
www.allitebooks.com

http://www.allitebooks.org

Mastering MeteorJS Application
Development

MeteorJS makes full-stack JavaScript application
development simple – Learn how to build better modern
web apps with MeteorJS, and become an expert in the
innovative JavaScript framework

Jebin B V

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering MeteorJS Application Development

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1181215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-237-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Jebin B V

Reviewer
Ethan Escareño Rosano

Commissioning Editor
Veena Pagare

Acquisition Editor
Indrajit Das

Content Development Editor
Preeti Singh

Technical Editor
Saurabh Malhotra

Copy Editor
Trishya Hajare

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jebin B V is fond of JavaScript and anything related to JavaScript excites him. He
is a front-end developer who has experience of full-stack development and also with
stacks such as LAMP. Right from the beginning of his career, he has worked as a
founding engineer for various startups.

Initially, he started his career as a PHP developer where he developed Web
applications using PHP and its frameworks such as YII, Zend, Symphony, and
WordPress. Later, he saw the growing potential of JavaScript and decided to be
a JavaScript developer. He self-taught JavaScript and its concepts, with which
he moved to work as a full-time JavaScript developer for a revolutionary big
data product called DataRPM. When he was a part of DataRPM, he developed a
significant part of the product that helped the product to grow rapidly.

At DataRPM, he nourished himself to be a challengeable JavaScript developer who
can build a whole product all alone. In a short period, he learned and mastered
JavaScript's quirks and solved many problems to scale the product. With JavaScript,
he also learned how to design modules using proper design patterns, structuring the
codebase, and maintaining the code discipline.

Along with development, he loves to teach. He always strives to share knowledge.
Whenever he finds a solution to a peculiar problem, he calls up the team to let them
know how he solved it. Not a single day of his life goes by without reading, and the
major part of his reading is about JavaScript and its ecosystem. The routine of his
professional life is reading about code, writing code, and teaching to code better.

Carrying all these experiences, he moved to another startup where he built, all alone,
the web version of the instant messaging application, Avaamo. The web version
was developed and launched in less than three months, which is now consumed by
all premium users, and there are also quite a few firms who run their businesses in
Avaamo Web.

www.allitebooks.com

http://www.allitebooks.org

Other than JavaScript, the only other thing he is very passionate about is
bodybuilding. He does weight training and calisthenics on his preferable schedules.
He is very concerned about pollution and thus he commutes by bicycle to work
every day. He has a very good sense of innovation and user experience, which is
driving him to build products that can solve day-to-day problems, again using
JavaScript and open source tools and frameworks such as MeteorJS.

I would like to thank everyone I have met in my career, especially
my friends, Muhammad Zakir, Subrata Mal, and Pratik Sinhal, who
helped me in the initial stage to scale my potential. It is an honor to
mention great minds and entrepreneurs I have met in my career,
such as Mohammad Basheer and Ruban Pukan, who believed in
me during my initial days and helped me broaden my vision. I
would like to thank my roommates, Sundar and Muthu Kumar,
who cooked food for me while I was busy in my endeavors.
Without them, I might have been starving.
I have to mention Harshal Ved who introduced me to Packt
Publishing, which led me to write this book. Thanks to him and
also sincere thanks to Indrajit Das who gave me the opportunity
to write this book. Also, thanks to Arwa Manasawala, Preeti Singh,
and Saurabh Malhotra who helped me patiently throughout the
entire process.
I extend my sincere thanks to all who wished to see me successful.
Thank you all.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Ethan Escareño Rosano's very first step in the programming world was to try
IOS developing. He then tried JAVA and finally fell in love with JavaScript. As many
developers, he too had to learn everything on his own. At some point, he quit his last
job and decided, along with his friend, Javier, to start coding his first app and his first
start-up, which was "Pa'donde", a web app that promised to empower the Mexican
commerce of restaurants. "Pa'donde" won a contest called "Possible", but due to some
disorganization, they couldn't present the project. After this, he worked for some
start-ups, where he met George. Currently, he's still working with his friend, Javier,
and his girlfriend, Katya. He is also working as a CTO for a start-up called Dobox.

Mainly, I would like to thank my mother and father who always let
me do what I liked and never forced me to do anything not to my
taste. A big thank you to the love of my life, Katya, without whom
none of this would be possible. Her love and patience has driven
me to achieve all my dreams. Everything I do is due to the courage
that she and my family have given me all these years. I would like
to thank the two entrepreneurs, George Everitt and Asad Aftab,
who helped me a lot to discover and make me realize my potential
in the development world. Last but not least, I would like to thank
my family, De la Rosa's family, and my good friend, Javier, for being
part of this crazy process.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Building a MeteorJS Web Application 1

An overview of MeteorJS 2
Server 2

MongoDB 3
Publish/Subscribe 3

Communication channel 4
Client 4

MiniMongo 4
Tracker 5
Blaze 5

Additional information 5
Developing a bus reservation application 6

Accounts 8
Signup 9
Signin 10

Creating a bus service 10
List and search 17
Reservation 23

Summary 30
Chapter 2: Developing and Testing an Advanced Application 31

Scaffolding in MeteorJS 32
Recreating the travel booking application 34

The app directory 34
Client 34
lib 35
Private and public packages 35
Server 35

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Generators for the application 36
Creating travel 36
Listing and search 43
Reservation 48

Debugging 56
Meteor shell 58

Testing MeteorJS application 59
Velocity 59
Testing BookMyTravel2 59

Summary 67
Chapter 3: Developing Reusable Packages 69

Introduction to packages 70
An installed package 70

Creating a package 71
Package.describe 75
Package.onUse 76
Package.onTest 77
The bucket package 77

Collection 77
Templates 77

Using the package 79
Testing the package 86
Distributing a package 87
Summary 88

Chapter 4: Integrating Your Favorite Frameworks 89
The server-side setup – FoodMenu 91

Collection 91
Publish 92
Access rules 92
Methods 93

The client-side setup – FoodMenu 93
Client packages 94
Application styles 94
The Angular.js application 95

The header section 95
The application container section 97
Uploading images 99
The AddItem Angular.js template 101
Demystifying the logic 103

Table of Contents

[iii]

Listing food items 103
Editing food items 105
Demystifying controller logic 109

React.js with MeteorJS 109
ReactFoodMenu 110

Setup 110
Server 110
Client 110
The first React.js component 111
The header section 111
The React.js component in Blaze 112
The container section 114
The application route 114
The AddEditItem component 115
The listing section 120

d3.js with MeteorJS 125
DataViz 125

HTML 125
Server 125
Client – d3.js code 126

Integrating any frontend framework with MeteorJS 130
Summary 130

Chapter 5: Captivating Your Users with Animation 131
Animation in Blaze templates 132
Animation using MeteorJS packages with Velocity.js 135
Animation using Snap.svg 141
Animation using d3.js 150
Animation using the Famo.us engine 154
Summary 157

Chapter 6: Reactive Systems and REST-Based Systems 159
An overview of MeteorJS' reactivity 159
MeteorJS' reactivity 160

Tracker 161
Optimizations in autoruns 165

REST-based systems 166
REST with iron-router 167
API guidelines 170
REST with restivus 172

Handling volumes of data 181
Summary 188

Table of Contents

[iv]

Chapter 7: Deploying and Scaling MeteorJS Applications 189
Understanding MeteorJS application deployment 190
Build tools for MeteorJS applications 191

Isobuild 191
Demeteorizer 192

Deploying a MeteorJS application 193
Meteor Up 193
Meteor deployment manager 194

Scaling a MeteorJS application 197
Scaling with Nginx 198
Scaling with Meteor cluster 200

Balancers 201
The multicore support 201
The SSL support 201
Mup and Cluster 202

The oplog tailing setup 204
Creating a replica set 204
Accessing the oplog from an application 205

Third-party MeteorJS hosting solutions 205
Meteor Galaxy 206
Modulus.io 206
Digital Ocean 207
Database solutions 207

Summary 208
Chapter 8: Mobile Application Development 209

Getting started 210
Developing a simple mobile application 212

The login interface 213
The profile interface 218
The contacts interface 222
The messages interface 228

Builds and deploying 232
Hot code push 232

More about the mobile app development 232
Accessing plugin methods 233
Debugging 233

Debugging Android 233
Debugging iOS 234

Testing 234
Packages 235

The package development 235
Summary 236

Table of Contents

[v]

Chapter 9: Best Practices, Patterns, and SEO 237
Summarizing the concepts 238

Publishing/subscribing 238
DDP 239
MergeBox 239
MiniMongo 240
Data retrieval from Mongo 240
Session 240
Sticky session 240
Fibers 240
Trackers 241
Blaze 241
Packages 241
Build tools 241

Best practices 242
Securing database operations 242

Database indexing 246
oplog tailing 246
Error handling 247
Testing 247
Managing subscriptions 247
Publish/subscribe only the necessary data 248
Application directory structure 249
Serving static assets 250
Application namespacing 251
Transformation classes 252
Latency compensation 252
Identifying performance and scalability issues 252

Application patterns 253
The package pattern 253
Problems with the usual way of writing MeteorJS code 254
What we must know about packages 254

DigiNotes 255
MVC 262
SEO 263
Spiderable 264

ES2015 and MeteorJS 265
Meet the community 265

Summary 268
Index 269

[vii]

Preface
Web is inevitably one of the core reasons for the advancements that we experience
today almost everywhere. Though the development of Web and its content has been
happening for quite a long period of time, the current decade is very significant,
especially for JavaScript. When people started writing JavaScript in servers, the
language became truly universal. Apart from Web, JavaScript has found its way
into IoT devices too, which is considered to be the most opportune.

The potential and traction of JavaScript has brought countless developers into
developing JavaScript-based applications, frameworks, and utilities. Even after
evolving so much, JavaScript application development is deficient in certain areas.
Developers are spending time on doing repetitive tasks, such as data fetching, wiring
them to views, posting data back to servers to persist, and so on. Moreover, it is
required to speed up the data transfer that is slow in the case of HTTP and HTTPS.
Keeping all these traditional problems in mind, a bunch of developers developed a
solution called MeteorJS.

MeteorJS provides most of the things that a developer would have to do repetitively,
out of the box. The developers need to concentrate mostly on business logic rather
than spending time on the basic data fetch and transfers, optimizations for network
latency, syncing of data across devices, and reactivity.

There are already plenty of developers and organizations using MeteorJS in
production. Many are experimenting with MeteorJS to make it the de facto
framework for their future work. This book is written with the intention to guide
those who are experimenting with MeteorJS to develop their future applications.

The best part of the book is that it doesn't just cover Web application development.
It helps to write maintainable MeteorJS applications and deploy them to production.
In short, the book aims at guiding the developers to develop production-ready,
mobile-compatible, and horizontally scalable MeteorJS applications.

Preface

[viii]

What this book covers
Chapter 1, Building a MeteorJS Web Application, provides an introduction to developing
a Web application using MeteorJS. Readers will develop a multipage, multilayout
application in this chapter, which gives enough insight about MeteorJS components
and routes.

Chapter 2, Developing and Testing an Advanced Application, helps you rebuild the same
application as in the previous chapter, but using a generator and other advanced
packages to ensure the app is of good quality. Every possible way of debugging the
entire application and testing the code is discussed in this chapter.

Chapter 3, Developing Reusable Packages, shows that packages are very important
blocks for any MeteorJS app. This chapter shows the reader, with a typical example,
how to develop and test custom packages and also provides the steps to distribute
them for community use.

Chapter 4, Integrating Your Favorite Frameworks, guides the readers to use Angular.js and
React.js with MeteorJS. MeteorJS has its own view layer managed by Blaze. However,
many developers want to use their favorite frontend framework instead of Blaze.
How powerfully d3.js can be used with MeteorJS is demonstrated with examples
in this chapter.

Chapter 5, Captivating Your Users with Animation, shows how animations improve the
user experience to a great extent. With all the in-built reactivity of MeteorJS views,
many developers struggle to find ways to incorporate animations. This chapter
walks you through creating soothing animations with a lot of examples.

Chapter 6, Reactive Systems and REST-Based Systems, helps us understand the reactivity
of MeteorJS to its depths and the precautions needed to handle reactivity. Also, this
chapter discusses how to use MeteorJS as a REST-based system for consuming API.

Chapter 7, Deploying and Scaling MeteorJS Applications, teaches you to deploy,
monitor, and scale MeteorJS applications, as MeteorJS is not so familiar in terms
of deployment.

Chapter 8, Mobile Application Development, helps you understand that one of the most
important features of MeteorJS is to write once and build for multiple platforms.
Developers can write code that can be ported as a mobile application in MeteorJS.
This chapter will guide you to develop an app for a mobile using MeteorJS.

Preface

[ix]

Chapter 9, Best Practices, Patterns, and SEO, discusses various best practices to design,
develop, and maintain MeteorJS applications, and also the best patterns to follow in
order to organize the code and structure modules. This chapter also guides you to
make the application search engine friendly to improve the sites ranking. With this
chapter, readers will get to know where to find anything related to MeteorJS.

What you need for this book
You will need the following things to understand the content of this book:

• Node.js
• NPM
• MeteorJS
• iron-cli
• MeteorJS hosting platform
• Cordova, iOS, and Android devices

Who this book is for
This book is for developers who want to develop MeteorJS applications in a mature
and maintainable way. The readers are expected to know the basics of MeteorJS
such as the core principles, templates, server and client code positioning, and basic
directory structuring. A little knowledge about querying MongoDB will help very
much to understand data fetching from MongoDB. It is assumed that the reader has
developed small example applications with MeteorJS.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Create the bookTravel directory in the client and add bookTravel.html."

A block of code is set as follows:

 data: function() {
 templateData = {
 _id: this.params._id,

Preface

[x]

 bus: BusServices.findOne({_id: this.params._id}),
 reservations: Reservations.find({bus:
 this.params._id}).fetch(),
 blockedSeats: BlockedSeats.find({bus:
 this.params._id}).fetch()
 };
 return templateData;
 }

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

Router.route("/book/:_id", {
 name: "book",
 layoutTemplate: "createTravelLayout",
 template: "bookTravel",
 waitOn: function () {
 Meteor.subscribe("BlockedSeats", this.params._id);
 Meteor.subscribe("Reservations", this.params._id);
 },

Any command-line input or output is written as follows:

iron add velocity:html-reporter

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Click on the Cart division in the top-right."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

Preface

[xi]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

www.allitebooks.com

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

Preface

[xii]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Chapter 1

[1]

Building a MeteorJS
Web Application

The need for omni-presence has increased dramatically and the Web is the primary
means of being really omni-present. This has led to tremendous advancements
in the technology that subsequently gave us a window to the ever-growing Web,
which is browsers. To develop something interactive in the browser, we end up
with the ultimate language, JavaScript. Though it is the most underestimated and
misinterpreted language, it has gained enormous value in the last decade. The rise
of libraries and frameworks, such as jQuery, YUI, Backbone.js, Angular.js, Ember.js,
and so on, have transformed the way applications are developed today. It didn't stop
there, and the language found its space in the server as well, with the introduction of
Node.js. Now, the language also manages to find a warm welcome in IoT space, with
the introduction of Tessel.io, Windows 10, and so on. This is a better time than ever
to become a JavaScript developer.

There is a trend where backend, that is, the data access layer, is developed with
other languages, while the whole app is rendered and managed using one of
the MV* JavaScript frameworks in the browser itself. With Node.js, JavaScript
applications started becoming isomorphic. Node.js is very popular because of the
default asynchronous behavior. Frameworks such as Express.js helped to create
isomorphic applications.

Still something was missing. Even after all these improvements, we developed
applications with a lot of redundancies in terms of code. For example, data fetching,
data binding, view to model reactivity, and so on, are not really that efficient. So, a
group of developers gathered around and found a powerful solution called MeteorJS.
This book is about mastering your skill to develop applications using MeteorJS.

Building a MeteorJS Web Application

[2]

In this chapter, we will learn the following parts of MeteorJS by developing
an application:

• MeteorJS internals and working principles
• How to build a customized login solution
• How to create routes, templates, and layouts
• Handling forms from the template handlers
• Persisting the data to a database
• Data handling between the client and server and reactive variables
• How to use multiple layouts in the application

An overview of MeteorJS
As I have mentioned earlier, MeteorJS is an open source isomorphic framework that
is built using JavaScript that runs on Node.js. The beauty of the framework lies in
the core principles of the framework. A truly modern application needs to be highly
reactive. To be reactive, the existing stack is not that great. HTTP is slow because
of the latency in handshaking on every request. The databases that we use are not
reactive. HTML needs to be updated as and when the data changes, which is an
overhead for developers. Also, the updated data must be transferred to all the clients
without a refresh or manual intervention. MeteorJS provides a one-stop solution for
all these problems and needs.

To master something, it is not enough to know how to use it, but also it is absolutely
necessary to know the internal working of the thing. In our case, it is really important
to know the working principles of MeteorJS to master it.

MeteorJS is built using a bunch of packages that can be used independently in one of
your projects if needed. Let's take a deeper look into these packages.

A typical MeteorJS application has three parts: the server, the communication
channel, and the client. Once a server is connected to a client, there is a socket
introduced between the client and the server. Any data transfer that happens
between the server and the client is through this socket.

Server
The server is where MeteorJS is installed on top of Node.js. MeteorJS, on the server,
is connected to MongoDB that is the default database for the framework.

Chapter 1

[3]

MongoDB
MongoDB is a NoSQL database. Each record is a document and the set of documents
is called a collection that is equivalent to a table in a SQL database. As you may
know, MongoDB is an in-memory JSON-based database, which means it is extremely
fast in favorable conditions. Usually, MongoDB can have operation logs, which is
called oplog. The oplog has the database operations happening with time. This is
used in the case of making the replica (slave) of the primary database. The operations
that happen in the primary database are copied to the secondary databases
asynchronously.

Though MongoDB is not a reactive database, Livequery, which is a part of MeteorJS,
does some work internally to get the updates of the database periodically. Livequery
can connect to the database and set triggers on certain conditions as required. In the
case of MongoDB, triggers are not supported. So, the Livequery depends on oplog
if enabled, or else it will poll the database at a particular interval. When oplog is
enabled, which should be the case for production, MeteorJS observes the oplog and
intelligently does the transaction. If oplog is not enabled, meteor polls the database,
computes the diff, and then sends the changed data to a client. Livequery can guess
when to poll the database as all the write operation to the database go via Livequery.

Publish/Subscribe
A very important part of MeteorJS is this good old design pattern. By default, the
entire Mongo database is published to the client from the server. However, it is not
good for production to auto-publish all the data to the client. Instead, the client can
subscribe to the required data that is published by the server. The subscriber will
automatically be updated whenever there is a change in the subscribed data:

/* Publishing from server. */
if (Meteor.isServer) {
 Meteor.publish("tasks", function () { //Registering "tasks"
 publication
 return Tasks.find();
 });
}
/* Subscribing from client */
Meteor.subscribe("tasks");

Building a MeteorJS Web Application

[4]

Communication channel
In the realm of publish and subscribe, there should be a way to transfer the
subscribed data. MeteorJS uses a protocol called Distributed Data Protocol (DDP).
To define DDP, it is simply a REST over Web socket. It is a socket implementation
that can transfer JSON data to and fro (duplex). MeteorJS uses Socket.io internally
to establish a socket connection between the client and the server. However, neither
the client nor the server knows to whom they are talking to. All they know is to talk
DDP over the socket.

DDP is human-readable and one can literally see what is transferred via DDP using
the package Meteor DDP analyzer. Over DDP, there will be either a message transfer
or procedure calls. You can use DDP not only with MeteorJS, but also with any other
languages or projects that can support socket. It is a common standard protocol
that gives a great way to pair with any other DDP-consuming implementation, if
required. Sockets reduce latency in a very high rate than HTTP, because of which it is
very much suitable for reactive applications.

Client
Let's say the server is ready with the data. How does the client keep all this data so
that it can be reactive? Also, who is doing the magic of refreshing the views when the
data changes?

Modern apps try their best to solve two things as intelligently as possible. One is
latency compensation and another is reactivity. MeteorJS does that quiet powerfully
using the following implementations.

MiniMongo
Being a developer, if you are implementing a table that can be sorted, filtered, and
paginated, what will you do to make it faster? Won't you fetch the data and keep it in
browser memory in the form of multi-dimensional array, apply all the operations on
the cached array, and update the table as and when required? The same is the case
for MeteorJS with little advancement in the cache implementation. Instead of using
a plain object or array, MeteorJS creates a cache in the browser called MiniMongo,
which is again a simplified client memory database. The highlight is that you can
query it in the way you query the MongoDB that enables you to use the same query
both in the client and the server.

Whenever there is change in MongoDB, the server sends the difference to the client
and that data is stored in MiniMongo. At any instance, MeteorJS tries to keep both
the MongoDB in sync.

Chapter 1

[5]

Tracker
Now, the data is with the client. Let's call this model. In a MV* framework, we
have the views bound to models to auto-update the views as the model changes. In
Backbone.js, you have to do it explicitly. However, in Angular.js, it is taken care of by
the framework itself with the help of $ scope and digest cycles. How does MeteorJS
handle data changes? With the help of Trackers. Trackers create observers for
everything you need to track. By default, MeteorJS has enabled a tracker on certain
data sources, such as database cursors and session variables. You can even have a
custom variable to be tracked using the tracker.

Blaze
Blaze is a templating engine that is reactive because of the tracker. Blaze plays the
magical part of reactivity by binding the data to the templates. An important point
to note is that Blaze is declarative, which means you just have to tell Blaze what
to do when the data changes, and need not say how to do it. With the help of the
tracker, Blaze keeps a track of model changes and reacts to the change. The default
templates are spacebars. This is a variant of Handlebar's templating engine. You
can use Jade as well. Blaze is again intelligent to compute the diff of what needs to
be updated. It doesn't update all the template until it is necessary. Blaze handles the
user interactions and thereby makes a call to the server, if absolutely needed.

Additional information
Developers can use MeteorJS ecosystem, which has a lot of packages to use in the
application. Iron router, masonry, auto-form, simple schema, and twitter bootstrap
are a few important packages for application development. Being a Node.js-based
framework, developers can harness the power of Node.js ecosystem as well. You can
also use NPM packages in the MeteorJS application.

MeteorJS does hot code deployment, which means without restarting the application,
the code is deployed and the client will see the changes without completely
refreshing the browser.

MeteorJS has just reached 1.x. There are many new features and
implementations yet to come such as drivers for different databases,
support of various front-end frameworks, and so on. However, basically,
MeteorJS is designed in a way to accommodate anything just by small
integration work. If you really want to see if this is true, check their source
in GitHub (https://github.com/meteor/meteor/tree/devel).

https://github.com/meteor/meteor/tree/devel

Building a MeteorJS Web Application

[6]

It was said, "To know the truth, return to the source".

If you are interested in learning more about the framework's internals, I would
suggest take a look at the source code that will help you learn a lot of new things.

Developing a bus reservation application
Long story, short—MeteorJS is awesome. Let's take a look at the awesomeness of
MeteorJS by developing an application.

By developing this application, you will learn about MeteorJS login, routing, using
multiple layouts based on route, form handling, database operations, publishing and
subscribing data, custom reactive data sources, and server calls. By the end, you will
see the reactivity of the framework in action.

To understand and experience MeteorJS, we are going to build a bus reservation
application. Let's define what we are going to develop and then get our hands dirty:

• Develop and enable account creation and login
• Create bus services
• Create a landing page that has the list of buses available
• Develop a search section besides the listing so that the users can reach their

appropriate bus for booking
• Create a reservation page where users can block and reserve the seats

To keep the application simple, a lot of details are omitted. You can implement them
on your own later.

This is not the professional way to build MeteorJS. With this application,
you will get started and in the upcoming chapters, you will learn how to
develop apps like a pro.
Basic prerequisite is that Meteor must be installed. You should know
how to create an application and add or remove packages, and also know
a little about routes, mongo, and collections.

Chapter 1

[7]

Let's start from scratch. Create a MeteorJS application using the create command
(meteor create BookMyTravel) and remove all the default .html, .css, and .js
files. Create the following directories: assets, client, commons, and server.
Remove the insecure (meteor remove insecure) and autopublish (meteor remove
autopublish) packages. Add the twitter bootstrap (meteor add twbs:bootstrap)
package that will help us with layout and designing. Add the Moment.js (meteor
add momentjs:moment) package for data manipulation.

As our application is not a single page application, routes are required to navigate
between pages. For routing purposes, we'll use the famous iron-router package.
Add the iron-meteor package to the application by running the meteor add
iron:router command. Create the routes.js file inside the commons directory
and add the following code:

Router.configure({
 notFoundTemplate: 'notFound', //template with name notFound
 loadingTemplate: 'loading' //template with name loading
});
Router.onBeforeAction('loading'); //before every action call show
 loading template

Define these two templates in an HTML file of your choice as follows:

<template name="notFound">
 <div class="center">You are lost</div>
</template>
<template name="loading">
 Loading...
</template>

Here, we specify the global loading template and the page-not-found template. If you
only have one layout template for the entire application, you can add it here. This
configuration is optional and you can create those templates as per your need. If you
configure these options, it is mandatory to create these templates. This configuration
will act as a global configuration. For more details, take a look at the iron-router
package documentation (https://github.com/iron-meteor/iron-router).

Since our application is going to be route-driven, which is a common trait of
large non-singe-page-applications, we have to define routes for each navigation.
This iron-router exposes the Router object into which we have to define (map)
your routes.

https://github.com/iron-meteor/iron-router

Building a MeteorJS Web Application

[8]

In each route, you can provide path as the first parameter that is the actual route,
an object as the second parameter that can have name that is useful for named
navigations, template that is the actual view, layoutTemplate that is optional and
is a container for the template mentioned earlier, and yieldTemplates that allows
you to render multiple templates into the layout specified. There are still a lot of
other options we can configure. However, these are the predominant ones. The
example for this is as follows:

//path is / which is the landing page
Router.route("/", {
 //name is "home"
 name: "home",
 //on route / the layout template will be the template named
 "homeLayout"
 layoutTemplate: "homeLayout",
 //on route / template named "home" will be rendered
 template: "home",
 //render template travelSearch to search section of the layout
 template.
 yieldRegions: {
 travelSearch: {to: "search"}
 }
});

Our application will use multiple layouts based on the routes. We will use two
different layouts for our application. The first layout (homeLayout) is for the landing
page, which is a two-column layout. The second layout (createTravelLayout) is for
travel (bus service) creation and for the reservation page, which is a single-column
layout. Also, define the loading and the notFound templates if you had configured
them.

Accounts
I am not going to explain much about account (signin/signup). MeteorJS comes, by
default, with accounts and the accounts-ui package that gives us instant actionable
login templates. Also, they provide third-party login services such as Google,
Facebook, Twitter, GitHub, and so on. All of these can be made available just by
configurations and less amount of code.

Still, they do not suffice for all of our needs. Clients might need custom fields such
as the first name, gender, age, and so on. If you don't find the accounts-ui package
to serve your purpose, write your own. MeteorJS provides extensive APIs to make
logging in smooth enough. All you need to do is understand the flow of events. Let
us list down the flow of events and actions for implementing a custom login.

Chapter 1

[9]

Signup
Create your own route and render the sign up form with all the desired fields. In
the event handler of the template, validate the inputs and call Account.createUser
(http://docs.meteor.com/#/full/accounts_createuser) with the e-mail ID
and password. The additional user information can go into the profile object. Also,
if required, you can change the profile information in the Account.onCreateUser
callback. You can use Accounts.config (http://docs.meteor.com/#/full/
accounts_config) to set certain parameters such as sending e-mail verification,
setting restrictions to account creation (unconditionally or conditionally), login
expiration, and secret keys. Obviously, we need to send a verification link to the
user by e-mail on signup. Add the e-mail package to the application and provide
the SMTP details at the server-side (http://docs.meteor.com/#/full/email) as
follows:

Meteor.startup(function () {
 smtp = {
 username: '', // eg: bvjebin@meteorapp.com
 password: '', // eg: adfdouafs343asd123
 server: '', // eg: mail.gmail.com
 port: <your port>
 }
 process.env.MAIL_URL = 'smtp://' +
 encodeURIComponent(smtp.username) + ':' +
 encodeURIComponent(smtp.password) + '@' +
 encodeURIComponent(smtp.server) + ':' + smtp.port;
});

If you are using the default e-mail verification, which is good to use, you can
customize the e-mail templates by adding the following code to the server that is
self-explanatory:

Meteor.startup(function() {
 Accounts.emailTemplates.from = 'Email Support
 <support@bookMyTravel.com>';
 Accounts.emailTemplates.siteName = 'Book My Travel';
 Accounts.emailTemplates.verifyEmail.subject = function(user) {
 return 'Confirm Your Email Address';
 };
 /** Note: if you need to return HTML instead, use .html instead
 of .text **/
 Accounts.emailTemplates.verifyEmail.text = function(user, url) {
 return 'click on the following link to verify your email
 address: ' + url;
 };
});

www.allitebooks.com

http://www.allitebooks.org

Building a MeteorJS Web Application

[10]

When the verification link is visited by the user, callbacks registered with the
Accounts.onEmailVerificationLink method will be called. If you want to prevent
auto-login, call the Account.createUser method in a server rather than in a client.
The Accounts.validateNewUser method can be used to register callbacks, which
will validate the user information. Throwing an error from this callback will stop
user creation.

Signin
The Meteor.loginWithPassword method (http://docs.meteor.com/#/full/
meteor_loginwithpassword) needs to be called if you have a custom login form.
There are helpers such as Accounts.validateLoginAttempt, Accounts.onLogin,
and Accounts.onLoginFailure to perform various actions in the middle via
callbacks, if needed. Once logged in, Meteor.user() and Meteor.userId will have
the user information. To check whether the user is logged in or not, you can use
if(Meteor.userId). In the Account.onLogin method, we can register a callback
that will navigate to a desired route on successful login.

The accounts package also provide various methods such as changePassword,
forgotPassword, sendResetPasswordEmail, resetPassword, setPassword, and
onResetPasswordLink that completes the accounts implementation. One can make
use of these methods to customize the login as required.

I hope all these details help you in creating a custom account management module.

Creating a bus service
Though this section is not going to be our landing page, we will develop the bus
service creation part first, which will give us enough data to play around the listing
section.

While developing a server-based application, we can start with routes, then the
models, followed by the interfaces, and, lastly, the server calls. Thinking in this order
will give us a fair idea to reach our goal.

Let's define a route. The route name is going to be createTravel. The URI or path
is /create-travel, the layout can be createTravelLayout and the template can
be createTravel. The route will look like the following code snippet; copy it to
routes.js.Router.route:

("/create-travel", {
 name: "createTravel",
 layoutTemplate: "createTravelLayout",
 template: "createTravel"
});

http://docs.meteor.com/#/full/meteor_loginwithpassword
http://docs.meteor.com/#/full/meteor_loginwithpassword

Chapter 1

[11]

Now, we need to define our collections. In the first place, we need a collection to
persist our travel service (bus services).

Create a file, collections.js, in the commons directory so that we can access
this collection both in the server and client. This is a big advantage of isomorphic
applications. You don't have to define collections in two places. Place the following
snippet in the collections.js file:

BusServices = new Meteor.Collection("busservice");

Mind the global variable BusServices that has to be global so that it can be accessed
across the application. Using a global variable is bad practice. Still, we have to live
with it in the case of MeteorJS. Where it is avoidable, avoid it.

MeteorJS will create the busservice collection in the database on the first insertion.
We get a handle to this collection using the BusServices variable. It's time to decide
all the fields we need to persist in the collection. We will have _id (auto-generated
by MeteorJS), name, agency, available_seats, seats, source, destination,
startDateTime, endDateTime, fare, createdAt, and updatedAt.

You can add whatever you feel that should be present. This part helps us to create the
UI to get the user inputs. Let's create a form where the user inputs all these details.

As mentioned in the route, we need a layout template and a view template to
display the form in the client. Create a directory with the name createTravel in the
client directory and add a layout file createTravelLayout.html. Our layout will be
as follows:

 <!-- name attribute is the identifier by which templates are
 identified -->
<template name="createTravelLayout">
 <div class="create-container">
 <header class="header">
 <h1>{{#linkTo route="home"}}BookMyTravel{{/linkTo}}</h1>
 <ul class="nav nav-pills">
 {{#linkTo route="home"}}List{{/linkTo}}

 </header>
 <section class="create-container__section">
 {{> yield}}
 </section>
 <footer class="footer">Copyright @Packt</footer>
 </div>
</template>

Building a MeteorJS Web Application

[12]

One important code in the template is {{> yield}}. This is a built-in helper/
placeholder where the actual view template will be placed, which means the
createTravel template will be placed in {{> yield}} as a part of this layout.

Create the view template file, createTravel.html, in the same directory as the
layout and paste the following code:

<template name="createTravel">
 <div class="row col-md-6 col-md-offset-3 top-space">
 <div class="col-md-12 well well-sm">
 <form action="#" method="post" class="form"
 id="signup-form" role="form">
 <div class="error"></div>
 <input class="form-control" name="name"type="text"
 required />
 <input class="form-control" name="agency"required />
 <input class="form-control" name="seats"type="number"
 required />
 <div class="row">
 <div class="col-xs-6 col-md-6"><input class="form-
 control" name="startpoint"type="text" required
 /></div>
 <div class="col-md-6"><input class="form-
 control" name="endpoint" type="text" required
 /></div>
 </div>
 <div class="row">
 <div class="col-md-3"><input class="form-control"
 name="startdate" type="date" required /></div>
 <div class="col-md-3"><input class="form-control"
 name="starttime" type="time" required /></div>
 <div class="col-md-3"> <input class="form-control"
 name="enddate" type="date" required /></div>
 <div class="col-md-3"><input class="form-control"
 name="endtime" type="time" required /></div>
 </div>
 <input class="form-control" name="fare"
 type="number" required />
 <button class="btn btn-lg btn-primary btn-block"
 type="submit">Create</button>
 </form>
 </div>
 </div>
</template>

Chapter 1

[13]

We are almost there. We need to see how this looks. Start the meteor server using the
meteor or meteor -p <port number 3001> command. Navigate to localhost:3000/
create-travel in your browser.

You will see the form, but the layout is broken. Some styles are needed. Create a file,
styles.css, in assets directory and add the following styles to it. I am using a flex
box for the layout, along with a twitter bootstrap:

body { height: 100vh; display: flex;}
.header, .footer {
 flex: 0 1 auto;
 height: 60px;
 border-top: 1px solid #ccc;
 background: #ddd;
 display: flex;
 align-items: center;
 justify-content: space-between;
 padding: 0 20px;
}
.header {border-bottom: 1px solid #aaa;}
.header h1 { margin: 0; }
.footer {height: 40px; text-align: center; justify-content:
 center;}
.home-container, .create-container {width: 100%;display:
 flex;flex-direction: column;}
.home-container__section, .create-container__section {display:
 flex;flex: 1 1 auto;overflow: auto;}
.home-container__section__left {flex: 1 1 auto;box-shadow: inset
 0px 0px 4px 1px #ccc;}
.main {overflow: auto;}
.bus-list {margin: auto;}
.bus-list__header {background-color: #ddd;height: 45px;}
.bus-list__row {border-bottom: 1px solid #ccc;height: 50px;}
.bus-list__row-empty {padding: 20px;}
.bus-list__row__col {text-align: center;border-right: 1px solid
 #fff;height: 100%;display: flex;justify-content:
 center;align-items: center;
}
.bus-list__row__col.last {border: 0;}
.bus-list__body {background-color: #efefef;}
.accounts-container__row { margin-top: 7em; }
.busView {display: flex;flex-direction: column;padding: 20px 0;}
.busView__title {flex: 0 1 auto;height: 50px;}

Building a MeteorJS Web Application

[14]

.busView__seats {margin: 0 auto;}

.busView__left, .busView__right {border: 1px solid #ccc;}

.busView__book {padding-top: 2em;}

.busView__seat {text-align: center;vertical-align: middle;height:
 25px;width: 25px;border: 1px solid #ccc;margin: 13px;cursor:
 pointer;display: inline-block;}
.busView__seat.blocked {background-color: green;}
.busView__seat.reserved {background-color: red;}
.busView__divider {display: inline-block;}
.busView__divider:last-child {display: none;}
.top-space {margin-top: 5em;}
.error {color: red;padding-bottom: 10px;}
.clear {clear: both;}
.form-control { margin-bottom: 10px; }

This has all the necessary styles for the whole application. Visit the page in the
browser and you will see the form with styles applied and layout fixed, as shown in
the following image. MeteorJS refreshes the browser automatically when it detects a
change in the files:

The last part of the create section is persistence. We have to collect the input on
submit, validate it, and call the server to persist it. We should try to avoid direct
database insertions from the client.

Chapter 1

[15]

To collect data from the client, we will create a helper file, createTravel.js, in the
createTravel directory and add the following code to it:

Template.createTravel.events({
 "submit form": function (event) {
 event.preventDefault();
 //creating one object with all the properties set from user
 input
 var busService = {
 name: event.target.name.value,
 agency: event.target.agency.value,
 seats: parseInt(event.target.seats.value, 10),
 source: event.target.startpoint.value,
 destination: event.target.endpoint.value,
 startDateTime: new Date(event .target.startdate.value+"
 "+event.target.starttime.value),
 endDateTime: new Date(event .target.enddate.value+"
 "+event.target.endtime.value),
 fare: event.target.fare.value
 };
 //Checking if start time is greater than end time and throwing
 exception
 if(busService.startDateTime.getTime() >
 busService.endDateTime.getTime()) {
 $(event.target).find(".error").html("Start time is greater
 than end time");
 return false;
 }
 //Server call to persist the data.
 Meteor.call("createBusService", busService, function(error,
 result) {
 if(error) {
 $(event.target).find(".error").html(error.reason);
 } else {
 Router.go("home");
 }
 });
 }
});

Downloading the example code
You can download the example code files from your account
at http://www.packtpub.com for all the Packt Publishing
books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Building a MeteorJS Web Application

[16]

MeteorJS provides the Template global variable that holds the template objects in the
page. So far, we have two templates, the createTravel and createTravelLayout templates.
One can add events and helpers to these templates using these objects. If you look
at the preceding code snippet, we are attaching a submit handler to the form we
created. One can refer any template using the name of the templates. Everything else
is pretty straightforward. By default, jQuery is available inside the template helpers,
and if you wish, you can use it for DOM data retrieval.

In the submit handler, all we do is, collect the filled form data and pack it in an
object. You can validate if you need it right here. There is a validation which checks
for the start time to be greater than the end time and stops proceeding to call the
server. The rest of the fields are validated by HTML5 form attributes.

The important part of the preceding code snippet is the last few lines, which is the
call to the server. Now is the time to create the server handler.

Create a file, createTravel.js, in the server directory and add the following code
snippet to the file:

Meteor.methods({
 createBusService: function(busService) {
 if(!busService.name) {
 throw new Meteor.Error("Name cannot be empty");
 }
 if(!busService.agency) {
 throw new Meteor.Error("Agency cannot be empty");
 }
 if(!busService.seats) {
 throw new Meteor.Error("Seats cannot be empty");
 }
 busService.createdAt = new Date();
 busService.updatedAt = null;
 busService.available_seats = parseInt(busService.seats, 10);
 BusServices.insert(busService);
 }
});

We have created a server method called createBusService, which takes the
busService object, does some validation, and then adds createdAt, updatedAt and
available_seats. Finally, it inserts the objects to the database. The BusServices
object is the collection variable we created sometime back, if you remember.

Chapter 1

[17]

It is always good to do the validation at the server end as well. This is because, at the
developer front, it is always said, not to trust the client. They can modify a client-
side validation easily and make the client post the irrelevant data. As developers, we
have to do all the necessary validations at the server end.

This server method is called from the client in the submit handler using Meteor.call
with three arguments: the server method name, parameters to the server, and callback.

The callback is called with two parameters: error and result. If there is an error, result
is undefined; if the result is present, the error is undefined. One can do post actions
based on these parameters inside the callback; for example, in our case, we navigate
to the home route if all went well, or else we show the error to the user at the top of
the form.

Try filling the form now and check whether everything is fine. If the form data is
inserted to the database, you will be taken to localhost:3000/. Here, if you have
configured notFoundTemplate in the router, it will be rendered. If not, you will see
the exception:

Oops, looks like there's no route on the client or the server for url: "http://
localhost:3000/".

The reason for this is that we haven't yet defined or mapped the / route to any
template so far. How to verify that the data is saved to the database?

Go to your project terminal and run the meteor mongo command. This will log you
into the mongo database console. Run the db.busservice.find().pretty() query.
This will show all the inserted data in the mongo console.

List and search
In this section of the application, we will show the list of buses available with their
details and also we are going to have a reactive search for the list.

Let's start with a route for the list. Add the following to the routes.js file in the
commons directory after the createTravel route, which we created earlier:

 Router.route("/", {
 name: "home",
 layoutTemplate: "homeLayout",
 template: "home",
 yieldRegions: {
 travelSearch: {to: "search"}
 }
});

Building a MeteorJS Web Application

[18]

This is the home route. When you hit localhost:3000/, you know what will
happen. Pretty much easy to remember, right?

Under the client directory, create a subdirectory called home. The directory name has
nothing to do with the route. This directory will have the files to display the list of
bus services. Let's create homeLayout.html, home.html, and homeHelper.js.

In homeLayout.html file, add the following code:

<template name="homeLayout">
 <div class="home-container">
 <header class="header">
 <h1>{{#linkTo route="home"}}Booking{{/linkTo}}</h1>
 <ul class="nav nav-pills">

 {{#linkTo route="createTravel"}}Create{{/linkTo}}

 </header>
 <section class="home-container__section">
 <div class="home-container__section__left container-fluid">
 {{> yield region="search"}}
 </div>
 <div class="main">
 {{> yield}}
 </div>
 </section>
 <footer class="footer">Copyright @Booking</footer>
 </div>
</template>

In home.html file, add the following two templates (list and search):

<template name="home">
 <div class="container bus-list">
 <div class="row bus-list__row bus-list__header">
 <div class="bus-list__row__col col-md-3">Bus</div>
 <div class="bus-list__row__col col-md-1">Available
 seats</div>
 <div class="bus-list__row__col col-md-1">Start point</div>
 <div class="bus-list__row__col col-md-1">End point</div>
 <div class="bus-list__row__col col-md-2">Start time</div>
 <div class="bus-list__row__col col-md-2">Reaching time</div>
 <div class="bus-list__row__col col-md-1">Fare</div>

Chapter 1

[19]

 <div class="bus-list__row__col last col-md-1">Book</div>
 </div>
 <div class="row bus-list__body">
 {{#if hasItem}}
 {{#each list}}
 <div class="bus-list__row">
 <div class="bus-list__row__col col-md-3">{{name}}
{{agency}}</div>
 <div class="bus-list__row__col col-md-
 1">{{available_seats}}/{{seats}}</div>
 <div class="bus-list__row__col col-md-1">{{source}}</div>
 <div class="bus-list__row__col col-md-
 1">{{destination}}</div>
 <div class="bus-list__row__col col-md-2">{{humanReadableDate
 startDateTime}}</div>
 <div class="bus-list__row__col col-md-2">{{humanReadableDate
 endDateTime}}</div>
 <div class="bus-list__row__col col-md-1">{{fare}}</div>
 <div class="bus-list__row__col last col-md-1">Book</div>
 </div>
 <div class="clear"></div>
 {{/each}}
 {{else}}
 <div class="row bus-list__row bus-list__row-empty">
 <div class="bus-list__row__col last col-md-12
 text-center">No buses found</div>
 </div>
 {{/if}}
 </div>
 </div>
</template>
<template name="travelSearch">
 <div class="col-xs-12 col-sm-12 col-md-12 text-center top-space
 well well-sm">
 Search
 </div>
 <div class="col-xs-12 col-sm-12 col-md-12 well well-sm">
 <div class="form" id="signup-form">
 <div class="error"></div>
 <input class="form-control" name="startpoint"
 placeholder="Source(starting from)" type="text" required="">
 <input class="form-control" name="endpoint"
 placeholder="Destination" type="text" required="">

Building a MeteorJS Web Application

[20]

 <input class="form-control" name="startdate"
 placeholder="Date" type="date" required="">
 <input class="form-control" name="fare" placeholder="Max
 prize" type="number" required="">
 </div>
 </div>
</template>

The last thing to add is the helper file. Create homeHelper.js and add the
following code:

Template.home.helpers({
 list: function() {
 return BusServices.find();
 },
 hasItem: function() {
 return BusServices.find().count();
 },
 humanReadableDate: function (date) {
 var m = moment(date);
 return m.format("MMM,DD YYYY HH:mm");
 }
});

Previously, we have attached events using the Template object. Now, we have
helpers with which you can pass the customized data to the template. Visit the
browser and you will find the empty list and the search form.

Wait, we have data in our database. Why didn't it show up in the list? Here comes
the data access pattern that we should follow. By default, MeteorJS doesn't send the
data to the client when there is no autopublish package. This is a good thing too.
When we create a large application, we might not need to send all the database data
to the client. The client will be interested in only a few, so let's
play with that few.

MeteorJS provides the publish and subscribe methods to publish the required
data from a server and subscribes those publications from a client. Let us use these
methods to get the data.

In createTravel.js file at the server directory, add the following code:

Meteor.publish("BusServices", function () {
 return BusServices.find({}, {sort: {createdAt: -1}});
});

Chapter 1

[21]

With this piece of code, the server publishes the busservices collection sorted by
the createdAt date with the BusServices identifier.

In the client, to subscribe this publication, add the following line at the top of the
homeHelper.js file:

Meteor.subscribe("BusServices");

After this addition, you will see that the list has the trips that you created earlier, as
shown in the following screenshot. Now, go create some more travels that we will
use for search:

Also, add the following event handler to homeHelper.js file:

Template.travelSearch.events({
 "keyup input": _.debounce(function(e) {
 var source = $("[name='startpoint']").val().trim(),
 destination = $("[name='endpoint']").val().trim(),
 date = $("[name='startdate']").val().trim(),
 fare = $("[name='fare']").val().trim(),
 search = {};
 if(source) search.source = {$regex: new RegExp(source),
 $options: "i"};
 if(destination) search.destination = {$regex: new
 RegExp(destination), $options: "i"};
 if(date) {
 var userDate = new Date(date);
 search.startDateTime = {
 $gte: userDate,
 $lte: new Date(moment(userDate).add(1,
 "day").unix()*1000)
 }
 }
 if(fare) search.fare = {$lte: fare};
 BusServices.find(search, {sort: {createdAt: -1}});
 }, 200)
});

Building a MeteorJS Web Application

[22]

This is a text box event handler that is debounced by 200 ms for improving
performance. The handler collects the search field's data and accumulates it into an
object and queries the collection. Do you see any change in the list when you search?
It won't, and that is where we get things wrong. Although we have subscribed
the busservice collection, MiniMongo holds the data from the server. From one
template, when you query the collection, the result doesn't update an other template.
We are not changing the subscription itself, instead just the local query. Then, how
do we make things happen?

MeteorJS has some data sources that are reactive, by default. For example, database
cursors and session variables. However, we need more, don't we? We need custom
variables to be reactive so that we can also do the magic. MeteorJS' core team
developers have thought about it and provided us with a simple package called
reactive-var.

Add the reactive-var package to the application using the meteor add reactive-
var command. The logic behind reactive variables is simple—when the value
changes, all the instances including the templates will get them immediately.

Simple example of reactive variables is as follows:

var reactVar = new ReactiveVar(2); //2 is default value that can
 be set in the constructor parameter.
reactVar.set(4); //will update the value of all instance where the
 reactVar variable is used.

Let's use it in our application. In homeHelper.js, add the following code snippet
before the Template.home.helpers method:

var busServicesList = new ReactiveVar([]);
Template.home.onCreated(function() {
 busServicesList.set(BusServices.find({}));
});

This initializes the reactive variable busServicesList with an empty array and
then sets the complete busservices collection when the home template' onCreated
callback is called. We will use this reactive variable in the templates, instead of the
actual collection query cursor. Change the list method in the template helpers to
the following:

list: function() {
 return busServicesList.get();
},
hasItem: function() {
 return busServicesList.get().count();
},

Chapter 1

[23]

Whenever there is a search, we have to update this reactive variable, which will
instantly update the template. It is that simple.

Go to the events handler of the search template and replace BusServices.
find(search, {sort: {createdAt: -1}}); with busServicesList.
set(BusServices.find(search, {sort: {createdAt: -1}}));.

Perform a search and see the update instantly. Pat yourself on the back. You have
accomplished a big job.

This isn't the only approach to implement a search. You can add a route-based
implementation, which will subscribe to collection every time you change the
route, based on search parameters. However, that isn't efficient because the client
has all the data, but still we are asking the server to send the data based on the
search parameter.

Reservation
We have reached the last part of the application. We have to allow the user to block
or reserve seats in the bus. Also, these actions must be instantaneous to all users,
which means both blocking and reservation should reflect in all the users' browsers
immediately so that we don't have to manually resolve users' seat selection conflicts.
Here, you will see the power of MeteorJS' reactivity:

As usual, we will create a route. Add the following code snippet to routes.js as
done earlier:

Router.route("/book/:_id", {
 name: "book",
 layoutTemplate: "createTravelLayout",
 template: "bookTravel",
 waitOn: function () {
 Meteor.subscribe("BlockedSeats", this.params._id);
 Meteor.subscribe("Reservations", this.params._id);
 },
 data: function() {
 templateData = {
 _id: this.params._id,
 bus: BusServices.findOne({_id: this.params._id}),
 reservations: Reservations.find({bus:
 this.params._id}).fetch(),
 blockedSeats: BlockedSeats.find({bus:
 this.params._id}).fetch()
 };

Building a MeteorJS Web Application

[24]

 return templateData;
 }
});

Hope you guessed what we are up to. On each record in the list of the listing page,
we have a link, which on click will hit this route and the relevant seating layout
will appear for the user to block or reserve the seats. What are those new properties
in the route? The waitOn property keeps the template rendering to wait until the
subscription is completed. We do this because subscriptions are asynchronous.
We pass the _id attribute of the bus service to the route and this is passed to the
subscription. Similarly, the data property is the place where we can prepare the data
that needs to be passed to the templates. Here, we prepare bus details, reservations
of the selected bus, and seats that are blocked in this bus; then, send them to the
template.

Where will we store all the reservation data? For this, we need a collection. So, let's
go to collections.js and add the following:

Reservations = new Meteor.Collection("reservations");

This collection holds seats for reservation. What about blocking? Let's have a
collection for that too. Add the following line to the collections.js file:

BlockedSeats = new Meteor.Collection("blockedSeats");

Create the bookTravel directory in the client and add bookTravel.html. file Add
the following template code into the file. As you have guessed, we are reusing the
same createTravelLayout template as a layout for this interface:

<template name="bookTravel">
 <div class="container busView">
 <div class="row text-center busView__title">{{bus.name}}

{{bus.agency}}</div>
 <div class="row col-md-4 busView__seats">
 <div class="col-md-12 busView__left">
 {{#each seatArrangement}}
 <div class="col-md-12 row-fluid">
 {{#each this}}
 <div id="seat{{this.seat}}" class="busView__seat
 {{blocked}} {{reserved}}">{{this.seat}}</div>
 {{#if middleRow}}
 <div class="busView__divider col-md-offset-3"></div>
 {{/if}}
 {{/each}}
 </div>
 {{/each}}

Chapter 1

[25]

 </div>
 </div>
 <div class="row text-center busView__book"><button id="book"
 class="btn btn-primary">Book My Seats</button></div>
 </div>
</template>

This template will draw seats in rows and columns based on the total seats stored in
the busservices collection document. The idea is to get the data of the interested
bus service, reservations made so far for the same bus, and seats blocked at the
moment for the same bus. Once we get all the data, we draw the seating layout with
the blocked and reservation information.

We need a few helpers and event handlers to get this entire stuff done. Create
bookTravelHelper.js inside the bookTravel directory and add the following code:

Template.bookTravel.helpers({
 seatArrangement: function() {
 var arrangement = [],
 totalSeats = (this.bus || {}).seats || 0,
 blockedSeats = _.map(this.blockedSeats || [], function(item)
 {return item.seat}),
 reservedSeats = _.flatten(_.map(this.reservations || [],
 function(item) {return _.map(item.seatsBooked,
 function(seat){return seat.seat;});})),
 tmpIndex = 0;
 Session.set("blockedSeats", this.blockedSeats);
 arrangement[tmpIndex] = [];
 for(var l = 1; l <= totalSeats; l++) {
 arrangement[tmpIndex].push({
 seat: l,
 blocked: blockedSeats.indexOf(l) >= 0 ? "blocked" : "",
 reserved: reservedSeats.indexOf(l) >= 0 ? "reserved" : "",
 });
 if(l % 4 === 0 && l != totalSeats) {
 tmpIndex++;
 arrangement[tmpIndex] = arrangement[tmpIndex] || [];
 }
 }
 return arrangement;
 },
 middleRow: function () {
 return (this.seat % 2) === 0;
 }
});

Building a MeteorJS Web Application

[26]

Template.bookTravel.events({
 "click .busView__seat:not(.reserved):not(.blocked)": function
 (e) {
 e.target.classList.add("blocked");
 var seat = {
 bus: Template.currentData().bus._id,
 seat: parseInt(e.target.id.replace("seat", ""), 10),
 blockedBy: ""
 };
 Meteor.call("blockThisSeat", seat, function(err, result) {
 if(err) {
 e.target.classList.remove("blocked");
 } else {
 var blockedSeats = Session.get("blockedSeats") || [];
 blockedSeats.push(seat);
 Session.set("blockedSeats", blockedSeats);
 }
 });
 },
 "click #book": function() {
 var blockedSeats = Session.get("blockedSeats");
 if(blockedSeats && blockedSeats.length) {
 Meteor.call("bookMySeats", blockedSeats, function (error,
 result) {
 if(result) {
 Meteor.call("unblockTheseSeats", blockedSeats,
 function() {
 Session.set("blockedSeats", []);
 });
 } else {
 alert("Reservation failed");
 console.log(error);
 }
 });
 } else {
 alert("No seat selected");
 }
 }
});

The helper method seatArrangement will aggregate the reservation and the blocked
seats data along with the seat information in a way which will be easy to render. The
middleRow helper method is used to do a small modulus operation to have a gap
between the second and the third column.

Chapter 1

[27]

The event handler on each seat will call the server to persist the blocking action.
Clicking on the book button will call the server to reserve the blocked seats.

Let's get into the server section. We have to publish both the newly created
collections to the client and also add a method that the client is calling to persist
the data.

Create the reservations.js file in the server directory and add the following code:

Meteor.methods({
 /**
 seatsBooked: [{seat: #}]
 bus
 createdAt
 updatedAt
 **/
 bookMySeats: function(reservations) {
 var insertRes = reservations.map(function(res) {
 return {
 seat: res.seat
 }
 });
 return Reservations.insert({
 bus: reservations[0].bus,
 seatsBooked: insertRes,
 createdAt: new Date(),
 updatedAt: null
 }, function (error, result) {
 console.log("Inside res insert", arguments);
 if(result) {
 BusServices.update({_id: reservations[0].bus}, {
 $set: {
 updatedAt: new Date()
 },
 $inc: {
 available_seats: -insertRes.length
 }
 }, function() {});
 }
 });
 }
});
Meteor.publish("Reservations", function (id) {
 return Reservations.find({bus: id}, {sort: {createdAt: -1}});
});

Building a MeteorJS Web Application

[28]

Similarly, create the bookTravel.js file and add the following code:

Meteor.methods({
 blockThisSeat: function(seat) {
 var insertedDocId;
 seat.createdAt = new Date();
 seat.updatedAt = null;
 BlockedSeats.insert(seat, function(error, result) {
 if(error) {
 throw Meteor.Error("Block seat failed");
 } else {
 insertedDocId = result;
 }
 });
 Meteor.setTimeout(function() {
 BlockedSeats.remove({_id: insertedDocId});
 }, 600000);// 10 mins
 },
 unblockTheseSeats: function(seats) {
 seats.forEach(function (seat) {
 BlockedSeats.remove({_id: seat._id});
 });
 }
});

Meteor.publish("BlockedSeats", function (id) {
 return BlockedSeats.find({bus: id});
});

If you look at the event handlers that we created for the bookTravel template, you
will find these method calls. All they do is persist data. Also, a blocked seat will be
released after 10 minutes and you can see that happening in the blockThisSeat
server method. A timer is registered on each call. Let us see things in action.

Open the same booking page in another browser. You will find the seat arrangement
and reservation data, if any, as shown in the following image:

Chapter 1

[29]

Reserve or block some seats and visit the page in the other browser. You will see the
changes instantly appearing here. Also, our event handler will not allow the user
on any end to choose seats that are reserved or blocked. This is the actual power
of MeteorJS. Instant reactivity on any data change to all clients without any special
effort from the developer will drastically reduce your development effort.

www.allitebooks.com

http://www.allitebooks.org

Building a MeteorJS Web Application

[30]

Summary
I hope you have enjoyed this chapter. There is a lot of scope to improve the
application in terms of features. Go play around and implement additional features
and get your hands dirty. I will leave it to your imagination. This chapter has
come to an end. Let's summarize what we have learned so far. MeteorJS is built by
integrating various packages. MeteorJS employs various components on the server,
client, and channel to build the applications. MeteorJS provides extensive and
flexible APIs to create customized logins. We can define named routes, and thereby
associate templates and layouts with the route. We have also learned how to use
multiple layouts in the application. We also learned to code database operations,
query for search operations, sever side method calls, and custom reactive variables to
make the application more lively and reactive.

What we have learned so far is good. However, there is a lot we can improve in this
whole process. In the next chapter, we'll learn how to develop MeteorJS application
like a pro.

Chapter 2

[31]

Developing and Testing an
Advanced Application

The popularity of frameworks such as Ruby On Rails is because of two reasons. One
is the ecosystem where one can find plugins and utilities to solve common problems
and other is the scaffolding. MeteorJS has also earned countless contributors, which
ultimately created a wonderful ecosystem. Also, as an added advantage, developers
can use the Node.js ecosystem. Developers can find a lot of useful MeteorJS packages
in the MeteorJS ecosystem, which is called atmosphere. Visit atmosphere (https://
atmospherejs.com/) once and check the enormous amount of packages available
for development.

Scaffolding enables anyone to kick-start a big application in minutes. Frameworks
such as Ruby On Rails, YII, and Zend have mature scaffolding, which helps anyone
with less knowledge about the framework to get started easily. Scaffolding reduces a
lot of work and, therefore, developers can use their precious time in developing the
application logic rather than spending time on less logical work, such as creating and
managing the views, collections, and routes. Although there is no in-built scaffolding
in MeteorJS, there are tools that can help to scaffold your applications.

Moreover, if you have worked with any of the previously mentioned frameworks
or even with Backbone.js, and Ember.js, you will find that there is a separate entity
called Model; you define the proper structure that is very similar to or the same as
the columns in the database. The important reason behind this is maintainability.
It gives a proper shape to the data so that it can be referenced without any chaos
in the future. In MeteorJS, we have no built-in way to structure the data. However,
there are packages that will help us to define the schema, validate the data before
insertion, perform type checking, and define authorization rules to perform
database-level operations.

https://atmospherejs.com/
https://atmospherejs.com/

Developing and Testing an Advanced Application

[32]

Precisely, in this chapter, we will learn the following by redoing the same application
from the previous chapter:

• Scaffolding in MeteorJS
• Collections and schema management
• Securing database operations at schema level
• Form creation and validation based on schema
• Debugging the application
• Testing the MeteorJS application

Scaffolding in MeteorJS
As I have mentioned earlier, there is no built-in scaffolding in MeteorJS. However,
there are tools that help us scaffold our application. Although there are a few tools
to serve the purpose, we will look into iron-cli (https://github.com/iron-
meteor/iron-cli), which is a scaffolding tool from the makers of the popular
package iron-router. It is a Node.js module and is still growing; so, we have to
watch out for the releases carefully. The iron-cli must be installed from NPM
using the following command:

npm install -g iron-meteor

Let me tell you what exactly iron-cli does. It provides command-line utilities
to scaffold. Instead of using MeteorJS commands directly such as meteor create
myapp, we will use the iron-cli commands to generate the application. The iron-
cli wraps the MeteorJS application inside it and provides us the ability to manage
the application. Let's try it out.

After installing iron-meteor using the preceding NPM command, try iron help
in the terminal. It should show the list of commands available to run the generator
options, as shown in the following screenshot:

https://github.com/iron-meteor/iron-cli
https://github.com/iron-meteor/iron-cli

Chapter 2

[33]

The iron-cli actually proxies most of the meteor commands and so we will use
commands such as iron add <package>, iron remove <package>, iron run, iron list, and so
on. These commands will internally call the MeteorJS commands. The reason for
this proxying is to keep track of the application changes so that iron-cli can take full
control of the application.

Let's start recreating the same application that we did in the previous chapter, but
using all these advanced techniques. Recreating the same application will help you
relate things and understand how much we have improved things.

Developing and Testing an Advanced Application

[34]

Recreating the travel booking application
Create a new MeteorJS application using the iron create BookMyTravel2 command.
Remove the autopublish and insecure packages using the iron remove <package
name> command. Visit the directories and files created inside the BookMyTravel2
directory. As I said, iron-cli wraps the MeteorJS app inside itself and in this case, it
is the app directory. The app directory is the actual MeteorJS app. If you want to run
any MeteorJS-specific commands, you have to go into the app directory and run the
commands. Both the mongo database and the .meteor directory reside inside the app
directory. The unfortunate thing is that this scaffolding is tightly coupled to iron-
router. We have to do some rework if we wish to use any other routing solution such
as FlowRouter. However, this is not a big deal if you know what to change and where
to change. For now, let' stay on track and build the application with iron-router itself.

Run the iron run command in the terminal and it will start the application. If you
watch the directories and files created, you will find that the home page-related
scaffolding has been done already. Route, controller, action, layout, and the template
for home are created in different directories. Let's get familiar with those directories.
You can ignore the .iron directory.

At the root level of the application, there are the app, bin, build and config
directories. The app directory is the developer's concern. The bin and build
directories are for iron-cli's internal work; and the config directory is where we can
define environmental variables and other platform settings.

The app directory
The app directory has sub-directories and files where we do the real coding. We can
find sub-directories such as client, lib, packages, private, public, and server,
inside the app directory.

Client
As you know, the client directory is where we do the client-side stuff. The client
directory has the collections, lib, stylesheets, and templates directory. You can
make out for yourself what these directories are meant for. Inside the template
directory, there is a home directory where the home template, home template handlers,
and CSS are present. You will see the skeletons inside those files. Similarly, the
layouts directory has master_layout that has a master layout template and its
handlers. We can create various templates inside this layouts directory and use
them in the application. It is well organized, so anyone who searches for layouts will
just have to look into this directory. The shared directory has a loading template
and a notFound template. We can keep any template or a related piece of code that
can be shared across the application inside this directory.

Chapter 2

[35]

lib
The files under this section will be run both in the server and the client. The iron-
cli creates the collections and controllers directory here. When we use
iron-cli to generate collections, it will create collections inside the collections
directory under lib. The controllers directory will have to hold all the generated
controllers. These controllers are extended from RouterController, which is a part
of iron-router. These controllers are invoked from the router handlers. Inside the
controllers directory, we can see that home_controller.js is already created
for us by the iron-cli. If you look at it, you can understand for yourself as to what
is going on. The routes.js file is connected to the controllers. In each route, we
can specify which method of which controller to invoke when the route is visited.
As per the routes.js file and the home route, when one hits localhost:3000/, it
will call the action method in HomeController. Before the action executes, the
subscriptions method will be invoked. Finally, methods.js is the file where we
can define methods that can be used both in the server and the client.

Private and public packages
The packages directory is for the custom packages that we create for our application.
We will cover this in greater detail in an upcoming chapter. The private directory is
an asset directory for the server and the public directory is an asset directory for the
client.

Server
Here, we have the collections, controllers, and lib directories. Server-
only collections will reside in collections, server-only controllers will be in
controllers, and other code can live in the lib directory. The bootstrap.js file
has a hook for the startup callback. If some code needs to be executed during the
application startup, we can put it inside this file. The methods.js file is where we
put all server-only methods. Finally, the publish.js file is where we put all the
publish registration-related code.

Now, we are familiar with the directory structure that iron-cli has created for us.
The last thing that we need to know to kick-start scaffolding is generators. The iron-
cli provides generators with which we can create skeleton code for our application
anytime. The following are the generators that are available:

iron g:scaffold <entity>

iron g:template <optional-directory/template>

iron g:controller <optional-directory/controller-name> --where
 "<server/client>"

iron g:route <route name>

Developing and Testing an Advanced Application

[36]

iron g:collection <collection name>

iron g:publish <publication name>

iron g:stylesheet <stylesheet name>

The iron g:scaffold command will generate collection, templates, handlers,
controller, route, and publication. If you wish to do it in a customized manner,
you can use other commands to generate specific components. For example, in our
application, we need to create a collection called reservations, but we don't need
the controller, route, and templates for that collection. So, we can just use the iron
g:collection reservations command that only creates a collection inside lib/
collections.

Generators for the application
The time has come to use the generators. We will follow the same flow as the
previous chapter. We will develop the create travel section first and then the listing,
followed by the search and finally the reservation.

Creating travel
Run the iron g:scaffold createTravel command and you will see the following
files created and updated:

created app/lib/collections/create_travel.js

created app/client/templates/create_travel

created app/client/templates/create_travel/create_travel.html

created app/client/templates/create_travel/create_travel.js

created app/client/templates/create_travel/create_travel.css

created app/lib/controllers/create_travel_controller.js

updated ../BookMyTravel2/app/lib/routes.js

updated ../BookMyTravel2/app/server/publish.js

The generator has created a collection (create_travel.js) and a publication (in
publish.js), which are not needed. We can ignore them. However, we will use the
other components generated. Along with these files, we need a different layout for
the creation screen. Let's create one by adding the create_travel directory inside
the layouts directory. Add create_travel_layout.html inside the directory and
add the following code to it:

<template name="CreateTravelLayout">
 <div class="create-container">
 <header class="header">

Chapter 2

[37]

 <h1>
 {{#linkTo route="home"}}
 BookMyTravel2
 {{/linkTo}}
 </h1>
 <ul class="nav nav-pills">
 {{#linkTo route="home"}}List{{/linkTo}}

 </header>
 <section class="create-container__section">
 {{> yield}}
 </section>
 <footer class="footer">Copyright @BookMyTravel2</footer>
 </div>
</template>

We will add this layout to the CreateTravelController in create_travel_
controller.js. Add the following piece of code as a property along with the
subscriptions:

layoutTemplate: 'CreateTravelLayout',

Now, go to http://localhost:3001/create_travel and you will find that the
layout reflects in the screen. Let's create the collection and then the form to create the
documents in the collection. Run the following generator command to generate the
busservice collection:

iron g:collection busservice

This command will create a busservice.js file in app/lib/collections. Go visit
this file and you will find the busservice collection creation code as follows:

Busservice = new Mongo.Collection('busservice');

Followed by this line, there will be allow and deny methods that give us the ability
to perform Role-Based Access (RBA) checks. Say, for example, if you want to
deny a guest user from creating a bus service, you can do the check in the deny
method's insert part and return true if positive. Doing so will deny the document
insertion in the collection. You can use these methods to do extensive RBAC for your
application. The skeleton is self-explanatory to explain the parameters we will get
inside each operation. These insert, update, and remove operation pre-handlers
will be executed before doing the respective operations via the collection instance (in
our case Busservice). Different applications need different kinds of RBA conditions
and so I leave this portion to you. Do not forget to make use of this in-built
feature of MeteorJS as it is one of the important security features. We can perform
authorization checks extensively using these handlers.

Developing and Testing an Advanced Application

[38]

It is time to define the schema. If we cannot keep track of schema in a well-structured
format, then it is going to be a big pain for maintenance. MeteorJS doesn't have built-
in ways to create or define the schema. However, we have packages that can help
us do this. We are going to use the aldeed: collection2 package, which will help
us to attach a schema and do validation if required. The Git repo https://github.
com/aldeed has some important packages that are very useful for development. Add
the package by running the following command:

iron add aldeed:collection2

The schema for the busservice collection is as follows:

// Validation keys and messages
SimpleSchema.messages({
 source_destination_same: "[label] cannot be same as Starting
 point",
 destination_source_same: "[label] cannot be same as Destination
 point",
 endDateTime_lessthan_startDateTime: "[label] cannot be past to
 start date and time",
 startDateTime_lessthan_endDateTime: "[label] cannot be past to
 start date and time"
});

//Schema for busservice collection
BusServiceSchema = new SimpleSchema({
 name:{
 type: String,
 label: "Name",
 max: 200
 },
 agency:{
 type: String,
 label: "Agency",
 max: 1024
 },
 seats: {
 type: Number,
 label: "Total Seats",
 min: 10,
 max: 50
 },
 source: {
 type: String,
 label: "Starting Point",

https://github.com/aldeed
https://github.com/aldeed

Chapter 2

[39]

 max: 200,
 custom: function() {
 if((this.value || "").toLowerCase() ==
 (this.field("destination").value || "").toLowerCase()) {
 return "destination_source_same";
 }
 }
 },
 destination: {
 type: String,
 label: "Destination Point",
 max: 200,
 custom: function() {
 if((this.value || "").toLowerCase() ==
 (this.field("source").value || "").toLowerCase()) {
 return "source_destination_same";
 }
 }
 },
 startDateTime: {
 type: Date,
 label: "Departure Time",
 min: moment().add(1, "days").toDate(),
 max: moment().endOf("year").toDate(),
 custom: function() {
 if(this.value >= this.field("startDateTime").value) {
 return "startDateTime_lessthan_endDateTime";
 }
 }
 },
 endDateTime: {
 type: Date,
 label: "Arrival TIme",
 min: moment().add(1, "days").toDate(),
 max: moment().endOf("year").toDate(),
 custom: function() { //custom validation
 if(this.value <= this.field("startDateTime").value) {
 //error message identifier added in SimpleSchema.messages api.
 return "endDateTime_lessthan_startDateTime";
 }
 }
 },
 fare: {
 type: Number,

Developing and Testing an Advanced Application

[40]

 label: "Fare",
 min: 100
 },
 createdAt: {
 type: Date,
 label: "Created At",
 autoValue: function() {
 if (this.isInsert) {
 return new Date;
 }
 }
 },
 updatedAt: {
 type: Date,
 label: "Updated At",
 autoValue: function() {
 if (this.isUpdate) {
 return new Date();
 }
 },
 denyInsert: true,
 optional: true
 },
 available_seats: {
 type: Number,
 label: "Available Seats",
 autoValue: function(doc) {
 if (this.isInsert) {
 return doc.seats;
 }
 }
 },
 createdBy: {
 type: String,
 optional: true,
 autoValue: function() {
 return this.userId
 }
 }
 });

Busservice.attachSchema(BusServiceSchema);

Chapter 2

[41]

Add the preceding code after the busservice collection instantiation. The code
is self-explanatory. For more details on the meteor-collection2 package, visit
https://github.com/aldeed/meteor-collection2. You will find a lot of useful
information and methods that can help you to do a better job in schema definition
and validation. We can define many kinds of validations right in the schema
definition itself, and the error messages can be defined along with the schema. If you
go through the schema definition, you can figure out the minimum and maximum
validations for some fields and custom validation for the arrival date and time and
the departure date and time, which compares the dates. Similarly, one can define any
custom validation and can access the document data from the form inside the custom
validation methods.

The best part of defining a schema is the form creation. The aldeed repository has
another package called AutoForm, which can read schema and create forms without
much effort. Let's install the AutoForm package by running the following command:

iron add aldeed:autoform

Visit the AutoForm package documentation at https://github.com/aldeed/
meteor-autoform. There is a lot of information to craft your forms carefully with
plenty of options.

Inside the create_travel.html file in client/templates/create_travel, add the
following template code:

{{> quickForm collection="Busservice" id="CreateBusServiceForm"
 type="insert" omitFields="createdBy, updatedAt, createdAt,
 available_seats" buttonContent="Create"}}

Visit the browser and you will find that the form is created with less effort. In the
preceding code, we have just specified the collection name, which is the instance
we created (not the mongo collection name). Along with that, we have specified id,
type. There is an attribute omitFields that facilitates to omit fields that we don't
want to show in the form. The buttonContent attribute value will appear in the
submit button of the form. A single line has created a form for us. Pretty timesaving,
isn't it?

The styles are missing. Add the twbs:bootstrap package to the application. This
will add styles to some extent. The forms generated by AutoForm are bootstrap
complaints with bootstrap-related classes in the markups. We will add the rest of
the styles from the previous chapter. Copy the custom styles we had created in the
previous chapter to the main.css file of this application. Now, the form is usable,
but there are some more details we need to understand.

https://github.com/aldeed/meteor-collection2
https://github.com/aldeed/meteor-autoform
https://github.com/aldeed/meteor-autoform

Developing and Testing an Advanced Application

[42]

The schema that we had defined has the Date type for the fields for arrival time,
departure time, createdAt, and updatedAt, which you might have noticed. They
are Date and not DateTime. There is no DateTime type and so the AutoForm package
will also generate forms with the appropriate fields having the Date type and not
Datetime. In our case, the arrival time and departure time must be Datetime and
not just Date. So, we cannot use the quickform component as it is. To solve this
problem, when we need customization in the form, the AutoForm package has given
us ways to define the customized form in compliance with the schema. Replace
{{quickform ...}} with the following code:

{{#autoForm collection="Busservice" id="CreateBusServiceForm"
 type="method" class="container"
 meteormethod="createBusService"}}
 {{> afQuickField name='name'}}
 {{> afQuickField name='agency'}}
 {{> afQuickField name='seats' min="10" max="50"}}
 {{> afQuickField name='source'}}
 {{> afQuickField name='destination'}}
 {{> afQuickField name='startDateTime' type="datetime-local"}}
 {{> afQuickField name='endDateTime' type="datetime-local"}}
 {{> afQuickField name='fare'}}
 <button class="btn btn-lg btn-primary btn-block"
 type="submit">Create</button>
 {{/autoForm}}

Instead of using quickForm, we are using the autoForm and afQuickField
components to create our form. You can learn the syntax and other possible attribute
options from the AutoForm package documentation. What we have done here is
a minimal usage. However, a notable thing is type and meteormethod. We have
specified the type of the form to be method and when we use method as type, it
is mandatory to mention the method name in the meteormethod attribute. What
this means is, on submit, the meteor method createBusService will be called by
passing all the field values. The afQuickField component takes the names that
must be the keys defined in the schema and other form field attributes. We needed a
datetime input field and thus we are using the type="datetime-local" attribute in
the appropriate fields.

Another important feature of the AutoForm package is validation and error display.
Based on the schema definition, the form values are validated and an appropriate
error message is displayed right below the fields. Try wrong inputs in the fields
and submit the form. You will see the error messages below the fields. We don't
need to wire the error handling and the error message display. They are taken care
by the package itself. Also, AutoForm provides hooks to perform any pre or post-
submission operations, if necessary.

Chapter 2

[43]

All the client-related work is done and we have to define the server method to insert
the form. In our case, we just want to validate and insert the document. Create the
createBusService method in app/server/methods.js as follows:

Meteor.methods({
 createBusService: function(busService) {
 busService.createdAt = new Date();
 busService.available_seats = parseInt(busService.seats, 10);
 check(busService, BusServiceSchema); //validates the form data
 against the schema in the server side
 Busservice.insert(busService);
 }
});

If all goes well, you will be able to save the data to the collection. Check in the
database to confirm.

Listing and search
Next is the listing part. Visit http://localhost:3000 and you will find the text Find
me in app/client/templates/home/home. Our home page is going to be the listing
and search page. Let's start adding the layout, then the list template, and wire the
data. Things start from the route. Our route for home page points to HomeController
and action method. Check the HomeController and you will find that the layout is
MasterLayout and the action method calls the render of the Home template.

In master_layout.html, add the following code that builds the two columns layout
for our home page:

<template name="MasterLayout">
 <div class="home-container">
 <header class="header">
 <h1>
 {{#linkTo route="home"}}
 BookMyTravel2
 {{/linkTo}}</h1>
 <ul class="nav nav-pills">

 {{#linkTo route="createTravel"}}
 Create
 {{/linkTo}}

 </header>

Developing and Testing an Advanced Application

[44]

 <section class="home-container__section">
 <div class="home-container__section__left container-fluid">
 {{> yield region="search"}}
 </div>
 <div class="main">
 {{> yield}}
 </div>
 </section>
 <footer class="footer">Copyright @BookMyTravel2</footer>
 </div>
</template>

This will create the two column layout. For maintainability purpose, instead of using
the Home template from home.html, we will create the BusServiceList template
using the generator and call it in the Home template. Run the following command in
the root directory of the application:

iron g:template BusServiceList

The command will create the bus_service_list directory inside app/client/
templates. We will use the bus_service_list.html file to define our listing
template. Add the following code inside the template tag:

<div class="container bus-list">
 <div class="row bus-list__row bus-list__header">
 <div class="bus-list__row__col col-md-3">Bus</div>
 <div class="bus-list__row__col col-md-1">Available seats</div>
 <div class="bus-list__row__col col-md-1">Start point</div>
 <div class="bus-list__row__col col-md-1">End point</div>
 <div class="bus-list__row__col col-md-2">Start time</div>
 <div class="bus-list__row__col col-md-2">Reaching time</div>
 <div class="bus-list__row__col col-md-1">Fare</div>
 <div class="bus-list__row__col last col-md-1">Book</div>
 </div>
 <div class="row bus-list__body">
 {{#if hasItem}}
 {{#each list}}
 <div class="bus-list__row">
 <div class="bus-list__row__col col-md-3">{{name}}

{{agency}}</div>
 <div class="bus-list__row__col col-md-
 1">{{available_seats}}/{{seats}}</div>
 <div class="bus-list__row__col col-md-1">{{source}}</div>
 <div class="bus-list__row__col col-md-1">{{destination}}</div>
 <div class="bus-list__row__col col-md-2">{{humanReadableDate
 startDateTime}}</div>

Chapter 2

[45]

 <div class="bus-list__row__col col-md-2">{{humanReadableDate
 endDateTime}}</div>
 <div class="bus-list__row__col col-md-1">{{fare}}</div>
 <div class="bus-list__row__col last col-md-1">
 Book</div>
 </div>
 <div class="clear"></div>
 {{/each}}
 {{else}}
 <div class="row bus-list__row bus-list__row-empty">
 <div class="bus-list__row__col last col-md-12 text-center">
 No buses found</div>
 </div>
 {{/if}}
 </div>
 </div>

We have used some helper methods inside the template. Let's define them inside the
bus_service_list.js file. Replace the helper's skeleton with the following code:

Template.BusServiceList.helpers({
 list: function() {
 return this.get();
 },
 hasItem: function() {
 return this.get().count();
 },
 humanReadableDate: function(date) {
 var m = moment(date);
 return m.format("MMM,DD YYYY HH:mm");
 }
});

One last thing to do is call the BusServiceList template in the Home template. Go to
Home in home.html and replace the content with the following code:

<template name="Home">
 {{> BusServiceList}}
</template>

An empty list will be visible in the browser by this time. We have to wire the data.
The busservice collection has to be published first. Let us use the generator itself to
create the publication. Run the following command in the terminal:

iron g:publish busservice

Developing and Testing an Advanced Application

[46]

This will add the publication code to publish.js in app/server. However, we need
a slight modification here. Our publication should publish data, by default, in sorted
order. So, let us change the return statement of the publication as follows:

return Busservice.find({}, {sort: {createdAt: -1}});

We have a proper place to subscribe the data. In HomeController, we have the
subscriptions method where we can subscribe the data by name. Add the
following subscription line of code to the subscriptions method:

this.subscribe("busservice", {});

Along with this, we will do the search as well. To give a small recap, because we are
going to filter the same collection in the list template using the values from search
template, we have used reactive variables. Whenever there is a search value, we
filter the collection and update the reactive variable, which will update the list as
per the search.

We will generate search-related templates and helpers using the generator. Run the
following command:

iron g:template search

This will generate the search related files in the search directory under app/client/
templates. In the Search template inside search.html, replace the existing content
with the following code:

<div class="col-xs-12 col-sm-12 col-md-12 text-center top-space
 well well-sm">Search</div>
<div class="col-xs-12 col-sm-12 col-md-12 well well-sm">
 <div class="form" id="search-form">
 {{#autoForm collection="Busservice"
 id="SearchBusServiceForm"}}
 {{> afQuickField name='source'}}
 {{> afQuickField name='destination'}}
 {{> afQuickField name='startDateTime' type="date"}}
 {{> afQuickField name='fare'}}
 {{/autoForm}}
 </div>
</div>

The template is ready. To render this search template to the search region in
MasterLayout, add the following code to the action method in HomeController:

this.render('Search', {to: 'search'});

Chapter 2

[47]

This will render the Search template to the search region. Visit the browser and you
will see the search form.

We have to introduce the reactive variable. To use reactive variables, we have to
install the reactive-var package. Run the following command to add the package:

iron add reactive-var

Add the following initialization code to the beginning of the action method:

this.ReactiveBusServices = new ReactiveVar([]);

The controller supports the data method such as the subscriptions method. In the
data method, we can prepare and format data that will be passed to the template to
render. Add the following data preparation code to the HomeController:

data: function() {
 this.ReactiveBusServices.set(Busservice.find({}));
 return this.ReactiveBusServices;
},

From the code, you can figure out that we set the Busservice collection to the
reactive variable we had created in the preceding snippet and then return the
reactive variable. Visit the browser and you will find the list of services you had
created earlier.

It is time to put the search in place. In search.js, inside the app/client/
templates/search directory, replace the events skeleton with the following code:

Template.Search.events({
 "keyup input": _.throttle(function(e) {
 var source = $("[name='source']").val().trim(),
 destination = $("[name='destination']").val().trim(),
 date = $("[name='startDateTime']").val().trim(),
 fare = $("[name='fare']").val().trim(),
 search = {};
 if(source) search.source = {$regex: new RegExp(source),
 $options: "i"};
 if(destination) search.destination = {$regex: new
 RegExp(destination), $options: "i"};
 if(date) {
 var userDate = new Date(date);
 search.startDateTime = {
 $gte: userDate,
 $lte: new Date(moment(userDate).add(1,
 "day").unix()*1000)
 }

Developing and Testing an Advanced Application

[48]

 }
 if(fare) search.fare = {$lte: parseInt(fare, 10)};
 if(Template.instance()) {
 Template.instance().data.set(Busservice.find(search, {sort:
 {createdAt: -1}}));
 }
 }, 200),
 "submit": function(e) {
 e.preventDefault();
 }
});

In the input field's keyup handler, we collect the form data, prepare them to be a
proper search query, and filter the collection. Then, we set the filtered collection
into the reactive variable. If you notice, Template.instance().data is the reactive
variable we had returned from the data method of the HomeController. Perform
a search and you will find that things are working as expected. Finally, listing and
search is done.

Reservation
The last part of the application is blocking and reserving seats. We need the
reservations and blocked_seats collections to store the information. Let's use the
generator to generate the collection. Run the following commands to generate the
collections:

iron g:collection reservations

iron g:collection blockedSeats

These commands will create two files, reservations.js and blocked_seats.js
under app/lib/collections. Each file has its own instantiation to the collections,
respectively. We will define the schema to each of these collections as we did for the
busservice collection.

Add the following schema definition to blocked_seats.js:

BlockedSeats.attachSchema(
 new SimpleSchema({
 bus:{
 type: String,
 label: "Bus",
 max: 200
 },
 seat:{
 type: Number,

Chapter 2

[49]

 label: "Blocked Seat"
 },
 createdAt: {
 type: Date,
 label: "Created At",
 autoValue: function() {
 if (this.isInsert) {
 return new Date;
 }
 }
 },
 updatedAt: {
 type: Date,
 label: "Updated At",
 autoValue: function() {
 if (this.isUpdate) {
 return new Date();
 }
 },
 denyInsert: true,
 optional: true
 },
 createdBy: {
 type: String,
 optional: true,
 autoValue: function() {
 return this.userId
 }
 }
 })
);

Again, we can define validations if needed. I will leave that to you. Similarly, we will
add the schema definition for reservations collection as well. Add the following
code to reservations.js:

Reservations.attachSchema(
 new SimpleSchema({
 bus:{
 type: String,
 label: "Bus",
 max: 200
 },
 seats_booked:{
 type: [Object],

Developing and Testing an Advanced Application

[50]

 label: "Seats Booked",
 minCount: 1,
 maxCount: 10
 },
 "seats_booked.$.seat": {
 type: Number,
 optional: false
 },
 createdAt: {
 type: Date,
 label: "Created At",
 autoValue: function() {
 if (this.isInsert) {
 return new Date;
 }
 }
 },
 updatedAt: {
 type: Date,
 label: "Updated At",
 autoValue: function() {
 if (this.isUpdate) {
 return new Date();
 }
 },
 denyInsert: true,
 optional: true
 },
 createdBy: {
 type: String,
 optional: true,
 autoValue: function() {
 return this.userId
 }
 }
 })
);

Now, we have to define the route to reach the reservation part. We will use the
generator to create the route. Run the following command to generate the route:

iron g:route book

Chapter 2

[51]

The generator adds a route for us in the routes.js file and creates a
BookController, templates, and helpers. The new route generated is not what we
needed. Let's modify it to the way we want it to be. Change the route path from
book to book/:_id. The route clearly says we need _id, which we will get from the
listing. Also, we need the bus service information of the concerned bus, reservation
information of the bus, and the blocked seats information of the bus. In the listing,
we already have the link to the reservation page. Let's wire the proper data and
create the templates to show the seating information and other required information.

We have to register the required publications first. As we did for the busservice
collection, we will use generators to generate the publications for the reservations
and blocked_seats collections. Run the following commands one after the other to
generate them:

iron g:publish reservations

iron g:publish blocked_seats

To the generated publications, we need to do small modifications to pull the data of
only the concerned bus service. Modify the code to look like the code as follows:

Meteor.publish('busservice', function (query) {
 query = query || {};
 return Busservice.find(query, {sort: {createdAt: -1}});
});
Meteor.publish('reservations', function (query) {
 return Reservations.find(query);
});
Meteor.publish('blocked_seats', function (query) {
 return BlockedSeats.find(query);
});

Note that we have also modified the busservice publication to accommodate the
query parameter. Similarly, other publications will also get an object, based on which
the data is published.

We will also use CreateTravelLayout for the reservation page. Add
the layoutTemplate property to the controller and put the value as
CreateTravelLayout.

The next step is subscribing to these data. In BookController, add the following
piece of code to subscribe the data in the subscriptions method:

this.subscribe('busservice', {
 _id: this.params._id
 });

Developing and Testing an Advanced Application

[52]

 this.subscribe('reservations', {
 bus: this.params._id
 });
 this.subscribe('blocked_seats', {
 bus: this.params._id
 });

Next, we have to pass the data to the template. Add the following code to the
data method:

var templateData = {
 _id: this.params._id,
 bus: Busservice.findOne({
 _id: this.params._id
 }),
 reservations: Reservations.find({
 bus: this.params._id
 }).fetch(),
 blockedSeats: BlockedSeats.find({
 bus: this.params._id
 }).fetch()
};
return templateData;

This is the data that is available in the Book template.

Let us create the UI to show the seating arrangement. Replace the content of the Book
template in book.html under app/client/templates/book, with the following
piece of code:

<div class="container busView">
 <div class="row text-center busView__title">
 {{bus.name}}
{{bus.agency}}
 </div>
 <div class="row col-md-4 busView__seats">
 <div class="col-md-12 busView__left">
 {{#each seatArrangement}}
 <div class="col-md-12 row-fluid">
 {{#each this}}
 <div id="seat{{this.seat}}" class="busView__seat {{blocked}}
 {{reserved}}">
 {{this.seat}}
 </div>
 {{#if middleRow}}<div class="busView__divider col-md-offset-
 3"></div>{{/if}}

Chapter 2

[53]

 {{/each}}
 </div>
 {{/each}}
 </div>
 </div>
 <div class="row text-center busView__book"><button id="book"
 class="btn btn-primary">Book My Seats</button></div>
</div>

We need some helpers and event handlers to handle the interactions. Replace the
skeleton events and helper methods with the following set of code:

Template.Book.events({
 "click .busView__seat:not(.reserved):not(.blocked)": function
 (e) {
 e.target.classList.add("blocked");
 var seat = {
 bus: Template.currentData().bus._id,
 seat: parseInt(e.target.id.replace("seat", ""), 10)
 };
 Meteor.call("blockThisSeat", seat, function(err, result) {
 if(err) {
 e.target.classList.remove("blocked");
 } else {
 var blockedSeats = Session.get("blockedSeats") || [];
 blockedSeats.push(seat);
 Session.set("blockedSeats", blockedSeats);
 }
 });
 },
 "click #book": function() {
 var blockedSeats = Session.get("blockedSeats");
 if(blockedSeats && blockedSeats.length) {
 Meteor.call("bookMySeats", blockedSeats, function (error,
 result) {
 if(result) {
 Meteor.call("unblockTheseSeats", blockedSeats,
 function() {
 Session.set("blockedSeats", []);
 });
 } else {
 alert("Reservation failed");
 console.log(error);
 }

Developing and Testing an Advanced Application

[54]

 });
 } else {
 alert("No seat selected");
 }
 }
});

Template.Book.helpers({
 seatArrangement: function() {
 var arrangement = [],
 totalSeats = (this.bus || {}).seats || 0,
 blockedSeats = _.map(this.blockedSeats || [], function(item)
 {return item.seat}),
 reservedSeats = _.flatten(_.map(this.reservations || [],
 function(item) {return _.map(item.seats_booked,
 function(seat){return seat.seat;});})),
 tmpIndex = 0;
 Session.set("blockedSeats", this.blockedSeats);
 arrangement[tmpIndex] = [];
 for(var l = 1; l <= totalSeats; l++) {
 arrangement[tmpIndex].push({
 seat: l,
 blocked: blockedSeats.indexOf(l) >= 0 ? "blocked" : "",
 reserved: reservedSeats.indexOf(l) >= 0 ? "reserved" : "",
 });
 if(l % 4 === 0 && l != totalSeats) {
 tmpIndex++;
 arrangement[tmpIndex] = arrangement[tmpIndex] || [];
 }
 }
 return arrangement;
 },
 middleRow: function () {
 return (this.seat % 2) === 0;
 }
});

I don't have to explain this code as you will be familiar with it from the previous
chapter. Now, you will be able to see the seating arrangement of the bus in the
browser. The only leftover portion is server-side handling.

Chapter 2

[55]

Add the server methods to methods.js in app/server. We need three server
methods that are called from the template handlers. Add the following code to
Meteor.methods:

 bookMySeats: function(reservations) {
 var insertRes = reservations.map(function(res) {
 return {
 seat: res.seat
 }
 });
 return Reservations.insert({
 bus: reservations[0].bus,
 seats_booked: insertRes
 }, function (error, result) {
 if(result) {
 Busservice.update({_id: reservations[0].bus}, {
 $inc: {
 available_seats: -insertRes.length
 }
 }, function() {});
 }
 });
 },
 blockThisSeat: function(seat) {
 debugger;
 BlockedSeats.insert(seat, function(error, result) {
 console.log(error);
 if(error) {
 throw Meteor.Error("Block seat failed");
 } else {
 Meteor.setTimeout(function() {
 BlockedSeats.remove({_id: result});
 }, 600000);// 10 mins
 }
 });
 },
 unblockTheseSeats: function(seats) {
 seats.forEach(function (seat) {
 BlockedSeats.remove({_id: seat._id});
 });
 }

Now, you can block and reserve seats from the application. This not much, but what
we have learned so far is pretty interesting, isn't it?

Developing and Testing an Advanced Application

[56]

We have recreated the same old application in a much more maintainable way
like a pro-developer. We have used advanced scaffolding techniques to build
the application and have increases maintainability and predictability. Also, we have
learned to secure database operations with the help of allow and deny methods
available in the collection instances.

Is that all for this chapter? No. To become a real pro-developer, two more things are
essential. One is debugging and another one is testing. We are going to cover both of
them in this chapter.

Debugging
It is not necessary to emphasize on the importance of debugging for developers. It
is an everyday thing that we do to understand code, identify bugs, and verify that
code works fine. At novice level, we use print statements to debug applications.
In JavaScript, we have used the alert statements, which are deadly if missed.
Then, there were the console.log statements that silently log the parameters to the
browser console. We can also use the console.log statements in Node.js code. It
logs the output to the server console, which is the terminal. Non-novice developers
have a different level of testing because all of these print statements are time-
consuming. The iteration it takes to identify and fix a bug is higher. That is why we
needed advanced tools that can stop the code execution at the interested line of code
and give us the ability to inspect the variable at the given context. The best example
would be Chrome developer tools.

We can put break points in the code and stop the execution at every break point.
We can hop between lines, inspect values, or even change and run them and verify
that the change works—we can do a lot in the developer tools. As long as things are
in the browser, we have these tools. What about Node.js environment? What about
MeteorJS server code? How do we debug them?

Fortunately, we have libraries to help us. Have you heard of Node Inspector? It is a
Node.js module and you can install it from NPM using the following command:

npm install -g node-inspector

Node-inspector gives us the ability to inspect and debug the server side code from
the browser itself. It works perfectly and notably with Chrome.

Chapter 2

[57]

Once installed, go to the MeteorJS application that we had developed and start the
application in the debug mode using the following command:

iron debug

If you are using a plain MeteorJS application, run the following command:

meteor debug

This will start the application in the debug mode and you will see the following
message in the command line:

To debug the server process using a graphical debugging interface, visit
this URL in your web browser: http://localhost:8080/debug?port=5858.

Copy the URL and open it in a new tab in the Chrome browser. Here, you will see
the chrome developer tool in a full viewport as follows:

Developing and Testing an Advanced Application

[58]

Refresh the application and then the node inspector tab twice or thrice; then, you will
find all your server side files in the developer tools navigation area in the section on
the left. Now, you can put a break point and do the appropriate action that will stop
the execution at the break point. You can inspect your variables and know the values
at the given context without any pain.

At times, we need the code to just stop at places where we can't put a breakpoint.
In such cases, we can use the debugger; statement. The browser developer tool
will stop at this point in the execution flow. From here on, you can continue
the debugging, run through steps, or add new breakpoints. Give it a try in our
application itself by adding a debugger; statement to the blockThisSeat server
method and then try to block a seat from the interface we designed. This should
stop at the debugger statement; from here, you can inspect parameters or add a
breakpoint to the callback of the insert method and check what are the callback
arguments and so on. Debugging this way will save a large amount of time than all
the print statements.

Meteor shell
This is another awesome feature of MeteorJS. Developers who are accustomed to
Ruby on Rails will find this very similar. This is an interactive shell where one can
access the application from the command line.

Run the application in non-debug mode. Open a new terminal and navigate to the
app directory. Run the following command to get into the shell:

meteor shell

Now, you have the shell connected to the server, and we can call our server methods
and do lot of other things right from the terminal. In our case, we can call the
blockThisSeat method from the shell by calling Meteor.call("blockThisSeat").
This will throw an error as we need to pass proper parameters to the method. If
we pass a proper argument, insertion will happen. Similarly, we can access all
global variables from the shell. We have defined the busservice schema and the
Busservice collection in global variables. We can access them from the shell. We
can insert or update data using the insert or update methods on the Busservice
instance. You can use it more or less like a browser console, except that we have
access to the database. This again helps us to test methods, see data, run a manual
operation, or debug things up to certain extent. Explore it and you will find it a lot
more useful things.

Chapter 2

[59]

Testing MeteorJS application
Testing is as important as the development for a product. Testing is again a big cycle
that ensures the quality of the product. As developers, we also play a major role in
testing. In fact, we are the ones who start testing the product which then is passed to
QA for extensive behavior, interaction, and all other possible testing. In this part of
the chapter, we are going to learn how to write unit tests and integration tests.

MeteorJS doesn't provide any testing tools. However, it has announced Velocity
(http://velocity.meteor.com/) as the official testing framework. You can read
about Velocity on its website (http://velocity.meteor.com/faq).

Velocity
Velocity is an ecosystem that allows us to use various existing testing tools to work
together for our MeteorJS application. For example, Mocha, Jasmine, and Cucumber.
They all will use the same reporter (the reporter is responsible for telling the user
what tests have passed and failed). Visit the website at http://velocity.meteor.
com and there is the list of supported testing tools. Choose one or more of your
favorite tools and start writing test cases for the application.

All the theory doesn't help us do things. We need action, so let's write some real tests
for our booking application using Velocity reporter and Jasmine.

Testing BookMyTravel2
We need to install the Velocity reporter package and the Jasmine package for
MeteorJS to get started. From the application root, using iron-cli, add the package
as follows:

iron add velocity:html-reporter

If you are building apps without using iron-cli, run meteor add velocity:html-
reporter. We have installed the reporter. Now, we have to install the testing
framework. As I have mentioned earlier, we are going to use Jasmine.

Jasmine is a behavior-driven testing framework with simple syntax and concepts.
Let us install the Jasmine package using the command iron add sanjo:jasmine.
We are ready to write tests. Once installation is completed, visit the application in
the browser. You will find a bulls eye kind of a dot in the right corner. Click on it and
you will see the reporter that we have installed. Cool? Isn't it? It is reactive, which
means, as you write code, it runs the tests and gives you the results.

http://velocity.meteor.com/
http://velocity.meteor.com/faq
http://velocity.meteor.com
http://velocity.meteor.com

Developing and Testing an Advanced Application

[60]

Many suggest we write tests first and then build the application. However, many are
against it. It is a highly debatable topic and, thus, I leave it you. However, if you are
writing tests first and then building the application, this setup will be really helpful.
In our case, we have built the application already, so we will write tests for the
application, which again is not bad.

The Velocity interface gives us options to get started by providing some sample tests,
which can help us know where and how to get started. You are free to click on those
buttons and see the sample tests created. However, let me walk you through, which
will give you a detailed idea. We have to follow some conventions to place our tests
so that Velocity can find the tests and run them. The convention is very simple. We
have to follow a particular directory structure to place our tests. We have to create
the tests directory under the app directory followed by the sub-directory with the
name of the testing framework. We are going to use jasmine. Inside the jasmine
directory we have to create the client and server directories, where we can put
client and server tests separately. Again, under each of these directories, we have to
create two more directories with the name unit and integration. I hope you have
guessed it. The unit directory is for unit tests and integration is for integration
tests. So, for a MeteorJS application, we have got to write four sets of tests (unit and
integration tests for the client and server).

We will write tests only for a small portion of the app, to the extent of knowing
how to write tests for the MeteorJS application. You can write the rest of the tests by
yourself as homework.

Firstly, we will write a server side unit test followed by server-side integration
test. Inside the app/tests/jasmine/server/unit directory, create a
createBusService.js file. Add the following test to the file we have created:

describe("CreateBusService", function() {
 'use strict';

 beforeEach(function() {
 Meteor.call("removeAllBusservice");
 });

 describe("Creating a service", function() {
 it("A new service must be created using server method
 createBusService", function() {
 spyOn(Busservice, "insert").and.returnValue(1);
 var service = {
 name: "2Test",
 agency: "Testing agency2",
 seats: 30,

Chapter 2

[61]

 source: "Delhi",
 destination: "Bombay",
 startDateTime: moment().add(1, "days").toDate(),
 endDateTime: moment().add(2, "days").toDate(),
 fare: 1200
 };
 Meteor.methodMap.createBusService(service);
 expect(Busservice.insert).toHaveBeenCalledWith(service);
 });
 });
});

According to Jasmine's terminology, we describe a test suite and each test suite
will have test specs. We can nest test suites, which is what we have done in the
preceding code.

We have created a test suite with the name CreateBusService. Next is the child
test suite, which is a nested or child test suite called Creating a service. The spec
is the test that will be about the server method createBusService. That is why we
named the specification as "A new service must be created using the server
method createBusService". Inside the spec, we have asked Jasmine to spy on the
Busservice collection's insert method. Then, we have defined a bus service object
and passed it with the method call. One thing to notice is the methodMap property in
the calling line:

Meteor.methodMap.createBusService

It is a map that is used for calling server methods. We have used it to call the
createBusService method by passing the service object. The last part of the
specification is the expect to be. Here, we do a comparison of the results with
appropriate things. In our case, we just need to verify that Busservice.insert
is called with the service object. So, we have asked Jasmine to spy on the
Busservice.insert method and then compared the insertion parameter with
the one we have passed. The code that does this operation is as follows:

expect(Busservice.insert).toHaveBeenCalledWith(service);

It is very important to go through the Jasmine documentation to learn more about
writing efficient test cases. There are plenty of methods and their negations that
support our test cases. Now, let us visit the browser and see the test case in action.
Visit the application, click on the dot, and then you will see a green tick mark in the
last section (Jasmine-server-unit). At the top, it says 1 test passed. It means the test is
executed and has passed.

Developing and Testing an Advanced Application

[62]

Similarly, we will create an integration test for the server. In app/tests/jasmine/
server/integration directory, create a file integration.js (name doesn't matter)
and add the following content:

describe("Serverside integration testing", function() {
 'use strict';
 describe("on collection definition", function() {
 it("Busservices collection instance must be defined",
 function() {
 expect(Busservice).not.toBeUndefined();
 });
 });
});

The test is self-explanatory. All it does is, tests whether the Busservice collection
is defined or not. Visit the application in the browser and you will find a green tick
mark in the jasmine-server-integration section of the reporter. Also, at the top, it will
show two tests passed. You can add integration tests as much as possible here by
creating new specs or new suites.

Now, let's create some tests for the client. Create a file create_travel_service.js
under app/tests/jasmine/client/unit. We are going to write unit tests for the
bus service creation. Inside the file, create a test suite as follows:

describe("CreateBusService", function() {
});

We're going to need a beforeEach function to clear the busservice collection before
running every spec so that the list will not be cluttered. Add the following piece of
code inside the test suite we created:

beforeEach(function() {
 Meteor.call("removeAllBusservice");
});

The beforeEach function calls a server method. If you are familiar with Jasmine, you
know that beforeEach is called before executing every spec we have written. We are
clearing the busservice collection by calling a server method. We need to create that
server method before we run the test. Go to methods.js in the app/server directory
and add the following piece of code:

removeAllBusservice: function() {Busservice.remove({});}

Chapter 2

[63]

Calling this method will clear all documents in the busservice collection. You might
ask, why do we write a method to remove all the documents from the collection,
instead we can just call the remove method on the collection instance. In a server, it
will work. MeteorJS doesn't allow you to remove all the documents of a collection from
the browser console or the client code. This is the reason we have to define a method
in the server, which does the job for us. You are free to play around these methods. For
learning purposes, we are going to add three test specs in the client unit tests. Add the
following to the test suite we have created after the beforeEach function:

it("should fail insertion if source and destination are same",
 function() {
 Meteor.call("createBusService", {
 name: "2Test",
 agency: "Testing agency2",
 seats: 30,
 source: "Bombay",
 destination: "Bombay",
 startDateTime: moment().add(1, "days").toDate(),
 endDateTime: moment().add(2, "days").toDate(),
 fare: 1200
 });
 expect(Busservice.find().count()).toBe(0);
});

it("should fail insertion if seats are more than 50", function() {
 Meteor.call("createBusService", {
 name: "2Test",
 agency: "Testing agency2",
 seats: 90,
 source: "Bombay",
 destination: "Chennai",
 startDateTime: moment().add(1, "days").toDate(),
 endDateTime: moment().add(2, "days").toDate(),
 fare: 1200
 });
 expect(Busservice.find().count()).toBe(0);
});

it("should create a record in the database", function() {
 Meteor.call("createBusService", {
 name: "Test",
 agency: "Testing agency",

Developing and Testing an Advanced Application

[64]

 seats: 30,
 source: "Bombay",
 destination: "Kolkata",
 startDateTime: moment().add(1, "days").toDate(),
 endDateTime: moment().add(2, "days").toDate(),
 fare: 1200
 });
 expect(Busservice.find().count()).toBe(0);
});

There are two negative test cases and one positive test case. The test cases are pretty
much straightforward. The first specification is to test that, if the source point and
the destination point are the same, insertion should not happen. If you notice the
parameter passed to the createBusService method call, you will find that both the
source and destination are the same place. If insertion fails, the collection count will
be 0, and this is what we expect and assert in the first test.

The same is the case for second specification where seats count is invalid. We have
a restriction from the schema that the max value for seats is 50. We have specified
90 in the second test, because of which insertion will fail. Again, the collection count
will be 0 and the expected is also the same. The last one is a positive case where it
should insert a document; therefore, the count of the collection will be 1. The expect
method verifies this at the end of the specification.

Finally, the client integration test remains. Create integration.js and add the
following tests to it:

describe("Client template testing", function() {
 beforeEach(function() {
 Meteor.call("removeAllBusservice");
 });

 describe("Templates", function() {
 it("Home must be having bus-list division", function() {
 var div = document.createElement("DIV");
 var comp = UI.render(Template.Home, div);
 expect($(div).find(".bus-list").length).toBe(1);
 });
 });

 it("should show one row in the listing page", function(done) {
 Meteor.call("createBusService", {
 name: "Test",

Chapter 2

[65]

 agency: "Testing agency",
 seats: 30,
 source: "Bombay",
 destination: "Kolkata",
 startDateTime: moment().add(1, "days").toDate(),
 endDateTime: moment().add(2, "days").toDate(),
 fare: 1200
 }, function() {
 expect($(".bus-list__body .bus-list__row").length).toBe(1);
 done();
 });
 });

 it("List template should have rows equal to docs in busservice
 collection", function(done) {
 Meteor.autorun(function() {
 if(DDP._allSubscriptionsReady()) {
 done();
 var div = document.createElement("DIV");
 var comp = UI.render(Template.Home, div);
 expect($(div).find($(".bus-list__body .bus-
 list__row")).length).toBe(Busservice.find().count());
 }
 });
 });
});

In the client integration testing, we are going to use the DOM to verify the states.
The first test spec checks whether a division with the class .bus-list is present
and also whether it is the only one present in the template. The second spec tries to
insert a document and thereby confirms that it reflects in the listing page. We have
used jQuery for selectors. You can also use plain JavaScript. Finally, the last test case
verifies that the number of items in the collection is equal to the number of rows in
the list.

Developing and Testing an Advanced Application

[66]

Finally, if it is all good, in the browser, you will find that all the tests are passed
without any failure, as shown in the following image:

The specs and suites provided are the basic ones, which can be easily understood.
However, we can write complex specifications, and Jasmine facilitates it pretty well.
That is all about Jasmine.

Apart from Jasmine, we can use Mocha, Cucumber, Casper, and Robot frameworks
to write and execute test cases. Other than Jasmine and Mocha, the rest of the
frameworks are not yet mature enough to work with MeteorJS. There is not enough
documentation or examples to explore. We would have to do trial and error,
and a lot of exploration, from examples to the core packages. The scope of these
frameworks is beyond this book, so I will stop this topic right here.

We have come a long way, but in the right way. In this chapter, we have gathered
plenty of information and also learned about many resources. Coming to the end of
the chapter, let us summarize what we have learned.

Chapter 2

[67]

Summary
This chapter covered most of the important aspects of developing a MeteorJS
application. So far, what we have learned is quite enough to develop a maintainable
application. The application has many other aspects to be improved in terms of
features. You were familiarized with the way of developing quality and testable
applications. Let us summarize what we have learned in this chapter.

We learned scaffolding a MeteorJS application, with which we can generate all the
necessary components in one shot, or as an individual component. With scaffolding,
we also learned that each collection object has the allow and deny methods, with
which we can perform extensive role-based authorization checks on data-related
operations. With iron-router, we learned to create a maintainable pattern to define
a controller, layout, subscription, and data for templates. We learned to define
schema, provide validation, display the validation errors in forms, and create custom
validations.

Debugging is an important developer skill, and using tools to debug code will
reduce our time. We learned all the means of debugging a MeteorJS application. We
learned how to use Node-inspector, Meteor shell, and even the good old message
printing. Finally, we learned to write tests for the MeteorJS application using velocity
and Jasmine.

If you look at the summary, you can figure out that this chapter covered all the
required aspects of a complete development. We have learned a lot in this chapter.
In the next chapter, we will learn how to create packages. Cheers!

Chapter 3

[69]

Developing Reusable
Packages

Packages are one of the key reasons for MeteorJS' growth. The framework is built
in a way to create and use local packages, or use the packages created by other
developers from the community. We can also use NPM packages in the application.
This adds to the rate at which applications are developed using MeteorJS. As I
have mentioned in the previous chapter, atmosphere is where you can find all the
packages developed by the community. So, if we have created a package that can
benefit others, we can put it in atmosphere.

A package is nothing but a functionality. Accounts-ui is a package that has the login
and signup-related functionality. MomentJS is a famous date manipulation library.
It was converted to suit MeteorJS' convention and was released as a package. We
have some packages that are existing libraries, which are modified to be a MeteorJS
package, and some packages that are written specifically for MeteorJS applications.
As I had mentioned before, MeteorJS itself comprises a large number of packages.
We can see the list of packages used by MeteorJS in GitHub (https://github.
com/meteor/meteor/tree/devel/packages). Blaze is a package for UI rendering
and manipulation. Some of the important functionalities of the framework are
extended from packages. One such package is tracker which is responsible for the
reactivity of the framework. Similarly, mongo is a package responsible for MongoDB
operations. When most of the framework's functionality is provided by packages,
why don't we explore it?

www.allitebooks.com

https://github.com/meteor/meteor/tree/devel/packages
https://github.com/meteor/meteor/tree/devel/packages
http://www.allitebooks.org

Developing Reusable Packages

[70]

In this chapter, we are going to cover the following topics by developing an
interesting package:

• Creating a package
• Using the package
• Testing the package
• Distributing the package

Introduction to packages
In the previous chapters, we have used packages and I hope you remember them.
We have used packages such as iron-router, momentjs, reactive-var, and so on.
We have used the meteor add <package name> command to add packages. When
we run this command, MeteorJS searches for the interested package in https://
packages.meteor.com and adds it to the application. If we want to use a specific
version of a package because of compatibility reasons, then we have to use meteor
add <package name><@version>. There are MeteorJS applications that are built
just with custom-made packages. There are developers who believe that it is good
to build their modules and functionalities as custom packages that is evolving as a
pattern to build the MeteorJS applications. Take a look at the Stack Overflow answer
(http://stackoverflow.com/a/26733023/407342), which will give an explanation
about it. This clearly gives us the picture of how important packages are in MeteorJS.

An installed package
Have you ever wondered where MeteorJS keeps all the packages? You can find
them in the .meteor directory. MeteorJS converts the files of a package into one or
more files based on the environment of execution during its build process. Create a
MeteorJS application and visit the .meteor directory and its subdirectories. Inside
the .meteor/local/build/programs/server/packages directory, we will find
the compiled version of the core packages used by MeteorJS at the server. Similarly,
inside the .meteor/local/build/programs/web.browser/packages directory, we
will find the compiled version of packages used by MeteorJS at the client end.

These are the directories where the actual code that is executed in the appropriate
environment lives. We can even find that all the templates are converted into the .js
files. Let's refocus on our mission. When we add a package, MeteorJS creates files
from the package to a version that is suitable to run in the environments and adds it
to the appropriate build directories.

https://packages.meteor.com
https://packages.meteor.com
http://stackoverflow.com/a/26733023/407342

Chapter 3

[71]

Creating a package
In this section, we will learn how to create a custom package and use it in
our application.

The packages creation example that we are going to see is with respect
to MeteorJS version 1.1.x. Note that there could be changes in the API
or the structure with the next release.

We have to know two things about creating packages. If we are going to create a
package for public use or common purpose (such as using it across applications),
then it is always good to keep the package out of the application. However, if we are
going to create a package to wrap the modules of the application, which means it is
going to be application-specific, then we will keep it inside the packages directory
inside the application.

Why would someone write their application modules as packages? There are a lot of
advantages. When we write a package, we gain control over the order in which the
files are run. Also, we expose what needs to be exposed. We can write tests for that
particular module inside the package itself; thus, it is all self-contained, which makes
it easy to maintain.

We are going to build a small application in which we will create a custom package
to implement a module of the application. The application is all about showcasing
some products, and each product can be added to the cart. Let's start developing
the application.

Create a MeteorJS application with the name ProductKart using the meteor create
ProductKart command. Remove the autopublish and insecure packages. To
keep things simple, we are not going to add server and client separations. We will
write both the server and the client code inside ProductsKart.js. The templates
will be inside ProductsKart.html. However, we will create two directories for the
application; one is the packages directory where our package is going to live and the
other is public, from where the images of the product will be served. Let us do some
ground work to get the application ready.

We will insert some products during application startup from the code to keep
things simple. Then, we will add templates to display them in the application.
Replace the content of ProductsKart.js with the following code:

//products collection
ProductsCollection = new Mongo.Collection("products");

//Client side code

Developing Reusable Packages

[72]

if (Meteor.isClient) {
 Meteor.subscribe("products");//subscribing to the products
 collection
 Template.ProductList.helpers({ //template helper for
 ProductList template in ProductsKart.html
 products: function() {
 return ProductsCollection.find({});
 }
 });
}

//Server side code
if (Meteor.isServer) {
 Meteor.startup(function() {
//On startup add the insert the following objects to mongo
 collection if the collection is empty
 var products = [{
 name: "Puppy",
 image: "puppy.jpg",
 prize: 12000
 }, {
 name: "Shoe",
 image: "shoe.jpg",
 prize: 1900
 }, {
 name: "Cup Cake",
 image: "cupcake.jpg",
 prize: 200
 }];
 if (ProductsCollection.find({}).count() <= 0) {
 products.forEach(function(item) {
 item.createdAt = new Date();
 item.updatedAt = null;
 ProductsCollection.insert(item);
 });
 }
 });
 //Publishing the products collection
 Meteor.publish("products", function() {
 return ProductsCollection.find({});
 });
}

Chapter 3

[73]

Developer comments in the preceding code explain clearly what is done in which
part of the code. All we have done is, we have inserted a few hard-coded products
into the products collection when the application starts so that we will have
something to add to the cart. We have created the products collection instance at the
first line of the code and published it at the end. In the Meteor.isClient block, we
have subscribed the collection and defined a helper for listing the product.

To display the products, we have to define the template. Replace the content of
ProductsKart.html with the following code:

<head>
 <title>ProductsKart</title>
</head>
<body>
 <header>
 <div class="logo">ProductsKart</div>
 </header>
 <div class="container">
 {{> ProductList}}
 </div>
 <footer>
 copyright@NoBody
 </footer>
</body>

<template name="ProductList">
 <ul class="list">
 {{#each products}}
 {{> Product}}
 {{/each}}

</template>

<template name="Product">
 <li class="list-item">

 <div class="name">{{name}}</div>
 <div class="prize">{{prize}} INR</div>

</template>

Developing Reusable Packages

[74]

Here, we have just defined two templates; one for listing and the other is for each
product that is a child template for the listing template. Get some product images
and add them to the public directory and rename them according to the database
records that we inserted at the application startup. If we look at the product
template, we can figure out that we are going to display the image of the product,
the name, and then the prize.

The public directory is where we have to put static content such as
images, which is a convention in MeteorJS.

If you start the application, you will find in the browser that the products are
displayed but not aligned. Let us add some styles to make them look pretty. Add the
following styles to the css file:

 body {margin: 0;padding: 0;}
 header, footer {
 padding: 20px 30px;background-color: #aaaccc;}
 footer {text-align: center;}
 .logo {font-size: 20px;}
 .bucketContainer {
 position: absolute;
 right: 30px;top: 20px;}
 .container {
 height: calc(100vh - 121px);overflow: auto;}
 .list {
 width: 100%;
 padding: 2%;margin: 0;
 box-sizing: border-box;}
 .list-item {
 width: 29%;
 list-style: none;
 padding-bottom: 100%;
 display: inline-block;
 padding: 0 2%;
 text-align: center;}
 .list-item img {width: 100%;}
 .list-item > * {margin-bottom: 5px;}
 button {
 padding: 6px 10px;
 background-color: #00aacc;
 color: #fff;
 border: 0;
 cursor: pointer;
 border-radius: 5px;}

Chapter 3

[75]

Visit the browser and you will find that things are in place and they look pretty.

The required application is ready and we also have products to add to the cart. We
are going to develop the cart as a package for our application, which will export the
necessary templates and variables to display the cart and manipulate the cart data.

The packages directory is where we are going to create the package. MeteorJS
provides us with the following command, with which we can create packages:

meteor create –package <developer>:<package name>

From this command, we can figure out that we need a developer account in
https://www.meteor.com. Is this mandatory? No. However, if you want to
distribute your package to the community, then it is mandatory. If you are going
to use the package just for local development, then it is not required. In our case,
we are going to keep it local.

Before we start, we need a name for our package. We will keep it as bucket. Let's
create the bucket package by running the meteor create –package bucket
command. Now, visit the packages directory and you will find a directory with the
name bucket. Inside the bucket directory, there are some files in which we will
write our package code. Before starting to write the package, we need to learn some
conventions that we have to follow while writing a package.

Get acquainted with the package.js file, as it is one of the most important files of
the package. It is more like the bootstrap file of an application. You can find out
about this file in the MeteorJS official documentation (http://docs.meteor.com/#/
full/packagejs). You will find three sections in the packages.js file.

Package.describe
In this section, we have to describe the package. This section is very important when
we distribute the package for public use. The properties inside the describe part are
self-explanatory. If we are distributing, then the name of the package must be in the
<developer-name>:<package-name> format and is mandatory. All these properties
will help you to know about the package. In our case, we can ignore them. The
following code is an example of the describe API:

 Package.describe({
 name: 'bucket',
 version: '0.0.1',
 // Brief, one-line summary of the package.
 summary: '',
 // URL to the Git repository containing the source code for
 this package.

https://www.meteor.com
http://docs.meteor.com/#/full/packagejs
http://docs.meteor.com/#/full/packagejs

Developing Reusable Packages

[76]

 git: '',
 // By default, Meteor will default to using README.md for
 documentation.
 // To avoid submitting documentation, set this field to null.
 documentation: 'README.md'
 });

Package.onUse
The onUse section is the most important section of the file. Here, we define what files
to load in which environment and in what order. MeteorJS doesn't automatically
load all the files of the package as it does for the application. We have to list even
from the very basic package to the custom files that we need for our package
using the onUse api method. Inside the function that we pass to the Package.
onUse method, we get an api variable as an argument that is an object with certain
methods, which helps us to register our files and other packages that our package is
going to use:

 Package.onUse(function(api) {
 api.versionsFrom('1.1.0.2');
 api.addFiles('bucket.js');
 });

The two api methods are as follows:

• api.versionsFrom: This takes a string that represents the version of the
Meteor core packages we want to use.

• api.addFiles: This takes an individual file or an array of files followed by
the environment. If we want to use a file both in the server and the client,
pass them both in the array.

There are a few more methods that can be useful, as follows:

• api.use: This helps us to define what other packages our package is going
to use

• api.imply: This allows us to access the packages used by this package
• api.export: This helps us to expose variables to the appropriate

environments

Chapter 3

[77]

Package.onTest
The onTest method helps us write tests for the package. We will use jasmine to write
tests for our package and velocity to run the tests. We will take a detailed view of
this section at the end of the chapter:

 Package.onTest(function(api) {
 api.use('tinytest');
 api.use('bucket');
 api.addFiles('bucket-tests.js');
 });

The bucket package
We are free to do anything inside the package, in the same way we do in the
application. Let us first describe the features of the package and then we'll start
structuring the package code. The bucket is nothing but a cart. We can add products
to the cart and remove them from the cart. We should provide a way to reach
the cart, which can be a division anywhere in the application. We can display the
number of items in a cart inside this division. When the user clicks on the division, it
will show the entire cart with all the items added to the cart.

In technical terms, we need a collection to store the cart items, templates to show the
division that we spoke about, another template to list the items in the cart, and some
helpers for these templates. Let us start creating the required components.

Collection
Create the collections directory inside our package directory (packages/bucket).
Add a file, bucket.js, inside the collections directory. We will define a collection for
our cart by adding the following line of code to this file:

BucketCollection = new Mongo.Collection("user_s_bucket");

Templates
Next, we need templates. Create a directory called templates inside our package
directory. Our package will provide three templates for the application. One is the
division that we spoke about earlier, next is the button to add or remove items to and
from a cart, and one is to display the whole cart. Create a file, bucket.html, inside
the templates directory and add the following template to it:

<template name="Bucket">
 {{name}} <sup><span
 id="no-of-items">{{item}} {{text}}</sup>
</template>

Developing Reusable Packages

[78]

This template is the division that, when clicked, will display the entire cart.
This template will also display the number of items in the cart. There are some
configurable properties that can be passed from the application while using this
template. If the other developer wants to add some classes, or change the display
text or the items count follow-up text, he/she can do it right in the usage rather
than changing them with in the package.

Time to see the work of our partially done template! As I have mentioned earlier,
MeteorJS doesn't load all these files that we have created. So we have to do this
explicitly in package.js. Change the content of the Package.onUse method to look
like the following code:

 api.versionsFrom('1.1.0.2');
 api.use(["templating", "mongo"]);
 api.addFiles('bucket.js');
 api.addFiles('./collections/bucket.js', ['client', 'server']);

 api.addFiles('./templates/bucket.html', ["client"]);

Watch the code snippet carefully. We have to explicitly mention what other packages
our package will use. In the second line of the code snippet, we have mentioned
templating and mongo. These are very basic packages, but still we have to mention
them. In the fourth and fifth line, we add the files that we had created just before.

After this, one more step is pending; that is, to add the package to the application. So
far, we have created the package, but haven't added it to the application. Let us do it
now. Run the meteor add bucket command in the application root. This will add
the package to the application. Now, if we check the packages list in the application
using the meteor list command, the command line output will display our custom
package with a plus sign next to the version that indicates that it is a local package:

bucket 0.0.1+

meteor-platform 1.2.2 Include a standard set of Meteor packages in
 your app

+ These packages are built locally from source.

We have successfully created a package and added it to the application. We have to
use the package in our application now.

Chapter 3

[79]

Using the package
We can use the template from our package in the application. Append the following
template call to the header section of ProductsKart.html:

<div class="bucketContainer">{{> Bucket classes="icon-bucket"
 name="Cart" text="items" bucketContainer="#bucketPlace"}}</div>

After adding this, the cart division will be displayed in the top-right corner of the
application in the browser. Hope you got a fair idea of how the packages work. Let
us complete the rest of the package features.

We have created the collection in our package, but haven't published or subscribed
it. We will publish the collection in the server by adding the following code to the
bucket.js file inside our package directory:

if(Meteor.isServer) {
 Meteor.publish("bucket", function() {
 return BucketCollection.find({});
 });
}

We will subscribe for the collection in the same file by adding the following code:

if(Meteor.isClient) {
 Meteor.subscribe("bucket");
}

To display the total items in the bucket collection, we need a helper. Create
the helpers directory in parallel with the templates directory and add the
bucketHelper.js file. Add the following helper to this file:

Template.Bucket.helpers({
 item: function() {
 return BucketCollection.find({}).count();
 }
});

In the package.js file, we have to add this file so that it is available in the
application. Add the following line to the Package.onUse method along with the
existing content:

api.addFiles('./helpers/bucketHelper.js', ["client"]);

If you visit the browser now, you will find the bucket division at the top-right corner,
displaying 0 items that was previously just items.

Developing Reusable Packages

[80]

The next step is to provide the "Add to Cart" buttons from the package. We will
create the buttons by adding the following template to bucket.html:

<template name="AddOrRemoveButton">
 {{#if remove}}
 <button class="removeFromBucketBtn
 {{classes}}">{{removeButtonText}}</button>
 {{else}}
 <button class="addToBucketBtn {{classes}}"
 disabled="{{disabled}}">{{addButtonText}}</button>
 {{/if}}
</template>

We will use the same template for "Add to Cart" and also for the "Remove From
Cart" functionality. We are going to use this button template in the application.
Modify the Product template in ProductKart.html to accommodate the button
template as shown in the following code:

<template name="Product">
 <li class="list-item">

 <div class="name">{{name}}</div>
 <div class="prize">{{prize}} INR</div>
 {{> AddOrRemoveButton addButtonText="Add to Cart"
 removeButtonText="Remove From Cart"}}

</template>

This change will add a button to all the products in the list. We have to attach the
database operation to add items to the user_s_bucket collection when the button
is pressed. To be more precise, when the "Add to Cart" button is clicked, we have
to collect the product data and add it to the user_s_bucket collection that we had
created in the package. We will bind a click event to the button and call a server
method to insert into the user_s_bucket collection. In bucketHelper.js, add the
following event handler:

Template.AddOrRemoveButton.events({
 "click .addToBucketBtn": function(e) {
 Meteor.call("addToBucket", Template.parentData());
 },
 "click .removeFromBucketBtn": function(e) {
 Meteor.call("removeFromBucket", Template.parentData());
 }
});

Chapter 3

[81]

When the "Add to Cart" button is clicked, it will call the addToBucket server
method with the parent data. The parent data will have the complete product object.
Similarly, when "Remove From Cart" (we will add this in the whole cart section) is
clicked, it will call another server method, removeFromBucket, with the parent data.

Now, we have to define both these server methods. Add the following piece of code
to bucket.js after the BucketCollection publication:

Meteor.methods({
 "addToBucket": function(product) {
 BucketCollection.insert({
 item: product,
 product_id: product._id,
 createdAt: new Date(),
 updatedAt: null
 });
 },
 "removeFromBucket": function(product) {
 BucketCollection.remove({
 product_id: product._id
 });
 }
 });

These server methods simply add to the collection and remove from the collection.
This is pretty easy to understand at first glance. Click on the Add to Cart button and
you will see the Cart division at the top-right corner, which reflects
the change.

We don't want to add a duplicate product to the cart. So, we will disable the button
once added to the cart. To disable it, add the following code to bucketHelper.js:

Template.AddOrRemoveButton.helpers({
 remove: function() {
 return
 Template.instance().hasParentTemplate
 ("BucketItemslistWrapper");
 },

 disabled: function() {
 var product = Template.parentData();
 return !!(BucketCollection.findOne({product_id:
 product._id}));
 }
});

Developing Reusable Packages

[82]

This helper will check whether the product is present in the user_s_bucket
collection and, if present, it will disable the button. Also, the other helper, remove,
will help us decide when to show the add button and the remove button. The
remove button will be shown only when we display the selected products in the
whole cart. We will come back to that later. So far, we have implemented the cart
division and the button to add items to the cart. The remaining part is displaying
the whole cart.

Displaying the entire cart while clicking on the Cart division at the top-right is a little
complicated in terms of code. Firstly, we will define the template for the whole cart
section. Add the following template to bucket.html:

<template name="BucketItemsList">
 <div class="bucketItemsListContainer {{displayStatus}}"></div>
</template>

Our cart section doesn't need to implement a new rendering logic or template to
show the items in the cart. It can reuse the same template used by the application
to list the product. However, the package must be informed about which template
to reuse. So, while using the BucketItemsList template in the application, we will
have to pass the list template's name as data to the BucketItemsList template as
given in the following template:

{{> BucketItemsList parentTemplate="ProductList"}}

Here, note that we are passing the template, in order to reuse it as part of the data,
to the BucketItemsList template. In the onRendered callback, we will manipulate
the passed template name and reuse it by feeding the bucket collection data. Add the
following relative code that does the magic for us:

Template.BucketItemsList.onRendered(function() {
 this.autorun(function() {
 if(this.subscriptionsReady()) {
 var bucketItems = BucketCollection.find({}).fetch(),
 products = {
 products: bucketItems.map(function(bucketItem) {
 return bucketItem.item;
 })
 },
 selector = Template.instance()
 .$(".bucketItemsListContainer"),
 visibility = selector.is(":visible");
 Template["BucketItemslistWrapper"] = new Template(
 "BucketItemslistWrapper",
 Template[this.data.parentTemplate].renderFunction

Chapter 3

[83]

);
 selector.children().remove();
 if(bucketItems.length) {
 Blaze.renderWithData(
 Template["BucketItemslistWrapper"], products,
 selector[0]);
 } else {
 selector[0].innerHTML = "<div class='no-items'>No items
 in the cart</div>";
 }
 }
 }.bind(this));
});

Template.BucketItemsList.helpers({
 displayStatus: function() {
 var status = Session.get("BucketItemsListStatus");
 if(status === undefined) {
 return "hidden";
 }
 return Session.get("BucketItemsListStatus");
 }
});

In the onRendered callback, we are registering an autorun method to render the
cart template whenever the subscription is ready. Once the subscription is ready, we
collect all the products from the user_s_bucket collection. Then, the template that
we had passed along with the data to the BucketItemsList template is cloned using
the following code snippet:

Template["BucketItemslistWrapper"] = new Template(
 "BucketItemslistWrapper",
 Template[this.data.parentTemplate].renderFunction
);

The selected products are fed into the cloned template using the following
code snippet:

Blaze.renderWithData(Template["BucketItemslistWrapper"],
 products, selector[0]);

Developing Reusable Packages

[84]

This will render the whole cart. However, inside the cart, we need to show the
Remove from Cart button instead of the Add to Cart button. To achieve this, we
have to define the condition that decides when to use the Remove from Cart button.
In bucketHelper.js, we have already added the Template.AddOrRemoveButton.
helpers helper and the remove method. The remove method verifies that the
AddOrRemoveButton template is used inside the BucketItemslistWrapper template
using the hasParentTemplate method that has to be defined as given in the
following code snippet:

Blaze.TemplateInstance.prototype.hasParentTemplate = function
 (name) {
 var view = Blaze.currentView;
 while (view) {
 if (view.name === name) {
 return true;
 }
 view = view.parentView;
 }
 return false;
};

Add the preceding method definition to the top of the bucketHelper.js file. From
the remove method, it will check and resolve when to use the Add to Cart button and
the Remove from Cart button. Also, we have already attached the click event for the
Remove from Cart button that will call the server method to remove items from the
user_s_bucket collection.

The only thing pending is to add the click interaction to the Cart division at the
top-right. Add the following code snippet to the bucketHelper.js file:

Template.Bucket.events({
 "click .bucket": function(e) {
 e.preventDefault();
 if(Session.get("BucketItemsListStatus") === "hidden") {
 Session.set("BucketItemsListStatus", "");
 } else {
 Session.set("BucketItemsListStatus", "hidden");
 }
 $(".bucketItemsListContainer").slideToggle();
 }
});

In the preceding code snippet, we toggle the cart display when clicking on the Cart
division in the top-right. To achieve this, we have used the session to maintain the
state. Click on the Cart division and you will find the slide animation of the whole cart.

Chapter 3

[85]

We need some package-specific styles. We will add it by creating the styles.css
file inside the stylesheet directory inside our package directory. Add the following
styles:

.hidden {display: none;}

.bucket { text-decoration: none;color: #222;}

.no-items {
 text-align: center;
 padding: 20px;
 font-size: 20px;}
button[disabled="true"] {background-color: #aaa;}

Add the stylesheet to the package.js file's Package.onUse method so that it will
reflect in the browser.

Finally, just for learning, we will expose a variable from a package to the application.
Prepend the following code to bucket.js at our package directory:

Bucket = {
 getTotalPrize: function(prizeField) {
 prizeField = prizeField || "prize";
 var total = 0, itemsInCart = BucketCollection.find().fetch();
 itemsInCart.map(function(cartItem) {
 total += cartItem.item[prizeField];
 return total;
 });
 return total;
 },
 getTotalNumberOfItemInBucket: function() {
 return BucketCollection.find().count();
 }
};

We are trying to expose some APIs for the application to use from our package.
However, to make it available, we have to add the following line to the Package.
onUse method of the package.js file:

api.export('Bucket', ["client", "server"]);

Now, Bucket.getTotalPrize() is accessible in the application. Without the
preceding line, the Bucket variable will not be available in the application.

The implementation is complete and the package is fully functional. Play around
with it and don't forget to give a proud smile for what we have achieved. I hope
what we have learned so far is fun and useful.

Developing Reusable Packages

[86]

Testing the package
Packages in MeteorJS facilitate writing tests by default. We can use the jasmine
package to test our package. Add it to the application using the meteor add
sanjo:jasmine command. Also, we need a test runner. We will use velocity's html-
reporter, that we have used in the previous chapter. Add the velocity package
using the meteor add velocity:html-reporter command.

Add the tests directory to our package directory and remove bucket-tests.js.
We will write the client and server tests separately, as we did for the application in
the previous chapter. Create the server and client directories inside the tests
directory and add server.js and client.js inside the server and client
directories, respectively.

Let us start adding some tests. Firstly, we will test our server-side code. Inside
server.js, add the following code, which does some basic tests:

describe("Server tests", function() {
 it("BucketCollection should be defined", function() {
 expect(BucketCollection).toBeDefined();
 });

 it("Can call getTotalPrize in Bucket variable at server",
 function() {
 expect(Bucket.getTotalPrize()).toBe(0);
 });
});

Similarly, we will add a test case for a client by adding the following code to
client.js:

describe("Template test", function() {
 it("Bucket template should be defined in client", function() {
 expect(Template.Bucket).not.toBeUndefined();
 });
});

We have to add these files in package.js for the test environment to recognize the
tests. Modify Package.onTest to make it look like the following code:

Package.onTest(function(api) {
 api.use('sanjo:jasmine@0.15.4');
 api.use('bucket');

 api.addFiles('./tests/server/server.js', ['server']);
 api.addFiles('./tests/client/client.js', ['client']);
});

Chapter 3

[87]

At the first line of the method, we informed the test environment to use jasmine.
Mind the version number, as it is very important to mention it. Then, we have added
the package we had created followed by the test specification files.

Also, we need to add an export to Package.onUse as follows:

api.export('BucketCollection', ["client", "server"]);

We do this to expose BucketCollection to the testing environment.

To run the test and see the report, we should stop the application. Run the following
command in the application root, which will run a server for our tests:

VELOCITY_TEST_PACKAGES=1 meteor test-packages --driver-package
 velocity:html-reporter bucket

When we run this command, a server runs at localhost:3000, which will show
the test reports. Visit localhost:3000 in the browser and see that our tests have
passed. We have written basic test cases that you can extend to any depths as
needed by the package.

So far, we have added tests to our package and have also ran it. What next?
Distributing the package for general public use.

Distributing a package
To distribute a package, it is mandatory to follow certain rules. Being developers, we
know how well a public library or framework needs to be maintained. It has to be
annotated, documented, organized, updated, and above all supported. Only then,
an open source library or framework will gain momentum. The same is the case here
when we think about distributing a package.

First of all, we have to create the package out of our application and link it to our
application using soft links. We don't have to create the package inside the packages
directory, instead we keep it in some other convenient location and start writing the
package. Then, we can soft link (ln -s <path to package>) the package to the
packages directory inside the application. If we run the meteor add <package>
command, things will work the way we have done so far in the previous sections.

Once you have created and completed the package, write tests as we did earlier.
Write tests to significant portions at least to make sure the package is in good
condition. Create a git repository to maintain the package. Add the package to the
repository and follow proper Git conventions to maintain the package. Create tags
and development versions for appropriate use. Also, add extensive documentation
and the ReadMe.md file explaining every aspect of the package.

Developing Reusable Packages

[88]

Another important thing to do is to fill the package.js file's Package.describe section
with real values, which we have ignored before. Follow the name convention by
creating a developer account in meteor.com and use it to prefix your package name,
such as <dev-acc-name:package name>. Add the Git URL and summary so that
it will be easy for other developers to find the repository and file issues, if any.
Versioning is again important; you follow it as you wish, but do not ignore it.

Finally, when you feel that your package is ready to be released for public use, just
run meteor publish –create from the package root directory. This will add the
package to https://packages.meteor.com. The -create flag is to indicate that we
are publishing the package for the first time. On subsequent releases, you can use
just meteor publish. After publishing the package, it will be available at https://
atmospherejs.com/. However, before publishing, make sure you are doing the
right thing and not polluting the ecosystem. Read the guidelines link (https://
atmospherejs.com/i/publishing) to know when to publish a package.

This is all we need to know about package development. We have covered all that
we had committed to learn in this chapter.

Summary
Let's summarize what we have learned in this chapter. We have learned how to
create packages for a MeteorJS application. We have learned to describe a package
for both local and public use. Also, we have learned how to add files to a package
and export variables. We have used jasmine to test our package with the help of
velocity. Finally, we have learned to follow the conventions to publish or distribute
a package to the MeteorJS ecosystem.

I hope you have enjoyed the chapter. Now, you can go ahead and create some useful
packages and distribute it for the community to use. In the next chapter, we will
learn to use some of the popular frontend frameworks with a MeteorJS application.

https://packages.meteor.com
https://atmospherejs.com/
https://atmospherejs.com/
https://atmospherejs.com/i/publishing
https://atmospherejs.com/i/publishing

[89]

Integrating Your Favorite
Frameworks

The rise of the frontend frameworks such as Backbone.js, Angular.js, Ember.js, React.
js, and so on, has changed the way we write JavaScript. In fact, after the rise of these
frameworks, the popularity of JavaScript peeked high enough for people to trust
and build full-fledged JavaScript-based single page applications. Each framework
has its own advantages and disadvantages, and such an analysis is out of the scope
of this book. However, what really matters is how far they have driven application
development using JavaScript.

In today's application development, every frontend developer has his choice of
framework. A few developers adhere to Backbone.js, while many have migrated to
Angular.js and Ember.js. React.js is getting way popular, and is can even be used
as a view layer for other frameworks such as Backbone.js. This shift has forced
backend systems to behave like data providers or data sources, and has exposed
data via mostly REST API and rarely other API formats. These APIs become the only
point of contact between the data and the application. Thus, the entire control of the
application is concealed within the frontend framework.

MeterorJS is not an exception. Though MeterorJS has every needed component in-
built, many developers don't want to spend time in learning another templating
language or view component; for example, in MeteorJS case, it is Blaze. Many also
prefer to use their favorite frontend framework with MeterorJS. So we are going to
learn how to use some of these frontend frameworks with MeteorJS. Based on the
popularity (GitHub stars), Angular.js and React.js are chosen for this chapter.

Integrating Your Favorite Frameworks

[90]

In this chapter, we are going to cover the following topics:

• Using Angular.js with MeteorJS
• Using React.js with MeteorJS
• A simple data visualization with d3.js and MeteorJS
• A general idea of using any frontend framework with MeteorJS and

Angular.js

Every framework has its own idea. Angular.js has the idea of smart HTML with an
inbuilt two-way binding powered by the digest cycle. It is a very impressive idea for
a framework, but has its own disadvantages in terms of performance. It is the reason
Angular2 is developed in a way, to overcome the performance issue, and also beta is
out for all Angular.js enthusiasts to try it out. As far as this chapter is concerned, we
will use Angular1 because Angular2 is not yet ready for production.

As you may have guessed, we will learn to use Angular.js with MeterorJS by
developing a small application. Before starting, we have to know a few things about
using Angular.js with MeteorJS. Angular.js, by default, supports a two-way binding.
With MeteorJS, we will get a three-way binding, which is also called the ultimate
reactivity. Much more powerful. Like a typical single page application, we will use
MeterorJS to provide data with reactivity and Angular.js to govern and render the
data in the browser.

Can we use Angular.js as it is with MeteorJS? Yes, of course. However, what is the
fun in that while we can do things even better! If we still want to use
Angular.js separately, then all we need to do is build a REST-based backend system
using MeterorJS and use Angular.js to build the application user interfaces.

In this chapter, we will use Angular.js with MeteorJS to get the most out of the
combination. To use Angular.js with MeteorJS, there is an excellent package called
angular-meteor (https://github.com/Urigo/angular-meteor) that bridges the
gap between both the frameworks by providing certain conventions and APIs. This
package has been added as an official package to support Angular.js. So we believe
this package will be maintained by the Meteor Development Group.

The package provides a way to wire the data subscription with the $scope object.
Whenever there is a change in data, this wiring updates the $scope object and you
know what happens then. This kind of reactivity is called a three-way binding in
Angular.js terms. To support routes, we will use the angular-ui-router package.

https://github.com/Urigo/angular-meteor

Chapter 4

[91]

This is all we need to know. Let's start developing an application using Angular.js
with MeteorJS. What's the idea of the application? Everyone wants delicious food at
the right time. To serve delicious food to people, we will develop an application that
will showcase the food menu items. To keep it simple, we will develop the food item
create/edit page and a display page with the login support. If you wish, you can
extend the application to support every desired feature of your taste.

There is nothing much to code in the MeterorJS server environment specific to
Angular.js. We will follow the same approach we used in the previous chapters
to the develop applications. Firstly, define database schema, then add or remove
related packages, publish the required data, and add methods to perform database
operations. The remaining is the Angular.js part where we will configure an Angular.
js app and a module, as well as some routes to support create, edit, and display and
some helper directives.

The name of the product is very important to reach as many users as possible. We
will name it ngFoodMenu. Create a MeterorJS application with the name ngFoodMenu,
and remove all the default files. Create the client, server, and lib directories and
add the index.html file at the root of the application.

The server-side setup – FoodMenu
Firstly, we will complete server-side development quickly and precisely. Then, we
will concentrate on the Angular.js part.

Collection
Inside the lib directory, add the collections.js file. Here, we will put
our collection that will be shared across the application. It is better to use the
Collection2 package to define a schema and validation. However, to demonstrate,
we will assume the schema and develop things. Add the following piece of code to
collections.js:

/** name, chef_name, contents, time, image, quantity,
 prize, is_published, is_deleted, created_at, updated_at
*/
FoodMenu = new Mongo.Collection("foodMenu");

The fields in the collection are given in the preceding code comment. We have
defined the collection and created an instance as well.

Integrating Your Favorite Frameworks

[92]

Publish
We will publish the collection. However, before publishing, we need to remove the
autopublish and insecure packages. After removing them, add publish.js to the
server directory.

Add the following publication registration code to the publish.js file:

Meteor.publish("foodMenu", function (args) {
 args = args || {};
 return FoodMenu.find(_.extend({is_published: true, is_deleted:
 false}, args));
});

Access rules
We will add access rules to the collection using the allow and deny methods of the
collection instance. Create the accessRules.js file in the server directory and add
the following code to the file:

FoodMenu.allow({
 insert: function() {
 if (Meteor.user().profile.role === "admin") {
 return true;
 }
 },
 update: function(userId, doc) {
 if (Meteor.user().profile.role === "admin") {
 doc.updated_at = new Date();
 return true;
 }
 },
 remove: function() {
 return true;
 }
});

FoodMenu.deny({
 insert: function() {
 return false;
 },
 update: function() {

Chapter 4

[93]

 return false;
 },
 remove: function() {
 return false;
 }
});

Looking at the code, you can figure out that we need to add the login and the user
role to create or update documents in the FoodMenu collection.

Methods
We need to expose methods from the server to perform database operations. Create
the methods.js file in the server directory and add the following methods to the
file:

Meteor.methods({
 "SaveItem": function(item) {
 item.created_at = new Date();
 FoodMenu.insert(item, function(err, res) {
 console.log(err, res);
 });
 },
 "UpdateItem": function(item) {
 item.updated_at = new Date();
 var id = item._id; delete item._id;
 FoodMenu.update(id, {$set: item}, function(err, res) {
 console.log(err, res);
 });
 }
});

For now, this is all we need to do in the server. The code must be very familiar and is
very much self-explanatory. It does just the basic operations.

The client-side setup – FoodMenu
The real crux of the chapter lies in the client. Let's add the angular-meteor package
to the application to start with the client. Add the package using the meteor add
urigo:angular command. We are ready to write Angular.js code.

Integrating Your Favorite Frameworks

[94]

Client packages
In the client, we will have two sections. The first section is the header, where we
will display the logo, navigation link, and accounts section. We are going to use
the accounts-password, twbs:bootstrap, and ian:accounts-ui-bootstrap-3
packages for the login and general styles. The other section is the container,
where we will display the create/edit form or the listing based on the route. As
we mentioned earlier, we also need angular-ui-router for routes. Add all these
packages using the meteor add command. To add angular-ui-router, run the
following command:

meteor add angularui:angular-ui-router

Create the directories, lib, stylesheets, controllers, directives, and
templates in the client directory.

Application styles
Inside the stylesheets directory, create styles.css and add the following styles
to the file:

body {margin: 0;padding: 0;}
header {background-color: #1e4560;color: #fff;padding: 20px 10px;
 display: flex;}
.logo {font-size: 30px;flex: 1 1 auto;}
.logo a {color: #fff;text-decoration: none;}
.logo a:hover {text-decoration: none;}
.login-signup {align-self: center;}
.login-signup ul {margin-bottom: 0;}
.login-signup ul li{list-style: none;display: inline-block;}
.login-signup ul li > a {color: #fff;}
.login-signup ul li .dropdown-menu {right: 0;left: auto;}
.food-list {list-style: none;text-align: center;padding: 0;}
.food-list__item {margin-top: 4em;box-shadow: 1px 1px 1px 1px
 #ccc;}
@media (min-width: 992px) {
 .food-list__item:nth-child(4n), .food-list__item:first-child {
 margin-left: 4%;}
}
.food-list__item > div {padding: 10px;border-bottom: 1px solid
 #ccc;}
.food-list__item > div:last-child {border-bottom: none;}
.food-list__item__name {font-size: 16px;font-weight: bold;}
.food-list__item__prize {padding: 10px;}
/** Commons **/
.ptr {cursor: pointer;}

Chapter 4

[95]

The Angular.js application
Once the ground work is done, get ready to write some real code. Add the app.js
file inside the client/lib directory. In this file, we will define the Angular.js app
and the required routes. Add the following app declaration code to the file and
carefully go through them:

angular.module('FoodMenu', ['angular-meteor', 'ui.router']);

The name of the Angular.js app module is FoodMenu. We have defined the
dependencies as well. The application object is created. Now, we can define our
application HTML. Add the following code to index.html at the application root:

<head>
 <title>ngFoodMenu</title>
 <base href="/">
</head>

<body ng-App="FoodMenu">
 <header siteheader></header>
 <div ui-view></div>
</body>

The header section
As we discussed earlier, you can see the two sections of the application inside the
ng-App scope. From HTML, we can deduce that the header is a directive with the
name siteheader. Let's create this directive. Create the header.js file inside the
client/directives directory and add the following directive creation code:

angular.module('FoodMenu').directive('siteheader', function () {
 return {
 templateUrl: 'client/directives/header.ng.html'
 };
});

The preceding code snippet creates the directive and registers it to the module.
From the code, it is very clear that the template must be in header.ng.html under
client/directives. Note the .ng.html extension carefully. This is required to
make sure MeterorJS doesn't process this HTML file like the other non-angular
HTML files.

Integrating Your Favorite Frameworks

[96]

Add the following template code to the header.ng.html file:

<div class="logo">ngFoodMenu</div>
<div class="login-signup">

 <li ng-if="currentUser && currentUser.profile.role ===
 'admin'" class="btn">Add Items
 <meteor-include src="_loginButtons"></meteor-include>

</div>

This is a small piece of code, but with some new things. Where did the template
get the currentUser object from? Angular.js's root scope ($rootScope) provides the
currentUser object. How did it get attached to $rootScope? The angular-meteor
package does the magic. The next important thing to note is the meteor-include tag.
We can use MeterorJS templates inside the Angular.js templates. To do this,
the angular-meteor package has created a special directive called meteor-include.
We are including the loginButtons template from the accounts-ui-bootstrap3
package. The _ prefix is nothing special but, because the loginButtons template is
exposed with the name _loginButtons from the package, we use it that way. For
more references on meteor-include, check out the angular-meteor (https://
github.com/Urigo/angular-meteor#meteor-include) GitHub repository. Now,
visit the application in the browser. Remember to start the application.

The next task is to create a user and provide him/her with the admin privileges.
We don't want to spend time configuring the signup to accommodate a user role.
Instead, we will do it in the database directly. Create a user from the signup form in
the header, go to database of the application, and run the following command:

db.users.update({_id: "<user id>"}, {$set: {profile: {role: "admin"}}});

Find your user ID from the users' collection and use it in the update query. This will
give the "admin" privileges to the user. If all goes well, you will see the "Add Items"
link in the header. This is because we have configured it in the siteheader directive to
appear for the admin user. Did you notice the reactivity of the Angular.js template
here? We added the role of the user in the database that is reflected to $rootScope,
which in turn reflects in a directive template. Do you see the power of the full-stack
reactivity or three-way data binding? We just need to configure the reactive data
source to the reactive entities (scopes) of the Angular.js framework and things will
work out.

https://github.com/Urigo/angular-meteor#meteor-include
https://github.com/Urigo/angular-meteor#meteor-include

Chapter 4

[97]

The application container section
We are done with the header. The next part of the application to develop a form page
to create a food menu item, and this page should be reached via a route.

Angular.js routes
We will add all our routes to the client/lib/app.js file. Append the following
route-related code to app.js:

angular.module('FoodMenu').config([
'$urlRouterProvider', '$stateProvider', '$locationProvider',
 function($urlRouterProvider, $stateProvider,
 $locationProvider) {
 $locationProvider.html5Mode(true);
 $stateProvider
 .state("addItem", {
 url: '/add-item',
 templateUrl: 'client/templates/additem.ng.html',
 controller: 'CreateItemController',
 resolve: {
 "currentUser": ["$meteor", function($meteor) {
 return $meteor.requireUser();
 }]
 }
 });
 $urlRouterProvider.otherwise('/');
 }
]);

In the preceding code snippet, we are configuring the required route for the creation
page. If you are familiar with Angular.js, you will know the dependency injection
happening in the first line of the code. The important part to concentrate on is the
.state method of $stateProvider. The first parameter is the name with which we
can refer this route. The second parameter has the actual route, template file path,
controller name, and resolve property, which helps to wait for resources such as
subscriptions and the user object. The $meteor.requireUser(); method call will
throw the "AUTH_REQUIRED" error if a user object is not present. We can capture
this error in the $stateChangeError event at $rootScope in order to redirect
the user to the page they access to, or to do some other relevant operations. The
angular-meteor package exposes the Meteor object as $meteor and injects when
needed in a pure Angular.js style.

Integrating Your Favorite Frameworks

[98]

The CreateItem controller
For the route to do something useful, we have to define the controller and
the template as specified in the route. Add the createItemController.js file
inside the client/controllers directory. Create a controller by adding the
following piece of code:

angular.module("FoodMenu").controller("CreateItemController", [
 "$scope", "$meteor", "$state",
 function($scope, $meteor, $state) {
 var setVal = function() {
 $scope.item = {
 name: "",
 chef_name: "",
 contents: "",
 time: "Lunch",
 image: "",
 quantity: 1,
 prize: 20,
 is_published: true,
 is_deleted: false,
 created_at: "",
 updated_at: null
 };
 }
 setVal();
 $scope.selectImage = function(element) {
 $scope.item.image = element.files[0];
 }
 $scope.save = function() {
 Images.insert($scope.item.image,
 function(err, res) {
 if (!err) {
 $scope.item.image = res._id;
 $meteor.call("SaveItem", $scope.item);
 setVal();
 $state.go("list");
 } else {
 console.log(err);
 }
 });
 }
 }
]);

Chapter 4

[99]

In the controller, we define the required properties and methods in the scope.
We have defined an item property in $scope that has all the form fields as an
Angular.js model.

Uploading images
Our application is going to support image upload. How can we show a list of
food items without pictures? Users will be disappointed, won't they? To add the
image upload feature in the application, we are going to use the CollectionFS
package. We will use a different mongo collection to store the uploaded images'
details. It is highly recommend to visit the Meteor-CollectionFS package
repository (https://github.com/CollectionFS/Meteor-CollectionFS) to see
what other features the package offers. Add the package using the meteor add
cfs:standard-packages command. This is the standard package.

The CollectionFS collection
For the image collection to work, we have to follow certain steps so that the images
that we try to upload will be uploaded to the appropriate storage and the record
is maintained properly in the database. We need to create a mongo collection for
images, which means we need a Mongo.Collection instance to get the handle of
the mongo collection similar to the FoodMenu instance. However, instead of using
Mongo.Collection, the Meteor-CollectionFS package has its own way of creating
the instance. Append the following piece of code to lib/collections.js:

Images = new FS.Collection("images", {
 stores: [new FS.Store.GridFS("images")],
 filter: {
 allow: {
 //allow only images in this FS.Collection
 contentTypes: ['image/*']
 }
 }
});

Now, we know how to create the FS collection instance. The Meteor-CollectionFS
package supports different types of storage. Based on the storage we choose, we
have to install the additional storage package. In our case, it is the gridfs storage
and so we will add the gridfs package by executing the following command:

meteor add cfs:gridfs

https://github.com/CollectionFS/Meteor-CollectionFS

Integrating Your Favorite Frameworks

[100]

From the preceding code, it is clear that the FS.Collection constructor takes the
collection name as the first parameter, while the second parameter is an object that
specifies which storage we would like to use and the optional filters, if any. In our
case, we have specified the filter to allow only the files of the type image.

Access rules
To this collection instance, we need to specify the access rules; it is mandatory
to specify them, at least the allow rules. We can add the deny method if needed.
Append the following access rule code to server/accessRules.js:

//add your access rules here
Images.allow({
 insert: function() {
 return true;
 },
 update: function(userId, doc) {
 return true;
 },
 remove: function() {
 return true;
 },
 download: function() {
 return true;
 }
});

Publish images
We have to publish this collection to the client, which can be done by appending the
following piece of code to server/publish.js:

Meteor.publish("images", function (argument) {
 argument = argument || {};
 return Images.find(argument);
});

Now, if you visit the $scope.images declaration that is commented in
createItemController.js, you will find the $meteor object has the collectionFS
API with which we can refer to the Images collection. Keep in mind that the
Images collection is a CollectionFS collection instance and not a normal Mongo.
Collection instance. If it was a normal Mongo.Collection instance, we would use
$meteor.collection(<collection instance>). We will see it when we subscribe
to the FoodMenu collection later. Just for the sake of knowing, it is put over there and
commented.

Chapter 4

[101]

The AddItem Angular.js template
The only remaining part is the template. Create a template file addItem.ng.html
inside the client/templates directory and add the following template code to it:

<div class="container">
 <form role="form">
 <div class="form-group">
 <label for="name">Item Name</label>
 <input required type="text" class="form-control"
 id="name" placeholder="Food Item Name"
 ng-model="item.name" />
 </div>
 <div class="form-group">
 <label for="chef_name">Chef Name</label>
 <input type="text" class="form-control" id="chef_name"
 placeholder="Chef Name" ng-model="item.chef_name"/>
 </div>
 <div class="form-group">
 <label for="contents">Ingrediants</label>
 <input required type="text" class="form-control"
 id="contents" placeholder="Ingrediants"
 ng-model="item.contents" />
 </div>
 <div class="form-group">
 <label for="time">Time</label>
 <select class="form-control" id="time"
 ng-model="item.time">
 <option value="BreakFast">BreakFast</option>
 <option value="Lunch">Lunch</option>
 <option value="Dinner">Dinner</option>
 </select>
 </div>
 <div class="form-group">
 <label for="image">Image</label>
 <input type="file" class="form-control" id="image"
 placeholder="Image"
 onchange="angular.element(this).scope().
 selectImage(this)" ng-model="item.image" />
 </div>
 <div ng-if="edit===true" class="form-group row">

 </div>
 <div class="form-group">
 <label for="quantity">Quantity</label>
 <input required type="number" class="form-control"
 id="quantity" placeholder="Quantity"
 ng-model="item.quantity" />
 </div>

Integrating Your Favorite Frameworks

[102]

 <div class="form-group">
 <label for="prize">Prize</label>
 <input required type="number" min="20" max="2000"
 class="form-control" id="prize" placeholder="Prize"
 ng-model="item.prize" />
 </div>
 <div class="form-group">
 <label for="is_published">Is Published</label>
 <input type="checkbox" class="form-control"
 id="is_published" placeholder="Is Published"
 ng-model="item.is_published" />
 </div>
 <div ng-if="edit===true" class="form-group">
 <label for="is_deleted">Is Deleted</label>
 <input type="checkbox" class="form-control"
 id="is_deleted" placeholder="Is Deleted"
 ng-model="item.is_deleted" />
 </div>
 <button type="submit" class="btn btn-default"
 ng-click="save()">Submit</button>
 </form>
</div>

Visit http://localhost:3000/add-item in the browser and you will find the form
for creating food items, as shown in the following screenshot:

Chapter 4

[103]

Demystifying the logic
In the preceding template, the model is bound to the appropriate fields using the
ng-model directive. The template is self-explanatory. When an image file is selected,
the selectImage method is called, which sets the file object to the image property in
$scope.item. On submission, the save method is called, which will save the image
first. When successful, the $scope.item object is passed to the server by calling the
SaveItem server method for persisting the food item data along, with the inserted
image record ID.

Did you notice that we insert image into the Images collection right in the client,
but we call the server method to insert food item data document into the FoodMenu
collection? The reason is that we cannot transfer the file object to a server via a server
method. It will transfer only the meta data but not the file object. So, we have no
option but to insert from the client. The angular-meteor package provides the save
method on collection instances to be called $scope.foodMenu.save(). However, it
is always good to persist the data from the server.

Where are the inserted files, by the way? If you are aware of GridFS, you know the
answer. For those of you who don't know what it is, GridFS does nothing but store
the file as chunks in MongoDB. In MeteorJS Mongo console, look for collections
that start with the cfs prefix using db.cfs followed by tab. You will see the list of
collections created to store the file chunks and other metadata. If you are against
storing files in a database, go for fileSystem or Amazon S3. The CollectionFS
document provides us a few choices.

Listing food items
So far, we have developed an interface to create food items. Next, we can develop
a listing page that is going to be the landing page for the application in which we
will display all the food items created. We need to specify a route, a controller, and a
template to complete the listing of the items.

Route
Add the following piece of state to client/lib/app.js right after the addItem
route, as follows:

 $stateProvider
 .state("addItem", {
 url: '/add-item',
 templateUrl: 'client/templates/additem.ng.html',

Integrating Your Favorite Frameworks

[104]

 controller: 'CreateItemController',
 resolve: {
 "currentUser": ["$meteor", function($meteor) {
 return $meteor.requireUser();
 }]
 }
 })
 .state('list', {
 url: '/',
 templateUrl: 'client/templates/foodList.ng.html',
 controller: 'FoodListController',
 resolve: {
 "subscribe": ["$meteor", function($meteor) {
 return $meteor.subscribe('images');
 }]
 }
 })

Controller
Create the foodListController.js controller file inside the client/controllers
directory and add the following controller code:

angular.module("FoodMenu").controller("FoodListController", [
 "$scope", "$meteor",
 function($scope, $meteor) {
 $scope.foodMenu = $meteor.collection(FoodMenu)
 .subscribe('foodMenu');
 $scope.imageSrc = function(id) {
 return Images.findOne({_id: id}).url();
 }
 $scope.deleteItem = function(item) {
 delete item.$$hashKey;
 item.is_deleted = true;
 item.is_published = false;
 $meteor.call("UpdateItem", item);
 }
 }
]
);

In the preceding controller, we subscribe to the FoodMenu collection and then attach
the deleteItem method to delete the food item from the list. We also get the image
URL for the image using the .url() method in the imageSrc method provided by
the CollectionFS document.

Chapter 4

[105]

Template
The next task is to add the template for listing the food items. Create foodList.
ng.html inside client/templates and add the following template code to the file:

<div ng-controller="FoodListController" class="container">
 <ul class="food-list row">
 <li class="col-xs-12 col-md-3 col-md-offset-1 food-list__item"
 ng-repeat="item in foodMenu">

 <div class="food-list__item__name">{{item.name}}</div>
 <div class="food-list__item__prize">Prize:
 {{item.prize}}</div>
 <div class="food-list__item__quantity">Available Quantity:
 {{item.quantity}}</div>
 <div class="food-list__item__contents">Ingredients:
 {{item.contents}}</div>
 <div class="food-list__item__chef">Chef:
 {{item.chef_name}}</div>
 <div class="food-list__item__chef">Time:
 {{item.time}}</div>
 <div ng-if="currentUser && currentUser.profile.role ===
 'admin'" class="food-list__item__edit">
 Edit |
 <a href="javascript:void(0)"
 ng-click="deleteItem(item)">Delete
 </div>

</div>

In the template, we show the edit and delete links only to the admin user.
While deleting, we call the UpdateItem server method to set the is_deleted
flag as true. This will eliminate all the deleted items from our subscription because
of the query in the publication. Prepare and add some more items for your users
and make them happy!

Editing food items
The next task is to allow the admin user to edit the food items.

Integrating Your Favorite Frameworks

[106]

Route
We will have a different controller and route, but we will reuse the same template.
Add the following route to the app configuration, as we did earlier:

 .state("editItem", {
 url: '/edit-item/:itemId',
 templateUrl: 'client/templates/additem.ng.html',
 controller: 'EditItemController',
 resolve: {
 "currentUser": ["$meteor", function($meteor) {
 return $meteor.requireUser();
 }],
 "subscribe": ["$meteor", "$stateParams", function($meteor,
 $stateParams) {
 return $meteor.subscribe('foodMenu', {_id:
 $stateParams.itemId});
 }]
 }
 });
$urlRouterProvider.otherwise('/');//handling wrong routes

The code explains a lot. We need to pass the food item document ID with the route.
We need to create a controller with the name EditItemController. In the resolve
part, we can subscribe to the food item document that we want to edit.

Append the following piece of code to the same app.js file to handle redirection in
case of unauthorized users, which we discussed earlier:

angular.module("FoodMenu").run(["$rootScope", "$state",
 function($rootScope, $state) {
 $rootScope.$on("$stateChangeError", function(event, toState,
 toParams, fromState, fromParams, error) {
 if (error === "AUTH_REQUIRED") {
 $state.go('list');
 }
 });
}]);

Chapter 4

[107]

The EditItem controller
Let's create the EditItemController by adding a controller file,
editItemController.js, in the client/controllers directory. Add the following
controller code to the file:

angular.module("FoodMenu").controller("EditItemController", [
 "$scope","$meteor",'$stateParams',"$state",
 function($scope, $meteor, $stateParams, $state) {
 $scope.edit = true;//flag to indicate edit mode
 $scope.item = $meteor.object(FoodMenu, $stateParams.itemId,
 false); //getting single document
 $scope.imageSrc = "";

 var imageId = $scope.item.image; //old image id
 //Subscribing to image associated with this document
 $meteor.subscribe('images', {_id:
 $scope.item.image}).then(function() {
 try {
 $scope.imageSrc = Images.findOne({_id:
 $scope.item.image}).url();
 } catch(e) {}
 });
 $scope.selectImage = function(element) {
 $scope.item.image = element.files[0];
 //Instant update using FileReader
 var fileReader = new FileReader();
 fileReader.readAsDataURL($scope.item.image);
 fileReader.onloadend = function() {
 $scope.$apply(function() {
 $scope.imageSrc = fileReader.result;
 });
 }
 }
 //Toggling the properties using $watch
 $scope.$watch("item.is_deleted", function(newValue, OldValue) {
 if(newValue === true) {
 $scope.item.is_published = false;
 } else {
 $scope.item.is_published = true;

Integrating Your Favorite Frameworks

[108]

 }
 });
 $scope.$watch("item.is_published", function(newValue,
 OldValue) {
 if(newValue === true) {
 $scope.item.is_deleted = false;
 } else {
 $scope.item.is_deleted = true;
 }
 });
 $scope.save = function() {
 //Image updated
 if($scope.item.image instanceof File) {
 //removing previous image from database
 Images.remove({_id: imageId});
 //Insert the new image
 Images.insert($scope.item.image, function(err, res) {
 if (!err) {
 //On success call the server method to update the
 document after update the image id
 $scope.item.image = res._id;
 $meteor.call("UpdateItem",
 $scope.item.getRawObject());
 $state.go("list");//redirect
 } else {
 console.log(err);
 }
 });
 } else {
 $meteor.call("UpdateItem", $scope.item.getRawObject());
 $state.go("list");
 }
 }

 }
]);

Chapter 4

[109]

Demystifying controller logic
In the edit controller, we define an edit flag in $scope to help us display a few
elements in the template only in edit mode. Next, we get only the required
collection that we are going to edit. The $meteor.object method does this if we
pass the collection and the ID of the interested document. The third parameter to
$meteor.object accepts boolean, which is a flag to indicate if we want to update
the document immediately as the values change in $scope. The very next line is
where we subscribe the Images collection so that we can display the image while
editing. Once the subscription is ready, it updates the imageSrc property, which
in turn will render the image. In the selectImage method, we show an immediate
file preview using FileReader. There are two watch expressions defined to toggle
the is_deleted and is_published properties. Finally, the save method is where
we update the database document by calling the server method. If a new image is
uploaded, the old image is removed from the database, the new image is saved to the
database, and then $scope.item is updated in the database document. If an image is
not changed, we just update the document by calling the server method.

The FoodMenu application is ready. We have developed an Angular-Meteor
application. Now, treat yourself at your favorite restaurant for what we have
achieved. As usual, there is a lot of scope to improve the application. Take it as
homework and learn some new solutions. There is a great tutorial available at
http://angular-meteor.com/api/AngularMeteorObject that can help us to do
even more stuff with Angular.js in MeteorJS.

React.js with MeteorJS
Developing an application with Angular.js is fun. Similarly, we are going to develop
the same application in React.js. React.js is simpler than Angular.js. Though there are
not many tutorials or applications out there, giving it a try is worth it.

The reactivity part of React.js revolves around states and props. The States and
props are equivalent to $scope in Angular.js. The change in value will render the
markups again. However, React.js provides more handle over when to update the
markup with a set of APIs. This is a more react-specific topic to discuss. The only
thing to remember is, too many rerenders will affect application performance. So,
you should efficiently mind how you handle the state changes.

http://angular-meteor.com/api/AngularMeteorObject

Integrating Your Favorite Frameworks

[110]

Like angular-meteor, we have MeterorJS specific React.js packages. There are
two important packages: react and react-template-helper. With the React.js
package, we get the ReactMeteorData mixin that provides a few methods to deal
with MeteorJS' reactive data. The package also provides a jsx compiler and obviously
the react runtime. The react-template-helper package helps to embed the React.js
components into Blaze templates. There are a only few packages in development.
We have to wait some more for the ecosystem to grow.

ReactFoodMenu
Let's start developing our FoodMenu application using React.js. Create a MeterorJS
application with the name ReactFoodMenu and remove all default files.

Setup
Remove the autopublish and insecure packages. Create the server, client, and
lib directories and index.html file inside the application root.

Server
Copy all the files from the server and lib directories from the previous application
and paste them into the appropriate directories in the current application. We are
using the same server implementation that we used in the previous application,
except for a small change in the server method. We need to return the inserted
documents ID from the method. So, change the SaveItem method in server/
methods.js to look like the following code:

 "SaveItem": function(item) {
 item.created_at = new Date();
 return FoodMenu.insert(item, function(err, res) {
 console.log(err, res);
 });
 },

The rest of the changes will only be in the client. It's just that, instead of Angular.js,
we will use React.js components.

Client
Inside the client directory, create the add-edit-item, commons, header, list, and
stylesheets directories. Copy the same styles.css from the previous application
into the client/stylesheets directory.

Chapter 4

[111]

Client packages
All the copy-paste stuff is done and it's time to write React.js code. We will install
the necessary packages and start writing React.js code. Add react-specific packages,
such as the react and react-template-helper packages, using the meteor add
command. Then, add the cfs:standard-packages and cfs:gridfs packages
for file upload handling. Add twbs:bootstrap, accounts-password, and
ian:accounts-ui-bootstrap-3 for styles and accounts, and meteorhacks:flow-
router for routing.

The first React.js component
To start with, let us add a loading component for our application. Create the
loading.jsx file in the client/commons directory. Add the following loading
component jsx code to the file:

Loading = React.createClass({
 render: function() {
 return (
 <div className="loading">Loading...</div>
);
 }
});

This is all it takes to create a loading component. We can use this component to
display while other components are waiting for a subscription. There are things to
note here. The Loading variable must be global so that it can be accessed across files.
If you have worked with React.js before, this syntax is pretty easy to understand.
Every component must have a render method that returns markups. These markups
look like HTML, but they are not really HTML. If you look closely at the markup
inside the render method, you will find the className attribute instead of the class
attribute. Similarly, there are other attributes and markups that are jsx-specific. Later,
the jsx compiler will compile the markups to HTML and render them.

The header section
Let us develop the header portion first and provide ways to create a login. Add the
following piece of HTML to index.html:

<head>
 <title>ReactFoodMenu</title>
</head>
<body>
 <header id="siteheader">

Integrating Your Favorite Frameworks

[112]

 <div class="logo">ReactFoodMenu</div>
 <div class="login-signup">

 {{> loginButtons}}

 </div>
 </header>
 <div class="container" id="sitebody"></div>
</body>

Start the application and visit it in the browser. You will find the header is ready. We
could have designed the header as a react component and then rendered. However,
we would have had to render it on every route change that was being added to
maintenance. It is better to put it as a plain HTML markup to avoid overhead.
Another reason is the loginButtons template, which cannot be used in the react
component. As of now, there is no way to integrate MeterorJS templates inside the
react component's jsx code. However, vice versa is possible with the help of the
react-template-helper package. We will see how to use it.

The React.js component in Blaze
In the header, we have to show the Add Items link for the admin user. We will create
a Blaze template that will use the React.js component to show the link. We can do
it just by using Blaze. However, to demonstrate how to use the React.js component
inside Blaze, we will perform this step. Create the addItemsButton.html template
file into the client/header directory. Add the following template code to the file:

<template name="addItemBtn">
 <!-- without which react component won't work -->
 <div>
 {{> React component=AddItemLink currentUser=currentUser}}
 </div>
</template>

This is how we have to use the React.js component inside the Blaze template. There
are two things to notice in the preceding code. There is a div wrapper to the React.
js component because we cannot use the component as a direct child to the Blaze
template. Another important point is, React.js doesn't allow us to render components
with siblings. So we cannot add anything as sibling to the react component. The
component attribute is mandatory and this is where we pass the component we want
react to render inside the Blaze template. The rest of the attributes are optional and
are available as props inside the component.

Chapter 4

[113]

However, for Blaze to recognize the React.js component, we have to create a
template helper that will pass the React.js component to the template. Create the
addItemBtnHelper.js helper file inside the client/header directory and add the
following helper code:

Template.addItemBtn.helpers({
 AddItemLink: function() {
 return AddItemLink;
 },
 currentUser: function() {
 return Meteor.user();
 }
});

Finally, create the React.js component by creating a jsx file, addItemsLink.jsx,
as follows:

AddItemLink = React.createClass({
 render: function() {
 if(this.props.currentUser &&
 this.props.currentUser.profile.role === "admin") {
 return Add
 Items
 } else {
 return null;
 }
 }
});

Add the template we created in index.html inside the header above the
loginButtons template, as follows:

<div class="login-signup">

 {{> addItemBtn}}
 {{> loginButtons}}

</div>

The Add Items link is ready. Create an account and go to the database and make
yourself the admin user using the following query:

db.users.update({_id: <id>}, {$set: {profile: {role: "admin"}}}

After the query execution, the link will show up in the header. The header part is
now done.

Integrating Your Favorite Frameworks

[114]

The container section
We'll concentrate on the food item creation part. To get started, we need a route.
Instead of iron-router, we are going to use FlowRouter in this application.
FlowRouter is getting popular because of the design concerns of many developers.
Take a look at FlowRouter's GitHub repository (https://github.com/kadirahq/
flow-router). Regarding the routes in the React-Meteor combination, there are two
ways to do things. One is using the FlowRouter, which we are going to look at in a
while. Another is to use ReactRouter, which is a little complicated. If you want to
explore ReactRouter, you can look at the ReactRouter package (http://rackt.
github.io/react-router/) and get some idea.

The application route
Coming back to our application, as we have decided to use FlowRouter, create a
route file, router.jsx, inside the client directory. We have created it to be a jsx
file because we will mount our react components inside the route.

Route – AddItem
Let's add the /add-item route to the router file. Add the following route code to the
router.jsx file:

FlowRouter.route("/add-item", {
 name: "addItem",
 action: function(params) {
 $(document).ready(function() {
 var siteBody = document.getElementById("sitebody");
 //clearing previous component to clear the state
 React.unmountComponentAtNode(siteBody);
 React.render(<AddEditItem />, siteBody);
 });
 }
});

FlowRouter allows us to specify a name to our route to refer it elsewhere and also
an action that will be the implementation logic. It also allows us to add subscription
registration, which we will see while adding other routes. Look at the package
documentation if you want to know more. In the action method, we have written
react-specific code:

React.render(<AddEditItem />, siteBody);

https://github.com/kadirahq/flow-router
https://github.com/kadirahq/flow-router
http://rackt.github.io/react-router/
http://rackt.github.io/react-router/

Chapter 4

[115]

This line renders the component in a given DOM element. The React.render
method takes a react component as the first parameter and a plain DOM element
as the second parameter. Before render, we need to unmount or remove anything
present inside the container that we use (siteBody). React will try to reuse the DOM
elements that might cause issues while switching between the add and edit screens.

The AddEditItem component
It is time to create the AddEditItem component. We will use the same component to
handle both add and edit. Create the add-edit-item.jsx file inside the client/
add-edit-item directory and add the component code to it:

AddEditItem = React.createClass({
 mixins: [ReactMeteorData],
 getMeteorData: function() {
 return {};
 },
 handle: true,//will be used inside getMeteorData method
 imageFile: null,//will be used to manipulate image for saving
 render: function() {
 return null;
 }
});

When we deal with MeterorJS reactive data, we have to add the ReactMeteorData
mixin to the component. This mixin provides the getMeteorData method and the
data properties that help the component to react to the reactive data from MeteorJS.
Whatever is returned from the getMeteorData method will be available in this.
data inside the other methods of the component. Replace the getMeteorData
method body with the following code to handle the rendering logic:

return {
 //Use handle to show loading state
 subscriptionLoading: !this.handle
};

The this.data.subscriptionLoading property will be useful in edit mode. In
the component methods, we can use this.data.subscriptionLoading to check
the ready status of the subscriptions, if any. In the render method, we can use
this.data.subscriptionLoading like the following code to show the loading
component:

 if(this.data.subscriptionLoading) {
 return <Loading />
 }

Integrating Your Favorite Frameworks

[116]

The initial state
React.js components have the getInitialState method in which we will define our
default values for our form and fields. The idea is to put all the fields in to the state
and send it to server while saving the data. Add the following initial state declaration
code to the component:

 getInitialState: function() {
 return {
 name: "",
 chef_name: "",
 contents: "",
 time: "Lunch",
 quantity: 1,
 prize: 10,
 is_published: true,
 is_deleted: false
 };
 }

There is a small change of plan here. We are not going to store the image ID in the
FoodMenu collection's document. Instead, we will store the FoodMenu collection's
document ID in the Images collection's document.

Component handlers
We need three more helpers to work with the form. One to handle images, one
to save the form data, and one to handle the toggling of the checkboxes. Add the
following methods to the component:

 selectImage: function(e) {
 var fileReader = new FileReader();
 this.imageFile = e.target.files[0];//will be used for saging
 this.refs.imgDisplay.getDOMNode().src = "";
 fileReader.readAsDataURL(file);
 fileReader.onloadend = function() {
 this.refs.imgDisplay.getDOMNode().src = fileReader.result;
 }.bind(this);
 },

This method will be called onChange of the file input field. React provides the refs
attribute to reference a DOM element by the name with which we are setting the
image chosen for the image tag next to the file input for an instant preview.

Chapter 4

[117]

Next, add the field change handler code to the component:

 handleChange: function(e) {
 var obj = {};
 obj[e.target.id] = e.target.value;
 if(e.target.type === "checkbox") {
 if(e.target.id === "is_published") {
 obj["is_deleted"] = !e.target.checked;
 }
 if(e.target.id === "is_deleted") {
 obj["is_published"] = !e.target.checked;
 }
 obj[e.target.id] = e.target.checked;
 }
 this.setState(obj);
 },

In this method, we will do two things. One is set the changes to the state and another
is toggle the checkboxes. One small application-level convention is to make the ID of
the fields the database collection field name, as in the getInitialState method, so
that we don't have to write separate handlers for each field.

Next is the submit handler. Add the following code to the component:

 save: function(e) {
 e.preventDefault();
 var method = "SaveItem";
 if(this.imageFile instanceof File) {
 var image = new FS.File(this.imageFile);
 Meteor.call(method, this.state, function(errSave,
 resSavedId) {
 if (!errSave) {
 image.metaData = {itemId: (resSavedId || this.props.id)};
 Images.insert(image, function(err, res) {
 if (!errSave) {
 FlowRouter.go("list");
 } else {
 console.log(err);
 }
 });
 } else {
 console.log(err);
 }

Integrating Your Favorite Frameworks

[118]

 }.bind(this));
 } else {
 Meteor.call(method, this.state, function(err, res) {
 if (!err) {
 FlowRouter.go("list");
 } else {
 console.log(err);
 }
 });
 }
 },

We save the data first and then the image into which we set metaData.itemId,
which is the ID of the document inserted. On success, we redirect the user to the
listing page.

React.js markups
Finally, we will provide the markups for our component. Add the following code to
be returned instead of null from the render method of the component:

(<div className="container">
 <form role="form" onSubmit={this.save}>
 <div className="form-group">
 <label htmlFor="name">Item Name</label>
 <input required type="text" className="form-control"
 id="name" onChange={this.handleChange} placeholder="Food
 Item Name" defaultValue="" value={this.state.name} />
 </div>
 <div className="form-group">
 <label htmlFor="chef_name">Chef Name</label>
 <input type="text" className="form-control"
 id="chef_name" onChange={this.handleChange}
 placeholder="Chef Name" value={this.state.chef_name}/>
 </div>
 <div className="form-group">
 <label htmlFor="contents">Ingrediants</label>
 <input required type="text" className="form-control"
 id="contents" onChange={this.handleChange}
 placeholder="Ingrediants" value={this.state.contents} />
 </div>
 <div className="form-group">

Chapter 4

[119]

 <label htmlFor="time">Time</label>
 <select className="form-control" id="time"
 defaultValue={this.state.time}
 onChange={this.handleChange}>
 <option value="BreakFast">BreakFast</option>
 <option value="Lunch">Lunch</option>
 <option value="Dineer">Dinner</option>
 </select>
 </div>
 <div className="form-group">
 <label htmlFor="image">Image</label>
 <input required={true} type="file" ref="imageFile"
 className="form-control" id="image" placeholder="Image"
 onChange={this.selectImage} />
 </div>
 <div className="form-group"><img ref="imgDisplay"
 width="300px" src={this.state.image} /></div>
 <div className="form-group">
 <label htmlFor="quantity">Quantity</label>
 <input required type="number" className="form-control"
 id="quantity" onChange={this.handleChange}
 placeholder="Quantity" value={this.state.quantity} />
 </div>
 <div className="form-group">
 <label htmlFor="prize">Prize</label>
 <input required type="number" min="20" max="2000"
 className="form-control" onChange={this.handleChange}
 id="prize" placeholder="Prize" value={this.state.prize}
 />
 </div>
 <div className="form-group">
 <label htmlFor="is_published">Is Published</label>
 <input type="checkbox" ref="is_published"
 className="form-control" id="is_published"
 onChange={this.handleChange} placeholder="Is Published"
 checked={this.state.is_published} value="is_published"
 />
 </div>
 <div className="form-group">
 <label htmlFor="is_deleted">Is Deleted</label>
 <input type="checkbox" ref="is_deleted"
 className="form-control" id="is_deleted"
 onChange={this.handleChange} placeholder="Is Deleted"
 checked={this.state.is_deleted} value="is_deleted" />

Integrating Your Favorite Frameworks

[120]

 </div>
 <button type="submit"
 className="btn btn-default">Submit</button>
 </form>
</div>);

Now, we will be able to create food items. Visit http://localhost:3000/add-item
in the browser and you will see the form to create food items. The redirection won't
work because we haven't created the list page route yet.

We have to revisit the AddEditItem component to provide the edit functionality,
which we will do after the listing page.

The listing section
Add food item component is ready. We need the listing page to display the added
items. Let's start developing the listing page.

The listing route
Add the following list page route to the router.jsx file:

FlowRouter.route("/", {
 name: "list",
 subscriptions: function(params) {
 this.register('foodMenu', Meteor.subscribe('foodMenu'));
 this.register('images', Meteor.subscribe('images'));
 },
 action: function(params) {
 $(document).ready(function() {
 var siteBody = document.getElementById("sitebody");
 React.render(<List />, siteBody);
 });
 }
});

FlowRouter allows us to register subscriptions from the route by a key, but does not
wait for the subscription to complete. If we want to wait for the subscription, we can
use the FlowRouter.subsReady method inside the component. We have subscribed
for both the collections in the route. Route is ready for use.

Chapter 4

[121]

The list component
However, the application will throw the "List is not defined" exception. We have
to define our List component. Create the list.jsx file inside the client/list
directory and add the following code to the file:

List = React.createClass({
 mixins: [ReactMeteorData],
 getMeteorData() {
 var foodMenuHandle = FlowRouter.subsReady("foodMenu")
 imagesHandle = FlowRouter.subsReady("images");

 return {
 subscriptionLoading: !foodMenuHandle || !imagesHandle,
 menu: FoodMenu.find({}).fetch(),
 currentUser: Meteor.user()
 };
 },

 deleteItem: function(id) {
 Meteor.call("UpdateItem", {
 _id: id,
 is_deleted: true,
 is_published: false
 });
 },

 render: function() {
 //showing loading component till subscriptions are ready
 if(this.data.subscriptionLoading) {
 return <Loading />;
 }
 if(!this.data.menu.length) {
 return <div className="no-data">No Items Available</div>
 }
 return (
 <ul className="food-list row">
 {
 this.data.menu.map(function (item) {
 var image = Images.findOne({"metaData.itemId":
 item._id}).url(),

Integrating Your Favorite Frameworks

[122]

 edit = "/edit-item/"+item._id;
 return (
 <li key={item._id} className="col-xs-12 col-md-3
 col-md-offset-1 food-list__item">

 <div className="food-
 list__item__name">{item.name}</div>
 <div className="food-list__item__prize">Prize:
 {item.prize}</div>
 <div className="food-
 list__item__quantity">Available Quantity:
 {item.quantity}</div>
 <div className="food-
 list__item__contents">Ingredients:
 {item.contents}</div>
 <div className="food-list__item__chef">Chef:
 {item.chef_name}</div>
 {
 this.data.currentUser &&
 this.data.currentUser.profile.role === 'admin' ?
 (<div className="food-list__item__edit">
 Edit | <a
 href="javascript:void(0)"
 onClick={this.deleteItem.bind(this,
 item._id)}>Delete
 </div>) : null
 }

);
 }.bind(this))
 }

);
 }
});

Here, we wait for the subscription using the FlowRouter.subsReady method that
will return boolean values. Once the subscription is ready, the getMeteorData
method will be called, which will set the new values in this.data. Then, we render
the component using the FoodMenu documents that are available in this.data.
menu. We iterate over the menu array and form the list items. On each li, we have
to add a key attribute that is a react convention. We have added the edit and delete
links for an admin user as well.

Chapter 4

[123]

The Images collection is not returned from the getMeteorData method. It is not
mandatory to return anything, unless we want them to be available in this.data.
We can directly call the Images collection by the instance and use it as we did inside
the map loop. The rest of the code is self-explanatory.

The edit items route
The last part of the application is editing the food item we have created. Add the
following edit route to the router.jsx file:

FlowRouter.route("/edit-item/:_id", {
 subscriptions: function(params, queryParams) {
 this.register('editItem', Meteor.subscribe('foodMenu',
 {_id: params._id}));
 this.register('editItemImage', Meteor.subscribe('images',
 {"metaData.itemId": params._id}));
 },
 action: function(params) {
 $(document).ready(function() {
 var siteBody = document.getElementById("sitebody");
 React.unmountComponentAtNode(siteBody);
 React.render(<AddEditItem edit={true} id={params._id} />,
 siteBody);
 });
 }
});

In the preceding route, we have added a subscription registration only for the
interested item, by passing a parameter to the subscription registration. We are
passing properties to the react component to indicate it in edit mode. We also pass
the ID of the item we are going to edit.

Edit patch
We will use these properties to make the Add Item form sufficient for edit as well.
If we fetch the food item document and set it on state, it will get populated in the
form as per our code in the AddEditItem component. In the getInitialState
method, we will do this by prepending the following code:

 if(this.props.edit === true) {
 FlowRouter.subsReady("editItem", function() {
 this.setState(FoodMenu.findOne({_id: this.props.id}));
 }.bind(this));
 }

Integrating Your Favorite Frameworks

[124]

We check whether it is in edit and then wait for the subscription to be ready. Once
it is ready, find the item from the collection and set it to the react component state.
We have to wait for both the FoodMenu and Images collections to be ready before
rendering. Prepend the following code to the getMeteorData method to make the
this.data.subscriptionLoading flag true:

 if(this.props.edit === true) {
 Tracker.autorun(function() {
 this.handle = FlowRouter.subsReady("editItem") &&
 FlowRouter.subsReady("editItemImage");
 }.bind(this));
 }

This piece of code will check for the edit mode and register a tracker. In MeteorJS, a
Tracker can run a method when any referred reactive data source changes. We use
Tracker.autorun to set the this.handle flag to true when both the subscriptions
are ready.

In the save method, we have purposefully defined a variable named method and
have assigned the server method name to it. Based on the mode of operation, we
can change the variable value that will call the appropriate methods of the server.
Change the method variable declaration to match the following code:

var method = this.props.edit === true ? "UpdateItem" : "SaveItem";

In edit mode, we call the UpdateItem server method; in create mode, we call the
SaveItem server method.

Finally, in the render method, we need to make two changes. Prepend the following
code that will take care of displaying loading components until the subscriptions are
ready, and set the image URL for displaying the image in edit mode:

 if(this.data.subscriptionLoading) {
 return <Loading />
 }
 var image = this.props.edit === true ?
 Images.findOne({"metaData.itemId": this.props.id}).url() : "";

We have to change the required attribute in the file input field so that it will not be
mandatory while editing. Change the required attribute to required={this.props.
edit === true ? null: true}, which will do the job. These are all the changes
needed for edit to work. Go to listing and click on edit. You will find that things are
working as expected.

For more information on react with MeteorJS, visit http://react-in-meteor.
readthedocs.org/en/latest/.

http://react-in-meteor.readthedocs.org/en/latest/
http://react-in-meteor.readthedocs.org/en/latest/

Chapter 4

[125]

d3.js with MeteorJS
As a final part of the chapter, we are going to develop a simple data visualization
using d3.js with MeteorJS

d3.js is a famous data visualization library. It has a number of methods to support
various kinds of visualization. We are going to see a small example that can portray
the power of d3.js when combined with MeteorJS' reactivity.

DataViz
Create a MeterorJS application, such as DataViz. Add the d3.js package
to the application using the meteor add d3js:d3 command and make the
following changes.

HTML
Replace the body content of dataViz.html with the following HTML code:

 <header id="siteheader">
 <div class="logo">Data Viz</div>
 </header>
 <div class="container" id="sitebody"></div>

Remove the template below the body tag.

Server
We will insert a few pieces of visualization-related data to a collection. Remove the
content of dataViz.js and add the following set of codes:

DataViz = new Mongo.Collection("dataViz");
if (Meteor.isServer) {
 Meteor.startup(function() {
 if (DataViz.find({}).count() <= 0) {
 var counter = 1;
 var id = setInterval(Meteor.bindEnvironment(function() {
 DataViz.insert({
 sno: counter++,
 temperature: Math.random() + 30
 });
 if (DataViz.find({}).count() === 20) {

Integrating Your Favorite Frameworks

[126]

 clearInterval(id);
 }
 }), 2000);
 }
 });
}

We have declared a collection and then inserted some data into the collection on
application startup. We have inserted data in an interval of two seconds using
the setInterval timer method. Did you notice Meteor.bindEnvironment inside
the setInterval callback? MeteorJS usually runs the server code in Fiber. When
we write a sync code with callback, out of MeteorJS, the callback must be run
within the Fiber. To do this, we use Meteor.bindEnvironment that will not only
run the callback within Fiber, but also binds the code with the variables from the
environment.

Why did we insert data in two second interval? The visualization that we are going
to develop should be dynamic. There are charts that instantly update themselves as
the data arrives at various intervals. These kinds of charts will be very suitable to see
MeterorJS reactivity in data visualization. We are going to develop a spline chart that
will update itself as we insert data to the collection. To see the instant update, we are
delaying each insertion by two seconds.

Client – d3.js code
Next, let us add the d3.js code that draws the axes and the line as per the data.
Append the following visualization code to the dataViz.js file:

if (Meteor.isClient) {
 $(document).ready(function() {
 var margin = {
 top: 20,
 right: 20,
 bottom: 30,
 left: 50
 },
 canvas = document.getElementById("sitebody"),
 width = 1000,
 height = 600,
 data = DataViz.find({}).fetch(),
 fields = ["sno", "temperature"];

 var x = d3.scale.linear().range([0, width]);

Chapter 4

[127]

 var y = d3.scale.linear().range([height, 0]);

 var xAxis = d3.svg.axis().scale(x).orient("bottom");
 var yAxis = d3.svg.axis().scale(y).orient("left");
 var line = d3.svg.line()
 .interpolate("basis")
 .x(function(d) {
 return x(d[fields[0]]);
 })
 .y(function(d) {
 return y(parseFloat(d[fields[1]]));
 });

 var svg = d3.select("#sitebody").append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," +
 margin.top + ")");
 svg.append("g")
 .attr("class", "x axis x-axis")
 .attr("transform", "translate(0," + height + ")")
 .call(xAxis);

 svg.append("g").attr("class", "y axis y-axis").call(yAxis);
 svg.append("path").datum(data).attr("class", "line").attr("d",
 line);
 });
}

In the preceding code, we have defined the margins and the container to draw the
chart. We have fetched the collection and then defined the axes-related calculations.
The d3.svg.line() method is the line function that draws each segment using
the data we had inserted during application startup. We append a svg tag into the
container and set the layout properties. Finally, we feed the data fetched from the
collection to the line function we had defined earlier and drew the lines using a path
element.

The preceding code will work for static data. How will it reflect the data that is
inserted after the chart is rendered? We have to redraw the chart as and when the
data is inserted. There are two ways to do it. Using .observe on cursor or by using
Tracker.autorun.

Integrating Your Favorite Frameworks

[128]

We are going to use the cursor observer in our example. Append the following code
to the ready function in the preceding code:

DataViz.find({}).observe({
 added: function(doc) {
 var datum = {};
 datum[fields[0]] = doc[fields[0]];
 datum[fields[1]] = doc[fields[1]];
 data.push(datum);
 if (data.length > 10) {
 data.splice(0, 1);
 }
 svg.select(".line")
 .transition()
 .duration(100)
 .attr("d", line)
 x.domain(d3.extent(data, function(d) {
 return d[fields[0]];
 }));
 y.domain(d3.extent(data, function(d) {
 return parseFloat(d[fields[1]]);
 }));
 svg.select('.x-axis').call(xAxis);
 svg.select('.y-axis').call(yAxis)
 }
});

The cursor's observers provide us the ability to run a set of codes when a document
is added, changed, or removed from the collection. In the preceding code, on every
insertion, the cursor's added callback that we have passed will be called. We update
the chart by inserting that data into the chart and thereby redrawing the axes and
the lines with the new data. With the observe method, we can add the changed and
removed callback as well.

Chapter 4

[129]

To see things in action, remove all the records from the mongo collection using the
meteor mongo console and restart the application. Visit the browser and you will
find the chart is instantly updating the lines every couple of seconds, as follows:

From the browser console, if we insert new data, it will also be reflected in the chart.
This is a pretty simple example, but shows how to wire MeteorJS' reactivity with
d3.js. This gives us the confidence that we can transfer MeteorJS' reactivity into any
piece of code that we write. We have to just find the right place to wire the reactivity
in order to redraw the data. However, be sure that it is not against performance.

If you want to build highly reactive data visualization for the analysis of your
application, now you know what to do. You have an amazing combination in hand,
rock your team with it.

www.allitebooks.com

http://www.allitebooks.org

Integrating Your Favorite Frameworks

[130]

Integrating any frontend framework with
MeteorJS
From all the above applications, one important thing we should note is how we wire
MeteorJS' data source reactivity into our frontend setup. In the case of Angular.js and
React, we have packages that do the job elegantly. However, it is not mandatory to
have a package to achieve this. In the above d3.js example, all we did was found a
way to wire the reactivity to the chart drawing code. We need to do the same with
any other frontend framework. We have to figure out a way to induce this reactivity
into the frontend framework's flow.

For example, suppose we want to use Backbone.js as our frontend framework,
we just have to figure out how to insert the new document into the Backbone
collection as and when data is added to the mongo collection. We can use the
Tracker or cursor observers to do the job.

Blaze is awesome. It will be improved by the community. However, if you prefer
your choice of framework, with MeteorJS, it is very much possible to integrate it.
Before making the decision, think twice about whether the effort you are going to
put is worth it.

Summary
I hope you have enjoyed the chapter and the pace in which we have learned to
develop a MeterorJS application using popular frontend frameworks. Let us
summarize everything that we have learned in this chapter. We learned to use
Angular.js using the angular-meteor package, and React.js using the react package. We
also learned to use d3.js with MeteorJS' reactivity to support reactive visualizations.
With an example, we have learned that we can observe the collection cursor that
opens up a way to listen on MeterorJSCollection, which is key to integrate any
frontend framework or library with MeteorJS. You can experiment more by using
MeterorJS with the frameworks of your choice and share it with the community.

In the next chapter, we will learn how to animate interfaces in MeterorJS applications
using various libraries.

[131]

Captivating Your Users with
Animation

Animations contribute to both the user experience and the aesthetics of an
application. Previously, animations were performed on sites using Flash, which
isn't native. After jQuery's simple APIs to perform animations and transitions, both
animations and transitions became common on many websites. With HTML5 and
CSS3, we got access to many native APIs and properties that helped to animate and
transit elements using hardware acceleration. To help developers achieve 60 fps,
which is the required frame rate for a perfect jank-free animation, libraries such
as Velocity.js and Famo.us appeared. With SVG, we have the ability to create any
shape, and this again made available another set of interesting animatable interfaces.

With the recent advancements in terms of animation in HTML, CSS, and JavaScript,
there are several tools available to design animations. Chrome has an animation
timing control tool in the developer tool. All this focus on animations has led to the
design of very interesting and intuitive animations for applications, which improves
user experience.

MeteorJS is highly reactive. Whenever there is a change of data, it reflects this in
the interface right away. With this kind of instant reactivity, it can be difficult to
perform animation, but it is not that hard. In MeteorJS roadmap, there is a place for
animation. So we can expect hooks and APIs to perform animations. Does this mean
we can't perform animation at present? No, absolutely not. We can still do animation
up to a certain extent, and this is what we are going to learn in this chapter.

Captivating Your Users with Animation

[132]

In this chapter, we are going to cover the following topics:

• Animation in Blaze templates
• Animation using MeteorJS packages with Velocity.js
• Animating SVG using snap.svg, d3.js
• Animations using Famo.us

Animation in Blaze templates
Usually, with Blaze and MeteorJS reactive collections, we want to perform animation
in lists while adding or removing items from the collection. Let's see how to animate
a reactive list's manipulation.

Create a MeteorJS application, such as AnimationPartyBlaze, and a collection by
prepending the following code to AnimationPartyBlaze.js:

MyList = new Mongo.Collection("my_list");

Create a template that shows the list of documents from the collection we have
created and append it to AnimationPartyBlaze.html, as follows:

<template name="mylist">
 <div>

 {{#each list}}{{this.name}}{{/each}}

 </div>
</template>

We have to provide a helper that passes the collection to the template. Create a
template helper in AnimationPartyBlaze.js for the preceding template and return
the collection, as follows:

 Template.mylist.helpers({
 list: function() {
 return MyList.find({});
 }
 });

To display it, add the template as {{> mylist}} next to the hello template inside
the body tag. Now, if we insert a document to the my_list mongo collection, this
template will show the data. However, we want this insertion to show up with some
sort of animation.

Chapter 5

[133]

Blaze doesn't have inbuilt APIs to perform animation. Instead, all it provides is a
hook with which we can perform animations by other available means. We can use
CSS classes that perform animation or we can write our own animation logic. For the
preceding list's manipulation example, we will use animate.css. Add animate.css
to the application using the meteor add natestrauser:animate-css command.
Now, we are free to use the animate.css animation helper classes. To learn more
about animate.css, visit the GitHub pages at https://daneden.github.io/
animate.css/.

What is that hook and how are we going to use it? During DOM manipulation, if
Blaze finds the _uihooks property in the DOM element, then it will try to execute
the respective hooks. We will see that in the code right away. Create the onRendered
callback for the mylist template and add the hook, as follows:

 Template.mylist.onRendered(function() {
 this.find(".list-container__ul")._uihooks = {
 insertElement: function(node, next) {
 node.classList.add("slideInRight", "animated");
 $('ul')[0].insertBefore(node, next);
 }
 };
 });

Carefully observe the _uihooks property. We can assign an object to this property,
which can have the insertElement, removeElement, and moveElement methods.
These methods will be executed when Blaze tries to insert, remove, or move the child
elements of the element to which these hooks are attached. In our case, the hooks are
attached to the ul element because we want to animate the li structure.

When we provide hooks explicitly, then it is our responsibility to handle the
operation as well. In the insertElement hook, we are explicitly handling the
insertion at the last line of the method by calling insertBefore. The hook methods
are called with the node, which is to be manipulated (inserted in this case), and the
next element for our convenience as arguments. We are adding the animation helper
classes from animate.css right before the insertion using the classList property.
See it in action by inserting a few documents to the collection from the browser
console using the MyList.insert({name: "Hello World!"}); code.

https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/

Captivating Your Users with Animation

[134]

Two important things to remember about the hooks are as follows:

• Hooks will work only for elements that are under nodeType 1. This
means, hooks will not be called on texts that come under nodeType 3. To
understand more about the nodeType property, take a look at the MDN link
(https://developer.mozilla.org/en/docs/Web/API/Node/nodeType).

• The other important thing is, _ before the _uihooks property. In developer
notations, a property prefixed by _ means that it can undergo changes and
it is not official. So, _uihooks is not an official way to animate in MeteorJS.
We have to keep an eye on the releases about the changes related to the hook.
Why are we using it then? The answer is, because this is the only way, as of
now, available to do all the animations within Blaze.

Lists are the common examples to show animations with reactive data sources in
MeteorJS. It demonstrates only cursors or collections. What about things in session?
A simple thing would be the default hello template that comes as a boilerplate
code when we create a MeteorJS app. When we click on the button, it increments the
counter variable in session that reflects immediately on the screen. Can we animate
this change? Yes, and let us see how we can do it.

Add the following onRendered callback to the AnimationPartyBlaze.js file inside
the client block:

 Template.hello.onRendered(function() {
 $('p')[0]._uihooks = {
 insertElement: function(node, next) {
 node.classList.add("zoomIn", "animated");
 $('p')[0].insertBefore(node, next);
 },
 removeElement: function(node) {
 node.classList.add("zoomOut", "animated");
 $('p')[0].removeChild(node);
 }
 };
 });

From the code, we can clearly figure out that we are performing the zoomIn and
zoomOut animations on insertion and removal respectively. Is it doing the job? Give
it a try in the browser. It doesn't work for the reason that the node that we are trying
to insert must be of nodeType 1.

https://developer.mozilla.org/en/docs/Web/API/Node/nodeType

Chapter 5

[135]

What is really getting inserted is the the text node which is not of noteType 1 and
thus the hook will not work. How to make it work? If we wrap the {{counter}}
entry in the hello template with a span tag, will it work? It won't and the reason
is, Blaze splits the text and treats the {{counter}} entry as a text node (a separate
node). So, the change to the text node doesn't work again.

Change the hello helper to look like the following code:

 Template.hello.helpers({
 counter: function() {
 return ""+Session.get('counter')+"";
 }
 });

Notice carefully that we are returning the counter from the session, wrapping it
with a span tag. For Blaze to render it as an HTML tag, change {{counter}} to
{{{counter}}} in the hello template. Now, click on the button and see the
animation. Pretty cool, isn't it?

Why did this work, but wrapping the span in the template not work? It is
because the node that changes (inserted/removed) must be of nodeType 1. In the
previous case, Blaze detected the text to be the changing entity, not the span tag, and
thus discarded the hooks. However, in this case, we are inserting/removing span
every time the value changes. As the Span tag is being nodeType 1, Blaze executes
the hooks.

I hope this gives you a clear idea about how to animate with Blaze and the _uihooks
property, on any reactive data source.

Animation using MeteorJS packages with
Velocity.js
There are a few packages that help us perform animation. In this section, we will
see how to perform page transition on every route change. Also, we will see how to
animate elements using a MeteorJS package.

Animation packages that support page transitions are mostly router-specific. We
will use the ccorcos:transitioner package that is specific to iron-router. Let's
resume our animation party.

Captivating Your Users with Animation

[136]

Create a MeteorJS application, such as AnimationPartyTransition. Add the
iron:router and ccorcos:transitioner packages to the application. Remove
the hello template-related code totally from the .js and HTML files. We need a
layout that will be rendered by iron-router. Add the following layout code to
AnimationPartyTransition.html:

<template name="homeLayout">
 {{> yield}}
</template>

To demonstrate page transitions, we need two routes. Add the following routes to
the client block inside AnimationPartyTransition.js:

 Router.map(function() {
 this.route('home', {
 path: '/',
 template: 'home',
 layoutTemplate: "homeLayout"});
 this.route('aboutus', {
 path: '/about-us',
 template: 'aboutUs',
 layoutTemplate: "homeLayout"});
 });

From the preceding routes code, we can see that there are the home and about us
routes. We have to create respective templates for each route. Add the following
templates to AnimationPartyTransition.html:

<template name="home">
 <div class="container home">
 <div>In Home</div>
 About us
 </div>
</template>
<template name="aboutUs">
 <div class="container aboutus">
 <div>In About us</div>
 Home
 </div>
</template>

Chapter 5

[137]

We will add CSS right away in order to style the pages. Add the following styles to
AnimationPartyTransition.css:

body {height: 100vh;margin: 0;padding: 0;color: #fff;background-color:
#907C60;}
.container {text-align: center;font-size: 4em;}
.home {background-color: #2980b9;}
.aboutus {background-color: #c0392b;}

Routes are functional. Try visiting the routes after starting the application. Time to
add page transitions. The ccorcos:transitioner package gives us the ability to
define what type of transition we want to have on every route change. Also, we have
to follow certain conventions. Firstly, we have to wrap {{> yield}} in the layout
with transitioner such as {{#transitioner}}{{> yield}}{{/transitioner}}.
Then, we will define what type of transition we need on which routes.

Right next to the route's definition in the client block, add the following transition
definitions:

 Transitioner.transition({
 fromRoute: 'home',
 toRoute: 'aboutus',
 velocityAnimation: {
 in : "transition.slideRightBigIn",
 out: "transition.slideLeftBigOut"
 }});

The package offers us the transition method with which we can define
our transition type for various routes. In this case, we have defined the
slideRightBigIn and slideLeftBigOut transitions when navigating from the
home page to the about us page. If we want to have the transition vice versa, then we
have to define it separately.

What if we want all the route changes to have one common transition? Isn't that the
use case most of the times? The transitioner package offers us this ability as well.
We can define default transition as follows:

 Transitioner.default({
 in : "transition.slideRightBigIn",
 out: "transition.slideLeftBigOut"
 });

Captivating Your Users with Animation

[138]

This default registration will transit all the routes with the provided transition.
Now, the question that arises is, what is this transition.slideRightBigIn? The
transitioner package uses Velocity.js for animation. The in and out properties
take either the transition supported by Velocity.js, or we can define custom logics.
To learn about transitions supported by Velocity.js, visit the Effects: Pre-Registered
section at http://julian.com/research/velocity/#uiPack.

Let's explore the other option of the custom in and out transitions without using
Velocity.js' preregistered transitions. The in and out properties take normal methods
too. If we know how the plugin functions, we will find it really easy to write custom
transitions. The package internally uses _uihooks to perform animation, as we did
in the previous section. Visit the source code (https://github.com/ccorcos/
meteor-transitioner/blob/master/lib/transitioner.coffee) and it will
be very clear. The in property is treated in the insertElement hook, and the out
property is treated in the removeElement hook. We are wrapping our templates
with the transitioner template in the layout that takes control and registers these
transitions to its hook in the onRendered callback. Pretty simple, isn't it?

So, we can assume that we will get the inserted node and the next node in our
custom transition methods, and write the methods as we did in the previous section.
Take a look at the following example:

 Transitioner.default({
 in : function(node, next) {
 $node = $(node)
 $.Velocity.hook($node, "translateX", "100%");
 $node.insertBefore(next)
 .velocity({translateX: ['0%', '100%']}, duration: 500,
 easing: 'ease-in-out', queue: false);
 },
 out: function(node) {
 $node = $(node)
 $node.velocity({translateX: '-100%'},
 duration: 500, easing: 'ease-in-out', queue: false,
 complete: function() {
 $node.remove();
 });
 }
 });

http://julian.com/research/velocity/#uiPack
https://github.com/ccorcos/meteor-transitioner/blob/master/lib/transitioner.coffee
https://github.com/ccorcos/meteor-transitioner/blob/master/lib/transitioner.coffee

Chapter 5

[139]

It is not necessary to use Velocity.js inside the transition methods. We can use
other animation libraries also, if required. Velocity.js is a very efficient open source
animation library that can perform loads of animations, that are jank-free. It is worth
giving it a try. The following is a pseudo syntax of the Velocity.js animation API:

element.velocity({
 width: "500px",
 property2: value2
}, {
 /* Velocity's default options */
 duration: 400,
 easing: "swing",
 queue: "",
 begin: function(){},
 progress: function(){},
 complete: function(){},
 display: undefined,
 visibility: undefined,
 loop: false,
 delay: false,
 mobileHA: true
});

Velocity.js supports other simple syntaxes as well. Take a look at the Velocity.js
documentation (http://julian.com/research/velocity/) to learn more.

What we have done is a simple page transition on the route change. The package
does not suffice for all the needs and it is still under development. We have to keep
that in mind while using this package for production.

If you are using FlowRouter for your application, page transitions can be performed
using mcissel:flow-transition. Visit the package at https://atmospherejs.
com/mcissel/flow-transition.

Next, we are going to see animation using the package. So far, what we have seen is
page transition. What if we want to perform animation with the help of packages?

http://julian.com/research/velocity/
https://atmospherejs.com/mcissel/flow-transition
https://atmospherejs.com/mcissel/flow-transition

Captivating Your Users with Animation

[140]

We will use the percolate:momentum package to do the same list animation we did
in the previous section. Add the percolate:momentum package to this application.
Create a collection, MyList, and add a template to show the list:

 //prepend this to AnimationPartyTransition.js
 MyList = new Mongo.Collection("my_list");

 //Append this to AnimationPartyTransition.html
 <template name="list">
 <div class="ul-wrapper">
 {{#momentum plugin="fade"}}
 {{#each list}}
 <div>{{this.name}}</div>
 {{/each}}
 {{/momentum}}
 </div>
 </template>

We need a helper for the list template to serve the list. Add the following helper to
the client block in AnimationPartyTransition.js:

 Template.list.helpers({
 list: function() {
 return MyList.find();
 }
 });

We have to place this list template in our page templates, as follows:

<template name="home">
 <div class="container home">
 <div>In Home</div>
 About us
 {{> list}}
 </div>
</template>

Insert few documents into the collection from the console, and we will see that the
insertion in the template happens with the fadeIn effect. The package takes care of
the animation for us. The only convention we have to follow is to use the momentum
template as a wrapper for each list element. Momentum takes the plugin attribute
as a mandatory one, and it is highly recommended that you visit the momentum
GitHub repository (https://github.com/percolatestudio/meteor-momentum/)
to learn more about the plugin related attributes.

https://github.com/percolatestudio/meteor-momentum/

Chapter 5

[141]

We have one caveat with momentum that generates a div element, as a wrapper for
our content. For example, if we want to use the ul and li structure, we cannot use it
because we cannot wrap li with div inside ul. So, we have to change the markups
to be compatible with what the package offers.

Under the hood, the plugin again uses Velocity.js and _uihooks to perform the
animation. It isn't surprising, is it?

Go to www.atmosphere.com and search for animation packages. You can find a lot of
useful packages for the Web and mobile. Carefully choose the one that fits your need
and use it in the application.

Animation using Snap.svg
In this section, we will see how to use the snap.svg library with MeteorJS. We
are going to develop an interesting application in which we will use snap.svg to
manipulate SVG. It will be helpful if we have knowledge about the SVG path and
circle elements before starting this section.

To those who don't know about snap.svg, it is a SVG manipulation library. We
could even say it is like jQuery but for SVG. We will discuss and learn to use the
animation APIs provided by snap.svg. It is a great tool if we are using SVG for
interfaces in the application.

The application we are going to develop is about logging our life events, similar
to the Facebook timeline. To keep things simple and to concentrate more on the
animation part, we will insert data directly to the database rather than developing
interfaces to insert data. Anyway, MeteorJS will take care of reactivity and thus
whatever we insert will be available on the screen. We are going to create some SVG
interfaces to show the timeline beautifully.

Create an application, for example, AnimationPartyLifeEvents. Remove all
the hello template-related code. Firstly, we will create a collection to persist
the life events. Prepend the following collection instance creation code to
AnimationPartyLifeEvents.js:

/* index, title, content, event_time, is_deleted, created_at,
 updated_at */
LifeEvents = new Mongo.Collection("life_events");

www.atmosphere.com

Captivating Your Users with Animation

[142]

We need templates to show each life event. Append the following templates to
AnimationPartyLifeEvents.html:

<template name="lifeEvents">
 <div class="container">
 {{#each lifeEvents}}
 {{> event}}
 {{/each}}
 </div>
</template>
<template name="event">
 <div class="svg-container {{direction}}">
 <div class="tooltip-content">{{this.content}}</div>
 <svg width="{{svgLayout.width}}"
 height="{{svgLayout.height}}"></svg>
 </div>
</template>

Include {{> lifeEvents}} inside the body tag to render the template.

Inside the client block of AnimationPartyLifeEvents.js, create the following
template helper to serve the collection:

 Template.lifeEvents.helpers({
 lifeEvents: function() {
 return LifeEvents.find({is_deleted: false}, {sort:
 {event_time: -1}
 });
 }
 });

If you watch the event template closely, you can figure out that we are supplying
the SVG layout dimensions from the helper, because we have to use these layout
dimensions later for the SVG manipulation. Add the following layout dimension
code and the template helper code to the client block of the .js file:

var svgLayout = {height: 200, width: 400};
Template.event.helpers({
 isEven: function() {
 return this.index % 2 === 0;
 },
 svgLayout: svgLayout,
 direction: function() {

Chapter 5

[143]

 return this.index % 2 === 0 ? "tooltip-west" :
 "tooltip-east";
 }
 });

The template helpers will be helpful when we render the SVG elements.

We will create a method to support data insertion to the collection and keep it
accessible to the client. In production, we should not do this. Add the following
method after the client block (not within):

 Meteor.methods({
 insertLifeEvent: function() {
 var currentId = (LifeEvents.findOne({},
 {sort:{index:-1}}) || {}).index || 0;
 event = {
 index: (currentId+1),
 title: currentId+" event",
 content: "Lorem Ipsum is simply dummy text of the
 printing and typesetting industry. Lorem Ipsum has
 been the industry's standard dummy text ever since
 the 1500s.",
 event_time: new Date(),
 is_deleted: false,
 created_at: new Date(),
 updated_at: null
 };
 event.content = event.content.substring(0, 120);
 return LifeEvents.insert(event);
 }
 });

Just calling the method from the browser console will insert random data into the
collection.

A bit of CSS will make the application ready. Add the following CSS to
AnimationPartyLifeEvents.css and start the application:

@import url(http://fonts.googleapis.com/css?family=Gochi+Hand);
body {margin: 0;padding: 0;}
.container {min-height: 200px; overflow: auto; margin-top: 2%;}
.svg-container:first-child {margin-top: 70px;}
.svg-container:not(:first-child) {margin-top: -60px;}

Captivating Your Users with Animation

[144]

.svg-container {margin: auto;width: 400px;position: relative;}
/* Tooltip */
.tooltip-content {
 position: absolute; background: #e35583; z-index: 9999; width:
 200px; bottom: 95%; left: -70%; max-height: 150px;
 margin-bottom: -1em; padding: 20px; border-radius: 20px;
 font-size: 1.1em; text-align: center; color: #fff; opacity: 0;
 cursor: default; pointer-events: none; font-family: 'Gochi
 Hand', cursive; -webkit-font-smoothing: antialiased;
 -webkit-transition: opacity 0.3s, -webkit-transform 0.3s;
 transition: opacity 0.3s, transform 0.3s;
}
.tooltip-west .tooltip-content {
 left: 25em;-webkit-transform-origin: -2em 50%; transform-origin:
 -2em 50%; -webkit-transform: translate3d(0,50%,0)
 rotate3d(1,1,1,30deg); transform: translate3d(0,50%,0)
 rotate3d(1,1,1,30deg); }
.tooltip-east .tooltip-content {
 right: 4em; -webkit-transform-origin: calc(100% + 2em) 50%;
 transform-origin: calc(100% + 2em) 50%; -webkit-transform:
 translate3d(0,50%,0) rotate3d(1,1,1,-30deg); transform:
 translate3d(0,50%,0) rotate3d(1,1,1,-30deg); }
.tooltip-content.show {
 opacity: 1;pointer-events: auto;
 -webkit-transform: translate3d(0,50%,0) rotate3d(0,0,0,0);
 transform: translate3d(0,50%,0) rotate3d(0,0,0,0); }
/* Gap "bridge" and arrow */
.tooltip-content::before,
.tooltip-content::after {
 content: ''; position: absolute;}
.tooltip-content::before { height: 100%; width: 3em;}
.tooltip-content::after { width: 2em; height: 2em; top: 50%;
 margin: -1em 0 0; background: url(/tooltip2.svg) no-repeat
 center center; background-size: 100%; }
.tooltip-west .tooltip-content::before,
.tooltip-west .tooltip-content::after {
 right: 99%; /* because of FF, otherwise we have a gap */}
.tooltip-east .tooltip-content::before,
.tooltip-east .tooltip-content::after {
 left: 99%; /* because of FF, otherwise we have a gap */}
.tooltip-east .tooltip-content::after {
 -webkit-transform: scale3d(-1,1,1);
 transform: scale3d(-1,1,1);}

Chapter 5

[145]

All the ground work is done. As we insert life events to the collection, MeteorJS
will render the event template for each life event. The event template has a svg tag.
Inside this svg tag, we are going to insert a path element and animate it to show
the life event pretty nicely. Look at the following image to get a fair idea of what the
path element will look like:

We are going to draw the path element inside the onRendered callback of the event
template. Add the following callback code to the client block of the .js file:

Template.event.onRendered(function() {
 /** Here goes our code **/
});

We will initialize a few variables at the beginning of the callback for later usage. Add
the initialization code to the callback:

 var data = this.data,
 isEven = (this.data.index % 2 === 0),
 circleRadius = 10,
 arcRadius = 30,
 pathStrokeWidth = 6,
 pathData = {
 x: svgLayout.width / 2,
 y: svgLayout.height,
 lines: {

Captivating Your Users with Animation

[146]

 verticalLineTo: -(svgLayout.height - arcRadius
 - 22),
 horizontalLineTo: (svgLayout.width / 2) -
 arcRadius - circleRadius
 },
 arc: arcRadius + ", " + arcRadius + " 0 0 1 " +
 arcRadius + ", -" + arcRadius
 };

 if(isEven === false) {
 pathData = {
 x: svgLayout.width / 2,
 y: svgLayout.height,
 lines: {
 verticalLineTo: -(svgLayout.height - arcRadius
 - 22),
 horizontalLineTo: -((svgLayout.width / 2) -
 arcRadius - circleRadius)
 },
 arc: arcRadius + ", " + arcRadius + " 0 0 0 -" +
 arcRadius + ", -" + arcRadius
 }
 }

Now, we need the snap.svg library to start drawing the required elements
into the svg. Add the package to the application; using the meteor add
jeremy:snapsvg command and also add moment.js packages to the application to
show the life event time.

Using snap.svg APIs, we are going to find the svg element inside our template and
then insert the path element with appropriate metrics to make the element look
like the one in the preceding image. The following code does the operation as we
mentioned earlier:

 var eventSvg = Snap(this.find("svg")),
 eventPath = eventSvg
 .path(Snap.format("M{x},{y}v{lines.verticalLineTo}a{arc}h
 {lines.horizontalLineTo}", pathData));

In the first line, we got the snap.svg instance of the svg element from the event
template. Then, we inserted a path element using .path API. The .path API takes
coordinates for the d attribute. The snap.svg library provides a cleaner way to
format the d attribute, and we can observe this in the preceding code.

Chapter 5

[147]

The logic to draw the path line is pretty simple. Get to the center-bottom of the svg,
draw a vertical line to the top, make an arc of the desired radius, and then based on
the direction, we extend the path to the right or to the left end of the svg. We decide
whether to go right or left, based on the index field from the collection document. We
want to show the even ones to the right and the odd ones to the left. This will be a
tree-like elegant interface to show the data.

Next, we are going to animate the path element. This is where we are going
to explore the animation part of snap.svg. Append the following code to the
onRendered callback:

var pathLength = eventPath.getTotalLength();
 eventPath
 .attr({
 id: "squiggle",
 fill: "none",
 strokeWidth: pathStrokeWidth,
 stroke: "#e35583",
 strokeMiterLimit: "10",
 strokeDasharray: "0 0",
 strokeDashOffset: pathLength
 });

 eventPath.attr({
 "stroke-dasharray": pathLength + " " + pathLength,
 "stroke-dashoffset": pathLength
 }).animate({
 "stroke-dashoffset": 0
 }, 2500, mina.bounce);

The path elements are usually animated using the stroke-dashoffset and stroke-
dasharray properties. Every path element has length that can be calculated using
the .getTotalLength() API. We first set pathLength to both those properties and
then animate it to 0 using the .animate API provided by snap.svg. We can use the
animation API as Snap.animate or <snap instance of element>.animate. The
.animate API takes an object of properties with the result value (that is, the value at
the end), duration, timing function, and callback. It is similar to jQuery's .animate
API. Insert a life event using the method call and visit the application in the browser.
You will be able to see the path element and its bounce animation.

Captivating Your Users with Animation

[148]

While the preceding code animates the path element, we also want a circle to move
along the same path. On the hover of the circle, we are going to show the content of
the event in a silky tooltip. Now, add the circle-related code:

 var circle = eventSvg.circle(svgLayout.width / 2,
 svgLayout.height, circleRadius);
 circle.attr({
 fill: "#e35583",
 stroke: "#e35583",
 strokeWidth: 1,
 cursor: "pointer"
 })
 .mouseover(function() {
 this.find(".tooltip-content").classList.add("show");
 }.bind(this))
 .mouseout(function() {
 this.find(".tooltip-
 content").classList.remove("show");
 }.bind(this));

In the preceding code, we have created a circle using the .circle API and have
provided the necessary attributes. Along with this, we have bound the mouseover
and mouseout events to the circle. What the event handler does is, it adds or removes
a class (show) to show the tooltip. The tooltip styles and animations are handled
from CSS. The only remaining part is to animate the circle along the path and show
the event_time and title under the path element with the fadeIn effect. Add the
following circle animation code to do all that we mentioned earlier:

 setTimeout(function() {
 Snap.animate(0, pathLength, function(value) {
 movePoint = eventPath.getPointAtLength(value);
 circle.attr({
 cx: movePoint.x,
 cy: movePoint.y
 });
 }, 2500, mina.bounce, function() {
 var x, y = 50, text;
 if(isEven === true) {
 x = (svgLayout.width/2 + 20);
 } else {
 x = 25;

Chapter 5

[149]

 }
 text = eventSvg
 .text(x, y,
 [moment(data.event_time).calendar(),
 data.title])
 .attr({
 opacity: 0,
 fill: "#e35583"
 })
 .animate({opacity: 1}, 1000);
 text.select('tspan:nth-of-type(2)').attr({x: x,
 dy: 25, "font-style": "italics"});
 });
 }, 0);

Here, we use Snap.animate to animate the circle along the path. However,
how do we know the x and y coordinates for the circle to move? We have the
.getPointAtLength API that will give x and y coordinates of the path at the given
length. Given that we know the total length already, the .animate API will supply
the length at every tick, and with that, we can calculate the x and y co-ordinates. The
co-ordinates are then supplied to the circle's cx and cy properties.

One more thing to note is the callback. The .animate API takes a callback that will
be called once the animation is completed. We've used this callback to show the text
with the fadeIn animation, as we discussed earlier. Inside the callback, we create a
text element using the .text API and supply the co-ordinates and the content. If
we pass the content as an array of texts, each content item will be rendered inside an
individual tspan. Finally, we apply some styles to position the tspan. Now, visit the
browser and you will see the cool animation effects.

Now, create some more life events using the method call from the browser console
and you will see the timeline growing. We have placed the tooltip content already in
the template. The event handler that we had bound and the CSS will take care of the
animation effect of the tooltip. Hover over the circle of each life event and you will
see the content in a tooltip with a sleek animation. We can do the same animation
with snap.svg if we create the tooltip in SVG. One can find all the snap.svg APIs at
http://snapsvg.io/docs/.

Hope this beautiful animation helps you in your next SVG interface animation.

http://snapsvg.io/docs/

Captivating Your Users with Animation

[150]

Animation using d3.js
We looked at a d3.js example in the previous chapter. We now know how to handle
MeteorJS reactivity. In this section, we are going to learn how to perform animations
and transitions using d3.js.

What are we going to develop to demonstrate d3.js animations? We are going
to develop a visualization that will show climate change in world locations.
Cool, isn't it?

Our objective is to learn how to perform animations using d3.js. Most of the code
samples will be pretty well known to you. To keep things simple, we are going
to draw a world map with the help of the DataMaps package. The idea of the
application is to show circles on the map at the specified latitude and longitude
with simple animations.

Let us start by creating an application, for example, AnimationPartyd3. Remove
all the hello template-related code, including the content of the body tag in
AnimationPartyd3.html. Insert a div container where we will draw the, map as
follows:

<div id="container"></div>

Add the following CSS to AnimationPartyd3.css:

body { margin: 0; padding: 0; background: rgba(0,0,0,0.9); }
svg { overflow: hidden; top: 50%; left: 50%; position: absolute;
 transform: translate(-50%, -50%); }

Let's draw the map. To start with, we need to install the DataMaps package that will
install d3.js as a dependency. Install it with the following command:

meteor add hyperborea:datamaps

Now, we are all set to draw the map. DataMaps gives us simple APIs to draw a map.
It also provides us APIs to draw arcs and bubbles on the map. However, we want to
control the bubble animation and thus we will create bubbles with the custom logic.
Add the following map creation code to the client block of AnimationPartyd3.js:

 $(document).ready(function() {
 var map = new Datamap({
 scope: 'world',
 element: document.getElementById('container'),
 projection: 'mercator',

Chapter 5

[151]

 height: 800,
 width: 1000,
 fills: {
 defaultFill: '#1abc9c'
 }
 });
 });

Start the application from the terminal and visit it in the browser. You should see a
world map. It is that simple!

We need a collection where we will insert the temperature and location details,
which will indeed be displayed in the map. Prepend the following collection
instantiation code to AnimationPartyd3.js:

/** lat, long, temperature in celcius **/
ClimateChange = new Mongo.Collection("climate_change");

We need a minimum and maximum range to determine the relative radius of the
circles. Add the following code to the client block inside the ready function of
AnimationPartyd3.js:

 var linearScale = d3.scale.linear().domain([-100,
 100]).range([5, 20]);
 function draw(data) {
 map.svg.selectAll(".temperature")
 .data(data)
 .enter()
 .append("circle")
 .attr("id", function(d) {
 return "circle"+d._id;
 })
 .attr("fill", "#e74c3c")
 .attr("stroke", "#f1c40f")
 .attr("stroke-width", 2)
 .attr("cx", function(d) {
 return map.projection([d.long, d.lat])[0];
 })
 .attr("cy", function(d) {
 return map.projection([d.long, d.lat])[1];
 })
 .attr("r", function(d) {
 return 2;

Captivating Your Users with Animation

[152]

 })
 .transition()
 .duration(1000)
 .ease("bounce")
 .attr("r", function(d) {
 return linearScale(d.temperature);
 });
 }

The linearScale variable is a scaling function that helps us calculate the relative
size of the circle's radius with respect to the temperature. The draw function is where
we draw the circles in the map. We need to translate the latitude and longitude to
the map container dimensions. The map object has the projection API of the d3.geo
layout that helps us to get the translated top and left dimensions in the map. We
assign those values to cx and cy of the circle. Using the linearScale function, we
convert the temperature to the circle radius and assign it in the last part of the draw
function. We apply the radius with an animation.

We can perform animation or transition using d3.js with the help of the
.transition, .duration, and .ease APIs. Before assigning values to any property,
if we add the .transition API, it will be animated. An important point to note is
to have an initial value to the property we are trying to animate. The .duration
API is the time duration we want the animation to happen. The .ease API helps
you to provide a timing function to the animation. For more easing effects, visit the
repository at https://github.com/d3/d3-ease.

A few other important APIs that help us perform complex animations are
attrTween, arcTween, and interpolate. One can also register callbacks to the start
and end of the animation using the .each API. To learn more about the d3 animation
APIs, visit https://github.com/mbostock/d3/wiki/Transitions.

Add the following code to observe the insertion, updates, and removal of documents
in the collection via a cursor:

 ClimateChange.find().observe({
 added: function(doc) {
 draw([doc]);
 },
 changed: function(doc) {
 var circle = map.svg.select("#circle"+doc._id);
 circle
 .transition()
 .duration(1000)
 .ease("bounce")

https://github.com/d3/d3-ease
https://github.com/mbostock/d3/wiki/Transitions

Chapter 5

[153]

 .attr("cx", function() {
 return map.projection([doc.long,
 doc.lat])[0];
 })
 .transition()
 .duration(1000)
 .ease("bounce")
 .attr("cy", function() {
 return map.projection([doc.long,
 doc.lat])[1];
 })
 .transition()
 .duration(1000)
 .ease("bounce")
 .attr("r", function() {
 return linearScale(doc.temperature);
 });

 },
 removed: function(doc) {
 var circle = map.svg.select("#circle"+doc._id);
 circle
 .transition()
 .duration(1000)
 .ease("bounce")
 .attr("r", function() {
 return 0;
 })
 .call(function() {
 this.remove();
 });
 }
 });

On update, we select the appropriate circle and update the coordinates or radius
with the animation as per the changed value in the document. The same is the case
for removal. Insert data from the browser console using the following code:

ClimateChange.insert({lat: 11.867351, long: 77.871094,
 temperature: 30});

The circles animate on insertion. Similarly, on update of the latitude or longitude,
the circles will transit to the new position. On removal, the radius reduces to 0 with
transition.

Captivating Your Users with Animation

[154]

Think of some sensors inserting the data from various locations to this application
and imagine you are monitoring the temperature of various locations on a 60-inch
screen. Pretty cool, right? Hope this example helps you to get started and play with
d3.js animations.

Animation using the Famo.us engine
Famo.us is a high-performance frontend library for creating interfaces and
animations. At this point of time, the library is under development. Version 0.3.5 is
the most supported version, but again deprecated. Version list is in alpha state and
thus can't be put to production. We will experiment a little with version 0.3.

There are packages that help us use the Famo.us engine with MeteorJS. We will use
the mjn:famous package that provides all the components of the Famo.us engine.
There is a popular package called famous-meteor-views that provides famous
components such as surfaces and modifiers in the form of templates to be used along
with MeteorJS templates. However, because of the change in the Famo.us engine,
famous-meteor-views has to undergo changes that are still under development.

Famo.us has different principles for creating and rendering interfaces. It doesn't
give us control of DOM because DOM querying is costly. The Famo.us engine has
the idea of creating a context and then adding surfaces to the context that can be
modified spatially using modifiers. There are two ways of creating an application.
One is to build the entire application using Famo.us; another is to create only the
required interfaces with Famo.us. Famo.us is meant to create a full application and
thus we will use MeteorJS' reactivity only to update Famo.us interfaces. We are going
to look at one such simple example. Let's create a small application that synchronizes
the spatial position of elements across the.

Create an application, such as AnimationPartyFamous. Remove all the hello
template-related codes both in js and HTML files. Add the mjn:famous package
and start the application. In the .js file, replace the existing code with the following
piece of code:

Notes = new Mongo.Collection("notes");
if (Meteor.isClient) {
 $(document).ready(function() {
 var Context = famous.core.Engine.createContext(),
 Surface = famous.core.Surface,
 Draggable = famous.modifiers.Draggable,
 StateModifier = famous.modifiers.StateModifier,

Chapter 5

[155]

 Transform = famous.core.Transform,
 notesModifiers = {}, notesSurfaces = {}, flag = false;

 Notes.find().observe({
 added: function(doc) {
 var surface = new Surface({
 size: [200, 200],
 content: '<div><div>'+doc.title+'</div>
 <div>'+doc.content+'</div></div>',
 id: doc.id,
 properties: {
 backgroundColor: 'rgba(200, 200, 200,
 0.5)',
 textAlign: 'center',
 cursor: 'drag'
 }
 });
 notesSurfaces[doc._id] = surface;

 var draggable = new Draggable();

 surface.pipe(draggable);

 var mod = new StateModifier({
 transform: Transform.translate(doc.x-10,
 doc.y-10, 0)
 });

 notesModifiers[doc._id] = mod;

 draggable.on("end", function() {
 var position = draggable.getPosition();
 flag = true;
 Notes.update({_id: doc._id}, {$set: {x:
 position[0], y: position[1]}});
 });

 Context.add(mod).add(draggable).add(surface);
 mod.setTransform(Transform.translate(doc.x, doc.y,
 0), {duration: 1000})
 },
 changed: function(doc, oldDoc) {

Captivating Your Users with Animation

[156]

 if(!flag) {
 notesModifiers[doc._id].setTransform
 (Transform.translate((doc.x), (doc.y), 0),
 {duration: 1000});
 }
 flag = false;
 },
 removed: function(doc) {
 notesModifiers[doc._id].setTransform
 (Transform.scale(0, 0, 0), {duration: 1000});
 notesSurfaces[doc._id].render = function() {return
 null;}
 delete notesSurfaces[doc._id];
 delete notesModifiers[doc._id];
 }
 });
 });
}

Go through the preceding code carefully. Most of it will be familiar. We have defined
a collection called notes. We have inserted title, content, the x and y positions of
each note. As we insert, the notes are displayed in the screen at the specified position
with a smooth transition. The package we've installed provides us with the Famo.us
components and we have to use it from the namespace famous. We created a context
at the beginning and used it to attach all views.

In the added block of the observe method, we created a surface for each note
and set its position using the modifier. Then, we made it draggable by adding
a draggable instance to the surface, and registered an event to update the new
position in the database on the drag end. Finally, we attached the modifier and
the surface to the context.

On the changed block, we just updated the new position to the transition modifier.
There is no way to get the modifier instance from the DOM; thus, we maintained a
store object to hold all the modifiers and surfaces by the note _id. Based on the note
_id, we get the appropriate modifier and set the new position.

On the removed block, we just removed the surface and deleted the instance from the
store object.

Chapter 5

[157]

Now, open the two browser instances and visit the application. Insert documents to
the collection using Notes.insert({title: "Note 1", content: "Note content
1", x: 100, y: 100}); from the browser console and start dragging the note. You
will see the note moving to the new position in the other browser instance as well.
Based on the new position, we update the Transform.translate modifier, and it
syncs the position.

Famo.us is capable of many things. We just have to wait a while for it to be matured
and adopted widely by the frontend community. I hope you enjoyed the simple but
sleek sync application.

Summary
Animations are adorable. They serve both the aesthetics and user experience. In this
chapter, we learned how to use animation packages and libraries with MeteorJS.
There won't be anything to stop us from doing cool animations hereafter in our
MeteorJS applications.

Let us summarize all that we have learned in this chapter.

Animation in Blaze templates can be done using the unofficial _uihooks hook. We
have learned to animate interfaces and also transit pages with the help of packages.
There are plenty of packages that, again, rely on _uihooks to perform animation and
transitions. Most of the packages use Velocity.js to animate properties.

We have learned to use snap.svg and its .animate() API to manipulate and
animate SVG interfaces. Similarly, we have learned to use d3.js to perform animation
using the .transition, .duration, and .ease APIs.

Finally, we have experimented with interface creation and animation using the
Famo.us engine.

Using animations and transitions in the right places in the right quantities enhances
the design and experience to a great extent. Get your hands dirty by experimenting
more on all the techniques we have learned so far.

In the next chapter, we will learn about developing REST API in a MeteorJS
application and we will also dive deep into the reactivity of MeteorJS.

[159]

Reactive Systems and
REST-Based Systems

Reactive systems are the ones that can propagate changes based on the data flow.
In this chapter, we are going to dive deep into MeteorJS' reactivity. It is necessary to
understand Trackers in the first place, which is the reason for MeteorJS' reactivity.
We will also learn about the Tracker library with simple examples.

Apart from reactivity, we can build REST-based systems using MeteorJS. It
is common that data-based applications want to expose data to a third-party
application via REST APIs. We will learn about what are the options available to
implement RESTAPIs.

Modern applications can involve volumes of data. It is wise to use pagination to
handle volumes of data. We will discuss the problems that we face and how to
handle the problems while using pagination in MeteorJS applications.

In this chapter, we are going to cover the following topics:

• MeteorJS' reactivity
• REST-based systems using MeteorJS
• Handling volumes of data

An overview of MeteorJS' reactivity
One of the important and prominent features of the MeteorJS framework is the
reactivity. The framework provides reactivity out of the box. MeteorJS' reactivity
has reduced development time considerably.

Reactive Systems and REST-Based Systems

[160]

A notable thing is that developers need not wire the change to the views. The view
layer is reactive enough to update the interfaces almost instantaneously. MeteorJS
employs Blaze brilliantly to handle the instant updates to the views. In the previous
chapter, we saw how Blaze breaks the templates to DOM element in order to update
the elements that can undergo change when the data changes.

Apart from the view layer, MeteorJS provides us with the ability to auto-run
methods when data changes. When there is a change in the cursor, we can run
an arbitrary method to do some operation. This reactivity is provided to the
extent that it can be used even with entities that are not reactive by default. For
example, we can listen to arbitrary value changes and react to them by executing
appropriate methods.

When used in a controlled state, MeteorJS' reactive data sources are great.
However, make sure they are under control because using too much reactivity
might not be performant.

MeteorJS' reactivity
In any reactive systems, to achieve reactivity, we can follow different approaches.
One can follow the poll and diff mechanism, but this is not cool because systems
have to constantly poll and compute differences. This makes the client snappy at
times. Another approach is eventing. Eventing is good, but can become messy very
easily. Reactive programming is another approach, not much used, but a powerful
solution for bigger applications.

MeteorJS follows a reactive programming approach. It is declarative. In the sense
that, when a user is logging in it, changes the login button to display the user's name
if the authentication succeeds. Why did MeteorJS choose reactive programming
instead of other approaches? Ultimately, applications are going to display some sort
of data via interfaces. Updating interfaces is going to be mandatory for most of the
applications.

MeteorJS wants to offer an easy but powerful, less time-consuming way to write
interfaces that can update themselves when data changes. Poll and diff could have
been a suitable choice, but this is not great in terms of performance. Eventing will
make the application maintenance costly. To keep things simple, a declarative way
of updating an interface is efficient. Angular.js became very popular because of its
declarative approach for updating interfaces. MeteorJS also chose the same paradigm
that led it to choose reactive programming as a solution.

Chapter 6

[161]

When we look at reactivity closely, there are two participants in a reactive
environment. One is the entity that triggers the change. MeteorJS has a set of
components that act as reactive datasources that can trigger change. They are
database collection cursors, session variables, and the Meteor.user, Meteor.userId,
Meteor.loggingIn, Meteor.status, and ready methods of a subscription handle.

Apart from these built-in reactive datasources, we can create custom reactive data
sources with the help of the reactive-dict and reactive-var packages. We have
used the reactive-var package in the first two chapters to create custom reactive
data sources to propagate changes between two templates.

The other participant in a reactive environment is a reactive consumer, which could
be any arbitrary method or interface that reacts to the change triggered by the reactive
data sources. Templates are typical examples of this case. We can write custom
methods also that can execute when a change is triggered. We have used Tracker.
autorun in the past to make a few custom methods listen to reactive data sources.

All these reactivities raise the curiosity of "how does it happen?". MeteorJS
documentation answers the curiosity pretty straightforwardly. The Tracker is
responsible for MeteorJS' reactivity.

Tracker
We know that MeteorJS is built using a set of packages. There is one specific package
that enables all these reactivities and it is nothing but the Tracker library. Visit the
package (https://github.com/meteor/meteor/tree/devel/packages/tracker)
for more details.

Tracker, previously called Deps, is a reactive library that is less than 1 KB. MeteorJS
uses it extensively to keep components reactive. Blaze is built to be Tracker-aware
so that it can react to the changes. Similarly, MiniMongo, reactive-var, reactive-
dict, and reactive data sources that we have seen are all Tracker-aware. Basically,
MeteorJS uses Tracker wherever it makes sense.

We have seen the reactivity between data collection cursors and templates in the
previous chapters. MeteorJS' boilerplate code has a session counter example that
portrays reactivity between the session and templates that we saw in the last chapter
while learning animation hooks. If you have played with login interfaces, you will be
very much aware of the Meteor.loggingIn reactive property.

https://github.com/meteor/meteor/tree/devel/packages/tracker

Reactive Systems and REST-Based Systems

[162]

To demonstrate the power of Tracker, let us create a small example. Create a
new MeteorJS application, such as CustomReactivity, and replace the whole of
CustomReactivity.js with the following code:

var trackerDeps = new Tracker.Dependency;
function counterVal() {
 trackerDeps.depend();
 return Math.floor(Math.random() * (100 - 10 + 1)) + 10;
}
function changeCounterVal() {
 trackerDeps.changed();
}
function getRandomInt(min, max) {
 return ;
}
if(Meteor.isClient) {
 Template.hello.helpers({
 counter: function() {
 return counterVal();
 }
 });
 Template.hello.events({click button": changeCounterVal});
}

The function or class instantiation, newTracker.Dependency, gives a Tracker
dependency instance. With that instance, we can make any method to be a
reactive trigger and reactive data source. The changeCounterVal method acts as
a reactive trigger. The counterVal method that is a reactive data source will be
run whenever there is change triggered at the Tracker dependency instance. The
counterVal method acts as a reactive data source and thus the template updates
itself whenever changeCounterVal triggers a change. In the template events helper,
we have registered a click event on the button that will trigger a change by calling
changeCounterVal. When a change is triggered on the Tracker dependency
instance, the counterVal method will run and the template that is the consumer of
the counterVal method updates itself with the new random value.

Simple, but a very powerful package! Let's explore the behind-the-scene logic of
Tracker for a better understanding. The reactivity of Tracker-aware libraries such as
Blaze is due to the autorun method of the Tracker. For any method to be reactive
to changes, we have to pass it to Tracker.autorun. Blaze internally does the same
because of this, it reactively changes the DOM as the data changes.

Chapter 6

[163]

Let's see the custom reactivity ourselves. Add the following piece of code to the
CustomReactivity.js file:

Tracker.autorun(function() {
 console.log(counterVal());
});

Keep the browser console open and click on the button in the hello template.
You will see the log of the counterVal method's return value.

When we call autorun, a computation object is created. Whenever an autorun is
executing code, the global variable Tracker.currentComputation is set to the
computation that goes with that autorun. Any Tracker dependent method will look
if it is inside autorun; in our case, it is counterVal. If it is inside, then it will hold
a reference to the computation object created and also arrange to call a method on
it when the change is triggered. This tells the computation created by autorun
to rerun.

Precisely, Tracker.currentComputation acts as a mediator point between the data
and the function that should run when the data changes.

What if we want to stop an autorun? The function we pass into the autorun as an
argument gets the computation object as a parameter. On any given condition, we
can stop the autorun by calling the stop method on the computation object. When
we call stop, the computation is cleaned up. Out of autorun, if we want to handle
the computation, we can assign the return value of Tracker.autorun to a variable
that is a computation object, and use it to call stop. It is good to know that if there is
an exception at the initial run, the computation will be stopped.

Is there a way to detect the first computation? Yes. The computation object that we
get as an argument has the firstRun property with which we can ensure whether it
is a first run.

There is an important convention to follow inside the autorun. If we create an object
inside the autorun, we have to destroy it inside the autorun. The reason being,
autorun recreates the object every time it runs. So, there is a possibility of memory
leak. We have to be careful while creating objects inside autorun and not forget to
destroy it once it is not needed anymore.

Calling stop on the computation object inside the autorun may not stop the autorun
sometimes. Take a look at the following example:

var run = Tracker.autorun(function() {
 if(Session.equals("counter", 2)) {
run.stop();
 }
});

Reactive Systems and REST-Based Systems

[164]

The run variable is a computation object and we are trying to stop it inside the
autorun. If autorun hasn't returned, and stop is called before for some reason,
then autorun is not going to stop. To ensure that it has stopped, we can use the
computation object argument passed to our function from autorun, as follows:

var run = Tracker.autorun(function(comp) {
 if(Session.equals("counter", 2)) {
comp.stop();
 }
});

We can nest autoruns. Nesting autoruns is interesting and allows us to see an
example of how it works. To demonstrate nesting, we will use the reactive-dict
package. We can use session or reactive-var as well. Because we haven't used
reactive-dict anywhere yet, let's give it a try. The reactive-dict package is very
similar to session, but doesn't persist over hot code pushes. Add the reactive-dict
package to the CustomReactivity application.

Add the following code to CustomReactivity.js:

varmarket=newReactiveDict();
market.set("sale","high");
market.set("demand","less");

varsaleRun=Tracker.autorun(function(){
console.log(market.get("sale"));
vardemandRun=Tracker.autorun(function(){
console.log(market.get("demand"));
});
});

We have created a ReactiveDict instance. We are setting sale and demand to the
dictionary. Then, we are nesting autoruns where the outer one prints the sale value
and the inner one prints the demand value. Try changing the demand value and you
will observe that only the inner autorun runs and not the outer one. However, if
you change the sale value, both the autoruns will run. This is the behavior we have
to understand while creating nested autoruns. Every time the outer autorun is run,
a new computation object is created for the inner autorun. However, the old one is
cleared automatically.

Chapter 6

[165]

We can rerun the autorun function using the invalidate() method on the
computation object. The object also has three properties, stopped, invalidated, and
firstRun, which can be used in various situations. When the changed method of the
Tracker dependency instance is called, it calls the invalidate method. You can learn
even more from the source available at https://github.com/meteor/meteor/
blob/devel/packages/tracker/tracker.js.

When we have a set of updates to reactive datasources, they are done in batches.
A simple example is as follows:

var data = new ReactiveDict();
data.set("favoriteFood", "chicken");
Tracker.autorun(function () {
 console.log(data.get("favoriteFood"));
});
console.log("start update");
data.set("favoriteFood", "waffles");
data.set("favoriteFood", "pie");
console.log("finish update");

If you execute the preceding code, the finish update log statement will be printed
before data.set. This is because of the batch update the Tracker follows. If you want
it to happen in order, use Tracker.flush() before the last log statement. This has
a different effect. Every .set will call autorun method. Incase of database updates,
this might have adverse effects.

Optimizations in autoruns
Retrieving data inside autorun is the same as subscribing to change notifications
for that data. We should try to get only the needed data inside autorun to use
the memory efficiently. Whenever possible, try not to use the .get method of the
reactive datasource:

Tracker.autorun(function() {
 if(Session.get("counter") === 2) {
 //do something
 }
});

https://github.com/meteor/meteor/blob/devel/packages/tracker/tracker.js
https://github.com/meteor/meteor/blob/devel/packages/tracker/tracker.js

Reactive Systems and REST-Based Systems

[166]

The preceding code is inefficient. It uses a get on reactive data source session.
Instead, use the .equals method that will be efficient.

Inside autorun, we should use fetch on collections instead of find, which returns
just a cursor to the documents. The fetch returns the documents and there is a
dependency set to all the documents returned by fetch.

In terms of using queries (find) inside autorun, it is good to use the queries set
with filter and field to reduce the data fetched on every run. However, while
fetching a count, we should use .count() instead of .fetch().length. When we
use .fetch(), it fetches all the documents and the dependency is set on all the
documents unnecessarily. Instead, if we use .count(), we set the dependency only
on the count and that is efficient.

This is all we need to know about Tracker. The information is much bigger than
the library itself, isn't it? With great power comes great responsibility. Use Trackers
well and watch out for performance. To read more, visit http://manual.meteor.
com/#deps-howdepsworks.

REST-based systems
Representation State Transfer (REST) is a software architecture style for the Web
and Web-based applications. REST has become very popular and there are hundreds
of applications powered by REST APIs. REST APIs enable us to build distributed
and multitier systems efficiently. A typical single page, JavaScript-driven application
are mostly powered by REST APIs. Whenever we have a backend with data storage,
many clients want it to be REST-based so that the backend layer can be decoupled
from the frontend layer. In similar terms, many developers want to try whether
MeteorJS can also act as a REST-based system. Yes, it is possible.

MeteorJS is an apt solution for applications that need to handle data reactively in
both the backend and frontend. If we want MeteorJS to be used just to serve data,
this isn't a good choice. Instead, we can look out for other better options. Still, for the
sake of learning, let's give it a try and see all the caveats it has.

The following are the three important reasons to implement REST APIs in MeteorJS
applications:

• To serve data to external application
• To transfer data that DDP cannot handle (we used HTTP transfer in case of

image upload in Chapter 4, Integrating Your Favorite Frameworks)
• For applications that don't want to create or maintain WebSockets

http://manual.meteor.com/#deps-howdepsworks
http://manual.meteor.com/#deps-howdepsworks

Chapter 6

[167]

There are many ways to implement REST APIs in a MeteorJS application.
Considering the router package that we are very much familiar with, iron-router
supports REST APIs out of the box. Also, there are other solutions that enable us to
write REST APIs in MeteorJS applications.

We are going to look into iron-router and restivus in this chapter to get familiar
with implementing the REST-based system using MeteorJS.

REST with iron-router
If you have watched the routes created using iron-router, you will know that we
can specify the target environment for each route. The target environment can be the
server or the client:

Router.route('/files/:filename', function () {
 //action
}, {where: 'server'});

The third argument is where we specify the environment using the where key. If we
specify it to be client, the package expects those routes to be called by the MeteorJS
application client. If we specify server, then the route can be accessed from any
other application. If you are using iron-router and want to expose data to a third-
party application in the REST style, then you have the solution right in hand. You
just need to specify the server routes as you wish and serve the data.

Let us create an application to see how it works. Create a MeteorJS application,
such as APIHero. Add iron-router to the application using the meteor add
iron:router command. Now, what are we going to expose?

Let's have a collection to store books and authors' name. We have to create a
collection and then create routes to add to the collection, read from the collection,
update the documents in the collection, and delete items from the collection. Create
the author_details collection by adding the following code to APIHero.js:

 AuthorDetails = new Mongo.Collection("author_details");

Iron-router provides two syntaxes to specify server-side routes. The first syntax
doesn't provide a separation about the type of request whether it is post, get, and so
on. We have to deduce it from the request. The syntax is as follows:

Router.route('/book-by-author/:name', function () {
 if(this.request.method === "GET") {
 //Do something
 }
}, {where: 'server'});

Reactive Systems and REST-Based Systems

[168]

The request object has all the required information. The other syntax gives methods
to handle the request type, as follows:

Router.route('/author', {where: 'server'})
 .get(function () {
 this.response.end('get request\n');
 })
 .post(function () {
 this.response.end('post request\n');
 });

The package filters the request by its type and calls the appropriate method when we
use this syntax.

Let's create a route to add documents to the AuthorDetails collection. Create a file,
router.js, and add the following route:

Router.onBeforeAction(function() {
 if (this.request.method == 'OPTIONS') {
 this.response.setHeader("Access-Control-Allow-Origin", "*");
 this.response.setHeader('Access-Control-Allow-Headers',
'Content-Type');
 }
 this.next();
});

Router.route("/author-details", {where: "server"})
 .post(function() {
 var data = this.request.body;
 AuthorDetails.insert(data, function(err, res) {
 if(!err) {
 this.response.statusCode = 201;
 this.response.setHeader("Access-Control-Allow-Origin",
"*");
 this.response.setHeader("Content-Type",
"application/json");
 this.response.setHeader('Access-Control-Allow-Headers',
'Origin, X-Requested-With, Content-Type, Accept');
 this.response.setHeader('Access-Control-Allow-Methods',
'POST, PUT, GET, DELETE');
 this.response.end(JSON.stringify({status: "success",
response: {id: res}}));
 }
 }.bind(this));
 });

Chapter 6

[169]

iron-router has less abstraction in terms of request and response handling. So,
we have to manually set the header to enable Cross-Origin Resource Sharing
(CORS). Also, it is very important to handle the request method OPTIONS in the
onBeforeAction hook provided by the package as given in the preceding code. Do
not forget to call this.next() in the onBeforeAction hook. How are we going to
test our API?

Ideally, you can create a small application and run a web server from where you can
fire a POST request with the appropriate data to the route that we have created. Let's
take a shortcut. If you are good in cURL, write a cURL request and check whether
the API works. If not, run the following code in the browser console of some other
application tab:

 (function request() {
 var xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 console.log(xmlhttp);
 };
 xmlhttp.open("POST", "http://localhost:3000/author-
details", true);
 xmlhttp.setRequestHeader("Content-Type",
"application/json")
 xmlhttp.send(JSON.stringify({name: "Paulo Cohelo",
book: " The Alchemist"}));
 })();

The snippet makes a POST request to our API with the author details data and the
API inserts it to the database. Check it in the database by visiting the mongo console.

Let's create another API to get all the author details. In the same route, add a get
handler to respond with the appropriate data, as follows:

 .get(function() {
 this.response.statusCode = 200;
 this.response.setHeader("Access-Control-Allow-Origin", "*");
 this.response.setHeader("Content-Type", "application/json");
 this.response.setHeader('Access-Control-Allow-Headers',
'Origin, X-Requested-With, Content-Type, Accept');
 this.response.setHeader('Access-Control-Allow-Methods',
'POST, PUT, GET, DELETE');
 this.response.end(JSON.stringify({status: "success", response:
AuthorDetails.find({}).fetch()}));
 });

Visit the same API in the browser; you will see all the data inserted using the
POST request.

Reactive Systems and REST-Based Systems

[170]

API guidelines
There are many things, as a developer, we should keep in mind while writing REST
APIs. Let's see what they are:

• StatusCode: It is good practice to set statusCode to the response and
it is important to set the appropriate ones. In the case of create, setting
the statusCode to 201 makes more sense than 200, which merely says
successful. In case of failures, it is better to set the code that portrays the
reason explicitly. If the request parameters are non-parsable, we can return
422, which means unprocessable entity. The complete set of status codes and
their meaning can be found at https://en.wikipedia.org/wiki/List_of_
HTTP_status_codes.

• JSON request and response: It is good to use JSON for both request and
response. It is a widely accepted format of data representation, and most of
the platforms support JSON.

• CORS: In the preceding snippets, we set Access-Control-Allow-Origin to be
*, which means anyone can access these APIs from any domain. Most of the
time, this is not going to be the case. Unless we are writing APIs accessible to
anyone, it is good to specify the names of the domains that we would like to
give access to our APIs. Also, we can set what kind of headers and methods
are allowed. This gives even more granular control on what to allow and
what not to allow.

• Handling request data: Never trust user inputs. Every developer must keep
this in mind to avoid security mishaps. We have to validate every parameter
that we are going to use for any serious operation. In our author-details
API example, we should validate the name and book for valid strings and
duplicate cases. Blindly inserting will have undesirable consequences.

• Handling response data: This provides what is absolutely necessary in the
response. If required, allow the request to specify what fields are required
in the response. While querying the collection, fetch only the specified fields
and set them in the response. This way, we don't have to expose everything.
Also, it is necessary to validate the fields requested. For example, if we are
exposing users collections, exposing every field is madness. So, we should
validate the requested fields if present in the request and, if they are not
present, provide only the fields that are essential.

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Chapter 6

[171]

• Volumes of data: Over a period of time, the data volume becomes high.
APIs should not be sending all the data at one shot. It is always better to
implement pagination via sort, limit, and skip properties, or by using
some packages. Set a default number of results in the result set and respond
to the request if no pagination limit is specified in the request. Also, set a max
limit so that the requestor doesn't ask for too much data in one shot.

• Error response: If it is a user interface-based application, we could display
all errors with helping cues. We are delivering data in terms of REST APIs
and thus we should be very elaborate in explaining the error responses. It is
good practice to keep the error response structure as consistent as possible
so that the consumer applications can handle errors without much pain. The
following is a good example of a consistent error response:

 {errors: [{
 errorCode: 2003,
 errorMessage: "Requested book not found"
 }]}

It is good to have errors as an array so that we can accommodate multiple errors and
the response is consistent enough. The errorCode property is a custom numbering
to standardize the error messages.

• Handling Route error: This is nothing but handling misspelled or wrongly
formed routes. We should not leave the consumers blank if they are
requesting an unknown route. Handle them by sending 404 responses
to such kinds of routes.

• Versioning: It is quite common to make changes to the APIs. However, how
are we going to maintain the change in a way that doesn't break the existing
consumer applications? Versioning comes to the rescue. On every change in
the API response or request format, make it mandatory to update the version
and notify the user about it. This will save the existing consumers of your API.

• Authentication and authorization: If you are exposing data that is
restricted to a user session, make sure you read the headers for the required
token or user ID. Proper authentication must be provided while exposing
APIs of such sort. Similarly, authorization rules must be specified to allow
access to data.

• Testing APIs: It is very important to test the APIs before releasing. Automate
them by writing simple shell scripts that can cURL your APIs with dummy
data. There are other tools as well out there that can automate the testing. For
developer testing, tools such as Postman do a wonderful job. Make sure the
APIs are stable before releasing.

Reactive Systems and REST-Based Systems

[172]

With iron-router, maintaining most of these guidelines is a cumbersome job
as it provides low-level abstraction to create APIs. We have to take care of
them manually.

REST with restivus
Restivus provides high-level abstraction to handle REST-related data. The package
is inspired by RestStop2 and Collection API packages. Unlike iron-router,
restivus handles CORS and other obvious header settings by itself. Restivus
provides CRUD operation via APIs, out of the box. Specify the collection on which
CRUD operations must be exposed, restivus will take care of the rest. Restivus
offers in-built authentication, both login and logout, and also provides control over
authorization via roles. Apart from these features, it also has versioning in-built
with the package. restivus was initially built on the top of iron-router, but later
moved to simple:json-routes.

Let us see how to create APIs using restivus with an example. Create a MeteorJS
application, for example, APISuperHero. Add the restivus package to the
application using the meteoraddnimble:restivus command. We will start by
creating users and then exposing users followed by creating CRUD for author-details
with authentication.

Create the server directory to keep the APIs inside the server. Create api.js and
put it inside the server directory, and add the following code to instantiate the
restivus object:

var API = new Restivus({
 useDefaultAuth: true,
 prettyJson: true,
 apiPath: '/'
});

We can specify many more options while instantiating restivus. An example with a
complete set of options is, as follows:

new Restivus({
 apiPath: 'my-api/',
 auth: {
 token: 'auth.apiKey',
 user: function () {
 return {
 userId: this.request.headers['X-User-Id'],

Chapter 6

[173]

 token: this.request.headers['X-Auth-Token']
 };
 }
 },
 defaultHeaders: {
'Content-Type': 'application/json'
 },
 onLoggedIn: function () {
 console.log(this.user.username + ' (' + this.userId + ')
logged in');
 },
 onLoggedOut: function () {
 console.log(this.user.username + ' (' + this.userId + ')
logged out');
 },
 prettyJson: true,
 useDefaultAuth: true,
 version: 'v1'
 });

In the apiPath option, if specified, the REST APIs will be namespaced with the
apiPath value. The default apiPath value is api and, if we want to get rid of the
default and have no apiPath at all, we have to explicitly specify apiPath to be "/". If
the apiPath property is rest-api, our URLs will be http://<domain.name>/rest-
api/<entity>. Similarly, when specified, versioning can be used in the URLs. If we
are going to use the authentication, then we have to specify the auth object, which is
nothing but specifying how to identify the user object and what headers to look for
in the request. We will look at it in detail shortly.

To add CRUD support to the collections, we just have to add the collection instance
to the restivus instance using the addColleciton method as follows:

API.addCollection(Meteor.users);

We can also provide an optional parameter, with which we can specify what all
methods or endpoints to expose, which methods need authentication, which ones
need authorization, and so on.

Reactive Systems and REST-Based Systems

[174]

When APIs have access to the Meteor.users collection, we have to be very cautious.
We should not allow PUT requests and DELETE without authentication, and getAll
must not be provided because we don't want to expose all the users data. The
POST requests can be allowed if, and only if, we want to expose APIs to create new
documents in the collection. In our case, we want to allow users to signup. So, we
are going to take all these into consideration and add our first API for accessing the
Meteor.users collection:

Api.addCollection(Meteor.users, {
 excludedEndpoints: ['getAll'],
 routeOptions: {
 authRequired: true
 },
 endpoints: {
 post: {
 authRequired: false
 }
 }
});

We are excluding the getAll request for this collection because we don't want any
user to see all the users in the system. The routeOptions option is where we specify
if this CRUD operation requires authentication. We can add options to specify if
authentication is required at an endpoint or method level. Here, we are specifying
that POST requests for this collection don't require authentication.

At each endpoint, we can specify custom actions, if we want a different
set of operations to perform than the usual.

Restivus uses the accounts package for user creation and thus we have to add
the accounts-password package for the user creation to work. Once added, we are
all set to create a new user. Shall we create a POST request from a browser console
and see if the user is created in the APISuperHero application? We cannot send an
arbitrary request payload to create a user. MeteorJS' accounts package accepts certain
values only. Restivus uses the accounts-password package for user creation and
thus we also have to send the parameters expected by the accounts-password
package. Restivus uses the Accouts.createUser methods to create a user using a
username/e-mail and password. We have to send the following payload in the POST
request:

{
"email": "jack@mail.com",
"password": "password",

Chapter 6

[175]

"profile": {
"firstName": "Jack",
"lastName": "Rose"
 }
}

In the previous example, we have used XMLHttpRequest to create and send request.
We will use the same this time as well. Run the following code in a browser console:

 var xhr = new XMLHttpRequest();
 xhr.onreadystatechange = function() {
 if(xhr.readyState === 4) {
 console.log(xhr.responseText);
 }
 };
 xhr.open("POST", "http://localhost:3000/users", true);
 xhr.setRequestHeader("Content-Type", "application/json");
 xhr.send(JSON.stringify({
"email": "xxx@xyz.com",
"password": "123456",
"profile": {
"firstName": "first name",
"lastName": "last name"
 }
 }));

You will get a response with the profile details and the user ID, as follows:

{
"status": "success",
"data": {
"_id": "vmvKJgeridXsaZKvs",
"profile": {
"firstName": "Jebin",
"lastName": "dev"
 }
 }
}

Reactive Systems and REST-Based Systems

[176]

Visit the application's mongo collection and check whether a user is created using the
db.users.find() command. You will find the created user document. Let's try a get
request to get the profile details of the same user we have created above, by firing a
GET request. Visit http://localhost:3000/users/vmvKJgeridXsaZKvs in a new
browser tab and you will get the following access denied error message:

{
"status": "error",
"message": "You must be logged in to do this."
}

We have specified in the configuration that any API on the Meteor.users collection
needs the authentication. So we are not allowed to fetch the user object unless we
authenticate ourselves. To authenticate, we have to login to the application, and
restivus already provides us APIs to login and logout. On login, we will get user ID
and token that we have to pass along with the headers on each request that requires
authentication. Before that, we have to add the auth configuration to restivus
instantiation. Change the restivus instantiation in api.js to look like the following
code:

var API = new Restivus({
 auth: {
 token: "services.resume.loginTokens.hashedToken",
 user: function () {
 return {
 userId: this.request.headers['x-user-id'],
 token: Accounts._hashLoginToken(this.request.headers['x-
auth-token'])
 };
 }
 },
 useDefaultAuth: true,
 prettyJson: true,
 apiPath: "/"
});

The auth object takes two properties: token and user. The token property is the key
to identify the hashed token in users' collection document and, in our case, it must be
services.resume.loginTokens.hashedToken. Go to the database and find the user
you are trying to login with and traverse in the order mentioned in the preceding
hierarchy. You will find the hashed token.

http://localhost:3000/users/vmvKJgeridXsaZKvs

Chapter 6

[177]

The user property takes a function in which we have to return either the user object
or the user ID and the hashed token. We have to return the hashed token of the
login token we got as a result of the login request. You can see this in the code. If
we are using custom authentication, this is the point where we have to customize to
authenticate the user. We are not customizing the authentication and thus we will
just send the user-id and login-token in the request header for authenticating our
requests.

We will call login and get the user-id and login-token as follows:

 var xhr = new XMLHttpRequest();
 xhr.onreadystatechange = function() {
 if(xhr.readyState === 4) {
 console.log(xhr.responseText);
 }
 };
 xhr.open("POST", "http://localhost:3000/login", true);
 xhr.setRequestHeader("Content-Type", "application/json");
 xhr.send(JSON.stringify({
"email": "xxx@xyz.com",
"password": "123456"
 }));

The response received is as follows:

{
"status": "success",
"data": {
"authToken": "Fp9vKkPudMffAMEwWCj_8lav6zcahTnLliHbeH0cJaf",
 "userId": "pa2BNuYyXv8pAGrzN"
 }
}

We got the login-token and user-id, which allows us to set in the request that had
failed before because of authentication error, as follows:

 var xhr = new XMLHttpRequest();
 xhr.onreadystatechange = function() {
 if(xhr.readyState === 4) {
 console.log(xhr.responseText);
 }
 };

Reactive Systems and REST-Based Systems

[178]

 xhr.open("GET",
"http://localhost:3000/users/pa2BNuYyXv8pAGrzN", true);
 xhr.setRequestHeader("Content-Type", "application/json");
 xhr.setRequestHeader("X-Auth-Token",
"Fp9vKkPudMffAMEwWCj_8lav6zcahTnLliHbeH0cJaf");
 xhr.setRequestHeader("X-User-Id", "pa2BNuYyXv8pAGrzN");
 xhr.send();

Fire the request and you will get the requested user. In the preceding snippet, we
are setting the headers with specific keys. Restivus has been set to allow only a
set of headers in the request. They are Origin, X-Requested-With, Content-Type,
Accept, X-User-Id, and X-Auth-Token. So, we have to follow this convention while
setting the header in our requests.

Provided that you are logged in, you now have access to GET any user object if
you know the user ID. What if we want to restrict that and allow you to fetch only
the logged in user's object and no one else's user object? To check this, we need to
override the endpoint action. Let's do this by changing the API configuration to look
as follows:

API.addCollection(Meteor.users, {
 excludedEndpoints: ['getAll'],
 routeOptions: {
 authRequired: true
 },
 endpoints: {
 get: {
 authRequired: true,
 action: function() {
 if (this.request.headers['x-user-id'] ===
this.urlParams.id) {
 var entity;
 entity = Meteor.users.findOne(this.urlParams.id, {
 fields: {
 profile: 1
 }
 });
 if (entity) {
 return {
 status: 'success',
 data: entity
 };
 } else {

Chapter 6

[179]

 return {
 statusCode: 404,
 body: {
 status: 'fail',
 message: 'User not found'
 }
 };
 }
 } else {
 return {
 statusCode: 401,
 body: {
 status: 'Unauthorized',
 message: 'You are not allowed to do this operation'
 }
 };
 }
 }
 },
 post: {
 authRequired: false
 }
 }
});

We have added the get endpoint to override the default behavior and we have also
specified the action property that must be a function where we can do our operation
of checking the user and returning the response appropriately. Create one more user
and try to get the new user using the get request we fired before with the previous
login token and user ID; it will throw 401 responses, as follows:

{
"status": "Unauthorized",
"message": "You are not allowed to do this operation"
}

We got a response as expected and as configured in the preceding code.

The package takes away lots of pain points by configuring API routes for each
collection added. One important thing to keep in mind is, restivus treats the
Meteor.users collection a little different from other collections. It restricts its
scope to profile entry only, in the case of GET, PUT, and GETALL. However, for other
collections, there is no such restriction and it makes sense too.

Reactive Systems and REST-Based Systems

[180]

Finally, what if we want to define some custom routes? The package also provides
the ability to do this by exposing the addRoute method on the instantiated object,
as follows:

API.addRoute('app-users/:id', {authRequired: false}, {
 get: function() {
 var entity;
 entity = Meteor.users.findOne(this.urlParams.id, {
 fields: {
 profile: 1
 }
 });
 if (entity) {
 return {
 status: 'success',
 data: entity
 };
 } else {
 return {
 statusCode: 404,
 body: {
 status: 'fail',
 message: 'User not found'
 }
 };
 }
 }
});

In the preceding code, we added a custom API to get the user object. The addRoute
method takes the path, auth flag object, and endpoints object. Whatever endpoints
we define inside can be called on this route. Visit http://localhost:3000/app-
users/<user-id> in the browser and you will find it returning the user object.
Simple and pretty, isn't it?

There are other packages as well to help us set up REST APIs in MeteorJS
applications. CollectionAPI, Picker, HTTP.Publish, and http-methods are some
other choices we have. Explore them and choose according to your need.

In this next section, we are going to discuss handling data in volumes. This next
section doesn't have any connection with REST implementation. Do not confuse
yourself by relating things. This section is meant for the reader to understand how to
handle volumes of data with the help of pagination.

Chapter 6

[181]

Handling volumes of data
One of the important principles of MeteorJS is, data is everywhere. The framework
refers and stores data in the MongoDB at the server; at the client, there is MiniMongo
in which the data is stored more or less like in the MongoDB and is referred
(queried) with an unified approach as in the server. What if to the application serve's
volumes of data? Let us discuss how we can efficiently handle volumes of data in
this section.

With autopublish, the server sends all the available data to the client. Imagine the
server has 1 GB of data and it sends all of it to the client. The Web client being a
browser, may or may not handle based on the system's capability. If you are a Web
developer and have used lower-end machines to debug using Chrome's debugger,
you might have encountered application crashes. Similarly, if we opt to persist
logs on navigation in chrome, we will encounter a crash sooner or later. When the
browser can't allot enough memory for application because of memory shortage,
there is a high possibility that the application will crash. In the case of a MeteorJS
applications, if we allow more data to reside on the client, there are chances of your
application to crash. What can we do to avoid this?

Send only what is absolutely necessary to the client from the server and request only
what is needed from the client. When we have to build a data analytics application,
we have to show an appropriate result to the user. This doesn't mean we have to
show every possible value at one shot. We can design the interfaces in a way that
we can split the data into chunks and request only the interested chunk from the
server. Splitting the data and loading those chunks means nothing but paging the
data. Upon pagination, we can apply one more round of optimization where we can
specify only the required fields rather than subscribing to the entire document. In
this section, we are going to build an application, inject random data, and then study
how to apply pagination and other optimizations.

Create an application, such as PageData. Remove the autopublish and insecure packages
from the application. We need some amount of data to apply pagination and see
how things work. Let's write a small script that can import data from the CSV file.
You can download the CSV file from the associated code folder that is available for
downloading from Packt's website. To import, we can use two approaches. One is
using mongoimport that must be downloaded and then used with the mongoimport
command from the terminal. Another approach is using NPM modules in our
application, and reading the file and inserting the records to the collection. We are
going to follow the second approach because we can learn how to use NPM packages
in MeteorJS applications.

Reactive Systems and REST-Based Systems

[182]

To use NPM packages, we should require them in our application. If the package
is a core package (fs, path), then just requiring is enough. However, if it is not a
core package, then we must ask MeteorJS to install the package for us. Also, there
is a package that does the job for us. Install the meteorhacks:npm package that
enables us to use NPM packages in the MeteorJS application. It needs a package.
json file in which we have to specify the packages we want to use and its version.
It is mandatory to restart the application for the packages to be available. To use the
installed package, we should use the Meteor.npmRequire method.

In our case, we need a CSV parser for which we will use the csv-parse NPM
package. It also needs the stream-transformer package for reading the file as
stream. Create a package.json file at the application root and add the following
JSON code:

{
"csv-parse": "1.0.0",
"stream-transform": "0.1.0"
}

Start the application and in the terminal, you will see MeteorJS installing the
mentioned packages for us. Now, we have to write the logic to create a collection and
insert mock data. Remove the hello template-related code from all files and add the
following piece of code inside Meteor.startup in the server block at PageData.js:

 EmployeeDetails = new Mongo.Collection("employee_details");
 var fs = Npm.require('fs');
 var path = Npm.require('path');
 var parse = Meteor.npmRequire('csv-parse');
 var transform = Meteor.npmRequire('stream-transform');

 function loadData() {
 var basepath = path.resolve('.').split('.meteor')[0];
 var parser = parse({
 delimiter: ','
 });
 var input = fs.createReadStream(basepath +
'Emp_details-MOCK_DATA.csv');
 var transformer =
transform(Meteor.bindEnvironment(function(row, index)
{
 EmployeeDetails.insert({
 name: row[0],
 email: row[1],
 IBAN: row[2],

Chapter 6

[183]

 address: row[3],
 city: row[4],
 country: row[5],
 dob: row[6],
 joining_date: row[7],
 gender: row[8],
 age: row[9],
 emp_id: row[10]
 });
 }, function() {})
 , {
 parallel: 10
 });
 input.pipe(parser).pipe(transformer);
 }
 loadData();

We have created a collection at the beginning of the code snippet and then we got
the reference of the NPM packages that we are going to use. We have to use NPM.
require for core packages and Meteor.npmRequire for noncore packages. Using
the path package, we will resolve the file path and then create a stream of the file.
A parser is created, which is piped to the file stream and then a transformer. A
transformer is called with each row of data. We insert each row into the collection
we have created. Go to the application's database and check whether it has inserted
1000 documents to the employee_details collection. Comment out the loadData
function call once the insertion is completed. It will keep inserting data on every
application startup.

Now, we have some data to play around with. Let's try displaying the data in pages.
Remove the data insertion script to keep things clean. Move the collection instance
creation code to the top of the file so that it is accessible both in the client and the
server. Let's publish the collection from the server block, as follows:

if (Meteor.isServer) {
 Meteor.publish("employee_details", function(query, projection)
{
 query = query || {};
 projection = projection || {};
 limit = projection.limit || 10;
 skip = projection.skip || 0;
 fields = projection.fields || {name: 1, emp_id: 1};
 return EmployeeDetails.find(query, {
 limit: limit,

Reactive Systems and REST-Based Systems

[184]

 skip: skip,
 fields: fields,
 sort: {emp_id: 1}
 });
 });
}

Our publication takes two parameters, a query and a projection, which is nothing
but an object having the limit, skip, and fields properties. For pagination, limit
and skip are very important. The skip property is equivalent to the first argument
we pass for limit in a MySQL query. Let's subscribe to the publication from the client
and display the data.

Add the following template to PageData.html and include the template in the body
tag as {{>empDetails}}:

<template name="empDetails">
<div>
 {{#each collection}}
<div>{{name}}</div>
<div>{{emp_id}}</div>
 {{/each}}
<button>Next</button>
</div>
</template>

In PageData.js, inside the client block, add the following subscription and template
handler code:

 Meteor.subscribe("employee_details");
 Session.set("page", 0);
 Template.empDetails.helpers({
 collection: function() {
 return EmployeeDetails.find({}, {
 limit: 10,
 skip: Session.get("page") * 10,
 sort: {emp_id: 1}
 });
 }
 });
 Template.empDetails.events({
"click button": function() {
 Session.set("page", (Session.get("page") + 1));
 }
 });

Chapter 6

[185]

We are using session to keep a track of the page number. In the template helper, we
are limiting the query to 10 documents only. This is because we haven't specified in
our subscription how many documents to fetch; it will fetch only 10 documents as
per our publication setup. Start the application and visit it in the browser. You will
see the names of the employees with the next button. Click on next and you will see
no more data.

The application has 1000 records. However, the client has only 10 because of the
subscription. To implement a proper pagination, we need the total count of the
collection beforehand so that we can have the logic to decide as to when to show the
previous and next page button. Another issue with MeteorJS is, the cursors are not
aware of the subscription's specificity. When there are multiple subscriptions that
update the same cursor that affects the result set with pagination.

Handling data with pagination in a MeteorJS application is a bit tricky. There is
no native support, but it is there in the roadmap. At the moment, we can rely on
packages that have solved all the previously mentioned problems in custom ways.
What if we want to develop our own solution? Let's see what we can do about it.

A subscription is always reactive. Whenever there is an insertion, the publication
will send the data to the subscriber if it makes sense. In the preceding example, we
are sorting the collection by emp_id and fetching the first 10 documents. If we insert
a new document with emp_id that can fall within this 10-document range, you will
see that it update the template immediately. However, if we insert a new record that
falls out of the 10-document range, the subscription will not receive the data. Also, if
there is another subscription that plays with the same collection, we will end up with
the cursor having irrelevant data. Now you can understand why pagination has a
problem in MeteorJS applications.

The first issue, knowing the total count, can be solved by having a different
publication and subscription that gives the total count of the documents present in
the database based on the query. Adding the following publication and subscription
in the server and client, respectively, can help us solve the first issue:

 //In server
 Meteor.publish("employee_count", function(query, projection) {
 query = query || {};
 return EmployeeDetails.find(query).count();
 });
 //In client
 var empCountHandle = Meteor.subscribe("employee_count");

Reactive Systems and REST-Based Systems

[186]

Use the subscription handle empCountHandle to handle the UI update.

The second issue is cursors are not aware of the subscription. This can be addressed
in two ways. One is by using the FindFromPublication package that offers
us methods to have a cursor that is publication/subscription-aware. Instead of
publishing data using Meteor.publish in the server, use FindFromPublication.
publish. In the client, subscribe as usual but access the collection using the following
code:

EmployeeDetails.findFromPublication("employee_details", {},
options);

Now, other subscriptions' data will not affect the cursor returned by the
findFromPublication method.

The other solution is to use template-level subscriptions. With the latest version of
MeteorJS, it is possible to create a subscription inside templates. The advantage is
that the subscription will be destroyed once the template is destroyed. While using
template-level subscriptions, we have to wait for the subscription to complete and
then find the documents with the updated limit. This way, we can make sure we get
the data from the server before showing it. Check at the pseudo code, as shown in
the following code snippet, to achieve the second approach:

 Template.empDetails.onCreated(function() {
 var instance = this;
 // initialize the reactive variables
 //one for subscription and other for querying
 instance.loaded = new ReactiveVar(0);
 instance.limit = new ReactiveVar(5);

 //Autorun to detect changes to the limit set by click
event
 instance.autorun(function() {
 // get the limit
 var limit = instance.limit.get();

 // subscribe to the posts publication
 var subscription =
instance.subscribe('employee_details', limit);

 // if subscription is ready, set limit to newLimit
 if (subscription.ready()) {
 instance.loaded.set(limit);
 }
 });
 //Cursor – should be used in the helpers to return the
collection document.
 instance.empDetails = function() {

Chapter 6

[187]

 return EmployeeDetails.find({}, {
 limit: instance.loaded.get()
 });
 }
 });

In the preceding code, we have limited and loaded properties attached to the
template instances that are reactive variables. When the user clicks on the next
button, we will set the limit to the new value. This will trigger the autorun method
we have setup inside the onCreated method. With the new limit, we subscribe for
the new set of documents and wait for it to be received with the help of the .ready
method of the subscription handle. Once ready, then we set the new limit to the
loaded property, which in turn provides the new set of documents to the template. It
is necessary to use Template.instance().empDetails() inside the template helper
to return the current document collection.

I hope this helps you to write a custom logic to handle pagination. What are the
packages available to handle pagination? There are many and notable ones are
doctorpangloss:filter-collections and alethes:pages.

The filter-collections package offers more than pagination. It supports
filtering, sorting, searching, and pagination. You can find the demo of the
package at http://filtercollections.meteor.com/. It works well with
Collection2 as well. The package addresses the pagination problems we
discussed using the FindFromPublication package style. We have to publish
using the FilterCollections.publish method and in the client, we can use
newFilterCollections to set up the operations. We can specify templates and
other sort and filter parameters while instantiating FilterCollections
on a collection. With the instance, we can do almost all related operations
programmatically. The package gives a lot more control over the data. Visit the
documentation at https://atmospherejs.com/doctorpangloss/filter-
collections if you want to give it a shot.

The pages package is an easy-to-use and bootstrap-integrated solution. It allows
both sorting and filtering and supports infinite scroll out of the box. Also, the
package offers templates to show the navigation button for pagination. Visit the
package documentation at https://github.com/alethes/meteor-pages to learn
other available options.

The preceding example should have helped us to understand problems and solutions
to handle large volumes of data with pagination in a MeteorJS application.

http://filtercollections.meteor.com/
https://atmospherejs.com/doctorpangloss/filter-collections
https://atmospherejs.com/doctorpangloss/filter-collections
https://github.com/alethes/meteor-pages

Reactive Systems and REST-Based Systems

[188]

Summary
In this chapter, we have learned a few internals of MeteorJS. Let us summarize
what we have learned in this chapter. We have learned end to end about MeteorJS'
reactivity to its depths by looking at Tracker.js, which is MeteorJS' core reactivity
secret. We have learned how to build REST APIs and REST-based systems using
various packages and solutions with MeteorJS. Finally, we have spent time to
learn how to handle large volumes of data using pagination. We have learned the
problems with pagination because of MeteorJS' reactivity and other principles and
also learned how to handle them.

I hope you have enjoyed the chapter.

In the next chapter, we are going to learn how to deploy and scale MeteorJS
applications.

[189]

Deploying and Scaling
MeteorJS Applications

So far, we have learned various concepts, tools, and internal ideas of MeteorJS
framework and how to use them in developing applications. From a developer's
perspective, we have a fair experience on developing MeteorJS applications. By
this time, you pretty well know that MeteorJS is, more or less, a collection of
nontraditional and advanced concepts put together as a framework.

A traditional way of building web applications is to use HTTP and until today
most of the applications are built over HTTP transaction. We know the problems
with HTTP and there are plenty of reasons why HTTP transfer is slow. Most of the
production infrastructure and stacks are meant for HTTP. In contrary, MeteorJS is
new, not widely adopted yet (hopefully it will be), and primarily uses sockets and
other concepts that are not traditional.

Finding or creating infrastructures and platforms to host a MeteorJS application
is quite a cumbersome task. This doesn't mean we hardly find them, but the
options are limited. However, it is notable that such a young framework has quite
a few supporting hosting solutions. A few among them are Modulus.io, www.
digitalocean.com, and Heroku. Can't we deploy a MeteorJS application out of
these solutions? Can't we have a dedicated, self-owned infrastructure and platform
to host a MeteorJS application?

Many developers and early adopters of MeteorJS ask one particular question before
taking the decision to use MeteorJS for their product development. The question is
"will it scale?".

www.digitalocean.com
www.digitalocean.com

Deploying and Scaling MeteorJS Applications

[190]

In this chapter, we are going to learn about deploying and scaling MeteorJS
applications. Precisely, we are going to cover the following topics:

• Understanding MeteorJS application deployment
• Using build tools for MeteorJS applications
• Using deployment tools for MeteorJS applications
• Scaling a MeteorJS application using database oplog tailing setup
• Using third-party MeteorJS hosting solutions

Understanding MeteorJS application
deployment
Have you ever wondered how MeteorJS builds and runs the application while
developing applications locally? MeteorJS bundles the JavaScript code, packages,
and templates every time we run the application. The .meteor/local/build
directory is the place where all the bundled files are located. You will find a copy
of your code inside the .meteor/local/build directory. When we debug our
application using node-inspector via meteor debug, we always see that the
execution stops at .meteor/local/build/main.js. This is the entry point for the
application.

MeteorJS compiles the templates to JavaScript functions and splits the code based on
target environment(the server or the client) before serving them. If you have used
any compile to JavaScript language such as coffee, or CSS preprocessors such as
SASS, all the appropriate files are converted to JavaScript and CSS files during the
initial stage of the build process.

The important block of the application is database and the database resides inside
the .meteor/local/db directory. Once the application starts, the connection to the
local database (database name is meteor) is established. If we want to connect with
an external database, we should specify the connection string using the environment
variable MONGO_URL as follows:

MONGO_URL=mongodb://user:password@localhost:27017/<database-name>

Once the database connection is established, socket connections are initiated between
the client and the server and things go on by transferring data based on publication
and subscriptions. From deployment perspective, we could see that it is a bundled
Node.js application that is running and connecting to a MongoDB.

Chapter 7

[191]

MeteorJS bundles the application into a Node.js application with its own build tool.
However, it doesn't build the application to be a traditional Node.js application,
instead as a Node.js application that uses Fibers. To learn about Fibers, visit the
Fibers GitHub repository at https://github.com/laverdet/node-fibers.

Roughly, all we need is a machine with Node.js and MongoDB. It is that simple.
Then, why are people finding it difficult to deploy a MeteorJS application? There are
issues to be addressed from different directions. If we build the application using the
meteor build command in a Mac machine and deploy it to a Linux machine, there
are chances that the application will not work as expected. There could be cross-
platform issues. For example, the Fibers package that MeteorJS uses is platform-
dependent. So it is important to remove and install the Fibers package in the target
hosting environment after porting the built files to the target hosting environment.
Not just Fibers, any other platform-dependent package used in the application might
have the same issue. If you don't want to do any of these in the hosting platform,
then build the application in a machine that is similar to the hosting platform in
terms of operating system and processor architecture (32/64 bit).

Build tools for MeteorJS applications
Isobuild is an in-built build tool for MeteorJS. Another popular build tool is
demeteorizer, which again is built on the top of Isobuild.

Isobuild
MeteorJS offers a simple build tool called Isobuild. It converts a single source into a
set of runnable programs with respect to the target platforms (Android/iOS/Web).
If you are developing a cross-platform application using MeteorJS, then this build
process can create builds in accordance with the mobile platforms as well, if added
in the application. When you create a MeteorJS application, Isobuild is added to the
application. Isobuild will build the source when the following commands are run:

meteor run

meteor deploy

meteor build

Isobuild can include the NPM package and the PhoneGap package based on the
target platform. It has its own package format called Isopack, which we can see
inside the .meteor/local directory.

https://github.com/laverdet/node-fibers

Deploying and Scaling MeteorJS Applications

[192]

During a build process, Isobuild does transpiling, minifying, generating source
maps, resolving package references, bundling assets, and so on. If we need any
custom functionality, we can extend Isobuild with plugins. What do we get when we
run the meteor build command? Let us check it out by running the command in one
of the projects we had created in the previous chapters. Firstly, try the meteor help
build command in the application root and you will see the set of options we can
pass to the build process.

It is mandatory to provide an output location path to place the created bundle. So we
have to run meteor build <path/to/some/directory>. Once run, visit that location
and extract the bundle file (tarball) to see what is inside. You will find a README
file that has some instructions about setting environment variables related to the
database, root URL, port, and so on. There is the main.js file that is the entry point
for the application. It is like index.html for a web server. To start our application,
we have to run the main.js file using Node.js. Based on the target platforms added
(Android/iOS/Web), we will see the respective directories. In our case, we haven't
added any mobile platform. So it will be only the web.browser directory and the
server directory, and they are present inside the programs directory.

This bundle provides the server and client source codes. If we have a database setup
ready, then we can run this bundle from anywhere just by setting those environment
variables as described in the README file. I hope this gives a fair idea about what is
happening under the hood and how to get the source for deployment from your
local MeteorJS application.

Demeteorizer
Demeteorizer uses the meteor build command to create builds. This means,
demeteorizer bundles the application using the meteor build command and,
additionally, adds the package.json file to the bundle. The bundle is created in
the .demeteorizer directory at the root of the application. You can specify an
alternate output directory, if necessary, while running the demeteorizer command.
Demeteorizer can build your application in debug mode using the demeteorizer
–debug command, which doesn't minify the code so as to enable easy debugging.
Once we have bundled our application using demeteorizer, we can then run the
same bundle as a Node.js application anywhere just by a few steps as follows:

1. Navigate to bundle/programs/server directory into and run the npm
install command

2. Set up the required environment variables (MONGO_URL, ROOT_URL, and PORT)
3. Start the application using the npm start command

Chapter 7

[193]

When we run npm install in the bundle directory, it reads the package.json
created earlier and installs the necessary dependency packages for the application.
Why is it necessary to have package.json? What is the purpose of it?

Usually, when we want to run an existing Node.js application, we will install the
dependencies by running the npm install command. This command reads the
package.json and installs all the dependencies mentioned in the package.json. In
our case, demeteroizer adds Fibers, semver, and other dependent NPM packages to
the package.json file. It also removes Fibers from the node_modules directory in
the bundle demeteroizer creates. In the target hosting environment, when we run
npm install, it will install Fibers packages afresh to avoid platform issues.

After installing all the dependencies, we can either run the main.js file directly or
run the npm start command, which will again run the main.js file only. Make sure
you are ready with the database and environment variable setup.

For more details,visit the demeteorizer package at https://github.com/
onmodulus/demeteorizer.

Deploying a MeteorJS application
Meteor Up and meteor-deployment-manager are a few noticeable deployment tools
available for MeteorJS deployment. A common thing about both these tools is that
all of them are NPM packages. We have to install them using NPM and run the
appropriate commands in the terminal. Let's see them in detail.

Meteor Up
Meteor Up is a popular MeteorJS deployment tool. It only supports deployment for
Debian/Ubuntu Linux flavors and Open Solaris target machines at the moment.
Mup is a complete solution for MeteorJS application deployment. It builds the
application more like what demeteorizer did using the meteor build command
and also installs the platform-dependent packages such as Fibers before running the
application in the target host.

You can install mup using the npm install -g mup command. There are two steps to
complete the deployment using mup. One is to set up mup, and other is to deploy
the application. To set up mup, use the mup setup command. It will create the mup.
json and settings.json files in the directory where the preceding command is run.
The mup.json file is completely documented with comments, and this file is where
we have to specify the hosting credentials. It is better to keep mup files out of the
application so that you don't expose the credentials of the host.

https://github.com/onmodulus/demeteorizer
https://github.com/onmodulus/demeteorizer

Deploying and Scaling MeteorJS Applications

[194]

In the mup.json file, we provide the hosting server's IP address, username, and
password for SSH login. Mup will try to log in to the server and then copy the built
application bundle to the host when we run the mup deploy command. In the mup.
json file, we can specify whether we want to install a new mongo database, and
which version of Node.js to use. It is also important to specify the local application
path for mup to find. Mup takes care of setting up the environment variables, but we
have to provide them in the mup.json file.

In the hosting environment, mup keeps the application at opt/<appName>/app. If
the appName is not specified in the mup.json file, the default appName will be meteor.
Mup uses upstart to monitor the application in terms of restarting (upstart is an
event-based replacement for the /sbin/init daemon that handles the starting of
tasks and services during boot, stopping them during shutdown and supervising
them while the system is running). The configuration file for upstart will be at /
etc/init/<appName>.conf. From the hosting server, we can start and stop the
application using the start <appName> and stop <appName> commands. Logs for
the application can be reached at /var/log/upstart/<appName>.log.

If we have our mongo database created by mup, it cannot be accessed from outside.
We have to SSH log in to the hosting server and access the database. The name
of the database will also be the appName itself. Once logged in, we can run mongo
<appName> to access the application database.

Mup provides other commands to control the application from the local machine.
The mup reconfigure command will reconfigure the application at the hosted server
if we want to change environment variables or settings.json. We can start, stop, or
restart the application using mup start, mup stop, and mup restart, respectively.

Mup has many features including deploying to multiple servers, SSL support, and
using SSH keys for connecting to the host and custom meteor binaries. Visit the
GitHub repository of mup at https://github.com/arunoda/meteor-up.

Meteor deployment manager
Meteor-deployement-manager (MDM) is very similar to mup. It does exactly what
mup does, except that it requires the application to be a Git repository. Similar to
mup.json, here we need deploy.json where we can specify the server details, which
can be generated using the mdm generate command.

https://github.com/arunoda/meteor-up

Chapter 7

[195]

For mdm to work, we have to do a certain basic setup in the hosting server. We have
to install Git, Nginx, and MongoDB. It is good to have a nonroot user to run the
Node.js commands. So create a user with the adduser command. Give permission to
the user to execute commands without a password, by adding the user to the sudoers
list. At the same time, we don't want to give the new user all sorts of permissions,
instead just the permissions required. We want the new user to start and stop the
application. So add the following line to /etc/sudoers.d/<appName>:

meteor ALL = (root) NOPASSWD: /sbin/start <appName>, /sbin/stop
 <appName>, /sbin/restart <appName>

Export the MongoDB connection string to the environment variable, as we did before
using the export MONGO_URL="mongodb://localhost:27017" command. Next is to
set up Nginx as a proxy to allow the access to port 80. For security reasons, we will
have Nginx to act as a proxy and send the requests to our application.

Take the backup of Nginx configuration file and replace it with the following
content:

events {
 worker_connections 1024;
}

http {
 include mime.types;
 gzip on;

 server {
 listen 80;
 server_name your-app.com *.your-app.com;
 location / {
 proxy_pass http://127.0.0.1:2000/;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header Host $host;
 }
 }
}

We are going to run our application at port 2000 and so, in the configuration, we are
specifying the proxy_pass directive to be http://127.0.0.1:2000/. Now, start
Nginx using the service nginx start command.

Deploying and Scaling MeteorJS Applications

[196]

MDM also uses upstart to manage the application. We will add an upstart script
that will monitor and manage the application. Create a configuration file with the
application name in the /etc/init directory, and add the following code and
modify it as per your application:

#!upstart
description "Application Upstart"

env APP_NAME='<appName>'
env PORT='2000'
env ROOT_URL='http://www.your-app.com'
env NODE_BIN='/home/meteor/.nvm/v0.10.40/bin/node'

env SCRIPT_FILE="<path/to/>bundle/main.js" # Entry point for the
 nodejs app
env RUN_AS="meteor"#use we added before

start on (local-filesystems and net-device-up IFACE=eth0)
stop on shutdown

script
export LOG_FILE="/home/meteor/$APP_NAME/log/upstart.log"
touch $LOG_FILE
chown $RUN_AS:$RUN_AS $LOG_FILE
chdir /home/meteor/$APP_NAME/builds/current
exec sudo -u $RUN_AS sh -c " PORT=$PORT ROOT_URL='$ROOT_URL'
 $NODE_BIN $SCRIPT_FILE >> $LOG_FILE 2>&1"
end script

respawn
respawn limit 5 60

Modify the preceding script carefully as per your application.

Once all these configurations are done, we have to install a specific version of Node.
js, and we should install as the new user we had created in order to avoid any file
permission issues. Log in as the new user and install the version we had mentioned
earlier in the upstart configuration file using the nvm or n packages. Also, install
MeteorJS so that MDM can build the application.

Create a directory with the application's name to clone your application. MDM
expects to have the builds, log, working, and source directories inside the
application directory. Create them all and initialize Git inside the source directory.
After init, add the remote origin using the git remote add origin <repo url>
command and then pull the latest code. MDM expects an origin remote to be present.

Chapter 7

[197]

All the server setup is done. In a local development machine, we have to install
MDM via NPM, and then inside the application, run mdm generate to create a
deploy.json file. The file has a set of options to fill in so that MDM can deploy the
latest code and start the application. The file content is as follow:

{
 "options": {
 "meteorite": false,
 "insecure": false,
 "meteorRelease": "1.2.0.1"
 },
 "environments": {
 "staging": {
 "hostname": "staging.your-app.com", //host ip or domain
 "port": 22, //port to login with
 "username": "meteor", //new user we created
 "password": "secure-password", //login password
 "deploymentDirectory": "<path/to>", //
 "gitBranch": "master",
 "taskName": "leaderboard"
 }
 }
}

The taskName property must match the upstart configuration file name we had
created in the server. The deploymentDirectory must be the path to the application
directory we had created in the server. The gitBranch property is the one to specify
which branch to deploy. Once all these configurations are done, push the local code
to the branch and run mdm deploy followed by the mdm start command, which will
deploy and then start the application at the specified server.

Quite a bit of work, but this does the job. You can check the mdm package at
https://www.npmjs.com/package/meteor-deployment-manager.

Scaling a MeteorJS application
Whatever we have discussed is good for a single instance application. If our
application grows with a bigger user base and if the traffic is increasing, we
obviously have to scale the system. Most of the time, scaling can be done
horizontally, which means we will add more instances and then route the traffic
to instances having less load at the moment. With some scaling solutions such as
meteor cluster, we can scale vertically by adding more cores to the server.

Let's see in detail how Nginx and meteor cluster help us in scaling our application.

https://www.npmjs.com/package/meteor-deployment-manager

Deploying and Scaling MeteorJS Applications

[198]

Scaling with Nginx
We have seen how to use Nginx while doing MDM setup. Now, let us see how to use
it to scale MeteorJS applications. It is good to install the latest Nginx that supports
WebSockets. We are going to use Nginx to be a load balancer, which will redirect the
requests to the application instances based on the load in each instance. All we need
to do is change the Nginx configuration file to accommodate the other instances and
to enable a sticky session.

We have to do the basic setup first, which will proxy the requests to the actual
application. Let's us see a sample configuration used by a Meteor platform itself. The
following is the basic configuration used by a Meteor platform after bundling:

we're in the http context here
map $http_upgrade $connection_upgrade {
 default upgrade;
 '' close;
}

the Meteor / Node.js app server
server {
 server_name yourdomain.com;

 access_log /etc/Nginx/logs/yourapp.access;
 error_log /etc/Nginx/logs/yourapp.error error;

 location / {
 proxy_pass http://localhost:3000;
 # http://wiki.Nginx.org/HttpProxyModule
 proxy_set_header X-Real-IP $remote_addr;
 # pass the host header -
 http://wiki.Nginx.org/HttpProxyModule#proxy_pass
 proxy_set_header Host $host;
 # recommended with keepalive connections -
 http://Nginx.org/en/docs/http/ngx_http_proxy_module.html#
 proxy_http_version
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection $connection_upgrade;
 }
}

Chapter 7

[199]

This is a basic configuration where we have specified our domain, the proxy entry
and the HTTP context. The load balancing configuration is as follows

upstream myAppName {
 ip_hash; # for sticky sessions, more below
 server 10.0.0.1:3000; # server 1, core 1
 server 10.0.0.1:3001; # server 1, core 2
 server 10.0.0.2:3000; # server 2, core 1
 server 10.0.0.2:3001; # server 2, core 2
 # or whatever other appropriate combination
}

server {
 listen 80;
 server_name www.myapp.com
 # and all other "server" directives from previous section

 location / {
 # the "hostname" below must be same myAppName from upstream
 directive above
 proxy_pass http://myAppName/;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection $connection_upgrade;
 }
}

The upstream directive is where we specify that we need a sticky session with the
ip_hash directive. This will take care of the request from a unique IP address to be
sent to the same instance next time. According to the configuration, we will have
four instances running at various ports and the requests will be load balanced among
them. It is very important to use the same upstream directive name in the proxy_
pass directive.

Nginx also serves another purpose. If we want to enable SSL, but don't want the
MeteorJS application to support it, we can configure Nginx to support SSL and
pass through the request to the application as a non-SSL request. This is called SSL
termination, and Nginx is pretty good for solving this issue as well.

Now that we have a load balancer, we can run as many instances as we need to scale
our application. However, it is important to note that when we add a new instance
and reconfigure the load balancer, it will reset the existing DDP connections.

Deploying and Scaling MeteorJS Applications

[200]

Scaling with Meteor cluster
Cluster is a MeteorJS package that has to be installed with the application using the
meteor add meteorhacks:cluster command. Why Cluster? What problem does it
solve? There are a number of issues Cluster solves; lets see all of them.

Cluster offers an in-house solution for the scaling problem. Unlike the previous
scaling method using Nginx, we can configure our application to scale, without
having to install and configure any other external server or proxy.

As mentioned earlier, when we add a new instance to a Nginx load balancer, it will
reconfigure the server, which will lead to the resetting of DDP connections. With
Cluster, this is not going to be the case. Also, if the load balancer goes down, then
there is no more access to the application. We need to set up multiple load balancers
to handle such a case. Cluster offers an elegant solution to this problem as well.

Let's understand what Cluster does; this will give us a fair idea of how it solves
all the above mentioned problems. When we install the Cluster package to our
application, we make the application running in the primary instance (one pointed
via the DNS) to act as the load balancer as well. You don't need a separate server or
tool for load balancing. The Cluster package is capable of identifying new instances
and directing traffic to them. This prevents connection reset.

How does Cluster do all of this? It does something called a service discovery using
MongoDB. If you are familiar with micro services, you would know what a service
discovery is (you can learn about micro services from the MeteorJS documentation
website). Cluster maintains the instance details in MongoDB, and uses this to
identify instances and to route the traffic. This MongoDB need not be necessarily a
new database. We can use the existing database as well. During deployment, we just
have to export a few environment variables for Cluster to identify things and then
everything will be in place. The following are the environment variables required for
Cluster to work:

export CLUSTER_DISCOVERY_URL=mongodb://host:port/db,
this is the direct URL to your server (it could be a private
 URL)
export CLUSTER_ENDPOINT_URL=http://ipaddress
mark your server as a web service (you can set any name for
 this)
export CLUSTER_SERVICE=web

Now that we have all the environment variables in place, we can add/remove as
many instances as we want and Cluster will take care of load balancing.

Chapter 7

[201]

How does Cluster handle a sticky session? When a request comes from a unique IP
address, a cookie is set in the client, which will help to redirect the request to the
same instance every time the request comes from the same IP address.

Balancers
The problem of a single load balancer being bottleneck is not solved yet. If the
default balancer, which is nothing but the server pointed via DNS, is down, then the
entire setup will be inaccessible. Cluster has a solution for this too. Convert a few
other instances to act as balancers by exporting another environment variable as
export CLUSTER_BALANCER_URL=<another instance url>. This will ensure that,
even if the primary instance is down, requests are balanced via the other configured
instance.

The multicore support
Cluster also supports multicore servers. To leverage multicore support, just export
another environment variable as export CLUSTER_WORKERS_COUNT=auto. How
does Cluster support multicore processing? It creates the clone of the application,
which is called worker, and then uses a different way to distribute the traffic. Static
requests will be served by the primary application, SockJS requests will be proxied
to the workers via the primary application, and WebSocket requests will be handled
directly by the workers. This is how we can scale MeteorJS applications vertically.

The SSL support
It is important to support SSL for security. Being a Node.js application, how can we
support SSL? Previously, we had Nginx as a proxy, which can do SSL termination for
us. With Cluster in place, we have no component to terminate SSL.

We can handle them in many ways. If you are using mup, then it takes care of it by
installing Stud in the front of the application. Stud does the SSL termination part.
If we are not using mup, then we have to use a proxy. A proxy need not be Nginx,
instead we can have the Node.js package http-proxy (https://www.npmjs.com/
package/http-proxy) or Meteor-SSL-proxy (https://github.com/Tarang/
Meteor-SSL-proxy) that will do the job.

https://www.npmjs.com/package/http-proxy
https://www.npmjs.com/package/http-proxy
https://github.com/Tarang/Meteor-SSL-proxy
https://github.com/Tarang/Meteor-SSL-proxy

Deploying and Scaling MeteorJS Applications

[202]

Mup and Cluster
Mup and Cluster goes hand in hand. We know that mup supports multiple
environment deployment. So we can specify all the environment variable that we
had created in the mup.json file and then mup will take care of the Cluster setup.
The sample mup.json of https://bulletproofmeteor.com is as follows:

{
 // Server authentication info
 "servers": [
 {
 "host": "ip-1",
 "username": "root",
 "pem": "./bulletproofdo",
 "env": {
 "CLUSTER_BALANCER_URL":
 "https://one.bulletproofmeteor.com"
 }
 },
 {
 "host": "ip-2",
 "username": "root",
 "pem": "./bulletproofdo",
 "env": {
 "CLUSTER_BALANCER_URL":
 "https://two.bulletproofmeteor.com"
 }
 },
 {
 "host": "ip-3",
 "username": "root",
 "pem": "./bulletproofdo",
 "env": {
 "CLUSTER_BALANCER_URL":
 "https://three.bulletproofmeteor.com"
 }
 },
 {
 "host": "ip-4",
 "username": "root",
 "pem": "./bulletproofdo"
 }
],

 // Install MongoDB in the server, does not destroy local MongoDB

https://bulletproofmeteor.com

Chapter 7

[203]

 on future setup
 "setupMongo": false,

 // WARNING: Node.js is required! Only skip if you already have
 Node.js installed on server.
 "setupNode": true,

 // WARNING: If nodeVersion omitted will setup 0.10.33 by
 default. Do not use v, only version number.
 "nodeVersion": "0.10.33",

 // Install PhantomJS in the server
 "setupPhantom": true,

 // Application name (No spaces)
 "appName": "meteor",

 // Location of app (local directory)
 "app": "../",

 // Configure environment
 "env": {
 "ROOT_URL": "https://bulletproofmeteor.com",
 "MONGO_URL": "mongodb://app:password@mongodb.com/dbname",
 "MONGO_OPLOG_URL": "mongodb://app:password@mongodb.com/local",
 "DISABLE_WebSockets": "1",

 "CLUSTER_DISCOVERY_URL":
 "mongodb://app:password@mongodb.com/dbname",
 "CLUSTER_SERVICE": "web"
 },

 // Meteor Up checks if the app comes online just after the
 deployment
 // before mup checks that, it will wait for no. of seconds
 configured below
 "deployCheckWaitTime": 15
}

If you watch carefully, you can find that all the necessary environment variables are
placed in the appropriate blocks.

Cluster offers a solution for most of the common problems. No more complaining
about MeteorJS' scalability.

Deploying and Scaling MeteorJS Applications

[204]

For more information about the Cluster package, check out the Git repository at
https://github.com/meteorhacks/cluster.

The oplog tailing setup
The oplog tailing is again another aspect of making MeteorJS applications faster.
Firstly, let's understand what is oplog tailing and then we'll discuss how to use it
with MeteorJS applications.

To discuss oplog tailing, we have to know the MongoDB replica set. When running
applications in production, it is common to have more than one databases process
as a backup. One of them will be a primary process and the rest will be secondary
processes. Write happens to the primary process from the application and the data is
then copied to the secondary processes. How do secondary processes copy the data?
It doesn't simply copy the entire primary database on every interval. This is where
operation logs, called oplogs, come into the picture.

Whenever there is a change in the data, the operation log will keep track of it. The
secondary processes copy these operations and update themselves. This oplog can
serve as an important optimization factor for a MeteorJS application and thus we
need to have a replica set for MongoDB in production.

Creating a replica set
Let's see how to create a replica set for MongoDB. The following command will
create different MongoDB processes:

mongod --replSet <some-id> --port 27017 --dbpath <database/path>
 --fork --logpath <database/log/path>

mongod --replSet <some-id> --port 27016 --dbpath <database/path>
 --fork --logpath <database/log/path>

The <some-id> must be a unique string, which must be same for both the
commands. We also need this ID to create the replica set. Once these processes
are ready, we can create the replica set. Log in to the mongo shell of the one of the
above processes (whichever you want to keep as primary) and run the following
commands:

config = {_id: '<some-id>', members: [{_id: 0, host:
 'localhost:27017'}, {_id: 1, host: 'localhost:27016}]};
rs.initiate(config);

https://github.com/meteorhacks/cluster

Chapter 7

[205]

If everything is fine, the replica set will be initiated. It might take some time.
To check the status, we can use the rs.status() command in the shell. We can
change the primary and secondary configurations by the following code:

config.members[0].priority = 1
config.members[1].priority = 0.5
rs.reconfig(config)

The member with highest priority will be the primary database.

We need a separate user to read the oplogs. Get into the admin database of the
MongoDB process and add a user as follows:

 db.addUser({user:'oplogger',pwd:'YOUR_PASSWORD',roles:[],
 otherDBRoles:{local:["read"]}})

MongoDB maintains the local.oplog.rs collection to track all the changes.
We have created a user oplogger and given access to the user to read the oplog
collection. Now, our replica set is ready.

Accessing the oplog from an application
To expose oplogs to a MeteorJS application, we have to export an environment
variable as follows:

export MONGO_OPLOG_URL='mongodb://oplogger:
 YOUR_PASSWORD@localhost:27017,localhost:27016/
 local?authSource=admin'

Now, the MeteorJS application will listen to the oplogs and optimize the data diff
operation. If you are using upstart in production, add the necessary scripts to start
the replica set as well.

Third-party MeteorJS hosting solutions
So far, we have seen various solutions and options to set up our own infrastructure
for hosting a MeteorJS application. Now, we have a broad picture about what all
components are required to host a MeteorJS application. It is not always possible to
have a self-set infrastructure. Most of the developers try to get a hosting space from
some providers and then host the application. In the case of MeteorJS, we have to be
very specific and picky about the third-party hosting solutions for various reasons.

It is important to check whether the sticky session support is available. Many will
claim they do have, but later there won't be. Similarly, it is better to have WebSocket
support. Even if WebSocket support is not there, MeteorJS will fall back to SockJS.

Deploying and Scaling MeteorJS Applications

[206]

However, while choosing, choose the one with the support. It is good to host
MongoDB in one of the MongoDB hosting providers, if you are not an expert in it.
The MongoDB solutions out there have tested against the possible security issues,
and this will be safer for a production application. Unless you are a MongoDB expert
or you don't know everything about securing your database, prefer a provider.

Let's see a few popular hosting solutions available for hosting a MeteorJS application.

Meteor Galaxy
Meteor Galaxy is MeteorJS' official hosting platform. Galaxy hosts our application
in the Docker containers running on AWS EC2. If any container fails, Galaxy will
monitor and replace it with a functional container. There are many more advantages
of using Galaxy. One can get the real-time metrics of his/her application. There
is a dashboard that provides access to track the connected clients and monitor the
application. Galaxy coordinates with version updates and makes the transition
between versions smooth enough.

Another advantage is that we can just use the meteor deploy command itself
to host our application. To learn more about pricing and other support, visit
https://www.meteor.com/galaxy.

Modulus.io
Modulus.io is a hosting solution targeting mostly Node.js applications. They are the
ones that created demeteorizer build tool to make MeteorJS application work on
their platform. Modulus.io runs on AWS and thus it is pretty stable for production
apps. Modulus.io offers servos (VPS) with specific configurations that can be scaled
very easily. You can run your own MongoDB in the environment or opt out for
external MongoDB solutions as well. There is no explicit oplog support in Modulus.
io. We have to contact their team to get the support. Modulus.io supports the sticky
session, WebSockets, SSL endpoints, and obviously Node.js support; there are many
MeteorJS applications running in Modulus.io. There is also a free trial for the new
comers to give it a try. As a whole, it is a solution with some of the required stuffs
that are in place.

https://www.meteor.com/galaxy

Chapter 7

[207]

Digital Ocean
Digital Ocean (DO) is very popular among MeteorJS developers. Many like the
hosting solution because of the traditional approach. DO offers droplets (VPS) that
is a bare VPS where we can configure our application. DO has published many
articles about how to host MeteorJS applications in their servers. One such tutorial
is available at https://www.digitalocean.com/community/tutorials/how-to-
deploy-a-meteor-js-application-on-ubuntu-14-04-with-nginx, which is a
comprehensive article for deploying MeteorJS applications in Ubuntu 14.04. Mup
works with other platforms as well. However, it is very much compatible with DO.
Prizing is also fair. If you want to use Nginx for proxying and load balancing, then
DO is a good choice.

Database solutions
Compose is one of the widely used MongoDB solutions for MeteorJS applications.
They provide oplog support out of the box. We just have to create the database, add
a user, and copy both MongoDB URL and oplog URL to the application hosting
server. This will give access to the MongoDB. They maintain backups as well.
Compose.io offers a trial to try their solution.

MongoLab is another MongoDB solution available. There is a sandbox version with
0.5GB storage. You can use it to try the solution. They offer both dedicated and
shared hosting for MongoDB.

There are many other hosting solutions for MeteorJS. Heroku and Nodejitsu are
mentionable ones. Similarly, we can host MeteorJS applications in AWS and GCE
as well.

I hope the chapter provides a complete idea of deploying and scaling
MeteorJS applications.

https://www.digitalocean.com/community/tutorials/how-to-deploy-a-meteor-js-application-on-ubuntu-14-04-with-nginx
https://www.digitalocean.com/community/tutorials/how-to-deploy-a-meteor-js-application-on-ubuntu-14-04-with-nginx

Deploying and Scaling MeteorJS Applications

[208]

Summary
Will MeteorJS application scale? You know the answer. With the right tools and
techniques, obviously it will. Let us summarize all that we have learned so far in
this chapter.

To deploy a MeteorJS application, we have to build it using meteor bundle
or demeteorizer. An app must be bundled against a proper Node.js version
and platform.

MongoDB must be installed and the required environment variables must be set to
connect the MongoDB to a MeteorJS application.

Mup and MDM are noticeable deployment tools available to deploy a
MeteorJS application.

We can use Nginx and meteor cluster to load balance and scale
MeteorJS applications.

It is good to opt out external MongoDB solutions if we are skeptical about
MongoDB setup and security.

As a whole, definitely, a MeteorJS application can hit production without any blocks.

I hope you enjoyed the chapter. In the next chapter, we will learn to develop
applications for a mobile platform using MeteorJS.

[209]

Mobile Application
Development

Responsive Web Development (RWD) is a popular term in Web development.
Every newly created website out there now has an implicit requirement to be
responsive; responsive for the sake of being mobile-friendly. The traffic from mobile
platforms has increased drastically in the past five years and it is expected to grow
even more. There is a big shift in how the content is being delivered to the user. There
is a huge personalization need that has given birth to the contents being delivered via
mobile apps.

Every mobile development platform has plenty of apps in their app store. The
categories of apps range from entertainment through business to personal care and
what not. It has become very common to search for an interesting app in the app
store. The need to make life smarter has its face at every direction, which has resulted
in a rapid increase in mobile app development.

While native app development is consistently embraced, still there is a huge
community of developers who are going towards multiple mobile platforms
supported hybrid applications. Hybrid applications are the ones that are developed
in combination with native components using Web technologies and can be used
in most of the popular mobile platforms. Cordova, Sencha, Kendo UI, Ionic, React
Native, and NativeScript are some examples that either compile down to native code
or render inside a WebView in an application.

Hybrid applications those ones that have access to native controls, but run on a
WebView. Many prefer hybrid applications because they are one codebase that
serves multiple platforms. This means less to maintain, less to code, less resources,
and less time to develop.

Mobile Application Development

[210]

JavaScript being so popular is playing a key role in hybrid application development.
Now, we can proudly say that this misunderstood, underestimated language is truly
universal. MeteorJS had the idea of one codebase for multiple platforms and so it
supports mobile platforms as well. Currently, it supports only iOS and Android
and support for Windows is expected in the near future. Underneath, MeteorJS uses
Cordova/PhoneGap to build the application. In this chapter, we are going to learn
how to develop applications for mobile platforms using MeteorJS, as follows:

• Getting started
• Developing a simple mobile application
• Builds and deployment
• More about mobile app development using MeteorJS

Getting started
We have seen the fabulous work of MeteorJS in the browser front. Let's see how
it supports mobile platforms. The MeteorJS team has put a huge effort to support
mobile platforms with a single codebase. As we mentioned earlier, it uses Cordova
to create builds for mobile platforms. This enables us to use PhoneGap utilities in
our application. It is good to know about Cordova before getting into the crux of this
section.

Cordova, actually Apache Cordova, is a mobile development framework. With
Cordova, we can build mobile applications using HTML, CSS, and JavaScript. The
bigger advantage is, we don't have to write code targeting each mobile platform.
What does Cordova do to run the Web-related code in mobile devices? It provides
a container to run the HTML, CSS, and JavaScript code. The container also helps
you to access some of the native device functionalities such as GPS, accelerometer,
camera, and so on. Those who have worked with Web views in a mobile platform
will know exactly what Cordova does. Cordova hides the platform differences and
exposes the device functionality in a unified manner to the JavaScript environment.

MeteorJS uses Cordova to create builds, and then we have ways to test it in an
emulator or in devices. Let's see how to create an application and launch it in a
mobile device using MeteorJS.

Chapter 8

[211]

Create a MeteorJS application, say mobileMeteor. Add the targeting platforms to the
application. For example, we want both Android and iOS so we run the following
commands one after the other:

meteor add-platform android

meteor add-platform ios

We know that there is already a code for the counter example using session in the
application. Let's use the same to get started with the mobile app. To get started,
we have to do certain preparations. We can run the application both in a real device
and an emulator. In the case of iOS, we need Xcode to be installed. Agree to the
terms and conditions and install Xcode from the App store. If you really want to run
your application with Xcode on a real device, you need to have an Apple developer
account. In the case of Android, we need JDK and the Android SDK to be installed.
It is important to install the Android SDK that is supported by Cordova. It is good to
set the Android platform path in the environment path variable for Cordova to find
out if you are placing the Android SDK in a custom path.

Once the setup is ready, we can run the app on an emulator just by running the
meteor run ios command in the case of iOS, and meteor run android in the case
of Android. This will start the local server and then the application is opened in
the emulator. To open the application in the device, connect the device to the local
machine. Make sure both the device and machine are in the same local network.
Run the meteor run android-device command that will start the application in
the connected Android device. Similarly, running meteor run ios-device will
start the application in the connected iOS device. You will be able to see the same
boilerplate counter button example opening up in the mobile screen.

For Android, you have to enable the developer options in settings and then
reconnect to the local machine if you face the device not found kind of errors.

How simple it is to create a mobile application! Very impressive, isn't it? If we take
care of the responsiveness of the UI elements, with a single code, we can deploy an
application to Web and mobile platforms. Also, we know that MeteorJS provides
hot code push. This is applicable for mobile applications as well. Try to make some
HTML changes in the templates and you will find the change happening in the
application. We can push the updates constantly to our mobile application, like we
do for the Web applications.

Mobile Application Development

[212]

In the application, if we need to run any set of code specific to Cordova, we can run it
using the available flag as follows:

 if(Meteor.isCordova) {
 //Your stuff here
 }

We don't have the Cordova directory like the client or server directories that are
available only on respective environments. That's all about the basics. Now, let's
create a meaningful application to learn more.

Developing a simple mobile application
Let's create a simple mobile messenger application. The idea of the application is
to check the logged-in user's contacts list and then if anyone from those contacts
is using the application, it will show them in a list from where the user can start
messaging them in the application. The application will allow you to send one-to-one
messages to one of the user's contacts and, on the other end, the user can view it and
reply. This would be a good start as we will learn many important things to build
applications.

Let's break down the problem statement, which will be easy for us to build the
application:

1. We need to provide a login interface and while logging in, we must save the
necessary details, such as the phone number, to the server database.

2. After logging in, the user should see the contacts using this application,
which means we need access to the user's contacts. Once contacts are fetched,
we will check whether any of them are using the application by checking
against the database. We are not going to store the contacts in the database.

3. If there are matching contacts, the application should show those contacts
with their name and phone number.

4. On tapping one of the contacts in the list, we should take the user to the
message screen where the user can start typing messages and send them to
the other contact.

5. On the other end, the user should receive the message.

We know our goal and before we start, we have to name our application; let's keep it
TellMe. Create a MeteorJS application with the name TellMe and add Android and
iOS platforms to the application as we did in the previous section.

Chapter 8

[213]

The login interface
We will allow the user to sign up with an e-mail. To keep things light and simple,
we will start with a normal sign up provided by the accounts package. You can
add the sign up with a mobile number later as your homework. Add the accounts-
password and accounts-ui packages to the application. We need some serious
restructuring to separate the server code and client code. Create the lib, server,
and client directories in the application root directory. To clean up the existing
boilerplate code, let's remove both the .css and .js files and keep only the .html
file. Remove the hello template-related code from the HTML file including the
content inside the body tag.

We need routes to maintain the application state and navigation. We will tie our
layouts to routes so that we don't have to micro manage layout rendering. We are
going to use FlowRouter for routing and Blaze-Layout for layout management.
Add FlowRouter using the meteor add kadira:flow-router command and add
blaze-layout using the meteor add kadira:blaze-layout command.

In the lib directory, we will add router.js where we will keep all our routes. Let's
write our first route that will render the login layout and the login buttons inside the
layout. Add the following home route to router.js as follows:

FlowRouter.route('/', {
 action: function() {
 if(!Meteor.userId()) {
 BlazeLayout.render("loginLayout");
 Accounts._loginButtonsSession
 .set('dropdownVisible', true);
 } else {
 FlowRouter.go("/profile");
 }
 }
});

FlowRouter allows us to decouple routes from an application logic and keeps it to
be merely a router rather than being the application manager such as iron-router.
Here, in the route, we have specified that, when http://<domain.name>/ is hit,
the loginLayout template should be rendered. We have to create the loginLayout
template and this belongs to the client.

Mobile Application Development

[214]

Inside the client directory, create a directory with the name layouts to keep
all our layout-related files. In the layouts directory, create the loginLayout.html
file and add the following template code that includes the loginButtons template
helper as well:

<template name="loginLayout">
 <div class="loginContainer">
 {{> loginButtons}}
 </div>
</template>

When you use the {{> loginButtons}} helper to show the login form, you will
see the Sign In link with an arrow. We want to show the entire login or signup
form without the toggle. To show the form by default, we set the dropdownVisible
property in the router. If the user has logged in already, he or she will be redirected
to the profile route.

Now, visit the browser and you will see that the form shows up without the link.
We need to add some CSS to bring the form to the center. Create the stylesheets
directory inside client and add the login.css file into it. Add the following CSS to
bring the form to the center of the page:

/** reset **/
body {
 padding: 0;
 margin: 0;
 background: #f6f6f6;
 height: 100vh;
}
/** reset end **/
/** Login Section **/
.loginContainer {
 height: 100vh;
 display: flex;
 flex: 1;
 align-items: center;
 justify-content: center;
 flex-direction: column;
}
.loginContainer header {
 font-size: 2em;
 font-style: italic;
}
.loginContainer .login-close-text, .loginContainer .login-link-
 text {
 display: none;
}

Chapter 8

[215]

.loginContainer .accounts-dialog {
 display: block;
 margin: 0;
}
.loginContainer #login-dropdown-list {
 position: static;
}
.loginContainer .additional-link-container {
 display: inline-block;
 width: 49%;
 text-align: right;
}
.loginContainer .additional-link-container a {
 float: none !important;
}
.loginContainer #signup-link {
 text-align: left !important;
}
/** Login Section Ends **/

Visit the browser and you will see that the form is in the center of the viewport. We
are ready with the login interface.

We know that it will look pretty on the Web. How about in mobile devices? Stop the
application and run it on a mobile or emulator and see how it looks. The screenshot
of the application running in an iOS simulator is as follows:

Mobile Application Development

[216]

If you have observed, during the start of the application, there was a screen
with a black background and white stars shining over with a MeteorJS logo at
the bottom. This screen is the splash screen that usually is shown in mobile
applications during startup. Where did it come from? MeteorJS, when packages
our application for a mobile platform, places these images by default. Even in the
emulator or mobile phone, the application has got the default MeteorJS logo icon that
is packed during the build process.

What if we want to change them and keep a custom one? Who actually takes care of
placing the splash screen and the app icons? Cordova takes care of all these. If you
have done some examples with Cordova, you might have come across the config.
xml file where we can specify these details of the splash screen and app icons.
MeteorJS allows us to do the same via a JavaScript file. This file should be mobile-
config.js and must be placed at the root directory of the application. A sample
configuration is as follows:

App.info({
 id: 'com.meteor.mobile.myMessenger',
 name: 'myMessenger',
 description: 'Send message to your contacts',
 author: 'Meteor User',
 email: 'noreply@mymessenger.com',
 website: 'http://mymessenger.com'
});

App.icons({
 // iOS
 'iphone': 'resources/icons/icon-60x60.png',
 'iphone_2x': 'resources/icons/icon-60x60@2x.png',
 'iphone_3x': 'resources/icons/icon-60x60@3x.png',
 'ipad': 'resources/icons/icon-76x76.png',
 'ipad_2x': 'resources/icons/icon-76x76@2x.png',

 // Android
 'android_ldpi': 'resources/icons/icon-36x36.png',
 'android_mdpi': 'resources/icons/icon-48x48.png',
 'android_hdpi': 'resources/icons/icon-72x72.png',
 'android_xhdpi': 'resources/icons/icon-96x96.png'
});

Chapter 8

[217]

App.launchScreens({
 // iOS
 'iphone': 'resources/splash/splash-320x480.png',
 'iphone_2x': 'resources/splash/splash-320x480@2x.png',
 'iphone5': 'resources/splash/splash-320x568@2x.png',
 'iphone6': 'resources/splash/splash-375x667@2x.png',
 'iphone6p_portrait': 'resources/splash/splash-414x736@3x.png',
 'iphone6p_landscape': 'resources/splash/splash-736x414@3x.png',

 'ipad_portrait': 'resources/splash/splash-768x1024.png',
 'ipad_portrait_2x': 'resources/splash/splash-768x1024@2x.png',
 'ipad_landscape': 'resources/splash/splash-1024x768.png',
 'ipad_landscape_2x': 'resources/splash/splash-1024x768@2x.png',

 // Android
 'android_ldpi_portrait': 'resources/splash/splash-200x320.png',
 'android_ldpi_landscape': 'resources/splash/splash-320x200.png',
 'android_mdpi_portrait': 'resources/splash/splash-320x480.png',
 'android_mdpi_landscape': 'resources/splash/splash-480x320.png',
 'android_hdpi_portrait': 'resources/splash/splash-480x800.png',
 'android_hdpi_landscape': 'resources/splash/splash-800x480.png',
 'android_xhdpi_portrait': 'resources/splash/splash-
 720x1280.png',
 'android_xhdpi_landscape': 'resources/splash/splash-
 1280x720.png'
});

// Set PhoneGap/Cordova preferences
App.setPreference('BackgroundColor', '0xff0000ff');
App.setPreference('HideKeyboardFormAccessoryBar', true);
App.setPreference('Orientation', 'default');
App.setPreference('Orientation', 'all', 'ios');

This covers almost all possible sizes, resolutions, and orientations of mobile devices.
We know how to play with the splash screen and the app icon now. We can also add
Cordova/PhoneGap-specific preferences in this file.

In mobile devices, it is easy to gather a lot of information with or without users'
intervention. The e-mail, mobile number, contacts, call history, Wi-Fi information,
gallery photos, camera, or other media access are very common. Cordova facilitates
to get access to all this information.

Mobile Application Development

[218]

To interact with the native platform, we have to ask Cordova to provide access
to the required information. To talk to Cordova from MeteorJS, we have to write
the required feature access in the platform-specific language and expose it in
JavaScript. This is how, many native features are accessed from the JavaScript
environment. Most of the common use cases are written as plugins and are released
to be consumed from JavaScript. Visit http://cordova.apache.org/plugins to
search for your requirement. In the case of MeteorJS, we have to add the plugin as
a Cordova package to the application. We will see them in detail when we fetch the
contacts of the user.

The profile interface
Coming back to the application, we need to get the phone number of the user so
that we can rely on phone numbers to check against our user base. To get the phone
number, there are many ways to get it using Cordova plugins. However, they are not
reliable. If you are a native developer and know how to do that, write a plugin and
contribute it to the community. As far as this book is concerned, building a plugin is
out of its scope. So we will provide a simple interface where the user can fill in his
name and phone number by himself, which the application will store as the profile
information of the user.

Immediately after logging in, the user should be redirected to the profile screen.
Let's add a profile route and layout to render the profile completion section. Add the
following profile route to router.js:

FlowRouter.route("/profile", {
 action: function() {
 Accounts._loginButtonsSession.set('dropdownVisible', false);
 if(Meteor.userId()) {
 BlazeLayout.render("layout", {main: "profileForm"});
 } else {
 FlowRouter.go("/");
 }
 }
});

After logging in, we need some piece of code that can redirect to appropriate routes
as we cannot add that code in a router. Based on the value returned by Meteor.
user(), we will redirect the user to the root route or profile route. However, we
cannot access Meteor.user() in the route as per the FlowRouter design.

http://cordova.apache.org/plugins

Chapter 8

[219]

So, we are going to set a tracker on Meteor.user() and redirect to appropriate
routes as follows:

Tracker.autorun(function() {
 if(!Meteor.user()) {
 FlowRouter.go("/");
 } else {
 var user = Meteor.user();
 if (user && user.profile && user.profile.phone) {
 FlowRouter.go("/contacts");
 return false;
 }
 FlowRouter.go("/profile");
 }
});

After logging in, the user will be redirected to the profile route. If the profile is
completed, the user will be redirected to the contacts page.

In the profile route, we are going to render a layout called layout and there
is a dynamic template section called main, in which we are going to pass the
profileForm template. Create layout.html under the layouts directory and
add the following layout template code to it:

<template name="layout">
 <div class="profileContainer">
 <div class="header">
 <div class="logo">TellMe</div>
 {{> loginButtons}}
 </div>
 <div class="container well well-lg">
 {{> Template.dynamic template=main}}
 </div>
 </div>
</template>

The loginButtons helper is also placed in this layout to show the sign out button.
As discussed earlier, we have a dynamic template block as well.

Mobile Application Development

[220]

The layout is ready and redirections are in place. Now, we need to display the
interface for profile completion. Let us organize all profile completion-related code in
the profile directory under the client directory. Create the profile directory and
add the profileForm.html and profileForm.js files into the directory. Add the
following template and helper code to HTML and .js files, respectively:

<template name="profileForm">
 <form class="action">
 <div class="form-group">
 <label for="name">Name</label>
 <input type="text" class="form-control" id="name"
 placeholder="Name">
 </div>
 <div class="form-group">
 <label for="phone">Phone</label>
 <input type="text" class="form-control" id="phone"
 placeholder="Phone">
 </div>
 <button type="submit" class="btn btn-
 default">Submit</button>
 </form>
</template>

Template.profileForm.events({
 "submit form": function(e) {
 e.preventDefault();
 var name = e.target.querySelector("#name").value;
 var phone = e.target.querySelector("#phone").value;
 Meteor.call("updateProfile", name, phone, function(error,
 result) {
 if(!error) {FlowRouter.go("/contacts");}
 });
 }
});

Chapter 8

[221]

The profile form will look like the following image:

The template has a form and the helper collects the name and phone number from
the form on submission and sends it to the server in order to save it with the user
object. There is a server method call that we have to add. Create methods.js in the
server directory and add the following method to save the profile details:

Meteor.methods({
 updateProfile: function(name, phone) {

 Meteor.users.update({_id: Meteor.userId()}, {$set: {profile:
 {name: name, phone: phone}}});
 }
});

For the sake of simplicity, there is no validation added in the preceding code snippet.
However, in a real application, it is very much important to add a proper validation
before adding any value to the database. On success, the user will be redirected to
the contacts page and here is where the real work starts.

Mobile Application Development

[222]

The contacts interface
We need a route, a template, and template helpers to show the appropriate
contacts who are already using the application. Add the following contacts
route to router.js:

FlowRouter.route('/contacts', {
 action: function() {
 if(!Meteor.userId()) {
 FlowRouter.go("/");
 } else {
 Accounts._loginButtonsSession.set('dropdownVisible',
 false);
 BlazeLayout.render("layout", {main: "contacts"});
 }
 }
});

To keep contacts-related templates and helpers, let's create the contacts directory
under the client directory. Create the contacts.html and contactsHelper.js
files inside the contacts directory and add the following contacts template code to
the HTML file:

<template name="contacts">
 <div class="contacts">
 {{#if isLoading}}
 <div class="loading">Loading...</div>
 {{else}}
 {{#if isContactsAvailable}}
 <ul class="list">
 {{#each contacts}}

 <div>{{this.name}}</div>
 <div>{{this.phone}}</div>

 {{/each}}

 {{else}}
 <div class="text-center">No contact available</div>
 {{/if}}
 {{/if}}
 </div>
</template>

Chapter 8

[223]

Before showing this template, we have to read the device contacts, search them
against the application database, fetch all matching users, and finally show them in a
list. This is where Cordova plugins come into play. We are going to use the Cordova
contact fetching the cordova-plugin-contactsPhoneNumer plugin. Check the plugin
details at https://github.com/dbaq/cordova-plugin-contacts-phone-numbers.
git. How do we install this plugin into a MeteorJS application? It is pretty much like
adding a package. To install this plugin, we have to run the following command:

meteor add cordova:cordova-plugin-contactsPhoneNumer@ https://github.com/
dbaq/cordova-plugin-contacts-phone-numbers.git#6fa2e27afa3c54c18e88eb8ba0
649dd4e4200ce2

We have to prefix the plugin name with cordova:, followed by the name of the
plugin which is then followed by @ and either the version number (such as 1.1.0)
or Git URL of the plugin. If we are using Git URL, it is mandatory to mention the
hash of the commit we want to use. If we run the meteor list command, we should
be able to see the added Cordova plugin. To remove the plugin, run the application
with the meteor remove cordova:cordova-plugin-contactsPhoneNumer
command.

This way we can add any Cordova plugin to the MeteorJS application. Before adding,
check for the platforms the plugin supports. A few plugins are written targeting
only Android and not iOS or vice versa. So test the plugin before using it against all
the platforms in which you want your application to run. Assuming that you have
added the plugin to the application, we are going to write code to read the contacts
as exposed by the plugin. We are now going to do this in the contacts template's
onCreated callback. Add the following callback to the contactsHelper.js file:

Template.contacts.onCreated(function() {
 var _this = this;
 this.contacts = [];
 this.loadingContacts = new ReactiveVar(true);
 if (Meteor.isCordova) {
 navigator.contactsPhoneNumbers.list(function(contacts) {
 var contacts = _.filter(contacts, function(eachContact) {
 if (eachContact.phoneNumbers.length &&
 eachContact.phoneNumbers[0].type === "MOBILE") {
 eachContact.phone = eachContact.phoneNumbers[0].number;
 return true;
 }
 });
 Meteor.call("checkContacts", contacts, function(error,
 result) {

https://github.com/dbaq/cordova-plugin-contacts-phone-numbers.git
https://github.com/dbaq/cordova-plugin-contacts-phone-numbers.git

Mobile Application Development

[224]

 if(!error) {
 _this.contacts = result;
 }
 _this.loadingContacts.set(false);
 });
 }, function(error) {
 _this.loadingContacts.set(false);
 console.error(error);
 });
 } else {
 _this.loadingContacts.set(false);
 }
});

Let's take a look at the preceding code snippet in detail.

We have two variables, contacts and loadingContacts, at the template instance
level. We are going to use the contacts array to store the result contacts that we
get after matching the contacts that are read from the device against the database.
The loadingContacts flag is a reactive variable, which means we have to add the
reactive-var package to the application. Add it using the meteor add reactive-
var command. This flag is going to help us in the template to show the loading cue
while the app is doing the matching operation.

We are going to fetch the contacts only in devices; thus, we need to check whether
it is the Cordova environment to run the plugin exposed methods. That is why we
check Meteor.isCordova. In the else part, we set the loadingContacts flag to
false so that, if the user checks the contacts page in the desktop browsers, it will not
show the loading cue, instead it will show an empty list.

The plugin exposes the navigator.contactsPhoneNumbers.list method that takes
a success callback and a failure callback. Most of the plugins follow this pattern of
exposing methods that takes success and failure callbacks.

Every plugin author has their own way of exposing the interfaces to access the native
features. Some may attach the methods to the window object directly, some may
namespace it under window.plugins, and a few may add it to the navigator object.
It is important to watch the plugin documentation to learn how to access the feature
using the exposed interfaces.

Chapter 8

[225]

Coming back to the application, we will get the device contacts as the parameter
of the success callback. The contacts parameter will hold contacts as an array of
objects. The sample is as follows:

[{
 "id": "1",
 "firstName": "Kate",
 "lastName": "Bell",
 "displayName": "Kate Bell",
 "phoneNumbers": [{
 "number": "(555) 564-8583",
 "normalizedNumber": "(555) 564-8583",
 "type": "MOBILE"
 }, {
 "number": "(415) 555-3695",
 "normalizedNumber": "(415) 555-3695",
 "type": "OTHER"
 }]
}]

In the success callback, we just filter the contacts that have phoneNumbers and we
get only the number that is of the type mobile. We send those processed phone
numbers to the server for the matching operation. We have created a server method
checkContacts to perform the operation. The checkContacts method will look like the
following code:

 checkContacts: function(contacts) {
 contacts = contacts || [];
 if(contacts.length) {
 var numbers = _.map(contacts, function(eachContact) {
 return eachContact.phone;
 });
 return Meteor.users.find({"profile.phone": {$in:
 numbers}}).fetch().map(function(user) {
 return _.extend(user.profile, {_id: user._id});
 });
 } else {
 return [];
 }
 }

Mobile Application Development

[226]

Add this server method snippet to the methods.js file. In this method, we frame
a mongo query with the $in operator to check the phone numbers against the
profile.phone entry in the users collection. The matched documents are returned
with their _id, which we will use for navigation later.

In the template onCreated callback, while calling this server method with the
contacts fetched, it will return the matched contacts that we will assign to the this.
contacts array and this will be displayed in the template. Also, it is important
to change the loadingContacts flag to false in both the callbacks to remove the
loading cue. Let's add the template, template helpers, and events-related code.

The following code is for the contacts template that has to go in contacts.html:

<template name="contacts">
 <div class="contacts">
 {{#if isLoading}}
 <div class="loading">Loading...</div>
 {{else}}
 {{#if isContactsAvailable}}
 <ul class="list">
 {{#each contacts}}

 <div>{{this.name}}</div>
 <div>{{this.phone}}</div>

 {{/each}}

 {{else}}
 <div class="text-center">No contact available</div>
 {{/if}}
 {{/if}}
 </div>
</template>

Chapter 8

[227]

The contact list will look like the following image:

The following code is for the template helpers and events that has to be added in
contactsHelper.js:

Template.contacts.helpers({
 isLoading: function() {
 return Template.instance().loadingContacts.get();
 },
 isContactsAvailable: function() {
 return !!Template.instance().contacts.length;
 },
 contacts: function() {
 return Template.instance().contacts;
 }
});

Template.contacts.events({
 "click .list li": function(e) {
 FlowRouter.go("/messenger/"+this._id);
 }
});

Mobile Application Development

[228]

Again, go through all these individual pieces together, and it will make a lot
more sense.

To see the matching contacts, you need to run the app on a mobile device and
you should have created at least two users with the phone numbers from your
contacts so that the matching operation returns those two contacts. The above
events snippet clearly tells you that, by clicking on each of the contacts, we are
navigating to a new route.

When a contact is shown, it means that the contact is using this application. So we
can send a message via our application. To send a message, we need a separate
interface. Let us build that interface and add a route to reach that interface.

The messages interface
The first thing is to add a new route. We need a different layout for messages. We
will provide a screen that will show the name of the contact to whom the user is
going to send the message, a list of messages sent and received, and a text area where
the user can type the message. Users can reach the messages interface with the route
/messenger/:id.

Add the following route to router.js to handle the messages interface navigation:

FlowRouter.route("/messenger/:id", {
 action: function() {
 BlazeLayout.render("messengerLayout", {main: "messenger"});
 }
});

We need a different layout, so let's create messengerLayout.html in the layouts
directory. Add the following layout template to the HTML file:

<template name="messengerLayout">
 <div class="messengerContainer">
 {{> Template.dynamic template=main}}
 </div>
</template>

We will keep all message-related code inside a new directory called messenger.
Create the messenger directory under the client directory and add the messenger.
html and messengerHelper.js files. Add the following HTML to the messenger.
html file:

<template name="messenger">
 <div class="messenger-wrapper">

Chapter 8

[229]

 <div class="name text-center">{{name}}</div>

 {{#each messages}}
 <li class="{{mineClass}}">
 {{> message}}

 {{/each}}

 </div>
 <div class="type-area text-center">
 <textarea name="message" class="editor"
 id="message"></textarea>
 <button type="button" id="send" class="btn btn-
 primary">Send</button>
 </div>
</template>

<template name="message">
 <div class="senderName">{{senderName}}</div>
 <div class="message">
 <div class="message">{{content}}</div>
 <div>{{readableDate(created_at)}}</div>
 </div>
</template>

Add the following helpers to the messengerHelper.js file that reads the messages
and supplies the required variable to the template:

Template.messenger.helpers({
 messages: function() {
 var senderId = Meteor.userId(),
 rxrId = FlowRouter.getParam("id");
 return Messages.find({
 $or: [{
 $and: [{
 sender_id: Meteor.userId()
 }, {
 receiver_id: rxrId
 }]
 }, {
 $and: [{
 sender_id: rxrId
 }, {

Mobile Application Development

[230]

 receiver_id: Meteor.userId()
 }]
 }]
 });
 },
 mineClass: function() {
 return this.sender_id === Meteor.userId() ? 'mine' :
 'not-mine';
 },
 name: function() {
 return Meteor.users.findOne({_id:
 FlowRouter.getParam("id")}).profile.name;
 }
});

Template.messenger.events({
 "click #send": function(e) {
 e.target.setAttribute("disabled", true);
 var textarea = document.getElementById("message");
 Messages.insert({
 content: textarea.value,
 sender_id: Meteor.userId(),
 receiver_id: FlowRouter.getParam("id"),
 created_at: Date.now(),
 senderName: Meteor.user().profile.name
 }, function(error, result) {
 if(!error) {
 textarea.value = "";
 e.target.removeAttribite("disabled");
 }
 });
 }
});
var months = ["Jan", "Feb", "March", "April", "May", "June",
 "July", "August", "September", "October", "November",
 "December"]
Template.message.helpers({
 readableDate: function() {
 var date = new Date(this.created_at);
 return date.getDate()+", "+months[date.getMonth()].substr(0,
 3);
 }
});

Here is where we need a collection to store all the messages. So let's create the
Messages collection. Add the collections.js file to the lib directory and add the
following collection instantiation code:

Messages = new Mongo.Collection("messages");

Chapter 8

[231]

Whenever the user types a message in the text area and presses the send button, the
message will be inserted in the Messages collection and, thus, via DDP, it will be sent
to the other client. The beauty is we don't need to use any real-time message delivery
vendors to implement an instant messaging application. MeteorJS explicitly provides
the required tools right in place.

If you now run the application in a device, you will see a broken page. Add
the stylesheet of styles.css from the project folder in the Packt library to the
application and then the messages screen will look like the following screenshot:

Mobile Application Development

[232]

Now, you can improve the application in many ways. You can prompt the user to
take a selfie for the display picture. You can add push notification support to the
application. You can have an option to create group messages. It is all left to your
imagination and practice.

Builds and deploying
We need to create a build to deploy our application. From the previous chapter,
we have learned that MeteorJS has a build creation tool that can build a single
source into builds for both Web and mobile platforms. We have to use the following
command to create a build:

meteor build <path>

After creating the build, we can find the Android build under the <path>/android
directory and, similarly, the iOS build under the <path>/ios directory. While
running the build process for a mobile, we need to specify the server details to which
the mobile application is going to connect. For example, if we want the TellMe
application to work on a mobile, while running the build process, we have to run the
following command:

meteor build <path> --server https://tellme.com:8080

Once we get the builds, we can distribute it to Play Store or App Store.

Hot code push
We know that MeteorJS does hot code push to the clients. This is a big advantage for
mobile apps. For native mobile applications, it takes time to get the build to the user.
Some users will update and some will not. However, in the case of MeteorJS, the
applications can be updated without releasing builds. Whenever there is a change
in the code, the changed build is downloaded at the mobile device end and once the
download completes, the application is updated immediately. This update can be
handled from the mobile end by showing some UI cues to reload the application.

More about the mobile app development
There are many things other than writing an application logic, which we have to
know while developing mobile apps with MeteorJS. Let's see what are they.

Chapter 8

[233]

Accessing plugin methods
To access the plugin methods, we should wait until the application starts. It is good
to write the plugin accessing code inside the Meteor.startup callback. However,
this is not mandatory. If you know for sure that you are going to access the plugin
methods only after the startup, then you need not write them under the startup
callback. In the preceding application that we developed, we called the navigator.
contacts.list method in the template's onCreated callback because we knew
that the application would have been started by the time, the execution reaches the
onCreated callback.

Debugging
Knowing how to debug an application is very important for developers. While
developing hybrid applications for a mobile, it is a little hard to debug. This doesn't
mean we can't debug. Moreover, we are not going to debug the native bridge of
Cordova, but only the HTML, CSS, and JavaScript part.

Debugging Android
For Android, Chrome DevTools can help us debug the mobile application. Connect
the mobile device to a system that has Chrome and then visit chrome://inspect in
the browser. This will show the list of devices connected to the machine as shown in
the following screenshot:

Mobile Application Development

[234]

It is important to enable the debugging option on the mobile device. You can learn
about enabling the debugging option from the developer tool's documentation link
(https://developer.chrome.com/devtools/docs/remote-debugging). Once
enabled, the device will be visible in the list of devices connected and also it will
show the Web views under the device. There will be an inspect link below each Web
view as seen in the preceding screenshot. Click on the web view that you want to
inspect and the Chrome DevTools will show the HTML, CSS, and JavaScript content
of the web view. We can debug as we usually do in Chrome DevTools. This is the
best way to debug the JavaScript content of hybrid applications.

Debugging iOS
For iOS, we can use the Safari browser instead of Chrome. Once connected with
the device, open the Safari browser and find the Develop menu item in the browser
menu. Open this and you will find the Simulator sub-menu in the case of a simulator
or iPhone, if you are running the application on a real device. Click on that and
another set of menus will open that will show your application server, which in the
case of local will be meteor.local. Click on that and you will see the Web inspector
of Safari opening the web view with all the HTML, CSS, and JavaScript content.
Then, we can add breakpoints and debug the code. The following screenshot will
show you the menu that will bring the Web inspector tool:

Testing
The testing packages added to the application against each device platform that
we are going to support are very important. We have learned about tiny tests that
MeteorJS uses to test the packages. We can use the same test runner to test the mobile
packages as well. The following is the command to test packages:

meteor test-packages [--ios] [--android] [--ios-device] [--android-
device]

https://developer.chrome.com/devtools/docs/remote-debugging

Chapter 8

[235]

We can specify which platform to run the tests on; either on emulators or in real
devices by passing arguments to the command.

Packages
If you visit https://atmospherejs.com/ and search for mobile packages, you will
find many useful packages that can provide a range of support for the applications.
Community contributors have written a number of packages to make development
smooth and easy. Some remarkable ones are mobile-experience, mdg:camera,
fastclick, and mdg:geolocation. Because it is HTML and CSS, we can use Twitter
Bootstrap for styles. We have already seen how to use Cordova or PhoneGap plugins
with MeteorJS.

One of the problems faced by hybrid mobile applications is connectivity. If there is
no connectivity, the user cannot use the application. To avoid this, use the device
database to store the data and access it as offline storage to support the application
while offline. This will enhance the user experience. There are good plugins that
allow us to access the database from the Web view.

The package development
We have learned how to develop packages for MeteorJS. If you want to develop
packages that can also support mobile devices, it is are easy to develop. Whatever we
learned about package development in Chapter 3, Developing Reusable Packages still
applies here. We should know only two more things.

If our package is going to depend on other Cordova plugins, we have to
mention it. For example, if we want to create a MeteorJS package for the
contactsPhoneNumber Cordova plugin that we used earlier, then we have
to specify that in package.js as follows:

Cordova.depends({
 "cordova-plugin-contactsPhoneNumer":
 "https://github.com/dbaq/cordova-plugin-contacts-phone-
 numbers.git#6fa2e27afa3c54c18e88eb8ba0649dd4e4200ce2"
});

While creating a package, we saw that we have to specify the files that our package
is going to use by using the api.addFiles method in package.js. Also, we can
specify which file to use in which environment:

api.addFiles('contactsPhoneNumber.js', 'web');

https://atmospherejs.com/

Mobile Application Development

[236]

The preceding code adds the contactsPhoneNumber.js file to all the clients. What if
we want to add it only to mobile builds? We can do this by passing web.cordova as
the second parameter instead of just web. This will tell the build tool to add this file
only for mobile client builds.

This is all you need to know to build a package in order to support mobile
applications in MeteorJS.

We have learned most of what we are required to know about mobile applications
development using MeteorJS. I hope that the chapter has helped you to get started
on mobile application development.

Summary
Let us summarize the things that we have learned in this chapter. MeteorJS provides
support to develop applications for the Web, Android, and iOS. A single source
can be built to serve both the Web and mobile platforms. MeteorJS uses Cordova to
create mobile builds(.apk or .ipa). MeteorJS allows us to use Cordova plugins like
the usual MeteorJS package. We can test run an application both in the emulator or
real devices, and MeteorJS provides enough support to run an application with ease.
We can debug applications using browsers. Finally, we have plenty of packages in
the MeteorJS ecosystem to support mobile application development.

I hope you find the chapter informative and helpful. In the upcoming chapter, we are
going to learn whatever is left to know about MeteorJS application development.

[237]

Best Practices, Patterns,
and SEO

After all the learning so far, we know that MeteorJS is an excellent framework
for building Web and Web-based applications. With the instant data sharing and
reactive UI mechanisms, it is a best choice for applications to involve in intensive
real-time data sharing. We developed a range of such dynamic applications, in the
previous chapters, that need real-time data sharing across clients.

We have learned to develop applications using MeteorJS for both Web and mobile.
We have also learned many internal concepts of MeteorJS, which every developer
must know to develop applications. We have seen how MeteorJS builds applications
for different platforms and how to deploy them for production. This is pretty much
everything we need to know to decide and adopt MeteorJS for development.

Is that all? MeteorJS is young. There is still a long way to go. Being a Node.js-based
framework, some patterns used in Node.js applications can be used in MeteorJS also.
However, MeteorJS holds some of the advanced building blocks that need some
specialized thinking. How to manage subscriptions effectively and optimize them?
There are quite a few things that are specific to MeteorJS and need deep thinking to
yield manageable results.

This chapter is meant to learn those techniques, methods, patterns, and safety
measure that are not covered in the previous chapters. What is the best way to
manage subscription? What MeteorJS offers to support SEO? What patterns should
we follow for application development? What are some of the best and important
practices we have to follow while development? Many such questions will
be answered.

Best Practices, Patterns, and SEO

[238]

A few of the best practices might be repeated, still, it is good to summarize them to
emphasize their importance. With MeteorJS version 1.2, there are big new things
added to MeteorJS. Finally, it is important to know where to look for help, who is
contributing, and whom to follow, in order to learn more stuff about MeteorJS.

More precisely, the following are the items we are going to focus on in this chapter:

• Summarizing the concepts
• Best practices and application patterns
• SEO
• Meeting the community

Summarizing the concepts
This section is just a recap of the important concepts and building blocks of MeteorJS.
You are free to skip this section if you are familiar with all these items that are given
in the following sections.

To start with, maybe you should look again at the principles of MeteorJS at
http://docs.meteor.com/#/full/sevenprinciples. Based on these principles,
MeteorJS employs certain libraries, protocols, concepts, algorithms, and tools to
bring to you the awesome framework. Let's look at them.

Publishing/subscribing
The idea of publishing and subscribing is a significant concept to understand how to
develop a typical MeteorJS application. It deceives to be as simple as it reads, but it is
one of the toughest concepts of MeteorJS that many don't get right at the first glance.

We have seen and have extensively used publishing/subscribing in our applications
in the previous chapters. We can publish a query to the clients from the server.
The publication can be subscribed from the client. What is so complex in that?
Complexity arises when we break down the data to be published in chucks, also
known as pagination. It is an interesting problem that can help us understand
how exactly publishing and subscription works. Publishing/subscribing involves
Distributed Data Protocol (DDP), MiniMongo, MergeBox, and Trackers.

http://docs.meteor.com/#/full/sevenprinciples

Chapter 9

[239]

At the server, we publish a specific set of data. What if that specific set changes
because of an insertion or updation from some other client? The publication sends
the new data to the necessary clients. This new data is figured out by a process called
MergeBox. This new data is sent to the client via DDP. The client receives it and
puts it into MiniMongo, and then tracker invalidates all the templates and tracker
registered functions. This will make these templates and functions to rerun.

If we subscribe data in chunks, then at a particular instance, the client holds
only limited data. When we perform sorting or aggregation, we don't do it on
the whole database, but only on the documents available in the client. Always
keep this in mind.

Subscriptions are costly. A server maintains a copy of the subscribed data in its
primary memory to serve the changes to the client instantly. So use it wisely and
don't forget to kill the ones that are not in use, and don't kill those that we need
across the application.

DDP
DDP is a cool socket-based data transferring protocol. MeteorJS chose this protocol
as its default way of communication over HTTP because of the latency. DDP can be
implemented using WebSockets or long polling techniques. MeteorJS uses Socket.io
for implementing DDP.

MergeBox
It is an intelligent algorithm that can find the difference between the existing and
the new data and decide what to send to the client when new data arrives at the
database. However, it has a limitation. It works only on top-level fields. For example,
you have a document that has a nested structure as follows:

{
 name: {
 first: "Paulo",
 last: "Cohelo"
 }
}

When there is change in the first property that is at the second level, MergeBox will
send the complete name property to the client. Note this limitation in mind that while
designing the database document structure.

Best Practices, Patterns, and SEO

[240]

MiniMongo
This is a kind of NoSQL Web SQL. It is an implementation of almost the
MongoDB itself in the client. Note that it is almost the same but not the same.
MeteorJS has it this way so that querying will be uniform both in the server and the
client. When a subscription starts, MeteorJS will create a similar collection with the
same document structure in MiniMongo. However, only the subscribed data will be
there in MiniMongo.

Data retrieval from Mongo
Whenever there is a change in the data in the database, the server runs the MergeBox
process and finds the diff and sends that over the wire to the clients. As the database
grows, the complexity of the diffing process increases. To optimize this, MeteorJS
tries to read oplog of Mongo, if provided with the access. If you are in production,
it is a must to enable oplog tailing and to provide access to MeteorJS to read it.

Session
Session is a reactive data source that can hold data even after application refresh.
Session is an extension of the reactive-dict and local storage persistence. You can
set any EJSON-able/undefined values to session.

Sticky session
Don't get confused with the session mentioned in the preceding section; sticky
session is something to be worried about while deploying your application to the
server. It is nothing but, whenever requests come from a particular client, all the
requests should be directed to one and the same server. So the case arises when you
have a load balancer or a proxy in front of your servers. It is a must to enable sticky
session when you have multiple servers involved. Make sure your hosting vendors
provide sticky session support before you make the hosting decision.

Fibers
Fibers is the main underlying differentiator in terms of MeteorJS usage of Node.js.
MeteorJS extensively uses fibers for its internal work. Why fibers? Fibers allows you
to intercept your operation anytime and allows other operations to use the CPU.
Greater control of execution may be the reason of choice. Fibers is very interesting
topic that can keep you busy for a while. It will fascinate you. You can get to know
more about it at https://github.com/laverdet/node-fibers.

https://github.com/laverdet/node-fibers

Chapter 9

[241]

Trackers
Trackers is a simple but very powerful library to rerun some code when there is
a change in the related data. MeteorJS uses it in all of its reactive data sources
and templates.

Blaze
The view layer of MeteorJS is Blaze, which is available in the client-side. Blaze is
bound with trackers and it provides us the ability to create ultra simple, highly
reactive interfaces. Blaze is equivalent to Angular.js, React.js, and so on. With Meteor
1.2, we can use Angular.js and React.js in Meteor.js applications. However, Blaze will
still be there in the application even if you don't use it. There is a plan to externalize
Blaze so that the user can choose which UI framework to keep in the application.

Packages
Packages is pretty much everything in MeteorJS. MeteorJS, as a framework, is
built using a set of packages. Meteor, Trackers, Mongo, WebApp, underscore,
reactive-var, MiniMongo, DDP, Tinytest, and accounts are some of the packages
that MeteorJS relies on very much. MeteorJS also provides us the ability to create
and use custom packages. Apart from this, we can include NPM packages to in
application and Cordova plugins in the case of mobile development.

Build tools
MeteorJS has state-of-the-art build tools. The build tool can create build for both
mobile and Web platforms. It compiles the HTML code to JavaScript code, transpiles
ES2015 code using Babel (of Meteor 1.2), combines packages to individual files,
creates HTML documents for Web apps, bundles mobile-related code with the build
in the case of a mobile, and so on.

These basic blocks together make the mighty MeteorJS framework. MeteorJS as
a command-line tool is different; it allows us to work on a terminal to support
developing MeteorJS applications.

Keep all these basic blocks in mind so that you can visualize the complete flow
of information in your application, which will help you develop and debug
applications faster.

Best Practices, Patterns, and SEO

[242]

Best practices
We will discuss or summarize the important practices that we have to follow while
developing a serious MeteorJS application. The following are some of the best
practices and important to-dos for every MeteorJS application:

• Securing database operations
• Database indexing
• oplog support
• Error handling
• Testing
• Managing subscriptions
• Subscribing only the needed data
• Application directory structure
• Serving static assets
• Application namespacing
• Transformation classes
• Identifying scalability issues using Kadira

Securing database operations
It is needless to say how important it is to verify every piece of data before inserting
or updating it in the database. From the beginning, it has been said, don't believe the
inputs from the users. We have heard about SQL injection, XSS injections, and many
more such kinds of attacks that succeed due to not verifying the data against the
necessary validation logic.

Whenever there is access to a database-related operation without any abstraction
layer, the developers must be very cautious about the data. It is better to write the
database operation code, as if it is defensive to malicious inputs. In the case of SQL,
rather than writing raw queries and executing them, it is good to use prepared
statements, which will save us, at least from the basic SQL injections. MongoDB
doesn't have prepared statements. We always tend to frame a query and pass it to
the operation methods (find, update, and remove).

Chapter 9

[243]

Attackers can try to attack for various purposes. One would be to pull some valuable
private information; another would be to slow down the application by keeping
the server busy in junk operations; another would be to break down the application
itself. NoSQL databases are more vulnerable to perform all these kinds of attacks.

Before performing any database operation, it is important to check whether the
person is authorized to do the operation. User A should not be allowed to update
user B's profile. As developers, we must think twice before exposing the Users
collection to the real world. The Users collection has the e-mail, password, and
profile details, so the update or find operation on these data should be wrapped
with role-based access.

Let's look at an example here about how to handle the Users collection and what
could possibly go wrong. Usually, when we want to update a user document from
the application, we expose server methods that will be called from clients with a
payload. Then in the server, inside the method, we interpret the payload and frame a
query and perform the database operation. Well, this is all good.

For example, our application allows access to view other users' profile, which is
common today. Anyone who knows how to watch the data in the network console of
a browser can easily make out the user ID of other users. From the client source code,
if an attacker finds the server method that updates the Users collection document,
it will be easy for him to make a server call with a custom payload targeting update
operation on other users' database documents:

Meteor.methods({
 updateUser: function(id, profile) {
 Meteor.users.update({_id: id}, {$set: {profile: profile});
 }
});

The preceding code snippet explains how one can easily update any other user's
profile if only the _id value is known. We can make sure that the user is updating
only his own profile by mentioning the query in the update method to be {_id:
Meteor.userId()}. This will work well.

Best Practices, Patterns, and SEO

[244]

However, if you really want to get the user ID as a parameter, an even more elegant
way would be to check whether the ID is equal to the intended ID before doing the
operation; something like the code snippet as follows:

updateUser: function(id, profile) {
 if(id !== Meteor.userId()) {
 throw new Meteor.Error('Unauthorized');
 }
 Meteor.users.update({_id: id}, {$set: {profile: profile});
 }

This case applies for any other entity of database collection that involves _id.

Do you find anything else suspicious in this code? Updating the profile object as
given in this code is risky, isn't it? It is not good to give the users the control of
updating the entire object. What might go wrong here? What if an attacker calls the
method with a proper user ID, but with a profile object that has volumes of junk
data. The attacker can send any payload with the profile object. What if he tries to
send 25 MB of junk string with the profile object? It won't harm the other users, but
will eat the memory of the system for no good reason. To avoid this, create a new
object and copy only those properties that must be stored before insertion.

The next thing to take care of is, special characters. Having certain special characters
in MongoDB queries can break the operation. Characters such as curly braces, back
slashes, and semi-colons can create a mess in our queries. So, before storing the
inputs, sanitize them using URL encoding. It would be good to check for types, if
required. MeteorJS provides the required validation methods to perform various
checks over data using the check function and the Match patterns:

 check(value, pattern)
 check(data, String)
 check(office, {building: String, room: Number})

The check function offered by the framework enables us to do a broad validation
over the data. Also, we can define match patterns and test them using the Match.
test method. You can learn more about these validation functions and methods in
the following MeteorJS docs links:

• http://docs.meteor.com/#/full/check

• http://docs.meteor.com/#/full/matchpatterns

In addition to these, if we are using packages such as collection2, which helps
us to define the input type and validation logics, the database operations will be
more secured.

http://docs.meteor.com/#/full/check
http://docs.meteor.com/#/full/matchpatterns

Chapter 9

[245]

Another notable query, where many make a mistake, is the $where clause. Never
ever pass in the argument as the $where clause without checking whether it is the
intended one. The following is a server method that returns the product's documents
based on the query passed in the parameter:

Meteor.methods({
 findProducts: function(query, fields) {
 return Products.find({$where: query}, fields);
 }
});

Here, we can expect two common attacks. One is, an attacker can pull all the
documents from the database even if they don't want to, by just passing the query as
1 == 1. An other attack is to get all the fields of the document. If the fields parameter
has a value to be an empty object, without filtering, an attacker can get all the fields
of the document. What if the attacker gets such a method on user collections? Think
about the consequence. It can give him access to the hash tokens, password strings,
e-mail IDs, and profile details. It is very much necessary to verify the query before
using it in conjunction with the $where clause.

Mongo queries allow the functions to be executed against documents. So beware not
to create any such database operation methods that take a function as an argument
to be passed in the query. Another usual attack that is followed in MongoDB is
injecting script that keeps the CPU load at 100 percent, thereby making the server
process slow. The following query runs a function that takes userInput as one of
its operands:

db.myCollection.find({ active: true, $where: function() { return
 obj.credits - obj.debits < userInput; } });

If anyone can supply userInput as the 0;var date=new Date(); do{curDate =
new Date();}while(curDate-date<10000) value, then the query becomes the
statement as follows:

db.myCollection.find({ active: true, $where: function() { return
 obj.credits - obj.debits < 0;var date=new Date(); do{curDate =
 new Date();}while(curDate-date<10000); } });

This query will keep the CPU load at 100 percent for 10 seconds. What if the time
given is higher? The consequences can be worse.

These are a few common ways to exploit the database. It is better to prevent than
to suffer. So think of every possible ways to secure the application database from
malicious inputs. Precisely, use defensive coding techniques.

Best Practices, Patterns, and SEO

[246]

Database indexing
Indexing database is not something specific to MeteorJS. It is a general thing we
do when we create production applications. Indexes help search to be efficient and
fast. MeteorJS doesn't explicitly support to create indexes. However, we can create
indexes directly in the database. To learn more about indexes in MongoDB, visit the
MongoDB documentation at https://docs.mongodb.org/manual/core/indexes-
introduction/#index-introduction.

If you are familiar with MongoDB indexes, then you might know that MongoDB
provides various index types. Choose the one that suits your needs. MeteorJS
provides unofficial support to create an index with the _ensureIndex method that
can be called on collection instances. Watch the underscore prefix in the method,
which means that we have to use it at our own risk. Also, _ensureIndex can bring
downtime to your application because it is a database blocking operation. It is better
to do the indexing from MongoDB console.

Let's look at how to check whether the database documents are indexed. MongoDB
allows us to see them using the .explain method. We can use them as follows:

db.users.find({}, {"profile.name": 1}).explain();

The preceding query will result back with a BasicCursor. If we have indexed the
collections, the explain method will result in BtreeCursor.

MeteorJS concentrates highly on the application logic development.
So, as developers, it is our role to take care of indexing the database for
better performance.

oplog tailing
In the previous chapter, we learned how MeteorJS serves data to the client from the
server. It makes a difference of the necessary data and then sends only the difference
to the client. However, this will be inefficient in the case of large databases. To
overcome this problem, if given the access to oplog of the database, MeteorJS can
perform the difference calculation very efficiently.

As developers, when moving an application to production, it is important to have
oplog tailing support as an important item in the check list. Also, it is required
to choose a database vendor who can give oplogs access. If you have an in-house
MongoDB setup, then make sure you create the master-slave backup system to
ensure oplog is maintained and can be accessed by MeteorJS. We learned about
setting up oplog tailing in Chapter 7, Deploying and Scaling MeteorJS Applications.

https://docs.mongodb.org/manual/core/indexes-introduction/#index-introduction
https://docs.mongodb.org/manual/core/indexes-introduction/#index-introduction

Chapter 9

[247]

Error handling
In programming, error handling is as equally important as writing application logic.
When developing MeteorJS applications, we have to extensively handle the errors.
To start with, we have to handle 404 pages. Wrong routes, invalid inputs, network
connectivity issues, authorization violations, authentication failures, and so on, are
major problems we encounter on a day-to-day basis. As a responsible developer,
we have to spend time in properly handling all the earlier mentioned criteria.

MeteorJS provides an error class to define and throw exceptions using the Meteor.
Error class. The syntax and an example is as follows:

new Meteor.Error(error, [reason], [details])

An example of throwing excepting when the user is trying to post a comment
without logging in into the application, is as follows:

 throw new Meteor.Error("logged-out",
 "The user must be logged in to post a comment.");

According to MeteorJS documentation, the only way of communicating errors from
the server to the client is via Meteor.Error. If we throw any other error, the client
will receive it as 500 error. From a server method, if we intend to throw an exception,
then we must use the Meteor.Error class so that the exception can be transferred
to the client on the wire properly. Read more about exception handling at http://
docs.meteor.com/#/full/meteor_error.

Testing
Testing our application ensures stability. There are varieties of testing possible,
but as a developer, unit tests are the ones we usually care about. We have already
learned in Chapter 2, Developing and Testing an Advanced Application about writing
tests using Tinytest and Jasmine. Apart from unit tests, we can write behavior tests
or automations using Robot Framework or Cucumber. Velocity is the official test
runner for MeteorJS, which can run multiple tests. Make use of velocity and write
stable applications.

Managing subscriptions
We learned many things about subscriptions in the previous chapters. Subscriptions
are asynchronous. Every time we call Meteor.subscribe, the server creates a cache
to keep track of subscribed data. This keeps the server RAM quite busy. For this very
reason, we have to stop the subscription once we are done with it. The subscription
handle has the .stop method with which we can stop the subscription.

http://docs.meteor.com/#/full/meteor_error
http://docs.meteor.com/#/full/meteor_error

Best Practices, Patterns, and SEO

[248]

Being costly in terms of memory, it is wise to maintain subscriptions as efficiently as
possible. Immediately terminate those subscriptions that are not needed anymore
and keep those that are required across the page without resubscribing them on
every navigation.

Let's look at a common case where developers usually get things wrong. When
we are implementing a search, we allow the user to type the query string and then
subscribe with the new query every time:

 if(query) {
 Meteor.subscribe("searchQuery", query);
 }

We tend to invoke this subscription whenever there is a change in the query. For
example, the user has searched for subscriptions in the first query. This would
have created a new subscription. The next time when he searches publishing, again
the same preceding code will be invoked and a new subscription will be called.
However, what about the previous one? Don't you think it stays there forever? Won't
that add additional cache to the server RAM? As the number of searches increases,
the application will become slow.

Every time we do such recurrent subscription, it is required to stop the previous
subscription using the stop method. Inside a Tracker computation, subscriptions
are managed this way. It is better to make the query a reactive variable and put it
on the tracker.

In the same line, there is a popular subscription pattern called template-level
subscriptions. Subscriptions are created within template callbacks and are destroyed
when the template is destroyed. There is no need to destroy subscriptions explicitly.
On the template instance, we can call the subscribe method and also wait until all
the subscriptions that are attached to a template are ready. MeteorJS provides the
Template.subscriptionsReady flag. If a template and subscription has a direct
relation, better write it at the template level.

Publish/subscribe only the necessary data
We have discussed about publishing and subscribing only the necessary data,
quite a few times in some of the previous chapters. To reminds ourselves, let's see
how to subscribe only what is necessary in a subscription. Whenever we define a
publication, it is the best practice to send what has to be sent to the client. Instead of
sending the complete document of the collection, send only the necessary fields of
the document.

Chapter 9

[249]

We have Web sockets for data transfer. So why is it so important to filter the
necessary fields in publication? Remember that memory issue in the previous
section? Every subscription creates a cache in a server's primary memory. If the
document size is huge, it is going occupy a certain amount space and it may end up
with a serious bottleneck.

Another reason is, why to load the client memory with data that is not necessary for
the client? Browsers can hold only a certain amount of data in their memory. Once
the limit is reached, the browser will crash. So we have to wisely handle the volume
of data that MiniMongo will hold.

Whenever we create a cursor, add a list of fields to filter the query, as much as
possible, such as the following query:

Meteor.publish('projects', function(type) {
 return MyCollection.find(type, {fields: {
 type: 1,
 content: 1
 }});
});

Application directory structure
There is no hard, defined rule for a directory structure in MeteorJS applications. It
is the developers' choice to create the structure to suffice his/her need. It is good
to keep in mind how MeteorJS loads the files. We already know that, if there is
a server directory, the files inside this directory will be loaded only in the server
environment. Similarly, the files inside the client directory will be loaded only in
the client environment. A public directory is used for static content and a private
directory is used for serving assets to the server. Other than these directories,
everything else will be loaded both in the client and server environment.

In the client environment, view the page source of a sample application and you
will come to know that the packages are the ones loaded first. Then, the templates
are loaded followed by the files, if any, in the lib directory. Finally, all the other
files are loaded. If the order of loading matters the most, then it is better to write the
application as a set of packages. This is because we can define the order of loading
files, only in packages.

Best Practices, Patterns, and SEO

[250]

In general, directory separation increases developers' ability to understand code.
Writing all collection instantiation inside the collection directory will make it easy
for anyone to check for collection instantiation code there. Code sharing between the
client and the server is easy in MeteorJS applications. If we want some collections to
be specific to a client only, a few to be specific to a server only, and a few others to be
available on both environments, then create multiple collection directories under the
client, server, and lib directories and write the code. Routes can also be handled in
the same way.

The public directory in MeteorJS is used for static file serving. We will learn about
the public directory in the following section. A directory with the name private,
will be available only in the server environment. The private directory is also a kind
of public directory, but only for a server. We can use it to serve assets to the server
such as a configuration JSON file or a country code list JSON file, and so on. They
can be accessed using the Assets API.

To learn more about the file structure in detail, visit MeteorJS
documentation at https://docs.meteor.com/#/
basic/filestructure.

Serving static assets
Many developers use the public directory to serve static content, which is the
sole purpose of the public directory in MeteorJS applications. While serving static
content, we have to think about the underlying truth. A MeteorJS application is
ultimately a Node.js application. It has been proven a number of times that Node.js
is not good at serving static content. Why is Node.js not performing well at serving
static content? The answer to this question is out of the scope of this book. However,
Googling a little bit will help you get the answer.

To solve the problem, we have to use a proxy or CDNs to serve the static
content. We have already seen in Chapter 7, Deploying and Scaling MeteorJS
Applications how to configure Nginx as proxy. Nginx is good at serving static
files too. So, if we add the following configuration to Nginx, static files will be
served by Nginx and not MeteorJS:

serve static files by nginx instead of Meteor (the public/
 folder)
location ~ \.(jpg|jpeg|png|gif|mp3|ico|pdf) {
 root /opt/meteor/app/programs/web.browser/app; # this should
 point at the content from the public folder

https://docs.meteor.com/#/basic/filestructure
https://docs.meteor.com/#/basic/filestructure

Chapter 9

[251]

 access_log off;
 expires 30d;
 add_header Pragma public;
 add_header Cache-Control "public";
}

It is not necessary to use Nginx only. There are many other alternatives and you are
free to use any proxy that you are familiar with.

Application namespacing
From the beginning, it has been said that global variables are unhealthy. In MeteorJS,
we have seen that global variables are created very often. Many have serious
problems about using global variables in their MeteorJS applications.

The solution is to namespace. Namespacing is nothing but creating one global
variable and then adding every logical module of code as the children of that
global variable, thereby avoiding the creation of a large number of global variables.
Namespacing has proven to be the best solution for many big applications.

However, is it possible to use namespacing in MeteorJS application? Yes it is, but the
usage is very limited. This is because we don't know the order at which the files will
be loaded. It is unpredictable whether the required namespaced module will load
before the other module that requires it.

A certain portion of the application can be namespaced for sure. Collections and
route definitions can be namespaced under the application namespace. However,
if we have some logical blocks under the namespace, they are not guaranteed to be
available in a proper order.

For those who have problems with global variables and want to avoid them
as much as possible, developing the application as a set of packages will solve
the problem. In packages, we have the control to export the variable into the
environment. Also, there won't be a loading order issue in the case of packages.
We will look at how to work with packages in order to avoid global variables in
the Application patterns section.

Best Practices, Patterns, and SEO

[252]

Transformation classes
If we want to manipulate the documents of the collection while fetching, we should
use the transform property to define the transformation while creating the collection
instance as follows:

new Meteor.Collection("products", {
 transform: function(doc) {
 return doc.has_discount = (doc.actual_prize –
 doc.selling_prize) > 0;
 }
});

This will ensure that we don't write any transformation logic in the template helpers.
We can use the transformation to create models out of each document with helper
methods on them.

Latency compensation
This is one of the important principles of MeteorJS. We discussed in the earlier
chapters how MeteorJS saves data and updates the UI. It kind of simulates the save
operation and updates the UI at the action triggered side. However, once the data
reaches the server and gets saved to the database, a confirmation comes to the action
triggered side. If saving fails, the UI will revert back to the old state.

Many see this as a flickering problem. If you consider this kind of latency
compensation as a serious problem, because it gives false impression to the user,
you can use a different approach to persist data. We have used this approach in
many of our examples. We can define server methods that can persist the data
instead of calling insert or update directly from the client. We just have to call the
server method with the appropriate data. This will avoid the problem of flickering.

Some developers might consider this against the principle of MeteorJS. However, at
the end of the day, it is the user's experience that matters the most. So the decision is
yours to make.

Identifying performance and scalability issues
Most of the time, we need a profiling tool to profile and know the performance of the
production code. The applications that are used by real users will have a different
set of issues than the ones in a testing environment. To monitor the server for
performance and scalability issues, we obviously need a tool. MeteorJS doesn't
have one by default.

Chapter 9

[253]

However, one of the MeteorJS community members has created a fantastic tool
called Kadira that can help us know the ins and outs of the production application.
Kadira helps us to sort out how much time subscriptions take, method call response
time, what is CPU usage, and many more in real-time. This provides an in-depth
insight into the activities in a production environment. Many developers have
identified bottlenecks in their production using Kadira.

Using Kadira in MeteorJS applications is damn easy. Just sign up, create a new app,
add the meteorhacks:kadira package to your application, and write the connection
code Kadira.connect('<appId>', '<appSecret>') to a file in the server
directory. This is all we need to do. Visit your app in Kadira and you will find the
metrics for your application. You can get the appId and appSecret identifiers from
the setting panel of your app that you created in Kadira.

To learn more about Kadira, visit https://kadira.io/academy/meteor-
performance-101/content/getting-started-with-kadira.

Following all these best practices can help you write a better stable MeteorJS
application.

Application patterns
As MeteorJS is young, there is no definite pattern that we can follow for our
application. However, people are testing against their needs and are coming up with
various patterns to follow. Here, in this section, we will see two popular patterns that
are talked about by the community.

The package pattern
Let's break the mystery and learn what package pattern is. We know that,
by definition, we can build a MeteorJS application using packages. There are
applications out there built by developers using this pattern. Why is it that some
developers embrace creating an application only by writing their business logic
inside packages? To answer this question, we must understand the following:

• What might probably go wrong with the usual way of writing code in a
typical MeteorJS application?

• How the packages offer a greater control over our code

https://kadira.io/academy/meteor-performance-101/content/getting-started-with-kadira.
https://kadira.io/academy/meteor-performance-101/content/getting-started-with-kadira.

Best Practices, Patterns, and SEO

[254]

Problems with the usual way of writing
MeteorJS code
We discussed some of the problems earlier. Let's look at them again, little
more elaborately.

The first and foremost problem is polluting the global space. We know that the usual
way of writing MeteorJS applications encouraged writing variables in the global
space. We know why it is not good. Anytime it will wreck the ship.

The second problem is code organization. If we are not good at logically separating
code with DRY and KISS principles, within a week we will end up in spaghetti code,
which will be hard to maintain.

The next problem is testing. When we don't properly organize the logical blocks of
our application, then obviously testing the spaghetti code will also be a mess. Code
coverage cannot be measured thoroughly.

These three problems are the major one that need to be addressed one way
or another way. We have chosen to use the package pattern to escape the
aforementioned problems.

What we must know about packages
If you are not familiar with MeteorJS packages, it is highly recommended that you
learn how to create a package and see how it works with MeteorJS from Chapter 3,
Developing Reusable Packages of this very book. Precisely, with packages, we can solve
all the problems mentioned in the preceding sections.

Packages provide us the ability to declare all the dependencies inside the package.
Packages are reusable and thus we can easily follow the DRY principle. We have
control over the loading order of our dependencies. We can write tests for each
individual package that is very self-contained. We have the control to export only
what we want to export to the client. Did we address all the problems mentioned
earlier? Yes, of course, we did. Let's see in action how to create an application with
packages, because saying is not doing, isn't it?

To demonstrate the package pattern, we are going to create a small application called
DigiNotes. The idea of the application is to provide an interface to write notes and
them, legibly. However, the goal is to create the application with custom packages
rather than creating it as an application that we created in the past.

Chapter 9

[255]

DigiNotes
Create a MeteorJS application with the name DigiNotes. Remove all the hello
template-related code from both the js and html files, and also remove the
autopublish and insecure packages. Now, we'll have to create packages to
start building our application.

With packages, we can write an absolutely modular application, provided we
understand how packages work. Packages are added to the DOM in the order we
add them to the application. After compiling, MeteorJS creates one file per package,
which will include the appropriate content of all the files involved in the package in
the order we have specified in the package.js file.

Namespacing can help us in writing a maintainable application. In packages, we
can create namespaces for each package. If you are good at application design, you
will love this approach of creating applications. Application designing is very much
opinionated. For example, if we want to create a customer portal, we can modularize
it at a granular level of having the add-customer module, edit module, list module,
and so on. Some developers might not want that much modularization, instead they
will keep the customer portal as one module. It is very much opinionated, and the
approach of creating packages is flexible enough to follow any of your ideas.

We are going to create two packages. One package for namespace declaration and
the other one for the notes module. Then, you can extend the application as you
wish. The following command will create a package with the boilerplate code in our
application under the packages directory:

meteor create -–package <package-name>

Make sure you already have the packages directory created in the application root
directory. In our case, we are going to create a package for namespacing with the
name diginotes. We can use this package as the parent for all other packages. The
application-wide features such as layouting, application-wide styles, libraries that
are used application-wide, and so on, can be added in this package. For now, we are
just going to add a namespace for the application.

Run the meteor create –package diginotes command. This will create a
diginotes directory under the packages directory. We have to create the namespace
for the application. Go to diginotes.js and add the following code to it:

DigiNotes = {};
DigiNotes.version = "0.1";

Best Practices, Patterns, and SEO

[256]

Visit the package.js file and append the following line of code to the Package.
onUse method:

api.export("DigiNotes");

We have exported our namespace for the application and other packages to use.
In the same file, change the documentation property of the Package.describe
method to null, as it is just a local package.

Our parent namespacing package is ready. We have to just add it to the application.
Run the meteor add diginotes command and once added, run meteor list to
see the custom package in the list. It will be denoted with the + sign as it is a local
package. How do we test whether the namespace is available in the application?
Start the application, go to the browser console, and type DigiNotes.version.
It will print "0.1".

Next, build a package under this namespace, which is nothing but the notes
module. Create a package with the name diginotes:notes by running the
following command:

meteor create –package diginotes:notes

Naming the packages with appropriate names is again highly opinionated. Choose
names carefully so that any new member to the team can identify the package
taxonomy. We have the package skeleton ready once the command is run.

What are the things we need to complete in this package? We need module-specific
namespace (DigiNotes.notes), collection, pub/sub code, templates, helpers, and
stylesheet. The server and client directory separation won't work with packages.
Instead, we have to mention the environment for each file in the package.js file.
For code organization purposes, you can create any folder of your choice. However,
our package is pretty small; thus, no folders but only files.

We will keep the namespace code in the notes.js file as follows:

 DigiNotes.notes = {};

Though we are not going to use it anywhere now, it is put in the file for
demonstration. You can make use of it to add anything, which makes sense for
you, into this namespace. We can use it in other packages. For example, if we want
to use the collection that we declare in this module in the application or in any
other package, then we can attach the instance to this namespace and refer it from
anywhere. As of now, it is going to do nothing.

Chapter 9

[257]

Next, we have to declare the collection. Create the collection.js file inside
this package, and add the following collection declaration code and access
permission code:

NotesCollection = new Mongo.Collection("notes");
NotesCollection.allow({
 insert: function() {
 return true;
 }
});

We need to publish it, so let's create the publish.js file and add the following
publication code:

 Meteor.publish("notes", function() {
 return NotesCollection.find({});
 });

Do not forget the best practice that we learned earlier this chapter. Apply them to
this publication query.

Let's define our templates. Create template.html and add the following templates
to the file:

<template name="notes">
 <form id="note-form">
 <textarea id="note" cols="30" rows="10" placeholder="Note"></
textarea>
 <input type="submit" value="Add" />
 </form>
 <div class="notes">
 {{#if isLoading}}
 Loading...
 {{else}}
 {{#if hasNotes}}
 {{#each notes}}
 {{>note}}
 {{/each}}
 {{else}}
 No notes created.
 {{/if}}
 {{/if}}
 </div>
</template>

Best Practices, Patterns, and SEO

[258]

<template name="note">
 <div class="note-container">
 <textarea class="note"
 readonly="true">{{description}}</textarea>
 <div class="controls">
 <button class="edit">✎</button>
 <button class="delete">✎</button>
 </div>
 </div>
</template>

The preceding code displays the notes and provides a form to post notes.
There are edit and delete buttons, but it is not functional and is left for you to
write some code along.

We need helpers for this template. Create the helpers.js file and add the following
helper code to the file:

Template.notes.onCreated(function() {
 Template.instance().subscribe("notes");
 this.isLoading = false;
 if(Template.subscriptionsReady) {
 this.isLoading = false;
 }
});
Template.notes.helpers({
 notes: function() {
 return NotesCollection.find({});
 },
 hasNotes: function() {
 return NotesCollection.find({}).count();
 }
});

Template.notes.events({
 "submit #note-form": function(event) {
 event.preventDefault();
 var elem = document.getElementById("note"),
 description = elem.value;
 if(description = description.trim()) {
 NotesCollection.insert({
 description: description,
 createdAt: Date.now(),

Chapter 9

[259]

 updatedAt: null
 }, function(e, result) {
 if(!e) {
 elem.value = "";
 }
 });
 } else {
 noty({text: "Please enter some text!", type: "error",
 timeout: 2000});
 }
 }
});

In the preceding helpers, we subscribed to the publication inside the template's
onCreated callback. We also created some helper variables to check whether the
subscription is loaded or not. Then, we had helpers to get the count and documents
to the template. Now, we bind a submit event in which the note created is inserted
to the database. Once inserted, the form is cleared. We are using an external plugin,
noty, to show the error message.

Finally, add styles that can make the UI look pretty. Create styles.css and add the
following styles to the file:

body {
 display: flex;
 height: 100vh;
 margin: 0;
 padding: 0;
 font-size: 14px;
}

#note-form {
 display: flex;
 flex-direction: column;
 width: 250px;
 max-width: 250px;
 padding: 20px;
 border-right: 1px solid #ccc;
}
#note-form input {
 margin-top: 20px;
 cursor: pointer;
 background: #0ac;
}

Best Practices, Patterns, and SEO

[260]

textarea {
 border-color: #e2e2e2;
 width: 100%;
 padding: 10px;
 border-radius: 4px;
 box-sizing: border-box;
 font-size: inherit;
}
button, input[type="submit"] {
 padding: 10px 20px;
 color: #fff;
 border: 0;
 border-radius: 4px;
 font-size: inherit;
 outline: none;
}

.notes {
 padding: 10px;
}
.note-container {
 width: 200px;
 background: #e3e3e3;
 padding: 10px;
 box-shadow: 1px 1px 1px 1px #ccc;
 border-radius: 5px;
 display: inline-block;
 margin: 10px;
}

.note-container .controls {
 display: flex;
 justify-content: space-around;
}
.note-container .controls > button {
 width: 49%;
 cursor: pointer;
}
.note-container .controls .edit {
 background-color: green;
}

Chapter 9

[261]

.note-container .controls .delete {
 color: #fff;
 background: red;
}
.note-container textarea {
 outline: none;
 background: inherit;
 resize: none;
}

All the required code is in place. Now it's time to get them to work together.
We have to mention each of these files in package.js, without which nothing
is going to work. Go to package.js and add the files we have created.

Add the following piece of code to the Package.onUse method:

api.use(['ecmascript', 'templating', 'mongo', "hedcet:noty",
 "diginotes@0.0.1"]);

Here, we have mentioned the basic packages this package relies on. Templating and
Mongo are basic packages, but still, while writing packages, we have to mention
them as well. Along with them, we have included the noty package and our parent
namespace package. This will make sure that before adding the diginotes:notes
package, the diginotes packages are added. Many developers end up in a circular
dependency while adding their custom packages. The only way to escape this, is by
thinking through your design properly.

Add the rest of the files right next to the preceding line:

api.addFiles(['collection.js'], ["client", "server"]);
api.addFiles (['templates.html', 'helpers.js', 'styles.css'],
 ["client"]);
api.addFiles (['publish.js'], ["server"]);

You can clearly see that collection.js is available both in the server and the client,
templates.html and helpers.js are available only in the client, and publish.
js is available only in the server. This is how we have to declare which files are to
be used on which environments. Now, we are all set to go. Add the package to the
application by running the meteor add diginotes:notes command and include
the required template {{> notes}} in the body tag of the DigiNotes.html file and
then we have the application ready.

Best Practices, Patterns, and SEO

[262]

Start the application and add some notes that will look like the following image:

If you don't want to engage your templates with the application as we did
earlier, include layouts. Then, directly from packages, you can add the templates.
Another way is to manipulate the DOM. You can add the edit and delete
functionality by yourself.

You can extend the application by creating another module, such as reminders,
which will allow you to create time-based reminders. It is up to your imagination.
This simple example helps you to get started.

While creating an application only with a package, make sure you follow logical
terms for naming each and every part of your code. You should be able to draw
a flow diagram of your modules at every stage of the application so that you can
avoid design-related hassle. Give it a shot if you like this way of developing modular
applications. It helps you to increase your design-level thinking too.

MVC
MVC is a popular design pattern used by most of the application programming
languages. If you are using a JavaScript framework, then you must have encountered
either MVC directly, or a slight variation of it. MVC is a design concern to organize
various pieces of code into models, controllers, and views based on the purpose.
Here, in MeteorJS, how can we achieve MVC?

There is no hard rule to define MVC in your application. Some developers want to
keep the code clean and organized under different directories in accordance with
MVC by creating models, views, and controllers directories, and then organizing
code under each of these directories to portray the separation. Some may not
need that kind of structure, instead it is good enough if the components are self-
explanatory about their purposes.

Chapter 9

[263]

MeteorJS is of the second category, wherein MVC is defined just by the role or by the
purpose of the components we use in the application. Collections are categorized as
models, templates and template helpers can be considered as views, and the server
methods or the operational logic at the client end can be considered as controllers.
Again, this is opinionated. If you are using iron-router, the router component plays
the controller role of executing business logic and thereby employing appropriate
templates and also updating the models.

If you really want MVC defined by the separation of directories, then MeteorJS
doesn't restrict us from doing so. We are free to create any directory, but by adhering
to the rules (the server and client directory environment separation) of MeteorJS.

SEO
SEO is an important topic that we haven't discussed in any part of this book. Let's
look at it comprehensively in this section. MeteorJS is an ideal choice for interactive
applications. However, it still doesn't restrict us to use it for applications that need to
be indexed for search engines. One such example would be online tutorial publishing
applications. These kinds of applications need SEO the most. SEO can be a deciding
factor while choosing which framework to go with.

MeteorJS applications are more or less like single-page applications in terms of
loading the HTML. If you look at the page source in the browser, you will see only
an empty body tag. The reason being that the HTML is loaded dynamically. How
then can we provide content, appropriate content, to the search engines that try to
index our application pages? MeteorJS provides a solution to these problems.

However, before looking at the solution, let us know how exactly indexing is carried
out by search engines. Search engines find your Web pages by means of references and
then send their bots, also called crawlers or spiders, to get the content of our Web page.
Spiders simply hit the page and collect whatever is loaded as a result. The collected
content is then read with various ranking rules and is ranked by the search engine.

What is more important for a Web developer than to get his/her pages indexed
properly by the search engine? When the spiders come crawling to our Web pages,
we have to show the pages to them nicely. Apart from the content, there are a few
other things we want to set in the page such as title, meta description, and so on,
for SEO purposes. To learn more about indexing dynamically loaded sites, read
the Google developers documentation at https://developers.google.com/
webmasters/ajax-crawling/docs/getting-started?hl=en.

https://developers.google.com/webmasters/ajax-crawling/docs/getting-started?hl=en
https://developers.google.com/webmasters/ajax-crawling/docs/getting-started?hl=en

Best Practices, Patterns, and SEO

[264]

There are two ways of allowing the crawlers to know that our site content has
dynamically loaded the content. One is by prepending an exclamation mark (!)
before the hash part such as https://example.com/a/site#!key=value. If
we don't use the hash part in our routes, then we can include a meta tag <meta
name="fragment" content="!"> in the page, which will tell the crawler to look
for an HTML snapshot of the page at the specified URL: https://example.com/a/
site?_escaped_fragment_=key=value. We have to make sure that, when the
crawler visits the pages with this URL, we provide the content nicely.

Spiderable
Considering that MeteorJS applications are dynamic applications that load the
templates on demand, how are we going to nicely show our pages to the crawlers
or spiders? Here, MeteorJS employs a small trick. It gives us the ability to load the
HTML-like traditional applications, but only for the spiders. How is that possible?
There is a package called spiderable that will get the appropriate content from the
server when the spiders come crawling to our pages. We have to add the spiderable
package to our application. Along with it, we have to install PhantomJS. When the
crawlers hit the page with the query string _escaped_fragment_, a spiderable
package will take the request and render that page in PhantomJS, which is a headless
browser and will present that content to the crawler. This solves the problem. You
can test it by visiting your site in the browser with the _escaped_fragment_ query
string. You will see the HTML content inside the body that was empty earlier.

What about setting the meta tags based on the page? If you are using iron-router, the
job is pretty simple. Iron-router provides onBeforeAction hooks in which we can
set the required meta information to the page. There is a popular package that comes
in handy to set meta data to the page that is ms-seo. To learn more, visit the GitHub
repository of the package at https://github.com/DerMambo/ms-seo.

Few people have problems with PhantomJS. The problem could be reasonable. When
the crawler visits multiple pages of your application at once, MeteorJS will spawn
a separate instance of PhantomJS for each request that can keep the CPU terribly
busy. Other problems are, hard to debug if something goes wrong in PhantomJS
with respect to your application; PhantomJS may not be available in certain cloud
hostings, and PhantomJS runs a bit older version of JavaScript. We can see that the
problems are reasonable and thus we need an alternative. Is there one?

https://example.com/a/site#!key=value
https://example.com/a/site?_escaped_fragment_=key=value
https://example.com/a/site?_escaped_fragment_=key=value
https://github.com/DerMambo/ms-seo

Chapter 9

[265]

Yes, but highly custom and slightly time-consuming; maybe even violating the DRY
principle. The solution is to have server-side routes using some packages of your
interest and then having the templates in the server-end, compiling and responding
as per the request. We cannot use the client-side templates in the server. For this
reason, we have to use a package such as meteorhacks:ssr for compiling the
templates. It is better to keep the templates in the private directory and get them
using Assets.getText ("home.html"). There are many routers out there. Pick one
that supports the server-side route and then you are ready to go. This approach is
actually called server-side rendering.

There is a popular package called fast-render that helps in server-side rendering, but
it doesn't add to SEO. It helps to reduce the load time of your application. It works
with both Iron-router and FlowRouter, seamlessly. To learn more about fast-render,
visit the GitHub repository at https://github.com/kadirahq/fast-render.

Try whichever SEO support mechanism you like from the above two methods and
see how it works. If anyone claims MeteorJS cannot support SEO, tell them how it
can be done.

ES2015 and MeteorJS
ES2015 is on the move. If you are a JavaScript developer, by this time, you might
have tasted some of the drops of the new features coming to JavaScript. There are
transpilers, such as Babel that allows us to write ES2015 code right away. MeteorJS
also has extended the support for ES2015 features. No special setup is needed and
the support is added from Meteor 1.2. This is a major milestone for MeteorJS. Having
access to an environment where you can write ES2015 code, you can learn it very
easily without having to do any setup explicitly. There is no more reason to avoid
experimenting with the ES2015 features within the application that you are building.
Make use of it and learn them faster.

Meet the community
It is to be noted that a framework, that is so young, has a very big community. The
MeteorJS community is so big that you will find answers to most of your questions
quickly. Being an awesome framework, no wonder MeteorJS has got so many
followers. The number of packages in the https://atmospherejs.com clearly
says that people are very much engaged to get this framework to its heights. In this
section, we are going to see what sites to follow, where to seek help, and whom to
follow in order to learn more about MeteorJS.

https://github.com/kadirahq/fast-render
https://atmospherejs.com

Best Practices, Patterns, and SEO

[266]

First and foremost, anyone having any programming-related problems will visit
Stack Overflow. MeteorJS also has a Meteor tag in Stack Overflow where numbers
of questions are posted and are answered too. Some of these answers will help you
tune your MeteorJS knowledge. Visit Meteor-specific questions in Stack Overflow at
http://stackoverflow.com/questions/tagged/meteor.

MeteorJS has its own discussion forum too, and you can visit it at https://forums.
meteor.com/. Similar to Stack Overflow, one can ask questions in this forum. One
can also discuss the core features of MeteorJS, what MeteorJS is lacking, what is
coming up in the releases, if someone has faced any strange issues, and how they
had solved it. People also talk a lot about packages, integration with other frontend
frameworks such as React.js, Angular.js, testing applications, hosting solutions, and
many more. Get involved and see what you can learn from the community members.

Atmosphere, which is the MeteorJS package repository, is another important site that
every MeteorJS developer must visit. It is not necessary to explain; we have visited it
many times to search for packages at https://atmospherejs.com/. To consume or
to publish a MeteorJS package, we must visit https://atmospherejs.com.

Meteorhacks (https://meteorhacks.com/) is a fantastic site to learn many things
about MeteorJS. The articles posted in this site are specific to MeteorJS and are quite
simple and well-explained. The site has very interesting articles that have good
explainations of the subscriptions, MergeBox, hosting solutions, and so on.

Another excellent learning material for MeteorJS is available at https://
bulletproofmeteor.com. This is an interactive tutorial site where a part of the
content is free and the rest is premium; it is definitely worth the money.

Meteorpedia is a site where we can look for solutions for various MeteorJS-related
problems. The site has a number of articles where many aspects of the framework are
discussed. To view this, visit http://www.meteorpedia.com/read/Main_Page.

Many like to watch than to read. For them, there is a YouTube channel that has a
lot of video content to learn about MeteorJS. Many enthusiastic developers who
have done wonders with MeteorJS have shared their experiences. Visit the YouTube
channel at https://www.youtube.com/user/MeteorVideos.

If you are one of those enthusiasts who likes to visit people from the community,
we have meetups. The MeteorJS team has organized a number of meetups in the
past and is still doing a few here and there. Get to know about the happenings at
http://meteor.meetup.com/.

http://stackoverflow.com/questions/tagged/meteor
https://forums.meteor.com/
https://forums.meteor.com/
https://atmospherejs.com/
https://atmospherejs.com
https://meteorhacks.com/
https://bulletproofmeteor.com
https://bulletproofmeteor.com
http://www.meteorpedia.com/read/Main_Page
https://www.youtube.com/user/MeteorVideos
http://meteor.meetup.com/

Chapter 9

[267]

Twitter is the best source to keep ourselves updated. MeteorJS' official tweet handle
is @meteorjs. You can follow the Twitter account at https://twitter.com/
meteorjs. Every official news about MeteorJS can be found here. You can even raise
your concerns with the MeteorJS development team via this Twitter page.

Contributors are those people who have gained significant experience and are
giving back the learnings to the community. MeteorJS has contributors who have
spent time to give their knowledge to the community. A few other contributors
have contributed by creating packages for fellow community developers. There are
so many contributors and we'll see a few. One of the notable community members
to follow is @arunoda, the one behind Kadira, who experimented with MeteorJS to
its extreme and contributed to the community in terms of packages and learning
materials. Josh Owens is another member who has wide experience in building
MeteorJS applications. Follow him at @joshowens. He has his blog at http://
joshowens.me/ where he writes about his experiences with MeteorJS. There are
a number of articles and videos published by Josh Owens to teach community
members. There are many such significant members; maybe you can become one
such notable contributor too someday.

Some of the notable applications built using MeteorJS are as follows:

• Atmosphere (https://atmospherejs.com)
• Kadira
• Telescope (www.telescopeapp.org)
• BulletProofMeteor (www.bulletproofmeteor.com)
• Meteorpedia

There are many applications already in the market that have been built
using MeteorJS. The official documentation of MeteorJS (http://docs.
meteor.com/#/full/) is a good source to learn more about MeteorJS.

Finally, the Meteor GitHub page is the source code. What lies there? The truth
itself. Whenever you get time and if you are interested, visit meteor GitHub page
at https://github.com/meteor/meteor/ and learn the internals by yourself.
The packages used by MeteorJS can be reached at https://github.com/meteor/
meteor/tree/devel/packages. You will learn to write MeteorJS code in the
MeteorJS way, if you start understanding the source. Nothing can tell us the truth
more than the source code itself.

https://twitter.com/meteorjs
https://twitter.com/meteorjs
http://joshowens.me/
http://joshowens.me/
https://atmospherejs.com
www.telescopeapp.org
www.bulletproofmeteor.com
http://docs.meteor.com/#/full/
http://docs.meteor.com/#/full/
https://github.com/meteor/meteor/
https://github.com/meteor/meteor/tree/devel/packages
https://github.com/meteor/meteor/tree/devel/packages

Best Practices, Patterns, and SEO

[268]

Summary
Finally, we are at the end of this chapter and also at the end of this book. Let's
summarize what we have learned in this chapter.

As MeteorJS is a young framework, there are not many specific patterns or best
practices to follow, just the fundamental software principles.

There are some tried and tested best practices that might work for a few and might
not for some others. They are no hard rules, but the best practices can be bent if they
were to yield what exactly we are looking for.

There is a not-so-popular application pattern for MeteorJS applications, which is the
package pattern. MVC is again available, but it is in an arguable state. So make use of
MVC as per your understanding and need.

MeteorJS provides ES2015 support out of the box now from its 1.2 release.

The MeteorJS community is vast and there are many exclusive sites where we can
look for help and learning materials.

There are a number of promising applications being built using MeteorJS. It is time
to use it for your next application too.

I hope you have found the chapter useful and informative.

We are at the finishing line of the book. Now, you must be confident enough to
create products using MeteorJS because you know enough to develop, deploy, and
scale a MeteorJS application. Practice more and share your experience with the
community. There is a lot to learn if you are a beginner, and it is absolutely worth it.
MeteorJS has the ability to change how we develop applications.

MeteorJS is driving the change in how we build Web and Web-based applications.
Be a part of the change and do wonders that can make the world a better place to live.

[269]

Index
A
Accounts-ui 69
AddEditItem component, ReactFoodMenu

about 115
component handlers 116-118
initial state 116
react markups 118-120

AddItem Angular.js template 101, 102
Angular.js application, FoodMenu

about 95
AddItem Angular.js template 101
application container section 97
controller logic, demystifying 109
food items, editing 105
food items, listing 103
header section 95, 96
images, uploading 99
logic, demystifying 103

angular-meteor
reference 90

animation
about 131
in Blaze templates 132-134
performing, d3.js used 150-153
performing, Famo.us engine used 154-156
performing, MeteorJS packages used with

Velocity.js 135-140
performing, snap.svg used 141-149

API guidelines, REST-based systems
APIs, testing 171
authentication 171
authorization 171
CORS 170
error response 171
error routing 171

JSON request and response 170
request data, handling 170
response data, handling 170
StatusCode 170
versioning 171
volumes of data 171

app directory, travel booking application
about 34
client 34
lib 35
private packages 35
public packages 35
server 35

application container section,
Angular.js application

about 97
Angular.js routes 97
CreateItem controller 98, 99

application patterns
about 253
package pattern 253

atmosphere
about 266
URL 266

AutoForm package documentation
reference 41

B
best practices 242
Blaze 5, 241
Blaze templates

animation, performing 132-134
BookMyTravel2

testing 59-66

[270]

bucket package
about 77
collection 77
templates 77, 78

build tools 241
build tools, for MeteorJS applications

about 191
demeteorizer 192
Isobuild 191, 192

bus reservation applicaton
accounts 8
accounts, sign in 10
accounts, sign up 9, 10
bus service, creating 10-16
developing 6, 7
list and search 17-23
reservation 23-29

C
client

about 4
Blaze 5
MiniMongo 4
Tracker 5

client-side setup, FoodMenu
about 93
Angular.js application 95
application styles 94
client packages 94

Cluster package
reference 204

communication channel 4
concepts

summarizing 238
Cross-Origin Resource Sharing (CORS) 169

D
d3.js

about 125
used, for performing animation 150-153

d3.js, with MeteorJS
about 125
DataViz 125

database operations, securing
about 242-244

application directory structure 249, 250
application namespacing 251
database indexing 246
error handling 247
latency compensation 252
necessary data,

publishing/subscribing 248, 249
oplog tailing 246
performance, identifying 252
scalability issues, identifying 253
static assets, serving 250
subscriptions, managing 247, 248
testing 247
transformation classes 252

database solutions 207
data retrieval, from Mongo 240
DataViz

about 125
client 126
d3.js code 126-129
HTML 125
server 125, 126

debugging
about 56-58
Meteor shell 58

debugging, mobile application
development

about 233
Android 233, 234
iOS 234

demeteorizer
about 192
references 193

DigiNotes 255-262
Digital Ocean (DO) 207
Distributed Data Protocol (DDP) 4, 238, 239

E
ES2015

about 265
and MeteorJS 265

F
Famo.us engine

about 154
used, for performing animation 154-157

[271]

fibers
about 240
reference 240

FlowRouter 34
food items, Angular.js application

controller 104
editing 105
EditItem controller 107
listing 103
route 103, 106
template 105

FoodMenu
client-side setup 93
sever-side setup 91

frontend framework
integrating, with MeteorJS 130

G
generators, for application

about 36
listing 43-45
reservation 48-55
search 46-48
travel, creating 36-42

Git repo
reference 38

H
header section, Angular.js application 95, 96
http-proxy

reference 201

I
images, Angular.js application

access rules 100
CollectionFS collection 99
publishing 100
uploading 99

Isobuild 191, 192

L
listing section, ReactFoodMenu

about 120
edit items route 123

edit patch 123, 124
list component 121, 122
listing route 120

logic
demystifying 103

M
MergeBox 239
Meteor cluster, scaling with

about 200
balancers 201
multicore support 201
Mup and Cluster 202, 203
SSL support 201

meteor-collection2 package
reference 41

Meteor-deployement-manager
(MDM) 194-197

Meteor Galaxy 206
Meteor GitHub page 267
Meteorhacks

about 266
URL 266

MeteorJS
about 1, 2
additional information 5
client 4
communication channel 4
frontend framework, integrating with 130
scaffolding in 32, 33
server 2

MeteorJS application
BookMyTravel2, testing 59-66
build tools 191
scaling 197
scaling, with Meteor cluster 200
scaling, with Nginx 198, 199
testing 59
Velocity 59

MeteorJS application deployment
about 190-193
Meteor-deployement-manager

(MDM) 194-197
Meteor Up 193, 194

MeteorJS code
issues 254

[272]

MeteorJS community
about 265, 266
discussion forum 266

MeteorJS packages
about 254
DigiNotes 255-262
MVC 262
SEO 263
spiderable 264
using with Velocity.js, for

animation 135-140
MeteorJS' reactivity

about 160, 161
optimizations, in autoruns 165
overview 159
Tracker 161-164

Meteor-SSL-proxy
reference 201

Meteor Up 193, 194
MiniMongo 4, 240
mobile application development

about 209-211, 232
debugging 233
package developement 235, 236
packages 235
plugin methods, accessing 233
testing 234

Model 31
Modulus.io 206
Moment.js 69
MongoDB 3
MVC 262

O
oplog

about 3
accessing, from application 205

oplog tailing
about 204
replica set, creating 204
setup 204

P
packages

about 69, 70, 241
bucket package 77

creating 71-75
distributing 87
installed package 70
Package.describe 75
Package.onTest 77
Package.onUse 76
reference 69
testing 86, 87
using 79-85

publishing 238

R
ReactFoodMenu

AddEditItem component 115
addItem route 114
application route 114
client 110
client packages 111
container section 114
first React.js component 111
header section 111, 112
listing section 120
React component, in Blaze 112, 113
server 110
setup 110

reactive systems 159
React.js, with MeteorJS

about 109
ReactFoodMenu 110

Representation State Transfer (REST) 166
Responsive Web Development (RWD) 209
REST-based systems

about 159, 166, 167
API guidelines 170, 171
REST with iron-router 167-169
REST with restivus 172-180

Role-Based Access (RBA) checks 37

S
SEO 263
server, MeteorJS

about 2
MongoDB 3
publish/subscribe 3

session 240

[273]

sever-side setup, FoodMenu
about 91
access rules, adding 92
collection 91
collection, publishing 92
methods 93

simple mobile application
build, creating 232
contacts interface 222-228
deployment 232
developing 212
hot code push 232
login interface 213-217
messages interface 228-232
profile interface 218-221

snap.svg
about 141
reference 149
used, for performing animation 141-149

spiderable 264
Stack Overflow 266
sticky session 240
subscribing 238

T
third-party MeteorJS hosting solutions

about 205
database solutions 207
Digital Ocean (DO) 207
Meteor Galaxy 206
Modulus.io 206

Tracker
about 5, 161, 241
reference 161

travel booking application
app directory 34
recreating 34

V
Velocity

URL 59
volumes of data

handling 181-187

Thank you for buying
Mastering MeteorJS Application Development

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Building Single-page Web Apps
with Meteor
ISBN: 978-1-78398-812-9 Paperback: 198 pages

Build real-time apps at lightning speed using the
most powerful full-stack JavaScript framework

1. Create a complete web blog from frontend to
backend that uses only JavaScript.

2. Understand how Web 2.0 is made by powerful
browser-based applications.

3. Step-by-step tutorial that will show you how
fast, complex web applications can be built.

Getting Started with Meteor.js
JavaScript Framework
Second Edition
ISBN: 978-1-78528-554-7 Paperback: 138 pages

Learn to develop powerful web applications in
minutes with Meteor

1. Learn one of the most up-to-date JavaScript
platforms, with easy to follow, step-by-step
instructions.

2. Familiarize yourself with Meteor's new and
improved features.

3. Create dynamic, multi-user applications
in JavaScript.

Please check www.PacktPub.com for information on our titles

AngularJS Web Application
Development Cookbook
ISBN: 978-1-78328-335-4 Paperback: 346 pages

Over 90 hands-on recipes to architect performant
applications and implement best practices
in AngularJS

1. Understand how to design and organize your
AngularJS application to make it efficient,
performant, and scaleable.

2. Discover patterns and strategies that will give
your insights into the best ways to construct
production AngularJS applications.

3. Get the most out of AngularJS by gaining
exposure to real-world examples.

Learning Meteor Application
Development [Video]
ISBN: 978-1-78439-358-8 Duration: 01:52 hours

An informative walkthrough for creating a complete,
multi-tier Meteor application from the ground up

1. Master the fundamentals for delivering clean,
concise Meteor applications with this friendly,
informative guide.

2. Implement repeatable, effective setup and
configuration processes and maximize your
development efficiency on every project.

3. Utilize cutting-edge techniques and templates
to reduce the complexity of your applications
and create concise, reusable components.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building a MeteorJS Web Application
	An overview of MeteorJs
	Server
	MongoDB
	Publish/Subscribe

	Communication channel
	Client
	MiniMongo
	Tracker
	Blaze

	Additional information

	Developing a bus reservation applicaton
	Accounts
	Signup
	Signin

	Creating a bus service
	List and search
	Reservation

	Summary

	Chapter 2: Developing and Testing an Advanced Application
	Scaffolding in MeteorJS
	Recreating the travel booking application
	The app directory
	Client
	lib
	Private and public packages
	Server

	Generators for the application
	Creating travel
	Listing and search
	Reservation

	Debugging
	Meteor shell

	Testing MeteorJS application
	Velocity
	Testing BookMyTravel2

	Summary

	Chapter 3: Developing Reusable Packages
	Introduction to packages
	An installed package

	Creating a package
	Package.describe
	Package.onUse
	Package.onTest
	The bucket package
	Collection
	Templates

	Using the package
	Testing the package
	Distributing a package
	Summary

	Chapter 4: Integrating Your Favorite Frameworks
	The server-side setup – FoodMenu
	Collection
	Publish
	Access rules
	Methods

	The client-side setup – FoodMenu
	Client packages
	Application styles
	The Angular application
	The header section
	The application container section
	Uploading images
	The AddItem Angular template
	Demystifying the logic
	Listing food items
	Editing food items
	Demystifying controller logic

	React.js with MeteorJS
	ReactFoodMenu
	Setup
	Server
	Client
	The first React.js component
	The header section
	The React component in Blaze
	The container section
	The application route
	The AddEditItem component
	The listing section

	d3.js with MeteorJS
	DataViz
	HTML
	Server
	Client – d3.js code

	Integrating any frontend framework with MeteorJS
	Summary

	Chapter 5: Captivating Your Users with Animation
	Animation in Blaze templates
	Animation using MeteorJS packages with Velocity.js
	Animation using Snap.svg
	Animation using d3.js
	Animation using the Famo.us engine
	Summary

	Chapter 6: Reactive Systems and REST-Based Systems
	An overview of MeteorJS' reactivity
	MeteorJS'reactivity
	Tracker
	Optimizations in autoruns

	REST-based systems
	REST with iron-router
	API guidelines
	REST with restivus

	Handling volumes of data
	Summary

	Chapter 7: Deploying and Scaling MeteorJS Applications
	Understanding MeteorJS application deployment
	Build tools for MeteorJS applications
	Isobuild
	Demeteorizer

	Deploying a MeteorJS application
	Meteor Up
	Meteor deployment manager

	Scaling a MeteorJS application
	Scaling with Nginx
	Scaling with Meteor cluster
	Balancers
	The multicore support
	The SSL support
	Mup and Cluster

	The oplog tailing setup
	Creating a replica set
	Accessing the oplog from an application

	Third-party MeteorJS hosting solutions
	Meteor Galaxy
	Modulus.io
	Digital Ocean
	Database solutions

	Summary

	Chapter 8: Mobile Application Development
	Getting started
	Developing a simple mobile application
	The login interface
	The profile interface
	The contacts interface
	The messages interface

	Builds and deploying
	Hot code push

	More about the mobile app development
	Accessing plugin methods
	Debugging
	Debugging Android
	Debugging iOS

	Testing
	Packages
	The package development

	Summary

	Chapter 9: Best Practices, Patterns, and SEO
	Summarizing the concepts
	Publishing/subscribing
	DDP
	MergeBox
	MiniMongo
	Data retrieval from Mongo
	Session
	Sticky session
	Fibers
	Trackers
	Blaze
	Packages
	Build tools

	Best practices
	Securing database operations
	Database indexing
	Oplog tailing
	Error handling
	Testing
	Managing subscriptions
	Publish/subscribe only the necessary data
	Application directory structure
	Serving static assets
	Application namespacing
	Transformation classes
	Latency compensation
	Identifying performance and scalability issues

	Application patterns
	The package pattern
	Problems with the usual way of writing MeteorJS code
	What we must know about packages
	DigiNotes
	MVC
	SEO
	Spiderable

	ES2015 and MeteorJS
	Meet the community

	Summary

	Index

