
www.allitebooks.com

http://www.allitebooks.org

Mastering Embedded
Linux Programming

Harness the power of Linux to create versatile
and robust embedded solutions

Chris Simmonds

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Embedded Linux Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1181215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-253-6

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Chris Simmonds

Reviewers
Robert Berger

Tim Bird

Mathieu Deschamps

Mark Furman

Klaas van Gend

Behan Webster

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Sonali Vernekar

Content Development Editor
Samantha Gonsalves

Technical Editor
Dhiraj Chandanshive

Copy Editor
Kevin McGowan

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Priya Sane

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Linux is an extremely flexible and powerful operating system and I suspect we've
yet to truly see it used to full advantage in the embedded world. One possible reason
is that there are many different facets to it and the learning curves can be steep and
time consuming.

Its possible to figure your way own through the world of Embedded Linux, as
I myself have done over the past decade, however I am pleased to see people like
Chris putting together books like this which give people a good grounding on many
useful topics. I certainly could have used a guide like this back when I started!

I obviously have a personal bias to the Yocto Project, it being my major contribution
and attempt to make a difference to the Embedded Linux world. One of its core
objectives is to try and make things easier for people building Embedded Linux
systems. We've had some successes; there are also areas we know work is still
needed. We're continually trying to simplify barriers to entry and let more people
get involved, make the technology more accessible and encourage adoption.

In writing this book, Chris is supporting the same objectives. I hope you enjoy
the book, enjoy Linux and that ultimately that we might see you becoming a part
of the vibrant open source communities that make up many of the components
you're about to learn about.

Richard Purdie
Yocto Project Architect, Linux Foundation Fellow

www.allitebooks.com

http://www.allitebooks.org

About the Author

Chris Simmonds is a software consultant and trainer who lives in southern
England. He has been using Linux in embedded systems since the late 1990s, during
which he has worked on many interesting projects, including a stereoscopic camera,
intelligent weighing scales, various set-top boxes and home routers, and even a large
walking robot.

He is a frequent presenter at open source and embedded conferences, including the
Embedded Linux Conference, Embedded World, and the Android Builders' Summit.
He has been conducting training courses and workshops in embedded Linux since
2002 and in embedded Android since 2010. He has delivered hundreds of sessions to
many well-known companies. You can see some of his work on the "Inner Penguin"
blog at www.2net.co.uk.

I would like to thank my editor, Samantha Gonsalves, for her tireless
work in reviewing my work and keeping me on track. I would also
like to thank the people who took time to review my early drafts and
to see through my obfuscations to the core of what I was trying to
say. So, I would like to thank Behan Webster, Klaas van Gend, Tim
Bird, Robert Berger, Mathieu Deschamps, and Mark Furman. Last
but not least, I would like to thank my wife, Shirley Simmonds, for
her support and for understanding the fact that I really could not
help her redecorate the house because I had a book to write.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Robert Berger has been gathering practical and managerial experience in software
design and development for embedded systems with and without hard real-time
requirements since 1993. Since the beginning of the 21st century, he has been using
GNU/Linux on desktops and server class machines, but mainly for embedded
practices (automotive, industrial control, robotics, telecoms, consumer electronics,
and so on). He regularly attends international events, such as Embedded World,
Embedded Software Engineering Congress, Embedded Systems Conference, and
Embedded Linux Conference as an expert and lecturer. His specializes mainly in
training, but also in consulting (in German or English) worldwide. Robert's expertise
ranges from the smallest real-time systems (FreeRTOS) to setups with multiple
processors/cores and embedded GNU/Linux (user-, kernel-space, device drivers,
hardware interfacing, debugging, multi-core, and the Yocto project) with a focus on
free and open source software. He is a globetrotter. He is the CEO and embedded
software specialist at Reliable Embedded Systems, which is based in St. Barbara,
Austria. When he is not traveling, he lives with his family in Athens, Greece. Feel
free to contact him on his website at http://www.ReliableEmbeddedSystems.com.

He has reviewed the book Embedded Linux Systems with the Yocto Project (Prentice Hall
Open Source Software Development Series) by Rudolf J. Streif.

Tim Bird works as a senior software engineer for Sony Mobile Communications,
where he helps Sony improve the Linux kernel for use in Sony's products. He is
also the chair of the Architecture Group of the CE Working Group of the Linux
Foundation. He has been working with Linux for over 20 years. He helped found
two different embedded Linux trade associations and is the creator of the Embedded
Linux Conference, which he still leads. Earlier in his embedded Linux career, Tim
coauthored the book Using Caldera OpenLinux.

www.allitebooks.com

http://www.allitebooks.org

Mathieu Deschamps is the founder of ScourGE (www.scourge.fr), which
provides open source software/hardware innovation services to its clients. They
are leaders in the fields of telecommunication, mobile communication, industrial
processes, and decision support systems.

He is an R&D business consultant and a trainer. Also, since 2003, he has been an
independent tech-driver, involved in many large and small scale projects around
GNU/Linux, Android, embedded systems engineering, and security.

Mark Furman, author of OpenVZ Essentials, currently works as a systems
engineer for Info-Link Technologies. He has been in the IT field for over 10 years
and specializes in Linux and other open source technologies. In his spare time, he
enjoys writing and reviewing books on Linux and other open source technologies
as well as tinkering with Arduino, Python, and Raspberry Pi projects at Knox Labs,
a Hackerspace located in Knox County, OH.

Klaas van Gend graduated in systems and control engineering at Eindhoven
University of Technology in the Netherlands. He worked for companies, including
Philips, Siemens, and Bosch, writing software for printer prototypes, video encryption,
car infotainment, medical equipment, industrial automation, and navigation systems.
In 2004, he switched over to MontaVista Software, which was the market leader
for embedded Linux. As a systems architect and consultant, he worked with many
companies all over Europe, integrating embedded Linux into their products.

For the last few years, he has been working as a trainer and consultant for Vector
Fabrics, a small start-up specializing in multi-core programming and software
dynamic analysis. He teaches multi-core programming in C and C++ and helps
customers improve software performance by utilizing hardware resources in a
better way. Vector Fabrics' Pareon tool suite also automatically finds hard-to-find
dynamic bugs, including data races, buffer overruns, use-after-free for heap and
stack variables, and memory leaks.

www.allitebooks.com

http://www.allitebooks.org

He has authored over 100 magazine articles and papers on (embedded) Linux,
programming, performance, systems design, and computer games. He cofounded
the Embedded Linux Conference Europe and was a lead developer for several open
source projects, including UMTSmon for 3G cellular networks and the physics
puzzle game The Butterfly Effect.

When not at work, he reads urban fantasy or can be found at Aeroclub Nistelrode,
piloting glider planes.

Behan Webster has spent two decades in diverse tech industries such as telecom,
datacom, optical, embedded, and automotive writing code for a range of hardware
from the very small to the very large. His Linux experience spans kernel programming,
Embedded Linux, and board bring-up. Currently, he is the lead consultant at Converse
in Code Inc, an embedded Linux engineer and project lead working on the LLVMLinux
project as well as being a trainer for The Linux Foundation.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[i]

Table of Contents
Preface xiii
Chapter 1: Starting Out 1

Selecting the right operating system 3
The players 3
Project lifecycle 5

The four elements of embedded Linux 5
Open source 6

Licenses 6
Hardware for embedded Linux 8
Hardware used in this book 9

The BeagleBone Black 9
QEMU 10

Software used in this book 12
Summary 12

Chapter 2: Learning About Toolchains 13
What is a toolchain? 13
Types of toolchain - native versus cross toolchain 15

CPU architectures 16
Choosing the C library 18
Finding a toolchain 20

Building a toolchain using crosstool-NG 21
Installing crosstool-NG 21
Selecting the toolchain 22

Anatomy of a toolchain 24
Finding out about your cross compiler 24
The sysroot, library, and header files 26

Other tools in the toolchain 27

Table of Contents

[ii]

Looking at the components of the C library 28
Linking with libraries: static and dynamic linking 29

Static libraries 30
Shared libraries 31

Understanding shared library version numbers 32
The art of cross compiling 33

Simple makefiles 33
Autotools 34

An example: SQLite 36
Package configuration 37

Problems with cross compiling 38
Summary 39

Chapter 3: All About Bootloaders 41
What does a bootloader do? 41
The boot sequence 42

Phase 1: ROM code 43
Phase 2: SPL 44
Phase 3: TPL 45

Booting with UEFI firmware 46
Moving from bootloader to kernel 46
Introducing device trees 47

Device tree basics 48
The reg property 49
Phandles and interrupts 50
Device tree include files 51
Compiling a device tree 52

Choosing a bootloader 53
U-Boot 53

Building U-Boot 54
Installing U-Boot 55
Using U-Boot 56

Environment variables 57
Boot image format 57
Loading images 58

Booting Linux 60
Automating the boot with U-Boot scripts 61

Porting U-Boot to a new board 61
Kconfig and U-Boot 62

Board-specific files 63
Configuration header files 64

Building and testing 65

Table of Contents

[iii]

Falcon mode 65
Barebox 66

Getting Barebox 66
Building Barebox 67

Summary 68
Chapter 4: Porting and Configuring the Kernel 69

What does the kernel do? 69
Choosing a kernel 71

Kernel development cycle 71
Stable and long term support releases 72
Vendor support 73
Licensing 73

Building the kernel 74
Getting the source 74
Understanding kernel configuration 75
Using LOCALVERSION to identify your kernel 79
Kernel modules 80

Compiling 81
Compiling the kernel image 81
Compiling device trees 84
Compiling modules 85

Cleaning kernel sources 85
Booting your kernel 86

BeagleBone Black 86
QEMU 86
Kernel panic 87
Early user space 88
Kernel messages 88
Kernel command line 89

Porting Linux to a new board 90
With a device tree 91
Without a device tree 92

Additional reading 94
Summary 94

Chapter 5: Building a Root Filesystem 95
What should be in the root filesystem? 96

Directory layout 97
Staging directory 98

POSIX file access permissions 99
File ownership permissions in the staging directory 100

Table of Contents

[iv]

Programs for the root filesystem 101
The init program 101
Shell 101
Utilities 102
BusyBox to the rescue! 102

Building BusyBox 103
ToyBox – an alternative to BusyBox 104

Libraries for the root filesystem 105
Reducing size by stripping 106

Device nodes 107
The proc and sysfs filesystems 108

Mounting filesystems 108
Kernel modules 109
Transfering the root filesystem to the target 110
Creating a boot ramdisk 110

Standalone ramdisk 111
Booting the ramdisk 111

Booting with QEMU 112
Booting the BeagleBone Black 112
Mounting proc 112

Building a ramdisk cpio into the kernel image 113
Another way to build a kernel with ramdisk 113

The old initrd format 114
The init program 115
Configuring user accounts 116

Adding user accounts to the root filesystem 117
Starting a daemon process 118
A better way of managing device nodes 118

An example using devtmpfs 119
An example using mdev 119
Are static device nodes so bad after all? 120

Configuring the network 120
Network components for glibc 121

Creating filesystem images with device tables 122
Putting the root filesytem onto an SD card 123

Mounting the root filesystem using NFS 124
Testing with QEMU 125
Testing with BeagleBone Black 126
Problems with file permissions 126

Using TFTP to load the kernel 126
Additional reading 127
Summary 128

Table of Contents

[v]

Chapter 6: Selecting a Build System 129
No more rolling your own embedded Linux 129
Build systems 130
Package formats and package managers 132
Buildroot 132

Background 132
Stable releases and support 133
Installing 133
Configuring 133
Running 134
Creating a custom BSP 136

U-Boot 136
Linux 137
Build 138

Adding your own code 138
Overlay 138
Adding a package 139

License compliance 140
The Yocto Project 141

Background 141
Stable releases and support 143
Installing the Yocto Project 143
Configuring 144
Building 145
Running 146
Layers 147

BitBake and recipes 150
Customizing images via local.conf 152
Writing an image recipe 153
Creating an SDK 154
License audit 156

Further reading 156
Summary 157

Chapter 7: Creating a Storage Strategy 159
Storage options 159

NOR flash 160
NAND flash 161
Managed flash 163

MultiMediaCard and secure digital cards 163
eMMC 164
Other types of managed flash 165

Table of Contents

[vi]

Accessing flash memory from the bootloader 165
U-Boot and NOR flash 165
U-Boot and NAND flash 166
U-Boot and MMC, SD and eMMC 166

Accessing flash memory from Linux 166
Memory technology devices 167

MTD partitions 167
MTD device drivers 170
The MTD character device, mtd 171
The MTD block device, mtdblock 172
Logging kernel oops to MTD 172
Simulating NAND memory 173

The MMC block driver 173
Filesystems for flash memory 173

Flash translation layers 173
Filesystems for NOR and NAND flash memory 174

JFFS2 175
Summary nodes 176
Clean markers 176
Creating a JFFS2 filesystem 177

YAFFS2 178
Creating a YAFFS2 filesystem 178

UBI and UBIFS 179
UBI 179
UBIFS 182

Filesystems for managed flash 183
Flashbench 184
Discard and TRIM 185
Ext4 186
F2FS 187
FAT16/32 187

Read-only compressed filesystems 188
squashfs 188

Temporary filesystems 189
Making the root filesystem read-only 190
Filesystem choices 191
Updating in the field 192

Granularity: file, package, or image? 193
Atomic image update 193

Further reading 195
Summary 196

Table of Contents

[vii]

Chapter 8: Introducing Device Drivers 197
The role of device drivers 197
Character devices 198
Block devices 200
Network devices 202
Finding out about drivers at runtime 203

Getting information from sysfs 206
The devices: /sys/devices 206
The drivers: /sys/class 207
The block drivers: /sys/block 208

Finding the right device driver 208
Device drivers in user-space 209

GPIO 210
Handling interrupts from GPIO 211

LEDs 213
I2C 214
SPI 215

Writing a kernel device driver 216
Designing a character device interface 216
Anatomy of a device driver 218

Compile and load 221
Loading kernel modules 222
Discovering hardware configuration 222

Device trees 223
Platform data 223
Linking hardware with device drivers 224

Additional reading 227
Summary 227

Chapter 9: Starting up - the init Program 229
After the kernel has booted 229
Introducing the init programs 230
BusyBox init 231

Buildroot init scripts 232
System V init 233

inittab 234
The init.d scripts 237
Adding a new daemon 237
Starting and stopping services 239

Table of Contents

[viii]

systemd 239
Building systemd with the Yocto Project and Buildroot 240

Introducing targets, services, and units 240
How systemd boots the system 242
Adding your own service 243
Adding a watchdog 244
Implications for embedded Linux 245

Further reading 246
Summary 246

Chapter 10: Learning About Processes and Threads 247
Process or thread? 247
Processes 249

Creating a new process 250
Terminating a process 251
Running a different program 252
Daemons 254
Inter-process communication 255

Message-based IPC 255
Summary of message-based IPC 257
Shared memory-based IPC 257

Threads 260
Creating a new thread 261
Terminating a thread 262
Compiling a program with threads 263
Inter-thread communication 263
Mutual exclusion 263
Changing conditions 264
Partitioning the problem 265

Scheduling 267
Fairness versus determinism 267
Timeshare policies 268

Niceness 269
Real-time policies 269
Choosing a policy 270
Choosing a real-time priority 271

Further reading 271
Summary 272

Table of Contents

[ix]

Chapter 11: Managing Memory 273
Virtual memory basics 273
Kernel space memory layout 274

How much memory does the kernel use? 276
User space memory layout 278
Process memory map 279
Swap 281

Swap to compressed memory (zram) 281
Mapping memory with mmap 282

Using mmap to allocate private memory 282
Using mmap to share memory 283
Using mmap to access device memory 283

How much memory does my application use? 284
Per-process memory usage 285

Using top and ps 285
Using smem 286
Other tools to consider 288

Identifying memory leaks 288
mtrace 289
Valgrind 290

Running out of memory 291
Further reading 293
Summary 293

Chapter 12: Debugging with GDB 295
The GNU debugger 295
Preparing to debug 296
Debugging applications using GDB 297
Remote debugging using gdbserver 297

Setting up the Yocto Project 298
Setting up Buildroot 299

Starting to debug 299
Connecting GDB and gdbserver 299
Setting the sysroot 300
GDB command files 301
Overview of GDB commands 301

Breakpoints 301
Running and stepping 302
Information commands 302

Running to a breakpoint 302

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[x]

Debugging shared libraries 303
The Yocto Project 303
Buildroot 304
Other libraries 304

Just-in-time debugging 305
Debugging forks and threads 305
Core files 306

Using GDB to look at core files 308
GDB user interfaces 308

Terminal user interface 309
Data display debugger 310
Eclipse 311

Debugging kernel code 311
Debugging kernel code with kgdb 312
A sample debug session 313
Debugging early code 314
Debugging modules 315
Debugging kernel code with kdb 316
Looking at an oops 317
Preserving the oops 319

Additional reading 320
Summary 321

Chapter 13: Profiling and Tracing 323
The observer effect 323

Symbol tables and compile flags 324
Beginning to profile 325
Profiling with top 325

Poor man's profiler 327
Introducing perf 327

Configuring the kernel for perf 328
Building perf with the Yocto Project 329
Building perf with Buildroot 329
Profiling with perf 329
Call graphs 331
perf annotate 332

Table of Contents

[xi]

Other profilers: OProfile and gprof 334
Tracing events 336
Introducing Ftrace 337

Preparing to use Ftrace 337
Dynamic Ftrace and trace filters 340
Trace events 341

Using LTTng 343
LTTng and the Yocto Project 343
LTTng and Buildroot 344
Using LTTng for kernel tracing 344

Using Valgrind for application profiling 347
Callgrind 347
Helgrind 348
Using strace to show system calls 349
Summary 351

Chapter 14: Real-time Programming 353
What is real-time? 353
Identifying the sources of non-determinism 356
Understanding scheduling latency 357
Kernel preemption 358
The real-time Linux kernel (PREEMPT_RT) 359
Threaded interrupt handlers 360
Preemptible kernel locks 362
Getting the PREEMPT_RT patches 362

The Yocto Project and PREEMPT_RT 363
High resolution timers 364
Avoiding page faults in a real-time application 364
Interrupt shielding 366
Measuring scheduling latencies 366

cyclictest 366
Using Ftrace 370
Combining cyclictest and Ftrace 372

Further reading 372
Summary 373

Index 375

[xiii]

Preface
An embedded system is a device with a computer inside that doesn't look like a
computer. Washing machines, televisions, printers, cars, aircraft, and robots are all
controlled by a computer of some sort, and in some cases, more than one. As these
devices become more complex, and as our expectations of the things that we can do
with them expand, the need for a powerful operating system to control them grows.
Increasingly, Linux is the operating system of choice.

The power of Linux stems from its open source model, which encourages sharing
of code. This means that software engineers from many backgrounds, and often
employed by competing companies, can cooperate to create an operating system
kernel that is up-to-date and tracks the development of the hardware. From this one
code base, there is support from the largest super computers down to a wristwatch.
Linux is only one component of the operating system. Many other components are
needed to create a working system, from basic tools, such as a command shell, to
graphical user interfaces, with web content and communicating with cloud services.
The Linux kernel together with an extensive range of other open source components
allow you to build a system that can function in a wide range of roles.

However, flexibility is a double-edged sword. While it gives a system designer
a wide choice of solutions to a particular problem, it also presents the problem of
knowing which are the best choices. The propose of this book is to describe in detail
how to construct an embedded Linux system using free, open source projects to
produce a robust, reliable, and efficient system. It is based on the experience of the
author as a consultant and trainer over a period of many years, using examples to
illustrate best practices.

Preface

[xiv]

What this book covers
Mastering Embedded Linux Programming is organized along the lines of the life cycle of a
typical embedded Linux project. The first six chapters tell you what you need to know
about how to set up the project and how a Linux system is put together, culminating in
selecting an appropriate Linux build system. Next, comes the stage where certain key
decisions must be made about the system architecture and design choices, including
flash memory, device drivers, and the init system. Following this is the phase of
writing applications to make use of the embedded platform you have built, and for
which there are two chapters on processes, threads, and memory management. Finally,
we come to the stage of debugging and optimizing the platform, which is discussed
in chapters 12 and 13. The last chapter describes how to configure Linux for real-time
applications.

Chapter 1, Starting Out, sets the scene by describing the choices available to the
system designer at the start of a project.

Chapter 2, Learning About Toolchains, describes the components of a toolchain with
an emphasis on cross-compiling. It describes where to get a toolchain and provides
details on how to build one from the source code.

Chapter 3, All About Bootloaders, explains the role of the bootloader to initialize the
hardware of the device and uses U-Boot and Bareboot as examples. It also describes
the device tree, which is a means of encoding the hardware configuration, used in
many embedded systems.

Chapter 4, Porting and Configuring the Kernel, provides information on how to select a
Linux kernel for an embedded system and configure it for the hardware within the
device. It also covers how to port Linux to the new hardware.

Chapter 5, Building a Root Filesystem, introduces the ideas behind the user space part
of an embedded Linux implementation by means of a step-by-step guide on how to
configure a root filesystem.

Chapter 6, Selecting a Build System, covers two embedded Linux build systems, which
automate the steps described in the previous four chapters and conclude the first
section of the book.

Chapter 7, Creating a Storage Strategy, discusses the challenges created by managing
flash memory, including raw flash chips and embedded MMC or eMMC packages.
It describes the filesystems that are applicable to each type of technology. It also
covers techniques on how to update the device firmware in the field.

Preface

[xv]

Chapter 8, Introducing Device Drivers, describes how kernel device drivers interact
with the hardware with worked examples of a simple driver. It also describes the
various ways of calling device drivers from the user space.

Chapter 9, Starting up - the init Program, shows how the first user space program,
init, which starts the rest of the system. It describes the three versions of the init
program, each suitable for a different group of embedded systems, with increasing
complexity from BusyBox init to systemd.

Chapter 10, Learning About Processes and Threads, describes embedded systems from
the point of view of the application programmer. This chapter looks at processes and
threads, inter-process communication, and scheduling policies.

Chapter 11, Managing Memory, introduces the ideas behind virtual memory and how
the address space is divided into memory mappings. It also covers how to detect
memory that is being used and memory leaks.

Chapter 12, Debugging with GDB, shows you how to use the GNU debugger, GDB,
to interactively debug both the user space and kernel code. It also describes the
kernel debugger, kdb.

Chapter 13, Profiling and Tracing, covers the techniques available to measure the
system performance, starting from whole system profiles and then zeroing in on
particular areas where bottlenecks are causing poor performance. It also describes
Valgrind as a tool to check the correctness of an application's use of thread
synchronization and memory allocation.

Chapter 14, Real-time Programming, provides a detailed guide to real-time programming
on Linux, including the configuration of the kernel and the real-time kernel patch,
and also provides a description of tools to measure real-time latencies. It also covers
information on how to reduce the number of page faults by locking the memory.

What you need for this book
The software used in this book is entirely open source. The versions used are, in
most cases, the latest stable versions available at the time of writing. While I have
tried to describe the main features in a manner that are not specific to a particular
version, it is inevitable that the examples of commands contain some details that
will not work with the later versions. I hope that the descriptions that accompany
them are sufficiently informative so that you can apply the same principles to the
later versions of the package.

Preface

[xvi]

There are two systems involved in creating an embedded system: the host system
that is used to cross-compile the software and the target system on which it runs.
For the host system, I have used Ubuntu 14.04, but most Linux distributions will
work with little modification. In the same way, I had to choose a target system to
represent an embedded system. I chose two: the BeagelBone Black and the QEMU
CPU emulator, emulating an ARM target. The latter target means that you can
try out the examples without having to invest in the hardware for an actual target
device. At the same time, it should be possible to apply the examples to a wide range
of targets with adaptations for specifics, such as device names and memory layout.

The versions of the main packages for the target are U-Boot 2015.07, Linux 4.1,
Yocto Project 1.8 "Fido", and Buildroot 2015.08.

Who this book is for
This book is ideal for Linux developers and system programmers who are already
familiar with embedded systems and who want to know how to create best-in-class
devices. A basic understanding of C programming and experience with systems
programming is needed.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We could use the stream I/O functions fopen(3), fread(3), and fclose(3)."

A block of code is set as follows:

static struct mtd_partition omap3beagle_nand_partitions[] = {
 /* All the partition sizes are listed in terms of NAND block
size */
 {
 .name = "X-Loader",
 .offset = 0,
 .size = 4 * NAND_BLOCK_SIZE,
 .mask_flags = MTD_WRITEABLE, /* force read-only */
 }
}

Preface

[xvii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

static struct mtd_partition omap3beagle_nand_partitions[] = {
 /* All the partition sizes are listed in terms of NAND block
size */
 {
 .name = "X-Loader",
 .offset = 0,
 .size = 4 * NAND_BLOCK_SIZE,
 .mask_flags = MTD_WRITEABLE, /* force read-only */
 }
}

Any command-line input or output is written as follows:

flash_erase -j /dev/mtd6 0 0

nandwrite /dev/mtd6 rootfs-sum.jffs2

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"The second line prints the message Please press Enter to activate this console
on the console."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Preface

[xviii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Preface

[xix]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.allitebooks.org

[1]

Starting Out
You are about to begin working on your next project, and this time it is going to be
running Linux. What should you think about before you put finger to keyboard?
Let's begin with a high-level look at embedded Linux and see why it is popular,
what are the implications of open source licenses, and what kind of hardware
you will need to run Linux.

Linux first became a viable choice for embedded devices around 1999. That was
when Axis (www.axis.com) released their first Linux-powered network camera and
TiVo (www.tivo.com) their first DVR (Digital Video Recorder). Since 1999, Linux
has become ever more popular, to the point that today it is the operating system of
choice for many classes of product. At the time of writing, in 2015, there are about two
billion devices running Linux. That includes a large number of smartphones running
Android, which uses a Linux kernel, and hundreds of millions of set top boxes, smart
TVs, and Wi-Fi routers, not to mention a very diverse range of devices such as vehicle
diagnostics, weighing scales, industrial devices, and medical monitoring units that
ship in smaller volumes.

So, why does your TV run Linux? At first glance, the function of a TV is simple: it
has to display a stream of video on a screen. Why is a complex Unix-like operating
system like Linux necessary?

The simple answer is Moore's Law: Gordon Moore, co-founder of Intel, observed in
1965 that the density of components on a chip will double about every two years.
That applies to the devices that we design and use in our everyday lives just as much
as it does to desktops, laptops, and servers. At the heart of most embedded devices
is a highly integrated chip that contains one or more processor cores and interfaces
with main memory, mass storage, and peripherals of many types. This is referred
to as a System on Chip, or SoC, and they are increasing in complexity in accordance
with Moore's Law. A typical SoC has a technical reference manual that stretches
to thousands of pages. Your TV is not simply displaying a video stream as the old
analog sets used to do.

Starting Out

[2]

The stream is digital, possibly encrypted, and it needs processing to create an image.
Your TV is (or soon will be) connected to the Internet. It can receive content from
smartphones, tablets, and home media servers. It can be (or soon will be) used to
play games. And so on and so on. You need a full operating system to manage this
degree of complexity.

Here are some points that drive the adoption of Linux:

• Linux has the necessary functionality. It has a good scheduler, a good
network stack, support for USB, Wi-Fi, Bluetooth, many kinds of storage
media, good support for multimedia devices, and so on. It ticks all the boxes.

• Linux has been ported to a wide range of processor architectures, including
some that are very commonly found in SoC designs — ARM, MIPS, x86,
and PowerPC.

• Linux is open source, so you have the freedom to get the source code and
modify it to meet your needs. You, or someone working on your behalf,
can create a board support package for your particular SoC board or device.
You can add protocols, features, and technologies that may be missing from
the mainline source code. You can remove features that you don't need to
reduce memory and storage requirements. Linux is flexible.

• Linux has an active community; in the case of the Linux kernel, very active.
There is a new release of the kernel every 10 to 12 weeks, and each release
contains code from around 1,000 developers. An active community means
that Linux is up to date and supports current hardware, protocols,
and standards.

• Open source licenses guarantee that you have access to the source code.
There is no vendor tie-in.

For these reasons, Linux is an ideal choice for complex devices. But there are a few
caveats I should mention here. Complexity makes it harder to understand. Coupled
with the fast moving development process and the decentralized structures of
open source, you have to put some effort into learning how to use it and to keep
on re-learning as it changes. I hope that this book will help in the process.

Chapter 1

[3]

Selecting the right operating system
Is Linux suitable for your project? Linux works well where the problem being solved
justifies the complexity. It is especially good where connectivity, robustness, and
complex user interfaces are required. However it cannot solve every problem, so
here are some things to consider before you jump in:

• Is your hardware up to the job? Compared to a traditional RTOS (real-time
operating system) such as VxWorks, Linux requires a lot more resources.
It needs at least a 32-bit processor, and lots more memory. I will go into
more detail in the section on typical hardware requirements.

• Do you have the right skill set? The early parts of a project, board bring-up,
require detailed knowledge of Linux and how it relates to your hardware.
Likewise, when debugging and tuning your application, you will need to
be able to interpret the results. If you don't have the skills in-house you may
want to outsource some of the work. Of course, reading this book helps!

• Is your system real-time? Linux can handle many real-time activities so
long as you pay attention to certain details, which I will cover in detail in
Chapter 14, Real-time Programming.

Consider these points carefully. Probably the best indicator of success is to look
around for similar products that run Linux and see how they have done it; follow
best practice.

The players
Where does open source software come from? Who writes it? In particular, how
does this relate to the key components of embedded development—the toolchain,
bootloader, kernel, and basic utilities found in the root filesystem?

The main players are:

• The open source community. This, after all, is the engine that generates
the software you are going to be using. The community is a loose alliance
of developers, many of whom are funded in some way, perhaps by a
not-for-profit organization, an academic institution, or a commercial
company. They work together to further the aims of the various projects.
There are many of them, some small, some large. Some that we will be
making use of in the remainder of this book are Linux itself, U-Boot,
BusyBox, Buildroot, the Yocto Project, and the many projects under
the GNU umbrella.

Starting Out

[4]

• CPU architects—These are the organizations that design the CPUs we use.
The important ones here are ARM/Linaro (ARM-based SoCs), Intel (x86 and
x86_64), Imagination Technologies (MIPS), and Freescale/IBM (PowerPC).
They implement or, at the very least, influence support for the basic CPU
architecture.

• SoC vendors (Atmel, Broadcom, Freescale, Intel, Qualcomm, TI, and many
others)—They take the kernel and toolchain from the CPU architects and
modify it to support their chips. They also create reference boards: designs
that are used by the next level down to create development boards and
working products.

• Board vendors and OEMs—these people take the reference designs from
SoC vendors and build them in to specific products, for instance set-top-
boxes or cameras, or create more general purpose development boards, such
as those from Avantech and Kontron. An important category are the cheap
development boards such as BeagleBoard/BeagleBone and Raspberry Pi that
have created their own ecosystems of software and hardware add-ons.

These form a chain, with your project usually at the end, which means that you do
not have a free choice of components. You cannot simply take the latest kernel from
kernel.org, except in a few rare cases, because it does not have support for the chip
or board that you are using.

This is an ongoing problem with embedded development. Ideally, the developers
at each link in the chain would push their changes upstream, but they don't. It is
not uncommon to find a kernel which has many thousands of patches that are not
merged upstream. In addition, SoC vendors tend to actively develop open source
components only for their latest chips, meaning that support for any chip more
than a couple of years old will be frozen and not receive any updates.

The consequence is that most embedded designs are based on old versions of
software. They do not receive security fixes, performance enhancements, or features
that are in newer versions. Problems such as Heartbleed (a bug in the OpenSSL
libraries) and Shellshock (a bug in the bash shell) go unfixed. I will talk more
about this later in this chapter under the topic of security.

What can you do about it? First, ask questions of your vendors: what is their update
policy, how often do they revise kernel versions, what is the current kernel version,
what was the one before that? What is their policy for merging changes up-stream?
Some vendors are making great strides in this way. You should prefer their chips.

Secondly, you can take steps to make yourself more self-sufficient. This book aims to
explain the dependencies in more detail and show you where you can help yourself.
Don't just take the package offered to you by the SoC or board vendor and use it
blindly without considering the alternatives.

Chapter 1

[5]

Project lifecycle
This book is divided into four sections that reflect the phases of a project. The phases
are not necessarily sequential. Usually they overlap and you will need to jump back
to revisit things that were done previously. However, they are representative of a
developer's preoccupations as the project progresses:

• Elements of embedded Linux (chapters 1 to 6) will help you set up the
development environment and create a working platform for the later
phases. It is often referred to as the "board bring-up" phase.

• System architecture and design choices (chapters 7 to 9) will help you to look
at some of the design decisions you will have to make concerning the storage
of programs and data, how to divide work between kernel device drivers
and applications, and how to initialize the system.

• Writing embedded applications (chapters 10 and 11) show how to make
effective use of the Linux process and threads model and how to manage
memory in a resource-constrained device.

• Debugging and optimizing performance (chapters 12 and 13) describe how to
trace, profile, and debug your code in both the applications and the kernel.

The fifth section on real-time (Chapter 14, Real-time Programming) stands somewhat
alone because it is a small, but important, category of embedded systems. Designing
for real-time behavior has an impact on each of the four main phases.

The four elements of embedded Linux
Every project begins by obtaining, customizing, and deploying these four elements:
the toolchain, the bootloader, the kernel, and the root filesystem. This is the topic of
the first section of this book:

• Toolchain: This consists of the compiler and other tools needed to create
code for your target device. Everything else depends on the toolchain.

• Bootloader: This is necessary to initialize the board and to load and boot
the Linux kernel.

• Kernel: This is the heart of the system, managing system resources and
interfacing with hardware.

• Root filesystem: This contains the libraries and programs that are run once
the kernel has completed its initialization.

Starting Out

[6]

Of course, there is also a fifth element, not mentioned here. That is the collection of
programs that are specific to your embedded application which make the device do
whatever it is supposed to do, be it weigh groceries, display movies, control a robot,
or fly a drone.

Typically you will be offered some or all of these elements as a package when you
buy your SoC or board. But, for the reasons mentioned in the preceding paragraph,
they may not be the best choices for you. I will give you the background to make
the right selections in the first six chapters and I will introduce you to two tools that
automate the whole process for you: Buildroot and the Yocto Project.

Open source
The components of embedded Linux are open source, so now is a good time to
consider what that means, why open sources work the way they do and how this
affects the often proprietary embedded device you will be creating from it.

Licenses
When talking about open source, the word, "free" is often used. People new to the
subject often take it to mean nothing to pay, and open source software licenses do
indeed guarantee that you can use the software to develop and deploy systems for
no charge. However, the more important meaning here is freedom, since you are
free to obtain the source code and modify it in any way you see fit and redeploy it
in other systems. These licenses give you this right. Compare that with shareware
licenses which allow you to copy the binaries for no cost but do not give you the
source code, or other licenses that allow you to use the software for free under
certain circumstances, for example, for personal use but not commercial.
These are not open source.

I will provide the following comments in the interest of helping you understand the
implications of working with open source licenses, but I would like to point out that
I am an engineer and not a lawyer. What follows is my understanding of the licenses
and the way they are interpreted.

Open source licenses fall broadly into two categories: the GPL (General Public
License) from the Free Software Foundation and the permissive licenses derived
from BSD (Berkeley Software Distribution), the Apache Foundation, and others.

The permissive licenses say, in essence, that you may modify the source code and
use it in systems of your own choosing so long as you do not modify the terms of the
license in any way. In other words, with that one restriction, you can do with it what
you want, including building it into possibly proprietary systems.

Chapter 1

[7]

The GPL licenses are similar, but have clauses which compel you to pass the rights
to obtain and modify the software on to your end users. In other words you share
your source code. One option is to make it completely public by putting it onto a
public server. Another is to offer it only to your end users by means of a written
offer to provide the code when requested. The GPL goes further to say that you
cannot incorporate GPL code into proprietary programs. Any attempt to do so
would make the GPL apply to the whole. In other words, you cannot combine
GPL and proprietary code in one program.

So, what about libraries? If they are licensed with the GPL, any program linked
with them becomes GPL also. However, most libraries are licensed under the Lesser
General Public License (LGPL). If this is the case, you are allowed to link with them
from a proprietary program.

All of the preceding description relates specifically to GPL v2 and LGPL v2.1.
I should mention the latest versions of GPL v3 and LGPL v3. These are controversial,
and I will admit that I don't fully understand the implications. However, the intention
is to ensure that the GPLv3 and LGPL v3 components in any system can be replaced by
the end user, which is in the spirit of open source software for everyone. It does pose
some problems though. Some Linux devices are used to gain access to information
according to a subscription level or another restriction, and replacing critical parts
of the software may compromise that. Set-top boxes fit into this category. There are
also issues with security. If the owner of a device has access to the system code, then
so might an unwelcome intruder. Often the defense is to have kernel images that are
signed by an authority, the vendor, so that unauthorized updates are not possible.
Is that an infringement of my right to modify my device? Opinions differ.

The TiVo set-top box is an important part of this debate. It uses
a Linux kernel, which is licensed under GPL v2. TiVo release the
source code of their version of the kernel and so comply with the
license. TiVo also have a bootloader that will only load a kernel
binary that is signed by them. Consequently, you can build a
modified kernel for a TiVo box, but you cannot load it on the
hardware. The FSF take the position that this is not in the spirit of
open source software and refer to this procedure as "tivoization".
The GPL v3 and LGPL v3 were written to explicitly prevent this
happening. Some projects, the Linux kernel in particular, have
been reluctant to adopt the version three licenses because of the
restrictions it would place on device manufacturers.

Starting Out

[8]

Hardware for embedded Linux
If you are designing or selecting hardware for an embedded Linux project, what do
you look out for?

Firstly, a CPU architecture that is supported by the kernel – unless you plan to add a
new architecture yourself of course! Looking at the source code for Linux 4.1, there
are 30 architectures, each represented by a sub-directory in the arch/ directory. They
are all 32- or 64-bit architectures, most with a memory management unit (MMU),
but some without. The ones most often found in embedded devices are ARM, MIPS,
PowerPC, and X86, each in 32- and 64-bit variants, and all of which have memory
management units.

Most of this book is written with this class of processor in mind. There is another group
that doesn't have an MMU that runs a subset of Linux known as micro controller Linux
or uClinux. These processor architectures include ARC, Blackfin, Microblaze, and
Nios. I will mention uClinux from time to time but I will not go into details because it
is a rather specialized topic.

Secondly, you will need a reasonable amount of RAM. 16 MiB is a good minimum,
although it is quite possible to run Linux using half that. It is even possible to run
Linux with 4 MiB if you are prepared to go to the trouble of optimizing every part of
the system. It may even be possible to get lower, but there comes a point at which it
is no longer Linux.

Thirdly, there is non-volatile storage, usually flash memory. 8 MiB is enough for a
simple device such as a webcam or a simple router. As with RAM, you can create
a workable Linux system with less storage if you really want to but, the lower you
go, the harder it becomes. Linux has extensive support for flash storage devices,
including raw NOR and NAND flash chips and managed flash in the form of SD
cards, eMMC chips, USB flash memory, and so on.

Fourthly, a debug port is very useful, most commonly an RS-232 serial port. It does
not have to be fitted on production boards, but makes board bring-up, debugging,
and development much easier.

Fifthly, you need some means of loading software when starting from scratch. A few
years ago, boards would have been fitted with a JTAG interface for this purpose,
but modern SoCs have the ability to load boot code directly from removable media,
especially SD and micro SD cards, or serial interfaces such as RS-232 or USB.

Chapter 1

[9]

In addition to these basics, there are interfaces to the specific bits of hardware your
device needs to get its job done. Mainline Linux comes with open source drivers for
many thousands of different devices, and there are drivers (of variable quality) from
the SoC manufacturer and drivers from the OEMs of third-party chips that may be
included in the design, but remember my comments on the commitment and ability
of some manufacturers. As a developer of embedded devices, you will find that you
spend quite a lot of time evaluating and adapting third-party code, if you have it, or
liaising with the manufacturer if you don't. Finally, you will have to write the device
support for any interfaces that are unique to the device, or find someone to do it
for you.

Hardware used in this book
The worked examples in this book are intended to be generic, but to make them
relevant and easy to follow, I have had to choose a specific device as an example.
I have used two exemplar devices: the BeagleBone Black and QEMU. The first is
a widely-available and cheap development board which can be used in serious
embedded hardware. The second is a machine emulator that can be used to create
a range of systems that are typical of embedded hardware. It was tempting to use
QEMU exclusively, but, like all emulations, it is not quite the same as the real thing.
Using a BeagleBone, you have the satisfaction of interacting with real hardware and
seeing real LEDs flash. It was also tempting to select a more up-to-date board than
the BeagleBone Black, which is several years old now, but I believe that its popularity
gives it a degree of longevity and means that it will continue to be available for some
years yet.

In any case, I encourage you to try out as many of the examples as you can using
either of these two platforms, or indeed any embedded hardware you may have
to hand.

The BeagleBone Black
The BeagleBone and the later BeagleBone Black are open hardware designs for a
small, credit card sized development board produced by Circuitco LLC. The main
repository of information is at www.beagleboard.org. The main points of the
specification are:

• TI AM335x 1GHz ARM® Cortex-A8 Sitara SoC
• 512 MiB DDR3 RAM
• 2 or 4 GiB 8-bit eMMC on-board flash storage
• Serial port for debug and development

Starting Out

[10]

• MicroSD connector, which can be used as the boot device
• Mini USB OTG client/host port that can also be used to power the board
• Full size USB 2.0 host port
• 10/100 Ethernet port
• HDMI for video and audio output

In addition, there are two 46-pin expansion headers for which there are a great
variety of daughter boards, known as capes, which allow you to adapt the board
to do many different things. However, you do not need to fit any capes in the
examples in this book.

In addition to the board itself, you will need:

• a mini USB to full-size USB cable (supplied with the board) to provide
power, unless you have the last item on this list.

• an RS-232 cable that can interface with the 6-pin 3.3 volt TTL level
signals provided by the board. The Beagleboard website has links
to compatible cables.

• a microSD card and a means of writing to it from your development
PC or laptop, which will be needed to load software onto the board.

• an Ethernet cable, as some of the examples require network connectivity.
• optional, but recommended, a 5V power supply capable of delivering 1 A

or more.

QEMU
QEMU is a machine emulator. It comes in a number of different flavors, each of
which can emulate a processor architecture and a number of boards built using
that architecture. For example, we have the following:

• qemu-system-arm: ARM
• qemu-system-mips: MIPS
• qemu-system-ppc: PowerPC
• qemu-system-x86: x86 and x86_64

Chapter 1

[11]

For each architecture, QEMU emulates a range of hardware, which you can see by
using the option -machine help. Each machine emulates most of the hardware
that would normally be found on that board. There are options to link hardware
to local resources, such as using a local file for the emulated disk drive. Here is a
concrete example:

$ qemu-system-arm -machine vexpress-a9 -m 256M -drive
file=rootfs.ext4,sd -net nic -net use -kernel zImage -dtb vexpress-
v2p-ca9.dtb -append "console=ttyAMA0,115200 root=/dev/mmcblk0" -
serial stdio -net nic,model=lan9118 -net tap,ifname=tap0

The options used in the preceding command line are:

• -machine vexpress-a9: creates an emulation of an ARM Versatile Express
development board with a Cortex A-9 processor

• -m 256M: populates it with 256 MiB of RAM
• -drive file=rootfs.ext4,sd: connect the sd interface to the local file

rootfs.ext4 (which contains a filesystem image)
• -kernel zImage: loads the Linux kernel from the local file named zImage
• -dtb vexpress-v2p-ca9.dtb: loads the device tree from the local file

vexpress-v2p-ca9.dtb

• -append "...": supplies this string as the kernel command line
• -serial stdio: connects the serial port to the terminal that launched

QEMU, usually so that you can log on to the emulated machine via the
serial console

• -net nic,model=lan9118: creates a network interface
• -net tap,ifname=tap0: connects the network interface to the virtual

network interface tap0

To configure the host side of the network, you need the tunctl command from
the User Mode Linux (UML) project; on Debian and Ubuntu the package is named
uml-utilities. You use it to create a virtual network using the following command:

$ sudo tunctl -u $(whoami) -t tap0

This creates a network interface named tap0 which is connected to the network
controller in the emulated QEMU machine. You configure tap0 in exactly the same
way as any other interface.

All of these options are described in detail in the following chapters. I will be using
Versatile Express for most of my examples, but it should be easy to use a different
machine or architecture.

Starting Out

[12]

Software used in this book
I have used only open source software both for the development tools and the target
operating system and applications. I assume that you will be using Linux on your
development system. I tested all the host commands using Ubuntu 14.04 and so there
is a slight bias towards that particular version, but any modern Linux distribution is
likely to work just fine.

Summary
Embedded hardware will continue to get more complex, following the trajectory set
by Moore's Law. Linux has the power and the flexibility to make use of hardware in
an efficient way.

Linux is just one component of open source software out of the many that you
need to create a working product. The fact that the code is freely available means
that people and organizations at many different levels can contribute. However,
the sheer variety of embedded platforms and the fast pace of development lead
to isolated pools of software which are not shared as efficiently as they should be.
In many cases, you will become dependent on this software, especially the Linux
kernel that is provided by your SoC or Board vendor, and to a lesser extent the
toolchain. Some SoC manufacturers are getting better at pushing their changes
upstream and the maintenance of these changes is getting easier.

Fortunately, there are some powerful tools that can help you create and maintain
the software for your device. For example, Buildroot is ideal for small systems and
the Yocto Project for larger ones.

Before I describe these build tools, I will describe the four elements of embedded
Linux, which you can apply to all embedded Linux projects, however they are
created. The next chapter is all about the first of these, the toolchain, which you
need to compile code for your target platform.

[13]

Learning About Toolchains
The toolchain is the first element of embedded Linux and the starting point of your
project. The choices you make at this early stage will have a profound impact on
the final outcome. Your toolchain should be capable of making effective use of your
hardware by using the optimum instruction set for your processor, using the floating
point unit if there is one, and so on. It should support the languages that you require
and have a solid implementation of POSIX and other system interfaces. Not only that,
but it should be updated when security flaws are discovered or bugs found. Finally, it
should be constant throughout the project. In other words, once you have chosen your
toolchain it is important to stick with it. Changing compilers and development libraries
in an inconsistent way during a project will lead to subtle bugs.

Obtaining a toolchain is as simple as downloading and installing a package. But, the
toolchain itself is a complex thing, as I will show you in this chapter.

What is a toolchain?
A toolchain is the set of tools that compiles source code into executables that can
run on your target device, and includes a compiler, a linker, and run-time libraries.
Initially, you need one to build the other three elements of an embedded Linux
system: the bootloader, the kernel, and the root filesystem. It has to be able to
compile code written in assembly, C, and C++ since these are the languages
used in the base open source packages.

Learning About Toolchains

[14]

Usually, toolchains for Linux are based on components from the GNU project
(http://www.gnu.org) and that is still true in the majority of cases at the time of
writing. However, over the past few years, the Clang compiler and the associated
LLVM project (http://llvm.org) have progressed to the point that it is now a viable
alternative to a GNU toolchain. One major distinction between LLVM and GNU-based
toolchains is in the licensing; LLVM has a BSD license, while GNU has the GPL. There
are some technical advantages to Clang as well, such as faster compilation and better
diagnostics, but GNU GCC has the advantage of compatibility with the existing code
base and support for a wide range of architectures and operating systems. Indeed,
there are still some areas where Clang cannot replace the GNU C compiler, especially
when it comes to compiling a mainline Linux kernel. It is probable that, in the next year
or so, Clang will be able to compile all the components needed for embedded Linux
and so will become an alternative to GNU. There is a good description of how to use
Clang for cross compilation at http://clang.llvm.org/docs/CrossCompilation.
html. If you would like to use it as part of an embedded Linux build system, the
EmbToolkit (https://www.embtoolkit.org) fully supports both GNU and LLVM/
Clang toolchains and various people are working on using Clang with Buildroot
and the Yocto Project. I will cover embedded build systems in Chapter 6, Selecting a
Build System. Meanwhile, this chapter focuses on the GNU toolchain as it is the only
complete option at this time.

A standard GNU toolchain consists of three main components:

• Binutils: A set of binary utilities including the assembler, and the linker, ld.
It is available at http://www.gnu.org/software/binutils/.

• GNU Compiler Collection (GCC): These are the compilers for C and
other languages which, depending on the version of GCC, include C++,
Objective-C, Objective-C++, Java, Fortran, Ada, and Go. They all use a
common back-end which produces assembler code which is fed to the
GNU assembler. It is available at http://gcc.gnu.org/.

• C library: A standardized API based on the POSIX specification which is
the principle interface to the operating system kernel from applications.
There are several C libraries to consider, see the following section.

As well as these, you will need a copy of the Linux kernel headers, which contain
definitions and constants that are needed when accessing the kernel directly. Right
now, you need them to be able to compile the C library, but you will also need them
later when writing programs or compiling libraries that interact with particular
Linux devices, for example to display graphics via the Linux frame buffer driver.
This is not simply a question of making a copy of the header files in the include
directory of your kernel source code. Those headers are intended for use in the
kernel only and contain definitions that will cause conflicts if used in their raw
state to compile regular Linux applications.

Chapter 2

[15]

Instead, you will need to generate a set of sanitized kernel headers which I have
illustrated in Chapter 5, Building a Root Filesystem.

It is not usually crucial whether the kernel headers are generated from the exact
version of Linux you are going to be using or not. Since the kernel interfaces are
always backwards-compatible, it is only necessary that the headers are from a
kernel that is the same as or older than the one you are using on the target.

Most people would consider the GNU debugger, GDB, to be part of the toolchain as
well, and it is usual that it is built at this point. I will talk about GDB in Chapter 12,
Debugging with GDB.

Types of toolchain - native versus cross
toolchain
For our purposes, there are two types of toolchain:

• Native: This toolchain runs on the same type of system, sometimes the
same actual system, as the programs it generates. This is the usual case
for desktops and servers, and it is becoming popular on certain classes
of embedded devices. The Raspberry Pi running Debian for ARM, for
example, has self-hosted native compilers.

• Cross: This toolchain runs on a different type of system than the target,
allowing the development to be done on a fast desktop PC and then
loaded onto the embedded target for testing.

Almost all embedded Linux development is done using a cross development
toolchain, partly because most embedded devices are not well suited to program
development since they lack computing power, memory, and storage, but also
because it keeps the host and target environments separate. The latter point is
especially important when the host and the target are using the same architecture,
X86_64, for example. In this case, it is tempting to compile natively on the host and
simply copy the binaries to the target. This works up to a point but it is likely that
the host distribution will receive updates more often than the target, that different
engineers building code for the target will have slightly different versions of the host
development libraries and so you will violate the principle that the toolchain should
remain constant throughout the life of the project. You can make this approach work
if you ensure that the host and target build environments are in lockstep with each
other, but a much better approach is to keep the host and the target separate, and a
cross toolchain is a way to do that.

Learning About Toolchains

[16]

However, there is a counter argument in favor of native development. Cross
development creates the burden of cross-compiling all the libraries and tools that
you need for your target. We will see later on in this chapter that cross-compiling is
not always simple because most open source packages are not designed to be built
in this way. Integrated build tools, including Buildroot and the Yocto Project, help
by encapsulating the rules to cross compile a range of packages that you need in
typical embedded systems but, if you want to compile a large number of additional
packages, then it is better to natively compile them. For example, to provide a Debian
distribution for the Raspberry Pi or BeagleBone using a cross compiler is impossible,
they have to be natively compiled. Creating a native build environment from scratch
is not easy and involves creating a cross compiler first to bootstrap a native build
environment on the target and using that to build packages. You would need a build
farm of well-provisioned target boards or you may be able to use QEMU to emulate
the target. If you want to look into this further, you may want to look at the Scratchbox
project, now in its second incarnation as Scratchbox2 (https://maemo.gitorious.
org/scratchbox2). It was developed by Nokia to build their Maemo Linux operating
system, and is used today by the Mer project and the Tizen project, among others.

Meanwhile, in this chapter, I will focus on the more mainstream cross compiler
environment, which is relatively easy to set up and administer.

CPU architectures
The toolchain has to be built according to the capabilities of the target CPU,
which includes:

• CPU architecture: arm, mips, x86_64, and so on
• Big- or little-endian operation: Some CPUs can operate in both modes,

but the machine code is different for each
• Floating point support: Not all versions of embedded processors implement

a hardware floating point unit, in which case, the toolchain can be configured
to call a software floating point library instead

• Application Binary Interface (ABI): The calling convention used for passing
parameters between function calls

Chapter 2

[17]

With many architectures, the ABI is constant across the family of processors.
One notable exception is ARM. The ARM architecture transitioned to the Extended
Application Binary Interface (EABI) in the late 2000's, resulting in the previous
ABI being named the Old Application Binary Interface (OABI). While the OABI is
now obsolete, you continue to see references to EABI. Since then, the EABI has split
into two, based on the way that floating point parameters are passed. The original
EABI uses general purpose (integer) registers while the newer EABIHF uses floating
point registers. The EABIHF is significantly faster at floating point operations since
it removes the need for copying between integer and floating point registers, but it
is not compatible with CPUs that do not have a floating point unit. The choice, then,
is between two incompatible ABIs: you cannot mix and match the two and so you
have to decide at this stage.

GNU uses a prefix to the tools to identify the various combinations that can be
generated, consisting of a tuple of three or four components separated by dashes,
as described here:

• CPU: The CPU architecture, such as arm, mips, or x86_64. If the CPU has
both endian modes, they may be differentiated by adding el for little-endian,
or eb for big-endian. Good examples are little-endian MIPS, mipsel and
big-endian ARM, armeb.

• Vendor: This identifies the provider of the toolchain. Examples include
buildroot, poky, or just unknown. Sometimes it is left out altogether.

• Kernel: For our purposes, it is always 'linux'.
• Operating system: A name for the user space component, which might

be gnu or uclibcgnu. The ABI may be appended here as well so, for
ARM toolchains, you may see gnueabi, gnueabihf, uclibcgnueabi,
or uclibcgnueabihf.

You can find the tuple used when building the toolchain by using the -dumpmachine
option of gcc. For example, you may see the following on the host computer:

$ gcc -dumpmachine

x86_64-linux-gnu

When a native compiler is installed on a machine, it is normal to
create links to each of the tools in the toolchain with no prefixes
so that you can call the compiler with the command gcc.

Here is an example using a cross compiler:

$ mipsel-unknown-linux-gnu-gcc -dumpmachine

mipsel-unknown-linux-gnu

Learning About Toolchains

[18]

Choosing the C library
The programming interface to the Unix operating system is defined in the
C language, which is now defined by the POSIX standards. The C library is
the implementation of that interface; it is the gateway to the kernel for Linux
programs, as shown in the following diagram. Even if you are writing programs
in another language, maybe Java or Python, the respective run-time support
libraries will have to call the C library eventually:

The C library is the gateway to the kernel for applications

Whenever the C library needs the services of the kernel it will use the kernel system
call interface to transition between user space and kernel space. It is possible to
bypass the C library by making kernel system calls directly, but that is a lot of trouble
and almost never necessary.

There are several C libraries to choose from. The main options are as follows:

• glibc: Available at http://www.gnu.org/software/libc. It is the standard
GNU C library. It is big and, until recently, not very configurable, but it is the
most complete implementation of the POSIX API.

• eglibc: Available at http://www.eglibc.org/home. This is the embedded
GLIBC. It was a series of patches to glibc which added configuration options
and support for architectures not covered by glibc (specifically, the PowerPC
e500). The split between eglibc and glibc was always rather artificial and,
fortunately, the code base from eglibc has been merged back into glibc as
of version 2.20, leaving us with one improved library. eglibc is no longer
maintained.

Chapter 2

[19]

• uClibc: Available at http://www.uclibc.org. The 'u' is really a Greek
'mu' character, indicating that this is the micro controller C library. It was
first developed to work with uClinux (Linux for CPUs without memory
management units), but has since been adapted to be used with full Linux.
There is a configuration utility which allows you to fine-tune its features
to your needs. Even a full configuration is smaller than glibc but it is not
as complete an implementation of the POSIX standards.

• musl libc: Available at http://www.musl-libc.org. It is a new C library
designed for embedded systems.

So, which to choose? My advice is to use uClibc only if you are using uClinux or
if you have very limited amounts of storage or RAM and so the small size would
be an advantage. Otherwise, I prefer to use an up-to-date glibc, or eglibc. I have no
experience of musl libc but if you find that glibc/eglibc is not suitable, by all means
give it a go. This process is summarized in the following figure:

Choosing a C library

www.allitebooks.com

http://www.allitebooks.org

Learning About Toolchains

[20]

Finding a toolchain
You have three choices for your cross development toolchain: you may find a
ready built toolchain that matches your needs, you can use the one generated by
an embedded build tool which is covered in Chapter 6, Selecting a Build System,
or you can create one yourself as described later in this chapter.

A pre-built cross toolchain is an attractive option in that you only have to download
and install it, but you are limited to the configuration of that particular toolchain
and you are dependent on the person or organization you got it from. Most likely,
it will be one of these:

• SoC or board vendor. Most vendors offer a Linux toolchain.
• A consortium dedicated to providing system-level support for a given

architecture. For example, Linaro, (https://www.linaro.org) have
pre-built toolchains for the ARM architecture.

• Third-party Linux tool vendors such as Mentor Graphics, TimeSys,
or MontaVista.

• Cross tool packages for your desktop Linux distribution, for example,
Debian-based distributions have packages for cross compiling for ARM,
MIPS, and PowerPC targets.

• A binary SDK produced by one of the integrated embedded build tools, the
Yocto Project has some examples at http://autobuilder.yoctoproject.
org/pub/releases/CURRENT/toolchain and there is also the Denx
Embedded Linux Development Kit at ftp://ftp.denx.de/pub/eldk/.

• A link from a forum that you can't find any more.

In all of these cases, you have to decide whether the pre-built toolchain on offer
meets your requirements. Does it use the C library you prefer? Will the provider
give you updates for security fixes and bugs, bearing in mind my comments on
support and updates from Chapter 1, Starting Out. If your answer is no to any of
these then you should consider creating your own.

Unfortunately, building a toolchain is no easy task. If you truly want to do the whole
thing yourself, take a look at Cross Linux From Scratch (http://trac.clfs.org).
There, you will find step-by-step instructions on how to create each component.

A simpler alternative is to use crosstool-NG, which encapsulates the process into
a set of scripts and has a menu-driven front-end. You still need a fair degree of
knowledge, though, just to make the right choices.

Chapter 2

[21]

It is simpler still to use a build system such as Buildroot or the Yocto Project since
they generate a toolchain as part of the build process. This is my preferred solution
as I have shown in Chapter 6, Selecting a Build System.

Building a toolchain using crosstool-NG
I am going to begin with crosstool-NG because it allows you to see the process of
creating the toolchain and to create several different sorts.

Some years ago, Dan Kegel wrote a set of scripts and makefiles for generating cross
development toolchains and called it crosstool (kegel.com/crosstool). In 2007,
Yann E. Morin used that base to create the next generation of crosstool, crosstool-NG
(crosstool-ng.org). Today it is, by far, the most convenient way to create a stand-
alone cross toolchain from source.

Installing crosstool-NG
Before you begin, you will need a working native toolchain and build tools on your
host PC. To work with crosstool-NG on an Ubuntu host, you will need to install the
packages using the following command:

$ sudo apt-get install automake bison chrpath flex g++ git gperf
gawk libexpat1-dev libncurses5-dev libsdl1.2-dev libtool
python2.7-dev texinfo

Next, get the current release from the croostool-NG downloads section,
http://crosstool-ng.org/download/crosstool-ng. In my examples I have
used 1.20.0. Extract it and create the front-end menu system, ct-ng, as shown in
the following commands:

$ tar xf crosstool-ng-1.20.0.tar.bz2

$ cd crosstool-ng-1.20.0

$./configure --enable-local

$ make

$ make install

The --enable-local option means that the program will be installed into the
current directory, which avoids the need for root permissions as would be required
if you were to install it in the default location, /usr/local/bin. Type ./ct-ng from
the current directory to launch the crosstool menu.

Learning About Toolchains

[22]

Selecting the toolchain
Crosstool-NG can build many different combinations of toolchains. To make the
initial configuration easier, it comes with a set of samples that cover many of the
common use-cases. Use ./ct-ng list-samples to generate the list.

As an example, suppose that your target is a BeagleBone Black which has an ARM
Cortex A8 core and a VFPv3 floating point unit, and that you want to use a current
version of glibc. The closest sample is arm-cortex_a8-linux-gnueabi. You can see
the default configuration by prefixing the name with show-:

$./ct-ng show-arm-cortex_a8-linux-gnueabi

[L..] arm-cortex_a8-linux-gnueabi

OS : linux-3.15.4

Companion libs : gmp-5.1.3 mpfr-3.1.2 cloog-ppl-0.18.1 mpc-1.0.2
libelf-0.8.13

binutils : binutils-2.22

C compiler : gcc-4.9.1 (C,C++)

C library : glibc-2.19 (threads: nptl)

Tools : dmalloc-5.5.2 duma-2_5_15 gdb-7.8 ltrace-
0.7.3 strace-4.8

To select this as the target configuration, you would type:

$./ct-ng arm-cortex_a8-linux-gnueabi

At this point, you can review the configuration and make changes using the
configuration menu command menuconfig:

$./ct-ng menuconfig

The menu system is based on the Linux kernel menuconfig and so navigation of the
user interface will be familiar to anyone who has configured a kernel. If not, please
refer to Chapter 4, Porting and Configuring the Kernel for a description of menuconfig.

There are a few configuration changes that I would recommend you make at
this point:

• In Paths and misc options, disable Render the toolchain read-only
(CT_INSTALL_DIR_RO)

• In Target options | Floating point, select hardware (FPU)
(CT_ARCH_FLOAT_HW)

• In C-library | extra config, add --enable-obsolete-rpc
(CT_LIBC_GLIBC_EXTRA_CONFIG_ARRAY)

Chapter 2

[23]

The first is necessary if you want to add libraries to the toolchain after it has been
installed, which I will describe later in this chapter. The next is to select the optimum
floating point implementation for a processor with a hardware floating point unit.
The last forces the toolchain to be generated with an obsolete header file, rpc.h,
which is still used by a number of packages (note that this is only a problem if you
selected glibc). The names in parentheses are the configuration labels stored in the
configuration file. When you have made the changes, exit menuconfig, and save the
configuration as you do so.

The configuration data is saved into a file named .config. Looking at the file, you
will see that the first line of text reads Automatically generated make config: don't edit
which is generally good advice, but I recommend that you ignore it in this case. Do
you remember from the discussion about toolchain ABIs that ARM has two variants,
one which passes floating point parameters in integer registers and one that uses the
VFP registers? The float configuration you have just chosen is of the latter type and
so the ABI part of the tuple should read eabihf. There is a configuration parameter
that does exactly what you want but it is not enabled by default, neither does it
appear in the menu, at least not in this version of crosstool. Consequently, you will
have to edit .config and add the line shown in bold as follows:

[…]

#

arm other options

#

CT_ARCH_ARM_MODE="arm"

CT_ARCH_ARM_MODE_ARM=y

CT_ARCH_ARM_MODE_THUMB is not set

CT_ARCH_ARM_INTERWORKING is not set

CT_ARCH_ARM_EABI_FORCE=y

CT_ARCH_ARM_EABI=y

CT_ARCH_ARM_TUPLE_USE_EABIHF=y

[...]

Now you can use crosstool-NG to get, configure, and build the components according
to your specification by typing the following command:

$./ct-ng build

The build will take about half an hour, after which you will find your toolchain is
present in ~/x-tools/arm-cortex_a8-linux-gnueabihf/.

Learning About Toolchains

[24]

Anatomy of a toolchain
To get an idea of what is in a typical toolchain, I want to examine the crosstool-NG
toolchain you have just created.

The toolchain is in the directory ~/x-tools/arm-cortex_a8-linux-gnueabihf/
bin. In there you will find the cross compiler, arm-cortex_a8-linux-gnueabihf-
gcc. To make use of it, you need to add the directory to your path using the
following command:

$ PATH=~/x-tools/arm-cortex_a8-linux-gnueabihf/bin:$PATH

Now you can take a simple hello world program that looks like this:

#include <stdio.h>
#include <stdlib.h>
int main (int argc, char *argv[])
{
 printf ("Hello, world!\n");
 return 0;
}

And compile it like this:

$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -o helloworld

You can confirm that it has been cross compiled by using the file command to
print the type of the file:

$ file helloworld

helloworld: ELF 32-bit LSB executable, ARM, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 3.15.4, not
stripped

Finding out about your cross compiler
Imagine that you have just received a toolchain, and that you would like to
know more about how it was configured. You can find out a lot by querying gcc.
For example, to find the version, you use --version:

$ arm-cortex_a8-linux-gnueabi-gcc --version

arm-cortex_a8-linux-gnueabi-gcc (crosstool-NG 1.20.0) 4.9.1

Copyright (C) 2014 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There
is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

Chapter 2

[25]

To find how it was configured, use -v:

$ arm-cortex_a8-linux-gnueabi-gcc -v
Using built-in specs.
COLLECT_GCC=arm-cortex_a8-linux-gnueabihf-gcc
COLLECT_LTO_WRAPPER=/home/chris/x-tools/arm-cortex_a8-linux-
gnueabihf/libexec/gcc/arm-cortex_a8-linux-gnueabihf/4.9.1/lto-wrapper
Target: arm-cortex_a8-linux-gnueabihf
Configured with:
/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/src/gcc-4.9.1/configure --build=x86_64-build_unknown-
linux-gnu --host=x86_64-build_unknown-linux-gnu --target=arm-
cortex_a8-linux-gnueabihf --prefix=/home/chris/x-tools/arm-cortex_a8-
linux-gnueabihf --with-sysroot=/home/chris/x-tools/arm-cortex_a8-
linux-gnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot --enable-
languages=c,c++ --with-arch=armv7-a --with-cpu=cortex-a8 --with-
tune=cortex-a8 --with-float=hard --with-pkgversion='crosstool-NG
1.20.0' --enable-__cxa_atexit --disable-libmudflap --disable-libgomp
--disable-libssp --disable-libquadmath --disable-libquadmath-support
--disable-libsanitizer --with-
gmp=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with-
mpfr=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with-
mpc=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with-
isl=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with-
cloog=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with-
libelf=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with-host-
libstdcxx='-static-libgcc -Wl,-Bstatic,-lstdc++,-Bdynamic -lm' --
enable-threads=posix --enable-target-optspace --enable-plugin --
enable-gold --disable-nls --disable-multilib --with-local-
prefix=/home/chris/x-tools/arm-cortex_a8-linux-gnueabihf/arm-
cortex_a8-linux-gnueabihf/sysroot --enable-c99 --enable-long-long
Thread model: posix
gcc version 4.9.1 (crosstool-NG 1.20.0)

There is a lot of output there but the interesting things to note are:

• --with-sysroot=/home/chris/x-tools/arm-cortex_a8-linux-
gnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot: This is the
default sysroot directory, see the following section for an explanation

• --enable-languages=c,c++: Using this we have both C and C++
languages enabled

Learning About Toolchains

[26]

• --with-arch=armv7-a: The code is generated using the ARM v7a
instruction set

• --with-cpu=cortex-a8 and --with-tune=cortex-a8: The the code
is further tweaked for a Cortex A8 core

• --with-float=hard: Generate opcodes for the floating point unit and
uses the VFP registers for parameters

• --enable-threads=posix: Enable POSIX threads

These are the default settings for the compiler. You can override most of them on
the gcc command line so, for example, if you want to compile for a different CPU,
you can override the configured setting, –-with-cpu, by adding -mcpu to the
command line, as follows:

$ arm-cortex_a8-linux-gnueabihf-gcc -mcpu=cortex-a5 helloworld.c -o
helloworld

You can print out the the range of architecture-specific options available using
--target-help, as follows:

$ arm-cortex_a8-linux-gnueabihf-gcc --target-help

You may be wondering if it matters whether or not you get the exact configuration
right at the time you generate the toolchain if you can change it later on, and the
answer depends on the way you anticipate using it. If you plan to create a new
toolchain for each target, then it makes sense to set everything up at the beginning
because it will reduce the risks of getting it wrong later on. Jumping ahead a little to
Chapter 6, Selecting a Build System, I call this the Buildroot philosophy. If, on the other
hand, you want to build a toolchain that is generic and you are prepared to provide
the correct settings when you build for a particular target, then you should make
the base toolchain generic, which is the way the Yocto Project handles things.
The preceding examples follow the Buildroot philosophy.

The sysroot, library, and header files
The toolchain sysroot is a directory which contains subdirectories for libraries,
header files, and other configuration files. It can be set when the toolchain is
configured through --with-sysroot= or it can be set on the command line,
using --sysroot=. You can see the location of the default sysroot by using
-print-sysroot:

$ arm-cortex_a8-linux-gnueabi-gcc -print-sysroot

/home/chris/x-tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-
linux-gnueabihf/sysroot

Chapter 2

[27]

You will find the following in the sysroot:

• lib: Contains the shared objects for the C library and the dynamic linker/
loader, ld-linux

• usr/lib: the static library archives for the C library and any other libraries
that may be installed subsequently

• usr/include: Contains the headers for all the libraries
• usr/bin: Contains the utility programs that run on the target, such as the

ldd command
• /usr/share: Used for localization and internationalization
• sbin: Provides the ldconfig utility, used to optimize library loading paths

Plainly, some of these are needed on the development host to compile programs,
and others – for example the shared libraries and ld-linux – are needed on the
target at runtime.

Other tools in the toolchain
The following table shows various other commands in the toolchain together with a
brief description:

Command Description
addr2line Converts program addresses into filenames and numbers by reading

the debug symbol tables in an executable file. It is very useful when
decoding addresses printed out in a system crash report.

ar The archive utility is used to create static libraries.

as This is the GNU assembler.

c++filt This is used to demangle C++ and Java symbols.

cpp This is the C preprocessor, and is used to expand #define, #include,
and other similar directives. You seldom need to use this by itself.

elfedit This is used to update the ELF header of ELF files.

g++ This is the GNU C++ front-end, which assumes source files contain
C++ code.

gcc This is the GNU C front-end, which assumes source files contain C code.

Learning About Toolchains

[28]

Command Description
gcov This is a code coverage tool.

gdb This is the GNU debugger.

gprof This is a program profiling tool.

ld This is the GNU linker.

nm This lists symbols from object files.

objcopy This is used to copy and translate object files.

objdump This is used to display information from object files.

ranlib This creates or modifies an index in a static library, making the linking
stage faster.

readelf This displays information about files in ELF object format.

size This lists section sizes and the total size.

strings This display strings of printable characters in files.

strip This is used to strip an object file of debug symbol tables, thus making
it smaller. Typically, you would strip all the executable code that is put
onto the target.

Looking at the components of the
C library
The C library is not a single library file. It is composed of four main parts that
together implement the POSIX functions API:

• libc: The main C library that contains the well-known POSIX functions
such as printf, open, close, read, write, and so on

• libm: Maths functions such as cos, exp, and log
• libpthread: All the POSIX thread functions with names beginning

with pthread_
• librt: The real-time extensions to POSIX, including shared memory

and asynchronous I/O

Chapter 2

[29]

The first one, libc, is always linked in but the others have to be explicitly linked
with the -l option. The parameter to -l is the library name with lib stripped off.
So, for example, a program that calculates a sine function by calling sin() would
be linked with libm using -lm:

arm-cortex_a8-linux-gnueabihf-gcc myprog.c -o myprog -lm

You can verify which libraries have been linked in this or any other program by
using the readelf command:

$ arm-cortex_a8-linux-gnueabihf-readelf -a myprog | grep "Shared
library"

0x00000001 (NEEDED) Shared library: [libm.so.6]

0x00000001 (NEEDED) Shared library: [libc.so.6]

Shared libraries need a run-time linker, which you can expose using:

$ arm-cortex_a8-linux-gnueabihf-readelf -a myprog | grep "program
interpreter"

 [Requesting program interpreter: /lib/ld-linux-armhf.so.3]

This is so useful that I have a script file with these commands into a shell script:

#!/bin/sh

${CROSS_COMPILE}readelf -a $1 | grep "program interpreter"

${CROSS_COMPILE}readelf -a $1 | grep "Shared library"

Linking with libraries: static and
dynamic linking
Any application you write for Linux, whether it be in C or C++, will be linked with
the C library, libc. This is so fundamental that you don't even have to tell gcc or g++
to do it because it always links libc. Other libraries that you may want to link with
have to be explicitly named through the -l option.

The library code can be linked in two different ways: statically, meaning that all
the library functions your application calls and their dependencies are pulled from
the library archive and bound into your executable; and dynamically, meaning that
references to the library files and functions in those files are generated in the code
but the actual linking is done dynamically at runtime.

Learning About Toolchains

[30]

Static libraries
Static linking is useful in a few circumstances. For example, if you are building a
small system which consists of only BusyBox and some script files, it is simpler to
link BusyBox statically and avoid having to copy the runtime library files and linker.
It will also be smaller because you only link in the code that your application uses
rather than supplying the entire C library. Static linking is also useful if you need to
run a program before the filesystem that holds the runtime libraries is available.

You tell gcc to link all libraries statically by adding -static to the command line:

$ arm-cortex_a8-linux-gnueabihf-gcc -static helloworld.c -o
helloworld-static

You will notice that the size of the binary increases dramatically:

$ ls -l

-rwxrwxr-x 1 chris chris 5323 Oct 9 09:01 helloworld

-rwxrwxr-x 1 chris chris 625704 Oct 9 09:01 helloworld-static

Static linking pulls code from a library archive, usually named lib[name].a.
In the preceding case it is libc.a, which is in [sysroot]/usr/lib:

$ ls -l $(arm-cortex_a8-linux-gnueabihf-gcc -print-
sysroot)/usr/lib/libc.a

-r--r--r-- 1 chris chris 3434778 Oct 8 14:00 /home/chris/x-
tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-linux-
gnueabihf/sysroot/usr/lib/libc.a

Note that the syntax $(arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot)
places the output of the program on the command line. I am using it as a generic
way to refer to the files in the sysroot.

Creating a static library is as simple as creating an archive of object files using the ar
command. If I had two source files named test1.c and test2.c and I want to create
a static library named libtest.a, then I would do this:

$ arm-cortex_a8-linux-gnueabihf-gcc -c test1.c

$ arm-cortex_a8-linux-gnueabihf-gcc -c test2.c

$ arm-cortex_a8-linux-gnueabihf-ar rc libtest.a test1.o test2.o

$ ls -l

total 24

-rw-rw-r-- 1 chris chris 2392 Oct 9 09:28 libtest.a

-rw-rw-r-- 1 chris chris 116 Oct 9 09:26 test1.c

Chapter 2

[31]

-rw-rw-r-- 1 chris chris 1080 Oct 9 09:27 test1.o

-rw-rw-r-- 1 chris chris 121 Oct 9 09:26 test2.c

-rw-rw-r-- 1 chris chris 1088 Oct 9 09:27 test2.o

Then I could link libtest into my helloworld program using:

$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -ltest -L../libs -
I../libs -o helloworld

Shared libraries
A more common way to deploy libraries is as shared objects that are linked at
runtime, which makes more efficient use of storage and system memory, since
only one copy of the code needs to be loaded. It also makes it easy to update
library files without having to re-link all the programs that use them.

The object code for a shared library must be position-independent so that the
runtime linker is free to locate it in memory at the next free address. To do this,
add the -fPIC parameter to gcc, and then link it using the -shared option:

$ arm-cortex_a8-linux-gnueabihf-gcc -fPIC -c test1.c

$ arm-cortex_a8-linux-gnueabihf-gcc -fPIC -c test2.c

$ arm-cortex_a8-linux-gnueabihf-gcc -shared -o libtest.so test1.o
test2.o

To link an application with this library, you add -ltest, exactly as in the static
case mentioned in the preceding paragraph but, this time, the code is not included
in the executable, but there is a reference to the library that the runtime linker will
have to resolve:

$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -ltest -L../libs -
I../libs -o helloworld

$ list-libs helloworld

[Requesting program interpreter: /lib/ld-
linux-armhf.so.3]

0x00000001 (NEEDED) Shared library: [libtest.so]

0x00000001 (NEEDED) Shared library: [libc.so.6]

The runtime linker for this program is /lib/ld-linux-armhf.so.3, which must
be present in the target's filesystem. The linker will look for libtest.so in the
default search path: /lib and /usr/lib. If you want it to look for libraries in other
directories as well, you can place a colon-separated list of paths in the shell variable
LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=/opt/lib:/opt/usr/lib

Learning About Toolchains

[32]

Understanding shared library version numbers
One of the benefits of shared libraries is that they can be updated independently
of the programs that use them. Library updates are of two types: those that fix
bugs or add new functions in a backwards-compatible way, and those that break
compatibility with existing applications. GNU/Linux has a versioning scheme to
handle both these cases.

Each library has a release version and an interface number. The release version is
simply a string that is appended to the library name, for example the JPEG image
library, libjpeg, is currently at release 8.0.2 and so the library is named libjpeg.
so.8.0.2. There is a symbolic link named libjpeg.so to libjpeg.so.8.0.2 so that,
when you compile a program with –ljpeg, you link with the current version. If you
install version 8.0.3, the link is updated and you will link with that one instead.

Now, suppose that version 9.0.0 comes along and that breaks backwards compatibility.
The link from libjpeg.so now points to libjpeg.so.9.0.0, so that any new
programs are linked with the new version, possibly throwing compile errors when
the interface to libjpeg changes, which the developer can fix. Any programs on the
target that are not recompiled are going to fail in some way because they are still using
the old interface. This is where the soname helps. The soname encodes the interface
number when the library was built and is used by the runtime linker when it loads the
library. It is formatted as <library name>.so.<interface number>. For libjpeg.
so.8.0.2, the soname is libjpeg.so.8:

$ readelf -a /usr/lib/libjpeg.so.8.0.2 | grep SONAME

0x000000000000000e (SONAME) Library soname:
[libjpeg.so.8]

Any program compiled with it will request libjpeg.so.8 at runtime which will be
a symbolic link on the target to libjpeg.so.8.0.2. When version 9.0.0 of libjpeg is
installed, it will have a soname of libjpeg.so.9, and so it is possible to have two
incompatible versions of the same library installed on the same system. Programs
that were linked with libjpeg.so.8.*.* will load libjpeg.so.8, and those linked
with libjpeg.so.9.*.* will load libjpeg.so.9.

This is why, when you look at the directory listing of <sysroot>/usr/lib/libjpeg*,
you find these four files:

• libjpeg.a: This is the library archive used for static linking
• libjpeg.so -> libjpeg.so.8.0.2 : This is a symbolic link, used for

dynamic linking

Chapter 2

[33]

• libjpeg.so.8 -> libjpeg.so.8.0.2: This is a symbolic link used when
loading the library at runtime

• libjpeg.so.8.0.2: This is the actual shared library, used at both compile
time and runtime

The first two are only needed on the host computer for building, the last two are
needed on the target at runtime.

The art of cross compiling
Having a working cross toolchain is the starting point of a journey, not the end of it.
At some point, you will want to begin cross compiling the various tools, applications,
and libraries that you need on your target. Many of them will be open source packages,
each of which has its own method of compiling, and each with its own peculiarities.
There are some common build systems, including:

• Pure makefiles where the toolchain is controlled by the make
variable CROSS_COMPILE

• The GNU build system known as Autotools
• CMake (https://cmake.org)

I will cover only the first two here since these are the ones needed for even a basic
embedded Linux system. For CMake, there are some excellent resources on the
CMake website referenced in the preceding point.

Simple makefiles
Some important packages are very simple to cross compile, including the Linux
kernel, the U-Boot bootloader, and Busybox. For each of these, you only need
to put the toolchain prefix in the make variable CROSS_COMPILE, for example
arm-cortex_a8-linux-gnueabi-. Note the trailing dash -.

So, to compile Busybox, you would type:

$ make CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-

Or, you can set it as a shell variable:

$ export CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-
$ make

In the case of U-Boot and Linux, you also have to set the make variable ARCH to one
of the machine architectures they support, which I will cover in Chapter 3, All About
Bootloaders and Chapter 4, Porting and Configuring the Kernel.

Learning About Toolchains

[34]

Autotools
The name, Autotools, refers to a group of tools that are used as the build system in
many open source projects. The components, together with the appropriate project
pages, are:

• GNU Autoconf
(http://www.gnu.org/software/autoconf/autoconf.html)

• GNU Automake
(http://www.gnu.org/savannah-checkouts/gnu/automake)

• GNU Libtool (http://www.gnu.org/software/libtool/libtool.html)
• Gnulib (https://www.gnu.org/software/gnulib)

The role of Autotools is to smooth over the differences between the many different
types of system that the package may be compiled for, accounting for different
versions of compilers, different versions of libraries, different locations of header
files, and dependencies with other packages. Packages that use Autotools come
with a script named configure that checks dependencies and generates makefiles
according to what it finds. The configure script may also give you the opportunity
to enable or disable certain features. You can find the options on offer by running
./configure --help.

To configure, build, and install a package for the native operating system, you would
typically run these three commands:

$./configure

$ make

$ sudo make install

Autotools is able to handle cross development as well. You can influence the
behavior of the configure script by setting these shell variables:

• CC: The C compiler command
• CFLAGS: Additional C compiler flags
• LDFLAGS: Additional linker flags, for example if you have libraries in

a non-standard directory <lib dir> you would add it to the library
search path by adding -L<lib dir>

• LIBS: Contains a list of additional libraries to pass to the linker,
for instance -lm for the math library

Chapter 2

[35]

• CPPFLAGS: Contains C/C++ preprocessor flags, for example you would
add -I<include dir> to search for headers in a non-standard directory
<include dir>

• CPP: The C preprocessor to use

Sometimes it is sufficient to set only the CC variable, as follows:

$ CC=arm-cortex_a8-linux-gnueabihf-gcc ./configure

At other times, that will result in an error like this:

[...]

checking whether we are cross compiling... configure: error: in '/home/
chris/MELP/build/sqlite-autoconf-3081101':

configure: error: cannot run C compiled programs.

If you meant to cross compile, use '--host'.

See 'config.log' for more details

The reason for the failure is that configure often tries to discover the capabilities of
the toolchain by compiling snippets of code and running them to see what happens,
which cannot work if the program has been cross compiled. Nevertheless, there is a
hint in the error message of how to solve the problem. Autotools understands three
different types of machine that may be involved when compiling a package:

• Build: This is the computer that is to build the package, which defaults to the
current machine.

• Host: This is the computer the program will run on: for a native compile this is
left blank and it defaults to be the same computer as build. For a cross compile
you set it to be the tuple of your toolchain.

• Target: This is the computer the program will generate code for: you would
set this when building a cross compiler, for example.

So, to cross compile, you just need to override host, as follows:

$ CC=arm-cortex_a8-linux-gnueabihf-gcc \

./configure --host=arm-cortex_a8-linux-gnueabihf

One final thing to note is that the default install directory is <sysroot>/usr/
local/*. You would usually install it in <sysroot>/usr/* so that the header
files and libraries would be picked up from their default locations. The complete
command to configure a typical Autotools package is:

$ CC=arm-cortex_a8-linux-gnueabihf-gcc \

./configure --host=arm-cortex_a8-linux-gnueabihf --prefix=/usr

Learning About Toolchains

[36]

An example: SQLite
The SQLite library implements a simple relational database and is quite popular on
embedded devices. You begin by getting a copy of SQLite:

$ wget http://www.sqlite.org/2015/sqlite-autoconf-3081101.tar.gz

$ tar xf sqlite-autoconf-3081101.tar.gz

$ cd sqlite-autoconf-3081101

Next, run the configure script:

$ CC=arm-cortex_a8-linux-gnueabihf-gcc \

./configure --host=arm-cortex_a8-linux-gnueabihf --prefix=/usr

That seems to work! If it failed, there would be error messages printed to the
terminal and recorded in config.log. Note that several makefiles have been
created, so now you can build it:

$ make

Finally, you install it into the toolchain directory by setting the make variable
DESTDIR. If you don't, it will try to install it into the host computer's /usr directory
which is not what you want.

$ make DESTDIR=$(arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot)
install

You may find that final command fails with a file permissions error. A crosstool-NG
toolchain will be read-only by default, which is why it is useful to set CT_INSTALL_
DIR_RO to y when building it. Another common problem is that the toolchain is
installed in a system directory such as /opt or /usr/local in which case you will
need root permissions when running the install.

After installing, you should find that various files have been added to your toolchain:

• <sysroot>/usr/bin: sqlite3. This is a command-line interface for SQLite that
you can install and run on the target.

• <sysroot>/usr/lib: libsqlite3.so.0.8.6, libsqlite3.so.0, libsqlite3.so libsqlite3.
la libsqlite3.a. These are the shared and static libraries.

• <sysroot>/usr/lib/pkgconfig: sqlite3.pc: This is the package
configuration file, as described in the following section.

• <sysroot>/usr/lib/include: sqlite3.h, sqlite3ext.h: These are the
header files.

• <sysroot>/usr/share/man/man1: sqlite3.1. This is the manual page.

Chapter 2

[37]

Now you can compile programs that use sqlite3 by adding -lsqlite3 at the
link stage:

$ arm-cortex_a8-linux-gnueabihf-gcc -lsqlite3 sqlite-test.c -o
sqlite-test

Where, sqlite-test.c is a hypothetical program that calls SQLite functions.
Since sqlite3 has been installed into the sysroot, the compiler will find the header
and library files without any problem. If they had been installed elsewhere you
would have to add -L<lib dir> and -I<include dir>.

Naturally, there will be runtime dependencies as well, and you will have to install
the appropriate files into the target directory as described in Chapter 5, Building a
Root Filesystem.

Package configuration
Tracking package dependencies is quite complex. The package configuration utility,
pkg-config (http://www.freedesktop.org/wiki/Software/pkg-config) helps
track which packages are installed and which compile flags each needs by keeping
a database of Autotools packages in [sysroot]/usr/lib/pkgconfig. For instance,
the one for SQLite3 is named sqlite3.pc and contains essential information needed
by other packages that need to make use of it:

$ cat $(arm-cortex_a8-linux-gnueabihf-gcc -print-
sysroot)/usr/lib/pkgconfig/sqlite3.pc

Package Information for pkg-config

prefix=/usr

exec_prefix=${prefix}

libdir=${exec_prefix}/lib

includedir=${prefix}/include

Name: SQLite

Description: SQL database engine

Version: 3.8.11.1

Libs: -L${libdir} -lsqlite3

Libs.private: -ldl -lpthread

Cflags: -I${includedir}

Learning About Toolchains

[38]

You can use the utility pkg-config to extract information in a form that you can feed
straight to gcc. In the case of a library like libsqlite3, you want to know the library
name (--libs) and any special C flags (--cflags):

$ pkg-config sqlite3 --libs --cflags

Package sqlite3 was not found in the pkg-config search path.

Perhaps you should add the directory containing `sqlite3.pc'

to the PKG_CONFIG_PATH environment variable

No package 'sqlite3' found

Oops! That failed because it was looking in the host's sysroot and the development
package for libsqlite3 has not been installed on the host. You need to point it at the
sysroot of the target toolchain by setting the shell variable PKG_CONFIG_LIBDIR:

$ PKG_CONFIG_LIBDIR=$(arm-cortex_a8-linux-gnueabihf-gcc -print-
sysroot)/usr/lib/pkgconfig \

pkg-config sqlite3 --libs --cflags

 -lsqlite3

Now the output is -lsqlite3. In this case, you knew that already, but generally you
wouldn't, so this is a valuable technique. The final command to compile would be:

$ PKG_CONFIG_LIBDIR=$(arm-cortex_a8-linux-gnueabihf-gcc -print-
sysroot)/usr/lib/pkgconfig \

arm-cortex_a8-linux-gnueabihf-gcc $(pkg-config sqlite3 --cflags --
libs) sqlite-test.c -o sqlite-

Problems with cross compiling
Sqlite3 is a well-behaved package and cross compiles nicely but not all packages are
so tame. Typical pain points include:

• Home-grown build systems, zlib, for example, has a configure script but it
does not behave like the Autotools configure described in the previous section

• Configure scripts that read pkg-config information, headers, and other files
from the host, disregarding the --host override

• Scripts that insist on trying to run cross compiled code

Chapter 2

[39]

Each case requires careful analysis of the error and additional parameters to the
configure script to provide the correct information or patches to the code to avoid the
problem altogether. Bear in mind that one package may have many dependencies,
especially with programs that have a graphical interface using GTK or QT or handle
multimedia content. As an example, mplayer, which is a popular tool for playing
multimedia content, has dependencies on over 100 libraries. It would take weeks of
effort to build them all.

Therefore, I would not recommend manually cross compiling components for the
target in this way except when there is no alternative, or the number of packages
to build is small. A much better approach is to use a build tool such as Buildroot
or the Yocto Project, or, avoid the problem altogether by setting up a native build
environment for your target architecture. Now you can see why distributions like
Debian are always compiled natively.

Summary
The toolchain is always your starting point: everything that follows from that is
dependent on having a working, reliable toolchain.

Most embedded build environments are based on a cross development toolchain
which creates a clear separation between a powerful host computer building the
code and a target computer on which it runs. The toolchain itself consists of the
GNU binutils, a C compiler from the GNU compiler collection – and quite likely
the C++ compiler as well – plus one of the C libraries I have described. Usually the
GNU debugger, gdb, will be generated at this point, which I describe in Chapter 12,
Debugging with GDB. Also, keep a watch out for the Clang compiler, as it will develop
over the next few years.

You may start with nothing but a toolchain – perhaps built using crosstool-NG or
downloaded from Linaro – and use it to compile all of the packages that you need
on your target, accepting the amount of hard work this will entail. Or, you may
obtain the toolchain as part of a distribution which includes a range of packages.
A distribution can be generated from source code using a build system such as
Buildroot or the Yocto Project, or it can be a binary distribution from a third party,
maybe a commercial enterprise like Mentor Graphics or an open source project such
as the Denx ELDK. Beware of toolchains or distributions that are offered to you
for free as part of a hardware package: they are often poorly configured and not
maintained. In any case, you should make the choice according to your situation,
and then be consistent in its use throughout the project.

Once you have a toolchain, you can use it to build the other components of your
embedded Linux system. In the next chapter, you will learn about the bootloader,
which brings your device to life and begins the boot process.

[41]

All About Bootloaders
The bootloader is the second element of embedded Linux. It is the part that starts
the system up and loads the operating system kernel. In this chapter, I will look at
the role of the bootloader and, in particular, how it passes control from itself to the
kernel using a data structure called a device tree, also known as a flattened device
tree or FDT. I will cover the basics of device trees so that you will be able to follow
the connections described in a device tree and relate it to real hardware.

I will look at the popular open source bootloader U-Boot and see how to use it to
boot a target device and also how to customize it to a new device. Finally, I will take
a quick look at Barebox, a bootloader that shares its past with U-Boot but which has,
arguably, a cleaner design.

What does a bootloader do?
In an embedded Linux system, the bootloader has two main jobs: basic system
initialization and the loading of the kernel. In fact, the first job is somewhat
subsidiary to the second in that it is only necessary to get as much of the system
working as is needed to load the kernel.

When the first lines of bootloader code are executed, following power-on or a reset,
the system is in a very minimal state. The DRAM controller will not have been set
up so main memory is not accessible, likewise other interfaces will not have been
configured so storage accessed via NAND flash controllers, MMC controllers, and
so on, are also not usable. Typically, the only resources operational at the beginning
are a single CPU core and some on-chip static memory. As a result, system bootstrap
consists of several phases of code, each bringing more of the system into operation.

All About Bootloaders

[42]

The early boot phase stops once the interfaces required to load a kernel are working.
That includes main memory and the peripherals used to access the kernel and other
images, be they mass storage or network. The final act of the bootloader is to load
the kernel into RAM and create an execution environment for it. The details of the
interface between the bootloader and the kernel are architecture-specific but, in
all cases, it means passing a pointer to information about the hardware that the
bootloader knows about and passing a kernel command line, which is an ASCII string
containing essential information for Linux. Once the kernel has begun executing, the
bootloader is no longer needed and all the memory it was using can be reclaimed.

A subsidiary job of the bootloader is to provide a maintenance mode for updating
boot configurations, loading new boot images into memory and, maybe, running
diagnostics. This is usually controlled by a simple command-line user interface,
commonly over a serial interface.

The boot sequence
In simpler times, some years ago, it was only necessary to place the bootloader in
non-volatile memory at the reset vector of the processor. NOR flash memory was
common at that time and, since it can be mapped directly into the address space, it
was the ideal method of storage. The following diagram shows such a configuration,
with the reset vector at 0xfffffffc at the top end of an area of flash memory. The
bootloader is linked so that there is a jump instruction at that location that points
to the start of the bootloader code:

Boot in the old days

Chapter 3

[43]

From that point, it can initialize the memory controller so that the main memory, the
DRAM, becomes available and copies itself into DRAM. Once fully operational, the
bootloader can load the kernel from flash memory into DRAM and transfer control to it.

However, once you move away from a simple linearly addressable storage medium
like NOR flash, the boot sequence becomes a complex, multi-stage procedure.
The details are very specific to each SoC, but they generally follow each of the
following phases.

Phase 1: ROM code
In the absence of reliable external memory, the code that runs immediately after
a reset or power-on has to be stored on-chip in the SoC; this is known as ROM
code. It is programmed into the chip when it is manufactured, hence ROM code is
proprietary and cannot be replaced by an open source equivalent. The ROM code
can make very few assumptions about any hardware that is not on the chip, because
it will be different from one design to another. This applies even to the DRAM chips
used for the main system memory. Consequently, the only RAM that the ROM code
has access to is the small amount of static RAM (SRAM) found in most SoC designs.
The size of the SRAM varies from as little as 4 KiB up to a few hundred KiB:

Phase 1 bootloader

The ROM code is capable of loading a small chunk of code from one of several
preprogrammed locations into the SRAM. As an example, TI OMAP and Sitara
chips will try to load code from the first few pages of NAND flash memory, or from
flash memory connected through SPI (Serial Peripheral Interface), or from the first
sectors of an MMC device (which could be an eMMC chip or an SD card), or from a
file named MLO on the first partition of an MMC device. If reading from all of those
memory devices fails, then it will try reading a byte stream from Ethernet, USB, or
UART; the latter is provided mainly as a means of loading code into flash memory
during production rather than for use in normal operation. Most embedded SoCs
have ROM code that works in a similar way. In SoCs where the SRAM is not large
enough to load a full bootloader like U-Boot, there has to be an intermediate loader
called the secondary program loader, or SPL.

All About Bootloaders

[44]

At the end of this phase, the next stage bootloader is present in on-chip memory and
the ROM code jumps to the beginning of that code.

Phase 2: SPL
The SPL must set up the memory controller and other essential parts of the system
preparatory to loading the third stage program loader (TPL) into main memory, the
DRAM. The functionality of the SPL is limited by its size. It can read a program from a
list of storage devices, as can the ROM code, once again using preprogrammed offsets
from the start of a flash device, or a well known file name such as u-boot.bin. The
SPL usually doesn't allow for any user interaction but it may print version information
and progress messages which you will see on the console. The following diagram
explains the phase 2 architecture:

Second stage boot

The SPL may be open source, as is the case with the TI x-loader and Atmel
AT91Bootstrap, but it is quite common for it to contain proprietary code that
is supplied by the manufacturer as a binary blob.

At the end of the second phase, the third stage loader is present in DRAM, and the
SPL can make a jump to that area.

Chapter 3

[45]

Phase 3: TPL
Now, at last, we are running a full bootloader like U-Boot or Barebox. Usually, there
is a simple command-line user interface that will let you perform maintenance tasks
such as loading new boot and kernel images into flash storage, loading and booting a
kernel, and there is a way to load the kernel automatically without user intervention.
The following diagram explains the phase 3 architecture:

Third stage boot

At the end of the third phase, there is a kernel in memory, waiting to be started.
Embedded bootloaders usually disappear from memory once the kernel is running
and perform no further part in the operation of the system.

All About Bootloaders

[46]

Booting with UEFI firmware
Most embedded PC designs and some ARM designs have firmware based on the
Universal Extensible Firmware Interface (UEFI) standard, see the official website at
http://www.uefi.org for more information. The boot sequence is fundamentally
the same as described in the preceding section:

Phase 1: The processor loads the UEFI boot manager firmware from flash memory.
In some designs, it is loaded directly from NOR flash memory, in others there is
ROM code on-chip which loads the boot manager from SPI flash memory. The boot
manager is roughly equivalent to the SPL, but may allow user interaction through a
text-based or graphical interface.

Phase 2: The boot manager loads the boot firmware from the EFI System Partition
(ESP) or a hard disk or SSD, or from a network server via PXE boot. If loading
from a local disk drive, the EXP is identified by a well-known GUID value of
C12A7328-F81F-11D2-BA4B-00A0C93EC93B. The partition should be formatted
using the FAT32 format. The third stage bootloader should be in a file named
<efi_system_partition>/boot/boot<machine_type_short_name>.efi.

For example, the file path to the loader on an x86_64 system is: /efi/boot/bootx64.
efi

Phase 3: The TPL in this case has to be a bootloader that is capable of loading a Linux
kernel and an optional RAM disk into memory. Common choices are:

• GRUB 2: This is the GNU Grand Unified Bootloader, version 2, and it is
the most commonly used Linux loader on PC platforms. However, there
is one controversy in that it is licensed under GPL v3, which may make it
incompatible with secure booting since the license requires the boot keys
to to be supplied with the code. The website is https://www.gnu.org/
software/grub/.

• gummiboot: This is a simple UEFI-compatible bootloader which has since
been integrated into systemd, and is licensed under LGPL v2.1 The website
is https://wiki.archlinux.org/index.php/Systemd-boot.

Moving from bootloader to kernel
When the bootloader passes control to the kernel it has to pass some basic
information to the kernel, which may include some of the following:

• On PowerPC and ARM architectures: a number unique to the type of the SoC
• Basic details of the hardware detected so far, including at least the size and

location of the physical RAM, and the CPU clock speed

Chapter 3

[47]

• The kernel command line
• Optionally, the location and size of a device tree binary
• Optionally, the location and size of an initial RAM disk

The kernel command line is a plain ASCII string which controls the behavior of
Linux, setting, for example, the device that contains the root filesystem. I will look
at the details of this in the next chapter. It is common to provide the root filesystem
as a RAM disk, in which case it is the responsibility of the bootloader to load the
RAM disk image into memory. I will cover the way you create initial RAM disks
in Chapter 5, Building a Root Filesystem.

The way this information is passed is dependent on the architecture and has changed
in recent years. For instance, with PowerPC, the bootloader simply used to pass a
pointer to a board information structure, whereas, with ARM, it passed a pointer
to a list of "A tags". There is a good description of the format of the kernel source
in Documentation/arm/Booting.

In both cases, the amount of information passed was very limited, leaving the bulk
of it to be discovered at runtime or hard-coded into the kernel as "platform data".
The widespread use of platform data meant that each device had to have a kernel
configured and modified for that platform. A better way was needed, and that way
is the device tree. In the ARM world, the move away from A tags began in earnest in
February 2013 with the release of Linux 3.8 but there are still quite a lot of devices in
the field, and even in development, still using A tags.

Introducing device trees
You are almost certainly going to encounter device trees at some point. This section
aims to give you a quick overview of what they are and how they work but there are
many details that are not discussed.

A device tree is a flexible way to define the hardware components of a computer
system. Usually, the device tree is loaded by the bootloader and passed to the kernel,
although it is possible to bundle the device tree with the kernel image itself to cater
for bootloaders that are not capable of handling them separately.

The format is derived from a Sun Microsystems bootloader known as OpenBoot,
which was formalized as the Open Firmware specification, IEEE standard IEEE1275-
1994. It was used in PowerPC-based Macintosh computers and so was a logical
choice for the PowerPC Linux port. Since then, it has been adapted on a large
scale by the many ARM Linux implementations and, to a lesser extent, by MIPS,
MicroBlaze, ARC, and other architectures.

I would recommend visiting http://devicetree.org for more information.

All About Bootloaders

[48]

Device tree basics
The Linux kernel contains a large number of device tree source files in
arch/$ARCH/boot/dts, and this is a good starting point for learning about
device trees. There are also a smaller number of sources in the U-boot source
code in arch/$ARCH/dts. If you acquired your hardware from a third party,
the dts file forms part of a board support package and you should expect to
receive one along with the other source files.

The device tree represents a computer system as a collection of components
joined together in a hierarchy, like a tree. The device tree begins with a root
node, represented by a forward slash, /, which contains subsequent nodes
representing the hardware of the system. Each node has a name and contains a
number of properties in the form name = "value". Here is a simple example:

/dts-v1/;
/{
 model = "TI AM335x BeagleBone";
 compatible = "ti,am33xx";
 #address-cells = <1>;
 #size-cells = <1>;
 cpus {
 #address-cells = <1>;
 #size-cells = <0>;
 cpu@0 {
 compatible = "arm,cortex-a8";
 device_type = "cpu";
 reg = <0>;
 };
 };
 memory@0x80000000 {
 device_type = "memory";
 reg = <0x80000000 0x20000000>; /* 512 MB */
 };
};

Here we have a root node which contains a cpus node and a memory node. The cpus
node contains a single CPU node named cpu@0. It is a common convention that the
names of nodes include an @ followed by an address that distinguishes them from
any others.

Chapter 3

[49]

Both the root and CPU nodes have a compatible property. The Linux kernel
uses this to match this name against the strings exported by device drivers in a
struct of_device_id (more on this in Chapter 8, Introducing Device Drivers). It is
a convention that the value is composed of a manufacturer name and a component
name to reduce confusion between similar devices made by different manufacturers,
hence ti,am33xx and arm,cortex-a8. It is also quite common to have more than
one value for compatible where there is more than one driver that can handle this
device. They are listed with the most suitable first.

The CPU node and the memory node have a device_type property which describes
the class of device. The node name is often derived from the device_type.

The reg property
The memory and CPU nodes have a reg property, which refers to a range of units in
a register space. A reg property consists of two values representing the start address
and the size (length) of the range. Both are written down as zero or more 32-bit
integers, called cells. Hence, the memory node refers to a single bank of memory
that begins at 0x80000000 and is 0x20000000 bytes long.

Understanding reg properties becomes more complex when the address or size
values cannot be represented in 32 bits. For example, on a device with 64-bit
addressing, you need two cells for each:

/ {
 #address-cells = <2>;
 #size-cells = <2>;
 memory@80000000 {
 device_type = "memory";
 reg = <0x00000000 0x80000000 0 0x80000000>;
 };
}

The information about the number of cells required is held in #address-cells
and #size_cells declarations in an ancestor node. In other words, to understand a
reg property, you have to look backwards down the node hierarchy until you find
#address-cells and #size_cells. If there are none, the default values are 1 for
each – but it is bad practice for device tree writers to depend on fall-backs.

Now, let's return to the cpu and cpus nodes. CPUs have addresses as well: in a quad
core device they might be addressed as 0, 1, 2, and 3. That can be thought of as a one-
dimensional array without any depth so the size is zero. Therefore, you can see that
we have #address-cells = <1> and #size-cells = <0> in the cpus node, and in
the child node, cpu@0, we assign a single value to the reg property: node reg = <0>.

All About Bootloaders

[50]

Phandles and interrupts
The structure of the device tree described so far assumes that there is a single
hierarchy of components, whereas in fact there are several. As well as the obvious
data connection between a component and other parts of the system, it might also
be connected to an interrupt controller, to a clock source and to a voltage regulator.
To express these connections, we have phandles.

Take an example of a system containing a serial port which can generate interrupts
and the interrupt controller:

/dts-v1/;
{
 intc: interrupt-controller@48200000 {
 compatible = "ti,am33xx-intc";
 interrupt-controller;
 #interrupt-cells = <1>;
 reg = <0x48200000 0x1000>;
 };
 serial@44e09000 {
 compatible = "ti,omap3-uart";
 ti,hwmods = "uart1";
 clock-frequency = <48000000>;
 reg = <0x44e09000 0x2000>;
 interrupt-parent = <&intc>;
 interrupts = <72>;
 };
};

We have an interrupt-controller node which has the special property #interrupt-
cells, which tells us how many 4-byte values are needed to represent an interrupt
line. In this case, it is just one giving the IRQ number, but it is quite common to use
additional values to characterize the interrupt, for example 1 = low-to-high edge
triggered, 2 = high-to-low edge triggered, and so on.

Looking at the serial node, it has an interrupt-parent property which references
the interrupt-controller it is connected to by using its label. This is the phandle.
The actual IRQ line is given by the interrupts property, 72 in this case.

The serial node has other properties that we have not seen before: clock-frequency
and ti,hwmods. These are part of the bindings for this particular type of device, in
other words, the kernel device driver will read these properties to manage the device.
The bindings can be found in the Linux kernel source, in directory Documentation/
devicetree/bindings/.

Chapter 3

[51]

Device tree include files
A lot of hardware is common between SoCs of the same family and between boards
using the same SoC. This is reflected in the device tree by splitting out common
sections into include files, usually with the extension .dtsi. The Open Firmware
standard defines /include/ as the mechanism to be used, as in this snippet from
vexpress-v2p-ca9.dts:

/include/ "vexpress-v2m.dtsi"

Look through the .dts files in the kernel, though, and you will find an alternative
include statement that is borrowed from C, for example in am335x-boneblack.dts:

#include "am33xx.dtsi"
#include "am335x-bone-common.dtsi"

Here is another example from am33xx.dtsi:

#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/pinctrl/am33xx.h>

Lastly, include/dt-bindings/pinctrl/am33xx.h contains normal C macros:

#define PULL_DISABLE (1 << 3)
#define INPUT_EN (1 << 5)
#define SLEWCTRL_SLOW (1 << 6)
#define SLEWCTRL_FAST 0

All of this is resolved if the device tree sources are built using kernel kbuild, which
first runs them through the C pre-processor, cpp, where the #include and #define
statements are processed into plain text that is suitable for the device tree compiler.
The motivation is shown in the previous example: it means that device tree sources
can use the same constant definitions as the kernel code.

When we include files in this way the nodes are overlaid on top of one another to
create a composite tree in which the outer layers extend or modify the inner ones.
For example, am33xx.dtsi, which is general to all am33xx SoCs, defines the first
MMC controller interface like this:

mmc1: mmc@48060000 {
 compatible = "ti,omap4-hsmmc";
 ti,hwmods = "mmc1";
 ti,dual-volt;
 ti,needs-special-reset;
 ti,needs-special-hs-handling;
 dmas = <&edma 24 &edma 25>;

All About Bootloaders

[52]

 dma-names = "tx", "rx";
 interrupts = <64>;
 interrupt-parent = <&intc>;
 reg = <0x48060000 0x1000>;
 status = "disabled";
};

Note that the status is disabled, meaning that no device driver
should be bound to it, and also that it has the label mmc1.

In am335x-bone-common.dtsi, which is included with both BeagleBone and
BeagleBone Black, the same node is referenced by its phandle:

&mmc1 {
 status = "okay";
 bus-width = <0x4>;
 pinctrl-names = "default";
 pinctrl-0 = <&mmc1_pins>;
 cd-gpios = <&gpio0 6 GPIO_ACTIVE_HIGH>;
 cd-inverted;
};

Here, mmc1 is enabled (status="okay") because both variants have a physical
MMC1 device, and the pinctrl is established. Then, in am335x-boneblack.dts,
you will see another reference to mmc1 which associates it with a voltage regulator:

&mmc1 {
 vmmc-supply = <&vmmcsd_fixed>;
};

So, layering source files like this gives flexibility and reduces the need for
duplicated code.

Compiling a device tree
The bootloader and kernel require a binary representation of the device tree, so it
has to be compiled using the device tree compiler, dtc. The result is a file ending
with .dtb, which is referred to as a device tree binary or a device tree blob.

There is a copy of dtc in the Linux source, in scripts/dtc/dtc, and it is also
available as a package on many Linux distributions. You can use it to compile
a simple device tree (one that does not use #include) like this:

$ dtc simpledts-1.dts -o simpledts-1.dtb
DTC: dts->dts on file "simpledts-1.dts"

Chapter 3

[53]

Be wary of the fact that dtc does not give helpful error messages and it makes no
checks other than on the basic syntax of the language, which means that debugging
a typing error in a source file can be a lengthy business.

To build more complex examples, you will have to use the kernel kbuild, as shown
in the next chapter.

Choosing a bootloader
Bootloaders come in all shapes and sizes. The kind of characteristics you want
from a bootloader are that they be simple and customizable with lots of sample
configurations for common development boards and devices. The following table
shows a number of them that are in general use:

Name Architectures
Das U-Boot ARM, Blackfin, MIPS, PowerPC, SH
Barebox ARM, Blackfin, MIPS, PowerPC
GRUB 2 X86, X86_64
RedBoot ARM, MIPS, PowerPC, SH
CFE Broadcom MIPS
YAMON MIPS

We are going to focus on U-Boot because it supports a good number of processor
architectures and a large number of individual boards and devices. It has been
around for a long time and has a good community for support.

It may be that you received a bootloader along with your SoC or board. As always,
take a good look at what you have and ask questions about where you can get the
source code from, what the update policy is, how they will support you if you want
to make changes, and so on. You may want to consider abandoning the vendor-
supplied loader and use the current version of an open source bootloader instead.

U-Boot
U-Boot, or to give its full name, Das U-Boot, began life as an open source bootloader
for embedded PowerPC boards. Then, it was ported to ARM-based boards and
later to other architectures, including MIPS, SH, and x86. It is hosted and maintained
by Denx Software Engineering. There is plenty of information available, and a
good place to start is www.denx.de/wiki/U-Boot. There is also a mailing list at
u-boot@lists.denx.de.

All About Bootloaders

[54]

Building U-Boot
Begin by getting the source code. As with most projects, the recommended way is
to clone the git archive and check out the tag you intend to use which, in this case,
is the version that was current at the time of writing:

$ git clone git://git.denx.de/u-boot.git

$ cd u-boot

$ git checkout v2015.07

Alternatively, you can get a tarball from ftp://ftp.denx.de/pub/u-boot/.

There are more than 1,000 configuration files for common development boards
and devices in the configs/ directory. In most cases, you can make a good guess
of which to use, based on the filename, but you can get more detailed information
by looking through the per-board README files in the board/ directory, or you can
find information in an appropriate web tutorial or forum. Beware, though, the
way U-Boot is configured has undergone a lot of changes since the 2014.10 release.
Double-check that the instructions you are following are appropriate.

Taking the BeagleBone Black as an example, we find that there is a likely
configuration file named am335x_boneblack_defconfig in configs/ and we
find the text The binary produced by this board supports … Beaglebone Black
in the board README files for the am335x chip, board/ti/am335x/README. With
this knowledge, building U-Boot for a BeagleBone Black is simple. You need to
inform U-Boot of the prefix for your cross compiler by setting the make variable
CROSS_COMPILE and then select the configuration file using a command of the
type make [board]_defconfig, as follows:

$ make CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-
am335x_boneblack_defconfig

$ make CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-

The results of the compilation are:

• u-boot: This is U-Boot in ELF object format, suitable for use with a debugger
• u-boot.map: This is the symbol table
• u-boot.bin: This is U-Boot in raw binary format, suitable for running on

your device
• u-boot.img: This is u-boot.bin with a U-Boot header added, suitable for

uploading to a running copy of U-Boot
• u-boot.srec: This is U-Boot in Motorola srec format, suitable for

transferring over a serial connection

Chapter 3

[55]

The BeagleBone Black also requires a Secondary Program Loader (SPL), as described
earlier. This is built at the same time and is named MLO:

$ ls -l MLO u-boot*

-rw-rw-r-- 1 chris chris 76100 Dec 20 11:22 MLO

-rwxrwxr-x 1 chris chris 2548778 Dec 20 11:22 u-boot

-rw-rw-r-- 1 chris chris 449104 Dec 20 11:22 u-boot.bin

-rw-rw-r-- 1 chris chris 449168 Dec 20 11:22 u-boot.img

-rw-rw-r-- 1 chris chris 434276 Dec 20 11:22 u-boot.map

-rw-rw-r-- 1 chris chris 1347442 Dec 20 11:22 u-boot.srec

The procedure is similar for other targets.

Installing U-Boot
Installing a bootloader on a board for the first time requires some outside assistance.
If the board has a hardware debug interface, such as JTAG, it is usually possible to
load a copy of U-Boot directly into RAM and set it running. From that point, you
can use U-Boot commands to copy it into flash memory. The details of this are very
board-specific and outside the scope of this book.

Some SoC designs have a boot ROM built in which can be used to read boot code
from various external sources such as SD cards, serial interfaces, or USBs, and this is
the case with the AM335x chip in the BeagleBone Black. Here is how to load U-Boot
via the micro-SD card.

Firstly, format a micro-SD card so that the first partition is in FAT32 format,
and mark it as bootable. If you have a direct SD slot available, the card appears as
/dev/mmcblk0, otherwise, if you are using a memory card reader, it will be seen
as /dev/sdb, or /dev/sdc, and so on. Now, type the following command to
partition the micro-SD card, assuming that the card is seen as /dev/mmcblk0:

$ sudo sfdisk -D -H 255 -S 63 /dev/mmcblk0 << EOF

,9,0x0C,*

,,,-

EOF

Format the first partition as FAT16:

$ sudo mkfs.vfat -F 16 -n boot /dev/mmcblk0p1

All About Bootloaders

[56]

Now, mount the partition you have just formatted: on some systems it is enough
to simply remove the micro-SD card and then plug it back in again, on others you
may have to click on an icon. On current versions of Ubuntu, it should be mounted
as /media/[user]/boot so I would copy U-Boot and the SPL to it like this:

cp MLO u-boot.img /media/chris/boot

Finally, unmount it.

With no power on the BeagleBone board, insert the micro-SD card.

Plug in the serial cable. A serial port should appear on your PC as /dev/ttyUSB0
or similar.

Start a suitable terminal program such as gtkterm, minicom, or picocom and attach
to the port at 115,200 bps with no flow control:

$ gtkterm -p /dev/ttyUSB0 -s 115200

Press and hold the Boot Switch button on the Beaglebone, power up the board
using the external 5V power connector, and release the button after about 5 seconds.
You should see a U-Boot prompt on the serial console:

U-Boot#

Using U-Boot
In this section, I will describe some of the common tasks that you can use U-Boot
to perform.

Usually, U-Boot offers a command-line interface over a serial port. It gives a command
prompt which is customized for each board. In the examples, I will use U-Boot#.
Typing help prints out all the commands configured in this version of U-Boot; typing
help <command> prints out more information about a particular command.

The default command interpreter is quite simple. There is no command-line
editing by pressing cursor left or right keys; there is no command completion by
pressing the Tab key; there is no command history by pressing the cursor up key.
Pressing any of these keys will disrupt the command you are currently trying to
type and you will have to type Ctrl+C and start over again. The only line editing
key you can safely use is the back space. As an option, you can configure a different
command shell called Hush, which has more sophisticated interactive support.

Chapter 3

[57]

The default number format is hexadecimal. For example, as shown in this command:

nand read 82000000 400000 200000

This command will read 0x200000 bytes from offset 0x400000 from the start of the
NAND flash memory into RAM address 0x82000000.

Environment variables
U-Boot uses environment variables extensively to store and pass information
between functions and even to create scripts. Environment variables are simple
name=value pairs that are stored in an area of memory. The initial population of
variables may be coded in the board configuration header file, like this:

#define CONFIG_EXTRA_ENV_SETTINGS \
"myvar1=value1\0" \
"myvar2=value2\0"

You can create and modify variables from the U-Boot command line using setenv.
For example setenv foo bar creates the variable foo with the value bar. Note that
there is no = sign between the variable name and the value. You can delete a variable
by setting it to a null string, setenv foo. You can print all the variables to the
console using printenv, or a single variable using printenv foo.

Usually, it is possible to use the saveenv command to save the entire environment to
permanent storage of some kind. If there is raw NAND or NOR flash, then an erase
block is reserved for this purpose, often with another used for a redundant copy to
guard against corruption. If there is eMMC or SD card storage it can be stored in
a file in a partition of the disk. Other options include storing in a serial EEPROM
connected via an I2C or SPI interface or non-volatile RAM.

Boot image format
U-Boot doesn't have a filesystem. Instead, it tags blocks of information with a 64-
byte header so that it can track the contents. You prepare files for U-Boot using the
mkimage command. Here is a brief summary of its usage:

$ mkimage

Usage: mkimage -l image

-l ==> list image header information

mkimage [-x] -A arch -O os -T type -C comp -a addr -e ep -n name -d
data_file[:data_file...] image

-A ==> set architecture to 'arch'

All About Bootloaders

[58]

-O ==> set operating system to 'os'

-T ==> set image type to 'type'

-C ==> set compression type 'comp'

-a ==> set load address to 'addr' (hex)

-e ==> set entry point to 'ep' (hex)

-n ==> set image name to 'name'

-d ==> use image data from 'datafile'

-x ==> set XIP (execute in place)

mkimage [-D dtc_options] -f fit-image.its fit-image

mkimage -V ==> print version information and exit

For example, to prepare a kernel image for an ARM processor, the command is:

$ mkimage -A arm -O linux -T kernel -C gzip -a 0x80008000 \

-e 0x80008000 -n 'Linux' -d zImage uImage

Loading images
Usually, you will load images from removable storage such as an SD card or a
network. SD cards are handled in U-Boot by the mmc driver. A typical sequence
to load an image into memory would be:

U-Boot# mmc rescan

U-Boot# fatload mmc 0:1 82000000 uimage

reading uimage

4605000 bytes read in 254 ms (17.3 MiB/s)

U-Boot# iminfo 82000000

Checking Image at 82000000 ...

Legacy image found

Image Name: Linux-3.18.0

Created: 2014-12-23 21:08:07 UTC

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 4604936 Bytes = 4.4 MiB

Load Address: 80008000

Entry Point: 80008000

Verifying Checksum ... OK

Chapter 3

[59]

The command mmc rescan re-initializes the mmc driver, perhaps to detect that
an SD card has recently been inserted. Next, fatload is used to read a file from
a FAT-formatted partition on the SD card. The format is:

fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes
[pos]]]]]

If <interface> is mmc, as in our case, <dev:part> is the device number of the mmc
interface counting from zero, and the partition number counting from one. Hence
<0:1> is the first partition on the first device. The memory location, 0x82000000, is
chosen to be in an area of RAM that is not being used at this moment. If we intend to
boot this kernel, we have to make sure that this area of RAM will not be overwritten
when the kernel image is decompressed and located at the runtime location,
0x80008000.

To load image files over a network you use the Trivial File Transfer Protocol
(TFTP). This requires you to install a TFTP daemon, tftpd, on your development
system and start it running. You also have to configure any firewalls between your
PC and the target board to allow the TFTP protocol on UDP port 69 to pass through.
The default configuration of tftpd allows access only to the directory /var/lib/
tftpboot. The next step is to copy the files you want to transfer to the target into
that directory. Then, assuming that you are using a pair of static IP addresses, which
removes the need for further network administration, the sequence of commands to
load a set of kernel image files should look like this:

U-Boot# setenv ipaddr 192.168.159.42

U-Boot# setenv serverip 192.168.159.99

U-Boot# tftp 82000000 uImage

link up on port 0, speed 100, full duplex

Using cpsw device

TFTP from server 192.168.159.99; our IP address is 192.168.159.42

Filename 'uImage'.

Load address: 0x82000000

Loading:

###

###

###

##

3 MiB/s

done

Bytes transferred = 4605000 (464448 hex)

www.allitebooks.com

http://www.allitebooks.org

All About Bootloaders

[60]

Finally, let's look at how to program images into NAND flash memory and read
them back, which is is handled by the nand command. This example loads a kernel
image via TFTP and programs it into flash:

U-Boot# fatload mmc 0:1 82000000 uimage

reading uimage

4605000 bytes read in 254 ms (17.3 MiB/s)

U-Boot# nandecc hw

U-Boot# nand erase 280000 400000

NAND erase: device 0 offset 0x280000, size 0x400000

Erasing at 0x660000 -- 100% complete.

OK

U-Boot# nand write 82000000 280000 400000

NAND write: device 0 offset 0x280000, size 0x400000

4194304 bytes written: OK

Now you can load the kernel from flash memory using nand read:

U-Boot# nand read 82000000 280000 400000

Booting Linux
The bootm command starts a kernel image running. The syntax is:

bootm [address of kernel] [address of ramdisk] [address of dtb].

The address of the kernel image is necessary, but the address of ramdisk and dtb
can be omitted if the kernel configuration does not need them. If there is a dtb but
no ramdisk, the second address can be replaced with a dash (-). That would look
like this:

U-Boot# bootm 82000000 - 83000000

Chapter 3

[61]

Automating the boot with U-Boot scripts
Plainly, typing a long series of commands to boot your board each time it is turned
on is not acceptable. To automate the process, U-Boot stores a sequence of commands
in environment variables. If the special variable named bootcmd contains a script,
it is run at power-up after a delay of bootdelay seconds. If you are watching this
on the serial console, you will see the delay counting down to zero. You can press
any key during this period to terminate the countdown and enter into an interactive
session with U-Boot.

The way that you create scripts is simple, though not easy to read. You simply
append commands separated by semicolons, which must be preceded by a backslash
escape character. So, for example, to load a kernel image from an offset in flash
memory and boot it, you might use the following command:

setenv bootcmd nand read 82000000 400000 200000\;bootm 82000000

Porting U-Boot to a new board
Let's assume that your hardware department has created a new board called
"Nova" that is based on the BeagleBone Black and that you need to port U-Boot to
it. You will need to understand the layout of the U-Boot code and how the board
configuration mechanism works. In the 2014.10 release, U-Boot adopted the same
configuration mechanism as the Linux kernel, Kconfig. Over the next few releases,
the existing configuration settings will be moved from the current location in the
header files in include/configs into Kconfig files. As of the 2014.10 release, each
board had a Kconfig file which contains minimal information derived from the old
boards.cfg file.

The main directories you will be dealing with are:

• arch: Contains code specific to each supported architecture in directories
arm, mips, powerpc, and so on. Within each architecture, there is a
subdirectory for each member of the family, for example, in arch/arm/cpu,
there are directories for the architecture variants, including amt926ejs, armv7,
and armv8.

• board: Contains code specific to a board. Where there are several boards
from the same vendor, they can be collected together into a subdirectory,
hence the support for the am335x evm board, on which the BeagelBone is
based, is in board/ti/am335x.

• common: Contains core functions including the command shells and
the commands that can be called from them, each in a file named
cmd_[command name].c.

All About Bootloaders

[62]

• doc: Contains several README files describing various aspects of U-Boot.
If you are wondering how to proceed with your U-Boot port, this is a
good place to start.

• include: In addition to many shared header files, this contains the very
important subdirectory include/configs where you will find the majority
of the board configuration settings. As the move to Kconfig progresses, the
information will be moved out into Kconfig files but, at the time of writing,
that process has only just begun.

Kconfig and U-Boot
The way that Kconfig extracts configuration information from Kconfig files and
stores the total system configuration in a file named .config is described in some
detail in Chapter 4, Porting and Configuring the Kernel. U-Boot has adopted kconfig and
kbuild with one change. A U-Boot build can produce up to three binaries: a normal
u-boot.bin, a Secondary Program Loader (SPL), and a Tertiary Program Loader
(TPL), each with possibly different configuration options. Consequently, lines in
.config and default configuration files can be prefixed with the codes shown in
the following table to indicate which target they apply to:

None Normal image only
S: SPL image only
T: TPL image only
ST: SPL and TPL images
+S: Normal and SPL images
+T: Normal and TPL images
+ST: Normal, SPL and TPL images

Each board has a default configuration stored in configs/[board name}_defconfig.
For your Nova board, you will have to create a file named nova_defonfig. for
example, and add these lines to it:

CONFIG_SPL=y
CONFIG_SYS_EXTRA_OPTIONS="SERIAL1,CONS_INDEX=1,EMMC_BOOT"
+S:CONFIG_ARM=y
+S:CONFIG_TARGET_NOVA=y

On the first line, CONFIG_SPL=y causes the SPL binary, MLO, to be generated,
CONFIG_ARM=y causes the contents of arch/arm/Kconfig to be included on line
three. On line four, CONFIG_TARGET_NOVA=y selects your board. Note that lines three
and four are prefixed by +S: so that they apply to both the SPL and normal binaries.

Chapter 3

[63]

You should also add a menu option to the ARM architecture Kconfig that allows
people to select Nova as a target:

CONFIG_SPL=y
config TARGET_NOVA
bool "Support Nova!"

Board-specific files
Each board has a subdirectory named board/[board name] or board/[vendor]/
[board name] which should contain:

• Kconfig: Contains configuration options for the board
• MAINTAINERS: Contains a record of whether the board is currently

maintained and, if so, by whom
• Makefile: Used to build the board-specific code
• README: Contains any useful information about this port of U-Boot,

for example, which hardware variants are covered

In addition, there may be source files for board specific functions.

Your Nova board is based on a BeagleBone which, in turn, is based on a TI AM335x
EVM, so, you can start by taking a copy of the am335x board files:

$ mkdir board/nova

$ cp -a board/ti/am335x board/nova

Next, change the Kconfig file to reflect the Nova board:

if TARGET_NOVA

config SYS_CPU
default "armv7"

config SYS_BOARD
default "nova"

config SYS_SOC
default "am33xx"

config SYS_CONFIG_NAME
default "nova"
endif

All About Bootloaders

[64]

Setting SYS_CPU to armv7 causes the code in arch/arm/cpu/armv7 to be compiled and
linked. Setting SYS_SOC to am33xx causes the code in arch/arm/cpu/armv7/am33xx
to be included, setting SYS_BOARD to nova brings in board/nova and setting SYS_
CONFIG_NAME to nova means that the header file include/configs/nova.h is used
for further configuration options.

There is one other file in board/nova that you need to change, the linker
script placed at board/nova/u-boot.lds, which has a hard-coded reference
to board/ti/am335x/built-in.o. Change this to use the copy local to nova:

diff --git a/board/nova/u-boot.lds b/board/nova/u-boot.lds
index 78f294a..6689b3d 100644
--- a/board/nova/u-boot.lds
+++ b/board/nova/u-boot.lds
@@ -36,7 +36,7 @@ SECTIONS
*(.__image_copy_start)
*(.vectors)
CPUDIR/start.o (.text*)
- board/ti/am335x/built-in.o (.text*)
+ board/nova/built-in.o (.text*)
(.text)
}

Configuration header files
Each board has a header file in include/configs which contains the majority of the
configuration. The file is named by the SYS_CONFIG_NAME identifier in the board's
Kconfig. The format of this file is described in detail in the README file at the top
level of the U-Boot source tree.

For the purposes of your Nova board, simply copy am335x_evm.h to nova.h to
nova.h and make a small number of changes:

diff --git a/include/configs/nova.h b/include/configs/nova.h
index a3d8a25..8ea1410 100644
--- a/include/configs/nova.h
+++ b/include/configs/nova.h
@@ -1,5 +1,5 @@
/*
- * am335x_evm.h
+ * nova.h, based on am335x_evm.h
*
* Copyright (C) 2011 Texas Instruments Incorporated -
http://www.ti.com/
*

Chapter 3

[65]

@@ -13,8 +13,8 @@
* GNU General Public License for more details.
*/
-#ifndef __CONFIG_AM335X_EVM_H
-#define __CONFIG_AM335X_EVM_H
+#ifndef __CONFIG_NOVA
+#define __CONFIG_NOVA
#include <configs/ti_am335x_common.h>
@@ -39,7 +39,7 @@
#define V_SCLK (V_OSCK)
/* Custom script for NOR */
-#define CONFIG_SYS_LDSCRIPT "board/ti/am335x/u-boot.lds"
+#define CONFIG_SYS_LDSCRIPT "board/nova/u-boot.lds"
/* Always 128 KiB env size */
#define CONFIG_ENV_SIZE (128 << 10)
@@ -50,6 +50,9 @@
#define CONFIG_PARTITION_UUIDS
#define CONFIG_CMD_PART
+#undef CONFIG_SYS_PROMPT
+#define CONFIG_SYS_PROMPT "nova!> "
+
#ifdef CONFIG_NAND
#define NANDARGS \
"mtdids=" MTDIDS_DEFAULT "\0" \

Building and testing
To build for the Nova board, select the configuration you have just created:

$ make CROSS_COMPILE=arm-cortex_a8-linux-gnueabi- nova_defconfig

$ make CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-

Copy MLO and u-boot.img to the FAT partition of the micro-SD card you created
earlier and boot the board.

Falcon mode
We are used to the idea that booting a modern embedded processor involves the
CPU boot ROM loading an SPL which loads u-boot.bin which then loads a Linux
kernel. You may be wondering if there is a way to reduce the number of steps, thereby
simplifying and speeding up the boot process. The answer is U-Boot "Falcon mode",
named after the Peregrine falcon which is claimed to be the fastest of all birds.

All About Bootloaders

[66]

The idea is simple: have the SPL load a kernel image directly, missing out u-boot.bin.
There is no user interaction and there are no scripts. It just loads a kernel from a known
location in flash or eMMC into memory, passes it a pre-prepared parameter block and
starts it running. The details of configuring Falcon mode are beyond this book. If you
would like more information, take a look at doc/README.falcon.

Barebox
I will complete this chapter with a look at another bootloader that has the same
roots as U-Boot but takes a new approach to bootloaders. It is derived from U-Boot
and was actually called U-Boot v2 in the early days. The Barebox developers aimed
to combine the best parts of U-Boot and Linux, including a POSIX-like API and
mountable filesystems.

The Barebox project website is www.barebox.org and the developer mailing list is
barebox@lists.infradead.org.

Getting Barebox
To get Barebox, clone the git repository and check out the version you want to use:

$ git clone git://git.pengutronix.de/git/barebox.git

$ cd barebox

$ git checkout v2014.12.0

The layout of the code is similar to U-Boot:

• arch: Contains code specific to each supported architecture, which includes all
the major embedded architectures. SoC support is in arch/[architecture]/
mach-[SoC]. Support for individual boards is in
arch/[architecture]/boards.

• common: Contains core functions, including the shell.
• commands: Contains the commands that can be called from the shell.
• Documentation: Contains the templates for documentation files. To build it,

type "make docs". The results are put in Documentation/html.
• drivers: Contains the code for the device drivers.
• include: Contains header files.

Chapter 3

[67]

Building Barebox
Barebox has used kconfig/kbuild for a long time. There are default configuration
files in arch/[architecture]/configs. As an example, assume that you want to
build Barebox for the BeagleBoard C4. You need two configurations, one for the SPL,
and one for the main binary. Firstly, build MLO:

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-
omap3530_beagle_xload_defconfig

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-

The result is the secondary program loader, MLO.

Next, build Barebox:

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-
omap3530_beagle_defconfig

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-

Copy both to an SD card:

$ cp MLO /media/boot/

$ cp barebox-flash-image /media/boot/barebox.bin

Then, boot up the board and you should see messages like these on the console:

barebox 2014.12.0 #1 Wed Dec 31 11:04:39 GMT 2014

Board: Texas Instruments beagle

nand: Trying ONFI probe in 16 bits mode, aborting !

nand: NAND device: Manufacturer ID: 0x2c, Chip ID: 0xba (Micron),
256MiB, page

size: 2048, OOB size: 64

omap-hsmmc omap3-hsmmc0: registered as omap3-hsmmc0

mci0: detected SD card version 2.0

mci0: registered disk0

malloc space: 0x87bff400 -> 0x87fff3ff (size 4 MiB)

booting from MMC

barebox 2014.12.0 #2 Wed Dec 31 11:08:59 GMT 2014

Board: Texas Instruments beagle

netconsole: registered as netconsole-1

All About Bootloaders

[68]

i2c-omap i2c-omap30: bus 0 rev3.3 at 100 kHz

ehci ehci0: USB EHCI 1.00

nand: Trying ONFI probe in 16 bits mode, aborting !

nand: NAND device: Manufacturer ID: 0x2c, Chip ID: 0xba (Micron NAND
256MiB 1,8V

16-bit), 256MiB, page size: 2048, OOB size: 64

omap-hsmmc omap3-hsmmc0: registered as omap3-hsmmc0

mci0: detected SD card version 2.0

mci0: registered disk0

malloc space: 0x85e00000 -> 0x87dfffff (size 32 MiB)

environment load /boot/barebox.env: No such file or directory

Maybe you have to create the partition.

no valid environment found on /boot/barebox.env. Using default
environment

running /env/bin/init...

Hit any key to stop autoboot: 0

Barebox is continuing to evolve. At the time of writing, it lacks the breadth of
hardware support that U-Boot has, but it is worth considering for new projects.

Summary
Every system needs a bootloader to bring the hardware to life and to load a kernel.
U-Boot has found favor with many developers because it supports a useful
range of hardware and it is fairly easy to port to a new device. Over the last few
years, the complexity and ever increasing variety of embedded hardware has led
to the introduction of the device tree as a way of describing hardware. The device
tree is simply a textual representation of a system that is compiled into a device
 tree binary (dtb) and which is passed to the kernel when it loads. It is up to the
kernel to interpret the device tree and to load and initialize drivers for the devices
it finds there.

In use, U-Boot is very flexible, allowing images to be loaded from mass storage, flash
memory, or a network, and booted. Likewise, Barebox can achieve the same but with
a smaller base of hardware support. Despite its cleaner design and POSIX-inspired
internal APIs, at the time of writing it does not seem to have been accepted beyond
its own small but dedicated community.

Having covered some of the intricacies of booting Linux, in the next chapter you will
see the next stage of the process as the third element of your embedded project, the
kernel, comes into play.

[69]

Porting and Configuring
the Kernel

The kernel is the third element of embedded Linux. It is the component that is
responsible for managing resources and interfacing with hardware and so affects
almost every aspect of your final software build. It is usually tailored to your particular
hardware configuration although, as we saw in Chapter 3, All About Bootloaders, device
trees allow you to create a generic kernel that is tailored to particular hardware by the
contents of the device tree.

In this chapter, we will look at how to get a kernel for a board and how to configure
and compile it. We will look again at bootstrap, this time focusing on the part the
kernel plays. We will also look at device drivers and how they pick up information
from the device tree.

What does the kernel do?
Linux began in 1991 when Linus Torvalds started writing an operating system for
Intel 386 and 486-based personal computers. He was inspired by the Minix operating
system written by Andrew S. Tanenbaum four years earlier. Linux differed in many
ways from Minix, the main differences being that it was a 32-bit virtual memory kernel
and the code was open source, later released under the GPL 2 license.

He announced it on the 25th August 1991 on the comp.os.minix newsgroup in a famous
post that begins as Hello everybody out there using minix - I'm doing a (free) operating
system (just a hobby, won't be big and professional like gnu) for 386(486) AT clones. This has
been brewing since april, and is starting to get ready. I'd like any feedback on things people
like/dislike in minix, as my OS resembles it somewhat (same physical layout of the file-system
(due to practical reasons) among other things).

Porting and Configuring the Kernel

[70]

To be strictly accurate, Linus did not write an operating system, he wrote a kernel
instead, which is one component of an operating system. To create a working system,
he used components from the GNU project, especially the toolchain, C library, and
basic command-line tools. That distinction remains today, and gives Linux a lot of
flexibility in the way it is used. It can be combined with a GNU user space to create a
full Linux distribution that runs on desktops and servers, which is sometimes called
GNU/Linux; it can be combined with an Android user space to create the well-known
mobile operating system or it can be combined with a small Busybox-based user space
to create a compact embedded system. Contrast this with the BSD operating systems,
FreeBSD, OpenBSD, and NetBSD, in which the kernel, the toolchain, and the user
space are combined into a single code base.

The kernel has three main jobs: to manage resources, to interface with hardware, and
to provide an API that offers a useful level of abstraction to user space programs, as
summarized in the following diagram:

Applications running in user space run at a low CPU privilege level. They can do
very little other than make library calls. The primary interface between the user
space and the kernel space is the C library, which translates user level functions such
as those defined by POSIX into kernel system calls. The system call interface uses an
architecture-specific method such as a trap or a software interrupt to switch the CPU
from the low privilege user mode to the high privilege kernel mode, which allows
access to all memory addresses and CPU registers.

Chapter 4

[71]

The system call handler dispatches the call to the appropriate kernel subsystem:
scheduling calls to the scheduler, the filesystem, calls to the filesystem code, and
so on. Some of those calls require input from the underlying hardware and will be
passed down to a device driver. In some cases, the hardware itself invokes a kernel
function by raising an interrupt. Interrupts can only be handled in a device driver,
never by a user space application.

In other words, all the useful things that your application does, it does them through
the kernel. The kernel, then, is one of the most important elements in the system.

Choosing a kernel
The next step is to choose the kernel for your project, balancing the desire to always
use the latest version of software against the need for vendor-specific additions.

Kernel development cycle
Linux has been developed at a fast pace, with a new version being released every
8 to 12 weeks. The way that the version numbers are constructed has changed a
bit in recent years. Before July 2011, there was a three number version scheme with
version numbers that looked like 2.6.39. The middle number indicated whether it
was a developer or stable release, odd numbers (2.1.x, 2.3.x, 2.5.x) were for developers
and even numbers were for end users. From version 2.6 onwards, the idea of a long-
lived development branch (the odd numbers) was dropped as it slowed down the
rate at which new features were made available to users. The change in numbering
from 2.6.39 to 3.0 in July 2011 was purely because Linus felt that the numbers were
becoming too large: there was no huge leap in the features or architecture of Linux
between those two versions. He also took the opportunity to drop the middle number.
Since then, in April 2015, he bumped the major from 3 to 4, again purely for neatness,
not because of any large architectural shift.

Linus manages the development kernel tree. You can follow him by cloning his git
tree like so:

$ git clone \
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

This will check out into subdirectory linux. You can keep up to date by running the
command git pull in that directory from time to time.

Porting and Configuring the Kernel

[72]

Currently, a full cycle of kernel development begins with a merge window of two
weeks, during which Linus will accept patches for new features. At the end of the
merge window, a stabilization phase begins, during which Linus will produce
release candidates with version numbers ending in -rc1, -rc2, and so on, usually up
to -rc7 or -rc8. During this time, people test the candidates and submit bug reports
and fixes. When all significant bugs have been fixed, the kernel is released.

The code incorporated during the merge window has to be fairly mature already.
Usually, it is pulled from the repositories of the many subsystem and architecture
maintainers of the kernel. By keeping to a short development cycle, features can be
merged when they are ready. If a feature is deemed not sufficiently stable or well
developed by the kernel maintainers, it can simply be delayed until the next release.

Keeping a track of what has changed from release to release is not easy. You can read
the commit log in Linus' git repository but, with roughly 10,000 or more entries per
release, it is not easy to get an overview. Thankfully, there is the Linux Kernel Newbies
website, http://kernelnewbies.org where you will find a succinct overview of
each version, at http://kernelnewbies.org/LinuxVersions.

Stable and long term support releases
The rapid rate of change of Linux is a good thing in that it brings new features
into the mainline code base, but it does not fit very well with the longer life cycle
of embedded projects. Kernel developers address this in two ways. Firstly, it is
acknowledged that a release may contain bugs that need to be fixed before the next
kernel release comes around. That is the role of the stable Linux kernel, maintained
by Greg Kroah-Hartman. After release, the kernel moves from being mainline
(maintained by Linus) to stable (maintained by Greg). Bug fix releases of the stable
kernel are marked by a third number, 3.18.1, 3.18.2, and so on. Before version 3,
there were four release numbers, 2.6.29.1, 2.6.39.2, and so on.

You can get the stable tree by using the following command:

$ git clone \
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-
stable.git

You can use git chckout to get a particular version, for example version 4.1.10:

$ cd linux-stable

$ git checkout v4.1.10

Chapter 4

[73]

Usually, the stable kernel is maintained only until the next mainline release, 8 to 12
weeks later, so you will see that there is just one or sometimes two stable kernels at
kernel.org. To cater for those users who would like updates for a longer period of
time and be assured that any bugs will be found and fixed, some kernels are labeled
long term and maintained for two or more years. There is at least one long term
kernel each year. Looking at kernel.org at the time of writing, there are a total
of eight long term kernels: 4.1, 3.18, 3.14, 3.12, 3.10, 3.4, 3.2, and 2.6.32. The latter
has been maintained for five years and is at version 2.6.32.68. If you are building a
product that you will have to maintain for this length of time the latest long term
kernel might well be a good choice.

Vendor support
In an ideal world, you would be able to download a kernel from kernel.org and
configure it for any device that claims to support Linux. However, that is not always
possible: in fact mainline Linux has solid support for only a small subset of the
many devices that can run Linux. You may find support for your board or SoC from
independent open source projects, Linaro or the Yocto Project, for example, or from
companies providing third party support for embedded Linux, but in many cases
you will be obliged to look to the vendor of your SoC or board for a working kernel.
As we also know, some are better than others.

My only advice at this point is to choose vendors who give
good support or who, even better, take the trouble to get
their kernel changes into the mainline.

Licensing
The Linux source code is licensed under GPL v2, which means that you must make
the source code of your kernel available in one of the ways specified in the license.

The actual text of the license for the kernel is in the file COPYING. It begins with
an addendum written by Linus that states that code calling the kernel from user
space via the system call interface is not considered a derivative work of the kernel
and so is not covered by the license. Hence, there is no problem with proprietary
applications running on top of Linux.

Porting and Configuring the Kernel

[74]

However, there is one area of Linux licensing that causes endless confusion and
debate: kernel modules. A kernel module is simply a piece of code that is dynamically
linked with the kernel at runtime, thereby extending the functionality of the kernel.
The GPL makes no distinction between static and dynamic linking, so it would appear
that the source for kernel modules is covered by the GPL. But, in the early days of
Linux, there were debates about exceptions to this rule, for example, in connection
with the Andrew filesystem. This code predates Linux and therefore (it was argued)
is not a derivative work, and so the license does not apply. Similar discussions took
place over the years with respect to other pieces of code, with the result that it is
now accepted practice that the GPL does not necessarily apply to kernel modules.
This is codified by the kernel MODULE_LICENSE macro, which may take the value
Proprietary to indicate that it is not released under the GPL. If you plan to use the
same arguments yourself, you may want to read though an oft-quoted email thread
titled Linux GPL and binary module exception clause? (http://yarchive.net/comp/
linux/gpl_modules.html).

The GPL should be considered a good thing because it guarantees that when you and
I are working on embedded projects, we can always get the source code for the kernel.
Without it, embedded Linux would be much harder to use and more fragmented.

Building the kernel
Having decided which kernel to base your build on, the next step is to build it.

Getting the source
Let's assume that you have a board that is supported in mainline. You can get the
source code through git or by downloading a tarball. Using git is better because you
can see the commit history, you can easily see any changes you may make and you
can switch between branches and versions. In this example, we are cloning the stable
tree and checking out the version tag 4.1.10:

$ git clone
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-
stable.git linux

$ cd linux

$ git checkout v4.1.10

Alternatively, you could download the tarball from https://https://cdn.kernel.
org/pub/linux/kernel/v4.x/linux-4.1.10.tar.xz.

Chapter 4

[75]

There is a lot of code here. There are over 38,000 files in the 4.1 kernel containing
C source code, header files, and assembly code, amounting to a total of over 12.5
million lines of code (as measured by the cloc utility). Nevertheless, it is worth
knowing the basic layout of the code and to know, approximately, where to look
for a particular component. The main directories of interest are:

• arch: This contains architecture-specific files. There is one subdirectory
per architecture.

• Documentation: This contains kernel documentation. Always look here
first if you want to find more information about an aspect of Linux.

• drivers: This contains device drivers, thousands of them. There is a
subdirectory for each type of driver.

• fs: This contains filesystem code.
• include: This contains kernel header files, including those required

when building the toolchain.
• init: This contains the kernel start-up code.
• kernel: This contains core functions, including scheduling, locking,

timers, power management, and debug/trace code.
• mm: This contains memory management.
• net: This contains network protocols.
• scripts: This contains many useful scripts including the device tree

compiler, dtc, which I described in Chapter 3, All About Bootloaders.
• tools: This contains many useful tools, including the Linux performance

counters tool, perf, which I will describe in Chapter 13, Profiling and Tracing.

Over a period of time, you will become familiar with this structure, and realize that,
if you are looking for the code for the serial port of a particular SoC, you will find
it in drivers/tty/serial and not in arch/$ARCH/mach-foo because it is a device
driver and not something central to the running of Linux on that SoC.

Understanding kernel configuration
One of the strengths of Linux is the degree to which you can configure the kernel
to suit different jobs, from a small dedicated device such as a smart thermostat
to a complex mobile handset. In current versions there are many thousands of
configuration options. Getting the configuration right is a task in itself but, before
that, I want to show you how it works so that you can better understand what is
going on.

Porting and Configuring the Kernel

[76]

The configuration mechanism is called Kconfig, and the build system that it
integrates with is called Kbuild. Both are documented in Documentation/kbuild/.
Kconfig/Kbuild is used in a number of other projects as well as the kernel, including
crosstool-NG, U-Boot, Barebox, and BusyBox.

The configuration options are declared in a hierarchy of files named Kconfig using
a syntax described in Documentation/kbuild/kconfig-language.txt. In Linux,
the top level Kconfig looks like this:

mainmenu "Linux/$ARCH $KERNELVERSION Kernel Configuration"
config SRCARCH
 string
 option env="SRCARCH"
 source "arch/$SRCARCH/Kconfig"

The last line includes the architecture-dependent configuration file which sources
other Kconfig files depending on which options are enabled. Having the architecture
play such a role has two implications: firstly, that you must specify an architecture
when configuring Linux by setting ARCH=[architecture], otherwise it will default
to the local machine architecture, and second that the layout of the top level menu is
different for each architecture.

The value you put into ARCH is one of the subdirectories you find in directory arch,
with the oddity that ARCH=i386 and ARCH=x86_64 both have the source arch/x86/
Kconfig.

The Kconfig files consist largely of menus, delineated by menu, menu title,
and endmenu keywords, and menu items marked by config. Here is an example,
taken from drivers/char/Kconfig:

menu "Character devices"
[...]
config DEVMEM
 bool "/dev/mem virtual device support"
 default y
 help
 Say Y here if you want to support the /dev/mem device.
 The /dev/mem device is used to access areas of physical
 memory.
 When in doubt, say "Y".

The parameter following config names a variable that, in this case, is DEVMEM. Since
this option is a Boolean, it can only have two values: if it is enabled it is assigned to y,
if not the variable is not defined at all. The name of the menu item that is displayed
on the screen is the string following the bool keyword.

Chapter 4

[77]

This configuration item, along with all the others, is stored in a file named .config
(note that the leading dot '.' means that it is a hidden file that will not be shown by
the ls command unless you type ls -a to show all files). The variable names stored
in .config are prefixed with CONFIG_, so if DEVMEM is enabled, the line reads:

CONFIG_DEVMEM=y

There are several other data types in addition to bool. Here is the list:

• bool: This is either y or not defined.
• tristate: This is used where a feature can be built as a kernel module

or built into the main kernel image. The values are m for a module, y to
be built in, and not defined if the feature is not enabled.

• int: This is an integer value written using decimal notation.
• hex: This is an unsigned integer value written using hexadecimal notation.
• string: This is a string value.

There may be dependencies between items, expressed by the depends on phrase,
as shown here:

config MTD_CMDLINE_PARTS
 tristate "Command line partition table parsing"
 depends on MTD

If CONFIG_MTD has not been enabled elsewhere, this menu option is not shown and so
cannot be selected.

There are also reverse dependencies: the select keyword enables other options if
this one is enabled. The Kconfig file in arch/$ARCH has a large number of select
statements that enable features specific to the architecture, as can be seen here for arm:

config ARM
 bool
default y
 select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
 select ARCH_HAS_ELF_RANDOMIZE
[...]

There are several configuration utilities that can read the Kconfig files and produce
a .config file. Some of them display the menus on screen and allow you to make
choices interactively. Menuconfig is probably the one most people are familiar with,
but there is also xconfig and gconfig.

Porting and Configuring the Kernel

[78]

You launch each one via make, remembering that, in the case of the kernel, you have
to supply an architecture, as illustrated here:

$ make ARCH=arm menuconfig

Here, you can see menuconfig with the DEVMEM config option highlighted in the
previous paragraph:

Kernel configuration using menuconfig

The star (*) to the left of an item means that it is selected (="y") or, if it is an M, that
it has been selected to be built as a kernel module.

You often see instructions like enable CONFIG_BLK_DEV_
INITRD, but with so many menus to browse through, it can
take a while to find the place where that configuration is set. All
configuration editors have a search function. You can access it
in menuconfig by pressing the forward slash key, /. In xconfig,
it is in the edit menu but, in this case make sure you miss off the
CONFIG_ part of the variable you are searching for.

Chapter 4

[79]

With so many things to configure, it is unreasonable to start with a clean sheet each
time you want to build a kernel so there are a set of known working configuration files
in arch/$ARCH/configs, each containing suitable configuration values for a single
SoC or a group of SoCs. You can select one with make [configuration file name].
For example, to configure Linux to run on a wide range of SoCs using the armv7-a
architecture, which includes the BeagleBone Black AM335x, you would type:

$ make ARCH=arm multi_v7_defconfig

This is a generic kernel that runs on various different boards. For a more specialized
application, for example when using a vendor-supplied kernel, the default
configuration file is part of the board support package; you will need to find out
which one to use before you can build the kernel.

There is another useful configuration target named oldconfig. This takes an exiting
.config file and asks you to supply configuration values for any options that
don't have them. You would use it when moving a configuration to a newer kernel
version: copy .config from the old kernel to the new source directory and run make
ARCH=arm oldconfig to bring it up to date. It can also be used to validate a .config
file that you have edited manually (ignoring the text Automatically generated
file; DO NOT EDIT that occurs at the top: sometimes it is OK to ignore warnings).

If you do make changes to the configuration, the modified .config file becomes part
of your device and needs to be placed under source code control.

When you start the kernel build, a header file, include/generated/autoconf.h,
is generated which contains a #define for each configuration value so that it can
be included in the kernel source, exactly as with U-Boot.

Using LOCALVERSION to identify your kernel
You can discover the kernel version that you have built using the make
kernelversion target:

$ make kernelversion

4.1.10

This is reported at runtime through the uname command and is also used in naming
the directory where kernel modules are stored.

Porting and Configuring the Kernel

[80]

If you change the configuration from the default it is advisable to append your own
version information, which you can configure by setting CONFIG_LOCALVERSION,
which you will find in the General setup configuration menu. It is also possible
(but discouraged) to do the same by editing the top level makefile and appending
it to the line that begins with EXTRAVERSION. As an example, if I wanted to mark
the kernel I am building with an identifier melp and version 1.0, I would define
the local version in the .config file like this:

CONFIG_LOCALVERSION="-melp-v1.0"

Running make kernelversion produces the same output as before but now, if I run
make kernelrelease, I see:

$ make kernelrelease

4.1.10-melp-v1.0

It is also printed at the beginning of the kernel log:

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Linux version 4.1.10-melp-v1.0 (chris@builder) (gcc
version 4.9.1 (crosstool-NG 1.20.0)) #3 SMP Thu Oct 15 21:29:35 BST 2015

I can now identify and track my custom kernel.

Kernel modules
I have mentioned kernel modules several times already. Desktop Linux distributions
use them extensively so that the correct device and kernel functions can be loaded at
runtime depending on the hardware detected and features required. Without them,
every single driver and feature would have to be statically linked in to the kernel,
making it unfeasibly large.

On the other hand, with embedded devices, the hardware and kernel configuration
is usually known at the time the kernel is built so modules are not so useful. In fact,
they cause a problem because they create a version dependency between the kernel
and the root filesystem which can cause boot failures if one is updated but not the
other. Consequently, it is quite common for embedded kernels to be built without
any modules at all. Here are a few cases where kernel modules are a good idea:

• When you have proprietary modules, for the licensing reasons given
in the preceding section.

• To reduce boot time by deferring the loading of non-essential drivers.

Chapter 4

[81]

• When there are a number of drivers that could be loaded and it would take
up too much memory to compile them statically. For example, you have
a USB interface to support a range of devices. This is essentially the same
argument as is used in desktop distributions.

Compiling
The kernel build system, kbuild, is a set of make scripts that take the configuration
information from the .config file, work out the dependencies and compile
everything that is necessary to produce a kernel image containing all the statically
linked components, possibly a device tree binary and possibly one or more kernel
modules. The dependencies are expressed in the makefiles that are in each directory
with buildable components. For instance, these two lines are taken from drivers/
char/Makefile:

obj-y += mem.o random.o
obj-$(CONFIG_TTY_PRINTK) += ttyprintk.o

The obj-y rule unconditionally compiles a file to produce the target, so mem.c
and random.c are always part of the kernel. In the second line, ttyprintk.c is
dependent on a configuration parameter. If CONFIG_TTY_PRINTK is y it is compiled
as a built in, if it is m it is built as a module and, if the parameter is undefined, it is
not compiled at all.

For most targets, just typing make (with the appropriate ARCH and CROSS_COMPILE)
will do the job, but it is instructive to take it one step at a time.

Compiling the kernel image
To build a kernel image, you need to know what your bootloader expects. This is a
rough guide:

• U-Boot: Traditionally U-Boot has required a uImage, but newer versions
can load a zImage file using the bootz command

• x86 targets: It requires a bzImage file
• Most other bootloaders: It requires a zImage file

Porting and Configuring the Kernel

[82]

Here is an example of building a zImage file:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-
zImage

The -j 4 option tells make how many jobs to run in parallel,
which reduces the time taken to build. A rough guide is to run
as many jobs as you have CPU cores.

It is the same when building bzImage and uImage targets.

There is a small issue with building a uImage file for ARM with multi-platform
support, which is the norm for the current generation of ARM SoC kernels. Multi-
platform support for ARM was introduced in Linux 3.7. It allows a single kernel
binary to run on multiple platforms and is a step on the road toward having a small
number of kernels for all ARM devices. The kernel selects the correct platform by
reading the machine number or the device tree passed to it by the bootloader. The
problem occurs because the location of physical memory might be different for each
platform, and so the relocation address for the kernel (usually 0x8000 bytes from the
start of physical RAM) might also be different. The relocation address is coded into
the uImage header by the mkimage command when the kernel is built, but it will
fail if there is more than one relocation address to choose from. To put it another
way, the uImage format is not compatible with multi-platform images. You can still
create a uImage binary from a multi-platform build so long as you give the LOADADDR
of the particular SoC you are hoping to boot this kernel on. You can find the load
address by looking in mach-[your SoC]/Makefile.boot and noting the value of
zreladdr-y.

In the case of a BeagleBone Black, the full command would look like this:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-
LOADADDR=0x80008000 uImage

Chapter 4

[83]

A kernel build generates two files in the top level directory: vmlinux and System.
map. The first, vmlinux, is the kernel as an ELF binary. If you have compiled your
kernel with debug enabled (CONFIG_DEBUG_INFO=y), it will contain debug symbols
which can be used with debuggers like kgdb. You can also use other ELF binary tools
such as size:

$ arm-cortex_a8-linux-gnueabihf-size vmlinux

 text data bss dec hex filename

8812564 790692 8423536 18026792 1131128 vmlinux

System.map contains the symbol table in human readable form.

Most bootloaders cannot handle ELF code directly. There is a further stage of
processing which takes vmlinux and places those binaries in arch/$ARCH/boot
that are suitable for the various bootloaders:

• Image: vmlinux converted to raw binary.
• zImage: For the PowerPC architecture, this is just a compressed version

of Image, which implies that the bootloader must do the decompression.
For all other architectures, the compressed Image is piggybacked onto a
stub of code that decompresses and relocates it.

• uImage: zImage plus a 64-byte U-Boot header.

While the build is running, you will see a summary of the commands being executed:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-
zImage
CC init/main.o
CHK include/generated/compile.h
CC init/version.o
CC init/do_mounts.o
CC init/do_mounts_rd.o
CC init/do_mounts_initrd.o
LD init/mounts.o
[...]

Porting and Configuring the Kernel

[84]

Sometimes, when the kernel build fails, it is useful to see the actual commands being
executed. To do that, add V=1 to the command line:

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- V=1
zImage
[...]
arm-cortex_a8-linux-gnueabihf-gcc -Wp,-
MD,init/.do_mounts_initrd.o.d -nostdinc -isystem /home/chris/x-
tools/arm-cortex_a8-linux-gnueabihf/lib/gcc/arm-cortex_a8-linux-
gnueabihf/4.9.1/include -I./arch/arm/include -
Iarch/arm/include/generated/uapi -Iarch/arm/include/generated -
Iinclude -I./arch/arm/include/uapi -
Iarch/arm/include/generated/uapi -I./include/uapi -
Iinclude/generated/uapi -include ./include/linux/kconfig.h -
D__KERNEL__ -mlittle-endian -Wall -Wundef -Wstrict-prototypes -
Wno-trigraphs -fno-strict-aliasing -fno-common -Werror-implicit-
function-declaration -Wno-format-security -std=gnu89 -fno-dwarf2-
cfi-asm -mabi=aapcs-linux -mno-thumb-interwork -mfpu=vfp -funwind-
tables -marm -D__LINUX_ARM_ARCH__=7 -march=armv7-a -msoft-float -
Uarm -fno-delete-null-pointer-checks -O2 --param=allow-store-data-
races=0 -Wframe-larger-than=1024 -fno-stack-protector -Wno-unused-
but-set-variable -fomit-frame-pointer -fno-var-tracking-
assignments -Wdeclaration-after-statement -Wno-pointer-sign -fno-
strict-overflow -fconserve-stack -Werror=implicit-int -
Werror=strict-prototypes -Werror=date-time -DCC_HAVE_ASM_GOTO -
D"KBUILD_STR(s)=#s" -
D"KBUILD_BASENAME=KBUILD_STR(do_mounts_initrd)" -
D"KBUILD_MODNAME=KBUILD_STR(mounts)" -c -o init/do_mounts_initrd.o
init/do_mounts_initrd.c
[...]

Compiling device trees
The next step is to build the device tree, or trees if you have a multi-platform build.
The dtbs target builds device trees according to the rules in arch/$ARCH/boot/dts/
Makefile using the device tree source files in that directory:

$ make ARCH=arm dtbs
...
DTC arch/arm/boot/dts/omap2420-h4.dtb
DTC arch/arm/boot/dts/omap2420-n800.dtb
DTC arch/arm/boot/dts/omap2420-n810.dtb
DTC arch/arm/boot/dts/omap2420-n810-wimax.dtb
DTC arch/arm/boot/dts/omap2430-sdp.dtb
...

The .dtb files are generated in the same directory as the sources.

Chapter 4

[85]

Compiling modules
If you have configured some features to be built as modules, you can build them
separately using the modules target:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-
modules

The compiled modules have a .ko suffix and are generated in the same directory as
the source code, meaning that they are scattered all around the kernel source tree.
Finding them is a little tricky but you can use the modules_install make target
to install them in the right place. The default location is /lib/modules in your
development system, which is almost certainly not what you want. To install them
into the staging area of your root filesystem (we will talk about root filesystems in
the next chapter), provide the path using INSTALL_MOD_PATH:

$ make -j4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-
INSTALL_MOD_PATH=$HOME/rootfs modules_install

Kernel modules are put into the directory /lib/modules/[kernel version],
relative to the root of the filesystem.

Cleaning kernel sources
There are three make targets for cleaning the kernel source tree:

• clean: removes object files and most intermediates.
• mrproper: removes all intermediate files, including the .config file. Use this

target to return the source tree to the state it was in immediately after cloning
or extracting the source code. If you are curious about the name, Mr Proper is
a cleaning product common in some parts of the world. The meaning of make
mrproper is to give the kernel sources a really good scrub.

• distclean: This is the same as mrproper but also deletes editor backup files,
patch leftover files, and other artifacts of software development.

Porting and Configuring the Kernel

[86]

Booting your kernel
Booting is highly device-dependent, but here is an example using U-Boot on a
BeagleBone Black and QEMU:.

BeagleBone Black
The following U-Boot commands show how to boot Linux on a BeagleBone Black:

U-Boot# fatload mmc 0:1 0x80200000 zImage
reading zImage
4606360 bytes read in 254 ms (17.3 MiB/s)
U-Boot# fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb
reading am335x-boneblack.dtb
29478 bytes read in 9 ms (3.1 MiB/s)
U-Boot# setenv bootargs console=ttyO0,115200
U-Boot# bootz 0x80200000 - 0x80f00000
Kernel image @ 0x80200000 [0x000000 - 0x464998]
Flattened Device Tree blob at 80f00000
 Booting using the fdt blob at 0x80f00000
 Loading Device Tree to 8fff5000, end 8ffff325 ... OK
Starting kernel ...
[0.000000] Booting Linux on physical CPU 0x0
...

Note that we set the kernel command line to console=ttyO0,115200. That tells
Linux which device to use for console output which, in this case, is the first UART
on the board, device ttyO0, at a speed of 115,200 bits per second. Without this,
we would not see any messages after Starting the kernel ... and therefore
would not know if it was working or not.

QEMU
Assuming that you have already installed qemu-system-arm, you can launch it with
the multi_v7 kernel and the .dtb file for the ARM Versatile Express, as follows:

$ QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M vexpress-a9 -kernel zImage -
dtb vexpress-v2p-ca9.dtb -append "console=ttyAMA0"

Note that setting QEMU_AUDIO_DRV to none is just to suppress error messages from
QEMU about missing configurations for the audio drivers, which we do not use.

To exit from QEMU, type Ctrl-A then x (two separate keystrokes).

Chapter 4

[87]

Kernel panic
While things started off well, they ended badly:

[1.886379] Kernel panic - not syncing: VFS: Unable to mount
root fs on unknown-block(0,0)
[1.895105] ---[end Kernel panic - not syncing: VFS: Unable to
mount root fs on unknown-block(0, 0)

This is a good example of a kernel panic. A panic occurs when the kernel encounters
an unrecoverable error. By default, it will print out a message to the console and then
halt. You can set the panic command line parameter to allow a few seconds before it
reboots following a panic.

In this case, the unrecoverable error is because there is no root filesystem, illustrating
that a kernel is useless without a user space to control it. You can supply a user space
by providing a root filesystem either as a ramdisk or on a mountable mass storage
device. We will talk about how to create a root filesystem in the next chapter but, to
get things up and running, assume that we have a ramdisk in the file uRamdisk and
you can then boot to a shell prompt by entering these commands into U-Boot:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

fatload mmc 0:1 0x81000000 uRamdisk

setenv bootargs console=ttyO0,115200 rdinit=/bin/sh

bootz 0x80200000 0x81000000 0x80f00000

Here, I have added rdinit=/bin/sh to the command line so that the kernel will run
a shell and give us a shell prompt. Now, the output on the console looks like this:

...

[1.930923] sr_init: No PMIC hook to init smartreflex

[1.936424] sr_init: platform driver register failed for SR

[1.964858] Freeing unused kernel memory: 408K (c0824000 -
c088a000)

/ # uname -a

Linux (none) 3.18.3 #1 SMP Wed Jan 21 08:34:58 GMT 2015 armv7l
GNU/Linux

/ #

At last, we have a prompt and can interact with our device.

Porting and Configuring the Kernel

[88]

Early user space
In order to transition from kernel initialization to user space, the kernel has to
mount a root filesystem and execute a program in that root filesystem. This can be
via a ramdisk, as shown in the previous section, or by mounting a real filesystem
on a block device. The code for all of this is in init/main.c, starting with the
function rest_init() which creates the first thread with PID 1 and runs the code
in kernel_init(). If there is a ramdisk, it will try to execute the program /init,
which will take on the task of setting up the user space.

If it fails to find and run /init, it tries to mount a filesystem by calling the function
prepare_namespace() in init/do_mounts.c. This requires a root= command line
to give the name of the block device to use for mounting, usually in the form:

• root=/dev/<disk name><partition number>

• root=/dev/<disk name>p<partition number>

For example, for the first partition on an SD card, that would be root=/dev/
mmcblk0p1. If the mount succeeds, it will try to execute /sbin/init, followed by
/etc/init, /bin/init, and then /bin/sh, stopping at the first one that works.

The init program can be overridden on the command line. For a ramdisk, use
rdinit=, (I used rdinit=/bin/sh earlier to execute a shell) and, for a filesystem,
use init=.

Kernel messages
Kernel developers are fond of printing out useful information through liberal use
of printk() and similar functions. The messages are categorized according to
importance, 0 being the highest:

Level Value Meaning
KERN_EMERG 0 The system is unusable
KERN_ALERT 1 Action must be taken immediately
KERN_CRIT 2 Critical conditions
KERN_ERR 3 Error conditions
KERN_WARNING 4 Warning conditions
KERN_NOTICE 5 Normal but significant conditions
KERN_INFO 6 Informational
KERN_DEBUG 7 Debug-level messages

Chapter 4

[89]

They are first written to a buffer, __log_buf, the size of which is two to the power of
CONFIG_LOG_BUF_SHIFT. For example, if it is 16, then __log_buf is 64 KiB. You can
dump the entire buffer using the command dmesg.

If the level of a message is less than the console log level, it is displayed on the console
as well as being placed in __log_buf. The default console log level is 7, meaning that
messages of level 6 and lower are displayed, filtering out KERN_DEBUG which is level
7. You can change the console log level in several ways, including by using the kernel
parameter loglevel=<level> or the command dmesg -n <level>.

Kernel command line
The kernel command line is a string that is passed to the kernel by the bootloader,
via the bootargs variable in the case of U-Boot; it can also be defined in the device
tree, or set as part of the kernel configuration in CONFIG_CMDLINE.

We have seen some examples of the kernel command line already but there are
many more. There is a complete list in Documentation/kernel-parameters.txt.
Here is a smaller list of the most useful ones:

Name Description
debug Sets the console log level to the highest level, eight, to ensure that

you see all the kernel messages on the console.
init= The init program to run from a mounted root filesystem, which

defaults to /sbin/init.
lpj= Sets the loops_per_jiffy to a given constant, see the following

paragraph.
panic= Behavior when the kernel panics: if it is greater than zero, it gives

the number of seconds before rebooting; if it is zero, it waits
forever (this is the default); or if it is less than zero, it reboots
without any delay.

quiet Sets the console log level to one, suppressing all but emergency
messages. Since most devices have a serial console, it takes time
to output all those strings. Consequently, reducing the number of
messages using this option reduces boot time.

rdinit= The init program to run from a ramdisk, it defaults to /init.
ro Mounts the root device as read-only. Has no effect on a ramdisk

which is always read/write.
root= Device to mount the root filesystem.
rootdelay= The number of seconds to wait before trying to mount the root

device, defaults to zero. Useful if the device takes time to probe
the hardware, but also see rootwait.

Porting and Configuring the Kernel

[90]

Name Description
rootfstype= The filesystem type for the root device. In many cases, it is auto-

detected during mount, but it is required for jffs2 filesystems.
rootwait Waits indefinitely for the root device to be detected. Usually

necessary with mmc devices.
rw Mounts the root device as read-write (default).

The lpj parameter is often mentioned in connection with reducing the kernel boot
time. During initialization, the kernel loops for approximately 250 ms to calibrate
a delay loop. The value is stored in the variable loops_per_jiffy, and reported
like this:

Calibrating delay loop... 996.14 BogoMIPS (lpj=4980736)

If the kernel always runs on the same hardware it will always calculate the same
value. You can shave 250 ms off the boot time by adding lpj=4980736 to the
command line.

Porting Linux to a new board
The scope of the task depends on how similar your board is to an existing
development board. In Chapter 3, All About Bootloaders we ported U-Boot to a new
board, named Nova, which is based on the BeagleBone Black (when I say based, it
actually is one) so, in this case, there are very few changes to the kernel code to be
made. If you are porting to completely new and innovative hardware, there will
be more to do. I am only going to consider the simple case.

The organization of architecture-specific code in arch/$ARCH differs from one
system to another. The x86 architecture is pretty clean because hardware details are
detected at runtime. The PowerPC architecture puts SoC and board-specific files in
subdirectory platforms. The ARM architecture has the most board and SoC-specific
files of all because there are a lot of ARM boards and SoCs. Platform-dependent code
is in directories named mach-* in arch/arm, approximately one per SoC. There are
other directories named plat-* which contain code common to several versions of
an SoC. In the case of the Nova board, the relevant directory is mach-omap2. Don't be
fooled by the name, though, it contains support for OMAP2, 3, and 4 chips.

In the following sections, I am going do the port to the Nova board in two different
ways. Firstly, I am going to show you how to do this with a device tree, and then
without, since there are a lot of devices in the field that fit in this category. You will
see that it is much simpler when you have a device tree.

Chapter 4

[91]

With a device tree
The first thing to do is create a device tree for the board and modify it to describe the
additional or changed hardware on the board. In this simple case, we will just copy
am335x-boneblack.dts to nova.dts and change the board name:

/dts-v1/;
#include "am33xx.dtsi"
#include "am335x-bone-common.dtsi"
/ {
 model = "Nova";
 compatible = "ti,am335x-bone-black", "ti,am335x-bone", "ti,am33xx";
 };
...

We can build nova.dtb explicitly:

$ make ARCH=arm nova.dtb

Or, if we want nova.dtb to be produced by default for the OMAP2 platform with
make ARCH=arm dtbs then we could add the following line to arch/arm/boot/dts/
Makefile:

dtb-$(CONFIG_SOC_AM33XX) += \
[...]
nova.dtb \
[...]

Now we can boot the same zImage file as before, configured with multi_v7_
defconfig, but load the nova.dtb as we can see here:

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu
[0.000000] Initializing cgroup subsys cpuacct
[0.000000] Linux version 3.18.3-dirty (chris@builder) (gcc
version 4.9.1 (crosstool-N
G 1.20.0)) #1 SMP Wed Jan 28 07:50:50 GMT 2015
[0.000000] CPU: ARMv7 Processor [413fc082] revision 2 (ARMv7),
cr=10c5387d
[0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT
aliasing instruction cache
[0.000000] Machine model: Nova
...

We could create a custom configuration by taking a copy of multi_v7_defconfig
and adding in those features we need, and cutting down code size by leaving out
those we don't.

Porting and Configuring the Kernel

[92]

Without a device tree
Firstly, we need to create a configuration name for the board, in this case, it is
NOVABOARD. We need to add this to the Kconfig file of the mach- directory for
your SoC and we need to add a dependency for the SoC support itself, which
is OMAPAM33XX.

These lines are added to arch/arm/mach-omap2/Kconfig:

config MACH_NOVA BOARD
bool "Nova board"
depends on SOC_OMAPAM33XX
default n

There is a source file named board-*.c for each board, which contains code and
configurations which are specific to the target. In our case, it is board-nova.c, based
on a copy of board-am335xevm.c. There must be a rule to compile it, conditional on
CONFIG_MACH_NOVABOARD, which this addition to arch/arm/mach-omap2/Makefile
takes care of:

obj-$(CONFIG_MACH_NOVABOARD) += board-nova.o

Since we are not using the device tree to identify the board, we will have to use
the older machine number mechanism. This is a number unique to each board that
is passed by the bootloader in register r1, and which the ARM start code will use
to select the correct board support. The definitive list of ARM machine numbers
is held at: www.arm.linux.org.uk/developer/machines/download.php. You
can request a new machine number from: www.arm.linux.org.uk/developer/
machines/?action=new#.

If we hijack machine number 4242, we could add it to arch/arm/tools/mach-
types, as shown:

machine_is_xxx CONFIG_xxxx MACH_TYPE_xxx number
...
nova_board MACH_NOVABOARD NOVABOARD 4242

When we build the kernel, it will be used to create the mach-types.h header file
present in include/generated/.

The machine number and the board support are tied together by a structure which is
defined like this:

MACHINE_START(NOVABOARD, "nova_board")
/* Maintainer: Chris Simmonds */
.atag_offset = 0x100,

Chapter 4

[93]

.map_io = am335x_evm_map_io,

.init_early = am33xx_init_early,

.init_irq = ti81xx_init_irq,

.handle_irq = omap3_intc_handle_irq,

.timer = &omap3_am33xx_timer,

.init_machine = am335x_evm_init,
MACHINE_END

Note that there may be more than one machine structure in a board file, allowing
us to create a kernel that will run on several different boards. The machine number
passed by the bootloader selects the correct one.

Finally, we need a new default configuration for our board, which selects CONFIG_
MACH_NOVABOARD and other configuration options specific to it. In the following
example, it would be in arch/arm/configs/novaboard_defconfig. Now you can
build the kernel image as usual:

$ make ARCH=arm novaboard_defconfig

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-
zImage

There is still one step before the job is finished. The bootloader needs to be modified
to pass the right machine number. Assuming that you are using U-Boot, you need to
copy the machine numbers generated by Linux in arch/arm/include/asm/mach-
types.h to U-Boot file arch/arm/include/asm/mach-types.h. Then you need to
update the configuration header file for Nova, include/configs/nova.h, and add
the following line:

#define CONFIG_MACH_TYPE MACH_TYPE_NOVABOARD

Now, at last, you can build U-Boot and use it to boot the new kernel on the
Nova board:

Starting kernel ...

[0.000000] Linux version 3.2.0-00246-g0c74d7a-dirty
(chris@builder) (gcc version 4.9.
1 (crosstool-NG 1.20.0)) #3 Wed Jan 28 11:45:10 GMT 2015
[0.000000] CPU: ARMv7 Processor [413fc082] revision 2 (ARMv7),
cr=10c53c7d
[0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT
aliasing instruction cache
[0.000000] Machine: nova_board

Porting and Configuring the Kernel

[94]

Additional reading
The following resources have further information about the topics introduced in
this chapter:

• Linux Kernel Newbies, kernelnewbies.org
• Linux Weekly News, www.lwn.net

Summary
Linux is a very powerful and complex operating system kernel that can be married to
various types of user space ranging from a simple embedded device, to increasingly
complex mobile devices using Android, to a full server operating system. One of its
strengths is the degree of configurability. The definitive place to get the source code
is www.kerenl.org, but you will probably need to get the source for a particular SoC
or board from the vendor of that device or a third-party that supports that device.
The customization of the kernel for a particular target may consist of changes to
the core kernel code, additional drivers for devices that are not in mainline Linux,
a default kernel configuration file and, a device tree source file.

Normally you start with the default configuration for your target board, and then
tweak it by running one of the configuration tools such as menuconfig. One of the
things you should consider at this point is whether kernel features and drivers should
be compiled as modules or built-in. Kernel modules are usually no great advantage
for embedded systems, where the feature set and hardware are usually well defined.
However, modules are often used as a way to import proprietary code into the kernel,
and also to reduce boot time by loading non-essential drivers after boot. Building the
kernel produces a compressed kernel image file, named zImage, bzImage, or uImage
depending on the bootloader you will be using and the target architecture. A kernel
build will also generate any kernel modules (as .ko files) that you have configured,
and device tree binaries (as .dtb files) if your target requires them.

Porting Linux to a new target board can be quite simple or very difficult depending
on how different the hardware is from that in the mainline or vendor supplied kernel.
If your hardware is based on a well-known reference design, then it may be just a
question of making changes to the device tree or to the platform data. You may well
need to add device drivers, which I discuss in Chapter 8, Introducing Device Drivers.
However, if the hardware is radically different to a reference design, you may need
additional core support, which is outside the scope of this book.

The kernel is the core of a Linux based system, but it cannot work by itself. It requires
a root filesystem that contains user space. The root filesystem can be a ramdisk or a
filesystem accessed via a block device, which will be the subject of the next chapter.
As we have seen, booting a kernel without a root filesystem results in a kernel panic.

[95]

Building a Root Filesystem
The root filesystem is the fourth and final element of embedded Linux. Once you
have read this chapter, you will be able build, boot, and run a simple embedded
Linux system.

This chapter explores the fundamental concepts behind the root filesystem by
building one from scratch. The main aim is to provide the background information
that you need to understand and make best use of build systems like Buildroot and
the Yocto Project, which I will cover in Chapter 6, Selecting a Build System.

The techniques I will describe here are broadly known as roll your own or RYO. Back
in the earlier days of embedded Linux, it was the only way to create a root filesystem.
There are still some use cases where an RYO root filesystem is applicable, for example,
when the amount of RAM or storage is very limited, for quick demonstrations, or
for any case in which your requirements are not (easily) covered by the standard
build system tools. Nevertheless, these cases are quite rare. Let me emphasize that
the purpose of this chapter is educational, it is not meant to be a recipe for building
everyday embedded systems: use the tools described in the next chapter for that.

The first objective is to create a minimal root filesystem that will give us a shell
prompt. Then, using that as a base, we will add scripts to start up other programs
and configure a network interface and user permissions. Knowing how to build the
root filesystem from scratch is a useful skill and it will help you to understand what
is going on when we look at more complex examples in later chapters.

Building a Root Filesystem

[96]

What should be in the root filesystem?
The kernel will get a root filesystem, either as a ramdisk, passed as a pointer from
the bootloader, or by mounting the block device given on the kernel command line
by the root= parameter. Once it has a root filesystem, the kernel will execute the
first program, by default named init, as described in the section Early Userspace in
Chapter 4, Porting and Configuring the Kernel. Then, as far as the kernel is concerned,
its job is complete. It is up to the init program to begin processing scripts, start
other programs, and so on, by calling system functions in the C library, which
translate into kernel system calls.

To make a useful system, you need these components as a minimum:

• init: The program that starts everything off, usually by running a series
of scripts.

• shell: Needed to give you a command prompt but, more importantly,
to run the shell scripts called by init and other programs.

• daemons: Various server programs, started by init.
• libraries: Usually, the programs mentioned so far are linked with shared

libraries which must be present in the root filesystem.
• Configuration files: The configuration for init and other daemons is

stored in a series of ASCII text files, usually in the /etc directory.
• Device nodes: The special files that give access to various device drivers.
• /proc and /sys: Two pseudo filesystems that represent kernel data structures

as a hierarchy of directories and files. Many programs and library functions
read these files.

• kernel modules: If you have configured some parts of your kernel to be
modules, they will be here, usually in /lib/modules/[kernel version].

In addition, there are the system application or applications that make the device do
the job it is intended for, and the runtime end user data that they collect.

As an aside, it is possible to condense all of the above into a single program. You
could create a statically linked program that is started instead of init and runs
no others. I have come across such a configuration only once. For example, if your
program was named /myprog, you would put the following command in the kernel
command line:

init=/myprog

Chapter 5

[97]

Or, if the root filesystem was loaded as a ramdisk, you would put the
following command:

rdinit=/myprog

The downside of this approach is that you can't make use of the many tools that
normally go into an embedded system; you have to do everything yourself.

Directory layout
Interestingly, Linux does not care about the layout of files and directories beyond
the existence of the program named by init= or rdinit=, so you are free to put
things wherever you like. As an example, compare the file layout of a device running
Android to that of a desktop Linux distribution: they are almost completely different.

However, many programs expect certain files to be in certain places, and it helps us
developers if devices use a similar layout, Android aside. The basic layout of a Linux
system is defined in the Filesystem Hierarchy Standard (FHS), see the reference
at the end of this chapter. The FHS covers all implementations of Linux operating
systems from the largest to the smallest. Embedded devices have a sub-set based
on need but it usually includes the following:

• /bin: programs essential for all users
• /dev: device nodes and other special files
• /etc: system configuration
• /lib: essential shared libraries, for example, those that make up the C library
• /proc: the proc filesystem
• /sbin: programs essential to the system administrator
• /sys: the sysfs filesystem
• /tmp: a place to put temporary or volatile files
• /usr: as a minimum, this should contain the directories /usr/bin, /usr/lib

and /usr/sbin, which contain additional programs, libraries, and system
administrator utilities

• /var: a hierarchy of files and directories that may be modified at runtime,
for example, log messages, some of which must be retained after boot

Building a Root Filesystem

[98]

There are some subtle distinctions here. The difference between /bin and /sbin is
simply that /sbin need not be included in the search path for non-root users. Users
of Red Hat-derived distributions will be familiar with this. The significance of /usr
is that it may be in a separate partition from the root filesystem so it cannot contain
anything that is needed to boot the system up. That is what essential means in the
preceding description: it contains files that are needed at boot time and so must be
part of the root filesystem.

While it might seem like overkill to have four directories to store
programs, a counter argument would be that it does no harm, and
it may even do some good because it allows you to store /usr in a
different filesystem.

Staging directory
You should begin by creating a staging directory on your host computer where
you can assemble the files that will eventually be transferred to the target. In the
following examples, I have used ~/rootfs. You need to create a skeleton directory
structure in that, for example:

$ mkdir ~/rootfs

$ cd ~/rootfs

$ mkdir bin dev etc home lib proc sbin sys tmp usr var

$ mkdir usr/bin usr/lib usr/sbin

$ mkdir var/log

To see the directory hierarchy more clearly you can use the handy tree command,
used in the following example with the -d option to show only directories:

$ tree -d

├── bin

├── dev

├── etc

├── home

├── lib

├── proc

├── sbin

├── sys

Chapter 5

[99]

├── tmp

├── usr

│ ├── bin

│ ├── lib

│ └── sbin

└── var

 └── log

POSIX file access permissions
Every process which, in the context of this discussion, means every running program,
belongs to a user and one or more groups. The user is represented by a 32-bit number
called the user ID or UID. Information about users, including the mapping from a UID
to a name, is kept in /etc/passwd. Likewise, groups are represented by a group ID or
GID, with information kept in /etc/group. There is always a root user with a UID of
0 and a root group with a GID of 0. The root user is also called the super-user because,
in a default configuration, it bypasses most permission checks and can access all the
resources in the system. Security in Linux-based systems is mainly about restricting
access to the root account.

Each file and directory also has an owner and belongs to exactly one group. The level
of access a process has to a file or directory is controlled by a set of access permission
flags, called the mode of the file. There are three collections of three bits: the first
collection applies to the owner of the file, the second to members of the same group
as the file, and the last to everyone else, the rest of the world. The bits are for read (r),
write (w), and execute (x) permissions on the file. Since three bits fit neatly into an
octal digit, they are usually represented in octal, as shown in the following figure:

Building a Root Filesystem

[100]

There is a further group of three bits that have special meanings:

• SUID (4): If the file is an executable, change the effective UID of the process
to that of the owner of the file.

• SGID (2): If the file is an executable, change the effective GID of the process
to that of the group of the file.

• Sticky (1): In a directory, restrict deletion so that one user cannot delete files
that are owned by another user. This is usually set on /tmp and /var/tmp.

The SUID bit is probably the most often used. It gives non-root users a temporary
privilege escalation to super-user to perform a task. A good example is the ping
program: ping opens a raw socket which is a privileged operation. In order for
normal users to use ping, it is normally owned by the root and has the SUID bit
set so that, when you run ping, it executes with UID 0 regardless of your UID.

To set these bits, use the octal numbers, 4, 2, 1, with the chmod command. For example,
to set SUID on /bin/ping in your staging root directory, you could use the following:

$ cd ~/rootfs

$ ls -l bin/ping

-rwxr-xr-x 1 root root 35712 Feb 6 09:15 bin/ping

$ sudo chmod 4755 bin/ping

$ ls -l bin/ping

-rwsr-xr-x 1 root root 35712 Feb 6 09:15 bin/ping

Note the s in the last file listing: that is the indication
that SUID is set.

File ownership permissions in the staging directory
For security and stability reasons, it is vitally important to pay attention to the
ownership and permissions of the files that will be placed on the target device.
Generally speaking, you want to restrict sensitive resources to be accessible only
by the root and to run as many of the programs using non-root users so that, if they
are compromised by an outside attack, they offer as few system resources to the
attacker as possible. For example, the device node /dev/mem gives access to system
memory, which is necessary in some programs. But, if it is readable and writeable
by everyone, then there is no security because everyone can access everything. So
/dev/mem should be owned by root, belong to the root group and have a mode of
600, which denies read and write access to all but the owner.

Chapter 5

[101]

There is a problem with the staging directory though. The files you create there will
be owned by you but, when they are installed on the device, they should belong to
specific owners and groups, mostly the root user. An obvious fix is to change the
ownership at this stage with the command shown here:

$ cd ~/rootfs

$ sudo chown -R root:root *

The problem is that you need root privileges to run that command and, from that
point onward, you will need to be root to modify any files in the staging directory.
Before you know it, you are doing all your development logged on as root, which
is not a good idea. This is a problem that we will come back to later.

Programs for the root filesystem
Now, it is time to start populating the root filesystem with the essential programs
and the supporting libraries, configuration, and data files that it needs to operate,
beginning with an overview of the types of program you will need.

The init program
You have seen in the previous chapter that init is the first program to be run and so
has PID 1. It runs as the root user and so has maximum access to system resources.
Usually, it runs shell scripts which start daemons: a daemon is a program that runs
in the background with no connection to a terminal, in other places it would be
called a server program.

Shell
We need a shell to run scripts and to give us a command-line prompt so that we
can interact with the system. An interactive shell is probably not necessary in a
production device, but it is useful for development, debugging, and maintenance.
There are various shells in common use in embedded systems:

• bash: is the big beast that we all know and love from desktop Linux. It is a
superset of the Unix Bourne shell, with many extensions or bashisms.

• ash: also based on the Bourne shell, and has a long history with the BSD
variants of Unix. Busybox has a version of ash which has been extended
to make it more compatible with bash. It is much smaller than bash and
hence is a very popular choice for embedded systems.

Building a Root Filesystem

[102]

• hush: is a very small shell that we briefly looked at in the chapter on
bootloaders. It is useful on devices with very little memory. There is a
version in BusyBox.

If you are using ash or hush as the shell on the target, make sure
that you test your shell scripts on the target. It is very tempting
to test them only on the host, using bash, and then be surprised
that they don't work when you copy them to the target.

Utilities
The shell is just a way of launching other programs and a shell script is little more than
a list of programs to run, with some flow control and a means of passing information
between programs. To make a shell useful, you need the utility programs that the Unix
command-line is based on. Even for a basic root filesystem, there are approximately 50
utilities, which presents two problems. Firstly, tracking down the source code for each
and cross compiling it would be quite a big job. Secondly, the resulting collection of
programs would take up several tens of megabytes, which was a real problem in the
early days of embedded Linux when a few megabytes was all you had. To solve this
problem, BusyBox was born.

BusyBox to the rescue!
The genesis of BusyBox had nothing to do with embedded Linux. The project was
instigated in 1996 by Bruce Perens for the Debian installer so that he could boot
Linux from a 1.44 MB floppy disk. Coincidentally, that was about the size of the
storage on contemporary devices and so the embedded Linux community quickly
took it up. BusyBox has been at the heart of embedded Linux ever since.

BusyBox was written from scratch to perform the essential functions of those
essential Linux utilities. The developers took advantage of the 80:20 rule: the most
useful 80% of a program is implemented in 20% of the code. Hence, BusyBox tools
implement a subset of the functions of the desktop equivalents, but they do enough
to be useful in the majority of cases.

Another trick BusyBox employs is to combine all the tools together into a single
binary, making it easy to share code between them. It works like this: BusyBox
is a collection of applets, each of which exports its main function in the form
[applet]_main. For example, the cat command is implemented in coreutils/
cat.c and exports cat_main. The main function of BusyBox itself dispatches the
call to the correct applet based on the command-line arguments.

Chapter 5

[103]

So, to read a file, you can launch busybox with the name of the applet you want to
run, followed by any arguments the applet expects, as shown here:

$ busybox cat my_file.txt

You can also run busybox with no arguments to get a list of all the applets that have
been compiled.

Using BusyBox in this way is rather clumsy. A better way to get BusyBox to run the
cat applet is to create a symbolic link from /bin/cat to /bin/busybox:

$ ls -l bin/cat bin/busybox

-rwxr-xr-x 1 chris chris 892868 Feb 2 11:01 bin/busybox

lrwxrwxrwx 1 chris chris 7 Feb 2 11:01 bin/cat -> busybox

When you type cat at the command line, busybox is the program that actually
runs. BusyBox only has to check the command tail passed in argv[0], which will
be /bin/cat, extract the application name, cat, and do a table look-up to match
cat with cat_main. All this is in libbb/appletlib.c in this section of code
(slightly simplified):

applet_name = argv[0];
applet_name = bb_basename(applet_name);
run_applet_and_exit(applet_name, argv);

BusyBox has over three hundred applets including an init program, several shells
of varying levels of complexity, and utilities for most admin tasks. There is even a
simple version of the vi editor so you can change text files on your device.

To summarize, a typical installation of BusyBox consists of a single program with a
symbolic link for each applet, but which behaves exactly as if it were a collection of
individual applications.

Building BusyBox
BusyBox uses the same Kconfig and Kbuild system of the kernel, so cross compiling
is straightforward. You can get the source by cloning the git archive and checking
out the version you want (1_24_1 was the latest at the time of writing), like this:

$ git clone git://busybox.net/busybox.git

$ cd busybox

$ git checkout 1_24_1

Building a Root Filesystem

[104]

You can also download the corresponding tarball file from http://busybox.
net/downloads. Then, configure BusyBox, starting in this case with the default
configuration, which enables pretty much all of the features of BusyBox:

$ make distclean

$ make defconfig

At this point, you probably want to run make menuconfig to fine tune the
configuration. You almost certainly want to set the install path in Busybox
Settings | Installation Options (CONFIG_PREFIX) to point to the staging
directory. Then, you can cross compile in the usual way:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-

The result is the executable, busybox. For a defconfig build for ARM v7a,
it comes out at about 900 KiB. If that is too big for you, you can slim it down
by configuring out the utilities you don't need.

To install BusyBox, use the following command:

$ make install

This will copy the binary to the directory configured in CONFIG_PREFIX and
create all the symbolic links to it.

ToyBox – an alternative to BusyBox
BusyBox is not the only game in town. For example, Android has an equivalent
named Toolbox, but it is more tuned to the needs of Android and not useful in
a general purpose embedded environment. A more useful option is ToyBox, a
project started and maintained by Rob Landley, who was previously a maintainer
of BusyBox. ToyBox has the same aim as BusyBox, but with more emphasis
on complying with standards, especially POSIX-2008 and LSB 4.1, and less on
compatibility with GNU extensions to those standards. ToyBox is smaller than
BusyBox, partly because it implements fewer applets.

However, the main difference is the license, BSD rather than GPL v2, which
makes it license-compatible with operating systems with a BSD-licensed user
space, such as Android itself.

Chapter 5

[105]

Libraries for the root filesystem
Programs are linked with libraries. You could link them all statically, in which case,
there would be no libraries on the target device. But, that takes up an unnecessarily
large amount of storage if you have more than two or three programs. So, you need
to copy shared libraries from the toolchain to the staging directory. How do you
know which libraries?

One option is to copy all of them since they must be of some use, otherwise they
wouldn't exist! That is certainly logical and, if you are creating a platform to be
used by others for a range of applications, that would be the correct approach.
Be aware, though, that a full glibc is quite large. In the case of a CrossTool-NG
build of glibc 2.19, the space taken by /lib and /usr/lib is 33 MiB. Of course,
you could cut down on that considerably by using uClibc or Musel libc libraries.

Another option is to cherry pick only those libraries that you require, for which you
need a means of discovering library dependencies. Using some of our knowledge
from Chapter 2, Learning About Toolchains libraries, you can use readelf for that task:

$ cd ~/rootfs

$ arm-cortex_a8-linux-gnueabihf-readelf -a bin/busybox | grep "program
interpreter"

 [Requesting program interpreter: /lib/ld-linux-armhf.so.3]

$ arm-cortex_a8-linux-gnueabihf-readelf -a bin/busybox | grep "Shared
library"

0x00000001 (NEEDED) Shared library: [libm.so.6]

0x00000001 (NEEDED) Shared library: [libc.so.6]

Now you need to find these files in the toolchain and copy them to the staging
directory. Remember that you can find sysroot like this:

$ arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot

/home/chris/x-tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-
linux-gnueabihf/sysroot

To reduce the amount of typing, I am going to keep a copy of that in a shell variable:

$ export SYSROOT=`arm-cortex_a8-linux-gnueabihf-gcc -print-
sysroot`

If you look at /lib/ld-linux-armhf.so.3, in sysroot, you will see that, it is, in
fact, a symbolic link:

$ ls -l $SYSROOT/lib/ld-linux-armhf.so.3

[...]/sysroot/lib/ld-linux-armhf.so.3 -> ld-2.19.so

Building a Root Filesystem

[106]

Repeat the exercise for libc.so.6 and libm.so.6 and you will end up with a list of
three files and three symbolic links. Copy them using cp -a, which will preserve the
symbolic link:

$ cd ~/rootfs
$ cp -a $SYSROOT/lib/ld-linux-armhf.so.3 lib
$ cp -a $SYSROOT/lib/ld-2.19.so lib
$ cp -a $SYSROOT/lib/libc.so.6 lib
$ cp -a $SYSROOT/lib/libc-2.19.so lib
$ cp -a $SYSROOT/lib/libm.so.6 lib
$ cp -a $SYSROOT/lib/libm-2.19.so lib

Repeat this procedure for each program.

It is only worth doing this to get the very smallest embedded footprint
possible. There is a danger that you will miss libraries that are loaded
through dlopen(3) calls - plugins mostly. We will look at an example
with the NSS libraries when we come to configure network interfaces
later on in this chapter.

Reducing size by stripping
Libraries and programs are often compiled with a symbol table information built in,
more so if you have compiled with the debug switch, -g. You seldom need these on
the target. A quick and easy way to save space is to strip them. This example shows
libc before and after stripping:

$ file rootfs/lib/libc-2.19.so
rootfs/lib/libc-2.19.so: ELF 32-bit LSB shared object, ARM, version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 3.15.4,
not stripped
$ ls -og rootfs/lib/libc-2.19.so
-rwxrwxr-x 1 1547371 Feb 5 10:18 rootfs/lib/libc-2.19.so
$ arm-cortex_a8-linux-gnueabi-strip rootfs/lib/libc-2.19.so
$ file rootfs/lib/libc-2.19.so
rootfs/lib/libc-2.19.so: ELF 32-bit LSB shared object, ARM, version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 3.15.4,
stripped
$ ls -l rootfs/lib/libc-2.19.so
-rwxrwxr-x 1 chris chris 1226024 Feb 5 10:19 rootfs/lib/libc-2.19.so
$ ls -og rootfs/lib/libc-2.19.so
-rwxrwxr-x 1 1226024 Feb 5 10:19 rootfs/lib/libc-2.19.so

In this case, we saved 321,347 bytes, which was about 20%.

When stripping kernel modules, use the following command:

Chapter 5

[107]

strip --strip-unneeded <module name>

Otherwise, you will strip out the symbols needed to relocate the module code and it
will fail to load.

Device nodes
Most devices in Linux are represented by device nodes, in accordance with the Unix
philosophy that everything is a file (except network interfaces, which are sockets). A
device node may refer to a block device or a character device. Block devices are mass
storage devices such as SD cards or hard drives. A character device is pretty much
anything else, once again with the exception of network interfaces. The conventional
location for device nodes is the directory /dev. For example, a serial port may be
represented by the device node /dev/ttyS0.

Device nodes are created using the program mknod (short for make node):

mknod <name> <type> <major> <minor>

name is the name of the device node that you want to create, type is either, c for
character devices, and b for block. They each have a major number and a minor
number which is used by the kernel to route file requests to the appropriate device
driver code. There is a list of standard major and minor numbers in the kernel source
in Documentation/devices.txt.

You will need to create device nodes for all the devices you want to access on your
system. You can do that manually by using the mknod command as I will illustrate
here, or you can use one of the device managers mentioned later to create them
automatically, at runtime.

You need just two nodes to boot with BusyBox: console and null. The console only
needs to be accessible to root, the owner of the device node, so the access permissions
are 600. The null device should be readable and writable by everyone, so the mode is
666. You can use the -m option to mknod to set the mode when creating the node. You
need to be root to create a device node:

$ cd ~/rootfs
$ sudo mknod -m 666 dev/null c 1 3
$ sudo mknod -m 600 dev/console c 5 1
$ ls -l dev
total 0
crw------- 1 root root 5, 1 Oct 28 11:37 console
crw-rw-rw- 1 root root 1, 3 Oct 28 11:37 null

You delete device nodes by using the standard rm command: there is no rmnod
command because, once created, they are just files.

Building a Root Filesystem

[108]

The proc and sysfs filesystems
proc and sysfs are two pseudo filesystems that give a window onto the inner
workings of the kernel. They both represent kernel data as files in a hierarchy of
directories: when you read one of the files, the contents you see do not come from
disk storage, it has been formatted on-the-fly by a function in the kernel. Some files
are also writable, meaning that a kernel function is called with the new data you
have written and, if it is of the correct format and you have sufficient permissions,
it will modify the value stored in the kernel's memory. In other works, proc and
sysfs provide another way to interact with device drivers and other kernel code.

proc and sysfs should be mounted on the directories /proc and /sys:

mount -t proc proc /proc

mount -t sysfs sysfs /sys

Although they are very similar in concept, they perform different functions. proc has
been part of Linux since the early days. Its original purpose was to expose information
about processes to user space, hence the name. To this end, there is a directory for each
process named /proc/<PID> which contains information about its state. The process
list command, ps, reads these files to generate its output. In addition, there are files
that give information about other parts of the kernel, for example, /proc/cpuinfo tells
you about the CPU, /proc/interrupts has information about interrupts, and so on.
Finally, in /proc/sys, there are files that display and control the state and behavior
of kernel sub-systems, especially scheduling, memory management, and networking.
The best reference for the files you will find in proc is man page proc(5).

In fact, over time, the number of files in proc and their layout has become rather
chaotic. In Linux 2.6, sysfs was introduced to export a subset of the data in an
ordered way.

In contrast, sysfs exports a very ordered hierarchy of files relating to devices and
the way they are connected to each other.

Mounting filesystems
The mount command allows us to attach one filesystem to a directory within another,
forming a hierarchy of filesystems. The one at the top, which was mounted by
the kernel when it booted, is called the root filesystem. The format of the mount
command is as follows:

mount [-t vfstype] [-o options] device directory

Chapter 5

[109]

You need to specify the type of the filesystem, vfstype, the block device node it
resides on, and the directory you want to mount it to. There are various options you
can give after the -o, have a look at the manual for more information. As an example,
if you want to mount an SD card containing an ext4 filesystem in the first partition
onto directory /mnt, you would type the following:

mount -t ext4 /dev/mmcblk0p1 /mnt

Assuming the mount succeeds, you would be able to see the files stored on the SD
card in the directory /mnt. In some cases, you can leave out the filesystem type and
let the kernel probe the device to find out what is stored there.

Looking at the example of mounting the proc filesystem, there is something odd:
there is no device node, /dev/proc, since it is a pseudo filesystem, not a real one.
But the mount command requires a device as a parameter. Consequently we have
to give a string where the device should go, but it does not matter much what that
string is. These two commands achieve exactly the same result:

mount -t proc proc /proc

mount -t proc nodevice /proc

It is fairly common to use the filesystem type in the place of the device when
mounting pseudo filesystems.

Kernel modules
If you have kernel modules, they need to be installed into the root filesystem, using
the kernel make modules_install target, as we saw in the last chapter. This will
copy them into the directory /lib/modules/<kernel version> together with the
configuration files needed by the modprobe command.

Be aware that you have just created a dependency between the kernel and the root
filesystem. If you update one, you will have to update the other.

Building a Root Filesystem

[110]

Transfering the root filesystem to
the target
Having created a skeleton root filesystem in your staging directory, the next task is to
transfer it to the target. In the sections that follow, I will describe three possibilities:

• ramdisk: a filesystem image that is loaded into RAM by the bootloader.
Ramdisks are easy to create and have no dependencies on mass storage
drivers. They can be used in fall-back maintenance mode when the main
root filesystem needs updating. They can even be used as the main root
filesystem in small embedded devices and, of course, as the early user
space in mainstream Linux distributions. A compressed ramdisk uses
the minimum amount of storage but still consumes RAM. The contents
are volatile so you need another storage type to store permanent data
such as configuration parameters.

• disk image: a copy of the root filesystem formatted and ready to be loaded
onto a mass storage device on the target. For example, it could be an image in
ext4 format ready to be copied onto an SD card, or it could be in jffs2 format
ready to be loaded into flash memory via the bootloader. Creating a disk image
is probably the most common option. There is more information about the
different types of mass storage in Chapter 7, Creating a Storage Strategy.

• network filesystem: the staging directory can be exported to the network
via an NFS server and mounted by the target at boot-time. This is often done
during the development phase in preference to repeated cycles of creating
a disk image and reloading it onto the mass storage device, which is quite a
slow process.

I will start with ramdisk and use it to illustrate a few refinements to the root
filesystem, like adding user names and a device manager to create device nodes
automatically. Then, I will show you how to create a disk image and, finally,
how to use NFS to mount the root filesystem over a network.

Creating a boot ramdisk
A Linux boot ramdisk, strictly speaking, an initial RAM filesystem or initramfs,
is a compressed cpio archive. cpio is an old Unix archive format, similar to TAR
and ZIP but easier to decode and so requiring less code in the kernel. You need to
configure your kernel with CONFIG_BLK_DEV_INITRD to support initramfs.

Chapter 5

[111]

In fact, there are three different ways to create a boot ramdisk: as a standalone cpio
archive, as a cpio archive embedded in the kernel image, and as a device table which
the kernel build system processes as part of the build. The first option gives the most
flexibility because we can mix and match kernels and ramdisks to our hearts content.
However, it means that you have two files to deal with instead of one and not all
bootloaders have the facility to load a separate ramdisk. I will show you how to
build one into the kernel later.

Standalone ramdisk
The following sequence of instructions creates the archive, compresses it and adds a
U-Boot header ready for loading onto the target:

$ cd ~/rootfs

$ find . | cpio -H newc -ov --owner root:root > ../initramfs.cpio

$ cd ..

$ gzip initramfs.cpio

$ mkimage -A arm -O linux -T ramdisk -d initramfs.cpio.gz uRamdisk

Note that we ran cpio with the option --owner root:root. This is a quick fix for
the file ownership problem mentioned earlier, making everything in the cpio file
UID and GID 0.

The final size of the uRamdisk file is ~ 2.9 MiB, with no kernel modules. Add to that
4.4 MiB for the kernel zImage file, and 440 KiB for U-Boot and this gives a total of 7.7
MiB of storage needed to boot this board. We are a little way off the 1.44 MiB floppy
that started it all off. If size was a real problem, you could use one of these options:

• Make the kernel smaller by leaving out drivers and functions you don't need
• Make BusyBox smaller by leaving out utilities you don't need
• Use uClibc or musl libc in place of glibc
• Compile BusyBox statically

Booting the ramdisk
The simplest thing we can do is to run a shell on the console so that we can interact
with the device. We can do that by adding rdinit=/bin/sh to the kernel command
line. Now, you can boot the device.

Building a Root Filesystem

[112]

Booting with QEMU
QEMU has the option -initrd to load initframfs into memory, so the full
command is now as follows:

$ cd ~/rootfs

$ QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M vexpress-a9 -kernel zImage
-append "console=ttyAMA0 rdinit=/bin/sh" -dtb vexpress-v2p-ca9.dtb
-initrd initramfs.cpio.gz

Booting the BeagleBone Black
To boot the BeagleBone Black, boot to the U-Boot prompt and enter these commands:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

fatload mmc 0:1 0x81000000 uRamdisk

setenv bootargs console=ttyO0,115200 rdinit=/bin/sh

bootz 0x80200000 0x81000000 0x80f00000

If all goes well, you will get a root shell prompt on the console.

Mounting proc
Note that the ps command doesn't work: that is because the proc filesystem has not
been mounted yet. Try mounting it and run ps again.

A refinement to this setup is to write a shell script that contains things that need to
be done at boot-up and give that as the parameter to rdinit=. The script would look
like the following snippet:

#!/bin/sh

/bin/mount -t proc proc /proc

/bin/sh

Using a shell as init in this way is very handy for quick hacks, for example, when
you want to rescue a system with a broken init program. However, in most cases,
you would use an init program, which we will cover further down.

Chapter 5

[113]

Building a ramdisk cpio into the kernel image
In some cases, it is preferable to build the ramdisk into the kernel image, for
example, if the bootloader cannot handle a ramdisk file. To do this, change the
kernel configuration and set CONFIG_INITRAMFS_SOURCE to the full path of the
cpio archive you created earlier. If you are using menuconfig, it is in General
setup | Initramfs source file(s). Note that it has to be the uncompressed cpio
file ending in .cpio; not the gzipped version. Then, build the kernel. You should
see that it is larger than before.

Booting is the same as before, except that there is no ramdisk file. For QEMU,
the command is like this:

$ cd ~/rootfs

$ QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M vexpress-a9 -kernel zImage -
append "console=ttyAMA0 rdinit=/bin/sh" -dtb vexpress-v2p-ca9.dtb

For the BeagleBone Black, enter these commands into U-Boot:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

setenv bootargs console=ttyO0,115200 rdinit=/bin/sh

bootz 0x80200000 – 0x80f00000

Of course, you must remember to rebuild the kernel each time you change the
contents of the ramdisk and regenerate the .cpio file.

Another way to build a kernel with ramdisk
An interesting way to build the ramdisk into the kernel image is by using a device
table to generate a cpio archive. A device table is a text file which lists the files,
directories, device nodes, and links that go into the archive. The overwhelming
advantage is that you can create entries in the cpio file that are owned by root, or
any other UID, without having root privileges yourself. You can even create device
nodes. All this is possible because the archive is just a data file. It is only when it is
expanded by Linux at boot time that real files and directories get created, using the
attributes you have specified.

Here is a device table for our simple rootfs, but missing most of the symbolic links
to busybox to make it manageable:

dir /proc 0755 0 0

dir /sys 0755 0 0

Building a Root Filesystem

[114]

dir /dev 0755 0 0

nod /dev/console 0600 0 0 c 5 1

nod /dev/null 0666 0 0 c 1 3

nod /dev/ttyO0 0600 0 0 c 252 0

dir /bin 0755 0 0

file /bin/busybox /home/chris/rootfs/bin/busybox 0755 0 0

slink /bin/sh /bin/busybox 0777 0 0

dir /lib 0755 0 0

file /lib/ld-2.19.so /home/chris/rootfs/lib/ld-2.19.so 0755 0 0

slink /lib/ld-linux.so.3 /lib/ld-2.19.so 0777 0 0

file /lib/libc-2.19.so /home/chris/rootfs/lib/libc-2.19.so 0755 0 0

slink /lib/libc.so.6 /lib/libc-2.19.so 0777 0 0

file /lib/libm-2.19.so /home/chris/rootfs/lib/libm-2.19.so 0755 0 0

slink /lib/libm.so.6 /lib/libm-2.19.so 0777 0 0

The syntax is fairly obvious:

• dir <name> <mode> <uid> <gid>

• file <name> <location> <mode> <uid> <gid>

• nod <name> <mode> <uid> <gid> <dev_type> <maj> <min>

• slink <name> <target> <mode> <uid> <gid>

The kernel provides a tool that reads this file and creates a cpio archive. The source is
in usr/gen_init_cpio.c. There is a handy script in scripts/gen_initramfs_list.
sh that creates a device table from a given directory, which saves a lot of typing.

To complete, the task, you need to set CONFIG_INITRAMFS_SOURCE to point to the
device table file and then build the kernel. Everything else is the same as before.

The old initrd format
There is an older format for a Linux ramdisk, known as initrd. It was the only
format available before Linux 2.6 and is still needed if you are using the mmu-less
variant of Linux, uCLinux. It is pretty obscure and I will not cover it here. There is
more information in the kernel source, in Documentation/initrd.txt.

Chapter 5

[115]

The init program
Running a shell, or even a shell script, at boot time is fine for simple cases, but really
you need something more flexible. Normally, Unix systems run a program called
init that starts up and monitors other programs. Over the years, there have been
many init programs, some of which I will describe in Chapter 9, Starting up - the init
Program. For now, I will briefly introduce the init from BusyBox.

init begins by reading the configuration file, /etc/inittab. Here is a simple
example which is adequate for our needs:

::sysinit:/etc/init.d/rcS
::askfirst:-/bin/ash

The first line runs a shell script, rcS, when init is started. The second line prints
the message Please press Enter to activate this console to the console, and starts a
shell when you press Enter. The leading - before /bin/ash means that it will be a
login shell, which sources /etc/profile and $HOME/.profile before giving the
shell prompt. One of the advantages of launching the shell like this is that job control
is enabled. The most immediate effect is that you can use Ctrl + C to terminate the
current program. Maybe you didn't notice it before but, wait until you run the ping
program and find you can't stop it!

BusyBox init provides a default inittab if none is present in the root filesystem.
It is a little more extensive than the preceding one.

The script /etc/init.d/rcS is the place to put initialization commands that need
to be performed at boot, for example, mounting the proc and sysfs filesystems:

#!/bin/sh
mount -t proc proc /proc
mount -t sysfs sysfs /sys

Make sure that you make rcS executable, like this:

$ cd ~/rootfs

$ chmod +x etc/init.d/rcS

You can try it out on QEMU by changing the -append parameter, like this:

-append "console=ttyAMA0 rdinit=/sbin/init"

To achieve the same on the BeagelBone Black, you need to change the bootargs
variable in U-Boot as shown:

setenv bootargs console=ttyO0,115200 rdinit=/sbin/init

Building a Root Filesystem

[116]

Configuring user accounts
As I have hinted already, it is not good practice to run all programs as root since,
if one is compromised by an outside attack, then the whole system is at risk and a
misbehaving program can do more damage if it is running as root. It is preferable
to create unprivileged user accounts and use them where full root is not necessary.

User names are configured in /etc/passwd. There is one line per user, with seven
fields of information separated by colons:

• The login name
• A hash code used to verify the password , or more usually an x to indicate

that the password is stored in /etc/shadow
• UID
• GID
• A comment field, often left blank
• The user's home directory
• (Optional) the shell this user will use

For example, this creates users root with UID 0 and daemon with UID 1:

root:x:0:0:root:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/false

Setting the shell for user daemon to /bin/false ensures that any attempt to log on
with that name will fail.

Various programs have to read /etc/passwd so as to be able to
look up UIDs and names, and so it has to be word-readable. That
is a problem if the password hashes are stored in there because a
malicious program would be able to take a copy and discover the
actual passwords using a variety of cracker programs. Therefore, to
reduce the exposure of this sensitive information, the passwords are
stored in /etc/shadow and an x is placed in the password field to
indicate that this is the case. /etc/shadow is only accessible as root,
and, so as long as the root user is restricted, the passwords are safe.

The shadow password file consists of one entry per user, made up of nine fields.
Here is an example that mirrors the passwd file shown in the preceding paragraph:

root::10933:0:99999:7:::
daemon:*:10933:0:99999:7:::

Chapter 5

[117]

The first two fields are the username and the password hash. The remaining seven
are related to password aging, which is not usually an issue on embedded devices.
If you are curious about the full details, refer to the manual page shadow(5).

In the example, the password for root is empty, meaning that root can log on
without giving a password, which is useful during development, but not for
production! You can generate a password hash by using the command mkpasswd or
by running the passwd command on the target and copy and pasting the hash field
from /etc/shadow on the target into the default shadow file in the staging directory.

The password for daemon is *, which will not match any logon password, once
again ensuring that the daemon cannot be used as a regular user account.

Group names are stored in a similar way in /etc/group. The format is as follows:

• The name of the group
• The group password, usually an x character, indicating that there is no

group password
• The GID
• An optional list of users who belong to this group, separated by commas.

Here is an example:

root:x:0:
daemon:x:1:

Adding user accounts to the root filesystem
Firstly, you have to add to your staging directory etc/passwd, etc/shadow, and
etc/group, as shown in the preceding section. Make sure that the permissions of
shadow are 0600.

The login procedure is started by a program called getty, which is part of BusyBox.
You launch it from inittab using the keyword respawn, which restarts getty when
a login shell is terminated, so inittab should read like this:

::sysinit:/etc/init.d/rcS
::respawn:/sbin/getty 115200 console

Then rebuild the ramdisk and try it out using QEMU or BeagelBone Black as before.

Building a Root Filesystem

[118]

Starting a daemon process
Typically, you would want to run certain background processes at start up. Let's take
the log daemon, syslogd, as an example. The purpose of syslogd is to accumulate
log messages from other programs, mostly other daemons. Naturally, BusyBox has
an applet for that!

Starting the daemon is as simple as adding a line like this to etc/inittab:

::respawn:syslogd -n

respawn means that, if the program terminates, it will be automatically restarted;
-n means that it should run as a foreground process. The log is written to /var/log/
messages.

You may also want to start klogd in the same way: klogd
sends kernel log messages to syslogd so that they can be
logged to permanent storage.
As an aside, I should mention that, in the case of a typical
embedded Linux system, writing log files to flash memory
is not such a good idea as it will wear it out. I will cover the
options for logging in Chapter 7, Creating a Storage Strategy.

A better way of managing device nodes
Creating device nodes statically with mknod is quite hard work and inflexible. There
are other ways to create device nodes automatically on demand:

• devtmpfs: This is a pseudo filesystem that you mount over /dev at boot
time. The kernel populates it with device nodes for all the devices that the
kernel currently knows about and creates nodes for new devices as they
are detected at runtime. The nodes are owned by root and have default
permissions of 0600. Some well-known device nodes, such as /dev/null
and /dev/random, override the default to 0666 (see struct memdev in
drivers/char/mem.c).

• mdev: This is a BusyBox applet that is used to populate a directory with
device nodes and to create new nodes as needed. There is a configuration
file, /etc/mdev.conf, which contains rules for ownership and the mode
of the nodes.

• udev: This is now part of systemd and is the solution you will find on
desktop Linux and some embedded devices. It is very flexible and a
good choice for higher end embedded devices.

Chapter 5

[119]

Although both mdev and udev create the device nodes
themselves, it is more usual to let devtmpfs do that job
and use mdev/udev as a layer on top to implement the
policy for setting ownership and permissions.

An example using devtmpfs
If you have booted up one of the earlier ramdisk examples, trying out devtmpfs
is as simple as entering this command:

mount -t devtmpfs devtmpfs /dev

You should see that /dev is full of device nodes. For a permanent fix, add this to
/etc/init.d/rcS:

#!/bin/sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys

mount -t devtmpfs devtmpfs /dev

In point of fact, kernel initialization does this automatically unless you have
supplied an initramfs ramdisk as we have done! To see the code, look in the
init/do_mounts.c, function prepare_namespace().

An example using mdev
While mdev is a bit more complex to set up, it does allow you to modify the
permissions of device nodes as they are created. Firstly, there is a startup phase,
selected by the -s option, when mdev scans the /sys directory looking for
information about current devices and populates the /dev directory with the
corresponding nodes.

If you want to keep track of new devices coming on line and create nodes for them
as well, you need to make mdev a hotplug client by writing to /proc/sys/kernel/
hotplug. These additions to /etc/init.d/rcS will achieve all of that:

#!/bin/sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys

mount -t devtmpfs devtmpfs /dev

echo /sbin/mdev > /proc/sys/kernel/hotplug

mdev -s

www.allitebooks.com

http://www.allitebooks.org

Building a Root Filesystem

[120]

The default mode is 660 and ownership is root:root. You can change that by
adding rules in /etc/mdev.conf. For example, to give the null, random, and
urandom devices their correct modes, you would add this to /etc/mdev.conf:

null root:root 666

random root:root 444

urandom root:root 444

The format is documented in the BusyBox source code in docs/mdev.txt and there
are more examples in the directory named examples.

Are static device nodes so bad after all?
Statically created device nodes do have one advantage: they don't take any time during
boot to create, whereas the other methods do. If minimizing boot time is a priority,
using statically-created device nodes will save a measurable amount of time.

Configuring the network
Next, let's look at some basic network configurations so that we can communicate
with the outside world. I am assuming that there is an Ethernet interface, eth0,
and that we only need a simple IP v4 configuration.

These examples use the network utilities that are part of BusyBox, and are sufficient
for a simple use case, using the old-but-reliable ifup and ifdown programs. You
can read the man pages on both for more details. The main network configuration is
stored in /etc/network/interfaces. You will need to create these directories in the
staging directory:

etc/network
etc/network/if-pre-up.d
etc/network/if-up.d
var/run

For a static IP address, etc/network/interfaces would look like this:

auto lo
iface lo inet loopback
auto eth0
iface eth0 inet static
 address 10.0.0.42
 netmask 255.255.255.0
 network 10.0.0.0

Chapter 5

[121]

For a dynamic IP address allocated using DHCP, etc/network/interfaces would
look like this:

auto lo
iface lo inet loopback
auto eth0
iface eth0 inet dhcp

You will also have to configure a DHCP client program. BusyBox has one named
udchpcd. It needs a shell script that should go in /usr/share/udhcpc/default.
script. There is a suitable default in the BusyBox source code in the directory
examples//udhcp/simple.script.

Network components for glibc
glibc uses a mechanism known as the name service switch (NSS) to control the
way that names are resolved to numbers for networking and users. User names, for
example, may be resolved to UIDs via the file /etc/passwd; network services such
as HTTP can be resolved to the service port number via /etc/services, and so on.
All this is configured by /etc/nsswitch.conf, see the manual page, nss(5) for
full details. Here is a simple example that will suffice for most embedded Linux
implementations:

passwd: files
group: files
shadow: files
hosts: files dns
networks: files
protocols: files
services: files

Everything is resolved by the correspondingly named file in /etc, except for the host
names, which may additionally be resolved by a DNS lookup.

To make this work, you need to populate /etc with those files. Networks, protocols,
and services are the same across all Linux systems, so they can be copied from /etc
in your development PC. /etc/hosts should, at least contain, the loopback address:

127.0.0.1 localhost

We will come to the others, passwd, group, and shadow, later.

Building a Root Filesystem

[122]

The last piece of the jigsaw is the libraries that perform the name resolution. They are
plugins that are loaded as needed based on the contents of nsswitch.conf, meaning
that they do not show up as dependencies if you use readelf or similar. You will
simply have to copy them from the toolchain's sysroot:

$ cd ~/rootfs

$ cp -a $TOOLCHAIN_SYSROOT/lib/libnss* lib

$ cp -a $TOOLCHAIN_SYSROOT/lib/libresolv* lib

Creating filesystem images with
device tables
The kernel has a utility, gen_init_cpio, that creates a cpio file based on format
instructions set out in a text file, called a device table, which allows a non-root
user to create device nodes and to allocate arbitrary UID and GID values to any
file or directory.

The same concept has been applied to tools that create other filesystem image formats:

• jffs2: mkfs.jffs2
• ubifs: mkfs.ubifs
• ext2: genext2fs

We will look at jffs2 and ubifs in Chapter 7, Creating a Storage Strategy, when
we look at filesystems for flash memory. The third, ext2, is a fairly old format for
hard drives.

They each take a device table file with the format <name> <type> <mode> <uid>
<gid> <major> <minor> <start> <inc> <count> in which the following applies:

• name: Filename
• type: One of the following:

 ° f: A regular file
 ° d: A directory
 ° c: A character special device file
 ° b: A block special device file
 ° p: A FIFO (named pipe)

• uid The UID of the file
• gid: The GID of the file

Chapter 5

[123]

• major and minor: the device numbers (device nodes only)
• start, inc, and count: (device nodes only) allow you to create a group of

device nodes starting from the minor number in start

You do not have to specify every file, as with gen_init_cpio: you just have to point
them at a directory – the staging directory – and list the changes and exceptions you
need to make in the final filesystem image.

A simple example which populates static device nodes for us is as follows:

/dev d 755 0 0 - - - - -
/dev/null c 666 0 0 1 3 0 0 -
/dev/console c 600 0 0 5 1 0 0 -
/dev/ttyO0 c 600 0 0 252 0 0 0 -

Then, use genext2fs to generate a filesystem image of 4 MiB (that is 4,096 blocks of
the default size, 1,024 bytes):

$ genext2fs -b 4096 -d rootfs -D device-table.txt -U rootfs.ext2

Now, you can copy the resulting image, rootfs.ext, to an SD card or similar.

Putting the root filesytem onto an SD card
This is an example of mounting a filesystem from a normal block device, such as
an SD card. The same principles apply to other filesystem types and we will look
at them in more detail in Chapter 7, Creating a Storage Strategy.

Assuming that you have a device with an SD card, and that the first partition is used
for the boot files, MLO and u-boot.img – as on a BeagleBone Black. Assume also that
you have used genext2fs to create a filesystem image. To copy it to the SD card,
insert the card and identify the block device it has been assigned: typically /dev/sd
or /dev/mmcblk0. If it is the latter, copy the filesystem image to the second partition:

$ sudo dd if=rootfs.ext2 of=/dev/mmcblk0p2

Then, slot the SD card into the device, and set the kernel command line to
root=/dev/mmcblk0p2. The complete boot sequence is as follows:

fatload mmc 0:1 0x80200000 zImage
fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb
setenv bootargs console=ttyO0,115200 root=/dev/mmcblk0p2
bootz 0x80200000 – 0x80f00000

Building a Root Filesystem

[124]

Mounting the root filesystem using NFS
If your device has a network interface, it is best to mount the root filesystem over the
network during development. It gives you access to almost unlimited storage so you
can add in debug tools and executables with large symbol tables. As an added bonus,
updates made to the root filesystem hosted on the development machine are made
available on the target immediately. You also have a copy of log files.

For this to work, your kernel has to be configured with CONFIG_ROOT_NFS. Then, you
can configure Linux to do the mount at boot time by adding the following to the kernel
command line:

root=/dev/nfs

Give the details of the NFS export as follows:

nfsroot=<host-ip>:<root-dir>

Configure the network interface that connects to the NFS server so that it is available
at boot time, before the init program runs by using this command:

ip=<target-ip>

There is more information about NFS root mounts in the kernel source in
Documentation/filesystems/nfs/nfsroot.txt.

You also need to install and configure an NFS server on your host which, for Ubuntu,
you can do with this command:

$ sudo apt-get install nfs-kernel-server

The NFS server needs to be told which directories are being exported to the network,
which is controlled by /etc/exports. Add a line like this one to that file:

/<path to staging> *(rw,sync,no_subtree_check,no_root_squash)

Then, restart the server to pick up the change which, for Ubuntu, is:

$ sudo /etc/init.d/nfs-kernel-server restart

Chapter 5

[125]

Testing with QEMU
The following script creates a virtual network between the network device tap0
on the host and eth0 on the target using a pair of static IPv4 addresses and then
launches QEMU with the parameters to use tap0 as the emulated interface.
You will need to change the path to the root filesystem to be the full path to
your staging directory, and maybe the IP addresses if they conflict with your
network configuration:

#!/bin/bash

KERNEL=zImage
DTB=vexpress-v2p-ca9.dtb
ROOTDIR=/home/chris/rootfs

HOST_IP=192.168.1.1
TARGET_IP=192.168.1.101
NET_NUMBER=192.168.1.0
NET_MASK=255.255.255.0

sudo tunctl -u $(whoami) -t tap0
sudo ifconfig tap0 ${HOST_IP}
sudo route add -net ${NET_NUMBER} netmask ${NET_MASK} dev tap0
sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"

QEMU_AUDIO_DRV=none \
qemu-system-arm -m 256M -nographic -M vexpress-a9 -kernel $KERNEL
-append "console=ttyAMA0 root=/dev/nfs rw
nfsroot=${HOST_IP}:${ROOTDIR} ip=${TARGET_IP}" -dtb ${DTB} -net
nic -net tap,ifname=tap0,script=no

The script is available as run-qemu-nfs.sh.

It should boot up as before, but now using the staging directory directly via the
NFS export. Any files that you create in that directory will be immediately visible
to the target device and any files created in the device will be visible to the
development PC.

Building a Root Filesystem

[126]

Testing with BeagleBone Black
In a similar way, you can enter these commands at the U-Boot prompt of the
BeagleBone Black:

setenv serverip 192.168.1.1

setenv ipaddr 192.168.1.101

setenv npath [path to staging directory]

setenv bootargs console=ttyO0,115200 root=/dev/nfs rw
nfsroot=${serverip}:${npath} ip=${ipaddr}

Then; to boot it, load the kernel and dtb from sdcard, as before:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

bootz 0x80200000 - 0x80f00000

Problems with file permissions
The files that were already in the staging directory are owned by you and will
show up on the target when you run ls -l with whatever your UID is, typically
1,000. Any files created by the target device will be owned by root. The whole
thing is a mess.

Unfortunately, there is no simple way out. The best advice is to make a copy of the
staging directory and change ownership to root:root (using sudo chown -R
0:0 *) and export this directory as the NFS mount. It reduces the inconvenience
of having just one copy of the root filesystem shared between development and
target systems.

Using TFTP to load the kernel
When working with real hardware such as the BeagleBone Black, it is best to load
the kernel over the network, especially when the root filesystem is mounted via NFS.
In this way, you are not using any local storage on the device. It saves time if you
don't have to keep re-flashing the memory and means that you can get work done
while the flash storage drivers are still being developed (it happens).

U-Boot has supported the Trivial File Transfer Protocol (TFTP) for many years.
Firstly, you need to install a tftp daemon on your development machine. On Ubuntu,
you would install the tftpd-hpa package, which grants read access to files in the
directory /var/lib/tftpboot to tftp clients like U-Boot.

Chapter 5

[127]

Assuming that you have copied zImage and am335x-boneblack.dtb into /var/
lib/tftpboot, enter these commands into U-Boot to load and boot:

setenv serverip 192.168.1.1
setenv ipaddr 192.168.1.101
tftpboot 0x80200000 zImage
tftpboot 0x80f00000 am335x-boneblack.dtb
setenv npath [path to staging]
setenv bootargs console=ttyO0,115200 root=/dev/nfs rw
nfsroot=${serverip}:${npath} ip=${ipaddr}
bootz 0x80200000 - 0x80f00000

It is fairly common for the response to tftpboot to look like this:

setenv ipaddr 192.168.1.101
nova!> setenv serverip 192.168.1.1
nova!> tftpboot 0x80200000 zImage
link up on port 0, speed 100, full duplex
Using cpsw device
TFTP from server 192.168.1.1; our IP address is 192.168.1.101
Filename 'zImage'.
Load address: 0x80200000
Loading: T T T T

The row of T characters on the last line indicate that there is something wrong and
the TFTP requests are timing out. The most common reasons are as follows:

• Incorrect IP address for server.
• TFTP daemon not running on server.
• Firewall on server is blocking the TFTP protocol. Most firewalls do indeed

block the TFTP port, 69, by default.

In this case, the tftp daemon was not running, so I started it with the
following command:
$ sudo service tftpd-hpa restart

Additional reading
• Filesystem Hierarchy Standard, currently at version 3.0 available at

http://refspecs.linuxfoundation.org/fhs.shtml.
• ramfs, rootfs and initramfs , Rob Landley, October 17, 2005, which is part of

the Linux source code available at Documentation/filesystems/ramfs-
rootfs-initramfs.txt.

Building a Root Filesystem

[128]

Summary
One of the strengths of Linux is that it can support a wide range of root filesystems
which allow it to be tailored to suit a wide range of needs. We have seen that it is
possible to construct a simple root filesystem manually with a small number of
components, and that BusyBox is especially useful in this regard. By going through
the process one step at a time, it has given us insight into some of the basic workings
of Linux systems, including network configuration and user accounts. However, the
task rapidly becomes unmanageable as devices get more complex. And, there is the
ever-present worry that there may be a security hole in the implementation which
we have not noticed. In the next chapter, we will look at using embedded build
systems to help us out.

[129]

Selecting a Build System
The preceding chapters covered the four elements of embedded Linux and
showed you, step-by-step, how to build a toolchain, a bootloader, a kernel, and
a root filesystem, and then combine them into a basic embedded Linux system.
And there are a lot of steps! Now it is time to look at ways to simplify the process by
automating it as much as possible. I will look at how embedded build systems can
help, and look at two in particular: Buildroot and the Yocto Project. Both are complex
and flexible tools which would require an entire book to adequately describe how
they work. In this chapter, I only want to show you the general ideas behind build
systems. I will show you how to build a simple device image to get an overall feel
of the system and then how to make some useful changes, using the Nova board
example from the previous chapters.

No more rolling your own embedded
Linux
The process of creating a system manually, as described in Chapter 5, Building a Root
Filesystem, is called the roll your own (RYO) process. It has the advantage that you
are in complete control of the software and you can tailor it to do anything you like.
If you want it to do something truly odd but innovative, or if you want to reduce
the memory footprint to the smallest possible, RYO is the way to go. But, in the vast
majority of situations, building manually is a waste of time and produces inferior,
unmaintainable systems.

They are usually built incrementally over a period of months, often undocumented
and seldom recreated from scratch because nobody had a clue where each part
came from.

Selecting a Build System

[130]

Build systems
The idea of a build system is to automate all the steps I have described up to
this point. A build system should be able to build, from upstream source code,
some or all of the following:

• The toolchain
• The bootloader
• The kernel
• The root filesystem

Building from an upstream source is important for a number of reasons. It means
that you have peace of mind that you can rebuild at any time, without external
dependencies. It also means that you have the source code for debugging and that
you can meet your license requirements to distribute that to users where necessary.

Therefore to do its job, a build system has to be able to do the following:

• Download a source from upstream, either directly from the source code
control system or as an archive, and cache it locally

• Apply patches to enable cross compilation, fix architecture-dependent bugs,
apply local configuration policies, and so on

• Build the various components
• Create a staging area and assemble a root filesystem
• Create image files in various formats ready to be loaded onto the target

Other things that are useful are as follows:

• Add your own packages containing, for example, applications or kernel
changes

• Select various root filesystem profiles: large or small, with and without
graphics or other features

• Create a standalone SDK that you can distribute to other developers so
that they don't have to install the complete build system

• Track which open source licenses are used by the various packages you
have selected

• Allow you to create updates for in-field updating
• Have a user-friendly user interface

Chapter 6

[131]

In all cases, they encapsulate the components of a system into packages, some for
the host and some for the target. Each package is defined by a set of rules to get the
source, build it, and install the results in the correct location. There are dependencies
between the packages and a build mechanism to resolve the dependencies and build
the set of packages required.

Open source build systems have matured considerably over the last few years.
There are many around, including:

• Buildroot: An easy-to-use system using GNU make and Kconfig
(http://buildroot.org)

• EmbToolkit: A simple system for generating root filesystems; the only
one at the time of writing that supports LLVM/Clang out of the box
(https://www.embtoolkit.org)

• OpenEmbedded: A powerful system which is also a core component of the
Yocto Project and others (http://openembedded.org)

• OpenWrt: A build tool oriented towards building firmware for wireless
routers (https://openwrt.org)

• PTXdist: An open source build system sponsored by Pengutronix
(http://www.pengutronix.de/software/ptxdist/index_en.html)

• Tizen: A comprehensive system, with emphasis on mobile, media,
and in-vehicle devices (https://www.tizen.org)

• The Yocto Project: This extends the OpenEmbedded core with configuration,
layers, tools, and documentation: probably the most popular system
(http://www.yoctoproject.org)

I will concentrate on two of these: Buildroot and The Yocto Project. They approach
the problem in different ways and with different objectives.

Buildroot has the primary aim of building root filesystem images, hence the name,
although it can build bootloader and kernel images as well. It is easy to install and
configure, and generates target images quickly.

The Yocto Project, on the other hand, is more general in the way it defines the target
system and so it can build fairly complex embedded devices. Every component is
generated as a package in RPM, .dpkg or .ipk format (see the following section) and
then the packages are combined together to make the filesystem image. Furthermore,
you can install a package manager in the filesystem image, which allows you to
update packages at runtime. In other words, when you build with the Yocto Project,
you are, in effect, creating your own custom Linux distribution.

Selecting a Build System

[132]

Package formats and package managers
Mainstream Linux distributions are, in most cases, constructed from collections of
binary (precompiled) packages in either RPM or deb format. RPM stands for Red
Hat Package Manager and is used in Red Hat, Suse, Fedora, and other distributions
based on them. Debian-derived distributions, including Ubuntu and Mint, use the
Debian package manager format, deb. In addition, there is a light-weight format
specific to embedded devices known as the Itsy PacKage format, or ipk, which is
based on deb.

The ability to include a package manager on the device is one of the big
differentiators between build systems. Once you have a package manager on the
target device, you have an easy path to deploy new packages to it and to update
existing ones. I will talk about the implications of this in the next chapter.

Buildroot
The Buildroot project website is at http://buildroot.org.

Current versions of Buildroot are capable of building a toolchain, a bootloader
(U-Boot, Barebox, GRUB2, or Gummiboot), a kernel, and a root filesystem. It uses
GNU make as the principal build tool.

There is good online documentation at http://buildroot.org/docs.html,
including The Buildroot User Manual.

Background
Buildroot was one of the first build systems. It began as part of the uClinux and
uClibc projects as a way of generating a small root filesystem for testing. It became a
separate project in late 2001 and continued to evolve through to 2006, after which it
went into a rather dormant phase. However, since 2009, when Peter Korsgaard took
over stewardship, it has been developing rapidly, adding support for glibc-based
toolchains and the ability to build a bootloader and a kernel.

Buildroot is also the foundation of another popular build system, OpenWrt
(http://wiki.openwrt.org) which forked from Buildroot around 2004.
The primary focus of OpenWrt is to produce software for wireless routers
and so the package mix is oriented towards networking infrastructure. It also
has a runtime package manager using the .ipk format so that a device can be
updated or upgraded without a complete re-flash of the image.

Chapter 6

[133]

Stable releases and support
The Buildroot developers produce stable releases four times a year, in February,
May, August, and November. They are marked by git tags of the form <year>.02,
<year>.05, <year>.08, and <year>.11. Typically, when you start your project,
you will be using the latest stable release. However, the stable releases are seldom
updated after release. To get security fixes and other bug fixes you will have to
either continually update to the next stable release as they become available or
backport the fixes into your version.

Installing
As usual, you can install Buildroot either by cloning the repository or downloading
an archive. Here is an example of obtaining version 2015.08.1, which was the latest
stable version at the time of writing:

$ git clone git://git.buildroot.net/buildroot

$ cd buildroot

$ git checkout 2015.08.1

The equivalent TAR archive is available from http://buildroot.org/downloads.

Next, you should read the section titled System Requirement from The Buildroot User
Manual, available at http://buildroot.org/downloads/manual/manual.html
and make sure that you have installed all the packages listed there.

Configuring
Buildroot uses the Kconfig and Kbuild mechanisms as the kernel, which I described
in the section Understanding kernel configuration in Chapter 4, Porting and Configuring
the Kernel. You can configure it from scratch directly using make menuconfig (or
xconfig or gconfig), or you can choose one of the 90 or so configurations for
various development boards and the QEMU emulator which you can find stored in
the directory configs/. Typing make help lists all the targets including the default
configurations.

Let's begin by building a default configuration that you can run on the ARM QEMU
emulator:

$ cd buildroot

$ make qemu_arm_versatile_defconfig

$ make

Selecting a Build System

[134]

Note that you do not tell make how many parallel jobs to run with
a -j option: Buildroot will make optimum use of your CPUs all by
itself. If you want to limit the number of jobs, you can run make
menuconfig and look under Build options.

The build will take half an hour to an hour, depending on the capabilities of your
host system and the speed of your link to the Internet. When it is complete, you will
find that two new directories have been created:

• dl/: This contains archives of the upstream projects that Buildroot has built
• output/: This contains all the intermediate and final compiled resources

You will see the following in output/:

• build/: This is the build directory for each component.
• host/: This contains various tools required by Buildroot that run on the host,

including the executables of the toolchain (in output/host/usr/bin).
• images/: This is the most important of all and contains the results of the

build. Depending on what you selected when configuring, you will find a
bootloader, a kernel, and one or more root filesystem images.

• staging/: This is a symbolic link to the sysroot of the toolchain. The name
of the link is a little confusing because it does not point to a staging area as I
defined it in Chapter 5, Building a Root Filesystem.

• target/: This is the staging area for the root directory. Note that you cannot
use this as a root filesystem, as it stands, because the file ownership and
permissions are not set correctly. Buildroot uses a device table, as described
in the previous chapter, to set ownership and permissions when the
filesystem image is created.

Running
Some of the sample configurations have a corresponding entry in the directory
boards/, which contains custom configuration files and information about installing
the results on the target. In the case of the system you have just built, the relevant
file is board/qemu/arm-vexpress/readme.txt, which tells you how to start QEMU
with this target.

Chapter 6

[135]

Assuming that you have already installed qemu-system-arm as described in
Chapter 1, Starting Out, you can run it using this command:

$ qemu-system-arm -M vexpress-a9 -m 256 \

-kernel output/images/zImage \

-dtb output/images/vexpress-v2p-ca9.dtb \

-drive file=output/images/rootfs.ext2,if=sd \

-append "console=ttyAMA0,115200 root=/dev/mmcblk0" \

-serial stdio -net nic,model=lan9118 -net user

You should see the kernel boot messages appear in the same terminal window where
you started QEMU, followed by a login prompt:

Booting Linux on physical CPU 0x0

Initializing cgroup subsys cpuset

Linux version 4.1.0 (chris@builder) (gcc version 4.9.3 (Buildroot
2015.08)) #1 SMP Fri Oct 30 13:55:50 GMT 2015

CPU: ARMv7 Processor [410fc090] revision 0 (ARMv7), cr=10c5387d

CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction
cache

Machine model: V2P-CA9

[...]

VFS: Mounted root (ext2 filesystem) readonly on device 179:0.

devtmpfs: mounted

Freeing unused kernel memory: 264K (8061e000 - 80660000)

random: nonblocking pool is initialized

Starting logging: OK

Starting mdev...

Initializing random number generator... done.

Starting network...

Welcome to Buildroot

buildroot login:

Log in as root, no password.

Selecting a Build System

[136]

You will see that QEMU launches a black window in addition to the one with the
kernel boot messages. It is there to display the graphics frame buffer of the target.
In this case, the target never writes to the framebuffer, which is why it appears
black. To close QEMU, either type poweroff at the root prompt or just close the
framebuffer window. This works with QEMU 2.0 (default on Ubuntu 14.04),
but fails with earlier versions including QEMU 1.0.50 (default on Ubuntu 12.04)
because of problems with the SCSI emulation.

Creating a custom BSP
Next, let's use Buildroot to create a BSP for our Nova board, using the same versions
of U-Boot and Linux from earlier chapters. The recommended places to store your
changes are:

• board/<organization>/<device>: contains any patches, binary blobs, extra
build steps, configuration files for Linux, U-Boot, and other components

• configs/<device>_defconfig: contains the default configuration for
the board

• packages/<organization>/<package_name>: is the place to put any
additional packages for this board

We can use the BeagleBone configuration file as a base, since Nova is a close cousin:

$ make clean # Always do a clean when changing targets

$ make beaglebone_defconfig

Now the .config file is set for BeagleBone. Next, create a directory for the
board configuration:

$ mkdir -p board/melp/nova

U-Boot
In Chapter 3, All About Bootloaders, we created a custom bootloader for Nova, based
on the 2015.07 of U-Boot version and created a patch file for it. We can configure
Buildroot to select the same version, and apply our patch. Begin by by copying the
patch file into board/melp/nova, and then use make menuconfig to set the U-Boot
version to 2015.07, the patch directory to board/melp/nova and the board name to
nova, as shown in this screenshot:

Chapter 6

[137]

Linux
In Chapter 4, Porting and Configuring the Kernel, we based the kernel on Linux 4.1.10
and supplied a new device tree, named nova.dts. Copy the device tree to board/
melp/nova and change the Buildroot kernel configuration to use this version and
the nova device tree as show in in this screenshot:

Selecting a Build System

[138]

Build
Now you can build the system for the Nova board just by typing make, which
produces these files in the directory output/images:

MLO nova.dtb rootfs.ext2 u-boot.img uEnv.txt zImage

The last step is to save a copy of the configuration so that you and others can
use it again:

$ make savedefconfig BR2_DEFCONFIG=configs/nova_defconfig

Now, you have a Buildroot configuration for the Nova board.

Adding your own code
Suppose that there are some programs that you have developed that you want to
include in the build. You have two options: firstly to build them separately, using
their own build systems, and then roll the binary into the final build as an overlay.
Secondly you could create a Buildroot package that can be selected from the menu
and built like any other.

Overlay
An overlay is simply a directory structure that is copied over the top of the Buildroot
root filesystem at a late stage in the build process. It can contain executables, libraries
and anything else you may want to include. Note that any compiled code must
be compatible with the libraries deployed at runtime, which means that it must
be compiled with the same toolchain that Buildroot uses. Using the Buildroot
toolchain is quite easy: just add it to the path:

$ PATH=<path_to_buildroot>/output/host/usr/bin:$PATH

The prefix for the tools is <ARCH>-linux-.

The overlay directory is set by BR2_ROOTFS_OVERLAY, which contains a list
of directories separated by spaces, which you should overlay on the Buildroot
root filesystem. It can be configured in menuconfig with the option System
configuration | Root filesystem overlay directories.

Chapter 6

[139]

For example, if you add a helloworld program to the bin directory, and a
script to start it at boot time, you would create an overlay directory with the
following contents:

Then you would add board/melp/nova/overlay to the overlay options.

The layout of the root filesystem is controlled by the system/skeleton directory,
and the permissions are set in device_table_dev.txt and device_table.txt.

Adding a package
Buildroot packages are stored in the package directory, over 1,000 of them,
each in its own subdirectory. A package consists of at least two files: Config.
in, containing the snippet of Kconfig code required to make the package visible
in the configuration menu, and a makefile named <package_name>.mk. Note
that the package does not contain the code, just the instructions to get the code by
downloading a tarball, doing a git pull, and so on.

The makefile is written in a format expected by Buildroot and contains directives
that allow Buildroot to download, configure, compile, and install the program.
Writing a new package makefile is a complex operation which is covered in detail
in the Buildroot User Manual. Here is an example which shows you how to create a
package for a simple program stored locally, such as our helloworld program.

Begin by creating the subdirectory package/helloworld with a configuration file,
Config.in, that looks like this:

config BR2_PACKAGE_HELLOWORLD
bool "helloworld"
help
 A friendly program that prints Hello World! every 10s

Selecting a Build System

[140]

The first line must be of the format BR2_PACKAGE_<uppercase package name>. That
is followed by a Boolean and the package name as it will appear in the configuration
menu and which will allow a user to select this package. The Help section is optional
(but hopefully useful).

Next, link the new package into the Target Packages menu by editing
package/Config.in and sourcing the configuration file as mentioned in the
preceding section. You could append this to an existing sub-menu but, in this case,
it seems neater to create a new sub-menu which only contains our package:

menu "My programs"
 source "package/helloworld/Config.in"
endmenu

Then, create a makefile, package/helloworld/helloworld.mk, to supply the data
needed by Buildroot:

HELLOWORLD_VERSION:= 1.0.0
HELLOWORLD_SITE:= /home/chris/MELP/helloworld/
HELLOWORLD_SITE_METHOD:=local
HELLOWORLD_INSTALL_TARGET:=YES

define HELLOWORLD_BUILD_CMDS
 $(MAKE) CC="$(TARGET_CC)" LD="$(TARGET_LD)" -C $(@D) all
endef

define HELLOWORLD_INSTALL_TARGET_CMDS
 $(INSTALL) -D -m 0755 $(@D)/helloworld $(TARGET_DIR)/bin
endef

$(eval $(generic-package))

The location of the code is hard-coded to a local path name. In a more realistic case,
you would get the code from a source code system or from a central server of some
kind: there are details of how to do this in the Buildroot User Guide and plenty of
examples in other packages.

License compliance
Buildroot is based on open source software, as are the packages it compiles. At some
point during the project, you should check the licenses, which you can do by running:

$ make legal-info

Chapter 6

[141]

The information is gathered into output/legal-info. There are summaries of the
licenses used to compile the host tools in host-manifest.csv and, on the target,
in manifest.csv. There is more information in the README file and in the Buildroot
User Manual.

The Yocto Project
The Yocto Project is a more complex beast than Buildroot. Not only can it build
toolchains, bootloaders, kernels, and root filesystems, as Buildroot can, but it can
generate an entire Linux distribution for you, with binary packages that can be
installed at runtime.

The Yocto Project is primarily a group of recipes, similar to Buildroot packages
but written using a combination of Python and shell script, and a task scheduler
called BitBake that produces whatever you have configured, from the recipes.

There is plenty of online documentation at https://www.yoctoproject.org/.

Background
The structure of the Yocto Project makes more sense if you look at the background
first. Its roots are in OpenEmbedded, http://openembedded.org/ which, in turn,
grew out of a number of projects to port Linux to various hand-held computers,
including the Sharp Zaurus and Compaq iPaq. OpenEmbedded came to life in
2003 as the build system for those hand-held computers but quickly expanded
to encompass other embedded boards. It was developed and continues to be
developed by an enthusiastic community of programmers.

The OpenEmbedded project set out to create a set of binary packages using the
compact .ipk format, which could then be combined in various ways to create a
target system and be installed on the target at runtime. It did this by creating recipes
for each piece of software and using BitBake as the task scheduler. It was, and
is, very flexible. By supplying the right metadata, you can create an entire Linux
distribution to your own specification. One that is fairly well known is The Ångström
Distribution, http://www.angstrom-distribution.org, but there are many others.

Selecting a Build System

[142]

At some time in 2005 Richard Purdie, then a developer at OpenedHand, created
a fork of OpenEmbedded which had a more conservative choice of packages and
created releases that were stable over a period of time. He named it Poky, after the
Japanese snack (if you are worried about these things, Poky is pronounced to rhyme
with hockey). Although Poky was a fork, OpenEmbedded and Poky continued to
run alongside each other, sharing updates and keeping the architectures more or less
in step. Intel brought out OpenedHand in 2008 and they transferred Poky Linux to
the Linux Foundation in 2010 when they formed the Yocto Project.

Since 2010, the common components of OpenEmbedded and Poky have been
combined into a separate project known as OpenEmbedded core, or just oe-core.

Therefore, the Yocto Project collects together several components, the most important
of which are the following:

• Poky: The reference distribution
• oe-core: The core metadata, which is shared with OpenEmbedded
• BitBake: The task scheduler, which is shared with OpenEmbedded and

other projects
• Documentation: User manuals and developer's guides for each component
• Hob: A graphical user interface to OpenEmbedded and BitBake
• Toaster: A web-based interface to OpenEmbedded and BitBake
• ADT Eclipse: A plug-in for Eclipse that makes it easier to build projects

using the Yocto Project SDK

Strictly speaking, the Yocto Project is an umbrella for these sub-projects. It uses
OpenEmbedded as its build system, and Poky as its default configuration and
reference environment. However, people often use the term "the Yocto Project" to
refer to the build system alone. I feel that it is too late for me to turn this tide, so for
brevity I will do the same. I apologise in advance to the developers of OpenEmbedded.

The Yocto Project provides a stable base which can be used as it is or which can be
extended using meta layers, which I will discuss later in this chapter. Many SoC
vendors provide board support packages for their devices in this way. Meta layers
can also be used to create extended, or just different, build systems. Some are open
source, such as the Angstrom Project, others are commercial, such as MontaVista
Carrier Grade Edition, Mentor Embedded Linux, and Wind River Linux. The Yocto
Project has a branding and compatibility testing scheme to ensure that there is
interoperability between components. You will see statements like Yocto Project
Compatible 1.7 on various web pages.

Chapter 6

[143]

Consequently, you should think of the Yocto Project as the foundation of a whole
sector of embedded Linux, as well as being a complete build system in its own right.
You may be wondering about the name, yocto. A yocto is the SI prefix for 10-24, in the
same way that micro is 10-6. Why name the project yocto? It was partly to indicate
that it could build very small Linux systems (although, to be fair, so can other build
systems), but also, perhaps, to steal a march on the Ångström distribution which is
based on OpenEmbedded. An Ångström is 10-10. That's huge, compared to a yocto!

Stable releases and support
Usually, there is a release of the Yocto Project every six months, in April and
October. They are principally known by the code name, but it is useful to know the
version numbers of the Yocto Project and Poky as well. Here is a table of the four
most recent releases at the time of writing:

Code name Release date Yocto version Poky version
Fido April 2015 1.8 13
Dizzy October 2014 1.7 12
Daisy April 2014 1.6 11
Dora October 2013 1.5 10

The stable releases are supported with security and critical bug fixes for the
current release cycle and the next cycle, that is approximately twelve months after
release. No toolchain or kernel version changes are allowed for these updates. As
with Buildroot, if you want continued support, you can update to the next stable
release or you can backport changes to your version. You also also have the option
of commercial support for periods of several years with the Yocto Project from
operating system vendors such as Mentor Graphics, Wind River, and many others.

Installing the Yocto Project
To get a copy of the Yocto Project, you can either clone the repository, choosing the
code name as the branch which is fido in this case:

$ git clone -b fido git://git.yoctoproject.org/poky.git

You can also download the archive from http://downloads.yoctoproject.org/
releases/yocto/yocto-1.8/poky-fido-13.0.0.tar.bz2.

In the first case, you will find everything in the poky directory, in the second case,
poky-fido-13.0.0/.

Selecting a Build System

[144]

In addition, you should read the section titled System Requirements from the Yocto
Project Reference Manual (http://www.yoctoproject.org/docs/current/ref-
manual/ref-manual.html#detailed-supported-distros) and, in particular, you
should make sure that the packages listed there are installed on your host computer.

Configuring
As with Buildroot, let's begin with a build for the ARM QEMU emulator. Begin by
sourcing a script to set up the environment:

$ cd poky

$ source oe-init-build-env

That creates a working directory for you named build and makes it the current
directory. All of the configuration, intermediate, and deployable files will be put in
this directory. You must source this script each time you want to work on this project.

You can choose a different working directory by adding it as a parameter to
oe-init-build-env, for example:

$ source oe-init-build-env build-qemuarm

That will put you into the build-qemuarm directory. You can then have several
projects on the go at the same time: you choose which one you want to work with
through the parameter to oe-init-build-env.

Initially, the build directory contains only one subdirectory named conf, which
contains the configuration files for this project:

• local.conf: Contains a specification of the device you are going to build
and the build environment.

• bblayers.conf: Contains a list of the directories that contain the layers you
are going to use. There will be more on layers later on.

• templateconf.cfg: Contains the name of a directory which contains various
conf files. By default, it points to meta-yocto/conf.

For now, we just need to set the MACHINE variable in local.conf to qemuarm by
removing the comment character at the start of this line:

MACHINE ?= "qemuarm"

Chapter 6

[145]

Building
To actually perform the build, you need to run bitbake, telling it which root
filesystem image you want to create. Some common images are as follows:

• core-image-minimal: A small console-based system which is useful for
tests and as the basis for custom images.

• core-image-minimal-initramfs: This is similar to core-image-minimal,
but built as a ramdisk.

• core-image-x11: A basic image with support for graphics through an X11
server and the xterminal terminal app.

• core-image-sato: A full graphical system based on Sato, which is a mobile
graphical environment built on X11, and GNOME. The image includes
several apps including a terminal, an editor, and a file manager.

By giving BitBake the final target, it will work backwards and build all the
dependencies first, beginning with the toolchain. For now, we just want to
create a minimal image to see whether or not it works:

$ bitbake core-image-minimal

The build is likely to take some time, maybe more than an hour. When it is
complete, you will find several new directories in the build directory including
build/downloads, which contains all the source downloaded for the build,
and build/tmp which contains most of the build artifacts. You should see the
following in tmp:

• work: Contains the build directory and the staging area for all components,
including the root filesystem

• deploy: Contains the final binaries to be deployed on the target:
 ° deploy/images/[machine name]: Contains the bootloader, the

kernel, and the root filesystem images ready to be run on the target
 ° deploy/rpm: Contains the RPM packages that went to make up

the images
 ° deploy/licenses: Contains the license files extracted from

each package

Selecting a Build System

[146]

Running
When you build a QEMU target, an internal version of QEMU is generated,
which removes the need to install the QEMU package for your distribution and
thus avoids version dependencies. There is a wrapper script named runqemu for
this internal QEMU.

To run the QEMU emulation, make sure that you have sourced oe-init-build-env
and then just type:

$ runqemu qemuarm

In this case, QEMU has been configured with a graphic console so that the boot
messages and login prompt appear in the black framebuffer screen:

Chapter 6

[147]

You can log on as root, without a password. You can close down QEMU by closing
the framebuffer window. You can launch QEMU without the graphic window by
adding nographic to the command line:

$ runqemu qemuarm nographic

In this case, you close QEMU using the key sequence Ctrl + A + X.

The runqemu script has many other options, type runqemu help for more information.

Layers
The metadata for the Yocto Project is structured into layers, by convention, each with
a name beginning with meta. The core layers of the Yocto Project are as follows:

• meta: This is the OpenEmbedded core
• meta-yocto: Metadata specific to the Yocto Project, including the

Poky distribution
• meta-yocto-bsp: Contains the board support packages for the reference

machines that the Yocto Project supports

The list of layers in which BitBake searches for recipes is stored in
<your build directory>/conf/bblayers.conf and, by default, includes all
three layers mentioned in the preceding list.

By structuring the recipes and other configuration data in this way, it is very easy to
extend the Yocto Project by adding new layers. Additional layers are available from
SoC manufacturers, the Yocto Project itself, and a wide range of people wishing to
add value to the Yocto Project and OpenEmbedded. There is a useful list of layers
at http://layers.openembedded.org. Here are some examples:

• meta-angstrom: The Ångström distribution
• meta-qt5: Qt5 libraries and utilities
• meta-fsl-arm: BSPs for Freescale ARM-based SoCs
• meta-fsl-ppc: BSPs for Freescale PowerPC-based SoCs
• meta-intel: BSPs for Intel CPUs and SoCs
• meta-ti: BSPs for TI ARM-based SoCs

Adding a layer is as simple as copying the meta directory into a suitable location,
usually alongside the default meta layers, and adding it to bblayers.conf. Just
make sure it is compatible with the version of the Yocto Project you are using.

Selecting a Build System

[148]

To illustrate the way layers work, let's create a layer for our Nova board which we
can use for the remainder of the chapter as we add features. Each meta layer has
to have at least one configuration file, conf/layer.conf, and should also have a
README file and a license. There is a handy helper script that does the basics for us:

$ cd poky

$ scripts/yocto-layer create nova

The script asks for a priority, and if you want to create sample recipes. In the
example here, I just accepted the defaults:

Please enter the layer priority you'd like to use for the layer:
[default: 6]

Would you like to have an example recipe created? (y/n) [default: n]

Would you like to have an example bbappend file created? (y/n)
[default: n]

New layer created in meta-nova.

Don't forget to add it to your BBLAYERS (for details see meta-
nova\README).

That will create a layer named meta-nova with a conf/layer.conf, an outline
README and a MIT license in COPYING.MIT. The layer.conf file looks like this:

We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"

We have recipes-* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "nova"
BBFILE_PATTERN_nova = "^${LAYERDIR}/"
BBFILE_PRIORITY_nova = "6"

It adds itself to BBPATH and the recipes it contains to BBFILES. From looking at the
code, you can see that the recipes are found in the directories with names beginning
recipes- and have file names ending in .bb (for normal BitBake recipes), or
.bbappend (for recipes that extend existing normal recipes by adding and overriding
instructions). This layer has the name nova which is added to the list of layers in
BBFILE_COLLECTIONS and it has a priority of 6. The layer priority is used if the same
recipe appears in several layers: the one in the layer with the highest priority wins.

Chapter 6

[149]

Since you are about to build a new configuration, it is best to begin by creating a new
build directory named build-nova:

$ cd ~/poky

$. oe-init-build-env build-nova

Now you need to add this layer to your build configuration, conf/bblayers.conf:

LCONF_VERSION = "6"

BBPATH = "${TOPDIR}"
BBFILES ?= ""

BBLAYERS ?= " \
 /home/chris/poky/meta \
 /home/chris/poky/meta-yocto \
 /home/chris/poky/meta-yocto-bsp \
 /home/chris/poky/meta-nova \
 "
BBLAYERS_NON_REMOVABLE ?= " \
 /home/chris/poky/meta \
 /home/chris/poky/meta-yocto \
 "

You can confirm that it is set up correctly by using another helper script:

$ bitbake-layers show-layers

layer path priority

==

meta /home/chris/poky/meta 5

meta-yocto /home/chris/poky/meta-yocto 5

meta-yocto-bsp /home/chris/poky/meta-yocto-bsp 5

meta-nova /home/chris/poky/meta-nova 6

There you can see the new layer. It has priority 6 which means that we could
override recipes in the other layers, which have a lower priority.

At this point it would be a good idea to run a build, using this empty layer. The
final target will be the Nova board but, for now, build for a BeagelBone Black by
removing the comment before MACHINE ?= "beaglebone" in conf/local.conf.
Then, build a small image using bitbake core-image-minimal as before.

As well as recipes, layers may contain BitBake classes, configuration files for
machines, distributions, and more. I will look at recipes next and show you
how to create a customized image and how to create a package.

Selecting a Build System

[150]

BitBake and recipes
BitBake processes metadata of several different types, which include the following:

• recipes: Files ending in .bb. These contain information about building a unit
of software, including how to get a copy of the source code, the dependencies
on other components, and how to build and install it.

• append: Files ending in .bbappend. These allow some details of a recipe to
be overridden or extended. A.bbappend file simply appends its instructions
to the end of a recipe (.bb) file of the same root name.

• include: Files ending in .inc. These contain information that is common
to several recipes, allowing information to be shared among them. The files
may be included using the include or require keywords. The difference is
that require produces an error if the file does not exist, whereas include
does not.

• classes: Files ending in .bbclass. These contain common build information,
for example how to build a kernel or how to build an autotools project.
The classes are inherited and extended in recipes and other classes using
the inherit key word. The class classes/base.bbclass is implicitly
inherited in every recipe.

• configuration: Files ending in .conf. They define various configuration
variables that govern the project's build process.

A recipe is a collection of tasks written in a combination of Python and shell code.
The tasks have names like do_fetch, do_unpack, do_patch, do_configure,
do_compile, do_install, and so on. You use BitBake to execute these tasks.

The default task is do_build, so that you are running the build task for that recipe.
You can list the tasks available in a recipe by running bitbake core-image-minimal
like this:

$ bitbake -c listtasks core-image-minimal

The -c option allows you to specify the task, missing off the do_ part. A common use
is -c fetch to get the code needed by a recipe:

$ bitbake -c fetch busybox

You can also use fetchall to get the code for the target and all the dependencies:

$ bitbake -c fetchall core-image-minimal

Chapter 6

[151]

The recipe files are are usually named <package-name>_version.bb. They may
have dependencies on other recipes, which would allow BitBake to work out all
the subtasks that need to be executed to complete the top level job. Unfortunately,
I don't have the space in this book to describe the dependency mechanism, but you
will find a full description in the Yocto Project documentation.

As an example, to create a recipe for our helloworld program in meta-nova, you
would create a directory structure like this:

meta-nova/recipes-local/helloworld
├── files
│ └── helloworld.c
└── helloworld_1.0.bb

The recipe is helloworld_1.0.bb and the source is local to the recipe directory in
the subdirectory files. The recipe contains these instructions:

DESCRIPTION = "A friendly program that prints Hello World!"
PRIORITY = "optional"
SECTION = "examples"

LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL-
2.0;md5=801f80980d171dd6425610833a22dbe6"

SRC_URI = "file://helloworld.c"
S = "${WORKDIR}"

do_compile() {
 ${CC} ${CFLAGS} -o helloworld helloworld.c
}

do_install() {
 install -d ${D}${bindir}
 install -m 0755 helloworld ${D}${bindir}
}

The location of the source code is set by SRC_URI: in this case it will search directories,
files, helloworld, and helloworld-1.0 in the recipe directory. The only tasks that
need to be defined are do_compile and do_install, which compile the one source
file simply and install it into the target root filesystem: ${D} expands to the staging
area of the target device and ${bindir} to the default binary directory, /usr/bin.

Selecting a Build System

[152]

Every recipe has a license, defined by LICENSE, which is set to GPLv2 here. The file
containing the text of the license and a checksum is defined by LIC_FILES_CHKSUM.
BitBake will terminate the build if the checksum does not match, indicating that the
license has changed in some way. The license file may be part of the package or it
may point to one of the standard license texts in meta/files/common-licenses,
as is the case here.

By default, commercial licenses are disallowed, but it is easy to enable them. You need
to specify the license in the recipe, as shown here:

LICENSE_FLAGS = "commercial"

Then, in your conf/local.conf, you would explicitly allow this license, like so:

LICENSE_FLAGS_WHITELIST = "commercial"

To make sure that it compiles correctly, you can ask BitBake to build it, like so:

$ bitbake helloworld

If all goes well, you should see that it has created a working directory for it in
tmp/work/cortexa8hf-vfp-neon-poky-linux-gnueabi/helloworld/.

You should also see there is an RPM package for it in tmp/deploy/rpm/
cortexa8hf_vfp_neon/helloworld-1.0-r0.cortexa8hf_vfp_neon.rpm.

It is not part of the target image yet, though. The list of packages to be installed is
held in a variable named IMAGE_INSTALL. You can append to the end of that list
by adding this line to your conf/local.conf:

IMAGE_INSTALL_append = " helloworld"

Note that there has to be a space between the first double quote and the first
package name. Now, the package will be added to any image that you bitbake:

$ bitbake core-image-minimal

If you look in tmp/deploy/images/beaglebone/core-image-minimal-beaglebone.
tar.bz2 you will see that /usr/bin/helloworld has indeed been installed.

Customizing images via local.conf
You may often want to add a package to an image during development or tweak it in
other ways. As shown previously, you can simply append to the list of packages to
be installed by adding a statement like this:

IMAGE_INSTALL_append = " strace helloworld"

Chapter 6

[153]

It should be no surprise that you can also do the opposite: you can remove a package
using this syntax:

IMAGE_INSTALL_remove = "someapp"

You can make more sweeping changes via EXTRA_IMAGE_FEATURES. There are too
many to list here, I recommend you look at the Image Features section of the Yocto
Project Reference Manual and the code in meta/classes/core-image.bbclass.
Here is a short list which should give you an idea of the features you can enable:

• dbg-pkgs: installs debug symbol packages for all the packages installed in
the image.

• debug-tweaks: allows root logins without passwords and other changes that
make development easier.

• package-management: installs package management tools and preserves the
package manager database.

• read-only-rootfs: makes the root filesystem read-only. We will cover this
in more detail in Chapter 7, Creating a Storage Strategy.

• x11: installs the X server.
• x11-base: installs the X server with a minimal environment.
• x11-sato: installs the OpenedHand Sato environment.

Writing an image recipe
The problem with making changes to local.conf is that they are, well, local. If you
want to create an image that is to be shared with other developers, or to be loaded
onto a production system, then you should put the changes into an image recipe.

An image recipe contains instructions about how to create the image files for a target,
including the bootloader, the kernel, and the root filesystem images. You can get a
list of the images that are available by using this command:

$ ls meta*/recipes*/images/*.bb

The recipe for core-image-minimal is in meta/recipes-core/images/core-
image-minimal.bb.

A simple approach is to take an existing image recipe and modify it using statements
similar to those you used in local.conf.

Selecting a Build System

[154]

For example, imagine that you want an image that is the same as
core-image-minimal but includes your helloworld program and the strace
utility. You can do that with a two-line recipe file which includes (using the require
keyword) the base image and adds the packages you want. It is conventional to put
the image in a directory named images, so add the recipe nova-image.bb with this
content in meta-nova/recipes-local/images:

require recipes-core/images/core-image-minimal.bb
IMAGE_INSTALL += "helloworld strace"

Now you can remove the IMAGE_INSTALL_append line from your local.conf and
build it using:

$ bitbake nova-image

If you want to go further and take total control of the contents of the root filesystem,
you can start from scratch with an empty IMAGE_INSTALL variable and populate it
like this:

SUMMARY = "A small image with helloworld and strace packages"
IMAGE_INSTALL = "packagegroup-core-boot helloworld strace"
IMAGE_LINGUAS = " "
LICENSE = "MIT"
IMAGE_ROOTFS_SIZE ?= "8192"
inherit core-image

IMAGE_LINGUAS contains a list of glibc locales to be installed in the target image. They
can take up a lot of space so, in this case, we set the list to be empty, which is fine so
long as we do not need locale-dependent library functions. IMAGE_ROOTFS_SIZE is the
size of the resulting disk image, in KiB. Most of the work is done by the core-image
class which we inherit at the end.

Creating an SDK
It is very useful to be able to create a standalone toolchain that other developers can
install, avoiding the need for everyone in the team to have a full installation of the
Yocto Project. Ideally, you want the toolchain to include development libraries and
header files for all the libraries installed on the target. You can do that for any image
using the populate_sdk task, as shown here:

$ bitbake nova-image -c populate_sdk

The result is a self-installing shell script in tmp/deploy/sdk named:

poky-<c_library>-<host_machine>-<target_image><target_machine>-
toolchain-<version>.sh

Chapter 6

[155]

Here is an example:

poky-glibc-x86_64-nova-image-cortexa8hf-vfp-neon-toolchain-
1.8.1.sh

Note that, by default, the toolchain does not include static libraries. You can enable
them individually by adding lines like this to your local.conf or the image recipe:

TOOLCHAIN_TARGET_TASK_append = " glibc-staticdev"

You can also enable them globally as shown:

SDKIMAGE_FEATURES_append = " staticdev-pkgs"

If you only want a basic toolchain with just C and C++ cross compilers, the C library
and header files, you can instead run:

$ bitbake meta-toolchain

To install the SDK, just run the shell script. The default install directory is /opt/poky,
but the install script allows you to change that:

$ tmp/deploy/sdk/poky-glibc-x86_64-nova-image-cortexa8hf-vfp-neon-
toolchain-1.8.1.sh

Enter target directory for SDK (default: /opt/poky/1.8.1):

You are about to install the SDK to "/opt/poky/1.8.1". Proceed[Y/n]?

[sudo] password for chris:

Extracting SDK...done

Setting it up...done

SDK has been successfully set up and is ready to be used.

To make use of the toolchain, first source the environment set up script:

. /opt/poky/1.8.1/environment-setup-cortexa8hf-vfp-neon-poky-linux-
gnueabi

Toolchains generated in this way are not configured with a valid sysroot:

$ arm-poky-linux-gnueabi-gcc -print-sysroot

/not/exist

Selecting a Build System

[156]

Consequently, if you try to cross compile as I have shown in previous chapters,
it will fail like this:

$ arm-poky-linux-gnueabi-gcc helloworld.c -o helloworld

helloworld.c:1:19: fatal error: stdio.h: No such file or directory

#include <stdio.h>

 ^

compilation terminated.

This is because the compiler has been configured to be generic to a wide range of
ARM processors, and the fine tuning is done when you launch it using the right
set of gcc flags. So long as you use $CC to compile, everything should work fine:

$ $CC helloworld.c -o helloworld

License audit
The Yocto Project insists that each package has a license. A copy of the license is
in tmp/deploy/licenses/[packagenam.e] for each package, as it is built. In
addition, a summary of the packages and licenses used in an image are in the
<image name>-<machine name>-<date stamp> directory. This is shown here:

$ ls tmp/deploy/licenses/nova-image-beaglebone-20151104150124

license.manifest package.manifest

The first file lists the licenses used by each package, the second lists the package
names only.

Further reading
You can have look at the following documentation for more information:

• The Buildroot User Manual, http://buildroot.org/downloads/manual/
manual.html

• Yocto Project documentation: there are nine reference guides plus a
tenth which is a composite of the others (the so-called Mega-manual")
at https://www.yoctoproject.org/documentation

Chapter 6

[157]

• Instant Buildroot, by Daniel Manchón Vizuete, Packt Publishing, 2013
• Embedded Linux Development with Yocto Project, by Otavio Salvador and

Daianne Angolini, Packt Publishing, 2014

Summary
Using a build system takes the hard work out of creating an embedded Linux
system, and it is almost always better than hand crafting a roll your own system.
There is a range of open source build systems available these days: Buildroot
and the Yocto Project represent two different approaches. Buildroot is simple
and quick, making it a good choice for fairly simple single-purpose devices:
traditional embedded Linux as I like to think of them.

The Yocto Project is more complex and flexible. It is package based, meaning that
you have the option to install a package manager and perform updates of individual
packages in the field. The meta layer structure makes it easy to extend the metadata
and indeed there is good support throughout the community and industry for the
Yocto Project. The downside is that there is a very steep learning curve: you should
expect it to take several months to become proficient with it, and even then it will
sometimes do things that you didn't expect, or at least that is my experience.

Don't forget that any devices you create using these tools will need to be maintained
in the field for a period of time, often many years. The Yocto Project will provide
point releases for about one year after a release, Buildroot usually does not provide
any point releases. In either case you will find yourself having to maintain your
release yourself or else paying for commercial support. The third possibility,
ignoring the problem, should not be considered an option!

In the next chapter I will look at file storage and filesystems, and at the way that
the choices you make there will affect the stability and maintainability of your
embedded Linux.

[159]

Creating a Storage Strategy
The mass storage options for embedded devices have a great impact on the rest of
the system in terms of robustness, speed, and methods of in-field updates.

Most devices employ flash memory in some form or other. Flash memory has
become much less expensive over the past few years as storage capacities have
increased from tens of megabytes to tens of gigabytes.

In this chapter, I will begin with a detailed look at the technology behind flash
memory and how different memory organization affects the low level driver
software that has to manage it, including the Linux memory technology device
layer, MTD.

For each flash technology, there are different choices of filesystem. I will describe
those most commonly found on embedded devices and complete the survey with
a section giving a summary of choices for each type of flash.

The last sections consider techniques to make the best use of flash memory, look at
how to update devices in the field, and draw everything together into a coherent
storage strategy.

Storage options
Embedded devices need storage that takes little power, is physically compact, robust,
and reliable over a lifetime of perhaps tens of years. In almost all cases, that means
solid state storage, which was introduced many years ago with read-only memory
(ROM), but for the past 20 years it has been flash memory of some kind. There have
been several generations of flash memory in that time, progressing from NOR to
NAND to managed flash such as eMMC.

NOR flash is expensive but reliable and can be mapped into the CPU address
space, which allows you to execute code directly from flash. NOR flash chips
are low-capacity, ranging from a few megabytes to a gigabyte or so.

Creating a Storage Strategy

[160]

NAND flash memory is much cheaper than NOR and is available in higher capacities,
in the range of tens of megabytes to tens of gigabytes. However, it needs a lot of
hardware and software support to turn it into a useful storage medium.

Managed flash memory consists of one or more NAND flash chips packaged with a
controller which handles the complexities of flash memory and presents a hardware
interface similar to that of a hard disk. The attraction is that it removes complexity
from the driver software and insulates the system designer against the frequent
changes in flash technology. SD cards, eMMC chips, and USB flash drives fit into
this category. Almost all of the current generation of smartphones and tablets
have eMMC storage, and that trend is likely to progress with other categories of
embedded devices.

Hard drives are seldom found in embedded systems. One exception is digital video
recording in set-top boxes and smart TVs in which a large amount of storage is needed
with fast write times.

In all cases, robustness is of prime importance: you want the device to boot and reach
a functional state despite power failures and unexpected resets. You should choose
filesystems that behave well under such circumstances.

NOR flash
The memory cells in NOR flash chips are arranged into erase blocks of, for example,
128 KiB. Erasing a block sets all the bits to 1. It can be programmed one word at a
time (8, 16 or 32 bits, depending on the data bus width). Each erase cycle damages
the memory cells slightly and, after a number of cycles, the erase block becomes
unreliable and cannot be used anymore. The maximum number of erase cycles
should be given in the data sheet for the chip but is usually in the range of
100K to 1M.

The data can be read word by word. The chip is usually mapped into the CPU
address space which means that you can execute code directly from NOR flash. This
makes it a convenient place to put the bootloader code as it needs no initialization
beyond hardwiring the address mapping. SoCs that support NOR flash in this way
have configurations that give a default memory mapping such that it encompasses
the reset vector of the CPU.

Chapter 7

[161]

The kernel, and even the root filesystem, can also be located in flash memory,
avoiding the need for copying them into RAM and thus creating devices with
small memory footprints. The technique is known as eXecute In Place, or XIP.
It is very specialized and I will not examine it further here. There are some
references at the end of the chapter.

There is a standard register-level interface for NOR flash chips called the common
flash interface or CFI, which all modern chips support.

NAND flash
NAND flash is much cheaper than NOR flash and has a higher capacity. First
generation NAND chips stored one bit per memory cell in what is now known as an
SLC or single level cell organization. Later generations moved on to two bits per cell
in multi-level cell (MLC) chips and now to three bits per cell in tri-level cell (TLC)
chips. As the number of bits per cell has increased, the reliability of the storage has
decreased, requiring more complex controller hardware and software to compensate.

As with NOR flash, NAND flash is organized into erase blocks ranging in size from
16 KiB to 512 KiB and, once again, erasing a block sets all the bits to 1. However, the
number of erase cycles before the block becomes unreliable is lower, typically as few
as 1K cycles for TLC chips and up to 100K for SLC. NAND flash can only be read and
written in pages, usually of 2 or 4 KiB. Since they cannot be accessed byte-by-byte, they
cannot be mapped into the address space and so code and data have to be copied into
RAM before they can be accessed.

Data transfers to and from the chip are prone to bit flips, which can be detected and
corrected using Error Correction Codes. SLC chips generally use a simple hamming
code which can be implemented efficiently in software and can correct a single bit
error in a page read. MLC and TLC chips need more sophisticated codes such as
BCH (Bose-Chaudhuri-Hocquenghem) which can correct up to 8-bit errors per page.
These need hardware support.

Creating a Storage Strategy

[162]

The error correction codes have to be stored somewhere and so there is an extra area
of memory per page known as the out of band (OOB) area, or also the spare area.
MLC designs usually have 1 byte of OOB per 32 bytes of main storage so, for a 2 KiB
page device, the OOB is 64 bytes per page and for a 4 KiB page, 128 bytes. MLC and
TLC chips have proportionally larger OOB areas to accommodate more complex
error correction codes. The following diagram shows the organization of a chip with
a 128 KiB erase block and 2 KiB pages:

During production, the manufacturer tests all the blocks and marks any that fail
by setting a flag in the OOB area of each page in the block. It is not uncommon to
find that brand new chips have up to 2% of their blocks marked bad in this way.
Furthermore, it is within the specification for a similar proportion of blocks to give
errors on erase before the erase cycle limit is reached. The NAND flash driver should
detect this and mark it as bad.

After space has been taken in the OOB area for a bad block flag and ECC bytes,
there are still some bytes left. Some flash filesystems make use of these free bytes to
store filesystem metadata. Consequently, lots of people are interested in the layout
of the OOB area: the SoC ROM boot code, the bootloader, the kernel MTD driver,
the filesystem code, and the tools to create filesystem images. There is not much
standardization so it is easy to get into a situation in which the bootloader writes
data using an OOB format that cannot be read by the kernel MTD driver. It is up
to you to make sure that they all agree.

Chapter 7

[163]

Access to NAND flash chips requires a NAND flash controller, which is usually part
of the SoC. You will need the corresponding driver in the bootloader and kernel.
The NAND flash controller handles the hardware interface to the chip, transferring
data to and from pages, and may include hardware for error correction.

There is a standard register-level interface for NAND flash chips known as
the open NAND flash interface or ONFi which most modern chips adhere to.
See http://www.onfi.org.

Managed flash
The burden of supporting flash memory in the operating system, NAND in
particular, becomes less if there is a well-defined hardware interface and a standard
flash controller that hides the complexities of the memory. This is managed flash
memory and it is becoming more and more common. In essence, it means combining
one or more flash chips with a micro controller that offers an ideal storage device
with a small sector size that is compatible with conventional filesystems. The most
important types of managed flash for embedded systems are Secure Digital (SD)
cards and the embedded variant known as eMMC.

MultiMediaCard and secure digital cards
The MultiMediaCard (MMC) was introduced in 1997 by SanDisk and Siemens
as a form of packaged storage using flash memory. Shortly after, in 1999, SanDisk,
Matsushita, and Toshiba created the SD card which is based on MMC but adds
encryption and DRM (that is the secure part). Both were intended for consumer
electronics such as digital cameras, music players, and similar devices. Currently,
SD cards are the dominant form of managed flash for consumer and embedded
electronics, even though the encryption features are seldom used. Newer versions
of the SD specification allow for smaller packaging (mini SD and micro SD which is
often written as uSD) and larger capacities: high capacity, SDHC, up to 32 GB and
extended capacity, SDXC, up to 2 TB.

http://www.onfi.org

Creating a Storage Strategy

[164]

The hardware interface for MMC and SD cards is very similar, and it is possible to
use fully-sized MMC in full-sized SD card slots (but not the other way round). Early
incarnations used a 1-bit Serial Peripheral Interface (SPI); more recent cards use a
4-bit interface. There is a command set for reading and writing memory in sectors of
512 bytes. Inside the package there is a microcontroller and one or more NAND flash
chips, as shown in the diagram that follows:

The microcontroller implements the command set and manages the flash memory,
performing the function of a flash translation layer, as described later on in this
chapter. They are pre-formatted with a FAT filesystem: FAT16 on SDSC cards, FAT32
on SDHC, and exFAT on SDXC. The quality of the NAND flash chips and the software
on the microcontroller varies greatly between cards. It is questionable whether any
of them are sufficiently reliable for deep embedded use, and certainly not with a FAT
filesystem which is prone to file corruption. Remember that the prime use case for
MMC and SD cards is for removable storage on cameras, tablets, and phones.

eMMC
eMMC or Embedded MMC is simply MMC memory packaged so that it can
be soldered on to the motherboard, using a 4- or 8-bit interface for data transfer.
However, they are intended to be used as storage for an operating system so the
components are capable of performing that task. The chips are usually not pre-
formatted with any filesystem.

Chapter 7

[165]

Other types of managed flash
One of the first managed flash technologies was CompactFlash (CF), using a subset
of the PCMCIA (Personal Computer Memory Card International Association)
interface. CF exposes the memory through a parallel ATA interface and appears to
the operating system as a standard hard disk. They are common in x86-based single
board computers and professional video and camera equipment.

One other format which we use every day is the USB flash drive. In this case, the
memory is accessed through a USB interface and the controller implements the USB
mass storage specification as well as the flash translation layer and interface to the
flash chip or chips. The USB mass storage protocol, in turn, is based on the SCSI disk
command set. As with MMC and SD cards, they are usually pre-formatted with a FAT
filesystem. Their main use case in embedded systems is exchanging data with PCs.

A recent addition to the list of options for managed flash storage
is universal flash storage (UFS). Like eMMC, it is packaged in a
chip that is mounted on the motherboard. It has a high-speed serial
interface and can achieve data rates greater than eMMC. It supports
a SCSI disk command set.

Accessing flash memory from the
bootloader
In Chapter 3, All About Bootloaders, I mentioned the need for the bootloader to
load kernel binaries and other images from various flash devices and to be able
to perform system maintenance tasks such as erasing and reprogramming flash
memory. It follows that the bootloader must have the drivers and infrastructure to
support read, erase, and write operations on the type of memory you have, whether
it be NOR, NAND, or managed. I will use U-Boot in the following example; other
bootloaders follow a similar pattern.

U-Boot and NOR flash
U-Boot has drivers for NOR CFI chips in drivers/mtd and has the commands
erase to erase memory and cp.b to copy data byte by byte, programming the flash.
Suppose that you have NOR flash memory mapped from 0x40000000 to 0x48000000,
of which 4MiB starting at 0x40040000 is a kernel image, then you would load a new
kernel into flash using these U-Boot commands:

Creating a Storage Strategy

[166]

U-Boot# tftpboot 100000 uImage
U-Boot# erase 40040000 403fffff
U-Boot# cp.b 100000 40040000 $(filesize)

The variable filesize in the preceding example is set by the tftpboot command to
the size of the file just downloaded.

U-Boot and NAND flash
For NAND flash, you need a driver for the NAND flash controller on your SoC,
which you can find in drivers/mtd/nand. You use the nand command to manage
the memory using the sub-commands erase, write, and read. This example shows
a kernel image being loaded into RAM at 0x82000000 and then placed into flash
starting at offset 0x280000:

U-Boot# tftpboot 82000000 uImage
U-Boot# nand erase 280000 400000
U-Boot# nand write 82000000 280000 $(filesize)

U-Boot can also read files stored in the JFFS2, YAFFS2, and UBIFS filesystems.

U-Boot and MMC, SD and eMMC
U-Boot has drivers for several MMC controllers in drivers/mmc. You can access the
raw data using mmc read and mmc write at the user interface level, which allows
you to handle raw kernel and filesystem images.

U-boot can also read files from the FAT32 and ext4 filesystems on MMC storage.

Accessing flash memory from Linux
Raw NOR and NAND flash memory is handled by the memory technology device
sub-system, or MTD, which provides basic interfaces to read, erase, and write blocks
of flash memory. In the case of NAND flash, there are functions to handle the OOB
area and to identify bad blocks.

For managed flash, you need drivers to handle the particular hardware interface.
MMC/SD cards and eMMC use the mmcblk driver; CompactFlash and hard drives
use the SCSI Disk driver, sd. USB flash drives use the usb_storage driver together
with the sd driver.

Chapter 7

[167]

Memory technology devices
The memory technology devices (MTD), sub-system was started by David
Woodhouse in 1999 and has been extensively developed over the intervening years.
In this section, I will concentrate on the way it handles the two main technologies,
NOR and NAND flash.

MTD consists of three layers: a core set of functions, a set of drivers for various types
of chips, and user-level drivers that present the flash memory as a character device or
a block device, as shown in the following diagram:

The chip drivers are at the lowest level and interface with flash chips. Only a small
number of drivers are needed for NOR flash chips, enough to cover the CFI standard
and variations plus a few non-compliant chips which are now mostly obsolete. For
NAND flash, you will need a driver for the NAND flash controller you are using;
this is usually supplied as part of the board support package. There are drivers for
about 40 of them in the current mainline kernel in the directory drivers/mtd/nand.

MTD partitions
In most cases, you will want to partition the flash memory into a number of areas, for
example, to provide space for a bootloader, a kernel image, or a root filesystem. In
MTD, there are several ways to specify the size and location of partitions, the main
ones being:

• Through the kernel command line using CONFIG_MTD_CMDLINE_PARTS
• Via the device tree using CONFIG_MTD_OF_PARTS
• With a platform mapping driver

Creating a Storage Strategy

[168]

In the case of the first option, the kernel command line option to use is mtdparts,
which is defined as follows in the Linux source code in drivers/mtd/cmdlinepart.c:

mtdparts=<mtddef>[;<mtddef]
<mtddef> := <mtd-id>:<partdef>[,<partdef>]
<mtd-id> := unique name for the chip
<partdef> := <size>[@<offset>][<name>][ro][lk]
<size> := size of partition OR "-" to denote all remaining
 space
<offset> := offset to the start of the partition; leave blank
 to follow the previous partition without any gap
<name> := '(' NAME ')'

Perhaps an example will help. Imagine that you have one flash chip of 128 MB that is
to be divided into five partitions. A typical command line would be:

mtdparts=:512k(SPL)ro,780k(U-Boot)ro,128k(U-BootEnv),
4m(Kernel),-(Filesystem)

The first element, before the colon, :, is mtd-id, which identifies the flash chip,
either by number or by the name assigned by the board support package. If there
is only one chip, as here, it can be left empty. If there is more than one chip, the
information for each is separated by a semicolon, ;. Then, for each chip, there
is a comma-separated list of partitions, each with a size in bytes, kilobytes, k, or
megabytes, m, and a name in brackets. The ro suffix makes the partition read-only
to MTD and is often used to prevent accidental overwriting of the bootloader. The
size of the last partition for the chip may be replaced by a dash, -, indicating that it
should take up all the remaining space.

You can see a summary of the configuration at runtime by reading /proc/mtd:

cat /proc/mtd
dev: size erasesize name
mtd0: 00080000 00020000 "SPL"
mtd1: 000C3000 00020000 "U-Boot"
mtd2: 00020000 00020000 "U-BootEnv"
mtd3: 00400000 00020000 "Kernel"
mtd4: 07A9D000 00020000 "Filesystem"

There is more detailed information for each partition in /sys/class/mtd, including
the erase block size and the page size, and it is nicely summarized using mtdinfo:

mtdinfo /dev/mtd0
mtd0
Name: SPL
Type: nand

Chapter 7

[169]

Eraseblock size: 131072 bytes, 128.0 KiB
Amount of eraseblocks: 4 (524288 bytes, 512.0 KiB)
Minimum input/output unit size: 2048 bytes
Sub-page size: 512 bytes
OOB size: 64 bytes
Character device major/minor: 90:0
Bad blocks are allowed: true
Device is writable: false

The equivalent partition information can be written as part of the device tree like so:

nand@0,0 {
 #address-cells = <1>;
 #size-cells = <1>;
 partition@0 {
 label = "SPL";
 reg = <0 0x80000>;
 };
 partition@80000 {
 label = "U-Boot";
 reg = <0x80000 0xc3000>;
 };
 partition@143000 {
 label = "U-BootEnv";
 reg = <0x143000 0x20000>;
 };
 partition@163000 {
 label = "Kernel";
 reg = <0x163000 0x400000>;
 };
 partition@563000 {
 label = "Filesystem";
 reg = <0x563000 0x7a9d000>;
 };
};

A third alternative is to code the partition information as platform data in an
mtd_partition structure, as shown in this example taken from arch/arm/mach-
omap2/board-omap3beagle.c (NAND_BLOCK_SIZE is defined elsewhere to
be 128K):

static struct mtd_partition omap3beagle_nand_partitions[] = {
 {
 .name = "X-Loader",

Creating a Storage Strategy

[170]

 .offset = 0,
 .size = 4 * NAND_BLOCK_SIZE,
 .mask_flags = MTD_WRITEABLE, /* force read-only */
 },
 {
 .name = "U-Boot",
 .offset = 0x80000;
 .size = 15 * NAND_BLOCK_SIZE,
 .mask_flags = MTD_WRITEABLE, /* force read-only */
 },
 {
 .name = "U-Boot Env",
 .offset = 0x260000;
 .size = 1 * NAND_BLOCK_SIZE,
 },
 {
 .name = "Kernel",
 .offset = 0x280000;
 .size = 32 * NAND_BLOCK_SIZE,
 },
 {
 .name = "File System",
 .offset = 0x680000;
 .size = MTDPART_SIZ_FULL,
 },
};

MTD device drivers
The upper level of the MTD sub-system is a pair of device drivers:

• A character device, with a major number of 90. There are two device
nodes per MTD partition number, N: /dev/mtdN (minor number=N*2)
and /dev/mtdNro (minor number=(N*2 + 1)). The latter is just a read-only
version of the former.

• A block device, with a major number of 31 and a minor number of N.
The device nodes are in the form /dev/mtdblockN.

Chapter 7

[171]

The MTD character device, mtd
The character devices are the most important: they allow you to access the
underlying flash memory as an array of bytes so that you can read and write
(program) the flash. It also implements a number of ioctl functions that allow
you to erase blocks and to manage the OOB area on NAND chips. The following
list is in include/uapi/mtd/mtd-abi.h:

IOCTL Description
MEMGETINFO Gets basic MTD characteristic information
MEMERASE Erases blocks in the MTD partition
MEMWRITEOOB Writes out-of-band data for the page
MEMREADOOB Reads out-of-band data for the page
MEMLOCK Locks the chip (if supported)
MEMUNLOCK Unlocks the chip (if supported)
MEMGETREGIONCOUNT Gets the number of erase regions: non-zero if there are erase

blocks of differing sizes in the partition, which is common for
NOR flash, rare on NAND

MEMGETREGIONINFO If MEMGETREGIONCOUNT is non-zero, this can be used to get the
offset, size, and block count of each region

MEMGETOOBSEL Deprecated
MEMGETBADBLOCK Gets the bad block flag
MEMSETBADBLOCK Sets the bad block flag
OTPSELECT Sets OTP (one-time programmable) mode, if the chip supports it
OTPGETREGIONCOUNT Gets the number of OTP regions
OTPGETREGIONINFO Gets information about an OTP region
ECCGETLAYOUT Deprecated

There is a set of utility programs known as mtd-utils for manipulating flash
memory that makes use of these ioctl functions. The source is available from
http://git.infradead.org/mtd-utils.git and is available as a package in
the Yocto Project and Buildroot. The essential tools are shown in the following
list. The package also contains utilities for the JFFS2 and UBI/UBIFS filesystems
which I will cover later. For each of these tools, the MTD character device is one
of the parameters:

• flash_erase: Erases a range of blocks.
• flash_lock: Locks a range of blocks.
• flash_unlock: Unlocks a range of blocks.

http://git.infradead.org/mtd-utils.git

Creating a Storage Strategy

[172]

• nanddump: Dumps memory from NAND flash, optionally including the
OOB area. Skips bad blocks.

• nandtest: Tests and diagnostics for NAND flash.
• nandwrite: Writes (program) from a data file to NAND flash, skipping

bad blocks.

You must always erase flash memory before writing new contents
to it: flash_erase is the command to do that.

To program NOR flash, you simply copy bytes to the MTD device node using the
cp command or similar.

Unfortunately, this doesn't work with NAND memory as the copy will fail at the first
bad block. Instead, use nandwrite, which skips over any bad blocks. To read back
NAND memory, you should use nanddump which also skips bad blocks.

The MTD block device, mtdblock
The mtdblock driver is little used. Its purpose is to present flash memory as a block
device which you can use to format and mount as a filesystem. However, it has
severe limitations because it does not handle bad blocks in NAND flash, does not do
wear leveling, and does not handle the mismatch in size between filesystem blocks
and flash erase blocks. In other words, it does not have a flash translation layer,
which is essential for reliable file storage. The only case where the mtdblock device
is useful is to mount read-only filesystems such as Squashfs on top of reliable flash
memory such as NOR.

If you want a read-only filesystem on NAND flash, you should use
the UBI driver, as described later in this chapter.

Logging kernel oops to MTD
Kernel errors, or oopsies, are normally logged via the klogd and syslogd daemons
to a circular memory buffer or a file. Following a reboot, the log will be lost in the
case of a ring buffer and, even in the case of a file, it may not have been properly
written before the system crashed.

Chapter 7

[173]

A more reliable method is to write oops and kernel panics to an MTD
partition as a circular log buffer. You enable it with CONFIG_MTD_OOPS
and you add console=ttyMTDN to the kernel command line, N being
the MTD device number to write the messages to.

Simulating NAND memory
The NAND simulator emulates a NAND chip using system RAM. The main use
is for testing code that has to be NAND-aware without access to physical NAND
memory. In particular, the ability to simulate bad blocks, bit flips, and other errors
allows you to test code paths that are difficult to exercise using real flash memory.
For more information, the best place to look is in the code itself, which has a
comprehensive description of the ways you can configure the driver. The code
is in drivers/mtd/nand/nandsim.c. Enable it with the kernel configuration
CONFIG_MTD_NAND_NANDSIM.

The MMC block driver
MMC/SD cards and eMMC chips are accessed using the mmcblk block driver.
You need a host controller to match the MMC adapter you are using, which is part
of the board support package. The drivers are located in the Linux source code in
drivers/mmc/host.

MMC storage is partitioned using a partition table in exactly the same way you
would for hard disks, using fdisk or a similar utility.

Filesystems for flash memory
There are several challenges when making efficient use of flash memory for mass
storage: the mismatch between the size of an erase block and a disk sector, the limited
number of erase cycles per erase block, and the need for bad block handling on NAND
chips. These differences are resolved by a Flash Translation Layer globally, or FTL.

Flash translation layers
A flash translation layer has the following features:

• Sub allocation: Filesystems work best with a small allocation unit,
traditionally a 512-byte sector. This is much smaller than a flash erase
block of 128 KiB or more. Therefore erase blocks have to be sub-divided
into smaller units to avoid wasting large amounts of space.

Creating a Storage Strategy

[174]

• Garbage collection: A consequence of sub-allocation is that an erase block
will contain a mixture of good data and stale data after the filesystem has
been in use for a while. Since we can only free up whole erase blocks, the
only way to reclaim the free space is to coalesce the good data into one
place and return the now empty erase block to the free list: this is garbage
collection, and is usually implemented as a background thread.

• Wear leveling: There is a limit on the number of erase cycles for each block.
To maximize the lifespan of a chip, it is important to move data around so
that each block is erased roughly the same number of times.

• Bad block handling: On NAND flash chips, you have to avoid using any
block marked bad and also mark good blocks as bad if they cannot be erased.

• Robustness: Embedded devices may be powered off or reset without
warning, so any filesystem should be able to cope without corruption,
usually by incorporating a journal or log of transactions.

There are several ways to deploy the flash translation layer:

• In the filesystem: as with JFFS2, YAFFS2, and UBIFS
• In the block device driver: the UBI driver, on which UBIFS depends,

implements some aspects of a flash translation layer
• In the device controller: as with managed flash devices

When the flash translation layer is in the filesystem or the block driver, the code is
part of the kernel and so it is open source, meaning that we can see how it works
and we can expect that it will be improved over time. On the other hand, the FTL is
inside a managed flash device; it is hidden from view and we cannot verify whether
or not it works as we would want. Not only that, but putting the FTL into the disk
controller means that it misses out on information that is held at the filesystem layer
such as which sectors belong to files that have been deleted and so do not contain
useful data anymore. The latter problem is solved by adding commands that pass
this information between the filesystem and the device I will describe in the section
on the TRIM command later, but the question of code visibility remains. If you are
using managed flash, you just have to choose a manufacturer you can trust.

Filesystems for NOR and NAND flash
memory
To use raw flash chips for mass storage, you have to use a filesystem that understands
the peculiarities of the underlying technology. There are three such filesystems:

Chapter 7

[175]

• Journaling Flash File System 2, JFFS2: This was the first flash filesystem
for Linux, and is still in use today. It works for NOR and NAND memory,
but is notoriously slow during mount.

• Yet Another Flash File System 2, YAFFS2: This is similar to JFFS2, but
specifically for NAND flash memory. It was adopted by Google as the
preferred raw flash filesystem on Android devices.

• Unsorted Block Image File System, UBIFS: This is the latest flash-aware
filesystem for both NOR and NAND memory, which is used in conjunction
with the UBI block driver. It generally offers better performance than JFFS2
or YAFFS2, and so should be the preferred solution for new designs.

All of these use MTD as the common interface to flash memory.

JFFS2
The Journaling Flash File System had its beginnings in the software for the Axis 2100
network camera in 1999. For many years, it was the only flash filesystem for Linux
and has been deployed on many thousands of different types of devices. Today, it
is not the best choice, but I will cover it first because it shows the beginning of the
evolutionary path.

JFFS2 is a log-structured filesystem that uses MTD to access flash memory. In a
log-structured filesystem, changes are written sequentially as nodes to the flash
memory. A node may contain changes to a directory, such as the names of files
created and deleted, or it may contain changes to file data. After a while, a node
may be superseded by information contained in subsequent nodes and becomes
an obsolete node.

Erase blocks are categorized into three types:

• free: It contains no nodes at all
• clean: It contains only valid nodes
• dirty: It contains at least one obsolete node

At any one time, there is one block receiving updates which is called the open block.
If power is lost or the system is reset, the only data that can be lost is the last write
to the open block. In addition, nodes are compressed as they are written, increasing
the effective storage capacity of the flash chip, which is important if you are using
expensive NOR flash memory.

When the number of free blocks falls below a threshold, a garbage collector kernel
thread is started, which scans for dirty blocks and copies the valid nodes into the
open block, and then frees up the dirty block.

Creating a Storage Strategy

[176]

At the same time, the garbage collector provides a crude form of wear leveling
because it cycles valid data from one block to another. The way that the open block
is chosen means that each block is erased roughly the same number of times so long
as it contains data that changes from time to time. Sometimes a clean block is chosen
for garbage collection to make sure that blocks containing static data that is seldom
written are also wear leveled.

JFFS2 filesystems have a write through cache, meaning that writes are written to the
flash memory synchronously as if they have been mounted with a -o sync option.
While improving reliability, it does increase the time to write data. There is a further
problem with small writes: if the length of a write is comparable to the size of the
node header (40 bytes) the overhead becomes high. A well-known corner case is
log files, produced, for example, by syslogd.

Summary nodes
There is one overriding disadvantage to JFFS2: since there is no on-chip index, the
directory structure has to be deduced at mount-time by reading the log from start to
finish. At the end of the scan, you have a complete picture of the directory structure
of the valid nodes, but the time taken is proportional to the size of the partition. It is
not uncommon to see mount times of the order of one second per megabyte, leading
to total mount times of tens or hundreds of seconds.

To reduce the time to scan during mount, summary nodes became an option in
Linux 2.6.15. A summary node is written at the end of the open erase block just
before it is closed. The summary node contains all of the information needed for the
mount-time scan, thereby reducing the amount of data to process during the scan.
Summary nodes can reduce mount times by a factor of between two and five, at the
expense of an overhead of about 5% of the storage space. They are enabled with the
kernel configuration CONFIG_JFFS2_SUMMARY.

Clean markers
An erased block with all bits set to 1 is indistinguishable from a block that has been
written with 1's, but the latter has not had its memory cells refreshed and cannot be
programmed again until it is erased. JFFS2 uses a mechanism called clean markers
to distinguish between these two situations. After a successful block erase, a clean
marker is written, either to the beginning of the block, or to the OOB area of the first
page of the block. If the clean marker exists then it must be a clean block.

Chapter 7

[177]

Creating a JFFS2 filesystem
Creating an empty JFFS2 filesystem at runtime is as simple as erasing an MTD
partition with clean markers and then mounting it. There is no formatting step
because a blank JFFS2 filesystem consists entirely of free blocks. For example, to
format MTD partition 6, you would enter these commands on the device:

flash_erase -j /dev/mtd6 0 0
mount -t jffs2 mtd6 /mnt

The -j option to flash_erase adds the clean markers, and mounting with type
jffs2 presents the partition as an empty filesystem. Note that the device to be
mounted is given as mtd6, not /dev/mtd6. Alternatively, you can give the block
device node /dev/mtdblock6. This is just a peculiarity of JFFS2. Once mounted,
you can treat it like any filesystem and, when you next boot and mount it, all the
files will still be there.

You can create a filesystem image directly from the staging area of your development
system using mkfs.jffs2 to write out the files in JFFS2 format and sumtool to add
the summary nodes. Both of these are part of the mtd-utils package.

As an example, to create an image of the files in rootfs for a NAND flash device
with an erase block size of 128 KB (0x20000) and with summary nodes, you would
use these two commands:

$ mkfs.jffs2 -n -e 0x20000 -p -d ~/rootfs -o ~/rootfs.jffs2

$ sumtool -n -e 0x20000 -p -i ~/rootfs.jffs2 -o ~/rootfs-sum.jffs2

The -p option adds padding at the end of the image file to make it a whole number
of erase blocks. The -n option suppresses the creation of clean markers in the image,
which is normal for NAND devices as the clean marker is in the OOB area. For NOR
devices, you would leave out the -n option. You can use a device table with mkfs.
jffs2 to set the permissions and the ownership of files by adding -D [device table].
Of course, Buildroot and the Yocto Project will do all this for you.

You can program the image into flash memory from your bootloader. For example, if
you have loaded a filesytem image into RAM at address 0x82000000 and you want to
load it into a flash partition begins at 0x163000 bytes from the start of the flash chip
and is 0x7a9d000 bytes long, the U-Boot commands would be:

nand erase clean 163000 7a9d000
nand write 82000000 163000 7a9d000

You can do the same thing from Linux using the mtd driver like this:

flash_erase -j /dev/mtd6 0 0
nandwrite /dev/mtd6 rootfs-sum.jffs2

Creating a Storage Strategy

[178]

To boot with a JFFS2 root filesystem, you need to pass the mtdblock device on the
kernel command line for the partition and a root fstype because JFFS2 cannot be
auto-detected:

root=/dev/mtdblock6 rootfstype=jffs2

YAFFS2
The YAFFS filesystem was written by Charles Manning beginning in 2001,
specifically to handle NAND flash chips at a time when JFFS2 did not. Subsequent
changes to handle larger (2 KiB) page sizes resulted in YAFFS2. The website for
YAFFS is http://www.yaffs.net.

YAFFS is also a log-structured filesystem following the same design principles
as JFFS2. The different design decisions mean that it has a faster mount-time scan,
simpler and faster garbage collection, and has no compression, which speeds up
reads and writes at the expense of less efficient use of storage.

YAFFS is not limited to Linux; it has been ported to a wide range of operating
systems. It has a dual license: GPLv2 to be compatible with Linux, and a commercial
license for other operating systems. Unfortunately, the YAFFS code has never been
merged into mainline Linux so you will have to patch your kernel, as shown in the
following code.

To get YAFFS2 and patch a kernel, you would:

$ git clone git://www.aleph1.co.uk/yaffs2

$ cd yaffs2

$./patch-ker.sh c m <path to your link source>

Then, configure the kernel with CONFIG_YAFFS_YAFFS2.

Creating a YAFFS2 filesystem
As with JFFS2, to create a YAFFS2 filesystem at runtime, you only need to erase the
partition and mount it but note that, in this case, you do not enable clean markers:

flash_erase /dev/mtd/mtd6 0 0
mount -t yaffs2 /dev/mtdblock6 /mnt

To create a filesystem image, the simplest thing to do is use the mkyaffs2 tool from
https://code.google.com/p/yaffs2utils using the following command:

$ mkyaffs2 -c 2048 -s 64 rootfs rootfs.yaffs2

http://www.yaffs.net
https://code.google.com/p/yaffs2utils

Chapter 7

[179]

Here -c is the page size and -s the OOB size. There is a tool named mkyaffs2image
that is part of the YAFFS code, but it has a couple of drawbacks. Firstly, the page
and OOB size are hard-coded in the source: you will have to edit and recompile
if you have memory that does not match the defaults of 2,048 and 64. Secondly,
the OOB layout is incompatible with MTD, which uses the first two byes as a bad
block marker, whereas mkyaffs2image uses those bytes to store part of the YAFFS
metadata.

To copy the image to the MTD partition from a Linux shell prompt, follow these steps:

flash_erase /dev/mtd6 0 0
nandwrite -a /dev/mtd6 rootfs.yaffs2

To boot with a YAFFS2 root filesystem, add the following to the kernel
command line:

root=/dev/mtdblock6 rootfstype=yaffs2

UBI and UBIFS
The unsorted block image (UBI) driver, is a volume manager for flash memory
which takes care of bad block handling and wear leveling. It was implemented by
Artem Bityutskiy and first appeared in Linux 2.6.22. In parallel with that, engineers
at Nokia were working on a filesystem that would take advantage of the features
of UBI which they called UBIFS; it appeared in Linux 2.6.27. Splitting the flash
translation layer in this way makes the code more modular and also allows other
filesystems to take advantage of the UBI driver, as we shall see later on.

UBI
UBI provides an idealized, reliable view of a flash chip by mapping physical erase
blocks (PEB) to logical erase blocks (LEB). Bad blocks are not mapped to LEBs and
so are never used. If a block cannot be erased, it is marked as bad and dropped from
the mapping. UBI keeps a count of the number of times each PEB has been erased in
the header of the LEB and changes the mapping to ensure that each PEB is erased the
same number of times.

Creating a Storage Strategy

[180]

UBI accesses the flash memory through the MTD layer. As an extra feature, it can
divide an MTD partition into a number of UBI volumes, which improves wear
leveling in the following way. Imagine that you have two filesystems, one containing
fairly static data, for example, a root filesystem, and the other containing data that is
constantly changing. If they are stored in separate MTD partitions, the wear leveling
only has an effect on the second one, whereas, if you choose to store them in two UBI
volumes in a single MTD partition, the wear leveling takes place over both areas of
the storage and the lifetime of the flash memory is increased. The following diagram
illustrates this situation:

In this way, UBI fulfills two of the requirements of a flash translation layer: wear
leveling and bad block handling.

To prepare an MTD partition for UBI, you don't use flash_erase as with JFFS2 and
YAFFS2, instead you use the ubiformat utility, which preserves the erase counts
that are stored in the PED headers. ubiformat needs to know the minimum unit of
IO which, for most NAND flash chips, is the page size, but some chips allow reading
and writing in sub pages that are a half or a quarter of the page size. Consult the chip
data sheet for details and, if in doubt, use the page size. This example prepares mtd6
using a page size of 2,048 bytes:

ubiformat /dev/mtd6 -s 2048

You use the ubiattach command to load the UBI driver on an MTD partition that
has been prepared in this way:

ubiattach -p /dev/mtd6 -O 2048

This creates the device node /dev/ubi0 through which you can access the UBI
volumes. You can use ubiattach multiple times for other MTD partitions, in which
case they can be accessed through /dev/ubi1, /dev/ubi2, and so on.

Chapter 7

[181]

The PEB to LEB mapping is loaded into memory during the attach phase, a process
that takes time proportional to the number of PEBs, typically a few seconds. A
new feature was added in Linux 3.7 called the UBI fastmap which checkpoints
the mapping to flash from time to time and so reduces the attach time. The kernel
configuration option is CONFIG_MTD_UBI_FASTMAP.

The first time you attach to an MTD partition after a ubiformat there will be no
volumes. You can create volumes using ubimkvol. For example, suppose you have a
128MB MTD partition and you want to split it into two volumes of 32 MB and 96 MB
using a chip with 128 KB erase blocks and 2 KB pages:

ubimkvol /dev/ubi0 -N vol_1 -s 32MiB
ubimkvol /dev/ubi0 -N vol_2 -s 96MiB

Now, you have device the nodes /dev/ubi0_0 and /dev/ubi0_1. You can confirm
the situation using ubinfo:

ubinfo -a /dev/ubi0
ubi0
Volumes count: 2
Logical eraseblock size: 15360 bytes, 15.0 KiB
Total amount of logical eraseblocks: 8192 (125829120 bytes,
120.0 MiB)
Amount of available logical eraseblocks: 0 (0 bytes)
Maximum count of volumes 89
Count of bad physical eraseblocks: 0
Count of reserved physical eraseblocks: 160
Current maximum erase counter value: 1
Minimum input/output unit size: 512 bytes
Character device major/minor: 250:0
Present volumes: 0, 1
Volume ID: 0 (on ubi0)
Type: dynamic
Alignment: 1
Size: 2185 LEBs (33561600 bytes, 32.0 MiB)
State: OK
Name: vol_1
Character device major/minor: 250:1

Volume ID: 1 (on ubi0)
Type: dynamic
Alignment: 1
Size: 5843 LEBs (89748480 bytes, 85.6 MiB)
State: OK
Name: vol_2
Character device major/minor: 250:2

Creating a Storage Strategy

[182]

Note that, since each LEB has a header to contain the meta information used by UBI,
the LEB is smaller than the PEB by one page. For example, a chip with a PEB size of
128 KB and 2 KB pages would have an LEB of 126 KB. This is important information
that you will need when creating a UBIFS image.

UBIFS
UBIFS uses a UBI volume to create a robust filesystem. It adds sub-allocation and
garbage collection to create a complete flash translation layer. Unlike JFFS2 and
YAFFS2, it stores index information on-chip and so mounting is fast, although don't
forget that attaching the UBI volume beforehand may take a significant amount
of time. It also allows for write-back caching like a normal disk filesystem, which
means that writes are much faster, but with the usual problem of potential loss
of data that has not been flushed from the cache to flash memory in the event of
power down. You can resolve the problem by making careful use of the fsync(2)
and fdatasync(2) functions to force a flush of file data at crucial points.

UBIFS has a journal for fast recovery in the event power down. The journal takes
up some space, typically 4 MiB or more, so UBIFS is not suitable for very small
flash devices.

Once you have created the UBI volumes, you can mount them using the device node
for the volume, /dev/ubi0_0, or by using the device node for the whole partition
plus the volume name, as shown here:

mount -t ubifs ubi0:vol_1 /mnt

Creating a filesystem image for UBIFS is a two-stage process: first you create a UBIFS
image using mkfs.ubifs, and then embed it into a UBI volume using ubinize.

For the first stage, mkfs.ubifs needs to be informed of the page size with -m, the
size of the UBI LEB with -e, remembering that the LEB is usually one page shorter
than the PEB, and the maximum number of erase blocks in the volume with -c.
If the first volume is 32 MiB and an erase block is 128 KiB, then the number of erase
blocks is 256. So, to take the contents of the directory rootfs and create a UBIFS image
named rootfs.ubi, you would type the following:

$ mkfs.ubifs -r rootfs -m 2048 -e 126KiB -c 256 -o rootfs.ubi

The second stage requires you to create a configuration file for ubinize which
describes the characteristics of each volume in the image. The help page (ubinize -h)
gives details of the format. This example creates two volumes, vol_1 and vol_2:

[ubifsi_vol_1]
mode=ubi
image=rootfs.ubi

Chapter 7

[183]

vol_id=0
vol_name=vol_1
vol_size=32MiB
vol_type=dynamic

[ubifsi_vol_2]
mode=ubi
image=data.ubi
vol_id=1
vol_name=vol_2
vol_type=dynamic
vol_flags=autoresize

The second volume has an auto-resize flag and so will expand to fill the remaining
space on the MTD partition. Only one volume can have this flag. From this
information, ubinize will create an image file named by the -o parameter,
with the PEB size -p, the page size -m, and the sub-page size -s:

$ ubinize -o ~/ubi.img -p 128KiB -m 2048 -s 512 ubinize.cfg

To install this image on the target, you would enter these commands on the target:

ubiformat /dev/mtd6 -s 2048
nandwrite /dev/mtd6 /ubi.img
ubiattach -p /dev/mtd6 -O 2048

If you want to boot with a UBIFS root filesystem, you would give these kernel
command line parameters:

ubi.mtd=6 root=ubi0:vol_1 rootfstype=ubifs

Filesystems for managed flash
As the trend towards managed flash technologies continues, particularly eMMC,
we need to consider how to use it effectively. While they appear to have the same
characteristics as hard disk drives, some NAND flash chips have the limitations of
large erase blocks with limited erase cycles and bad block handling. And, of course,
we need robustness in the event of losing power.

It is possible to use any of the normal disk filesystems but we should try to choose
one that reduces disk writes and has a fast restart after an unscheduled shutdown,
typically provided by a journal.

Creating a Storage Strategy

[184]

Flashbench
To make optimum use of the underlying flash memory, you need to know the erase
block size and page size. Manufacturers do not publish these numbers, as a rule, but
it is possible to deduce them by observing the behavior of the chip or card.

Flashbench is one such tool. It was initially written by Arnd Bergman, as described
in the LWN article available at http://lwn.net/Articles/428584. You can get the
code from https://github.com/bradfa/flashbench.

Here is a typical run on a SanDisk GiB SDHC card:

$ sudo ./flashbench -a /dev/mmcblk0 --blocksize=1024

align 536870912 pre 4.38ms on 4.48ms post 3.92ms diff 332µs

align 268435456 pre 4.86ms on 4.9ms post 4.48ms diff 227µs

align 134217728 pre 4.57ms on 5.99ms post 5.12ms diff 1.15ms

align 67108864 pre 4.95ms on 5.03ms post 4.54ms diff 292µs

align 33554432 pre 5.46ms on 5.48ms post 4.58ms diff 462µs

align 16777216 pre 3.16ms on 3.28ms post 2.52ms diff 446µs

align 8388608 pre 3.89ms on 4.1ms post 3.07ms diff 622µs

align 4194304 pre 4.01ms on 4.89ms post 3.9ms diff 940µs

align 2097152 pre 3.55ms on 4.42ms post 3.46ms diff 917µs

align 1048576 pre 4.19ms on 5.02ms post 4.09ms diff 876µs

align 524288 pre 3.83ms on 4.55ms post 3.65ms diff 805µs

align 262144 pre 3.95ms on 4.25ms post 3.57ms diff 485µs

align 131072 pre 4.2ms on 4.25ms post 3.58ms diff 362µs

align 65536 pre 3.89ms on 4.24ms post 3.57ms diff 511µs

align 32768 pre 3.94ms on 4.28ms post 3.6ms diff 502µs

align 16384 pre 4.82ms on 4.86ms post 4.17ms diff 372µs

align 8192 pre 4.81ms on 4.83ms post 4.16ms diff 349µs

align 4096 pre 4.16ms on 4.21ms post 4.16ms diff 52.4µs

align 2048 pre 4.16ms on 4.16ms post 4.17ms diff 9ns

Flashbench reads blocks of, in this case, 1,024 bytes just before and just after various
power-of-two boundaries. As you cross a page or erase block boundary, the reads
after the boundary take longer. The rightmost column shows the difference and is the
one that is most interesting. Reading from the bottom, there is a big jump at 4 KiB,
which is the most likely size of a page. There is a second jump from 52.4µs to 349µs at
8 KiB. This is fairly common and indicates that the card can use multi-plane accesses
to read two 4 KiB pages at the same time. Beyond that, the differences are less well
marked, but there is a clear jump from 485µs to 805µs at 512 KiB, which is probably
the erase block size. Given that the card being tested is quite old, these are the sort
of numbers you would expect.

http://lwn.net/Articles/428584
https://github.com/bradfa/flashbench

Chapter 7

[185]

Discard and TRIM
Usually, when you delete a file, only the modified directory node is written to
storage while the sectors containing the file's contents remain unchanged. When
the flash translation layer is in the disk controller, as with managed flash, it does
not know that this group of disk sectors no longer contains useful data and so it
ends up copying stale data.

In the last few years, the addition of transactions that pass information about deleted
sectors down to the disk controller has improved the situation. The SCSI and SATA
specifications have a TRIM command and MMC has a similar command named
ERASE. In Linux, this feature is known as discard.

To make use of discard, you need a storage device that supports it – most current
eMMC chips do – and a Linux device driver to match. You can check by looking
at the block system queue parameters in /sys/block/<block device>/queue/.
The ones of interest are as follows:

• discard_granularity: The size of the internal allocation unit of the device
• discard_max_bytes: The maximum number of bytes that can be discarded

in one go
• discard_zeroes_data: If 1, discarded data will be set to zero

If the device or the device driver does not support discard, these values are all
set to zero. These are the parameters you will see from the eMMC chip on the
BeagleBone Black:

grep -s "" /sys/block/mmcblk0/queue/discard_*
/sys/block/mmcblk0/queue/discard_granularity:2097152
/sys/block/mmcblk0/queue/discard_max_bytes:2199023255040
/sys/block/mmcblk0/queue/discard_zeroes_data:1

There is more information in the kernel documentation file, Documentation/block/
queue-sysfs.txt.

You can enable discard when mounting a filesystem by adding the option
-o discard to the mount command. Both ext4 and F2FS support it.

Make sure that the storage device supports discard before using the
-o discard mount option, otherwise data loss can occur.

Creating a Storage Strategy

[186]

It is also possible to force discard from the command line independently of how the
partition is mounted, using the fstrim command which is part of the util-linux
package. Typically, you would run this command periodically, once a week perhaps,
to free up unused space. fstrim operates on a mounted filesystem so, to trim the
root filesystem /, you would type the following:

fstrim -v /
/: 2061000704 bytes were trimmed

The preceding example uses the verbose option, -v, so that it prints out the number
of bytes potentially freed up. In this case 2,061,000,704 is the approximate amount of
free space in the filesystem, so it is the maximum amount of storage that could have
been freed.

Ext4
The extended filesystem, ext, has been the main filesystem for Linux desktops
since 1992. The current version, ext4, is very stable, well tested and has a journal
that makes recovery from an unscheduled shutdown fast and mostly painless. It is
a good choice for managed flash devices and you will find that it is the preferred
filesystem for Android devices that have eMMC storage. If the device supports
discard, you should mount with the option -o discard.

To format and create an ext4 filesystem at runtime, you would type the following:

mkfs.ext4 /dev/mmcblk0p2
mount -t ext4 -o discard /dev/mmcblk0p1 /mnt

To create a filesystem image, you can use the genext2fs utility, available from
http://genext2fs.sourceforge.net. In this example, I have specified the block
size with -B and the number of blocks in the image with -b:

$ genext2fs -B 1024 -b 10000 -d rootfs rootfs.ext4

genext2fs can make use of a device table to set the file permissions and ownership,
as described in Chapter 5, Building a Root Filesystem, with -D [file table].

As the name implies, this will actually generate an image in .ext2 format. You can
upgrade using tune2fs as follows (details of the command options are in the main
page for tune2fs):

$ tune2fs -j -J size=1 -O filetype,extents,uninit_bg,dir_index
rootfs.ext4

$ e2fsck -pDf rootfs.ext4

http://genext2fs.sourceforge.net

Chapter 7

[187]

Both the Yocto Project and Buildroot use exactly these steps when creating images in
.ext4 format.

While a journal is an asset for devices that may power down without warning, it does
add extra write cycles to each write transaction, wearing out the flash memory. If the
device is battery-powered, especially if the battery is not removable, the chances of an
unscheduled power down are small and so you may want to leave the journal out.

F2FS
The Flash-Friendly File System, F2FS, is a log-structured filesystem designed for
managed flash devices, especially eMMC and SD. It was written by Samsung and
was merged into mainline Linux in 3.8. It is marked experimental, indicating that
it has not been extensively deployed as yet, but it seems that some Android devices
are using it.

F2FS takes into account the page and erase block sizes and tries to align data on these
boundaries. The log format gives resilience in the face of power down and also gives
good write performance, in some tests showing a two-fold improvement over ext4.
There is a good description of the design of F2FS in the kernel documentation in
Documentation/filesystems/f2fs.txt and there are references at the end of
the chapter.

The mfs2.fs2 utility creates an empty F2FS filesystem with the label -l:

mkfs.f2fs -l rootfs /dev/mmcblock0p1
mount -t f2fs /dev/mmcblock0p1 /mnt

There isn't (yet) a tool to create F2FS filesystem images off-line.

FAT16/32
The old Microsoft filesystems, FAT16 and FAT32, continue to be important as a
common format that is understood by most operating systems. When you buy
an SD card or USB flash drive, it is almost certain to be formatted as FAT32 and,
in some cases, the on-card microcontroller is optimized for FAT32 access patterns.
Also, some boot ROMs require a FAT partition for the second stage bootloader, the
TI OMAP-based chips for example. However, FAT formats are definitely not suitable
for storing critical files because they are prone to corruption and make poor use of
the storage space.

Creating a Storage Strategy

[188]

Linux supports FAT16 through the msdos filesystem and both FAT32 and FAT16
through the vfat filesystem. In most cases, you need to include the vfat driver.
Then, to mount a device, say an SD card on the second mmc hardware adapter, you
would type this:

mount -t vfat /dev/mmcblock1p1 /mnt

In the past, there have been licensing issues with the vfat driver which may (or may
not) infringe a patent held by Microsoft.

FAT32 has a limitation on the device size of 32 GiB. Devices of a larger capacity may
be formatted using the Microsoft exFAT format and it is a requirement for SDXC
cards. There is no kernel driver for exFAT, but it can be supported by means of a
user-space FUSE driver. Since exFAT is proprietary to Microsoft there are certain to
be licensing implications if you support this format on your device.

Read-only compressed filesystems
Compressing data is useful if you don't have quite enough storage to fit everything
in. Both JFFS2 and UBIFS do on-the-fly data compression by default. However, if the
files are never going to be written, as is usually the case with the root filesystem, you
can achieve better compression ratios by using a read-only compressed filesystem.
Linux supports several of these: romfs, cramfs, and squashfs. The first two are
obsolete now, so I will describe only squashfs.

squashfs
squashfs was written by Phillip Lougher in 2002 as a replacement for cramfs.
It existed as a kernel patch for a long time, eventually being merged into mainline
Linux in version 2.6.29 in 2009. It is very easy to use: you create a filesystem image
using mksquashfs and install it to the flash memory:

$ mksquashfs rootfs rootfs.squashfs

The resulting filesystem is read-only so there is no mechanism to modify any of the
files at runtime. The only way to update a squashfs filesystem is to erase the whole
partition and program in a new image.

Chapter 7

[189]

squashfs is not bad block-aware and so must be used with reliable flash memory
such as NOR flash. It can be used on NAND flash as long as you use UBI to create
an emulated, reliable, MTD volume on top of UBI. You have to enable kernel
configuration CONFIG_MTD_UBI_BLOCK, which will create a read-only MTD block
device for each UBI volume. The following diagram shows two MTD partitions,
each with accompanying mtdblock devices. The second partition is also used
to create a UBI volume which is exposed as a third, reliable, mtdblock device,
which you can use for any read-only filesystem that is not bad block-aware:

Temporary filesystems
There are always some files that have a short lifetime or which have no significance
after a reboot. Many such files are put into /tmp, and so it makes sense to keep these
files from reaching permanent storage.

The temporary filesystem, tmpfs, is ideal for this purpose. You can create a
temporary RAM-based filesystem by simply mounting tmpfs:

mount -t tmpfs tmp_files /tmp

As with procfs and sysfs, there is no device node associated with tmpfs so you
have to supply a place-keeper string, tmp_files in the preceding example.

The amount of memory used will grow and shrink as files are created and deleted. The
default maximum size is half the physical RAM. In most cases, it would be a disaster
if tmpfs grew that large, so it is a very good idea to cap it with a -o size parameter.
The parameter can be given in bytes, KiB (k), MiB (m), or GiB (g), for example:

mount -t tmpfs -o size=1m tmp_files /tmp

Creating a Storage Strategy

[190]

In addition to /tmp, some subdirectories of /var contain volatile data and it is good
practice to use tmpfs for them as well, either by creating a separate filesystem for
each or, more economically, by using symbolic links. Buildroot does it this way:

/var/cache -> /tmp
/var/lock -> /tmp
/var/log -> /tmp
/var/run -> /tmp
/var/spool -> /tmp
/var/tmp -> /tmp

In the Yocto Project, /run and /var/volatile are tmpfs mounts with symbolic links
pointing to them as shown here:

/tmp -> /var/tmp
/var/lock -> /run/lock
/var/log -> /var/volatile/log
/var/run -> /run
/var/tmp -> /var/volatile/tmp

Making the root filesystem read-only
You need to make your target device able to survive unexpected events including file
corruption, and still be able to boot and achieve at least a minimum level of function.
Making the root filesystem read-only is a key part of achieving this ambition because
it eliminates accidental over-writes. Making it read-only is easy: replace rw with
ro on the kernel command line or use an inherently read-only filesystem such as
squashfs. However, you will find that there are a few files and directories that are
traditionally writable:

• /etc/resolv.conf: This file is written by network configuration scripts to
record the addresses of DNS name servers. The information is volatile, so
you simply have to make it a symlink to a temporary directory, for example,
/etc/resolv.conf -> /var/run/resolv.conf.

• /etc/passwd: This file, along with /etc/group, /etc/shadow, and /etc/
gshadow, stores user and group names and passwords. They need to be
symbolically linked to an area of persistent storage in the same way as
resolv.conf.

• /var/lib: Many applications expect to be able to write to this directory and
to keep permanent data here as well. One solution is to copy a base set of
files to a tmpfs filesystem at boot time and then bind mount /var/lib to
the new location by putting a sequence of commands such as these into
one of the boot scripts:

Chapter 7

[191]

mkdir -p /var/volatile/lib

cp -a /var/lib/* /var/volatile/lib

mount --bind /var/volatile/lib /var/lib

• /var/log: This is the place where syslog and other daemons keep their logs.
Generally, logging to flash memory is not desirable because of the many
small write cycles it generates. A simple solution is to mount /var/log
using tmpfs, making all log messages volatile. In the case of syslogd,
BusyBox has a version that can log to a circular ring buffer.

If you are using the Yocto Project, you can create a read-only root filesystem by
adding IMAGE_FEATURES = "read-only-rootfs" to conf/local.conf or to
your image recipe.

Filesystem choices
So far we have looked at the technology behind solid state memory and at the many
types of filesystems. Now it is time to summarize the options.

In most cases, you will be able to divide your storage requirements into these
three categories:

• Permanent, readable, and writable data: Runtime configuration, network
parameters, passwords, data logs, and user data

• Permanent, read-only data: Programs, libraries, and configurations files that
are constant, for example, the root filesystem

• Volatile data: Temporary storage for example /tmp

The choices for read-write storage are as follows:

• NOR: UBIFS or JFFS2
• NAND: UBIFS, JFFS2, or YAFFS2
• eMMC: ext4 or F2FS

For read-only storage, you can use all of the above mounted with the
ro attribute. Additionally, if you want to save space, you could use
squashfs, in the case of NAND flash using UBI mtdblock device
emulation to handle the bad blocks for you.

Finally, for volatile storage, there is only one choice, tmpfs.

Creating a Storage Strategy

[192]

Updating in the field
There have been several well-publicized security flaws, including Heartbleed (a bug
in the OpenSSL libraries) and Shellshock (a bug in the bash shell), both of which could
have serious consequences for embedded Linux devices that are currently deployed.
For this reason alone, it is highly desirable to have a mechanism to update devices
in the field so that you can fix security problems as they arise. There are other good
reasons as well: to deploy other bug fixes and feature updates.

The guiding principle of update mechanisms is that they should do no harm,
remembering Murphy's Law: if it can go wrong, it will go wrong, eventually.
Any update mechanism must be:

• Robust: It must not render the device inoperable. I will talk about updates
being atomic; either the system is updated successfully or not updated at all
and continues to run as before.

• Failsafe: It must handle interrupted updates gracefully.
• Secure: It must not allow unauthorized updates, otherwise it will become an

attack mechanism.

Atomicity can be achieved by having duplicates of the things you want to update
and switching to the new copy when safe to do so.

Failsafety requires there to be a mechanism to detect a failed update, such as a
hardware watchdog, and a known good copy of software to fall back on.

Security can be achieved in the case of updates that are local and attended through
authentication by a password or PIN code. But, if the update is remote and automatic,
some level of authentication via the network is needed. Ultimately, you may want to
add a secure bootloader and signed update binaries.

Some components are easier to update than others. The bootloader is very difficult
to update since there are usually hardware constraints that mean there can only be
one bootloader, and so there cannot be a backup if the update fails. On the other
hand, bootloaders are not often a cause of runtime bugs. The best advice is to avoid
bootloader updates in the field.

Chapter 7

[193]

Granularity: file, package, or image?
This is the big question, and depends on your overall system design and your
desired level of robustness.

File updates can be made atomic: the technique is to write the new content to a
temporary file in the same filesystem and then use the POSIX rename(2) function
to move it over the old file. It works because rename is guaranteed to be atomic.
However, this is only one part of the problem because there will be dependencies
between files which need to be considered.

Updating at the level of packages (RPM, dpkg, or ipk) is a better option, assuming that
you have a runtime package manager. This, after all, is how desktop distributions
have been doing it for years. The package manager has a database of updates and
can keep track of those which have been updated and those that haven't. Each
package has an update script that is designed to make sure that the package update
is atomic. The great advantage is that you can update existing packages, install
new ones, and delete obsolete ones with ease. If you are using a root filesystem that
is mounted as read-only, you will have to temporarily remount read-write while
updating, which opens up a small window for corruption.

Package managers do have downsides as well. They are not able to update kernel or
other images in raw flash memory. After devices have been deployed and updated
several times, you may end up with a large number of combinations of packages
and package versions, which will complicate QA for each new update cycle. Package
managers are not bulletproof in the event of power failure during an update.

The third option is to update whole system images: the kernel, the root filesystem,
user applications, and so on.

Atomic image update
In order to make the update atomic, we need two things: a second copy of the
operating system that can be used during the update, and a mechanism in the
bootloader to select which copy of the operating system to load. The second copy
may be exactly the same as the first, resulting in full redundancy of the operating
system, or it may be a small operating system dedicated to updating the main one.

Creating a Storage Strategy

[194]

In the first scheme ,there are two copies of the operating system, each comprised
of the Linux kernel, the root filesystem, and system applications, as shown in the
following diagram:

Initially, the boot flag is not set, so the bootloader loads copy 1. To install an update,
the updater application, which is part of the operating system, overwrites copy 2.
When complete, it sets the boot flag and reboots. Now, the bootloader will load the
new operating system. When a further update is installed, the updater in copy 2
overwrites copy 1 and clears the boot flag and so you ping-pong between the
two copies.

If an update fails, the boot flag is not changed and the last good operating system
is used. Even if the update consists of several components, a kernel image, a DTB,
a root filesystem, and a system application filesystem, the whole update is atomic
because the boot flag is only updated when all updates are completed.

The main drawback with this scheme is that it requires storage for two copies of the
operating system.

You can reduce storage requirements by keeping a minimal operating system purely
for updating the main one, as shown in the following diagram:

Chapter 7

[195]

When you want to install an update, set the boot flag and reboot. Once the recovery
operating system is running, it starts the updater which overwrites the main operating
system images. When done, it clears the boot flag and reboots again, this time loading
the new main operating system.

The recovery operating system is usually a lot smaller than the main operating
system, maybe only a few megabytes, and so the storage overhead is not great. In
fact, this is the scheme adopted by Android. The main operating system is several
hundred megabytes, but the recovery mode operating system is a simple ramdisk
of a few megabytes only.

Further reading
The following resources have further information about the topics introduced in
this chapter:

• XIP: The past, the present... the future?, Vitaly Wool, presentation at FOSDEM
2007: https://archive.fosdem.org/2007/slides/devrooms/embedded/
Vitaly_Wool_XIP.pdf

• General MTD documentation, http://www.linux-mtd.infradead.org/doc/
general.html

• Optimizing Linux with cheap flash drives, Arnd Bergmann: http://lwn.net/
Articles/428584/

• Flash memory card design: https://wiki.linaro.org/WorkingGroups/
KernelArchived/Projects/FlashCardSurvey

• eMMC/SSD File System Tuning Methodology: http://elinux.org/images/b/
b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf

• Flash-Friendly File System (F2FS): http://elinux.org/images/1/12/
Elc2013_Hwang.pdf

• An f2fS teardown: http://lwn.net/Articles/518988/
• Building Murphy-compatible embedded Linux systems, Gilad Ben-Yossef:

https://www.kernel.org/doc/ols/2005/ols2005v1-pages-21-36.pdf

https://archive.fosdem.org/2007/slides/devrooms/embedded/Vitaly_Wool_XIP.pdf
https://archive.fosdem.org/2007/slides/devrooms/embedded/Vitaly_Wool_XIP.pdf
http://www.linux-mtd.infradead.org/doc/general.html
http://www.linux-mtd.infradead.org/doc/general.html
http://lwn.net/Articles/428584/
http://lwn.net/Articles/428584/
https://wiki.linaro.org/WorkingGroups/KernelArchived/Projects/FlashCardSurvey
https://wiki.linaro.org/WorkingGroups/KernelArchived/Projects/FlashCardSurvey
http://elinux.org/images/b/b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf
http://elinux.org/images/b/b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf
http://elinux.org/images/1/12/Elc2013_Hwang.pdf
http://elinux.org/images/1/12/Elc2013_Hwang.pdf
http://lwn.net/Articles/518988/
https://www.kernel.org/doc/ols/2005/ols2005v1-pages-21-36.pdf

Creating a Storage Strategy

[196]

Summary
Flash memory has been the storage technology of choice for embedded Linux
from the beginning and over the years Linux has gained very good support,
from low-level drivers up to flash-aware filesystems, the latest being UBIFS.

However, as the rate at which new flash technologies are introduced increases, it is
becoming harder to keep pace with the changes at the high end. System designers
are increasingly turning to managed flash in the form of eMMC to provide a stable
hardware and software interface which is independent of the memory chips inside.
Embedded Linux developers are beginning to get to grips with these new chips.
Support for TRIM in ext4 and F2FS is well established, and it is slowly finding its
way into the chips themselves. Also, the appearance of new filesystems that are
optimized to manage flash, such as F2FS, is a welcome step forward.

However, the fact remains that flash memory is not the same as a hard disk drive.
You have to be careful to minimize the number of filesystem writes – especially as
the higher density TLC chips may be able to support as few as 1,000 erase cycles.

Finally, it is essential to have a strategy for updating the files and images stored on
the device in the field. A crucial part of this is the decision to use a package manager
or not. A package manager gives you flexibility, but cannot give you a fully Murphy
proof update solution. Your choice depends on the balance between convenience
and robustness.

The next chapter describes how you control the hardware components of your
system through the use of device drivers, both in the conventional sense of drivers
that are part of the kernel, and also the extent to which you can control hardware
from the user space.

[197]

Introducing Device Drivers
Kernel device drivers are the mechanism through which the underlying hardware
is exposed to the rest of the system. As a developer of embedded systems, you need
to know how device drivers fit into the overall architecture and how to access them
from user space programs. Your system will probably have some novel pieces of
hardware and you will have to work out a way of accessing them. In many cases,
you will find that there are device drivers provided for you and you can achieve
everything you want without writing any kernel code. For example, you can
manipulate GPIO pins and LEDs using files in sysfs, and there are libraries to
access serial buses, including SPI and I2C.

There are many places to find out how to write a device driver, but few to tell you
why you would want to and the choices you have in doing so. That is what I want
to cover here. However, remember that this is not a book dedicated to writing
kernel device drivers and that the information given here is to help you navigate
the territory but not necessarily to set up home there. There are many good books
and articles that will help you to write device drivers, some of which are listed at
the end of this chapter.

The role of device drivers
As mentioned in Chapter 4, Porting and Configuring the Kernel, one of the functions of
the kernel is to encapsulate the many hardware interfaces of a computer system and
present them in a consistent manner to user-space programs. There are frameworks
designed to make it easy to write the interface logic for a device in the kernel and
you can integrate it with the kernel: this is a device driver, the piece of code that
mediates between the kernel above it and the hardware below. A device driver
is a piece of software that controls physical devices such as a UART or an MMC
controller, or virtual devices such as the null device (/dev/null) or a ramdisk.
One driver may control multiple devices of the same kind.

Introducing Device Drivers

[198]

Kernel device driver code runs at a high privilege level, as does the rest of the
kernel. It has full access to the processor address space and hardware registers. It can
handle interrupts and DMA transfers. It can make use of the sophisticated kernel
infrastructure for synchronization and memory management. There is a downside to
this, which is that if something goes wrong in a buggy driver, it can go really wrong
and bring the system down. Consequently, there is a principle that device drivers
should be as simple as possible, just providing information to applications where the
real decisions are made. You often hear this being expressed as no policy in the kernel.

In Linux, there are three main types of device driver:

• character: This is for unbuffered I/O with a rich range of functions and a thin
layer between the application code and the driver. It is the first choice when
implementing custom device drivers.

• block: This has an interface tailored for block I/O to and from mass storage
devices. There is a thick layer of buffering designed to make disk reads and
writes as fast as possible, which makes it unsuitable for anything else.

• network: This is similar to a block device but is used for transmitting and
receiving network packets rather than disk blocks.

There is also a fourth type that presents itself as a group of files in one of the pseudo
filesystems. For example, you might access the GPIO driver through a group of files
in /sys/class/gpio, as I will describe later on in this chapter. Let's begin by looking
in more detail at the three basic device types.

Character devices
These devices are identified in user space by a filename: if you want to read from
a UART, you open the device node, for example, the first serial port on the ARM
Versatile Express would be /dev/ttyAMA0. The driver is identified differently in the
kernel, using the major number which, in the example given, is 204. Since the UART
driver can handle more than one UART, there is a second number, called the minor
number, which identifies a specific interface, 64, in this case:

ls -l /dev/ttyAMA*

crw-rw---- 1 root root 204, 64 Jan 1 1970 /dev/ttyAMA0
crw-rw---- 1 root root 204, 65 Jan 1 1970 /dev/ttyAMA1
crw-rw---- 1 root root 204, 66 Jan 1 1970 /dev/ttyAMA2
crw-rw---- 1 root root 204, 67 Jan 1 1970 /dev/ttyAMA3

Chapter 8

[199]

The list of standard major and minor numbers can be found in the kernel
documentation, in Documentation/devices.txt. The list does not get updated
very often and does not include the ttyAMA device described in the preceding
paragraph. Nevertheless, if you look at the source code in drivers/tty/serial/
amba-pl011.c, you will see that the major and minor numbers are declared:

#define SERIAL_AMBA_MAJOR 204
#define SERIAL_AMBA_MINOR 64

Where there is more than one instance of a device, the naming convention for
the device nodes is <base name><interface number>, for example, ttyAMA0,
ttyAMA1, and so on.

As I mentioned in Chapter 5, Building a Root Filesystem, the device nodes can be
created in several ways:

• devtmpfs: The node that is created when the device driver registers a new
device interface using a base name supplied by the driver (ttyAMA) and an
instance number.

• udev or mdev (without devtmpfs): Essentially the same as with devtmpfs,
except that a user-space daemon program has to extract the device name
from sysfs and create the node. I will talk about sysfs later.

• mknod: If you are using static device nodes, they are created manually
using mknod.

You may have the impression from the numbers I have used above that both major
and minor numbers are 8-bit numbers in the range 0 to 255. In fact, from Linux 2.6
onwards, the major number is 12 bits long, which gives valid numbers from 1 to
4,095, and the minor number is 20 bits, from 0 to 1,048,575.

When you open a device node, the kernel checks to see whether the major and minor
numbers fall into a range registered by a device driver of that type (a character or
block). If so, it passes the call to the driver, otherwise the open call fails. The device
driver can extract the minor number to find out which hardware interface to use.
If the minor number is out of range, it returns an error.

To write a program that accesses a device driver, you have to have some knowledge
of how it works. In other words, a device driver is not the same as a file: the things
you do with it change the state of the device. A simple example is the pseudo random
number generator, urandom, which returns bytes of random data every time you read
it. Here is a program that does just that:

#include <stdio.h>
#include <sys/types.h>

Introducing Device Drivers

[200]

#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int main(void)
{
 int f;
 unsigned int rnd;
 int n;
 f = open("/dev/urandom", O_RDONLY);
 if (f < 0) {
 perror("Failed to open urandom");
 return 1;
 }
 n = read(f, &rnd, sizeof(rnd));
 if (n != sizeof(rnd)) {
 perror("Problem reading urandom");
 return 1;
 }
 printf("Random number = 0x%x\n", rnd);
 close(f);
 return 0;
}

The nice thing about the Unix driver model is that, once we know that there is a
device named urandom and that every time we read from it, it returns a fresh set of
pseudo random data, we don't need to know anything else about it. We can just use
normal functions such as open(2), read(2), and close(2).

We could use the stream I/O functions fopen(3), fread(3), and fclose(3) instead,
but the buffering implicit in these functions often causes unexpected behavior. For
example, fwrite(3) usually only writes to the user-space buffer, not to the device.
We would need to call fflush(3) to force the buffer to be written out.

Don't use stream I/O functions such as fread(3) and fwrite(3)
when calling device drivers.

Block devices
Block devices are also associated with a device node, which also has major and
minor numbers.

Chapter 8

[201]

Although character and block devices are identified using major and
minor numbers, they are in different namespaces. A character driver
with a major number 4 is in no way related to a block driver with a
major number 4.

With block devices, the major number is used to identify the device driver and the
minor number is used to identify the partition. Let's look at the MMC driver as
an example:

ls -l /dev/mmcblk*

brw------- 1 root root 179, 0 Jan 1 1970 /dev/mmcblk0
brw------- 1 root root 179, 1 Jan 1 1970 /dev/mmcblk0p1
brw------- 1 root root 179, 2 Jan 1 1970 /dev/mmcblk0p2
brw------- 1 root root 179, 8 Jan 1 1970 /dev/mmcblk1
brw------- 1 root root 179, 9 Jan 1 1970 /dev/mmcblk1p1
brw------- 1 root root 179, 10 Jan 1 1970 /dev/mmcblk1p2

The major number is 179 (look it up in devices.txt!). The minor numbers are used
in ranges to identify different mmc devices and the partitions of the storage medium on
that device. In the case of the mmcblk driver, the ranges are eight minor numbers per
device: the minor numbers from 0 to 7 are for the first device, the numbers from 8 to 15
are for the second, and so on. Within each range, the first minor number represents the
entire device as raw sectors, and the others represent up to seven partitions.

You are probably aware of the SCSI disk driver, known as sd, which is used to
control a range of disks that use the SCSI command set, which includes SCSI, SATA,
USB mass storage, and UFS (universal flash storage). It has the major number eight
and ranges of 16 minor numbers per interface (or disk). The minor numbers from 0 to
15 are for the first interface, with device nodes named sda up to sda15, the numbers
from 16 to 31 are for the second disk with device nodes sdb up to sdb15, and so on.
This continues up to the sixteenth disk from 240 to 255, with the node name sdp.
There are other major numbers reserved for them because SCSI disks are so popular,
but we needn't worry about that here.

The partitions are created using utilities such as fdisk, sfidsk, or parted. An
exception is raw flash memory: the partition information for the MTD driver is
part of the kernel command line or in the device tree, or one of the other methods
described in Chapter 7, Creating a Storage Strategy.

Introducing Device Drivers

[202]

A user-space program can open and interact directly with a block device through
the device node. This is not a common thing to do, and is usually for performing
administrative operations such as partitioning, formatting with a filesystem, and
mounting. Once the filesystem is mounted, you interact with the block device
indirectly through the files in that filesystem.

Network devices
Network devices are not accessed through device nodes and they do not have major
and minor numbers. Instead, a network device is allocated a name by the kernel,
based on a string and an instance number. Here is an example of the way a network
driver registers an interface:

my_netdev = alloc_netdev(0, "net%d", NET_NAME_UNKNOWN,
netdev_setup);
ret = register_netdev(my_netdev);

This creates a network device named net0 the first time it is called, net1 the second,
and so on. More common names are lo, eth0, and wlan0.

Note that this is the name it starts off with; device managers, such as udev, may change
to something different later on.

Usually, the network interface name is only used when configuring the network
using utilities such as ip and ifconfig to establish a network address and route.
Thereafter, you interact with the network driver indirectly by opening sockets,
and let the network layer decide how to route them to the right interface.

However, it is possible to access network devices directly from user space by creating
a socket and using the ioctl commands listed in include/linux/sockios.h. For
example, this program uses SIOCGIFHWADDR to query the driver for the hardware
(MAC) address:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/sockios.h>
#include <net/if.h>
int main (int argc, char *argv[])
{
 int s;
 int ret;
 struct ifreq ifr;
 int i;

Chapter 8

[203]

 if (argc != 2) {
 printf("Usage %s [network interface]\n", argv[0]);
 return 1;
 }
 s = socket(PF_INET, SOCK_DGRAM, 0);
 if (s < 0) {
 perror("socket");
 return 1;
 }
 strcpy(ifr.ifr_name, argv[1]);
 ret = ioctl(s, SIOCGIFHWADDR, &ifr);
 if (ret < 0) {
 perror("ioctl");
 return 1;
 }
 for (i = 0; i < 6; i++)
 printf("%02x:", (unsigned char)ifr.ifr_hwaddr.sa_data[i]);
 printf("\n");
 close(s);
 return 0;
}

This is a standard device, ioctl, which is handled by the network layer on the
driver's behalf, but it is possible to define your own ioctl numbers and handle
them in a custom network driver.

Finding out about drivers at runtime
Once you have a running Linux system, it is useful to know which device drivers
are loaded and what state they are in. You can find out a lot by reading the files in
/proc and /sys.

First of all, you can list the character and block device drivers currently loaded and
active by reading /proc/devices:

cat /proc/devices

Character devices:

 1 mem
 2 pty
 3 ttyp
 4 /dev/vc/0
 4 tty

Introducing Device Drivers

[204]

 4 ttyS
 5 /dev/tty
 5 /dev/console
 5 /dev/ptmx
 7 vcs
 10 misc
 13 input
 29 fb
 81 video4linux
 89 i2c
 90 mtd
116 alsa
128 ptm
136 pts
153 spi
180 usb
189 usb_device
204 ttySC
204 ttyAMA
207 ttymxc
226 drm
239 ttyLP
240 ttyTHS
241 ttySiRF
242 ttyPS
243 ttyWMT
244 ttyAS
245 ttyO
246 ttyMSM
247 ttyAML
248 bsg
249 iio
250 watchdog
251 ptp
252 pps
253 media
254 rtc

Block devices:

259 blkext
 7 loop
 8 sd
 11 sr

Chapter 8

[205]

 31 mtdblock
 65 sd
 66 sd
 67 sd
 68 sd
 69 sd
 70 sd
 71 sd
128 sd
129 sd
130 sd
131 sd
132 sd
133 sd
134 sd
135 sd
179 mmc

For each driver, you can see the major number and the base name. However, this
does not tell you how many devices each driver is attached to. It only shows ttyAMA
but gives you no clue that it is attached to four real UARTS. I will come back to that
later when I look at sysfs. If you are using a device manager such as mdev, udev, or
devtmpfs, you can list the character and block device interfaces by looking in /dev.

You can also list network interfaces using ifconfig or ip:

ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN mode DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc
pfifo_fast state DOWN mode DEFAULT qlen 1000
 link/ether 54:4a:16:bb:b7:03 brd ff:ff:ff:ff:ff:ff

3: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UP mode DEFAULT qlen 1000
 link/ether aa:fb:7f:5e:a8:d5 brd ff:ff:ff:ff:ff:ff

You can also find out about devices attached to USB or PCI buses using the
well-known commands lsusb and lspci. There is information about them in
the respective manuals and plenty of online guides, so I will not describe them
any further here.

The really interesting information is in sysfs, which is the next topic.

Introducing Device Drivers

[206]

Getting information from sysfs
You can define sysfs in a pedantic way as a representation of kernel objects,
attributes and relationships. A kernel object is a directory, an attribute is a file,
and a relationship is a symbolic link from one object to another.

From a more practical point of view, since the Linux device driver model, which
was introduced in version 2.6, represents all devices and drivers as kernel objects.
You can see the kernel's view of the system laid out before you by looking in /sys,
as shown here:

ls /sys

block bus class dev devices firmware fs kernel module
power

In the context of discovering information about devices and drivers, I will look at
three of the directories: devices, class, and block.

The devices: /sys/devices
This is the kernel's view of the devices discovered since boot and how they are
connected to each other. It is organized at the top level by the system bus, so what
you see varies from one system to another. This is the QEMU emulation of the
Versatile Express:

ls
 /sys/devices
armv7_cortex_a9 platform system
breakpoint software virtual

There are three directories that are present on all systems:

• system: This contains devices at the heart of the system, including CPUs
and clocks.

• virtual: This contains devices that are memory-based. You will find the
memory devices that appear as /dev/null, /dev/random, and /dev/zero
in virtual/mem. You will find the loopback device, lo, in virtual/net.

• platform: This is a catch-all for devices that are not connected via
a conventional hardware bus. This may be almost everything on an
embedded device.

The other devices appear in directories that correspond to actual system buses.
For example, the PCI root bus, if there is one, appears as pci0000:00.

Chapter 8

[207]

Navigating this hierarchy is quite hard because it requires some knowledge of
the topology of your system and the pathnames become quite long and hard to
remember. To make life easier, /sys/class and /sys/block offer two different
views of the devices.

The drivers: /sys/class
This is a view of the device drivers presented by their type, in other words, it is a
software view rather than a hardware view. Each of the subdirectories represents
a class of driver and is implemented by a component of the driver framework.
For example, UART devices are managed by the tty layer and you will find them
in /sys/class/tty. Likewise, you will find network devices in /sys/class/net,
input devices such as the keyboard, the touchscreen, and the mouse in /sys/class/
input, and so on.

There is a symbolic link in each subdirectory for each instance of that type of device
pointing to its representation in /sys/device.

To take a concrete example, let's look at /sys/class/tty/ttyAMA0:

cd /sys/class/tty/ttyAMA0/
ls
close_delay flags line uartclk
closing_wait io_type port uevent
custom_divisor iomem_base power xmit_fifo_size
dev iomem_reg_shift subsystem
device irq type

The link device references the hardware node for the device and subsystem points
back to /sys/class/tty. The others are attributes of the device. Some are specific
to a UART, such as xmit_fifo_size and others apply to many types of device such
as the interrupt number, irq, and the device number dev. Some attribute files are
writable and allow you to tune parameters in the driver at runtime.

The dev attribute is particularly interesting. If you look at its value, you will find
the following:

cat /sys/class/tty/ttyAMA0/dev
204:64

These are the major and minor numbers of this device. This attribute is created when
the driver registered this interface and it is from this file that udev and mdev read that
information if they are being used without the help of devtmpfs.

Introducing Device Drivers

[208]

The block drivers: /sys/block
There is one more view of the device model that is important: the block driver view
that you will find in /sys/block. There is a subdirectory for each block device.
This example is taken from a BeagleBone Black:

ls /sys/block/

loop0 loop4 mmcblk0 ram0 ram12 ram2 ram6
loop1 loop5 mmcblk1 ram1 ram13 ram3 ram7
loop2 loop6 mmcblk1boot0 ram10 ram14 ram4 ram8
loop3 loop7 mmcblk1boot1 ram11 ram15 ram5 ram9

If you look into mmcblk1, which is the eMMC chip on this board, you can see the
attributes of the interface and the partitions within it:

cd /sys/block/mmcblk1
ls

alignment_offset ext_range mmcblk1p1 ro
bdi force_ro mmcblk1p2 size
capability holders power slaves
dev inflight queue stat
device mmcblk1boot0 range subsystem
discard_alignment mmcblk1boot1 removable uevent

The conclusion, then, is that you can learn a lot about the devices (the hardware) and
the drivers (the software) that are present on a system by reading sysfs.

Finding the right device driver
A typical embedded board is based on a reference design from the manufacturer
with changes to make it suitable for a particular application. It may have a
temperature sensor attached via I2C, lights and buttons connected via GPIO pins, an
external Ethernet MAC, a display panel via a MIPI interface, or many other things.
Your job is to create a custom kernel to control all of that, so where do you start?

Some things are so simple that you can write user space code to handle them. GPIOs
and simple peripherals connected via I2C or SPI are easy to control from user space,
as I will explain later.

Other things need a kernel driver so you need to know how to find one and
incorporate it into your build. There is no simple answer, but here are some
places to look.

Chapter 8

[209]

The most obvious place to look is the driver support page on the manufacturer's
website, or you could ask them directly. In my experience, this seldom gets the result
you want; hardware manufacturers are not are not particularly Linux-savvy and they
often give you misleading information. They may have proprietary drivers as binary
blobs or they may have source code, but for a different version of the kernel than the
one you have. So, by all means try this route. I will always try to find an open source
driver for the task in hand.

There may be support in your kernel already: there are many thousands of drivers
in mainline Linux and there are many vendor-specific drivers in the vendor kernels.
Begin by running make menuconfig (or xconfig) and search for the product name
or number. If you do not find an exact match, try more generic searches, allowing for
the fact that most drivers handle a range of products from the same family. Next, try
searching through the code in the drivers directory (grep is you friend here). Always
make sure you are running the latest kernel for your board: later kernels generally
have more device drivers.

If you still don't have a driver, you can try searching online and asking in the relevant
forums to see if there is a driver for a different version of Linux. If you find one, you
will have to backport it to your kernel. If the kernel versions are similar, it may be easy,
but if they are more than 12 to 18 months apart, the chances are that the interfaces
will have changed to the extent that you will have to rewrite a chunk of the driver to
integrate it with your kernel. You may want to outsource this work. If all of the above
fails, you will have to find a solution yourself.

Device drivers in user-space
Before you start writing a device driver, pause for a moment to consider whether it is
really necessary. There are generic device drivers for many common types of device
that allow you to interact with hardware directly from user space without having
to write a line of kernel code. User space code is certainly easier to write and debug.
It is also not covered by the GPL, although I don't feel that is a good reason in itself
to do it this way.

They fall into two broad categories: those that you control through files in sysfs,
including GPIO and LEDs, and serial buses that expose a generic interface through
a device node, such as I2C.

Introducing Device Drivers

[210]

GPIO
General Purpose Input/Output (GPIO) is the simplest form of digital interface since it
gives you direct access to individual hardware pins, each of which can be configured
as input or output. GPIO can even be used to create higher level interfaces such as I2C
or SPI by manipulating each bit in the software, a technique that is called bit banging.
The main limitation is the speed and accuracy of the software loops and the number
of CPU cycles you want to dedicate to them. Generally speaking, it is hard to achieve
timer accuracy better than a millisecond with kernels compiled with CONFIG_PREEMPT,
and 100 microseconds with RT_PREEMPT, as we shall see in Chapter 14, Real-time
Programming. More common use cases for GPIO are for reading push buttons and
digital sensors and controlling LEDs, motors, and relays.

Most SoCs have a lot of GPIO bits which are grouped together in GPIO registers,
usually 32 bits per register. On-chip GPIO bits are routed through to GPIO pins on
the chip package via a multiplexer, known as a pin mux, which I will describe later.
There may be additional GPIO bits available off-chip in the power management
chip, and in dedicated GPIO extenders, connected through I2C or SPI buses. All this
diversity is handled by a kernel subsystem known as gpiolib, which is not actually
a library but the infrastructure GPIO drivers use to expose IO in a consistent way.

There are details about the implementation of gpiolib in the kernel source in
Documentation/gpio and the drivers themselves are in drivers/gpio.

Applications can interact with gpiolib through files in the /sys/class/gpio
directory. Here is an example of what you will see in there on a typical embedded
board (a BeagleBone Black):

ls /sys/class/gpio
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

The gpiochip0 to gpiochip96 directories represent four GPIO registers, each with 32
GPIO bits. If you look in one of the gpiochip directories, you will see the following:

ls /sys/class/gpio/gpiochip96/
base label ngpio power subsystem uevent

The file base contains the number of the first GPIO pin in the register and ngpio
contains the number of bits in the register. In this case, gpiochip96/base is 96 and
gpiochip96/ngpio is 32, which tells you that it contains GPIO bits 96 to 127. It is
possible for there to be a gap between the last GPIO in one register and the first
GPIO in the next.

Chapter 8

[211]

To control a GPIO bit from user space, you first have to export it from kernel space,
which you do by writing the GPIO number to /sys/class/gpio/export. This
example shows the process for GPIO 48:

echo 48 > /sys/class/gpio/export
ls /sys/class/gpio
export gpio48 gpiochip0 gpiochip32 gpiochip64
gpiochip96 unexport

Now there is a new directory, gpio48, which contains the files you need to control
the pin. Note that if the GPIO bit is already claimed by the kernel, you will not be
able to export it in this way.

The directory gpio48 contains these files:

ls /sys/class/gpio/gpio48
active_low direction edge power subsystem uevent value

The pin begins as an input. To change it to an output, write out to the direction
file. The file value contains the current state of the pin, which is 0 for low and 1
for high. If it is an output, you can change the state by writing 0 or 1 to value.
Sometimes, the meaning of low and high is reversed in hardware (hardware
engineers enjoy doing that sort of thing), so writing 1 to active_low inverts the
meaning so that a low voltage is reported as 1 in value and a high voltage as 0.

You can remove a GPIO from user space control by writing the GPIO number to
/sys/class/gpio/unexport.

Handling interrupts from GPIO
In many cases, a GPIO input can be configured to generate an interrupt when it
changes state, which allows you to wait for the interrupt rather than polling in
an inefficient software loop. If the GPIO bit can generate interrupts, the file edge
exists. Initially, it has the value none, meaning that it does not generate interrupts.
To enable interrupts, you can set it to one of these values:

• rising: Interrupt on rising edge
• falling: Interrupt on falling edge
• both: Interrupt on both rising and falling edges
• none: No interrupts (default)

Introducing Device Drivers

[212]

You can wait for an interrupt using the poll() function with POLLPRI as the event. If
you want to wait for a rising edge on GPIO 48, you first enable interrupts:

echo 48 > /sys/class/gpio/export
echo rising > /sys/class/gpio/gpio48/edge

Then, you use poll() to wait for the change, as shown in this code example:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <poll.h>

int main (int argc, char *argv[])
{
 int f;
 struct pollfd poll_fds [1];
 int ret;
 char value[4];
 int n;
 f = open("/sys/class/gpio/gpio48", O_RDONLY);
 if (f == -1) {
 perror("Can't open gpio48");
 return 1;
 }
 poll_fds[0].fd = f;
 poll_fds[0].events = POLLPRI | POLLERR;
 while (1) {
 printf("Waiting\n");
 ret = poll(poll_fds, 1, -1);
 if (ret > 0) {
 n = read(f, &value, sizeof(value));
 printf("Button pressed: read %d bytes, value=%c\n",
 n, value[0]);
 }
 }
 return 0;
}

Chapter 8

[213]

LEDs
LEDs are often controlled though a GPIO pin, but there is another kernel
subsystem that offers more specialized control specific to the purpose. The leds
kernel subsystem adds the ability to set brightness, should the LED have that
ability, and can handle LEDs connected in other ways than a simple GPIO pin. It
can be configured to trigger the LED on an event such as block device access or
just a heartbeat to show that the device is working. There is more information in
Documentation/leds/ and the drivers are in drivers/leds/.

As with GPIOs, LEDs are controlled through an interface in sysfs, in /sys/class/leds.
The LEDs have names in the form devicename:colour:function, as shown here:

ls /sys/class/leds
beaglebone:green:heartbeat beaglebone:green:usr2
beaglebone:green:mmc0 beaglebone:green:usr3

This shows one individual LED:

ls /sys/class/leds/beaglebone:green:usr2
brightness max_brightness subsystem uevent
device power trigger

The brightness file controls the brightness of the LED and can be a number
between 0 (off) and max_brightness (fully on). If the LED doesn't support
intermediate brightness, any non-zero value turns it on and zero turns it off.
The file trigger lists the events that trigger the LED to turn on. The list of
triggers is implementation-dependent. Here is an example:

cat /sys/class/leds/beaglebone:green:heartbeat/trigger
none mmc0 mmc1 timer oneshot [heartbeat] backlight gpio cpu0
default-on

The trigger currently selected is shown in square brackets. You can change it by
writing one of the other triggers to the file. If you want to control the LED entirely
through brightness, select none. If you set the trigger to timer, two extra files
appear that allow you to set the on and off times in milliseconds:

echo timer > /sys/class/leds/beaglebone:green:heartbeat/trigger
ls /sys/class/leds/beaglebone:green:heartbeat
brightness delay_on max_brightness subsystem uevent
delay_off device power trigger
cat /sys/class/leds/beaglebone:green:heartbeat/delay_on
500
cat /sys/class/leds/beaglebone:green:heartbeat/delay_off
500
#

Introducing Device Drivers

[214]

If the LED has on-chip timer hardware, the blinking takes place without interrupting
the CPU.

I2C
I2C is a simple low speed 2-wire bus that is common on embedded boards,
typically used to access peripherals which are not on the SoC board such as display
controllers, camera sensors, GPIO extenders, and the like. There is a related standard
known as SMBus (system management bus) that is found on PCs, that is used to
access temperature and voltage sensors. SMBus is a subset of I2C.

I2C is a master-slave protocol, with the master being one or more host controllers on
the SoC. Slaves have a 7-bit address assigned by the manufacturer – read the data
sheet – allowing up to 128 nodes per bus, but 16 are reserved, so only 112 nodes are
allowed in practice. The bus speed is 100 KHz in standard mode, or up to 400 KHz in
fast mode. The protocol allows read and write transactions between the master and
slave of up to 32 bytes. Frequently, the first byte is used to specify a register on the
peripheral and the remaining bytes are the data read from or written to that register.

There is one device node for each host controller, for example, this SoC has four:

ls -l /dev/i2c*
crw-rw---- 1 root i2c 89, 0 Jan 1 00:18 /dev/i2c-0
crw-rw---- 1 root i2c 89, 1 Jan 1 00:18 /dev/i2c-1
crw-rw---- 1 root i2c 89, 2 Jan 1 00:18 /dev/i2c-2
crw-rw---- 1 root i2c 89, 3 Jan 1 00:18 /dev/i2c-3

The device interface provides a series of ioctl commands that query the host
controller and send read and write commands to I2C slaves. There is a package
named i2c-tools which uses this interface to provide basic command-line tools
to interact with I2C devices. The tools are as follows:

• i2cdetect: This lists the I2C adapters and probes the bus
• i2cdump: This dumps data from all the registers of an I2C peripheral
• i2cget: This reads data from an I2C slave
• i2cset: This writes data to an I2C slave

The i2c-tools package is available in Buildroot and the Yocto Project, as well as
most mainstream distributions. So long as you know the address and protocol of
the slave, writing a user space program to talk to the device is straightforward:

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

Chapter 8

[215]

#include <i2c-dev.h>
#include <sys/ioctl.h>
#define I2C_ADDRESS 0x5d
#define CHIP_REVISION_REG 0x10

void main (void)
{
 int f_i2c;
 int val;

 /* Open the adapter and set the address of the I2C device */
 f_i2c = open ("/dev/i2c-1", O_RDWR);
 ioctl (f_i2c, I2C_SLAVE, I2C_ADDRESS);

 /* Read 16-bits of data from a register */
 val = i2c_smbus_read_word_data(f, CHIP_REVISION_REG);
 printf ("Sensor chip revision %d\n", val);
 close (f_i2c);
}

Note that the header i2c-dev.h is the one from the i2c-tools package, not the
one from the Linux kernel headers. The i2c_smbus_read_word_data() function is
written inline in i2c-dev.h.

There is more information about the Linux implementation of I2C in
Documentation/i2c/dev-interface. The host controller drivers are in drivers/
i2c/busses.

SPI
The serial peripheral interface bus is similar to I2C, but is a lot faster, up to the low
MHz. The interface uses four wires with separate send and receive lines which
allows it to operate in full duplex. Each chip on the bus is selected with a dedicated
chip select line. It is commonly used to connect to touchscreen sensors, display
controllers, and serial NOR flash devices.

As with I2C, it is a master-slave protocol, with most SoCs implementing one or more
master host controllers. There is a generic SPI device driver which you can enable
through the kernel configuration CONFIG_SPI_SPIDEV. It creates a device node for
each SPI controller which allows you to access SPI chips from user space. The device
nodes are named spidev[bus].[chip select]:

ls -l /dev/spi*
crw-rw---- 1 root root 153, 0 Jan 1 00:29 /dev/spidev1.0

For examples of using the spidev interface, refer to the example code in
Documentation/spi.

Introducing Device Drivers

[216]

Writing a kernel device driver
Eventually, when you have exhausted all the user-space options above, you will
find yourself having to write a device driver to access a piece of hardware attached
to your device. While this is not the time or place to delve into details, it is worth
considering the options. Character drivers are the most flexible and should cover
90% of all your needs; network devices apply if you are working with a network
interface, and block devices are for mass storage. The task of writing a kernel driver
is complex and beyond the scope of this book. There are some references at the end
that will help you on your way. In this section, I want to outline the options available
for interacting with a driver—a topic not normally covered—and show you the basic
bones of a driver.

Designing a character device interface
The main character device interface is based on a stream of bytes, as you would have
with a serial port. However, many devices don't fit this description: a controller for a
robot arm needs functions to move and rotate each joint, for example. Luckily, there
are other ways to communicate with device drivers that just read(2) and write(2):

• ioctl: The ioctl function allows you to pass two arguments to your driver
which can have any meaning you like. By convention, the first argument is a
command which selects one of several functions in your driver, and the second
is a pointer to a structure which serves as a container for the input and output
parameters. This is a blank canvas that allows you to design any program
interface you like and it is pretty common when the driver and application are
closely linked and written by the same team. However, ioctl is deprecated in
the kernel and you will find it hard to get any drivers with new uses of ioctl
accepted upstream. The kernel maintainers dislike ioctl because it makes
kernel code and application code too interdependent, and it is hard to keep
both of them in step across kernel versions and architectures.

• sysfs: This is the preferred way now, a good example being the GPIO
interface described earlier. The advantages are that it is self-documenting, so
long as you choose descriptive names for the files. It is also scriptable because
the file contents are ASCII strings. On the other hand, the requirement for each
file to contain a single value makes it hard to achieve atomicity if you need
to change more than one value at a time. For example, if you want to set two
values and then initiate an action, you would need to write to three files: two
for the inputs and a third to trigger the action. Even then, there is no guarantee
that the other two files have not been changed by someone else. Conversely,
ioctl passes all its arguments in a structure in a single function call.

Chapter 8

[217]

• mmap: You can get direct access to kernel buffers and hardware registers by
mapping kernel memory into user-space, bypassing the kernel. You may still
need some kernel code to handle interrupts and DMA. There is a subsystem
that encapsulates this idea, known as uio, short for user I/O. There is more
documentation in Documentation/DocBook/uio-howto, and there are
example drivers in drivers/uio.

• sigio: You can send a signal from a driver using the kernel function
kill_fasync() to notify applications of an event such as input becoming
ready or an interrupt being received. By convention, signal SIGIO is used,
but it could be anyone. You can see some examples in the UIO driver,
drivers/uio/uio.c, and in the RTC driver, drivers/char/rtc.c. The
main problem is that it is difficult to write reliable signal handlers and so
it remains a little-used facility.

• debugfs: This is another pseudo filesystem that represents kernel data as
files and directories, similar to proc and sysfs. The main distinction is
that debugfs must not contain information that is needed for the normal
operation of the system; it is for debug and trace information only. It is
mounted as mount -t debugfs debug /sys/kernel/debug.
There is a good description of debugfs in the kernel documentation,
Documentation/filesystems/debugfs.txt.

• proc: The proc filesystem is deprecated for all new code unless it relates
to processes, which was the original intended purpose for the filesystem.
However, the you can use proc to publish any information you choose.
And, unlike sysfs and debugfs, it is available to non-GPL modules.

• netlink: This is a socket protocol family. AF_NETLINK creates a socket that
links kernel space to user-space. It was originally created so that network
tools could communicate with the Linux network code to access the routing
tables and other details. It is also used by udev to pass events from the kernel
to the udev daemon. It is very rarely used in general device drivers.

There are many examples of all of the preceding filesystem in the kernel source
code and you can design really interesting interfaces to your driver code. The only
universal rule is the principle of least astonishment. In other words, application writers
using your driver should find that everything works in a logical way with no quirks
or oddities.

Introducing Device Drivers

[218]

Anatomy of a device driver
It's time to draw some threads together by looking at the code for a simple
device driver.

The source code is provided for a device driver named dummy which creates four
devices that are accessed through /dev/dummy0 to /dev/dummy3. This is the complete
code for the driver:

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/device.h>
#define DEVICE_NAME "dummy"
#define MAJOR_NUM 42
#define NUM_DEVICES 4

static struct class *dummy_class;
static int dummy_open(struct inode *inode, struct file *file)
{
 pr_info("%s\n", __func__);
 return 0;
}

static int dummy_release(struct inode *inode, struct file *file)
{
 pr_info("%s\n", __func__);
 return 0;
}

static ssize_t dummy_read(struct file *file,
 char *buffer, size_t length, loff_t * offset)
{
 pr_info("%s %u\n", __func__, length);
 return 0;
}

static ssize_t dummy_write(struct file *file,
 const char *buffer, size_t length, loff_t * offset)
{
 pr_info("%s %u\n", __func__, length);
 return length;
}

Chapter 8

[219]

struct file_operations dummy_fops = {
 .owner = THIS_MODULE,
 .open = dummy_open,
 .release = dummy_release,
 .read = dummy_read,
 .write = dummy_write,
};

int __init dummy_init(void)
{
 int ret;
 int i;
 printk("Dummy loaded\n");
 ret = register_chrdev(MAJOR_NUM, DEVICE_NAME, &dummy_fops);
 if (ret != 0)
 return ret;
 dummy_class = class_create(THIS_MODULE, DEVICE_NAME);
 for (i = 0; i < NUM_DEVICES; i++) {
 device_create(dummy_class, NULL,
 MKDEV(MAJOR_NUM, i), NULL, "dummy%d", i);
 }
 return 0;
}

void __exit dummy_exit(void)
{
 int i;
 for (i = 0; i < NUM_DEVICES; i++) {
 device_destroy(dummy_class, MKDEV(MAJOR_NUM, i));
 }
 class_destroy(dummy_class);
 unregister_chrdev(MAJOR_NUM, DEVICE_NAME);
 printk("Dummy unloaded\n");
}

module_init(dummy_init);
module_exit(dummy_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Chris Simmonds");
MODULE_DESCRIPTION("A dummy driver");

Introducing Device Drivers

[220]

At the end of the code, the macros module_init and module_exit specify the
functions to be called when the module is loaded and unloaded. The other three
add some basic information about the module which can be retrieved from the
compiled kernel module using the modinfo command.

When the module is loaded, the dummy_init() function is called.

You can see the point at which it becomes a character device by calling register_
chrdev, passing a pointer to struct file_operations containing pointers to the
four functions that the driver implements. While register_chrdev tells the kernel
that there is a driver with a major number of 42, it doesn't say anything about the
type of driver, and so it will not create an entry in /sys/class. Without an entry in
/sys/class, the device manager cannot create device nodes. So, the next few lines
of code create a device class, dummy, and four devices of that class called dummy0
to dummy3. The result is the /sys/class/dummy directory, containing the dummy0
to dummy3 subdirectories, each containing a file, dev, with the major and minor
numbers of the device. This is all that a device manager needs to create device
nodes, /dev/dummy0 to /dev/dummy3.

The exit function has to release the resources claimed by the init function which,
here, means freeing up the device class and major number.

The file operation for this driver are implemented by dummy_open(), dummy_read(),
dummy_write(), and dummy_release(), and are called when a user space program
calls open(2), read(2), write(2), and close(2). They just print a kernel message
so that you can see that they were called. You can demonstrate this from the
command line using the echo command:

echo hello > /dev/dummy0

[6479.741192] dummy_open
[6479.742505] dummy_write 6
[6479.743008] dummy_release

In this case, the messages appear because I was logged on to the console, and kernel
messages are printed to the console by default.

The full source code for this driver is less than 100 lines, but it is enough to illustrate
how the linkage between a device node and driver code works, how the device class
is created, allowing a device manager to create device nodes automatically when the
driver is loaded, and how data is moved between user and kernel spaces. Next, you
need to build it.

Chapter 8

[221]

Compile and load
At this point you have some driver code that you want to compile and test on your
target system. You can copy it into the kernel source tree and modify makefiles to
build it, or you can compile it as a module out of tree. Let's start by building out
of tree.

You need a simple makefile which uses the kernel build system to do the hard work:

LINUXDIR := $(HOME)/MELP/build/linux

obj-m := dummy.o
all:
 make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- \
 -C $(LINUXDIR) M=$(shell pwd)
clean:
 make -C $(LINUXDIR) M=$(shell pwd) clean

Set LINUXDIR to the directory of the kernel for your target device that you will
be running the module on. The code obj-m := dummy.o will invoke the kernel
build rule to take the source file, dummy.c and create kernel module, dummy.ko.
Note that kernel modules are not binary compatible between kernel releases and
configurations, the module will only load on the kernel it was compiled with.

The end result of the build is the kernel dummy.ko which you can copy to the target
and load as shown in the next section.

If you want to build a driver in the kernel source tree, the procedure is quite simple.
Choose a directory appropriate to the type of driver you have. The driver is a basic
character device, so I would put dummy.c in drivers/char. Then, edit the makefile
in that directory and add a line to build the driver unconditionally as a module,
as follows:

obj-m += dummy.o

Or add the following line this to build it unconditionally as a built-in:

obj-y += dummy.o

If you want to make the driver optional, you can add a menu option to the
Kconfig file and make the compilation conditional on the configuration option,
as I described in Chapter 4, Porting and Configuring the Kernel, when describing the
kernel configuration.

Introducing Device Drivers

[222]

Loading kernel modules
You can load, unload and list modules using the simple insmod, lsmod, and rmmod
commands. Here they are shown loading the dummy driver:

insmod /lib/modules/4.1.10/kernel/drivers/dummy.ko
lsmod
dummy 1248 0 - Live 0xbf009000 (O)
rmmod dummy

If the module is placed in a subdirectory in /lib/modules/<kernel release>,
as in the example, you can create a modules dependency database using the
command depmod:

depmod -a
ls /lib/modules/4.1.10/
kernel modules.builtin.bin modules.order
modules.alias modules.dep modules.softdep
modules.alias.bin modules.dep.bin modules.symbols
modules.builtin modules.devname modules.symbols.bin

The information in the module.* files is used by the command modprobe to locate
a module by name rather than the full path. modprobe has many other features
which are described in the manual.

The module dependency information is also used by device managers, udev in
particular. When new hardware is detected, for example a new USB device, the
udevd daemon is alerted and passed the vendor, and product IDs are read from
the hardware. udevd scans the module dependency files looking for a module
that has registered those IDs. If one is found, it is loaded using modprobe.

Discovering hardware configuration
The dummy driver demonstrates the structure of a device driver, but it lacks
interaction with real hardware since it only manipulates memory structures.
Device drivers are usually written to interact with hardware and part of that
is being able to discover the hardware in the first place, bearing in mind that
it may be at different addresses in different configurations.

In some cases, the hardware provides the information itself. Devices on a
discoverable bus such as PCI or USB have a query mode which returns resource
requirements and a unique identifier. The kernel matches the identifier and
possibly other characteristics with the device drivers, and marries them up.

Chapter 8

[223]

However, most of the hardware blocks on an SoC do not have such identifiers.
You have to provide the information yourself in the form of a device tree or as
C structures known as platform data.

In the standard driver model for Linux, device drivers register themselves with the
appropriate subsystem: PCI, USB, open firmware (device tree), platform device, and
so on. The registration includes an identifier and a callback function called a probe
function that is called if there is a match between the ID of the hardware and the ID
of the driver. For PCI and USB, the ID is based on the vendor and the product IDs of
the devices, for device tree and platform devices, it is a name (an ASCII string).

Device trees
I gave you an introduction to device trees in Chapter 3, All About Bootloaders. Here,
I want to show you how the Linux device drivers hook up with that information.

As an example, I will use the ARM Versatile board, arch/arm/boot/dts/
versatile-ab.dts, for which the Ethernet adapter is defined here:

net@10010000 {
 compatible = "smsc,lan91c111";
 reg = <0x10010000 0x10000>;
 interrupts = <25>;
};

Platform data
In the absence of device tree support, there is a fallback method of describing
hardware using C structures, known as platform data.

Each piece of hardware is described by struct platform_device, which has a
name and a pointer to an array of resources. The type of the resource is determined
by flags, which include the following:

• IORESOURCE_MEM: The physical address of a region of memory
• IORESOURCE_IO: The physical address or port number of IO registers
• IORESOURCE_IRQ: The interrupt number

Introducing Device Drivers

[224]

Here is an example of the platform data for an Ethernet controller taken from arch/
arm/mach-versatile/core.c, which has been edited for clarity:

#define VERSATILE_ETH_BASE 0x10010000
#define IRQ_ETH 25
static struct resource smc91x_resources[] = {
 [0] = {
 .start = VERSATILE_ETH_BASE,
 .end = VERSATILE_ETH_BASE + SZ_64K - 1,
 .flags = IORESOURCE_MEM,
 },
 [1] = {
 .start = IRQ_ETH,
 .end = IRQ_ETH,
 .flags = IORESOURCE_IRQ,
 },
};
static struct platform_device smc91x_device = {
 .name = "smc91x",
 .id = 0,
 .num_resources = ARRAY_SIZE(smc91x_resources),
 .resource = smc91x_resources,
};

It has a memory area of 64 KiB and an interrupt. The platform data has to be
registered with the kernel, usually when the board is initialized:

void __init versatile_init(void)
{
 platform_device_register(&versatile_flash_device);
 platform_device_register(&versatile_i2c_device);
 platform_device_register(&smc91x_device);
 [...]

Linking hardware with device drivers
You have seen in the preceding section how an Ethernet adapter is described using a
device tree and using platform data. The corresponding driver code is in drivers/
net/ethernet/smsc/smc91x.c and it works with both the device tree and platform
data. Here is the initialization code, once again edited for clarity:

static const struct of_device_id smc91x_match[] = {
 { .compatible = "smsc,lan91c94", },
 { .compatible = "smsc,lan91c111", },

Chapter 8

[225]

 {},
};
MODULE_DEVICE_TABLE(of, smc91x_match);
static struct platform_driver smc_driver = {
 .probe = smc_drv_probe,
 .remove = smc_drv_remove,
 .driver = {
 .name = "smc91x",
 .of_match_table = of_match_ptr(smc91x_match),
 },
};
static int __init smc_driver_init(void)
{
 return platform_driver_register(&smc_driver);
}
static void __exit smc_driver_exit(void) \
{
 platform_driver_unregister(&smc_driver);
}
module_init(smc_driver_init);
module_exit(smc_driver_exit);

When the driver is initialized, it calls platform_driver_register(), pointing to
struct platform_driver, in which there is a callback to a probe function, a driver
name, smc91x, and a pointer to struct of_device_id.

If this driver has been configured by the device tree, the kernel will look for a match
between the compatible property in the device tree node and the string pointed to
by the compatible structure element. For each match, it calls the probe function.

On the other hand, if it was configured through platform data, the probe function
will be called for each match on the string pointed to by driver.name.

The probe function extracts information about the interface:

static int smc_drv_probe(struct platform_device *pdev)
{
 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
 const struct of_device_id *match = NULL;
 struct resource *res, *ires;
 int irq;

 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
 [...]

Introducing Device Drivers

[226]

 addr = ioremap(res->start, SMC_IO_EXTENT);
 irq = ires->start;
 [...]
}

The calls to platform_get_resource() extract the memory and irq information
from either the device tree or the platform data. It is up to the driver to map the
memory and install the interrupt handler. The third parameter, which is zero in
both of the previous cases, comes into play if there is more than one resource of
that particular type.

Device trees allow you to configure more than just basic memory ranges
and interrupts, however. There is a section of code in the probe function that
extracts optional parameters from the device tree. In this snippet, it gets the
register-io-width property:

match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
if (match) {
 struct device_node *np = pdev->dev.of_node;
 u32 val;
 [...]
 of_property_read_u32(np, "reg-io-width", &val);
 [...]
}

For most drivers, specific bindings are documented in Documentation/devicetree/
bindings. For this particular driver, the information is in Documentation/
devicetree/bindings/net/smsc911x.txt.

The main thing to remember here is that drivers should register a probe function
and enough information for the kernel to call the probe as it finds matches with the
hardware it knows about. The linkage between the hardware described by the device
tree and the device driver is through the compatible property. The linkage between
platform data and a driver is through the name.

Chapter 8

[227]

Additional reading
The following resources have further information about the topics introduced in
this chapter:

• Linux Device Drivers, 4th edition, by Jessica McKellar, Alessandro Rubini,
Jonathan Corbet, and Greg Kroah-Hartman. This is not published at the time
of writing, but if it is as good as the predecessor, it will be a good choice.
However, the 3rd edition is too out of date to recommend.

• Linux Kernel Development, 3rd edition by Robert Love, Addison-Wesley
Professional; (July 2, 2010) ISBN-10: 0672329468

• Linux Weekly News, lwn.net.

Summary
Device drivers have the job of handling devices, usually physical hardware but
sometimes virtual interfaces, and presenting it to higher levels in a consistent and
useful way. Linux device drivers fall into three broad categories: the character, the
block, and the network. Of the three, the character driver interface is the most flexible
and therefore, the most common. Linux drivers fit into a framework known as the
driver model, which is exposed through sysfs. Pretty much the entire state of the
devices and drivers is visible in /sys.

Each embedded system has its own unique set of hardware interfaces and
requirements. Linux provides drivers for most standard interfaces, and by selecting
the right kernel configuration, you can get the device operational very quickly. That
leaves you with the non-standard components for which you will have to add your
own device support.

In some cases, you can sidestep the issue by using generic drivers for GPIO, I2C, and
so on, and write user space code to do the work. I recommend this as a starting point
as it gives you the chance to get familiar with the hardware without writing kernel
code. Writing kernel drivers is not particularly difficult but, if you do, you need to
code carefully so as to not compromise the stability of the system.

I have talked about writing kernel driver code: if you go down that route, you will
inevitably want to know how to check whether or not it is working correctly and
detect any bugs. I will cover that topic in Chapter 12, Debugging with GDB.

The next chapter is all about user space initialization and the different options you
have for the init program, from the simple BusyBox to the complex systemd.

lwn.net

[229]

Starting up - the init Program
I looked at how the kernel boots up to the point that it launches the first program,
init, in Chapter 4, Porting and Configuring the Kernel and in Chapter 5, Building a Root
Filesystem and Chapter 6, Selecting a Build System, I looked at creating root filesystems
of varying complexity, all of which contained an init program. Now it is time to
look at the init program in more detail and discover why it is so important to the
rest of the system.

There are many possible implementations of init. I will describe the three main
ones in this chapter: BusyBox init, System V init, and systemd. For each one,
I will give an overview of how it works and the types of system it suits best.
Part of that is balancing the trade-off between complexity and flexibility.

After the kernel has booted
We saw in Chapter 4, Porting and Configuring the Kernel, how the kernel bootstrap
code seeks to find a root filesystem, either initramfs or a filesystem specified by
root= on the kernel command line, and then to execute a program which, by default,
is /init for initramfs, and /sbin/init for a regular filesystem. The init program
has root privilege and since it is the first process to run, it has a process ID (PID) of 1.
If, for some reason, init cannot be started, the kernel will panic.

Starting Up - the init Program

[230]

The init program is the ancestor of all other processes, as shown here by the pstree
command, which is part of the psmisc package in most distrubutions:

pstree -gn

init(1)-+-syslogd(63)
 |-klogd(66)
 |-dropbear(99)
 `-sh(100)---pstree(109)

The job of the init program is to take control of the system and set it running.
It may be as simple as a shell command running a shell script – there is an example
at the start of Chapter 5, Building a Root Filesystem—but, in the majority of cases, you
will be using a dedicated init daemon. The tasks it has to perform are as follows:

• At boot, it starts daemon programs, configures system parameters and the
other things needed to get the system into a working state.

• Optionally, it launches daemons, such as getty on terminals which allow a
login shell.

• It adopts processes that become orphaned as a result of their immediate
parent terminating and there being no other processes in the thread group.

• It responds to any of init's immediate children terminating by catching the
signal SIGCHLD and collecting the return value to prevent them becoming
zombie processes. I will talk more about zombies in Chapter 10, Learning
About Processes and Threads.

• Optionally, it restarts those daemons that have terminated.
• It handles system shutdown.

In other words, init manages the lifecycle of the system, from boot up to shutdown.
The current thinking is that init is well placed to handle other runtime events
such as new hardware and the loading and unloading of modules. This is what
systemd does.

Introducing the init programs
The three init programs that you are most likely to encounter in embedded devices
are BusyBox init, System V init, and systemd. Buildroot has options to build
all three with BusyBox init as the default. The Yocto Project allows you to choose
between System V init and systemd, with System V init the default.

Chapter 9

[231]

The following table gives some metrics to compare the three:

BusyBox init System V init systemd
Complexity Low Medium High
Boot-up speed Fast Slow Medium
Required shell ash ash or bash None
Number of executables 0 4 50(*)
libc Any Any glibc
Size (MiB) 0 0.1 34(*)

(*) Based on the Buildroot configuration of system.

Broadly speaking, there is an increase in flexibility and complexity as you go from
BusyBox init to systemd.

BusyBox init
BusyBox has a minimal init program that uses a configuration file, /etc/inittab,
to define rules to start programs at boot up and to stop them at shutdown. Usually,
the actual work is done by shell scripts which, by convention, are placed in the
/etc/init.d directory.

init begins by reading the configuration file, /etc/inittab. This contains a list of
programs to run, one per line, with this format:

<id>::<action>:<program>

The role of these parameters is as follows:

• id: The controlling terminal for the command
• action: The conditions to run this command, as shown in the

following paragraph
• program: The program to run

The actions are as follows:

• sysinit: Run the program when init starts, before any of the other types
of actions.

• respawn: Run the program and restart it if it terminates. It is used to run a
program as a daemon.

Starting Up - the init Program

[232]

• askfirst: This is the same as respawn, but prints the message Please press
Enter to activate this console to the console and runs the program after Enter
has been pressed. It is used to start an interactive shell on a terminal without
prompting for a user name or password.

• once: Run the program once but do not attempt to restart it if it terminates.
• wait: Run the program and wait for it to complete.
• restart: Run the program when init receives the signal SIGHUP, indicating

that it should reload the inittab file.
• ctrlaltdel: Run the program when init receives the signal SIGINT, usually

as a result of pressing Ctrl + Alt + Del on the console.
• shutdown: Run the program when init shuts down.

Here is a small example that mounts proc and sysfs and runs a shell on a
serial interface:

null::sysinit:/bin/mount -t proc proc /proc
null::sysinit:/bin/mount -t sysfs sysfs /sys
console::askfirst:-/bin/sh

For simple projects in which you want to launch a small number of daemons and
perhaps start a login shell on a serial terminal, it is easy to write the scripts manually,
and this is appropriate if you are creating a RYO (roll your own) embedded Linux.
However, you will find that hand-written init scripts rapidly become unmaintainable
as the number of things to be configured increases. They tend not to be very modular
and so need updating each time a new component is added.

Buildroot init scripts
Buildroot has been making effective use of BusyBox init for many years. Buildroot
has two scripts in /etc/init.d named rcS and rcK. The first one starts at boot-up
and iterates over all the scripts beginning with a capital S followed by two digits,
and runs them in numerical order. These are the start scripts. The rcK script is run
at shutdown and iterates over all the scripts beginning with a capital K followed by
two digits, and runs them in numerical order. These are the kill scripts.

With this in place, it becomes easy for Buildroot packages to supply their own
start and kill scripts, using the two digit number to impose the order in which they
should be run, and so the system becomes extensible. If you are using Buildroot,
 this is transparent. If not, you could use it as a model for writing your own BusyBox
init scripts.

Chapter 9

[233]

System V init
This init program was inspired by the one from UNIX System V, and so dates back
to the mid 1980s. The version most often found in Linux distributions was written
initially by Miquel van Smoorenburg. Until recently, it was considered the way to
boot Linux, obviously including embedded systems, and BusyBox init is a trimmed
down version of System V init.

Compared to BusyBox init, System V init has two advantages. Firstly, the boot
scripts are written in a well-known, modular format, making it easy to add new
packages at build time or runtime. Secondly, it has the concept of runlevels, which
allow a collection of programs to be started or stopped in one go, by switching from
one runlevel to another.

There are 8 runlevels numbered from 0 to 6, plus S:

• S: Single user mode
• 0: Halt the system
• 1 to 5: General use
• 6: Reboot the system

Levels 1 to 5 can be used as you please. On desktop Linux distributions, they are
conventionally assigned as follows:

• 1: Single user
• 2: Multi-user with no network configuration
• 3: Multi-user with network configuration
• 4: Not used
• 5: Multi-user with graphical login

The init program starts the default runlevel given by the initdefault line
in /etc/inittab. You can change the runlevel at runtime using the command
telinit [runlevel] which sends a message to init. You can find the current
runlevel, and the previous one, by using the runlevel command. Here is an example:

runlevel
N 5
telinit 3
INIT: Switching to runlevel: 3
runlevel
5 3

Starting Up - the init Program

[234]

On the first line, the output from runlevel is N 5, meaning that there is no previous
runlevel because the runlevel has not changed since booting, and the current
runlevel is 5. After changing the runlevel, the output is 5 3 showing that there has
been a transition from 5 to 3. The halt and reboot commands switch to runlevels of
0 and 6 respectively. You can override the default runlevel by giving a different one
on the kernel command line as a single digit from 0 to 6, or S for single user mode.
For example, to force the runlevel to be for a single user, you would append S to
the kernel command line and it would look something like this:

console=ttyAMA0 root=/dev/mmcblk1p2 S

Each runlevel has a number of scripts that stop things, called kill scripts, and another
group that starts things, the start scripts. When entering a new runlevel, init first runs
the kill scripts and then the start scripts. Running daemons which have neither a start
script nor a kill script in the new runlevel are sent a SIGTERM signal. In other words,
the default action on switching runlevel is to terminate the daemons unless told to do
otherwise.

In truth, runlevels are not used that much in embedded Linux: most devices simply
boot to the default runlevel and stay there. I have a feeling that it is partly because
most people are not aware of them.

Runlevels are a simple and convenient way to switch between
modes, for example, from production to maintenance mode.

System V init is an option in Buildroot and the Yocto Project. In both cases, the
init scripts have been stripped of any bash specifics, so they work with the BusyBox
ash shell. However, Buildroot cheats by replacing the BusyBox init program with
SystemV init and adding inittab that mimics the behavior of BusyBox. Buildroot
does not implement runlevels except that switching to levels 0 or 6 halts or reboots
the system.

Next, let's look at some of the details. The following examples are taken from the fido
version of the Yocto Project. Other distributions may implement the init scripts a
little differently.

inittab
The init program begins by reading /etc/inttab, which contains entries that
define what happens at each runlevel. The format is an extended version of the
BusyBox inittab that I described in the preceding section, which is not surprising
because BusyBox borrowed it from System V in the first place!

Chapter 9

[235]

The format of each line in inittab is as follows:

id:runlevels:action:process

The fields are shown here:

• id: A unique identifier of up to four characters.
• runlevels: The runlevels for which this entry should be executed.

(This was left blank in the BusyBox inittab)
• action: One of the keywords given as follows.
• process: The command to run.

The actions are the same as for BusyBox init: sysinit, respawn, once, wait,
restart, ctrlaltdel, and shutdown. However, System V init does not have
askfirst, which is specific to BusyBox.

As an example, this is the complete inttab supplied by the Yocto Project target core-
image-minimal:

/etc/inittab: init(8) configuration.
$Id: inittab,v 1.91 2002/01/25 13:35:21 miquels Exp $

The default runlevel.
id:5:initdefault:

Boot-time system configuration/initialization script.
This is run first except when booting in emergency (-b) mode.
si::sysinit:/etc/init.d/rcS

What to do in single-user mode.
~~:S:wait:/sbin/sulogin
/etc/init.d executes the S and K scripts upon change
of runlevel.
#
Runlevel 0 is halt.
Runlevel 1 is single-user.
Runlevels 2-5 are multi-user.
Runlevel 6 is reboot.

l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4

Starting Up - the init Program

[236]

l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6
Normally not reached, but fallthrough in case of emergency.
z6:6:respawn:/sbin/sulogin
AMA0:12345:respawn:/sbin/getty 115200 ttyAMA0
/sbin/getty invocations for the runlevels.
#
The "id" field MUST be the same as the last
characters of the device (after "tty").
#
Format:
<id>:<runlevels>:<action>:<process>
#

1:2345:respawn:/sbin/getty 38400 tty1

The fist entry, id:5:initdefault, sets the default runlevel to 5. The next entry,
si::sysinit:/etc/init.d/rcS, runs the script rcS at boot up. There will be more
about this later. A little further on, there is a group of six entries beginning with
l0:0:wait:/etc/init.d/rc 0. They run the script /etc/init.d/rc each time there
is a change in the runlevel: this script is responsible for processing the start and kill
scripts. There is an entry for runlevel S which runs the single-user login program.

Towards the end of inittab, there are two entries that run a getty daemon to
generate a login prompt on the devices /dev/ttyAMA0 and /dev/tty1 when entering
runlevels 1 through to 5, thereby allowing you to log on and get an interactive shell:

AMA0:12345:respawn:/sbin/getty 115200 ttyAMA0
1:2345:respawn:/sbin/getty 38400 tty1

The device ttyAMA0 is the serial console on the ARM Versatile board we are emulating
with QEMU, it will be different for other development boards. Tty1 is a virtual console
which is often mapped to a graphical screen if you have built your kernel with CONFIG_
FRAMEBUFFER_CONSOLE or VGA_CONSOLE. Desktop Linux usually spawns six getty
processes on virtual terminals 1 to 6, which you can select with the key combination
Ctrl + Alt + F1 through Ctrl + Alt + F6, with virtual terminal 7 reserved for the graphical
screen. Virtual terminals are seldom used on embedded devices.

The script /etc/init.d/rcS that is run by the sysinit entry does little more than
enter runlevel S:

#!/bin/sh

[...]
exec /etc/init.d/rc S

Chapter 9

[237]

Hence, the first run level entered is S, followed by the default runlevel of 5.
Note that runlevel S is not recorded and is never displayed as a prior runlevel
by the runlevel command.

The init.d scripts
Each component that needs to respond to a runlevel change has a script in /etc/
init.d to perform that change. The script should expect two parameters: start
and stop. I will give an example of this later.

The runlevel handling script, /etc/init.d/rc, takes the runlevel it is switching
to as a parameter. For each runlevel, there is a directory named rc<runlevel>.d:

ls -d /etc/rc*
/etc/rc0.d /etc/rc2.d /etc/rc4.d /etc/rc6.d
/etc/rc1.d /etc/rc3.d /etc/rc5.d /etc/rcS.d

There you will find a set of scripts beginning with a capital S followed by two digits
and you may also find scripts beginning with a capital K. These are start and kill
scripts: Buildroot uses the same idea, borrowed from here:

ls /etc/rc5.d
S01networking S20hwclock.sh S99rmnologin.sh S99stop-bootlogd
S15mountnfs.sh S20syslog

These are in fact symbolic links back to the appropriate script in init.d. The rc
script runs all the scripts beginning with a K first, adding the stop parameter , and
then runs those beginning with an S adding the start parameter . Once again, the
two digit code is there to impart the order in which the scripts should run.

Adding a new daemon
Imagine that you have a program named simpleserver which is written as a
traditional Unix daemon, in other words, it forks and runs in the background.
You will need an init.d script like this:

#! /bin/sh

case "$1" in
 start)
 echo "Starting simpelserver"

Starting Up - the init Program

[238]

 start-stop-daemon -S -n simpleserver -a /usr/bin/simpleserver
 ;;
 stop)
 echo "Stopping simpleserver"
 start-stop-daemon -K -n simpleserver
 ;;
 *)
 echo "Usage: $0 {start|stop}"
 exit 1
esac

exit 0

Start-stop-daemon is a helper function that makes it easier to manipulate
background processes such as this. It originally came from the Debian installer
package, dpkg, but most embedded systems use the one from BusyBox. It starts
the daemon with the -S parameter, making sure that there is never more than one
instance running at any one time and it finds the daemon by name with -K and sends
a signal, SIGTERM, by default. Place this script in /etc/init.d/simpleserver and
make it executable.

Then, add symlinks from each of the run levels that you want to run this program
from, in this case, only the default runlevel, 5:

cd /etc/init.d/rc5.d
ln -s ../init.d/simpleserver S99simpleserver

The number 99 means that this will be one of the last programs to be started.
Bear in mind that there may be other links beginning S99, in which case the rc
script will just run them in lexical order.

It is rare in embedded devices to have to worry too much about shutdown
operations, but if there is something that needs to be done, add kill symlinks
to levels 0 and 6:

cd /etc/init.d/rc0.d
ln -s ../init.d/simpleserver K01simpleserver
cd /etc/init.d/rc6.d
ln -s ../init.d/simpleserver K01simpleserver

Chapter 9

[239]

Starting and stopping services
You can interact with the scripts in /etc/init.d by calling them directly with,
for example, the syslog script which controls the syslogd and klogd daemons:

/etc/init.d/syslog --help
Usage: syslog { start | stop | restart }

/etc/init.d/syslog stop
Stopping syslogd/klogd: stopped syslogd (pid 198)
stopped klogd (pid 201)
done

/etc/init.d/syslog start
Starting syslogd/klogd: done

All scripts implement start and stop and should implement help. Some implement
status as well, which will tell you whether the service is running or not. Mainstream
distributions that still use System V init have a command named service to start and
stop services and hide the details of calling the scripts directly.

systemd
systemd defines itself as a system and service manager. The project was initiated
in 2010 by Lennart Poettering and Kay Sievers to create an integrated set of tools
for managing a Linux system including an init daemon. It also includes device
management (udev) and logging, among other things. Some would say that it is
not just an init program, it is a way of life. It is state of the art, and still evolving
rapidly. systemd is common on desktop and server Linux distributions, and is
becoming popular on embedded Linux systems too, especially on more complex
devices. So, how is it better than System V init for embedded systems?

• Configuration is simpler and more logical (once you understand it), rather
than the sometimes convoluted shell scripts of System V init, systemd has
unit configuration files to set parameters

• There are explicit dependencies between services rather than a two digit code
that merely sets the sequence in which the scripts are run

• It is easy to set the permissions and resource limits for each service, which is
important for security

• systemd can monitor services and restart them if needed
• There are watchdogs for each service and for systemd itself
• Services are started in parallel, reducing boot time

Starting Up - the init Program

[240]

A complete description of systemd is neither possible nor appropriate here. As with
System V init, I will focus on embedded use-cases, with examples based on the
configuration produced by Yocto Fido, which has systemd version 219. I will give
a quick overview and then show you some specific examples.

Building systemd with the Yocto Project
and Buildroot
The default init in Yocto Fido is System V. To select systemd, add these lines to
your configuration, for example, in conf/local.conf:

DISTRO_FEATURES_append = " systemd"
VIRTUAL-RUNTIME_init_manager = "systemd"

Note that the leading space is important! Then rebuild.

Buildroot has systemd as the third init option. It requires glibc as the C library,
and kernel version 3.7 or later with a particular set of configuration options enabled.
There is a complete list of dependencies in the README file in the top level of the
systemd source code.

Introducing targets, services, and units
Before I describe how systemd init works, I need to introduce these three
key concepts.

Firstly, a target is a group of services, similar to, but more general than, a SystemV
runlevel. There is a default target which is the group of services that are started at
boot time.

Secondly, a service is a daemon that can be started and stopped, very much like a
SystemV service.

Finally, a unit is a configuration file that describes a target, a service, and several
other things. Units are text files that contain properties and values.

You can change states and find out what is going on by using the systemctl
command.

Chapter 9

[241]

Units
The basic item of configuration is the unit file. Unit files are found in three
different places:

• /etc/systemd/system: Local configuration
• /run/systemd/system: Runtime configuration
• /lib/systemd/system: Distribution-wide configuration

When looking for a unit, systemd searches the directories in that order, stopping as
soon as it finds a match, allowing you to override the behavior of a distribution-wide
unit by placing a unit of the same name in /etc/systemd/system. You can disable a
unit completely by creating a local file that is empty or linked to /dev/null.

All unit files begin with a section marked [Unit] which contains basic information
and dependencies, for example:

[Unit]
Description=D-Bus System Message Bus
Documentation=man:dbus-daemon(1)
Requires=dbus.socket

Unit dependencies are expressed though Requires, Wants, and Conflicts:

• Requires: A list of units that this unit depends on, which is started when
this unit is started

• Wants: A weaker form of Requires: the units listed are started but the
current unit is not stopped if any of them fail

• Conflicts: A negative dependency: the units listed are stopped when this
one is started and, conversely, if one of them is started, this one is stopped

Processing the dependencies produces a list of units that should be started
(or stopped). The keywords Before and After determine the order in which
they are started. The order of stopping is just the reverse of the start order:

• Before: This unit should be started before the units listed
• After: This unit should be started after the units listed

In the following example, the After directive makes sure that the web server is
started after the network:

[Unit]
Description=Lighttpd Web Server
After=network.target

Starting Up - the init Program

[242]

In the absence of Before or After directives, the units will be started or stopped in
parallel with no particular ordering.

Services
A service is a daemon that can be started and stopped, equivalent to a System
V service. A service is a type of unit file with a name ending in .service,
for example, lighttpd.service.

A service unit has a [Service] section that describes how it should be run.
Here is the relevant section from lighttpd.service:

[Service]
ExecStart=/usr/sbin/lighttpd -f /etc/lighttpd/lighttpd.conf -D
ExecReload=/bin/kill -HUP $MAINPID

These are the commands to run when starting the service and restarting it. There are
many more configuration points you can add in here, so refer to the man page for
systemd.service.

Targets
A target is another type of unit which groups services (or other types of unit). It is
a type of unit that only has dependencies. Targets have names ending in .target,
for example, multi-user.target. A target is a desired state, which performs the
same role as System V runlevels.

How systemd boots the system
Now we can see how systemd implements the bootstrap. systemd is run by the
kernel as a result of /sbin/init being symbolically linked to /lib/systemd/
systemd. It runs the default target, default.target, which is always a link to a
desired target such as multi-user.target for a text login or graphical.target for
a graphical environment. For example, if the default target is multi-user.target,
you will find this symbolic link:

/etc/systemd/system/default.target -> /lib/systemd/system/multi-
user.target

The default target may be overridden by passing system.unit=<new target>
on the kernel command line. You can use systemctl to find out the default target,
as shown here:

systemctl get-default
multi-user.target

Chapter 9

[243]

Starting a target such as multi-user.target creates a tree of dependencies that
bring the system into a working state. In a typical system, multi-user.target
depends on basic.target, which depends on sysinit.target, which depends on
the services that need to be started early. You can print a graph using systemctl
list-dependencies.

You can also list all the services and their current state using systemctl list-
units --type service, and the same for targets using systemctl list-units
--type target.

Adding your own service
Using the same simpleserver example as before, here is a service unit:

[Unit]
Description=Simple server

[Service]
Type=forking
ExecStart=/usr/bin/simpleserver

[Install]
WantedBy=multi-user.target

The [Unit] section only contains a description so that it shows up correctly when
listed using systemctl and other commands. There are no dependencies; as I said,
it is very simple.

The [Service] section points to the executable, and has a flag to indicate that it
forks. If it were even simpler and ran in the foreground, systemd would do the
daemonizing for us and Type=forking would not be needed.

The [Install] section makes it dependent on multi-user.target so that our
server is started when the system goes into multi-user mode.

Once the unit is saved in /etc/systemd/system/simpleserver.service, you can
start and stop it using the systemctl start simpleserver and systemctl stop
simpleserver commands. You can use this command to find its current status:

systemctl status simpleserver
 simpleserver.service - Simple server
 Loaded: loaded (/etc/systemd/system/simpleserver.service;
 disabled)
 Active: active (running) since Thu 1970-01-01 02:20:50 UTC; 8s
 ago

Starting Up - the init Program

[244]

 Main PID: 180 (simpleserver)
 CGroup: /system.slice/simpleserver.service
 └─180 /usr/bin/simpleserver -n

Jan 01 02:20:50 qemuarm systemd[1]: Started Simple server.

At this point, it will only start and stop on command, as shown. To make it
persistent, you need to add a permanent dependency to a target. That is the purpose
of the [Install] section in the unit, it says that when this service is enabled it will
become dependent on multi-user.target, and so will be started at boot time.
You enable it using systemctl enable, like this:

systemctl enable simpleserver
Created symlink from /etc/systemd/system/multi-
user.target.wants/simpleserver.service to
/etc/systemd/system/simpleserver.service.

Now you can see how dependencies are added at runtime without having to edit
any unit files. A target can have a directory named <target_name>.target.wants
which can contain links to services. This is exactly the same as adding the dependent
unit to the [Wants] list in the target. In this case, you will find that this link has been
created:

/etc/systemd/system/multi-user.target.wants/simpleserver.service
/etc/systemd/system/simpleserver.service

If this is were an important service you might want to restart if it failed. You can
accomplish that by adding this flag to the [Service] section:

Restart=on-abort

Other options for Restart are on-success, on-failure, on-abnormal, on-
watchdog, on-abort, or always.

Adding a watchdog
Watchdogs are a common requirement in embedded devices: you need to take action
if a critical service stops working, usually by resetting the system. On most embedded
SoCs, there is a hardware watchdog which can be accessed via the /dev/watchdog
device node. The watchdog is initialized with a timeout at boot and then must be
reset within that period, otherwise the watchdog will be triggered and the system
will reboot. The interface with the watchdog driver is described in the kernel source
in Documentation/watchdog, and the code for the drivers is in drivers/watchdog.

Chapter 9

[245]

A problem arises if there are two or more critical services that need to be protected
by a watchdog. systemd has a useful feature that distributes the watchdog between
multiple services.

systemd can be configured to expect a regular keepalive call from a service and
take action if it is not received, in other words, a per-service software watchdog. For
this to work, you have to add code to the daemon to send the keepalive messages.
It needs to check for a non-zero value in the WATCHDOG_USEC environment variable
and then call sd_notify(false, "WATCHDOG=1") within that time (a period of
half of the watchdog timeout is recommended). There are examples in the systemd
source code.

To enable the watchdog in the service unit, add something like this to the
[Service] section:

WatchdogSec=30s
Restart=on-watchdog
StartLimitInterval=5min
StartLimitBurst=4
StartLimitAction=reboot-force

In this example, the service expects a keepalive every 30 seconds. If it fails to be
delivered, the service will be restarted, but if it is restarted more than four times
in five minutes, systemd will force an immediate reboot. Once again, there is a
full description of these settings in the systemd manual.

A watchdog like this takes care of individual services, but what if systemd itself
fails, or the kernel crashes, or the hardware locks up. In those cases, we need to
tell systemd to use the watchdog driver: just add RuntimeWatchdogSec=NN to
/etc/systemd/system.conf. systemd will reset the watchdog within that period,
and so the system will reset if systemd fails for some reason.

Implications for embedded Linux
systemd has a lot of features that are useful in embedded Linux, including many that
I have not mentioned in this brief description such as resource control using slices
(see the man page for systemd.slice(5) and systemd.resource-control(5)),
device management (udev(7)) and system logging facilities (journald(5)).

You have to balance that with its size: even with a minimal build of just the core
components, systemd, udevd, and journald, it is approaching 10 MiB of storage,
including the shared libraries.

You also have to keep in mind that systemd development follows the kernel closely, so
it will not work on a kernel more than a year or two older than the release of systemd.

Starting Up - the init Program

[246]

Further reading
The following resource has further information about topics introduced in this chapter:

• systemd system and Service Manager: http://www.freedesktop.org/wiki/
Software/systemd/ (there are a lot of useful links at the bottom of that page)

Summary
Every Linux device needs an init program of some kind. If you are designing a
system which only has to launch a small number of daemons at startup and remains
fairly static after that, then BusyBox init is sufficient for your needs. It is usually a
good choice if you are using Buildroot as the build system.

If, on the other hand, you have a system that has complex dependencies between
services at boot time or runtime, and you have the storage space, then systemd
would be the best choice. Even without the complexity, systemd has some useful
features in the way it handles watchdogs, remote logging, and so on, so you should
certainly give it a serious thought.

It is hard to make a case for System V init on its own merits, since it has few
advantages over the simple BusyBox init. It will live on for a long time nevertheless,
just because it is there. For example, if you are building using the Yocto Project and
you decide against systemd then System V init is the alternative.

In terms of reducing boot time, systemd is faster than System V init for a similar
workload. However, if you are looking for a very fast boot, nothing can beat a simple
BusyBox init with minimal boot scripts.

This chapter is about one very important process, init. In the next chapter, I will
describe what a process really is, how it relates to threads, how they cooperate, and
how they are scheduled. Understanding these things is important if you want to
create a robust and maintainable embedded system.

[247]

Learning About Processes
and Threads

In the preceding chapters, we have considered the various aspects of creating an
embedded Linux platform. Now it is time to start looking at how you can use the
platform to create a working device. In this chapter, I will talk about the implications
of the Linux process model and how it encompasses multi-threaded programs. I will
look at the pros and cons of using single-threaded and multi-threaded processes.
I will also look at scheduling and differentiate between timeshare and real-time
scheduling policies.

While these topics are not specific to embedded computing, it is important for
a designer of an embedded device to have an overview of these topics. There
are many good reference works on the subject, some of which I reference at the
end of the chapter, but in general, they do not consider the embedded use cases.
In consequence, I will be concentrating on the concepts and design decisions rather
than on the function calls and code.

Process or thread?
Many embedded developers who are familiar with real-time operating systems
(RTOS) consider the Unix process model to be cumbersome. On the other hand,
they see a similarity between an RTOS task and a Linux thread and they have a
tendency to transfer an existing design using a one-to-one mapping of RTOS tasks
to threads. I have, on several occasions, seen designs in which the entire application
is implemented with one process containing 40 or more threads. I want to spend
some time considering if this is a good idea or not. Let's begin with some definitions.

Learning About Processes and Threads

[248]

A process is a memory address space and a thread of execution, as shown in the
following diagram. The address space is private to the process and so threads
running in different processes. cannot access it. This memory separation is created
by the memory management subsystem in the kernel, which keeps a memory page
mapping for each process and re-programs the memory management unit on each
context switch. I will describe how this works in detail in Chapter 11, Managing
Memory. Part of the address space is mapped to a file which contains the code
and static data that the program is running:

As the program runs, it will allocate resources such as stack space, heap memory,
references to files, and so on. When the process terminates, these resources are
reclaimed by the system: all the memory is freed up and all the file descriptors
are closed.

Processes can communicate with each other using inter process communication
(IPC) such as local sockets. I will talk about IPC later on.

A thread is a thread of execution within a process. All processes begin with one
thread that runs the main() function and is called the main thread. You can
create additional threads using the POSIX threads function pthread_create(3),
causing additional threads to execute in the same address space, as shown in the
following diagram. Being in the same process, they share resources with each
other. They can read and write the same memory and use the same file descriptors,
and so communication between threads is easy, so long as you take care of the
synchronization and locking issues:

Chapter 10

[249]

So, based on these brief details, you could imagine two extreme designs for a
hypothetical system with 40 RTOS tasks being ported to Linux.

You could map tasks to processes, and have 40 individual programs communicating
through IPC, for example with messages sent through sockets. You would greatly
reduce memory corruption problems since the main thread running in each
process is protected from the others, and you would reduce resource leakage since
each process is cleaned up after it exits. However, the message interface between
processes is quite complex and, where there is tight cooperation between a group of
processes, the number of messages might be large and so become a limiting factor
in the performance of the system. Furthermore, any one of the 40 processes may
terminate, perhaps because of a bug causing it to crash, leaving the other 39 to carry
on. Each process would have to handle the case that its neighbors are no longer
running and recover gracefully.

At the other extreme, you could map tasks to threads and implement the system as a
single process containing 40 threads. Cooperation becomes much easier because they
share the same address space and file descriptors. The overhead of sending messages
is reduced or eliminated and context switches between threads are faster than
between processes. The downside is that you have introduced the possibility of one
task corrupting the heap or the stack of another. If any one of the threads encounters
a fatal bug, the whole process will terminate, taking all the threads with it. Finally,
debugging a complex multi-threaded process can be a nightmare.

The conclusion you should draw is that neither design is ideal, and that there is a
better way. But before we get to that point, I will delve a little more deeply into the
APIs and the behavior of processes and threads.

Processes
A process holds the environment in which threads can run: it holds the memory
mappings, the file descriptors, the user and group IDs, and more. The first process
is the init process, which is created by the kernel during boot and has a PID of one.
Thereafter, processes are created by duplication in an operation known as forking.

Learning About Processes and Threads

[250]

Creating a new process
The POSIX function to create a process is fork(2). It is an odd function because,
for each successful call, there are two returns: one in the process that made the call,
known as the parent, and one in the newly created process, known as the child as
shown in the following diagram:

Immediately after the call, the child is an exact copy of the parent, it has the same
stack, the same heap, the same file descriptors, and executes the same line of code,
the one following fork(2). The only way the programmer can tell them apart is
by looking at the return value of fork: it is zero for the child and greater than zero
for the parent. Actually, the value returned in the parent is the PID of the newly
created child process. There is a third possibility, which is that the return is negative,
meaning that the fork call failed and there is still only one process.

Although the two processes are initially identical, they are in separate address spaces.
Changes made to a variable by one will not be seen by the other. Under the hood, the
kernel does not make a physical copy of the parent's memory, which would be quite
a slow operation and consume memory unnecessarily. Instead, the memory is shared
but marked with a copy-on-write (CoW) flag. If either parent or child modifies this
memory, the kernel first makes a copy and then writes to the copy. This has the benefit
of an efficient fork function while retaining the logical separation of process address
spaces. I will discuss CoW in Chapter 11, Managing Memory.

Chapter 10

[251]

Terminating a process
A process may be stopped voluntarily by calling the exit(3) function or,
involuntarily, by receiving a signal that is not handled. One signal in particular,
SIGKILL, cannot be handled and so will always kill a process. In all cases, terminating
the process will stop all threads, close all file descriptors, and release all memory. The
system sends a signal, SIGCHLD, to the parent so that it knows this has happened.

Processes have a return value which is composed of either the argument to exit(3),
if it terminated normally, or the signal number if it was killed. The chief use for this
is in shell scripts: it allows you to test the return from a program. By convention, 0
indicates success and other values indicate a failure of some sort.

The parent can collect the return value with the wait(2) or waitpid(2) functions.
This causes a problem: there will be a delay between a child terminating and its
parent collecting the return value. In that period, the return value must be stored
somewhere, and the PID number of the now dead process cannot be reused. A
process in this state is a zombie, state Z in ps or top. So long as the parent calls
wait(2) or waitpid(2), whenever it is notified of a child's termination (by means
of the SIGCHLD signal, see Linux System Programming, by Robert Love, O'Reilly Media
or The Linux Programming Interface, by Michael Kerrisk, No Starch Press for details of
handling signals), zombies exist for too short a time to show up in process listings.
They will become a problem if the parent fails to collect the return value because
you will not be able to create any more processes.

Here is a simple example, showing process creation and termination:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
int main(void)
{
 int pid;
 int status;
 pid = fork();
 if (pid == 0) {
 printf("I am the child, PID %d\n", getpid());
 sleep(10);
 exit(42);
 } else if (pid > 0) {
 printf("I am the parent, PID %d\n", getpid());
 wait(&status);

Learning About Processes and Threads

[252]

 printf("Child terminated, status %d\n",
 WEXITSTATUS(status));
 } else
 perror("fork:");
 return 0;
}

The wait(2) function blocks until a child process exits and stores the exit status.
When you run it, you see something like this:

I am the parent, PID 13851
I am the child, PID 13852
Child terminated with status 42

The child process inherits most of the attributes of the parent, including the
user and group IDs (UID and GID), all open file descriptors, signal handling,
and scheduling characteristics.

Running a different program
The fork function creates a copy of a running program, but it does not run a
different program. For that, you need one of the exec functions:

int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg,
 ..., char * const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[],
 char *const envp[]);

Each takes a path to the program file to load and run. If the function succeeds,
the kernel discards all the resources of the current process, including memory and
file descriptors, and allocates memory to the new program being loaded. When
the thread that called exec* returns, it returns not to the line of code after the call,
but to the main() function of the new program. Here is an example of a command
launcher: it prompts for a command, for example, /bin/ls, and forks and executes
the string you enter:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

Chapter 10

[253]

#include <sys/wait.h>
int main(int argc, char *argv[])
{
 char command_str[128];
 int pid;
 int child_status;
 int wait_for = 1;
 while (1) {
 printf("sh> ");
 scanf("%s", command_str);
 pid = fork();
 if (pid == 0) {
 /* child */
 printf("cmd '%s'\n", command_str);
 execl(command_str, command_str, (char *)NULL);
 /* We should not return from execl, so only get
 to this line if it failed */
 perror("exec");
 exit(1);
 }
 if (wait_for) {
 waitpid(pid, &child_status, 0);
 printf("Done, status %d\n", child_status);
 }
 }
 return 0;
}

It might seem odd to have one function that duplicates an existing process and
another that discards its resources and loads a different program into memory,
especially since it is common for a fork to be followed almost immediately by
exec. Most operating systems combine the two actions into a single call.

There are distinct advantages, however. For example, it makes it very easy to
implement redirection and pipes in the shell. Imagine that you want to get a
directory listing, this is the sequence of events:

1. You type ls at the shell prompt.
2. The shell forks a copy of itself.
3. The child execs /bin/ls.
4. The ls program prints the directory listing to stdout (file descriptor 1)

which is attached to the terminal. You see the directory listing.
5. The ls program terminates and the shell regains control.

Learning About Processes and Threads

[254]

Now, imagine that you want the directory listing to be written to a file by redirecting
the output using the > character. The sequence is now as follows:

1. You type ls > listing.txt.
2. The shell forks a copy of itself.
3. The child opens and truncates the file listing.txt, and uses dup2(2)

to copy the file descriptor of the file over file descriptor 1 (stdout).
4. The child execs /bin/ls.
5. The program prints the listing as before, but this time it is writing to

listing.txt.
6. The ls program terminates and the shell regains control.

Note that there is an opportunity at step three to modify the environment of the child
process before executing the program. The ls program does not need to know that it
is writing to a file rather than a terminal. Instead of a file, stdout could be connected
to a pipe and so the ls program, still unchanged, can send output to another program.
This is part of the Unix philosophy of combining many small components that each do
a job well, as described in The Art of Unix Programming, by Eric Steven Raymond, Addison
Wesley; (23 Sept. 2003) ISBN 978-0131429017, especially in the section Pipes, Redirection,
and Filters.

Daemons
We have encountered daemons in several places already. A daemon is a process
that runs in the background, owned by the init process, PID1, and not connected
to a controlling terminal. The steps to create a daemon are as follows:

1. Call fork() to create a new process, after which the parent should exit,
thus creating an orphan which will be re-parented to init.

2. The child process calls setsid(2), creating a new session and process
group of which it is the sole member. The exact details do not matter here,
you can simply consider this as a way of isolating the process from any
controlling terminal.

3. Change the working directory to the root.
4. Close all file descriptors and redirect stdin, stdout, and sterr (descriptors

0, 1, and 2) to /dev/null so that there is no input and all output is hidden.

Thankfully, all of the preceding steps can be achieved with a single function call,
daemon(3).

Chapter 10

[255]

Inter-process communication
Each process is an island of memory. You can pass information from one to another
in two ways. Firstly, you can copy it from one address space to the other. Secondly,
you can create an area of memory that both can access and so share the data.

The first is usually combined with a queue or buffer so that there is a sequence of
messages passing between processes. This implies copying the message twice: first to
a holding area and then to the destination. Some examples of this are sockets, pipes,
and POSIX message queues.

The second way requires not only a method of creating memory that is mapped
into two (or more) address spaces at once, but also a means of synchronizing access
to that memory, for example, by using semaphores or mutexes. POSIX has functions
for all of these.

There is an older set of APIs known as System V IPC, which provides message queues,
shared memory, and semaphores, but it is not as flexible as the POSIX equivalents so I
will not describe it here. The man page on svipc(7) gives an overview of the facilities
and there is more detail in The Linux Programming Interface, by Michael Kerrisk, No Starch
Press and Unix Network Programming, Volume 2, by W. Richard Stevens.

Message-based protocols are usually easier to program and debug than shared
memory, but are slow if the messages are large.

Message-based IPC
There are several options which I will summarize as follows. The attributes that
differentiate between them are:

• Whether the message flow is uni- or bi-directorial.
• Whether the data flow is a byte stream, with no message boundary,

or discrete messages with boundaries preserved. In the latter case, the
maximum size of a message is important.

• Whether messages are tagged with a priority.

The following table summarizes these properties for FIFOs, sockets, and
message queues:

Property FIFO Unix socket:
stream

Unix socket:
datagram

POSIX message
queue

Message
boundary

Byte stream Byte stream Discrete Discrete

Learning About Processes and Threads

[256]

Property FIFO Unix socket:
stream

Unix socket:
datagram

POSIX message
queue

Uni/bi-
directional

Uni Bi Uni Uni

Max message
size

Unlimited Unlimited In the range 100
KiB to 250 KiB

Default: 8
KiB, absolute
maximum: 1
MiB

Priority levels None None None 0 to 32767

Unix (or local) sockets
Unix sockets fulfill most requirements and, coupled with the familiarity of the sockets
API, they are by far the most common mechanism.

Unix sockets are created with the address family AF_UNIX and bound to a path name.
Access to the socket is determined by the access permission of the socket file. As with
Internet sockets, the socket type can be SOCK_STREAM or SOCK_DGRAM, the former
giving a bi-directional byte stream, and the latter providing discrete messages with
preserved boundaries. Unix socket datagrams are reliable, meaning that they will not
be dropped or reordered. The maximum size for a datagram is system-dependent
and is available via /proc/sys/net/core/wmem_max. It is typically 100 KiB or more.

Unix sockets do not have a mechanism for indicating the priority of a message.

FIFOs and named pipes
FIFO and named pipe are just different terms for the same thing. They are an
extension of the anonymous pipe that is used to communicate between parent
and child and are used to implement piping in the shell.

A FIFO is a special sort of file, created by the command mkfifo(1). As with Unix
sockets, the file access permissions determine who can read and write. They are
uni-directional, meaning that there is one reader and usually one writer, though there
may be several. The data is a pure byte stream but with a guarantee of atomicity of
messages that are smaller than the buffer associated with the pipe. In other words,
writes less than this size will not be split into several smaller writes and so the reader
will read the whole message in one go, so long as the size of the buffer at the reader
end is large enough. The default size of the FIFO buffer is 64 KiB on modern kernels
and can be increased using fcntl(2) with F_SETPIPE_SZ up to the value in /proc/
sys/fs/pipe-max-size, typically 1 MiB.

There is no concept of priority.

Chapter 10

[257]

POSIX message queues
Message queues are identified by a name, which must begin with a forward slash
/ and contain only one / character: message queues are actually kept in a pseudo
filesystem of the type mqueue. You create a queue and get a reference to an existing
queue through mq_open(3), which returns a file. Each message has a priority and
messages are read from the queue in priority and then age order. Messages can be
up to /proc/sys/kernel/msgmax bytes long. The default value is 8 KiB, but you can
set it to be any size in the range 128 bytes to 1 MiB by writing the value to /proc/
sys/kernel/msgmax bytes. Each message has a priority. They are read from the
queue in priority then age order. Since the reference is a file descriptor, you can use
select(2), poll(2), and other similar functions to wait for activity on the queue.

See the Linux man page mq_overview(7).

Summary of message-based IPC
Unix sockets are the most often used because they offer all that is needed, except
perhaps message priority. They are implemented on most operating systems,
and so they confer maximum portability.

FIFOs are less used, mostly because they lack an equivalent to a datagram. On the
other hand, the API is very simple, being the normal open(2), close(2), read(2),
and write(2) file calls.

Message queues are the least commonly used of this group. The code paths in the
kernel are not optimized in the way that socket (network) and FIFO (filesystem)
calls are.

There are also higher level abstractions, in particular dbus, which are moving from
mainstream Linux into embedded devices. Dbus uses Unix sockets and shared
memory under the surface.

Shared memory-based IPC
Sharing memory removes the need for copying data between address spaces but
introduces the problem of synchronizing accesses to it. Synchronization between
processes is commonly achieved using semaphores.

Learning About Processes and Threads

[258]

POSIX shared memory
To share memory between processes, you first have to create a new area of memory
and then map it into the address space of each process that wants access to it, as in
the following diagram:

POSIX shared memory follows the pattern we encountered with message queues.
The segments are identified by names that begin with a / character and have exactly
one such character. The function shm_open(3) takes the name and returns a file
descriptor for it. If it does not exist already and the O_CREAT flag is set, then a new
segment is created. Initially it has a size of zero. Use the (misleadingly named)
ftruncate(2) to expand it to the desired size.

Once you have a descriptor for the shared memory, you map it into the address
space of the process using mmap(2), and so threads in different processes can access
the memory.

Here is an example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h> /* For mode constants */
#include <fcntl.h>
#include <sys/types.h>
#include <errno.h>
#include <semaphore.h>
#define SHM_SEGMENT_SIZE 65536
#define SHM_SEGMENT_NAME "/demo-shm"

Chapter 10

[259]

#define SEMA_NAME "/demo-sem"

static sem_t *demo_sem;
/*
 * If the shared memory segment does not exist already, create it
 * Returns a pointer to the segment or NULL if there is an error
 */

static void *get_shared_memory(void)
{
 int shm_fd;
 struct shared_data *shm_p;
 /* Attempt to create the shared memory segment */
 shm_fd = shm_open(SHM_SEGMENT_NAME, O_CREAT | O_EXCL | O_RDWR,
 0666);

 if (shm_fd > 0) {
 /* succeeded: expand it to the desired size (Note: dont't do
 "this every time because ftruncate fills it with zeros) */
 printf ("Creating shared memory and setting size=%d\n",
 SHM_SEGMENT_SIZE);

 if (ftruncate(shm_fd, SHM_SEGMENT_SIZE) < 0) {
 perror("ftruncate");
 exit(1);
 }
 /* Create a semaphore as well */
 demo_sem = sem_open(SEMA_NAME, O_RDWR | O_CREAT, 0666, 1);

 if (demo_sem == SEM_FAILED)
 perror("sem_open failed\n");
 }
 else if (shm_fd == -1 && errno == EEXIST) {
 /* Already exists: open again without O_CREAT */
 shm_fd = shm_open(SHM_SEGMENT_NAME, O_RDWR, 0);
 demo_sem = sem_open(SEMA_NAME, O_RDWR);

 if (demo_sem == SEM_FAILED)
 perror("sem_open failed\n");
 }

 if (shm_fd == -1) {
 perror("shm_open " SHM_SEGMENT_NAME);
 exit(1);

Learning About Processes and Threads

[260]

 }
 /* Map the shared memory */
 shm_p = mmap(NULL, SHM_SEGMENT_SIZE, PROT_READ | PROT_WRITE,
 MAP_SHARED, shm_fd, 0);

 if (shm_p == NULL) {
 perror("mmap");
 exit(1);
 }
 return shm_p;
}
int main(int argc, char *argv[])
{
 char *shm_p;
 printf("%s PID=%d\n", argv[0], getpid());
 shm_p = get_shared_memory();

 while (1) {
 printf("Press enter to see the current contents of shm\n");
 getchar();
 sem_wait(demo_sem);
 printf("%s\n", shm_p);
 /* Write our signature to the shared memory */
 sprintf(shm_p, "Hello from process %d\n", getpid());
 sem_post(demo_sem);
 }
 return 0;
}

The memory in Linux is taken from a tmpfs filesystem mounted in /dev/shm or
/run/shm.

Threads
Now it is time to look at multi-threaded processes. The programming interface for
threads is the POSIX threads API, which was first defined in IEEE POSIX 1003.1c
standard (1995), commonly known as Pthreads. It was implemented as an additional
part of the C library, libpthread.so. There have been two versions of Pthreads over
the last 15 years or so, Linux Threads and the Native POSIX Thread Library (NPTL).
The latter is much more compliant with the specification, particularly with regard
to the handling of signals and process IDs. It is pretty dominant now, but you may
come across some older versions of uClibc that use Linux Threads.

Chapter 10

[261]

Creating a new thread
The function to create a thread is pthread_create(3):

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
 void *(*start_routine) (void *), void *arg);

It creates a new thread of execution which begins at the function start_routine
and places a descriptor in pthread_t pointed to by thread. It inherits the scheduling
parameters of the calling thread but these can be overridden by passing a pointer to
the thread attributes in attr. The thread will begin to execute immediately.

pthread_t is the main way to refer to the thread within the program but the thread
can also be seen from outside using a command like ps -eLf:

UID PID PPID LWP C NLWP STIME TTY TIME CMD

...

chris 6072 5648 6072 0 3 21:18 pts/0 00:00:00 ./thread-demo

chris 6072 5648 6073 0 3 21:18 pts/0 00:00:00 ./thread-demo

The program thread-demo has two threads. The PID and PPID columns show that
they all belong to the same process and have the same parent, as you would expect.
The column marked LWP is interesting, though. LWP stands for Light Weight Process
which, in this context, is another name for thread. The numbers in that column are
also known as Thread IDs or TIDs. In the main thread, the TID is the same as the PID,
but for the others it is a different (higher) value. Some functions will accept a TID in
places where the documentation states that you must give a PID, but be aware that
this behavior is specific to Linux and not portable. Here is the code for thread-demo:

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/syscall.h>

static void *thread_fn(void *arg)
{
 printf("New thread started, PID %d TID %d\n",
 getpid(), (pid_t)syscall(SYS_gettid));
 sleep(10);
 printf("New thread terminating\n");
 return NULL;
}

Learning About Processes and Threads

[262]

int main(int argc, char *argv[])
{
 pthread_t t;
 printf("Main thread, PID %d TID %d\n",
 getpid(), (pid_t)syscall(SYS_gettid));
 pthread_create(&t, NULL, thread_fn, NULL);
 pthread_join(t, NULL);
 return 0;
}

There is a man page for getttid(2) which explains that you have to make the
Linux syscall directly because there isn't a C library wrapper for it, as shown.

There is a limit to the total number of threads that a given kernel can schedule.
The limit scales according to the size of the system from around 1,000 on small
devices up to tens of thousands on larger embedded devices. The actual number
is available in /proc/sys/kernel/threads-max. Once you reach this limit, fork()
and pthread_create() will fail.

Terminating a thread
A thread terminates when:

• It reaches the end of its start_routine
• It calls pthread_exit(3)
• It is canceled by another thread calling pthread_cancel(3)
• The process which contains the thread terminates, for example, because of a

thread calling exit(3), or the process receiving a signal that is not handled,
masked or ignored

Note that, if a multi threaded program calls fork(2), only the thread that made the
call will exist in the new child process. Fork does not replicate all threads.

A thread has a return value, which is a void pointer. One thread can wait for another to
terminate and collect its return value by calling pthread_join(2). There is an example
in the code for thread-demo mentioned in the preceding section. This produces a
problem that is very similar to the zombie problem among processes: the resources of
the thread, for example, the stack, cannot be freed up until another thread has joined
with it. If threads remain unjoined there is a resource leak in the program.

Chapter 10

[263]

Compiling a program with threads
The support for POSIX threads is part of the C library, in the library libpthread.so.
However, there is more to building programs with threads than linking the library:
there have to be changes to the way the compiler generates code to make sure that
certain global variables, such as errno, have one instance per thread rather than one
for the whole process.

When building a threaded program, you must add the
switch –pthread at the compile and link stages.

Inter-thread communication
The big advantage of threads is that they share the address space and so can share
memory variables. This is also a big disadvantage because it requires synchronization
to preserve data consistency, in a similar way to memory segments shared between
processes but with the proviso that, with threads, all memory is shared. Threads can
create private memory using thread local storage (TLS).

The pthreads interface provides the basics necessary to achieve synchronization:
mutexes and condition variables. If you want more complex structures, you will
have to build them yourself.

It is worth noting that all of the IPC methods described earlier work equally well
between threads in the same process.

Mutual exclusion
To write robust programs, you need to protect each shared resource with a mutex
lock and make sure that every code path that reads or writes the resource has locked
the mutex first. If you apply this rule consistently, most of the problems should
be solved. The ones that remain are associated with the fundamental behavior of
mutexes. I will list them briefly here, but will not go into detail:

• Deadlock: This occurs when mutexes become permanently locked. A classic
situation is the deadly embrace in which two threads each require two mutexes
and have managed to lock one of them but not the other. Each block waits
for the lock the other has and so they remain as they are. One simple rule
which avoids the deadly embrace problem is to make sure that mutexes are
always locked in the same order. Other solutions involve timeouts and back
off periods.

Learning About Processes and Threads

[264]

• Priority inversion: The delays caused by waiting for a mutex can cause a
real-time thread to miss deadlines. The specific case of priority inversion
happens when a high priority thread becomes blocked waiting for a mutex
locked by a low priority thread. If the low priority thread is preempted by
other threads of intermediate priority, the high priority thread is forced to
wait for an unbounded length of time. There are mutex protocols called
priority inheritance and priority ceiling which resolve the problem at the
expense of greater processing overhead in the kernel for each lock and
unlock call.

• Poor performance: Mutexes introduce minimal overhead to code as long
as threads don't have to block on them most of the time. If your design has
a resource that is needed by a lot of threads, however, the contention ratio
becomes significant. This is usually a design issue which can be resolved
by using finer grained locking or a different algorithm.

Changing conditions
Cooperating threads need a method of alerting one another that something has
changed and needs attention. That thing is called a condition and the alert is sent
through a condition variable, condvar.

A condition is just something that you can test to give a true or false result. A
simple example is a buffer that contains either zero or some items. One thread takes
items from the buffer and sleeps when it is empty. Another thread places items into
the buffer and signals the other thread that it has done so, because the condition that
the other thread is waiting on has changed. If it is sleeping, it needs to wake up and
do something. The only complexity is that the condition is, by definition, a shared
resource and so has to be protected by a mutex. Here is a simple example which
follows the producer-consumer relationship described in the preceding section:

pthread_cond_t cv = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mutx = PTHREAD_MUTEX_INITIALIZER;

void *consumer(void *arg)
{
 while (1) {
 pthread_mutex_lock(&mutx);
 while (buffer_empty(data))
 pthread_cond_wait(&cv, &mutx);
 /* Got data: take from buffer */
 pthread_mutex_unlock(&mutx);
 /* Process data item */
 }

Chapter 10

[265]

 return NULL;
}

void *producer(void *arg)
{
 while (1) {
 /* Produce an item of data */
 pthread_mutex_lock(&mutx);
 add_data(data);
 pthread_mutex_unlock(&mutx);
 pthread_cond_signal(&cv);
 }
 return NULL;
}

Note that, when the consumer thread blocks on the condvar, it does so while holding
a locked mutex, which would seem to be a recipe for deadlock the next time the
producer thread tries to update the condition. To avoid this, pthread_condwait(3)
unlocks the mutex after the thread is blocked and locks it again before waking it and
returning from the wait.

Partitioning the problem
Now that we have covered the basics of processes and threads and the ways in
which they communicate, it is time to see what we can do with them.

Here are some of the rules I use when building systems:

• Rule 1: Keep tasks that have a lot of interaction.
Minimize overheads by keeping closely inter-operating threads together in
one process.

• Rule 2: Don't put all your threads in one basket.
On the other hand, try and keep components with limited interaction in
separate processes, in the interests of resilience and modularity.

• Rule 3: Don't mix critical and non-critical threads in the same process.
This is an amplification of Rule 2: the critical part of the system, which might
be the machine control program, should be kept as simple as possible and
written in a more rigorous way than other parts. It must be able to continue
even if other processes fail. If you have real-time threads, they, by definition,
must be critical and should go into a process by themselves.

Learning About Processes and Threads

[266]

• Rule 4: Threads shouldn't get too intimate.
One of the temptations when writing a multi-threaded program is
to intermingle the code and variables between threads because it
is all in one program and easy to do. Don't keep threads modular
with well-defined interactions.

• Rule 5: Don't think that threads are for free.
It is very easy to create additional threads but there is a cost, not least in
the additional synchronization necessary to coordinate their activities.

• Rule 6: Threads can work in parallel.
Threads can run simultaneously on a multi-core processor, giving higher
throughput. If you have a large computing job, you can create one thread
per core and make maximum use of the hardware. There are libraries to
help you do this, such as OpenMP. You probably shouldn't be coding
parallel programming algorithms from scratch.

The Android design is a good illustration. Each application is a separate Linux
process which helps to modularize memory management but especially ensures
that one app crashing does not affect the whole system. The process model is also
used for access control: a process can only access the files and resources which its
UID and GIDs allow it to. There are a group of threads in each process. There is one
to manage and update the user interface, one for handling signals from the operating
system, several for managing dynamic memory allocation and the freeing up of Java
objects and a worker pool of at least two threads for receiving messages from other
parts of the system using the Binder protocol.

To summarize, processes provide resilience because each process has a protected
memory space and, when the process terminates, all resources including memory
and file descriptors are freed up, reducing resource leaks. On the other hand, threads
share resources and so can communicate easily through shared variables, and can
cooperate by sharing access to files and other resources. Threads give parallelism
through worker pools and other abstractions which is useful on multi-core processors.

Chapter 10

[267]

Scheduling
The second big topic I want to cover in this chapter is scheduling. The Linux
scheduler has a queue of threads that are ready to run and its job is to schedule
them on CPUs as they become available. Each thread has a scheduling policy which
may be timeshared or real-time. The timeshared threads have a niceness value which
increases or reduces their entitlement to CPU time. The real-time threads have a
priority such that a higher priority thread will preempt a lower one. The scheduler
works with threads, not processes. Each thread is scheduled regardless of which
process it is running in.

The scheduler runs when:

• A thread blocks by calling sleep() or in a blocking I/O call
• A timeshare thread exhausts its time slice
• An interrupt causes a thread to be unblocked, for example, because of

I/O completing

For background information on the Linux scheduler, I recommend reading the
chapter on process scheduling in Linux Kernel Development, 3rd edition by Robert Love,
Addison-Wesley Professional; (July 2, 2010) ISBN-10: 0672329468.

Fairness versus determinism
I have grouped the scheduling polices into categories of timeshare and real-time.
Timeshare policies are based on the principal of fairness. They are designed to
make sure that each thread gets a fair amount of processor time and that no thread
can hog the system. If a thread runs for too long it is put to the back of the queue
so that others can have a go. At the same time, a fairness policy needs to adjust to
threads that are doing a lot of work and give them the resources to get the job done.
Timeshare scheduling is good because of the way it automatically adjusts to a wide
range of workloads.

On the other hand, if you have a real-time program, fairness is not helpful. Instead,
you then want a policy that is deterministic, that will give you at least minimal
guarantees that your real-time threads will be scheduled at the right time so that
they don't miss their deadlines. This means that a real-time thread must preempt
timeshare threads. Real-time threads also have a static priority that the scheduler can
use to choose between them when there are several of them to run at once. The Linux
real-time scheduler implements a fairly standard algorithm which runs the highest
priority real-time thread. Most RTOS schedulers are also written in this way.

Both types of thread can coexist. Those requiring deterministic scheduling are
scheduled first and the time remaining is divided between the timeshare threads.

Learning About Processes and Threads

[268]

Timeshare policies
Timeshare policies are designed for fairness. From Linux 2.6.23 onwards, the
scheduler used has been the Completely Fair Scheduler (CFS). It does not use
timeslices in the normal sense of the word. Instead, it calculates a running tally
of the length of time a thread would be entitled to run if it had its fair share of
CPU time, and balances that with the actual amount of time it has run. If it exceeds
its entitlement, and there are other timeshare threads waiting to run, the scheduler
will suspend the thread and run a waiting thread instead.

The timeshare policies are:

• SCHED_NORMAL (also known as SCHED_OTHER): This is the default policy.
The vast majority of Linux threads use this policy.

• SCHED_BATCH: This is similar to SCHED_NORMAL except threads are scheduled
with a larger granularity; that is they run for longer but have to wait longer
until scheduled again. The intention is to reduce the number of context
switches for background processing (batch jobs) and so reduce the amount
of CPU cache churn.

• SCHED_IDLE: These threads are run only when there are no threads of any
other policy ready to run. It is the lowest possible priority.

There are two pairs of functions to get and set the policy and priority of a thread.
The first pair takes a PID as a parameter and affects the main thread in a process:

struct sched_param {
 ...
 int sched_priority;
 ...
};
int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *param);
int sched_getscheduler(pid_t pid);

The second pair operates on pthread_t and so can change the parameters of the
other threads in a process:

pthread_setschedparam(pthread_t thread, int policy,
 const struct sched_param *param);
pthread_getschedparam(pthread_t thread, int *policy,
 struct sched_param *param);

Chapter 10

[269]

Niceness
Some timeshare threads are more important than others. You can indicate this with
the nice value which multiplies a thread's CPU entitlement by a scaling factor. The
name comes from the function call, nice(2), which has been part of Unix since the
early days. A thread becomes nice by reducing its load on the system, or moves in
the opposite direction by increasing it. The range of values is from 19, which is really
nice, to -20 which is really not nice. The default value is 0, which is averagely nice or
so-so.

The nice value can be changed for SCHED_NORMAL and SCHED_BATCH threads.
To reduce niceness, which increases the CPU load, you need the capability
CAP_SYS_NICE, which is available to the root user.

Almost all the documentation for functions and commands that change the nice
value (nice(2) and the nice and renice commands) talks in terms of processes.
However, it really relates to threads. As mentioned in the preceding section, you can
use a TID in place of a PID to change the nice value of an individual thread. One
other discrepancy in the standard descriptions of nice: the nice value is referred
to as the priority of a thread (or sometimes, mistakenly, a process). I believe this is
misleading and confuses the concept with real-time priority which is a completely
different thing.

Real-time policies
Real-time policies are intended for determinism. The real-time scheduler will always
run the highest priority real-time thread that is ready to run. Real-time threads
always preempt timeshare threads. In essence, by selecting a real-time policy over
a timeshare policy, you are saying that you have inside knowledge of the expected
scheduling of this thread and wish to override the scheduler's built-in assumptions.

There are two real-time policies:

• SCHED_FIFO: This is a run to completion algorithm, which means that, once
the thread starts to run, it will continue until it is preempted by a higher
priority real-time thread or blocks in a system call or terminates (completes).

• SCHED_RR: This is a round robin algorithm which will cycle between threads
of the same priority if they exceed their time slice which, by default, is 100
ms. Since Linux 3.9, it has been possible to control the timeslice value
through /proc/sys/kernel/sched_rr_timeslice_ms. Apart from this,
it behaves in the same way as SCHED_FIFO.

Each real-time thread has a priority in the range 1 to 99, with 99 being the highest.

Learning About Processes and Threads

[270]

To give a thread a real-time policy, you need CAP_SYS_NICE which, by default,
is given only to the root user.

One problem with real-time scheduling, both in Linux and elsewhere, is that of
a thread that becomes compute bound, often because a bug has caused it to loop
indefinitely, which prevents real-time threads of lower priority from running as
well as all the timeshare threads. The system become erratic and may lock up
completely. There are a couple of ways to guard against this possibility.

First, since Linux 2.6.25, the scheduler has, by default, reserved 5% of CPU time for
non real-time threads, so that even a runaway real-time thread cannot completely
halt the system. It is configured via two kernel controls:

• /proc/sys/kernel/sched_rt_period_us

• /proc/sys/kernel/sched_rt_runtime_us

They have default values of 1,000,000 (1 second) and 950,000 (950 ms) respectively,
which means that out of every second, 50ms is reserved for non real-time processing.
If you want real-time threads to be able to take 100% then set sched_rt_runtime_us
to -1.

The second option is to use a watchdog, either hardware or software, to monitor the
execution of key threads and to take action when they begin to miss deadlines.

Choosing a policy
In practice, timeshare policies satisfy the majority of computing workloads.
Threads that are I/O bound spend a lot of time blocked and so always have
some spare entitlement in hand. When they unblock they will be scheduled
almost immediately. Meanwhile, CPU-bound threads will naturally take up
any CPU cycles left over. Positive nice values can be applied to the less important
threads and negative values to the important ones.

Of course, this is only average behavior, there are no guarantees that this will always
be the case. If more deterministic behavior is needed, then real-time policies will be
required. The things that mark out a thread as being real-time are:

• It has a deadline by which it must generate an output
• Missing the deadline would compromise the effectiveness of the system
• It is event-driven
• It is not compute bound

Examples of real-time tasks include the classic robot arm servo controller, multimedia
processing, and communication processing.

Chapter 10

[271]

Choosing a real-time priority
Choosing real-time priorities that work for all expected workloads is a tricky
business and a good reason for avoiding real-time policies in the first place.

The most widely used procedure for choosing priorities is known as Rate Monotonic
Analysis (RMA), after the 1973 paper by Liu and Layland. It applies to real-time
systems with periodic threads, which is a very important class. Each thread has a
period, and a utilization, which is the proportion of the period it will be executing.
The goal is to balance the load so that all threads can complete their execution phase
before the next period. RMA states that this can be achieved if:

• The highest priorities are given to the threads with the shortest periods
• The total utilization is less than 69%

The total utilization is the sum of all of the individual utilizations. It also makes
the assumption that the interaction between threads or the time spent blocked on
mutexes and the like, is negligible.

Further reading
The following resources have further information about the topics introduced in
this chapter:

• The Art of Unix Programming, by Eric Steven Raymond, Addison Wesley;
(23 Sept. 2003) ISBN 978-0131429017

• Linux System Programming, 2nd edition, by Robert Love, O'Reilly Media;
(8 Jun. 2013) ISBN-10: 1449339530

• Linux Kernel Development, 3rd edition by Robert Love, Addison-Wesley
Professional; (July 2, 2010) ISBN-10: 0672329468

• The Linux Programming Interface, by Michael Kerrisk, No Starch Press;
(October 2010) ISBN 978-1-59327-220-3

• UNIX Network Programming: v. 2: Interprocess Communications, 2nd Edition,
by W. Richard Stevens, Prentice Hall; (25 Aug. 1998) ISBN-10: 0132974290

• Programming with POSIX Threads, by Butenhof, David R, Addison-Wesley,
Professional

• Scheduling Algorithm for multiprogramming in a Hard-Real-Time Environment,
by C. L. Liu and James W. Layland, Journal of ACM, 1973, vol 20, no 1, pp. 46-61

Learning About Processes and Threads

[272]

Summary
The long Unix heritage that is built into Linux and the accompanying C libraries
provides almost everything you need to write stable and resilient embedded
applications. The issue is that, for every job, there are at least two ways to
achieve the end you desire.

In this chapter, I have focused on two aspects of system design: the partitioning
into separate processes, each with one or more threads to get the job done, and the
scheduling of those threads. I hope that I have shed some light on this, and given
you the basis for further study into all of them.

In the next chapter, I will examine another important aspect of system design,
memory management.

[273]

Managing Memory
This chapter covers issues relating to memory management, which is an important
topic for any Linux system, but especially for embedded Linux where system memory
is usually in limited supply. After a brief refresher on virtual memory, I will show
you how to measure memory use, how to detect problems with memory allocation,
including memory leaks, and what happens when you run out of memory. You will
have to understand the tools that are available, from simple tools such as free and
top, to complex tools such as mtrace and Valgrind.

Virtual memory basics
To recap, Linux configures the memory management unit of the CPU to present
a virtual address space to a running program that begins at zero and ends at the
highest address, 0xffffffff on a 32-bit processor. That address space is divided
into pages of 4 KiB (there are rare examples of systems using other page sizes).

Linux divides this virtual address space into an area for applications, called user
space, and an area for the kernel, called kernel space. The split between the two is
set by a kernel configuration parameter named PAGE_OFFSET. In a typical 32-bit
embedded system, PAGE_OFFSET is 0xc0000000, giving the lower three GiB to user
space and the top one GiB to kernel space. The user address space is allocated per
process, so that each process runs in a sandbox, separated from the others. The
kernel address space is the same for all processes: there is only one kernel.

Pages in this virtual address space are mapped to physical addresses by the memory
management unit (MMU), which uses page tables to perform the mapping.

Each page of virtual memory may be:

• unmapped, in which access will result in a SIGSEGV
• mapped to a page of physical memory that is private to the process

Managing Memory

[274]

• mapped to a page of physical memory that is shared with other processes
• mapped and shared with a copy on write flag set: a write is trapped in the

kernel which makes a copy of the page and maps it to the process in place of
the original page before allowing the write to take place

• mapped to a page of physical memory that is used by the kernel

The kernel may additionally map pages to reserved memory regions, for example,
to access registers and buffer memory in device drivers.

An obvious question is, why do we do it this way instead of simply referencing
physical memory directly, as typical RTOS would?

There are numerous advantages to virtual memory, some of which are described here:

• Invalid memory accesses are trapped and applications alerted by SIGSEGV
• Processes run in their own memory space, isolated from others
• Efficient use of memory through the sharing of common code and data, for

example, in libraries
• The possibility of increasing the apparent amount of physical memory by

adding swap files, although swapping on embedded targets is rare

These are powerful arguments, but we have to admit that there are some disadvantages
as well. It is difficult to determine the actual memory budget of an application, which
is one of the main concerns of this chapter. The default allocation strategy is to over-
commit, which leads to tricky out-of-memory situations, which I will also discuss
later on. Finally, the delays introduced by the memory management code in handling
exceptions – page faults – make the system less deterministic, which is important for
real-time programs. I will cover this in Chapter 14, Real-time Programming.

Memory management is different for kernel space and user space. The following
sections describe the essential differences and the things you need to know.

Kernel space memory layout
Kernel memory is managed in a fairly straightforward way. It is not demand-paged,
meaning that, for every allocation using kmalloc() or similar function, there is real
physical memory. Kernel memory is never discarded or paged out.

Chapter 11

[275]

Some architectures show a summary of the memory mapping at boot time in the kernel
log messages. This trace is taken from a 32-bit ARM device (a BeagleBone Black):

Memory: 511MB = 511MB total
Memory: 505980k/505980k available, 18308k reserved, 0K highmem
Virtual kernel memory layout:
 vector : 0xffff0000 - 0xffff1000 (4 kB)
 fixmap : 0xfff00000 - 0xfffe0000 (896 kB)
 vmalloc : 0xe0800000 - 0xff000000 (488 MB)
 lowmem : 0xc0000000 - 0xe0000000 (512 MB)
 pkmap : 0xbfe00000 - 0xc0000000 (2 MB)
 modules : 0xbf800000 - 0xbfe00000 (6 MB)
 .text : 0xc0008000 - 0xc0763c90 (7536 kB)
 .init : 0xc0764000 - 0xc079f700 (238 kB)
 .data : 0xc07a0000 - 0xc0827240 (541 kB)
 .bss : 0xc0827240 - 0xc089e940 (478 kB)

The figure of 505980 KiB available is the amount of free memory the kernel sees
when it begins execution but before it begins making dynamic allocations.

Consumers of kernel-space memory include the following:

• The kernel itself, in other words, the code and data loaded from the kernel
image file at boot time. This is shown in the preceding code in the segments
.text, .init, .data, and .bss. The .init segment is freed once the kernel
has completed initialization.

• Memory allocated through the slab allocator, which is used for kernel data
structures of various kinds. This includes allocations made using kmalloc().
They come from the region marked lowmem.

• Memory allocated via vmalloc(), usually for larger chunks of memory than
is available through kmalloc(). These are in the vmalloc area.

• Mapping for device drivers to access registers and memory belonging to
various bits of hardware, which you can see by reading /proc/iomem. These
come from the vmalloc area but since they are mapped to physical memory
that is outside of main system memory, they do not take any real memory.

• Kernel modules, which are loaded into the area marked modules.
• Other low level allocations that are not tracked anywhere else.

Managing Memory

[276]

How much memory does the kernel use?
Unfortunately, there isn't a complete answer to that question, but what follows is as
close as we can get.

Firstly, you can see the memory taken up by the kernel code and data in the kernel
log shown previously, or you can use the size command, as follows:

$ arm-poky-linux-gnueabi-size vmlinux

text data bss dec hex filename

9013448 796868 8428144 18238460 1164bfc vmlinux

Usually, the size is small when compared to the total amount of memory. If that is
not the case, you need to look through the kernel configuration and remove those
components that you don't need. There is an ongoing effort to allow small kernels
to be built: search for Linux-tiny or Linux Kernel Tinification. There is a project page
for the latter at https://tiny.wiki.kernel.org/.

You can get more information about memory usage by reading /proc/meminfo:

cat /proc/meminfo
MemTotal: 509016 kB
MemFree: 410680 kB
Buffers: 1720 kB
Cached: 25132 kB
SwapCached: 0 kB
Active: 74880 kB
Inactive: 3224 kB
Active(anon): 51344 kB
Inactive(anon): 1372 kB
Active(file): 23536 kB
Inactive(file): 1852 kB
Unevictable: 0 kB
Mlocked: 0 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 509016 kB
LowFree: 410680 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 16 kB
Writeback: 0 kB
AnonPages: 51248 kB
Mapped: 24376 kB

Chapter 11

[277]

Shmem: 1452 kB
Slab: 11292 kB
SReclaimable: 5164 kB
SUnreclaim: 6128 kB
KernelStack: 1832 kB
PageTables: 1540 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 254508 kB
Committed_AS: 734936 kB
VmallocTotal: 499712 kB
VmallocUsed: 29576 kB
VmallocChunk: 389116 kB

There is a description of each of these fields in the man page for proc(5). The kernel
memory usage is the sum of:

• Slab: The total memory allocated by the slab allocator
• KernelStack: The stack space used when executing kernel code
• PageTables: The memory used for storing page tables
• VmallocUsed: The memory allocated by vmalloc()

In the case of slab allocations, you can get more information by reading
/proc/slabinfo. Similarly, there is a breakdown of allocations in /proc/
vmallocinfo for the vmalloc area. In both cases, you need detailed knowledge
of the kernel and its subsystems to see exactly which subsystem is making the
allocations and why, which is beyond the scope of this discussion.

With modules, you can use lsmod to find out the memory space taken up by the
code and data:

lsmod
Module Size Used by
g_multi 47670 2
libcomposite 14299 1 g_multi
mt7601Usta 601404 0

That leaves the low level allocations of which there is no record, and which prevent
us from generating an accurate account of kernel space memory usage. This will
appear as missing memory when we add up all the kernel and user space allocations
that we know about.

Managing Memory

[278]

User space memory layout
Linux employs a lazy allocation strategy for user space, only mapping physical pages
of memory when the program accesses it. For example, allocating a buffer of 1 MiB
using malloc(3) returns a pointer to a block of memory addresses but no actual
physical memory. A flag is set in the page table entries such that any read or write
access is trapped by the kernel. This is known as a page fault. Only at this point does
the kernel attempt to find a page of physical memory and add it to the page table
mapping for the process. It is worthwhile demonstrating this with a simple program
like this one:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/resource.h>
#define BUFFER_SIZE (1024 * 1024)

void print_pgfaults(void)
{
 int ret;
 struct rusage usage;
 ret = getrusage(RUSAGE_SELF, &usage);
 if (ret == -1) {
 perror("getrusage");
 } else {
 printf ("Major page faults %ld\n", usage.ru_majflt);
 printf ("Minor page faults %ld\n", usage.ru_minflt);
 }
}

int main (int argc, char *argv[])
{
 unsigned char *p;
 printf("Initial state\n");
 print_pgfaults();
 p = malloc(BUFFER_SIZE);
 printf("After malloc\n");
 print_pgfaults();
 memset(p, 0x42, BUFFER_SIZE);
 printf("After memset\n");
 print_pgfaults();
 memset(p, 0x42, BUFFER_SIZE);
 printf("After 2nd memset\n");
 print_pgfaults();
 return 0;
}

Chapter 11

[279]

When you run it, you will see something like this:

Initial state
Major page faults 0
Minor page faults 172
After malloc
Major page faults 0
Minor page faults 186
After memset
Major page faults 0
Minor page faults 442
After 2nd memset
Major page faults 0
Minor page faults 442

There were 172 minor page faults encountered initializing the program's environment,
and a further 14 when calling getrusage(2) (these numbers will vary depending on
the architecture and the version of the C library you are using). The important part is
the increase when filling the memory with data: 442 – 186 = 256. The buffer is 1 MiB,
which is 256 pages. The second call to memset(3) makes no difference because all the
pages are now mapped.

As you can see, a page fault is generated when the kernel traps an access to a page
that has not been mapped. In fact, there are two kinds of page fault: minor and
major. With a minor fault, the kernel just has to find a page of physical memory
and map it into the process address space, as shown in the preceding code. A major
page fault occurs when the virtual memory is mapped to a file, for example using
mmap(2), which I will describe shortly. Reading from this memory means that the
kernel not only has to find a page of memory and map it in, but it also has to be filled
with data from the file. Consequently, major faults are much more expensive in time
and system resources.

Process memory map
You can see the memory map for a process through the proc filesystem. As an
example, here is the map for the init process, PID 1:

cat /proc/1/maps
00008000-0000e000 r-xp 00000000 00:0b 23281745 /sbin/init
00016000-00017000 rwxp 00006000 00:0b 23281745 /sbin/init
00017000-00038000 rwxp 00000000 00:00 0 [heap]
b6ded000-b6f1d000 r-xp 00000000 00:0b 23281695 /lib/libc-2.19.so
b6f1d000-b6f24000 ---p 00130000 00:0b 23281695 /lib/libc-2.19.so

Managing Memory

[280]

b6f24000-b6f26000 r-xp 0012f000 00:0b 23281695 /lib/libc-2.19.so
b6f26000-b6f27000 rwxp 00131000 00:0b 23281695 /lib/libc-2.19.so
b6f27000-b6f2a000 rwxp 00000000 00:00 0
b6f2a000-b6f49000 r-xp 00000000 00:0b 23281359 /lib/ld-2.19.so
b6f4c000-b6f4e000 rwxp 00000000 00:00 0
b6f4f000-b6f50000 r-xp 00000000 00:00 0 [sigpage]
b6f50000-b6f51000 r-xp 0001e000 00:0b 23281359 /lib/ld-2.19.so
b6f51000-b6f52000 rwxp 0001f000 00:0b 23281359 /lib/ld-2.19.so
beea1000-beec2000 rw-p 00000000 00:00 0 [stack]
ffff0000-ffff1000 r-xp 00000000 00:00 0 [vectors]

The first three columns show the start and end virtual addresses and the permissions
for each mapping. The permissions are shown here:

• r = read
• w = write
• x = execute
• s = shared
• p = private (copy on write)

If the mapping is associated with a file, the filename appears in the final column,
and columns four, five, and six contain the offset from the start of the file, the block
device number and the inode of the file. Most of the mappings are to the program
itself and the libraries it is linked with. There are two areas where the program can
allocate memory, marked [heap] and [stack]. Memory allocated using malloc(3)
comes from the former (except for very large allocations, which we will come to
later) ; allocations on the stack come from the latter. The maximum size of both
areas is controlled by the process's ulimit:

• heap: ulimit -d, default unlimited
• stack: ulimit -s, default 8 MiB

Allocations that exceed the limit are rejected by SIGSEGV.

When running out of memory, the kernel may decide to discard pages that are
mapped to a file and are read-only. If that page is accessed again, it will cause a
major page fault and be read back in from the file.

Chapter 11

[281]

Swap
The idea of swapping is to reserve some storage where the kernel can place pages
of memory that are not mapped to a file, so that it can free up the memory for other
uses. It increases the effective size of physical memory by the size of the swap file.
It is not a panacea: there is a cost to copying pages to and from a swap file which
becomes apparent on a system that has too little real memory for the workload it
is carrying and begins disk thrashing.

Swap is seldom used on embedded devices because it does not work well with flash
storage where constant writing would wear it out quickly. However, you may want
to consider swapping to compressed RAM (zram).

Swap to compressed memory (zram)
The zram driver creates RAM-based block devices named /dev/zram0, /dev/zram1,
and so on. Pages written to these devices are compressed before being stored. With
compression ratios in the range of 30% to 50%, you can expect an overall increase in
free memory of about 10%, at the expense of more processing and a corresponding
increase in power usage. It is used in some low memory Android devices.

To enable zram, configure the kernel with these options:

CONFIG_SWAP
CONFIG_CGROUP_MEM_RES_CTLR
CONFIG_CGROUP_MEM_RES_CTLR_SWAP
CONFIG_ZRAM

Then, mount zram at boot time by adding this to /etc/fstab:

/dev/zram0 none swap defaults zramsize=<size in
 bytes>,swapprio=<swap partition priority>

You can turn swap on and off by using these commands:

swapon /dev/zram0
swapoff /dev/zram0

Managing Memory

[282]

Mapping memory with mmap
A process begins life with a certain amount of memory mapped to the text (the
code) and data segments of the program file, together with the shared libraries that
it is linked with. It can allocate memory on its heap at runtime using malloc(3)
and on the stack through locally scoped variables and memory allocated through
alloca(3). It may also load libraries dynamically at runtime using dlopen(3).
All of these mappings are taken care of by the kernel. However, a process can also
manipulate its memory map in an explicit way using mmap(2):

void *mmap(void *addr, size_t length, int prot, int flags,
 int fd, off_t offset);

It maps length bytes of memory from the file with the descriptor fd, starting at
offset in the file, and returns a pointer to the mapping, assuming it is successful.
Since the underlying hardware works in pages, the length is rounded up to the
nearest whole number of pages. The protection parameter, prot, is a combination
of read, write, and execute permissions and the flags parameter contains at least
MAP_SHARED or MAP_PRIVATE. There are many other flags, which are described in
the man page.

There are many things you can do with mmap. Here are a few of them.

Using mmap to allocate private memory
You can use mmap to allocate an area of private memory by setting the
MAP_ANONYMOUS flag and the fd file descriptor to -1. This is similar to allocating
memory from the heap using malloc(3) except that the memory is page-aligned
and in multiples of pages. The memory is allocated in the same area as that used for
libraries. In fact, that area is referred to by some as the mmap area for this reason.

Anonymous mappings are better for large allocations because they do not pin down
the heap with chunks of memory, which would make fragmentation more likely.
Interestingly, you will find that malloc(3) (in glibc at least) stops allocating memory
from the heap for requests over 128 KiB and uses mmap in this way, so in most cases,
just using malloc is the right thing to do. The system will choose the best way of
satisfying the request.

Chapter 11

[283]

Using mmap to share memory
As we saw in Chapter 10, Learning About Processes and Threads, POSIX shared memory
requires mmap to access the memory segment. In this case, you set the MAP_SHARED
flag and use the file descriptor from shm_open():

int shm_fd;
char *shm_p;

shm_fd = shm_open("/myshm", O_CREAT | O_RDWR, 0666);
ftruncate(shm_fd, 65536);
shm_p = mmap(NULL, 65536, PROT_READ | PROT_WRITE,
 MAP_SHARED, shm_fd, 0);

Using mmap to access device memory
As I mentioned in Chapter 8, Introducing Device Drivers, it is possible for a driver to
allow its device node to be mmaped and so share some of the device memory with
an application. The exact implementation is dependent on the driver.

One example is the Linux frame buffer, /dev/fb0. The interface is defined in /usr/
include/linux/fb.h, including an ioctl function to get the size of the display and
the bits per pixel. You can then use mmap to ask the video driver to share the frame
buffer with the application and read and write pixels:

int f;
int fb_size;
unsigned char *fb_mem;

f = open("/dev/fb0", O_RDWR);
/* Use ioctl FBIOGET_VSCREENINFO to find the display dimensions
 and calculate fb_size */
fb_mem = mmap(0, fb_size, PROT_READ | PROT_WRITE, MAP_SHARED, f,
 0);
/* read and write pixels through pointer fb_mem */

A second example is the streaming video interface, Video 4 Linux, version 2, or
V4L2, which is defined in /usr/include/linux/videodev2.h. Each video device
has a node named /dev/videoN, starting with /dev/video0. There is an ioctl
function to ask the driver to allocate a number of video buffers which you can
mmap into user space. Then, it is just a question of cycling the buffers and filling
or emptying them with video data, depending on whether you are playing back
or capturing a video stream.

Managing Memory

[284]

How much memory does my application
use?
As with kernel space, the different ways of allocating, mapping and sharing user
space memory make it quite difficult to answer this seemingly simple question.

To begin with, you can ask the kernel how much memory it thinks is available, which
you can do by using the free command. Here is a typical example of the output:

 total used free shared buffers cached
Mem: 509016 504312 4704 0 26456 363860
-/+ buffers/cache: 113996 395020
Swap: 0 0 0

At first sight, this looks like a system that is almost out of memory
with only 4704 KiB free out of 509,016 KiB: less than 1%. However,
note that 26,456 KiB is in buffers and a whopping 363,860 KiB is in
cache. Linux believes that free memory is wasted memory and so the
kernel uses free memory for buffers and caches, in the knowledge
that they can be shrunk when the need arises. Removing buffers and
cache from the measurement gives the true free memory, which is
395,020 KiB; 77% of the total. When using free, the numbers on the
second line marked -/+ buffers/cache are the important ones.

You can force the kernel to free up caches by writing a number between 1 and 3 to
/proc/sys/vm/drop_caches:

echo 3 > /proc/sys/vm/drop_caches

The number is actually a bit mask which determines which of the two broad types
of cache you want to free: 1 for the page cache and 2 for the dentry and inode caches
combined. The exact roles of those caches is not particularly important here, only that
there is memory that the kernel is using but which can be reclaimed at short notice.

Chapter 11

[285]

Per-process memory usage
There are several metrics to measure the amount of memory a process is using.
I will begin with the two that are easiest to obtain— the virtual set size (vss) and
the resident memory size (rss), both of which are available in most implementations
of the ps and top commands:

• Vss: called VSZ in the ps command and VIRT in top, is the total amount
of memory mapped by a process. It is the sum of all the regions shown in
/proc/<PID>/map. This number is of limited interest, since only part of
the virtual memory is committed to physical memory at any one time.

• Rss: called RSS in ps and RES in top, is the sum of memory that is mapped
to physical pages of memory. This gets closer to the actual memory budget of
the process, but there is a problem, if you add up the Rss of all the processes,
you will get an overestimate the memory in use because some pages will be
shared.

Using top and ps
The versions of top and ps from BusyBox give very limited information. The examples
that follow use the full version from the procps pacakge.

The ps command shows Vss (VSZ) and Rss (RSS) with the options, -Aly, and a
custom format which includes vsz and rss, as shown here:

ps -eo pid,tid,class,rtprio,stat,vsz,rss,comm

 PID TID CLS RTPRIO STAT VSZ RSS COMMAND
 1 1 TS - Ss 4496 2652 systemd
 ...
 205 205 TS - Ss 4076 1296 systemd-journal
 228 228 TS - Ss 2524 1396 udevd
 581 581 TS - Ss 2880 1508 avahi-daemon
 584 584 TS - Ss 2848 1512 dbus-daemon
 590 590 TS - Ss 1332 680 acpid
 594 594 TS - Ss 4600 1564 wpa_supplicant

Managing Memory

[286]

Likewise, top shows a summary of the free memory and memory usage per process:

top - 21:17:52 up 10:04, 1 user, load average: 0.00, 0.01, 0.05
Tasks: 96 total, 1 running, 95 sleeping, 0 stopped, 0
zombie
%Cpu(s): 1.7 us, 2.2 sy, 0.0 ni, 95.9 id, 0.0 wa, 0.0 hi,
0.2 si, 0.0 st
KiB Mem: 509016 total, 278524 used, 230492 free, 25572
buffers
KiB Swap: 0 total, 0 used, 0 free, 170920
cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+
 COMMAND
1098 debian 20 0 29076 16m 8312 S 0.0 3.2 0:01.29
 wicd-client
 595 root 20 0 64920 9.8m 4048 S 0.0 2.0 0:01.09 node
 866 root 20 0 28892 9152 3660 S 0.2 1.8 0:36.38 Xorg

These simple commands give you a feel of the memory usage and give the first
indication that you have a memory leak when you see that the Rss of a process keeps
on increasing. However, they are not very accurate in the absolute measurements of
memory usage.

Using smem
In 2009, Matt Mackall began looking at the problem of accounting for shared pages
in process memory measurement and added two new metrics called the unique set
size or Uss, and the proportional set size or Pss:

• Uss: This is the amount of memory that is committed to physical memory
and is unique to a process; it is not shared with any other. It is the amount
of memory that would be freed if the process were to terminate.

• Pss: This splits the accounting of shared pages that are committed to physical
memory between all the processes that have them mapped. For example, if
an area of library code is 12 pages long and is shared by six processes, each
will accumulate two pages in Pss. Thus, if you add the Pss numbers for all
processes, you will get the actual amount of memory being used by those
processes. In other words, Pss is the number we have been looking for.

Chapter 11

[287]

The information is available in /proc/<PID>/smaps, which contains additional
information for each of the mappings shown in /proc/<PID>/maps. Here is one
section from such a file which provides information about the mapping for the
libc code segment:

b6e6d000-b6f45000 r-xp 00000000 b3:02 2444 /lib/libc-2.13.so
Size: 864 kB
Rss: 264 kB
Pss: 6 kB
Shared_Clean: 264 kB
Shared_Dirty: 0 kB
Private_Clean: 0 kB
Private_Dirty: 0 kB
Referenced: 264 kB
Anonymous: 0 kB
AnonHugePages: 0 kB
Swap: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
VmFlags: rd ex mr mw me

Note that the Rss is 264 KiB but because it is shared between
many other processes, the Pss is only 6 KiB.

There is a tool named smem that collates the information from the smaps files and
presents it in various ways, including as pie or bar charts. The project page for smem
is https://www.selenic.com/smem. It is available as a package in most desktop
distributions. However, since it is written in Python, installing it on an embedded
target requires a Python environment, which may be too much trouble for just one
tool. To help with this, there is a small program named smemcap that captures the state
from /proc on the target and saves it to a TAR file which can be analyzed later on the
host computer. It is part of BusyBox, but it can also be compiled from the smem source.

Running smem natively, as root, you will see these results:

smem -t
 PID User Command Swap USS PSS RSS
 610 0 /sbin/agetty -s ttyO0 11 0 128 149 720
1236 0 /sbin/agetty -s ttyGS0 1 0 128 149 720
 609 0 /sbin/agetty tty1 38400 0 144 163 724
 578 0 /usr/sbin/acpid 0 140 173 680
 819 0 /usr/sbin/cron 0 188 201 704
 634 103 avahi-daemon: chroot hel 0 112 205 500

Managing Memory

[288]

 980 0 /usr/sbin/udhcpd -S /etc 0 196 205 568
 ...
 836 0 /usr/bin/X :0 -auth /var 0 7172 7746 9212
 583 0 /usr/bin/node autorun.js 0 8772 9043 10076
1089 1000 /usr/bin/python -O /usr/ 0 9600 11264 16388
--
 53 6 0 65820 78251 146544

You can see from the last line of the output that, in this case, the total Pss is about a
half of the Rss.

If you don't have or don't want to install Python on your target, you can capture the
state using smemcap, again as root:

smemcap > smem-bbb-cap.tar

Then, copy the TAR file to the host and read it using smem -S, though this time there
is no need to run as root:

$ smem -t -S smem-bbb-cap.tar

The output is identical to that when running it natively.

Other tools to consider
Another way to display Pss is via ps_mem (https://github.com/pixelb/ps_mem),
which prints much the same information but in a simpler format. It is also written
in Python.

Android also has a tool named procrank, which can be cross compiled for embedded
Linux with a few small changes. You can get the code from https://github.com/
csimmonds/procrank_linux.

Identifying memory leaks
A memory leak occurs when memory is allocated but not freed when it is no
longer needed. Memory leakage is by no means unique to embedded systems,
but it becomes an issue partly because targets don't have much memory in the
first place, and partly because they often run for long periods of time without
rebooting, allowing the leaks to become a large puddle.

You will realize that there is a leak when you run free or top and see that free
memory is continually going down, even if you drop caches, as shown in the
preceding section. You will be able to identify the culprit (or culprits) by looking
at the Uss and Rss per process.

Chapter 11

[289]

There are several tools for identifying memory leaks in a program. I will look at two:
mtrace and Valgrind.

mtrace
mtrace is a component of glibc that traces calls to malloc(3), free(3), and related
functions, and identifies areas of memory not freed when the program exits. You
need to call the mtrace() function from within the program to begin tracing and
then at runtime, write a path name to the MALLOC_TRACE environment variable in
which the trace information is written. If MALLOC_TRACE does not exist or of the file
cannot be opened, mtrace hooks are not not installed. While the trace information
is written in ASCII, it is usual to use the mtrace command to view it.

Here is an example:

#include <mcheck.h>
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 int j;
 mtrace();
 for (j = 0; j < 2; j++)
 malloc(100); /* Never freed:a memory leak */
 calloc(16, 16); /* Never freed:a memory leak */
 exit(EXIT_SUCCESS);
}

Here is what you might see when running the program and looking at the trace:

$ export MALLOC_TRACE=mtrace.log
$./mtrace-example
$ mtrace mtrace-example mtrace.log

Memory not freed:

 Address Size Caller
0x0000000001479460 0x64 at /home/chris/mtrace-example.c:11
0x00000000014794d0 0x64 at /home/chris/mtrace-example.c:11
0x0000000001479540 0x100 at /home/chris/mtrace-example.c:15

Unfortunately, mtrace does not tell you about leaked memory while the program
runs. It has to terminate first.

Managing Memory

[290]

Valgrind
Valgrind is a very powerful tool for discovering memory problems including leaks,
and other things besides. One advantage is that you don't have to recompile the
programs and libraries that you want to check, although it does work better if they
have been compiled with the -g option so that they include debug symbol tables. It
works by running the program in an emulated environment and trapping execution
at various points. This leads to the big downside of Valgrind, which is that the
program runs at a fraction of normal speed which makes it less useful for testing
anything with real-time constraints.

Incidentally, the name is often mispronounced: it says in the
Valgrind FAQ that the grind is pronounced with a short i -- as
in grinned (rhymes with tinned) rather than grined (rhymes with
find). The FAQ, documentation and downloads are available at
http://valgrind.org.

Valgrind contains several diagnostic tools:

• memcheck: This is the default tool, and detects memory leaks and general
misuse of memory

• cachegrind: This calculates the processor cache hit rate
• callgrind: This calculates the cost of each function call
• helgrind: This highlights misuse of the Pthread API, potential deadlocks,

and race conditions
• DRD: This is another Pthread analysis tool
• massif: This profiles usage of the heap and stack

You can select the tool you want with the -tool option. Valgrind runs on the
major embedded platforms: ARM (Cortex A), PPC, MIPS, and x86 in 32- and 64-bit
variants. It is available as a package in both the Yocto Project and Buildroot.

To find our memory leak, we need to use the default memcheck tool, with the option
--leakcheck=full to print out the lines where the leak was found:

$ valgrind --leak-check=full ./mtrace-example
==17235== Memcheck, a memory error detector
==17235== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward
 et al.
==17235== Using Valgrind-3.10.0.SVN and LibVEX; rerun with -h for
 copyright info
==17235== Command: ./mtrace-example
==17235==

Chapter 11

[291]

==17235==
==17235== HEAP SUMMARY:
==17235== in use at exit: 456 bytes in 3 blocks
==17235== total heap usage: 3 allocs, 0 frees, 456 bytes
 allocated
==17235==
==17235== 200 bytes in 2 blocks are definitely lost in loss record
 1 of 2
==17235== at 0x4C2AB80: malloc (in
 /usr/lib/valgrind/vgpreload_memcheck-linux.so)
==17235== by 0x4005FA: main (mtrace-example.c:12)
==17235==
==17235== 256 bytes in 1 blocks are definitely lost in loss record
 2 of 2
==17235== at 0x4C2CC70: calloc (in
 /usr/lib/valgrind/vgpreload_memcheck-linux.so)
==17235== by 0x400613: main (mtrace-example.c:14)
==17235==
==17235== LEAK SUMMARY:
==17235== definitely lost: 456 bytes in 3 blocks
==17235== indirectly lost: 0 bytes in 0 blocks
==17235== possibly lost: 0 bytes in 0 blocks
==17235== still reachable: 0 bytes in 0 blocks
==17235== suppressed: 0 bytes in 0 blocks
==17235==
==17235== For counts of detected and suppressed errors, rerun
 with: -v
==17235== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0
 from 0)

Running out of memory
The standard memory allocation policy is to over-commit, meaning that the kernel
will allow more memory to be allocated by applications than there is physical
memory. Most of the time, this works fine because it is common for applications to
request more memory than they really need. It also helps in the implementation of
fork(2): it is safe to make a copy of a large program because the pages of memory
are shared with the copy-on-write flag set. In the majority of cases, fork is followed
by an exec function call, which unshares the memory and then loads a new program.

However, there is always the possibility that a particular workload will cause a
group of processes to try to cash in on the allocations they have been promised
simultaneously and so demand more than there really is. This is an out of memory
situation, or OOM. At this point, there is no other alternative but to kill off processes
until the problem goes away. This is the job of the out of memory killer.

Managing Memory

[292]

Before we get to that, there is a tuning parameter for kernel allocations in
/proc/sys/vm/overcommit_memory, which you can set to:

• 0: heuristic over-commit (this is the default)
• 1: always over-commit, never check
• 2: always check, never over-commit

Option 1 is only really useful if you run programs that work with large sparse arrays
and so allocate large areas of memory but write to a small proportion of them. Such
programs are rare in the context of embedded systems.

Option 2, never over-commit, seems to be a good choice if you are worried about
running out of memory, perhaps in a mission or safety-critical application. It will
fail allocations that are greater than the commit limit, which is the size of swap space
plus total memory multiplied by the over-commit ratio. The over-commit ratio is
controlled by /proc/sys/vm/overcommit_ratio and has a default value of 50%.

As an example, suppose you have a device with 512 MB of system RAM and you set
a really conservative ratio of 25%:

echo 25 > /proc/sys/vm/overcommit_ratio
grep -e MemTotal -e CommitLimit /proc/meminfo
MemTotal: 509016 kB
CommitLimit: 127252 kB

There is no swap so the commit limit is 25% of MemTotal, as expected.

There is another important variable in /proc/meminfo: Committed_AS. This is
the total amount of memory that is needed to fulfill all the allocations made so far.
I found the following on one system:

grep -e MemTotal -e Committed_AS /proc/meminfo
MemTotal: 509016 kB
Committed_AS: 741364 kB

In other words, the kernel has already promised more memory than the available
memory. Consequently, setting overcommit_memory to 2 means that all allocations
fail, regardless of overcommit_ratio. To get to a working system, I would have to
either install double the amount of RAM or severely reduce the number of running
processes, of which there are about 40.

Chapter 11

[293]

In all cases, the final defense is the OOM killer. It uses a heuristic method to calculate
a badness score between 0 and 1,000 for each process and then terminates those with
the highest score until there is enough free memory. You should see something like
this in the kernel log:

[44510.490320] eatmem invoked oom-killer: gfp_mask=0x200da,
order=0, oom_score_adj=0
...

You can force an OOM event using echo f > /proc/sysrq-trigger.

You can influence the badness score for a process by writing an adjustment value to
/proc/<PID>/oom_score_adj. A value of -1000 means that the badness score can
never be greater than zero and so it will never be killed; a value of +1000 means that
it will always be greater than 1000 and so will always be killed.

Further reading
The following resources have further information about the topics introduced in
this chapter:

• Linux Kernel Development, 3rd Edition, by Robert Love, Addison Wesley,
O'Reilly Media; (Jun. 2010) ISBN-10: 0672329468

• Linux System Programming, 2nd Edition, by Robert Love, O'Reilly Media;
(8 Jun. 2013) ISBN-10: 1449339530

• Understanding the Linux VM Manager by Mel Gorman: https://www.kernel.
org/doc/gorman/pdf/understand.pdf

• Valgrind 3.3 - Advanced Debugging and Profiling for Gnu/Linux Applications by
J Seward, N. Nethercote, and J. Weidendorfer, Network Theory Ltd; (1 Mar. 2008)
ISBN 978-0954612054

Summary
Accounting for every byte of memory used in a virtual memory system is just not
possible. However, you can find a fairly accurate figure for the total amount of free
memory, excluding that taken by buffers and cache, by using the free command.
By monitoring it over a period of time and with different workloads, you should
become confident that it will remain within a given limit.

When you want to tune memory usage or identify sources of unexpected allocations,
there are resources that give more detailed information. For kernel space, the most
useful information is in /proc: meminfo, slabinfo, and vmallocinfo.

Managing Memory

[294]

When it comes to getting accurate measurements for user space, the best metric is
Pss, as shown by smem and other tools. For memory debugging, you can get help
from simple tracers such as mtrace, or you have the heavyweight option of the
Valgrind memcheck tool.

If you have concerns about the consequence of an out of memory situation, you
can fine-tune the allocation mechanism via /proc/sys/vm/overcommit_memory
and you can control the likelihood of particular processes being killed though the
oom_score_adj parameter.

The next chapter is all about debugging user space and kernel code using the GNU
debugger, and the insights you can gain from watching code as it runs, including the
memory management functions I have described here.

[295]

Debugging with GDB
Bugs happen. Identifying and fixing them is part of the development process.
There are many different techniques for finding and characterizing program defects,
including static and dynamic analysis, code review, tracing, profiling, and interactive
debugging. I will look at tracers and profilers in the next chapter, but here I want
to concentrate on the traditional approach of watching code execution through a
debugger, in our case, the GNU debugger, GDB. GDB is a powerful and flexible
tool. You can use it to debug applications, examine the postmortem files (core files)
that are created after a program crash, and even step through kernel code.

In this chapter, I will show you how to use GDB to debug applications, how to look
at core files and how to debug kernel code, in all cases, emphasizing the aspects that
are relevant for embedded Linux.

The GNU debugger
GDB is a source-level debugger for the compiled languages, primarily C and C++,
although there is also support for a variety of other languages such as Go and
Objective. You should read the notes for the version of GDB you are using to find
out the current status of support for the various languages. The project website
is http://www.gnu.org/software/gdb and contains a lot of useful information,
including the GDB manual.

Out of the box, GDB has a command-line user interface which some people
find off-putting although, in reality, it is easy to use with a little practice.
If command-line interfaces are not to your liking, there are a lot of front-end
user interfaces to GDB and I will describe three of them later.

Debugging with GDB

[296]

Preparing to debug
You need to compile the code you want to debug with debug symbols. GCC offers
two options for this: -g and -ggdb. The latter adds debug information that is specific
to GDB, whereas the former generates information in an appropriate format for
whichever target operating system you are using, making it the more portable option.
In our particular case, the target operating system is always Linux and it makes little
difference whether you use -g or -ggdb. Of more interest is the fact that both options
allow you to specify the level of debug information, from 0 to 3:

• 0: This produces no debug information at all and is equivalent to omitting
the -g or -ggdb switch

• 1: This produces little information but which includes function names and
external variables which is enough to generate a back trace

• 2: This is the default and includes information about local variables and
line numbers so that you can do source level debugging and a single step
through the code

• 3: This includes extra information which, among other things, means that
GDB handles macro expansions correctly

In most cases, -g suffices but reserve -g3 or -ggdb3 if you are having problems
stepping through code, especially if it contains macros.

The next issue to consider is the level of code optimization. Compiler optimization
tends to destroy the relationship between lines of source code and machine code,
which makes stepping through the source unpredictable. If you experience problems
like this you will most likely need to compile without optimization, leaving out the
-O compile switch, or at least reduce it to level 1, using the compile switch -O1.

A related issue is that of stack frame pointers, which are needed by GDB to generate
a back trace of function calls up to the current one. On some architectures, GCC will
not generate stack frame pointers with higher levels of optimization (-O2). If you find
yourself in the situation that you really have to compile with -O2 but still want back
traces, you can override the default behavior with -fno-omit-frame-pointer. Also
look out for code that has been hand optimized to leave out frame pointers through
the addition of -fomit-frame-pointer: you may want to temporarily remove them.

Chapter 12

[297]

Debugging applications using GDB
You can use GDB to debug applications in one of two ways. If you are developing code
to run on desktops and servers, or indeed any environment where you compile and
run the code on the same machine, it is natural to run GDB natively. However, most
embedded development is done using a cross toolchain and hence you want to debug
code running on the device, but control it from the cross-development environment
where you have the source code and the tools. I will focus on the latter case since it is
not so well documented and yet it is the most likely scenario for embedded developers.
I am not going to describe the basics of using GDB here since there are many good
references on that topic already, including the GDB manual and the suggested further
reading at the end of the chapter.

I will begin with some details on working with gdbserver and then show you how to
configure the Yocto Project and Buildroot for remote debug.

Remote debugging using gdbserver
The key component for remote debugging is the debug agent, gdbserver, which runs
on the target and controls execution of the program being debugged. Gdbserver
connects to a copy of GDB running on the host machine via a network connection
or an RS-232 serial interface.

Debugging through gdbserver is almost, but not quite, the same as debugging
natively. The differences are mostly centered around the fact that there are two
computers involved and they have to be in the right state for debugging to take
place. Here are some things to look out for:

• At the start of a debug session you need to load the program you want to
debug on the target using gdbserver and then separately load GDB from
your cross toolchain on the host.

• GDB and gdbserver need to connect to each other before a debug session
can begin.

• GDB, running onto the host, needs to be told where to look for debug symbols
and source code, especially for shared libraries.

• The GDB run command does not work as expected.
• gdbserver will terminate when the debug session ends and you will need to

restart it if you want another debug session.

Debugging with GDB

[298]

• You need debug symbols and source code for the binaries you want to
debug on the host, but not necessarily on the target. Often there is not
enough storage space for them on the target and they will need to be
stripped before deploying to the target.

• The GDB/gdbserver combination does not have all the features of GDB
running natively: for example, gdbserver cannot follow the child after
fork() whereas native GDB can.

• Odd things can happen if GDB and gdbserver are different versions or are
the same version but configured differently. Ideally they should be built
from the same source using your favorite build tool.

Debug symbols increase the size of executables dramatically, sometimes by a factor
of 10. As mentioned in Chapter 5, Building a Root Filesystem, it can be useful to remove
debug symbols without recompiling everything. The tool for the job is strip from
your cross toolchain. You can control the aggressiveness of the strip with these
switches:

• --strip-all: (default) removes all symbols
• --strip-unneeded: removes symbols not needed for relocation processing
• --strip-debug: removes only debug symbols

For applications and shared libraries, --strip-all (the default)
is fine, but when it comes to kernel modules you will find that it
will stop the module loading. Use --strip-unneeded instead.
I am still working on a use case for –strip-debug.

With that in mind, let's look at the specifics involved in debugging with the Yocto
Project and Buildroot.

Setting up the Yocto Project
The Yocto Project builds a cross GDB for the host as part of the SDK, but you
will have to make changes to your target configuration to include gdbserver in
the target image. You can add the package explicitly, for example by adding this
to conf/local.conf, noting once again that there must be a leading space at the
start of this string:

IMAGE_INSTALL_append = " gdbserver"

Or, you can add tools-debug to EXTRA_IMAGE_FEATURES, which will add both
gdbserver and strace to the target image (I will talk about strace in the next chapter):

EXTRA_IMAGE_FEATURES = "debug-tweaks tools-debug"

Chapter 12

[299]

Setting up Buildroot
With Buildroot, you need to enable options both to build the cross GDB for the host
(assuming that you are using the Buildroot internal toolchain) and to build gdbserver
for the target. Specifically you need to enable:

• BR2_PACKAGE_HOST_GDB, in the menu Toolchain | Build cross gdb for
the host

• BR2_PACKAGE_GDB, in the menu Target packages | Debugging, profiling
and benchmark | gdb

• BR2_PACKAGE_GDB_SERVER in the menu Target packages | Debugging,
profiling and benchmark | gdbserver

Starting to debug
Now that you have gdbserver installed on the target and a cross GDB on the host
you can start a debug session.

Connecting GDB and gdbserver
The connection between GDB and gdbserver can be through a network or a serial
interface. In the case of a network connection, you launch gdbserver with the TCP
port number to listen on and, optionally, an IP address to accept connections from.
In most cases you don't care which IP address is going to connect, so you can just
give the port number. In this example gdbserver waits for a connection on port
10000 from any host:

gdbserver :10000 ./hello-world

Process hello-world created; pid = 103

Listening on port 10000

Next, start the copy of GDB from your toolchain, giving the same program as an
argument so that GDB can load the symbol table:

$ arm-poky-linux-gnueabi-gdb hello-world

In GDB, you use the command target remote to make the connection, giving the
IP address or host name of the target and the port it is waiting on:

(gdb) target remote 192.168.1.101:10000

When gdbserver sees the connection from the host it prints the following:

Remote debugging from host 192.168.1.1

Debugging with GDB

[300]

The procedure is similar for a serial connection. On the target, you tell gdbserver
which serial port to use:

gdbserver /dev/ttyO0 ./hello-world

You may need to configure the port baud rate beforehand using stty or a similar
program. A simple example would be as follows:

stty -F /dev/ttyO1 115200

There are many other options to stty, please read the man page for more details.
It is worthwhile noting that the port must not be used for anything else, for example,
you can't use a port that is being used as the system console. On the host, you make
the connection to gdbserver using target remote plus the serial device at the host
end of the cable. In most cases you will want to set the baud rate of the host serial
port using the GDB command set remotebaud:

(gdb) set remotebaud 115200

(gdb) target remote /dev/ttyUSB0

Setting the sysroot
GDB needs to know where to find debug symbols and source code for shared
libraries. When debugging natively the paths are well known and built in to GDB,
but when using a cross toolchain, GDB has no way to guess where the root of the
target filesystem is. You do so by setting the sysroot. The Yocto Project and Buildroot
have different ways of handling library symbols so the location of the sysroot is quite
different.

The Yocto Project includes debug information in the target filesystem image,
so you need to unpack the target image tar file that is generated in build/tmp/
deploy/images, for which you would need to do something like this:

$ mkdir ~/rootfs

$ cd ~/rootfs

$ sudo tar xf ~/poky/build/tmp/deploy/images/beaglebone/core-image-
minimal-
beaglebone.tar.bz2Then you can point sysroot to the root of the unpacked
files:

(gdb) set sysroot /home/chris/MELP/rootfs

Buildroot compiles libraries with minimal or full debug symbols, depending on
BR2_ENABLE_DEBUG, puts them into the staging directory, then strips them as they
are copied into target image. So, for Buildroot, the sysroot is always the staging
area regardless of where the root filesystem is extracted.

Chapter 12

[301]

GDB command files
There are some things that you need to do each time you run GDB, for example, setting
the sysroot. It is convenient to put such commands into a command file and run them
each time GDB is started. GDB reads commands from $HOME/.gdbinit, then from
.gdbinit in the current directory and then from files specified on the command line
with the -x parameter. However, recent versions of GDB will refuse to load .gdbinit
from the current directory for security reasons. You can override that behavior for a
single directory by adding a line like this to your $HOME/.gdbinit:

add-auto-load-safe-path /home/chris/myprog/.gdbinit

You can also disable the check globally by adding:

set auto-load safe-path /

My personal preference is use the -x parameter to point to the command file, which
exposes the location of the file so I don't forget about it.

To help you set up GDB, Buildroot creates a GDB command file containing the
correct sysroot command in output/staging/usr/share/buildroot/gdbinit.
It will contain a command similar to this one:

set sysroot /home/chris/buildroot/output/host/usr/arm-buildroot-linux-
gnueabi/sysroot

Overview of GDB commands
GDB has a great many commands, which are described in the online manual and in the
resources mentioned in the Further Reading section. To help you get going as quickly as
possible, here is a list of the most commonly used commands. In most cases there is a
short-hand for the command, which is listed underneath the full command.

Breakpoints
The following table shows the commands for breakpoints:

Commands Use
break <location>

b <location>

Set a breakpoint on a function name, line number or line.
Examples are: "main", "5", and "sortbug.c:42"

info break

i b

List breakpoints

delete break <N>

d b <N>

Delete breakpoint N

Debugging with GDB

[302]

Running and stepping
The following table shows the commands for running and stepping:

Commands Use
run

r

Load a fresh copy of the program into memory and start it
running. This does not work for remote debug using gdbserver

continue

c
Continue execution from a breakpoint

Ctrl-C Stop the program being debugged
step

s

Step one line of code, stepping into any function that is called

next

n

Step one line of code, stepping over a function call

finish Run until the current function returns

Information commands
The following table shows the commands for getting information:

Commands Use

backtrace

bt

List the call stack

info threads Continue execution from a breakpoint
Info libs Stop the program
print <variable>

p <variable>

Print the value of a variable, e.g. print foo

list List lines of code around the current program
counter

Running to a breakpoint
Gdbserver loads the program into memory and sets a breakpoint at the first
instruction, then waits for a connection from GDB. When the connection is made
you enter into a debug session. However, you will find that if you try to single step
immediately you will get this message:

Cannot find bounds of current function

Chapter 12

[303]

This is because the program is halted in code written in assembly that creates the
run time environment for C and C++ programs. The first line of C or C++ code is
the main() function. Supposing that you want to stop at main(), you would set
a breakpoint there and then use the continue command (abbreviation c) to tell
gdbserver to continue from the breakpoint at the start of the program and stop
at main:

(gdb) break main

Breakpoint 1, main (argc=1, argv=0xbefffe24) at helloworld.c:8

8 printf("Hello, world!\n");

If at this point you see the following:

warning: Could not load shared library symbols for 2 libraries,
e.g. /lib/libc.so.6.

That means that you have forgotten the set sysroot!

This is all very different to starting a program natively, where you just type run.
In fact, if you try typing run in a remote debug session, you will either see a message
saying that the remote target does not support run, or in older versions of GDB it
will just hang without any explanation.

Debugging shared libraries
To debug the libraries that are built by the build tool you will have to make a few
changes to the build configuration. For libraries built outside the build environment
you will have to do some extra work.

The Yocto Project
The Yocto Project builds debug variants of binary packages and puts them into
build/tmp/deploy/<package manager>/<target architecture>. Here is an
example of the debug package, for the C library in this case:

build/tmp/deploy/rpm/armv5e/libc6-dbg-2.21-r0.armv5e.rpm

You can add these debug packages selectively to your target image by adding
<package name-dbg> to your target recipe. For glibc, the package is named
glibc-dbg. Alternatively, you can simply tell the Yocto Project to install all
debug packages by adding dbg-pkgs to EXTRA_IMAGE_FEATURES. Be warned
that this will increase the size of the target image dramatically, perhaps by
several hundred megabytes.

Debugging with GDB

[304]

The Yocto Project places the debug symbols in a hidden directory named .debug in
both the lib and usr/lib, directories. GDB knows to look for symbol information in
these locations within the sysroot.

The debug packages also contain a copy of the source code which is installed into
directory usr/src/debug/<package name> in the target image, which is one of
the reasons for the increase in size. You can prevent it from happening by adding
to your recipes:

PACKAGE_DEBUG_SPLIT_STYLE = "debug-without-src"

Remember, though, that when you are debugging remotely with gdbserver, you
only need the debug symbols and source code on the host, not on the target. There
is nothing to stop you from deleting the lib/.debug, usr/lib/.debug and usr/src
directories from the copy of the image that is installed on the target.

Buildroot
Buildroot is characteristically straightforward. You just need to rebuild with
line-level debug symbols, for which you need to enable the following:

• BR2_ENABLE_DEBUG in the menu Build options | build packages with
debugging symbols

This will create the libraries with debug symbols in output/host/usr/<arch>/
sysroot, but the copies in the target image are still stripped. If you need debug
symbols on the target, perhaps to run GDB natively, you can disable stripping by
setting Build options | strip command for binaries on target to none.

Other libraries
In addition to building with debug symbols you will have to tell GDB where to find
the source code. GDB has a search path for source files, which you can see using the
command show directories:

(gdb) show directories

Source directories searched: $cdir:$cwd

These are the default search paths: $cdir is the compile directory, which is the
directory where the source was compiled; $cwd is the current working directory
of GDB.

Chapter 12

[305]

Normally these are sufficient, but if the source code has been moved you will have
to use the directory command as shown here:

(gdb) dir /home/chris/MELP/src/lib_mylib

Source directories searched:
/home/chris/MELP/src/lib_mylib:$cdir:$cwd

Just-in-time debugging
Sometimes a program will start to misbehave after it has been running for a while
and you would like to know what it is doing. The GDB attach feature does exactly
that. I call it just-in-time debugging. It is available with both native and remote
debug sessions.

In the case of remote debugging, you need to find the PID of the process to
be debugged and pass it to gdbserver with the --attach option. For example,
if the PID is 109 you would type:

gdbserver --attach :10000 109

Attached; pid = 109

Listening on port 10000

That forces the process to stop as if it were at a breakpoint, allowing you to start
your cross GDB in the normal way and connect to gdbserver.

When you are done you can detach, allowing the program to continue running
without the debugger:

(gdb) detach

Detaching from program: /home/chris/MELP/helloworld/helloworld,
process 109

Ending remote debugging.

Debugging forks and threads
What happens when the program you are debugging forks? Does the debug session
follow the parent or the child? The behavior is controlled by follow-fork-mode
which may be parent or child, with parent being the default. Unfortunately,
current versions of gdbserver do not support this option, so it only works for native
debugging. If you really need to debug the child process while using gdbserver, a
workaround is to modify the code so that the child loops on a variable immediately
after the fork, giving you the opportunity to attach a new gdbserver session to it and
then to set the variable so that it drops out of the loop.

Debugging with GDB

[306]

When a thread in a multithreaded process hits a breakpoint, the default behavior
is for all threads to halt. In most cases this is the best thing to do as it allows you to
look at static variables without them being changed by the other threads. When you
recommence execution of the thread, all the stopped threads start up, even if you are
single stepping, and it is especially this last case that can cause problems. There is a
way to modify the way GDB handles stopped threads, through a parameter called
scheduler-locking. Normally it is off, but if you set it to on, only the thread that
was stopped at the breakpoint is resumed and the others remain stopped, giving you
a chance to see what the thread alone does without interference. This continues to be
the case until you turn scheduler-locking off. Gdbserver supports this feature.

Core files
Core files capture the state of a failing program at the point that it terminates.
You don't even have to be in the room with a debugger when the bug manifests
itself. So when you see Segmentation fault (core dumped), don't shrug;
investigate the core file and extract the goldmine of information in there.

The first observation is that core files are not created by default, but only when
the core file resource limit for the process is non-zero. You can change it for the
current shell using ulimit -c. To remove all limits on the size of core files,
type the following:

$ ulimit -c unlimited

By default, the core file is named core and is placed in the current working directory
of the process, which is the one pointed to by /proc/<PID>/cwd. There are a number
of problems with this scheme. Firstly, when looking at a device with several files
named core it is not obvious which program generated each one. Secondly, the
current working directory of the process may well be in a read-only filesystem, or
there may not be enough space to store the core file, or the process may not have
permissions to write to the current working directory.

There are two files that control the naming and placement of core files. The first is
/proc/sys/kernel/core_uses_pid. Writing a 1 to it causes the PID number of the
dying process to be appended to the filename, which is somewhat useful as long as
you can associate the PID number with a program name from log files.

Much more useful is /proc/sys/kernel/core_pattern, which gives you a lot more
control over core files. The default pattern is core but you can change it to a pattern
composed of these meta characters:

• %p: the PID
• %u: the real UID of the dumped process

Chapter 12

[307]

• %g: the real GID of the dumped process
• %s: number of the signal causing the dump
• %t: the time of dump, expressed as seconds since the Epoch, 1970-01-01

00:00:00 +0000 (UTC)
• %h: the hostname
• %e: the executable filename
• %E: the pathname of the executable, with slashes (/) replaced by exclamation

marks (!)
• %c: the core file size soft resource limit of the dumped process

You can also use a pattern that begins with an absolute directory name so that all
core files are gathered together in one place. As an example, the following pattern
puts all core files into the /corefiles directory and names them with the program
name and the time of the crash:

echo /corefiles/core.%e.%t > /proc/sys/kernel/core_pattern

Following a core dump, you would find something like this:

$ ls /corefiles/

core.sort-debug.1431425613

For more information, refer to the man page core(5).

For more sophisticated processing of core files you can pipe them to a program that
does some post processing. The core pattern begins with a pipe symbol | followed
by the program name and parameters. My Ubuntu 14.04, for example, has this core
pattern:

|/usr/share/apport/apport %p %s %c %P

Apport is the crash reporting tool used by Canonical. A crash reporting tool run
in this way is run while the process is still in memory, and the kernel passes the
core image data to it on standard input. Thus, this program can process the image,
possibly stripping parts of it to reduce the size in the filesystem, or just scanning it at
the time of the core dump for specific information. The program can look at various
pieces of system data, for example, reading the /proc filesystem entries for the
program, and can use ptrace system calls to operate on the program and read data
from it. However, once the core image data is read from standard in, the kernel does
various cleanups that make information about the process no longer available.

Debugging with GDB

[308]

Using GDB to look at core files
Here is a sample GDB session looking at a core file:

$ arm-poky-linux-gnueabi-gdb sort-debug
/home/chris/MELP/rootdirs/rootfs/corefiles/core.sort-debug.1431425613

[...]

Core was generated by `./sort-debug'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x000085c8 in addtree (p=0x0, w=0xbeac4c60 "the") at sort-
debug.c:41

41 p->word = strdup (w);

That shows that the program stopped at line 43. The list command shows the code
in the immediate vicinity:

(gdb) list

37 static struct tnode *addtree (struct tnode *p, char *w)

38 {

39 int cond;

40

41 p->word = strdup (w);

42 p->count = 1;

43 p->left = NULL;

44 p->right = NULL;

45

The backtrace command (shortened to bt) shows how we got to this point:

(gdb) bt

#0 0x000085c8 in addtree (p=0x0, w=0xbeac4c60 "the") at sort-
debug.c:41

#1 0x00008798 in main (argc=1, argv=0xbeac4e24) at sort-debug.c:89

An obvious mistake: addtree() was called with a null pointer.

GDB user interfaces
GDB is controlled at a low level through the GDB machine interface, GDB/MI,
which is used to wrap GDB in a user interface or as part of a larger program and
considerably extends the range of options available to you.

I have only mentioned those which have features that are useful in embedded
development.

Chapter 12

[309]

Terminal user interface
Terminal user interface (TUI), is an optional part of the standard GDB package.
The main feature is a code window which shows the line of code about to be
executed, together with any breakpoints. It is a definite improvement on the
list command in command-line mode GDB.

The attraction of TUI is that it just works and doesn't need any extra set-up and, since
it is in text mode, it is possible to use over an ssh terminal session when running gdb
natively on a target. Most cross toolchains configure GDB with TUI. Simply add -tui
to the command line and you will see the following:

Debugging with GDB

[310]

Data display debugger
Data display debugger (DDD), is a simple standalone program that gives you a
graphical user interface to GDB with minimal fuss and bother and, although the
UI controls look dated, it does everything that is necessary.

The --debugger option tells DDD to use GDB from your toolchain and you can
use the -x argument for GDB command files:

$ ddd --debugger arm-poky-linux-gnueabi-gdb -x gdbinit sort-debug

The following screenshot shows off one of the nicest features: the data window which
contains items in a grid that you can rearrange as you wish. If you double-click on a
pointer, it is expanded into a new data item and the link is shown with an arrow:

Chapter 12

[311]

Eclipse
Eclipse, with the C development toolkit (CDT) plug-in, supports debugging with
GDB, including remote debugging. If you use Eclipse for all your code development,
this is the obvious tool to use but, if you are not a regular Eclipse user it is probably not
worth the effort of setting it up just for this task. It would take me a whole chapter to
explain adequately how to configure CDT to work with a cross toolchain and connect
to a remote device, so I will refer you to the references at the end of the chapter for
more information. The screenshot that follows shows the debug perspective of CDT. In
the the top right window you see the stack frames for each of the threads in the process,
and at the top right is the watch window showing variables. In the middle is the code
window, showing the line of code where the debugger has stopped the program.

Debugging kernel code
Debugging application code helps you gain insight into the way code works and
what is happening when it misbehaves and you can do the same with the kernel,
with some limitations.

You can use kgdb for source level debugging, in a manner similar to remote
debugging with gdbserver. There is also a self-hosted kernel debugger, kdb, that
is handy for lighter weight tasks such as seeing if an instruction is executed and
getting the backtrace to find out how it got there. Finally, there are kernel oops
messages and panics, which tell you a lot about the cause of a kernel exception.

Debugging with GDB

[312]

Debugging kernel code with kgdb
When looking at kernel code using a source debugger, you must remember that
the kernel is a complex system, with real-time behaviors. Don't expect debugging
to be as easy as it is for applications. Stepping through code that changes the
memory mapping or switches context is likely to produce odd results.

kgdb is the name given to the kernel GDB stubs that have been part of mainline
Linux for many years now. There is a user manual in the kernel DocBook and you
can find an online version at https://www.kernel.org/doc/htmldocs/kgdb/
index.html.

The widely supported way to connect to kgdb is over the serial interface, which
is usually shared with the serial console, and so this implementation is called
kgdboc, meaning kgdb over console. To work, it requires a platform tty driver that
supports I/O polling instead of interrupts, since kgdb has to disable interrupts when
communicating with GDB. A few platforms support kgdb over USB and there have
been versions that work over Ethernet but, unfortunately, none of those have found
their way into mainline Linux.

The same caveats about optimization and stack frames apply to the kernel, with the
limitation that the kernel is written to assume an optimization level of at least -O1.
You can override the kernel compile flags by setting KCGLAGS before running make.

These, then, are the kernel configuration options you will need for kernel debugging:

• CONFIG_DEBUG_INFO is in the Kernel hacking | Compile-time checks and
compiler options | Compile the kernel with debug info menu

• CONFIG_FRAME_POINTER may be an option for your architecture, and is in the
Kernel hacking | Compile-time checks and compiler options | Compile
the kernel with frame pointers menu

• CONFIG_KGDB is in the Kernel hacking | KGDB: kernel debugger menu
• CONFIG_KGDB_SERIAL_CONSOLE is in the Kernel hacking | KGDB: kernel

debugger | KGDB: use kgdb over the serial console menu

In addition to the uImage or zImage compressed kernel image, you will need the
kernel image in ELF object format so that GDB can load the symbols into memory.
That is the file called vmlinux that is generated in the directory where Linux is built. In
the Yocto Project, you can request that a copy be included in the target image, which
is convenient for this and other debug tasks. It is built into a package named kernel-
vmlinux, which you can install like any other, for example by adding it to the IMAGE_
INSTALL_append list. The file is put into the boot directory, with a name like this:

boot/vmlinux-3.14.26ltsi-yocto-standard

Chapter 12

[313]

In Buildroot, you will find vmlinux in the directory where the kernel was built,
which is in output/build/linux-<version string>/vmlinux.

A sample debug session
The best way to show you how it works is with a simple example.

You need to tell kgdb which serial port to use, either through the kernel command
line or at runtime via sysfs. For the first option, add kgdboc=<tty>,<baud rate>
to the command line, as shown:

kgdboc=ttyO0,115200

For the second option, boot the device up and write the terminal name to the
/sys/module/kgdboc/parameters/kgdboc file, as shown:

echo ttyO0 > /sys/module/kgdboc/parameters/kgdboc

Note that you cannot set the baud rate in this way. If it is the same tty as the console
then it is set already, if not use stty or a similar program.

Now you can start GDB on the host, selecting the vmlinux file that matches the
running kernel:

$ arm-poky-linux-gnueabi-gdb ~/linux/vmlinux

GDB loads the symbol table from vmlinux and waits for further input.

Next, close any terminal emulator that is attached to the console: you are about to
use it for GDB and, if both are active at the same time, some of the debug strings
might get corrupted.

Now, you can return to GDB and attempt to connect to kgdb. However, you will
find that the response you get from target remote at this time is unhelpful:

(gdb) set remotebaud 115200

(gdb) target remote /dev/ttyUSB0

Remote debugging using /dev/ttyUSB0

Bogus trace status reply from target: qTStatus

The problem is that kgdb is not listening for a connection at this point. You need
to interrupt the kernel before you can enter into an interactive GDB session with it.
Unfortunately, just typing Ctrl + C in GDB, as you would with an application, does not
work. You have to force a trap into the kernel by launching another shell on the target,
via ssh, for example, and writing a g to /proc/sysrq-trigger on the target board:

echo g > /proc/sysrq-trigger

Debugging with GDB

[314]

The target stops dead at this point. Now you can connect to kgdb via the serial device
at the host end of the cable:

(gdb) set remotebaud 115200

(gdb) target remote /dev/ttyUSB0

Remote debugging using /dev/ttyUSB0

0xc009a59c in arch_kgdb_breakpoint ()

At last, GDB is in charge. You can set breakpoints, examine variables, look at
backtraces, and so on. As an example, set a break on sys_sync, as follows:

(gdb) break sys_sync

Breakpoint 1 at 0xc0128a88: file fs/sync.c, line 103.

(gdb) c

Continuing.

Now the target comes back to life. Typing sync on the target calls sys_sync and hits
the breakpoint.

[New Thread 87]

[Switching to Thread 87]

Breakpoint 1, sys_sync () at fs/sync.c:103

If you have finished the debug session and want to disable kgdboc, just set the
kgdboc terminal to null:

echo "" > /sys/module/kgdboc/parameters/kgdboc

Debugging early code
The preceding example works in cases where the code you are interested in is
executed when the system is fully booted. If you need to get in early, you can tell
the kernel to wait during boot by adding kgdbwait to the command line, after the
kgdboc option:

kgdboc=ttyO0,115200 kgdbwait

Now, when you boot, you will see this on the console:

 1.103415] console [ttyO0] enabled
[1.108216] kgdb: Registered I/O driver kgdboc.
[1.113071] kgdb: Waiting for connection from remote gdb...

At this point, you can close the console and connect from GDB in the usual way.

Chapter 12

[315]

Debugging modules
Debugging kernel modules presents an additional challenge because the code is
relocated at runtime and so you need to find out at what address it resides. The
information is presented via sysfs. The relocation addresses for each section of the
module are stored in /sys/module/<module name>/sections. Note that, since ELF
sections begin with a dot, '.', they appear as hidden files and you will have to use ls
-a if you want to list them. The important ones are .text, .data, and .bss.

Take as an example a module named mbx:

cat /sys/module/mbx/sections/.text

0xbf000000

cat /sys/module/mbx/sections/.data

0xbf0003e8

cat /sys/module/mbx/sections/.bss

0xbf0005c0

Now you can use these numbers in GDB to load the symbol table for the module at
those addresses:

(gdb) add-symbol-file /home/chris/mbx-driver/mbx.ko 0xbf000000 \
-s .data 0xbf0003e8 -s .bss 0xbf0005c0
add symbol table from file "/home/chris/mbx-driver/mbx.ko" at
 .text_addr = 0xbf000000
 .data_addr = 0xbf0003e8
 .bss_addr = 0xbf0005c0

Everything should now work as normal: you can set breakpoints and inspect global
and local variables in the module just as you can in vmlinux:

(gdb) break mbx_write

Breakpoint 1 at 0xbf00009c: file /home/chris/mbx-driver/mbx.c,
line 93.

(gdb) c

Continuing.

Then, force the device driver to call mbx_write and it will hit the breakpoint:

Breakpoint 1, mbx_write (file=0xde7a71c0, buffer=0xadf40 "hello\n\n",
 length=6, offset=0xde73df80)
 at /home/chris/mbx-driver/mbx.c:93

Debugging with GDB

[316]

Debugging kernel code with kdb
Although kdb does not have the features of kgdb and GDB, it does have its uses
and, being self-hosted, there are no external dependencies to worry about. kdb has a
simple command-line interface which you can use on a serial console. You can use it
to inspect memory, registers, process lists, dmesg, and even set breakpoints to stop in
a certain location.

To configure kgd for access via a serial console, enable kgdb as shown previously and
then enable this additional option:

• CONFIG_KGDB_KDB, which is in the KGDB: Kernel hacking | kernel
debugger | KGDB_KDB: include kdb frontend for kgdb menu

Now, when you force the kernel to a trap, instead of entering into a GDB session,
you will see the kdb shell on the console:

echo g > /proc/sysrq-trigger
[42.971126] SysRq : DEBUG

Entering kdb (current=0xdf36c080, pid 83) due to Keyboard Entry
kdb>

There are quite a few things you can do in the kdb shell. The help command will print
all of the options. Here is an overview.

Getting information:

• ps: displays active processes
• ps A: displays all processes
• lsmod: lists modules
• dmesg: displays the kernel log buffer

Breakpoints:

• bp: sets a breakpoint
• bl: lists breakpoints
• bc: clears a breakpoint
• bt: prints a backtrace
• go: continues execution

Inspect memory and registers:

• md: displays memory
• rd: displays registers

Chapter 12

[317]

Here is a quick example of setting a break point:

kdb> bp sys_sync

Instruction(i) BP #0 at 0xc01304ec (sys_sync)

 is enabled addr at 00000000c01304ec, hardtype=0 installed=0

kdb> go

The kernel returns to life and the console shows the normal bash prompt. If you type
sync, it hits the breakpoint and enters kdb again:

Entering kdb (current=0xdf388a80, pid 88) due to Breakpoint @
0xc01304ec

kdb is not a source debugger so you can't see the source code, or single step.
However, you can display a backtrace using the bt command, which is useful
to get an idea of program flow and call hierarchy.

When the kernel performs an invalid memory access or executes an illegal instruction,
a kernel oops message is written to the kernel log. The most useful part of this is the
backtrace, and I want to show you how to use the information there to locate the line of
code that caused the fault. I will also address the problem of preserving oops messages
if they cause the system to crash.

Looking at an oops
An oops message looks like this:

[56.225868] Unable to handle kernel NULL pointer dereference at
virtual address 00000400[56.229038] pgd = cb624000[56.229454]
[00000400] *pgd=6b715831, *pte=00000000, *ppte=00000000[56.231768]
Internal error: Oops: 817 [#1] SMP ARM[56.232443] Modules linked
in: mbx(O)[56.233556] CPU: 0 PID: 98 Comm: sh Tainted: G O 4.1.10
#1[56.234234] Hardware name: ARM-Versatile Express[56.234810]
task: cb709c80 ti: cb71a000 task.ti: cb71a000[56.236801] PC is at
mbx_write+0x14/0x98 [mbx][56.237303] LR is at __vfs_write+0x20/0xd8[
56.237559] pc : [<bf0000a0>] lr : [<c0307154>] psr: 800f0013[
56.237559] sp : cb71bef8 ip : bf00008c fp : 00000000[56.238183] r10:
00000000 r9 : cb71a000 r8 : c02107c4[56.238485] r7 : cb71bf88 r6 :
000afb98 r5 : 00000006 r4 : 00000000[56.238857] r3 : cb71bf88 r2 :
00000006 r1 : 000afb98 r0 : cb61d600

[56.239276] Flags: Nzcv IRQs on FIQs on Mode SVC_32 ISA ARM
Segment user[56.239685] Control: 10c5387d Table: 6b624059 DAC:
00000015[56.240019] Process sh (pid: 98, stack limit = 0xcb71a220)

Debugging with GDB

[318]

PC is at mbx_write+0x14/0x98 [mbx] tells you most of what you want to know:
the last instruction was in the mbx_write function in a kernel module named mbx.
Furthermore, it was at offset 0x14 bytes from the start of the function, which is 0x98
bytes long.

Next, take a look at the backtrace:

[56.240363] Stack: (0xcb71bef8 to 0xcb71c000)[56.240745] bee0:
cb71bf88 cb61d600[56.241331] bf00: 00000006 c0307154 00000000 c020a308
cb619d88
00000301 00000000 00000042[56.241775] bf20: 00000000 cb61d608 cb709c80
cb709c78 cb71bf60
c0250a54 00000000 cb709ee0[56.242190] bf40: 00000003 bef4f658 00000000
cb61d600 cb61d600
00000006 000afb98 cb71bf88[56.242605] bf60: c02107c4 c030794c 00000000
00000000 cb61d600
cb61d600 00000006 000afb98[56.243025] bf80: c02107c4 c0308174 00000000
00000000 00000000
000ada10 00000001 000afb98[56.243493] bfa0: 00000004 c0210640 000ada10
00000001 00000001
000afb98 00000006 00000000[56.243952] bfc0: 000ada10 00000001 000afb98
00000004 00000001
00000020 000ae274 00000000[56.244420] bfe0: 00000000 bef4f49c 0000fcdc
b6f1aedc 600f0010
00000001 00000000 00000000[56.245653] [<bf0000a0>] (mbx_write [mbx])
from [<c0307154>]
(__vfs_write+0x20/0xd8)[56.246368] [<c0307154>]
(__vfs_write) from [<c030794c>]
(vfs_write+0x90/0x164)[56.246843] [<c030794c>] (vfs_write) from
[<c0308174>]
(SyS_write+0x44/0x9c)[56.247265] [<c0308174>] (SyS_write) from
[<c0210640>]
(ret_fast_syscall+0x0/0x3c)[56.247737] Code: e5904090 e3520b01
23a02b01 e1a05002 (e5842400)[56.248372] ---[end trace
999c378e4df13d74]---

In this case, we don't learn much more, merely that mbx_write is called from the
virtual filesystem code.

It would be very nice to find the line of code that relates to mbx_write+0x14,
for which we can use objdump. We can see from objdump -S that mbx_write is at
offset 0x8c in mbx.ko, so that last instruction executed is at 0x8c + 0x14 = 0xa0.
Now, we just need to look at that offset and see what is there:

Chapter 12

[319]

$ arm-poky-linux-gnueabi-objdump -S mbx.kostatic ssize_t mbx_write(struct
file *file,const char *buffer, size_t length, loff_t * offset){ 8c:
e92d4038 push {r3, r4, r5, lr} struct mbx_data *m = (struct
mbx_data *)file->private_data; 90: e5904090 ldr r4, [r0,
#144] ; 0x90 94: e3520b01 cmp r2, #1024 ; 0x400 98:
23a02b01 movcs r2, #1024 ; 0x400 if (length > MBX_LEN)
length = MBX_LEN; m->mbx_len = length; 9c: e1a05002 mov
r5, r2 a0: e5842400 str r2, [r4, #1024] ; 0x400

This shows the instruction where it stopped. The last line of code is shown here:

m->mbx_len = length;

You can see that m has the type struct mbx_data *. Here is the place where that
structure is defined:

#define MBX_LEN 1024 struct mbx_data { char mbx[MBX_LEN]; int mbx_
len;};

So, it looks like the m variable is a null pointer, and that is causing the oops.

Preserving the oops
Decoding an oops is only possible if you can capture it in the first place. If the system
crashes during boot before the console is enabled, or after a suspend, you won't see
it. There are mechanisms to log kernel oops and messages to an MTD partition or
to persistent memory, but here is a simple technique that works in many cases and
needs little prior thought.

So long as the contents of memory are not corrupted during a reset (and usually they
are not), you can reboot into the bootloader and use it to display memory. You need
to know the location of the kernel log buffer, remembering that it is a simple ring
buffer of text messages. The symbol is __log_buf. Look this up in System.map for
the kernel:

$ grep __log_buf System.mapc0f72428 b __log_buf

Then, map that kernel logical address into a physical address that U-Boot can
understand by subtracting PAGE_OFFSET, 0xc0000000, and adding the physical start
of RAM, 0x80000000 on a BeagleBone, so c0f72428 – 0xc0000000 + 0x80000000
= 80f72428.

Debugging with GDB

[320]

Then use the U-Boot md command to show the log:

U-Boot# md 80f7242880f72428: 00000000 00000000 00210034
c6000000 4.!.....80f72438: 746f6f42 20676e69 756e694c
6e6f2078 Booting Linux on80f72448: 79687020 61636973 5043206c
78302055 physical CPU 0x80f72458: 00000030 00000000 00000000 00730084
0.............s.80f72468: a6000000 756e694c 65762078 6f697372
Linux versio80f72478: 2e34206e 30312e31 68632820 40736972 n 4.1.10
(chris@80f72488: 6c697562 29726564 63672820 65762063 builder)
(gcc ve80f72498: 6f697372 2e34206e 20312e39 6f726328 rsion 4.9.1
(cro80f724a8: 6f747373 4e2d6c6f 2e312047 302e3032 sstool-NG
1.20.080f724b8: 20292029 53203123 5720504d 4f206465)) #1 SMP Wed
O80f724c8: 32207463 37312038 3a31353a 47203335 ct 28 17:51:53 G

From Linux 3.5 onwards, there is a 16-byte binary header for
each line in the kernel log buffer which encodes a timestamp,
a log level and other things. There is a discussion about it in
the Linux Weekly News titled Toward more reliable logging at
https://lwn.net/Articles/492125/.

Additional reading
The following resources have further information about the topics introduced in
this chapter:

• The Art of Debugging with GDB, DDD, and Eclipse, by Norman Matloff and Peter
Jay Salzman, No Starch Press; 1 edition (28 Sept. 2008), ISBN 978-1593271749

• GDB Pocket Reference by Arnold Robbins, O'Reilly Media; 1st edition (12 May
2005), ISBN 978-0596100278

• Getting to grips with Eclipse: cross compiling, http://2net.co.uk/tutorial/
eclipse-cross-compile

• Getting to grips with Eclipse: remote access and debugging, http://2net.co.uk/
tutorial/eclipse-rse

Chapter 12

[321]

Summary
GDB for interactive debugging is a useful tool in the embedded developer's tool
chest. It is a stable, well-documented and well-known entity. It has the ability to
debug remotely by placing an agent on the target, be it gdbserver for applications
or kgdb for kernel code and, although the default command-line user interface takes
a while to get used to, there are many alternative front-ends. The three I mentioned
were TUI, DDD, and Eclipse, which should cover most situations, but there are other
front-ends around that you can try.

A second and equally important way to approach debugging is to collect crash
reports and analyze them offline. In this category, I have looked at application core
dumps and kernel oops messages.

However, this is only one way of identifying flaws in programs. In the next chapter,
I will talk about profiling and tracing as ways of analyzing and optimizing programs.

[323]

Profiling and Tracing
Interactive debugging using a source level debugger, as described in the previous
chapter, can give you an insight into the way a program works, but it constrains your
view to a small body of code. In this chapter, I will look at the larger picture to see if
the system is performing as intended.

Programmers and system designers are notoriously bad at guessing where
bottlenecks are. So, if your system has performance issues, it is wise to start by
looking at the full system and then work down, using more sophisticated tools.
In this chapter I begin with the well-known command, top, as a means of getting
an overview. Often the problem can be localized to a single program, which you
can analyze using the Linux profiler, perf. If the problem is not so localized and
you want to get a broader picture, perf can do that as well. To diagnose problems
associated with the kernel, I will describe the trace tools, Ftrace and LTTng, as a
means of gathering detailed information.

I will also cover Valgrind which, because of its sandboxed execution environment,
can monitor a program and report on code as it runs. I will complete the chapter
with a description of a simple trace tool, strace, which reveals the execution of a
program by tracing the system calls it makes.

The observer effect
Before diving into the tools, let's talk about what the tools will show you. As is
the case in many fields, measuring a certain property affects the observation itself.
Measuring the electric current in a line requires measuring the voltage drop over
a small resistor. However, the resistor itself affects the current. The same is true
for profiling: every system observation has a cost in CPU cycles and that resource
is no longer spent on the application. Measurement tools also mess up caching
behavior, eat memory space, and write to disk, which all make it worse. There is
no measurement without overhead.

Profiling and Tracing

[324]

I've often heard engineers say that the results of a profiling job were totally
misleading. That is usually because they were performing the measurements on
something approaching a real situation. Always try to measure on the target, using
release builds of the software, with a valid data set, using as few extra services
as possible.

Symbol tables and compile flags
We will hit a problem immediately. While it is important to observe the system in its
natural state, the tools often need additional information to make sense of the events.

Some tools require special kernel options, specifically from those listed in the
introduction, perf, Ftrace, and LTTng. Therefore, you will probably have to build
and deploy a new kernel for these tests.

Debug symbols are very helpful in translating raw program addresses into function
names and lines of code. Deploying executables with debug symbols does not
change the execution of the code but it does require that you have copies of the
binaries and the kernel compiled with debug, at least for the components you want
to profile. Some tools work best if you have these installed on the target system,
perf, for example. The techniques are the same as for general debugging, as I
discussed in Chapter 12, Debugging with GDB.

If you want a tool to generate call graphs, you may have to compile with stack
frames enabled. If you want the tool to attribute addresses with lines of code
accurately, you may need to compile with lower levels of optimization.

Finally, some tools require instrumentation to be inserted into the program to
capture samples, so you will have to recompile those components. This applies to
gprof for applications, and Ftrace and LTTng for the kernel.

Be aware that, the more you change the system you are observing, the harder it is to
relate the measurements you make to the production system.

It is best to adopt a wait-and-see approach, making changes only
when the need is clear, and being mindful that each time you do
so, you will change what you are measuring.

Chapter 13

[325]

Beginning to profile
When looking at the entire system, a good place to start is with a simple tool like top,
which gives you an overview very quickly. It shows you how much memory is being
used, which processes are eating CPU cycles, and how this is spread across different
cores and time.

If top shows that a single application is using up all the CPU cycles in user space
then you can profile that application using perf.

If two or more processes have a high CPU usage, there is probably something that
is coupling them together, perhaps data communication. If a lot of cycles are spent
in system calls or handling interrupts, then there may be an issue with the kernel
configuration or with a device driver. In either case you need to start by taking a
profile of the whole system, again using perf.

If you want to find out more about the kernel and the sequencing of events there,
you would use Ftrace or LTTng.

There could be other problems that top will not help you with. If you have multi-
threaded code and there are problems with lockups, or if you have random data
corruption then Valgrind plus the Helgrind plug-in might be helpful. Memory
leaks also fit into this category: I covered memory-related diagnosis in Chapter 11,
Managing Memory.

Profiling with top
top is a simple tool that doesn't require any special kernel options or symbol tables.
There is a basic version in BusyBox, and a more functional version in the procps
package which is available in the Yocto Project and Buildroot. You may also want to
consider using htop which is functionally similar to top but has a nicer user interface
(some people think).

To begin with, focus on the summary line of top, which is the second line if you are
using BusyBox and the third line if using procps top. Here is an example, using
BusyBox top:

Mem: 57044K used, 446172K free, 40K shrd, 3352K buff, 34452K cached

CPU: 58% usr 4% sys 0% nic 0% idle 37% io 0% irq 0% sirq

Load average: 0.24 0.06 0.02 2/51 105

 PID PPID USER STAT VSZ %VSZ %CPU COMMAND

 105 104 root R 27912 6% 61% ffmpeg -i track2.wav

 [...]

Profiling and Tracing

[326]

The summary line shows the percentage of time spent running in various states, as
shown in this table:

procps Busybox

us usr User space programs with default nice value

sy sys Kernel code

ni nic User space programs with non-default nice value

id idle Idle

wa io I/O wait

hi irq Hardware interrupts

si sirq Software interrupts

st -- Steal time: only relevant in virtualized environments

In the preceding example, almost all of the time (58%) is spent in user mode, with
a small amount (4%) in system mode, so this is a system that is CPU-bound in user
space. The first line after the summary shows that just one application is responsible:
ffmpeg. Any efforts towards reducing CPU usage should be directed there.

Here is another example:

Mem: 13128K used, 490088K free, 40K shrd, 0K buff, 2788K cached

CPU: 0% usr 99% sys 0% nic 0% idle 0% io 0% irq 0% sirq

Load average: 0.41 0.11 0.04 2/46 97

 PID PPID USER STAT VSZ %VSZ %CPU COMMAND

 92 82 root R 2152 0% 100% cat /dev/urandom

 [...]

This system is spending almost all of the time in kernel space, as a result of cat
reading from /dev/urandom. In this artificial, case, profiling cat by itself would not
help, but profiling the kernel functions that cat calls might be.

The default view of top shows only processes, so the CPU usage is the total of all
the threads in the process. Press H to see information for each thread. Likewise, it
aggregates the time across all CPUs. If you are using procps top, you can see a
summary per CPU by pressing the 1 key.

Imagine that there is a single user space process taking up most of the time and look
at how to profile that.

Chapter 13

[327]

Poor man's profiler
You can profile an application just by using GDB to stop it at arbitrary intervals and
see what it is doing. This is the poor man's profiler. It is easy to set up and it is one way
of gathering profile data.

The procedure is simple and explained here:

1. Attach to the process using gdbserver (for a remote debug) or gbd (for a
native debug). The process stops.

2. Observe the function it stopped in. You can use the backtrace GDB
command to see the call stack.

3. Type continue so that the program resumes.
4. After a while, type Ctrl + C to stop it again and go back to step 2.

If you repeat steps 2 to 4 several times, you will quickly get an idea of whether it is
looping or making progress and, if you repeat them often enough, you will get an
idea of where the hotspots in the code are.

There is a whole web page dedicated to the idea at http://poormansprofiler.org,
together with scripts which make it a little easier. I have used this technique many
times over the years with various operating systems and debuggers.

This is an example of statistical profiling, in which you sample the program state
at intervals. After a number of samples, you begin to learn the statistical likelihood
of the functions being executed. It is surprising how few you really need. Other
statistical profilers are perf record, OProfile, and gprof.

Sampling using a debugger is intrusive because the program is stopped for a
significant period while you collect the sample. Other tools can do that with much
lower overhead.

I will now consider how to use perf to do statistical profiling.

Introducing perf
perf is an abbreviation of the Linux performance event counter subsystem,
perf_events, and also the name of the command-line tool for interacting with
perf_events. Both have been part of the kernel since Linux 2.6.31. There is plenty
of useful information in the Linux source tree in tools/perf/Documentation,
and also at https://perf.wiki.kernel.org.

Profiling and Tracing

[328]

The initial impetus for developing perf was to provide a unified way to access
the registers of the performance measurement unit (PMU), which is part of most
modern processor cores. Once the API was defined and integrated into Linux, it
became logical to extend it to cover other types of performance counters.

At its heart, perf is a collection of event counters with rules about when they
actively collect data. By setting the rules, you can capture data from the whole
system, or just the kernel, or just one process and its children, and do it across
all CPUs or just one CPU. It is very flexible. With this one tool you can start by
looking at the whole system, then zero in on a device driver that seems to be
causing problems, or an application that is running slowly, or a library function
that seems to being taking longer to execute than you thought.

The code for the perf command-line tool is part of the kernel, in the tools/perf
directory. The tool and the kernel subsystem are developed hand-in-hand, meaning
that they must be from the same version of the kernel. perf can do a lot. In this
chapter, I will examine it only as a profiler. For a description of its other capabilities,
read the perf man pages and refer to the documentation mentioned in the previous
paragraph.

Configuring the kernel for perf
You need a kernel that is configured for perf_events and you need the perf
command cross compiled to run on the target. The relevant kernel configuration is
CONFIG_PERF_EVENTS present in the menu General setup | Kernel Performance
Events And Counters.

If you want to profile using tracepoints—more on this subject later—also enable the
options described in the section about Ftrace. While you are there, it is worthwhile
enabling CONFIG_DEBUG_INFO as well.

The perf command has many dependencies which makes cross compiling it quite
messy. However, both the Yocto Project and Buildroot have target packages for it.

You will also need debug symbols on the target for the binaries that you are
interested in profiling, otherwise perf will not be able to resolve addresses to
meaningful symbols. Ideally, you want debug symbols for the whole system
including the kernel. For the latter, remember that the debug symbols for the
kernel are in the vmlinux file.

Chapter 13

[329]

Building perf with the Yocto Project
If you are using the standard linux-yocto kernel, perf_events is enabled already,
so there is nothing more to do.

To build the perf tool, you can add it explicitly to the target image dependencies,
or you can add the tools-profile feature which also brings in gprof. As I mentioned
previously, you will probably want debug symbols on the target image, and also the
kernel vmlinux image. In total, this is what you will need in conf/local.conf:

EXTRA_IMAGE_FEATURES = "debug-tweaks dbg-pkgs tools-profile"
IMAGE_INSTALL_append = " kernel-vmlinux"

Building perf with Buildroot
Many Buildroot kernel configurations do not include perf_events, so you should
begin by checking that your kernel includes the options mentioned in the preceding
section.

To cross compile perf, run the Buildroot menuconfig and select the following:

• BR2_LINUX_KERNEL_TOOL_PERF in Kernel | Linux Kernel Tools. To build
packages with debug symbols and install them unstripped on the target,
select these two settings.

• BR2_ENABLE_DEBUG in the menu Build options | build packages with
debugging symbols menu.

• BR2_STRIP = none in the menu Build options | strip command for binaries
on target.

Then, run make clean, followed by make.

When you have built everything, you will have to copy vmlinux into the target
image manually.

Profiling with perf
You can use perf to sample the state of a program using one of the event counters
and accumulate samples over a period of time to create a profile. This is another
example of statistical profiling. The default event counter is called cycles, which is a
generic hardware counter that is mapped to a PMU register representing a count of
cycles at the core clock frequency.

Profiling and Tracing

[330]

Creating a profile using perf is a two stage process: the perf record command
captures samples and writes them to a file named perf.data (by default) and
then perf report analyzes the results. Both commands are run on the target. The
samples being collected are filtered for the process and its children, for a command
you specify. Here is an example profiling a shell script that searches for the string
linux:

perf record sh -c "find /usr/share | xargs grep linux >
/dev/null"

[perf record: Woken up 2 times to write data]

[perf record: Captured and wrote 0.368 MB perf.data (~16057
samples)]

ls -l perf.data

-rw------- 1 root root 387360 Aug 25 2015 perf.data

Now you can show the results from perf.data using the command perf report.
There are three user interfaces which you can select on the command line:

• --stdio: This is a pure text interface with no user interaction. You will
have to launch perf report and annotate for each view of the trace.

• --tui: This is a simple text-based menu interface with traversal
between screens.

• --gtk: This is a graphical interface that otherwise acts in the same way
as --tui.

The default is TUI, as shown in this example:

Chapter 13

[331]

perf is able to record the kernel functions executed on behalf of the processes
because it collects samples in kernel space.

The list is ordered with the most active functions first. In this example, all but one
are captured while grep is running. Some are in a library, libc-2.20, some in a
program, busybox.nosuid, and some are in the kernel. We have symbol names
for program and library functions because all the binaries have been installed
on the target with debug information, and kernel symbols are being read from
/boot/vmlinux. If you have vmlinux in a different location, add -k <path> to the
perf report command. Rather than storing samples in perf.data, you can save
them to a different file using perf record -o <file name> and analyze them
using perf report -i <file name>.

By default, perf record samples at a frequency of 1000Hz using the cycles counter.

A sampling frequency of 1000Hz may be higher than you really need,
and may be the cause of an observer effect. Try with lower rates:
100Hz is enough for most cases, in my experience. You can set the
sample frequency using the -F option.

Call graphs
This is still not really making life easy; the functions at the top of the list are mostly
low level memory operations and you can be fairly sure that they have already been
optimized. It would be nice to step back and see where these functions are being
called from. You can do that by capturing the backtrace from each sample, which
you can do with the -g option to perf record.

Profiling and Tracing

[332]

Now perf report shows a plus sign (+) where the function is part of a call chain.
You can expand the trace to see the functions lower down in the chain:

Generating call graphs relies on the ability to extract call frames from
the stack, just as is necessary for backtraces in GDB. The information
needed to unwind stacks is encoded in the debug information of the
executables but not all combinations of architecture and toolchains
are capable of doing so.

perf annotate
Now that you know which functions to look at, it would be nice to step inside and
see the code and to have hit counts for each instruction. That is what perf annotate
does, by calling down to a copy of objdump installed on the target. You just need to
use perf annotate in place of perf report.

perf annotate requires symbol tables for the executables and vmlinux. Here is an
example of an annotated function:

Chapter 13

[333]

If you want to see the source code interleaved with the assembler, you can copy the
relevant parts to the target device. If you are using the Yocto Project and build with
the extra image feature dbg-pkgs, or have installed the individual -dbg package,
then the source will have been installed for you in /usr/src/debug. Otherwise,
you can examine the debug information to see the location of the source code:

$ arm-buildroot-linux-gnueabi-objdump --dwarf lib/libc-2.19.so |
grep DW_AT_comp_dir

 <3f> DW_AT_comp_dir : /home/chris/buildroot/output/build/host-
gcc-initial-4.8.3/build/arm-buildroot-linux-gnueabi/libgcc

The path on the target should be exactly the same as the path you can see in
DW_AT_comp_dir.

Here is an example of annotation with source and assembler code:

Profiling and Tracing

[334]

Other profilers: OProfile and gprof
These two statistical profilers predate perf. They are both subsets of the functionality
of perf, but they are still quite popular. I will mention them only briefly.

OProfile is a kernel profiler that started out in 2002. Originally, it had its own kernel
sampling code, but recent versions use the perf_events infrastructure for that
purpose. There is more information about it at http://oprofile.sourceforge.
net. OProfile consists of a kernel-space component and a user space daemon and
analysis commands.

OProfile needs these two kernel options to be enabled:

• CONFIG_PROFILING in General setup | Profiling support
• CONFIG_OPROFILE in General setup | OProfile system profiling

If you are using the Yocto Project, the user-space components are installed as part of
the tools-profile image feature. If you are using Buildroot, the package is enabled
by BR2_PACKAGE_OPROFILE.

You can collect samples by using this command:

operf <program>

Wait for your application to finish, or press Ctrl + C, to stop profiling. The profile
data is stored in <cur-dir>/oprofile_data/samples/current.

Use opreport to generate a profile summary. There are various options which are
documented in the OProfile manual.

gprof is part of the GNU toolchain and was one of the earliest open source code
profiling tools. It combines compile-time instrumentation and sampling techniques,
using a 100 Hz sample rate. It has the advantage that it does not require kernel
support.

To prepare a program for profiling with gprof, you add -pg to the compile and link
flags, which injects code that collects information about the call tree into the function
preamble. When you run the program, samples are collected and stored in a buffer,
which is written to a file named gmon.out, when the program terminates.

You use the gprof command to read the samples from gmon.out and the debug
information from a copy of the program.

Chapter 13

[335]

As an example, if you wanted to profile the BusyBox grep applet. you would rebuild
BusyBox with the -pg option, run the command, and view the results:

busybox grep "linux" *

ls -l gmon.out

-rw-r--r-- 1 root root 473 Nov 24 14:07 gmon.out

Then, you would analyze the captured samples on either the target or the host, using
the following:

gprof busybox

Flat profile:

Each sample counts as 0.01 seconds.

 no time accumulated

 % cumulative self self total

 time seconds seconds calls Ts/call Ts/call name

 0.00 0.00 0.00 688 0.00 0.00 xrealloc

 0.00 0.00 0.00 345 0.00 0.00 bb_get_chunk_from_file

 0.00 0.00 0.00 345 0.00 0.00 xmalloc_fgetline

 0.00 0.00 0.00 6 0.00 0.00 fclose_if_not_stdin

 0.00 0.00 0.00 6 0.00 0.00 fopen_for_read

 0.00 0.00 0.00 6 0.00 0.00 grep_file

[...]

 Call graph

granularity: each sample hit covers 2 byte(s) no time propagated

index % time self children called name

 0.00 0.00 688/688 bb_get_chunk_from_file [2]

[1] 0.0 0.00 0.00 688 xrealloc [1]

--

 0.00 0.00 345/345 xmalloc_fgetline [3]

Profiling and Tracing

[336]

[2] 0.0 0.00 0.00 345 bb_get_chunk_from_file [2]

 0.00 0.00 688/688 xrealloc [1]

 0.00 0.00 345/345 grep_file [6]

[3] 0.0 0.00 0.00 345 xmalloc_fgetline [3]

 0.00 0.00 345/345 bb_get_chunk_from_file
[2]

--

 0.00 0.00 6/6 grep_main [12]

[4] 0.0 0.00 0.00 6 fclose_if_not_stdin
[4]

[...]

Note that the execution times are all shown as zero, because most of the time was
spent in system calls, which are not traced by gprof.

gprof does not capture samples from threads other than the main
thread of a multi-threaded process, and it does not sample kernel
space, all of which limits its usefulness.

Tracing events
The tools we have seen so far all use statistical sampling. You often want to know
more about the ordering of events so that you can see them and relate them to each
other. Function tracing involves instrumenting the code with trace points which
capture information about the event, and may include some or all of the following:

• Timestamp
• Context, such as the current PID
• Function parameters and return value
• Callstack

It is more intrusive than statistical profiling and it can generate a large amount of
data. The latter can be mitigated by applying filters when the sample is captured,
and later on when viewing the trace.

I will cover two trace tools here: the kernel function tracers, Ftrace and LTTng.

Chapter 13

[337]

Introducing Ftrace
The kernel function tracer, Ftrace, evolved from work done by Steven Rostedt,
and many others, as they were tracking down the causes of high latency. Ftrace
appeared in Linux 2.6.27 and has been actively developed since then. There
are a number of documents describing kernel tracing in the kernel source in
Documentation/trace.

Ftrace consists of a number of tracers that can log various types of activity in the
kernel. Here, I am going to talk about the function and function_graph tracers,
and about the event tracepoints. In Chapter 14, Real-time Programming, I will revisit
Ftrace and use it to show real-time latencies.

The function tracer instruments each kernel function so that calls can be recorded
and timestamped. As a matter of interest, it compiles the kernel with the -pg
switch to inject the instrumentation, but there the resemblance to gprof ends.
The function_graph tracer goes further and records both the entry and exit of
functions so that it can create a call graph. The event tracepoints feature also records
parameters associated with the call.

Ftrace has a very embedded-friendly user interface that is entirely implemented
through virtual files in the debugfs filesystem, meaning that you do not have to
install any tools on the target to make it work. Nevertheless, there are other user
interfaces if you prefer: trace-cmd is a command-line tool which records and views
traces and is available in Buildroot (BR2_PACKAGE_TRACE_CMD) and the Yocto Project
(trace-cmd). There is a graphical trace viewer named KernelShark which is available
as a package for the Yocto Project.

Preparing to use Ftrace
Ftrace and its various options are configured in the kernel configuration menu.
You will need the following as a minimum:

• CONFIG_FUNCTION_TRACER in the menu Kernel hacking | Tracers | Kernel
Function Tracer

For reasons that will become clear later, you would be well advised to turn on these
options as well:

• CONFIG_FUNCTION_GRAPH_TRACER in the menu Kernel hacking | Tracers |
Kernel Function Graph Tracer

• CONFIG_DYNAMIC_FTRACE in the menu Kernel hacking | Tracers | enable/
disable function tracing dynamically

Profiling and Tracing

[338]

Since the whole thing is hosted in the kernel, there is no user space configuration to
be done.

Using Ftrace Before you can use Ftrace, you have to mount the debugfs filesystem
which, by convention, goes in the /sys/kernel/debug directory:

mount –t debugfs none /sys/kernel/debug

All the controls for Ftrace are in the /sys/kernel/debug/tracing directory; there
is even a mini HOWTO in the README file.

This is the list of tracers available in the kernel:

cat /sys/kernel/debug/tracing/available_tracers

blk function_graph function nop

The active tracer is shown by current_tracer, which, initially, will be the null
tracer, nop.

To capture a trace, select the tracer by writing the name of one of the
available_tracers to current_tracer, then enable tracing for a short while,
as shown here:

echo function > /sys/kernel/debug/tracing/current_tracer

echo 1 > /sys/kernel/debug/tracing/tracing_on

sleep 1

echo 0 > /sys/kernel/debug/tracing/tracing_on

In that one second, the trace buffer will have been filled with the details of every
function called by the kernel. The format of the trace buffer is plain text, as described
in Documentation/trace/ftrace.txt. You can read the trace buffer from the trace
file:

cat /sys/kernel/debug/tracing/trace

tracer: function

#

entries-in-buffer/entries-written: 40051/40051 #P:1

#

_-----=> irqs-off

/ _----=> need-resched

| / _---=> hardirq/softirq

|| / _--=> preempt-depth

Chapter 13

[339]

||| / delay

TASK-PID CPU# |||| TIMESTAMP FUNCTION

| | | |||| | |

 sh-361 [000] ...1 992.990646: mutex_unlock <-
rb_simple_write

 sh-361 [000] ...1 992.990658: __fsnotify_parent
<-vfs_write

 sh-361 [000] ...1 992.990661: fsnotify <-
vfs_write

 sh-361 [000] ...1 992.990663: __srcu_read_lock
<-fsnotify

 sh-361 [000] ...1 992.990666: preempt_count_add
<-__srcu_read_lock

 sh-361 [000] ...2 992.990668: preempt_count_sub
<-__srcu_read_lock

 sh-361 [000] ...1 992.990670: __srcu_read_unlock
<-fsnotify

 sh-361 [000] ...1 992.990672: __sb_end_write <-
vfs_write

 sh-361 [000] ...1 992.990674: preempt_count_add
<-__sb_end_write

[...]

You can capture a large number of data points in just one second.

As with profilers, it is difficult to make sense of a flat function list like this. If you
select the function_graph tracer, Ftrace captures call graphs like this:

tracer: function_graph

#

CPU DURATION FUNCTION CALLS

#| | | | | | |

 0) + 63.167 us | } /* cpdma_ctlr_int_ctrl */

 0) + 73.417 us | } /* cpsw_intr_disable */

 0) | disable_irq_nosync() {

 0) | __disable_irq_nosync() {

 0) | __irq_get_desc_lock() {

 0) 0.541 us | irq_to_desc();

 0) 0.500 us | preempt_count_add();

 0) + 16.000 us | }

Profiling and Tracing

[340]

 0) | __disable_irq() {

 0) 0.500 us | irq_disable();

 0) 8.208 us | }

 0) | __irq_put_desc_unlock() {

 0) 0.459 us | preempt_count_sub();

 0) 8.000 us | }

 0) + 55.625 us | }

 0) + 63.375 us | }

Now you can see the nesting of the function calls, delimited by parentheses, { and
}. At the terminating brace, there is a measurement of the time taken in the function,
annotated with a plus sign, +, if it takes more than 10 µs, and an exclamation mark, !,
if it takes more than 100 µs.

You are often only interested in the kernel activity caused by a single process or
thread, in which case you can restrict the trace to the one thread by writing the
thread ID to set_ftrace_pid.

Dynamic Ftrace and trace filters
Enabling CONFIG_DYNAMIC_FTRACE allows Ftrace to modify the function trace sites
at runtime, which has a couple of benefits. Firstly, it triggers additional build-time
processing of the trace function probes which allows the Ftrace subsystem to locate
them at boot time and overwrite them with NOP instructions, thus reducing the
overhead of the function trace code to almost nothing. You can then enable Ftrace
in production or near production kernels with no impact on performance.

The second advantage is that you can selectively enable function trace sites rather
than trace everything. The list of functions is put into available_filter_functions;
there are several tens of thousands of them. You can selectively enable function
traces as you need them by copying the name from available_filter_functions
to set_ftrace_filter, and then stop tracing that function by writing the name to
set_ftrace_notrace. You can also use wildcards and append names to the list.
For example, suppose you are interested in tcp handling:

cd /sys/kernel/debug/tracing

echo "tcp*" > set_ftrace_filter

echo function > current_tracer

echo 1 > tracing_on

Chapter 13

[341]

Run some tests and then look at the trace:

cat trace

tracer: function

#

entries-in-buffer/entries-written: 590/590 #P:1

#

_-----=> irqs-off

/ _----=> need-resched

| / _---=> hardirq/softirq

|| / _--=> preempt-depth

||| / delay

TASK-PID CPU# |||| TIMESTAMP FUNCTION

| | | |||| | |

 dropbear-375 [000] ...1 48545.022235: tcp_poll <-sock_poll

 dropbear-375 [000] ...1 48545.022372: tcp_poll <-sock_poll

 dropbear-375 [000] ...1 48545.022393: tcp_sendmsg <-
 inet_sendmsg

 dropbear-375 [000] ...1 48545.022398: tcp_send_mss <-
 tcp_sendmsg

 dropbear-375 [000] ...1 48545.022400: tcp_current_mss <-
 tcp_send_mss

[...]

set_ ftrace_filter can also contain commands, for example, to start and stop
tracing when certain functions are executed. There isn't space to go into these details
here but, if you want to find out more, please read the Filter commands section in
Documentation/trace/ftrace.txt.

Trace events
The function and function_graph tracers described in the preceding section
record only the time at which the function was executed. The trace events feature
also records parameters associated with the call, making the trace more readable
and informative. For example, instead of just recording that the function kmalloc
had been called, a trace event will record the number of bytes requested and the
returned pointer. Trace events are used in perf and LTTng as well as Ftrace, but the
development of the trace events subsystem was prompted by the LTTng project.

Profiling and Tracing

[342]

It takes effort from kernel developers to create trace events since each one is different.
They are defined in the source code using the TRACE_EVENT macro: there are over a
thousand of them now. You can see the list of events available at runtime in /sys/
kernel/debug/tracing/available_events. They are named subsystem:function,
for example, kmem:kmalloc. Each event is also represented by a subdirectory in
tracing/events/[subsystem]/[function], as demonstrated here:

ls events/kmem/kmalloc

enable filter format id trigger

The files are as follows:

• enable: You write a 1 to this file to enable the event.
• filter: This is an expression which must evaluate to true for the event to

be traced.
• format: This is the format of the event and parameters.
• id: This is a numeric identifier.
• trigger: This is a command that is executed when the event occurs using the

syntax defined in the Filter commands section of Documentation/trace/
ftrace.txt. I will show you a simple example involving kmalloc and kfree.

Event tracing does not depend on the function tracers, so begin by selecting the
nop tracer:

echo nop > current_tracer

Next, select the events to trace by enabling each one individually:

echo 1 > events/kmem/kmalloc/enable

echo 1 > events/kmem/kfree/enable

You can also write the event names to set_event, as shown here:

echo "kmem:kmalloc kmem:kfree" > set_event

Now, when you read the trace, you can see the functions and their parameters:

tracer: nop

#

entries-in-buffer/entries-written: 359/359 #P:1

#

_-----=> irqs-off

/ _----=> need-resched

| / _---=> hardirq/softirq

|| / _--=> preempt-depth

Chapter 13

[343]

||| / delay

TASK-PID CPU# |||| TIMESTAMP FUNCTION

| | | |||| | |

 cat-382 [000] ...1 2935.586706: kmalloc:
call_site=c0554644 ptr=de515a00 bytes_req=384 bytes_alloc=512
gfp_flags=GFP_ATOMIC|GFP_NOWARN|GFP_NOMEMALLOC

 cat-382 [000] ...1 2935.586718: kfree:
call_site=c059c2d8 ptr= (null)

Exactly the same trace events are visible in perf as tracepoint events.

Using LTTng
The Linux Trace Toolkit project was started by Karim Yaghmour as a means of
tracing kernel activity and was one of the first trace tools generally available for the
Linux kernel. Later, Mathieu Desnoyers took up the idea and re-implemented it
as the next generation trace tool, LTTng. It was then expanded to cover user space
traces as well as the kernel. The project website is at http://lttng.org/ and
contains a comprehensive user manual.

LTTng consists of three components:

• A core session manager
• A kernel tracer implemented as a group of kernel modules
• A user space tracer implemented as a library

In addition to those, you will need a trace viewer such as Babeltrace (http://www.
efficios.com/babeltrace) or the Eclipse Trace Compaas plug-in to display and
filter the raw trace data on the host or target.

LTTng requires a kernel configured with CONFIG_TRACEPOINTS, which is enabled
when you select Kernel hacking | Tracers | Kernel Function Tracer.

The description that follows refers to LTTng version 2.5; other versions may
be different.

LTTng and the Yocto Project
You need to add these packages to the target dependencies, for example, in
conf/local.conf:

IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"

If you want to run Babeltrace on the target, also append the package babeltrace.

Profiling and Tracing

[344]

LTTng and Buildroot
You need to enable the following:

• BR2_PACKAGE_LTTNG_MODULES in the menu Target packages | Debugging,
profiling and benchmark | lttng-modules.

• BR2_PACKAGE_LTTNG_TOOLS in the menu Target packages | Debugging,
profiling and benchmark | lttng-tools.

For user space trace tracing, enable this:

• BR2_PACKAGE_LTTNG_LIBUST in the menu Target packages | Libraries |
Other, enable lttng-libust.

There is a package called lttng-babletrace for the target. Buildroot builds the host
babeltrace automatically and places in output/host/usr/bin/babeltrace.

Using LTTng for kernel tracing
LTTng can use the set of ftrace events described above as potential trace points.
Initially, they are disabled.

The control interface for LTTng is the lttng command. You can list the kernel probes
using the following:

lttng list --kernel

Kernel events:

 writeback_nothread (loglevel: TRACE_EMERG (0)) (type:
tracepoint)

 writeback_queue (loglevel: TRACE_EMERG (0)) (type:
tracepoint)

 writeback_exec (loglevel: TRACE_EMERG (0)) (type:
tracepoint)

[...]

Traces are captured in the context of a session which, in this example, is called test:

lttng create test

Session test created.

Traces will be written in /home/root/lttng-traces/test-20150824-
140942

lttng list

Available tracing sessions:

Chapter 13

[345]

 1) test (/home/root/lttng-traces/test-20150824-140942)
[inactive]

Now enable a few events in the current session. You can enable all kernel tracepoints
using the --all option but remember the warning about generating too much trace
data. Let's start with a couple of scheduler-related trace events:

lttng enable-event --kernel sched_switch,sched_process_fork

Check that everything is set up:

lttng list test

Tracing session test: [inactive]

 Trace path: /home/root/lttng-traces/test-20150824-140942

 Live timer interval (usec): 0

=== Domain: Kernel ===

Channels:

- channel0: [enabled]

 Attributes:

 overwrite mode: 0

 subbufers size: 26214

 number of subbufers: 4

 switch timer interval: 0

 read timer interval: 200000

 trace file count: 0

 trace file size (bytes): 0

 output: splice()

 Events:

 sched_process_fork (loglevel: TRACE_EMERG (0)) (type:
tracepoint) [enabled]

 sched_switch (loglevel: TRACE_EMERG (0)) (type: tracepoint)
[enabled]

Now start tracing:

lttng start

Profiling and Tracing

[346]

Run the test load and then stop tracing:

lttng stop

Traces for the session are written to the session directory, lttng-traces/<session>/
kernel.

You can use the Babeltrace viewer to dump the raw trace data in text format, in this
case, I ran it on the host computer:

$ babeltrace lttng-traces/test-20150824-140942/kernel

The output is too verbose to fit on this page, so I will leave it as an exercise for
you, the reader, to capture and display a trace in this way. The text output from
eBabeltrace does have the advantage that it is easy to search for strings using grep
and similar commands.

A good choice for a graphical trace viewer is the Trace Compass plug-in for Eclipse,
which is now part of the Eclipse IDE for C/C++ Developers bundle. Importing
the trace data into Eclipse is characteristically fiddly. Briefly, you need to follow
these steps:

1. Open the tracing perspective.
2. Create a new project by selecting File | New | Tracing project.
3. Enter a project name and click Finish.
4. Right-click on the New Project option in the Project Explorer menu and

select Import.
5. Expand Tracing and then select Trace Import.
6. Browse to the directory containing the traces (for example, test-20150824-

140942), tick the box to indicate which sub-directories you want (it might be
the kernel) and click Finish.

7. Now, expand the project and, within that, expand Traces[1] and, within that,
double-click on kernel.

Chapter 13

[347]

8. You should see the trace data shown in the following screenshot:

In the preceding screenshot, I have zoomed in on the control flow view to show state
transitions between dropbear and a shell, and also some activity of the lttng daemon.

Using Valgrind for application profiling
I introduced Valgrind in Chapter 11, Managing Memory, as a tool for identifying
memory problems using the memcheck tool. Valgrind has other useful tools for
application profiling. The two I am going to look at here are Callgrind and Helgrind.
Since Valgrind works by running the code in a sandbox, it is able to check the code as
it runs and report certain behaviors, which native tracers and profilers cannot do.

Callgrind
Callgrind is a call-graph generating profiler that also collects information about
processor cache hit rate and branch prediction. Callgrind is only useful if your
bottleneck is CPU-bound. It's not useful if heavy I/O or multiple processes
are involved.

Profiling and Tracing

[348]

Valgrind does not require kernel configuration but it does need debug symbols. It is
available as a target package in both the Yocto Project and Buildroot (BR2_PACKAGE_
VALGRIND).

You run Callgrind in Valgrind on the target, like so:

valgrind --tool=callgrind <program>

This produces a file called callgrind.out.<PID> which you can copy to the host
and analyze with callgrind_annotate.

The default is to capture data for all the threads together in a single file. If you add
option --separate-threads=yes when capturing, there will be profiles for each
of the threads in files named callgrind.out.<PID>-<thread id>, for example,
callgrind.out.122-01, callgrind.out.122-02, and so on.

Callgrind can simulate the processor L1/L2 cache and report on cache misses.
Capture the trace with the --simulate-cache=yes option. L2 misses are much more
expensive than L1 misses, so pay attention to code with high D2mr or D2mw counts.

Helgrind
This is a thread error detector for detecting synchronization errors in C, C++, and
Fortran programs that include POSIX threads.

Helgrind can detect three classes of error. Firstly, it can detect the incorrect use
of the API. For example, it can unlock a mutex that is already unlocked, unlock a
mutex that was locked by a different thread, not checking the return value of certain
Pthread functions. Secondly, it monitors the order in which threads acquire locks
and thus detects potential deadlocks which could arise from the formation of cycles
of locks. Finally, it detects data races which can happen when two threads access a
shared memory location without using suitable locks or other synchronization to
ensure single-threaded access.

Using Helgrind is simple, you just need this command:

valgrind --tool=helgrind <program>

It prints problems and potential problems as it finds them. You can direct these
messages to a file by adding --log-file=<filename>.

Chapter 13

[349]

Using strace to show system calls
I started the chapter with the simple and ubiquitous tool, top, and I will finish with
another: strace. It is a very simple tracer that captures system calls made by a
program and, optionally, its children. You can use it to do the following:

• Learn which system calls a program makes.
• Find those system calls that fail together with the error code. I find this useful

if a program fails to start but doesn't print an error message or if the message
is too general. strace shows the failing syscall.

• Find which files a program opens.
• Find out what syscalls a running program is making, for example to see if it

is stuck in a loop.

There are many more examples online, just search for strace tips and tricks.
Everybody has their own favorite story, for example, http://chadfowler.com/
blog/2014/01/26/the-magic-of-strace

strace uses the ptrace(2) function to hook calls from user space to the kernel. If
you want to know more about how ptrace works, the man page is detailed and
surprisingly legible.

The simplest way to get a trace is to run the command with strace as shown here
(the listing has been edited to make it clearer):

strace ./helloworld
execve("./helloworld", ["./helloworld"], [/* 14 vars */]) = 0
brk(0) = 0x11000
uname({sys="Linux", node="beaglebone", ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
1, 0) = 0xb6f40000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or
directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=8100, ...}) = 0
mmap2(NULL, 8100, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb6f3e000
close(3) = 0
open("/lib/tls/v7l/neon/vfp/libc.so.6", O_RDONLY|O_CLOEXEC) = -1
ENOENT (No such file or directory)
[...]
open("/lib/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3,
"\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0(\0\1\0\0\0$`\1\0004\0\0\0"...,
512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1291884, ...}) = 0

Profiling and Tracing

[350]

mmap2(NULL, 1328520, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE,
3, 0) = 0xb6df9000

mprotect(0xb6f30000, 32768, PROT_NONE) = 0

mmap2(0xb6f38000, 12288, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x137000) = 0xb6f38000

mmap2(0xb6f3b000, 9608, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb6f3b000

close(3)

[...]

write(1, "Hello, world!\n", 14Hello, world!

) = 14

exit_group(0) = ?

+++ exited with 0 +++

Most of the trace shows how the runtime environment is created. In particular
you can see how the library loader hunts for libc.so.6, eventually finding it in
/lib. Finally, it gets to running the main() function of the program, which prints
its message and exits.

If you want strace to follow any child processes or threads created by the original
process, add the -f option.

If you are using strace to trace a program that creates threads,
you almost certainly want the -f option. Better still, use -ff and
-o <file name> so that the output for each child process or thread
is written to a separate file named <filename>.<PID | TID>.

A common use of strace is to discover which files a program tries to open at start
up. You can restrict the system calls that are traced through the -e option, and you
can write the trace to a file instead of stdout by using the -o option:

strace -e open -o ssh-strace.txt ssh localhost

This shows the libraries and configuration files ssh opens when it is setting up
a connection.

You can even use strace as a basic profile tool: if you use the -c option, it
accumulates the time spent in system calls and prints out a summary like this:

strace -c grep linux /usr/lib/* > /dev/null

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------

 78.68 0.012825 1 11098 18 read

Chapter 13

[351]

 11.03 0.001798 1 3551 write

 10.02 0.001634 8 216 15 open

 0.26 0.000043 0 202 fstat64

 0.00 0.000000 0 201 close

 0.00 0.000000 0 1 execve

 0.00 0.000000 0 1 1 access

 0.00 0.000000 0 3 brk

 0.00 0.000000 0 199 munmap

 0.00 0.000000 0 1 uname

 0.00 0.000000 0 5 mprotect

 0.00 0.000000 0 207 mmap2

 0.00 0.000000 0 15 15 stat64

 0.00 0.000000 0 1 getuid32

 0.00 0.000000 0 1 set_tls

------ ----------- ----------- --------- --------- -----------

100.00 0.016300 15702 49 total

Summary
Nobody can complain that Linux lacks options to profile and trace. This chapter has
given you an overview of some of the most common ones.

When faced with a system that is not performing as well as you would like, start
with top and try to identify the problem. If it proves to be a single application,
then you can use perf record/report to profile it, bearing in mind that you will
have to configure the kernel to enable perf and you will need debug symbols for
the binaries and kernel. OProfile is an alternative to perf record and can tell
you similar things. gprof is, frankly, outdated but it does have the advantage
of not requiring kernel support. If the problem is not so well localized, use perf
(or OProfile) to get a system-wide view.

Ftrace comes into its own when you have specific questions about the behavior of
the kernel. The function and function_graph tracers give a detailed view of the
relationship and sequence of function calls. The event tracers allow you to extract
more information about functions including the parameters and return values.
LTTng performs a similar role, making use the event trace mechanism, and adds
high speed ring buffers to extract large quantities of data from the kernel. Valgrind
has the particular advantage that it runs code in a sandbox and can report on errors
that are hard to track down in other ways.

Profiling and Tracing

[352]

Using the Callgrind tool, it can generate call graphs and report on processor cache
usage and, with Helgrind, it can report on thread-related problems. Finally, don't
forget strace. It is a good standby for finding out what system calls a program is
making, from tracking file open calls to find file path names to checking for system
wake ups and incoming signals.

All the while, be aware of, and try to avoid, the observer effect: make sure that the
measurements you are making are valid for a production system. In the next chapter,
I will continue the theme as I delve into the latency tracers that help us quantify the
real-time performance of a target system.

[353]

Real-time Programming
Much of the interaction between a computer system and the real world happens
in real-time and so this is an important topic for developers of embedded systems.
I have touched on real-time programming in several places so far: in Chapter 10,
Learning About Processes and Threads, I looked at scheduling policies and priority
inversion, and in Chapter 11, Managing Memory, I described the problems with page
faults and the need for memory locking. Now, it is time to bring these topics together
and look at real-time programming in some depth.

In this chapter, I will begin with a discussion about the characteristics of real-time
systems and then consider the implications for system design, both at the application
and kernel levels. I will describe the real-time kernel patch, PREEMPT_RT, and show
how to get it and apply it to a mainline kernel. The last sections will describe how to
characterize system latencies using two tools: cyclictest and Ftrace.

There are other ways to achieve real-time behavior on an embedded Linux device,
for instance, using a dedicated micro-controller or a separate real-time kernel
alongside the Linux kernel in the way that Xenomai and RTAI do. I am not going
to discuss these here because the focus of this book is on using Linux as the core for
embedded systems.

What is real-time?
The nature of real-time programming is one of the subjects that software engineers
love to discuss at length, often giving a range of contradictory definitions. I will
begin by setting out what I think is important about real-time.

A task is a real-time task if it has to complete before a certain point in time, known as
the deadline. The distinction between real-time and non real-time tasks is shown by
considering what happens when you play an audio stream on your computer while
compiling the Linux kernel.

Real-time Programming

[354]

The first is a real-time task because there is a constant stream of data arriving at the
audio driver and blocks of audio samples have to be written to the audio interface
at the playback rate. Meanwhile, the compilation is not real-time because there is
no deadline. You simply want it to complete as soon as possible; whether it takes
10 seconds or 10 minutes does not affect the quality of the kernel.

The other important thing to consider is the consequence of missing the deadline,
which can range from mild annoyance through to system failure and death.
Here are some examples:

• Playing an audio stream: There is a deadline in the order of tens of
milliseconds. If the audio buffer under-runs you will hear a click, which is
annoying, but you will get over it.

• Moving and clicking a mouse: The deadline is also in the order of tens of
milliseconds. If it is missed, the mouse moves erratically and button clicks
will be lost. If the problem persists, the system will become unusable.

• Printing a piece of paper: The deadlines for the paper feed are in the
millisecond range, which, if missed, may cause the printer to jam and
somebody will have to go and fix it. Occasional jams are acceptable but
nobody is going to buy a printer that keeps on jamming.

• Printing sell-by dates on bottles on a production line: If one bottle is not
printed the whole production line has to be halted, the bottle removed and
the line restarted, which is expensive.

• Baking a cake: There is a deadline of 30 minutes or so. If you miss it by a
few minutes, the cake might be ruined. If you miss it by a large amount,
the house will burn down.

• A power surge detection system: If the system detects a surge, a circuit
breaker has to be triggered within 2 milliseconds. Failing to do so causes
damage to the equipment and may injure or kill personnel.

In other words, there are many consequences to missed deadlines. We often talk
about these different categories:

• soft real-time: The deadline is desirable but is sometimes missed without the
system being considered a failure. First two examples are like this.

• hard real-time: Here, missing a deadline has a serious effect. We can further
subdivide hard real-time into mission-critical systems in which there is a cost
to missing the deadline, such as the fourth example, and safety critical-systems
in which there is a danger to life and limb, such as the last two examples.
I put in the banking example to show that not all hard real-time systems
have deadlines measured in microseconds.

Chapter 14

[355]

Software written for safety-critical systems has to conform to various standards
that seek to ensure that it is capable of performing reliably. It is very difficult for a
complex operating system such as Linux to meet those requirements.

When it comes to mission-critical systems, it is possible, and common, for Linux to be
used for a wide range of control systems. The requirements of the software depend
on the combination of the deadline and the confidence level, which can usually be
determined through extensive testing.

Therefore, to say that a system is real-time, you have to measure its response times
under the maximum anticipated load, and show that it meets the deadline for an
agreed proportion of the time. As a rule of thumb, a well configured Linux system
using a mainline kernel is good for soft real-time tasks with deadlines down to
tens of milliseconds and a kernel with the PREEMPT_RT patch is good for soft and
hard real-time mission-critical systems with deadlines down to several hundreds
of microseconds.

The key to creating a real-time system is to reduce the variability in response times
so that you have greater confidence that they will not be missed; in other words, you
need to make the system more deterministic. Often, this is done at the expense of
performance. For example, caches make systems run faster by making the average
time to access an item of data shorter, but the maximum time is longer in the case
of a cache miss. Caches make a system faster but less deterministic, which is the
opposite of what we want.

It is a myth of real-time computing that it is fast. This is not so, the
more deterministic a system is, the lower the maximum throughput.

The remainder of this chapter is concerned with identifying the causes of latency and
the things you can do to reduce it.

Real-time Programming

[356]

Identifying the sources of
non-determinism
Fundamentally, real-time programming is about making sure that the threads
controlling the output in real-time are scheduled when needed and so can complete
the job before the deadline. Anything that prevents this is a problem. Here are some
problem areas:

• Scheduling: Real-time threads must be scheduled before others so they must
have a real-time policy, SCHED_FIFO, or SCHED_RR. Additionally they should
have priorities assigned in descending order starting with the one with the
shortest deadline, according to the theory of Rate Monotonic Analysis that I
described in Chapter 10, Learning About Processes and Threads.

• Scheduling latency: The kernel must be able to reschedule as soon as an
event such as an interrupt or timer occurs, and not be subject to unbounded
delays. Reducing scheduling latency is a key topic later on in this chapter.

• Priority inversion: This is a consequence of priority-based scheduling, which
leads to unbounded delays when a high priority thread is blocked on a mutex
held by a low priority thread, as I described in Chapter 10, Learning About
Processes and Threads. User space has priority inheritance and priority ceiling
mutexes; in kernel space we have rt-mutexes which implement priority
inheritance and which I will talk about in the section on the real-time kernel.

• Accurate timers: If you want to manage deadlines in the region of low
milliseconds or microseconds, you need timers that match. High resolution
timers are crucial and are a configuration option on almost all kernels.

• Page faults: A page fault while executing a critical section of code will upset
all timing estimates. You can avoid them by locking memory, as I describe
later on.

• Interrupts: They occur at unpredictable times and can result in unexpected
processing overhead if there is a sudden flood of them. There are two ways
to avoid this. One is to run interrupts as kernel threads, and the other, on
multi-core devices, is to shield one or more CPUs from interrupt handling. I
will discuss both possibilities later.

• Processor caches: Provide a buffer between the CPU and the main memory
and, like all caches, are a source of non-determinism, especially on multi-core
devices. Unfortunately, this is beyond the scope of this book but, refer to the
references at the end of the chapter.

Chapter 14

[357]

• Memory bus contention: When peripherals access memory directly through
a DMA channel they use up a slice of memory bus bandwidth, which
slows down access from the CPU core (or cores) and so contributes to non-
deterministic execution of the program. However, this is a hardware issue
and is also beyond the scope of this book.

I will expand on the important problems and see what can be done about them in the
next sections.

One item missing from the list is power management. The needs of real-time and
power management pull in opposite directions. Power management often leads
to high latencies when switching between sleep states, since setting up power
regulators and waking up processors all takes time, as does changing the core
clock frequency because the clocks take time to settle. But, surely you wouldn't
expect a device to respond immediately to an interrupt from suspend state?
I know I can't get going in the morning until after at least one cup of coffee.

Understanding scheduling latency
Real-time threads need to be scheduled as soon as they have something to do.
However, even if there are no other threads of the same or higher priority, there
is always a delay from the point at which the wake up event occurs – an interrupt
or system timer – to the time that the thread starts to run. This is called scheduling
latency. It can be broken down into several components, as shown in the following
diagram:

Real-time Programming

[358]

Firstly, there is the hardware interrupt latency from the point at which an interrupt
is asserted until the ISR (interrupt service routine) begins to run. A small part of
this is the delay in the interrupt hardware itself but the biggest problem is interrupts
disabled in the software. Minimizing this IRQ off time is important.

The next is interrupt latency, which is the length of time until the ISR has serviced
the interrupt and woken up any threads waiting on this event. It is mostly dependent
on the way the ISR was written. Normally it should take only a short time, measured
in micro-seconds.

The final delay is the preemption latency, which is the time from the point that the
kernel is notified that a thread is ready to run to that at which the scheduler actually
runs the thread. It is determined by whether the kernel can be preempted or not. If it
is running code in a critical section then the reschedule will have to wait. The length
of the delay is dependent on the configuration of kernel preemption.

Kernel preemption
The preemption latency occurs because it is not always safe or desirable to preempt the
current thread of execution and call the scheduler. Mainline Linux has three settings
for preemption, selected via the Kernel Features | Preemption Model menu:

• CONFIG_PREEMPT_NONE: no preemption
• CONFIG_PREEMPT_VOLUNTARY: enables additional checks for requests for

preemption
• CONFIG_PREEMPT: allows the kernel to be preempted

With preemption set to none, kernel code will continue without rescheduling until
it either returns via a syscall back to user space, where preemption is always
allowed, or it encounters a sleeping wait which stops the current thread. Since it
reduces the number of transitions between the kernel and user space and may reduce
the total number of context switches, this option results in the highest throughput
at the expense of large preemption latencies. It is the default for servers and some
desktop kernels where throughput is more important than responsiveness.

The second option enables more explicit preemption points where the scheduler
is called if the need_resched flag is set, which reduces the worst case preemption
latencies at the expense of slightly lower throughput. Some distributions set this
option on desktops.

Chapter 14

[359]

The third option makes the kernel preemptible, meaning that an interrupt can result
in an immediate reschedule so long as the kernel is not executing in an atomic context,
which I will describe in the following section. This reduces worst case preemption
latencies and, therefore, overall scheduling latencies, to something in the order of a few
milliseconds on typical embedded hardware. This is often described as a soft real-time
option and most embedded kernels are configured in this way. Of course, there is a
small reduction in overall throughput but that is usually less important than having
more deterministic scheduling for embedded devices.

The real-time Linux kernel (PREEMPT_RT)
There is a long-standing effort to reduce latencies still further which goes by the
name of the kernel configuration option for these features, PREEMPT_RT. The project
was started by Ingo Molnar, Thomas Gleixner, and Steven Rostedt and has had
contributions from many more developers over the years. The kernel patches are at
https://www.kernel.org/pub/linux/kernel/projects/rt and there is a wiki,
including an FAQ (slightly out of date), at https://rt.wiki.kernel.org.

Many parts of the project have been incorporated into mainline Linux over the years,
including high resolution timers, kernel mutexes, and threaded interrupt handlers.
However, the core patches remain outside of the mainline because they are rather
intrusive and (some claim) only benefit a small percentage of the total Linux user
base. Maybe, one day, the whole patch set will be merged upstream.

The central plan is to reduce the amount of time the kernel spends running in an
atomic context, which is where it is not safe to call the scheduler and switch to a
different thread. Typical atomic contexts are when the kernel:

• is running an interrupt or trap handler
• is holding a spin lock or in an RCU critical section. Spin lock and RCU

are kernel locking primitives, the details of which are not relevant here
• is between calls to preempt_disable() and preempt_enable()
• hardware interrupts are disabled

The changes that are part of PREEMPT_RT fall into two main areas: one is to reduce
the impact of interrupt handlers by turning them into kernel threads and the other is
to make locks preemptible so that a thread can sleep while holding one. It is obvious
that there is a large overhead in these changes, which makes average case interrupt
handling slower but much more deterministic, which is what we are striving for.

Real-time Programming

[360]

Threaded interrupt handlers
Not all interrupts are triggers for the real-time tasks but all interrupts steal cycles
from the real-time task. Threaded interrupt handlers allow a priority to be associated
with the interrupt and for it to be scheduled at an appropriate time as shown in the
following diagram:

If the interrupt handler code is run as a kernel thread there is no reason why it
cannot be preempted by a user space thread of higher priority, and so the interrupt
handler does not contribute towards scheduling latency of the user space thread.
Threaded interrupt handlers have been a feature of mainline Linux since 2.6.30. You
can request that an individual interrupt handler is threaded by registering it with
request_threaded_irq() in place of the normal request_irq(). You can make
threaded IRQs the default by configuring the kernel with CONFIG_IRQ_FORCED_
THREADING=y which makes all handlers into threads unless they have explicitly
prevented this by setting the IRQF_NO_THREAD flag. When you apply the PREEMPT_RT
patches, interrupts are, by default, configured as threads in this way. Here is an
example of what you might see:

ps -Leo pid,tid,class,rtprio,stat,comm,wchan | grep FF

PID TID CLS RTPRIO STAT COMMAND WCHAN

3 3 FF 1 S ksoftirqd/0 smpboot_th

7 7 FF 99 S posixcputmr/0 posix_cpu_

19 19 FF 50 S irq/28-edma irq_thread

20 20 FF 50 S irq/30-edma_err irq_thread

42 42 FF 50 S irq/91-rtc0 irq_thread

Chapter 14

[361]

43 43 FF 50 S irq/92-rtc0 irq_thread
44 44 FF 50 S irq/80-mmc0 irq_thread
45 45 FF 50 S irq/150-mmc0 irq_thread
47 47 FF 50 S irq/44-mmc1 irq_thread
52 52 FF 50 S irq/86-44e0b000 irq_thread
59 59 FF 50 S irq/52-tilcdc irq_thread
65 65 FF 50 S irq/56-4a100000 irq_thread
66 66 FF 50 S irq/57-4a100000 irq_thread
67 67 FF 50 S irq/58-4a100000 irq_thread
68 68 FF 50 S irq/59-4a100000 irq_thread
76 76 FF 50 S irq/88-OMAP UAR irq_thread

In this case, a BeagleBone running linux-yocto-rt, only the gp_timer interrupt was
not threaded. It is normal that the timer interrupt handler be run in-line.

Note that the interrupt threads have all been given the default
policy SCHED_FIFO and a priority of 50. It doesn't make sense to
leave them with the defaults, however; now is your chance to assign
priorities according to the importance of the interrupts compared to
real-time user space threads.

Here is a suggested order of descending thread priorities:

• The POSIX timers thread, posixcputmr, should always have the
highest priority.

• Hardware interrupts associated with the highest priority real-time thread.
• The highest priority real-time thread.
• Hardware interrupts for the progressively lower priority real-time threads

followed by the thread itself.
• Hardware interrupts for non-real-time interfaces.
• The soft IRQ daemon, ksoftirqd, which on RT kernels is responsible for

running delayed interrupt routines and, prior to Linux 3.6, was responsible
for running the network stack, the block I/O layer, and other things. You
may need to experiment with different priority levels to get a balance.

You can change the priorities using the chrt command as part of the boot script,
using a command like this:

chrt -f -p 90 `pgrep irq/28-edma`

The pgrep command is part of the procps package.

Real-time Programming

[362]

Preemptible kernel locks
Making the majority of kernel locks preemptible is the most intrusive change that
PREEMPT_RT makes and this code remains outside of the mainline kernel.

The problem occurs with spinlocks, which are used for much of the kernel locking.
A spinlock is a busy-wait mutex which does not require a context switch in the
contended case and so is very efficient as long as the lock is held for a short time.
Ideally, they should be locked for less than the time it would take to reschedule twice.
The following diagram shows threads running on two different CPUs contending the
same spinlock. CPU0 gets it first, forcing CPU1 to spin, waiting until it is unlocked:

The thread that holds the spinlock cannot be preempted since doing so may make
the new thread enter the same code and deadlock when it tries to lock the same
spinlock. Consequently, in mainline Linux, locking a spinlock disables kernel
preemption, creating an atomic context. This means that a low priority thread that
holds a spinlock can prevent a high priority thread from being scheduled.

The solution adopted by PREEMPT_RT is to replace almost all
spinlocks with rt-mutexes. A mutex is slower than a spinlock but
it is fully preemptible. Not only that, but rt-mutexes implement
priority inheritance and so are not susceptible to priority inversion.

Getting the PREEMPT_RT patches
The RT developers do not create patch sets for every kernel version because of the
amount of effort involved. On average, they create patches for every other kernel.
The most recent kernels that are supported at the time of writing are as follows:

• 4.1-rt
• 4.0-rt
• 3.18-rt

Chapter 14

[363]

• 3.14-rt
• 3.12-rt
• 3.10-rt

The patches are available at https://www.kernel.org/pub/linux/kernel/
projects/rt.

If you are using the Yocto Project, there is an rt version of the kernel already.
Otherwise, it is possible that the place you got your kernel from already has the
PREEMPT_RT patch applied. Otherwise, you will have to apply the patch yourself.
Firstly, make sure that the PREEMPT_RT patch version and your kernel version match
exactly, otherwise you will not be able to apply the patches cleanly. Then you apply
it in the normal way, as shown here:

$ cd linux-4.1.10

$ zcat patch-4.1.10-rt11.patch.gz | patch -p1

You will then be able to configure the kernel with CONFIG_PREEMPT_RT_FULL.

There is a problem in the last paragraph. The RT patch will only apply if you are
using a compatible mainline kernel. You are probably not because that is the nature
of embedded Linux kernels and so you will have to spend some time looking at failed
patches and fixing them, and then analyzing the board support for your target and
adding any real-time support that is missing. These details are, once again, outside
the scope of this book. If you are not sure what to do, you should inquire of the
developers of the kernel you are using and on kernel developer's forums.

The Yocto Project and PREEMPT_RT
The Yocto Project supplies two standard kernel recipes: linux-yocto and linux-
yoco-rt, the latter having the real-time patches already applied. Assuming that
your target is supported by these kernels, then you just need to select linux-yocto-rt
as your preferred kernel and declare that your machine is compatible, for example,
by adding lines similar to these to your conf/local.conf:

PREFERRED_PROVIDER_virtual/kernel = "linux-yocto-rt"
COMPATIBLE_MACHINE_beaglebone = "beaglebone"

Real-time Programming

[364]

High resolution timers
Timer resolution is important if you have precise timing requirements which is
typical for real-time applications. The default timer in Linux is a clock that runs at
a configurable rate, typically 100 Hz for embedded systems and 250 Hz for servers
and desktops. The interval between two timer ticks is known as a jiffy and, in the
examples given above, is 10 milliseconds on an embedded SoC and four milliseconds
on a server.

Linux gained more accurate timers from the real-time kernel project in version 2.6.18
and now they are available on all platforms, providing that there is a high resolution
timer source and device driver for it – which is almost always the case. You need to
configure the kernel with CONFIG_HIGH_RES_TIMERS=y.

With this enabled, all the kernel and user space clocks will be accurate down to
the granularity of the underlying hardware. Finding the actual clock granularity
is difficult. The obvious answer is the value provided by clock_getres(2) but
that always claims a resolution of one nanosecond. The cyclictest tool that I will
describe later has an option to analyze the times reported by the clock to guess the
resolution:

cyclictest -R

/dev/cpu_dma_latency set to 0us

WARN: reported clock resolution: 1 nsec

WARN: measured clock resolution approximately: 708 nsec

You can also look at the kernel log messages for strings like this:

dmesg | grep clock

OMAP clockevent source: timer2 at 24000000 Hz

sched_clock: 32 bits at 24MHz, resolution 41ns, wraps every
178956969942ns

OMAP clocksource: timer1 at 24000000 Hz

Switched to clocksource timer1

The two methods give rather different numbers, for which I have no good
explanation but, since both are below one microsecond, I am happy.

Avoiding page faults in a real-time
application
A page fault occurs when an application reads or writes memory that is not
committed to physical memory. It is impossible (or very hard) to predict when a
page fault will happen so they are another source of non-determinism in computers.

Chapter 14

[365]

Fortunately, there is a function that allows you to commit all memory for a process
and lock it down so that it cannot cause a page fault. It is mlockall(2). These are its
two flags:

• MCL_CURRENT: locks all pages currently mapped
• MCL_FUTURE: locks pages that are mapped in later

You usually call mlockall(2) during the start up of the application with both flags
set to lock all current and future memory mappings.

Note that MCL_FUTURE is not magic in that there will still be
non-deterministic delay when allocating or freeing heap memory
using malloc()/free() or mmap(). Such operations are best
done at start up and not in the main control loops.

Memory allocated on the stack is trickier because it is done automatically and if you
call a function that makes the stack deeper than before, you will encounter more
memory management delays. A simple fix is to grow the stack to a size larger than
you think you will ever need at start up. The code would look like this:

#define MAX_STACK (512*1024)
static void stack_grow (void)
{
 char dummy[MAX_STACK];
 memset(dummy, 0, MAX_STACK);
 return;
}

int main(int argc, char* argv[])
{
 [...]
 stack_grow ();
 mlockall(MCL_CURRENT | MCL_FUTURE);
 [...]

The stack_grow() function allocates a large variable on the stack and then zeroes it
to force those pages of memory to be committed to this process.

Real-time Programming

[366]

Interrupt shielding
Using threaded interrupt handlers helps mitigate interrupt overhead by running
some threads at a higher priority than interrupt handlers that do not impact the real-
time tasks. If you are using a multi-core processor, you can take a different approach
and shield one or more cores from processing interrupts completely, allowing them
to be dedicated to real-time tasks instead. This works either with a normal Linux
kernel or a PREEMPT_RT kernel.

Achieving this is a question of pinning the real-time threads to one CPU and
the interrupt handlers to a different one. You can set the CPU affinity off a
thread or process using the command line tool taskset, or you can use the
sched_setaffinity(2) and pthread_setaffinity_np(3) functions.

To set the affinity of an interrupt, first note that there is a subdirectory for each
interrupt number in /proc/irq/<IRQ number>. The control files for the interrupt
are in there, including a CPU mask in smp_affinity. Write a bitmask to that file
with a bit set for each CPU that is allowed to handle that IRQ.

Measuring scheduling latencies
All the configuration and tuning you may do will be pointless if you cannot show
that your device meets the deadlines. You will need your own benchmarks for the
final testing but I will describe here two important measurement tools: cyclictest
and Ftrace.

cyclictest
cyclictest was originally written by Thomas Gleixner and is now available on most
platforms in a package named rt-tests. If you are using the Yocto Project, you can
create a target image that includes rt-tests by building the real-time image recipe
like this:

$ bitbake core-image-rt

If you are using Buildroot, you need to add the package, BR2_PACKAGE_RT_TESTS in
the menu Target packages | Debugging, profiling and benchmark | rt-tests.

cyclictest measures scheduling latencies by comparing the actual time taken for a
sleep to the requested time. If there was no latency they would be the same and the
reported latency would be zero. cyclictest assumes a timer resolution of less than
one microsecond.

Chapter 14

[367]

It has a large number of command-line options. To start with, you might try running
this command as root on the target:

cyclictest -l 100000 -m -n -p 99

/dev/cpu_dma_latency set to 0us

policy: fifo: loadavg: 1.14 1.06 1.00 1/49 320

T: 0 (320) P:99 I:1000 C: 100000 Min: 9 Act: 13 Avg: 15
Max: 134

The options selected are as follows:

• -l N: loop N times: the default is unlimited
• -m: lock memory with mlockall
• -n: use clock_nanosleep(2) instead of nanosleep(2)
• -p N: use the real-time priority N

The result line shows the following, reading from left to right:

• T: 0: this was thread 0, the only thread in this run. You can set the number
of threads with parameter -t.

• (320): this was PID 320.
• P:99: the priority was 99.
• I:1000: the interval between loops was 1,000 microseconds. You can set the

interval with parameter -i N.
• C:100000: the final loop count for this thread was 100,000.
• Min: 9: the minimum latency was 9 microseconds.
• Act:13: the actual latency was 13 microseconds. The actual latency is

the most recent latency measurement, which only makes sense if you are
watching cyclictest run.

• Avg:15: the average latency was 15 microseconds.
• Max:134: the maximum latency was 134 microseconds.

This was obtained on an idle system running an unmodified linux-yocto kernel
as a quick demonstration of the tool. To be of real use, you would run tests over
a 24 hour period or more while running a load representative of the maximum
you expect.

Real-time Programming

[368]

Of the numbers produced by cyclictest, the maximum latency is the most
interesting, but it would be nice to get an idea of the spread of the values. You
can get that by adding -h <N> to obtain a histogram of samples that are up to N
microseconds late. Using this technique, I obtained three traces for the same target
board running kernels with no preemption, with standard preemption, and with
RT preemption while being loaded with Ethernet traffic from a flood ping. The
command line was as shown here:

cyclictest -p 99 -m -n -l 100000 -q -h 500 > cyclictest.data

The following is the output generated with no preemption:

Without preemption, most samples are within 100 microseconds of the deadline,
but there are some outliers of up to 500 microseconds, which is pretty much what
you would expect.

Chapter 14

[369]

This is the output generated with standard preemption:

With preemption, the samples are spread out at the lower end but there is nothing
beyond 120 microseconds.

Here is the output generated with RT preemption:

Real-time Programming

[370]

The RT kernel is a clear winner because everything is tightly bunched around the 20
microsecond mark and there is nothing later than 35 microseconds.

cyclictest, then, is a standard metric for scheduling latencies. However, it cannot
help you identify and resolve specific problems with kernel latency. To do that, you
need Ftrace.

Using Ftrace
The kernel function tracer has tracers to help track down kernel latencies—that is
what it was originally written for, after all. These tracers capture the trace for the
worst case latency detected during a run, showing the functions that caused the
delay. The tracers of interest, together with the kernel configuration parameters,
are as follows:

• irqsoff: CONFIG_IRQSOFF_TRACER traces code that disables interrupts,
recording the worst case

• preemptoff: CONFIG_PREEMPT_TRACER is similar to irqsoff, but traces
the longest time that kernel preemeption is disabled (only available on
preemptible kernels)

• preemptirqsoff: it combines the previous two traces to record the largest
time either irqs and/or preemption is disabled

• wakeup: traces and records the maximum latency that it takes for the highest
priority task to get scheduled after it has been woken up

• wakeup_rt: the same as wake up but only for real-time threads with the
SCHED_FIFO, SCHED_RR, or SCHED_DEADLINE policies

• wakeup_dl: the same but only for deadline-scheduled threads with the
SCHED_DEADLINE policy

Be aware that running Ftrace adds a lot of latency, in the order of tens of milliseconds,
every time it captures a new maximum which Ftrace itself can ignore. However, it
skews the results of user-space tracers such as cyclictest. In other words, ignore the
results of cyclictest if you run it while capturing traces.

Selecting the tracer is the same as for the function tracer we looked at in Chapter 13,
Profiling and Tracing. Here is an example of capturing a trace for the maximum period
with preemption disabled for a period of 60 seconds:

echo preemptoff > /sys/kernel/debug/tracing/current_tracer

echo 0 > /sys/kernel/debug/tracing/tracing_max_latency

echo 1 > /sys/kernel/debug/tracing/tracing_on

sleep 60

echo 0 > /sys/kernel/debug/tracing/tracing_on

Chapter 14

[371]

The resulting trace, heavily edited, looks like this:

cat /sys/kernel/debug/tracing/trace

tracer: preemptoff

#

preemptoff latency trace v1.1.5 on 3.14.19-yocto-standard

--

latency: 1160 us, #384/384, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0)

| task: init-1 (uid:0 nice:0 policy:0 rt_prio:0)

=> started at: ip_finish_output

=> ended at: __local_bh_enable_ip

#

#

_------=> CPU#

/ _-----=> irqs-off

| / _----=> need-resched

|| / _---=> hardirq/softirq

||| / _--=> preempt-depth

|||| / delay

cmd pid ||||| time | caller

\ / ||||| \ | /

 init-1 0..s. 1us+: ip_finish_output

 init-1 0d.s2 27us+: preempt_count_add <-cpdma_chan_submit

 init-1 0d.s3 30us+: preempt_count_add <-cpdma_chan_submit

 init-1 0d.s4 37us+: preempt_count_sub <-cpdma_chan_submit

[...]

 init-1 0d.s2 1152us+: preempt_count_sub <-__local_bh_enable

 init-1 0d..2 1155us+: preempt_count_sub <-__local_bh_enable_ip

 init-1 0d..1 1158us+: __local_bh_enable_ip

 init-1 0d..1 1162us!: trace_preempt_on <-__local_bh_enable_ip

 init-1 0d..1 1340us : <stack trace>

Real-time Programming

[372]

Here, you can see that the longest period with kernel preemption disabled while
running the trace was 1,160 microseconds. This simple fact is available by reading
/sys/kernel/debug/tracing/tracing_max_latency, but the trace above goes
further and gives you the sequence of kernel function calls that lead up to that
measurement. The column marked delay shows the point on the trail where each
function was called, ending with the call to trace_preempt_on() at 1162us, at
which point kernel preemption is once again enabled. With this information, you can
look back through the call chain and (hopefully) work out if this is a problem or not.

The other tracers mentioned work in the same way.

Combining cyclictest and Ftrace
If cyclictest reports unexpectedly long latencies you can use the breaktrace
option to abort the program and trigger Ftrace to obtain more information.

You invoke breaktrace using -b<N> or --breaktrace=<N> where N is the number of
microseconds of latency that will trigger the trace. You select the Ftrace tracer using
-T[tracer name] or one of the following:

• -C: context switch
• -E: event
• -f: function
• -w: wakeup
• -W: wakeup-rt

For example, this will trigger the Ftrace function tracer when a latency greater than
100 microseconds is measured:

cyclictest -a -t -n -p99 -f -b100

Further reading
The following resources have further information about the topics introduced in
this chapter:

• Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications by Buttazzo, Giorgio, Springer, 2011

• Multicore Application Programming by Darryl Gove, Addison Wesley, 2011

Chapter 14

[373]

Summary
The term real-time is meaningless unless you qualify it with a deadline and an
acceptable miss rate. When you know that you can determine whether or not Linux
is a suitable candidate for the operating system and, if so, begin to tune your system
to meet the requirements. Tuning Linux and your application to handle real-time
events means making it more deterministic so that it can process data reliably inside
deadlines. Determinism usually comes at the price of total throughput so a real-time
system is not going to be able to process as much data as a non-real-time system.

It is not possible to provide mathematical proof that a complex operating system like
Linux will always meet a given deadline, so the only approach is through extensive
testing using tools such as cyclictest and Ftrace, and, more importantly, using
your own benchmarks for your own application.

To improve determinism, you need to consider both the application and the kernel.
When writing real-time applications, you should follow the guidelines given in this
chapter about scheduling, locking, and memory.

The kernel has a large impact on the determinism of your system. Thankfully, there
has been a lot of work on this over the years. Enabling kernel preemption is a good
first step. If you still find that it is missing deadlines more often than you would like,
then you might want to consider the PREEMPT_RT kernel patches. They can certainly
produce low latencies but the fact that they are not in mainline yet means that you
may have problems integrating them with the vendor kernel for your particular
board. You may instead, or in addition, need to embark on the exercise of finding
the cause of the latencies using Ftrace and similar tools.

That brings me to the end of this dissection of embedded Linux. Being an engineer
of embedded systems requires a very wide range of skills, which range from a low
level knowledge of hardware, how the system bootstrap works and how the kernel
interacts with it, to being an excellent system engineer who is able to configure
user applications and tune them to work in an efficient manner. All of this has to
be done with hardware that is, almost always, only just capable of the task. There
is a quotation that sums this up, An engineer can do for a dollar what anyone else can
do for two. I hope that you will be able to achieve that with the information I have
presented during the course of this book.

[375]

Index
A
Ångström Distribution

URL 141
Application Binary Interface (ABI) 16
applications

debugging, GDB used 297
ARM machine numbers

references 92
Autotools

about 34, 35
SQLite library 36

Axis
URL 1

B
Babeltrace

URL 343
Barebox

about 66
building 67, 68
obtaining 66
reference 66
URL 66

BeagleBoard
URL 9

binutils
URL 14

block devices
defining 200-202

board-specific files 63, 64
board vendors 4
bootloader

about 5
defining 41, 42

moving, to kernel 46, 47
selecting 53

boot ramdisk
BeagleBone Black, booting 112
booting, with QEMU 112
creating 110, 111
initrd format 114
kernel, building with ramdisk 113, 114
proc, mounting 112
ramdisk, booting 111
ramdisk cpio, building 113
standalone ramdisk 111

boot sequence
about 42, 43
ROM code 43, 44
SPL 44
TPL 45

BSD (Berkeley Software Distribution) 6
Buildroot

init scripts 232
setting up 299

Buildroot menuconfig
BR2_ENABLE_DEBUG 329
BR2_LINUX_KERNEL_TOOL_PERF 329
BR2_STRIP = none 329

Buildroot project
configuring 133, 134
defining 132
installing 133
license compliance 140
package, adding 139, 140
reference 132
running 134-139
stable releases and support 133
URL 132

[376]

Buildroot User Manual
references 156

build systems
defining 130, 131

BusyBox
about 102, 103
alternative, ToyBox 104
building 103, 104
init program 231, 232
URL 104

C
C development toolkit (CDT) 311
character devices

defining 198-200
C library

components 28
eglibc 18
glibc 18
musl libc 19
selecting 18, 19
uClibc 19

CMake
URL 33

code
adding 138

commands, toolchain
addr2line 27
ar 27
as 27
c++filt 27
cpp 27
elfedit 27
g++ 27
gcc 27
gcov 28
Gdb 28
gprof 28
ld 28
nm 28
objcopy 28
objdump 28
ranlib 28
readelf 28
size 28

strings 28
strip 28

common flash interface (CFI) 161
Completely Fair Scheduler (CFS) 268
components, GNU toolchain

Binutils 14
C library 14
GNU Compiler Collection () 14

configuration header files 64
copy-on-write (CoW) 250
core files

about 306, 307
GDB, using 308

CPU architecture 16, 17
croostool-NG downloads section

URL 21
cross compiling

Autotools 34, 35
defining 33
makefiles 33
package configuration utility 37, 38
problems 38, 39
URL 14

cross toolchain
about 15
versus native toolchain 15

custom BSP
build 138
creating 136
Linux 137
U-Boot 136

cyclictest 366

D
daemon process

starting 118
data display debugger (DDD) 310
debug

defining 296
debug session

starting 299
device drivers

anatomy 218-220
block 198
character 198
compiling 221

[377]

defining 197, 198
finding 208, 209
GPIO 210, 211
I2C 214
in user-space 209
LEDs 213
loading 221
network 198
SPI 215

device nodes
about 107, 118
example, using devtmpfs 119
example, using mdev 119
static device nodes 120

device tables
filesystem images, creating with 122, 123

device trees
about 47
compiling 52, 53, 84
defining 48, 49
include files 51, 52
interrupts 50
phandles 50
reg property 49
URL 47

drivers
/sys/block 208
/sys/class 207
/sys/devices 206, 207
finding, at runtime 203-205
sysfs, defining 206

DVR (Digital Video Recorder) 1
dynamic linking

defining 29

E
Eclipse 311
EFI System Partition (ESP) 46
elements, embedded Linux

bootloader 5
kernel 5
root filesystem 5
toolchain 5

embedded Linux
elements 5

embedded MMC (eMMC) 164

EmbToolkit
URL 14

events
tracing 336

eXecute In Place (XIP) 161
Extended Application Binary

Interface (EABI) 17

F
field update

about 192
atomic image update 193, 194
granularity 193

file permissions
problems 126

Filesystem Hierarchy Standard (FHS)
about 97, 127
URL 127

filesystem images
creating, with device tables 122, 123

filesystems
defining, for flash memory 173
flash translation layers 173
mounting 108
selecting 191

filesystems, for managed flash
defining 183
Discard and TRIM 185, 186
Ext4 186, 187
F2FS 187
FAT16/32 187, 188
Flashbench 184

filesystems, for NOR and NAND
flash memory

about 174
JFFS2 175, 176
UBI 179
UBIFS 175, 179
YAFFS2 175, 178

Flashbench
about 184
URL 184

Flash-Friendly File System (F2FS) 187
flash memory

accessing, from bootloader 165
accessing, from Linux 166

[378]

flash memory, from bootloader
eMMC 166
SD 166
U-Boot and MMC 166
U-Boot and NAND flash 166
U-Boot and NOR flash 165, 166

flash memory, from Linux
memory technology devices (MTD) 167
MMC block driver 173

flash translation layer
about 173
deploying 174

flattened device tree (FDT) 41
forks and threads

debugging 305
Ftrace

about 337
CONFIG_DYNAMIC_FTRACE 337
CONFIG_FUNCTION_GRAPH_TRACER

337
CONFIG_FUNCTION_TRACER 337
dynamic Ftrace 340
preparing 337, 338
trace events 341, 342
trace filters 340, 341
using 338-340

G
GDB (GNU debugger)

about 295
and gdbserver, connecting 299
command files 301
used, for debugging applications 297

GDB commands
about 301
breakpoints 301
information commands 302
running and stepping 302
running, to breakpoint 302, 303

gdbserver
and GDB, connecting 299
used, for remote debugging 297, 298

GNU assembler
URL 14

GNU Autoconf
URL 34

GNU Automake
URL 34

GNU components
CPU 17
Kernel 17
operating system 17
Vendor 17

GNU debugger
about 295
data display debugger (DDD) 310
Eclipse 311
Terminal user interface (TUI) 309
URL 295
user interfaces 308

GNU project
URL 14

GNU toolchain
components 14

GPIO
about 210, 211
interrupts, handling from 211

GPL
URL 74

gprof 334-336
GRUB 2

about 46
URL 46

gummiboot
about 46
URL 46

H
hardware configuration

device trees 223
discovering 222
hardware, linking with device

drivers 224-226
platform data 223, 224

hardware, for embedded Linux 8
high resolution timers 364

I
init program

defining 115, 230, 231
inter-process communication

defining 255

[379]

message-based IPC 255-257
shared memory-based IPC 257

interrupt shielding 366
IOCTL

ECCGETLAYOUT 171
MEMERASE 171
MEMGETBADBLOCK 171
MEMGETINFO 171
MEMGETOOBSEL 171
MEMGETREGIONCOUNT 171
MEMGETREGIONINFO 171
MEMLOCK 171
MEMREADOOB 171
MEMSETBADBLOCK 171
MEMUNLOCK 171
MEMWRITEOOB 171
OTPGETREGIONCOUNT 171
OTPGETREGIONINFO 171
OTPSELECT 171

ISR (interrupt service routine) 358
Itsy PacKage format (ipk) 132

J
JFFS2

about 175, 176
clean markers 176
summary nodes 176

JFFS2 filesystem
creating 177

just-in-time debugging 305

K
Kconfig 62
kernel

about 5, 69
BeagleBone Black 86
booting 86
building 74
command line 89, 90
configuration, defining 75-79
defining 69-71
development cycle 71, 72
identifying, LOCALVERSION used 79, 80
licensing 73, 74
loading, TFTP used 126
messages 88

modules 80
QEMU 86
selecting 71
source, obtaining 74, 75
stable and long term support releases 72, 73
URL 73
vendor support 73

kernel boot messages
defining 135

kernel code
debugging 311
debugging, with kdb 316, 317
debugging, with kgdb 312
early code, debugging 314
modules, debugging 315
oops, defining 317-319
oops, preserving 319, 320
sample debug session 313, 314

kernel device driver
character device interface,

designing 216, 217
writing 216

kernel image
compiling 81-83

kernel modules
about 109
defining 222
reasons 222

kernel sources
cleaning 85

kernel space memory layout
defining 274, 275

kgdb
kernel code, debugging with 312
URL 312

L
layers, Yocto Project

BitBake and recipes 150, 151
references 147

Lesser General Public License (LGPL) 7
libraries

linking with 29
licenses, open source 6, 7
Linaro

URL 20

[380]

Linux
about 1
adoption, reasons 2
boot, automating with U-Boot scripts 61
porting, to new board 90
porting, with device tree 91
porting, without device tree 92, 93

Linux-tiny or Linux Kernel Tinification
URL 276

Linux Weekly News
URL 320

LLVM project
URL 14

logical erase blocks (LEB) 179
LTTng

about 343
and Buildroot 344
and Yocto 343
components 343
for kernel tracing 344-347
URL 343
using 343

M
managed flash

about 163
defining 165
eMMC 164
MultiMediaCard (MMC) 163, 164
secure digital cards 163, 164

memory
mapping, with mmap 282
used, for applications 284

memory leaks
identifying 288
mtrace 289
running out, of memory 291, 292
Valgrind 290

memory management unit (MMU) 8, 273
memory technology devices (MTD)

about 167
kernel oops, logging to MTD 172
MTD block device, mtdblock 172
MTD character device, mtd 171, 172
MTD device drivers 170

MTD partitions 167-169
NAND memory, simulating 173

memory usage
defining, for kernel 276, 277

message-based IPC
about 255
FIFOs and named pipes 256
POSIX message queues 257
Unix (or local) sockets 256

mmap
memory, mapping with 282
used, for accessing device memory 283
used, for allocating private memory 282
used, for sharing memory 283

MMC block driver 173
modules

compiling 85
MultiMediaCard (MMC) 163
mutual exclusion

deadlock 263
poor performance 264
priority inversion 264

N
NAND flash 161, 162
Native POSIX Thread Library (NPTL) 260
native toolchain

about 15
versus cross toolchain 15

network
components, for glibc 121
configuring 120

network devices
defining 202, 203

NFS
used, for mounting root filesystem 124

non-determinism
sources, identifying 356

O
observer effect

about 323, 324
symbol tables 324

OEMs 4
Old Application Binary Interface (OABI) 17

[381]

open NAND flash interface (ONFi)
about 163
URL 163

open source
about 6
licenses 6, 7

open source community 3
OpenWrt

URL 132
operating system

selecting 3
OProfile

about 334
reference 334

out of band (OOB) 162
overlay

defining 138

P
package configuration utility

URL 37
package formats

defining 132
package managers

defining 132
page faults

avoiding, in real-time application 364, 365
PCMCIA (Personal Computer Memory Card

International Association) 165
perf

about 327
building, with Buildroot 329
building, with the Yocto Project 329
call graphs 331
kernel, configuring 328
perf annotate 332
profiling with 329-331

performance measurement unit (PMU) 328
per-process memory usage

about 285
rss (resident set size) 285
smem, using 286-288
tools, defining 288
top and ps, using 285, 286
vss (virtual set size) 285

physical erase blocks (PEB) 179

PREEMPT_RT patches
about 362, 363
references 363

process
creating 250
daemons 254
defining 247-249
different program, running 252-254
inter-process communication 255
terminating 251, 252

process memory map
defining 279, 280

proc filesystem 108
procrank

URL 288
profiling

about 325
poor man's profiler 327
with top 325, 326

program
executing 229, 230

proportional set size (Pss) 286
ps_mem

URL 288

Q
QEMU 10, 11

R
read-only compressed filesystems

about 188
squashfs 188

read-only memory (ROM) 159
real-time application

page faults, avoiding 364, 365
real-time Linux kernel (PREEMPT_RT) 359
real-time operating systems (RTOS) 247
real-time policies

about 269
SCHED_FIFO 269
SCHED_RR 269

real-time programming
about 353
examples 354, 355

Red Hat Package Manager (RPM) 132

[382]

roll your own (RYO) process
defining 129

root filesystem
about 5
BusyBox 102, 103
components 96
defining 96
directory layout 97
disk image 110
init program 101
libraries 105
mounting, NFS used 124
network 110
programs 101
ramdisk 110
shell 101
size, reducing by stripping 106
staging directory 98
testing, with BeagleBone Black 126
testing, with QEMU 125
transferring 110
utilities 102

root filesystem read-only
creating 190, 191

root filesytem
mounting, onto SD card 123

RYO (roll your own) 232

S
scheduling

about 267
fairness, versus determinism 267
policy, selecting 270
real-time policies 269
real-time priority, selecting 271
timeshare policies 268, 269

scheduling latency
about 357
cyclictest 366-370
cyclictest, combining with Ftrace 372
Ftrace, using 370-372
measuring 366

Scratchbox2
URL 16

Secondary Program Loader (SPL) 62
Secure Digital (SD) cards 163

Serial Peripheral Interface (SPI) 164
shared libraries

about 31
benefits 32
Buildroot 304
debugging 303
other libraries 304
version numbers, defining 32, 33
Yocto Project 303

shared memory-based IPC
about 257
POSIX shared memory 258-260

SLC (single level cell) 161
smem

URL 287
SoC vendors 4
SPI (Serial Peripheral Interface) 43
staging directory

about 98
file ownership permissions 100
POSIX file access permissions 99, 100

static libraries 30, 31
static linking

defining 29
storage options

defining 159, 160
managed flash 163
NAND flash 161, 162
NOR flash 160

strace
used, for displaying system

calls 349, 350
swapping

about 281
to compressed memory (zram) 281

sys filesystem 108
sysroot

setting 300
system calls

displaying, strace used 349
systemd

about 239
building, with Buildroot 240
building, with the Yocto Project 240
implications, for embedded Linux 245
service, adding 243, 244
services, defining 240-242

[383]

targets, defining 240-242
units, defining 240-242
used, for booting system 242, 243
watchdog, adding 244, 245

systemd system and Service Manager
references 246

System V init
about 233, 234
init.d scripts 237
inittab 234-236
new daemon, adding 237, 238
services, starting 239
services, stopping 239

T
TAR archive

URL 133
tarball

URL 54
task 353
temporary filesystems 189, 190
Terminal user interface (TUI) 309
Tertiary Program Loader (TPL) 62
TFTP

about 59
used, for loading kernel 126

third stage program loader (TPL) 44
threaded interrupt handlers 360, 361
Thread IDs (TIDs) 261
thread local storage (TLS) 263
threads

about 260
conditions, changing 264
defining 247-249
inter-thread communication 263
mutual exclusion 263
new thread, creating 261
problem, partitioning 265, 266
program, compiling with 263
terminating 262

timeshare policies 268
Tivo

URL 1
toolchain

about 5, 13
anatomy 24

cross compiler, defining 24-26
crosstool-NG, installing 21
defining 13-15
finding 20
header files 26
library 26
selecting 22, 23
sysroot 26
tools 27

toolchain types
native toolchain, versus cross

toolchain 15, 16
tri-level cell (TLC) chips 161
Trivial File Transfer Protocol. See TFTP

U
UBIFS 182, 183
U-Boot

about 53, 62
Boot image format 57, 58
building 54, 55, 65
environment variables 57
Falcon mode 65
images, loading 58, 59
installing 55, 56
Linux, booting 60
porting, to new board 61
testing 65
URL 53
using 56

uClibc
URL 19

UEFI firmware
booting with 46

UFS (universal flash storage) 201
Universal Extensible Firmware

Interface (UEFI)
about 46
URL 46

universal flash storage (UFS) 165
unsorted block image (UBI) 179-182
user accounts

adding, to root filesystem 117
configuring 116

User Mode Linux (UML) 11

[384]

user space
defining 88

user space memory layout
defining 278, 279

V
Valgrind

about 290, 347
for application profiling 347
URL 290

virtual memory
advantages 274
defining 273, 274

Y
YAFFS2 filesystem

about 178
creating 178
reference 178
URL 178

Yocto
and PREEMPT_RT 363

Yocto Project
about 141
building 145
components 142
configuring 144
defining 141, 142
image recipe, writing 153
images, customizing via 152
installing 143
layers 147-149
License audit 156
references 20, 143, 144, 156
running 146, 147
SDK, creating 154-156
setting up 298
stable releases and support 143
URL 131

Thank you for buying
Mastering Embedded Linux Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

BeagleBone Essentials
ISBN: 978-1-78439-352-6 Paperback: 240 pages

Harness the power of the BeagleBone Black to
manage external environments using C, Bash, and
Python/PHP programming

1. Learn the fundamentals of Beaglebone Black
via a detailed tutorial that provides practical
examples, from initial board setup to device
driver management.

2. Access external peripherals to monitor and
control an electronic device.

3. Monitor and control several electronic devices
with one of the best embedded computers.

Learning ROS for
Robotics Programming
Second Edition
ISBN: 978-1-78398-758-0 Paperback: 458 pages

Your one-stop guide to the Robot Operating System

1. Model your robot on a virtual world and learn
how to simulate it.

2. Create, visualize, and process Point Cloud
information.

3. Easy-to-follow, practical tutorials to program
your own robots.

Please check www.PacktPub.com for information on our titles

Learning Embedded Linux Using
the Yocto Project
ISBN: 978-1-78439-739-5 Paperback: 334 pages

Develop powerful embedded Linux systems with the
Yocto Project components

1. A hands-on guide to enhance your ability to
develop captivating embedded Linux projects.

2. Learn about the compelling features offered
by the Yocto Project, such as customization,
virtualization, and many more.

3. Illustrates concepts such device-emulation and
cross-compiling in a pragmatic and lucid way.

Using Yocto Project with
BeagleBone Black
ISBN: 978-1-78528-973-6 Paperback: 144 pages

Unleash the power of the BeagleBone Black
embedded platform with Yocto Project

1. Build real world embedded system projects
using the impressive combination of Yocto
Project and Beaglebone Black.

2. Learn how to effectively add multimedia to
your board and save time by exploiting layers
from the existing ones.

3. A step-by-step, comprehensive guide for
embedded system development with hands-on
examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting Out
	Selecting the right operating system
	The players
	Project lifecycle
	The four elements of embedded Linux

	Open source
	Licenses

	Hardware for embedded Linux
	Hardware used in this book
	The BeagleBone Black
	QEMU

	Software used in this book
	Summary

	Chapter 2: Learning About Toolchains
	What is a toolchain?
	Types of toolchain - native versus cross toolchain
	CPU architectures

	Choosing the C library
	Finding a toolchain
	Building a toolchain using crosstool-NG
	Installing crosstool-NG
	Selecting the toolchain

	Anatomy of a toolchain
	Finding out about your cross compiler
	The sysroot, library, and header files

	Other tools in the toolchain
	Looking at the components of the
C library
	Linking with libraries: static and
dynamic linking
	Static libraries
	Shared libraries
	Understanding shared library version numbers

	The art of cross compiling
	Simple makefiles
	Autotools
	An example: SQLite

	Package configuration

	Problems with cross compiling
	Summary

	Chapter 3: All About Bootloaders
	What does a bootloader do?
	The boot sequence
	Phase 1: ROM code
	Phase 2: SPL
	Phase 3: TPL

	Booting with UEFI firmware
	Moving from bootloader to kernel
	Introducing device trees
	Device tree basics
	The reg property
	Phandles and interrupts
	Device tree include files
	Compiling a device tree

	Choosing a bootloader
	U-Boot
	Building U-Boot
	Installing U-Boot
	Using U-Boot
	Environment variables
	Boot image format
	Loading images

	Booting Linux
	Automating the boot with U-Boot scripts

	Porting U-Boot to a new board
	Kconfig and U-Boot
	Board-specific files
	Configuration header files

	Building and testing
	Falcon mode

	Barebox
	Getting Barebox
	Building Barebox

	Summary

	Chapter 4: Porting and Configuring the Kernel
	What does the kernel do?
	Choosing a kernel
	Kernel development cycle
	Stable and long term support releases
	Vendor support
	Licensing

	Building the kernel
	Getting the source
	Understanding kernel configuration
	Using LOCALVERSION to identify your kernel
	Kernel modules

	Compiling
	Compiling the kernel image
	Compiling device trees
	Compiling modules

	Cleaning kernel sources
	Booting your kernel
	BeagleBone Black
	QEMU
	Kernel panic
	Early user space
	Kernel messages
	Kernel command line

	Porting Linux to a new board
	With a device tree
	Without a device tree

	Additional reading
	Summary

	Chapter 5: Building a Root Filesystem
	What should be in the root filesystem?
	Directory layout
	Staging directory
	POSIX file access permissions
	File ownership permissions in the staging directory

	Programs for the root filesystem
	The init program
	Shell
	Utilities
	BusyBox to the rescue!
	Building BusyBox

	ToyBox – an alternative to BusyBox

	Libraries for the root filesystem
	Reducing size by stripping

	Device nodes
	The proc and sysfs filesystems
	Mounting filesystems

	Kernel modules
	Transfering the root filesystem to
the target
	Creating a boot ramdisk
	Standalone ramdisk
	Booting the ramdisk
	Booting with QEMU
	Booting the BeagleBone Black
	Mounting proc

	Building a ramdisk cpio into the kernel image
	Another way to build a kernel with ramdisk

	The old initrd format

	The init program
	Configuring user accounts
	Adding user accounts to the root filesystem

	Starting a daemon process
	A better way of managing device nodes
	An example using devtmpfs
	An example using mdev
	Are static device nodes so bad after all?

	Configuring the network
	Network components for glibc

	Creating filesystem images with
device tables
	Putting the root filesytem onto an SD card

	Mounting the root filesystem using NFS
	Testing with QEMU
	Testing with BeagleBone Black
	Problems with file permissions

	Using TFTP to load the kernel
	Additional reading
	Summary

	Chapter 6: Selecting a Build System
	No more rolling your own embedded Linux
	Build systems
	Package formats and package managers
	Buildroot
	Background
	Stable releases and support
	Installing
	Configuring
	Running
	Creating a custom BSP
	U-Boot
	Linux
	Build

	Adding your own code
	Overlay
	Adding a package

	License compliance

	The Yocto Project
	Background
	Stable releases and support
	Installing the Yocto Project
	Configuring
	Building
	Running
	Layers
	BitBake and recipes

	Customizing images via local.conf
	Writing an image recipe
	Creating an SDK
	License audit

	Further reading
	Summary

	Chapter 7: Creating a Storage Strategy
	Storage options
	NOR flash
	NAND flash
	Managed flash
	MultiMediaCard and secure digital cards
	eMMC
	Other types of managed flash

	Accessing flash memory from the bootloader
	U-Boot and NOR flash
	U-Boot and NAND flash
	U-Boot and MMC, SD and eMMC

	Accessing flash memory from Linux
	Memory technology devices
	MTD partitions
	MTD device drivers
	The MTD character device, mtd
	The MTD block device, mtdblock
	Logging kernel oops to MTD
	Simulating NAND memory

	The MMC block driver

	Filesystems for flash memory
	Flash translation layers

	Filesystems for NOR and NAND flash memory
	JFFS2
	Summary nodes
	Clean markers
	Creating a JFFS2 filesystem

	YAFFS2
	Creating a YAFFS2 filesystem

	UBI and UBIFS
	UBI
	UBIFS

	Filesystems for managed flash
	Flashbench
	Discard and TRIM
	Ext4
	F2FS
	FAT16/32

	Read-only compressed filesystems
	squashfs

	Temporary filesystems
	Making the root filesystem read-only
	Filesystem choices
	Updating in the field
	Granularity: file, package, or image?
	Atomic image update

	Further reading
	Summary

	Chapter 8: Introducing Device Drivers
	The role of device drivers
	Character devices
	Block devices
	Network devices
	Finding out about drivers at runtime
	Getting information from sysfs
	The devices: /sys/devices
	The drivers: /sys/class
	The block drivers: /sys/block

	Finding the right device driver
	Device drivers in user-space
	GPIO
	Handling interrupts from GPIO

	LEDs
	I2C
	SPI

	Writing a kernel device driver
	Designing a character device interface
	Anatomy of a device driver
	Compile and load

	Loading kernel modules
	Discovering hardware configuration
	Device trees
	Platform data
	Linking hardware with device drivers

	Additional reading
	Summary

	Chapter 9: Starting up - The init Program
	After the kernel has booted
	Introducing the init programs
	BusyBox init
	Buildroot init scripts

	System V init
	inittab
	The init.d scripts
	Adding a new daemon
	Starting and stopping services

	systemd
	Building systemd with the Yocto Project
and Buildroot
	Introducing targets, services, and units

	How systemd boots the system
	Adding your own service
	Adding a watchdog
	Implications for embedded Linux

	Further reading
	Summary

	Chapter 10: Learning About Processes and Threads
	Process or thread?
	Processes
	Creating a new process
	Terminating a process
	Running a different program
	Daemons
	Inter-process communication
	Message-based IPC
	Summary of message-based IPC
	Shared memory-based IPC

	Threads
	Creating a new thread
	Terminating a thread
	Compiling a program with threads
	Inter-thread communication
	Mutual exclusion
	Changing conditions
	Partitioning the problem

	Scheduling
	Fairness versus determinism
	Timeshare policies
	Niceness

	Real-time policies
	Choosing a policy
	Choosing a real-time priority

	Further reading
	Summary

	Chapter 11: Managing Memory
	Virtual memory basics
	Kernel space memory layout
	How much memory does the kernel use?

	User space memory layout
	Process memory map
	Swap
	Swap to compressed memory (zram)

	Mapping memory with mmap
	Using mmap to allocate private memory
	Using mmap to share memory
	Using mmap to access device memory

	How much memory does my application use?
	Per-process memory usage
	Using top and ps
	Using smem
	Other tools to consider

	Identifying memory leaks
	mtrace
	Valgrind

	Running out of memory
	Further reading
	Summary

	Chapter 12: Debugging with GDB
	The GNU debugger
	Preparing to debug
	Debugging applications using GDB
	Remote debugging using gdbserver
	Setting up the Yocto Project
	Setting up Buildroot

	Starting to debug
	Connecting GDB and gdbserver
	Setting the sysroot
	GDB command files
	Overview of GDB commands
	Breakpoints
	Running and stepping
	Information commands

	Running to a breakpoint

	Debugging shared libraries
	The Yocto Project
	Buildroot
	Other libraries

	Just-in-time debugging
	Debugging forks and threads
	Core files
	Using GDB to look at core files

	GDB user interfaces
	Terminal user interface
	Data display debugger
	Eclipse

	Debugging kernel code
	Debugging kernel code with kgdb
	A sample debug session
	Debugging early code
	Debugging modules
	Debugging kernel code with kdb
	Looking at an oops
	Preserving the oops

	Additional reading
	Summary

	Chapter 13: Profiling and Tracing
	The observer effect
	Symbol tables and compile flags

	Beginning to profile
	Profiling with top
	Poor man's profiler

	Introducing perf
	Configuring the kernel for perf
	Building perf with the Yocto Project
	Building perf with Buildroot
	Profiling with perf
	Call graphs
	perf annotate

	Other profilers: OProfile and gprof
	Tracing events
	Introducing Ftrace
	Preparing to use Ftrace
	Dynamic Ftrace and trace filters
	Trace events

	Using LTTng
	LTTng and the Yocto Project
	LTTng and Buildroot
	Using LTTng for kernel tracing

	Using Valgrind for application profiling
	Callgrind
	Helgrind
	Using strace to show system calls
	Summary

	Chapter 14: Real-time Programming
	What is real-time?
	Identifying the sources of
non-determinism
	Understanding scheduling latency
	Kernel preemption
	The real-time Linux kernel (PREEMPT_RT)
	Threaded interrupt handlers
	Preemptible kernel locks
	Getting the PREEMPT_RT patches
	The Yocto Project and PREEMPT_RT

	High resolution timers
	Avoiding page faults in a real-time application
	Interrupt shielding
	Measuring scheduling latencies
	cyclictest
	Using Ftrace
	Combining cyclictest and Ftrace

	Further reading
	Summary

	Index

