

				<label	translate="true">Category	ID</label>

		</parameter>

</parameters>

8.	 Clean	the	cache	and	reload	the	frontend.	You	will	see	that	a	second	textbox	is	added
to	the	configuration	page.

How	it	works…
The	widget.xml	file	is	used	to	define	widget	types	in	your	Magento	installation.	All
widget	types	are	defined	as	child	<widget>	tags	of	the	global	<widgets>	tag.

A	widget	type	is	declared	in	the	<widget>	tag	and	this	element	has	the	following	three
required	attributes:

id	(the	unique	identifier	of	a	widget)
class	(the	Block	class	for	the	widget)
is_email_compatible	(the	Boolean	that	the	widget	can	be	used	in	e-mail	templates)
placeholder_image	(an	image	that	is	used	when	the	widget	is	inserted	in	a
WYSIWYG	editor)

The	widget	type	that	we	created	in	this	recipe	uses	the
Magento\Catalog\Block\Product\List	block	class.	In	Magento,	this	class	is	used	to
render	all	product	lists,	just	like	it	is	used	on	the	category	page.

In	the	child	tags	of	the	<widget>	tag,	we	can	configure	the	additional	fields	for	the	widget
type.

With	the	<name>	tag,	we	configured	the	name	for	the	widget	type	that	is	displayed	in	the
dropdown	of	the	configuration	page.

In	the	<description>	tag,	we	can	configure	a	description	for	the	widget	type.	This
description	is	shown	when	you	insert	a	new	widget	in	a	CMS	page.

Finally,	we	used	the	<parameters>	tag	to	define	the	additional	configuration	parameters.
In	this	recipe,	we	added	name	and	category_id	as	text	configuration	fields.

Every	configuration	parameter	is	defined	as	a	child	<parameter>	tag	from	the
<parameters>	tag.	The	<parameter>	tag	has	the	following	attributes:

name	(the	ID	of	the	field)
xsi:type	(the	type	of	the	field,	such	as	text,	dropdown,	and	so	on)
required	(can	be	set	to	true	or	false)
visible	(can	be	set	to	true	or	false)

Every	<parameter>	tag	has	a	<label>	subtag	where	you	can	configure	the	label	of	the
field	page.

Creating	the	block	and	template	files
In	the	previous	recipe,	you	learned	how	to	configure	an	extra	widget	type	to	Magento.
Now,	it	is	time	to	display	the	widget.

We	will	extend	the	widget	configuration	with	the	option	to	select	two	different	templates
to	render	the	widget	in	the	frontend.

The	second	thing	that	we	will	do	is	create	a	custom	Block	class	where	we	can	write	our
own	specific	methods	for	the	widget.

Getting	ready
We	will	work	further	on	the	widget	module	that	we	created	in	the	previous	recipes.	Ensure
that	you	have	the	right	code	installed.

How	to	do	it…
Using	the	following	steps,	you	will	learn	how	we	can	configure	a	custom	Block	class	with
custom	templates	for	a	widget	instance:

1.	 The	first	thing	that	we	will	do	is	create	the	Block	class	for	the	widget.	The	Block
class	will	extend	Magento\Catalog\Block\Product\List	class	because	we	need
the	functionality	of	that	class	in	our	widget	type.	Create	a	file	called
ProductSlider.php	in	the
app/code/Packt/ProductSlider/Block/Catalog/Product/	folder.

2.	 Add	the	following	content	to	that	file:

<?php

namespace	Packt\ProductSlider\Block\Catalog\Product;

class	ProductSlider	extends	\Magento\Catalog\Block\Product\ListProduct	

{

}

3.	 Configure	the	widget	configuration	to	use	the	Block	class	that	we	just	created.	Open
the	app/code/Packt/ProductSlider/etc/widget.xml	file	and	change	the	class
attribute	as	shown	in	the	following	highlighted	code:

...

<widget

		id="category_product_slider"

		class="Packt\ProductSlider\Block\Catalog\Product\ProductSlider"

		is_email_compatible="false"

		placeholder_image="Magento_Widget::placeholder.gif">

		<label	translate="true">Category	product	slider</label>

		<description	translate="true">List	of	Products	for	a	given	category	

in	a	slider	widget</description>

		<parameters>

...

4.	 Now	when	the	Block	class	is	created	and	configured,	it	is	time	to	create	templates	for
the	block.	For	this	widget,	we	will	configure	two	templates.	The	first	one	will	contain
the	image,	price,	and	title	of	the	products,	and	the	second	one	is	a	simplified	version
that	only	shows	the	image	and	an	Add	To	Cart	button.

5.	 To	store	the	templates,	create	the	following	folders:

app/code/Packt/ProductSlider/view/

app/code/Packt/ProductSlider/view/frontend/

app/code/Packt/ProductSlider/view/frontend/templates/

app/code/Packt/ProductSlider/view/frontend/templates/product/

app/code/Packt/ProductSlider/view/frontend/templates/product/slider/

6.	 In	the	last	folder,	create	the	following	files:

list.phtml

teaser.phtml

7.	 In	the	list.phtml	file,	add	the	following	content:

<div	class="block	block-product-slider	slider-list">

		<div	class="block-title">

				<h2>List</h2>

		</div>

		<div	class="block-content">

				Product	slider

		</div>

</div>

8.	 In	the	teaser.phtml	file,	add	the	following	content:

<div	class="block	block-product-slider	slider-teaser">

		<div	class="block-title">

				<h2>Teaser</h2>

		</div>

		<div	class="block-content">

				Product	slider

		</div>

</div>

9.	 Now	when	the	files	are	created,	we	can	create	the	configuration	in	the	widget.xml
file	for	the	two	templates.	Add	the	following	highlighted	code	to	the	widget.xml	file.
The	code	needs	to	be	pasted	as	child	of	the	<parameters>	tag:

...

		</parameter>

		<parameter	name="template"	xsi:type="select"	required="true"	

visible="true">

				<label	translate="true">Template</label>

				<options>

						<option	name="default"	value="product/slider/list.phtml"	

selected="true">

								<label	translate="true">Product	list	slider</label>

						</option>

						<option	name="teaser"	value="product/slider/teaser.phtml">

								<label	translate="true">Product	teaser	slider</label>

						</option>

				</options>

		</parameter>

</parameters>

...

10.	 Clean	the	cache	and	go	to	the	widget	configuration	page.	When	you	click	on	the	Add
Layout	Update	button,	you	can	see	the	two	configured	templates,	as	shown	in	the
following	screenshot:

11.	 When	you	complete	the	form	with	the	layout	update	as	shown,	the	widget	template
will	appear	on	the	home	page.

Tip
Ensure	that	you	have	cleaned	the	cache	and	configured	the	widget	for	the	right	theme
and	storeview.

12.	 The	last	thing	that	we	will	do	is	create	a	loop	that	shows	the	name	of	the	products.
Add	the	following	code	to	the	list.phtml	file:

<?php	$productCollection	=	$block->getLoadedProductCollection()	?>

<div	class="block	block-product-slider	slider-list">

		<div	class="block-title">

				<h2>List</h2>

		</div>

		<div	class="block-content">

				<?php	if	(count($productCollection)):	?>

						

								<?php	foreach	($productCollection	as	$product):	?>

										<?php	echo	$product->getName()	?>

								<?php	endforeach;	?>

						

				<?php	endif;	?>

		</div>

</div>

13.	 On	the	widget	configuration,	configure	a	valid	category	ID.	When	you	save	the
configuration	and	open	the	homepage,	you	will	see	a	list	of	product	names	of	that
category,	as	shown	in	the	following	screenshot:

Tip
You	can	find	the	category	ID	while	navigating	to	a	category	in	the	backend.	Navigate	to
Products	|	Categories	and	select	the	category	that	you	want	in	the	tree.	When	selecting	a
category,	the	ID	appears	near	the	name.

How	it	works…
The	first	thing	that	we	did	was	to	create	a	Block	class	that	extends	the	product	list	class
(Magento\Catalog\Block\Product\ListProduct)	from	the	Magento_Catalog	module.

When	the	class	is	created,	we	updated	the	configuration	in	the	widget.xml	file	to	use	this
class.

With	only	a	Block	class,	we	can’t	display	the	output	to	the	frontend.	So,	we	create	the
template	files.	We	created	two	template	files	that	we	can	use	to	generate	a	different	output
with	the	same	data.

To	configure	the	templates	in	the	widget,	we	have	to	add	an	extra	<parameter>
configuration.	Templates	are	always	configured	with	a	<parameter	name="template">
configuration.	In	the	<options>	child	tag,	the	different	templates	are	set	as	options	from
the	dropdown.

The	widget	configuration	is	now	finished,	so	by	completing	the	form,	the	widget	will	be
placed	on	the	frontend.

To	show	a	widget	on	the	frontend,	you	have	to	create	a	layout	update	in	the	widget
configuration	page.	In	a	layout	update,	you	can	configure	the	page	type,	container,	and
template	where	the	widget	needs	to	be	displayed.	In	this	example,	the	displayed	is	shown
in	the	content	area	of	the	homepage.

The	last	thing	we	did	was	displaying	the	product	names	of	the	configured	category.	We
created	a	loop	that	shows	the	product	names	for	a	category.	Using	the
getLoadedProductCollection()	method,	all	the	products	that	are	in	a	configured
category	are	returned.	The	category	ID	needs	to	be	configured	in	the	category_id	field	of
that	block	(this	is	something	that	is	done	using	the	category_id	widget	parameter).

Creating	a	custom	configuration
parameter
At	this	point,	we	have	a	working	widget.	It	shows	up	in	the	frontend	and	the	right	products
are	displayed	for	the	given	category	ID.

To	configure	the	category	ID,	we	have	to	know	the	ID	of	the	category.	We	have	to	copy	it
from	the	category	page	and	paste	it	in	the	textbox.

For	better	usability,	we	will	create	a	custom	configuration	field	to	select	a	category.	We
will	create	a	button	that	opens	an	overlay	where	we	can	choose	the	right	category	ID.

Getting	ready
We	will	create	a	similar	configuration	field	that	is	used	for	the	Catalog	Category	Link
widget	type	in	the	backend.	You	can	look	at	this	configuration	widget’s	configuration	to
see	how	it	works.

Also,	ensure	that	you	have	the	right	start	files	installed	because	we	will	build	further	on
the	module	that	we	created	in	the	previous	recipes.

How	to	do	it…
Using	the	following	steps,	we	will	create	a	category	chooser	that	will	be	used	on	the
widget	configuration	page.

1.	 When	we	look	at	the	Catalog	Category	Link	widget,	we	see	that	they	use	a	custom
widget	to	select	the	category	ID.	We	will	use	this	widget	in	our	module.

2.	 Open	the	widget.xml	file	that	is	placed	in	the	/etc	folder	of	the
Packt_ProductSlider	module.	Replace	the	parameter	of	the	category_id	parameter
with	the	following	highlighted	code:

...

		<label	translate="true">Title	(frontend)</label>

</parameter>

<parameter	name="category_id"	xsi:type="block"	visible="true"	

required="true">

		<label	translate="true">Category</label>

		<block	

class="Magento\Catalog\Block\Adminhtml\Category\Widget\Chooser">

				<data>

						<item	name="button"	xsi:type="array">

								<item	name="open"	xsi:type="string">Select	Category.</item>

						</item>

				</data>

		</block>

</parameter>

<parameter	name="template"	xsi:type="select"	required="true"	

visible="true">

		<label	translate="true">Template</label>

...

3.	 Clean	the	cache	and	open	the	widget	configuration	page	for	the	product	slider	widget
type.	When	you	click	on	the	Select	Category	button,	a	popup	opens	with	the
category	tree,	as	shown	in	the	following	screenshot:

4.	 When	you	inspect	the	Select	Category	button	and	navigate	to	the	hidden	form	field
in	the	HTML	code,	you	see	that	the	value	is	similar	to	the	following	pattern:
category/<category_id>

5.	 This	widget	requires	a	category	ID	that	is	the	number	after	the	slash.	Now,	we	have
the	category	path	that	is	used	to	generate	URLs.	To	fix	this	problem,	we	have	the
choice	to	implement	one	of	the	following	things:

Extract	the	ID	from	the	path	with	string	functions
Ensure	that	a	proper	ID	is	set	in	the	widget	configuration	page
The	most	stable	option	is	the	second	one,	so	we	will	implement	it

6.	 We	will	create	a	new	Block	class	that	extends	the	standard	one	so	that	we	can	inherit
a	lot	of	functionality.	Create	the
app/code/Packt/ProductSlider/Block/Adminhtml/Catalog/Category/Widget/Chooser.php

file	with	the	following	content:

<?php

namespace	Packt\ProductSlider\Block\Adminhtml\Catalog\Category\Widget;

class	Chooser	extends	

\Magento\Catalog\Block\Adminhtml\Category\Widget\Chooser	{

}

7.	 To	use	the	previously	created	block	in	the	configuration	field,	we	have	to	update	the
widget.xml	file.	The	widget.xml	file	will	look	as	shown	in	the	following	code.	The
highlighted	code	is	the	line	that	you	have	to	change:

<?xml	version="1.0"	encoding="UTF-8"?>

<widgets	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		

xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Widget:etc/wi

dget.xsd">

		<widget

				id="category_product_slider"

				class="Packt\ProductSlider\Block\Catalog\Product\ProductSlider"

				is_email_compatible="false"

				placeholder_image="Magento_Widget::placeholder.gif">

				<label	translate="true">Category	product	slider</label>

				<description	translate="true">List	of	Products	for	a	given	category	

in	a	slider	widget</description>

				<parameters>

						<parameter	name="title"	xsi:type="text"	required="true"	

visible="true">

								<label	translate="true">Title	(frontend)</label>

						</parameter>

						<parameter	name="category_id"	xsi:type="block"	visible="true"	

required="true">

								<label	translate="true">Category	ID</label>

								<block	

class="Packt\ProductSlider\Block\Adminhtml\Catalog\Category\Widget\Choo

ser">

										<data>

												<item	name="button"	xsi:type="array">

												<item	name="open"	xsi:type="string">Select	Category…</item>

												</item>

										</data>

								</block>

						</parameter>

						<parameter	name="template"	xsi:type="select"	required="true"	

visible="true">

								<label	translate="true">Template</label>

								<options>

										<option	name="default"	value="product/slider/list.phtml"	

selected="true">

												<label	translate="true">Product	list	slider</label>

										</option>

										<option	name="teaser"	value="product/slider/teaser.phtml">

												<label	translate="true">Product	teaser	slider</label>

										</option>

								</options>

						</parameter>

				</parameters>

		</widget>

</widgets>

8.	 When	you	clean	the	cache	and	reload	the	configuration	page	of	the	widget,	you	will
see	that	nothing	has	changed	because	the	class	that	we	created	contains	no
functionality.	To	change	the	behavior	that	we	want,	we	will	add	three	methods	to	the
app/code/Packt/ProductSlider/Block/Adminhtml/Catalog/Category/Widget/Chooser.php

file.	The	highlighted	code	shows	the	differences	between	the	methods	from	the
extended	class:

<?php

namespace	Packt\ProductSlider\Block\Adminhtml\Catalog\Category\Widget;

class	Chooser	extends	

\Magento\Catalog\Block\Adminhtml\Category\Widget\Chooser	{

		protected	function	_construct()	{

				$this->setModuleName('Magento_Catalog');

				parent::_construct();

		}

		public	function	

prepareElementHtml(\Magento\Framework\Data\Form\Element\AbstractElement	

$element)	{

				$uniqId	=	$this->mathRandom->getUniqueHash($element->getId());

				$sourceUrl	=	$this->getUrl(

						'productslider/catalog_category_widget/chooser',

						['uniq_id'	=>	$uniqId,	'use_massaction'	=>	false]

);

				$chooser	=	$this->getLayout()->createBlock(

						'Magento\Widget\Block\Adminhtml\Widget\Chooser'

)->setElement(

						$element

)->setConfig(

						$this->getConfig()

)->setFieldsetId(

						$this->getFieldsetId()

)->setSourceUrl(

						$sourceUrl

)->setUniqId(

						$uniqId

);

				if	($element->getValue())	{

						$categoryId	=	$element->getValue();

						$label	=	$this->_categoryFactory->create()->load($categoryId)-

>getName();

						$chooser->setLabel($label);

				}

				$element->setData('after_element_html',	$chooser->toHtml());

				return	$element;

		}

		public	function	getNodeClickListener()	{

				if	($this->getData('node_click_listener'))	{

						return	$this->getData('node_click_listener');

				}

				if	($this->getUseMassaction())	{

						$js	=	'

								function	(node,	e)	{

										if	(node.ui.toggleCheck)	{

												node.ui.toggleCheck(true);

										}

								}

						';

				}	else	{

						$chooserJsObject	=	$this->getId();

						$js	=	'

								function	(node,	e)	{

										'	.

								$chooserJsObject	.

								'.setElementValue(node.attributes.id);

										'	.

								$chooserJsObject	.

								'.setElementLabel(node.text);

										'	.

								$chooserJsObject	.

								'.close();

								}

						';

				}

				return	$js;

		}

}

9.	 The	code	that	we	added	in	the	previous	step	contains	a	call	to	an	AJAX	controller
that	we	will	create.	To	register	the	admin	router	for	this	module,	we	will	create	the
app/code/Packt/ProductSlider/etc/adminhtml/routes.xml	file	with	the
following	content:

<?xml	version="1.0"?>

<config	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:noNamespaceSchemaLocation="	

urn:magento:framework:App/etc/routes.xsd">

		<router	id="admin">

				<route	id="productslider"	frontName="productslider">

						<module	name="Packt_ProductSlider"	before="Magento_Backend"	/>

				</route>

		</router>

</config>

10.	 The	next	step	is	to	create	the	controller	action	that	matches	the	URL	that	we	call	in
the	prepareElementHtml()	method.	Create	the
app/code/Packt/ProductSlider/Controller/Adminhtml/Catalog/Category/Widget/Chooser.php

file	with	the	following	content:

<?php

namespace	

Packt\ProductSlider\Controller\Adminhtml\Catalog\Category\Widget;

class	Chooser	extends	

\Magento\Catalog\Controller\Adminhtml\Category\Widget\Chooser	{

		protected	function	_getCategoryTreeBlock()	{

				return	$this->layoutFactory->create()->createBlock(

						

'Packt\ProductSlider\Block\Adminhtml\Catalog\Category\Widget\Chooser',

						'',

						[

								'data'	=>	[

										'id'	=>	$this->getRequest()->getParam('uniq_id'),

										'use_massaction'	=>	$this->getRequest()-

>getParam('use_massaction',	false),

]

]

);

		}

}

The	highlighted	code	shows	the	differences	between	what	is	changed	in	the	code.

11.	 Clean	the	cache	and	reload	the	configuration	page	of	the	widget.	When	you	click	on
the	Select	Category	button,	a	popup	opens	with	the	category	tree.	When	you	select	a
category	and	you	inspect	hidden	input	field,	you	will	see	that	a	number	(the	category
ID)	is	set	instead	of	the	path.

12.	 Save	the	widget	and	reload	the	home	page.	You	will	see	that	the	right	products	are
shown	for	the	chosen	category.

How	it	works…
In	this	recipe,	we	created	a	custom	configuration	parameter	to	develop	a	better	user
experience	for	the	admin	users.

We	based	this	configuration	field	on	the	existing	category	tree	pop-up	window	that	is	used
in	other	widget	types,	such	as	the	Catalog	Category	Link	type.	To	use	an	existing	field,
we	just	have	to	modify	some	configurations	in	the	widget.xml	file	and	the	field	is	ready	to
use.

However,	this	type	of	configuration	field	is	not	exactly	what	we	are	looking	for.	The
frontend	representation	was	OK,	but	a	wrongly	formatted	category	ID	was	returned	in	the
background.

To	solve	this,	we	created	a	custom	configuration	field	that	extends	the	behavior	from	the
standard	category	chooser.	We	only	had	to	change	some	things	that	are	responsible	for
returning	a	correctly	formatted	category	ID.

The	first	thing	we	did	was	creating	a	new	Block	class	that	extends	from	the	standard
class	at	the	Magento\Catalog\Block\Adminhtml\Category\Widget\Chooser	location.	In
this	class,	we	override	three	methods.	First,	we	added	the	setModuleName()	method	in	the
_construct()	method.	We	called	this	method	so	that	we	can	use	the	templates	from	the
Magento_Catalog	module	in	the	Packt_ProductSlider	module.

In	the	prepareElementHtml()method,	we	configured	an	AJAX	URL	to	render	the	right
block	when	the	popup	shows	up.	Later	in	this	method,	we	stripped	some	logic	to	extract
the	category	ID	from	the	path.

In	the	last	method,	getNodeClickListener(),	we	did	a	change	so	that	only	the	category
ID	is	returned	to	the	form	instead	of	the	category	path.

When	the	Select	Category	button	is	clicked,	an	AJAX	call	is	done	and	a	block	will	be
rendered	to	show	the	category	tree.	We	also	needed	to	change	the	block	that	is	rendered	in
that	AJAX	call,	so	we	had	to	overwrite	this	call.

We	did	this	by	creating	a	new	controller	action	in	our	module	that	extends	from	the
standard	controller	action,
Magento\Catalog\Controller\Adminhtml\Category\Widget\Chooser.	In	this	action,	we
changed	the	Block	class	to	our	custom	class	using	the	_getCategoryTreeBlock()	method.

There’s	more…
Like	we	did	in	this	recipe,	it	is	possible	to	create	configuration	fields	that	use	a	custom
HTML	output.

A	lot	is	possible	to	show	a	configuration	parameter,	but	you	have	to	return	a	value	that	will
be	saved	in	the	widget	configuration.	This	is	always	done	with	a	input	form	element,
which	has	the	naming	convention	<input	name="parameters[<parameter_name>]">.

Replace	the	<parameter_name>	tag	with	the	name	of	your	custom	configuration	parameter
and	the	values	of	this	element	will	be	handled	like	all	the	other	configuration	parameters
of	that	widget.

Finalizing	the	theming
The	frontend	representation	of	the	widget	that	we	just	created	is	not	something	that	invites
people	to	buy	some	products.	It	is	just	a	list	of	the	product	names	for	a	given	category.

The	last	step	of	this	chapter	is	to	finalize	the	theming	of	the	widget.	We	will	create	an
HTML	output	that	shows	an	image,	name,	and	price	of	the	given	products.

With	a	jQuery	plugin,	we	will	convert	the	HTML	output	to	a	slider,	so	we	can	scroll
through	the	products.

Getting	ready
On	the	Internet,	there	are	a	lot	of	good	JavaScript	carousel	plugins.	In	this	recipe,	we	will
use	the	following:

http://kenwheeler.github.io/slick/

For	the	code,	we	will	build	further	on	the	things	that	are	created	in	the	previous	recipes	of
this	chapter.	Ensure	that	you	have	the	right	files	installed.

http://kenwheeler.github.io/slick/

How	to	do	it…
In	the	following	steps,	the	last	actions	are	described	to	complete	the	widget	with	a	good-
looking	carousel:

1.	 The	first	thing	is	to	generate	a	good	HTML	output	that	is	usable	for	the	jQuery
plugin.	Add	the	following	code	to	the	list.phtml	file	of	the	Packt_ProductSlider
module:

<?php

$productCollection	=	$block->getLoadedProductCollection();

$_helper	=	$this->helper('Magento\Catalog\Helper\Output');

?>

<div	class="block	block-product-slider	slider-list">

		<div	class="block-title">

				<h2><?php	echo	$block->getTitle()	?></h2>

		</div>

		<div	class="block-content">

				<?php	if	(count($productCollection)):	?>

						<div	class="product-slider">

								<?php	foreach	($productCollection	as	$product):	?>

										<div	class="product">

												<div	class="product-image">

														<a	href="<?php	echo	$product->getProductUrl()	?>">

																<?php	echo	$block->getImage($product,	

'category_page_grid')->toHtml()	?>

														

												</div>

												<strong	class="product-name">

														<a

																href="<?php	echo	$product->getProductUrl()	?>">

																<?php	echo	$_helper->productAttribute($product,	

$product->getName(),	'name');	?>

														

												

												<?php	echo	$block->getProductPrice($product)	?>

										</div>

								<?php	endforeach;	?>

						</div>

				<?php	endif;	?>

		</div>

</div>

2.	 When	we	reload	the	frontend,	we	see	a	simple	list	of	products	with	their	name,	price,
and	image.

3.	 The	next	step	is	to	initialize	the	carousel	script.	Go	to	the	following	URL	and
download	the	latest	version	of	the	plugin:

http://kenwheeler.github.io/slick/

4.	 Unzip	the	archive	on	your	local	PC.	For	this	recipe,	we	need	the	following	two	files
of	the	archive:

slick/slick.js

http://kenwheeler.github.io/slick/

slick/slick.css

5.	 When	you	want	to	add	the	CSS	file	to	the	module,	create	the
app/code/Packt/ProductSlider/view/frontend/web/css/source/module/_slick.less

file	and	copy	the	content	of	the	slick/slick.css	file	to	that	file.
6.	 To	load	the	LESS	file,	link	it	in	the	_module.less	file.	Create	the

app/code/Packt/ProductSlider/view/frontend/web/css/source/_module.less

file	with	the	following	content:

@import	'module/_slick.less';

7.	 The	next	step	is	to	add	the	JavaScript	file.	In	Magento	2,	we	use	the	RequireJS
library	to	include	the	file.	First,	we	copy	the	slick/slick.js	file	to	the	following
location:	app/code/Packt/ProductSlider/view/frontend/web/js/slick.js.

8.	 To	register	the	JavaScript	file,	we	have	to	create	a	RequireJS	configuration	file.
Create	the	file	at	app/code/Packt/ProductSlider/view/frontend/requirejs-
config.js	with	the	following	content:

var	config	=	{

		map:	{

				'*':	{

						slick:	'Packt_ProductSlider/js/slick'

				}

		}

};

9.	 We	added	JavaScript	and	LESS	files,	so	this	means	that	we	have	to	clear	the
previously	generated	static	content.	We	can	do	this	by	removing	the	following
folders:

pub/static/frontend/

pub/static/_requirejs/

var/view_preprocessed/

10.	 Clean	the	cache	and	reload	the	frontend.	Because	the	static	content	needs	to	be
generated,	it	can	take	some	time	to	load	the	frontend.

11.	 The	last	thing	that	we	have	to	do	is	to	initialize	the	slick	carousel.	Add	the	following
code	at	the	end	of	the
app/code/Packt/ProductSlider/view/frontend/templates/product/slider/list.phtml

file:

<script	type="text/javascript">

require(['jquery',	'slick'],	function($){

		$(function(){

				$('.product-slider').slick({

						dots:	false,

						infinite:	false,

						speed:	300, 
						slidesToShow:	5,

						slidesToScroll:	5,

						responsive:	[

								{

										breakpoint:	1024,

										settings:	{

												slidesToShow:	4,

												slidesToScroll:	4,

												infinite:	true

										}

								},

								{

										breakpoint:	770,

										settings:	{

												slidesToShow:	3,

												slidesToScroll:	2

										}

								},

								{

										breakpoint:	600,

										settings:	{

												slidesToShow:	2,

												slidesToScroll:	2

										}

								},

								{

										breakpoint:	400,

										settings:	{

												slidesToShow:	1,

												slidesToScroll:	1

										}

								}

]

				});

		});

});

</script>

12.	 Reload	the	home	page	and	you	will	see	that	the	carousel	is	initialized,	as	shown	in	the
following	screenshot:

13.	 The	JavaScript	configuration	contains	some	breakpoints	for	responsive	devices.
When	you	have	a	smaller	screen,	you	will	see	something	as	shown	in	the	following
screenshot:

14.	 To	finish	this	chapter,	we	can	make	the	title	of	this	widget	configurable.	In	the	widget
configuration,	there	is	a	title	field	that	we	can	use	for	this.	When	we	change	the
following	highlighted	code	of	the	list.phtml	file	to	the	following,	the	title	of	that
field	is	used	in	the	frontend.

...

<div	class="block-title">

		<h2><?php	echo	$block->getTitle()	?></h2>

</div>

...

How	it	works…
In	the	first	step,	we	created	a	good	HTML	output	that	is	compatible	with	the	slick
JavaScript	plugin.	For	every	product,	we	show	an	image,	name,	and	price.	Behind	every
image	and	name	is	a	link	that	redirects	to	the	respective	product	detail	page.

The	product	slider	script	contains	a	JavaScript	and	CSS	file	that	we	have	to	include	in	the
shop.	For	the	CSS	file,	we	converted	the	content	to	a	LESS	file	so	that	it	is	rendered	with
the	CSS	of	the	whole	shop.

For	every	module,	Magento	looks	for	a	_module.less	file	in	the
view/frontend/web/css/source/	directory.	In	that	file,	we	included	a	_slick.less	file
that	contains	the	CSS	code	of	the	plugin.

For	the	JavaScript	file,	we	used	the	RequireJS	system	of	Magento	to	include	the	file.	We
placed	the	slick.js	file	in	the	view/frontend/web/js/	folder.

The	script	is	initialized	in	the	view/frontend/requirejs-config.js	file.	With	the	code
in	that	file,	the	slick.js	file	is	initialized	but	not	loaded.	To	load	the	file,	we	had	to	use
the	require	function	as	shown	in	the	following	code:

require(['jquery',	'slick'],	function($)	{

});

With	the	previous	code,	the	jQuery	library	and	the	Slick	library	are	loaded	before	the
code	between	the	brackets	is	executed.

To	initialize	the	product	slider,	we	used	the	JavaScript	code	that	is	used	in	the
documentation	of	the	slick	plugin.	With	that	configuration,	we	created	some	breakpoints
to	make	the	plugin	responsive.

Chapter	10.	Performance	Optimization
In	this	chapter,	we	will	cover	the	following	recipes:

Benchmarking	a	website
Optimizing	the	frontend	of	the	website
Optimizing	the	database	and	MySQL	configurations
Optimizing	the	Apache	web	server
Finding	performance	leaks	in	Magento
Configuring	OPcache,	Redis,	and	Memcached
Optimizing	the	PHP	configurations

Introduction
In	a	sport	competition,	every	second,	millisecond,	decide	whether	a	player	wins	a
competition	or	not.	Every	small	aspect	that	improves	the	performance	is	a	step	in	the	right
direction	to	win	a	competition.	For	websites,	this	is	the	same.	The	faster	a	website	is,	the
better	it	is.	A	fast	website	gives	a	better	user	experience	and	it	is	better	for	SEO.	So,	the
faster,	the	better.

Magento	is	a	framework	that	calls	a	lot	of	operations	when	loading	a	page.	All	these
operations	take	some	time.	This	means	that	Magento	is	not	one	of	the	best	performing
systems	in	the	world,	especially	when	you	are	working	with	a	lot	of	products,	attributes,
multiple	store	views,	and	more.

However,	with	a	good	setup	and	the	right	tools,	you	can	improve	the	performance	of	your
shop	so	that	it	will	perform	very	fast.

The	performance	of	a	website	has	a	lot	of	impact	on	your	visitors.	Here	are	some	facts
about	the	performance	of	a	website:

When	your	site	is	100	milliseconds	slower,	you	lose	1%	of	the	total	sales.
When	a	site	is	slower	than	2-3	seconds,	users	will	leave	because	your	site	is	slow.	A
quickly	loading	page	has	a	positive	influence	on	your	SEO	results.
More	and	more	people	have	mobile	devices	without	the	fastest	Internet	connection.

As	you	can	see,	the	performance	is	an	important	thing	when	you	want	to	improve	the
conversion	of	your	website.	Customers	will	leave	your	site	when	it	is	slow,	and	search
engines	will	give	you	a	lower	rank	when	your	site	is	slow.

The	improvement	of	the	performance	is	mostly	one	of	the	last	steps	in	the	development
workflow	of	a	site.	People	build	something	and	when	it	is	ready,	they	begin	to	look	at	how
that	they	can	optimize	some	parts	to	make	it	faster.

In	this	chapter,	we	will	explore,	detect,	and	fix	performance	leaks	in	a	Magento	webshop
using	some	performance	tools.

Magento	delivers	some	tools	by	default,	but	we	have	to	look	at	the	whole	picture.	Two
identical	Magento	installations	can	have	a	different	performance	that	can	be	caused	by	the
following	reasons:

Hardware
Network
Load
Device	of	the	client

Benchmarking	a	website
When	you	have	a	high-traffic	site,	you	would	probably	want	to	know	the	limits	of	the
website.	What	will	be	the	capacity	of	my	website	when	I	launch	a	marketing	campaign?
What	is	slowing	down	my	site?	Which	optimizations	have	the	most	effect?

To	know	the	limits	of	a	website,	we	have	to	use	benchmarking	tools.	With	a	benchmarking
tool,	we	will	create	a	load	on	the	website	and	log	the	response	time	to	a	file.	By	increasing
or	decreasing	some	values,	we	can	determine	the	load	that	is	the	limit	of	a	website.

In	this	recipe,	we	will	benchmark	the	Magento	site	by	doing	some	tests	with
ApacheBench	and	Siege.	With	these	tools,	we	can	measure	the	performance	of	different
pages.

Getting	ready
For	this	recipe,	we	need	some	tools	that	need	to	be	installed	on	the	webserver.	Ensure	that
you	have	the	following	tools	installed:

ApacheBench	(ab):	This	tool	can	be	installed	using	the	sudo	apt-get	install
apache2-utils	command.	When	this	is	installed	on	the	server,	you	can	use	the	ab	-h
command	to	display	the	usage	information.
Siege:	We	will	do	some	benchmarking	tests	with	Siege	that	is	installed	on	the	same
server	as	the	Magento	instance.	To	see	if	it	is	installed,	you	can	run	the	following
command:

siege	-V

Ensure	that	the	-V	option	is	in	uppercase.	When	Siege	is	installed,	you	will	see
its	version	number,	as	shown	in	the	following	screenshot:

If	it	is	not	installed,	you	can	run	the	following	command	when	you	are	using	a
Debian-based	Linux	distribution:

sudo	apt-get	install	siege

Another	option	is	to	download	the	installation	file	and	install	it	using	the
following	steps:

1.	 Download	the	archive	using	the	following	wget	command:

wget	http://download.joedog.org/siege/siege-3.1.0.tar.gz

2.	 Extract	the	file	by	running	the	following	command:

tar	xfz	siege-3.1.0.tar.gz	

3.	 Move	the	folder	to	the	preferred	location	and	go	to	that	directory	using	the	cd
command.

4.	 When	you	are	in	that	folder,	you	can	install	Siege	using	the	following	command:

sudo	./configure

How	to	do	it…
1.	 To	get	an	idea	of	the	response	time	with	a	load	of	a	number	of	concurrent	users,	we

can	use	ApacheBench	to	perform	some	simple	tests.	With	the	following	command,
we	will	run	a	test	that	writes	the	result	to	a	CSV	file:

ab	–c	10	–n	50	–e	apachebench.csv	http://magento2.local

2.	 In	the	previous	command,	we	did	a	load	test	with	the	following	parameters:

-c:	This	parameter	represents	the	number	of	concurrent	users.	In	this	test,	we
ran	10	requests	at	the	same	time	throughout.
-n:	This	parameter	represents	the	number	of	requests,	which	is	50	in	this	case.
So,	we	will	have	50	results	in	the	file.
-e:	This	parameter	represents	the	output	file.	The	output	is	written	to	the	given
CSV	file.

Tip
The	-g	option	means	the	same	as	the	-e	option,	but	a	-g	option	will	generate	a
TSV	(Tab	Separated	Value)	file,	also	known	as	a	gnuplot	file.

3.	 When	you	run	the	preceding	command,	it	will	return	an	output	as	shown	in	the
following	screenshot:

4.	 This	report	shows	the	general	statistics	of	the	test.	The	specific	results	of	each	request
are	saved	in	the	CSV	file	(apachebench.csv).

5.	 Load	testing	with	Siege.

Siege	is	another	load	testing	tool	like	ApacheBench.	The	difference	between	Siege
and	ApacheBench	is	that	Siege	has	more	functions	than	ApacheBench.	It	is	designed
to	perform	a	stress	test	with	a	number	of	concurrent	users.	Siege	also	provides	the
ability	to	work	with	HTTP	authentication,	cookies,	sessions,	and	more.	When	you
write	a	good	script,	you	can	simulate	a	real	stress	situation.

6.	 For	a	load	test	with	Siege,	we	will	use	a	text	file	where	we	will	configure	some	URLs
that	will	be	used	during	the	Siege	load	test.	When	we	do	a	test	with	different	URLs,
we	will	test	more	pages,	and	we	can	find	more	pitfalls	on	the	website.	Create	a	file
called	siege_url.txt	with	the	following	content:

http://magento2.local/

http://magento2.local/pub/static/frontend/Magento/luma/en_US/mage/calendar.css

http://magento2.local/pub/static/frontend/Magento/luma/en_US/css/styles-

m.css

http://magento2.local/pub/static/frontend/Magento/luma/en_US/images/logo.svg

http://magento2.local/pub/static/frontend/Magento/luma/en_US/requirejs/require.js

http://magento2.local/women/tops-women.html

http://magento2.local/women/tops-women.html?cat=28

http://magento2.local/checkout/cart/add/?product=1

http://magento2.local/checkout/

http://magento2.local/pub/static/frontend/Magento/luma/en_US/js-

translation.json

http://magento2.local/pub/static/frontend/Magento/luma/en_US/Magento_Ui/templates/block-

loader.html

http://magento2.local/pub/static/frontend/Magento/luma/en_US/Magento_Ui/templates/modal/modal-

popup.html

http://magento2.local/pub/static/frontend/Magento/luma/en_US/Magento_Checkout/template/onepage.html

http://magento2.local/pub/static/frontend/Magento/luma/en_US/Magento_Checkout/template/progress-

bar.html

http://magento2.local/pub/static/frontend/Magento/luma/en_US/images/loader-

1.gif

http://magento2.local/pub/static/frontend/Magento/luma/en_US/images/select-

bg.svg

http://magento2.local/customer/account/login/

http://magento2.local/contact/

http://magento2.local/catalog/product_compare/add/?product=1

http://magento2.local/pub/static/frontend/Magento/luma/en_US/js/theme.js

http://magento2.local/catalog/product_compare/index/

http://magento2.local/catalogsearch/result/?q=watch

http://magento2.local/catalogsearch/advanced/result/?

name=Watch&sku=&description=analog&short_description=&price%5Bfrom%5D=50&price%5Bto%5D=100&tax_class_id=

http://magento2.local/pub/media/catalog/product/cache/1/small_image/240x300/e9c3970ab036de70892d86c6d221abfe/sample_data/m/g/mg05-

br-0.jpg

http://magento2.local/customer/account/forgotpassword/

http://magento2.local/search/term/popular/

7.	 Change	the	URLs	so	that	they	match	your	Magento	configurations.	Ensure	that	you
are	testing	your	development	environment	with	valid	URLs.

8.	 With	the	following	command,	we	can	start	a	load	test	with	50	concurrent	users	based
on	the	URLs	that	we	entered	in	the	siege_url.txt	file:

siege	-c50	-i	-t	1M	-d	3	-f	siege_url.txt

9.	 The	time	taken	by	this	command	to	complete,	depends	on	the	webshop’s
performance.	The	output	of	the	command	will	be	similar	to	the	following:

$	siege	-c50	-i	-t	1M	-d	3	-f	siege_url.txt

**	SIEGE	3.0.5

**	Preparing	50	concurrent	users	for	battle.

The	server	is	now	under	siege…[alert]	socket:	1772328704	select	timed	

out:	Connection	timed	out

[alert]	socket:	1998931712	select	timed	out:	Connection	timed	out

[alert]	socket:	1671616256	select	timed	out:	Connection	timed	out

socket:	2024109824	select	timed	out:	Connection	timed	out

[alert]	socket:	1713579776	select	timed	out:	Connection	timed	out

Lifting	the	server	siege…						done.

Transactions:																				171	hits

Availability:																		86.80	%

Elapsed	time:																		59.44	secs

Data	transferred:															1.02	MB

Response	time:																		6.08	secs

Transaction	rate:															2.88	trans/sec

Throughput:																					0.02	MB/sec

Concurrency:																			17.49

Successful	transactions:									190

Failed	transactions:														26

Longest	transaction:											27.51

Shortest	transaction:											0.00

Note
In	the	preceding	output,	we	can	see	some	timeouts.	This	means	that	there	are	requests
that	are	not	successful.

10.	 With	the	siege	-h	command,	you	can	see	all	the	available	options	of	that	command.

How	it	works…
We	started	this	recipe	with	a	load	test	using	ApacheBench.	This	is	a	tool	that	was
previously	a	part	of	the	Apache	Web	Server.	Currently,	it	is	packaged	in	the	apache2-
utils	bundle.	This	package	also	contains	tools	such	as	log	rotation,	generation	of
htpasswd	files,	and	more.

With	ApacheBench,	we	performed	a	load	test	with	a	number	of	concurrent	users.	A
concurrent	user	is	a	user	that	is	generating	load	on	the	website.	When	we	test	with	10
concurrent	users,	we	will	simulate	a	continuous	load	of	10	processes	during	the	time	of	the
test.	When	one	of	the	requests	is	finished,	a	new	one	is	fired,	so	there	are	always	10
requests	running.

When	we	you	a	limit	of	30	seconds,	we	can	see	how	many	requests	are	successfully
finished	during	that	time.	This	can	give	you	a	good	idea	of	the	capacity	of	your	website.

With	Siege,	we	can	do	the	same	as	with	ApacheBench.	The	main	difference	between
ApacheBench	and	Siege	is	that	Siege	has	more	features	when	you	compare	it	with
ApacheBench.

In	this	recipe,	we	performed	a	load	test	with	a	list	of	generic	Magento	URLs	such	as	some
pages,	static	content,	product	images,	and	more.	We	also	added	some	products	to	the	cart
with	the	query	string	URL	so	that	we	can	simulate	a	human	workflow	on	the	website.

A	lot	of	pages	are	cached	in	Magento,	but	we	also	have	to	test	the	session-specific	pages,
such	as	the	cart,	checkout,	search,	and	more.

Note
With	ApacheBench	and	Siege,	you	can	create	load	on	a	website.	When	you	do	this	on	a
remote	site,	it	is	possible	that	you	will	be	blocked	by	a	firewall	because	a	lot	of	requests
from	the	same	IP	will	give	the	impression	of	an	attack.

Optimizing	the	frontend	of	the	website
When	you	look	at	the	performance	of	a	website,	there	are	many	points	that	you	can
optimize.	Between	the	start	of	a	request	and	the	rendered	page	in	the	browser,	a	lot	of
operations	are	carried	out.

In	this	recipe,	you	will	learn	how	to	spot	bottlenecks	and	optimize	some	things	that
increase	the	performance.

Getting	ready
For	this	recipe,	we	will	use	two	browser	plugins	where	we	can	measure	some	metrics:

app.telemetry:	With	this	simple	browser	plugin,	we	can	monitor	the	load	time	of
each	page.	We	can	download	the	plugin	from	the	following	website:

http://www.apptelemetry.com/en/page-speed-monitor.html

This	will	add	an	icon	in	the	browser	bar	where	we	can	read	the	response	time.

YSlow:	With	this	browser	plugin,	can	we	generate	a	report	of	things	that	we	can
optimize	in	the	website.	You	can	install	the	YSlow	plugin	to	Chrome	or	Firefox	from
the	following	URL:

http://yslow.org/

http://www.apptelemetry.com/en/page-speed-monitor.html
http://yslow.org/

How	it	works…
The	following	steps	describe	how	we	can	find	pitfalls	in	the	frontend	of	Magento	to
decrease	the	page	load	time:

1.	 When	you	have	the	app.telemetry	plugin	installed,	you	will	see	an	icon	on	the
browser	bar,	as	shown	in	the	following	screenshot:

2.	 To	analyze	a	page	load,	you	have	to	reload	a	page,	and	when	the	page	is	loaded,	you
will	see	the	time	taken	for	loading	in	the	browser	bar	icon.	When	you	click	on	the
icon,	you	can	see	more	details,	as	shown	in	the	following	screenshot:

3.	 When	we	do	the	same	on	a	remote	website,	we	will	see	different	results.	The	time
taken	by	the	TCP	and	DNS	steps	will	be	longer.

4.	 We	will	continue	by	generating	a	performance	analysis	with	YSlow.	YSlow	is	a
browser	plugin	that	needs	to	be	installed	in	your	browser.	When	you	have	installed
the	browser	plugin,	you	can	click	on	the	icon	in	the	browser	bar.

5.	 A	window	will	show	up	and	when	you	click	on	the	Run	Test	button,	the	report	will
be	generated.

6.	 When	the	report	is	ready	and	you	click	on	the	Grade	tab,	you	will	see	the	report,	as
shown	in	the	following	screenshot:

7.	 With	a	default	Magento	instance,	you	will	have	a	good	score.	But	we	can	increase
this	with	some	simple	optimizations.

8.	 The	first	thing	that	we	can	optimize	is	to	add	Expires	headers.	With	the	following
code,	we	can	add	Expires	headers	to	some	static	files.	Add	this	code	in	the
.htaccess	file	by	replacing	the	<IfModule	mod_expires.c>	section	with	the
following	code:

<IfModule	mod_expires.c>

##

##	Add	default	Expires	header

##	http://developer.yahoo.com/performance/rules.html#expires

		ExpiresDefault	"access	plus	1	year"

		ExpiresActive	On

		ExpiresByType	image/gif	"access	1	year"

		ExpiresByType	image/jpg	"access	1	year"

		ExpiresByType	image/jpeg	"access	1	year"

		ExpiresByType	image/png	"access	1	year"

		ExpiresByType	image/x-icon	"access	1	year"

		ExpiresByType	text/css	"access	1	month"

		ExpiresByType	application/x-javascript	"access	1	month"

</IfModule>

9.	 When	we	add	this	code,	we	will	have	to	reload	the	website	in	order	to	check	that	the
site	is	not	broken	after	the	change	in	the	.htaccess	file.	When	this	is	done,	we	can
run	the	test	again.	We	will	see	that	the	Add	Expires	Headers	is	now	changed	to	an
A.

10.	 Another	improvement	is	to	minify	JavaScript	and	CSS.	There	are	a	lot	of	tools	to
minify	JavaScript	and	CSS	files	but	this	also	a	setting	in	the	configuration	of
Magento.	In	the	backend,	navigate	to	Stores	|	Configuration	|	Advanced	|
Developer	and	change	the	following	settings	to	Yes:

Merge	JavaScript	files:	Yes
Minify	JavaScript	files:	Yes
Merge	CSS	files:	Yes
Minify	CSS	files:	Yes

11.	 After	saving	these	settings,	the	configuration	will	look	as	shown	in	the	following
screenshot:

12.	 When	you	run	the	test	again,	you	will	see	that	the	overall	score	is	raised	again.	There
are	two	points	that	need	more	attention:	Use	a	Content	Delivery	Network	and	Use
cookie-free	domains.	You	can	use	an	existing	CDN	provider	to	host	your	static	files,
but	you	can	also	create	another	domain	such	as	static.magento2.local	that	also
points	to	the	Magento	root.	In	the	backend,	you	can	configure	Magento	to	use	this
domain	for	static	content.	You	can	configure	this	by	navigating	to	Stores	|
Configuration	|	General	|	Web.	In	the	base	URLs	section,	you	can	configure	the
values	as	shown	in	the	following	screenshot:

How	it	works…
We	started	this	recipe	using	the	app.telemetry	plugin	to	show	the	different	parts	of	a
page	load.	When	we	click	on	the	icon	of	that	plugin,	we	see	the	following	parameters:

Redirect:	This	is	the	time	that	is	taken	to	redirect	this	page	(if	there	is	a	redirect).
App	Cache:	This	is	the	time	of	your	local	cache.
DNS	Lookup:	This	is	the	time	taken	to	resolve	the	IP	address	for	the	given	domain
name.
TCP	Connection:	This	is	the	time	taken	to	send	a	request	to	the	server.	This	is	mostly
longer	when	sending	a	large	POST	request.
TCP	Request:	This	is	the	time	that	the	server	needs	to	process	your	response.	In	this
timeframe,	the	server	will	build	the	HTML	file	of	the	page.
TCP	Response:	This	is	the	time	taken	to	download	the	response	to	your	local	device.
With	slow	networks,	this	time	will	be	more.
Processing:	This	is	the	time	it	takes	to	render	your	HTML,	CSS,	JavaScript,	and
other	stuff.
Onload	event:	This	is	the	time	that	the	onload	event	takes.	After	this,	the	page	is
fully	loaded.

In	the	first	column,	Offset,	you	see	the	time	from	the	start	of	the	request.	In	the	second
column,	Duration,	you	can	see	how	much	time	is	taken	for	each	step.

In	the	next	step,	we	did	an	analysis	of	the	page	with	YSlow.	YSlow	will	test	a	website	on
different	topics.	All	these	topics	are	based	on	a	ruleset.	With	the	Chrome	plugin,	the
YSlow(v2)	ruleset	is	automatically	selected.	You	can	also	choose	the	Classic(v1)	ruleset.

The	YSlow(v2)	ruleset	will	test	on	the	following	topics:

Minimizing	HTTP	requests
Using	a	Contend	Delivery	Network
Avoiding	empty	src	or	href	instances
Adding	Expires	Headers	or	a	cache-control	header
Using	compression	for	static	files
Placing	stylesheets	at	the	top
Placing	JavaScript	at	the	bottom
Avoiding	CSS	expression
Making	JavaSript	and	CSS	external
Reducing	DNS	lookups
Minifying	JavaSript	and	CSS
Avoiding	redirects
Removing	duplicate	JavaScript	and	CSS
Configuring	ETags
Making	AJAX	cacheable
Using	GET	fo	AJAX	requests
Reducing	the	Number	of	DOM	elements
Reducing	the	number	of	404	errors

Reducing	the	cookie	size
Using	cookie-free	domains	for	static	files
Avoiding	filters
No	scaling	of	images	in	HTML
Making	favicon.ico	small	and	cacheable

When	we	did	the	test	on	a	standard	Magento	2	shop,	the	overall	score	was	quite	good.
When	you	develop	your	own	stuff,	you	will	have	to	keep	the	previous	rulesets	in	mind
because	these	points	reduce	the	load	of	the	page.

The	YSlow	ruleset	mostly	increases	the	performance	of	the	frontend	(the	loading	of
JavaScript,	CSS,	images,	and	so	on).	It	doesn’t	give	advice	on	how	to	optimize	your	PHP
processes.

First,	we	added	some	Expires	headers	instance	to	the	static	files.	With	these	headers,	we
configured	how	long	static	files	will	be	cached	in	the	browsers	of	the	visitors.	For	every
MIME	type,	we	can	specify	a	different	time.

The	second	point	to	optimize	is	to	merge	the	JavaScript	and	CSS	files.	Loading	one	big
file	is	faster	than	loading	100	small	files.	This	can	be	declared	by	the	following	reasons:

For	every	file,	an	HTTP	request	will	be	created.	Also,	headers	and	cookies	are	sent
for	every	request.
Some	webservers	can	only	handle	a	limited	number	of	HTTP	requests	at	a	time.	So,
if	there	are	a	lot	of	requests,	they	will	be	queued.
Sometimes,	it	may	happens	that	one	of	the	requests	hangs,	so	your	page	keeps
loading.	With	fewer	requests,	you	have	lesser	chances	that	this	happens.

Finally,	we	configured	a	different	domain	to	the	static	content.	When	you	have	a	different
domain	(or	a	cookie-free	domain),	the	cookies	are	not	sent	to	the	server	for	every	request,
so	this	reduces	the	bandwidth.

There’s	more…
If	you	go	to	the	site	gtmetrix.com,	you	can	enter	a	URL	that	you	want	to	analyze.	This	tool
will	do	a	PageSpeed	and	YSlow	test	on	the	given	URL.

Because	this	is	an	online	tool,	you	have	to	ensure	that	your	site	is	accessible	by	the
GTmetrix	server.

http://gtmetrix.com

Optimizing	the	database	and	MySQL
configurations
The	Magento	applications	use	a	database	to	store	all	the	data,	including	products,
customers,	orders,	and	more.	The	database	is	the	central	storage	of	all	the	data	that	is
available	in	the	Magento	instance.	Scaling	Magento	to	multiple	frontend	servers	is	not	that
hard	but	scaling	the	database	is	much	harder	because	the	data	is	something	that	needs	to
be	in	sync.

In	this	recipe,	we	will	see	how	we	can	optimize	the	database	and	the	MySQL	server.

Getting	ready
Ensure	that	you	have	access	to	a	database	client	where	you	can	do	some	queries	to	your
database.	In	this	recipe,	we	will	use	phpMyAdmin.

How	to	do	it…
In	the	first	part	of	this	recipe,	we	will	optimize	the	table	structures	of	the	Magento
database.	Take	a	look	at	the	following	steps:

1.	 Open	phpMyAdmin	and	click	on	the	Magento	database.	You	will	see	an	overview	of
all	the	tables.

2.	 At	the	bottom	of	this	page,	click	on	the	Check	All	button.
3.	 When	you	click	on	the	dropdown	list,	you	can	repair	the	table	and	optimize	it,	as

shown	in	the	following	screenshot:

Tip
Ensure	that	you	run	this	action	for	all	the	tables	in	the	Magento	database.	It	can
happen	that	the	list	is	divided	in	multiple	pages.	A	Magento	2	shop	has	over	300
tables.	The	phpMyAdmin	installation	shows	by	default	250	tables	per	page.

4.	 We	have	now	optimized	the	tables	of	Magento.	The	other	thing	that	you	can	do	is	run
the	database	repair	tool	to	check	whether	some	relations	are	missing.

We	are	now	at	the	second	part	of	this	recipe.	In	this	part,	we	will	see	some	optimizations
that	we	can	do	on	the	MySQL	server:

1.	 A	good	MySQL	server	starts	with	good	hardware	and	the	right	operating	system.	To
run	Magento,	it	is	recommended	that	you	use	a	dedicated	server	or	a	VPS.	You	can
also	use	a	shared	hosting	environment,	but	this	is	not	the	best	option	because	the
RAM	and	CPU	load	is	shared	between	other	users	on	that	server.	With	a	VPS	or
dedicated	server,	you	have	a	fixed	number	of	CPUs	and	RAM	available.

2.	 When	your	server	has	enough	RAM	available,	you	can	turn	off	the	swapped	devices.
Sometimes,	the	swap	option	will	be	automatically	used	even	when	there	is	enough
memory	available.

3.	 On	your	server,	open	the	/etc/mysql/my.cnf	file.	Look	for	the	skip-external-
locking	setting	under	the	[mysqld]	section.	If	the	setting	isn’t	there,	you	can	add	this

on	a	new	line.
4.	 To	show	the	size	of	the	key	buffer	for	MyISAM	tables,	we	can	run	the	following

query	on	the	MySQL	prompt:

mysql>	SHOW	VARIABLES	LIKE	'%key_buffer%';

5.	 For	Magento,	the	recommended	value	is	512	MB.	To	set	this	value,	we	can	run	the
following	command	on	the	MySQL	prompt:

mysql>	SET	GLOBAL	key_buffer_size	=	536870912;

6.	 Next,	we	will	change	some	default	configuration	parameters.	We	can	set	these	in	the
main	configuration	file	of	the	MySQL	server	that	is	located	at	/etc/mysql/my.cnf.

7.	 Open	that	file	and	paste	the	following	configuration	under	the	[mysqld]	section:

key_buffer	=	512M

max_allowed_packet	=	64M

thread_stack	=	192K

thread_cache_size	=	32

table_cache	=	512

query_cache_type	=	1

query_cache_size	=	52428800

tmp_table_size	=	128M

expire_logs_days	=	10

max_binlog_size	=	100M

sort_buffer_size	=	4M

read_buffer_size	=	4M

read_rnd_buffer_size	=	2M

myisam_sort_buffer_size	=	64M

wait_timeout	=	300

max_connections	=	400

8.	 Save	the	file	and	restart	your	MySQL	server.	You	can	do	this	by	running	the
following	command:

sudo	service	mysql	restart

How	it	works…
When	optimizing	a	MySQL	server,	you	have	to	know	the	capabilities	of	your	server	and
the	traffic	that	you	except.	With	these	parameters,	you	can	calculate	a	good	value	for	the
key_buffer,	query_cache	and	table_cache.

With	the	following	commands,	you	can	view	the	MySQL	server	status:

Command Description

mysql>	SHOW	STATUS;
This	command	shows	the	current	status	of	the	MySQL	server.	It	is	available	in	MySQL	5.0
and	later,	and	is	the	standard	query	to	show	all	the	global	variables.

mysql>	SHOW	

VARIABLES;
This	command	shows	all	the	MySQL	variables.

mysql>	SHOW	ENGINE	

INNODB	STATUS;
This	command	shows	the	current	status	of	the	INNODB	engine.

mysql>	SHOW	GLOBAL	

STATUS;
This	query	shows	values	of	the	current	load	on	the	database	server	for	all	connections.

mysql>	SHOW	LOCAL	

STATUS;
This	command	shows	the	same	as	the	last	one	but	now	only	for	the	current	connection.

$	mysqladmin	

extended	-i100	-r

You	need	to	run	this	command	in	a	Linux	prompt.	This	command	shows	what	is	happening
with	the	MySQL	server.

Database	optimization	is	one	of	the	key	aspects	to	tune	your	Magento	webshop.	Database
processes	are	responsible	for	a	big	part	of	the	page	load,	so	a	good	performing	database	is
very	important.

Optimizing	the	Apache	web	server
Magento	can	be	run	on	Apache	or	Nginx.	Configuration	files	for	both	systems	are
available	in	the	code	base	(.htaccess	and	nginx.conf.sample	in	the	root	folder).

The	performance	of	the	web	server	depends	on	what	hardware	the	server	is	running.
Network	card,	RAM,	disk,	OS,	and	CPU	are	the	most	important	hardware	components
that	you	have	to	think	about	when	choosing	a	server.

How	to	do	it…
1.	 The	first	thing	to	think	about	is	a	good	operating	system	to	run	your	web	server.	It	is

highly	recommended	that	you	use	a	Linux	distribution	because	it	is	the	standard	for
PHP	applications.

In	the	recipes	of	this	book,	we	used	an	Ubuntu	server	(a	Debian-based	Linux
distribution).

Tip
Don’t	use	a	Windows	server	to	run	Magento.	It	will	work,	but	it	is	less	efficient	and
you	can	have	issues	with	file	permissions,	code,	and	more.

2.	 Update	the	operating	system	to	the	latest	stable	version.	An	updated	software	is	safer
and	faster.	Use	at	least	the	Apache	2.4.	At	the	time	of	writing,	this	is	the	latest	stable
release	and	has	some	improvements	for	performance.

3.	 Install	only	the	required	software	on	your	webserver.	Less	is	more!	When	a	lot	of
software	is	installed	that	you	don’t	use,	you	will	have	background	tasks	that	are
running	for	nothing.

4.	 Use	a	fast	filesystem.	Use	an	SSD	in	your	server	because	this	is	much	faster	than	a
disk.	Never	use	a	file	system	that	is	shared	over	a	network	because	this	is	very	slow.

5.	 You	have	to	configure	your	web	server	so	that	it	doesn’t	swap.	When	your	web	server
begins	to	swap,	all	requests	will	be	served	slower.	The	first	thing	to	do	is	to	compare
the	volume	of	RAM	on	the	server	with	the	average	memory	load	of	a	request	and	a
number	of	requests.	The	second	thing	that	you	can	do	is	configure	the	MaxClients
setting.	This	setting	controls	the	number	of	child	processes	when	the	server	is
swapping.

6.	 Look	at	the	HostnameLookups	setting	and	check	whether	this	is	configured	with	the
Off	value.

7.	 Enable	the	Apache	modules	mod_deflate	and	mod_headers.	We	can	do	this	with	the
following	commands:

sudo	a2enmod	deflate

sudo	a2enmod	headers

8.	 Open	the	.htaccess	file	in	the	Magento	root	and	go	to	the	mod_deflate
configuration	tag.	Uncomment	some	lines	so	that	the	block	looks	like	the	following
code:

<IfModule	mod_deflate.c>

##

##	enable	apache	served	files	compression

##	http://developer.yahoo.com/performance/rules.html#gzip

		#	Insert	filter	on	all	content

		SetOutputFilter	DEFLATE

		#	Insert	filter	on	selected	content	types	only

		AddOutputFilterByType	DEFLATE	text/html	text/plain	text/xml	text/css	

text/javascript

		#	Netscape	4.x	has	some	problems…

		BrowserMatch	^Mozilla/4	gzip-only-text/html

		#	Netscape	4.06-4.08	have	some	more	problems

		BrowserMatch	^Mozilla/4\.0[678]	no-gzip

		#	MSIE	masquerades	as	Netscape,	but	it	is	fine

		BrowserMatch	\bMSIE	!no-gzip	!gzip-only-text/html

		#	Don't	compress	images

		SetEnvIfNoCase	Request_URI	\.(?:gif|jpe?g|png)$	no-gzip	dont-vary

		#	Make	sure	proxies	don't	deliver	the	wrong	content

		Header	append	Vary	User-Agent	env=!dont-vary

</IfModule>

Tip
When	you	get	an	internal	server	error	after	the	change,	it	is	possible	that	the	headers
module	is	nog	enabled.	Run	the	sudo	a2enmod	headers	command	and	restart	the
server	to	fix	this.

9.	 Take	a	look	at	the	KeepAlive	setting	of	your	Apache	server.	When	this	setting	is
active,	the	Apache	server	can	handle	multiple	requests	trough	the	same	TCP
connection.

10.	 Configure	the	Multi-Processing	Modules	(MPM)	for	your	case.	The	values	of	these
configurations	depend	on	the	resources	and	load	that	you	expect	on	your	server:

StartServers	50

MinSpareServers	15

MaxSpareServers	30

MaxClients	225

MaxRequestsPerChild	4000

11.	 When	you	run	some	load	tests	again,	you	can	compare	the	current	result	with	the
results	before	the	optimization.	Usually,	you	will	see	some	differences.

How	it	works…
The	performance	of	a	web	server	depends	on	many	factors.	The	key	parts	are	the
application,	hardware,	operating	system,	and	the	network.

Application:	Ensure	that	the	application	that	you	are	running	is	working	efficiently
with	the	resources	on	your	server.	If	your	application	expects	a	lot	of	resources	for	a
simple	task,	maybe	you	can	optimize	this.
Hardware:	Ensure	that	the	hardware	resources	are	high	enough	to	serve	the	expected
load	and	peaks.
Operating	system:	The	operating	system	and	the	web	server	version	are	among	the
important	factors.	Use	a	Linux	server	to	run	Magento	with	an	Apache	or	Nginx	web
server	on	it.	Always	use	the	latest	stable	versions	of	the	software	because	they	are
faster	and	more	secure.
Network:	The	web	server	sends	the	response	trough	the	network	to	the	client.	When
that	network	is	slow,	the	download	time	of	a	request	will	be	long.	Host	your	web
server	with	a	good	network	connection	and	host	it	geographically	in	the	region	of
your	target	audience.	For	example,	host	your	website	in	Italy	for	an	Italian	website.

As	you	can	see,	you	can	optimize	a	lot	of	things	on	your	web	server.	But	every	case	is
different.	Normally,	people	have	a	standard	server	setup.	They	deploy	the	application	on	it
and	then	they	start	optimizing.	Every	application	is	different	(in	terms	of	code,	load,	and
so	on).

Finding	performance	leaks	in	Magento
When	optimizing	a	website,	we	can	do	lots	of	things	to	the	server	environment	but	the
application	that	runs	on	it	can	always	be	faster.

When	you	have	a	Magento	store	and	one	kind	of	page	is	significantly	slower	than	other
pages,	it	could	possible	be	that	there	is	a	performance	issue	on	that	page.

To	find	performance	issues,	we	can	use	the	Magento	Profiler.	With	the	Magento	Profiler,
we	can	see	how	much	time	every	process	takes	to	render	a	page.

Getting	ready
To	enable	the	profiler,	we	have	to	modify	the	apache	environment	variables.	We	can	do
this	in	the	VirtualHost	configuration	or	in	the	.htaccess	file.	Ensure	that	you	have
access	to	one	of	these	files.

How	to	do	it…
In	the	following	steps,	we	will	specify	how	we	can	use	the	Magento	profiler:

1.	 To	enable	the	profiler,	add	the	following	code	in	the	VirtualHost	or	the	.htaccess
file:

SetEnv	MAGE_PROFILER	html

2.	 If	you	changed	this	setting	in	the	VirtualHost	file,	reload	the	Apache	server.
3.	 Reload	a	page	in	the	frontend	and	you	will	see	that	the	profiler	output	is	shown	at	the

end	of	the	page,	as	shown	in	the	following	screenshot:

4.	 It	is	possible	that	the	profiler	output	will	break	some	functionality	when	you	have
JSON	responses	with	AJAX.	For	this	reason,	it	is	also	possible	to	write	the	profiler
output	to	a	.csv	file.	To	enable	this,	we	have	to	change	the	SetEnv	rule	in.htaccess
or	VirtualHost	to	the	following:

SetEnv	MAGE_PROFILER	csvfile

5.	 The	profiler	output	will	be	written	to	the	var/log/profiler.csv	file.
6.	 When	we	switch	the	profiler	back	to	the	HTML	output,	we	can	analyze	the	page.
7.	 Open	a	product	detail	page	and	take	a	look	at	the	Time	and	Count	column.	We	see

the	steps	of	a	page	load	in	a	tree.	When	we	look	for	the	most	time	consuming	parts,

we	see	that	the	LAYOUT	part	is	the	slowest	of	the	whole	page.

How	it	works…
When	you	enable	the	Magento	profiler,	the	profiling	results	will	be	showed	in	the	HTML
file,	CSV	file,	or	Firebug.

In	the	profiling	results,	you	have	the	following	columns:

Timer	Id:	This	is	the	code	of	a	profiled	statement.	In	the	code,	you	can	profile	a
block	of	code	by	surrounding	it	with	the	following	code:

\Magento\Framework\Profiler::start('profiler_name');

//Your	code	to	profile

\Magento\Framework\Profiler::stop('profiler_name');

Time:	This	is	the	time	taken	to	complete	the	code	between	a	profiler	start	and	stop.
Avg:	When	a	profiler	statement	is	executed	more	than	one	time,	this	will	show	the
average	time	to	complete	one	statement.
Cnt:	This	shows	the	number	of	times	a	profiler	statement	is	called.

Note
The	Avg	column	multiplied	by	the	Cnt	column	gives	the	same	value	as	the	Time
column.

Emalloc:	This	is	the	amount	of	memory	that	is	allocated	for	the	profiler	statement.
RealMem:	This	is	the	same	as	the	Emalloc	option	but	this	is	the	amount	of	memory
that	is	allocated	to	the	system.

It	is	possible	to	run	profiler	statements	in	each	other.	When	this	is	done,	the	HTML	output
will	show	dots	for	the	items	that	are	executed	in	a	parent	statement.	This	will	give	you	a
tree	overview	so	you	can	see	how	a	page	is	executed.

Configuring	OPcache,	Redis,	and
Memcached
The	default	caching	mechanism	of	Magento	is	based	on	file	caching.	All	the	cache	files
are	written	to	the	var/cache	folder.	For	a	simple	webshop,	this	is	enough,	but	if	you	are
scaling	your	shop	with	many	products	and	high	traffic,	you	will	need	to	use	some	extra
caching	systems.

Redis	is	a	replacement	of	the	standard	file	caching	of	Magento.	This	system	works	faster
when	you	have	a	lot	of	cache	files.

Memcached	is	similar	to	Redis.	It	is	a	system	in	which	you	can	cache	objects.

Zend	OPcache	is	an	opcode	caching	system.	When	these	caching	techniques	are	enabled,
the	PHP	code	will	be	cached	to	these	systems.

Getting	ready
When	we	want	to	configure	the	caching	tools	Zend	OPcache,	Memcached,	and	Redis,	we
have	to	install	them	on	our	server.	To	install	these,	run	the	commands	explained	in	the
following	topics:

Zend	OPcache
This	package	is	normally	standard	installed	with	PHP	5.5.	When	you	execute	a	phpinfo()
method	or	run	the	php	-i	|	grep	opcache	command,	you	can	search	for	the	opcache
settings.

Memcached
Install	Memcached	with	the	sudo	apt-get	install	php5-memcached.	command.

Redis
Install	Redis	with	the	sudo	apt-get	install	redis-server	command.

How	to	do	it…
In	the	following	steps,	we	will	use	Zend	OPcache	and	Memcached	for	Magento:

1.	 When	you	run	a	phpinfo()	method	in	the	browser	or	execute	the	php	-i	|	grep
opcache	command,	you	will	see	the	OPcache	settings.	The	following	settings	must	be
set	to	On	to	ensure	that	OPcache	is	enabled:

opcache.enable

opcache.enable_cli

2.	 When	these	settings	are	not	set	to	On,	we	have	to	set	it	in	the	php.ini	file.	Normally,
this	is	located	in	the	/etc/php5/apache2	and	/etc/php5/cli	folders.	This
configuration	is	for	a	Ubuntu	server.

3.	 To	enable	Redis,	we	have	to	modify	the	app/etc/env.php	file.	In	this	file,	we	have	to
add	the	cache	configuration	so	that	Magento	knows	which	cache	type	it	has	to	use.
Add	the	following	code	to	this	file.	You	have	to	paste	this	code	in	the	existing	array:

'cache'	=>	array	(

		'frontend'	=>	array	(

				'default'	=>	array	(

						'backend'	=>	'Cm_Cache_Backend_Redis',

						'backend_options'	=>	array	(

								'server'	=>	'127.0.0.1',

								'port'	=>	'6379',

								'persistent'	=>	'',

								'database'	=>	'0',

								'force_standalone'	=>	'0',

								'connect_retries'	=>	'1',

								'read_timeout'	=>	'10',

								'automatic_cleaning_factor'	=>	'0',

								'compress_data'	=>	'1',

								'compress_tags'	=>	'1',

								'compress_threshold'	=>	'20480',

								'compression_lib'	=>	'gzip',

),

),

				'page_cache'	=>	array	(

						'backend'	=>	'Cm_Cache_Backend_Redis',

						'backend_options'	=>	array	(

								'server'	=>	'127.0.0.1',

								'port'	=>	'6379',

								'persistent'	=>	'',

								'database'	=>	'1',

								'force_standalone'	=>	'0',

								'connect_retries'	=>	'1',

								'read_timeout'	=>	'10',

								'automatic_cleaning_factor'	=>	'0',

								'compress_data'	=>	'0',

								'compress_tags'	=>	'1',

								'compress_threshold'	=>	'20480',

								'compression_lib'	=>	'gzip',

),

),

),

),

4.	 Clean	all	the	Magento	caches	and	restart	your	Apache	server.	When	you	do	a	load
test	with	ApacheBench,	you	will	see	that	there	is	an	improvement	with	the
performance.

Note
Magento	uses	Full	Page	Caching	to	cache	every	content	page.	If	you	want	to	test	the
performance	of	uncached	pages,	you	can	disable	it.

5.	 To	end	this	recipe,	we	will	configure	Memcached	to	store	the	Magento	sessions.	In
your	phpinfo()	method,	ensure	that	Memcached	is	enabled.

6.	 Open	the	app/etc/env.php	file	and	add	the	following	code	in	that	file.	You	have	to
paste	it	in	the	existing	array:

'session'	=>	array(

		'save'	=>	'memcached',

		'save_path'	=>	'127.0.0.1:11211?

persistent=1&weight=2&timeout=10&retry_interval=10',

),

7.	 The	last	thing	that	we	can	do	is	store	the	var/cache	folder	in	memory.	We	can	do	this
by	mounting	the	folder	using	TMPFS:

mount	tmpfs	/var/www/magento2/var/cache	-t	tmpfs	-o	size-64m

How	it	works…
Zend	OPcache	is	an	opcode	caching	mechanism.	This	will	cache	PHP	files	so	that	they
don’t	have	to	load	from	the	disk	every	time	they	are	called.	Zend	OPcache	is	the
replacement	of	APC,	which	is	available	in	older	versions	of	PHP.

APC	is	deprecated	in	PHP	5.4	and	is	not	available	from	PHP	5.5.	To	replace	this,	Zend
OPcache	is	the	tool	that	we	have	to	use.	That’s	also	the	reason	why	it	is	standard	enabled
when	you	install	PHP	5.5	or	higher.

The	second	thing	that	we	configured	is	Redis.	Redis	is	a	caching	tool	in	which	we	can
cache	objects.	It	is	a	replacement	of	the	default	file	caching	of	Magento.	The	advantage	of
Redis	is	that	it	uses	cache	tags.	When	you	have	a	lot	of	cache	files,	a	file	caching
mechanism	will	open	every	file	to	see	that	it	is	relevant.	With	Redis,	every	cache	object	is
tagged,	so	it	can	be	opened	quickly	when	there	is	a	lot	of	cache.

This	is	also	the	reason	that	a	file	caching	system	becomes	slow	when	there	is	a	lot	of
cache.	The	caching	mechanism	will	become	slow	because	it	has	to	open	lots	of	files.

At	last,	we	used	Memcached	to	store	the	sessions	in.	Memcached	is	a	system	similar	to
Redis.	Memcached	doesn’t	use	cache	tags,	so	in	theory,	it	is	slower	than	Redis,	but
practically,	you	have	to	see	which	of	these	two	systems	is	the	best	for	you.

Optimizing	the	PHP	configurations
In	the	previous	recipe,	we	explained	how	some	caching	systems	of	PHP	work.	Since	PHP
5.5,	we	have	Zend	OPcache	that	is	used	as	the	opcode	cache.

In	this	recipe,	we	will	tune	some	PHP	settings	to	optimize	this	for	Magento.

Getting	ready
We	will	make	some	changes	in	the	php.ini	file,	so	ensure	that	you	have	access	to	it.

How	to	do	it…
In	the	following	steps,	we	give	some	tips	to	optimize	PHP:

1.	 At	this	moment,	PHP	7	is	in	Beta	version.	But	when	it	is	stable,	it	is	recommended
that	you	use	this	version	because	this	is	much	faster	than	PHP	5.x.

2.	 Always	use	the	latest	stable	PHP	version	because	this	is	more	secure	and	fast.
3.	 Try	running	PHP	with	an	efficient	process	manager	such	as	php-fpm	that	runs	on	an

impressive	speed	with	FastCGI.
4.	 Use	the	realpath_cache_size	configuration	setting	to	configure	the	size	of	the	real

path	cache	in	PHP.	On	systems	where	PHP	opens	and	closes	a	lot	of	files,	this	value
needs	to	be	increased.	You	can	use	the	following	setting	for	Magento:

realpath_cache_size=1M

realpath_cache_ttl=86400

5.	 The	following	settings	can	improve	the	performance	of	PHP:

Setting Description Recommended	value

max_execution_time
This	setting	sets	the	maximum	time	(in	seconds)	that	a
process	can	execute. 120

max_input_time
With	this	property,	we	set	the	time	(in	seconds).	A	script
will	wait	for	input	data. 240

memory_limit
This	setting	sets	the	amount	of	memory	that	a	process	can
use.

For	Magento,	it	is
recommended	to	use	768
MB

output_buffering
With	this	setting,	you	can	set	the	amount	of	bytes	to	buffer
before	sending	the	response	to	the	client. 4096

6.	 Ensure	that	Xdebug	is	not	enabled	on	a	production	environment.
7.	 Finally,	we	can	disable	some	error	reporting	levels	when	your	site	is	live.	This	can	be

configured	with	the	following	setting:

error_reporting	=	E_COMPILE_ERROR|E_ERROR|E_CORE_ERROR

How	it	works…
The	values	in	the	php.ini	configuration	depend	mostly	on	the	application	that	you	are
running	and	the	load	that	you	expect	on	your	system.	If	your	application	has	some
processes	that	will	run	for	a	long	time	(this	is	possible	with	some	re-indexing	processes
with	large	amounts	of	products),	it	is	required	to	increase	the	values	of
max_execution_time	and	max_input_time.	The	same	goes	for	the	memory_limit
parameter	where	the	recommended	value	is	768	MB.

Disabling	Xdebug	will	give	a	better	performance	because	no	debug	data	will	be
processed.

Disabling	the	error	reporting	on	a	production	system	is	recommended	for	warnings	and
notices	but	critical	errors	needs	to	be	reported	because	you	need	this	information	when
you	want	to	solve	a	possible	bug.

Chapter	11.	Debugging	and	Unit	Testing
In	this	chapter,	we	will	cover	the	following	recipes:

Logging	into	Magento	2
Getting	started	with	Xdebug
Running	automated	tests	from	Magento
Creating	a	Magento	test	case

Introduction
Debugging	a	website	in	an	efficient	way	is	one	of	the	most	important	jobs	of	PHP
developers.	These	days,	a	website	is	a	lot	more	than	a	few	simple	HTML	pages.	In	a
Magento	store,	you	have	a	lot	of	complex	business	logic	that	is	used	in	the	flow	of	an	e-
commerce	transaction.

Debugging	in	PHP	is	not	out	of	the	box	like	in	other	programming	languages,	such	as
.NET	and	Java.	There	are	many	ways	to	configure	a	PHP	debugger	(such	as	Xdebug).
With	a	good	code	editor	and	debugger,	debugging	in	Magento	is	much	easier.

Another	part	of	debugging	and	code	testing	are	automated	tests.	Automated	tests,	or	Unit
tests,	are	developed	to	test	the	output	of	functions	for	a	given	input.	When	some	code	is
changed,	you	can	run	the	tests	and	a	report	will	be	generated	about	the	failed	and	passed
tests.

Logging	into	Magento	2
The	standard	debugging	techniques	in	PHP	are	echo	$variable,	die($variable)	and
var_dump($variable).	These	simple	debugging	tricks	don’t	always	work	(when	you	are
working	with	AJAX	and	JSON)	when	it	is	printed	in	a	hidden	HTML	section.

If	you	want	to	do	a	simple	debugging	trick	without	changing	the	HTML	output	of	a	page,
you	can	use	the	Magento	logging.	This	will	write	the	debugged	results	to	a	log	file.

Getting	ready
We	will	print	some	data	to	the	Magento	log	files.	To	easily	view	the	content	of	these	files,
we	need	command	line	access.	Also,	open	your	IDE	because	we	will	add	some	logging
statements	in	the	Magento	code.

How	to	do	it…
Perform	the	following	steps	to	describe	how	we	can	use	logging	in	Magento	2:

1.	 If	we	want	to	debug	some	data	on	a	category	page,	we	can	use	the	logger	interface	to
write	something	to	a	file.	Open	the	category	page	controller,	which	is	in	the	following
file:	app/code/Magento/Catalog/Controller/Category/View.php.

Note
If	you	installed	Magento	with	the	composer,	you	will	have	to	edit	the
vendor/magento/module-catalog/Controller/Category/View.php	file.

2.	 In	that	file,	we	have	to	add	the	following	highlighted	code	to	the	_initCategory()
function:

try	{

		$this->_eventManager->dispatch(

				'catalog_controller_category_init_after',

				['category'	=>	$category,	'controller_action'	=>	$this]

);

}

catch	(\Magento\Framework\Exception\LocalizedException	$e)	{

		$this->_objectManager->get('Psr\Log\LoggerInterface')->critical($e);

		return	false;

}

$this->_objectManager->get('Psr\Log\LoggerInterface')->debug(

		print_r($category->debug(),	true)

);

return	$category;

3.	 We	need	to	add	the	highlighted	code	before	the	return	statement	of	that	code.
4.	 Open	a	category	page	and	the	data	of	the	category	page	will	be	written	to	the

var/log/debug.log	log	file.

With	the	following	command,	we	can	follow	the	new	lines	that	are	added	to	the	log
file:

tail	-f	var/log/debug.log

Note
Make	sure	that	the	full	page	caching	is	not	enabled.	If	it	is	enabled,	the	cache	will
skip	the	execution	of	the	logging	statement.

5.	 To	exit	this	mode,	we	can	use	the	shortcut	Crtl	+	C	in	the	terminal.

How	it	works…
In	Magento	1,	we	could	use	the	Mage::log()	function	that	wrote	messages	to	the	log	files.
In	Magento	2,	the	Mage	class	is	gone	and	a	logging	interface	is	created	to	do	the	Magento
logging.

The	logger	interface	is	the	Psr\Log\LoggerInterface	instance.	With	this	interface,	we
can	call	the	following	functions	to	write	data	to	log	files:

alert()

critical()

debug()

emergency()

error()

info()

log()

notice()

warning()

When	you	log	data	to	files,	you	can	use	the	function	that	fits	to	your	log	message.	In	this
recipe,	we	used	the	debug()	function	to	log	some	debug	data.	If	you	want	to	log	the
message	of	an	error,	you	can	use	the	error()	function.

The	logging	method	only	accepts	string	variables,	so	it	is	not	possible	to	pass	arrays	or
objects	to	this	method.	To	fix	this	issue,	we	used	the	print_r()	function	to	convert	the
content	of	the	array	to	a	string.

We	logged	the	data	of	a	category,	but	the	category	is	an	object.	If	you	apply	a	print_r()
method	to	an	object,	you	will	get	a	huge	output,	which	is	not	easy	to	read.	To	solve	this,
we	can	use	the	debug()	method	on	Magento	entities.	This	method	will	convert	the	data	of
the	object	to	a	readable	array.

Getting	started	with	Xdebug
With	a	real	debugger,	you	can	pause	the	execution	of	the	script.	It	allows	you	to	have	a
look	at	the	variables	and	values	that	they	have	at	that	point.	In	a	debugger,	you	can	also
change	values,	skip	statements,	and	a	do	much	more.

In	PHP,	there	is	the	Xdebug	extension	that	enables	you	to	use	a	debugger	in	combination
with	an	IDE.	In	this	recipe,	we	will	see	how	to	install	Xdebug	and	integrate	it	with	the
IDE	NetBeans.

Getting	ready
In	this	recipe,	we	will	start	an	Xdebug	session	with	the	NetBeans	IDE.	Open	NetBeans
and	set	the	Magento	Project	as	Main	Project.	Ensure	that	all	the	URLs	are	configured
correctly	in	the	Property	settings	of	the	project.

To	install	Xdebug,	you	have	to	ensure	that	the	php5-dev	and	php-pear	packages	are
installed	on	your	server.	If	not,	you	can	install	them	using	the	following	commands:

sudo	apt-get	install	php5-dev

sudo	apt-get	install	php-pear

How	to	do	it…
The	following	steps	describe	how	you	can	install	Xdebug	on	your	development	server:

1.	 First,	we	will	install	the	xdebug	library.	You	can	do	this	using	the	following
command:

sudo	pecl	install	xdebug

This	command	will	give	the	following	output:

2.	 As	you	can	read	in	the	screenshot,	we	have	to	locate	the	xdebug.so	file	in	the
php.ini	file.	To	find	the	path	of	the	xdebug.so	file,	we	can	use	the	following
command:

find	/	-name	"xdebug.so"

3.	 When	we	know	the	path,	we	have	to	add	the	following	line	in	the	php.ini	files.	On
an	Ubuntu	server,	we	have	to	add	the	same	configuration	to	the	following	files:

/etc/php5/apache2/php.ini

/etc/php5/cli/php.ini

4.	 In	these	files,	add	the	following	line	at	the	end	of	the	file.	Ensure	that	the	path	to	the
xdebug.so	file	matches	the	one	on	your	server:

zend_extension="/usr/lib/php5/20121212/xdebug.so"

5.	 Restart	the	apache	server	using	the	following	command:

sudo	service	apache2	restart

6.	 When	we	want	to	test	that	Xdebug	is	correctly	installed,	we	can	check	this	in	two
ways:

The	first	method	is	to	create	a	PHP	script	and	call	the	phpinfo()	function.	When
you	open	this	script	in	the	browser,	you	will	see	all	the	PHP	settings	that	are
active	in	that	session.
The	second	method	is	to	use	the	command	php	-i.	This	gives	the	same
information	as	phpinfo()	but	now	for	php	over	cli.

7.	 When	we	run	the	php	-i	|	grep	xdebug	command,	we	will	see	the	following
output.	These	are	the	Xdebug	settings:

xdebug

xdebug	support	=>	enabled

xdebug.auto_trace	=>	Off	=>	Off

xdebug.cli_color	=>	0	=>	0

xdebug.collect_assignments	=>	Off	=>	Off

xdebug.collect_includes	=>	On	=>	On

xdebug.collect_params	=>	0	=>	0

xdebug.collect_return	=>	Off	=>	Off

xdebug.collect_vars	=>	Off	=>	Off

xdebug.coverage_enable	=>	On	=>	On

xdebug.default_enable	=>	On	=>	On

xdebug.dump.COOKIE	=>	no	value	=>	no	value

xdebug.dump.ENV	=>	no	value	=>	no	value

xdebug.dump.FILES	=>	no	value	=>	no	value

xdebug.dump.GET	=>	no	value	=>	no	value

xdebug.dump.POST	=>	no	value	=>	no	value

xdebug.dump.REQUEST	=>	no	value	=>	no	value

xdebug.dump.SERVER	=>	no	value	=>	no	value

xdebug.dump.SESSION	=>	no	value	=>	no	value

xdebug.dump_globals	=>	On	=>	On

xdebug.dump_once	=>	On	=>	On

xdebug.dump_undefined	=>	Off	=>	Off

xdebug.extended_info	=>	On	=>	On

xdebug.file_link_format	=>	no	value	=>	no	value

xdebug.force_display_errors	=>	Off	=>	Off

xdebug.force_error_reporting	=>	0	=>	0

xdebug.halt_level	=>	0	=>	0

xdebug.idekey	=>	no	value	=>	no	value

xdebug.max_nesting_level	=>	256	=>	256

xdebug.max_stack_frames	=>	-1	=>	-1

xdebug.overload_var_dump	=>	On	=>	On

xdebug.profiler_aggregate	=>	Off	=>	Off

xdebug.profiler_append	=>	Off	=>	Off

xdebug.profiler_enable	=>	Off	=>	Off

xdebug.profiler_enable_trigger	=>	Off	=>	Off

xdebug.profiler_enable_trigger_value	=>	no	value	=>	no	value

xdebug.profiler_output_dir	=>	/tmp	=>	/tmp

xdebug.profiler_output_name	=>	cachegrind.out.%p	=>	cachegrind.out.%p

xdebug.remote_autostart	=>	Off	=>	Off

xdebug.remote_connect_back	=>	Off	=>	Off

xdebug.remote_cookie_expire_time	=>	3600	=>	3600

xdebug.remote_enable	=>	Off	=>	Off

xdebug.remote_handler	=>	dbgp	=>	dbgp

xdebug.remote_host	=>	localhost	=>	localhost

xdebug.remote_log	=>	no	value	=>	no	value

xdebug.remote_mode	=>	req	=>	req

xdebug.remote_port	=>	9000	=>	9000

xdebug.scream	=>	Off	=>	Off

xdebug.show_exception_trace	=>	Off	=>	Off

xdebug.show_local_vars	=>	Off	=>	Off

xdebug.show_mem_delta	=>	Off	=>	Off

xdebug.trace_enable_trigger	=>	Off	=>	Off

xdebug.trace_enable_trigger_value	=>	no	value	=>	no	value

xdebug.trace_format	=>	0	=>	0

xdebug.trace_options	=>	0	=>	0

xdebug.trace_output_dir	=>	/tmp	=>	/tmp

xdebug.trace_output_name	=>	trace.%c	=>	trace.%c

xdebug.var_display_max_children	=>	128	=>	128

xdebug.var_display_max_data	=>	512	=>	512

xdebug.var_display_max_depth	=>	3	=>	3

8.	 The	next	step	is	to	configure	the	integration	between	NetBeans	and	Xdebug.	To
configure	the	integration,	we	have	to	add	the	following	configuration	at	the	end	of	the
php.ini	files:

xdebug.remote_enable=1

xdebug.remote_handler=dbgp

xdebug.remote_mode=req

xdebug.remote_host=localhost

xdebug.remote_port=9000

xdebug.idekey="netbeans-xdebug"

9.	 Restart	your	Apache	server	and	look	at	the	phpinfo()	page	to	check	whether	the
Xdebug	settings	have	been	applied.

10.	 Next,	we	have	to	configure	NetBeans	for	Xdebug.	In	NetBeans,	navigate	to	Tools	|
Options	and	configure	it	as	shown	in	the	following	screenshot:

11.	 In	the	previous	step,	we	configured	the	global	NetBeans	settings	for	Xdebug.	In	the
next	step,	we	will	configure	the	project-specific	settings.	Open	the	Project
Properties	option	(by	right-clicking	on	project)	and	open	the	Run	Configuration
tab.	Ensure	that	the	Project	URL	field	has	the	correct	value,	as	shown	in	the
following	screenshot:

12.	 We	are	now	ready	to	start	the	first	debug	session.	To	start	it,	we	have	to	click	on	the
debug	button,	which	is	near	the	Run	button.	We	can	also	use	the	shortcut	Crtl	+	F5.

13.	 When	starting	the	debug	session,	your	browser	will	be	opened	with	a	page	that	has
the	following	URL:

http://magento2.local/index.php?XDEBUG_SESSION_START=netbeans-xdebug.

14.	 The	web	page	doesn’t	load	because	the	debugger	is	interrupting	the	process.	To
continue,	we	have	to	use	the	debugger	controls	in	NetBeans.

15.	 Add	a	breakpoint	in	the	index.php	file	on	the	following	line:

$bootstrap	=	\Magento\Framework\App\Bootstrap::create(BP,	$_SERVER);

16.	 On	continuing	with	the	debugger,	you	will	see	the	actual	values	of	the	variables	as
shown	in	the	following	screenshot:

17.	 When	you	continue	the	debugger	at	the	breakpoint,	you	will	see	that	the	page	will	be
loaded.

18.	 The	debug	sessions	stays	alive	until	you	hit	the	stop	button	in	NetBeans.	When	you
browse	to	other	pages	on	your	website,	the	debugger	will	continue	as	long	as	the
session	is	alive.

19.	 To	stop	the	debug	session,	click	on	the	Stop	button	in	NetBeans.

How	it	works…
We	need	to	install	Xdebug	on	the	server	where	we	want	to	debug	a	site	on.	In	this	recipe,
it	will	be	the	server	on	which	our	Magento	instance	will	run.

The	installation	of	the	Xdebug	extension	is	done	by	PEAR.	PEAR	is	an	application
repository	for	the	PHP	plugins.	With	PEAR,	we	downloaded	and	installed	the	xdebug
library.

When	Xdebug	was	installed	on	the	server,	we	configured	the	php.ini	file	to	use	the
xdebug	library.	We	added	some	settings	to	make	the	Xdebug	configuration	compatible
with	NetBeans.

Tip
When	using	Xdebug	on	a	remote	server,	ensure	that	you	can	connect	to	the	server	trough
port	9000.	This	is	mostly	disabled	on	the	firewall	of	the	server	and	your	local	PC.

When	the	server	was	correctly	configured,	we	checked	the	configurations	in	NetBeans	and
we	started	the	debug	session.	When	this	session	was	started,	we	were	able	to	debug	the
Magento	application	like	a	debugger	does	it.

The	debugger	enables	us	to	use	the	following	advanced	debugger	features,	among	others:

Setting	breakpoints
Executing	the	code	statement	by	statement
Browsing	and	changing	values	of	variables

Running	automated	tests	from	Magento
When	you	build	some	functionality,	you	have	to	test	that	the	functionality	works	like	you
would	expect	it.	Testing	is	usually	done	at	the	end	of	your	project	and	this	can	be
automated.

With	a	unit	test,	we	can	specify	what	a	specific	part	of	code	needs	to	do.	What	will	be	the
input,	how	will	it	be	processed,	what	is	the	output—these	are	all	the	things	that	you	can
specify	in	a	unit	test.

A	new	addition	to	Magento	2	is	that	unit	tests	are	automatically	included	in	the	core.
When	you	want	to	contribute	to	the	Magento	core	with	GitHub,	it	is	required	that	your
changes	pass	through	the	unit	and	integration	tests.

Getting	ready
For	running	the	unit	tests,	we	need	the	command-line	tool	of	Magento.	Ensure	that	you
have	access	to	it.

How	to	do	it…
In	the	following	steps,	we	describe	how	we	can	run	automated	tests	from	Magento:

1.	 First,	we	ensure	that	the	Magento_Developer	module	is	enabled.	We	can	check	this
with	the	php	bin/magento	module:status	command.	This	will	output	a	list,	and	the
Magento_Developer	module	needs	to	be	in	this	list	of	enabled	modules.

2.	 When	the	module	is	disabled,	we	can	enable	it	using	the	following	command:

php	bin/magento	module:enable	Magento_Developer

3.	 With	the	Magento	command-line	tool,	we	can	start	the	execution	of	all	tests	in	the
installation.	With	the	following	command,	we	can	see	the	available	options:

php	bin/magento	dev:tests:run	--help

4.	 If	we	look	at	the	output	of	that	command,	we	know	that	the	command	will	execute	all
tests	without	a	parameter.	If	we	want	to	run	only	the	unit	tests,	we	can	use	the
following	command:

php	bin/magento	dev:tests:run	unit

This	command	will	give	the	following	output	when	it	is	running:

This	is	the	result	of	the	execution	of	all	the	unit	tests	that	are	available	in	Magento
and	this	takes	quite	a	lot	of	time.	When	we’re	developing	a	function,	we	only	want	to
run	one	particular	test.	For	this,	we	need	some	extra	configuration.

5.	 To	run	specific	tests,	we	have	to	create	the	following	file:
dev/tests/unit/phpunit.xml.

6.	 In	that	file,	add	the	following	content:

<?xml	version="1.0"	encoding="UTF-8"?>

<phpunit	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		

xsi:noNamespaceSchemaLocation="http://schema.phpunit.de/4.1/phpunit.xsd

"

		colors="true"

		bootstrap="./framework/bootstrap.php"

		>

		<testsuite	name="Specific	Magento	2	unit	tests">

				<directory	

suffix="Test.php">../../../app/code/Magento/Catalog/Test/Unit</director

y>

				<directory	

suffix="Test.php">../../../app/code/Magento/Cms/Test/Unit</directory>

		</testsuite>

		<php>

				<ini	name="date.timezone"	value="America/Los_Angeles"/>

				<ini	name="xdebug.max_nesting_level"	value="200"/>

		</php>

		<logging>

				<log	type="testdox-html"	target="./test-reports/testdox.html"	/>

				<log	type="testdox-text"	target="./test-reports/testdox.txt"	/>

		</logging>

</phpunit>

Note
If	you	installed	Magento	with	the	composer,	you	have	to	ensure	that	the	paths	in	the
directory	are	going	to	the	right	path.	With	composer,	you	have	to	look	for	the
Magento	modules	in	the	vendor/magento/	folder.

7.	 With	the	previous	configuration,	we	will	run	the	tests	that	are	available	in	these
folders:

app/code/Magento/Catalog/Test/Unit

app/code/Magento/Cms/Test/Unit

8.	 To	run	the	tests,	we	have	to	change	the	command-line	prompt	to	the	dev/tests/unit
folder.	We	can	do	this	by	running	the	following	command	in	our	Magento	root:

cd	dev/tests/unit/

9.	 When	we	are	in	that	folder,	we	can	run	the	following	command	to	start	the	unit	tests:

../../../vendor/bin/phpunit

10.	 When	this	command	has	finished	executing,	we	see	that	some	tests	are	skipped	but
the	full	names	of	those	tests	are	not	displayed.	To	get	some	more	information	about
unsuccessful	tests,	we	can	use	the	following	command,	which	shows	us	more	output:

../../../vendor/bin/phpunit	--verbose

11.	 When	running	this	command,	we	get	the	following	output:

12.	 When	we	look	in	the	test-reports	folder,	we	see	that	the	following	log	files	are
generated:

testdox.html

testdox.txt

How	it	works…
In	Magento	2,	we	can	find	the	unit	tests	in	the	code	files	of	Magento.	When	we	look	in	the
Test	directory	of	each	module,	we	will	find	the	files	that	will	be	used	when	running
automated	tests.

The	dev:tests:run	command	in	the	Magento	console	is	used	to	run	all	the	tests	in	the
Magento	application.	Normally,	if	you	have	changed	something,	you	have	to	test	the
whole	application	because	a	small	change	can	break	tests	in	places	that	you	do	not	expect.

The	console	tool	uses	PHPUnit	to	run	the	unit	tests.	This	tool	is	a	PHP	executable	and	is
delivered	with	Magento.	The	phpunit	executable	is	available	in	the	vendor/bin	folder.

When	running	the	phpunit	executable,	this	will	run	unit	tests	that	are	configured	in	a
phpunit.xml	file.	We	created	this	file	in	the	dev/tests/unit	folder.	A	phpunit.xml.dist
file	is	available	in	this	folder,	which	contains	an	example	configuration.

In	this	configuration	file,	we	specified	the	following	things:

The	path	of	the	bootstrap	parameter
The	folders	of	the	tests	that	needs	to	be	executed
Some	php.ini	settings
The	path	of	log	files

The	bootstrap	parameter	refers	to	the	framework/bootstrap.php	file.	This	file	initializes
the	Magento	application	by	calling	the	necessary	files	and	functions.

When	running	the	phpunit	tests,	we	get	an	output	with	dots.	A	dot	means	that	the	test
result	is	OK.	Sometimes,	a	dot	is	replaced	with	an	S	or	I.	An	S	means	that	a	test	is	skipped
and	an	I	means	that	a	test	is	invalid.	With	the	--verbose	option,	we	can	get	more
information	on	why	it	is	invalid	or	skipped.

Creating	a	Magento	test	case
As	this	is	the	last	chapter	of	this	book,	we	will	write	a	test	that	we	can	execute	with	the
Magento	Testing	Framework.	This	framework	uses	PHPUnit	to	execute	the	tests.

By	following	the	pattern	of	the	Magento	tests	(Unit	tests,	Integration	tests,	and	more),	the
tests	will	automatically	execute	when	the	dev:tests:run	console	command	will	be
executed.

Getting	ready
In	this	recipe,	we	will	create	a	unit	test	for	the	Packt_HelloWorld	module	that	we	created
in	Chapters	4,	Creating	a	Module,	Chapter	5,	Databases	and	Modules,	Chapter	6,
Magento	Backend,	and	Chapter	7,	Event	Handlers	and	Cronjobs.

If	you	don’t	have	the	complete	code,	you	can	install	the	starter	files	for	this	recipe.

How	to	do	it…
Using	the	following	steps,	we	will	create	a	simple	unit	test	for	Magento:

1.	 For	a	unit	test,	we	have	to	create	the	following	folders:

app/code/Packt/HelloWorld/Test/

app/code/Packt/HelloWorld/Test/Unit/

app/code/Packt/HelloWorld/Test/Unit/Block/

app/code/Packt/HelloWorld/Test/Unit/Block/Adminhtml/

app/code/Packt/HelloWorld/Test/Unit/Block/Adminhtml/Subscription/

2.	 In	the	last	folder,	create	a	file	called	GridTest.php.
3.	 In	this	file,	add	the	following	content:

<?php

namespace	Packt\HelloWorld\Test\Unit\Block\Adminhtml\Subscription;

class	GridTest	extends	\PHPUnit_Framework_TestCase	{

		/**

		*	@var	\Packt\HelloWorld\Block\Adminhtml\Subscription\Grid

		*/

		protected	$block;

		protected	function	setUp()	{

		}

		protected	function	tearDown()	{

		}

		public	function	testDecorateStatus()	{

		}

}

4.	 We	have	now	created	a	test	class	that	is	responsible	to	test	the
Packt\HelloWorld\Block\Adminhtml\Subscription\Grid	class.	To	run	this	tests,
we	have	to	create	a	phpunit.xml	file	in	the	dev/tests/unit	folder	with	the
following	content:

<?xml	version="1.0"	encoding="UTF-8"?>

<phpunit	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		

xsi:noNamespaceSchemaLocation="http://schema.phpunit.de/4.1/phpunit.xsd

"

				colors="true"

				bootstrap="./framework/bootstrap.php"

		>

		<testsuite	name="Packt	HelloWorld	module	test">

				<directory	

suffix="Test.php">../../../app/code/Packt/HelloWorld/Test/Unit</directo

ry>

		</testsuite>

		<php>

				<ini	name="date.timezone"	value="America/Los_Angeles"/>

				<ini	name="xdebug.max_nesting_level"	value="200"/>

		</php>

		<logging>

				<log	type="testdox-html"	target="./test-reports/testdox.html"	/>

				<log	type="testdox-text"	target="./test-reports/testdox.txt"	/>

		</logging>

</phpunit>

5.	 To	run	the	tests,	we	have	to	open	the	terminal	and	open	the	dev/tests/unit	folder.
When	you	are	in	the	Magento	root,	you	can	do	this	by	running	the	following
command:

cd	dev/tests/unit

6.	 In	this	folder,	run	the	following	command	to	run	the	tests:

../../../vendor/bin/phpunit	--verbose

The	tests	will	pass	as	you	can	see	in	the	following	screenshot:

7.	 The	tests	will	pass	because	the	test	class	is	empty.	If	we	want	to	test	the
decorateStatus()	method,	we	have	to	initialize	the	block	in	the	setUp()	method	of
the	GridTest	class.	Add	the	highlighted	code	to	the	setUp()	method:

protected	function	setUp()	{

		$objectManager	=	new	

\Magento\Framework\TestFramework\Unit\Helper\ObjectManager($this);

		$this->block	=	$objectManager->getObject(

				'Packt\HelloWorld\Block\Adminhtml\Subscription\Grid'

		

);

}

8.	 We	also	have	to	destruct	the	block	when	the	tests	are	finished.	We	can	do	this	by
adding	the	highlighted	code	to	the	tearDown()	method:

protected	function	tearDown()	{

	$this->block	=	null;

}

9.	 We	can	now	start	writing	our	test.	For	this,	we	have	to	know	what	to	test.	If	we	look
at	the	decorateStatus()	method	of	the
Packt\HelloWorld\Block\Adminhtml\Subscription\Grid	class,	we	see	that	a
specific	HTML	output	is	returned	based	on	the	input	variable.	To	test	the	output	of
the	input	values,	we	have	to	add	the	highlighted	code	in	the	testDecorateStatus()
method:

public	function	testDecorateStatus()	{

		$this->assertContains('grid-severity-minor',	$this->block-

>decorateStatus('pending'));

		$this->assertContains('grid-severity-notice',	$this->block-

>decorateStatus('approved'));

		$this->assertContains('grid-severity-critical',	$this->block-

>decorateStatus('declined'));

		$this->assertContains('grid-severity-critical',	$this->block-

>decorateStatus(6));

	$this->assertContains('grid-severity-critical',	$this->block-

>decorateStatus(null));

}

10.	 Run	the	tests	again	using	the	phpunit	--verbose	command.	You	will	see	that	the
tests	will	pass	(1	test,	5	assertions).

11.	 When	you	add	the	following	asserts	in	the	testDecorateStatus()	method	and	run
the	test	again,	you	will	see	that	it	fails:

$this->assertContains('grid-severity-minor',	$this->block-

>decorateStatus('approved'));

$this->assertNull($this->block->decorateStatus(null));

How	it	works…
To	create	unit	tests,	we	have	to	use	PHPUnit.	We	created	a	phpunit.xml	file	where	we
configured	that	the	app/code/Packt/HelloWorld/Test/Unit	folder	is	the	folder	that
contains	the	unit	tests.

In	Magento	2,	every	class	has	its	own	test	class.	We	created	a	test	class	for	the
Packt\HelloWorld\Block\Adminhtml\Subscription\Grid	class.	In	this	class,	there	is	a
decorateStatus()	method	that	we	will	test.

We	created	a	GridTest	class	in	the	same	folder	structure	as	it	is	in	the	original	module.
The	folder	structure	will	come	back	in	the	Tests/Unit	folder.	Every	class	is	suffixed	with
the	word	Test.

Every	test	method	in	a	class	starts	with	test	followed	by	the	name	of	the	method	that	will
be	tested.	For	the	decorateStatus()	function,	this	will	be	testDecorateStatus().

A	test	class	extends	from	the	PHPUnit_Framework_TestCase	class.	This	class	contains
the	framework	that	will	execute	the	tests	using	PHPUnit.

The	setUp()	method	is	called	before	the	tests	are	executed.	It	is	like	a	constructor	in	a
normal	class.	In	this	class,	we	initialize	the	original	Block	class	that	we	will	use	in	the	test
method.

The	tearDown()	method	is	called	after	the	execution	of	the	tests.	It	works	like	a
destructor,	and	normally,	we	set	all	the	class	variables	to	null	in	this	method.

A	unit	test	will	always	pass	when	the	code	in	a	test	function	is	empty.	We	created	the
testDecorateStatus()	method	where	we	added	some	assertion	methods.	In	this	recipe,
we	used	the	assertContains()	method.	When	this	method	is	used,	the	test	will	pass	if	the
value	of	the	second	parameter	will	contain	the	variable	of	the	first	parameter.

We	used	this	method	to	test	different	input	variables	of	the	decorateStatus()	method.	In
the	last	step,	we	used	a	assertNull()	method.	The	tests	failed	because	the	output	of	the
decorateStatus()	method	was	not	null	for	the	given	input.

In	large	projects	where	unit	tests	are	used,	mostly	the	tests	are	written	in	the	architectural
phase	of	a	project.	A	unit	test	can	be	used	as	a	specification	of	what	a	method	need	to	do
when	it	is	called.	How	we	have	to	handle	invalid	input	variables	and	other	such	things	are
specified	in	a	unit	test.

There’s	more…
In	this	recipe,	we	used	the	assertContains()	and	assertNull()	methods	to	test	the
output	of	the	decorateStatus()	method.	However,	there	are	many	more	assertion
methods	that	you	can	use	with	PHPUnit.	For	example,	a	method	that	compares	a	number,
a	method	that	compares	the	type	of	object,	and	many	more.

A	full	list	of	assertion	methods	can	be	found	at	the	following	URL,	which	refers	to	the
original	documentation	of	PHPUnit:

https://phpunit.de/manual/current/en/appendixes.assertions.html

https://phpunit.de/manual/current/en/appendixes.assertions.html

Index
A

Access	Control	List	(ACL)
adding	/	Adding	an	ACL,	How	to	do	it…,	How	it	works…

adapter	model
writing	/	Writing	an	adapter	model,	How	to	do	it…,	How	it	works…

Apache
about	/	Optimizing	the	Apache	web	server

ApacheBench
about	/	Benchmarking	a	website,	Getting	ready

Apache	web	server
optimizing	/	Optimizing	the	Apache	web	server,	How	to	do	it…,	How	it
works…

app.telemetry
about	/	Getting	ready
URL	/	Getting	ready

app.telemetry	plugin
Redirect	parameter	/	How	it	works…
App	Cache	parameter	/	How	it	works…
DNS	Lookup	parameter	/	How	it	works…
TCP	Connection	parameter	/	How	it	works…
TCP	Request	parameter	/	How	it	works…
TCP	Response	parameter	/	How	it	works…
Processing	parameter	/	How	it	works…
Onload	event	parameter	/	How	it	works…

attribute	sets
working	with	/	Working	with	attribute	sets,	How	to	do	it,	How	it	works
about	/	How	it	works

automated	tests
running,	from	Magento	/	Running	automated	tests	from	Magento,	How	to	do
it…,	How	it	works…

B
backend	components

working	with	/	Working	with	backend	components,	How	to	do	it…,	How	it
works…

backend	controller
registering	/	Registering	a	backend	controller,	Getting	ready,	How	to	do	it…,
How	it	works…

Blank	theme
about	/	Exploring	the	default	Magento	2	themes

block	file
creating	/	Creating	the	block	and	template	files,	How	to	do	it…,	How	it	works…

bundle	product
about	/	A	bundle	product

C
catalog	defaults

configuring	/	Configuring	the	catalog	defaults,	How	to	do	it,	How	it	works
collections

about	/	Working	with	Magento	collections
working	with	/	Working	with	Magento	collections,	How	to	do	it…,	How	it
works…

Command	Line	Interface	(CLI)
about	/	How	it	works…

configurable	product
about	/	A	configurable	product

configuration	parameters
adding	/	Adding	configuration	parameters,	How	to	do	it…,	How	it	works…

console	command
adding	/	Adding	a	console	command,	How	to	do	it…

controller
creating	/	Creating	a	controller,	Getting	ready,	How	to	do	it…,	How	it	works…,
There’s	more…

cronjob
about	/	Introduction,	Introducing	cronjobs
configuring	/	How	to	do	it…,	How	it	works…
creating	/	Creating	and	testing	a	new	cronjob,	How	to	do	it…,	How	it	works…
testing	/	Creating	and	testing	a	new	cronjob,	How	to	do	it…,	How	it	works…

custom	configuration	parameter
creating	/	Creating	a	custom	configuration	parameter,	How	to	do	it…,	How	it
works…

customer	attributes
adding	/	Adding	customer	attributes,	How	to	do	it…,	How	it	works…

custom	event
creating	/	Creating	your	own	event,	How	to	do	it…,	How	it	works…

custom	theme
creating	/	Creating	a	Magento	2	theme,	How	to	do	it…,	There’s	more…

D
database

upgrading	/	Upgrading	the	database,	How	to	do	it…,	How	it	works…,	There’s
more…
repairing	/	Repairing	the	database,	How	to	do	it…,	How	it	works…
optimizing	/	Optimizing	the	database	and	MySQL	configurations,	How	to	do
it…,	How	it	works…

database	table
creating,	with	models	/	Creating	a	flat	table	with	models,	How	to	do	it…,	How	it
works…
grid,	creating	/	Creating	a	grid	of	a	database	table,	How	to	do	it…,	How	it
works…

dependency	injection
about	/	Adding	an	interceptor
URL	/	See	also

downloadable	product
about	/	A	downloadable	product

E
email	templates

customizing	/	Customizing	email	templates,	How	to	do	it…
empty	module

creating	/	Creating	an	empty	module,	How	to	do	it…,	How	it	works…
Entity	Attribute	Value	system	(EAV)

about	/	How	it	works…
event	observer

adding	/	Adding	an	event	observer,	How	to	do	it…,	How	it	works…
events

URL	/	See	also
event	types

about	/	Understanding	event	types,	How	to	do	it…,	How	it	works…

F
Facebook

URL	/	Getting	ready
fallback	mechanism

about	/	How	it	works…
file	permissions

URL	/	How	to	do	it…
Full	Page	Caching

about	/	How	to	do	it…

G
GitHub

about	/	Running	automated	tests	from	Magento
Google	Plus

URL	/	Getting	ready
grid

creating,	of	database	table	/	Creating	a	grid	of	a	database	table,	How	to	do	it…,
How	it	works…

grouped	product
about	/	A	grouped	product

Grunt
configuring	/	There’s	more…
URL	/	There’s	more…

GTmetrix	server
about	/	There’s	more…

H
HTML	object

embedding	/	Embedding	an	HTML	object,	How	to	do	it,	How	it	works
HTML	output

customizing	/	Customizing	the	HTML	output,	How	to	do	it…,	How	it	works…

I
IDE	NetBeans

about	/	Getting	started	with	Xdebug
install	script

creating	/	Creating	an	install	and	upgrade	script,	How	to	do	it…,	How	it
works…

Integrated	Development	Environment	(IDE)
about	/	Using	an	IDE
using	/	Using	an	IDE,	How	to	do	it…

interceptor
adding	/	Adding	an	interceptor,	How	to	do	it…,	How	it	works…

J
jQuery	slider	script

about	/	Introduction

L
layout	updates

adding	/	Adding	layout	updates,	How	to	do	it…,	How	it	works…
LESS

working	with	/	Working	with	LESS,	How	to	do	it…,	How	it	works…,	There’s
more…

Luma	theme
about	/	Exploring	the	default	Magento	2	themes

M
Magento

about	/	Introduction
URL	/	Getting	ready
URL,	for	rulesets	/	How	it	works…
performance	leaks,	discovering	/	Finding	performance	leaks	in	Magento,	How	to
do	it…,	How	it	works…
automated	tests,	running	/	Running	automated	tests	from	Magento,	How	to	do
it…,	How	it	works…

Magento	1
upgrade,	preparing	/	Preparing	an	upgrade	from	Magento	1,	How	to	do	it…,
How	it	works…

Magento	1	website
creating,	with	sample	data	/	Creating	a	Magento	1	website	with	sample	data,
How	to	do	it…,	How	it	works…

Magento	2
about	/	Introduction
default	themes,	exploring	/	Exploring	the	default	Magento	2	themes,	How	to	do
it…,	How	it	works…
theme,	creating	/	Creating	a	Magento	2	theme,	How	to	do	it…,	There’s	more…
logging	in	/	Logging	into	Magento	2,	How	to	do	it…,	How	it	works…

Magento	2	website
creating	/	Creating	a	Magento	2	website,	How	to	do	it…,	How	it	works…,
There’s	more…

Magento	Migration	Whitepaper
URL	/	See	also

Memcached
configuring	/	Configuring	OPcache,	Redis,	and	Memcached,	How	to	do	it…,
How	it	works…
about	/	Configuring	OPcache,	Redis,	and	Memcached

menu
extending	/	Extending	the	menu,	How	to	do	it…,	How	it	works…

Migration	tool
URL	/	Getting	ready

models
database	table,	creating	with	/	Creating	a	flat	table	with	models,	How	to	do	it…,
How	it	works…

module
adding,	in	frontend	/	Adding	the	module	in	the	frontend,	How	to	do	it…,	How	it
works…

module	configurations
initializing	/	Initializing	module	configurations,	How	to	do	it…,	How	it	works…

module	files

creating	/	Creating	the	module	files,	How	to	do	it…,	How	it	works…
Multi-Processing	Modules	(MPM)

about	/	How	to	do	it…
MyISAM	tables

about	/	How	to	do	it…
MySQL

configurations,	optimizing	/	Optimizing	the	database	and	MySQL
configurations,	How	to	do	it…,	How	it	works…

N
NetBeans

about	/	Using	an	IDE
URL	/	Getting	ready

Nginx
about	/	Optimizing	the	Apache	web	server

O
OPcache

configuring	/	Configuring	OPcache,	Redis,	and	Memcached,	How	to	do	it…,
How	it	works…

P
PageSpeed

about	/	There’s	more…
page	title

modifying	/	Changing	a	page	title,	How	to	do	it…
PHP,	settings

max_execution_time	/	How	to	do	it…
max_input_time	/	How	to	do	it…
memory_limit	/	How	to	do	it…
output_buffering	/	How	to	do	it…

PHP	configurations
optimizing	/	Optimizing	the	PHP	configurations,	How	it	works…

phpcsmd	plugin
about	/	There’s	more…
URL	/	There’s	more…

PHP	Mess	Detector	(PHPMD)
code,	writing	with	/	Writing	clean	code	with	PHP	MD	and	PHP	CS,	How	to	do
it…,	How	it	works…,	There’s	more…

phpMyAdmin
about	/	Getting	ready

PHPStorm
about	/	There’s	more…
URL	/	There’s	more…

PHPUnit
about	/	How	it	works…
assertion	methods,	URL	/	There’s	more…

PHP_CodeSniffer	(PHP	CS)
code,	writing	with	/	Getting	ready,	How	to	do	it…,	How	it	works…,	There’s
more…
URL	/	How	to	do	it…

product	attributes
about	/	How	it	works
adding,	programmatically	/	Programmatically	adding	product	attributes,	How	to
do	it…,	How	it	works…

product	page
URL,	modifying	/	Changing	the	URL	of	a	product	page,	How	it	works,	There’s
more

products
adding	/	Adding	a	block	of	new	products,	How	to	do	it…,	How	it	works…

product	templates
about	/	Working	with	attribute	sets

product	types
working	with	/	Working	with	product	types,	How	to	do	it,	How	it	works…

simple	product	/	A	simple	product
configurable	product	/	A	configurable	product
bundle	product	/	A	bundle	product
grouped	product	/	A	grouped	product
virtual	product	/	A	virtual	product
downloadable	product	/	A	downloadable	product

R
Redis

configuring	/	Configuring	OPcache,	Redis,	and	Memcached,	How	to	do	it…,
How	it	works…
about	/	Configuring	OPcache,	Redis,	and	Memcached

RequireJS	library
about	/	How	to	do	it…

routing
about	/	How	it	works

S
shipping	method

additional	features,	adding	/	Extending	the	shipping	method	features,	How	to	do
it…,	How	it	works…

Siege
about	/	Benchmarking	a	website,	Getting	ready

simple	product
about	/	A	simple	product

slick
URL	/	Getting	ready,	How	to	do	it…

social	media	buttons
adding	/	Adding	social	media	buttons,	How	to	do	it,	How	it	works

source	models
working	with	/	Working	with	source	models,	How	to	do	it…,	How	it	works…

Symfony	console
about	/	See	also…
URL	/	See	also…

T
Tab	Separated	Value	(TSV)	file

about	/	How	to	do	it…
template	file

creating	/	Creating	the	block	and	template	files,	How	to	do	it…,	How	it	works…
test	case

creating	/	Creating	a	Magento	test	case,	How	to	do	it…,	How	it	works…,
There’s	more…

themes
exploring,	in	Magento	2	/	Exploring	the	default	Magento	2	themes,	How	to	do
it…,	How	it	works…
extra	files,	adding	/	Adding	extra	files	to	the	theme,	How	to	do	it…,	How	it
works…,	There’s	more…

theming
finalizing	/	Finalizing	the	theming,	How	to	do	it…,	How	it	works…

translation	file
adding	/	Adding	a	translation	file,	Getting	ready,	How	it	works…

translations
working	with	/	Working	with	translations,	How	to	do	it…,	How	it	works…

Twitter
URL	/	Getting	ready

U
upgrade	script

creating	/	Creating	an	install	and	upgrade	script,	How	to	do	it…,	How	it
works…

URL
modifying,	of	product	page	/	Changing	the	URL	of	a	product	page,	How	it
works,	There’s	more

V
virtual	product

about	/	A	virtual	product

W
web	server,	performance	factors

application	/	How	it	works…
hardware	/	How	it	works…
operating	system	/	How	it	works…
network	/	How	it	works…

website
benchmarking	/	Benchmarking	a	website,	Getting	ready,	How	to	do	it…,	How	it
works…
frontend,	optimizing	/	Optimizing	the	frontend	of	the	website,	How	it	works…,
How	it	works…,	There’s	more…

widget	configuration	file
creating	/	Creating	a	widget	configuration	file,	How	to	do	it…,	How	it	works…

widgets
adding,	to	layout	/	Adding	widgets	to	the	layout,	How	to	do	it…

X
Xdebug

disabling	/	How	it	works…
about	/	Getting	started	with	Xdebug
installing	/	How	to	do	it…,	How	it	works…

XML	Style	Definition	(XSD)	files
about	/	How	to	do	it…

Y
YSlow

about	/	Getting	ready,	There’s	more…
URL	/	Getting	ready

Z
Zend	OPcache

about	/	Configuring	OPcache,	Redis,	and	Memcached

	Magento 2 Development Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Upgrading from Magento 1
	Introduction
	Creating a Magento 1 website with sample data
	Getting ready
	How to do it...
	How it works…
	Creating a Magento 2 website
	Getting ready
	How to do it...
	How it works...
	There's more...
	Preparing an upgrade from Magento 1
	Getting ready
	How to do it...
	How it works...
	Upgrading the database
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Using an IDE
	Getting ready
	How to do it...
	There's more...
	Writing clean code with PHP MD and PHP CS
	Getting ready
	How to do it...
	How it works...
	There's more...
	2. Working with Products
	Introduction
	Configuring the catalog defaults
	Getting ready
	How to do it
	How it works
	Working with attribute sets
	Getting ready
	How to do it
	How it works
	Working with product types
	Getting ready
	How to do it
	How it works…
	There's more…
	A simple product
	A configurable product
	A bundle product
	A grouped product
	A virtual product
	A downloadable product
	Adding social media buttons
	Getting ready
	How to do it
	How it works
	Embedding an HTML object
	Getting ready
	How to do it
	How it works
	Changing the URL of a product page
	Getting ready
	How to do it
	How it works
	There's more
	3. Theming
	Introduction
	Exploring the default Magento 2 themes
	Getting ready
	How to do it...
	How it works...
	Creating a Magento 2 theme
	Getting ready
	How to do it...
	How it works…
	There's more…
	Customizing the HTML output
	Getting ready
	How to do it…
	How it works…
	Adding extra files to the theme
	Getting ready
	How to do it…
	How it works…
	There's more…
	Working with LESS
	Getting ready
	How to do it…
	How it works…
	There's more…
	Changing a page title
	How to do it…
	How it works…
	Working with translations
	Getting ready
	How to do it…
	How it works…
	Adding widgets to the layout
	Getting ready
	How to do it…
	How it works…
	Customizing email templates
	Getting ready
	How to do it…
	How it works…
	4. Creating a Module
	Introduction
	Creating the module files
	Getting ready
	How to do it...
	How it works...
	Creating a controller
	Getting ready
	How to do it...
	How it works...
	There's more...
	Adding layout updates
	Getting ready
	How to do it...
	How it works...
	Adding a translation file
	Getting ready
	How to do it...
	How it works...
	Adding a block of new products
	Getting ready
	How to do it...
	How it works...
	Adding an interceptor
	Getting ready
	How to do it...
	How it works...
	See also
	Adding a console command
	Getting ready
	How to do it...
	How it works...
	See also...
	5. Databases and Modules
	Introduction
	Creating an install and upgrade script
	Getting ready
	How to do it...
	How it works...
	Creating a flat table with models
	Getting ready
	How to do it...
	How it works...
	Working with Magento collections
	Getting ready
	How to do it...
	How it works…
	Programmatically adding product attributes
	Getting ready
	How to do it...
	How it works...
	Repairing the database
	Getting ready
	How to do it...
	How it works...
	6. Magento Backend
	Introduction
	Registering a backend controller
	Getting ready
	How to do it...
	How it works...
	Extending the menu
	Getting ready
	How to do it...
	How it works...
	Adding an ACL
	Getting ready
	How to do it...
	How it works...
	Adding configuration parameters
	Getting ready
	How to do it...
	How it works...
	Creating a grid of a database table
	Getting ready
	How to do it...
	How it works...
	Working with backend components
	Getting ready
	How to do it...
	How it works...
	Adding customer attributes
	Getting ready
	How to do it...
	How it works...
	Working with source models
	Getting ready
	How to do it...
	How it works...
	7. Event Handlers and Cronjobs
	Introduction
	Understanding event types
	Getting ready
	How to do it...
	How it works...
	See also
	Creating your own event
	Getting ready
	How to do it...
	How it works...
	Adding an event observer
	Getting ready
	How to do it...
	How it works...
	Introducing cronjobs
	Getting ready
	How to do it...
	How it works...
	Creating and testing a new cronjob
	Getting ready
	How to do it...
	How it works...
	8. Creating a Shipping Module
	Introduction
	Initializing module configurations
	Getting ready
	How to do it...
	How it works...
	See also
	Writing an adapter model
	Getting ready
	How to do it...
	How it works...
	Extending the shipping method features
	Getting ready
	How to do it...
	How it works...
	Adding the module in the frontend
	Getting ready
	How to do it...
	How it works...
	9. Creating a Product Slider Widget
	Introduction
	Creating an empty module
	Getting ready
	How to do it...
	How it works...
	Creating a widget configuration file
	Getting ready
	How to do it...
	How it works...
	Creating the block and template files
	Getting ready
	How to do it...
	How it works...
	Creating a custom configuration parameter
	Getting ready
	How to do it...
	How it works...
	There's more...
	Finalizing the theming
	Getting ready
	How to do it...
	How it works...
	10. Performance Optimization
	Introduction
	Benchmarking a website
	Getting ready
	How to do it...
	How it works...
	Optimizing the frontend of the website
	Getting ready
	How it works...
	How it works...
	There's more...
	Optimizing the database and MySQL configurations
	Getting ready
	How to do it...
	How it works...
	Optimizing the Apache web server
	How to do it...
	How it works...
	Finding performance leaks in Magento
	Getting ready
	How to do it...
	How it works...
	Configuring OPcache, Redis, and Memcached
	Getting ready
	Zend OPcache
	Memcached
	Redis
	How to do it...
	How it works...
	Optimizing the PHP configurations
	Getting ready
	How to do it...
	How it works...
	11. Debugging and Unit Testing
	Introduction
	Logging into Magento 2
	Getting ready
	How to do it...
	How it works...
	Getting started with Xdebug
	Getting ready
	How to do it...
	How it works...
	Running automated tests from Magento
	Getting ready
	How to do it...
	How it works...
	Creating a Magento test case
	Getting ready
	How to do it...
	How it works...
	There's more...
	Index

