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Preface
Mastering	ROS	for	Robotics	Programming	is	an	advanced	guide	of	ROS	that	is	very
suitable	for	readers	who	already	have	a	basic	knowledge	in	ROS.	ROS	is	widely	used	in
robotics	companies,	universities,	and	robotics	research	institutes	for	designing,	building,
and	simulating	a	robot	model	and	interfacing	it	into	real	hardware.	ROS	is	now	an
essential	requirement	for	Robotic	engineers;	this	guide	can	help	you	acquire	knowledge	of
ROS	and	can	also	help	you	polish	your	skills	in	ROS	using	interactive	examples.	Even
though	it	is	an	advanced	guide,	you	can	see	the	basics	of	ROS	in	the	first	chapter	to
refresh	the	concepts.	It	also	helps	ROS	beginners.	The	book	mainly	focuses	on	the
advanced	concepts	of	ROS,	such	as	ROS	Navigation	stack,	ROS	MoveIt!,	ROS	plugins,
nodelets,	controllers,	ROS	Industrial,	and	so	on.

You	can	work	with	the	examples	in	the	book	without	any	special	hardware;	however,	in
some	sections	you	can	see	the	interfacing	of	I/O	boards,	vision	sensors,	and	actuators	to
ROS.	To	work	with	this	hardware,	you	will	need	to	buy	it.

The	book	starts	with	an	introduction	to	ROS	and	then	discusses	how	to	build	a	robot
model	in	ROS	for	simulating	and	visualizing.	After	the	simulation	of	robots	using	Gazebo,
we	can	see	how	to	connect	the	robot	to	Navigation	stack	and	MoveIt!.	In	addition	to	this,
we	can	see	ROS	plugins,	controllers,	nodelets,	and	interfacing	of	I/O	boards	and	vision
sensors.	Finally,	we	can	see	more	about	ROS	Industrial	and	troubleshooting	and	best
practices	in	ROS.



What	this	book	covers
Chapter	1,	Introduction	to	ROS	and	Its	Package	Management,	gives	you	an	understanding
of	the	core	underlying	concepts	of	ROS	and	how	to	work	with	ROS	packages.

Chapter	2,	Working	with	3D	Robot	Modeling	in	ROS,	discusses	the	design	of	two	robots;
one	is	a	seven-DOF	(Degree	of	Freedom)	manipulator	and	the	other	is	a	differential	drive
robot.

Chapter	3,	Simulating	Robots	Using	ROS	and	Gazebo,	discusses	the	simulation	of	seven-
DOF	arms,	differential	wheeled	robots,	and	ROS	controllers	that	help	control	robot	joints
in	Gazebo.

Chapter	4,	Using	the	ROS	MoveIt!	and	Navigation	Stack,	interfaces	out-of-the-box
functionalities	such	as	robot	manipulation	and	autonomous	navigation	using	ROS	MoveIt!
and	Navigation	stack.

Chapter	5,	Working	with	Pluginlib,	Nodelets,	and	Gazebo	Plugins,	shows	some	of	the
advanced	concepts	in	ROS,	such	as	ROS	pluginlib,	nodelets,	and	Gazebo	plugins.	We	will
discuss	the	functionalities	and	application	of	each	concept	and	can	practice	one	example	to
demonstrate	its	working.

Chapter	6,	Writing	ROS	Controllers	and	Visualization	Plugins,	shows	how	to	write	a	basic
ROS	controller	for	PR2	robots	and	robots	similar	to	PR2.	After	creating	the	controller,	we
will	run	the	controller	using	the	PR2	simulation	in	Gazebo.	We	can	also	see	how	to	create
plugin	for	RViz.

Chapter	7,	Interfacing	I/O	Boards,	Sensors,	and	Actuators	to	ROS,	discusses	interfacing
some	hardware	components,	such	as	sensors	and	actuators,	with	ROS.	We	will	see	the
interfacing	of	sensors	using	I/O	boards,	such	as	Arduino,	Raspberry	Pi,	and	Odroid-C1,
with	ROS.

Chapter	8,	Programming	Vision	Sensors	using	ROS,	Open-CV,	and	PCL,	discusses	how	to
interface	various	vision	sensors	with	ROS	and	program	it	using	libraries	such	as	Open
Source	Computer	Vision	(Open-CV)	and	Point	Cloud	Library	(PCL).

Chapter	9,	Building	and	Interfacing	Differential	Drive	Mobile	Robot	Hardware	in	ROS,
helps	you	to	build	autonomous	mobile	robot	hardware	with	differential	drive	configuration
and	interface	it	with	ROS.	This	chapter	aims	at	giving	you	an	idea	of	building	a	custom
mobile	robot	and	interfacing	it	with	ROS.

Chapter	10,	Exploring	the	Advanced	Capabilities	of	ROS-MoveIt!,	discusses	the
capabilities	of	MoveIt!	such	as	collision	avoidance,	perception	using	3D	sensors,	grasping,
picking,	and	placing.	After	that,	we	can	see	the	interfacing	of	a	robotic	manipulator
hardware	with	MoveIt!

Chapter	11,	ROS	for	Industrial	Robots,	helps	you	understand	and	install	ROS-Industrial
packages	in	ROS.	We	can	see	how	to	develop	an	MoveIt!	IKFast	plugin	for	an	industrial
robot.



Chapter	12,	Troubleshooting	and	Best	Practices	in	ROS,	discusses	how	to	set	the	ROS
development	environment	in	Eclipse	IDE,	best	practices	in	ROS,	and	troubleshooting	tips
in	ROS.





What	you	need	for	this	book
You	should	have	a	good	PC	running	Linux	distribution,	preferably	Ubuntu	14.04.3	or
Ubuntu	15.04.

Readers	can	use	a	laptop	or	PC	with	a	graphics	card,	and	a	RAM	of	4	GB	to	8	GB	is
preferred.	This	is	actually	for	running	high-end	simulation	in	Gazebo	and	also	for
processing	Point	cloud	and	for	computer	vision.

The	readers	should	have	sensors,	actuators,	and	the	I/O	board	mentioned	in	the	book	and
should	have	the	provision	to	connect	them	all	to	their	PC.

The	readers	also	need	a	Git	tool	installed	to	clone	the	packages	files.

If	you	are	a	Windows	user,	then	it	will	be	good	to	download	Virtual	box	and	set	up	Ubuntu
in	that.	Working	with	Virtual	box	can	have	issues	when	we	try	to	interface	real	hardware
with	ROS,	so	it	would	be	good	if	you	could	work	with	the	real	system	itself.





Who	this	book	is	for
If	you	are	a	robotics	enthusiast	or	a	researcher	who	wants	to	learn	more	about	building
robot	applications	using	ROS,	this	book	is	for	you.	In	order	to	learn	from	this	book,	you
should	have	a	basic	knowledge	of	ROS,	GNU/Linux,	and	C++	programming	concepts.
The	book	will	also	be	good	for	programmers	who	want	to	explore	the	advanced	features	of
ROS.





Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Create	a
folder	called	launch	and	inside	this	folder	create	the	following	launch	file	called
start_laser.launch.”

A	block	of	code	is	set	as	follows:

#include	<ros/ros.h>

#include	<moveit/robot_model_loader/robot_model_loader.h>

#include	<moveit/planning_scene/planning_scene.h>

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

		robot_model_loader::RobotModelLoader	

robot_model_loader("robot_description");

		robot_model::RobotModelPtr	kinematic_model	=	

robot_model_loader.getModel();

		planning_scene::PlanningScene	planning_scene(kinematic_model);

Any	command-line	input	or	output	is	written	as	follows:

$	sudo	apt-get	update

$	sudo	apt-get	install	ros-indigo-perception

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Click	on	camera	|
driver	and	tickColor	Transformer.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>	or
<qboticslabs@gmail.com>,	and	mention	the	book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
mailto:qboticslabs@gmail.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.	You	can	also	download	chapter	codes	from
https://github.com/qboticslabs/mastering_ros.git.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/qboticslabs/mastering_ros.git


Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/B04782_ColoredImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/B04782_ColoredImages.pdf


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com




Chapter	1.	Introduction	to	ROS	and	Its
Package	Management
This	is	an	introductory	chapter	that	gives	you	an	understanding	of	the	core	underlying
concepts	of	ROS	and	how	to	work	with	ROS	packages.	We	will	also	go	through	the	ROS
concepts	such	as	ROS	master,	nodes,	parameter	server,	topic,	message,	service,	and
actionlib	to	refresh	your	memory	of	the	concepts	you	already	know.

The	basic	building	blocks	of	the	ROS	software	framework	are	ROS	packages.	We	will	see
how	to	create,	build,	and	maintain	a	ROS	package.	We	will	also	see	how	to	create	a	wiki
page	for	our	package	on	the	ROS	website	to	contribute	to	the	ROS	community.

In	this	chapter,	we	will	cover	the	following	topics:

Why	should	we	learn	ROS?
Why	we	prefer	ROS	for	robot
Why	we	do	not	prefer	ROS	for	robot
Understanding	the	ROS	file	system	level
Understanding	the	ROS	computation	graph	level
Understanding	ROS	nodes,	messages,	topics,	services,	bags
Understanding	ROS	Master
Using	ROS	Parameter
Understanding	ROS	community	level
Running	ROS	Master	and	ROS	Parameter	server
Creating	a	ROS	package
Working	with	ROS	topics
Adding	custom	msg	and	srv	files
Working	with	ROS	services
Working	with	ROS	actionlib
Creating	launch	files
Applications	of	topics,	services,	and	actionlib
Maintaining	the	ROS	package
Releasing	your	ROS	package
Creating	a	wiki	page	for	your	ROS	package



Why	should	we	learn	ROS?
Robot	Operating	System	(ROS)	is	a	trending	robot	application	development	platform
that	provides	various	features	such	as	message	passing,	distributed	computing,	code
reusing,	and	so	on.

The	ROS	project	was	started	in	2007	with	the	name	Switchyard	by	Morgan	Quigley
(http://wiki.osrfoundation.org/morgan)	as	part	of	the	Stanford	STAIR	robot	project.	The
main	development	of	ROS	happened	at	Willow	Garage	(https://www.willowgarage.com/).

The	ROS	community	is	growing	very	fast	and	there	are	many	users	and	developers
worldwide.	Most	of	the	high-end	robotics	companies	are	now	porting	their	software	to
ROS.	This	trend	is	also	visible	in	industrial	robotics,	in	which	companies	are	switching
from	proprietary	robotic	application	to	ROS.

The	ROS	industrial	movement	has	gained	momentum	in	the	past	few	years	owing	to	the
large	amount	of	research	done	in	that	field.	ROS	Industrial	can	extend	the	advanced
capabilities	of	ROS	to	manufacturing.	The	increasing	applications	of	ROS	can	generate	a
lot	of	job	opportunities	in	this	field.	So	after	some	years,	knowledge	in	ROS	will	be	an
essential	requirement	for	a	robotics	engineer.

http://wiki.osrfoundation.org/morgan
https://www.willowgarage.com/




Why	we	prefer	ROS	for	robots
Imagine	that	we	are	going	to	build	an	autonomous	mobile	robot.	Here	are	some	of	the
reasons	why	people	choose	ROS	over	other	robotic	platforms	such	as	Player,	YARP,
Orocos,	MRPT,	and	so	on:

High-end	capabilities:	ROS	comes	with	ready	to	use	capabilities,	for	example,
SLAM	(Simultaneous	Localization	and	Mapping)	and	AMCL	(Adaptive	Monte
Carlo	Localization)	packages	in	ROS	can	be	used	for	performing	autonomous
navigation	in	mobile	robots	and	the	MoveIt	package	for	motion	planning	of	robot
manipulators.	These	capabilities	can	directly	be	used	in	our	robot	software	without
any	hassle.	These	capabilities	are	its	best	form	of	implementation,	so	writing	new
code	for	existing	capabilities	are	like	reinventing	wheels.	Also,	these	capabilities	are
highly	configurable;	we	can	fine-tune	each	capability	using	various	parameters.
Tons	of	tools:	ROS	is	packed	with	tons	of	tools	for	debugging,	visualizing,	and
performing	simulation.	The	tools	such	as	rqt_gui,	RViz	and	Gazebo	are	some	of	the
strong	open	source	tools	for	debugging,	visualization,	and	simulation.	The	software
framework	that	has	these	many	tools	is	very	rare.
Support	high-end	sensors	and	actuators:	ROS	is	packed	with	device	drivers	and
interface	packages	of	various	sensors	and	actuators	in	robotics.	The	high-end	sensors
include	Velodyne-LIDAR,	Laser	scanners,	Kinect,	and	so	on	and	actuators	such	as
Dynamixel	servos.	We	can	interface	these	components	to	ROS	without	any	hassle.
Inter-platform	operability:	The	ROS	message-passing	middleware	allows
communicating	between	different	nodes.	These	nodes	can	be	programmed	in	any
language	that	has	ROS	client	libraries.	We	can	write	high	performance	nodes	in	C++
or	C	and	other	nodes	in	Python	or	Java.	This	kind	of	flexibility	is	not	available	in
other	frameworks.
Modularity:	One	of	the	issues	that	can	occur	in	most	of	the	standalone	robotic
applications	are,	if	any	of	the	threads	of	main	code	crash,	the	entire	robot	application
can	stop.	In	ROS,	the	situation	is	different,	we	are	writing	different	nodes	for	each
process	and	if	one	node	crashes,	the	system	can	still	work.	Also,	ROS	provides	robust
methods	to	resume	operation	even	if	any	sensors	or	motors	are	dead.
Concurrent	resource	handling:	Handling	a	hardware	resource	by	more	than	two
processes	is	always	a	headache.	Imagine,	we	want	to	process	an	image	from	a	camera
for	face	detection	and	motion	detection,	we	can	either	write	the	code	as	a	single
entity	that	can	do	both,	or	we	can	write	a	single	threaded	code	for	concurrency.	If	we
want	to	add	more	than	two	features	in	threads,	the	application	behavior	will	get
complex	and	will	be	difficult	to	debug.	But	in	ROS,	we	can	access	the	devices	using
ROS	topics	from	the	ROS	drivers.	Any	number	of	ROS	nodes	can	subscribe	to	the
image	message	from	the	ROS	camera	driver	and	each	node	can	perform	different
functionalities.	It	can	reduce	the	complexity	in	computation	and	also	increase	the
debug-ability	of	the	entire	system.
Active	community:	When	we	choose	a	library	or	software	framework,	especially
from	an	open	source	community,	one	of	the	main	factors	that	needs	to	be	checked



before	using	it	is	its	software	support	and	developer	community.	There	is	no
guarantee	of	support	from	an	open	source	tool.	Some	tools	provide	good	support	and
some	tools	don’t.	In	ROS,	the	support	community	is	active.	There	is	a	web	portal	to
handle	the	support	queries	from	the	users	too	(http://answers.ros.org).	It	seems	that
the	ROS	community	has	a	steady	growth	in	developers	worldwide.

There	are	many	reasons	to	choose	ROS	other	than	the	preceding	points.

Next,	we	can	check	the	various	reasons	why	people	don’t	use	ROS.	Here	are	some	of	the
existing	reasons.

http://answers.ros.org




Why	some	do	not	prefer	ROS	for	robots
Here	are	some	of	the	reasons	why	people	do	not	prefer	ROS	for	their	robotic	projects:

Difficulty	in	learning:	It	will	be	difficult	to	learn	ROS	from	their	default	wiki	pages.
Most	users	depend	on	books	to	start	with	ROS.	Even	this	book	covers	only	the
basics;	learning	ROS	is	going	to	be	bit	difficult.
Difficulties	in	starting	with	simulation:	The	main	simulator	in	ROS	is	Gazebo.
Even	though	Gazebo	works	well,	to	get	started	with	Gazebo	is	not	an	easy	task.	The
simulator	has	no	inbuilt	features	to	program.	Complete	simulation	is	done	only
through	coding	in	ROS.	When	we	compare	Gazebo	with	other	simulators	such	as	V-
REP	and	Webots,	they	have	inbuilt	functionalities	to	prototype	and	program	the
robot.	They	also	have	a	rich	GUI	toolset	and	support	a	wide	variety	of	robots	and
have	ROS	interfaces	too.	These	tools	are	proprietary,	but	can	deliver	a	decent	job.
The	toughness	of	learning	simulation	using	Gazebo	and	ROS	is	a	reason	for	not	using
it	in	their	projects.
Difficulties	in	robot	modeling:	The	robot	modeling	in	ROS	is	performed	using
URDF,	which	is	an	XML	based	robot	description.	In	short,	we	need	to	write	the	robot
model	as	a	description	using	URDF	tags.	In	V-REP,	we	can	directly	build	the	3D
robot	model	in	the	GUI	itself,	or	we	can	import	the	mesh.	In	ROS,	we	should	write
the	robot	model	definitions	using	URDF	tags.	There	is	a	SolidWorks	plugin	to
convert	a	3D	model	from	SolidWorks	to	URDF.	But	if	we	use	other	3D	CAD	tools,
there	are	no	options	at	all.	Learning	to	model	a	robot	in	ROS	will	take	a	lot	of	time
and	building	using	URDF	tags	is	also	time	consuming	compared	to	other	simulators.
Need	for	a	computer:	We	always	need	a	computer	to	run	ROS.	Small	robots	that
work	completely	on	microcontrollers	don’t	require	a	ROS	system.	ROS	is	only
required	when	we	want	to	perform	high-level	functionalities	such	as	autonomous
navigation	and	motion	planning.	In	basic	robots,	there	is	no	need	to	use	ROS	if	you
are	not	planning	higher	level	functionalities	on	the	robot.
ROS	in	commercial	robot	products:	When	we	deploy	ROS	on	a	commercial
product,	a	lot	of	things	need	to	be	taken	care	of.	One	thing	is	the	code	quality.	ROS
codes	follow	a	standard	coding	style	and	keep	best	practices	for	maintaining	the	code
too.	We	have	to	check	whether	it	satisfies	the	quality	level	required	for	our	product.
We	might	have	to	do	additional	work	to	improve	the	quality	of	code.	Most	of	the
code	in	ROS	is	contributed	by	researchers	from	universities,	so	if	we	are	not	satisfied
with	the	ROS	code	quality,	it	is	better	to	write	your	own	code,	which	is	specific	to	the
robot	and	only	use	the	ROS	core	functionalities	if	required.

We	now	know	where	we	have	to	use	ROS	and	where	we	do	not.	If	ROS	is	really	required
for	your	robot,	let’s	start	discussing	ROS	in	more	detail.	First,	we	can	see	the	underlying
core	concepts	of	ROS.	There	are	mainly	three	levels	in	ROS:	file	system	level,
computation	graph	level,	and	community	level.	We	can	have	a	look	at	each	level	in	short.





Understanding	the	ROS	file	system	level
Similar	to	an	operating	system,	ROS	files	are	also	organized	on	the	hard	disk	in	a
particular	fashion.	In	this	level,	we	can	see	how	these	files	are	organized	on	the	disk.	The
following	graph	shows	how	ROS	files	and	folder	are	organized	on	the	disk:

Figure	1	:	ROS	File	system	level

Here	are	the	explanations	of	each	block	in	the	file	system

Packages:	The	ROS	packages	are	the	most	basic	unit	of	the	ROS	software.	It
contains	the	ROS	runtime	process	(nodes),	libraries,	configuration	files,	and	so	on,
which	are	organized	together	as	a	single	unit.	Packages	are	the	atomic	build	item	and
release	item	in	the	ROS	software.
Package	manifest:	The	package	manifest	file	is	inside	a	package	that	contains
information	about	the	package,	author,	license,	dependencies,	compilation	flags,	and
so	on.	The	package.xml	file	inside	the	ROS	package	is	the	manifest	file	of	that
package.
Meta	packages:	The	term	meta	package	is	used	for	a	group	of	packages	for	a	special
purpose.	In	an	older	version	of	ROS	such	as	Electric	and	Fuerte,	it	was	called	stacks,
but	later	it	was	removed,	as	simplicity	and	meta	packages	came	to	existence.	One	of
the	examples	of	a	meta	package	is	the	ROS	navigation	stack.
Meta	packages	manifest:	The	meta	package	manifest	is	similar	to	the	package
manifest;	differences	are	that	it	might	include	packages	inside	it	as	runtime
dependencies	and	declare	an	export	tag.
Messages	(.msg):	The	ROS	messages	are	a	type	of	information	that	is	sent	from	one
ROS	process	to	the	other.	We	can	define	a	custom	message	inside	the	msg	folder
inside	a	package	(my_package/msg/	MyMessageType.msg).	The	extension	of	the
message	file	is	.msg.



Services	(.srv):	The	ROS	service	is	a	kind	of	request/reply	interaction	between
processes.	The	reply	and	request	data	types	can	be	defined	inside	the	srv	folder
inside	the	package	(my_package/srv/MyServiceType.srv).
Repositories:	Most	of	the	ROS	packages	are	maintained	using	a	Version	Control
System	(VCS)	such	as	Git,	subversion	(svn),	mercurial	(hg),	and	so	on.	The
collection	of	packages	that	share	a	common	VCS	can	be	called	repositories.	The
package	in	the	repositories	can	be	released	using	a	catkin	release	automation	tool
called	bloom.

The	following	screenshot	gives	you	an	idea	of	files	and	folders	of	a	package	that	we	are
going	to	make	in	the	upcoming	sections:

Figure	2	:	List	of	files	inside	the	exercise	package



ROS	packages
A	typical	structure	of	a	ROS	package	is	shown	here:

Figure	3	:	Structure	of	a	typical	ROS	package

We	can	discuss	the	use	of	each	folder	as	follows:

config:	All	configuration	files	that	are	used	in	this	ROS	package	are	kept	in	this
folder.	This	folder	is	created	by	the	user	and	is	a	common	practice	to	name	the	folder
config	to	keep	the	configuration	files	in	it.
include/package_name:	This	folder	consists	of	headers	and	libraries	that	we	need	to
use	inside	the	package.
scripts:	This	folder	keeps	executable	Python	scripts.	In	the	block	diagram,	we	can
see	two	example	scripts.
src:	This	folder	stores	the	C++	source	codes.	We	can	see	two	examples	of	the	source
code	in	the	block	diagram.
launch:	This	folder	keeps	the	launch	files	that	are	used	to	launch	one	or	more	ROS
nodes.
msg:	This	folder	contains	custom	message	definitions.
srv:	This	folder	contains	the	service	definitions.
action:	This	folder	contains	the	action	definition.	We	will	see	more	about	actionlib
in	the	upcoming	sections.
package.xml:	This	is	the	package	manifest	file	of	this	package.
CMakeLists.txt:	This	is	the	CMake	build	file	of	this	package.

We	need	to	know	some	commands	to	create,	modify,	and	work	with	the	ROS	packages.
Here	are	some	of	the	commands	used	to	work	with	ROS	packages:

catkin_create_pkg:	This	command	is	used	to	create	a	new	package
rospack:	This	command	is	used	to	get	information	about	the	package	in	the	file
system
catkin_make:	This	command	is	used	to	build	the	packages	in	the	workspace
rosdep:	This	command	will	install	the	system	dependencies	required	for	this	package

To	work	with	packages,	ROS	provides	a	bash-like	command	called	rosbash



(http://wiki.ros.org/rosbash),	which	can	be	used	to	navigate	and	manipulate	the	ROS
package.	Here	are	some	of	the	rosbash	commands:

roscd:	This	command	is	used	to	change	the	package	folder.	If	we	give	the	argument
a	package	name,	it	will	switch	to	that	package	folder.
roscp:	This	command	is	used	to	copy	a	file	from	a	package.
rosed:	This	command	is	used	to	edit	a	file.
rosrun:	This	command	is	used	to	run	an	executable	inside	a	package.

The	definition	of	package.xml	of	a	typical	package	is	shown	as	follows:

Figure	4	:	Structure	of	package.xml

The	package.xml	file	consists	of	the	package	name,	version	of	the	package,	the	package
description,	author	details,	package	build	dependencies,	and	runtime	dependencies.	The
<build_depend></build_depend>	tag	includes	the	packages	that	are	necessary	to	build
the	source	code	of	the	package.	The	packages	inside	the	<run_depend></run_depend>	tag
are	necessary	during	runtime	of	the	package	node.

http://wiki.ros.org/rosbash


ROS	meta	packages
Meta	packages	are	specialized	packages	in	ROS	that	only	contain	one	file,	that	is,	a
package.xml	file.	It	doesn’t	contain	folders	and	files	similar	to	a	normal	package.

Meta	packages	simply	group	a	set	of	multiple	packages	as	a	single	logical	package.	In	the
package.xml	file,	the	meta	package	contains	an	export	tag,	as	shown	here:

				<export>

								<metapackage/>

				</export>	

Also,	in	meta	packages,	there	are	no	<buildtool_depend>	dependencies	for	catkin,	there
are	only	<run_depend>	dependencies,	which	are	the	packages	grouped	in	the	meta
package.

The	ROS	navigation	stack	is	a	good	example	of	meta	packages.	If	ROS	is	installed,	we
can	try	the	following	command,	by	switching	to	the	navigation	meta	package	folder:

$	roscd	navigation

Open	package.xml	using	gedit	text	editor

$	gedit	package.xml

This	is	a	lengthy	file;	here	is	a	stripped	down	version	of	it:

Figure	5	:	Structure	of	meta-package	package.xml



ROS	messages
The	ROS	nodes	can	publish	data	having	a	particular	type.	The	types	of	data	are	described
using	a	simplified	message	description	language,	also	called	ROS	messages.	These
datatype	descriptions	can	be	used	to	generate	source	code	for	the	appropriate	message	type
in	different	target	languages.

The	data	type	description	of	ROS	messages	are	stored	in	.msg	files	in	the	msg	subdirectory
of	a	ROS	package.

The	message	definition	can	consist	of	two	types:	fields	and	constants.	The	field	is	split
into	field	types	and	field	name.	Field	types	is	the	data	type	of	the	transmitting	message	and
field	name	is	the	name	of	it.	The	constants	define	a	constant	value	in	the	message	file.

Here	is	an	example	of	message	definitions:

int32	number

string	name

float32	speed

Here,	the	first	part	is	the	field	type	and	second	is	the	field	name.	The	field	type	is	the	data
type	and	the	field	name	can	be	used	to	access	the	value	from	the	message.	For	example,
we	can	use	msg.number	for	accessing	the	value	of	the	number	from	the	message.

Here	is	a	table	to	show	some	of	the	built-in	field	types	that	we	can	use	in	our	message:

Primitive	type Serialization C++ Python

bool(1) unsigned	8-bit	int uint8_t(2) bool

int8 signed	8-bit	int int8_t int

uint8 unsigned	8-bit	int uint8_t int	(3)

int16 signed	16-bit	int int16_t int

uint16 unsigned	16-bit	int uint16_t int

int32 signed	32-bit	int int32_t int

uint32 unsigned	32-bit	int uint32_t int

int64 signed	64-bit	int int64_t long

uint64 unsigned	64-bit	int uint64_t long

float32 32-bit	IEEE	float float float

float64 64-bit	IEEE	float double float

string ascii	string(4) std::string string

time secs/nsecs	unsigned	32-bit	ints ros::Time rospy.Time



duration secs/nsecs	signed	32-bit	ints ros::Duration rospy.Duration

A	special	type	of	ROS	message	is	called	message	headers.	Headers	can	carry	information
such	as	time,	frame	of	reference	or	frame_id,	and	sequence	number.	Using	headers,	we
will	get	numbered	messages	and	more	clarity	in	who	is	sending	the	current	message.	The
header	information	is	mainly	used	to	send	data	such	as	robot	joint	transforms	(TF).	Here	is
an	example	of	the	message	header:

uint32	seq

time	stamp

string	frame_id

The	rosmsg	command	tool	can	be	used	to	inspect	the	message	header	and	the	field	types.
The	following	command	helps	to	view	the	message	header	of	a	particular	message:

$	rosmsg	show	std_msgs/Header

This	will	give	you	an	output	like	the	preceding	example	message	header.	We	can	see	more
about	the	rosmsg	command	and	how	to	work	with	custom	message	definitions	in	the
upcoming	sections.



The	ROS	services
The	ROS	services	are	a	type	request/response	communication	between	ROS	nodes.	One
node	will	send	a	request	and	wait	until	it	gets	a	response	from	the	other.	The
request/response	communication	is	also	using	the	ROS	message	description.

Similar	to	the	message	definitions	using	the	.msg	file,	we	have	to	define	the	service
definition	in	another	file	called	.srv,	which	has	to	be	kept	inside	the	srv	sub	directory	of
the	package.	Similar	to	the	message	definition,	a	service	description	language	is	used	to
define	the	ROS	service	types.

An	example	service	description	format	is	as	follows:

#Request	message	type

string	str

---

#Response	message	type

string	str

The	first	section	is	the	message	type	of	request	that	is	separated	by	---	and	in	the	next
section	is	the	message	type	of	response.	In	these	examples,	both	Request	and	Response
are	strings.

In	the	upcoming	sections,	we	can	see	how	to	work	with	ROS	services.





Understanding	the	ROS	computation
graph	level
The	computation	in	ROS	is	done	using	a	network	of	process	called	ROS	nodes.	This
computation	network	can	be	called	the	computation	graph.	The	main	concepts	in	the
computation	graph	are	ROS	Nodes,	Master,	Parameter	server,	Messages,	Topics,
Services,	and	Bags.	Each	concept	in	the	graph	is	contributed	to	this	graph	in	different
ways.

The	ROS	communication	related	packages	including	core	client	libraries	such	as	roscpp
and	rospython	and	the	implementation	of	concepts	such	as	topics,	nodes,	parameters,	and
services	are	included	in	a	stack	called	ros_comm	(http://wiki.ros.org/ros_comm).

This	stack	also	consists	of	tools	such	as	rostopic,	rosparam,	rosservice,	and	rosnode	to
introspect	the	preceding	concepts.

The	ros_comm	stack	contains	the	ROS	communication	middleware	packages	and	these
packages	are	collectively	called	ROS	Graph	layer.

Figure	6	:	Structure	of	the	ROS	Graph	layer

The	following	are	abstracts	of	each	graph’s	concepts:

Nodes:	Nodes	are	the	process	that	perform	computation.	Each	ROS	node	is	written
using	ROS	client	libraries	such	as	roscpp	and	rospy.	Using	client	library	APIs,	we
can	implement	different	types	of	communication	methods	in	ROS	nodes.	In	a	robot,
there	will	be	many	nodes	to	perform	different	kinds	of	tasks.	Using	the	ROS
communication	methods,	it	can	communicate	with	each	other	and	exchange	data.
One	of	the	aims	of	ROS	nodes	is	to	build	simple	processes	rather	than	a	large	process
with	all	functionality.	Being	a	simple	structure,	ROS	nodes	are	easy	to	debug	too.

http://wiki.ros.org/ros_comm


Master:	The	ROS	Master	provides	name	registration	and	lookup	to	the	rest	of	the
nodes.	Nodes	will	not	be	able	to	find	each	other,	exchange	messages,	or	invoke
services	without	a	ROS	Master.	In	a	distributed	system,	we	should	run	the	master	on
one	computer,	and	other	remote	nodes	can	find	each	other	by	communicating	with
this	master.
Parameter	Server:	The	parameter	server	allows	you	to	keep	the	data	to	be	stored	in
a	central	location.	All	nodes	can	access	and	modify	these	values.	Parameter	server	is
a	part	of	ROS	Master
Messages:	Nodes	communicate	with	each	other	using	messages.	Messages	are
simply	a	data	structure	containing	the	typed	field,	which	can	hold	a	set	of	data	and
that	can	be	sent	to	another	node.	There	are	standard	primitive	types	(integer,	floating
point,	Boolean,	and	so	on)	and	these	are	supported	by	ROS	messages.	We	can	also
build	our	own	message	types	using	these	standard	types.
Topics:	Each	message	in	ROS	is	transported	using	named	buses	called	topics.	When
a	node	sends	a	message	through	a	topic,	then	we	can	say	the	node	is	publishing	a
topic.	When	a	node	receives	a	message	through	a	topic,	then	we	can	say	that	the	node
is	subscribing	to	a	topic.	The	publishing	node	and	subscribing	node	are	not	aware	of
each	other’s	existence.	We	can	even	subscribe	a	topic	that	might	not	have	any
publisher.	In	short,	the	production	of	information	and	consumption	of	it	are
decoupled.	Each	topic	has	a	unique	name,	and	any	node	can	access	this	topic	and
send	data	through	it	as	long	as	they	have	the	right	message	type.
Services:	In	some	robot	applications,	a	publish/subscribe	model	will	not	be	enough	if
it	needs	a	request/response	interaction.	The	publish/subscribe	model	is	a	kind	of	one-
way	transport	system	and	when	we	work	with	a	distributed	system,	we	might	need	a
request/response	kind	of	interaction.	ROS	Services	are	used	in	these	case.	We	can
define	a	service	definition	that	contains	two	parts;	one	is	for	requests	and	the	other	is
for	responses.	Using	ROS	Services,	we	can	write	a	server	node	and	client	node.	The
server	node	provides	the	service	under	a	name,	and	when	the	client	node	sends	a
request	message	to	this	server,	it	will	respond	and	send	the	result	to	the	client.	The
client	might	need	to	wait	until	the	server	responds.	The	ROS	service	interaction	is
like	a	remote	procedure	call.
Bags:	Bags	are	a	format	for	saving	and	playing	back	ROS	message	data.	Bags	are	an
important	mechanism	for	storing	data,	such	as	sensor	data,	which	can	be	difficult	to
collect	but	is	necessary	for	developing	and	testing	robot	algorithms.	Bags	are	very
useful	features	when	we	work	with	complex	robot	mechanisms.

The	following	graph	shows	how	the	nodes	communicate	with	each	other	using	topics.	The
topics	are	mentioned	in	a	rectangle	and	nodes	are	represented	in	ellipses.	The	messages
and	parameters	are	not	included	in	this	graph.	These	kinds	of	graphs	can	be	generated
using	a	tool	called	rqt_graph	(http://wiki.ros.org/rqt_graph).

http://wiki.ros.org/rqt_graph


Figure	7	:	Graph	of	communication	between	nodes	using	topics



Understanding	ROS	nodes
ROS	nodes	are	a	process	that	perform	computation	using	ROS	client	libraries	such	as
roscpp	and	rospy.	One	node	can	communicate	with	other	nodes	using	ROS	Topics,
Services,	and	Parameters.

A	robot	might	contain	many	nodes,	for	example,	one	node	processes	camera	images,	one
node	handles	serial	data	from	the	robot,	one	node	can	be	used	to	compute	odometry,	and
so	on.

Using	nodes	can	make	the	system	fault	tolerant.	Even	if	a	node	crashes,	an	entire	robot
system	can	still	work.	Nodes	also	reduce	the	complexity	and	increase	debug-ability
compared	to	monolithic	codes	because	each	node	is	handling	only	a	single	function.

All	running	nodes	should	have	a	name	assigned	to	identify	them	from	the	rest	of	the
system.	For	example,	/camera_node	could	be	a	name	of	a	node	that	is	broadcasting
camera	images.

There	is	a	rosbash	tool	to	introspect	ROS	nodes.	The	rosnode	command	can	be	used	to
get	information	about	a	ROS	node.	Here	are	the	usages	of	rosnode:

$	rosnode	info	[node_name]:	This	will	print	the	information	about	the	node
$	rosnode	kill	[node_name]:	This	will	kill	a	running	node
$	rosnode	list:	This	will	list	the	running	nodes
$	rosnode	machine	[machine_name]:	This	will	list	the	nodes	running	on	a
particular	machine	or	a	list	of	machines
$	rosnode	ping:	This	will	check	the	connectivity	of	a	node
$	rosnode	cleanup:	This	will	purge	the	registration	of	unreachable	nodes

We	will	see	example	nodes	using	the	roscpp	client	and	will	discuss	the	working	of	ROS
nodes	that	use	functionalities	such	ROS	Topics,	Service,	Messages,	and	actionlib.



ROS	messages
ROS	nodes	communicate	with	each	other	by	publishing	messages	to	a	topic.	As	we
discussed	earlier,	messages	are	a	simple	data	structure	containing	field	types.	The	ROS
message	supports	standard	primitive	datatypes	and	arrays	of	primitive	types.

Nodes	can	also	exchange	information	using	service	calls.	Services	are	also	messages,	the
service	message	definitions	are	defined	inside	the	srv	file.

We	can	access	the	message	definition	using	the	following	method.	For	example,	to	access
std_msgs/msg/String.msg,	we	can	use	std_msgs/String.	If	we	are	using	the	roscpp
client,	we	have	to	include	std_msgs/String.h	for	the	string	message	definition.

In	addition	to	message	data	type,	ROS	uses	an	MD5	checksum	comparison	to	confirm
whether	the	publisher	and	subscriber	exchange	the	same	message	data	types.

ROS	has	inbuilt	tools	called	rosmsg	to	get	information	about	ROS	messages.	Here	are
some	parameters	used	along	with	rosmsg:

$	rosmsg	show	[message]:	This	shows	the	message	description
$	rosmsg	list:	This	lists	all	messages
$	rosmsg	md5	[message]:	This	displays	md5sum	of	a	message
$	rosmsg	package	[package_name]:	This	lists	messages	in	a	package
$	rosmsg	packages	[package_1]	[package_2]:	This	lists	packages	that	contain
messages



ROS	topics
ROS	topics	are	named	buses	in	which	ROS	nodes	exchange	messages.	Topics	can
anonymously	publish	and	subscribe,	which	means	that	the	production	of	messages	is
decoupled	from	the	consumption.	The	ROS	nodes	are	not	interested	to	know	which	node
is	publishing	the	topic	or	subscribing	topics,	it	only	looks	for	the	topic	name	and	whether
the	message	types	of	publisher	and	subscriber	are	matching.

The	communication	using	topics	are	unidirectional,	if	we	want	to	implement
request/response	such	as	communication,	we	have	to	switch	to	ROS	services.

The	ROS	nodes	communicate	with	topics	using	TCP/IP-based	transport	known	as
TCPROS.	This	method	is	the	default	transport	method	used	in	ROS.	Another	type	of
communication	is	UDPROS,	which	has	low-latency,	loose	transport,	and	is	only	suited	for
teleoperation.

The	ROS	topic	tool	can	be	used	to	get	information	about	ROS	topics.	Here	is	the	syntax	of
this	command:

$	rostopic	bw	/topic:	This	command	will	display	the	bandwidth	used	by	the	given
topic
$	rostopic	echo	/topic:	This	command	will	print	the	content	of	the	given	topic
$	rostopic	find	/message_type:	This	command	will	find	topics	using	the	given
message	type
$	rostopic	hz	/topic:	This	command	will	display	the	publishing	rate	of	the	given
topic
$	rostopic	info	/topic:	This	command	will	print	information	about	an	active
topic
$	rostopic	list:	This	command	will	list	all	active	topics	in	the	ROS	system
$	rostopic	pub	/topic	message_type	args:	This	command	can	be	used	to	publish
a	value	to	a	topic	with	a	message	type
$	rostopic	type	/topic:	This	will	display	the	message	type	of	the	given	topic



ROS	services
When	we	need	a	request/response	kind	of	communication	in	ROS,	we	have	to	use	the
ROS	services.	ROS	topics	can’t	do	this	kind	of	communication	because	it	is
unidirectional.	ROS	services	are	mainly	used	in	a	distributed	system.

The	ROS	services	is	defined	using	a	pair	of	messages.	We	have	to	define	a	request
datatype	and	a	response	datatype	in	a	srv	file.	The	srv	files	are	kept	in	a	srv	folder	inside
a	package.

In	ROS	services,	one	node	acts	as	a	ROS	server	in	which	the	service	client	can	request	the
service	from	the	server.	If	the	server	completes	the	service	routine,	it	will	send	the	results
to	the	service	client.

The	ROS	service	definition	can	be	accessed	by	the	following	method,	for	example,	if
my_package/srv/Image.srv	can	be	accessed	by	my_package/Image.

In	ROS	services	also,	there	is	an	MD5	checksum	that	checks	in	the	nodes.	If	the	sum	is
equal,	then	only	the	server	responds	to	the	client.

There	are	two	ROS	tools	to	get	information	about	the	ROS	service.	The	first	tool	is
rossrv,	which	is	similar	to	rosmsg,	and	is	used	to	get	information	about	service	types.	The
next	command	is	rosservice,	which	is	used	to	list	and	query	about	the	running	ROS
services.

The	following	explain	how	to	use	the	rosservice	tool	to	get	information	about	the
running	services:

$	rosservice	call	/service	args:	This	tool	will	call	the	service	using	the	given
arguments
$	rosservice	find	service_type:	This	command	will	find	services	in	the	given
service	type
$	rosservice	info	/services:	This	will	print	information	about	the	given	service
$	rosservice	list:	This	command	will	list	the	active	services	running	on	the
system
$	rosservice	type	/service:	This	command	will	print	the	service	type	of	a	given
service
$	rosservice	uri	/service:	This	tool	will	print	the	service	ROSRPC	URI



ROS	bags
A	bag	file	in	ROS	is	for	storing	ROS	message	data	from	topics	and	services.	The	.bag
extension	is	used	to	represent	a	bag	file.

Bag	files	are	created	using	the	rosbag	command,	which	will	subscribe	one	or	more	topics
and	store	the	message’s	data	in	a	file	as	it’s	received.	This	file	can	play	the	same	topics	as
they	are	recorded	from	or	it	can	remap	the	existing	topics	too.

The	main	application	of	rosbag	is	data	logging.	The	robot	data	can	be	logged	and	can
visualize	and	process	offline.

The	rosbag	command	is	used	to	work	with	rosbag	files.	Here	are	the	commands	to	record
and	playback	a	bag	file:

$	rosbag	record	[topic_1]	[topic_2]	-o	[bag_name]:	This	command	will
record	the	given	topics	into	a	bag	file	that	is	given	in	the	command.	We	can	also
record	all	topics	using	the	-a	argument.
$	rosbag	play	[bag_name]:	This	will	playback	the	existing	bag	file.

Here	are	more	details	about	this	command:

http://wiki.ros.org/rosbag/Commandline

There	is	a	GUI	tool	to	handle	record	and	playback	of	bag	files	called	rqt_bag.	Go	to	the
following	link	to	know	more	about	rqt_bag:

http://wiki.ros.org/rqt_bag

http://wiki.ros.org/rosbag/Commandline
http://wiki.ros.org/rqt_bag


Understanding	ROS	Master
ROS	Master	is	much	like	a	DNS	server.	When	any	node	starts	in	the	ROS	system,	it	will
start	looking	for	ROS	Master	and	register	the	name	of	the	node	in	it.	So	ROS	Master	has
the	details	of	all	nodes	currently	running	on	the	ROS	system.	When	any	details	of	the
nodes	change,	it	will	generate	a	call-back	and	update	with	the	latest	details.	These	node
details	are	useful	for	connecting	with	each	node.

When	a	node	starts	publishing	a	topic,	the	node	will	give	the	details	of	the	topic	such	as
name	and	data	type	to	ROS	Master.	ROS	Master	will	check	whether	any	other	nodes	are
subscribed	to	the	same	topic.	If	any	nodes	are	subscribed	to	the	same	topic,	ROS	Master
will	share	the	node	details	of	the	publisher	to	the	subscriber	node.	After	getting	the	node
details,	these	two	nodes	will	interconnect	using	the	TCPROS	protocol,	which	is	based	on
TCP/IP	sockets.	After	connecting	to	the	two	nodes,	ROS	Master	has	no	role	in	controlling
them.	We	might	be	able	to	stop	either	the	publisher	node	or	the	subscriber	node	according
to	our	wish.	If	we	stop	any	nodes,	it	will	check	with	ROS	Master	once	again.	This	same
method	is	for	the	ROS	services.

The	nodes	are	written	using	the	ROS	client	libraries	such	as	roscpp	and	rospy.	These
clients	interact	with	ROS	Master	using	XMLRPC	(XML	Remote	Procedure	Call)	based
APIs,	which	act	as	the	backend	of	the	ROS	system	APIs.

The	ROS_MASTER_URI	environment	variable	contains	the	IP	and	port	of	ROS	Master.	Using
this	variable,	ROS	nodes	can	locate	ROS	Master.	If	this	variable	is	wrong,	the
communication	between	nodes	will	not	take	place.	When	we	use	ROS	in	a	single	system,
we	can	use	the	IP	of	localhost	or	the	name	localhost	itself.	But	in	a	distributed	network,
in	which	computation	is	on	different	physical	computers,	we	should	define
ROS_MASTER_URI	properly,	only	then,	the	remote	node	could	find	each	other	and
communicate	with	each	other.	We	need	only	one	Master,	in	a	distributed	system,	and	it
should	run	on	a	computer	in	which	all	other	computers	can	ping	it	properly	to	ensure	that
remote	ROS	nodes	can	access	the	Master.

The	following	diagram	shows	an	illustration	of	how	ROS	Master	interacts	with	a
publishing	and	subscribing	node,	the	publisher	node	publishing	a	string	type	topic	with	a
“Hello	World”	message	and	the	subscriber	node	subscribes	to	this	topic.



Figure	8:	Communication	between	ROS	Master	and	Hello	World	publisher	and	subscriber

When	the	publisher	node	starts	publishing	the	“Hello	World”	message	in	a	particular
topic,	ROS	Master	gets	the	details	of	the	topic	and	details	of	the	node.	It	will	search
whether	any	node	is	subscribing	the	same	topic.	If	there	are	no	nodes	subscribing	the	same
topic	at	that	time,	both	nodes	remain	unconnected.	If	the	publisher	and	subscriber	nodes
run	at	the	same	time,	ROS	Master	exchanges	the	details	of	the	publisher	to	the	subscriber
and	they	will	connect	and	can	exchange	data	through	ROS	messages.



Using	the	ROS	parameter
While	programming	a	robot,	we	might	have	to	define	robot	parameters	such	as	robot
controller	gain	such	as	P,	I,	and	D.	When	the	number	of	parameters	increases,	we	might
need	to	store	it	as	files.	In	some	situation,	these	parameters	have	to	share	between	two	or
more	programs	too.	In	this	case,	ROS	provides	a	parameter	server,	which	is	a	shared
server	in	which	all	ROS	nodes	can	access	parameters	from	this	server.	A	node	can	read,
write,	modify	and	delete	parameter	values	from	the	parameter	server.

We	can	store	these	parameters	in	a	file	and	load	them	into	the	server.	The	server	can	store
a	wide	variety	of	data	types	and	can	even	store	dictionaries.	The	programmer	can	also	set
the	scope	of	the	parameter,	that	is,	whether	it	can	be	accessed	by	only	this	node	or	all	the
nodes.

The	parameter	server	supports	the	following	XMLRPC	datatypes,	which	include:

32-bit	integers
Booleans
strings
doubles
iso8601	dates
lists
base64-encoded	binary	data

We	can	also	store	dictionaries	on	the	parameter	server.	If	the	number	of	parameters	is
high,	we	can	use	a	YAML	file	to	save	it.	Here	is	an	example	of	the	YAML	file	parameter
definitions:

/camera/name	:	'nikon'			#string	type

/camera/fps	:	30									#integer				

/camera/exposure	:	1.2			#float	

/camera/active	:	true				#boolean

The	rosparam	tool	used	to	get	and	set	the	ROS	parameter	from	the	command	line.	The
following	are	the	commands	to	work	with	ROS	parameters:

$	rosparam	set	[parameter_name]	[value]:	This	command	will	set	a	value	in	the
given	parameter
$	rosparam	get	[parameter_name]:	This	command	will	retrieve	a	value	from	the
given	parameter
$	rosparam	load	[YAML	file]:	The	ROS	parameters	can	be	saved	into	a	YAML	file
and	it	can	load	to	the	parameter	server	using	this	command
$	rosparam	dump	[YAML	file]:	This	command	will	dump	the	existing	ROS
parameters	to	a	YAML	file
$	rosparam	delete	[parameter_name]:	This	command	will	delete	the	given
parameter
$	rosparam	list:	This	command	will	list	existing	parameter	names

The	parameters	can	be	changed	dynamically	during	the	execution	of	the	node	that	uses



these	parameters,	using	the	dyamic_reconfigure	package
(http://wiki.ros.org/dynamic_reconfigure).

http://wiki.ros.org/dynamic_reconfigure




Understanding	ROS	community	level
These	are	ROS	resources	that	enable	a	new	community	for	ROS	to	exchange	software	and
knowledge.	The	various	resources	in	these	communities	are	as	follows:

Distributions:	Similar	to	the	Linux	distribution,	ROS	distributions	are	a	collection	of
versioned	meta	packages	that	we	can	install.	The	ROS	distribution	enables	easier
installation	and	collection	of	the	ROS	software.	The	ROS	distributions	maintain
consistent	versions	across	a	set	of	software.
Repositories:	ROS	relies	on	a	federated	network	of	code	repositories,	where	different
institutions	can	develop	and	release	their	own	robot	software	components.
The	ROS	Wiki:	The	ROS	community	Wiki	is	the	main	forum	for	documenting
information	about	ROS.	Anyone	can	sign	up	for	an	account	and	contribute	their	own
documentation,	provide	corrections	or	updates,	write	tutorials,	and	more.
Bug	ticket	system:	If	we	find	a	bug	in	the	existing	software	or	need	to	add	a	new
feature,	we	can	use	this	resource.
Mailing	lists:	The	ROS-users	mailing	list	is	the	primary	communication	channel
about	new	updates	to	ROS,	as	well	as	a	forum	to	ask	questions	about	the	ROS
software.
ROS	Answers:	This	website	resource	helps	to	ask	questions	related	to	ROS.	If	we
post	our	doubts	on	this	site,	other	ROS	users	can	see	this	and	give	solutions.
Blog:	The	ROS	blog	updates	with	news,	photos,	and	videos	related	to	the	ROS
community	(http://www.ros.org/news).

http://www.ros.org/news


What	are	the	prerequisites	to	start	with	ROS?
Before	getting	started	with	ROS	and	trying	the	code	in	this	book,	the	following
prerequisites	should	be	met:

Ubuntu	14.04.2	LTS	/	Ubuntu	15.04:	We	have	to	use	Ubuntu	as	the	operating
system	for	installing	ROS.	We	prefer	to	stick	on	to	the	L.T.S	version	of	Ubuntu,	that
is,	Ubuntu	14.04/14.04.3,	or	if	you	want	to	explore	new	ROS	distribution	you	can	use
Ubuntu	15.04.
ROS	Jade/Indigo	desktop	full	installation:	Install	the	full	desktop	installation	of
ROS.	The	version	we	prefer	is	ROS	Indigo,	the	latest	version,	Jade,	is	also	supported.
The	following	link	gives	you	the	installation	instruction	of	the	latest	ROS
distribution:	http://wiki.ros.org/indigo/Installation/Ubuntu.

http://wiki.ros.org/indigo/Installation/Ubuntu


Running	ROS	Master	and	ROS	parameter	server
Before	running	any	ROS	nodes,	we	should	start	ROS	Master	and	the	ROS	parameter
server.	We	can	start	ROS	Master	and	the	ROS	parameter	server	using	a	single	command
called	roscore,	which	will	start	the	following	programs:

ROS	Master
ROS	parameter	server
rosout	logging	nodes

The	rosout	node	will	collect	log	messages	from	other	ROS	nodes	and	store	them	in	a	log
file,	and	will	also	rebroadcast	the	collected	log	message	to	another	topic.	The	topic
/rosout	is	published	by	ROS	nodes	working	using	ROS	client	libraries	such	as	roscpp
and	rospy	and	this	topic	is	subscribed	by	the	rosout	node	which	rebroadcasts	the	message
in	another	topic	called	/rosout_agg.	This	topic	has	an	aggregate	stream	of	log	messages.
The	command	roscore	is	a	prerequisite	before	running	any	ROS	node.	The	following
screenshot	shows	the	messages	printing	when	we	run	the	roscore	command	in	a	terminal.

The	following	is	a	command	to	run	roscore	on	a	Linux	terminal:

$	roscore

Figure	9	:	Terminal	messages	while	running	the	roscore	command

The	following	are	explanations	of	each	section	when	executing	roscore	on	the	terminal:

In	the	first	section,	we	can	see	a	log	file	is	creating	inside	the	~/.ros/log	folder	for
collecting	logs	from	ROS	nodes.	This	file	can	be	used	for	debugging	purposes.



In	the	second	section,	the	command	starts	a	ROS	launch	file	called	roscore.xml.
When	a	launch	file	starts,	it	automatically	starts	the	rosmaster	and	ROS	parameter
server.	The	roslaunch	command	is	a	Python	script,	which	can	start	rosmaster	and
the	ROS	parameter	server	whenever	it	tries	to	execute	a	launch	file.	This	section
shows	the	address	of	the	ROS	parameter	server	within	the	port.
In	the	third	section,	we	can	see	the	parameters	such	as	rosdistro	and	rosversion
displayed	on	the	terminal.	These	parameters	are	displayed	when	it	executes
roscore.xml.	We	can	see	more	on	roscore.xml	and	its	details	in	the	next	section.
In	the	fourth	section,	we	can	see	the	rosmaster	node	is	started	using
ROS_MASTER_URI,	which	we	defined	earlier	as	an	environment	variable.
In	the	fifth	section,	we	can	see	the	rosout	node	is	started,	which	will	start
subscribing	the	/rosout	topic	and	rebroadcasting	into	/rosout_agg.

The	following	is	the	content	of	roscore.xml:

<launch>

		<group	ns="/">

				<param	name="rosversion"	command="rosversion	roslaunch"	/>

				<param	name="rosdistro"	command="rosversion	-d"	/>

				<node	pkg="rosout"	type="rosout"	name="rosout"	respawn="true"/>

		</group>

</launch>

When	the	roscore	command	is	executed,	initially,	the	command	checks	the	command	line
argument	for	a	new	port	number	for	the	rosmaster.	If	it	gets	the	port	number,	it	will	start
listening	to	the	new	port	number,	otherwise	it	will	use	the	default	port.	This	port	number
and	the	roscore.xml	launch	file	will	pass	to	the	roslaunch	system.	The	roslaunch
system	is	implemented	in	a	Python	module,	it	will	parse	the	port	number	and	launch	the
roscore.xml	file.

In	the	roscore.xml	file,	we	can	see	the	ROS	parameters	and	nodes	are	encapsulated	in	a
group	XML	tag	with	a	“/”	namespace.	The	group	XML	tag	indicates	that	all	the	nodes
inside	this	tag	have	the	same	settings.

The	two	parameters	called	rosversion	and	rosdistro	store	the	output	of	the	rosversion
roslaunch	and	rosversion	-d	commands	using	the	command	tag,	which	is	a	part	of	the
ROS	param	tag.	The	command	tag	will	execute	the	command	mentioned	on	it	and	store
the	output	of	the	command	in	these	two	parameters.

The	rosmaster	and	parameter	server	are	executed	inside	roslaunch	modules	by	using	the
ROS_MASTER_URI	address.	This	is	happening	inside	the	roslaunch	Python	module.	The
ROS_MASTER_URI	is	a	combination	of	the	IP	address	and	port	in	which	rosmaster	is	going
to	listen.	The	port	number	can	be	changed	according	to	the	given	port	number	in	the
roscore	command.

Checking	the	roscore	command	output
Let’s	check	the	ROS	topics	and	ROS	parameters	created	after	running	roscore.	The
following	command	will	list	the	active	topics	on	the	terminal:



$	rostopic	list

The	list	of	topics	are	as	follows,	as	per	our	discussion	on	the	rosout	node	subscribe
/rosout	topic,	which	have	all	log	messages	from	the	ROS	nodes	and	/rosout_agg
rebroadcast	the	log	messages:

/rosout

/rosout_agg

The	following	command	lists	out	the	parameters	available	when	running	roscore.	The
following	is	the	command	to	list	the	active	ROS	parameter:

$	rosparam	list

The	parameters	are	mentioned	here;	they	have	the	ROS	distribution	name,	version,
address	of	roslaunch	server	and	run_id,	where	run_id	is	a	unique	ID	associated	with	a
particular	run	of	roscore:

/rosdistro

/roslaunch/uris/host_robot_virtualbox__51189

/rosversion

/run_id

The	list	of	the	ROS	service	generated	during	the	running	roscore	can	be	checked	using
the	following	command:

$	rosservice	list

The	list	of	services	running	is	as	follows:

/rosout/get_loggers

/rosout/set_logger_level

These	ROS	services	are	generated	for	each	ROS	node	for	setting	the	logging	levels.

After	understanding	the	basics	of	ROS	Master,	Parameter	server,	and	roscore	we	can	go
to	the	procedure	to	build	a	ROS	package.	Along	with	working	with	the	ROS	package,	we
can	refresh	the	concepts	of	ROS	nodes,	topics,	messages,	services,	and	actionlib.



Creating	a	ROS	package
The	ROS	packages	are	the	basic	unit	of	the	ROS	system.	We	can	create	the	ROS	package,
build	it	and	release	it	to	the	public.	The	current	distribution	of	ROS	we	are	using	is
Jade/Indigo.	We	are	using	the	catkin	build	system	to	build	ROS	packages.	A	build	system
is	responsible	for	generating	'targets'(executable/libraries)	from	a	raw	source	code	that
can	be	used	by	an	end	user.	In	older	distributions,	such	as	Electric	and	Fuerte,	rosbuild
was	the	build	system.	Because	of	the	various	flaws	of	rosbuild,	catkin	came	into
existence,	which	is	basically	based	on	CMake	(Cross	Platform	Make).	This	has	lot	of
advantages	such	as	porting	the	package	into	other	operating	system,	such	as	Windows.	If
an	OS	supports	CMake	and	Python,	catkin	based	packages	can	be	easily	ported	into	it.

The	first	requirement	in	creating	ROS	packages	is	to	create	a	ROS	catkin	workspace.
Here	is	the	procedure	to	build	a	catkin	workspace.

Build	a	workspace	folder	in	the	home	directory	and	create	a	src	folder	inside	the
workspace	folder:

$	mkdir	~/catkin_ws/src

Switch	to	the	source	folder.	The	packages	are	created	inside	this	package:

$cd	~/catkin_ws/src

Initialize	a	new	catkin	workspace:

$	catkin_init_workspace

We	can	build	the	workspace	even	if	there	are	no	packages.	We	can	use	the	following
command	to	switch	to	the	workspace	folder:

$	cd	~/catkin_ws

The	catkin_make	command	will	build	the	following	workspace:

$	catkin_make

After	building	the	empty	workspace,	we	should	set	the	environment	of	the	current
workspace	to	be	visible	by	the	ROS	system.	This	process	is	called	overlaying	a
workspace.	We	should	add	the	package	environment	using	the	following	command:

$	echo	"source	~/catkin_ws/devel/setup.bash"	>>	~/.bashrc	

$	source	~/.bashrc

This	command	will	source	a	bash	script	called	setup.bash	inside	the	devel	workspace
folder.	To	set	the	environment	in	all	bash	sessions,	we	need	to	add	a	source	command	in
the	.bashrc	file,	which	will	source	this	script	whenever	a	bash	session	starts.

This	is	the	link	of	the	procedure	http://wiki.ros.org/catkin/Tutorials/create_a_workspace.

1.	 After	setting	the	catkin	workspace,	we	can	create	our	own	package	that	has	sample
nodes	to	demonstrate	the	working	of	ROS	topics,	messages,	services,	and	actionlib.

2.	 The	catkin_create_pkg	command	is	used	to	create	a	ROS	package.	This	command

http://wiki.ros.org/catkin/Tutorials/create_a_workspace


is	used	to	create	our	package	in	which	we	are	going	to	create	demos	of	various	ROS
concepts.

3.	 Switch	to	the	catkin	workspace	src	folder	and	create	the	package	using	the
following	command:

Syntax	of	catkin_create_pkg	:	catkin_create_pkg	[package_name]		

[dependency1]	[dependency2]

4.	 Here	is	the	command	to	create	the	sample	ROS	package:

$	catkin_create_pkg	mastering_ros_demo_pkg	roscpp	std_msgs	actionlib	

actionlib_msgs

The	dependencies	in	the	packages	are	as	follows:

roscpp:	This	is	the	C++	implementation	of	ROS.	It	is	a	ROS	client	library
which	provides	APIs	to	C++	developers	to	make	ROS	nodes	with	ROS	topics,
services,	parameters,	and	so	on.	We	are	including	this	dependency	because	we
are	going	to	write	a	ROS	C++	node.	Any	ROS	package	which	uses	the	C++
node	must	add	this	dependency.
std_msgs:	This	package	contains	basic	ROS	primitive	data	types	such	as
integer,	float,	string,	array,	and	so	on.	We	can	directly	use	these	data	types	in	our
nodes	without	defining	a	new	ROS	message.
actionlib:	The	actionlib	meta-package	provides	interfaces	to	create	preemptable
tasks	in	ROS	nodes.	We	are	creating	actionlib	based	nodes	in	this	package.	So
we	should	include	this	package	to	build	the	ROS	nodes.
actionlib_msgs:	This	package	contains	standard	message	definitions	needed	to
interact	with	the	action	server	and	action	client.

We	will	get	the	following	message	if	the	package	is	successfully	created:

Figure	10	:	Terminal	messages	while	creating	a	ROS	package

5.	 After	creating	this	package,	build	the	package	without	adding	any	nodes	using	the
catkin_make	command.	This	command	must	be	executed	from	the	catkin
workspace	path.	The	following	command	shows	you	how	to	build	our	empty	ROS
package:

~/catkin_ws$	catkin_make

6.	 After	a	successful	build,	we	can	start	adding	nodes	to	the	src	folder	of	this	package.

The	build	folder	in	the	CMake	build	files	mainly	contains	executables	of	the	nodes	that	are



placed	inside	the	catkin	workspace	src	folder.	The	devel	folder	contains	bash	script,
header	files,	and	executables	in	different	folders	generated	during	the	build	process.	We
can	see	how	to	make	ROS	nodes	and	build	using	catkin_make.

Working	with	ROS	topics
Topics	are	the	basic	way	of	communicating	between	two	nodes.	In	this	section,	we	can	see
how	the	topics	works.	We	are	going	to	create	two	ROS	nodes	for	publishing	a	topic	and
subscribing	the	same.	Navigate	to	the
chapter_1_codes/mastering_ros_demo_package/src	folder	for	the	codes.
demo_topic_publisher.cpp	and	demo_topic_subscriber.cpp	are	the	two	sets	of	code
that	we	are	going	to	discuss.

Creating	ROS	nodes
The	first	node	we	are	going	to	discuss	is	demo_topic_publisher.cpp.	This	node	will
publish	an	integer	value	on	a	topic	called	/numbers.	Copy	the	current	code	into	a	new
package	or	use	this	existing	file	from	the	code	repository.

Here	is	the	complete	code:

#include	"ros/ros.h"

#include	"std_msgs/Int32.h"

#include	<iostream>

int	main(int	argc,	char	**argv)

{

		ros::init(argc,	argv,"demo_topic_publisher");

		ros::NodeHandle	node_obj;

		ros::Publisher	number_publisher	=	node_obj.advertise<std_msgs::Int32>

("/numbers",10);

		ros::Rate	loop_rate(10);

		int	number_count	=	0;

		while	(ros::ok())

		{

				std_msgs::Int32	msg;

				msg.data	=	number_count;

				ROS_INFO("%d",msg.data);

				number_publisher.publish(msg);

				ros::spinOnce();

				loop_rate.sleep();

				++number_count;

		}

		return	0;

}

Here	is	the	detailed	explanation	of	the	preceding	code:

#include	"ros/ros.h"

#include	"std_msgs/Int32.h"

#include	<iostream>

The	ros/ros.h	is	the	main	header	of	ROS.	If	we	want	to	use	the	roscpp	client	APIs	in	our
code,	we	should	include	this	header.	The	std_msgs/Int32.h	is	the	standard	message
definition	of	integer	datatype.



Here,	we	are	sending	an	integer	value	through	a	topic.	So	we	should	need	a	message	type
for	handling	the	integer	data.	std_msgs	contains	standard	message	definition	of	primitive
datatypes.	std_msgs/Int32.h	contains	integer	message	definition:

		ros::init(argc,	argv,"demo_topic_publisher");

This	code	will	initialize	a	ROS	node	with	a	name.	It	should	be	noted	that	the	ROS	node
should	be	unique.	This	line	is	mandatory	for	all	ROS	C++	nodes:

		ros::NodeHandle	node_obj;

This	will	create	a	Nodehandle	object,	which	is	used	to	communicate	with	the	ROS	system:

		ros::Publisher	number_publisher	=	node_obj.advertise<std_msgs::Int32>

("/numbers",10);

This	will	create	a	topic	publisher	and	name	the	topic	/numbers	with	a	message	type
std_msgs::Int32.	The	second	argument	is	the	buffer	size.	It	indicates	that	how	many
messages	need	to	be	put	in	a	buffer	before	sending.	It	should	be	set	to	high	if	the	data
sending	rate	is	high:

		ros::Rate	loop_rate(10);

This	is	used	to	set	the	frequency	of	sending	data:

		while	(ros::ok())

		{

This	is	an	infinite	while	loop,	and	it	quits	when	we	press	Ctrl+C.	The	ros::ok()	function
returns	zero	when	there	is	an	interrupt;	this	can	terminate	this	while	loop:

					std_msgs::Int32	msg;

				msg.data	=	number_count;

The	first	line	creates	an	integer	ROS	message	and	the	second	line	assigns	an	integer	value
to	the	message.	Here,	data	is	the	field	name	of	the	msg	object:

		ROS_INFO("%d",msg.data);

This	will	print	the	message	data.	This	line	is	used	to	log	the	ROS	information:

				number_publisher.publish(msg);

This	will	publish	the	message	to	the	topics	/numbers:

				ros::spinOnce();

This	command	will	read	and	update	all	ROS	topics.	The	node	will	not	publish	without	a
spin()	or	spinOnce()	function:

				loop_rate.sleep();

This	line	will	provide	the	necessary	delay	to	achieve	a	frequency	of	10Hz.

After	discussing	the	publisher	node,	we	can	discuss	the	subscriber	node,	which	is
demo_topic_subscriber.cpp.	Copy	the	code	to	a	new	file	or	use	the	existing	file.



Here	is	the	definition	of	the	subscriber	node:

#include	"ros/ros.h"

#include	"std_msgs/Int32.h"

#include	<iostream>

void	number_callback(const	std_msgs::Int32::ConstPtr&	msg)

{

		ROS_INFO("Received		[%d]",msg->data);

}

int	main(int	argc,	char	**argv)

{

		ros::init(argc,	argv,"demo_topic_subscriber");

		ros::NodeHandle	node_obj;

		ros::Subscriber	number_subscriber	=	

node_obj.subscribe("/numbers",10,number_callback);

		ros::spin();

		return	0;

}

Here	is	the	code	explanation:

#include	"ros/ros.h"

#include	"std_msgs/Int32.h"

#include	<iostream>

This	is	the	header	needed	for	the	subscribers:

void	number_callback(const	std_msgs::Int32::ConstPtr&	msg)

{

		ROS_INFO("Recieved		[%d]",msg->data);

}

This	is	a	callback	function	that	will	execute	whenever	a	data	comes	to	the	/numbers	topic.
Whenever	a	data	reaches	this	topic,	the	function	will	call	and	extract	the	value	and	print	it
on	the	console:

		ros::Subscriber	number_subscriber	=	

node_obj.subscribe("/numbers",10,number_callback);

This	is	the	subscriber	and	here,	we	are	giving	the	topic	name	needed	to	subscribe,	buffer
size,	and	the	callback	function.	We	are	subscribing	/numbers	topic	and	we	have	already
seen	the	callback	function	in	the	preceding	section:

		ros::spin();

This	is	an	infinite	loop	in	which	the	node	will	wait	in	this	step.	This	code	will	fasten	the
callbacks	whenever	a	data	reaches	the	topic.	The	node	will	quit	only	when	we	press	the
Ctrl+C	key.

Building	the	nodes
We	have	to	edit	the	CMakeLists.txt	file	in	the	package	to	compile	and	build	the	source
code.	Navigate	to	chapter_1_codes/mastering_ros_demo_package/CMakeLists.txt	to
view	the	existing	CMakeLists.txt	file.	The	following	code	snippet	in	this	file	is



responsible	for	building	these	two	nodes:

include_directories(

		include

		${catkin_INCLUDE_DIRS}

		${Boost_INCLUDE_DIRS}

)

#This	will	create	executables	of	the	nodes

add_executable(demo_topic_publisher	src/demo_topic_publisher.cpp)

add_executable(demo_topic_subscriber	src/demo_topic_subscriber.cpp)

#This	will	generate	message	header	file	before	building	the	target

add_dependencies(demo_topic_publisher	

mastering_ros_demo_pkg_generate_messages_cpp)

add_dependencies(demo_topic_subscriber	

mastering_ros_demo_pkg_generate_messages_cpp)

#This	will	link	executables	to	the	appropriate	libraries	

target_link_libraries(demo_topic_publisher	${catkin_LIBRARIES})

target_link_libraries(demo_topic_subscriber	${catkin_LIBRARIES})

We	can	add	the	preceding	snippet	to	create	a	new	a	CMakeLists.txt	file	for	compiling	the
two	codes.

The	catkin_make	command	is	used	to	build	the	package.

We	can	first	switch	to	workspace:

$	cd	~/catkin_ws

Build	mastering_ros_demo_package	as	follows:

$	catkin_make	mastering_ros_demo_package

We	can	either	use	the	preceding	command	to	build	a	specific	package	or	just	caktin_make
to	build	the	entire	workspace.

This	will	create	executables	in	~/catkin_ws/devel/lib/<package	name>.

If	the	building	is	done,	we	can	execute	the	nodes.

First	start	roscore:

$	roscore

Now	run	both	commands	in	two	shells.

In	the	running	publisher:

$	rosrun	mastering_ros_demo_package	demo_topic_publisher	

In	the	running	subscriber:

$	rosrun	mastering_ros_demo_package	demo_topic_subscriber

We	can	see	the	output	as	shown	here:



Figure	11	:	Running	topic	publisher	and	subscriber

The	following	diagram	shows	how	the	nodes	communicate	with	each	other.	We	can	see
the	demo_topic_publisher	node	publish	the	/numbers	topic	and	subscribe	by	then
demo_topic_subscriber	node.

Figure	12	:	Graph	of	the	communication	between	publisher	and	subscriber	nodes.

We	can	use	the	rosnode	and	rostopic	tools	to	debug	and	understand	the	working	of	two
nodes:

$	rosnode	list:	This	will	list	the	active	nodes
$	rosnode	info	demo_topic_publisher:	This	will	get	the	info	of	the	publisher
node
$	rostopic	echo	/numbers:	This	will	display	the	value	sending	through	the
/numbers	topic
$	rostopic	type	/numbers:	This	will	print	the	message	type	of	the	/numbers	topic



Adding	custom	msg	and	srv	files
In	this	section,	we	can	see	how	to	create	custom	messages	and	services	definitions	in	the
current	package.	The	message	definitions	are	stored	in	a	.msg	file	and	service	definition
are	stored	in	a	srv	file.	These	definitions	inform	ROS	about	the	type	of	data	and	name	of
data	to	be	transmitted	from	a	ROS	node.	When	a	custom	message	is	added,	ROS	will
convert	the	definitions	into	equivalent	C++	codes,	which	we	can	include	in	our	nodes.

We	can	start	with	message	definitions.

Message	definitions	have	to	be	written	in	the	.msg	file	and	have	to	be	kept	in	the	msg
folder,	which	is	inside	the	package.

We	are	going	to	create	a	message	file	called	demo_msg.msg	with	the	following	definition:

string	greeting

int32	number

Until	now,	we	have	worked	only	with	standard	message	definitions.	Now,	we	have	created
our	own	definitions	and	can	see	how	to	use	them	in	our	code.

The	first	step	is	to	edit	the	package.xml	file	of	the	current	package	and	uncomment	the
lines	<build_depend>message_generation</build_depend>	and
<run_depend>message_runtime</run_depend>.

Edit	the	current	CMakeLists.txt	and	add	the	message_generation	line	as	follows:

find_package(catkin	REQUIRED	COMPONENTS

		roscpp

		rospy

		std_msgs

	actionlib	

		actionlib_msgs

		message_generation

)

Uncomment	the	following	line	and	add	the	custom	message	file:

	add_message_files(

			FILES

			demo_msg.msg

	)

##	Generate	added	messages	and	services	with	any	dependencies	listed	here

	generate_messages(

			DEPENDENCIES

			std_msgs

			actionlib_msgs

	)

After	these	steps,	we	can	compile	and	build	the	package:

$	cd	~/catkin_ws/

$	catkin_make

To	check	whether	the	message	is	built	properly,	we	can	use	the	rosmsg	command:



$	rosmsg	show	mastering_ros_demo_pkg/demo_msg

If	the	content	shown	by	the	command	and	the	definition	are	the	same,	the	procedure	is
correct.

If	we	want	to	test	the	custom	message,	we	can	build	a	publisher	and	subscriber	using	the
custom	message	type	named	demo_msg_publisher.cpp	and	demo_msg_subscriber.cpp.
Navigate	to	the	chapter_1_codes/mastering_ros_demo_pkg/src	folder	for	these	codes.

We	can	test	the	message	by	adding	the	following	lines	of	code	in	CMakeLists.txt:

add_executable(demo_msg_publisher	src/demo_msg_publisher.cpp)

add_executable(demo_msg_subscriber	src/demo_msg_subscriber.cpp)

add_dependencies(demo_msg_publisher	

mastering_ros_demo_pkg_generate_messages_cpp)

add_dependencies(demo_msg_subscriber	

mastering_ros_demo_pkg_generate_messages_cpp)

target_link_libraries(demo_msg_publisher	${catkin_LIBRARIES})

target_link_libraries(demo_msg_subscriber	${catkin_LIBRARIES})

Build	the	package	using	catkin_make	and	test	the	node	using	the	following	commands.

Run	roscore:

$	roscore

Start	the	custom	message	publisher	node:

$	rosrun	mastering_ros_demo_pkg	demo_msg_publisher

Start	the	custom	message	subscriber	node:

$	rosrun	mastering_ros_demo_pkg	demo_msg_subscriber

The	publisher	node	publishes	a	string	along	with	an	integer,	and	the	subscriber	node
subscribes	the	topic	and	prints	the	values.	The	output	and	graph	are	shown	as	follows:

Figure	13	:	Running	publisher	and	subscriber	using	custom	message	definitions.

The	topic	in	which	the	nodes	are	communicating	is	called	/demo_msg_topic.	Here	is	the
graph	view	of	two	nodes:



Figure	14	:	Graph	of	the	communication	between	message	publisher	and	subscriber

Next,	we	can	add	srv	files	to	the	package.	Create	a	new	folder	called	srv	in	the	current
package	folder	and	add	a	srv	file	called	demo_srv.srv.	The	definition	of	this	file	is	as
follows:

string	in

---

string	out

Here,	both	the	Request	and	Response	are	strings.

In	the	next	step,	we	need	to	uncomment	the	following	lines	in	package.xml	as	we	did	for
the	ROS	messages:

<build_depend>message_generation</build_depend>

<run_depend>message_runtime</run_depend>

Take	CMakeLists.txt	and	add	message_runtime	in	catkin_package():

catkin_package(

		CATKIN_DEPENDS	roscpp	rospy	std_msgs	actionlib	actionlib_msgs	

message_runtime	

)

We	need	to	follow	the	same	procedure	in	generating	services	as	we	did	for	the	ROS
message.	Apart	from	that,	we	need	additional	sections	to	be	uncommented	as	shown	here:

##	Generate	services	in	the	'srv'	folder

	add_service_files(

			FILES

			demo_srv.srv

	)

After	making	these	changes,	we	can	build	the	package	using	catkin_make	and	using	the
following	command	we	can	verify	the	procedure:

$	rossrv	show	mastering_ros_demo_pkg/demo_srv

If	we	see	the	same	content	as	we	defined	in	the	file,	we	can	confirm	it’s	working.



Working	with	ROS	services
In	this	section,	we	are	going	to	create	ROS	nodes,	which	can	use	the	services	definition
that	we	defined	already.	The	service	nodes	we	are	going	to	create	can	send	a	string
message	as	a	request	to	the	server	and	the	server	node	will	send	another	message	as	a
response.

Navigate	to	chapter_1_codes/mastering_ros_demo_pkg/src	and	find	nodes	with	the
names	demo_service_server.cpp	and	demo_service_client.cpp.

The	demo_service_server.cpp	is	the	server	and	its	definition	is	as	follows:

#include	"ros/ros.h"

#include	"mastering_ros_demo_pkg/demo_srv.h"

#include	<iostream>

#include	<sstream>

using	namespace	std;

bool	demo_service_callback(mastering_ros_demo_pkg::demo_srv::Request		&req,

									mastering_ros_demo_pkg::demo_srv::Response	&res)

{

		std::stringstream	ss;

		ss	<<	"Received		Here";

		res.out	=	ss.str();

		ROS_INFO("From	Client		[%s],	Server	says	

[%s]",req.in.c_str(),res.out.c_str());

		return	true;

}

int	main(int	argc,	char	**argv)

{

		ros::init(argc,	argv,	"demo_service_server");

		ros::NodeHandle	n;

		ros::ServiceServer	service	=	n.advertiseService("demo_service",	

demo_service_callback);

		ROS_INFO("Ready	to	receive	from	client.");

		ros::spin();

		return	0;

}

Let’s	see	the	explanation	of	the	code:

#include	"ros/ros.h"

#include	"mastering_ros_demo_pkg/demo_srv.h"

#include	<iostream>

#include	<sstream>

Here,	we	included	ros/ros.h,	which	is	a	mandatory	header	for	a	ROS	CPP	node.	The
mastering_ros_demo_pkg/demo_srv.h	header	is	a	generated	header,	which	contains	our
service	definition	and	can	use	this	in	our	code.	The	sstream.h	is	for	getting	string
streaming	classes:

bool	demo_service_callback(mastering_ros_demo_pkg::demo_srv::Request		&req,

									mastering_ros_demo_pkg::demo_srv::Response	&res)

{



This	is	the	server	callback	function	executed	when	a	request	is	received	on	the	server.	The
server	can	receive	the	request	from	clients	having	a	message	type	of
mastering_ros_demo_pkg::demo_srv::Request	and	sends	the	response	in	the
mastering_ros_demo_pkg::demo_srv::Response	type:

		std::stringstream	ss;

		ss	<<	"Received		Here";

		res.out	=	ss.str();

In	this	code,	the	string	data	"Received	Here"	is	passing	to	the	service	Response	instance.
Here,	out	is	the	field	name	of	the	response	that	we	have	given	in	the	demo_srv.srv.	This
response	will	go	to	the	service	client	node:

		ros::ServiceServer	service	=	n.advertiseService("demo_service",	

demo_service_callback);

This	creates	a	service	having	a	name	as	demo_service	and	a	callback	function	is	executed
when	a	request	comes	to	this	service.	The	callback	function	is	demo_service_callback,
which	we	saw	in	the	preceding	section.

Next,	we	can	see	how	the	demo_service_client.cpp	is	working.

Here	is	the	definition	of	this	code:

#include	"ros/ros.h"

#include	<iostream>

#include	"mastering_ros_demo_pkg/demo_srv.h"

#include	<iostream>

#include	<sstream>

using	namespace	std;

int	main(int	argc,	char	**argv)

{

		ros::init(argc,	argv,	"demo_service_client");

		ros::NodeHandle	n;

		ros::Rate	loop_rate(10);

		ros::ServiceClient	client	=	

n.serviceClient<mastering_ros_demo_pkg::demo_srv>("demo_service");

		while	(ros::ok())

		{

				mastering_ros_demo_pkg::demo_srv	srv;

				std::stringstream	ss;

				ss	<<	"Sending	from	Here";

				srv.request.in	=	ss.str();

				if	(client.call(srv))

				{

						ROS_INFO("From	Client		[%s],	Server	says	

[%s]",srv.request.in.c_str(),srv.response.out.c_str());

				}

				else

				{

						ROS_ERROR("Failed	to	call	service");

						return	1;



				}

		ros::spinOnce();

		loop_rate.sleep();

		}

		return	0;

}

Let’s	explain	the	code:

		ros::ServiceClient	client	=	

n.serviceClient<mastering_ros_demo_pkg::demo_srv>("demo_service");

This	line	creates	a	service	client	that	has	message	type
mastering_ros_demo_pkg::demo_srv	and	communicates	to	a	ROS	service	named
demo_service:

				mastering_ros_demo_pkg::demo_srv	srv;

This	line	will	create	a	new	service	object	instance:

				std::stringstream	ss;

				ss	<<	"Sending	from	Here";

				srv.request.in	=	ss.str();

Fill	the	request	instance	with	a	string	called	"Sending	from	Here":

				if	(client.call(srv))

				{

This	will	send	the	service	call	to	the	server.	If	it	is	sent	successfully,	it	will	print	the
response	and	request,	if	it	failed,	it	do	nothing:

						ROS_INFO("From	Client		[%s],	Server	says	

[%s]",srv.request.in.c_str(),srv.response.out.c_str());

If	the	response	is	received,	then	it	will	print	the	request	and	the	response.

After	discussing	the	two	nodes,	we	can	discuss	how	to	build	these	two	nodes.	The
following	code	is	added	to	CMakeLists.txt	to	compile	and	build	the	two	nodes:

add_executable(demo_service_server	src/demo_service_server.cpp)

add_executable(demo_service_client	src/demo_service_client.cpp)

add_dependencies(demo_service_server	

mastering_ros_demo_pkg_generate_messages_cpp)

add_dependencies(demo_service_client	

mastering_ros_demo_pkg_generate_messages_cpp)

target_link_libraries(demo_service_server	${catkin_LIBRARIES})

target_link_libraries(demo_service_client	${catkin_LIBRARIES})

We	can	execute	the	following	commands	to	build	the	code:

$	cd	~/catkin_ws

$	catkin_make



To	start	nodes,	first	execute	roscore	and	use	the	following	commands:

$	rosrun	mastering_ros_demo_pkg	demo_service_server

$	rosrun	mastering_ros_demo_pkg	demo_service_client

Figure	15	:	Running	ROS	service	client	and	server	nodes.

We	can	work	with	rosservice	using	the	rosservice	command:

$	rosservice	list:	This	will	list	the	current	ROS	services
$	rosservice	type	/demo_service:	This	will	print	the	message	type	of
/demo_service

$	rosservice	info	/demo_service:	This	will	print	the	information	of
/demo_service

Working	with	ROS	actionlib
In	ROS	services,	the	user	implements	a	request/reply	interaction	between	two	nodes,	but
consider	if	the	reply	takes	too	much	time	or	the	server	is	not	finished	with	the	given	work,
we	have	to	wait	until	it	completes.

There	is	another	method	in	ROS	in	which	we	can	preempt	the	running	request	and	start
sending	another	one	if	the	request	is	not	finished	on	time	as	we	expected.	Actionlib
packages	provide	a	standard	way	to	implement	these	kinds	of	preemptive	tasks.	Actionlib
is	highly	used	in	robot	arm	navigation	and	mobile	robot	navigation.	We	can	see	how	to
implement	an	action	server	and	action	client	implementation.

Like	ROS	services,	in	actionlib,	we	have	to	specify	the	action	specification.	The	action
specification	is	stored	inside	the	action	file	having	an	extension	of	.action.	This	file	must
be	kept	inside	the	action	folder,	which	is	inside	the	ROS	package.	The	action	file	has	the



following	parts:

Goal:	The	action	client	can	send	a	goal	that	has	to	be	executed	by	the	action	server.
This	is	similar	to	the	request	in	the	ROS	service.	For	example,	if	a	robot	arm	joint
wants	to	move	from	45	degrees	to	90	degrees,	the	goal	here	is	90	degrees.
Feedback:	When	an	action	client	sends	a	goal	to	the	action	server,	it	will	start
executing	a	call-back	function.	Feedback	is	simply	giving	the	progress	of	the	current
operation	inside	the	callback	function.	Using	the	feedback	definition,	we	can	get	the
current	progress.	In	the	preceding	case,	the	robot	arm	joint	has	to	move	to	90	degrees;
in	this	case,	the	feedback	can	be	the	intermediate	value	between	45	and	90	degrees	in
which	the	arm	is	moving.
Result:	After	completing	the	goal,	the	action	server	will	send	a	final	result	of
completion,	it	can	be	the	computational	result	or	an	acknowledgement.	In	the
preceding	example,	if	the	joint	reaches	90	degrees	it	achieves	the	goal	and	the	result
can	be	anything	indicating	it	finished	the	goal.

We	can	discuss	a	demo	action	server	and	action	client	here.	The	demo	action	client	will
send	a	number	as	the	goal.	When	an	action	server	receives	the	goal,	it	will	count	from	0	to
the	goal	number	with	a	step	size	of	1	and	with	a	one	second	delay.	If	it	completes	before
the	given	time,	it	will	send	the	result,	otherwise,	the	task	will	be	preempted	by	the	client.
The	feedback	here	is	the	progress	of	counting.	The	action	file	of	this	task	is	as	follows.
The	action	file	is	named	Demo_action.action:

#goal	definition

int32	count

---

#result	definition

int32	final_count

---

#feedback

int32	current_number

Here,	the	count	value	is	the	goal	in	which	the	server	has	to	count	from	zero	to	this	number.
final_count	is	the	result,	in	which	the	final	value	after	completion	of	a	task	and
current_number	is	the	feedback	value.	It	will	specify	how	much	the	progress	is.

Navigate	to	chapter_1_codes/mastering_ros_demo_pkg/src	and	you	can	find	the	action
server	node	as	demo_action_server.cpp	and	action	client	node	as
demo_action_client.cpp.

Creating	the	ROS	action	server

In	this	section,	we	will	discuss	demo_action_server.cpp.	The	action	server	receives	a
goal	value	that	is	a	number.	When	the	server	gets	this	goal	value,	it	will	start	counting
from	zero	to	this	number.	If	the	counting	is	complete,	it	will	successfully	finish	the	action,
if	it	is	preempted	before	finishing,	the	action	server	will	look	for	another	goal	value.

This	code	is	a	bit	lengthy,	so	we	can	discuss	the	important	code	snippet	of	this	code.

Let’s	start	from	the	header	files:



#include	<actionlib/server/simple_action_server.h>

#include	"mastering_ros_demo_pkg/Demo_actionAction.h"

The	first	header	is	the	standard	action	library	to	implement	an	action	server	node.	The
second	header	is	generated	from	the	stored	action	files.	It	should	include	for	accessing	our
action	definition:

class	Demo_actionAction

{	

This	class	contains	the	action	server	definition:

actionlib::SimpleActionServer<mastering_ros_demo_pkg::Demo_actionAction>	

as;

Create	a	simple	action	server	instance	with	our	custom	action	message	type:

mastering_ros_demo_pkg::Demo_actionFeedback	feedback;

Create	a	feedback	instance	for	sending	feedback	during	the	operation:

mastering_ros_demo_pkg::Demo_actionResult	result;

Create	a	result	instance	for	sending	the	final	result:

Demo_actionAction(std::string	name)	:

				as(nh_,	name,	boost::bind(&Demo_actionAction::executeCB,	this,	_1),	

false),

				action_name(name)

This	is	an	action	constructor,	and	an	action	server	is	created	here	by	taking	an	argument
such	as	Nodehandle,	action_name,	and	executeCB,	where	executeCB	is	the	action
callback	where	all	the	processing	is	done:

as.registerPreemptCallback(boost::bind(&Demo_actionAction::preemptCB,	

this));

This	line	registers	a	callback	when	the	action	is	preempted.	The	preemtCB	is	the	callback
name	executed	when	there	is	a	preempt	request	from	the	action	client:

		void	executeCB(const	mastering_ros_demo_pkg::Demo_actionGoalConstPtr	

&goal)

		{

		if(!as.isActive()	||	as.isPreemptRequested())	return;

This	is	the	callback	definition	which	is	executed	when	the	action	server	receives	a	goal
value.	It	will	execute	callback	functions	only	after	checking	whether	the	action	server	is
currently	active	or	it	is	preempted	already:

		for(progress	=	0	;	progress	<	goal->count;	progress++){

				//Check	for	ros

				if(!ros::ok()){

This	loop	will	execute	until	the	goal	value	is	reached.	It	will	continuously	send	the	current
progress	as	feedback:

				if(!as.isActive()	||	as.isPreemptRequested()){



						return;

				}		

Inside	this	loop,	it	will	check	whether	the	action	server	is	active	or	it	is	preempted.	If	it
occurs,	the	function	will	return:

				if(goal->count	==	progress){

						result.final_count	=	progress;

						as.setSucceeded(result);

				}

If	the	current	value	reaches	the	goal	value,	then	it	publishes	the	final	result:

		Demo_actionAction	demo_action_obj(ros::this_node::getName());

In	main(),we	create	an	instance	of	Demo_actionAction,	which	will	start	the	action	server.

Creating	the	ROS	action	client

In	this	section,	we	will	discuss	the	working	of	an	action	client.	demo_action_client.cpp
is	the	action	client	node	that	will	send	the	goal	value	consisting	of	a	number	which	is	the
goal.	The	client	is	getting	the	goal	value	from	the	command	line	arguments.	The	first
command	line	argument	of	the	client	is	the	goal	value	and	the	second	is	the	time	of
completion	for	this	task.

The	goal	value	will	be	sent	to	the	server	and	the	client	will	wait	until	the	given	time,	in
seconds.	After	waiting,	the	client	will	check	whether	it	completed	or	not;	if	it	is	not
complete,	the	client	will	preempt	the	action.

The	client	code	is	a	bit	lengthy,	so	we	will	discuss	the	important	sections	of	the	code:

#include	<actionlib/client/simple_action_client.h>

#include	<actionlib/client/terminal_state.h>

#include	"mastering_ros_demo_pkg/Demo_actionAction.h"

In	action	client,	we	need	to	include	actionlib/client/simple_action_client.h	to	get
the	action	client	APIs	which	are	used	to	implement	action	clients:

actionlib::SimpleActionClient<mastering_ros_demo_pkg::Demo_actionAction>	

ac("demo_action",	true);

This	will	create	an	action	client	instance:

		ac.waitForServer();

This	line	will	wait	for	an	infinite	time	if	there	is	no	action	server	running	on	the	system.	It
will	exit	only	when	there	is	an	action	server	running	on	the	system:

		mastering_ros_demo_pkg::Demo_actionGoal	goal;

		goal.count	=	atoi(argv[1]);

		ac.sendGoal(goal);

Create	an	instance	of	a	goal	and	send	the	goal	value	from	the	first	command	line
argument:

		bool	finished_before_timeout	=	

ac.waitForResult(ros::Duration(atoi(argv[2])));



This	line	will	wait	for	the	result	from	the	server	until	the	given	seconds:

		ac.cancelGoal();

If	it	is	not	finished,	it	will	preempt	the	action.

Building	the	ROS	action	server	and	client
After	creating	these	two	files	in	the	src	folder,	we	have	to	edit	the	package.xml	and
CMakeLists.txt	to	build	the	nodes.

The	package.xml	file	should	contain	message	generation	and	runtime	packages	as	we	did
for	ROS	service	and	messages.

We	have	to	include	the	Boost	library	in	CMakeLists.txt	to	build	these	nodes.	Also,	we
have	to	add	the	action	files	that	we	wrote	for	this	example:

find_package(catkin	REQUIRED	COMPONENTS

		roscpp

		rospy

		std_msgs

	actionlib	

		actionlib_msgs

		message_generation

)

We	should	pass	actionlib,	actionlib_msgs,	and	message_generation	in
find_package():

##	System	dependencies	are	found	with	CMake's	conventions

find_package(Boost	REQUIRED	COMPONENTS	system)

We	should	add	Boost	as	a	system	dependency:

##	Generate	actions	in	the	'action'	folder

	add_action_files(

			FILES

			Demo_action.action

	)

We	need	to	add	our	action	file	in	add_action_files():

##	Generate	added	messages	and	services	with	any	dependencies	listed	here

	generate_messages(

			DEPENDENCIES

			std_msgs

			actionlib_msgs

	)

We	have	to	add	actionlib_msgs	in	generate_messages():

catkin_package(

		CATKIN_DEPENDS	roscpp	rospy	std_msgs	actionlib	actionlib_msgs	

message_runtime	

)

include_directories(



		include

		${catkin_INCLUDE_DIRS}

		${Boost_INCLUDE_DIRS}

)

We	have	to	add	Boost	to	include	the	directory:

##Building	action	server	and	action	client

add_executable(demo_action_server	src/demo_action_server.cpp)

add_executable(demo_action_client	src/demo_action_client.cpp)

add_dependencies(demo_action_server	

mastering_ros_demo_pkg_generate_messages_cpp)

add_dependencies(demo_action_client	

mastering_ros_demo_pkg_generate_messages_cpp)

target_link_libraries(demo_action_server	${catkin_LIBRARIES}	)

target_link_libraries(demo_action_client	${catkin_LIBRARIES})

After	catkin_make,	we	can	run	these	nodes	using	the	following	commands:

Run	roscore:

$	roscore

Launch	the	action	server	node:

$rosrun	mastering_ros_demo_pkg	demo_action_server

Launch	the	action	client	node:

$rosrun	mastering_ros_demo_pkg	demo_action_client	50	4

The	output	of	these	process	is	shown	as	follows:



Figure	16	:	Running	ROS	actionlib	server	and	client



Creating	launch	files
The	launch	files	in	ROS	are	a	very	useful	feature	for	launching	more	than	one	node.	In	the
preceding	examples,	we	have	seen	a	maximum	of	two	ROS	nodes,	but	imagine	a	scenario
in	which	we	have	to	launch	10	or	20Ł	nodes	for	a	robot.	It	will	be	difficult	if	we	run	each
node	in	a	terminal	one	by	one.	Instead	of	that,	we	can	write	all	nodes	inside	a	XML	based
file	called	launch	files	and	using	a	command	called	roslaunch,	we	can	parse	this	file	and
launch	the	nodes.

The	roslaunch	command	will	automatically	start	ROS	Master	and	the	parameter	server.
So	in	essence,	there	is	no	need	to	start	the	roscore	command	and	individual	node;	if	we
launch	the	file,	all	operations	will	be	done	in	a	single	command.

Let’s	start	creating	launch	files.	Switch	to	the	package	folder	and	create	a	new	launch	file
called	demo_topic.launch	to	launch	two	ROS	nodes	that	are	publishing	and	subscribing
an	integer	value.	We	keep	the	launch	files	in	a	launch	folder,	which	is	inside	the	package:

$	roscd	mastering_ros_demo_pkg

$	mkdir	launch

$	cd	launch

$	gedit	demo_topic.launch

Paste	the	following	content	into	the	file:

<launch>

		<node	name="publisher_node"	pkg="mastering_ros_demo_pkg"	

type="demo_topic_publisher"	output="screen"/>

		<node	name="subscriber_node"	pkg="mastering_ros_demo_pkg"	

type="demo_topic_subscriber"	output="screen"/>

</launch>

Let’s	discuss	what	is	in	the	code.	The	<launch></launch>	tags	are	the	root	element	in	a
launch	file.	All	definitions	will	be	inside	these	tags.

The	<node>	tag	specifies	the	desired	node	to	launch:

		<node	name="publisher_node"	pkg="mastering_ros_demo_pkg"	

type="demo_topic_publisher"	output="screen"/>

The	name	tag	inside	<node>	indicates	the	name	of	the	node,	pkg	is	the	name	of	the
package,	and	type	is	the	name	of	executable	we	are	going	to	launch.

After	creating	the	launch	file	demo_topic.launch,	we	can	launch	it	using	the	following
command:

$	roslaunch	mastering_ros_demo_pkg	demo_topic.launch

Here	is	the	output	we	get	if	the	launch	is	successful:



Figure	17	:	Terminal	messages	while	launching	the	demo_topic.launch	file

We	can	check	the	list	of	nodes	using:

$	rosnode	list

We	can	also	view	the	log	messages	and	debug	the	nodes	using	a	GUI	tool	called
rqt_console:

$	rqt_console

We	can	see	the	logs	generated	by	two	nodes	in	this	tool	as	shown	here:

Figure	18	:	Logging	using	the	rqt_console	tool



Applications	of	topics,	services,	and	actionlib
Topics,	services,	and	actionlib	are	used	in	different	scenarios.	We	know	topics	are	a
unidirectional	communication	method,	services	are	a	bidirectional	request/reply	kind	of
communication,	and	actionlib	is	a	modified	form	of	ROS	services	in	which	we	can	cancel
the	executing	process	running	on	the	server	whenever	required.

Here	are	some	of	areas	where	we	use	these	methods:

Topics:	Robot	teleoperation,	publishing	odometry,	sending	robot	transform	(TF),	and
sending	robot	joint	states
Services:	This	saves	camera	calibration	parameters	to	a	file,	saves	a	map	of	the	robot
after	SLAM,	and	loads	a	parameter	file
Actionlib:	This	is	used	in	motion	planners	and	ROS	navigation	stacks

Tip
The	complete	source	code	of	this	project	can	be	cloned	from	the	following	Git
repository.	The	following	command	will	clone	the	project	repo:

$	git	clone	https://github.com/qboticslabs/mastering_ros_demo_pkg.git



Maintaining	the	ROS	package
Most	of	the	ROS	packages	are	released	as	open	source	with	the	BSD	license.	There	are
active	developers	around	the	globe	who	are	contributing	to	the	ROS	platform.	Maintaining
packages	are	an	important	constraint	in	all	software	especially	open	source	application.
Open	source	software	is	maintained	and	supported	by	a	community	of	developers.
Creating	a	version	control	system	for	our	package	is	essential	if	we	want	to	maintain	and
accept	a	contribution	from	other	developers.	The	preceding	package	is	already	updated	in
GitHub	and	you	can	view	the	source	code	of	the	project	at
https://github.com/qboticslabs/mastering_ros_demo_pkg

After	uploading	the	code	in	GitHub,	we	can	see	what	the	procedures	are	to	release	our
current	package	to	ROS.

https://github.com/qboticslabs/mastering_ros_demo_pkg


Releasing	your	ROS	package
After	creating	a	ROS	package	in	GitHub,	we	can	officially	release	our	package.	ROS
provides	detailed	steps	to	release	the	ROS	package	using	a	tool	called	bloom	(http://ros-
infrastructure.github.io/bloom/).	Bloom	is	a	release	automation	tool,	designed	to	make
platform-specific	releases	from	the	source	projects.	Bloom	is	designed	to	work	best	with
the	catkin	project.

The	prerequisites	before	releasing	the	package	are	as	follows:

Install	the	bloom	tool
Create	a	Git	repository	for	the	current	package
Create	an	empty	Git	repository	for	the	release

The	following	command	will	install	bloom	in	Ubuntu:

$	sudo	apt-get	install	python-bloom

Create	a	Git	repository	for	the	current	package.	The	repository	that	has	the	package	is
called	the	upstream	repository.	Here,	we	already	created	a	repository	at
https://github.com/qboticslabs/mastering_ros_demo_pkg.

Create	an	empty	repository	in	Git	for	the	release	package.	This	repository	is	called	the
release	repository.	We	have	created	a	package	called	demo_pkg-release.	This	package	is
at	https://github.com/qboticslabs/demo_pkg-release.

After	meeting	these	prerequisites,	we	can	start	to	create	the	release	of	the	package.
Navigate	to	the	mastering_ros_demo_pkg	local	repository	where	we	push	our	package
code	to	Git.	Open	a	terminal	inside	this	local	repository	and	execute	the	following
command:

$	catkin_generate_changelog

The	purpose	of	this	command	is,	it	will	create	a	CHANGELOG.rst	file	inside	the	local
repository.	After	executing	this	command	it	will	show	this	option:

Continue	without	-all	option	[y/N].	Give	y	here

It	will	create	a	CHANGELOG.rst	in	the	local	repository.

After	the	creation	of	the	log	file,	we	can	update	the	Git	repository	by	committing	the
changes:

$	git	add	-A

$	git	commit	-m	'Updated	CHANGELOG.rst'

$	git	push	-u	origin	master

Preparing	the	ROS	package	for	the	release
In	this	step,	we	are	checking	whether	the	package	contains	change	logs,	versions,	and	so
on.	The	following	command	makes	our	package	consistent	and	recommended	for	a
release.

This	command	should	execute	from	the	local	repository	of	the	package:

http://ros-infrastructure.github.io/bloom/
https://github.com/qboticslabs/mastering_ros_demo_pkg
https://github.com/qboticslabs/demo_pkg-release


$	catkin_prepare_release

The	command	will	set	a	version	tag	if	there	is	no	current	version	and	commit	the	changes
in	the	upstream	repository.

Releasing	our	package
The	following	command	starts	the	release.	The	syntax	of	this	command	is	as	follows:

bloom-release	--rosdistro	<ros_distro>	--track	<ros_distro>	repository_name

$	bloom-release	--rosdistro	indigo	--track	indigo	mastering_ros_demo_pkg

When	this	command	is	executed,	it	will	go	to	the	rosdistro
(https://github.com/ros/rosdistro)	package	repository	to	get	the	package	details.	The
rosdistro	package	in	ROS	contains	an	index	file,	which	contains	a	list	of	all	the	packages
in	ROS.	Currently,	there	is	no	index	for	our	package	because	this	is	our	first	release,	but
we	can	add	our	package	details	to	this	index	file	called	distributions.yaml.

The	following	message	will	be	displayed	when	there	is	no	reference	of	the	package	in
rosdistro:

Figure	19	:	Terminal	messages	when	there	is	no	reference	of	the	package	in	rosdistro

We	should	give	the	release	repository	in	the	terminal	that	is	marked	in	red	in	the	preceding
screenshot.	In	this	case,	the	URL	was	https://github.com/qboticslabs/demo_pkg-release.

https://github.com/ros/rosdistro
https://github.com/qboticslabs/demo_pkg-release


Figure	20	:	Inputting	the	release	repository	URL

In	the	upcoming	steps,	the	wizard	will	ask	for	the	repository	name,	upstream,	URL,	and	so
on.	We	can	give	these	options	and	finally,	a	pull	request	to	rosdistro	will	be	submitted,
which	is	shown	in	the	following	screenshot:

Figure	21	:	Sending	a	pull	request	to	rosdistro

The	pull	request	for	this	package	can	be	viewed	at
https://github.com/ros/rosdistro/pull/9662.

If	it	is	accepted,	it	will	merge	to	indigo/distribution.yaml,	which	contains	the	index	of
all	packages	in	ROS.

The	following	screenshot	displays	the	package	as	an	index	in
indigo/distribution.yaml:

https://github.com/ros/rosdistro/pull/9662


Figure	22	:	The	distribution.yaml	file	of	ROS	Indigo

After	this	step,	we	can	confirm	that	the	package	is	released	and	officially	added	to	the
ROS	index.

Creating	a	Wiki	page	for	your	ROS	package
ROS	wiki	allows	users	to	create	their	own	home	pages	to	showcase	their	package,	robot,
or	sensors.	The	official	wiki	page	of	ROS	is	wiki.ros.org.	Now,	we	are	going	to	create	a
wiki	page	for	our	package.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.	You	can	also	download	chapter	codes	from
https://github.com/qboticslabs/mastering_ros.git.

The	first	step	is	to	register	in	wiki	using	your	mail	address.	Go	to	wiki.ros.org,	and	click
on	the	login	button	as	shown	in	the	screenshot:

http://wiki.ros.org
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/qboticslabs/mastering_ros.git
http://wiki.ros.org


Figure	23	:	Locating	the	login	option	from	ROS	wiki

After	clicking	on	Login,	you	can	register	or	directly	login	with	your	details	if	you	are
already	registered.	After	login,	press	the	user	name	link	on	the	right	side	of	the	wiki	page
as	shown	in	the	screenshot:



Figure	24	:	Locating	the	user	account	button	from	ROS	wiki

After	clicking	on	this	link,	you	will	get	a	chance	to	create	a	home	page	for	your	package;
you	will	get	a	text	editor	with	GUI	to	enter	data	into.	The	following	screenshot	shows	you
the	page	we	created	for	this	demo	package:

Figure	25	:	Creating	a	new	wiki	page

The	wiki	page	of	this	package	can	be	viewed	at	http://wiki.ros.org/qboticslabs.

http://wiki.ros.org/qboticslabs




Questions
Why	should	we	learn	ROS?
How	does	ROS	differ	from	other	robotic	software	platforms?
What	is	the	internal	working	of	roscore?
How	do	ROS	topic	and	service	differ	in	their	operations?
How	do	ROS	service	and	actionlib	differ	in	their	operations?





Summary
ROS	is	now	a	trending	software	framework	among	roboticists.	Gaining	knowledge	in
ROS	is	essential	in	the	upcoming	years	if	you	are	planning	to	build	your	career	as	a
robotics	engineer.	In	this	chapter,	we	have	gone	through	the	basics	of	ROS	mainly	to
refresh	the	concepts	if	you	have	already	learned	ROS.	We	discussed	the	necessity	of
learning	ROS	and	how	it	excels	among	the	current	robotics	software	platforms.	We	went
through	the	basic	concepts	such	as	ROS	Master,	Parameter	server,	and	roscore	and	saw
the	explanation	of	the	working	of	roscore.	After	discussing	the	internal	working	of
roscore,	we	discussed	each	ROS	concept,	such	as	ROS	topics,	services,	messages,	and
actionlib	by	illustrating	examples.	After	demonstrating	the	working	of	each	concept,	we
uploaded	the	package	to	GitHub	and	created	a	wiki	page	for	the	package.	In	the	next
chapter,	we	will	discuss	ROS	robot	modeling	using	URDF	and	xacro	and	will	design	some
robot	models.





Chapter	2.	Working	with	3D	Robot
Modeling	in	ROS
The	first	phase	of	robot	manufacturing	is	its	design	and	modeling.	We	can	design	and
model	the	robot	using	CAD	tools	such	as	AutoCAD,	Solid	Works,	Blender,	and	so	on.
One	of	the	main	purposes	of	modeling	robot	is	simulation.

The	robotic	simulation	tool	can	check	the	critical	flaws	in	the	robot	design	and	can
confirm	the	working	of	the	robot	before	it	goes	to	the	manufacturing	phase.

The	virtual	robot	model	must	have	all	the	characteristics	of	real	hardware,	the	shape	of
robot	may	or	may	not	look	like	the	actual	robot	but	it	must	be	an	abstract,	which	has	all
the	physical	characteristics	of	the	actual	robot.

In	this	chapter,	we	are	going	to	discuss	the	designing	of	two	robots.	One	is	a	seven	DOF	(
Degrees	of	Freedom)	manipulator	and	the	other	is	a	differential	drive	robot.	In	the
upcoming	chapters,	we	can	see	its	simulation	and	how	to	build	the	real	hardware	and
finally,	it’s	interfacing	to	ROS.

If	we	are	planning	to	create	the	3D	model	of	the	robot	and	simulate	using	ROS,	you	need
to	learn	about	some	ROS	packages	which	helps	in	robot	designing.	ROS	has	a	standard
meta	package	for	designing,	and	creating	robot	models	called	robot_model,	which
consists	of	a	set	of	packages	called	urdf,	kdl_parser,	robot_state_publisher,
collada_urdf,	and	so	on.	These	packages	help	us	create	the	3D	robot	model	description
with	the	exact	characteristics	of	the	real	hardware.

In	this	chapter,	we	will	cover	the	following	topics:

ROS	packages	for	robot	modeling
Understanding	robot	modeling	using	URDF
Creating	the	ROS	package	for	the	robot	description
Creating	our	first	URDF	model
Explaining	the	URDF	code
Understanding	robot	modeling	using	xacro
Creating	our	first	Xacro	model
Explanation	first	Xacro	model
Conversion	of	xacro	to	URDF
Creating	a	robot	description	for	a	seven	DOF	robot	manipulator
Working	with	the	joint	state	publisher	and	robot	state	publisher
Creating	Robot	description	for	a	differential	wheeled	robot



ROS	packages	for	robot	modeling
ROS	provides	some	good	packages	that	can	be	used	to	build	3D	robot	models.	In	this
section,	we	will	discuss	some	of	the	important	ROS	packages	that	are	commonly	used	to
build	robot	models:

robot_model:	ROS	has	a	meta	package	called	robot_model,	which	contains
important	packages	that	help	build	the	3D	robot	models.	We	can	see	all	the	important
packages	inside	this	meta-package:

urdf:	One	of	the	important	packages	inside	the	robot_model	meta	package	is
urdf.	The	URDF	package	contains	a	C++	parser	for	the	Unified	Robot
Description	Format	(URDF),	which	is	an	XML	file	to	represent	a	robot	model.

We	can	define	a	robot	model,	sensors,	and	a	working	environment	using	URDF	and
can	parse	it	using	URDF	parsers.	We	can	only	describe	a	robot	in	URDF	that	has	a
tree-like	structure	in	its	links,	that	is,	the	robot	will	have	rigid	links	and	will	be
connected	using	joints.	Flexible	links	can’t	be	represented	using	URDF.	The	URDF	is
composed	using	special	XML	tags	and	we	can	parse	these	XML	tags	using	parser
programs	for	further	processing.	We	can	work	on	URDF	modeling	in	the	upcoming
sections.

joint_state_publisher:	This	tool	is	very	useful	while	designing	robot	models
using	URDF.	This	package	contains	a	node	called	joint_state_publisher,
which	reads	the	robot	model	description,	finds	all	joints,	and	publishes	joint
values	to	all	nonfixed	joints	using	GUI	sliders.	The	user	can	interact	with	each
robot	joint	using	this	tool	and	can	visualize	using	RViz.	While	designing	URDF,
the	user	can	verify	the	rotation	and	translation	of	each	joint	using	this	tool.	We
can	discuss	more	about	the	joint_state_publisher	node	and	its	usage	in	the
upcoming	chapter.
kdl_parser:	Kinematic	and	Dynamics	Library	(KDL)	is	an	ROS	package
that	contains	parser	tools	to	build	a	KDL	tree	from	the	URDF	representation.
The	kinematic	tree	can	be	used	to	publish	the	joint	states	and	also	to	forward	and
inverse	kinematics	of	the	robot.

robot_state_publisher:	This	package	reads	the	current	robot	joint	states	and
publishes	the	3D	poses	of	each	robot	link	using	the	kinematics	tree	build	from	the
URDF.	The	3D	pose	of	the	robot	is	published	as	ROS	tf	(transform).	ROS	tf
publishes	the	relationship	between	coordinates	frames	of	a	robot.
xacro:	Xacro	stands	for	(XML	Macros)	and	we	can	define	how	xacro	is	equal	to
URDF	plus	add-ons.	It	contains	some	add-ons	to	make	URDF	shorter,	readable,	and
can	be	used	for	building	complex	robot	descriptions.	We	can	convert	xacro	to	URDF
at	any	time	using	some	ROS	tools.	We	will	see	more	about	xacro	and	its	usage	in	the
upcoming	sections.





Understanding	robot	modeling	using
URDF
We	have	discussed	the	urdf	package.	In	this	section,	we	will	look	further	at	the	URDF
XML	tags,	which	help	to	model	the	robot.	We	have	to	create	a	file	and	write	the
relationship	between	each	link	and	joint	in	the	robot	and	save	the	file	with	the	.urdf
extension.

The	URDF	can	represent	the	kinematic	and	dynamic	description	of	the	robot,	visual
representation	of	the	robot,	and	the	collision	model	of	the	robot.

The	following	tags	are	the	commonly	used	URDF	tags	to	compose	a	URDF	robot	model:

link:	The	link	tag	represents	a	single	link	of	a	robot.	Using	this	tag,	we	can	model	a
robot	link	and	its	properties.	The	modeling	includes	size,	shape,	color,	and	can	even
import	a	3D	mesh	to	represent	the	robot	link.	We	can	also	provide	dynamic	properties
of	the	link	such	as	inertial	matrix	and	collision	properties.

The	syntax	is	as	follows:

<link	name="<name	of	the	link>">

<inertial>...........</inertial>

		<visual>	............</visual>

		<collision>..........</collision>

</link>

The	following	is	a	representation	of	a	single	link.	The	Visual	section	represents	the
real	link	of	the	robot,	and	the	area	surrounding	the	real	link	is	the	Collision	section.
The	Collision	section	encapsulates	the	real	link	to	detect	collision	before	hitting	the
real	link.

Figure	1	:	Visualization	of	a	URDF	link

joint:	The	joint	tag	represents	a	robot	joint.	We	can	specify	the	kinematics	and
dynamics	of	the	joint	and	also	set	the	limits	of	the	joint	movement	and	its	velocity.
The	joint	tag	supports	the	different	types	of	joints	such	as	revolute,	continuous,
prismatic,	fixed,	floating,	and	planar.

The	syntax	is	as	follows:



<joint	name="<name	of	the	joint>">

		<parent	link="link1"/>

		<child	link="link2"/>

		

		<calibration….	/>

		<dynamics	damping…./>

		<limit	effort….	/>

</joint>

A	URDF	joint	is	formed	between	two	links;	the	first	is	called	the	Parent	link	and	the
second	is	the	Child	link.	The	following	is	an	illustration	of	a	joint	and	its	link:

Figure	2	:	Visualization	of	a	URDF	joint

robot:	This	tag	encapsulates	the	entire	robot	model	that	can	be	represented	using
URDF.	Inside	the	robot	tag,	we	can	define	the	name	of	the	robot,	the	links,	and	the
joints	of	the	robot.

The	syntax	is	as	follows:

<robot	name="<name	of	the	robot>"

		<link>		.....	</link>

		<link>	......	</link>

		<joint>	.......	</joint>

		<joint>	........</joint>

</robot>

A	robot	model	consists	of	connected	links	and	joints.	Here	is	a	visualization	of	the



robot	model:

Figure	3	:	Visualization	of	a	robot	model	having	joints	and	links

gazebo:	This	tag	is	used	when	we	include	the	simulation	parameters	of	the	Gazebo
simulator	inside	URDF.	We	can	use	this	tag	to	include	gazebo	plugins,	gazebo
material	properties,	and	so	on.	The	following	shows	an	example	using	gazebo	tags:

		<gazebo	reference="link_1">

				<material>Gazebo/Black</material>

	</gazebo>

We	can	find	more	URDF	tags	at	http://wiki.ros.org/urdf/XML.

http://wiki.ros.org/urdf/XML




Creating	the	ROS	package	for	the	robot
description
Before	creating	the	URDF	file	for	the	robot,	let’s	create	a	ROS	package	in	the	catkin
workspace	so	that	the	robot	model	keeps	using	the	following	command:

$	catkin_create_pkg	mastering_ros_robot_description_pkg	roscpp	tf	

geometry_msgs	urdf	rviz	xacro	

The	package	mainly	depends	on	the	urdf	and	xacro	packages,	and	we	can	create	the	urdf
file	of	the	robot	inside	this	package	and	create	launch	files	to	display	the	created	urdf	in
RViz.	The	full	package	is	available	on	the	following	Git	repository,	you	can	clone	the
repository	for	a	reference	to	implement	this	package	or	you	can	get	the	package	from	the
book’s	source	code:

$	git	clone	

https://github.com/qboticslabs/mastering_ros_robot_description_pkg.git

Before	creating	the	urdf	file	for	this	robot,	let’s	create	three	folders	called	urdf,	meshes,
and	launch	inside	the	package	folder.	The	urdf	folder	can	be	used	to	keep	the	urdf/xacro
files	that	we	are	going	to	create.	The	meshes	folder	keeps	the	meshes	that	we	need	to
include	in	the	urdf	file	and	the	launch	folder	keeps	the	ROS	launch	files.





Creating	our	first	URDF	model
After	learning	about	URDF	and	its	important	tags,	we	can	start	some	basic	modeling	using
URDF.	The	first	robot	mechanism	that	we	are	going	to	design	is	a	pan	and	tilt	mechanism
as	shown	in	the	following	figure.

There	are	three	links	and	two	joints	in	this	mechanism.	The	base	link	is	static,	in	which	all
other	links	are	mounted.	The	first	joint	can	pan	on	its	axis	and	the	second	link	is	mounted
on	the	first	link	and	it	can	tilt	on	its	axis.	The	two	joints	in	this	system	are	of	a	revolute
type.

Figure	4	:	Visualization	of	a	pan	and	tilt	mechanism	in	RViz

Let’s	see	the	URDF	code	of	this	mechanism.	Navigate	to
chapter_2_code/mastering_ros_robot_description_pkg/urdf	and	open
pan_tilt.urdf.	The	code	indentation	in	URDF	is	not	mandatory	for	URDF	but	it	keeping
indentation	can	improve	code	readability:

<?xml	version="1.0"?>

<robot	name="pan_tilt">

		<link	name="base_link">

				<visual>

						<geometry>

						<cylinder	length="0.01"	radius="0.2"/>

						</geometry>

						<origin	rpy="0	0	0"	xyz="0	0	0"/>

						<material	name="yellow">

								<color	rgba="1	1	0	1"/>

						</material>

				</visual>

		</link>



		<joint	name="pan_joint"	type="revolute">

				<parent	link="base_link"/>

				<child	link="pan_link"/>

				<origin	xyz="0	0	0.1"/>

				<axis	xyz="0	0	1"	/>

		</joint>

		<link	name="pan_link">

				<visual>

						<geometry>

						<cylinder	length="0.4"	radius="0.04"/>

						</geometry>

						<origin	rpy="0	0	0"	xyz="0	0	0.09"/>

						<material	name="red">

								<color	rgba="0	0	1	1"/>

						</material>

				</visual>

		</link>

		<joint	name="tilt_joint"	type="revolute">

				<parent	link="pan_link"/>

				<child	link="tilt_link"/>

				<origin	xyz="0	0	0.2"/>

				<axis	xyz="0	1	0"	/>

		</joint>

		<link	name="tilt_link">

				<visual>

						<geometry>

		<cylinder	length="0.4"	radius="0.04"/>

						</geometry>

						<origin	rpy="0	1.5	0"	xyz="0	0	0"/>

						<material	name="green">

								<color	rgba="1	0	0	1"/>

						</material>

				</visual>

		</link>

</robot>





Explaining	the	URDF	file
When	we	check	the	code,	we	can	add	a	<robot>	tag	at	the	top	of	the	description:

<?xml	version="1.0"?>

<robot	name="pan_tilt">

The	<robot>	tag	defines	the	name	of	the	robot	that	we	are	going	to	create.	Here,	we
named	the	robot	pan_tilt.

If	we	check	the	sections	after	the	<robot>	tag	definition,	we	can	see	link	and	joint
definitions	of	the	pan	and	tilt	mechanism:

		<link	name="base_link">

				<visual>

						<geometry>

						<cylinder	length="0.01"	radius="0.2"/>

						</geometry>

						<origin	rpy="0	0	0"	xyz="0	0	0"/>

						<material	name="yellow">

								<color	rgba="1	1	0	1"/>

						</material>

				</visual>

		</link>

The	preceding	code	snippet	is	the	base_link	definition	of	the	pan	and	tilt	mechanism.	The
<visual>	tag	can	describe	the	visual	appearance	of	the	link,	which	is	shown	on	the	robot
simulation.	We	can	define	the	link	geometry	(cylinder,	box,	sphere,	or	mesh)	and	the
material	(color	and	texture)	of	the	link	using	this	tag:

		<joint	name="pan_joint"	type="revolute">

				<parent	link="base_link"/>

				<child	link="pan_link"/>

				<origin	xyz="0	0	0.1"/>

				<axis	xyz="0	0	1"	/>

		</joint>

In	the	preceding	code	snippet,	we	define	a	joint	with	a	unique	name	and	its	joint	type.	The
joint	type	we	used	here	is	revolute	and	the	parent	link	and	child	link	are	base_link	and
the	pan_link	respectively.	The	joint	origin	is	also	specified	inside	this	tag.

Save	the	preceding	URDF	code	as	pan_tilt.urdf	and	check	whether	the	urdf	contains
errors	using	the	following	command:

$	check_urdf	pan_tilt.urdf

The	check_urdf	command	will	parse	urdf	and	show	an	error,	if	any.	If	everything	is	OK,
it	will	show	an	output	as	follows:

robot	name	is:	pan_tilt

----------	Successfully	Parsed	XML	---------------

root	Link:	base_link	has	1	child(ren)

				child(1):		pan_link

								child(1):		tilt_link



If	we	want	to	view	the	structure	of	the	robot	links	and	joints	graphically,	we	can	use	a
command	tool	called	urdf_to_graphiz:

$	urdf_to_graphiz	pan_tilt.urdf

This	command	will	generate	two	files:	pan_tilt.gv	and	pan_tilt.pdf.	We	can	view	the
structure	of	this	robot	using	following	command:

$	evince	pan_tilt.pdf

We	will	get	the	following	output:

Figure	5	:	Graph	of	joint	and	links	in	pan	and	tilt	mechanism





Visualizing	the	robot	3D	model	in	RViz
After	designing	URDF,	we	can	view	it	on	RViz.	We	can	create	a	view_demo.launch
launch	file	and	put	the	following	code	into	the	launch	folder.	Navigate	to
chapter_2_code/mastering_ros_robot_description_pkg/launch	for	the	same	code:

<launch>

		<arg	name="model"	/>

		<param	name="robot_description"	textfile="$(find	

mastering_ros_robot_description_pkg)/urdf/pan_tilt.urdf"	/>

		<param	name="use_gui"	value="true"/>

		<node	name="joint_state_publisher"	pkg="joint_state_publisher"	

type="joint_state_publisher"	/>

		<node	name="robot_state_publisher"	pkg="robot_state_publisher"	

type="state_publisher"	/>

		<node	name="rviz"	pkg="rviz"	type="rviz"	args="-d	$(find	

mastering_ros_robot_description_pkg)/urdf.rviz"	required="true"	/>

</launch>

We	can	launch	the	model	using	the	following	command:

$	roslaunch	mastering_ros_robot_description_pkg	view_demo.launch

If	everything	works	fine,	we	will	get	a	pan	and	tilt	mechanism	in	RViz.

Figure	6	:	Joint	level	of	pan	and	tilt	mechanism



Interacting	with	pan	and	tilt	joints
We	can	see	an	extra	GUI	came	along	with	RViz,	which	contains	sliders	to	control	pan
joints	and	tilt	joints.	This	GUI	is	called	the	Joint	State	Publisher	node	from	the
joint_state_publisher	package:

		<node	name="joint_state_publisher"	pkg="joint_state_publisher"	

type="joint_state_publisher"	/>

We	can	include	this	node	in	the	launch	file	using	this	statement.	The	limits	of	pan	and	tilt
should	be	mentioned	inside	the	joint	tag:

		<joint	name="pan_joint"	type="revolute">

				<parent	link="base_link"/>

				<child	link="pan_link"/>

				<origin	xyz="0	0	0.1"/>

				<axis	xyz="0	0	1"	/>

				<limit	effort="300"	velocity="0.1"	lower="-3.14"	upper="3.14"/>

				<dynamics	damping="50"	friction="1"/>

		</joint>

The	<limit	effort="300"	velocity="0.1"	lower="-3.14"	upper="3.14"/>	defines
the	limits	of	effort,	velocity,	and	angle	limits.	The	effort	is	the	maximum	force	supported
by	this	joint,	lower	and	upper	indicate	the	lower	and	upper	limit	of	the	joint	in	the	radian
for	the	revolute	type	joint,	and	meters	for	prismatic	joints.	The	velocity	is	the	maximum
joint	velocity.

Figure	6	:	Joint	level	of	pan	and	tilt	mechanism

The	preceding	screenshot	shows	the	GUI	of	Joint	State	Publisher	with	sliders	and
current	joint	values	shown	in	the	box.





Adding	physical	and	collision	properties
to	a	URDF	model
Before	simulating	a	robot	in	a	robot	simulator,	such	as	Gazebo,	V-REP,	and	so	on,	we	need
to	define	the	robot	link’s	physical	properties	such	as	geometry,	color,	mass,	and	inertia,
and	the	collision	properties	of	the	link.

We	will	only	get	good	simulation	results	if	we	define	all	these	properties	inside	the	robot
model.	URDF	provides	tags	to	include	all	these	parameters	and	code	snippets	of
base_link	contained	in	theses	properties	as	given	here:

<link>

......				

<collision>

						<geometry>

						<cylinder	length="0.03"	radius="0.2"/>

						</geometry>

						<origin	rpy="0	0	0"	xyz="0	0	0"/>

				</collision>

				<inertial>

				<mass	value="1"/>

				<inertia	ixx="1.0"	ixy="0.0"	ixz="0.0"	iyy="1.0"	iyz="0.0"	izz="1.0"/>

				</inertial>

...........

</link>

Here,	we	define	the	collision	geometry	as	cylinder	and	the	mass	as	1	Kg,	and	we	also	set
the	inertial	matrix	of	the	link.

The	collision	and	inertia	parameters	are	required	in	each	link;	otherwise,	Gazebo	will
not	load	the	robot	model	properly.





Understanding	robot	modeling	using
xacro
The	flexibility	of	URDF	reduces	when	we	work	with	complex	robot	models.	Some	of	the
main	features	that	URDF	is	missing	are	the	simplicity,	reusability,	modularity,	and
programmability.

If	someone	wants	to	reuse	a	URDF	block	ten	times	in	his	robot	description,	he	can	copy
and	paste	the	block	ten	times.	If	there	is	an	option	to	use	this	code	block	and	make
multiple	copies	with	different	settings,	it	will	be	very	useful	while	creating	the	robot
description.

The	URDF	is	single	file	and	we	can’t	include	other	URDF	files	inside	it.	This	reduces	the
modular	nature	of	the	code.	All	code	should	be	in	a	single	file,	which	reduces	the	code
simplicity	too.

Also,	if	there	is	some	programmability,	such	as	adding	variable,	constants,	mathematical
expressions,	conditional	statement,	and	so	on,	in	the	description	language,	it	will	be	more
user	friendly.

The	robot	modeling	using	xacro	meets	all	these	conditions	and	some	of	the	main	features
of	xacro	are	as	follows:

Simplify	URDF:	Xacro	is	the	cleaned	up	version	of	URDF.	What	it	does	is,	it	creates
macros	inside	the	robot	description	and	reuses	the	macros.	This	can	reduce	the	code
length.	Also,	it	can	include	macros	from	other	files	and	make	the	code	more	readable,
simpler,	and	modular.
Programmability:	The	xacro	language	support	a	simple	programming	statement	in
its	description.	There	are	variables,	constants,	mathematical	expressions,	conditional
statements,	and	so	on	that	make	the	description	more	intelligent	and	efficient.

We	can	say	that	xacro	is	an	updated	version	of	URDF,	and	we	can	convert	the	xacro
definition	to	URDF	whenever	it	is	necessary,	using	some	ROS	tools.

We	can	discuss	the	same	description	of	pan	and	tilt	using	xacro.	Navigate	to
chapter_2_code/mastering_ros_robot_description_pkg/urdf,	and	the	file	name	is
pan_tilt.xacro.	Instead	of	.urdf,	we	need	to	use	.xacro	for	the	xacro	file	definition.
Here	is	the	explanation	of	the	xacro	code:

<?xml	version="1.0"?>

<robot	xmlns:xacro="http://www.ros.org/wiki/xacro"	name="pan_tilt">

These	lines	specify	a	namespace	that	are	needed	in	all	xacro	files	for	parsing	the	xacro
file.	After	specifying	the	namespace,	we	need	to	add	the	name	of	the	xacro	file.



Using	properties
Using	xacro,	we	can	declare	constants	or	properties	that	are	the	named	values	inside	the
xacro	file,	which	can	be	used	anywhere	in	the	code.	The	main	use	of	these	constant
definitions	are,	instead	of	giving	hard	coded	values	on	links	and	joints,	we	can	keep
constants	like	this	and	it	will	be	easier	to	change	these	values	rather	than	finding	the	hard
coded	values	and	replacing	them.

An	example	of	using	properties	are	given	here.	We	declare	the	base	link	and	pan	link’s
length	and	radius.	So,	it	will	be	easy	to	change	the	dimension	here	rather	than	changing
values	in	each	one:

		<xacro:property	name="base_link_length"	value="0.01"	/>

		<xacro:property	name="base_link_radius"	value="0.2"	/>

		<xacro:property	name="pan_link_length"	value="0.4"	/>

		<xacro:property	name="pan_link_radius"	value="0.04"	/>

We	can	use	the	value	of	the	variable	by	replacing	the	hard	coded	value	by	the	following
definition	as	given	here:

		<cylinder	length="${pan_link_length}"	radius="${pan_link_radius}"/>

Here,	the	old	value	"0.4"	is	replaced	with	"{pan_link_length}",	and	"0.04"	is	replaced
with	"{pan_link_radius}".



Using	the	math	expression
We	can	build	mathematical	expressions	inside	${}	using	the	basic	operations	such	as	+	,	-,
*	,	/	,	unary	minus,	and	parenthesis.	Exponentiation	and	modulus	are	not	supported	yet.
The	following	is	a	simple	math	expression	used	inside	the	code:

		<cylinder	length="${pan_link_length}"	radius="${pan_link_radius+0.02}"/>			



Using	macros
One	of	the	main	features	of	xacro	is	that	it	supports	macros.	We	can	reduce	the	length
complex	definition	using	xacro	to	a	great	extent.	Here	is	a	xacro	definition	we	used	in	our
code	for	inertial:

<xacro:macro	name="inertial_matrix"	params="mass">

		<inertial>

							<mass	value="${mass}"	/>

										<inertia	ixx="0.5"	ixy="0.0"	ixz="0.0"

										iyy="0.5"	iyz="0.0"	izz="0.5"	/>

			</inertial>

</xacro:macro>

Here,	the	macro	is	named	inertial_matrix,	and	its	parameter	is	mass.	The	mass
parameter	can	be	used	inside	the	inertial	definition	using	${mass}.	We	can	replace	each
inertial	code	with	a	single	line	as	given	here:

		<xacro:inertial_matrix	mass="1"/>

The	xacro	definition	improved	the	code	readability	and	reduced	the	number	of	lines
compared	to	urdf.	Next,	we	can	see	how	to	convert	xacro	to	the	urdf	file.





Conversion	of	xacro	to	URDF
After	designing	the	xacro	file,	we	can	use	the	following	command	to	convert	it	into	a
UDRF	file:

$	rosrun	xacro	xacro.py	pan_tilt.xacro	>	pan_tilt_generated.urdf

We	can	use	the	following	line	in	the	ROS	launch	file	for	converting	xacro	to	UDRF	and
use	it	as	a	robot_description	parameter:

		<param	name="robot_description"	command="$(find	xacro)/xacro.py	$(find	

mastering_ros_robot_description_pkg)/urdf/pan_tilt.xacro"	/>

We	can	view	the	xacro	of	pan	and	tilt	by	making	a	launch	file,	and	it	can	be	launched
using	the	following	command:

$	roslaunch	mastering_ros_robot_description_pkg	view_pan_tilt_xacro.launch





Creating	the	robot	description	for	a	seven
DOF	robot	manipulator
Now,	we	can	create	some	complex	robots	using	URDF	and	xacro.	The	first	robot	we	are
going	to	deal	with	is	a	seven	DOF	robotic	arm,	which	is	a	serial	link	manipulator	having
multiple	serial	links.	The	seven	DOF	arm	is	kinematically	redundant,	which	means	it	has
more	joints	and	DOF	than	required	to	achieve	its	goal	position	and	orientation.	The
advantage	of	redundant	manipulators	are,	we	can	have	more	joint	configuration	for	a
particular	goal	position	and	orientation.	It	will	improve	the	flexibility	and	versatility	of	the
robot	movement	and	can	implement	effective	collision	free	motion	in	a	robotic	workspace.

Let’s	start	creating	the	seven	DOF	arm;	the	final	output	model	of	the	robot	arm	is	shown
here	(the	various	joints	and	links	in	the	robot	are	also	marked	on	the	image):

Figure	8	:	Joints	and	Links	of	seven	dof	arm	robot

The	preceding	robot	is	described	using	xacro.	We	can	take	the	actual	description	file	from
the	cloned	repository.	We	can	navigate	to	the	urdf	folder	inside	the	cloned	package	and
open	the	seven_dof_arm.xacro	file.	We	will	copy	and	paste	the	description	to	the	current
package	and	discuss	the	major	section	of	this	robot	description.



Arm	specification
Here	is	the	robot	arm	specification	of	this	seven	DOF	arm:

Degrees	of	freedom:	7
Length	of	arm:	50	cm
Reach	of	the	arm:	35	cm
Number	of	links:	12
Number	of	joints:	11

Type	of	joints
Here	is	the	list	of	joints	containing	the	joint	name	and	its	type	of	robot:

Joint	number Joint	name Joint	type Angle	limits	(in	degrees)

1 bottom_joint Fixed —

2 shoulder_pan_joint Revolute -150	to	114

3 shoulder_pitch_joint Revolute -67	to	109

4 elbow_roll_joint Revolute -150	to	41

5 elbow_pitch_joint Revolute -92	to	110

6 wrist_roll_joint Revolute -150	to	150

7 wrist_pitch_joint Revolute 92	to	113

8 gripper_roll_joint Revolute -150	to	150

9 finger_joint1 Prismatic 0	to	3	cm

10 finger_joint2 Prismatic 0	to	3	cm

We	design	the	xacro	of	the	arm	using	the	preceding	specifications;	here	is	the	explanation
of	the	arm	xacro	file.





Explaining	the	xacro	model	of	seven	DOF
arm
We	will	define	10	links	and	9	joints	on	this	robot	and	2	links	and	2	joints	in	the	robot
gripper.

Let’s	start	by	discussing	the	xacro	definition:

<?xml	version="1.0"?>

<robot	name="seven_dof_arm"	xmlns:xacro="http://www.ros.org/wiki/xacro">

Because	we	are	writing	a	xacro	file,	we	should	mention	the	xacro	namespace	to	parse	the
file.



Using	constants
We	use	constants	inside	this	xacro	to	make	robot	descriptions	shorter	and	readable.	Here,
we	define	the	degree	to	the	radian	conversion	factor,	PI	value,	length,	height,	and	width	of
each	of	the	links:

		<property	name="deg_to_rad"	value="0.01745329251994329577"/>

		<property	name="M_PI"	value="3.14159"/>

		<property	name="elbow_pitch_len"	value="0.22"	/>

		<property	name="elbow_pitch_width"	value="0.04"	/>

		<property	name="elbow_pitch_height"	value="0.04"	/>



Using	macros
We	define	macros	in	this	code	to	avoid	repeatability	and	to	make	the	code	shorter.	Here
are	the	macros	we	have	used	in	this	code:

			<xacro:macro	name="inertial_matrix"	params="mass">

						<inertial>

								<mass	value="${mass}"	/>

								<inertia	ixx="1.0"	ixy="0.0"	ixz="0.0"	iyy="0.5"	iyz="0.0"	

izz="1.0"	/>

						</inertial>

			</xacro:macro>

This	is	the	definition	of	the	inertial	matrix	macro	in	which	we	can	use	mass	as	its
parameter:

			<xacro:macro	name="transmission_block"	params="joint_name">

				<transmission	name="tran1">

						<type>transmission_interface/SimpleTransmission</type>

						<joint	name="${joint_name}">

								<hardwareInterface>PositionJointInterface</hardwareInterface>

						</joint>

						<actuator	name="motor1">

								<hardwareInterface>PositionJointInterface</hardwareInterface>

								<mechanicalReduction>1</mechanicalReduction>

						</actuator>

				</transmission>

			</xacro:macro>

In	the	section	of	the	code,	we	can	see	the	definition	using	the	transmission	tag.

The	transmission	tag	relates	a	joint	to	an	actuator.	It	defines	the	type	of	transmission	that
we	are	using	in	a	particular	joint	and	the	type	of	motor	and	its	parameters.	It	also	defines
the	type	of	hardware	interface	we	use	when	we	interface	with	the	ROS	controllers.



Including	other	xacro	files
We	can	extend	the	capabilities	of	the	robot	xacro	by	including	the	xacro	definition	of
sensors	using	the	xacro:include	tag.	The	following	code	snippet	shows	how	to	include	a
sensor	definition	in	the	robot	xacro:

		<xacro:include	filename="$(find	

mastering_ros_robot_description_pkg)/urdf/sensors/xtion_pro_live.urdf.xacro

"/>

Here,	we	include	a	xacro	definition	of	sensor	called	Asus	Xtion	pro,	and	this	will	be
expanded	when	the	xacro	file	is	parsed.

Using	"$(find
mastering_ros_robot_description_pkg)/urdf/sensors/xtion_pro_live.urdf.xacro"

we	can	access	the	xacro	definition	of	the	sensor,	where	find	is	to	locate	the	current
package	mastering_ros_robot_description_pkg.

We	will	discuss	more	on	vision	processing	in	Chapter	9,	Building	and	Interfacing
Differential	Drive	Mobile	Robot	Hardware	in	ROS.



Using	meshes	in	the	link
We	can	insert	a	primitive	shape	to	a	link	or	we	can	insert	a	mesh	file	using	the	mesh	tag.
The	following	example	shows	how	to	insert	a	mesh	of	the	vision	sensor:

						<visual>

								<origin	xyz="0	0	0"	rpy="0	0	0"/>

								<geometry>

										<mesh	

filename="package://mastering_ros_robot_description_pkg/meshes/sensors/xtio

n_pro_live/xtion_pro_live.dae"/>

								</geometry>

								<material	name="DarkGrey"/>

						</visual>



Working	with	the	robot	gripper
The	gripper	of	the	robot	is	designed	for	the	picking	and	placing	of	blocks	and	the	gripper
is	on	the	simple	linkage	category.	There	are	two	joints	for	the	gripper	and	each	joint	is
prismatic.	Here	is	the	joint	definition	of	one	gripper	joint:

			<joint	name="finger_joint1"	type="prismatic">

				<parent	link="gripper_roll_link"/>

				<child	link="gripper_finger_link1"/>

				<origin	xyz="0.0	0	0"	/>

				<axis	xyz="0	1	0"	/>

						<limit	effort="100"	lower="0"	upper="0.03"	velocity="1.0"/>

						<safety_controller	k_position="20"

																									k_velocity="20"

																									soft_lower_limit="${-0.15	}"

																									soft_upper_limit="${	0.0	}"/>

				<dynamics	damping="50"	friction="1"/>

		</joint>

Here,	the	first	gripper	joint	is	formed	by	gripper_roll_link	and	gripper_finger_link1,
and	the	second	joint	is	formed	by	gripper_roll_link	and	gripper_finger_link2.

The	following	graph	shows	how	the	gripper	joints	are	connected	in	gripper_roll_link:



Figure	9	:	Graph	of	the	end	effector	section	of	seven	dof	arm	robot



Viewing	the	seven	DOF	arm	in	RViz
After	discussing	the	robot	model,	we	can	view	the	designed	xacro	file	in	RViz	and	control
each	joint	using	the	joint	state	publisher	node	and	publish	the	robot	state	using	the
Robot	State	Publisher.

The	preceding	task	can	be	performed	using	a	launch	file	called	view_arm.launch,	which
is	inside	the	launch	folder	of	this	package:

<launch>

		<arg	name="model"	/>

		<!--	Parsing	xacro	and	loading	robot_description	parameter	-->

		

		<param	name="robot_description"	command="$(find	xacro)/xacro.py	$(find	

mastering_ros_robot_description_pkg)/urdf/	seven_dof_arm.xacro	"	/>

		<!--	Setting	gui	parameter	to	true	for	display	joint	slider,	for	getting	

joint	control	-->

		<param	name="use_gui"	value="true"/>

		<!--	Starting	Joint	state	publisher	node	which	will	publish	the	joint	

values	-->

		<node	name="joint_state_publisher"	pkg="joint_state_publisher"	

type="joint_state_publisher"	/>

		<!--	Starting	robot	state	publish	which	will	publish	current	robot	joint	

states	using	tf	-->

		<node	name="robot_state_publisher"	pkg="robot_state_publisher"	

type="state_publisher"	/>

		<!--	Launch	visualization	in	rviz	-->

		<node	name="rviz"	pkg="rviz"	type="rviz"	args="-d	$(find	

mastering_ros_robot_description_pkg)/urdf.rviz"	required="true"	/>

</launch>

Create	the	following	launch	file	inside	the	launch	folder	and	build	the	package	using	the
catkin_make	command.	Launch	the	urdf	using	the	following	command:

$	roslaunch	mastering_ros_robot_description_pkg	view_arm.launch		

The	robot	will	be	displayed	on	RViz	with	the	joint	state	publisher	GUI.



Figure	10	:	Seven	dof	arm	in	RViz	with	joint_state_publisher

We	can	interact	with	the	joint	slider	and	move	the	joints	of	the	robot.	We	can	next	discuss
what	the	joint	state	publisher	is.

Understanding	joint	state	publisher
Joint	state	publisher	is	one	of	the	ROS	packages	that	is	commonly	used	to	interact	with
each	joint	of	the	robot.	The	package	contains	the	joint_state_publisher	node,	which
will	find	the	nonfixed	joints	from	the	URDF	model	and	publish	the	joint	state	values	of
each	joint	in	the	sensor_msgs/JointState	message	format.

In	the	preceding	launch	file,	view_arm.launch,	we	started	the	joint_state_publisher
node	and	set	a	parameter	called	use_gui	to	true	as	follows:

		<param	name="use_gui"	value="true"/>

		<!--	Starting	Joint	state	publisher	node	which	will	publish	the	joint	

values	-->

		<node	name="joint_state_publisher"	pkg="joint_state_publisher"	

type="joint_state_publisher"	/>

If	we	set	use_gui	to	true,	the	joint_state_publisher	node	displays	a	slider	based
control	window	to	control	each	joint.	The	lower	and	upper	value	of	a	joint	will	be	taken
from	the	lower	and	upper	values	associated	with	the	limit	tag	used	inside	the	joint	tag.
The	preceding	screenshot	shows	RViz	along	with	GUI	to	publish	joint	states	with	the
use_gui	parameter	set	to	true.

We	can	find	more	on	the	joint	state	publisher	package	at
http://wiki.ros.org/joint_state_publisher.

Understanding	the	robot	state	publisher

http://wiki.ros.org/joint_state_publisher


The	robot	state	publisher	package	helps	to	publish	the	state	of	the	robot	to	tf.	This
package	subscribes	to	joint	states	of	the	robot	and	publishes	the	3D	pose	of	each	link	using
the	kinematic	representation	from	the	URDF	model.	We	can	use	the	robot	state
publisher	node	using	the	following	line	inside	the	launch	file:

<!--	Starting	robot	state	publish	which	will	publish	tf	-->

		<node	name="robot_state_publisher"	pkg="robot_state_publisher"	

type="state_publisher"	/>

In	the	preceding	launch	file,	view_arm.launch,	we	started	this	node	to	publish	the	tf	of
the	arm.	We	can	visualize	the	transformation	of	the	robot	by	clicking	on	the	tf	option	on
RViz	shown	as	follows:

Figure	11	:	TF	view	of	seven	dof	arm	in	RViz

The	joint	state	publisher	and	robot	state	publisher	packages	are	installed	along
with	the	ROS	desktop’s	installations.

After	creating	the	robot	description	of	the	seven	DOF	arm,	we	can	discuss	how	to	make	a
mobile	robot	with	differential	wheeled	mechanisms.





Creating	a	robot	model	for	the	differential
drive	mobile	robot
A	differential	wheeled	robot	will	have	two	wheels	connected	on	opposite	sides	of	the	robot
chassis	which	is	supported	by	one	or	two	caster	wheels.	The	wheels	will	control	the	speed
of	the	robot	by	adjusting	individual	velocity.	If	the	two	motors	are	running	at	the	same
speed	it	will	move	forward	or	backward.	If	a	wheel	is	running	slower	than	the	other,	the
robot	will	turn	to	the	side	of	the	lower	speed.	If	we	want	to	turn	the	robot	to	the	left	side,
reduce	the	velocity	of	the	left	wheel	compared	to	the	right	and	vice	versa.

There	are	two	supporting	wheels	called	caster	wheels	that	will	support	the	robot	and	freely
rotate	according	to	the	movement	of	the	main	wheels.

The	UDRF	model	of	this	robot	is	present	in	the	cloned	ROS	package.	The	final	robot
model	is	shown	as	follows:

Figure	12	:	3D	model	of	differential	drive	mobile	robot

The	preceding	robot	has	five	joints	and	five	links.	The	two	main	joints	are	two	wheel
joints	and	the	other	three	joints	are	two	fixed	joints	by	caster	wheels,	and	one	fixed	joint
by	base	foot	print	to	the	base	link	of	the	robot.	Here	is	the	connection	graph	of	this	robot:



Figure	13	:	Graphical	representation	of	the	links	and	joints	in	mobile	robot

We	can	go	through	the	important	section	of	code	in	the	UDRF	file.	The	UDRF	file	name
called	diff_wheeled_robot.xacro	is	placed	inside	the	urdf	folder	of	the	cloned	ROS
package.

The	first	section	of	the	UDRF	file	is	given	here.	The	robot	is	named	as
differential_wheeled_robot	and	it	also	includes	a	UDRF	file	called
wheel.urdf.xacro.	This	xacro	file	contains	the	definition	of	the	wheel	and	its
transmission;	if	we	use	this	xacro	file,	then	we	can	avoid	writing	two	definitions	for	the
two	wheels.	We	use	this	xacro	definition	because	two	wheels	are	identical	in	shape	and
size:

<?xml	version="1.0"?>

<robot	name="differential_wheeled_robot"	

xmlns:xacro="http://www.ros.org/wiki/xacro">

		<xacro:include	filename="$(find	

mastering_ros_robot_description_pkg)/urdf/wheel.urdf.xacro"	/>	

The	definition	of	a	wheel	inside	wheel.urdf.xacro	is	given	here.	We	can	mention
whether	the	wheel	has	to	be	placed	to	the	left,	right,	front,	or	back.	Using	this	macro,	we
can	create	a	maximum	of	four	wheels,	but	now	we	require	only	two:

<xacro:macro	name="wheel"	params="fb	lr	parent	translateX	translateY	

flipY">	<!--fb	:	front,	back	;	lr:	left,	right	-->

				<link	name="${fb}_${lr}_wheel">

We	also	mention	the	Gazebo	parameters	required	for	simulation.	Mentioned	here	are	the
Gazebo	parameters	associated	with	a	wheel.	We	can	mention	the	frictional	coefficient	and
stiffness	co-efficient	using	the	gazebo	reference	tag:



				<gazebo	reference="${fb}_${lr}_wheel">

						<mu1	value="1.0"/>

						<mu2	value="1.0"/>

						<kp		value="10000000.0"	/>

						<kd		value="1.0"	/>

						<fdir1	value="1	0	0"/>

						<material>Gazebo/Grey</material>

						<turnGravityOff>false</turnGravityOff>

				</gazebo>

The	joints	that	we	define	for	a	wheel	are	continuous	joints	because	there	is	no	limit	in	the
wheel	joint.	The	parent	link	here	is	the	robot	base	and	the	child	link	is	each	wheel:

				<joint	name="${fb}_${lr}_wheel_joint"	type="continuous">

						<parent	link="${parent}"/>

						<child	link="${fb}_${lr}_wheel"/>

						<origin	xyz="${translateX	*	

We	also	need	to	mention	the	transmission	tag	of	each	wheel;	the	macro	of	the	wheel	is	as
follows:

				<!--	Transmission	is	important	to	link	the	joints	and	the	controller	--

>

				<transmission	name="${fb}_${lr}_wheel_joint_trans">

						<type>transmission_interface/SimpleTransmission</type>

						<joint	name="${fb}_${lr}_wheel_joint"	/>

						<actuator	name="${fb}_${lr}_wheel_joint_motor">

								<hardwareInterface>EffortJointInterface</hardwareInterface>

								<mechanicalReduction>1</mechanicalReduction>

						</actuator>

				</transmission>

			

		</xacro:macro>

</robot>

In	diff_wheeled_robot.xacro,	we	can	use	the	following	lines	to	use	the	macros	defined
inside	wheel.urdf.xacro:

		<wheel	fb="front"	lr="right"	parent="base_link"	translateX="0"	

translateY="-0.5"	flipY="-1"/>

		<wheel	fb="front"	lr="left"	parent="base_link"	translateX="0"	

translateY="0.5"	flipY="-1"/>

Using	the	preceding	lines,	we	define	the	wheels	on	the	left	and	right	of	the	robot	base.	The
robot	base	is	cylindrical	in	shape	as	shown	in	the	preceding	figure.	The	inertia	calculating
macro	is	given	here.	This	xacro	snippet	will	use	the	mass,	radius,	and	height	of	the
cylinder	and	calculate	inertia	using	this	equation:

		<!--	Macro	for	calculating	inertia	of	cylinder	-->

		<macro	name="cylinder_inertia"	params="m	r	h">

				<inertia		ixx="${m*(3*r*r+h*h)/12}"	ixy	=	"0"	ixz	=	"0"

														iyy="${m*(3*r*r+h*h)/12}"	iyz	=	"0"

														izz="${m*r*r/2}"	/>	

		</macro>

The	launch	file	definition	for	displaying	this	root	model	in	RViz	is	given	here.	The	launch



file	is	named	view_mobile_robot.launch:

<launch>

		<arg	name="model"	/>

		<!--	Parsing	xacro	and	setting	robot_description	parameter	-->

		<param	name="robot_description"	command="$(find	xacro)/xacro.py	$(find	

mastering_ros_robot_description_pkg)/urdf/diff_wheeled_robot.xacro"	/>

		<!--	Setting	gui	parameter	to	true	for	display	joint	slider	-->

		<param	name="use_gui"	value="true"/>

		<!--	Starting	Joint	state	publisher	node	which	will	publish	the	joint	

values	-->

		<node	name="joint_state_publisher"	pkg="joint_state_publisher"	

type="joint_state_publisher"	/>

		<!--	Starting	robot	state	publish	which	will	publish	tf	-->

		<node	name="robot_state_publisher"	pkg="robot_state_publisher"	

type="state_publisher"	/>

		<!--	Launch	visualization	in	rviz	-->

		<node	name="rviz"	pkg="rviz"	type="rviz"	args="-d	$(find	

mastering_ros_robot_description_pkg)/urdf.rviz"	required="true"	/>

</launch>

The	only	difference	between	the	arm	UDRF	file	is	the	change	in	the	name;	the	other
sections	are	the	same.

We	can	view	the	mobile	robot	using	the	following	command:

$	roslaunch	mastering_ros_robot_description_pkg	view_mobile_robot.launch

The	screenshot	of	the	robot	in	RViz	is	as	follows:

Figure	14	:	Visualizing	mobile	robot	in	RViz	with	joint	state	publisher.





Questions
1.	 What	are	the	packages	used	for	robot	modeling	in	ROS?
2.	 What	are	the	important	URDF	tags	used	for	robot	modeling?
3.	 What	are	the	reasons	for	using	xacro	over	URDF?
4.	 What	is	the	use	of	the	joint	state	publisher	and	robot	state	publisher	packages?
5.	 What	is	the	use	of	the	transmission	tag	in	URDF?





Summary
In	this	chapter,	we	mainly	discussed	the	importance	of	robot	modeling	and	how	we	can
model	a	robot	in	ROS.	We	discussed	more	on	the	robot_model	meta	package	and	the
packages	inside	robot_model	such	as	urdf,	xacro,	joint_state_publisher,	and	so	on.
We	discussed	URDF,	xacro,	and	the	main	URDF	tags	that	we	are	going	to	use.	We	also
created	a	sample	model	in	URDF	and	xacro	and	discussed	the	difference	between	the	two.
After	that,	we	created	a	complex	robotic	manipulator	with	seven	DOF	and	saw	the	usage
of	the	joint	state	publisher	and	robot	state	publisher	packages.	At	the	end	of	the
chapter,	we	saw	the	designing	procedure	of	a	differential	drive	mobile	robot	using	xacro.
In	the	next	chapter,	we	will	look	at	the	simulation	of	these	robot	using	Gazebo.





Chapter	3.	Simulating	Robots	Using	ROS
and	Gazebo
After	designing	the	3D	model	of	a	robot,	the	next	phase	is	its	simulation.	Robot	simulation
will	give	you	an	idea	about	the	working	of	robots	in	a	virtual	environment.

We	are	going	to	use	the	Gazebo	(http://www.gazebosim.org/)	simulator	to	simulate	the
seven	DOF	arms	and	the	mobile	robot.

Gazebo	is	a	multirobot	simulator	for	complex	indoor	and	outdoor	robotic	simulation.	We
can	simulate	complex	robots,	robot	sensors,	and	a	variety	of	3D	objects.	Gazebo	already
has	simulation	models	of	popular	robots,	sensors,	and	a	variety	of	3D	objects	in	their
repository	(https://bitbucket.org/osrf/gazebo_models/).	We	can	directly	use	these	models
without	having	the	need	to	create.

Gazebo	has	a	good	interface	in	ROS,	which	exposes	the	whole	control	of	Gazebo	in	ROS.
We	can	install	Gazebo	without	ROS	and	we	should	install	the	ROS-Gazebo	interface	to
communicate	from	ROS	to	Gazebo.

In	this	chapter,	we	will	discuss	more	on	simulation	of	seven	DOF	arms	and	differential
wheeled	robots.	We	will	discuss	ROS	controllers	that	help	to	control	the	robot’s	joints	in
Gazebo.

We	will	cover	the	following	list	of	topics	in	this	chapter:

Simulating	robotic	arms	in	Gazebo
Adding	sensors	to	the	robotic	arm	simulation
Interfacing	Gazebo	to	ROS
Adding	ROS	controllers	to	robots
Working	with	the	robotic	arm	joint	control
Simulating	the	mobile	robot	in	Gazebo
Adding	sensors	to	mobile	robot	simulation
Moving	the	mobile	robot	in	Gazebo	using	a	keyboard	teleop

http://www.gazebosim.org/
https://bitbucket.org/osrf/gazebo_models/


Simulating	the	robotic	arm	using	Gazebo
and	ROS
In	the	previous	chapter,	we	designed	a	seven	DOF	arm.	In	this	section,	we	will	simulate
the	robot	in	Gazebo	using	ROS.

Before	starting	with	Gazebo	and	ROS,	we	should	install	the	following	packages	to	work
with	Gazebo	and	ROS.

In	ROS	Jade:

$	sudo	apt-get	install	ros-jade-gazebo-ros-pkgs	ros-jade-gazebo-ros	

ros-jade-gazebo-msgs	ros-jade-gazebo-plugins

In	ROS	Indigo:

$	sudo	apt-get	install	ros-indigo-gazebo-ros-pkgs	ros-indigo-gazebo-

msgs	ros-indigo-gazebo-plugins	ros-indigo-gazebo-ros-control

The	use	of	each	package	is	as	follows:

gazebo_ros_pkgs:	This	contains	wrappers	and	tools	for	interfacing	ROS	with
Gazebo
gazebo-msgs:	This	contains	messages	and	service	data	structures	for	interfacing	with
Gazebo	from	ROS
gazebo-plugins:	This	contains	Gazebo	plugins	for	sensors,	actuators,	and	so	on.
gazebo-ros-control:	This	contains	standard	controllers	to	communicate	between
ROS	and	Gazebo

After	installation,	check	whether	the	Gazebo	is	properly	installed	in	Ubuntu	using	the
following	command:

$	gazebo

We	can	check	the	ROS	interface	of	Gazebo	using	the	following	command:

$	roscore	&	rosrun	gazebo_ros	gazebo

These	two	commands	will	open	the	Gazebo	GUI.	If	we	have	the	Gazebo	simulator,	we	can
proceed	to	develop	the	simulation	model	of	the	seven	DOF	arm	for	Gazebo.



The	Robotic	arm	simulation	model	for	Gazebo
We	can	create	the	simulation	model	for	a	robotic	arm	by	updating	the	existing	robot
description	by	adding	simulation	parameters.	You	can	see	the	complete	simulation	model
of	the	robot	in	the	chapter_3_code/	mastering_ros_robot_description_pkg/urdf/
seven_dof_arm.xacro	file.

The	file	is	filled	with	URDF	tags,	which	are	necessary	for	the	simulation.	We	will	define
the	sections	of	collision,	inertial,	transmission,	joints,	links	and	Gazebo.

To	launch	the	existing	simulation	model,	we	can	use	the
chapter_3_code/seven_dof_arm_gazebo	package,	which	has	a	launch	file	called
seven_dof_arm_world.launch.	The	file	definition	is	as	follows:

<launch>

		<!--	these	are	the	arguments	you	can	pass	this	launch	file,	for	example	

paused:=true	-->

		<arg	name="paused"	default="false"/>

		<arg	name="use_sim_time"	default="true"/>

		<arg	name="gui"	default="true"/>

		<arg	name="headless"	default="false"/>

		<arg	name="debug"	default="false"/>

		<!--	We	resume	the	logic	in	empty_world.launch	-->

		<include	file="$(find	gazebo_ros)/launch/empty_world.launch">

				<arg	name="debug"	value="$(arg	debug)"	/>

				<arg	name="gui"	value="$(arg	gui)"	/>

				<arg	name="paused"	value="$(arg	paused)"/>

				<arg	name="use_sim_time"	value="$(arg	use_sim_time)"/>

				<arg	name="headless"	value="$(arg	headless)"/>

		</include>

		<!--	Load	the	URDF	into	the	ROS	Parameter	Server	-->

		<param	name="robot_description"	command="$(find	xacro)/xacro.py	'$(find	

mastering_ros_robot_description_pkg)/urdf/seven_dof_arm.xacro'"	/>	

		<!--	Run	a	python	script	to	the	send	a	service	call	to	gazebo_ros	to	

spawn	a	URDF	robot	-->

		<node	name="urdf_spawner"	pkg="gazebo_ros"	type="spawn_model"	

respawn="false"	output="screen"

		args="-urdf	-model	seven_dof_arm	-param	robot_description"/>	

</launch>

Build	the	package	called	seven_dof_arm_gazebo	from	chapter_3_code	in	your	catkin
workspace.	This	is	the	package	we	used	for	the	robot	arm	simulation.

Launch	the	following	command	and	check	what	you	get:

$	roslaunch	seven_dof_arm_gazebo	seven_dof_arm_world.launch

You	can	see	the	robotic	arm	in	Gazebo	as	shown	in	the	following	figure;	if	you	get	this
output,	without	any	errors,	you	are	done:



Figure	1	:	Simulation	of	Seven	DOF	arm	in	Gazebo

Let’s	discuss	the	seven_dof_arm.xacro	simulation	model	in	detail.

Adding	colors	and	textures	to	the	Gazebo	robot	model
We	can	see	in	the	simulated	robot	that,	each	link	has	different	colors	and	textures.	The
following	tags	inside	the	xacro	file	provide	textures	and	colors	to	robot	links:

		<gazebo	reference="bottom_link">

				<material>Gazebo/White</material>

		</gazebo>

		<gazebo	reference="base_link">

				<material>Gazebo/White</material>

		</gazebo>

		<gazebo	reference="shoulder_pan_link">

				<material>Gazebo/Red</material>

		</gazebo>

Adding	transmission	tags	to	actuate	the	model



In	order	to	actuate	the	robot	using	ROS	controllers,	we	should	define	the	<transmission>
element	to	link	actuators	to	joints.	Here	is	the	macro	defined	for	transmission:

			<xacro:macro	name="transmission_block"	params="joint_name">

				<transmission	name="tran1">

						<type>transmission_interface/SimpleTransmission</type>

						<joint	name="${joint_name}">

																		

<hardwareInterface>PositionJointInterface</hardwareInterface>

						</joint>

						<actuator	name="motor1">

							<mechanicalReduction>1</mechanicalReduction>

						</actuator>

				</transmission>

			</xacro:macro>

Here,	the	<joint	name	=	"">	is	the	joint	in	which	we	link	the	actuators.	The	<type>
element	is	the	type	of	transmission.	Currently,
transmission_interface/SimpleTransmission	is	only	supported.	The
<hardwareInterface>	element	is	the	type	of	hardware	interface	to	load	(position,
velocity,	or	effort	interfaces).	The	hardware	interface	is	loaded	by	the
gazebo_ros_control	plugin;	we	can	see	more	about	this	plugin	in	the	next	section.

Adding	the	gazebo_ros_control	plugin
After	adding	the	transmission	tags,	we	should	add	the	gazebo_ros_control	plugin	in	the
simulation	model	in	order	to	parse	the	transmission	tags	and	assign	appropriate	hardware
interfaces	and	the	control	manager.	The	following	code	adds	the	gazebo_ros_control
plugin	to	the	xacro	file:

		<!--	ros_control	plugin	-->

		<gazebo>

				<plugin	name="gazebo_ros_control"	filename="libgazebo_ros_control.so">

						<robotNamespace>/seven_dof_arm</robotNamespace>

				</plugin>

		</gazebo>

Here,	the	<plugin>	element	specifies	the	plugin	name	to	be	loaded,	which	is
libgazebo_ros_control.so.	The	<robotNamespace>	element	can	be	given	as	the	name	of
the	robot;	if	we	are	not	specifying	the	name,	it	will	automatically	load	the	name	of	the
robot	from	the	URDF.	We	can	also	specify	the	controller	update	rate	(<controlPeriod>),
location	of	robot_description	(URDF)	on	the	parameter	server	(<robotParam>),	and	the
type	of	robot	hardware	interface	(<robotSimType>).	The	default	hardware	interfaces	are
JointStateInterface,	EffortJointInterface,	and	VelocityJointInterface.

Adding	a	3D	vision	sensor	to	Gazebo
In	Gazebo,	we	can	simulate	the	robot	movement	and	its	physics;	other	than	that,	we	can
simulate	sensors	too.

To	build	a	sensor	in	Gazebo,	we	have	to	model	the	behavior	of	that	sensor	in	Gazebo.
There	are	some	prebuilt	sensor	models	in	Gazebo	that	can	be	used	directly	in	our	code



without	writing	a	new	model.

Here,	we	are	adding	a	3D	vision	sensor	called	the	Asus	Xtion	Pro	model	in	Gazebo.	The
sensor	model	is	already	implemented	in	the	gazebo_ros_pkgs/gazebo_plugins	ROS
package,	which	we	already	installed	in	our	ROS	system.

Each	model	in	Gazebo	is	implemented	as	Gazebo-ROS	plugins,	which	can	be	loaded	by
inserting	into	the	URDF	file.

Here	is	how	we	include	a	Gazebo	definition	and	physical	robot	model	of	Xtion	Pro	in	the
seven_dof_arm.xacro	robot	xacro	file:

<xacro:include	filename="$(find	

mastering_ros_robot_description_pkg)/urdf/sensors/xtion_pro_live.urdf.xacro

"/>	

Inside	xtion_pro_live.urdf.xacro,	we	can	see	the	following	lines:

<?xml	version="1.0"?>

<robot	xmlns:xacro="http://ros.org/wiki/xacro">

		<xacro:include	filename="$(find	

mastering_ros_robot_description_pkg)/urdf/sensors/xtion_pro_live.gazebo.xac

ro"/>

...................

		<xacro:macro	name="xtion_pro_live"	params="name	parent	*origin	

*optical_origin">	

...................

				<link	name="${name}_link">

							......................

		<visual>

								<origin	xyz="0	0	0"	rpy="0	0	0"/>

								<geometry>

										<mesh	

filename="package://mastering_ros_robot_description_pkg/meshes/sensors/xtio

n_pro_live/xtion_pro_live.dae"/>

								</geometry>

								<material	name="DarkGrey"/>

				</visual>

				</link>	

</robot>

Here,	we	can	see	it	includes	another	file	called	xtion_pro_live.gazebo.xacro,	which
consists	of	the	complete	Gazebo	definition	of	Xtion	Pro.

We	can	also	see	a	macro	definition	named	xtion_pro_live,	which	contains	the	complete
model	definition	of	Xtion	Pro	including	links	and	joints:

<mesh	

filename="package://mastering_ros_robot_description_pkg/meshes/sensors/xtio

n_pro_live/xtion_pro_live.dae"/>

In	the	macro	definition,	we	are	importing	a	mesh	file	of	the	Asus	Xtion	Pro,	which	will	be
shown	as	the	camera	link	in	Gazebo.

In



mastering_ros_robot_description_pkg/urdf/sensors/xtion_pro_live.gazebo.xacro

we	can	see	the	Gazebo-ROS	plugin	of	Xtion	Pro.	Here,	we	will	define	the	plugin	as	macro
with	RGB	and	depth	camera	support.	Here	is	the	plugin	definition:

										<plugin	name="${name}_frame_controller"					

filename="libgazebo_ros_openni_kinect.so">

										<alwaysOn>true</alwaysOn>

										<updateRate>6.0</updateRate>

										<cameraName>${name}</cameraName>

										<imageTopicName>rgb/image_raw</imageTopicName>

								</plugin>	

The	plugin	file	name	of	Xtion	Pro	is	libgazebo_ros_openni_kinect.so,	and	we	can
define	the	plugin	parameters	such	as	camera	name,	image	topics,	and	so	on.



Simulating	the	robotic	arm	with	Xtion	Pro
After	discussing	the	camera	plugin	definition	in	Gazebo,	we	can	launch	the	complete
simulation	using	the	following	command:

$	roslaunch	seven_dof_arm_gazebo	seven_dof_arm_world.launch

We	can	see	the	robot	model	with	a	sensor	on	the	top	of	the	arm,	as	shown	here:

Figure	2	:	Simulation	of	seven	DOF	arm	with	Asus	Xtion	Pro	in	Gazebo

We	can	work	with	the	Xtion	Pro	data	from	Gazebo	and	check	whether	it	provides	the
correct	image	output.

Visualizing	the	3D	sensor	data
We	can	just	list	out	the	topics	generated	while	performing	simulation,	and	here	are	the
topics	generated	by	the	sensor	plugin:

$	rostopic	list



Figure	3	:	ROS	topics	generated	by	3D	sensor	in	Gazebo

Let’s	view	the	image	data	of	a	3D	vision	sensor	using	the	following	tool	called
image_view.

View	the	RGB	raw	image:

$	rosrun	image_view	image_view	image:=/rgbd_camera/rgb/image_raw

View	the	IR	raw	image:

$	rosrun	image_view	image_view	image:=/rgbd_camera/ir/image_raw

View	the	depth	image:

$	rosrun	image_view	image_view	image:=/rgbd_camera/depth/image_raw

Here	is	the	screenshot	with	all	these	images:



Figure	4	:	Viewing	images	of	Xtion	Pro	in	Gazebo

We	can	also	view	the	point	cloud	data	of	this	sensor	in	RViz.

Launch	RViz	using	the	following	command:

$	rosrun	rviz	rviz	-f	/rgbd_camera_optical_frame

Add	a	PointCloud2	display	type	and	Topic	as	/rgbd_camera/depth/points.	Set	the
Color	Transformer	option	as	RGB8.	We	will	get	a	point	cloud	view	as	follows:



Figure	5	:	Viewing	point	cloud	data	from	Xtion	Pro	in	RViz



Moving	robot	joints	using	ROS	controllers	in
Gazebo
In	this	section,	we	are	going	to	discuss	how	to	move	each	joint	of	the	robot	in	Gazebo.

To	move	each	joint,	we	need	to	assign	a	ROS	controller.	In	each	joint,	we	need	to	attach	a
controller	that	is	compatible	with	the	hardware	interface	mentioned	inside	the
transmission	tags.

A	ROS	controller	mainly	consists	of	a	feedback	mechanism,	most	probably	a	PID	loop,
which	can	receive	a	set	point,	and	control	the	output	using	the	feedback	from	the
actuators.

The	ROS	controller	will	not	directly	communicate	with	the	hardware,	instead	of	that,	the
robot	hardware	interface	can	talk	with	hardware.	The	main	function	of	the	hardware
interface	is	that	it	will	act	as	a	mediator	between	ROS	controllers	and	the	Real
Hardware/Simulator	and	allocate	the	necessary	resources	for	the	controllers	and	check	the
resource	conflicts	too.

In	this	robot,	we	have	defined	the	position	controllers,	velocity	controllers,	effort
controllers,	and	so	on.	The	ROS	controllers	are	provided	by	a	set	of	packages	called
ros_control.

For	proper	understanding	of	how	to	configure	ROS	controllers	for	the	arm,	we	should
understand	its	concepts.	We	will	discuss	more	on	the	ros_control	packages,	different
types	of	ROS	controllers,	and	how	a	ROS	controller	interacts	with	the	Gazebo	simulation.

Understanding	the	ros_control	packages
The	ros_control	packages	have	the	implementation	of	robot	controllers,	controller
managers,	hardware	interface,	different	transmission	interface,	and	control	toolboxes.	The
ros_controls	packages	are	composed	of	the	following	individual	packages:

control_toolbox:	This	package	contains	common	modules	(P.I.D	and	Sine)	that	can
be	used	by	all	controllers
controller_interface:	This	package	contains	the	interface	base	class	for
controllers
controller_manager:	This	package	provides	the	infrastructure	to	load,	unload,
start,	and	stop	controllers
controller_manager_msgs:	This	package	provides	the	message	and	service
definition	for	the	controller	manager
hardware_interface:	This	contains	the	base	class	for	the	hardware	interfaces
transmission_interface:	This	package	contains	the	interface	classes	for	the
transmission	interface	(differential,	four	bar	linkage,	joint	state,	position,	and
velocity)

Different	types	of	ROS	controllers	and	hardware	interfaces
Let’s	see	the	list	of	ROS	packages	that	contain	the	standard	ROS	controllers:



joint_position_controller:	This	is	a	simple	implementation	of	the	joint	position
controller
joint_state_controller:	This	is	a	controller	to	publish	joint	states
joint_effort_controller:	This	is	an	implementation	of	the	joint	effort	(force)
controller

The	following	are	some	of	the	commonly	used	hardware	interfaces	in	ROS:

Joint	Command	Interfaces:	This	will	send	the	commands	to	the	hardware

Effort	Joint	Interface:	This	will	send	the	effort	command
Velocity	Joint	Interface:	This	will	send	the	velocity	command
Position	Joint	Interface:	This	will	send	the	position	command

Joint	State	Interfaces:	This	will	retrieve	the	joint	states	from	the	actuators
encoder

How	the	ROS	controller	interacts	with	Gazebo
Let’s	see	how	a	ROS	controller	interacts	with	Gazebo.	The	following	figure	shows	the
interconnection	of	the	ROS	controller,	robot	hardware	interface,	and	simulator/real
hardware:

Figure	6	:	Interacting	ROS	controllers	with	Gazebo

We	can	see	the	third-party	tool	such	as	navigation	and	MoveIt	packages.	These	packages
can	give	the	goal	(set	point)	to	the	mobile	robot	controllers	and	robotic	arm	controllers.
These	controllers	can	send	the	position,	velocity,	or	effort	to	the	robot	hardware	interface.

The	hardware	interface	allocates	each	resource	for	the	controllers	and	sends	values	to	each
resource.	The	detailed	diagram	of	communications	between	the	robot	controllers	and	robot



hardware	interfaces	are	shown	as	follows:

Figure	7	:	Illustration	of	ROS	controllers	and	hardware	interfaces

The	hardware	interface	is	decoupled	from	actual	hardware	and	simulation.	The	values
from	the	hardware	interface	can	be	fed	to	Gazebo	for	simulation	or	to	the	actual	hardware,
itself.

The	hardware	interface	is	a	software	representation	of	the	robot	and	its	abstract	hardware.
The	resource	of	the	hardware	interfaces	are	actuators,	joints,	and	sensors.	Some	resources
are	read-only	such	as	joint	states,	IMU,	force-torque	sensors,	and	so	on	and	some	are	read
and	write	compatible	such	as	position,	velocity,	and	effort	joints.

Interfacing	joint	state	controllers	and	joint	position	controllers	to	the	arm
Interfacing	robot	controllers	to	each	joint	is	a	simple	task.	The	first	task	is	to	write	a
configuration	file	for	two	controllers.

The	joint	state	controllers	will	publish	the	joint	states	of	the	arm	and	the	joint	position
controllers	can	receive	a	goal	position	for	each	joint	and	can	move	each	joint.

We	will	find	the	configuration	file	for	the	controller	at
seven_dof_arm_gazebo_control.yaml	in
chapter_3_code/seven_dof_arm_gazebo/config.

Here	is	the	configuration	file	definition:

seven_dof_arm:



		#	Publish	all	joint	states	-----------------------------------

		joint_state_controller:

				type:	joint_state_controller/JointStateController

				publish_rate:	50		

		

		#	Position	Controllers	---------------------------------------

		joint1_position_controller:

				type:	position_controllers/JointPositionController

				joint:	shoulder_pan_joint

				pid:	{p:	100.0,	i:	0.01,	d:	10.0}

		joint2_position_controller:

				type:	position_controllers/JointPositionController

				joint:	shoulder_pitch_joint

				pid:	{p:	100.0,	i:	0.01,	d:	10.0}

		joint3_position_controller:

				type:	position_controllers/JointPositionController

				joint:	elbow_roll_joint

				pid:	{p:	100.0,	i:	0.01,	d:	10.0}

		joint4_position_controller:

				type:	position_controllers/JointPositionController

				joint:	elbow_pitch_joint

				pid:	{p:	100.0,	i:	0.01,	d:	10.0}

		joint5_position_controller:

				type:	position_controllers/JointPositionController

				joint:	wrist_roll_joint

				pid:	{p:	100.0,	i:	0.01,	d:	10.0}

		joint6_position_controller:

				type:	position_controllers/JointPositionController

				joint:	wrist_pitch_joint

				pid:	{p:	100.0,	i:	0.01,	d:	10.0}

		joint7_position_controller:

				type:	position_controllers/JointPositionController

				joint:	gripper_roll_joint

				pid:	{p:	100.0,	i:	0.01,	d:	10.0}

We	can	see	that	all	the	controllers	are	inside	the	namespace	seven_dof_arm	and	the	first
lines	represents	the	joint	state	controllers,	which	will	publish	the	joint	state	of	the	robot	at
the	rate	of	50	Hz.

The	remaining	controllers	are	joint	position	controllers,	which	are	assigned	to	the	first
seven	joints	and	also	define	the	PID	gains.

Launching	the	ROS	controllers	with	Gazebo
If	the	controller	configuration	is	ready,	we	can	build	a	launch	file	that	starts	all	the
controllers	along	with	the	Gazebo	simulation.	Navigate	to
chapter_3_code/seven_dof_arm_gazebo/launch	and	open	the
seven_dof_arm_gazebo_control.launch	file:

<launch>

		<!--	Launch	Gazebo		-->

		<include	file="$(find	

seven_dof_arm_gazebo)/launch/seven_dof_arm_world.launch"	/>			



		<!--	Load	joint	controller	configurations	from	YAML	file	to	parameter	

server	-->

		<rosparam	file="$(find	

seven_dof_arm_gazebo)/config/seven_dof_arm_gazebo_control.yaml"	

command="load"/>

		<!--	load	the	controllers	-->

		<node	name="controller_spawner"	pkg="controller_manager"	type="spawner"	

respawn="false"

		output="screen"	ns="/seven_dof_arm"	args="joint_state_controller

												joint1_position_controller

												joint2_position_controller

												joint3_position_controller

												joint4_position_controller

												joint5_position_controller

												joint6_position_controller

												joint7_position_controller"/>

		<!--	convert	joint	states	to	TF	transforms	for	rviz,	etc	-->

		<node	name="robot_state_publisher"	pkg="robot_state_publisher"	

type="robot_state_publisher"

		respawn="false"	output="screen">

				<remap	from="/joint_states"	to="/seven_dof_arm/joint_states"	/>

		</node>

</launch>

The	launch	files	start	the	Gazebo	simulation	of	the	arm,	load	the	controller	configuration,
load	the	joint	state	controller	and	joint	position	controllers,	and	at	last,	it	runs	the	robot
state	publisher,	which	publishes	the	joint	states	and	TF.

Let’s	check	the	controller	topics	generated	after	running	this	launch	file:

$	roslaunch	seven_dof_arm_gazebo	seven_dof_arm_gazebo_control.launch

If	the	command	is	successful,	we	can	see	these	messages	in	the	terminal:



Figure	8	:	Terminal	messages	while	loading	the	ROS	controllers	of	seven	DOF	arm

Here	are	the	topics	generated	from	the	controllers	when	we	run	this	launch	file:

$	rostopic	list

Figure	9	:	Position	controller	command	topics	of	seven	DOF	arm

Moving	the	robot	joints
After	getting	done	with	the	preceding	topics,	we	can	start	commanding	positions	to	each
joint.

To	move	a	robot	joint	in	Gazebo,	we	have	to	publish	a	joint	value	with	a	message	type
std_msgs/Float64	to	the	joint	position	controller	command	topics.

Here	is	an	example	of	moving	the	fourth	joint	to	1.0	radians:



$	rostopic	pub	/seven_dof_arm/joint4_position_controller/command	

std_msgs/Float64	1.0

Figure	10	:	Moving	a	joint	of	the	arm	in	Gazebo

We	can	also	view	the	joint	states	of	the	robot	by	using	the	following	command:

$	rostopic	echo	/seven_dof_arm/joint_states



Simulating	a	differential	wheeled	robot	in	Gazebo
We	have	seen	the	simulation	of	the	robotic	arm.	In	this	section,	we	can	setup	the
simulation	for	the	differential	wheeled	robot	that	we	designed	in	the	previous	chapter.

You	will	get	the	diff_wheeled_robot.xacro	mobile	robot	description	at
chapter_3_code/mastering_ros_robot_description_pkg/urdf.

Let’s	create	a	launch	file	to	spawn	the	simulation	model	in	Gazebo.

Navigate	to	chapter_3_code/diff_wheeled_robot_gazebo/launch	and	take	the
diff_wheeled_gazebo.launch	file.	Here	is	the	definition	of	this	launch:

<launch>

		<!--	these	are	the	arguments	you	can	pass	this	launch	file,	for	example	

paused:=true	-->

		<arg	name="paused"	default="false"/>

		<arg	name="use_sim_time"	default="true"/>

		<arg	name="gui"	default="true"/>

		<arg	name="headless"	default="false"/>

		<arg	name="debug"	default="false"/>

		<!--	We	resume	the	logic	in	empty_world.launch	-->

		<include	file="$(find	gazebo_ros)/launch/empty_world.launch">

				<arg	name="debug"	value="$(arg	debug)"	/>

				<arg	name="gui"	value="$(arg	gui)"	/>

				<arg	name="paused"	value="$(arg	paused)"/>

				<arg	name="use_sim_time"	value="$(arg	use_sim_time)"/>

				<arg	name="headless"	value="$(arg	headless)"/>

		</include>

		<!--	urdf	xml	robot	description	loaded	on	the	Parameter	Server-->

		<param	name="robot_description"	command="$(find	xacro)/xacro.py	'$(find	

mastering_ros_robot_description_pkg)/urdf/diff_wheeled_robot.xacro'"	/>	

		<!--	Run	a	python	script	to	the	send	a	service	call	to	gazebo_ros	to	

spawn	a	URDF	robot	-->

		<node	name="urdf_spawner"	pkg="gazebo_ros"	type="spawn_model"	

respawn="false"	output="screen"

		args="-urdf	-model	diff_wheeled_robot	-param	robot_description"/>	

</launch>

To	launch	this	file,	we	can	use	the	following	command:

$	roslaunch	diff_wheeled_robot_gazebo	diff_wheeled_robot_gazebo.launch

You	will	see	the	following	robot	model	in	Gazebo.	If	you	got	this	model,	you	have
successfully	finished	the	first	phase	of	simulation:



Figure	11	:	Differential	wheeled	robot	in	Gazebo

After	successful	simulation,	let’s	add	the	laser	scanner	to	the	robot.	In	the	preceding
figure,	we	can	see	a	box	on	the	top	of	the	robot,	which	is	the	sensor	we	added	to	the
URDF,	and	here	is	how	we	do	it.

Adding	the	laser	scanner	to	Gazebo
We	add	the	laser	scanner	on	the	top	of	Gazebo	in	order	to	perform	high-end	operations
such	as	autonomous	navigation	using	this	robot.	Here,	we	can	see	that	an	extra	code
section	needed	to	be	added	in	diff_wheeled_robot.xacro	to	have	the	laser	scanner	on
the	robot:

		<link	name="hokuyo_link">

				<visual>

						<origin	xyz="0	0	0"	rpy="0	0	0"	/>

						<geometry>

								<box	size="${hokuyo_size}	${hokuyo_size}	${hokuyo_size}"/>

						</geometry>

						<material	name="Blue"	/>

				</visual>

		</link>

		<joint	name="hokuyo_joint"	type="fixed">

				<origin	xyz="${base_radius	-	hokuyo_size/2}	0	

${base_height+hokuyo_size/4}"	rpy="0	0	0"	/>

				<parent	link="base_link"/>

				<child	link="hokuyo_link"	/>

		</joint>

		<gazebo	reference="hokuyo_link">

				<material>Gazebo/Blue</material>

				<turnGravityOff>false</turnGravityOff>

				<sensor	type="ray"	name="head_hokuyo_sensor">



						<pose>${hokuyo_size/2}	0	0	0	0	0</pose>

						<visualize>false</visualize>

						<update_rate>40</update_rate>

						<ray>

								<scan>

										<horizontal>

												<samples>720</samples>

												<resolution>1</resolution>

												<min_angle>-1.570796</min_angle>

												<max_angle>1.570796</max_angle>

										</horizontal>

								</scan>

								<range>

										<min>0.10</min>

										<max>10.0</max>

										<resolution>0.001</resolution>

								</range>

						</ray>

						<plugin	name="gazebo_ros_head_hokuyo_controller"	

filename="libgazebo_ros_laser.so">

								<topicName>/scan</topicName>

								<frameName>hokuyo_link</frameName>

						</plugin>

				</sensor>

		</gazebo>

In	this	section,	we	use	the	Gazebo	ROS	plugin	file	called	libgazebo_ros_laser.so	to
simulate	the	laser	scanner.

We	can	view	the	laser	scanner	data	by	adding	some	objects	in	the	simulation	environment.
Here,	we	add	some	cylinders	around	the	robot	and	can	see	the	corresponding	laser	view	in
the	next	section	of	the	figure:

Figure	12	:	Differential	drive	robot	in	random	object	in	Gazebo

The	laser	scanner	plugin	publishes	laser	data	to	scan	a	topic;	we	can	just	echo	the	topic	to
get	the	laser	scan	data	array:

$	rostopic	echo	/scan



Moving	the	mobile	robot	in	Gazebo
The	robot	we	are	working	with	is	a	differential	robot	with	two	wheels,	and	two	caster
wheels.	The	complete	characteristics	of	the	robot	should	model	as	the	Gazebo-ROS	plugin
for	the	simulation.	Luckily,	the	plugin	for	a	basic	differential	drive	is	already
implemented.

In	order	to	move	the	robot	in	Gazebo,	we	should	add	a	Gazebo	ROS	plugin	file	called
libgazebo_ros_diff_drive.so	to	get	the	differential	drive	behavior	in	this	robot.

Here	is	the	complete	code	snippet	of	the	definition	of	this	plugin	and	its	parameters:

		<!--	Differential	drive	controller		-->

		<gazebo>

				<plugin	name="differential_drive_controller"	

filename="libgazebo_ros_diff_drive.so">

						<rosDebugLevel>Debug</rosDebugLevel>

						<publishWheelTF>false</publishWheelTF>

						<robotNamespace>/</robotNamespace>

						<publishTf>1</publishTf>

						<publishWheelJointState>false</publishWheelJointState>

						<alwaysOn>true</alwaysOn>

						<updateRate>100.0</updateRate>

						<leftJoint>front_left_wheel_joint</leftJoint>

						<rightJoint>front_right_wheel_joint</rightJoint>

						<wheelSeparation>${2*base_radius}</wheelSeparation>

						<wheelDiameter>${2*wheel_radius}</wheelDiameter>

						<broadcastTF>1</broadcastTF>

						<wheelTorque>30</wheelTorque>

						<wheelAcceleration>1.8</wheelAcceleration>

						<commandTopic>cmd_vel</commandTopic>

						<odometryFrame>odom</odometryFrame>	

						<odometryTopic>odom</odometryTopic>	

						<robotBaseFrame>base_footprint</robotBaseFrame>

				</plugin>

		</gazebo>

We	can	provide	the	parameters	such	as	wheel	joints	of	the	robot	(joints	should	be	of	a
continuous	type),	wheel	separation,	wheel	diameters,	odometry	topic,	and	so	on	in	this
plugin.

An	important	parameter	that	we	need	to	move	the	robot	is

<commandTopic>cmd_vel</commandTopic>

This	parameter	is	the	command	velocity	topic	to	the	plugin,	which	is	basically	a	Twist
message	in	ROS	(sensor_msgs/Twist).	We	can	publish	the	Twist	message	into	the
/cmd_vel	topic	and	we	can	see	the	robot	start	moving	from	its	position.

Adding	joint	state	publishers	in	the	launch	file



After	adding	the	differential	drive	plugin,	we	need	to	joint	state	publishers	to	the	existing
launch	file,	or	we	can	build	a	new	one.	You	can	see	the	new	final	launch	file:
diff_wheeled_gazebo_full.launch	from
chapter_3_code/diff_wheeled_robot_gazebo/launch.

The	launch	file	contains	joint	state	publishers,	which	help	to	visualize	in	RViz.	Here	are
the	extra	lines	added	in	this	launch	file	for	the	joint	state	publishing:

		<node	name="joint_state_publisher"	pkg="joint_state_publisher"	

type="joint_state_publisher"	></node>	

		<!--	start	robot	state	publisher	-->

		<node	pkg="robot_state_publisher"	type="state_publisher"	

name="robot_state_publisher"	output="screen"	>

				<param	name="publish_frequency"	type="double"	value="50.0"	/>

		</node>



Adding	the	ROS	teleop	node
The	ROS	teleop	node	publishes	the	ROS	Twist	command	by	taking	keyboard	inputs.
From	this	node,	we	can	generate	both	linear	and	angular	velocity	and	there	is	already	a
standard	teleop	node	implementation	available;	we	can	simply	reuse	the	node.

The	teleop	implemented	in	chapter_3_code/diff_wheeled_robot_control	package.	The
script	folder	contains	the	diff_wheeled_robot_key	node,	which	is	the	teleop	node.

Here	is	the	launch	file	called	keyboard_teleop.launch	to	start	the	teleop	node:

	<launch>

		<!--	differential_teleop_key	already	has	its	own	built	in	velocity	

smoother	-->

		<node	pkg="diff_wheeled_robot_control"	type="diff_wheeled_robot_key"	

name="diff_wheeled_robot_key"		output="screen">

				<param	name="scale_linear"	value="0.5"	type="double"/>

				<param	name="scale_angular"	value="1.5"	type="double"/>

				<remap	from="turtlebot_teleop_keyboard/cmd_vel"	to="/cmd_vel"/>	

		</node>

</launch>

Let’s	start	moving	the	robot.

Launch	the	Gazebo	with	complete	simulation	settings	using	the	following	command:

$	roslaunch	diff_wheeled_robot_gazebo	diff_wheeled_gazebo_full.launch

Start	the	teleop	node:

$	roslaunch	diff_wheeled_robot_control	keyboard_teleop.launch

Start	RViz	to	visualize	the	robot	state	and	laser	data:

$	rosrun	rviz	rviz

Add	Fixed	Frame	:	/odom,	add	Laser	Scan	and	the	topic	as	/scan	to	view	the	laser	scan
data	and	add	the	Robot	model	to	view	the	robot	model.

In	the	teleop	terminal,	we	can	use	some	keys	(U,	I,	O,	J,	K,	L,	M,	“,”	,	“.“)	for	direction
adjustment	and	other	keys	(Q,	Z,	W,	X,	E,	C,	K,	space	key)	for	speed	adjustments.	Here	is
the	screenshot	showing	the	robot	moving	in	Gazebo	using	teleop	and	its	visualization	in
RViz.

We	can	add	primitive	shapes	from	the	Gazebo	toolbar	to	the	robot	environment	or	we	can
add	objects	from	the	online	library,	which	is	on	the	left	side	panel.



Figure	13	:	Moving	differential	drive	robot	in	Gazebo	using	teleoperation

The	robot	will	only	move	when	we	press	the	appropriate	key	inside	the	teleop	node
terminal.	If	this	terminal	is	not	active,	pressing	the	key	will	not	move	the	robot.	If
everything	works	well,	we	can	explore	the	area	using	the	robot	and	visualizing	the	laser
data	in	RViz.





Questions
1.	 Why	do	we	perform	robotic	simulation?
2.	 How	can	we	add	sensors	into	a	Gazebo	simulation?
3.	 What	are	the	different	types	of	ROS	controllers	and	hardware	interfaces?
4.	 How	can	we	move	the	mobile	robot	in	a	Gazebo	simulation?





Summary
After	designing	the	robot,	the	next	phase	is	its	simulation.	There	are	a	lot	of	uses	in
simulation.	We	can	validate	a	robot	design,	and	at	the	same	time,	we	can	work	with	a
robot	without	having	its	real	hardware.	There	are	some	situations	when	we	need	to	work
without	having	a	robot	hardware.	Simulators	are	useful	in	all	these	situations.

In	this	chapter,	we	were	trying	to	simulate	two	robots,	one	was	a	robotic	arm	with	seven
DOF	and	the	other	was	a	differential	wheeled	mobile	robot.	We	started	with	the	robotic
arm,	and	discussed	the	additional	Gazebo	tags	needed	to	launch	the	robot	in	Gazebo.	We
discussed	how	to	add	a	3D	vision	sensor	to	the	simulation.	Later,	we	created	a	launch	file
to	start	Gazebo	with	a	robotic	arm	and	discussed	how	to	add	controllers	to	each	joint.	We
added	the	controllers	and	worked	with	each	joint.

Similar	to	the	robotic	arm,	we	created	the	URDF	for	Gazebo	simulation	and	added	the
necessary	Gazebo	ROS	plugin	for	the	laser	scanner	and	differential	drive	mechanism.
After	completing	the	simulation	model,	we	launched	the	simulation	using	a	custom	launch
file.	At	last,	we	have	seen	how	to	move	the	robot	using	the	teleop	node.

We	will	get	to	know	more	about	the	robotic	arm	and	mobile	robots,	which	are	supported
by	ROS,	from	the	following	link	http://wiki.ros.org/Robots.

In	the	next	chapter,	we	can	see	how	to	interface	the	robotic	arm	with	the	ROS	MoveIt
package	and	the	mobile	robot	with	the	Navigation	stack.

http://wiki.ros.org/Robots




Chapter	4.	Using	the	ROS	MoveIt!	and
Navigation	Stack
In	the	previous	chapters,	we	have	been	discussing	about	the	designing	and	simulation	of	a
robotic	arm	and	mobile	robot.	We	controlled	each	joint	of	the	robotic	arm	in	Gazebo	using
the	ROS	controller	and	moved	the	mobile	robot	inside	Gazebo	using	the	teleop	node.

In	this	chapter,	we	are	going	to	interface	out	of	the	box	functionalities,	such	as	robot
manipulation	and	autonomous	navigation	using	the	ROS	MoveIt!	and	Navigation	stack.

MoveIt!	is	a	set	of	packages	and	tools	for	doing	mobile	manipulation	in	ROS.	The	official
web	page	(http://moveit.ros.org/)	contains	the	documentations,	the	list	of	robots	using
MoveIt!,	and	various	examples	to	demonstrate	pick	and	place,	grasping,	simple	motion
planning	using	inverse	kinematics,	and	so	on.

MoveIt!	contains	state	of	the	art	software	for	motion	planning,	manipulation,	3D
perception,	kinematics,	collision	checking,	control,	and	navigation.	Apart	from	the
command	line	interface,	MoveIt!	has	some	good	GUI	to	interface	a	new	robot	to	MoveIt!.
Also,	there	is	a	RViz	plugin	which	enables	motion	planning	from	RViz	itself.	We	will	also
see	how	to	motion	plan	our	robot	using	MoveIt!	C++	APIs.

Next	is	the	Navigation	stack,	and	of	course	this	is	another	set	of	powerful	tools	and
libraries	to	work	mainly	for	mobile	robot	navigation.	The	Navigation	stack	contains	ready-
to-use	navigation	algorithms	which	can	be	used	in	mobile	robots,	especially	for
differential	wheeled	robots.	Using	these	stacks,	we	can	make	the	robot	autonomous	and
that	is	the	final	concept	that	we	are	going	to	see	in	the	Navigation	stack.

The	first	section	of	this	chapter	will	discuss	more	on	the	MoveIt!	package,	installation,
and	architecture.	After	discussing	the	main	concepts	of	MoveIt!,	we	will	see	how	to	create
a	MoveIt!	package	for	our	robotic	arm,	which	can	provide	collision-aware	path	planning
to	our	robot.	Using	this	package,	we	can	perform	motion	planning	(inverse	kinematics)	in
RViz,	and	can	interface	to	Gazebo	or	the	real	robot	for	executing	the	paths.

After	discussing	the	interfacing,	we	will	discuss	more	about	the	Navigation	stack	and	see
how	to	perform	autonomous	navigation	using	Simultaneous	Localization	And	Mapping
(SLAM)	and	Adaptive	Monte	Carlo	Localization	(AMCL).

http://moveit.ros.org/


Installing	MoveIt!
Let’s	start	with	installing	MoveIt!.	The	installation	procedure	is	very	simple	and	is	just	a
single	command.

Installing	MoveIt!	on	ROS	Indigo	can	be	done	using	the	following	command.	Here	we	are
installing	MoveIt!	binary	packages.

$	sudo	apt-get	install	ros-indigo-moveit-full

In	ROS	Jade,	we	can	install	MoveIt!	using	the	following	command:

$	sudo	apt-get	install	ros-jade-moveit-ros	ros-jade-moveit-plugins	ros-

jade-moveit-planners



MoveIt!	architecture
Let’s	start	with	MoveIt!	and	its	architecture.	Understanding	the	architecture	of	MoveIt!
helps	to	program	and	interface	the	robot	to	MoveIt!.	We	will	quickly	go	through	the
architecture	and	the	important	concepts	of	MoveIt!,	and	start	interfacing	and	programming
our	robots.

Here	is	the	MoveIt!	architecture,	included	in	their	official	web	page	at
http://moveit.ros.org/documentation/concepts:

Figure	1:	MoveIt!	architecture	diagram

The	move_group	node
We	can	say	that	move_group	is	the	heart	of	MoveIt!	as	this	node	acts	as	an	integrator	of	the
various	components	of	the	robot	and	delivers	actions/services	according	to	the	user’s
needs.

From	the	architecture,	it’s	clear	that	the	move_group	node	collects	robot	information	such
as	point	cloud,	joint	state	of	the	robot,	and	transform	(T.F)	of	the	robot	in	the	form	of
topics	and	services.

From	the	parameter	server,	it	collects	the	robot	kinematics	data,	such	as

http://moveit.ros.org/documentation/concepts


robot_description	(URDF),	SRDF	(Semantic	Robot	Description	Format),	and	the
configuration	files.	The	SRDF	file	and	the	configuration	files	are	generated	while	we
generate	a	MoveIt!	package	for	our	robot.	The	configuration	files	contain	the	parameter
file	for	setting	joint	limits,	perception,	kinematics,	end	effector,	and	so	on.	We	will	see	the
files	when	we	discuss	generating	the	MoveIt!	package	for	our	robot.

When	MoveIt!	gets	all	this	information	about	the	robot	and	its	configuration,	we	can	say	it
is	properly	configured	and	we	can	start	commanding	the	robot	from	the	user	interfaces.
We	can	either	use	C++	or	Python	MoveIt!	APIs	to	command	the	move_group	node	to
perform	actions	such	as	pick/place,	IK,	FK,	among	others.	Using	the	RViz	motion
planning	plugin,	we	can	command	the	robot	from	the	RViz	GUI	itself.

As	we	already	discussed,	the	move_group	node	is	an	integrator;	it	does	not	run	any	kind	of
motion	planning	algorithms	but	instead	connects	all	the	functionalities	as	plugins.	There
are	plugins	for	kinematics	solvers,	motion	planning,	and	so	on.	We	can	extend	the
capabilities	through	these	plugins.

After	motion	planning,	the	generated	trajectory	talks	to	the	controllers	in	the	robot	using
the	FollowJointTrajectoryAction	interface.	This	is	an	action	interface	in	which	an
action	server	is	run	on	the	robot,	and	move_node	initiates	an	action	client	which	talks	to
this	server	and	executes	the	trajectory	on	the	real	robot/Gazebo	simulator.

At	the	end	of	the	MoveIt!	discussion,	we	will	see	how	to	talk	from	MoveIt!	RViz	GUI	to
Gazebo.	Following	is	a	screenshot	showing	a	robotic	arm	that	is	controlling	from	RViz
and	the	trajectory	is	executed	inside	Gazebo:

Figure	2	:	Trajectory	from	RViz	GUI	is	executing	in	Gazebo



Motion	planning	using	MoveIt!
Assume	that	we	know	the	starting	pose	of	the	robot,	a	desired	goal	pose	of	the	robot,	the
geometrical	description	of	the	robot,	and	geometrical	description	of	the	world,	then
motion	planning	is	the	technique	to	find	an	optimum	path	that	moves	the	robot	gradually
from	the	start	pose	to	the	goal	pose,	while	never	touching	any	obstacles	in	the	world	and
without	colliding	with	the	robot	links.

Here	the	geometrical	description	of	the	robot	is	our	URDF	file	and	the	geometrical
description	of	the	world	can	also	be	included	in	URDF	and	using	laser	scanner/3D	vision
sensor	we	can	generate	the	world	in	3D,	which	can	help	to	avoid	dynamic	obstacles	rather
than	static	objects	defined	using	URDF.

In	the	case	of	the	robotic	arm,	the	motion	planner	should	find	a	trajectory	(consisting	of
joint	spaces	of	each	joint)	in	which	the	links	of	the	robot	should	never	collide	with	the
environment,	avoid	self-collision	(collision	between	two	robot	links),	and	also	not	violate
the	joint	limits.

MoveIt!	can	talk	to	the	motion	planners	through	the	plugin	interface.	We	can	use	any
motion	planner	by	simply	changing	the	plugin.	This	method	is	highly	extensible	so	we	can
try	our	own	custom	motion	planners	using	this	interface.	The	move_group	node	talks	to	the
motion	planner	plugin	via	the	ROS	action/services.	The	default	planner	for	the
move_group	node	is	OMPL	(http://ompl.kavrakilab.org/).

To	start	motion	planning,	we	should	send	a	motion	planning	request	to	the	motion	planner
which	specified	our	planning	requirements.	The	planning	requirement	may	be	setting	a
new	goal	pose	of	the	end-effector,	for	example,	for	a	pick	and	place	operation.

We	can	set	additional	kinematic	constraints	for	the	motion	planners.	Given	next	are	some
inbuilt	constraints	in	MoveIt!:

Position	constraints:	These	restrict	the	position	of	a	link
Orientation	constraints:	These	restrict	the	orientation	of	a	link
Visibility	constraints:	These	restrict	a	point	on	the	link	to	be	visible	in	a
particular	area	(view	of	a	sensor)
Joint	constraints:	These	restrict	a	joint	within	its	joint	limits
User-specified	constraints:	Using	these	constraints,	the	user	can	define	his	own
constraints	using	the	callback	functions

Using	these	constraints,	we	can	send	a	motion	planning	request	and	the	planner	will
generate	a	suitable	trajectory	according	to	the	request.	The	move_group	node	will	generate
the	suitable	trajectory	from	the	motion	planner	which	obeys	all	the	constraints.	This	can	be
sent	to	robot	joint	trajectory	controllers.

Motion	planning	request	adapters
The	planning	request	adapters	help	to	pre-process	the	motion	planning	request	and	post
process	the	motion	planning	response.	One	of	the	uses	of	pre-processing	requests	is	that	it
helps	to	correct	if	there	is	a	violation	in	the	joints	states	and,	for	the	post	processing,	it	can

http://ompl.kavrakilab.org/


convert	the	path	generated	by	the	planner	to	a	time-parameterized	trajectory.	Following
are	some	of	the	default	planning	request	adapters	in	MoveIt!:

FixStartStateBounds:	If	a	joint	state	is	slightly	outside	the	joint	limits,	then	this
adapter	can	fix	the	initial	joint	limits	within	the	limits.
FixWorkspaceBounds:	This	specifies	a	workspace	for	planning	with	a	cube	size	of
10m	x	10m	x	10m.
FixStartStateCollision:	This	adapter	samples	a	new	collision	free	configuration	if
the	existing	joint	configuration	is	in	collision.	It	makes	a	new	configuration	by
changing	the	current	configuration	by	a	small	factor	called	jiggle_factor.
FixStartStatePathConstraints:	This	adapter	is	used	when	the	initial	pose	of	the
robot	does	not	obey	the	path	constraints.	In	this,	it	finds	a	near	pose	which	satisfies
the	path	constraints	and	uses	that	pose	as	the	initial	state.
AddTimeParameterization:	This	adapter	parameterizes	the	motion	plan	by	applying
the	velocity	and	acceleration	constraints.

MoveIt!	planning	scene
The	term	planning	scene	is	used	to	represent	the	world	around	the	robot	and	also	store	the
state	of	the	robot	itself.	The	planning	scene	monitor	inside	move_group	maintains	the
planning	scene	representation.	The	move_group	node	consists	of	another	section	called	the
world	geometry	monitor,	which	builds	the	world	geometry	from	the	sensors	of	the	robot
and	from	the	user	input.

The	planning	scene	monitor	reads	the	joint_states	topic	from	the	robot,	and	the	sensor
information	and	world	geometry	from	the	world	geometry	monitor.	The	world	scene
monitor	reads	from	the	occupancy	map	monitor,	which	uses	3D	perception	to	build	a	3D
representation	of	the	environment,	called	Octomap.	The	Octomap	can	be	generated	from
point	clouds	which	are	handled	by	a	point	cloud	occupancy	map	update	plugin	and	depth
images	handled	by	a	depth	image	occupancy	map	updater.	The	following	image	shows	the
representation	of	the	planning	scene	from	the	MoveIt!	official	wiki
(http://moveit.ros.org/documentation/concepts/):

http://moveit.ros.org/documentation/concepts/


Figure	3	:	MoveIt!	planning	scene	overview	diagram

MoveIt!	kinematics	handling
MoveIt!	provides	a	great	flexibility	to	switch	the	inverse	kinematics	algorithms	using	the
robot	plugins.	Users	can	write	their	own	IK	solver	as	a	MoveIt!	plugin	and	switch	from
the	default	solver	plugin	whenever	required.	The	default	IK	solver	in	MoveIt!	is	a
numerical	jacobian-based	solver.

Compared	to	the	analytic	solvers,	the	numerical	solver	can	take	time	to	solve	IK.	The
package	called	IKFast	can	be	used	to	generate	a	C++	code	for	solving	IK	using	analytical
methods,	which	can	be	used	for	different	kinds	of	robot	manipulator	and	perform	better	if
the	DOF	is	less	than	6.	This	C++	code	can	also	be	converted	into	the	MoveIt!	plugin	by
using	some	ROS	tool.	We	will	look	at	this	procedure	in	the	upcoming	chapters.

Forward	kinematics	and	finding	jacobians	are	already	integrated	to	the	MoveIt!
RobotState	class,	so	we	don’t	need	to	use	plugins	for	solving	FK.

MoveIt!	collision	checking
The	CollisionWorld	object	inside	MoveIt!	is	used	to	find	collisions	inside	a	planning
scene	which	is	using	the	FCL	(Flexible	Collision	Library)	package	as	a	backend.
MoveIt!	supports	collision	checking	for	different	types	of	objects,	such	as	meshes,
primitive	shapes	such	as	boxes,	cylinders,	cones,	spheres,	and	such,	and	Octomap.

The	collision	checking	is	one	of	the	computationally	expensive	tasks	during	motion
planning.	To	reduce	this	computation,	MoveIt!	provides	a	matrix	called	ACM	(Allowed
Collision	Matrix).	It	contains	a	binary	value	corresponding	to	the	need	to	check	for



collision	between	two	pairs	of	bodies.	If	the	value	of	matrix	is	1,	it	means	collision	of	the
corresponding	pair	is	not	needed.	We	can	set	the	value	as	1	where	the	bodies	are	always	so
far	that	they	would	never	collide	with	each	other.	Optimizing	ACM	can	reduce	the	total
computation	needed	for	collision	avoidance.

After	discussing	the	basic	concepts	in	MoveIt!,	we	can	now	discuss	how	to	interface	a
robotic	arm	into	MoveIt!.	For	interfacing	a	robot	arm	in	MoveIt!,	we	need	to	satisfy	the
components	that	we	saw	in	Figure	1.	The	move_group	node	essentially	requires	parameters
such	as	URDF,	SRDF,	config	files,	and	joint	states	topics	along	with	TF	from	a	robot	to
start	with	motion	planning.

MoveIt!	provides	a	GUI	based	tool	called	Setup	Assistant	to	generate	all	these
elements.	Following	is	the	procedure	to	generate	a	MoveIt!	configuration	from	the	Setup
Assistant	tool.





Generating	MoveIt!	configuration
package	using	Setup	Assistant	tool
The	MoveIt!	Setup	Assistant	is	a	graphical	user	interface	for	configuring	any	robot	to
MoveIt!.	Basically,	this	tool	generates	SRDF,	configuration	files,	launch	files,	and	scripts
generating	from	the	robot	URDF	model,	which	is	required	to	configure	the	move_group
node.

The	SRDF	file	contains	details	about	the	arm	joints,	end	effector	joints,	virtual	joints,	and
also	the	collision	link	pairs	which	are	configured	during	the	MoveIt!	configuration	process
using	the	Setup	Assistant	tool.

The	configuration	file	contains	details	about	the	kinematic	solvers,	joint	limits,	controllers,
and	so	on,	which	are	also	configured	and	saved	during	the	configuration	process.

Using	the	generated	configuration	package	of	the	robot,	we	can	work	with	motion
planning	in	RViz	without	the	presence	of	a	real	robot	or	simulation	interface.

Let’s	start	the	configuration	wizard,	and	we	can	see	the	step	by	step	procedure	to	build	the
configuration	package	of	our	robotic	arm.





Step	1	–	Launching	the	Setup	Assistant
tool

To	start	the	MoveIt!	Setup	Assistant	tool,	we	can	use	the	following	command:

$	roslaunch	moveit_setup_assistant	setup_assistant.launch

This	will	bring	up	a	window	with	two	choices:	Create	New	MoveIt!	Configuration
Package	or	Edit	Existing	MoveIt!	Configuration	Package.	Here	we	are	creating	a
new	package,	so	we	need	that	option.	If	we	have	a	MoveIt!	package	already,	then	we
can	select	the	second	option.
Click	on	the	button	Create	New	MoveIt!	Configuration	Package,	which	will	bring
a	new	screen,	as	shown	next:

Figure	4	:	MoveIt	Setup	Assistant

In	this	step,	the	wizard	asks	for	the	URDF	model	of	the	new	robot.	To	give	the	URDF
file,	click	on	the	Browse	button	and	navigate	to
mastering_ros_robot_description_pkg/urdf/	seven_dof_arm.xacro.	Choose
this	file	and	press	the	Load	button	to	load	the	URDF.	We	can	either	give	the	robot
model	as	pure	URDF	or	xacro,	if	we	give	xacro,	the	tool	will	convert	to	URDF



internally.
If	the	robot	model	is	successfully	parsed,	we	can	see	the	robot	model	on	the	window,
as	shown	next:

Figure	5	:	Successfully	parsing	the	robot	model	in	the	Setup	Assistant	tool



Step	2	–	Generating	the	Self-Collision	matrix
In	this	step,	MoveIt!	searches	for	a	pair	of	links	on	the	robot	which	can	be	safely
disabled	from	the	collision	checking.	These	can	reduce	the	processing	time.	This	tool
analyses	each	link	pair	and	categorizes	the	links	as	always	in	collision,	never	in
collision,	default	in	collision,	adjacent	links	disabled,	and	sometimes	in	collision,	and
it	disables	the	pair	of	links	which	makes	any	kind	of	collision.	The	following	image
shows	the	Self-Collisions	window:

Figure	6	:	Regenerating	the	Self-Collision	matrix

The	sampling	density	is	the	number	of	random	positions	to	check	for	self-collision.	If
the	density	is	large,	computation	will	be	high	but	self-collision	will	be	less.	The
default	value	is	10,000.	We	can	see	the	disabled	pair	of	links	by	pressing	the
Regenerate	Default	Collision	Matrix	button;	it	will	take	a	few	seconds	to	list	out
the	disabled	pair	of	links.



Step	3	–	Adding	virtual	joints
Virtual	joints	attach	the	robot	to	the	world.	It	is	not	mandatory	for	a	static	robot
which	does	not	move.	We	need	virtual	joints	when	the	base	position	of	the	arm	is	not
fixed.	For	example,	if	a	robot	arm	is	fixed	on	a	mobile	robot,	we	should	define	a
virtual	joint	with	respect	to	the	odom	frame.
In	the	case	of	our	robot,	we	are	not	creating	virtual	joints.



Step	4	–	Adding	planning	groups
A	planning	group	is	basically	a	group	of	joints/links	in	a	robotic	arm	which	plans
together	in	order	to	achieve	a	goal	position	of	a	link	or	the	end	effector.	We	have	to
create	two	planning	groups,	one	for	the	arm	and	one	for	the	gripper.
Click	on	the	Planning	Groups	tab	on	the	left	side	and	click	on	the	Add	Group
button.	You	will	see	the	following	screen,	which	has	the	settings	of	the	arm	group:

Figure	7	:	Adding	the	planning	group	of	the	arm

Here	we	are	giving	Group	Name	as	arm,	and	Kinematic	Solver	as
kdl_kinematics_plugin/KDLKinematicsPlugin,	which	is	the	default	numerical	IK
solver	with	MoveIt!.	We	can	keep	the	other	parameters	as	the	default	values.
Inside	the	arm	group,	first	we	have	to	add	a	kinematic	Chain.	We	have	to	add
base_link	as	the	first	link	to	grasping_frame.
Add	a	group	called	gripper	and	we	don’t	need	to	have	a	kinematic	solver	for	the
gripper	group.	Inside	this	group,	we	can	add	the	joints	and	links	of	the	gripper.
These	settings	are	shown	next:



Figure	8	:	Adding	the	planning	group	of	the	arm	and	gripper



Step	5	–	Adding	the	robot	poses
In	this	step,	we	can	add	certain	fixed	poses	in	the	robot	configuration.	For	example,
we	can	assign	a	home	position	or	a	pick/place	position	in	this	step.	The	advantage	is
that	while	programming	with	MoveIt!	APIs,	we	can	directly	call	these	poses,	which
are	also	called	group	states.	This	has	many	applications	in	the	pick/place	and
grasping	operation.	The	robot	can	switch	to	the	fixed	poses	without	any	hassle.



Step	6	–	Setup	the	robot	end	effector
In	this	step,	we	name	the	robot	end	effector	and	assign	the	end	effector	group,	the
parent	link,	and	the	parent	group.
We	can	add	any	number	of	end	effectors	to	this	robot.	In	our	case,	it’s	a	gripper
designed	for	pick	and	place	operation.
Click	on	the	Add	End	Effector	button	and	name	the	end	effector	as	robot_eef,
planning	group	as	gripper	which	we	have	already	created,	parent	link	as
grasping_frame,	and	parent	group	as	arm.

Figure	9	:	Adding	end	effectors



Step	7	–	Adding	passive	joints
In	this	step,	we	can	specify	the	passive	joints	in	the	robot.	Passive	joints	mean	that
the	joints	do	not	have	any	actuators.	Caster	wheels	are	one	of	the	examples	of	passive
joints.	The	planner	will	ignore	these	kind	of	joints	during	motion	planning.



Step	8	–	Generating	configuration	files
We	are	almost	done!!	We	are	in	the	final	stage,	that	is,	generating	the	configuration
files.	In	this	step,	the	tool	will	generate	a	configuration	package	which	contains	the
file	needed	to	interface	MoveIt!.
Click	on	the	Browse	button	to	locate	a	folder	to	save	the	configuration	file	that	is
going	to	be	generated	by	the	Setup	Assistant	tool.	Here	we	can	see	the	files	are
generating	inside	a	folder	called	seven_dof_config.	You	can	add	_config	or
_generated	along	with	the	robot	name	for	the	configuration	package.
Click	on	the	Generate	Package	button,	and	it	will	generate	the	files	to	the	given
folder.
If	the	process	is	successful,	we	can	click	on	Exit	Setup	Assistant,	which	will	exit	us
from	the	tool.
Following	is	the	screenshot	of	the	generation	process:

Figure	10	:	Generating	the	MoveIt!	configuration	package

After	generating	the	MoveIt!	configuration	package,	we	can	copy	it	into	our	catkin
workspace	and	build	it	using	the	catkin_make	command.	In	the	following	section,	we	are
going	to	work	with	this	package.





Motion	planning	of	robot	in	RViz	using
MoveIt!	configuration	package
MoveIt!	provides	a	plugin	for	RViz	which	allows	it	to	create	new	planning	scenes	where
robot	works,	generate	motion	plans,	add	new	objects,	visualize	the	planning	output	and
can	directly	interact	with	the	visualized	robot.

The	MoveIt!	configuration	package	consists	of	configuration	files	and	launch	files	to	start
motion	planning	in	RViz.	There	is	a	demo	launch	file	in	the	package	to	explore	all	the
functionalities	of	this	package.

Following	is	the	command	to	invoke	the	demo	launch	file:

$	roslaunch	seven_dof_arm_config	demo.launch

If	everything	works	fine,	we	will	get	the	following	screen	of	RViz	being	loaded	with	the
MotionPlanning	plugin	provided	by	MoveIt!:

Figure	11	:	MoveIt!	-	RViz	motion	planning	interface



Using	the	RViz	MotionPlanning	plugin
From	the	preceding	Figure	11,	we	can	see	that	the	RViz-Motion	Planning	plugin	is	loaded
on	the	left	side	of	the	screen.	There	are	several	tabs	on	the	Motion	Planning	window,
such	as	Context,	Planning,	and	so	on.	The	default	tab	is	the	Context	tab	and	we	can	see
the	default	Planning	Library	as	OMPL,	which	is	shown	in	green.	It	indicates	that
MoveIt!	successfully	loaded	the	motion	planning	library.	If	it	is	not	loaded,	we	can’t
perform	motion	planning.

Next	is	the	Planning	tab.	This	is	one	of	the	frequently	used	tabs	used	to	assign	the	Start
State,	Goal	State	Plan	a	path,	and	execute	the	path.	Shown	next	is	the	GUI	of	the
Planning	tab:

Figure	12	:	MoveIt!	-RViz	Planning	tab

We	can	assign	the	start	state	and	the	goal	state	of	the	robot	under	the	Query	panel.	Using
the	Plan	button,	we	can	plan	the	path	from	the	start	to	the	goal	state,	and	if	the	planning	is
successful,	we	can	execute	it.	By	default,	execution	is	done	on	fake	controllers.	We	can
change	these	controllers	into	trajectory	controllers	for	executing	the	planned	trajectory	in
Gazebo	or	the	real	robot.

We	can	set	the	starting	and	the	goal	position	of	the	robot	end	effector	by	using	the
interactive	marker	attached	on	the	arm	gripper.	We	can	translate	and	rotate	the	marker
pose,	and	if	there	is	a	planning	solution,	we	can	see	an	arm	in	orange	color.	In	some
situations,	the	arm	will	not	move	even	the	end	effector	marker	pose	moves,	and	if	the	arm
does	not	come	to	the	marker	position,	we	can	assume	that	there	is	no	IK	solution	in	that
pose.	We	may	need	more	DOF	to	reach	there	or	there	might	be	some	collision	between	the



links.

Following	are	the	screenshots	of	a	valid	goal	pose	and	an	invalid	goal	pose:

Figure	13	:	A	valid	pose	and	an	invalid	pose	of	the	robot	in	RViz

The	green	color	arm	represents	the	starting	position	of	the	arm,	and	the	orange	color
represents	the	goal	position.	In	the	first	figure,	if	we	press	the	Plan	button,	MoveIt!	plans
a	path	from	start	to	goal.	In	the	second	image,	we	can	observe	two	things.	First,	one	of	the
links	of	the	orange	arm	is	red	which	means	that	the	goal	pose	is	in	a	self-collided	state.
Secondly,	look	at	the	end	effector	marker;	it	is	far	from	the	actual	end	effector	and	it	has
also	turned	red.

We	can	also	work	with	some	quick	motion	planning	using	random	valid	options	in	the
Start	State	and	the	Goal	State.	If	we	select	the	goal	state	as	random	valid	and	press	the
Update	button,	it	will	generate	a	random	valid	goal	pose.	Click	on	the	Plan	button	and	we
can	see	the	motion	planning.

We	can	customize	the	RViz	visualization	using	the	various	options	in	the	MotionPlanning
plugin.	Shown	next	are	some	of	the	options	of	this	plugin:



Figure	14	:	Settings	of	the	MotionPlanning	plugin	on	RViz

The	first	marked	area	is	Scene	Robot	which	will	show	the	robot	model;	if	it	is
unchecked,	we	won’t	see	any	robot	model
The	second	marked	area	is	the	Trajectory	Topic,	in	which	RViz	gets	the
visualization	trajectory
If	we	want	to	animate	the	motion	planning	and	want	to	display	the	motion	trails,	we
should	enable	this	option

One	of	the	other	sections	in	the	plugin	settings	is	shown	in	the	following	image:



Figure	15	:	Planning	Request	setting	in	MotionPlanning	plugin

In	the	preceding	figure,	we	can	see	the	Query	Start	State	and	the	Query	Goal	State
options.	These	options	can	visualize	the	start	pose	and	the	goal	pose	of	the	arm	which	we
saw	in	Figure	13.	Show	Workspace	visualizes	the	cubic	workspace	(world	geometry)
around	the	robot.	The	visualization	can	help	to	debug	our	motion	planning	algorithm	and
understand	the	robot	motion	behavior	in	detail.

In	the	next	section,	we	will	see	how	to	interface	the	MoveIt!	configuration	package	to
Gazebo.	This	will	execute	the	trajectory	generated	by	MoveIt!	in	Gazebo.



Interfacing	the	MoveIt!	configuration	package	to
Gazebo
We	have	already	worked	with	the	Gazebo	simulation	of	this	arm	and	attached	controllers
to	it.	For	interfacing	the	arm	in	MoveIt!	to	Gazebo,	we	need	a	trajectory	controller	which
has	the	FollowJointTrajectoryAction	interface,	as	we	mentioned	in	the	MoveIt!
architecture.

Following	is	the	procedure	to	interface	MoveIt!	to	Gazebo:



Step	1	–	Writing	the	controller	configuration	file
for	MoveIt!
The	first	step	is	to	create	a	configuration	file	for	talking	with	the	trajectory	controllers	in
Gazebo	from	MoveIt!.	The	controller	configuration	file	called	controllers.yaml	has	to
be	created	inside	the	config	folder	of	the	seven_dof_arm_config	package.

Locate	the	file	controllers.yaml	from	the
chapter_4_codes/seven_dof_arm_config/config	folder	for	getting	the	controller
definition.

Given	next	is	the	controllers.yaml	definition:

controller_manager_ns:	controller_manager

controller_list:

		-	name:	seven_dof_arm/seven_dof_arm_joint_controller

				action_ns:	follow_joint_trajectory

				type:	FollowJointTrajectory

				default:	true

				joints:

						-	shoulder_pan_joint

						-	shoulder_pitch_joint

						-	elbow_roll_joint

						-	elbow_pitch_joint

						-	wrist_roll_joint

						-	wrist_pitch_joint

						-	gripper_roll_joint

		-	name:	seven_dof_arm/gripper_controller

				action_ns:	follow_joint_trajectory

				type:	FollowJointTrajectory

				default:	true

				joints:

						-	finger_joint1

						-	finger_joint2

The	controller	configuration	file	contains	the	definition	of	the	two	controller	interfaces;
one	is	for	arm	and	the	other	is	for	gripper.	The	type	of	action	used	in	the	controllers	is
FollowJointTrajectory,	and	the	action	namespace	is	follow_joint_trajectory.	We
have	to	list	out	the	joints	under	each	group.	The	default:	true	indicates	that	it	will	use
the	default	controller,	which	is	the	primary	controller	in	MoveIt!	for	communicating	with
the	set	of	joints.



Step	2	–	Creating	the	controller	launch	files
Next,	we	have	to	create	a	new	launch	file	called
seven_dof_arm_moveit_controller_manager.launch	which	can	start	the	trajectory
controllers.	The	name	of	the	file	starts	with	the	robot	name,	which	is	added	with
_moveit_controller_manager.

Locate	the	chapter_4_codes/seven_dof_arm_config/launch	folder	for	getting	this	file.

Following	is	the	launch	file	definition:

<launch>

		<!--	Set	the	param	that	trajectory_execution_manager	needs	to	find	the	

controller	plugin	-->

		<arg	name="moveit_controller_manager"	

default="moveit_simple_controller_manager/MoveItSimpleControllerManager"	/>

		<param	name="moveit_controller_manager"	value="$(arg	

moveit_controller_manager)"/>

		<!--	load	controller_list	-->

		<arg	name="use_controller_manager"	default="true"	/>

		<param	name="use_controller_manager"	value="$(arg	

use_controller_manager)"	/>

		<!--	Load	joint	controller	configurations	from	YAML	file	to	parameter	

server	-->

		<rosparam	file="$(find	seven_dof_arm_config)/config/controllers.yaml"/>

</launch>

This	launch	file	starts	the	MoveItSimpleControllerManager	and	loads	the	joint	trajectory
controllers	defined	inside	controllers.yaml.



Step	3	–	Creating	the	controller	configuration	file
for	Gazebo
After	creating	the	MoveIt!	files,	we	have	to	create	the	Gazebo	controller	configuration	file
and	the	launch	file.

Create	a	new	file	called	trajectory_control.yaml	which	contains	the	list	of	the	Gazebo
ROS	controllers	that	need	to	be	loaded	along	with	Gazebo.

You	will	get	this	file	from	the	chapter_4_codes/seven_dof_arm_gazebo/config	folder.

Following	is	the	definition	of	this	file:

seven_dof_arm:

		seven_dof_arm_joint_controller:

				type:	"position_controllers/JointTrajectoryController"

				joints:

						-	shoulder_pan_joint

						-	shoulder_pitch_joint

						-	elbow_roll_joint

						-	elbow_pitch_joint

						-	wrist_roll_joint

						-	wrist_pitch_joint

						-	gripper_roll_joint

				gains:

						shoulder_pan_joint:			{p:	1000.0,	i:	0.0,	d:	0.1,	i_clamp:	0.0}

						shoulder_pitch_joint:	{p:	1000.0,	i:	0.0,	d:	0.1,	i_clamp:	0.0}

						elbow_roll_joint:		{p:	1000.0,	i:	0.0,	d:	0.1,	i_clamp:	0.0}

						elbow_pitch_joint:							{p:	1000.0,	i:	0.0,	d:	0.1,	i_clamp:	0.0}

						wrist_roll_joint:				{p:	1000.0,	i:	0.0,	d:	0.1,	i_clamp:	0.0}

						wrist_pitch_joint:						{p:	1000.0,	i:	0.0,	d:	0.1,	i_clamp:	0.0}

						gripper_roll_joint:				{p:	1000.0,	i:	0.0,	d:	0.1,	i_clamp:	0.0}

		gripper_controller:

				type:	"position_controllers/JointTrajectoryController"

				joints:

						-	finger_joint1

						-	finger_joint2

				gains:

						finger_joint1:		{p:	50.0,	d:	1.0,	i:	0.01,	i_clamp:	1.0}

						finger_joint2:		{p:	50.0,	d:	1.0,	i:	0.01,	i_clamp:	1.0}

Here	we	created	a	position_controllers/JointTrajectoryController	which	has	an
action	interface	of	FollowJointTrajectory	for	both	the	arm	and	the	gripper.	We	also
defined	the	PID	gain	associated	with	each	joint	which	can	provide	smooth	motion.



Step	4	–	Creating	the	launch	file	for	Gazebo
trajectory	controllers
After	creating	the	configuration	file,	we	can	load	the	controllers	along	with	Gazebo.	We
have	to	create	a	launch	file	which	launches	Gazebo,	the	trajectory	controllers,	and	the
MoveIt!	interface	in	a	single	command.

The	launch	file	seven_dof_arm_bringup_moveit.launch	contains	the	definition	to	launch
all	these	commands:

<launch>

		<!--	Launch	Gazebo		-->

		<include	file="$(find	

seven_dof_arm_gazebo)/launch/seven_dof_arm_world.launch"	/>			

		<!--	ros_control	seven	dof	arm	launch	file	-->

		<include	file="$(find	

seven_dof_arm_gazebo)/launch/seven_dof_arm_gazebo_states.launch"	/>			

		<!--	ros_control	position	control	dof	arm	launch	file	-->

		<!--<include	file="$(find	

seven_dof_arm_gazebo)/launch/seven_dof_arm_gazebo_position.launch"	/>		-->

		<!--	ros_control	trajectory	control	dof	arm	launch	file	-->

		<include	file="$(find	

seven_dof_arm_gazebo)/launch/seven_dof_arm_trajectory_controller.launch"	/>					

		<!--	moveit	launch	file	-->

		<include	file="$(find	

seven_dof_arm_config)/launch/moveit_planning_execution.launch"	/>				

</launch>

This	launch	file	spawns	the	robot	model	in	Gazebo,	publishes	the	joint	states,	attaches	the
position	controller,	attaches	the	trajectory	controller,	and	at	last	launches
moveit_planning_execution.launch	inside	the	MoveIt!	package	for	starting	the	MoveIt!
nodes	along	with	RViz.	We	may	need	to	load	the	MotionPlanning	plugin	in	RViz	if	it	is
not	loaded	by	default.

We	can	start	motion	planning	inside	RViz	and	execute	in	Gazebo	using	the	following
single	command:

$	roslaunch	seven_dof_arm_config	seven_dof_arm_bringup_moveit.launch

This	will	launch	RViz	and	Gazebo,	and	we	can	do	motion	planning	inside	RViz.	After
motion	planning,	click	on	the	Execute	button	to	send	the	trajectory	to	the	Gazebo
controllers.



Figure	16	:	Gazebo	trajectory	controllers	executing	the	trajectory	from	MoveIt!



Step	5	–	Debugging	the	Gazebo-	MoveIt!	interface
In	this	section,	we	will	discuss	some	of	the	common	issues	and	debugging	techniques	in
this	interface.

If	the	trajectory	is	not	executing	on	Gazebo	first	list	the	topics.

$	rostopic	list

If	the	Gazebo	controllers	are	started	properly,	we	will	get	the	following	joint	trajectory
topics	in	the	list:

Figure	17	:	Topics	from	the	Gazebo-ROS	trajectory	controllers

We	can	see	follow_joint_trajectory	for	the	gripper	and	the	arm	group.	If	the
controllers	are	not	ready,	the	trajectory	will	not	execute	in	Gazebo.

Also	check	the	terminal	message	while	starting	the	launch	file.



Figure	18	:	The	terminal	message	shows	successful	trajectory	execution

In	the	preceding	image,	the	first	section	shows	that	the	MoveItSimpleControllerManager
was	able	to	connect	with	the	Gazebo	controller	and	if	it	couldn’t	connect	to	controller,	it
shows	that	it	can’t	connect	to	the	controller.	The	second	section	shows	a	successful	motion
planning.	If	the	motion	planning	is	not	successful,	MoveIt!	will	not	send	the	trajectory	to
Gazebo.

In	the	next	section,	we	will	discuss	the	ROS	Navigation	stack	and	look	at	the	requirements
needed	to	interface	the	Navigation	stack	to	the	Gazebo	simulation.





Understanding	ROS	Navigation	stack
The	main	aim	of	the	ROS	navigation	package	is	to	move	a	robot	from	the	start	position	to
the	goal	position,	without	making	any	collision	with	the	environment.	The	ROS
Navigation	package	comes	with	an	implementation	of	several	navigation	related
algorithms	which	can	easily	help	implement	autonomous	navigation	in	the	mobile	robots.

The	user	only	needs	to	feed	the	goal	position	of	the	robot	and	the	robot	odometry	data
from	sensors	such	as	wheel	encoders,	IMU,	and	GPS,	along	with	other	sensor	data	streams
such	as	laser	scanner	data	or	3D	point	cloud	from	sensors	like	Kinect.	The	output	of	the
Navigation	package	will	be	the	velocity	commands	which	will	drive	the	robot	to	the	given
goal	position.

The	Navigation	stack	contains	implementation	of	the	standard	algorithms,	such	as	SLAM,
A	*(star),	Dijkstra,	AMCL,	and	so	on,	which	can	directly	be	used	in	our	application.



ROS	Navigation	hardware	requirements
The	ROS	navigation	stack	is	designed	as	generic.	There	are	some	hardware	requirements
that	should	be	satisfied	by	the	robot.	Following	are	the	requirements:

The	Navigation	package	will	work	better	in	differential	drive	and	holonomic	(total
DOF	of	robot	equals	to	controllable	DOF	of	robots).	Also,	the	mobile	robot	should	be
controlled	by	sending	velocity	commands	in	the	form	:	x:	velocity,	y:	velocity
(linear	velocity),	and	theta	:velocity	(angular	velocity).
The	robot	should	mount	a	planar	laser	somewhere	around	the	robot.	It	is	used	to	build
the	map	of	the	environment.
The	Navigation	stack	will	perform	better	for	square	and	circular	shaped	mobile	bases.
It	will	work	on	an	arbitrary	shape	but	performance	is	not	guaranteed.

Following	are	the	basic	building	blocks	of	the	Navigational	stack	taken	from	ROS	website
(http://wiki.ros.org/navigation/Tutorials/RobotSetup).	We	can	see	what	are	the	purposes	of
each	block	and	how	to	configure	the	Navigation	stack	for	a	custom	robot.

Figure	19	:	Navigation	stack	setup	diagram

According	to	the	Navigation	setup	diagram,	for	configuring	the	Navigation	package	for	a
custom	robot,	we	must	provide	functional	blocks	which	are	interface	to	the	Navigation
stack.	Following	are	the	explanations	of	all	the	blocks	which	are	provided	as	input	to	the
Navigational	stack:

Odometry	source:	Odometry	data	of	a	robot	gives	the	robot	position	with	respect	to
its	starting	position.	Main	odometry	sources	are	wheel	encoders,	IMU,	and	2D/3D
cameras	(visual	odometry).	The	odom	value	should	publish	to	the	Navigation	stack,
which	has	a	message	type	of	nav_msgs/Odometry.	The	odom	message	can	hold	the
position	and	the	velocity	of	the	robot.	Odometry	data	is	a	mandatory	input	to	the
Navigational	stack.
Sensor	source:	We	have	to	provide	laser	scan	data	or	point	cloud	data	to	the

http://wiki.ros.org/navigation/Tutorials/RobotSetup


Navigation	stack	for	mapping	the	robot	environment.	This	data,	along	with	odometry,
combines	to	build	the	global	and	local	cost	map	of	the	robot.	The	main	sensors	used
here	are	Laser	Range	finders	or	Kinect	3D	sensors.	The	data	should	be	of	type
sensor_msgs/LaserScan	or	sensor_msgs/PointCloud.
sensor	transforms/tf:	The	robot	should	publish	the	relationship	between	the	robot
coordinate	frame	using	ROS	tf.
base_controller:	The	main	function	of	the	base	controller	is	to	convert	the	output	of
the	Navigation	stack,	which	is	a	twist	(geometry_msgs/Twist)	message,	and	convert
it	into	corresponding	motor	velocities	of	the	robot.

The	optional	nodes	of	the	Navigation	stack	are	amcl	and	map	server,	which	allow
localization	of	the	robot	and	help	to	save/load	the	robot	map.



Working	with	Navigation	packages
Before	working	with	the	Navigation	stack,	we	were	discussing	MoveIt!	and	the
move_group	node.	In	the	Navigation	stack	also,	there	is	a	node	similar	to	the	move_group
node,	called	the	move_base	node.	From	Figure	19,	it	is	clear	that	the	move_base	node	takes
input	from	sensors,	joint	states,	tf,	and	odometry,	which	is	very	similar	to	the	move_group
node	that	we	saw	in	MoveIt!.

Let’s	see	more	about	the	move_base	node.

Understanding	the	move_base	node
The	move_base	node	is	from	a	package	called	move_base.	The	main	function	of	this
package	is	to	move	a	robot	from	its	current	position	to	a	goal	position	with	the	help	of
other	Navigation	nodes.	The	move_base	node	inside	this	package	links	the	global-planner
and	the	local-planner	for	the	path	planning,	connecting	to	the	rotate-recovery	package	if
the	robot	is	stuck	in	some	obstacle	and	connecting	global	costmap	and	local	costmap	for
getting	the	map.

The	move_base	node	basically	is	an	implementation	of	SimpleActionServer	which	takes
a	goal	pose	with	message	type	(geometry_msgs/PoseStamped).	We	can	send	a	goal
position	to	this	node	using	a	SimpleActionClient	node.

The	move_base	node	subscribes	the	goal	from	a	topic	called	move_base_simple/goal,
which	is	the	input	of	the	Navigation	stack,	as	shown	in	the	previous	diagram.

When	this	node	receives	a	goal	pose,	it	links	to	components	such	as	global_planner,
local_planner,	recovery_behavior,	global_costmap,	and	local_costmap,	generates	the
output	which	is	the	command	velocity	(geometry_msgs/Twist),	and	sends	to	the	base
controller	for	moving	the	robot	for	achieving	the	goal	pose.

Following	is	the	list	of	all	the	packages	which	are	linked	by	the	move_base	node:

global-planner:	This	package	provides	libraries	and	nodes	for	planning	the	optimum
path	from	the	current	position	of	the	robot	to	the	goal	position,	with	respect	to	the
robot	map.	This	package	has	implementation	of	path	finding	algorithms	such	as	A*,
Dijkstra,	and	so	on	for	finding	the	shortest	path	from	the	current	robot	position	to	the
goal	position.
local-planner:	The	main	function	of	this	package	is	to	navigate	the	robot	in	a	section
of	the	global	path	planned	using	the	global	planner.	The	local	planner	will	take	the
odometry	and	sensor	reading,	and	send	an	appropriate	velocity	command	to	the	robot
controller	for	completing	a	segment	of	the	global	path	plan.	The	base	local	planner
package	is	the	implementation	of	the	trajectory	rollout	and	dynamic	window
algorithms.
rotate-recovery:	This	package	helps	the	robot	to	recover	from	a	local	obstacle	by
performing	a	360	degree	rotation.
clear-costmap-recovery:	This	package	is	also	for	recovering	from	a	local	obstacle
by	clearing	the	costmap	by	reverting	the	current	costmap	used	by	the	Navigation
stack	to	the	static	map.



costmap-2D:	The	main	use	of	this	package	is	to	map	the	robot	environment.	Robot
can	only	plan	a	path	with	respect	to	a	map.	In	ROS,	we	create	2D	or	3D	occupancy
grid	maps,	which	is	a	representation	of	the	environment	in	a	grid	of	cells.	Each	cell
has	a	probability	value	which	indicates	whether	the	cell	is	occupied	or	not.	The
costmap-2D	package	can	build	the	grid	map	of	the	environment	by	subscribing
sensor	values	of	the	laser	scan	or	point	cloud	and	also	the	odometry	values.	There	are
global	cost	maps	for	global	navigation	and	local	cost	maps	for	local	navigations.

Following	are	the	other	packages	which	are	interfaced	to	the	move_base	node:

map-server:	Map	server	package	allows	us	to	save	and	load	the	map	generated	by
the	costmap-2D	package.
AMCL:	AMCL	is	a	method	to	localize	the	robot	in	map.	This	approach	uses	particle
filter	to	track	the	pose	of	the	robot	with	respect	to	the	map,	with	the	help	of
probability	theory.	In	the	ROS	system,	AMCL	can	only	work	with	maps	which	were
built	using	laser	scans.
gmapping:	The	gmapping	package	is	an	implementation	of	an	algorithm	called	Fast
SLAM	which	takes	the	laser	scan	data	and	odometry	to	build	a	2D	occupancy	grid
map.

After	discussing	each	functional	block	of	the	Navigation	stack,	let’s	see	how	it	really
works.

Working	of	Navigation	stack
In	the	previous	section,	we	saw	the	functionalities	of	each	block	in	the	ROS	Navigation
stack.	Let’s	check	how	the	entire	system	works.	The	robot	should	publish	proper	odometry
value,	tf	information,	and	sensor	data	from	the	laser,	and	have	a	base	controller	and	map
of	the	surrounding.

If	all	these	requirements	are	satisfied,	we	can	start	working	with	the	Navigation	package.

Localizing	on	the	map
The	first	step	the	robot	is	going	to	perform	is	localizing	itself	on	the	map.	The	AMCL
package	will	help	to	localize	the	robot	on	the	map.

Sending	a	goal	and	path	planning
After	getting	the	current	position	of	the	robot,	we	can	send	a	goal	position	to	the
move_base	node.	The	move_base	node	will	send	this	goal	position	to	a	global	planner
which	will	plan	a	path	from	the	current	robot	position	to	the	goal	position.

This	plan	is	with	respect	to	the	global	costmap	which	is	feeding	from	the	map	server.	The
global	planner	will	send	this	path	to	the	local	planner,	which	executes	each	segment	of	the
global	plan.

The	local	planner	gets	the	odometry	and	the	sensor	value	from	the	move_base	node	and
finds	a	collision	free	local	plan	for	the	robot.	The	local	planner	is	associated	with	the	local
costmap,	which	can	monitor	the	obstacle(s)	around	the	robot.



Collision	recovery	behavior
The	global	and	local	costmap	are	tied	with	the	laser	scan	data.	If	the	robot	is	stuck
somewhere,	the	Navigation	package	will	trigger	the	recovery	behavior	nodes,	such	as	the
clear	costmap	recovery	or	rotate	recovery	nodes.

Sending	the	command	velocity
The	local	planner	generates	command	velocity	in	the	form	of	a	twist	message	which
contains	linear	and	angular	velocity	(geometry_msgs/Twist),	to	the	robot	base	controller.
The	robot	base	controller	converts	the	twist	message	to	the	equivalent	motor	speed.



Installing	ROS	Navigation	stack
Installing	ROS	desktop	full	installation	will	not	install	the	ROS	Navigation	stack.	We	have
to	install	the	Navigation	stack	separately,	using	the	following	commands:

In	ROS	Jade

$	sudo	apt-get	install	ros-jade-navigation

In	ROS	Indigo

$	sudo	apt-get	install	ros-indigo-navigation

After	installing	the	Navigation	package,	let’s	start	learning	how	to	build	a	map	of	the	robot
environment.	The	robot	we	are	using	here	is	the	differential	wheeled	robot	that	we
discussed	in	the	previous	chapter.	This	robot	satisfies	all	the	three	requirements	of	the
Navigation	stack.





Building	a	map	using	SLAM
The	ROS	Gmapping	package	is	a	wrapper	of	open	source	implementation	of	SLAM	called
OpenSLAM	(https://www.openslam.org/gmapping.html).	The	package	contains	a	node
called	slam_gmapping,	which	is	the	implementation	of	SLAM	which	helps	to	create	a	2D
occupancy	grid	map	from	the	laser	scan	data	and	the	mobile	robot	pose.

The	basic	hardware	requirement	for	doing	SLAM	is	a	laser	scanner	which	is	horizontally
mounted	on	the	top	of	the	robot,	and	the	robot	odometry	data.	In	this	robot,	we	have
already	satisfied	these	requirements.	We	can	generate	the	2D	map	of	the	environment
using	the	gmapping	package	through	the	following	procedure.

https://www.openslam.org/gmapping.html


Creating	a	launch	file	for	gmapping
The	main	task	while	creating	a	launch	file	for	the	gmapping	process	is	to	set	the
parameters	for	the	slam_gmapping	node	and	the	move_base	node.	The	slam_gmapping
node	is	the	core	node	inside	the	ROS	gmapping	package.	The	slam_gmapping	node
subscribes	the	laser	data	(sensor_msgs/LaserScan)	and	the	tf	data,	and	publishes	the
occupancy	grid	map	data	as	output	(nav_msgs/OccupancyGrid).	This	node	is	highly
configurable	and	we	can	fine	tune	the	parameters	to	improve	the	mapping	accuracy.	The
parameters	are	mentioned	at	http://wiki.ros.org/gmapping.

The	next	node	we	have	to	configure	is	the	move_base	node.	The	main	parameters	needed
to	configure	are	the	global	and	local	costmap	parameters,	the	local	planner,	and	the
move_base	parameters.	The	parameters	list	is	very	lengthy.	We	are	representing	these
parameters	in	several	YAML	files.	Each	parameter	is	included	in	the	param	folder	inside
the	diff_wheeled_robot_gazebo	package.

Following	is	the	gmapping.launch	file	used	in	this	robot.	The	launch	file	is	placed	in	the
diff_wheeled_robot_gazebo/launch	folder.

<launch>

		<arg	name="scan_topic"	default="scan"	/>

<!--	Defining	parameters	for	slam_gmapping	node	-->

		<node	pkg="gmapping"	type="slam_gmapping"	name="slam_gmapping"	

output="screen">

				<param	name="base_frame"	value="base_footprint"/>

				<param	name="odom_frame"	value="odom"/>

				<param	name="map_update_interval"	value="5.0"/>

				<param	name="maxUrange"	value="6.0"/>

				<param	name="maxRange"	value="8.0"/>

				<param	name="sigma"	value="0.05"/>

				<param	name="kernelSize"	value="1"/>

				<param	name="lstep"	value="0.05"/>

				<param	name="astep"	value="0.05"/>

				<param	name="iterations"	value="5"/>

				<param	name="lsigma"	value="0.075"/>

				<param	name="ogain"	value="3.0"/>

				<param	name="lskip"	value="0"/>

				<param	name="minimumScore"	value="100"/>

				<param	name="srr"	value="0.01"/>

				<param	name="srt"	value="0.02"/>

				<param	name="str"	value="0.01"/>

				<param	name="stt"	value="0.02"/>

				<param	name="linearUpdate"	value="0.5"/>

				<param	name="angularUpdate"	value="0.436"/>

				<param	name="temporalUpdate"	value="-1.0"/>

				<param	name="resampleThreshold"	value="0.5"/>

				<param	name="particles"	value="80"/>

	

				<param	name="xmin"	value="-1.0"/>

				<param	name="ymin"	value="-1.0"/>

				<param	name="xmax"	value="1.0"/>

http://wiki.ros.org/gmapping


				<param	name="ymax"	value="1.0"/>

				<param	name="delta"	value="0.05"/>

				<param	name="llsamplerange"	value="0.01"/>

				<param	name="llsamplestep"	value="0.01"/>

				<param	name="lasamplerange"	value="0.005"/>

				<param	name="lasamplestep"	value="0.005"/>

				<remap	from="scan"	to="$(arg	scan_topic)"/>

		</node>

<!--	Defining	parameters	for	move_base	node	-->

		<node	pkg="move_base"	type="move_base"	respawn="false"	name="move_base"	

output="screen">

				<rosparam	file="$(find	

diff_wheeled_robot_gazebo)/param/costmap_common_params.yaml"	command="load"	

ns="global_costmap"	/>

				<rosparam	file="$(find	

diff_wheeled_robot_gazebo)/param/costmap_common_params.yaml"	command="load"	

ns="local_costmap"	/>

				<rosparam	file="$(find	

diff_wheeled_robot_gazebo)/param/local_costmap_params.yaml"	command="load"	

/>

				<rosparam	file="$(find	

diff_wheeled_robot_gazebo)/param/global_costmap_params.yaml"	command="load"	

/>

				<rosparam	file="$(find	

diff_wheeled_robot_gazebo)/param/base_local_planner_params.yaml"	

command="load"	/>

				<rosparam	file="$(find	

diff_wheeled_robot_gazebo)/param/dwa_local_planner_params.yaml"	

command="load"	/>

				<rosparam	file="$(find	

diff_wheeled_robot_gazebo)/param/move_base_params.yaml"	command="load"	/>

		</node>

</launch>



Running	SLAM	on	the	differential	drive	robot
We	can	build	the	ROS	package	called	diff_wheeled_robot_gazebo	and	can	run	the
gmapping.launch	file	for	building	the	map.	Following	are	the	commands	to	start	with	the
mapping	procedure.

Start	the	robot	simulation	by	using	Willow	Garage	world:

$	roslaunch	diff_wheeled_robot_gazebo	diff_wheeled_gazebo_full.launch

Start	the	gmapping	launch	file	by	using	the	following	command:

$	roslaunch	diff_wheeled_robot_gazebo	gmapping.launch

If	the	gmapping	launch	file	is	working	fine,	we	will	get	the	following	kind	of	output	on
the	terminal:

Figure	21	:	Terminal	messages	during	gmapping

Start	the	keyboard	teleoperation	for	manually	navigating	the	robot	around	the
environment.	The	robot	can	map	its	environment	only	if	it	covers	the	entire	area.

$	roslaunch	diff_wheeled_robot_control	keyboard_teleop.launch

The	current	Gazebo	view	of	the	robot	and	the	robot	environment	is	shown	next.	The
environment	is	with	obstacle	around	the	robot.



Figure	20	:	Simulation	of	the	robot	using	Willow	Garage	world

We	can	launch	RViz	and	add	a	display	type	called	Map	and	the	topic	name	as	/map.

We	can	start	moving	the	robot	inside	the	world	by	using	key	board	teleoperation,	and	we
can	see	a	map	building	according	to	the	environment.	The	following	image	shows	the
completed	map	of	the	environment	shown	in	RViz:



Figure	22	:	Completed	map	of	the	room	in	RViz

We	can	save	the	built	map	using	the	following	command.	This	command	will	listen	to	the
map	topic	and	save	into	the	image.	The	map	server	package	does	this	operation.

$	rosrun	map_server	map_saver	-f	willo

Here	willo	is	the	name	of	the	map	file.	The	map	file	is	stored	as	two	files:	one	is	the
YAML	file	which	contains	the	map	metadata	and	the	image	name,	and	second	is	the	image
which	has	the	encoded	data	of	the	occupancy	grid	map.	Following	is	the	screenshot	of	the
preceding	command,	running	without	any	errors:

Figure	23	:	Terminal	screenshot	while	saving	a	map

The	saved	encoded	image	of	the	map	is	shown	next.	If	the	robot	gives	accurate	robot
odometry	data,	we	will	get	this	kind	of	precise	map	similar	to	the	environment.	The
accurate	map	improves	the	navigation	accuracy	through	efficient	path	planning.



Figure	24	:	The	saved	map

The	next	procedure	is	to	localize	and	navigate	in	this	static	map.



Implementing	autonomous	navigation	using	AMCL
and	a	static	map
The	ROS	AMCL	package	provide	nodes	for	localizing	the	robot	on	a	static	map.	The	amcl
node	subscribes	the	laser	scan	data,	laser	scan	based	maps,	and	the	tf	information	from	the
robot.	The	amcl	node	estimates	the	pose	of	the	robot	on	the	map	and	publishes	its
estimated	position	with	respect	to	the	map.

If	we	create	a	static	map	from	the	laser	scan	data,	the	robot	can	autonomously	navigate
from	any	pose	of	the	map	using	AMCL	and	the	move_base	nodes.	The	first	step	is	to
create	a	launch	file	for	starting	the	amcl	node.	The	amcl	node	is	highly	customizable;	we
can	configure	it	with	a	lot	of	parameters.	The	list	of	parameters	are	available	in	the	ROS
package	site	(http://wiki.ros.org/amcl).

http://wiki.ros.org/amcl


Creating	an	AMCL	launch	file
A	typical	amcl	launch	file	is	given	next.	The	AMCL	node	is	configured	inside	the
amcl.launch.xml	file	which	is	in	the	diff_wheeled_robot_gazebo/launch/include
package.	The	move_base	node	is	also	configured	separately	in	the	move_base.launch.xml
file.	The	map	file	we	created	in	the	gmapping	process	is	loaded	here	using	the	map_server
node.

<launch>

		<!--	Map	server	-->

		<arg	name="map_file"	default="$(find	

diff_wheeled_robot_gazebo)/maps/test1.yaml"/>

		<node	name="map_server"	pkg="map_server"	type="map_server"	args="$(arg	

map_file)"	/>

		<include	file="$(find	

diff_wheeled_robot_gazebo)/launch/includes/amcl.launch.xml">

				<arg	name="initial_pose_x"	value="0"/>

				<arg	name="initial_pose_y"	value="0"/>

				<arg	name="initial_pose_a"	value="0"/>

		</include>

		<include	file="$(find	

diff_wheeled_robot_gazebo)/launch/includes/move_base.launch.xml"/>

</launch>

Following	is	the	code	snippet	of	amcl.launch.xml.	This	file	is	a	bit	lengthy	as	we	have	to
configure	a	lot	of	parameters	for	the	amcl	node.

<launch>

		<arg	name="use_map_topic"		default="false"/>

		<arg	name="scan_topic"					default="scan"/>

		<arg	name="initial_pose_x"	default="0.0"/>

		<arg	name="initial_pose_y"	default="0.0"/>

		<arg	name="initial_pose_a"	default="0.0"/>

		<node	pkg="amcl"	type="amcl"	name="amcl">

				<param	name="use_map_topic"													value="$(arg	use_map_topic)"/>

				<!--	Publish	scans	from	best	pose	at	a	max	of	10	Hz	-->

				<param	name="odom_model_type"											value="diff"/>

				<param	name="odom_alpha5"															value="0.1"/>

				<param	name="gui_publish_rate"										value="10.0"/>

				<param	name="laser_max_beams"													value="60"/>

				<param	name="laser_max_range"											value="12.0"/>

After	creating	this	launch	file,	we	can	start	the	amcl	node	using	the	following	procedure:

Start	the	simulation	of	robot	in	Gazebo:

$	roslaunch	diff_wheeled_robot_gazebo	diff_wheeled_gazebo_full.launch	



Start	the	amcl	launch	file	using	the	following	command:

$	roslaunch	diff_wheeled_robot_gazebo	amcl.launch

If	the	amcl	launch	file	is	loaded	well,	the	terminal	shows	the	following	message:

Figure	25	:	Terminal	screenshot	while	executing	AMCL

If	amcl	is	working	fine,	we	can	start	commanding	the	robot	to	go	into	a	particular	position
on	the	map	using	RViz,	as	shown	in	the	following	figure.	In	the	figure,	the	arrow	indicates
the	goal	position.	We	have	to	enable	LaserScan,	Map,	and	Path	visualizing	plugins	in	RViz
for	viewing	the	laser	scan,	the	global/local	costmap,	and	the	global/local	paths.	Using	the
2D	NavGoal	button	in	RViz,	we	can	command	the	robot	to	go	to	a	particular	position.

The	robot	will	plan	a	path	to	that	point	and	give	velocity	commands	to	the	robot	controller
to	reach	that	point.



Figure	26	:	Autonomous	navigation	using	AMCL	and	the	map

In	the	preceding	image,	we	can	see	that	we	have	placed	a	random	obstacle	in	the	robot
path	and	that	the	robot	has	planned	a	path	to	avoid	the	obstacle.

We	can	view	the	AMCL	particle	cloud	around	the	robot	by	adding	a	Pose	Array	on	RViz
and	the	topic	is	/particle_cloud.	The	following	image	shows	the	AMCL	particle	around
the	robot:

Figure	27	:	The	AMCL	particle	cloud





Questions
1.	 What	is	the	main	purpose	of	MoveIt!	packages?
2.	 What	is	the	importance	of	the	move_group	node	in	MoveIt!?
3.	 What	is	the	purpose	of	the	move_base	node	in	the	Navigation	stack?
4.	 What	are	the	functions	of	the	SLAM	and	AMCL	packages?





Summary
This	chapter	offered	a	brief	overview	of	MoveIt!	and	the	Navigation	stack	of	ROS	and
demonstrated	its	capabilities	using	Gazebo	simulation	of	a	robotic	arm	mobile	base.	The
chapter	started	with	a	MoveIt!	overview	and	discussed	detailed	concepts	about	MoveIt!.
After	discussing	MoveIt!,	we	interfaced	MoveIt!	and	Gazebo.	After	interfacing,	we
executed	the	trajectory	from	MoveIt!	on	Gazebo.

The	next	section	was	about	the	ROS	Navigation	stack.	We	discussed	its	concepts	and
workings	as	well.	After	discussing	the	concepts,	we	tried	to	interface	our	robot	in	Gazebo
to	the	Navigation	stack	and	build	a	map	using	SLAM.	After	doing	SLAM,	we	performed
autonomous	navigation	using	AMCL	and	the	static	map.

In	the	next	chapter,	we	will	discuss	pluginlib,	nodelets,	and	controllers.





Chapter	5.	Working	with	Pluginlib,
Nodelets,	and	Gazebo	Plugins
In	the	previous	chapter,	we	have	discussed	about	the	interfacing	and	simulation	of	the
robotic	arm	mobile	robot	to	the	ROS	MoveIt!	and	Navigation	stack.	In	this	chapter,	we
will	see	some	of	the	advanced	concepts	in	ROS	such	as	the	ROS	pluginlib,	nodelets,	and
Gazebo	plugins.	We	will	discuss	the	functionalities	and	applications	of	each	concept	and
will	look	at	an	example	to	demonstrate	it’s	working.	We	have	used	Gazebo	plugins	in	the
previous	chapters	to	get	the	sensor	and	robot	behavior	inside	the	Gazebo	simulator.	In	this
chapter,	we	are	going	to	see	how	to	create	it.	We	will	also	discuss	an	modified	form	of
ROS	nodes	called	ROS	nodelets.	These	features	in	ROS	are	implemented	using	a	plugin
architecture	called	pluginlib.

In	this	chapter,	we	will	discuss	the	following	topics:

Understanding	pluginlib
Implementing	a	sample	plugin	using	pluginlib
Understanding	ROS	nodelets
Implementing	a	sample	nodelet
Understanding	and	creating	a	Gazebo	plugin



Understanding	pluginlib
Plugins	are	a	commonly	used	term	in	the	computer	world.	Plugins	are	modular	piece	of
software	which	can	add	a	new	feature	to	the	existing	software	application.	The	advantage
of	plugins	are	that	we	don’t	need	to	write	all	the	features	in	a	main	software;	instead,	we
can	make	an	infrastructure	on	the	main	software	to	accept	new	plugins	to	it.	Using	this
method,	we	can	extend	the	capabilities	of	software	to	any	level.

We	need	plugins	for	our	robotics	application	too.	When	we	are	going	to	build	a	complex
ROS	based	application	for	a	robot,	plugins	will	be	a	good	choice	to	extend	the	capabilities
of	the	application.

The	ROS	system	provides	a	plugin	framework	called	pluginlib	to	dynamically
load/unload	plugins,	which	can	be	a	library	or	class.	pluginlib	is	a	set	of	a	C++	library,
which	helps	to	write	plugins	and	load/unload	whenever	we	need.

Plugin	files	are	runtime	libraries	such	as	shared	objects	(.so)	or	dynamic	link	libraries
(.DLL),	which	is	built	without	linking	to	the	main	application	code.	Plugins	are	separate
entities	which	do	not	have	any	dependencies	with	the	main	software.

The	main	advantage	of	plugins	is	that	we	can	expand	the	application	capabilities	without
making	many	changes	in	the	main	application	code.

We	can	create	a	simple	plugin	using	pluginlib	and	can	see	all	the	procedures	involved	in
creating	a	plugin	using	ROS	pluginlib.

Here,	we	are	going	to	create	a	simple	calculator	application	using	pluginlib.	We	are
adding	each	functionality	of	the	calculator	using	plugins.



Creating	plugins	for	the	calculator	application
using	pluginlib
Creating	a	calculator	application	using	plugins	is	a	slightly	tedious	task	compared	to
writing	a	single	code	for	The	aim	of	this	example	is	to	show	how	to	add	new	features	to
calculator	without	modifying	main	application	code.

In	this	example,	we	will	see	a	calculator	application	that	loads	plugins	to	perform	each
operation.	Here,	we	only	implement	the	main	operations	such	as	addition,	subtraction,
multiplication,	and	division.	We	can	expand	to	any	level	by	writing	individual	plugins	for
each	operation.

Before	going	on	to	create	the	plugin	definition,	we	can	access	the	calculator	code	from
the	chapter_5_codes/pluginlib_calculator	folder	for	reference.

We	are	going	to	create	a	ROS	package	called	pluginlib_calculator	to	build	these
plugins	and	the	main	calculator	application.

The	following	diagram	shows	how	the	calculator	plugins	and	application	are	organized
inside	the	pluginlib_calculator	ROS	package:

Figure	1:	Organization	of	plugins	in	the	calculator	application



We	can	see	the	list	of	plugins	of	the	calculator	and	a	plugin	base	class	called
calc_functions.	The	plugin	base	class	implements	the	common	functionalities	that	are
required	by	all	of	these	plugins.

Here	is	how	we	can	create	the	ROS	package	and	start	developing	plugins	for	the	main
calculator	application.

Working	with	pluginlib_calculator	package
For	a	quick	start,	we	can	use	the	existing	ROS	plugin	package
(chapter_5_codes/pluginlib_calculator).

If	we	want	to	create	this	package	from	scratch,	you	can	use	the	following	command:

$	catkin_create_pkg	pluginlib_calculator	pluginlib	roscpp	std_msgs

The	main	dependency	of	this	package	is	pluginlib.	We	can	discuss	the	main	source	files
in	this	package	to	build	plugins.

Step	1	–	Creating	calculator_base	header	file

The	calculator_base.h	file	is	present	in	the
chapter_5_codes/pluginlib_calculator/include/pluginlib_calculator	folder	and
the	main	purpose	of	this	file	is	to	declare	functions/methods	that	are	commonly	used	by
the	plugins:

namespace	calculator_base	

{

		class	calc_functions

		{

Inside	this	code,	we	declare	a	class	called	calc_functions	that	encapsulate	methods	used
by	the	plugins.	This	class	is	included	in	a	namespace	called	calculator_base.	We	can	add
more	classes	inside	this	namespace	to	expand	the	functionalities	of	this	base	class:

virtual	void	get_numbers(double	number1,	double	number2)	=	0;

virtual	double	operation()	=	0;

These	are	the	main	methods	implemented	inside	the	calc_function	class.	The
get_number()	function	can	retrieve	two	numbers	as	input	to	the	calculator,	and	the
operation()	function	defines	the	mathematical	operation	we	want	to	perform.

Step	2	–	Creating	calculator_plugins	header	file

The	calculator_plugins.h	file	is	present	in	the
chapter_5_codes/pluginlib_calculator/include/pluginlib_calculator	folder	and
the	main	purpose	of	this	file	is	to	define	complete	functions	of	the	calculator	plugins,
which	are	named	as	Add,	Sub,	Mul,	and	Div.	Here	is	the	explanation	of	this	code:

#include	<pluginlib_calculator/calculator_base.h>

#include	<cmath>

namespace	calculator_plugins	

{



		class	Add	:	public	calculator_base::calc_functions

		{

This	header	file	includes	the	calculator_base.h	for	accessing	the	basic	functionalities	of
a	calculator.	Each	plugin	is	defined	as	a	class	and	it	inherits	the	calc_functions	class
from	the	calculator_base.h	class:

				public:

		Add()

		{

				number1_	=	0;

				number2_	=	0;

		}

		void	get_numbers(double	number1,	double	number2)

		{

				try{

						number1_	=	number1;

						number2_	=	number2;

							}

				catch(int	e)

				{

				std::cerr<<"Exception	while	inputting	numbers"<<std::endl;

				}

		}		

		double	operation()

		{

				return(number1_+number2_);

		}

				private:

						double	number1_;

						double	number2_;

};

In	this	code,	we	can	see	definitions	of	inherited	get_numbers()	and	operations()
functions.	The	get_number()	retrieves	two	number	inputs	and	operations()	performs	the
desired	operation.	In	this	case,	it	performs	additional	operations.	We	can	see	all	other
plugin	definitions	inside	this	header	file.

Step	3	–	Exporting	plugins	using	calculator_plugins.cpp

In	order	to	load	the	class	of	plugins	dynamically,	we	have	to	export	each	class	using	a
special	macro	called	PLUGINLIB_EXPORT_CLASS.	This	macro	has	to	put	in	any	CPP	file	that
consists	of	plugin	classes.	We	have	already	defined	the	plugin	class,	and	in	this	file	we	are
going	to	define	the	macro	statement	only.

Locate	the	calculator_plugins.cpp	file	from	the
chapter_5_codes/pluginlib_calculator/src	folder,	and	here	is	how	we	export	each
plugin:



#include	<pluginlib/class_list_macros.h>

#include	<pluginlib_calculator/calculator_base.h>

#include	<pluginlib_calculator/calculator_plugins.h>

PLUGINLIB_EXPORT_CLASS(calculator_plugins::Add,	

calculator_base::calc_functions);

Inside	PLUGINLIB_EXPORT_CLASS,	we	need	to	provide	the	class	name	of	the	plugin	and	the
base	class.

Step	4	–	Implementing	plugin	loader	using	calculator_loader.cpp

This	plugin	loader	node	loads	each	plugin	and	inputs	the	number	to	each	plugin	and
fetch’s	the	result	from	the	plugin.	We	can	locate	the	calculator_loader.cpp	file	from	the
chapter_5_codes/pluginlib_calculator/src	folder.

Here	is	the	explanation	of	this	code:

#include	<boost/shared_ptr.hpp>

#include	<pluginlib/class_loader.h>

#include	<pluginlib_calculator/calculator_base.h>

These	are	the	necessary	header	files	to	load	the	plugins:

pluginlib::ClassLoader<calculator_base::calc_functions>	

calc_loader("pluginlib_calculator",	"calculator_base::calc_functions");

The	pluginlib	provides	the	ClassLoader	class,	which	is	inside	class_loader.h,	to	load
classes	in	runtime.	We	need	to	provide	a	name	for	the	loader	and	the	calculator	base	class
as	arguments:

			boost::shared_ptr<calculator_base::calc_functions>	add	=	

calc_loader.createInstance("pluginlib_calculator/Add");

This	will	create	an	instance	of	the	Add	class	using	the	ClassLoader	object:

				add->get_numbers(10.0,10.0);

				double	result	=	add->operation();

These	lines	give	an	input	and	perform	the	operations	in	the	plugin	instance.

Step	5	–	Creating	plugin	description	file:	calculator_plugins.xml

After	creating	the	calculator	loader	code,	next	we	have	to	describe	the	list	of	plugins
inside	this	package	in	an	XML	file	called	the	Plugin	Description	File.	The	plugin
description	file	contains	all	the	information	about	the	plugins	inside	a	package	such	as	the
name	of	the	classes,	types	of	classes	and	base	class,	and	so	on.

The	plugin	description	is	an	important	file	for	plugin	based	packages,	because	it	helps	the
ROS	system	to	automatically	discover,	load,	and	reason	about	the	plugin.	It	also	holds
information	such	as	the	description	of	the	plugin.

The	following	code	shows	the	plugin	description	file	of	our	package	called
calculator_plugins.xml,	which	is	stored	along	with	the	CMakeLists.txt	and
package.xml	files.	You	can	get	this	file	from	the
chapter_5_codes/pluginlib_calculator	folder	itself.



Here	is	the	explanation	of	this	file:

<library	path="lib/libpluginlib_calculator">

				<class	name="pluginlib_calculator/Add"	type="calculator_plugins::Add"	

base_class_type="calculator_base::calc_functions">

			<description>This	is	a	add	plugin.</description>

		</class>

This	code	is	for	the	Add	plugin	and	it	defines	the	library	path	of	the	plugin,	the	class	name,
the	class	type,	the	base	class,	and	the	description.

Step	6	–	Registering	plugin	with	the	ROS	package	system

For	pluginlib	to	find	all	plugins	based	packages	in	the	ROS	system,	we	should	export	the
plugin	description	file	inside	package.xml.	If	we	do	not	include	this	plugin,	the	ROS
system	won’t	find	the	plugins	inside	the	package.

Here,	we	add	the	export	tag	to	package.xml	as	follows:

<export>

		<pluginlib_calculator	plugin="${prefix}/calculator_plugins.xml"	/>

</export>

In	order	to	work	this	export	command	properly,	we	should	insert	the	following	lines	in
package.xml:

	<build_depend>pluginlib_calculator</build_depend>

	<run_depend>pluginlib_calculator</run_depend>

The	current	package	should	directly	depend	on	itself,	both	at	the	time	of	building	and	also
at	runtime.

Step	7	–	Editing	the	CMakeLists.txt	file

In	order	to	build	the	calculator	plugins	and	loader	nodes,	we	should	add	the	following
lines	in	CMakeLists.txt:

##	pluginlib_tutorials	library

add_library(pluginlib_calculator	src/calculator_plugins.cpp)

target_link_libraries(pluginlib_calculator	${catkin_LIBRARIES})

##	calculator_loader	executable

add_executable(calculator_loader	src/calculator_loader.cpp)

target_link_libraries(calculator_loader	${catkin_LIBRARIES})

You	can	get	the	complete	CMakeLists.txt	from	the	package	itself.

We	are	almost	done	with	all	the	settings	and	now	it’s	time	to	build	the	package	using	the
catkin_make	command.

Step	8:	Querying	the	list	of	plugins	in	a	package

If	the	package	is	built	properly,	we	can	execute	the	loader.	The	following	command	will
query	the	plugins	inside	a	package:

$	rospack	plugins	--attrib=plugin	pluginlib_calculator	



We	will	get	the	following	result	if	everything	is	built	properly:

Figure	2:	The	result	of	the	plugin	query

Step	9	–	Running	the	plugin	loader

We	can	run	the	calculator_loader	using	the	following	command:

Run	the	roscore,	as	follows:

$	roscore

Run	the	calculator_loader	using	the	following	command:

$	rosrun	pluginlib_calculator	calculator_loader

The	following	screenshot	shows	the	output	of	this	command,	to	check	whether	everything
is	working	fine.	The	loader	gives	both	inputs	as	10.0	and	we	are	getting	the	proper	result
as	shown	using	plugins	in	the	screenshot:

Figure	3:	Result	of	the	plugin	loader	node

In	the	next	section,	we	will	look	at	a	new	concept	called	nodelets	and	discuss	how	to
implement	it.



Understanding	ROS	nodelets
Nodelets	are	a	type	of	ROS	node	that	are	designed	to	run	multiple	nodes	in	a	single
process,	with	each	node	running	as	a	thread.	The	threaded	nodes	can	communicate	with
each	other	efficiently	without	overloading	the	network	having,	zero	copy	transport
between	two	nodes.	These	threaded	nodes	can	communicate	with	external	nodes	too.

As	we	did	using	pluginlib,	in	nodelets	also,	we	can	dynamically	load	each	class	as	a
plugin,	which	has	a	separate	namespace.	Each	loaded	class	can	act	as	separate	nodes,
which	are	on	a	single	process	called	nodelet.

Nodelets	are	used	when	the	volume	of	data	transferred	between	nodes	are	very	high,	for
example,	in	transferring	data	from	3D	sensors	or	cameras.

Next,	we	look	at	how	to	create	a	nodelet.



Creating	a	nodelet
In	this	section,	we	are	going	to	create	a	basic	nodelet	that	can	subscribe	a	string	topic
called	/msg_in	and	publish	the	same	string	(std_msgs/String)	on	the	topic	/msg_out.

Step	1	–	Creating	a	package	for	nodelet
We	can	create	a	package	called	nodelet_hello_world	using	the	following	command	to
create	our	nodelet:

$	catkin_create_pkg	nodelet_hello_world	nodelet	roscpp	std_msgs

Otherwise,	we	can	use	the	existing	package	from
chapter_5_codes/nodelet_hello_world.

Here,	the	main	dependency	of	this	package	is	the	nodelet	package,	which	provides	APIs	to
build	a	ROS	nodelet.

Step	2	–	Creating	hello_world.cpp	nodelet
Now,	we	are	going	to	create	the	nodelet	code.	Create	a	folder	called	src	inside	the
package	and	create	a	file	called	hello_world.cpp.

You	will	get	the	existing	code	from	the	chapter_5_codes/nodelet_hello_world/src
folder.

Step	3	–	Explanation	of	hello_world.cpp
Here	is	the	explanation	of	the	code:

#include	<pluginlib/class_list_macros.h>

#include	<nodelet/nodelet.h>

#include	<ros/ros.h>

#include	<std_msgs/String.h>

#include	<stdio.h>

These	are	the	header	files	of	this	code.	We	should	include	class_list_macro.h	and
nodelet.h	to	access	pluginlib	APIs	and	nodelets	APIs:

namespace	nodelet_hello_world

{

		class	Hello	:	public	nodelet::Nodelet

		{

Here,	we	create	a	nodelet	class	called	Hello,	which	inherits	a	standard	nodelet	base	class.
All	nodelet	classes	should	inherit	from	the	nodelet	base	class	and	be	dynamically	loadable
using	pluginlib.	Here,	the	Hello	class	is	going	to	be	used	for	dynamic	loading:

		virtual	void	onInit()

		{

				ros::NodeHandle&	private_nh	=	getPrivateNodeHandle();

				NODELET_DEBUG("Initialized	the	Nodelet");

				pub	=	private_nh.advertise<std_msgs::String>("msg_out",5);

				sub	=	private_nh.subscribe("msg_in",5,	&Hello::callback,	this);

		}



This	is	the	initialization	function	of	a	nodelet.	This	function	should	not	block	or	do
significant	work.	Inside	the	function,	we	are	creating	a	node	handle	object,	topic	publisher,
and	subscriber	on	the	topic	msg_out	and	msg_in	respectively.	There	are	macros	to	print
debug	messages	while	executing	a	nodelet.	Here,	we	use	NODELET_DEBUG	to	print	debug
messages	in	the	console.	The	subscriber	is	tied	up	with	a	callback	function	called
callback(),	which	is	inside	the	Hello	class:

		void	callback(const	std_msgs::StringConstPtr	input)

		{

				std_msgs::String	output;

				output.data	=	input->data;

				NODELET_DEBUG("Message	data	=	%s",output.data.c_str());

				ROS_INFO("Message	data	=	%s",output.data.c_str());

				pub.publish(output);

		}

In	the	callback()	function,	it	will	print	the	messages	from	the	/msg_in	topic	and	publish
to	the	/msg_out	topic:

PLUGINLIB_EXPORT_CLASS(nodelet_hello_world::Hello,nodelet::Nodelet);

Here,	we	are	exporting	the	Hello	as	a	plugin	for	the	dynamic	loading.

Step	4	–	Creating	plugin	description	file
Similar	to	the	pluginlib	example,	we	have	to	create	a	plugin	description	file	inside	the
nodelet_hello_world	package.	The	plugin	description	file	hello_world.xml	is	as
follows:

<library	path="libnodelet_hello_world">

		<class	name="nodelet_hello_world/Hello"	type="nodelet_hello_world::Hello"	

base_class_type="nodelet::Nodelet">

						<description>

						A	node	to	republish	a	message

						</description>

		</class>

</library>

Step	5	–	Adding	the	export	tag	in	package.xml
We	need	to	add	the	export	tag	in	package.xml	and	also	add	build	and	run	dependencies:

<export>

				<nodelet	plugin="${prefix}/hello_world.xml"/>

		</export>

		<build_depend>nodelet_hello_world</build_depend>

		<run_depend>nodelet_hello_world</run_depend>

Step	6	–	Editing	CMakeLists.txt
We	need	to	add	additional	lines	of	code	in	CMakeLists.txt	to	build	a	nodelet	package.
Here	are	the	extra	lines.	You	will	get	the	complete	CMakeLists.txt	file	from	the	existing
package	itself:



##	Declare	a	cpp	library

	add_library(nodelet_hello_world

			src/hello_world.cpp

	)

##	Specify	libraries	to	link	a	library	or	executable	target	against

	target_link_libraries(nodelet_hello_world

			${catkin_LIBRARIES}

	)

Step	7	–	Building	and	running	nodelets
After	following	this	procedure,	we	can	build	the	package	using	catkin_make	and	if	the
build	is	successful,	we	can	generate	the	shared	object	libnodelet_hello_world.so	file,
which	is	actually	a	plugin.

The	first	step	in	running	nodelets	is	to	start	the	nodelet	manager.	A	nodelet	manager	is	a
C++	executable	program,	which	will	listen	to	the	ROS	services	and	dynamically	load
nodelets.	We	can	run	a	standalone	manager	or	can	embed	it	within	a	running	node.

The	following	commands	can	start	the	nodelet	manager:

Start	roscore

$roscore

Start	the	nodelet	manager	using	the	following	command

$	rosrun	nodelet	nodelet	manager	__name:=nodelet_manager

If	the	nodelet	manager	runs	successfully,	we	will	get	a	message	as	shown	here:

Figure	4:	Running	the	nodelet	manager

After	launching	the	nodelet	manager,	we	can	start	the	nodelet	by	using	the	following
command:

$	rosrun	nodelet	nodelet	load	nodelet_hello_world/Hello	nodelet_manager	

__name:=nodelet1

When	we	execute	the	preceding	command,	the	nodelet	contacts	the	nodelet	manager	to
instantiate	an	instance	of	the	nodelet_hello_world/Hello	nodelet	with	a	name	of
nodelet1.	The	following	screenshot	shows	the	message	when	we	load	the	nodelet:



Figure	5:	Running	nodelet

The	topics	generated	after	running	this	nodelet	and	the	list	of	nodes	are	shown	here:

Figure	6:	The	list	of	topics	of	the	nodelet

We	can	test	the	node	by	publishing	a	string	to	the	/nodelet1/msg_in	topic	and	check
whether	we	receive	the	same	message	in	nodelet1/msg_out.

The	following	command	publishes	a	string	to	/nodelet1/msg_in:

$	rostopic	pub	/nodelet1/msg_in	std_msgs/String	"Hello"

Figure	7:	Publishing	and	subscribing	using	the	Nodelet



We	can	echo	the	msg_out	topic	and	can	confirm	whether	the	code	is	working	good.

Here,	we	have	seen	that	a	single	instance	of	the	Hello()	class	is	created	as	a	node.	We	can
create	multiple	instances	of	the	Hello()	class	with	different	node	names	inside	this
nodelet.

Step	8	–	Creating	launch	files	for	nodelets
We	can	also	write	launch	files	to	load	more	than	one	instance	of	the	nodelet	class.	The
following	launch	file	will	load	two	nodelets	with	the	names	test1	and	test2,	and	we	can
save	it	with	a	name	hello_world.launch:

<launch>

<!--	Started	nodelet	manager	-->

		<node	pkg="nodelet"	type="nodelet"	name="standalone_nodelet"		

args="manager"	output="screen"/>

<!--	Starting	first	nodelet	-->

		<node	pkg="nodelet"	type="nodelet"	name="test1"	args="load	

nodelet_hello_world/Hello	standalone_nodelet"	output="screen">

		</node>				

<!--	Starting	second	nodelet	-->

		<node	pkg="nodelet"	type="nodelet"	name="test2"	args="load	

nodelet_hello_world/Hello	standalone_nodelet"	output="screen">

		</node>				

</launch>

The	preceding	launch	can	be	launched	using	the	following	commands:

$	roslaunch	nodelet_hello_world	hello_world.launch

The	following	message	will	show	up	on	the	terminal	if	it	is	launched	successfully:

Figure	8:	Launching	multiple	instances	of	the	Hello()	class

The	list	of	topics	and	nodes	are	shown	here.	We	can	see	two	nodelets	instantiated	and	we
can	see	their	topics	too.



Figure	9:	Topics	generated	by	the	multiple	instances	of	Hello()	class

The	following	diagram	shows	how	to	interconnect	these	nodelets:

Figure	10:	A	two-node	instance	of	a	nodelet



Run	the	rqt_graph	tool	to	view	the	preceding	node	graph	view:

$rosrun	rqt_gui	rqt_gui

Load	the	Node	Graph	plugin	from	the	following	option	Plugins	|	Introspection	|	Node
Graph	and	you	will	get	a	graph	as	shown	in	the	preceding	figure.





Understanding	the	Gazebo	plugins
Gazebo	plugins	help	us	to	control	the	robot	models,	sensors,	world	properties,	and	even
the	way	Gazebo	runs.	Similar	to	pluginlib	and	nodelets,	Gazebo	plugins	are	a	set	of	C++
code,	which	can	be	dynamically	loaded/unloaded	from	the	Gazebo	simulator.

Using	plugins	we	can	access	all	the	components	of	Gazebo,	and	also	it	is	independent	of
ROS,	so	that	it	can	share	with	people	who	are	not	using	ROS	too.	We	can	mainly	classify
the	plugins	as	follows:

The	world	plugin:	Using	the	world	plugin,	we	can	control	the	properties	of	a
specific	world	in	Gazebo.	We	can	change	the	physics	engine,	the	lighting,	and	other
world	properties	using	this	plugin.
The	model	plugin:	The	model	plugin	is	attached	to	a	specific	model	in	Gazebo	and
controls	its	properties.	The	parameters	such	as	joint	state	of	the	model,	control	of	the
joints,	and	so,	on	can	be	controlled	using	this	plugin.
The	sensor	plugin:	The	sensor	plugins	are	for	modeling	sensors	such	as	camera,
IMU,	and	so	on,	in	Gazebo.
The	system	plugin:	The	system	plugin	is	started	along	with	the	Gazebo	startup.	A
user	can	control	a	system	related	function	in	Gazebo	using	this	plugin.
The	visual	plugin:	The	visual	property	of	any	Gazebo	component	can	be	accessed
and	controlled	using	the	visual	plugin.

Before	starting	development	with	Gazebo	plugins,	we	might	need	to	install	some
packages.	If	you	are	using	ROS	Indigo,	the	package	we	installed	in	the	previous	chapter	is
sufficient	for	developing	Gazebo	plugins.	The	Gazebo	version	installed	along	with	ROS
Indigo	is	2.2.3.	But	if	you	are	working	with	ROS	Jade,	the	default	Gazebo	is	Version	5,	so
you	might	need	to	install	its	development	package	in	Ubuntu	using	the	following
command:

$	sudo	apt-get	install	libgazebo5-dev	

The	Gazebo	plugins	are	independent	of	ROS	and	we	don’t	need	ROS	libraries	to	build	the
plugin.



Creating	a	basic	world	plugin
We	will	look	at	a	basic	Gazebo	world	plugin	and	try	to	build	and	load	it	in	Gazebo.

Create	a	folder	called	gazebo_basic_world_plugin	in	the	user	home	folder	and	create	a
CPP	file	called	hello_world.cc:

$	mkdir	~/gazebo_basic_world_plugin

$	cd	~/gazebo_basic_world_plugin

$	nano	hello_world.cc

The	definition	of	hello_world.cc	is	as	follows:

//Gazebo	header	for	getting	core	gazebo	functions

#include	<gazebo/gazebo.hh>

//All	gazebo	plugins	should	have	gazebo	namespace

namespace	gazebo

{

		//The	custom	WorldpluginTutorials	is	inheriting	from	standard	

worldPlugin.	Each	world	plugin	has	to	inheriting	from	standard	plugin	type.		

		class	WorldPluginTutorial	:	public	WorldPlugin

		{

				public:	WorldPluginTutorial()	:	WorldPlugin()

												{

														printf("Hello	World!\n");

												}

	//The	Load	function	can	receive	the	SDF	elements	

				public:	void	Load(physics::WorldPtr	_world,	sdf::ElementPtr	_sdf)

												{

												}

		};

//Registering	World	Plugin	with	Simulator	

		GZ_REGISTER_WORLD_PLUGIN(WorldPluginTutorial)

}

The	header	file	used	in	this	code	is	<gazebo/gazebo.hh>;	the	header	contains	core
functionalities	of	Gazebo.	Other	headers	are	as	follows:

gazebo/physics/physics.hh:	This	is	the	Gazebo	header	for	accessing	the	physics
engine	parameters
gazebo/rendering/rendering.hh:	This	is	the	Gazebo	header	for	handling	rendering
parameters
gazebo/sensors/sensors.hh:	This	is	the	header	for	handling	sensors

At	the	end	of	the	code,	we	have	to	export	the	plugin	using	the	statements	mentioned
below.



The	GZ_REGISTER_WORLD_PLUGIN(WorldPluginTutorial)	macro	will	register	and	export
the	plugin	as	a	world	plugin.	The	following	macros	are	used	to	register	for	sensors,
models,	and	so	on:

GZ_REGISTER_MODEL_PLUGIN:	This	is	the	export	macro	for	Gazebo	robot	model
GZ_REGISTER_SENSOR_PLUGIN:	This	is	the	export	macro	for	Gazebo	sensor	model
GZ_REGISTER_SYSTEM_PLUGIN:	This	is	the	export	macro	for	Gazebo	system
GZ_REGISTER_VISUAL_PLUGIN:	This	is	the	export	macro	for	Gazebo	visuals

After	setting	the	code,	we	can	make	the	CMakeLists.txt	for	compiling	the	source.	The
following	is	the	source	of	CMakeLists.txt:

$	nano	~/	gazebo_basic_world_plugin/CMakeLists.txt

cmake_minimum_required(VERSION	2.8	FATAL_ERROR)

find_package(Boost	REQUIRED	COMPONENTS	system)

include_directories(${Boost_INCLUDE_DIRS})

link_directories(${Boost_LIBRARY_DIRS})

include	(FindPkgConfig)

if	(PKG_CONFIG_FOUND)

		pkg_check_modules(GAZEBO	gazebo)

endif()

include_directories(${GAZEBO_INCLUDE_DIRS})

link_directories(${GAZEBO_LIBRARY_DIRS})

add_library(hello_world	SHARED	hello_world.cc)

target_link_libraries(hello_world	${GAZEBO_LIBRARIES}	${Boost_LIBRARIES})

Create	a	build	folder	for	storing	the	shared	object:

$	mkdir	~/gazebo_basic_world_plugin/build

$	cd	~/gazebo_basic_world_plugin/build

After	switching	to	the	build	folder,	execute	the	following	command	to	compile	and	build
the	source	code:

$	cmake	../

$	make

After	building	the	code,	we	will	get	a	shared	object	called	libhello_world.so	and	we
have	to	export	the	path	of	this	shared	object	in	GAZEBO_PLUGIN_PATH	and	add	to	the
.bashrc	file:

export	

GAZEBO_PLUGIN_PATH=${GAZEBO_PLUGIN_PATH}:~/gazebo_basic_world_plugin/build

After	setting	the	Gazebo	plugin	path,	we	can	use	it	inside	the	URDF	file	or	the	SDF	file.
The	following	is	a	sample	world	file	called	hello.world,	which	includes	this	plugin:

$	nano	~/gazebo_basic_world_plugin/hello.world

<?xml	version="1.0"?>

<sdf	version="1.4">



		<world	name="default">

				<plugin	name="hello_world"	filename="libhello_world.so"/>

		</world>

</sdf>	

Run	the	Gazebo	server	and	load	this	world	file:

$	cd	~	/gazebo_basic_world_plugin

$	gzserver	hello.world	--verbose

Figure	11:	The	Gazebo	world	plugin	printing	“Hello	World”

We	will	source	the	code	for	various	Gazebo	plugins	from	the	Gazebo	repository.

We	can	check	https://bitbucket.org/osrf/gazebo

Browse	for	the	source	code.	Take	the	examples	folder	and	then	the	plugins,	as	shown	in
the	following	figure:

Figure	12:	The	list	of	Gazebo	plugins	in	the	repository

https://bitbucket.org/osrf/gazebo




Questions
1.	 What	is	pluginlib	and	what	are	its	main	applications?
2.	 What	is	the	main	application	of	nodelets?
3.	 What	are	the	different	types	of	Gazebo	plugins?
4.	 What	is	the	function	of	the	model	plugin	in	Gazebo?





Summary
In	this	chapter,	we	covered	some	advanced	concepts	such	as	the	pluginlib,	nodelets,	and
Gazebo	plugins,	which	can	be	used	to	add	more	functionalities	to	a	complex	ROS
application.	We	discussed	the	basics	of	pluginlib	and	saw	an	example	using	it.	After
covering	pluginlib,	we	saw	the	ROS	nodelets,	which	are	widely	used	in	high
performance	applications.	Also,	we	saw	an	example	using	the	ROS	nodelets.	Finally,	we
came	to	the	Gazebo	plugins	that	are	used	to	add	functionalities	to	Gazebo	simulators.	In
the	next	chapter,	we	will	discuss	more	on	the	RViz	plugin	and	the	ROS	controllers.





Chapter	6.	Writing	ROS	Controllers	and
Visualization	Plugins
In	the	last	chapter,	we	have	discussed	about	pluginlib,	nodelets,	and	Gazebo	plugins.	The
base	library	for	making	plugins	in	ROS	is	pluginlib,	and	the	same	library	can	be	used	in
nodelets	and	Gazebo	plugins.	In	this	chapter,	we	will	continue	with	pluginlib-based
concepts	such	as	ROS	controllers	and	RViz	plugins.	We	have	already	worked	with	ROS
controllers	and	have	reused	some	standard	controllers	such	as	joint	state,	position,	and
trajectory	controllers	in	Chapter	3,	Simulating	Robots	Using	ROS	and	Gazebo.

In	this	chapter,	we	will	see	how	to	write	a	basic	ROS	controller	for	a	PR2	robot
(https://www.willowgarage.com/pages/pr2/overview)	and	robots	similar	to	PR2.	After
creating	the	controller,	use	the	controller	in	PR2	simulation.	The	RViz	plugins	can	add
more	functionality	to	RViz	and	in	this	chapter	we	can	see	how	to	create	a	basic	RViz
plugin.	The	detailed	topics	that	we	are	going	to	discuss	in	this	chapter	are	as	follows:

Understanding	packages	required	for	ROS	controller	development
Setting	the	ROS	controller	development	environment
Understanding	ros_control	packages
Writing	and	running	a	basic	ROS	controller
Writing	and	running	a	RViz	plugin

Let	us	see	how	to	develop	a	ROS	controller;	the	first	step	is	to	understand	the	dependency
packages	required	to	start	building	custom	controllers	for	PR2.

The	main	set	of	package	that	helps	us	to	write	real-time	robot	controllers	are
pr2_mechanism	stacks.	The	following	is	the	description	of	pr2_mechanism	stacks:

pr2_mechanism:	This	is	a	ROS	stack	consisting	of	several	classes	and	libraries	that
can	be	useful	for	writing	real-time	controllers.	These	packages	are	for	the	robot	PR2
and	we	can	reuse	the	packages	for	other	robots.	Following	are	the	set	of	packages
inside	the	pr2_mechanism	stack.
pr2_controller_manager:	The	controller	manager	can	load	and	manage	multiple
controllers	and	can	work	them	in	a	real-time	loop.
pr2_controller_interface:	This	is	the	controller	base	class	package	in	which	all
custom	real-time	controllers	should	inherit	the	controller	base	class	from	this
package.	The	controller	manager	will	only	load	the	controller	if	it	inherits	from	this
package.
pr2_hardware_interface:	This	package	consists	of	PR2	robot	hardware	interface.
There	are	interfaces	for	PR2	actuators,	sensors,	gripper,	and	so	on.	Controllers	can
directly	access	the	hardware	components	inside	a	hard	real-time	loop.
pr2_mechanism_model:	This	package	contains	the	robot	model	that	can	be	used
inside	the	controller	loaded	by	the	controller	manager.	The	robot	model	mainly
consists	of	joints,	kinematics,	and	the	dynamic	model	of	the	robot	loaded	from	the
URDF	file.	The	controller	mainly	handles	the	main	components	inside	the	robot
model	which	need	to	work	in	real	time.

https://www.willowgarage.com/pages/pr2/overview


pr2_mechanism_msgs:	This	package	consists	of	a	message	and	service	definition	that
is	used	to	communicate	with	the	real-time	control	loop.	The	message	definition
consists	of	the	state	of	real-time	controllers,	joints,	and	actuators.

We	should	install	the	above	packages	for	starting	with	ROS	real-time	controllers.	The
following	command	will	install	the	pr2_mechanism	stack	in	Ubuntu	14.04:

In	ROS	Indigo:

$	sudo	apt-get	install	ros-indigo-pr2-gazebo	ros-indigo-pr2-mechanism	

ros-indigo-pr2-bringup

In	ROS	Jade,	we	can	install	pr2_mechanism	from	the	source	at
https://github.com/pr2/pr2_mechanism

The	description	of	other	ROS	packages	installing	along	with	the	pr2_mechanism	stack	are
as	follows:

pr2-gazebo:	The	simulation	package	of	PR2	using	Gazebo.	It	contains	the	launch	file
for	starting	the	simulation	of	the	PR2	robot	in	Gazebo.
pr2-bringup:	This	has	the	launch	files	to	start	the	PR2	hardware	and	simulation.

Before	writing	the	ROS	controller,	it	will	be	good	if	we	understand	the	use	of	each
package	of	the	pr2_mechanism	stack.

https://github.com/pr2/pr2_mechanism


Understanding	pr2_mechanism	packages
The	pr2_mechanism	stack	contain	packages	for	writing	ROS	real-time	controllers.	The
first	package	that	we	are	going	to	discuss	is	the	pr2_controller_interface	package.



pr2_controller_interface	package
A	basic	ROS	real-time	controller	must	inherit	a	base	class	called
pr2_controller_interface::Controller	from	this	package.	This	base	class	contains
four	important	functions:	init()	,	start(),	update(),	and	stop().	The	basic	structure	of
the	Controller	class	is	given	as	follows:

namespace	pr2_controller_interface

{

		class	Controller

		{

		public:

				virtual	bool	init(pr2_mechanism_model::RobotState	*robot,

																					ros::NodeHandle	&n);

				virtual	void	starting();

				virtual	void	update();

				virtual	void	stopping();

		};

}

The	workflow	of	the	controller	class	is	shown	as	follows.

Figure	1:	Workflow	of	the	controller

Initialization	of	the	controller
The	first	function	executing	when	a	controller	is	loaded	is	init().	The	init()	function
will	not	start	running	the	controller.	The	initialization	can	take	any	amount	of	time	before
starting	the	controllers.	The	declaration	of	the	init	function	is	given	as	follows:

	virtual	bool	init(pr2_mechanism_model::RobotState	*robot,	ros::NodeHandle	

&n);

This	method	will	not	run	as	real	time.

The	function	arguments	are	given	as	follows:

pr2_mechanism_model::	RobotState	*robot:	The	pr2_mechanism_model	contains
the	robot	model	that	can	be	used	by	the	robot	controller.	The
pr2_mechanism_model::	RobotState	class	helps	us	to	access	the	joints	of	the	robot
model	and	kinematic/dynamic	description	of	robot.
ros::NodeHandle	&n:	The	controller	can	read	the	robot	configuration	and	even



advertise	topics	using	this	Nodehandle.

The	init()	method	only	executes	once	while	the	controller	is	loaded	by	the	controller
manager.	If	the	init()	method	is	not	successful,	it	will	unload	from	the	controller
manager.	We	can	write	a	custom	message	if	any	error	occurs	inside	the	init()	method.

Starting	the	ROS	controller
The	starting()	method	executes	once	just	before	running	the	controller.	This	method
will	only	execute	once	before	updating/running	the	controller.	This	method	will	work	in	a
hard	real-time	manner.	The	starting()	method	declaration	is	given	as	follows:

virtual	void	starting();

The	controller	can	also	call	the	starting()	method	when	it	restarts	the	controller	without
unloading	it.

Updating	ROS	controller
The	update()	function	is	the	most	important	method	that	makes	the	controller	alive.	The
update	method	executes	the	code	inside	it	at	a	rate	of	1,000	Hz.	It	means	the	controller
completes	one	execution	within	1	millisecond.

virtual	void	update();

Stopping	the	controller
This	method	will	call	when	a	controller	is	stopped.	The	stopping()	method	will	execute
as	the	last	update()	call	and	only	executes	once.	It	is	also	working	in	hard	real	time.	The
stopping()	method	will	not	fail	and	return	nothing	too.	The	following	is	the	declaration
of	the	stopping()	method:

virtual	void	stopping();



pr2_controller_manager
The	pr2_controller_manager	package	can	load/unload	the	controller	in	a	hard	real-time
loop.	The	controller	manager	also	ensures	that	the	controller	will	not	set	a	goal	value	that
is	less	than	or	greater	than	the	safety	limits	of	the	joint.	The	controller	manager	also
publishes	the	states	of	the	joint	in	the	/joint_state	(sensor_msgs/JointState)	topic	at	a
default	rate	of	100	Hz.	The	following	figure	shows	the	basic	workflow	of	a	controller
manager:

Figure	2:	Working	of	controller	manager

The	controller	manager	can	load/unload	a	plugin.	When	a	controller	is	loaded	by	the
controller	manager,	it	will	first	initialize	it,	but	will	not	start	running.

After	loading	the	controller,	we	can	start/stop	the	controller.	When	we	start	the	controller,
it	will	run	the	controller,	and	when	we	stop	it,	it	will	simply	stop.	Stopping	doesn’t	means
it	is	unloaded.	But	if	the	controller	is	unloaded	from	the	controller	manager,	we	can’t
access	the	controller.





Writing	a	basic	real-time	joint	controller
in	ROS
The	basic	prerequisites	for	writing	a	ROS	controller	are	already	installed	and	we	have
discussed	the	underlying	concepts	of	controllers.	Now	we	can	start	creating	a	package	for
our	own	controller.

We	are	going	to	develop	a	controller	that	can	access	a	joint	of	the	robot	and	move	the
robot	in	a	sinusoidal	fashion.

The	procedure	of	building	a	controller	is	similar	to	other	plugin	development	that	we	have
seen	earlier.	The	list	of	procedures	to	create	a	ROS	controller	is	given	as	follows:

Create	a	ROS	package	with	necessary	dependencies
Write	controller	code	in	C++
Register	or	export	the	C++	class	as	plugin
Define	the	plugin	definition	in	an	XML	file
Update	the	package.xml	for	exporting	the	plugin
Write	CMakeLists.txt
Compile	the	code
Writing	configuration	for	our	controller
Start	the	PR2	simulation	in	Gazebo
Load	the	controller	using	the	controller	manager



Step	1	–	Creating	controller	package
The	first	step	is	to	create	the	controller	package	with	all	its	dependencies.	The	following
command	can	create	a	package	for	the	controller	called	my_controller_pkg:

$catkin_create_pkg	my_controller_pkg	roscpp	pluginlib	

pr2_controller_interface	pr2_mechanism_model

We	will	get	the	existing	package	from	the	chapter_6_codes/my_controller_pkg	folder.



Step	2	–	Creating	controller	header	file
We	will	get	the	header	file	my_controller_file.h	from	the
chapter_6_codes/my_controller_pkg/include/my_controller_pkg	folder.

Given	in	the	following	is	the	header	file	definition	of	my_controller_file.h.	We	have
discussed	each	line	of	this	code	while	discussing	pr2_controller_interface:

#include	<pr2_controller_interface/controller.h>

#include	<pr2_mechanism_model/joint.h>

namespace	my_controller_ns{

//Inheriting	Controller	class	inside	pr2_controller_interface

class	MyControllerClass:	public	pr2_controller_interface::Controller

{

private:

		pr2_mechanism_model::JointState*	joint_state_;

		double	init_pos_;

public:

		virtual	bool	init(pr2_mechanism_model::RobotState	*robot,

																			ros::NodeHandle	&n);

		virtual	void	starting();

		virtual	void	update();

		virtual	void	stopping();

};

}

In	the	preceding	code,	we	can	see	the	controller	class	MyControllerClass	and	we	are
inheriting	the	base	class	pr2_controller_interface::Controller.	We	can	see	that	each
function	inside	the	Controller	class	is	overriding	in	our	class.



Step	3	–	Creating	controller	source	file
Create	a	folder	called	src	inside	the	package	and	create	a	C++	file	called
my_controller_file.cpp,	which	is	the	class	definition	of	the	above	header.

Given	in	the	following	is	the	definition	of	my_controller_file.cpp,	which	has	to	be
saved	inside	the	src	folder:

#include	"my_controller_pkg/my_controller_file.h"

#include	<pluginlib/class_list_macros.h>

namespace	my_controller_ns	{

///	Controller	initialization	in	non-real-time

bool	MyControllerClass::init(pr2_mechanism_model::RobotState	*robot,

																												ros::NodeHandle	&n)

{

		std::string	joint_name;

		if	(!n.getParam("joint_name",	joint_name))

		{

				ROS_ERROR("No	joint	given	in	namespace:	'%s')",

														n.getNamespace().c_str());

				return	false;

		}

		joint_state_	=	robot->getJointState(joint_name);

		if	(!joint_state_)

		{

				ROS_ERROR("MyController	could	not	find	joint	named	'%s'",

														joint_name.c_str());

				return	false;

		}

		return	true;

}

///	Controller	startup	in	realtime

void	MyControllerClass::starting()

{

		init_pos_	=	joint_state_->position_;

}

///	Controller	update	loop	in	real-time

void	MyControllerClass::update()

{

	//Setting	a	desired	position

		double	desired_pos	=	init_pos_	+	15	*	sin(ros::Time::now().toSec());

//Getting	current	joint	position

		double	current_pos	=	joint_state_->position_;

//Commanding	the	effort	to	joint	to	move	into	the	desired	goal

		joint_state_->commanded_effort_	=	-10	*	(current_pos	-	desired_pos);

}

///	Controller	stopping	in	realtime

void	MyControllerClass::stopping()

{}

}	//	namespace

//	Register	controller	to	pluginlib

PLUGINLIB_EXPORT_CLASS(my_controller_pkg,MyControllerPlugin,

																									my_controller_ns::MyControllerClass,

																									pr2_controller_interface::Controller)



Step	4	–	Explanation	of	the	controller	source	file
In	this	section,	we	can	see	the	explanation	of	each	section	of	the	code:

///	Controller	initialization	in	non-real-time

bool	MyControllerClass::init(pr2_mechanism_model::RobotState	*robot,

																												ros::NodeHandle	&n)

{

		std::string	joint_name;

		if	(!n.getParam("joint_name",	joint_name))

		{

The	preceding	is	the	init()	function	definition	of	the	controller.	This	will	be	called	when
a	controller	is	loaded	by	the	controller	manager.	Inside	the	init()	function,	we	are
creating	an	instance	of	RobotState	and	NodeHandle,	also	retrieving	a	joint	name	for
attaching	our	controller.	This	joint	name	is	defined	inside	the	controller	configuration	file.
We	can	see	the	controller	configuration	file	in	the	next	section.

		joint_state_	=	robot->getJointState(joint_name);

This	is	will	create	a	joint	state	object	for	a	particular	joint.	Here	robot	is	an	instance	of	the
RobotState	class	and	joint_name	is	the	desired	joint	in	which	we	are	attaching	the
controller:

///	Controller	startup	in	realtime

void	MyControllerClass::starting()

{

		init_pos_	=	joint_state_->position_;

}

After	loading	the	controller,	the	next	step	is	to	start	the	controller.	The	preceding	function
will	execute	when	we	start	a	controller.	In	this	function,	it	will	retrieve	the	current	state	of
the	joint	into	the	init_pos_	variable:

///	Controller	update	loop	in	real-time

void	MyControllerClass::update()

{

	//Setting	a	desired	position

		double	desired_pos	=	init_pos_	+	15	*	sin(ros::Time::now().toSec());

//Getting	current	joint	position

		double	current_pos	=	joint_state_->position_;

//Commanding	the	effort	to	joint	to	move	into	the	desired	goal

		joint_state_->commanded_effort_	=	-10	*	(current_pos	-	desired_pos);

}

This	is	the	update	function	of	the	controller,	which	will	continuously	move	the	joint	in	a
sinusoidal	fashion.



Step	5	–	Creating	plugin	description	file
We	can	define	the	plugin	definition	file,	which	is	given	in	the	following.	The	plugin	file	is
being	saved	inside	the	package	folder	with	a	name	of	controller_plugins.xml:

<library	path="lib/libmy_controller_lib">

		<class	name="my_controller_pkg/MyControllerPlugin"

									type="my_controller_ns::MyControllerClass"										

									base_class_type="pr2_controller_interface::Controller"	/>

</library>



Step	6	–	Updating	package.xml
We	need	to	update	the	package.xml	for	pointing	the	controller_plugins.xml	file:

			<export>

				<pr2_controller_interface	plugin="${prefix}/controller_plugins.xml"	/>

		</export>



Step	7	–	Updating	CMakeLists.txt
After	doing	all	these	things,	we	can	compose	the	CMakeLists.txt	of	the	package:

##	my_controller_file	library

add_library(my_controller_lib	src/my_controller_file.cpp)

target_link_libraries(my_controller_lib	${catkin_LIBRARIES})

You	will	get	the	complete	CMakeLists.txt	from	chapter_6_codes/my_controller_pkg.



Step	8	–	Building	controller
After	completing	the	CMakeLists.txt,	we	can	build	our	controller	using	the	catkin_make
command.	After	building,	check	that	the	controller	is	configured	as	a	plugin	using
rospack	command,	as	given	in	the	following:

$	rospack	plugins	--attrib=plugin	pr2_controller_interface

If	everything	has	been	performed	correctly,	the	output	may	look	like	the	following:

Figure	3:	List	of	controllers	in	the	system



Step	9	–	Writing	controller	configuration	file
After	proper	installation	of	the	controller,	we	can	configure	and	run	it.	The	first	procedure
is	to	create	the	configuration	file	of	the	controller	that	consists	of	the	controller	type,	joint
name,	joint	limits,	and	so	on.	The	configuration	file	is	saved	as	a	YAML	file	that	has	to	be
saved	inside	the	package.	We	are	creating	a	YAML	file	with	a	name	of
my_controller.yaml	and	the	definition	is	given	as	follows:

		my_controller_name:

				type:	my_controller_pkg/MyControllerPlugin

				joint_name:	r_shoulder_pan_joint



Step	10	–	Writing	launch	file	for	the	controller
The	joint	assigned	for	showing	the	working	of	this	controller	is	r_should_pan_joint	of
the	robot	PR2.	After	creating	the	YAML	file,	we	can	create	a	launch	file	inside	the	launch
folder,	which	can	load	the	controller	configuration	file	and	run	the	controller.	The	launch
file	is	called	my_controller.launch,	which	is	given	as	follows:

<launch>

			<rosparam	file="$(find	my_controller_pkg)/my_controller.yaml"	

command="load"	/>

<!--We	can	use	spawner	tool	to	start	running	the	custom	controller	-->

			<node	pkg="pr2_controller_manager"	type="spawner"	

args="my_controller_name"	name="my_controller_spawner"	/>

</launch>



Step	11	–	Running	controller	along	with	PR2
simulation	in	Gazebo
After	creating	the	controller	launch	files,	we	have	to	test	it	on	PR2.	We	can	launch	the
PR2	robot	simulation	using	following	command:

$roslaunch	pr2_gazebo	pr2_empty_world.launch

When	we	launch	the	PR2	simulation,	all	controllers	associated	with	PR2	also	get	started.
The	purpose	of	our	controller	is	to	move	the	r_shoulder_pan_joint	of	PR2.	If	there	are
existing	controllers	handling	this	same	joint,	our	controller	can’t	work	properly.	To	avoid
this	situation,	we	need	to	stop	the	controller	that	is	handling	the	right	arm	of	PR2.	The
following	command	tells	you	which	are	the	controllers	that	are	associated	with	PR2:

$	rosrun	pr2_controller_manager	pr2_controller_manager	list

The	output	of	this	command	is	given	as	follows:

Figure	4:	Running	status	of	PR2	controllers

Stop	the	r_arm_controller	using	the	following	command:

$	rosrun	pr2_controller_manager	pr2_controller_manager	stop	

r_arm_controller

After	stopping	this	controller,	we	can	start	our	own	controller	using	the	following
command:

$	roslaunch	my_controller_pkg	my_controller.launch

We	can	see	the	right	arm	of	PR2	start	moving,	and	a	screenshot	of	the	PR2	pose	is	given	in
the	following:



Figure	5:	PR2	right	hand	joint	working	using	our	controller





Understanding	ros_control	packages
In	the	preceding	section,	we	discussed	the	pr2_mechanism	packages	which	build	the
controllers	for	PR2.	These	packages	are	exclusively	designed	for	PR2,	but	they	will	work
in	robots	that	are	similar	to	PR2.

To	make	these	packages	more	generic	to	all	the	robots,	the	pr2_mechanism	packages
rewritten	and	formed	a	new	set	of	packages	called	ros_control
(http://wiki.ros.org/ros_control).

The	ros_control	implement	standard	set	of	generic	controllers	such	as
effort_controllers,	joint_state_controllers,	position_controllers,	and	velocity
controllers	for	any	kind	of	robots.

We	have	already	used	these	ROS	controllers	from	ros_control	in	Chapter	3,	Simulating
Robots	Using	ROS	and	Gazebo.	The	ros_control	is	still	in	development.	The	building
procedure	of	the	controllers	is	almost	similar	to	PR2	controllers.

You	can	go	through	the	available	wiki	page	of	ros_control	for	building	new	controls	at
https://github.com/ros-controls/ros_control/wiki.

You	will	get	a	sample	controller	implementation	using	ros_control	from	the
chapter_6_codes/sample_ros_controller	folder.

http://wiki.ros.org/ros_control
https://github.com/ros-controls/ros_control/wiki




Understanding	ROS	visualization	tool
(RViz)	and	its	plugins
The	RViz	tool	is	an	official	3D	visualization	tool	of	ROS.	Almost	all	kinds	of	data	from
sensors	can	be	viewed	through	this	tool.	RViz	will	be	installed	along	with	the	ROS
desktop	full	installation.	Let’s	launch	RViz	and	see	the	basic	components	present	in	RViz:

Start	roscore

$roscore

Start	RViz

$	rosrun	rviz	rviz

The	important	sections	of	the	RViz	GUI	are	marked	and	the	uses	of	each	section	are	given
as	follows:

Figure	6:	RViz	and	its	toolbars



Displays	panel
The	panel	on	the	left	side	of	the	RViz	is	called	Displays	panel.	The	Displays	panel
contains	a	list	of	display	plugins	of	RViz	and	its	properties.	The	main	use	of	display
plugins	is	to	visualize	different	types	of	ROS	messages,	mainly	sensor	data	in	the	RViz	3D
viewport.	There	are	lots	of	display	plugins	already	present	in	RViz	for	viewing	images
from	camera,	for	viewing	3D	point	cloud,	LaserScan,	robot	model,	Tf,	and	so	on.	Plugins
can	be	added	by	pressing	the	Add	button	on	the	left	panel.	We	can	also	write	our	own
display	plugin	and	add	it	there.	The	detail	of	tutorials	for	writing	a	display	plugin	on	RViz
is	available	at
http://docs.ros.org/jade/api/rviz_plugin_tutorials/html/display_plugin_tutorial.html.

http://docs.ros.org/jade/api/rviz_plugin_tutorials/html/display_plugin_tutorial.html


RViz	toolbar
There	are	set	of	tools	present	in	the	RViz	toolbar	for	manipulating	the	3D	viewport.	The
toolbar	is	present	on	the	top	of	RViz.	There	are	tools	present	for	interacting	with	the	robot
model,	modifying	camera	view,	giving	navigation	goals,	and	giving	robot	2D	pose
estimations.	We	can	add	our	own	custom	tools	on	the	toolbar	in	the	form	of	plugins.	One
of	the	official	tutorials	for	building	tool	plugins	is	available	at
http://docs.ros.org/jade/api/rviz_plugin_tutorials/html/tool_plugin_tutorial.html.

http://docs.ros.org/jade/api/rviz_plugin_tutorials/html/tool_plugin_tutorial.html


Views
The	Views	panel	is	placed	on	the	right	side	of	the	RViz.	Using	Views	panel,	we	can	save
different	views	of	the	3D	viewport	and	switch	to	each	view	by	loading	the	saved
configuration.



Time	panel
The	Time	panel	displays	the	simulator	time	elapsed	and	is	mainly	useful	if	there	is	a
simulator	running	along	with	RViz.	We	can	also	reset	to	the	RViz	initial	setting	using	this
panel.



Dockable	panels
The	above	toolbar	and	panels	belong	to	dockable	panels.	We	can	create	our	own	dockable
panels	as	a	RViz	plugin.	We	are	going	to	create	a	dockable	panel	that	is	having	an	RViz
plugin	for	robot	teleoperation.





Writing	a	RViz	plugin	for	teleoperation
In	this	chapter,	we	design	a	teleoperation	commander	in	which	we	can	manually	enter	the
teleoperation	topic,	linear	velocity,	and	angular	velocity,	as	shown	in	the	following:

Figure	7:	RViz	teleop	plugin

The	following	is	a	detailed	procedure	to	build	this	plugin.



Methodology	of	building	RViz	plugin
Before	starting	to	build	this	plugin,	we	should	know	how	to	do	it.	The	standard	method	to
build	a	ROS	plugin	is	applicable	for	this	plugin	too.	The	difference	is	that	the	RViz	plugin
is	GUI	based.	The	RViz	is	written	using	a	GUI	framework	called	Qt,	so	we	need	to	create
a	GUI	in	Qt,	and	using	Qt	APIs,	we	have	get	the	GUI	values	and	send	them	to	the	ROS
system.

The	following	steps	describe	how	this	teleoperation	RViz	plugin	is	going	to	work:

The	dockable	panel	will	have	a	Qt	GUI	interface	and	the	user	can	input	the	topic,
linear	velocity,	and	angular	velocity	of	teleoperation	from	the	GUI.
Collect	the	user	input	from	GUI	using	Qt	signals/slots	and	publish	the	values	using
the	ROS	subscribe	and	publish	method.	(The	Qt	signals	and	slots	are	a	trigger-invoke
technique	available	in	Qt.	When	a	signal/trigger	is	generated	by	a	GUI	field,	it	can
invoke	a	slot	or	function	like	a	callback	mechanism.)
Here	also,	we	can	use	the	same	procedure	to	build	a	plugin	like	we	discussed	earlier.

Now	we	can	see	the	step-by-step	procedure	to	build	this	plugin	as	follows:

Step	1	–	Creating	RViz	plugin	package
Let’s	create	a	new	package	for	creating	the	teleop	plugin:

$	catkin_create_pkg	rviz_telop_commander	roscpp	rviz	std_msgs

Or,	you	can	use	the	existing	package	from	the	following	location:
chapter_6_codes/rviz_telop_commander.

The	package	is	mainly	dependent	on	the	rviz	package.	RViz	is	built	using	Qt	libraries,	so
we	don’t	need	to	include	additional	Qt	libraries	in	the	package.

Step	2	–	Creating	RViz	plugin	header	file
Let’s	create	a	new	header	inside	the	src	folder	called	teleop_pad.h.	You	will	get	this
source	code	from	the	existing	package.	This	header	file	consists	of	the	class	and	methods
declaration	for	the	plugin.

The	following	is	the	explanation	of	this	header	file:

#include	<ros/ros.h>

#include	<ros/console.h>

#include	<rviz/panel.h>

The	preceding	is	the	header	file	required	to	build	this	plugin;	we	need	ROS	headers	for
publishing	teleop	topic	and	<rviz/panel.h>	for	getting	the	base	class	of	the	RViz	panel
for	creating	a	new	panel:

class	TeleopPanel:	public	rviz::Panel

{

This	is	a	plugin	class	and	is	inherited	from	the	rviz::Panel	base	class:

Q_OBJECT



public:

This	class	is	using	Qt	signal	and	slots,	and	it’s	also	a	subclass	of	QObject	in	Qt.	In	that
case,	we	should	use	Q_OBJECT	macro:

		TeleopPanel(	QWidget*	parent	=	0	);

This	is	the	constructor	of	the	TeleopPanel()	class	and	we	are	initializing	a	QWidget	class
to	0.	We	are	using	the	QWidget	instance	inside	the	TeleopPanel	class	for	implementing	the
GUI	of	the	teleop	plugin:

		virtual	void	load(	const	rviz::Config&	config	);

		virtual	void	save(	rviz::Config	config	)	const;

The	following	is	the	overriding	of	rviz::Panel	functions	for	saving	and	loading	the	RViz
config	file:

public	Q_SLOTS:

After	this	line,	we	can	define	some	public	Qt	slots:

		void	setTopic(	const	QString&	topic	);

When	we	enter	the	topic	name	in	the	GUI	and	press	Enter,	this	slot	will	be	called	and	will
create	topic	publisher	on	the	given	name:

protected	Q_SLOTS:

		void	sendVel();

		void	update_Linear_Velocity();

		void	update_Angular_Velocity();

		void	updateTopic();

These	are	the	protected	slots	for	sending	velocity,	updating	linear	velocity	and	angular
velocity,	and	updating	the	topic	name,	when	we	change	the	name	of	the	existing	topic:

		QLineEdit*	output_topic_editor_;

		QLineEdit*	output_topic_editor_1;

		QLineEdit*	output_topic_editor_2;

We	are	creating	Qt	LineEdit	object	to	create	three	text	fields	in	the	plugin	to	receive:
topic	name,	linear	velocity,	and	angular	velocity.

ros::Publisher	velocity_publisher_;

ros::NodeHandle	nh_;

These	are	the	publisher	object	and	the	Nodehandle	object	for	publishing	topics	and
handling	a	ROS	node.

Step	3	–	Creating	RViz	plugin	definition
In	this	step,	we	will	create	the	main	C++	file	that	contains	the	definition	of	the	plugin.	The
file	is	teleop_pad.cpp,	and	you	will	get	it	from	package	src	folder.

The	main	responsibilities	of	this	file	are	as	follows:

It	acts	as	a	container	for	Qt	GUI	element	such	as	QLineEdit	to	accept	text	entries
Publishes	the	command	velocity	using	ROS	publisher



Saves	and	restores	the	RViz	config	files

The	following	is	the	explanation	of	each	section	of	the	code:

TeleopPanel::TeleopPanel(	QWidget*	parent	)

		:	rviz::Panel(	parent	)

		,	linear_velocity_(	0	)

		,	angular_velocity_(	0	)

{

This	is	the	constructor	and	initialize	rviz::Panel	with	QWidget,	setting	linear	and	angular
velocity	as	0:

		QVBoxLayout*	topic_layout	=	new	QVBoxLayout;

		topic_layout->addWidget(	new	QLabel(	"Teleop	Topic:"	));

		output_topic_editor_	=	new	QLineEdit;

		topic_layout->addWidget(	output_topic_editor_	);

This	will	add	a	new	QLineEdit	widget	on	the	panel	for	handling	the	topic	name.	Similarly,
two	other	QLineEdit	widgets	handle	linear	velocity	and	angular	velocity.

	QTimer*	output_timer	=	new	QTimer(	this	);

This	will	create	a	Qt	timer	object	for	updating	a	function	that	is	publishing	the	velocity
topic:

connect(	output_topic_editor_,	SIGNAL(	editingFinished()	),	this,	SLOT(	

updateTopic()	));

		connect(	output_topic_editor_,	SIGNAL(	editingFinished()	),	this,	SLOT(	

updateTopic()	));

		connect(	output_topic_editor_1,	SIGNAL(	editingFinished()	),	this,	SLOT(	

update_Linear_Velocity()	));

		connect(	output_topic_editor_2,	SIGNAL(	editingFinished()	),	this,	SLOT(	

update_Angular_Velocity()	));

This	will	connect	Qt	signal	to	the	slots.	Here	the	signal	is	triggered	when
editingFinished()	return	true	and	the	Slot	here	is	updateTopic().	When	the	editing
inside	a	Qt	LineEdit	is	finished	by	pressing	Enter	key,	the	signal	will	trigger	and	the
corresponding	slot	will	execute.	Here	this	slot	will	set	the	topic	name,	angular	velocity,
and	linear	velocity	value	from	the	text	field	of	the	plugin:

connect(	output_timer,	SIGNAL(	timeout()	),	this,	SLOT(	sendVel()	));

output_timer->start(	100	);

These	lines	generate	a	signal	when	the	Qt	timer	timesout.	The	timer	will	timeout	in	each
100	ms	and	execute	a	slot	called	sendVel(),	which	will	publish	the	velocity	topic.

We	can	see	the	definition	of	each	slot	after	this	section.	These	codes	are	self-explanatory
and	finally	we	can	see	the	following	code	to	export	it	as	a	plugin:

#include	<pluginlib/class_list_macros.h>

PLUGINLIB_EXPORT_CLASS(rviz_telop_commander::TeleopPanel,	rviz::Panel	)

Step	4	–	Creating	plugin	description	file



The	definition	of	plugin_description.xml	is	given	as	follows:

<library	path="lib/librviz_telop_commander">

		<class	name="rviz_telop_commander/Teleop"

									type="rviz_telop_commander::TeleopPanel"

									base_class_type="rviz::Panel">

				<description>

						A	panel	widget	allowing	simple	diff-drive	style	robot	base	control.

				</description>

		</class>

</library>

Step	5	–	Adding	export	tags	in	package.xml
We	have	to	update	the	package.xml	file	for	including	the	plugin	description.	The
following	is	the	update	of	package.xml:

		<export>

						<rviz	plugin="${prefix}/plugin_description.xml"/>

		</export>

Step	6	–	Editing	CMakeLists.txt
We	need	to	add	extra	lines	in	the	CMakeLists.txt	definition	as	given	in	the	following:

##	This	plugin	includes	Qt	widgets,	so	we	must	include	Qt	like	so:

find_package(Qt4	COMPONENTS	QtCore	QtGui	REQUIRED)

include(${QT_USE_FILE})

##	I	prefer	the	Qt	signals	and	slots	to	avoid	defining	"emit",	"slots",

##	etc	because	they	can	conflict	with	boost	signals,	so	define	

QT_NO_KEYWORDS	here.

add_definitions(-DQT_NO_KEYWORDS)

##	Here	we	specify	which	header	files	need	to	be	run	through	"moc",

##	Qt's	meta-object	compiler.

qt4_wrap_cpp(MOC_FILES

		src/teleop_pad.h

)

set(SOURCE_FILES

		src/teleop_pad.cpp

		${MOC_FILES}

)

add_library(${PROJECT_NAME}	${SOURCE_FILES})

target_link_libraries(${PROJECT_NAME}	${QT_LIBRARIES}	${catkin_LIBRARIES})

You	will	get	the	complete	CMakeLists.txt	from
chapter_6_codes/rviz_telop_commander.

Step	7	–	Building	and	loading	plugins
After	creating	these	files,	build	a	package	using	catkin_make.	If	the	build	is	successful,



we	can	load	the	plugin	in	RViz	itself.	Take	RViz	and	load	the	panel	by	going	to	Menu
Panel	|	Add	New	Panel;	we	will	get	a	panel	like	the	following:

Figure	8:	Loading	teleop	node	from	RViz

If	we	load	the	Teleop	plugin	from	the	list,	we	will	get	a	panel	like	the	following:



Figure	9:	Loading	teleop	node	from	RViz

We	can	put	the	Teleop	Topic	name	and	values	inside	the	Linear	Velocity	and	Angular
Velocity	and	we	can	echo	the	Teleop	Topic	and	get	the	topic	values	like	the	following:

Figure	10:	Twist	commands	from	RViz	teleop	plugin





Questions
1.	 What	are	the	list	of	packages	needed	for	writing	a	real-time	controller	in	ROS?
2.	 What	are	the	different	processes	happening	inside	a	ROS	controller?
3.	 What	are	the	main	functions	of	the	PR2	mechanism	model?
4.	 What	are	the	different	types	of	RViz	plugins?





Summary
In	this	chapter,	we	discussed	creating	plugins	for	the	ROS	visualization	tool	(RViz)	and
writing	basic	ROS	controllers.	We	have	already	worked	with	default	controllers	in	ROS,
and	in	this	chapter,	we	developed	a	custom	controller	for	moving	joints.	After	building
and	testing	the	controller,	we	looked	at	RViz	plugins.	We	created	a	new	RViz	panel	for
teleoperation.	We	can	manually	enter	the	topic	name;	we	need	the	twist	messages	and	to
enter	the	linear	and	angular	velocity	in	the	panel.	This	panel	is	useful	for	controlling
robots	without	starting	another	teleoperation	node.	In	the	next	chapter,	we	will	discuss
interfacing	of	I/O	boards	and	running	ROS	in	embedded	systems.





Chapter	7.	Interfacing	I/O	Boards,
Sensors,	and	Actuators	to	ROS
In	the	last	two	chapters,	we	discussed	different	kinds	of	plugin	frameworks	that	are	used	in
ROS.	In	this	chapter,	we	are	going	to	discuss	interfacing	of	some	hardware	components,
such	as	sensors	and	actuators	to	ROS.	We	will	see	interfacing	of	sensors	using	I/O	boards
such	as	Arduino,	Raspberry	Pi,	and	Odroid-C1	to	ROS,	and	also	discuss	interfacing	of
smart	actuators	such	as	Dynamixel	to	ROS.	Following	is	the	detailed	list	of	topics	we	are
going	to	cover	in	this	chapter:

Understanding	the	Arduino-ROS	interface
Setting	up	the	Arduino-ROS	interface	packages
Arduino-ROS	,example—Chatter	and	Talker
Arduino-ROS	,	example—blink	LED	and	push	button
Arduino-ROS	,	example—Accelerometer	ADXL	335
Arduino-ROS,	example—ultrasonic	distance	sensor
Arduino-ROS,	example—Odometry	Publisher
Interfacing	a	non-Arduino	board	to	ROS
Setting	ROS	on	Odroid-C1	and	Raspberry	Pi	2
Working	with	Raspberry	Pi	and	Odroid	GPIOs	using	ROS
Interfacing	Dynamixel	actuators	to	ROS



Understanding	the	Arduino–ROS
interface
Let’s	see	what	an	Arduino	is	first.	Arduino	is	one	of	the	most	popular	open	source	I/O
boards	in	the	market.	The	easiness	in	programmability	and	the	cost	effectiveness	of	the
hardware	have	made	Arduino	a	big	success.	Most	of	the	Arduino	boards	are	powered	by
Atmel	microcontrollers,	which	are	available	from	8-bit	to	32-bit	and	clock	speed	from	8
MHz	to	84	MHz.	Arduino	can	be	used	for	quick	prototyping	of	robots	and	we	can	even
use	it	for	products	as	well.	The	main	applications	of	Arduino	in	robotics	are	interfacing
sensors	and	actuators,	and	communicating	with	PC	for	receiving	high	level	commands	and
sending	sensor	values	to	PC	using	the	UART	protocol.

There	are	different	varieties	of	Arduino	available	in	the	market.	Selecting	one	board	for
our	purpose	will	be	dependent	on	the	nature	of	our	robotic	application.	Let’s	see	some
boards	which	we	can	use	for	beginners,	intermediate,	and	high	end	users.

Figure	1	:	Different	versions	of	Arduino	board

We	will	look	at	each	Arduino	board	specification	in	brief	and	see	where	it	can	be
deployed.

Boards Arduino	UNO Arduino	Mega	2560 Arduino	Due



Processor ATmega328P ATmega2560 ATSAM3X8E

Operating/Input
Voltage 5V	/	7-12	V 5V/	7-12V 3.3V	/	7	-	12	V

CPU	Speed 16	MHz 16	MHz 84	MHz

Analog	In/Out 6/0 16/0 12/2

Digital	IO/PWM 14/6 54/15 54/12

EEPROM[KB] 1 4 -

SRAM	[KB] 2 8 96

Flash	[KB] 32 256 512

USB Regular Regular 2	Micro

UART 1 4 4

Application Basic	robotics	and	sensor
interfacing

Intermediate	robotic	application	level
application

High	end	robotics
application

Let’s	see	how	to	interface	Arduino	to	ROS.





What	is	the	Arduino–ROS	interface?
Most	of	the	communication	between	PC	and	I/O	boards	in	robots	will	be	through	UART
protocol.	When	both	the	devices	communicate	with	each	other,	there	should	be	some
program	in	both	the	sides	which	can	translate	the	serial	commands	from	each	of	these
devices.	We	can	implement	our	own	logic	to	receive	and	transmit	the	data	from	board	to
PC	and	vice	versa.	The	interfacing	code	can	be	different	in	each	I/O	board	because	there
are	no	standard	libraries	to	do	this	communication.

The	Arduino-ROS	interface	is	a	standard	way	of	communication	between	the	Arduino
boards	and	PC.	Currently,	this	interface	is	exclusive	for	Arduino.	We	may	need	to	write
custom	nodes	to	interface	other	I/O	boards.

We	can	use	the	similar	C++	APIs	of	ROS	used	in	PC	in	Arduino	IDE	also,	for
programming	the	Arduino	board.	Detailed	information	about	the	interfacing	package
follows.



Understanding	the	rosserial	package	in	ROS
The	rosserial	package	is	a	set	of	standardized	communication	protocols	implemented	for
communicating	from	ROS	to	character	devices	such	as	serial	ports,	and	sockets,	and	vice
versa.	The	rosserial	protocol	can	convert	the	standard	ROS	messages	and	services	data
types	to	embedded	device	equivalent	data	types.	It	also	implements	multitopic	support	by
multiplexing	the	serial	data	from	a	character	device.	The	serial	data	is	sent	as	data	packets
by	adding	header	and	tail	bytes	on	the	packet.	The	packet	representation	is	shown	next:

Figure	2	:	rosserial	packet	representation

The	function	of	each	byte	follows:

Sync	Flag:	This	is	the	first	byte	of	the	packet,	which	is	always	0xff
Sync	Flag/Protocol	version:	This	byte	was	0xff	on	ROS	Groovy	and	after	that	it	is
set	to	0xfe
Message	Length:	This	is	the	length	of	the	packet
Checksum	over	message	length:	This	is	the	checksum	of	length	for	finding	packet
corruption
Topic	ID:	This	is	the	ID	allocated	for	each	topic;	the	range	0-100	is	allocated	for	the
system	related	functionalities
Serialized	Message	data:	This	is	the	data	associated	with	each	topic



Checksum	of	Topic	ID	and	data:	This	is	the	checksum	for	topic	and	its	serial	data
for	finding	packet	corruption

The	checksum	of	length	is	computed	using	the	following	equation:

Checksum	=	255	-	(	(Topic	ID	Low	Byte	+	Topic	ID	High	Byte	+	…	data	byte	values)	%
256)

The	ROS	client	libraries,	such	as	roscpp,	rospy,	and	roslisp,	enable	us	to	develop	ROS
nodes	which	can	run	from	various	devices.	One	of	the	ports	of	the	ROS	clients	which
enables	us	to	run	a	ROS	node	from	the	embedded	devices	such	as	Arduino	and	embedded
Linux	based	boards,	is	called	the	rosserial_client	library.	Using	the	rosserial_client
libraries,	we	can	develop	the	ROS	nodes	from	Arduino,	embedded	Linux	platforms,	and
windows.	Following	is	the	list	of	rosserial_client	libraries	for	each	of	these	platforms:

rosserial_arduino:	This	rosserial_client	works	on	Arduino	platforms	such	as
Arduino	UNO	and	Leonardo,	and	also	works	in	Mega	series	and	Due	series	for
advance	robotic	projects
rosserial_embeddedlinux:	This	client	supports	embedded	Linux	platforms	such	as
VEXPro,	Chumby	alarm	clock,	WRT54GL	router,	and	so	on
rosserial_windows:	This	is	a	client	for	Windows	platform

In	the	PC	side,	we	need	some	other	packages	to	decode	the	serial	message	and	convert	to
exact	topics	from	the	rosserial_client	libraries.	The	following	packages	help	in
decoding	the	serial	data:

rosserial_python:	This	is	the	recommended	PC	side	node	for	handling	serial	data
from	a	device.	The	receiving	node	is	completely	written	in	Python.
rosserial_server:	This	is	a	C++	implementation	of	rosserial	in	the	PC	side.	The
inbuilt	functionalities	are	less	compared	to	rosserial_python,	but	it	can	be	used	for
high	performance	applications.
rosserial_java:	This	is	a	JAVA	based	implementation	of	rosserial,	but	not
actively	supported	now.	It	is	mainly	used	for	communicating	with	android	devices.

We	are	mainly	focusing	on	running	the	ROS	nodes	from	Arduino.	First	we	will	see	how	to
setup	the	rosserial	packages	and	then	discuss	how	to	setup	the	roserial_arduino	client
in	Arduino	IDE.

Installing	rosserial	packages	on	Ubuntu	14.04/15.04
We	can	install	the	rosserial	packages	on	Ubuntu	using	the	following	commands:

1.	 Installing	the	rosserial	package	binaries	using	apt-get:

In	Indigo:

$	sudo	apt-get	install	ros-indigo-rosserial	ros-indigo-rosserial-

arduino	ros-indigo-rosserial-server

In	Jade:

$	sudo	apt-get	install	ros-jade-rosserial	ros-jade-rosserial-

arduino	ros-jade-rosserial-server



2.	 For	installing	the	rosserial_client	library	called	ros_lib	in	Arduino,	we	have	to
download	the	latest	Arduino	IDE	for	Linux	32/64	bit.	Following	is	the	link	for
downloading	Arduino	IDE:

https://www.arduino.cc/en/main/software

Here	we	download	the	Linux	64	bit	version	and	copy	the	Arduino	IDE	folder	to	the
Ubuntu	desktop.

3.	 Arduino	requires	JAVA	runtime	support	to	run	it.	If	it	is	not	installed,	we	can	install	it
using	the	following	command:

				$	sudo	apt-get	install	java-common

4.	 After	installing	JAVA	runtime,	we	can	switch	the	arduino	folder	using	the	following
command:

				$	cd	~/Desktop/arduino-1.6.5

5.	 Start	Arduino	using	the	following	command:

				$	./arduino

Shown	next	is	the	Arduino	IDE	window:

Figure	3	:	Arduino	IDE

6.	 Go	to	File	|	Preference	for	configuring	the	sketchbook	folder	of	Arduino.	Arduino
IDE	stores	the	sketches	to	this	location.	We	created	a	folder	called	Arduino1	in	the

https://www.arduino.cc/en/main/software


user	home	folder	and	set	this	folder	as	the	sketchbook	location.

Figure	4	:	Preference	of	Arduino	IDE

7.	 We	can	see	a	folder	called	libraries	inside	the	Arduino1	folder.	Switch	to	this	folder
using	the	following	command:

				$	cd	~/Arduino1/libraries/

If	there	is	no	libraries	folder,	we	can	create	a	new	one.

8.	 After	switching	into	this	folder,	we	can	generate	ros_lib	using	a	script	called
make_libraries.py,	which	is	present	inside	the	rosserial_arduino	package.
ros_lib	is	rosserial_client	for	Arduino,	which	provides	the	ROS	client	APIs
inside	an	Arduino	IDE	environment.

				$	rosrun	rosserial_arduino	make_libraries.py	.

rosserial_arduino	is	ROS	client	for	arduino	which	can	communicate	using	UART	and
can	publish	topics,	services,	TF,	and	such	others	like	a	ROS	node.	The
make_libraries.py	script	will	generate	a	wrapper	of	the	ROS	messages	and	services
which	optimized	for	Arduino	data	types.	These	ROS	messages	and	services	will	convert
into	Arduino	C/C++	code	equivalent,	as	shown	next:

Conversion	of	ROS	messages:



ros_package_name/msg/Test.msg		-->	ros_package_name::Test

Conversion	of	ROS	services:

ros_package_name/srv/Foo.srv		-->	ros_package_name::Foo

For	example,	if	we	include	#include	<std_msgs/UInt16.h>	,	we	can	instantiate	the
std_msgs::UInt16	number.

If	the	script	make_libraries.py	works	fine,	a	folder	called	ros_lib	will	generate	inside
the	libraries	folder.	Restart	the	Arduino	IDE	and	we	will	see	ros_lib	examples	as
follows:

Figure	5	:	List	of	Arduino	-	ROS	examples

We	can	take	any	example	and	make	sure	that	it	is	building	properly	to	ensure	that	the



ros_lib	APIs	are	working	fine.	The	necessary	APIs	required	for	building	ROS	Arduino
nodes	are	discussed	next.

Understanding	ROS	node	APIs	in	Arduino

Following	is	a	basic	structure	ROS	Arduino	node.	We	can	see	the	function	of	each	line	of
code:.

#include	<ros.h>

ros::NodeHandle	nh;

void	setup()

{

		nh.initNode();

}

void	loop()

{

		nh.spinOnce();

}

Creating	of	NodeHandle	in	Arduino	is	done	using	the	following	line	of	code:

ros::NodeHandle	nh;

Note	that	Nodehandle	should	be	declared	before	the	setup()	function,	which	will	give	a
global	scope	to	the	NodeHandle	instance	called	nh.	The	initialization	of	this	node	is	done
inside	the	setup()	function.

		nh.initNode();

The	Arduino	setup()	function	will	execute	only	once	when	the	device	starts,	and	note
that	we	can	only	create	one	node	from	a	serial	device.

Inside	the	loop()	function,	we	have	to	use	the	following	line	of	code	to	execute	the	ROS
callback	once:

		nh.spinOnce();

We	can	create	the	Subscriber	and	Publisher	objects	in	Arduino,	similar	to	the	other	ROS
client	libraries.	Following	are	the	procedures	for	defining	the	subscriber	and	the	publisher.

Here	is	how	we	define	a	subscriber	object	in	Arduino:

ros::Subscriber<std_msgs::String>	sub("talker",	callback);

Here	we	define	a	subscriber	which	is	subscribing	a	String	message,	where	callback	is	the
callback	function	executing	when	a	String	message	arrives	on	the	talker	topic.	Given	next
is	an	example	callback	for	handling	the	String	data:

std_msgs::String	str_msg;

ros::Publisher	chatter("chatter",	&str_msg);

void	callback	(	const	std_msgs::String&	msg){



		str_msg.data	=	msg.data;

		chatter.publish(	&str_msg	);

}

Note	that	the	callback(),	Subscriber,	and	Publisher	definition	will	be	above	the	setup()
function	for	getting	global	scope.	Here	we	are	receiving	String	data	using	const
std_msgs::String&	msg.

Following	code	shows	how	to	define	a	publisher	object	in	Arduino:

ros::Publisher	chatter("chatter",	&str_msg);

This	next	code	shows	how	we	publish	the	string	message:

		chatter.publish(	&str_msg	);

After	defining	the	publisher	and	the	subscriber,	we	have	to	initiate	this	inside	the	setup()
function	using	the	following	lines	of	code:

		nh.advertise(chatter);

		nh.subscribe(sub);

There	are	ROS	APIs	for	logging	from	Arduino.	Following	are	the	different	logging	APIs
supported:

nh.logdebug("Debug	Statement");

nh.loginfo("Program	info");

nh.logwarn("Warnings.);

nh.logerror("Errors..");

nh.logfatal("Fatalities!");

We	can	retrieve	the	current	ROS	time	in	Arduino	using	ROS	built-in	functions,	such	as
time	and	duration.

Current	ROS	time:

ros::Time	begin	=	nh.now();

Convert	ROS	time	in	seconds:

double	secs	=	nh.now().toSec();

Creating	a	duration	in	seconds:

ros::Duration	ten_seconds(10,	0);

ROS	–	Arduino	Publisher	and	Subscriber	example
The	first	example	using	Arduino	and	ROS	interface	is	a	chatter	and	talker	interface.	Users
can	send	a	String	message	to	the	talker	topic	and	Arduino	will	publish	the	same
message	in	a	chatter	topic.	The	following	ROS	node	is	implemented	for	Arduino	and	we
will	discuss	this	example	in	detail:

#include	<ros.h>

#include	<std_msgs/String.h>



//Creating	Nodehandle

ros::NodeHandle		nh;

//Declaring	String	variable

std_msgs::String	str_msg;

//Defining	Publisher

ros::Publisher	chatter("chatter",	&str_msg);

//Defining	callback

void	callback	(	const	std_msgs::String&	msg){

		str_msg.data	=	msg.data;

		chatter.publish(	&str_msg	);

				

}

//Defining	Subscriber

ros::Subscriber<std_msgs::String>	sub("talker",	callback);

void	setup()

{

		//Initializing	node

		nh.initNode();

		//Start	advertising	and	subscribing	

		nh.advertise(chatter);

		nh.subscribe(sub);

}

void	loop()

{

		nh.spinOnce();

		delay(3);

}

We	can	compile	the	above	code	and	upload	to	the	Arduino	board.	After	uploading	the
code,	select	the	desired	Arduino	board	that	we	are	using	for	this	example	and	the	device
serial	port	of	the	Arduino	IDE.

Take	Tools	|	Boards	to	select	the	board	and	Tools	|	Port	to	select	the	device	port	name	of
the	board.	We	are	using	Arduino	Mega	for	these	examples.

After	compiling	and	uploading	the	code,	we	can	start	the	ROS	bridge	nodes	in	the	PC
which	connects	Arduino	and	the	PC	using	the	following	command.	Ensure	that	Arduino	is
already	connected	to	the	PC	before	executing	of	this	command.

$	rosrun	rosserial_python	serial_node.py	/dev/ttyACM0

We	are	using	the	rosserial_python	node	here	as	the	ROS	bridging	node.	We	have	to
mention	the	device	name	and	baud-rate	as	arguments.	The	default	baud-rate	of	this
communication	is	57600.	We	can	change	the	baud-rate	according	to	our	application	and
the	usage	of	serial_node.py	inside	the	rosserial_python	package	is	given	at
http://wiki.ros.org/rosserial_python.	If	the	communication	between	the	ROS	node	and	the

http://wiki.ros.org/rosserial_python


Arduino	node	is	correct,	we	will	get	the	following	message:

Figure	6	:	Running	the	rosserial_python	node

When	serial_node.py	starts	running	from	the	PC,	it	will	send	some	serial	data	packets
called	query	packets	to	get	the	number	of	topics,	the	topic	names,	and	the	types	of	topics
which	are	received	from	the	Arduino	node.	We	have	already	seen	the	structure	of	serial
packets	which	is	being	used	for	Arduino	ROS	communication.	Given	next	is	the	structure
of	a	query	packet	which	is	sent	from	serial_node.py	to	Arduino:

Figure	7	:	Structure	of	Query	Packet

The	query	topic	contains	fields	such	as	Sync	Flag,	ROS	version,	length	of	the	message,
MD5	sum,	Topic	ID,	and	so	on.	When	the	query	packet	receives	on	the	Arduino,	it	will
reply	with	a	topic	info	message	which	contains	topic	name,	type,	length,	topic	data,	and	so
on.	Following	is	a	typical	response	packet	from	Arduino:



Figure	8	:	Structure	of	Response	Packet

If	there	is	no	response	for	the	query	packet,	it	will	send	it	again.	The	synchronization	in
communication	is	based	on	ROS	time.

From	Figure	6,	we	can	see	that	when	we	run	the	serial_node.py,	the	buffer	size	allocated
for	publish	and	subscribe	is	512	bytes.	The	buffer	allocation	is	dependent	on	the	amount
of	RAM	available	on	each	microcontroller	that	we	are	working	with.	Following	is	a	table
showing	the	buffer	allocation	of	each	Arduino	controller.	We	can	override	these	settings
by	changing	the	BUFFER_SIZE	macro	inside	ros.h.

AVR	Model Buffer	Size Publishers/Subscribers

ATMEGA	168 150	bytes 6/6

ATMEGA	328P 280	bytes 25/25

All	others 512	bytes 25/25

There	are	also	some	limitations	in	the	float64	data	type	of	ROS	in	Arduino,	it	will	truncate
to	32-bit.	Also,	when	we	use	string	data	types,	use	the	unsigned	char	pointer	for	saving
memory.

After	running	serial_node.py,	we	will	get	the	list	of	topics	using	the	following
command:

$	rostopic	list

We	can	see	that	topics	such	as	chatter	and	talker	are	being	generated.	We	can	simply



publish	a	message	to	the	talker	topic	using	the	following	command:

$	rostopic	pub	-r	5	talker	std_msgs/String	"Hello	World"

It	will	publish	the	“Hello	World”	message	with	a	rate	of	5.

We	can	echo	the	chatter	topic	and	we	will	get	the	same	message	as	we	published:

$rostopic	echo	/chatter

The	screenshot	of	this	command	is	shown	next:

Figure	9	:	Echoing	/chatter	topic



Arduino-ROS,	example	–	blink	LED	and	push
button
In	this	example,	we	can	interface	the	LED	and	push	button	to	Arduino	and	control	using
ROS.	When	the	push	button	is	pressed,	the	Arduino	node	sends	a	True	value	to	a	topic
called	pushed,	and	at	the	same	time,	it	switches	on	the	LED	which	is	on	the	Arduino
board.	The	following	shows	the	circuit	for	doing	this	example:

Figure	10	:	Interfacing	the	push	button	to	Arduino

/*	

	*	Button	Example	for	Rosserial

	*/

#include	<ros.h>

#include	<std_msgs/Bool.h>

//Nodehandle

ros::NodeHandle	nh;

//Boolean	message	for	Push	button

std_msgs::Bool	pushed_msg;



//Defining	Publisher	in	a	topic	called	pushed

ros::Publisher	pub_button("pushed",	&pushed_msg);

//LED	and	Push	button	pin	definitions

const	int	button_pin	=	7;

const	int	led_pin	=	13;

//Variables	to	handle	debouncing

//https://www.arduino.cc/en/Tutorial/Debounce

bool	last_reading;

long	last_debounce_time=0;

long	debounce_delay=50;

bool	published	=	true;

void	setup()

{

		nh.initNode();

		nh.advertise(pub_button);

		

		//initialize	an	LED	output	pin	

		//and	a	input	pin	for	our	push	button

		pinMode(led_pin,	OUTPUT);

		pinMode(button_pin,	INPUT);

		

		//Enable	the	pullup	resistor	on	the	button

		digitalWrite(button_pin,	HIGH);

		

		//The	button	is	a	normally	button

		last_reading	=	!	digitalRead(button_pin);

	

}

void	loop()

{

		

		bool	reading	=	!	digitalRead(button_pin);

		

		if	(last_reading!=	reading){

						last_debounce_time	=	millis();

						published	=	false;

		}

		

		//if	the	button	value	has	not	changed	for	the	debounce	delay,	we	know	its	

stable

		if	(	!published	&&	(millis()	-	last_debounce_time)		>	debounce_delay)	{

				digitalWrite(led_pin,	reading);

				pushed_msg.data	=	reading;

				pub_button.publish(&pushed_msg);

				published	=	true;

		}

		last_reading	=	reading;



		

		nh.spinOnce();

}

The	preceding	code	handles	the	key	debouncing	and	changes	the	button	state	only	after
the	button	release.	The	preceding	code	can	upload	to	Arduino	and	can	interface	to	ROS
using	the	following	command:

Start	roscore:

$	roscore

Start	serial_node.py:

$	rosrun	roserial_python	serial_node.py	/dev/ttyACM0

We	can	see	the	button	press	event	by	echoing	the	topic	pushed:

$	rostopic	echo	pushed

We	will	get	following	values	when	a	button	is	pressed:

Figure	11	:	Output	of	Arduino-	Push	button



Arduino-ROS,	example	–	Accelerometer	ADXL	335
In	this	example,	we	are	interfacing	Accelerometer	ADXL	335	to	Arduino	Mega	through
ADC	pins	and	plotting	the	values	using	the	ROS	tool	called	rqt_plot.

The	following	image	shows	the	circuit	of	the	connection	between	ADLX	335	and
Arduino::

Figure	12	:	Interfacing	Arduino	-	ADXL	335

The	ADLX	335	is	an	analog	accelerometer.	We	can	simply	connect	to	the	ADC	port	and
read	the	digital	value.	Following	is	the	embedded	code	to	interface	ADLX	335	via
Arduino	ADC:

#if	(ARDUINO	>=	100)

	#include	<Arduino.h>

#else

	#include	<WProgram.h>

#endif

#include	<ros.h>

#include	<rosserial_arduino/Adc.h>



const	int	xpin	=	A2;																		//	x-axis	of	the	accelerometer

const	int	ypin	=	A1;																		//	y-axis

const	int	zpin	=	A0;																		//	z-axis	(only	on	3-axis	models)

ros::NodeHandle	nh;

//Creating	an	adc	message

rosserial_arduino::Adc	adc_msg;

ros::Publisher	pub("adc",	&adc_msg);

void	setup()

{

		nh.initNode();

		nh.advertise(pub);

}

//We	average	the	analog	reading	to	elminate	some	of	the	noise

int	averageAnalog(int	pin){

		int	v=0;

		for(int	i=0;	i<4;	i++)	v+=	analogRead(pin);

		return	v/4;

}

void	loop()

{

//Inserting	ADC	values	to	ADC	message

		adc_msg.adc0	=	averageAnalog(xpin);

		adc_msg.adc1	=	averageAnalog(ypin);

		adc_msg.adc2	=	averageAnalog(zpin);

		

		pub.publish(&adc_msg);

		nh.spinOnce();

		delay(10);

}

The	preceding	code	will	publish	the	ADC	values	of	X,	Y,	and	Z	axes	in	a	topic	called
/adc.	The	code	uses	the	rosserial_arduino::Adc	message	to	handle	the	ADC	value.	We
can	plot	the	values	using	the	rqt_plot	tool.

Following	is	the	command	to	plot	the	three	axes	values	in	a	single	plot:

$	rqt_plot	adc/adc0	adc/adc1	adc/adc2

Next	is	a	screenshot	of	the	plot	of	the	three	channels	of	ADC:



Figure	13	:	Plotting	ADXL	335	values	using	rqt_plot



Arduino-ROS,	example	–	ultrasonic	distance
sensor
One	of	the	useful	sensors	in	robots	are	the	range	sensors.	One	of	the	cheapest	range	sensor
is	the	ultrasonic	distance	sensor.	The	ultrasonic	sensor	has	two	pins	for	handling	input	and
output,	called	Echo	and	Trigger.	We	are	using	the	HC-SR04	ultrasonic	distance	sensor
and	the	circuit	is	shown	in	the	following	image:

Figure	14	:	Plotting	ADXL	335	values	using	rqt_plot

The	ultrasonic	sound	sensor	contains	two	sections:	one	is	the	transmitter	and	the	other	is
the	receiver.	The	working	of	the	ultrasonic	distance	sensor	is,	when	a	trigger	pulse	of	a
short	duration	is	applied	to	the	trigger	pin	of	the	ultrasonic	sensors,	the	ultrasonic
transmitter	sends	the	sound	signals	to	the	robot	environment.	The	sound	signal	sent	from
the	transmitter	hits	on	some	obstacles	and	is	reflected	back	to	the	sensor.	The	reflected



sound	waves	are	collected	by	the	ultrasonic	receiver,	generating	an	output	signal	which
has	a	relation	to	the	time	required	to	receive	the	reflected	sound	signals.

Equations	to	find	distance	using	the	ultrasonic	range	sensor
Following	are	the	equations	used	to	compute	the	distance	from	an	ultrasonic	range	sensor
to	an	obstacle:

Distance	=	Speed	*	Time/2

Speed	of	sound	at	sea	level	=	343	m/s	or	34300	cm/s

Thus,	Distance	=	17150	*	Time	(unit	cm)

We	can	compute	the	distance	to	the	obstacle	using	the	pulse	duration	of	the	output.
Following	is	the	code	to	work	with	the	ultrasonic	sound	sensor	and	send	value	through	the
ultrasound	topic	using	the	range	message	definition	in	ROS:

#include	<ros.h>

#include	<ros/time.h>

#include	<sensor_msgs/Range.h>

ros::NodeHandle		nh;

#define	echoPin	7	//	Echo	Pin

#define	trigPin	8	//	Trigger	Pin

int	maximumRange	=	200;	//	Maximum	range	needed

int	minimumRange	=	0;	//	Minimum	range	needed

long	duration,	distance;	//	Duration	used	to	calculate	distance

sensor_msgs::Range	range_msg;

ros::Publisher	pub_range(	"/ultrasound",	&range_msg);

char	frameid[]	=	"/ultrasound";

void	setup()	{

	

		nh.initNode();

		nh.advertise(pub_range);

		

		

		range_msg.radiation_type	=	sensor_msgs::Range::ULTRASOUND;

		range_msg.header.frame_id	=		frameid;

		

		

		range_msg.field_of_view	=	0.1;		//	fake

		range_msg.min_range	=	0.0;

		range_msg.max_range	=	60;

		

		pinMode(trigPin,	OUTPUT);

		pinMode(echoPin,	INPUT);

		

}



float	getRange_Ultrasound(){

		int	val	=	0;

	for(int	i=0;	i<4;	i++)	{	

		

	digitalWrite(trigPin,	LOW);	

	delayMicroseconds(2);	

	digitalWrite(trigPin,	HIGH);

	delayMicroseconds(10);	

	

	digitalWrite(trigPin,	LOW);

	duration	=	pulseIn(echoPin,	HIGH);

	

	//Calculate	the	distance	(in	cm)	based	on	the	speed	of	sound.

		val	+=	duration;

	

	}

	return	val	/	232.8	;

		

}

long	range_time;

void	loop()	{

/*	The	following	trigPin/echoPin	cycle	is	used	to	determine	the

	distance	of	the	nearest	object	by	bouncing	soundwaves	off	of	it.	*/	

			if	(	millis()	>=	range_time	){

				int	r	=0;

				range_msg.range	=	getRange_Ultrasound();

				range_msg.header.stamp	=	nh.now();

				pub_range.publish(&range_msg);

				range_time	=		millis()	+	50;

		}

		

		nh.spinOnce();

	

	delay(50);

}

We	can	plot	the	distance	value	using	the	following	command:

Start	roscore:

$	roscore

Start	serial_node.py:

$	rosrun	rosserial_python	serial_node.py	/dev/ttyACM0

Plot	values	using	rqt_plot:

$	rqt_plot	/ultrasound



Figure	15	:	Plotting	ultrasonic	sound	sensor	distance	value

The	center	line	indicates	the	current	distance	from	the	sensor.	The	upper	line	is	the
max_range	and	line	below	is	the	minimum	range.



Arduino-ROS,	example	–	Odometry	Publisher
In	this	example,	we	will	see	how	to	send	an	odom	message	from	an	Arduino	node	to	a	PC.
This	example	can	be	used	in	a	robot	for	computing	odom	and	send	to	ROS	Navigation
stack	as	the	input.	The	motor	encoders	can	be	used	for	computing	odom	and	can	send	to
PC.	In	this	example,	we	will	see	how	to	send	odom	for	a	robot	which	is	moving	in	a	circle,
without	taking	the	motor	encoder	values.

/*	

	*	rosserial	Planar	Odometry	Example

	*/

#include	<ros.h>

#include	<ros/time.h>

#include	<tf/tf.h>

#include	<tf/transform_broadcaster.h>

ros::NodeHandle		nh;

//Transform	broadcaster	object

geometry_msgs::TransformStamped	t;

tf::TransformBroadcaster	broadcaster;

double	x	=	1.0;

double	y	=	0.0;

double	theta	=	1.57;

char	base_link[]	=	"/base_link";

char	odom[]	=	"/odom";

void	setup()

{

		nh.initNode();

		broadcaster.init(nh);

}

void	loop()

{		

		//	drive	in	a	circle

		double	dx	=	0.2;

		double	dtheta	=	0.18;

		x	+=	cos(theta)*dx*0.1;

		y	+=	sin(theta)*dx*0.1;

		theta	+=	dtheta*0.1;

		if(theta	>	3.14)

				theta=-3.14;

				

		//	tf	odom->base_link

		t.header.frame_id	=	odom;

		t.child_frame_id	=	base_link;

		

		t.transform.translation.x	=	x;

		t.transform.translation.y	=	y;



		

		t.transform.rotation	=	tf::createQuaternionFromYaw(theta);

		t.header.stamp	=	nh.now();

		

		broadcaster.sendTransform(t);

		nh.spinOnce();

		

		delay(10);

}

After	uploading	the	code,	run	roscore	and	rosserial_node.py.	We	can	view	tf	and	odom
in	RViz.	Open	RViz	and	view	the	tf	as	shown	next.	We	will	see	the	odom	pointer	moving
in	a	circle	on	RViz	as	follows:

Figure	16	:	Visualizing	odom	data	from	Arduino



Interfacing	Non-Arduino	boards	to	ROS
Arduino	boards	are	commonly	used	boards	in	robots	but	what	happens	if	we	want	a	board
which	is	more	powerful	than	Arduino.	In	such	a	case,	we	may	want	to	write	our	own
driver	for	the	board,	which	can	convert	the	serial	messages	into	topics.

We	will	see	interfacing	of	a	Non-Arduino	board	called	Tiva	C	Launchpad	to	ROS	using	a
Python	driver	node	in	Chapter	9,	Building	and	Interfacing	Differential	Drive	Mobile
Robot	Hardware	in	ROS.	This	chapter,	is	about	interfacing	a	real	mobile	robot	to	ROS	and
the	robot	using	Tiva	C	Launchpad	board	for	its	operation.



Setting	ROS	on	Odroid–C1	and	Raspberry	Pi	2
Odroid-C1	and	Raspberry	Pi2	are	single	board	computers	which	have	low	form	factor
with	a	size	of	a	credit	card.	These	single	board	computers	can	be	installed	in	robots	and
we	can	install	ROS	on	it.

The	main	specifications	comparison	of	Odroid-C1	and	Raspberry	Pi2	is	shown	next:

Device Odroid-C1 Raspberry	Pi	2

CPU 1.5	GHz	quad	core	ARM	Cortex-A5	CPU	from	Amlogic 900	MHz	quad	core	ARM	Cortex	A7	CPU
from	Broadcom

GPU Mali-450	MP2	GPU VideoCore	IV

Memory 1	GB 1	GB

Storage SD	card	slot	or	eMMC	module SD	card	slot

Connectivity 4	x	USB,	micro	HDMI,	Gigabit	Ethernet,	infra	red
remote	control	receiver 4	x	USB,	HDMI,	Ethernet,	3.5mm	audio	jack

OS Android,	Ubuntu/Linux Raspbian,	Ubuntu/Linux,	Windows	10

Connectors GPIO,	SPI,	I2C,	RTC	(Real	Time	Clock)	backup	battery
connector

Camera	interface	(CSI),	GPIO,	SPI,	I2C,
JTAG

Price $35 $35

Following	is	an	image	of	the	Odroid-C1	board:

Figure	17	:	Odroid-C1	board



The	Odroid	board	is	manufactured	by	a	company	called	Hard	kernel.	The	official	web
page	of	the	Odroid-C1	board	is	http://www.hardkernel.com/main/products/prdt_info.php?
g_code=G141578608433.

The	Odroid-C1	is	a	basic	model	in	the	Odroid	series.	There	are	more	powerful	boards	as
well,	such	as	Odroid-XU4,	XU3,	and	U3.	All	these	boards	support	ROS.

One	of	the	popular	single	board	computers	is	Raspberry	Pi.	The	Raspberry	Pi	boards	are
manufactured	by	Raspberry	Pi	Foundation	which	is	based	in	the	UK.	The	latest	model	of
Raspberry	Pi	is	Raspberry	Pi	2.	The	official	website	of	Raspberry	Pi	is
https://www.raspberrypi.org.

Following	is	a	diagram	of	Raspberry	Pi	2:

Figure	18	:	The	Raspberry	Pi	2	board

The	Odroid	GPIO	pins	and	its	GPIO	handling	is	much	similar	to	Raspberry	Pi	2.	We	can
install	Ubuntu	and	Android	on	Odroid.	There	are	also	unofficial	distributions	of	Linux
such	as	Debian	mini,	Kali	Linux,	Arch	Linux,	and	Fedora,	and	also	support	libraries	such
as	ROS,	OpenCV,	PCL,	and	so	on.

For	getting	ROS	on	Odroid,	we	can	either	install	a	fresh	Ubuntu	and	install	ROS	manually
or	install	Ubuntu	which	is	inbuilt	with	ROS,	OpenCV,	and	PCL.

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G141578608433
https://www.raspberrypi.org


Installing	ROS	from	the	source	code	and	packages	will	take	several	hours.	For	a	quick
start,	we	can	start	with	a	pre-installed	image	of	Ubuntu	with	ROS.

The	image	can	be	download	from	http://forum.odroid.com/viewtopic.php?
f=112&t=11994.	This	link	contains	pre-installed	images	of	Ubuntu	with	ROS,	OpenCV,
and	PCL	for	Odroid	C1.

The	list	of	the	other	operating	systems	supported	on	Odroid-C1	is	given	on	the	wiki	page
of	Odroid-C1	at	http://odroid.com/dokuwiki/doku.php?id=en:odroid-c1.

The	official	guide	of	installing	ROS	on	Odroid	and	Raspberry	Pi	2	into	their	official	OS	is
available	at	http://wiki.ros.org/indigo/Installation/UbuntuARM.

The	Raspberry	Pi	2	official	OS	images	are	given	at
https://www.raspberrypi.org/downloads/.

The	official	OS	supported	by	Raspberry	Pi	foundation	are	Raspbian	and	Ubuntu.	There	are
unofficial	images	based	on	this	OS	which	has	ROS	pre-installed	on	them.	The	following
link	has	some	of	the	Raspberry	Pi	2	images	which	have	ROS	preinstalled:

http://www.mauriliodicicco.com/raspberry-pi2-ros-images/

We	can	get	ROS	based	images	for	Raspbian	and	Ubuntu	from	the	preceding	link.	In	this
book,	we	are	using	the	Raspbian	based	ROS	images	for	the	experiments.

http://forum.odroid.com/viewtopic.php?f=112&t=11994
http://odroid.com/dokuwiki/doku.php?id=en:odroid-c1
http://wiki.ros.org/indigo/Installation/UbuntuARM
https://www.raspberrypi.org/downloads/
http://www.mauriliodicicco.com/raspberry-pi2-ros-images/


How	to	install	an	OS	image	to	Odroid-C1	and
Raspberry	Pi	2
We	can	download	the	Ubuntu	image	which	is	prebuilt	with	ROS,	OpenCV,	and	PCL	for
Odroid	and	the	ROS	built-in	Raspbian	image	for	Raspberry	Pi	2	and	can	install	to	a	micro
SD	card,	preferably	16GB.	Format	the	micro	SD	card	in	the	FAT32	file	system	and	we	can
either	use	the	SD	card	adapter	or	the	USB-memory	card	reader	for	connecting	to	a	PC.

We	can	either	install	OS	in	Windows	or	in	Linux.	The	procedure	for	installing	OS	on	these
boards	follows.

Installation	in	Windows
In	Windows,	there	is	a	tool	called	Win32diskimage	which	is	designed	specifically	for
Odroid.	You	can	download	the	tool	from
http://dn.odroid.com/DiskImager_ODROID/Win32DiskImager-odroid-v1.3.zip.

Run	Win32	Disk	Imager	with	the	Administrator	privilege.	Select	the	downloaded	image,
select	the	memory	card	drive,	and	write	the	image	to	the	drive.

Figure	19	:	Win32	Disk	Imager	for	Odroid-C1

After	completing	this	wizard,	we	can	put	the	micro	SD	card	in	Odroid	and	boot	up	the	OS
with	ROS	support.

The	same	tool	can	be	used	for	Raspbian	installation	in	Raspberry	Pi	2.	We	can	use	the
actual	version	of	Win32	Disk	Imager	for	writing	Raspbian	to	a	micro	SD	card	from	the
following	link:

http://dn.odroid.com/DiskImager_ODROID/Win32DiskImager-odroid-v1.3.zip


http://sourceforge.net/projects/win32diskimager/

Installation	in	Linux
In	Linux,	there	is	a	tool	called	disk	dump	(dd).	This	tool	helps	to	copy	the	content	of	the
image	to	the	SD	card.	dd	is	a	command	line	tool	which	is	available	in	all	the
Ubuntu/Linux	based	OS.	Insert	the	micro	SD	card,	format	to	the	FAT	32	file	system,	and
use	the	command	mentioned	later	to	write	image	to	the	micro	SD	card.

In	the	dd	tool,	there	is	no	progress	bar	to	indicate	the	copy	progress.	To	get	the	progress
bar,	we	can	install	a	pipe	viewer	tool	called	pv:

$	sudo	apt-get	install	pv

After	installing	pv,	we	can	use	the	following	command	to	install	the	image	file	to	the
micro	SD	card.	Note	that	you	should	have	the	OS	image	in	the	same	path	of	the	terminal,
and	also	note	the	micro	SD	card	device	name,	for	example,	mmcblk0,	sdb,	sdd,	and	so	on.
You	will	get	the	device	name	using	the	dmesg	command.

$	dd	bs=4M	if=image_name.img	|	pv	|	sudo	dd	of=/dev/mmcblk0

image_name.img	is	the	image	name	and	the	device	name	is	/dev/mmcblk0.	bs=4M	indicates
the	block	size.	If	the	block	size	is	4M,	dd	will	read	4	megabytes	from	the	image	and	write	4
megabytes	to	the	device.	After	completing	the	operation,	we	can	put	to	Odroid	and
Raspberry	Pi	and	boot	the	OS.

http://sourceforge.net/projects/win32diskimager/


Connecting	to	Odroid-C1	and	Raspberry	Pi	2	from
a	PC
We	can	work	with	Odroid-C1	and	Raspberry	Pi	2	by	connecting	to	the	HDMI	display	port
and	connect	the	keyboard	and	mouse	to	the	USB	like	a	normal	PC.	This	is	the	simplest
way	of	working	with	Odroid	and	Raspberry	Pi.

In	most	of	the	projects,	the	boards	will	be	placed	on	the	robot,	so	we	can’t	connect	the
display	and	the	keyboards	to	it.	There	are	several	methods	for	connecting	these	boards	to
the	PC.	It	will	be	good	if	we	can	share	the	Internet	to	these	boards	too.	The	following
methods	can	share	the	Internet	to	these	boards,	and	at	the	same	time,	we	can	remotely
connect	via	SSH	protocol:

Remote	connection	using	Wi-Fi	router	and	Wi-Fi	dongle	through	SSH:	In	this
method,	we	need	a	Wi-Fi	router	with	Internet	connectivity	and	Wi-Fi	dongle	in	the
board	for	getting	the	Wi-Fi	support.	Both	the	PC	and	board	will	connect	to	the	same
network,	so	each	will	have	an	IP	address	and	can	communicate	using	that	address.
Direct	connection	using	an	Ethernet	hotspot:	We	can	share	the	Internet	connection
and	communicate	using	SSH	via	Dnsmasq,	a	free	software	DNS	forwarder	and	DHCP
server	using	low	system	resources.	Using	this	tool,	we	can	tether	the	Wi-Fi	Internet
connection	of	the	laptop	to	the	Ethernet	and	we	can	connect	the	board	to	the	Ethernet
port	of	the	PC.	This	kind	of	communication	can	be	used	for	robots	which	are	static	in
operation.

The	first	method	is	very	easy	to	configure;	it’s	like	connecting	two	PCs	on	the	same
network.	The	second	method	is	a	direct	connection	of	board	to	laptop	through	the
Ethernet.	This	method	can	be	used	when	the	robot	is	not	moving.	In	this	method,	the	board
and	the	laptop	can	communicate	via	SSH	at	the	same	time	and	it	can	share	Internet	access
too.	We	are	using	this	method	in	this	chapter	for	working	with	ROS.



Configuring	an	Ethernet	hotspot	for	Odroid-C1
and	Raspberry	Pi	2
The	procedure	for	creating	an	Ethernet	hotspot	in	Ubuntu	and	sharing	Wi-Fi	Internet
through	this	connection	follows:

Take	Edit	Connection…	from	the	network	settings	and	Add	a	new	connection	as
shown	next:

Figure	20	:	Configuring	a	network	connection	in	Ubuntu

Create	an	Ethernet	connection	and	in	IPv4	setting,	change	the	method	to	Shared	to
Other	Computers	and	give	the	connection	name	as	Share,	as	shown	next:

Figure	21	:	Creating	a	new	connection	for	sharing	through	the	Ethernet

Plugin	the	micro	SD	card,	power	up	the	Odroid	or	Raspberry	Pi,	and	connect	the
Ethernet	port	from	the	board	to	the	PC.	When	the	board	boots	up,	we	will	see	that	the
shared	network	is	automatically	connected	to	the	board.
The	following	command	helps	to	get	the	board	IP	for	communicating	using	SSH:



						$	cat	/var/lib/misc/dnsmasq.leases

Figure	22	:	Listing	IP	of	Raspberry	connected	via	Dnsmasq

We	can	communicate	with	the	board	using	the	following	commands:

In	Odroid:

				$	ssh	odroid@ip_address

				password	is	odroid

In	Raspberry	Pi	2:

				$	ssh	pi@ip_adress

				password	is	raspberry

After	doing	SSH	into	the	board,	we	can	launch	roscore	and	most	of	the	ROS	commands
on	the	board	similar	to	our	PC.	We	will	do	two	examples	using	these	boards.	One	is	for
blinking	and	LED,	and	the	other	is	for	handling	a	push	button.	The	library	we	are	using	for
handling	GPIO	pins	of	Odroid	and	Raspberry	is	called	Wiring	Pi.

The	odroid	and	Raspberry	pi	have	the	same	pin	layout	and	most	of	the	Raspberry	pi	GPIO
libraries	are	ported	to	Odroid,	which	will	make	the	programming	easier.	One	of	the
libraries	we	are	using	in	this	chapter	for	GPIO	programming	is	wiring	Pi.	Wiring	Pi	is
based	on	C++	APIs	which	can	access	the	board	GPIO	using	C++	APIs.

Following	are	the	instructions	for	installing	Wiring	Pi	on	Odroid	and	Raspberry	2:

Installing	Wiring	Pi	on	Odroid-C1
The	following	procedure	can	be	used	to	install	Wiring	Pi	on	Odroid-C1.	This	is
customized	version	of	Wiring	Pi	which	is	used	in	Raspberry	Pi	2.

$	git	clone	https://github.com/hardkernel/wiringPi.git

$	cd	wiringPi

$	sudo	./build

The	Wiring	Pi	pin	out	of	Odroid-C1	is	given	next:



Figure	23	:	Pin	out	of	Odroid	-	C1

Installing	Wiring	Pi	on	Raspberry	Pi	2
The	following	procedure	can	be	used	to	install	Wiring	Pi	on	Raspberry	Pi	2.

$	git	clone	git	clone	git://git.drogon.net/wiringPi

$	cd	wiringPi

$	sudo	./build

The	pin	out	of	Raspberry	Pi	2	and	Wiring	Pi	is	shown	next:



Figure	24	:	Pin	out	of	Raspberry	Pi	2

The	following	are	the	ROS	examples	for	Odroid-C1	and	Raspberry	Pi	2.



Blinking	LED	using	ROS	on	Odroid-C1	and
Raspberry	Pi	2
This	is	a	basic	LED	example	which	can	blink	the	LED	connected	to	the	first	pin	of	Wiring
Pi,	that	is	the	12th	pin	on	the	board.	The	LED	cathode	is	connected	to	the	GND	pin	and
12th	pin	as	an	anode.	The	following	image	shows	the	circuit	of	Raspberry	Pi	with	an	LED.
The	same	pin	out	can	be	used	in	Odroid	too.

Figure	25	:	Blinking	an	LED	using	Raspberry	Pi	2



We	can	create	the	example	ROS	package	using	the	following	command:

$	catkin_create_pkg	ros_wiring_example	roscpp	std_msgs

You	will	get	the	existing	package	from	the	chapter_7_codes/ROS_Odroid_Examples/
ros_wiring_examples	folder.

Create	a	src	folder	and	create	the	following	code	called	blink.cpp	inside	the	src	folder:

#include	"ros/ros.h"

#include	"std_msgs/Bool.h"

#include	<iostream>

//Wiring	Pi	header

#include	"wiringPi.h"

//Wiring	PI	first	pin

#define	LED	1

//Callback	to	blink	the	LED	according	to	the	topic	value

void	blink_callback(const	std_msgs::Bool::ConstPtr&	msg)

{

	if(msg->data	==	1){

		digitalWrite	(LED,	HIGH)	;	

		ROS_INFO("LED	ON");

		}

	if(msg->data	==	0){

			digitalWrite	(LED,	LOW)	;	

		ROS_INFO("LED	OFF");

				}

}

int	main(int	argc,	char**	argv)

{

		ros::init(argc,	argv,"blink_led");

		ROS_INFO("Started	Odroid-C1	Blink	Node");

			//Setting	WiringPi

		wiringPiSetup	();//Setting	LED	pin	as	output

		pinMode(LED,	OUTPUT);

		ros::NodeHandle	n;

		ros::Subscriber	sub	=	n.subscribe("led_blink",10,blink_callback);

		ros::spin();		

}

This	code	will	subscribe	a	topic	called	led_blink,	which	is	a	Boolean	type.	If	we	publish
1	to	this	topic,	it	will	switch	on	the	LED.	If	we	publish	0,	the	LED	will	turn	off.



Push	button	+	blink	LED	using	ROS	on	Odroid-C1
and	Raspberry	Pi	2
The	next	example	is	handling	input	from	a	button.	When	we	press	the	button,	the	code
will	publish	to	the	led_blink	topic	and	blink	the	LED.	When	the	switch	is	off,	LED	will
also	be	OFF.	The	LED	is	connected	to	the	12th	pin	and	GND,	and	the	button	is	connected
to	the	11th	pin	and	GND.	The	following	image	shows	the	circuit	of	this	example.	The
circuit	is	the	same	for	Odroid	also.



Figure	26	:	LED	+	button	in	Raspberry	Pi	2

The	code	for	interfacing	LED	and	button	is	given	next.	The	code	can	be	saved	with	the
name	button.cpp	inside	the	src	folder.

#include	"ros/ros.h"

#include	"std_msgs/Bool.h"

#include	<iostream>

#include	"wiringPi.h"

//Wiring	PI	1

#define	BUTTON	0

#define	LED	1

void	blink_callback(const	std_msgs::Bool::ConstPtr&	msg)

{

		

	if(msg->data	==	1){

			digitalWrite	(LED,	HIGH)	;	

		ROS_INFO("LED	ON");

		}

	if(msg->data	==	0){

			digitalWrite	(LED,	LOW)	;	

		ROS_INFO("LED	OFF");

		}

}

int	main(int	argc,	char**	argv)

{

		ros::init(argc,	argv,"button_led");

		ROS_INFO("Started	Odroid-C1	Button	Blink	Node");

		wiringPiSetup	();

		pinMode(LED,	OUTPUT);

		pinMode(BUTTON,	INPUT);

				pullUpDnControl(BUTTON,	PUD_UP);	//	Enable	pull-up	resistor	on	button

		ros::NodeHandle	n;

		ros::Rate	loop_rate(10);

		ros::Subscriber	sub	=	n.subscribe("led_blink",10,blink_callback);

				ros::Publisher	chatter_pub	=	n.advertise<std_msgs::Bool>("led_blink",	

10);



		std_msgs::Bool	button_press;

		button_press.data	=	1;

		std_msgs::Bool	button_release;

		button_release.data	=	0;

			while	(ros::ok())

				{

										if	(!digitalRead(BUTTON))	//	Return	True	if	button	pressed

				{

		

						ROS_INFO("Button	Pressed");

						chatter_pub.publish(button_press);

				}

				else

				{

						ROS_INFO("Button	Released");

						chatter_pub.publish(button_release);

				}

				ros::spinOnce();

								loop_rate.sleep();

		}

}

CMakeLists.txt	for	building	these	two	examples	is	given	next.	The	Wiring	Pi	code	needs
to	link	with	the	Wiring	Pi	library.	We	have	added	this	in	the	CMakeLists.txt	file.

cmake_minimum_required(VERSION	2.8.3)

project(ros_wiring_examples)

find_package(catkin	REQUIRED	COMPONENTS

		roscpp

		std_msgs

)

find_package(Boost	REQUIRED	COMPONENTS	system)

//Include	directory	of	wiring	Pi

set(wiringPi_include	"/usr/local/include")

include_directories(

		${catkin_INCLUDE_DIRS}

		${wiringPi_include}

)

//Link	directory	of	wiring	Pi

LINK_DIRECTORIES("/usr/local/lib")



add_executable(blink_led	src/blink.cpp)

add_executable(button_led	src/button.cpp)

target_link_libraries(blink_led

			${catkin_LIBRARIES}	wiringPi

	)

target_link_libraries(button_led

			${catkin_LIBRARIES}	wiringPi

	)

Build	the	project	using	catkin_make	and	we	can	run	each	example.	For	executing	the
Wiring	Pi	based	code,	we	need	root	permission.

Running	LED	blink	in	Odroid-C1
After	building	the	project,	first	we	can	run	the	LED	blink	example.	We	have	to	login	to
Odroid	using	SSH	from	PC	in	multiple	terminals	for	running	this	example.

Start	roscore	in	one	terminal:

$	roscore

Run	the	executable	as	root	in	the	another	terminal:

$	sudo	-s

#	cd		/home/odroid/catkin_ws/build/ros_wiring_examples

#./blink_led

After	starting	the	blink_led	node,	publish	1	to	the	led_blink	topic	in	another	terminal.

For	LED	to	ON	state:

$	rostopic	pub	/led_blink	std_msgs/Bool	1

For	LED	to	OFF	state:

$	rostopic	pub	/led_blink	std_msgs/Bool	0

Running	button	handling	and	LED	blink	in	Odroid-C1
The	button	handling	+	LED	Blink	should	have	same	setup	in	the	above	example.	We
should	login	to	Odroid	via	SSH	in	multiple	terminal	and	execute	each	command	on	each
terminals.

Start	roscore	in	one	terminal:

$	roscore

Run	the	button	LED	node	in	another	terminal:

$	sudo	-s

#	cd		/home/odroid/catkin_ws/build/ros_wiring_examples

#./button_led

Press	the	button	and	we	can	see	the	LED	blinking.	We	can	also	check	the	button	state	by
echoing	the	topic	led_blink:



$	rostopic	echo	/led_blink

Running	LED	blink	in	Raspberry	Pi	2
The	examples	which	work	on	Odroid-C1	will	work	on	Raspberry	Pi-2	too.	Before	running
the	examples,	first	we	should	do	the	following	setup	in	Raspberry	Pi.	You	can	do	this
setup	by	login	to	Raspberry	Pi	through	SSH.

We	need	to	add	the	following	lines	to	the	.bashrc	file	of	the	root	user.	Take	the	.bashrc
file	of	the	root	user:

$	sudo	-i

$	nano	.bashrc

Add	the	following	lines	to	the	end	of	this	file:

source	/opt/ros/indigo/setup.sh

source	/home/pi/catkin_ws/devel/setup.bash

export	ROS_MASTER_URI=http://localhost:11311

After	adding	these	lines,	we	can	follow	the	same	command	we	did	in	Odroid.	Note	that
the	user	name	is	pi,	not	odroid.





Interfacing	Dynamixel	actuators	to	ROS
One	of	the	latest	smart	actuators	available	on	the	market	is	Dynamixel,	which	is
manufactured	by	a	company	called	Robotis.	The	Dynamixel	servos	are	available	in
various	versions	and	shown	in	the	following	image	are	some	of	the	different	versions	of
Dynamixel	servos:

Figure	27	:	Different	types	of	Dynamixel	servos

These	smart	actuators	have	complete	support	in	ROS	and	clear	documentation	is	also
available	for	them.

The	official	ROS	wiki	page	of	Dynamixel	is
http://wiki.ros.org/dynamixel_controllers/Tutorials.

http://wiki.ros.org/dynamixel_controllers/Tutorials




Questions
1.	 What	are	the	different	rosserial	packages?
2.	 What	is	the	main	function	of	rosserial_arduino?
3.	 How	does	rosserial	protocol	work?
4.	 What	are	the	main	differences	between	Odroid-C1	and	Raspberry	Pi?





Summary
This	chapter	was	about	interfacing	I/O	boards	to	ROS	and	adding	sensors	on	it.	We	have
discussed	interfacing	of	the	popular	I/O	board	called	Arduino	to	ROS,	and	interface	basic
components	such	as	LEDs,	buttons,	accelerometers,	ultrasonic	sound	sensors,	and	so	on.
After	seeing	the	interfacing	of	Arduino,	we	discussed	how	to	setup	ROS	on	Raspberry	Pi
2	and	Odroid-C1.	We	also	did	few	basic	examples	in	Odroid	and	Raspberry	Pi	based	on
ROS	and	Wiring	Pi.	In	the	end,	we	saw	the	interfacing	of	smart	actuators	called
Dynamixel	in	ROS.





Chapter	8.	Programming	Vision	Sensors
using	ROS,	Open-CV,	and	PCL
In	the	last	chapter,	we	discussed	interfacing	of	sensors	and	actuators	using	I/O	board	in
ROS.	In	this	chapter,	we	are	going	to	discuss	how	to	interface	various	vision	sensors	in
ROS	and	program	it	using	libraries	such	as	OpenCV	(Open	Source	Computer	Vision)
and	PCL	(Point	Cloud	Library).	The	vision	in	a	robot	is	an	important	aspect	of	the	robot
for	manipulating	object	and	navigation.	There	are	lots	of	2D/3D	vision	sensors	available
in	the	market	and	most	of	the	sensors	have	an	interface	driver	package	in	ROS.	We	will
discuss	interfacing	of	new	vision	sensors	to	ROS	and	programming	it	using	OpenCV	and
PCL.

We	will	cover	the	following	topics	in	this	chapter:

Understanding	ROS—OpenCV	interfacing	packages
Understanding	ROS—PCL	interfacing	packages
Installing	OpenCV	and	PCL	interfaces	in	ROS
Interfacing	USB	webcams	in	ROS
Working	with	ROS	camera	calibration
Converting	images	between	ROS	and	OpenCV	using	cv_bridge
Displaying	images	from	webcam	using	OpenCV	and	cv_bridge
Interfacing	Kinect	and	Asus	Xtion	Pro	in	ROS
Interfacing	Intel	Real	Sense	Camera	in	ROS
Working	with	the	ROS	depthimage_to_laserscan	package
Interfacing	Hokuyo	Laser	in	ROS
Interfacing	Velodyne	in	ROS
Programming	using	PCL-ROS	interface
Streaming	webcam	from	Odroid	using	ROS



Understanding	ROS	–	OpenCV
interfacing	packages
OpenCV	is	one	of	the	popular	open	source	real	time	computer	vision	libraries,	which	is
mainly	written	in	C/C++.	OpenCV	comes	with	a	BSD	license	and	is	free	for	academic	and
commercial	application.	OpenCV	can	be	programmed	using	C/C++,	Python,	and	Java,	and
it	has	multi-platform	support	such	as	Windows,	Linux,	OSX,	Android,	and	iOS.	OpenCV
has	tons	of	computer	vision	APIs,	which	can	be	used	for	implementing	computer	vision
applications.	The	web	page	of	OpenCV	library	is	http://opencv.org/.

The	OpenCV	library	is	interfaced	to	ROS	via	ROS	stack	called	vision_opencv.
vision_opencv	consists	of	two	important	packages	for	interfacing	OpenCV	to	ROS.	They
are:

cv_bridge:	The	cv_bridge	package	contains	a	library	that	provides	APIs	for
converting	the	OpenCV	image	data	type	cv::Mat	to	the	ROS	image	message	called
sensor_msgs/Image	and	vice	versa.	In	short,	it	can	act	as	a	bridge	between	OpenCV
and	ROS.	We	can	use	OpenCV	APIs	to	process	the	image	and	convert	to	ROS	image
messages	whenever	we	want	to	send	to	another	node.	We	will	discuss	how	to	do	this
conversion	in	the	upcoming	sections.
image_geometry:	One	of	the	first	processes	that	we	should	do	before	working	with
cameras	is	its	calibration.	The	image_geometry	package	contains	libraries	written	in
C++	and	Python,	which	helps	to	correct	the	geometry	of	the	image	using	calibration
parameters.	The	package	uses	a	message	types	called	sensor_msgs/CameraInfo	for
handling	the	calibration	parameters	and	feed	to	the	OpenCV	image	rectification
function.

http://opencv.org/




Understanding	ROS	–	PCL	interfacing
packages
The	point	cloud	data	can	be	defined	as	a	group	of	data	points	in	some	coordinate	system.
In	3D,	it	has	X,	Y,	and	Z	coordinates.	PCL	library	is	an	open	source	project	for	handling
2D/3D	image	and	point	clouds	processing.

Like	OpenCV,	it	is	under	BSD	license	and	free	for	academic	and	commercial	purposes.	It
is	also	a	cross	platform,	which	has	support	in	Linux,	Windows,	Mac	OS,	and
Android/iOS.

The	library	consists	of	standard	algorithms	for	filtering,	segmentation,	feature	estimation,
and	so	on,	which	is	required	to	implement	different	point	cloud	applications.	The	main
web	page	of	point	cloud	library	is	http://pointclouds.org/.

The	point	cloud	data	can	be	acquired	by	sensors	such	as	Kinect,	Asus	Xtion	Pro,	Intel
Real	Sense,	and	such	others.	We	can	use	this	data	for	robotic	applications	such	as	robot
object	manipulation	and	grasping.	PCL	is	tightly	integrated	into	ROS	for	handling	point
cloud	data	from	various	sensors.	The	perception_pcl	stack	is	the	ROS	interface	for	PCL
library.	It	consists	of	packages	for	pumping	the	point	cloud	data	from	ROS	to	PCL	data
type	and	vice	versa.	perception_pcl	consists	of	the	following	packages:

pcl_conversions:	This	package	provides	APIs	to	convert	PCL	data	types	to	ROS
messages	and	vice	versa.
pcl_msgs:	This	package	contains	definition	of	PCL	related	messages	in	ROS.	The
PCL	messages	are:

ModelCoefficients

PointIndices

PolygonMesh

Vertices

pcl_ros:	This	is	the	PCL	bridge	of	ROS.	This	package	contains	tools	and	nodes	to
bridge	ROS	messages	to	PCL	data	types	and	vice	versa.
pointcloud_to_laserscan:	The	main	function	of	this	package	is	to	convert	3D	point
cloud	into	2D	laser	Scan.	This	package	is	useful	for	converting	an	inexpensive	3D
vision	sensor	such	as	Kinect	and	Asus	Xtion	Pro	to	a	laser	scanner.	The	laser	scanner
data	is	mainly	used	for	2D-SLAM	for	the	purpose	of	robot	navigation.

http://pointclouds.org/


Installing	ROS	perception
We	are	going	to	install	a	single	package	called	perception,	which	is	a	meta	package	of
ROS	containing	all	the	perception	related	packages	such	as	OpenCV,	PCL,	and	so	on.

In	ROS	Jade

$	sudo	apt-get	install	ros-jade-perception

In	ROS	Indigo

$	sudo	apt-get	install	ros-indigo-perception

The	ROS	perception	stack	contains	the	following	ROS	packages:

image-common:	This	meta	package	contains	common	functionalities	to	handle	an
image	in	ROS.	The	meta	package	consists	of	the	following	list	of	packages
(http://wiki.ros.org/image_common):

image_transport:	This	package	helps	to	compress	the	image	during	publishing
and	subscribes	the	images	to	save	the	band	width
(http://wiki.ros.org/image_transport).	The	various	compression	methods	are
JPEG/PNG	compression	and	Theora	for	streaming	videos.	We	can	also	add
custom	compression	methods	to	image_transport.
camera_calibration_parses:	This	package	contains	routine	to	read/write
camera	calibration	parameters	from	an	XML	file.	This	package	is	mainly	used
by	camera	drivers	for	accessing	calibration	parameters.
camera_info_manager:	This	package	consists	of	routine	to	save,	restore,	and
load	the	calibration	information.	This	is	mainly	used	by	camera	drivers.
polled_camera:	This	packages	contains	interface	for	requesting	images	from	a
polling	camera	driver	(for	example,	prosilica_camera).

image-pipeline:	This	meta	package	contains	packages	to	process	the	raw	image
from	the	camera	driver.	The	various	processing	done	by	this	meta	package	are
calibration,	distortion	removal,	stereo	vision	processing,	depth	image	processing,	and
so	on.	The	following	packages	are	present	in	this	meta	package	for	this	processing
(http://wiki.ros.org/image_pipeline):

camera_calibration:	One	of	the	important	tools	for	relating	the	3D	world	to
the	2D	camera	image	is	calibration.	This	package	provides	tools	for	doing
monocular	and	stereo	image	calibration	in	ROS.
image_proc:	The	nodes	in	this	package	act	between	the	camera	driver	and	the
vision	processing	nodes.	It	can	handle	the	calibration	parameters,	correct	image
distortion	from	the	raw	image,	and	convert	to	color	image.
depth_image_proc:	This	package	contains	nodes	and	nodelets	for	handling
depth	image	from	Kinect	and	3D	vision	sensors.	The	depth	image	can	be
processed	by	these	nodelets	to	produce	point	cloud	data.
stereo_image_proc:	This	package	has	nodes	to	perform	distortion	removal	for
a	pair	of	cameras.	It	is	same	as	the	image_proc	package,	except	that	it	handles

http://wiki.ros.org/image_common
http://wiki.ros.org/image_transport
http://wiki.ros.org/image_pipeline


two	cameras	for	stereo	vision	and	for	developing	point	cloud	and	disparity
images.
image_rotate:	This	package	contains	nodes	to	rotate	the	input	image.
image_view:	This	is	a	simple	ROS	tool	for	viewing	ROS	message	topic.	It	can
also	view	stereo	and	disparity	images.

image-transport-plugins:	These	are	the	plugins	of	ROS	image	transport	for
publishing	and	subscribing	the	ROS	images	in	different	compression	levels	or
different	video	codec	to	reduce	the	bandwidth	and	latency.
laser-pipeline:	This	is	a	set	of	packages	that	can	process	laser	data	such	as	filtering
and	converting	into	3D	Cartesian	points	and	assembling	points	to	form	a	cloud.	The
laser-pipeline	stack	contains	the	following	packages:

laser_filters:	This	package	contains	nodes	to	filter	the	noise	in	the	raw	laser
data,	remove	the	laser	points	inside	the	robot	footprint,	and	remove	spurious
values	inside	the	laser	data.
laser_geometry:	After	filtering	the	laser	data,	we	have	to	transform	the	laser
ranges	and	angles	into	3D	Cartesian	coordinates	efficiently	by	taking	into
account	the	tilt	and	skew	angle	of	laser	scanner.
laser_assembler:	This	package	can	assemble	the	laser	scan	into	a	3D	point
cloud	or	2.5	D	scan.

perception-pcl:	This	is	the	stack	of	PCL-ROS	interface.
vision-opencv:	This	is	the	stack	of	OpenCV-ROS	interface.





Interfacing	USB	webcams	in	ROS
We	can	start	interfacing	with	an	ordinary	webcam	or	a	laptop	cam	in	ROS.	There	are	no
exact	specific	packages	for	webcam	-	ROS	interfaces.	If	the	camera	is	working	in
Ubuntu/Linux,	it	may	be	supported	by	the	ROS	driver	too.	After	plugging	the	camera,
check	whether	a	/dev/videoX	device	file	has	been	created,	or	check	with	some	application
such	as	Cheese,	VLC,	and	such	others.	The	guide	to	check	whether	the	web	cam	is
supported	on	Ubuntu	is	available	at	https://help.ubuntu.com/community/Webcam.

We	can	find	the	video	devices	present	on	the	system	using	the	following	command:

$	ls	/dev/	|	grep	video

If	you	get	an	output	of	video0,	you	can	confirm	a	USB	cam	is	available	for	use.

After	ensuring	the	webcam	support	in	Ubuntu,	we	can	install	a	ROS	webcam	driver	called
usb_cam	using	the	following	command:

In	ROS	Jade

$	sudo	apt-get	install	ros-jade-usb-cam

In	ROS	Indigo

$	sudo	apt-get	install	ros-indigo-usb-cam

We	can	install	the	latest	package	of	usb_cam	from	the	source	code.	The	driver	is	available
on	GitHub	at	https://github.com/bosch-ros-pkg/usb_cam

The	usb_cam	package	contains	a	node	called	usb_cam_node,	which	is	the	driver	of	USB
cams.	There	are	some	parameters	that	need	to	be	set	before	running	this	node.	We	can	run
the	ROS	node	along	with	its	parameters.	The	usb_cam-test.launch	launch	file	can
launch	the	USB	cam	driver	with	the	necessary	parameters:

<launch>

		<node	name="usb_cam"	pkg="usb_cam"	type="usb_cam_node"	output="screen"	>

				<param	name="video_device"	value="/dev/video0"	/>

				<param	name="image_width"	value="640"	/>

				<param	name="image_height"	value="480"	/>

				<param	name="pixel_format"	value="yuyv"	/>

				<param	name="camera_frame_id"	value="usb_cam"	/>

				<param	name="io_method"	value="mmap"/>

		</node>

<!--	Launching	image_view	node	-->

		<node	name="image_view"	pkg="image_view"	type="image_view"	

respawn="false"	output="screen">

				<remap	from="image"	to="/usb_cam/image_raw"/>

				<param	name="autosize"	value="true"	/>

		</node>

</launch>

This	launch	file	will	start	usb_cam_node	with	the	video	device	/dev/video0,	with	a

https://help.ubuntu.com/community/Webcam
https://github.com/bosch-ros-pkg/usb_cam


resolution	of	640x480.	The	pixel	format	here	is	YUV
(https://en.wikipedia.org/wiki/YUV).	After	initiating	usb_cam_node,	it	will	start	an
image_view	node	for	displaying	the	raw	image	from	the	driver.	We	can	launch	the
previous	file	using	the	following	command:

$	roslaunch	usb_cam	usb_cam-test.launch

We	will	get	the	following	message	with	an	image	view	as	shown	next:

Figure	1	:	USB	camera	view	using	image	view	tool

https://en.wikipedia.org/wiki/YUV


The	topics	generated	by	the	driver	are	shown	next.	There	are	raw,	compressed,	and	Theora
codec	topics	generated	by	the	driver.

Figure	2	:	List	of	topics	generated	by	the	USB	camera	driver

We	can	visualize	the	image	in	another	window	using	the	following	command:

$	rosrun	image_view	image_view	image:=/usb_cam/image_raw

After	getting	the	camera	image	message,	the	first	thing	we	have	to	do	is	camera
calibration.





Working	with	ROS	camera	calibration
Like	all	sensors,	cameras	also	need	calibration	for	correcting	the	distortions	in	the	camera
images	due	to	the	camera’s	internal	parameters	and	for	finding	the	world	coordinates	from
the	camera	coordinates.

The	primary	parameters	that	cause	image	distortions	are	radial	distortions	and	tangential
distortions.	Using	camera	calibration	algorithm,	we	can	model	these	parameters	and	also
calculate	the	real	world	coordinates	from	the	camera	coordinates	by	computing	the	camera
calibration	matrix,	which	contains	the	focal	distance	and	the	principle	points.

Camera	calibration	can	be	done	using	a	classic	black-white	chessboard,	symmetrical	circle
pattern,	or	asymmetrical	circle	pattern.	According	to	each	different	pattern,	we	use
different	equations	to	get	the	calibration	parameters.	Using	the	calibration	tools,	we	detect
the	patterns	and	each	detected	pattern	is	taken	as	a	new	equation.	When	the	calibration
tool	gets	enough	detected	patterns,	it	can	compute	the	final	parameters	for	the	camera.

ROS	provides	a	package	named	camera_calibration
(http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration)	to	do	camera
calibration,	which	is	a	part	of	the	image	pipeline	stack.	We	can	calibrate	monocular,
stereo,	and	even	3D	sensors	such	as	Kinect	and	Asus	Xtion	pro.

The	first	thing	we	have	to	do	before	calibration	is	download	the	check	board	pattern
mentioned	in	the	ROS	Wiki	page,	and	print	it	and	paste	it	onto	a	card	board.	This	is	the
pattern	we	are	going	to	use	for	calibration.	This	check	board	has	8x6	with	108mm	squares.

Run	the	usb_cam	launch	file	to	start	the	camera	driver.	We	are	going	to	run	the	camera
calibration	node	of	ROS	using	the	raw	image	from	the	/usb_cam/image_raw	topic.
Following	command	will	run	the	calibration	node	with	the	necessary	parameters:

$	rosrun	camera_calibration	cameracalibrator.py	--size	8x6	--square	0.108	

image:=/usb_cam/image_raw	camera:=/usb_cam

A	calibration	window	will	pop	up,	and	when	we	show	the	calibration	pattern	to	the
camera,	and	the	detection	made,	is	seen	in	the	following	screenshot:

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration


Figure	3:	ROS	camera	calibration

Move	the	calibration	pattern	in	X	direction	and	Y	direction.	If	the	calibrator	node	gets	a
sufficient	amount	of	samples,	a	calibration	button	will	get	active	on	the	window.	When	we
press	the	CALIBRATE	button,	it	will	compute	the	camera	parameters	using	these
samples.	It	will	take	some	time	for	calculation.	After	computation,	two	buttons,	SAVE	and
COMMIT,	will	become	active	inside	the	window,	which	is	shown	in	the	following	image.
If	we	press	the	SAVE	button,	it	will	save	the	calibration	parameters	to	a	file	in	the	/tmp
folder.	If	we	press	the	COMMIT	button,	it	will	save	them	to
./ros/camera_info/head_camera.yaml.



Figure	4	:	Generating	camera	calibration	file

Restart	the	camera	driver	and	we	will	see	the	YAML	calibration	file	loaded	along	with	the
driver.	The	calibration	file	that	we	generated	will	look	as	follows:

image_width:	640

image_height:	480

camera_name:	head_camera

camera_matrix:

		rows:	3

		cols:	3

		data:	[707.1953043273086,	0,	346.4560078627374,	0,	709.5783421541863,	

240.0112155124814,	0,	0,	1]

distortion_model:	plumb_bob

distortion_coefficients:

		rows:	1

		cols:	5

		data:	[0.1779688561999974,	-0.9681558538432319,	0.004497434720139909,	

0.0106588921249554,	0]

rectification_matrix:

		rows:	3

		cols:	3

		data:	[1,	0,	0,	0,	1,	0,	0,	0,	1]

projection_matrix:

		rows:	3

		cols:	4

		data:	[697.5267333984375,	0,	353.9677879190494,	0,	0,	714.7203979492188,	

240.6829465337159,	0,	0,	0,	1,	0]



Converting	images	between	ROS	and	OpenCV
using	cv_bridge
In	this	section,	we	will	see	how	to	convert	between	ROS	image	message
(sensor_msgs/Image)	to	OpenCV	image	data	type(cv::Mat).	The	main	ROS	package	used
for	this	conversion	is	cv_bridge,	which	is	part	of	the	vision_opencv	stack.	The	ROS
library	inside	cv_bridge	called	CvBridge	helps	to	perform	this	conversion.	We	can	use	the
CvBridge	library	inside	our	code	and	perform	the	conversion.	The	following	figure	shows
how	the	conversion	is	performed	between	ROS	and	OpenCV:

Figure	5	:	Converting	images	using	CvBridge

Here,	the	CvBridge	library	acts	as	a	bridge	for	converting	the	ROS	messages	to	OpenCV
image	and	vice	versa.

We	will	see	how	the	conversion	between	ROS	and	OpenCV	is	performed	using	the
following	example.



Image	processing	using	ROS	and	OpenCV
In	this	section,	we	will	see	an	example	of	using	cv_bridge	for	acquiring	images	from	a
camera	driver,	and	converting	and	processing	the	images	using	OpenCV	APIs.	Following
is	how	the	example	works:

Subscribe	the	images	from	the	camera	driver	from	the	topic	/usb_cam/image_raw
(sensor_msgs/Image)
Convert	the	ROS	images	to	OpenCV	image	type	using	CvBridge
Process	the	OpenCV	image	using	its	APIs	and	find	the	edges	on	the	image
Convert	the	OpenCV	image	type	of	edge	detection	to	ROS	image	messages	and
publish	into	the	topic	/edge_detector/processed_image

The	step	by	step	procedure	to	build	this	example	follows:

Step	1:	Creating	ROS	package	for	the	experiment
You	can	get	the	existing	package	cv_bridge_tutorial_pkg	from	the	chapter_8_codes
folder,	or	you	can	create	a	new	package	using	the	following	command:

$	catkin_create_pkg	cv_bridge_tutorial_pkg	cv_bridge	image_transport	roscpp	

sensor_msgs	std_msgs

This	package	is	mainly	dependent	on	cv_bridge,	image_transport,	and	sensor_msgs.

Step	2:	Creating	source	files
You	can	get	the	source	code	of	the	example	sample_cv_bridge_node.cpp	from	the
chapter_8_codes/cv_bridge_tutorial_pkg/src	folder.

Step	3:	Explanation	of	the	code
Following	is	the	explanation	of	the	complete	code:

#include	<image_transport/image_transport.h>

We	are	using	the	image_transport	package	in	this	code	for	publishing	and	subscribing	to
image	in	ROS.

#include	<cv_bridge/cv_bridge.h>

#include	<sensor_msgs/image_encodings.h>

This	header	includes	the	CvBridge	class	and	image	encoding	related	functions	in	the	code.

#include	<opencv2/imgproc/imgproc.hpp>

#include	<opencv2/highgui/highgui.hpp>

These	are	main	OpenCV	image	processing	module	and	GUI	modules	which	provide
image	processing	and	GUI	APIs	in	our	code.

		image_transport::ImageTransport	it_;

public:

		Edge_Detector()

				:	it_(nh_)

		{



				//	Subscribe	to	input	video	feed	and	publish	output	video	feed

				image_sub_	=	it_.subscribe("/usb_cam/image_raw",	1,	

						&ImageConverter::imageCb,	this);

				image_pub_	=	it_.advertise("/edge_detector/processed_image",	1);

We	will	look	in	more	detail	at	the	line	image_transport::ImageTransport	it_	.	This
line	creates	an	instance	of	ImageTransport	which	is	used	to	publish	and	subscribe	the
ROS	image	messages.	More	information	about	the	ImageTransport	API	is	given	next.

Publishing	and	subscribing	images	using	image_transport

ROS	image	transport	is	very	similar	to	ROS	Publishers	and	Subscribers	and	it	is	used	to
publish/subscribe	the	images	along	with	the	camera	information.	We	can	publish	the
image	data	using	ros::Publishers,	but	image	transport	is	a	more	efficient	way	of	sending
the	image	data.

The	image	transport	APIs	are	provided	by	the	image_transport	package.	Using	these
APIs,	we	can	transport	an	image	in	different	compression	formats;	for	example,	we	can
transport	it	as	an	uncompressed	image,	JPEG/PNG	compression,	or	Theora	compression
in	separate	Topics.	We	can	also	add	different	transport	formats	by	adding	plugins.	By
default,	we	can	see	the	compressed	and	Theora	transports.

		image_transport::ImageTransport	it_;

In	the	following	line,	we	are	creating	an	instance	of	the	ImageTransport	class:

		image_transport::Subscriber	image_sub_;

		image_transport::Publisher	image_pub_;

After	that,	we	declare	the	Subscriber	and	Publisher	objects	for	subscribing	and
publishing	the	images	using	the	image_transport	object:

image_sub_	=	it_.subscribe("/usb_cam/image_raw",	1,	

						&ImageConverter::imageCb,	this);

image_pub_	=	it_.advertise("/edge_detector/processed_image",	1);

The	following	is	how	we	subscribe	and	publish	an	image:

					cv::namedWindow(OPENCV_WINDOW);

		}

		~Edge_Detector()

		{

				cv::destroyWindow(OPENCV_WINDOW);

		}

This	is	how	we	subscribe	and	publish	an	image.cv::namedWindow()	is	an	OpenCV
function	to	create	a	GUI	for	displaying	an	image.	The	argument	inside	this	function	is	the
window	name.	Inside	the	class	destructor,	we	are	destroying	the	named	window.

Converting	OpenCV-ROS	images	using	cv_bridge

This	is	an	image	callback	function	and	it	basically	converts	the	ROS	image	messages	into
OpenCV	cv::Mat	type	using	the	CvBridge	APIs.	Following	is	how	we	can	convert	ROS
to	OpenCV,	and	vice	versa:



		void	imageCb(const	sensor_msgs::ImageConstPtr&	msg)

		{

				cv_bridge::CvImagePtr	cv_ptr;

				namespace	enc	=	sensor_msgs::image_encodings;

				try

				{

						cv_ptr	=	cv_bridge::toCvCopy(msg,	

sensor_msgs::image_encodings::BGR8);

				}

				catch	(cv_bridge::Exception&	e)

				{

						ROS_ERROR("cv_bridge	exception:	%s",	e.what());

						return;

				}

To	start	with	CvBridge,	we	should	start	with	creating	an	instance	of	a	CvImage.	Given	next
is	the	creation	of	the	CvImage	pointer:

	cv_bridge::CvImagePtr	cv_ptr;

The	CvImage	type	is	a	class	provided	by	cv_bridge,	which	consists	of	information	such	as
an	OpenCV	image,	its	encoding,	ROS	header,	and	so	on.	Using	this	type,	we	can	easily
convert	an	ROS	image	to	OpenCV,	and	vice	versa.

cv_ptr	=	cv_bridge::toCvCopy(msg,	sensor_msgs::image_encodings::BGR8);

We	can	handle	the	ROS	image	message	in	two	ways:	either	we	can	make	a	copy	of	the
image	or	we	can	share	the	image	data.	When	we	copy	the	image,	we	can	process	the
image,	but	if	we	use	shared	pointer,	we	can’t	modify	the	data.	We	use	toCvCopy()	for
creating	a	copy	of	the	ROS	image,	and	the	toCvShare()	function	is	used	to	get	the	pointer
of	the	image.	Inside	these	functions,	we	should	mention	the	ROS	message	and	the	type	of
encoding.

				if	(cv_ptr->image.rows	>	400	&&	cv_ptr->image.cols	>	600){

		detect_edges(cv_ptr->image);

						image_pub_.publish(cv_ptr->toImageMsg());

		}

In	this	section,	we	are	extracting	the	image	and	its	properties	from	the	CvImage	instance,
and	accessing	the	cv::Mat	object	from	this	instance.	This	code	simply	checks	whether	the
rows	and	columns	of	the	image	are	in	a	particular	range,	and	if	it	is	true,	it	will	call
another	method	called	detect_edges(cv::Mat),	which	will	process	the	image	given	as
argument	and	display	the	edge	detected	image.

image_pub_.publish(cv_ptr->toImageMsg());

The	preceding	line	will	publish	the	edge	detected	image	after	converting	to	ROS	image
message.	Here	we	are	using	the	toImageMsg()	function	for	converting	the	CvImage
instance	to	a	ROS	image	message.

Finding	edges	on	the	image



After	converting	the	ROS	images	to	OpenCV	type,	the	function	detect_edges(cv::Mat)
will	be	called	for	finding	the	edges	on	the	image	using	the	following	inbuilt	OpenCV
functions:

cv::cvtColor(	img,	src_gray,	CV_BGR2GRAY	);

cv::blur(	src_gray,	detected_edges,	cv::Size(3,3)	);

cv::Canny(	detected_edges,	detected_edges,	lowThreshold,	

lowThreshold*ratio,	kernel_size	);

Here,	the	cvtColor()	function	will	convert	an	RGB	image	to	a	GRAY	color	space	and
cv::blur()	will	add	blurring	to	the	image.	After	that,	using	Canny	edge	detector,	we
extract	the	edges	of	the	image.

Visualizing	raw	and	edge	detected	image

cv::imshow(OPENCV_WINDOW,	img);

cv::imshow(OPENCV_WINDOW_1,	dst);

cv::waitKey(3);

Here	we	are	displaying	the	image	data	using	the	OpenCV	function	called	imshow(),	which
consists	of	the	window	name	and	the	image	name.

Step	4:	Editing	the	CMakeLists.txt	file
The	definition	of	the	CMakeLists.txt	file	is	given	next.	In	this	example,	we	need
OpenCV	support,	so	we	should	include	the	OpenCV	header	path	and	also	link	the	source
code	against	the	OpenCV	library	path.

include_directories(

		${catkin_INCLUDE_DIRS}

		${OpenCV_INCLUDE_DIRS}

)

add_executable(sample_cv_bridge_node	src/sample_cv_bridge_node.cpp)

##	Specify	libraries	to	link	a	library	or	executable	target	against

	target_link_libraries(sample_cv_bridge_node

			${catkin_LIBRARIES}

			${OpenCV_LIBRARIES}

	)

Step	5:	Building	and	running	example
After	building	the	package	using	catkin_make,	we	can	run	the	node	using	the	following
command:

Launch	webcam	driver:

$	roslaunch	usb_cam	usb_cam-test.launch

Run	the	cv_bridge	sample	node:

$	rosrun	cv_bridge_tutorial_pkg	sample_cv_bridge_node

If	everything	works	fine,	we	will	get	two	windows,	as	shown	in	the	following	image.	The
first	window	shows	the	raw	image	and	the	second	is	the	processed	edge	detected	image.



Figure	6	:	Raw	image	and	edge	detected	image





Interfacing	Kinect	and	Asus	Xtion	Pro	in
ROS
The	web	cams	that	we	have	worked	with	till	now	can	only	provide	2D	visual	information
of	the	surroundings.	For	getting	3D	information	about	the	surroundings,	we	have	to	use
3D	vision	sensors	or	range	finders	such	as	laser	finders.	Some	of	the	3D	vision	sensors
that	we	are	discussing	in	this	chapter	are	Kinect,	Asus	Xtion	Pro,	Intel	Real	sense,
Velodyne,	and	Hokuyo	laser	scanner.

Figure	7	:	Top:	Kinect	,	Bottom:	Asus	Xtion	Pro

The	first	two	sensors	we	are	going	to	discuss	are	Kinect	and	Asus	Xtion	Pro.	Both	of	these
devices	need	OpenNI	(Open	source	Natural	Interaction)	driver	library	for	operating	in
Linux	system.	OpenNI	acts	as	a	middleware	between	the	3D	vision	devices	and	the
application	software.	The	OpenNI	driver	is	integrated	to	ROS	and	we	can	install	these
drivers	using	the	following	commands.	These	packages	help	to	interface	the	OpenNI
complaint	device,	such	as	Kinect	and	Asus	Xtion	Pro.

In	Jade:

$	sudo	apt-get	install	ros-jade-openni-launch

In	Indigo:

$	sudo	apt-get	install	ros-indigo-openni-launch

The	preceding	command	will	install	OpenNI	drivers	and	launch	files	for	starting	the
RGB/Depth	streams.	After	successful	installation	of	these	packages,	we	can	launch	the
driver	using	the	following	command:



$	roslaunch	openni_launch	openni.launch

This	launch	file	will	convert	the	raw	data	from	the	devices	into	useful	data,	such	as	3D
point	cloud,	disparity	images,	and	depth,	and	the	RGB	images	using	ROS	nodelets.

Other	than	the	OpenNI	drivers,	there	is	another	driver	available	called	lib-freenect.	The
common	launch	files	of	the	drivers	are	organized	into	a	package	called	rgbd_launch.	This
package	consists	of	common	launch	files	that	are	used	for	the	freenect	and	openni	drivers.

We	can	visualize	the	point	cloud	generated	by	the	OpenNI	ROS	driver	using	RViz.

Run	RViz	using	the	following	command:

$	rosrun	rviz	rviz

Set	Fixed	frame	to	/camera_depth_optical_frame,	add	a	PointCloud2	display	and	set
topic	as	/camera/depth/points.	This	is	the	unregistered	point	cloud	from	IR	camera,	that
is,	it	may	have	complete	match	with	the	RGB	camera	and	it	only	uses	depth	camera	for
generating	point	cloud.

Figure	8:	Unregistered	point	cloud	view	in	RViz

We	can	enable	the	registered	point	cloud	by	using	Dynamic	Reconfigure	GUI,	by	using
the	following	command:

$	rosrun	rqt_reconfigure	rqt_reconfigure



Figure	9:	Dynamic	Reconfigure	GUI

Click	on	camera	|	driver	and	tick	depth_registration.	Change	the	point	cloud	to
/camera/depth_registered/points	and	Color	Transformer	to	RGB8	in	RViz.	We	will
see	the	registered	point	cloud	in	RViz	as	it	appears	in	the	following	image.	Registered
point	cloud	takes	information	from	the	depth	and	the	RGB	camera	to	generate	the	point
cloud.

Figure	10:	The	registered	point	cloud





Interfacing	Intel	Real	Sense	camera	with
ROS
One	of	the	new	3D	depth	sensors	from	Intel	is	Real	Sense.	The	following	link	is	the	ROS
interface	of	Intel	Real	Sense:	https://github.com/BlazingForests/realsense_camera

Figure	11:	Intel	Real	Sense

Before	installing	the	ROS	driver,	we	have	to	install	the	following	packages	for	building
the	source	code:

$	sudo	apt-get	install	libudev-dev	libv4l-dev

After	installing,	clone	the	ROS	package	to	the	src	folder	of	catkin	workspace:

$	cd	~/catkin_ws/src

$	git	clone	https://github.com/BlazingForests/realsense_camera.git

$	catkin_make

Launch	the	Real	Sense	camera	driver	and	RViz	using	the	following	command:

$	roslaunch	realsense_camera	realsense_rviz.launch

Launch	Real	Sense	camera	driver	only:

$	roslaunch	realsense_camera	realsense_camera.launch

https://github.com/BlazingForests/realsense_camera


Figure	12:	Intel	Real	Sense	view	in	RViz

Following	are	the	topics	generated	by	the	Real	Sense	driver:

sensor_msgs::PointCloud2

/camera/depth/points																point	cloud	without	RGB

/camera/depth_registered/points					point	cloud	with	RGB

sensor_msgs::Image

/camera/image/rgb_raw															raw	image	for	RGB	sensor

/camera/image/depth_raw													raw	image	for	depth	sensor

/camera/image/ir_raw																raw	image	for	infrared	sensor



Working	with	point	cloud	to	laser	scan	package
One	of	the	important	applications	of	3D	vision	sensors	is	mimicking	the	functionalities	of
a	laser	scanner.	We	need	the	laser	scanner	data	for	working	with	autonomous	navigation
algorithms	such	as	SLAM.	We	can	make	a	fake	laser	scanner	using	a	3D	vision	sensor.	We
can	take	a	slice	of	point	cloud	data/depth	image	and	convert	it	to	laser	range	data.	In	ROS,
we	have	a	set	of	packages	to	convert	the	point	cloud	to	laser	scans:

depthimage_to_laserscan:	This	package	contains	nodes	that	take	the	depth	image
from	the	vision	sensor	and	generate	2D	laser	scan	based	on	the	provided	parameters.
The	input	of	the	node	are	depth	image	and	camera	info	parameters,	which	include
calibration	parameters.	After	conversion	to	laser	scan	data,	it	will	publish	laser
scanner	data	in	the	/scan	topic.	The	node	parameters	are	scan_height,	scan_time,
range_min,	range_max,	and	output	frame	ID.	The	official	ROS	wiki	page	of	this
package	is	http://wiki.ros.org/depthimage_to_laserscan.
pointcloud_to_laserscan:	This	package	converts	the	real	point	cloud	data	into	2D
laser	scan,	instead	of	taking	depth	image	as	the	previous	package.	The	official	wiki
page	of	this	package	is	http://wiki.ros.org/pointcloud_to_laserscan.

The	first	package	is	suitable	for	normal	applications;	however,	if	the	sensor	is	placed	in	an
angle,	it	is	better	to	use	the	second	package.	Also,	the	first	package	takes	less	processing
than	the	second	one.	Here	we	are	using	the	depthimage_to_laserscan	package	to	convert
laser	scan.	We	can	install	depthimage_to_laserscan	using	the	following	commands:

In	Jade:

$	sudo	apt-get	install	ros-jade-depthimage-to-laserscan

In	Indigo:

$	sudo	apt-get	install	ros-indigo-depthimage-to-laserscan

We	can	install	the	pointcloud_to_laser	scanner	package	using	the	following	commands:

In	Jade:

$	sudo	apt-get	install	ros-jade-pointcloud-to-laserscan

In	Indigo:

$	sudo	apt-get	install	ros-indigo-pointcloud-to-laserscan

We	can	start	converting	from	the	depth	image	of	OpenNI	device	to	2D	laser	scanner	using
the	following	package.

Creating	a	package	for	performing	the	conversion:

$	catkin_create_pkg	fake_laser_pkg	depthimage_to_laserscan	nodelet	roscpp

Create	a	folder	called	launch	and	inside	this	folder	create	the	following	launch	file	called
start_laser.launch.	You	will	get	this	package	and	file	from	the
chapter_8_codes/fake_laser_pkg/launch	folder.

http://wiki.ros.org/depthimage_to_laserscan
http://wiki.ros.org/pointcloud_to_laserscan


<launch>

		<!--	"camera"	should	uniquely	identify	the	device.	All	topics	are	pushed	

down

							into	the	"camera"	namespace,	and	it	is	prepended	to	tf	frame	ids.	--

>

		<arg	name="camera"						default="camera"/>

		<arg	name="publish_tf"		default="true"/>

		................

			................

		<group	if="$(arg	scan_processing)">

				<node	pkg="nodelet"	type="nodelet"	name="depthimage_to_laserscan"	

args="load	depthimage_to_laserscan/DepthImageToLaserScanNodelet	$(arg	

camera)/$(arg	camera)_nodelet_manager">

						<!--	Pixel	rows	to	use	to	generate	the	laserscan.	For	each	column,	

the	scan	willreturn	the	minimum	value	for	those	pixels	centered	vertically	

in	the	image.	-->

						<param	name="scan_height"	value="10"/>

						<param	name="output_frame_id"	value="/$(arg	camera)_depth_frame"/>

						<param	name="range_min"	value="0.45"/>

						<remap	from="image"	to="$(arg	camera)/$(arg	depth)/image_raw"/>

						<remap	from="scan"	to="$(arg	scan_topic)"/>

		..............

		..............

</launch>

The	following	code	snippet	will	launch	the	nodelet	for	converting	the	depth	image	to	laser
scanner:

				<node	pkg="nodelet"	type="nodelet"	name="depthimage_to_laserscan"	

args="load	depthimage_to_laserscan/DepthImageToLaserScanNodelet	$(arg	

camera)/$(arg	camera)_nodelet_manager">

Launch	this	file	and	we	can	view	the	laser	scanner	in	RViz.

Launch	this	file	using	the	following	command:

$	roslaunch	fake_laser_pkg	start_laser.launch

We	will	see	the	data	in	RViz,	as	shown	in	the	following	image:



Figure	13:	Laser	scan	in	RViz

Set	Fixed	Frame	as	camera_depth_frame	and	Add	the	LaserScan	in	topic	/scan.	We	can
see	the	laser	data	in	the	view	port.





Interfacing	Hokuyo	Laser	in	ROS
We	can	interface	different	ranges	of	laser	scanners	in	ROS.	One	of	the	popular	laser
scanner	available	in	the	market	is	Hokuyo	Laser	scanner
(http://www.robotshop.com/en/hokuyo-utm-03lx-laser-scanning-rangefinder.html).

Figure	14:	Different	series	of	Hokuyo	laser	scanner

One	of	the	commonly	used	Hokuyo	laser	scanner	models	is	UTM-30LX.	This	sensor	is	fast
and	accurate,	suitable	for	robotic	applications.	The	device	has	USB	2.0	interface	for
communication,	and	has	up	to	30	meter	range	with	millimeter	resolution.	The	arc	range	of
the	scan	is	about	270	degrees.

http://www.robotshop.com/en/hokuyo-utm-03lx-laser-scanning-rangefinder.html


Figure	15	:	Hokuyo	UTM-30LX

There	is	already	a	driver	available	in	ROS	for	interfacing	these	scanners.	One	of	the
interfaces	is	called	hokuyo_node	(http://wiki.ros.org/hokuyo_node).

We	can	install	this	package	using	the	following	command:

In	Jade:

$	sudo	apt-get	install	ros-jade-hokuyo-node

In	Indigo:

$	sudo	apt-get	install	ros-indigo-hokuyo-node

When	the	device	connects	to	the	Ubuntu	system,	it	will	create	a	device	called	ttyACMx.
Check	the	device	name	by	entering	the	dmesg	command	in	the	terminal.	Change	the	USB
device	permission	by	using	the	following	command:

$	sudo	chmod	a+rw	/dev/ttyACMx

Start	the	laser	scan	device	using	the	following	launch	file	called	hokuyo_start.launch:

<launch>

		<node	name="hokuyo"	pkg="hokuyo_node"	type="hokuyo_node"	respawn="false"	

output="screen">

		

				<!--	Starts	up	faster,	but	timestamps	will	be	inaccurate.	-->	

				<param	name="calibrate_time"	type="bool"	value="false"/>	

	

				<param	name="min_ang"	type="double"	value="-0.7854"/>

				<param	name="max_ang"	type="double"	value="0.7854"/>

				<!--	Set	the	port	to	connect	to	here	-->

				<param	name="port"	type="string"	value="/dev/ttyACM0"/>	

		

				<param	name="intensity"	type="bool"	value="false"/>

		</node>

		

			

		<node	name="rviz"	pkg="rviz"	type="rviz"	respawn="false"	output="screen"	

args="-d	$(find	hokuyo_node)/hokuyo_test.vcg"/>

		

		

</launch>

This	launch	file	starts	a	hokuyo	node	for	getting	the	laser	data	from	the	device
/dev/ttyACM0.	The	laser	data	can	be	viewed	inside	the	RViz	window,	as	shown	in	the
following	image:

http://wiki.ros.org/hokuyo_node


Figure	16:	Hokuyo	Laser	scan	data	in	RViz





Interfacing	Velodyne	LIDAR	in	ROS
One	of	the	trending	areas	in	robotics	is	autonomous	cars	or	driverless	cars.	One	of	the
essential	ingredients	in	this	robot	is	a	Light	Detection	and	Ranging	(LIDAR).	One	of	the
commonly	used	LIDARs	is	Velodyne	LIDAR.	Velodyne	LIDARs	are	used	in	Google
driverless	cars	and	also	in	most	of	the	research	in	driver	less	cars.	There	are	three	models
of	Velodyne	LIDAR	available	in	the	market.	Following	are	the	three	models	and	their
diagrams:

Velodyne	HDL-64E,	Velodyne	HDL-32E,	and	Velodyne	VLP-16/Puck.

Figure	17:	Different	series	of	Velodyne

Velodyne	can	interface	to	ROS	and	can	generate	point	cloud	data	from	its	raw	data.	The
link	for	the	velodyne	ROS	package	for	model	HDL-32E	is	http://wiki.ros.org/velodyne.

We	can	install	the	velodyne	driver	in	Ubuntu	using	the	following	command:

In	Jade:

$	sudo	apt-get	install	ros-jade-velodyne

In	Indigo:

$	sudo	apt-get	install	ros-indigo-velodyne

After	installing	these	packages,	connect	the	LIDAR	power	supply	and	connect	Ethernet
cable	from	the	PC	to	Velodyne.

Assign	a	static	IP	of	the	PC	in	the	range	192.168.3.x	using	the	following	command:

$	sudo	ifconfig	eth0	192.168.3.100

http://wiki.ros.org/velodyne


After	setting	the	static	IP	of	the	PC,	assign	a	route	to	Velodyne.	The	IP	of	LIDAR	will	be
present	on	the	CD	gotten	along	with	the	Velodyne.

$	sudo	route	add	192.168.XX.YY	eth0

After	setting	the	network,	we	need	to	calibrate	generate	calibration	data	in	YAML	file.	The
following	command	will	generate	the	calibration	data	in	a	YAML	file	from	the	standard
Velodyne	XML	file:

$	rosrun	velodyne_pointcloud	gen_calibration.py	32db.xml

Launch	the	point	cloud	generation	nodes	from	the	raw	data	of	LIDAR.	We	have	to
mention	the	generated	calibration	YAML	file	along	with	the	launch	file:

$	roslaunch	velodyne_pointcloud	32e_points.launch	

calibration:=/home/robot/32db.yaml

After	launching	the	converter	nodes,	we	can	start	RViz	to	view	the	point	cloud	data
generated	from	LIDAR	using	the	following	command.	Set	the	Fixed	Frame	as	Velodyne
and	Add	display	Point	Cloud	2	and	set	Topic	as	/velodyne_points:

$	rosrun	rviz	rviz	-f	velodyne

Figure	18:	Velodyne	point	cloud	view	in	RViz





Working	with	point	cloud	data
We	can	handle	the	point	cloud	data	from	Kinect	or	the	other	3D	sensors	for	performing
wide	variety	of	tasks	such	as	3D	object	detection	and	recognition,	obstacle	avoidance,	3D
modeling,	and	so	on.	In	this	section,	we	will	see	some	basic	functionalities	using	the	PCL
library	and	its	ROS	interface.	We	will	discuss	the	following	examples:

How	to	publish	a	point	cloud	in	ROS
How	to	subscribe	and	process	point	cloud
How	to	write	point	cloud	data	to	a	PCD	file
How	to	read	and	publish	point	cloud	from	a	PCD	file



How	to	publish	a	point	cloud
In	this	example,	we	will	see	how	to	publish	a	point	cloud	data	using	the
sensor_msgs/PointCloud2	message.	The	code	will	use	PCL	APIs	for	handling	and
creating	the	point	cloud,	and	converting	the	PCL	cloud	data	to	PointCloud2	message	type.
You	will	get	the	example	code	pcl_publisher.cpp	from	the
chapter_8_codes/pcl_ros_tutorial/src	folder.

#include	<ros/ros.h>

//	point	cloud	headers

#include	<pcl/point_cloud.h>

//Header	which	contain	PCL	to	ROS	and	ROS	to	PCL	conversion	functions

#include	<pcl_conversions/pcl_conversions.h>

//sensor_msgs	header	for	point	cloud2

#include	<sensor_msgs/PointCloud2.h>

main	(int	argc,	char	**argv)

{

				ros::init	(argc,	argv,	"pcl_create");

				ROS_INFO("Started	PCL	publishing	node");

				ros::NodeHandle	nh;

//Creating	publisher	object	for	point	cloud

				ros::Publisher	pcl_pub	=	nh.advertise<sensor_msgs::PointCloud2>	

("pcl_output",	1);

//Creating	a	cloud	object

				pcl::PointCloud<pcl::PointXYZ>	cloud;

//Creating	a	sensor_msg	of	point	cloud

				sensor_msgs::PointCloud2	output;

				//Insert	cloud	data

				cloud.width		=	50000;

				cloud.height	=	2;

				cloud.points.resize(cloud.width	*	cloud.height);

//Insert	random	points	on	the	clouds

				for	(size_t	i	=	0;	i	<	cloud.points.size	();	++i)

				{

								cloud.points[i].x	=	512	*	rand	()	/	(RAND_MAX	+	1.0f);

								cloud.points[i].y	=	512	*	rand	()	/	(RAND_MAX	+	1.0f);

								cloud.points[i].z	=	512	*	rand	()	/	(RAND_MAX	+	1.0f);

				}

				//Convert	the	cloud	to	ROS	message



				pcl::toROSMsg(cloud,	output);

				output.header.frame_id	=	"point_cloud";

				ros::Rate	loop_rate(1);

				while	(ros::ok())

				{

								//publishing	point	cloud	data

						pcl_pub.publish(output);

								ros::spinOnce();

								loop_rate.sleep();

				}

				return	0;

}

The	creation	of	PCL	cloud	is	done	as	follows:

//Creating	a	cloud	object

pcl::PointCloud<pcl::PointXYZ>	cloud;

After	creating	this	cloud,	we	insert	random	points	to	the	clouds.	We	convert	the	PCL	cloud
to	a	ROS	message	using	the	following	function:

//Convert	the	cloud	to	ROS	message

pcl::toROSMsg(cloud,	output);

After	converting	to	ROS	messages,	we	can	simply	publish	the	data	on	the	topic
/pcl_output.



How	to	subscribe	and	process	the	point	cloud
In	this	example,	we	will	see	how	to	subscribe	the	generated	point	cloud	on	the	topic
pcl_output.	After	subscribing	the	point	cloud,	we	apply	a	filter	called	the	VoxelGrid
class	in	PCL	to	down	sample	the	input	cloud	by	keeping	the	same	centroid	of	the	input
cloud.	You	will	get	the	example	code	pcl_filter.cpp	from	the	src	folder	of	the	package.

#include	<ros/ros.h>

#include	<pcl/point_cloud.h>

#include	<pcl_conversions/pcl_conversions.h>

#include	<sensor_msgs/PointCloud2.h>

//Vortex	filter	header

#include	<pcl/filters/voxel_grid.h>

//Creating	a	class	for	handling	cloud	data

class	cloudHandler

{

public:

				cloudHandler()

				{

								

//Subscribing	pcl_output	topics	from	the	publisher

//This	topic	can	change	according	to	the	source	of	point	cloud

				pcl_sub	=	nh.subscribe("pcl_output",	10,	&cloudHandler::cloudCB,	this);

//Creating	publisher	for	filtered	cloud	data

								pcl_pub	=	nh.advertise<sensor_msgs::PointCloud2>("pcl_filtered",	

1);

				}

//Creating	cloud	callback

				void	cloudCB(const	sensor_msgs::PointCloud2&	input)

				{

								pcl::PointCloud<pcl::PointXYZ>	cloud;

								pcl::PointCloud<pcl::PointXYZ>	cloud_filtered;

					

							sensor_msgs::PointCloud2	output;

							pcl::fromROSMsg(input,	cloud);

					//Creating	VoxelGrid	object

						pcl::VoxelGrid<pcl::PointXYZ>	vox_obj;

					//Set	input	to	voxel	object

					vox_obj.setInputCloud	(cloud.makeShared());

		

					//Setting	parameters	of	filter	such	as	leaf	size

				vox_obj.setLeafSize	(0.1f,	0.1f,	0.1f);

				

				//Performing	filtering	and	copy	to	cloud_filtered	variable

				vox_obj.filter(cloud_filtered);

						pcl::toROSMsg(cloud_filtered,	output);

						output.header.frame_id	=	"point_cloud";

							pcl_pub.publish(output);

				}



protected:

				ros::NodeHandle	nh;

				ros::Subscriber	pcl_sub;

				ros::Publisher	pcl_pub;

};

main(int	argc,	char**	argv)

{

				ros::init(argc,	argv,	"pcl_filter");

				ROS_INFO("Started	Filter	Node");

				cloudHandler	handler;

				ros::spin();

				return	0;

}

This	code	subscribes	the	point	cloud	topic	called	/pcl_output,	filters	using	VoxelGrid,
and	publishes	the	filtered	cloud	through	the	/cloud_filtered	topic.



Writing	a	point	cloud	data	to	a	PCD	file
We	can	save	the	point	cloud	to	a	PCD	(Point	Cloud	Data)	file	by	using	the	following
code.	The	file	name	is	pcl_write.cpp	inside	the	src	folder.

#include	<ros/ros.h>

#include	<pcl/point_cloud.h>

#include	<pcl_conversions/pcl_conversions.h>

#include	<sensor_msgs/PointCloud2.h>

//Header	file	for	writing	PCD	file

#include	<pcl/io/pcd_io.h>

void	cloudCB(const	sensor_msgs::PointCloud2	&input)

{

				pcl::PointCloud<pcl::PointXYZ>	cloud;

				pcl::fromROSMsg(input,	cloud);

//Save	data	as	test.pcd	file

				pcl::io::savePCDFileASCII	("test.pcd",	cloud);

}

main	(int	argc,	char	**argv)

{

				ros::init	(argc,	argv,	"pcl_write");

				ROS_INFO("Started	PCL	write	node");

				ros::NodeHandle	nh;

				ros::Subscriber	bat_sub	=	nh.subscribe("pcl_output",	10,	cloudCB);

				ros::spin();

				return	0;

}



Read	and	publish	point	cloud	from	a	PCD	file
This	code	can	read	a	PCD	file	and	publish	the	point	cloud	in	the	/pcl_output	topic.	The
code	pcl_read.cpp	is	available	in	the	src	folder.

#include	<ros/ros.h>

#include	<pcl/point_cloud.h>

#include	<pcl_conversions/pcl_conversions.h>

#include	<sensor_msgs/PointCloud2.h>

#include	<pcl/io/pcd_io.h>

main(int	argc,	char	**argv)

{

				ros::init	(argc,	argv,	"pcl_read");

				ROS_INFO("Started	PCL	read	node");

				ros::NodeHandle	nh;

				ros::Publisher	pcl_pub	=	nh.advertise<sensor_msgs::PointCloud2>	

("pcl_output",	1);

				sensor_msgs::PointCloud2	output;

				pcl::PointCloud<pcl::PointXYZ>	cloud;

//Load	test.pcd	file

				pcl::io::loadPCDFile	("test.pcd",	cloud);

				pcl::toROSMsg(cloud,	output);

				output.header.frame_id	=	"point_cloud";

				ros::Rate	loop_rate(1);

				while	(ros::ok())

				{

//Publishing	the	cloud	inside	pcd	file

								pcl_pub.publish(output);

								ros::spinOnce();

								loop_rate.sleep();

				}

				return	0;

}

We	can	create	a	ROS	package	called	pcl_ros_tutorial	for	compiling	these	examples:

$	catkin_create_pkg	pcl_ros_tutorial	pcl	pcl_ros	roscpp	sensor_msgs

Otherwise,	we	can	use	the	existing	package.

Create	the	preceding	examples	inside	src	as	pcl_publisher.cpp,	pcl_filter.cpp,
pcl_write.cpp,	and	pcl_read.cpp.

Create	CMakeLists.txt	for	compiling	all	the	sources:

##	Declare	a	cpp	executable

add_executable(pcl_publisher_node	src/pcl_publisher.cpp)

add_executable(pcl_filter	src/pcl_filter.cpp)



add_executable(pcl_write	src/pcl_write.cpp)

add_executable(pcl_read	src/pcl_read.cpp)

target_link_libraries(pcl_publisher_node

			${catkin_LIBRARIES}

	)

target_link_libraries(pcl_filter

			${catkin_LIBRARIES}

	)

target_link_libraries(pcl_write

			${catkin_LIBRARIES}

	)

target_link_libraries(pcl_read

			${catkin_LIBRARIES}

	)

Build	this	package	using	catkin_make,	and	we	can	run	pcl_publisher_node	and	view
point	cloud	inside	RViz	using	the	following	command:

$	rosrun	rviz	rviz	-f	point_cloud

A	screenshot	of	the	point	cloud	from	pcl_output	is	shown	in	the	following	image:

Figure	19:	PCL	cloud	in	RViz

We	can	run	the	pcl_filter	node	to	subscribe	this	same	cloud	and	do	voxel	grid	filtering.
The	following	screenshot	shows	the	output	from	/pcl_filtered	topic,	which	is	the
resultant	down	sampled	cloud:



Figure	20	:	Filtered	PCL	cloud	in	RViz

We	can	write	the	pcl_output	cloud	using	the	pcl_write	node	and	read/publish	using	the
pcl_read	nodes.





Streaming	webcam	from	Odroid	using
ROS
ROS	system	is	designed	mainly	for	distributive	computing.	We	can	write	and	run	the	ROS
nodes	on	multiple	machines	and	communicate	each	node	to	a	single	master.	For
communicating	between	two	devices	using	ROS,	we	should	follow	the	following	rules:

Only	single	ROS	master	should	run;	we	can	decide	which	machine	should	run	the
master
All	machines	should	be	configured	to	use	the	same	master	URI	through
ROS_MASTER_URI

Bi-directional	connectivity	should	be	ensured	between	all	the	pairs	of	machines
Each	machine	should	have	a	name	that	can	be	identified	by	the	other	machines

In	this	section,	we	will	see	how	to	run	the	ROS	master	in	Odroid	and	stream	the	camera
images	to	a	PC.	First,	we	will	look	at	the	setup	required	for	the	distributing	computing
between	Odroid	and	PC.

Connect	Odroid	to	the	PC	directly	using	the	LAN	cable	and	create	a	Ethernet	hotspot,	as
we	mentioned	in	the	previous	chapter.	Find	the	IPs	of	Odroid	and	the	PC	and	set	the
following	lines	of	command	in	their	.bashrc	files.	We	are	going	to	run	the	Odroid	board
as	the	ROS	master	and	the	PC	as	a	computing	node.	Following	is	a	sample	configuration
of	Odroid	and	PC:

Configuring	Odroid	as	ROS	master:

#Setting	MY_IP	as	Odroid	IP

export	MY_IP=10.42.0.94

#Setting	ROS_IP	variable	as	MY_IP

export	ROS_IP=$MY_IP

#Setting	ROS_MASTER_URI	as	Odroid	IP	

export	ROS_MASTER_URI="http://10.42.0.94:11311"

Configuring	PC	as	ROS	computing	node:

#Setting	MY_IP	as	P.C	IP

export	MY_IP=10.42.0.1

#Setting	ROS_IP	variable	as	MY_IP

export	ROS_IP=$MY_IP

#Setting	ROS_MASTER_URI	as	Odroid	IP	

export	ROS_MASTER_URI="http://10.42.0.94:11311"

Install	a	usb_cam	ROS	package	in	Odroid,	connect	a	USB	web	cam	to	it,	and	start	running
usb_cam	on	it	using	the	following	command:

$	roslaunch	usb_cam	usb_cam-test.launch



Figure	21:	Terminal	message	generated	by	usb_cam	node

In	the	PC	terminal,	we	can	access	the	camera	topics	and	display	the	image	data	in	RViz.

Following	are	the	camera	topics	in	the	PC	that	are	running	on	Odroid:

$	rostopic	list

Figure	22:	Topics	generated	by	Odroid,	which	is	viewed	on	PC	terminal

We	can	view	the	image	from	the	Odroid	cam	on	the	PC	using	RViz	or	the	image_view
tool.	Following	is	an	image	of	Odroid	camera	stream	in	RViz:



Figure	21	:	Odroid	camera	view	in	RViz	running	on	PC





Questions
1.	 What	are	the	packages	in	the	vision_opencv	stack?
2.	 What	are	the	packages	in	the	perception_pcl	stack?
3.	 What	are	the	functions	of	cv_bridge?
4.	 How	do	we	convert	PCL	cloud	to	ROS	message?
5.	 How	do	we	do	distributive	computing	using	ROS?





Summary
This	chapter	was	about	vision	sensors	and	its	programming	in	ROS.	We	saw	the
interfacing	packages	to	interface	the	cameras	and	3D	vision	sensors	such	as
vision_opencv	and	perception_pcl.	We	looked	at	each	package	and	its	functions	on
these	stacks.	We	saw	interfacing	of	basic	webcam	and	processing	image	using	ROS
cv_bridge.	After	discussing	cv_bridge,	we	looked	at	the	interfacing	of	various	3D	vision
sensors	and	laser	scanners	with	ROS.	After	interfacing,	we	learned	how	to	process	the
data	from	these	sensors	using	PCL	library	and	ROS.	At	the	end	of	the	chapter,	we
understood	how	to	stream	a	camera	from	an	embedded	device	called	Odroid	to	the	PC.	In
the	next	chapter,	we	will	see	the	interfacing	of	robotic	hardware	in	ROS.





Chapter	9.	Building	and	Interfacing
Differential	Drive	Mobile	Robot
Hardware	in	ROS
In	the	previous	chapter,	we	have	discussed	about	robotic	vision	using	ROS.	In	this	chapter,
we	can	see	discuss	how	to	build	an	autonomous	mobile	robot	hardware	with	differential
drive	configuration	and	how	to	interface	it	into	ROS.	We	will	see	how	to	configure	ROS
Navigation	stack	for	this	robot	and	perform	SLAM	and	AMCL	to	move	the	robot
autonomously.	This	chapter	aims	to	give	you	an	idea	about	building	a	custom	mobile	robot
and	interfacing	it	on	ROS.

You	will	see	the	following	topics	in	this	chapter:

Introduction	to	Chefbot:	a	DIY	autonomous	mobile	robot
Flashing	Chefbot	firmware	using	Energia	IDE
Discussing	Chefbot	interface	package	in	ROS
Developing	base	controller	and	odometry	node	for	Chefbot	in	ROS
Configuring	Navigation	stack	for	Chefbot
Understanding	AMCL
Understanding	RViz	for	working	with	Navigation	stack
Obstacle	avoidance	using	Navigation	stack
Working	with	Chefbot	simulation
Sending	a	goal	to	the	Navigation	stack	from	a	ROS	node

The	first	topic	we	are	going	to	discuss	in	this	chapter	is	how	to	build	a	DIY	(Do	It
Yourself)	autonomous	mobile	robot,	developing	its	firmware,	and	interface	it	to	ROS
Navigation	stack.	The	robot	called	Chefbot	was	built	as	a	part	of	my	first	book	called
Learning	Robotics	using	Python	for	PACKT	(http://learn-robotics.com).	This	book
discusses	step	by	step	procedure	to	build	this	robot	and	its	interfacing	to	ROS.

In	this	chapter,	we	will	cover	abstract	information	about	this	robot	hardware	and	we	will
learn	more	about	configuring	ROS	Navigation	stack	and	its	fine	tuning	for	performing
autonomous	navigation	using	SLAM	and	AMCL.	We	have	already	discussed	about	ROS
Navigation	stack	in	Chapter	4,	Using	the	ROS	MoveIt!	and	Navigation	Stack	and	we	have
simulated	a	differential	robot	using	Gazebo	and	performed	SLAM	and	AMCL.	In	this
chapter,	we	will	see	how	to	interface	a	real	differential	drive	robot	hardware	to	navigation
package.

http://learn-robotics.com


Introduction	to	Chefbot-	a	DIY	mobile
robot	and	its	hardware	configuration
In	Chapter	4,	Using	the	ROS	MoveIt!	and	Navigation	Stack	we	have	discussed	some
mandatory	requirements	for	interfacing	a	mobile	robot	with	ROS	navigation	package.	The
following	are	the	mandatory	requirements:

Odometry	source:	Robot	should	publish	its	odometry/position	data	with	respect	to
the	starting	position.	The	necessary	hardware	components	that	provide	odometry
information	are	wheel	encoders,	IMU,	and	2D/3D	cameras	(visual	odometry).
Sensor	source:	There	should	be	a	laser	scanner	or	a	3D	vision	sensor	sensor,	which
can	act	as	a	laser	scanner.	The	laser	scanner	data	is	essential	for	map	building	process
using	SLAM.
Sensor	transform	using	tf:	The	robot	should	publish	the	transform	of	the	sensors
and	other	robot	components	using	ROS	transform.
Base	controller:	The	base	controller	is	a	ROS	node,	which	can	convert	a	twist
message	from	Navigation	stack	to	corresponding	motor	velocities.



Figure	1:	Chefbot	prototype

We	can	check	the	components	present	in	the	robot	and	determine	whether	they	satisfy	the
Navigation	stack	requirements.	The	following	components	are	present	in	the	robot:

Pololu	DC	Gear	motor	with	Quadrature	encoder
(https://www.pololu.com/product/1447):	The	motor	is	operated	in	12	V,	80	RPM,	and
18	kg-cm	torque.	It	takes	current	of	300	mA	in	free	run	and	5	A	in	stall	condition.
The	motor	shaft	is	attached	to	a	quadrature	encoder,	which	can	deliver	a	maximum
count	of	8400	counts	per	revolution	of	the	gearbox’s	output	shaft.	Motor	encoders	are
one	source	of	odometry	of	robot.
Pololu	motor	drivers	(https://www.pololu.com/product/708):	These	are	dual	motor
controllers	for	Pololu	motors	that	can	support	up	to	30	A	and	motor	voltage	from	5.5
V	to	16	V.
Tiva	C	Launchpad	Controller	(http://www.ti.com/tool/ek-tm4c123gxl):	This	robot
has	a	Tiva	C	LaunchPad	controller	for	interfacing	motors,	encoders,	sensors,	and	so
on.	Also,	it	can	receive	control	commands	from	the	PC	and	can	send	appropriate
signals	to	the	motors	according	to	the	command.	This	board	can	act	as	a	embedded
controller	board	of	the	robot.	Tiva	C	LaunchPad	board	runs	on	80	MHz.
MPU	6050	IMU:	The	IMU	used	in	this	robot	is	MPU	6050,	which	is	a	combination
of	accelerometer,	gyroscope,	and	Digital	Motion	Processer	(DMP).	This	motion
processor	can	run	sensor	fusion	algorithm	onboard	and	can	provide	accurate	results
of	roll,	pitch,	and	yaw.	The	IMU	values	can	be	taken	to	calculate	the	odometry	along
with	the	wheel	encoders.
Xbox	Kinect/Asus	Xtion	Pro:	These	are	3D	vision	sensors	and	we	can	use	these
sensors	to	mock	a	laser	scanner.	The	point	cloud	generated	from	these	sensors	can	be
converted	into	laser	scan	data	and	used	in	the	Navigation	stack.
Intel	NUC	PC:	This	is	a	mini	PC	from	Intel,	and	we	have	to	load	this	with	Ubuntu
and	ROS.	The	PC	is	connected	to	Kinect	and	LaunchPad	to	retrieve	the	sensor	values
and	the	odometry	details.	The	program	running	on	the	PC	can	compute	TF	of	the
robot	and	can	run	the	Navigation	stack	and	associated	packages	such	as	SLAM	and
AMCL.	This	PC	is	placed	in	the	robot	itself.

From	the	robot	components	lists,	it	is	clear	that	it	satisfies	the	requirements	of	the	ROS
navigation	packages.	The	following	figure	shows	the	block	diagram	of	this	robot:

https://www.pololu.com/product/1447
https://www.pololu.com/product/708
http://www.ti.com/tool/ek-tm4c123gxl


Figure	2:	Block	diagram	of	Chefbot

In	this	robot,	the	embedded	controller	board	is	the	Tiva	C	LaunchPad.	All	the	sensors	and
actuators	are	connected	to	the	controller	board	and	it	is	connected	to	Intel	NUC	PC	for
receiving	higher	level	commands.	The	board	and	the	PC	communicate	in	UART	protocol,
IMU	and	the	board	communicate	using	I2C,	Kinect	is	interfaced	to	PC	via	USB,	and	all
the	other	sensors	are	interfaced	through	GPIO	pins.	A	detailed	connection	diagram	of	the
robot	components	follows:



Figure	3:	Connection	diagram	of	Chefbot



Flashing	Chefbot	firmware	using	Energia	IDE
After	developing	the	preceding	connections,	we	can	program	the	Launchpad	using	Energia
IDE	(http://energia.nu/).	After	setting	Energia	IDE	on	the	PC	(Ubuntu	is	preferred),	we
can	flash	the	robot	firmware	to	the	board.	We	will	get	the	firmware	code	and	the	ROS
interface	package	by	using	the	following	command:

$	git	clone	https://github.com/qboticslabs/Chefbot_ROS_pkg

The	folder	contains	a	folder	called	tiva_c_energia_code,	which	has	the	firmware	code
that	flashes	to	the	board	after	compilation	in	Energia	IDE.

The	firmware	can	read	the	encoder,	ultrasonic	sensor,	and	IMU	values,	and	can	receive
values	of	the	motor	velocity	command.

The	important	section	of	the	firmware	is	discussed	here.	The	programming	language	in	the
LaunchPad	is	the	same	as	Arduino.	Here	we	are	using	Energia	IDE	to	program	the
controller,	which	is	built	from	Arduino	IDE.

The	following	code	snippet	is	the	setup()	function	definition	of	the	code.	This	function
starts	serial	communication	with	a	baud	rate	of	115200.	It	also	configures	pins	of	motor
encoder,	motor	driver	pins,	ultrasonic	distance	sensor,	and	IMU.	Also,	through	this	code,
we	are	configuring	a	pin	to	reset	the	LaunchPad.

void	setup()

{

		

		//Init	Serial	port	with	115200	baud	rate

		Serial.begin(115200);		

		

		//Setup	Encoders

		SetupEncoders();

		//Setup	Motors

		SetupMotors();

		//Setup	Ultrasonic

		SetupUltrasonic();		

		//Setup	MPU	6050

		Setup_MPU6050();

		//Setup	Reset	pins

		SetupReset();

		//Set	up	Messenger	

		Messenger_Handler.attach(OnMssageCompleted);

		}

In	the	loop()	function,	the	sensor	values	are	continuously	polled	and	the	data	is	sent
through	serial	port	and	incoming	serial	data	are	continuously	polled	for	getting	the	robot
commands.	The	following	convention	protocols	are	used	to	send	each	sensor	value	from
the	LaunchPad	to	the	PC	using	serial	communication	(UART).

Serial	data	sending	protocol	from	LaunchPad	to	PC
For	the	encoder,	the	protocol	will	be	as	follows:

http://energia.nu/


				e<space><left_encoder_ticks><space><right_encoder_ticks>

For	the	ultrasonic	sensor,	the	protocol	will	be	as	follows:

				u<space><distance_in_centimeter>

For	IMU,	the	protocol	will	be	as	follows:

				i<space><value_of_x_quaternion><space><value_of_y_quaternion><space>

<value_of_z_quaternion><space><value_of_w_quaternion>

Serial	data	sending	protocol	from	PC	to	Launchpad
For	the	motor,	the	protocol	will	be	as	follows:

				s<space><pwm_value_of_motor_1><space><pwm_value_of_motor_2>

For	resetting	the	device,	the	protocol	will	be	as	follows:

r<space>

We	can	check	the	serial	values	from	the	LaunchPad	using	a	command	line	tool	called
miniterm.py.	This	tool	can	view	the	serial	data	coming	from	a	device.	This	script	is
already	installed	with	the	python-serial	package,	which	is	installed	along	with	the
rosserial-python	Debian	package.	The	following	command	will	display	the	serial	values
from	the	robot	controller:

$	miniterm.py	/dev/ttyACM0	115200

We	will	get	values	like	the	following	screenshot:

Figure	4:	Checking	serial	data	using	miniterm.py





Discussing	Chefbot	interface	packages	on	ROS
After	confirming	the	serial	values	from	the	board,	we	can	install	the	Chefbot	ROS
package.	The	Chefbot	package	contains	the	following	files	and	folders:

chefbot_bringup:	This	package	contains	python	scripts,	C++	nodes,	and	launch	files
to	start	publishing	robot	odometry	and	tf,	and	performing	gmapping	and	AMCL.	It
contains	the	python/C++	nodes	to	read/write	values	from	the	LaunchPad,	convert	the
encoder	ticks	to	tf,	and	twist	message	to	motor	commands.	It	also	has	the	PID	node
for	handling	velocity	commands	from	the	motor	commands.
chefbot_description:	This	package	contains	the	Chefbot	URDF	model.
chefbot_simulator:	This	package	contains	launch	files	to	simulate	the	robot	in
Gazebo.
chefbot_navig_cpp:	This	package	contains	C++	implementation	of	few	nodes	which
are	already	implemented	in	chefbot_bringup	as	the	python	node.

The	following	launch	file	will	start	the	robot	odometry	and	tf	publishing	nodes:

$	roslaunch	chefbot_bringup	robot_standalone.launch

The	following	figure	shows	the	nodes	started	by	this	launch	file	and	how	they	are
interconnected:

Figure	5:	Interconnection	of	each	nodes	in	Chefbot

The	nodes	run	by	this	launch	file	and	their	working	are	described	next:

launchpad_node.py:	We	know	that	this	robot	uses	Tiva	C	LaunchPad	board	as	its
controller.	This	node	acts	as	a	bridge	between	the	robot	controller	and	ROS.	The
basic	functionality	of	this	node	is	to	receive	serial	values	from	the	LaunchPad	and
convert	each	sensor	data	into	ROS	topics.	This	acts	as	the	ROS	driver	for	the
LaunchPad	board.



twist_to_motors.py:	This	node	converts	the	geometry_msgs/Twist	message	to
motor	velocity	targets.	It	subscribes	the	command	velocity,	which	is	either	from	a
teleop	node	or	from	a	ROS	Navigation	stack,	and	publishes	lwheel_vtarget	and
rwheel_vtarget.
pid_velocity.py:	This	node	subscribes	wheel_vtarget	from	the	twist_to_motors
node	and	the	wheel	topic,	which	is	the	encoder	ticks	from	launchpad_node.	We	have
to	start	two	PID	nodes	for	each	wheel	of	the	robot,	as	shown	in	the	previous	figure.
This	node	finally	generates	the	motor	speed	commands	for	each	motor.
diff_tf.py:	This	node	subscribes	the	encoder	ticks	from	the	two	motors	and
computes	odometry,	and	publishes	tf	for	the	Navigation	stack.

The	list	of	topics	generated	after	running	robot_standalone.launch	are	shown	in	the
following	image:

Figure	6:	List	of	topic	generated	when	executing	robot_standalone.launch

The	following	is	the	content	of	the	robot_standalone.launch	file:

<launch>

	<arg	name="simulation"	default="$(optenv	TURTLEBOT_SIMULATION	false)"/>

	<param	name="/use_sim_time"	value="$(arg	simulation)"/>

<!--	URDF	robot	model	-->



		<arg	name="urdf_file"	default="$(find	xacro)/xacro.py	'$(find	

chefbot_description)/urdf/chefbot_base.xacro'"	/>	

		<param	name="robot_description"	command="$(arg	urdf_file)"	/>

		<!--	important	generally,	but	specifically	utilised	by	the	current	app	

manager	-->

		<param	name="robot/name"	value="$(optenv	ROBOT	turtlebot)"/>

		<param	name="robot/type"	value="turtlebot"/>

<!--	Starting	robot	state	publisher	-->

		<node	pkg="robot_state_publisher"	type="robot_state_publisher"	

name="robot_state_publisher">

				<param	name="publish_frequency"	type="double"	value="5.0"	/>

		</node>

<!--	Robot	parameters	-->

		<rosparam	param="base_width">0.3</rosparam>

		<rosparam	param="ticks_meter">14865</rosparam>

<!--	Starting	launchpad_node	-->

		<node	name="launchpad_node"	pkg="chefbot_bringup"	

type="launchpad_node.py">

				<rosparam	file="$(find	chefbot_bringup)/param/serial.yaml"	

command="load"	/>

		</node>

<!--	PID	node	for	left	motor	,	setting	PID	parameters	-->

		<node	name="lpid_velocity"	pkg="chefbot_bringup"	type="pid_velocity.py"	

output="screen">

						<remap	from="wheel"	to="lwheel"/>

						<remap	from="motor_cmd"	to="left_wheel_speed"/>

						<remap	from="wheel_vtarget"	to="lwheel_vtarget"/>

						<remap	from="wheel_vel"	to="lwheel_vel"/>

				

						<rosparam	param="Kp">400</rosparam>

						<rosparam	param="Ki">100</rosparam>

						<rosparam	param="Kd">0</rosparam>

						<rosparam	param="out_min">-1023</rosparam>

						<rosparam	param="out_max">1023</rosparam>

						<rosparam	param="rate">30</rosparam>

						<rosparam	param="timeout_ticks">4</rosparam>

						<rosparam	param="rolling_pts">5</rosparam>

		</node>

<!--	PID	node	for	right	motor,	setting	PID	parameters	-->

		<node	name="rpid_velocity"	pkg="chefbot_bringup"	type="pid_velocity.py"	

output="screen">

						<remap	from="wheel"	to="rwheel"/>

						<remap	from="motor_cmd"	to="right_wheel_speed"/>

						<remap	from="wheel_vtarget"	to="rwheel_vtarget"/>

						<remap	from="wheel_vel"	to="rwheel_vel"/>

						<rosparam	param="Kp">400</rosparam>

						<rosparam	param="Ki">100</rosparam>

						<rosparam	param="Kd">0</rosparam>

						<rosparam	param="out_min">-1023</rosparam>

						<rosparam	param="out_max">1023</rosparam>



						<rosparam	param="rate">30</rosparam>

						<rosparam	param="timeout_ticks">4</rosparam>

						<rosparam	param="rolling_pts">5</rosparam>

	</node>

<!--	Starting	twist	to	motor	and	diff_tf	nodes	-->

		<node	pkg="chefbot_bringup"	type="twist_to_motors.py"	

name="twist_to_motors"	output="screen"/>

		<node	pkg="chefbot_bringup"	type="diff_tf.py"	name="diff_tf"	

output="screen"/>	

</launch>

After	running	robot_standalone.launch,	we	can	visualize	the	robot	in	RViz	using	the
following	command:

$	roslaunch	chefbot_bringup	view_robot.launch

We	will	see	the	robot	model	as	shown	in	this	next	screenshot:

Figure	7:	Visualization	of	robot	model	using	real	robot	values.

Launch	the	keyboard	teleop	node	and	we	can	start	moving	the	robot:

$	roslaunch	chefbot_bringup	keyboard_teleop.launch

Move	the	robot	using	the	keys	and	we	will	see	that	the	robot	is	moving	around.	If	we
enable	TF	of	the	robot	in	RViz,	we	can	view	the	odometry	as	shown	in	the	following
screenshot:



Figure	8:	Visualizing	robot	odometry

The	graph	of	the	connection	between	each	node	is	given	next.	We	can	view	it	using	the
rqt_graph	tool.

$	rqt_graph

Figure	9:	Interconnection	of	nodes	in	Chefbot

Till	now	we	have	discussed	the	Chefbot	interfacing	on	ROS.	The	coding	of	Chefbot	is



completely	done	in	Python.	There	are	some	nodes	implemented	in	C++	for	computing
odometry	from	the	encoder	ticks	and	generating	motor	speed	commands	from	the	twist
messages.



Computing	odometry	from	encoder	ticks
In	this	section,	we	will	see	the	C++	interpretation	of	the	diff_tf.py	node,	which
subscribes	the	encoder	data	and	computes	the	odometry,	and	publishes	the	odometry	and
tf	of	the	robot.	We	can	see	the	C++	interpretation	of	this	node,	called	diff_tf.cpp,	which
can	be	found	in	the	src	folder	of	a	package	named	chefbot_navig_cpp.

Discussed	next	are	the	important	code	snippets	of	this	code	and	their	explanations.	The
following	code	snippet	is	the	constructor	of	the	class	Odometry_calc.	This	class	contains
the	definition	of	computing	odometry.	The	following	code	declares	the	subscriber	for	the
left	and	right	wheel	encoders	along	with	the	publisher	for	odom	value:

Odometry_calc::Odometry_calc(){

		//Initialize	variables	used	in	the	node

			init_variables();

		ROS_INFO("Started	odometry	computing	node");

		//Subscribing	left	and	right	wheel	encoder	values

		l_wheel_sub	=	n.subscribe("/lwheel",10,	&Odometry_calc::leftencoderCb,	

this);

		

		r_wheel_sub	=	n.subscribe("/rwheel",10,	&Odometry_calc::rightencoderCb,	

this);

			//Creating	a	publisher	for	odom

				odom_pub	=	n.advertise<nav_msgs::Odometry>("odom",	50);			

				

		//Retrieving	parameters	of	this	node

		get_node_params();

}		

The	following	code	is	the	update	loop	of	computing	odometry.	It	computes	the	delta
distance	moved	and	the	angle	rotated	by	the	robot	using	the	encoder	values,	base	width	of
the	robot,	and	ticks	per	meter	of	the	encoder.	After	calculating	the	delta	distance	and	the
delta	theta,	we	can	compute	the	final	x,	y,	and	theta	using	the	standard	differential	drive
robot	equations.

		if	(	now	>	t_next)	{

				elapsed	=	now.toSec()	-	then.toSec();	

				if(enc_left	==	0){

						d_left	=	0;

						d_right	=	0;

				}

				else{

						d_left	=	(left	-	enc_left)	/	(	ticks_meter);

						d_right	=	(right	-	enc_right)	/	(	ticks_meter);

				}



				

				enc_left	=	left;

				enc_right	=	right;

				d	=	(d_left	+	d_right	)	/	2.0;

				th	=	(	d_right	-	d_left	)	/	base_width;

				

				dx	=	d	/elapsed;

				dr	=	th	/	elapsed;

				if	(	d	!=	0){

																		x	=	cos(	th	)	*	d;

																		y	=	-sin(	th	)	*	d;

																		//	calculate	the	final	position	of	the	robot

																		x_final	=	x_final	+	(	cos(	theta_final	)	*	x	-	sin(	

theta_final	)	*	y	);

																		y_final	=	y_final	+	(	sin(	theta_final	)	*	x	+	cos(	

theta_final	)	*	y	);

						}

							if(	th	!=	0)

														theta_final	=	theta_final	+	th;

After	computing	the	robot	position	and	the	orientation	from	the	preceding	code	snippet,
we	can	feed	the	odom	values	to	the	odom	message	header	and	in	the	tf	header,	which	will
publish	the	topics	in	/odom	and	/tf.

								geometry_msgs::Quaternion	odom_quat	;

								odom_quat.x	=	0.0;

								odom_quat.y	=	0.0;

								odom_quat.z	=	0.0;

										odom_quat.z	=	sin(	theta_final	/	2	);		

										odom_quat.w	=	cos(	theta_final	/	2	);

								//first,	we'll	publish	the	transform	over	tf

								geometry_msgs::TransformStamped	odom_trans;

								odom_trans.header.stamp	=	now;

								odom_trans.header.frame_id	=	"odom";

								odom_trans.child_frame_id	=	"base_footprint";

								odom_trans.transform.translation.x	=	x_final;

								odom_trans.transform.translation.y	=	y_final;

								odom_trans.transform.translation.z	=	0.0;

								odom_trans.transform.rotation	=	odom_quat;

								//send	the	transform

								odom_broadcaster.sendTransform(odom_trans);

								

								//next,	we'll	publish	the	odometry	message	over	ROS



								nav_msgs::Odometry	odom;

								odom.header.stamp	=	now;

								odom.header.frame_id	=	"odom";

								//set	the	position

								odom.pose.pose.position.x	=	x_final;

								odom.pose.pose.position.y	=	y_final;

								odom.pose.pose.position.z	=	0.0;

								odom.pose.pose.orientation	=	odom_quat;

								//set	the	velocity

								odom.child_frame_id	=	"base_footprint";

								odom.twist.twist.linear.x	=	dx;

								odom.twist.twist.linear.y	=	0;

								odom.twist.twist.angular.z	=	dr;

								//publish	the	message

								odom_pub.publish(odom);



Computing	motor	velocities	from	ROS	twist
message
The	C++	implementation	of	twist_to_motor.py	is	discussed	in	this	section.	This	node
will	convert	the	twist	message	(geometry_msgs/Twist)	to	motor	target	velocities.	The
topics	subscribing	by	this	node	is	the	twist	message	from	teleop	node	or	Navigation	stack
and	it	publishes	the	target	velocities	for	the	two	motors.	The	target	velocities	are	fed	into
the	PID	nodes,	which	will	send	appropriate	commands	to	each	motor.	The	CPP	file	name
is	twist_to_motor.cpp	and	you	can	get	it	from	the
chapter_9_codes/chefbot_navig_cpp/src	folder.

TwistToMotors::TwistToMotors()

{

		init_variables();

		get_parameters();

		

		ROS_INFO("Started	Twist	to	Motor	node");

		

		cmd_vel_sub	=	n.subscribe("cmd_vel_mux/input/teleop",10,	

&TwistToMotors::twistCallback,	this);

		

		pub_lmotor	=	n.advertise<std_msgs::Float32>("lwheel_vtarget",	50);

		pub_rmotor	=	n.advertise<std_msgs::Float32>("rwheel_vtarget",	50);

		

}

The	following	code	snippet	is	the	callback	function	of	the	twist	message.	The	linear
velocity	X	is	assigned	as	dx,	Y	as	dy,	and	angular	velocity	Z	as	dr.

void	TwistToMotors::twistCallback(const	geometry_msgs::Twist	&msg)

{

		ticks_since_target	=	0;

		

		dx	=	msg.linear.x;

		dy	=	msg.linear.y;

		dr	=	msg.angular.z;

}

After	getting	dx,	dy,	and	dr,	we	can	compute	the	motor	velocities	using	the	following
equations:

dx	=	(l	+	r)	/	2

dr	=	(r	-	l)	/	w

Here	r	and	l	are	the	right	and	left	wheel	velocities,	and	w	is	the	base	width.	The	preceding
equations	are	implemented	in	the	following	code	snippet.	After	computing	the	wheel
velocities,	it	is	published	to	the	lwheel_vtarget	and	rwheel_vtarget	topics.

		right	=	(	1.0	*	dx	)	+	(dr	*	w	/2);



		left	=	(	1.0	*	dx	)	-	(dr	*	w	/2);

		std_msgs::Float32	left_;

		std_msgs::Float32	right_;

		left_.data	=	left;

		right_.data	=	right;

		pub_lmotor.publish(left_);

		pub_rmotor.publish(right_);

		ticks_since_target	+=	1;

		ros::spinOnce();

Running	robot	stand	alone	launch	file	using	C++	nodes
The	following	command	can	launch	robot_stand_alone.launch,	which	uses	the	C++
nodes:

$	roslaunch	chefbot_navig_cpp	robot_standalone.launch



Configuring	the	Navigation	stack	for	Chefbot
After	setting	the	odometry	nodes,	the	base	controller	node,	and	the	PID	nodes,	we	need	to
configure	the	Navigation	stack	to	perform	SLAM	and	Adaptive	Monte	Carlo
Localization	(AMCL)	for	building	the	map,	localizing	the	robot,	and	performing
autonomous	navigation.

In	Chapter	4,	Using	the	ROS	MoveIt!	and	Navigation	Stack,	we	saw	the	basic	packages	in
the	Navigation	stack.	To	build	the	map	of	the	environment,	we	need	to	configure	mainly
two	nodes:	the	gmapping	node	for	performing	SLAM	and	the	move_base	node.	We	also
need	to	configure	the	global	planner,	the	local	planner,	the	global	cost	map,	and	the	local
cost	map	inside	the	Navigation	stack.	Let’s	see	the	configuration	of	the	gmapping	node
first.



Configuring	the	gmapping	node
The	gmapping	node	is	the	package	to	perform	SLAM	(http://wiki.ros.org/gmapping).

The	gmapping	node	inside	this	package	mainly	subscribes	and	publishes	the	following
topics:

The	following	are	the	subscribed	topics:

tf	(tf/tfMessage):	Robot	transform	that	relates	to	Kinect,	robot	base	and	odometry
scan	(sensor_msgs/LaserScan):	Laser	scan	data	that	is	required	to	create	the	map

The	following	are	the	published	topics:

map	(nav_msgs/OccupancyGrid):	Publishes	the	occupancy	grid	map	data
map_metadata	(nav_msgs/MapMetaData):	Basic	information	about	the	occupancy	grid

The	gmapping	node	is	highly	configurable	using	various	parameters.	The	gmapping	node
parameters	are	defined	inside	the
chapter_9_codes/chefbot/chefbot_bringup/launch/include/gmapping.launch.xml

file.	Following	is	a	code	snippet	of	this	file	and	its	uses:

<launch>

		<arg	name="scan_topic"	default="scan"	/>

<!--	Starting	gmapping	node	-->

		<node	pkg="gmapping"	type="slam_gmapping"	name="slam_gmapping"	

output="screen">

<!--	Frame	of	mobile	base	-->

				<param	name="base_frame"	value="base_footprint"/>

				<param	name="odom_frame"	value="odom"/>

<!--	The	interval	of	map	updation,	reducing	this	value	will	speed	of	map	

generation	but	increase	computation	load	-->

				<param	name="map_update_interval"	value="5.0"/>

<!--	Maximum	usable	range	of	laser/kinect	-->

				<param	name="maxUrange"	value="6.0"/>

<!--	Maximum	range	of	sensor,	max	range	should	be	>	maxUrange	-->

				<param	name="maxRange"	value="8.0"/>

				<param	name="sigma"	value="0.05"/>

				<param	name="kernelSize"	value="1"/>

</node>

</launch>

By	fine	tuning	these	parameters,	we	improve	the	accuracy	of	the	gmapping	node.

The	main	gmapping	launch	file	is	given	next.	It	is	placed	in
chefbot_bringup/launch/includes/gmapping_demo.launch.	This	launch	file	launches
the	openni_launch	file	and	the	depth_to_laserscan	node	to	convert	the	depth	image	to
laser	scan.	After	launching	the	Kinect	nodes,	it	launches	the	gmapping	node	and	the
move_base	configurations.

<launch>

<!--	Launches	3D	sensor	nodes	-->

		<include	file="$(find	chefbot_bringup)/launch/3dsensor.launch">

http://wiki.ros.org/gmapping


				<arg	name="rgb_processing"	value="false"	/>

				<arg	name="depth_registration"	value="false"	/>

				<arg	name="depth_processing"	value="false"	/>

				<arg	name="scan_topic"	value="/scan"	/>

		</include>

<!--	Start	gmapping	nodes	and	its	configurations	-->

		<include	file="$(find	

chefbot_bringup)/launch/includes/gmapping.launch.xml"/>

<!--	Start	move_base	node	and	its	configuration	-->

		<include	file="$(find	

chefbot_bringup)/launch/includes/move_base.launch.xml"/>

</launch>



Configuring	the	Navigation	stack	packages
The	next	node	we	need	to	configure	is	move_base.	Along	with	the	move_base	node,	we
need	to	configure	the	global	and	the	local	planners,	and	also	the	global	and	the	local	cost
maps.	We	will	first	look	at	the	launch	file	to	load	all	these	configuration	files.	The
following	launch	file	chefbot_bringup/launch/includes/move_base.launch.xml	will
load	all	the	parameters	of	move_base,	planners,	and	costmaps:

<launch>

		<arg	name="odom_topic"	default="odom"	/>	

<!--	Starting	move_base	node	-->

		<node	pkg="move_base"	type="move_base"	respawn="false"	name="move_base"	

output="screen">

<!--	common	parameters	of	global	costmap	-->

				<rosparam	file="$(find	

chefbot_bringup)/param/costmap_common_params.yaml"	command="load"	

ns="global_costmap"	/>

<!--	common	parameters	of	local	costmap	-->

				<rosparam	file="$(find	

chefbot_bringup)/param/costmap_common_params.yaml"	command="load"	

ns="local_costmap"	/>

<!--	local	cost	map	parameters	-->	

				<rosparam	file="$(find	

chefbot_bringup)/param/local_costmap_params.yaml"	command="load"	/>

<!--	global	cost	map	parameters	-->

				<rosparam	file="$(find	

chefbot_bringup)/param/global_costmap_params.yaml"	command="load"	/>

<!--	base	local	planner	parameters	-->

				<rosparam	file="$(find	

chefbot_bringup)/param/base_local_planner_params.yaml"	command="load"	/>

<!--	dwa	local	planner	parameters	-->

				<rosparam	file="$(find	

chefbot_bringup)/param/dwa_local_planner_params.yaml"	command="load"	/>

<!--	move_base	node	parameters	-->

				<rosparam	file="$(find	chefbot_bringup)/param/move_base_params.yaml"	

command="load"	/>

				<remap	from="cmd_vel"	to="/cmd_vel_mux/input/navi"/>

				<remap	from="odom"	to="$(arg	odom_topic)"/>

		</node>

</launch>

We	will	now	take	a	look	at	each	configuration	file	and	its	parameters.

Common	configuration	(local_costmap)	and	(global_costmap)
The	common	parameters	of	the	local	and	global	costmaps	are	discussed	in	this	section.



The	costmap	is	created	using	the	obstacles	present	around	the	robot.	Fine	tuning	the
parameters	of	the	costmap	can	increase	the	accuracy	of	map	generation.	The	customized
file	costmap_common_params.yaml	of	Chefbot	follows.	This	configuration	file	contains
the	common	parameters	of	both	the	global	and	the	local	cost	maps.	It	is	present	in	the
chefbot_bringup/param	folder.	For	more	about	costmap	common	parameters,	check
http://wiki.ros.org/costmap_2d/flat.

#The	maximum	value	of	height	which	has	to	be	taken	as	an	obstacle	

max_obstacle_height:	0.60		

#This	parameters	set	the	maximum	obstacle	range.	In	this	case,	the	robot	

will	only	look	at	obstacles	within	2.5	meters	in	front	of	robot	

obstacle_range:	2.5

#This	parameter	helps	robot	to	clear	out	space	in	front	of	it	upto	3.0	

meters	away	given	a	sensor	reading

raytrace_range:	3.0

#If	the	robot	is	circular,	we	can	define	the	robot	radius,	otherwise	we	

need	to	mention	the	robot	footprint

robot_radius:	0.45

#footprint:	[[-0.,-0.1],[-0.1,0.1],	[0.1,	0.1],	[0.1,-0.1]]

#This	parameter	will	actually	inflate	the	obstacle	up	to	this	distance	from	

the	actual	obstacle.	This	can	be	taken	as	a	tolerance	value	of	obstacle.	

The	cost	of	map	will	be	same	as	the	actual	obstacle	up	to	the	inflated	

value.	

inflation_radius:	0.50		

#This	factor	is	used	for	computing	cost	during	inflation

cost_scaling_factor:	5		

#We	can	either	choose	map	type	as	voxel	which	will	give	a	3D	view	of	the	

world,	or	the	other	type,	costmap	which	is	a	2D	view	of	the	map.	Here	we	

are	opting	voxel.

map_type:	voxel

#This	is	the	z_origin	of	the	map	if	it	voxel

origin_z:	0.0

#z	resolution	of	map	in	meters

z_resolution:	0.2

#No	of	voxel	in	a	vertical	column

z_voxels:	2

#This	flag	set	whether	we	need	map	for	visualization	purpose

publish_voxel_map:	false

#A	list	of	observation	source	in	which	we	get	scan	data	and	its	parameters

observation_sources:	scan

http://wiki.ros.org/costmap_2d/flat


#The	list	of	scan,	which	mention,	data	type	of	scan	as	LaserScan,	marking	

and	clearing	indicate	whether	the	laser	data	is	used	for	marking	and	

clearing	costmap.	

scan:	{data_type:	LaserScan,	topic:	scan,	marking:	true,	clearing:	true,	

min_obstacle_height:	0.0,	max_obstacle_height:	3}

After	discussing	the	common	parameters,	we	will	now	look	at	the	global	costmap
configuration.

Configuring	global	costmap	parameters
The	following	are	the	main	configurations	required	for	building	a	global	costmap.	The
definition	of	the	costmap	parameters	are	dumped	in	chefbot_bringup/param/
global_costmap_params.yaml.	The	following	is	the	definition	of	this	file	and	its	uses:

global_costmap:

			global_frame:	/map

			robot_base_frame:	/base_footprint

			update_frequency:	1.0

			publish_frequency:	0.5

			static_map:	true

			transform_tolerance:	0.5

The	global_frame	here	is	/map,	which	is	the	coordinate	frame	of	the	costmap.	The
robot_base_frame	parameter	is	/base_footprint;	it	is	the	coordinate	frame	in	which	the
costmap	should	reference	as	the	robot	base.	The	update_frequency	is	frequency	at	which
the	cost	map	runs	its	main	update	loop.	The	publishing_frequency	of	the	cost	map	is
given	as	publish_frequency,	which	is	0.5.	If	we	are	using	an	existing	map,	we	have	to
set	static_map	as	true,	otherwise	as	false.	The	transform_tolerance	is	the	rate	at
which	the	transform	has	to	perform.	The	robot	would	stop	if	the	transforms	are	not
updated	at	this	rate.

Configuring	local	costmap	parameters
Following	is	the	local	costmap	configuration	of	this	robot.	The	configuration	of	this	file	is
located	in	chefbot_bringup/param/local_costmap_params.yaml.

local_costmap:

			global_frame:	odom

			robot_base_frame:	/base_footprint

			update_frequency:	5.0

			publish_frequency:	2.0

			static_map:	false

			rolling_window:	true

			width:	4.0

			height:	4.0

			resolution:	0.05

			transform_tolerance:	0.5	

The	global_frame,	robot_base_frame,	publish_frequency,	and	static_map	are	the
same	as	the	global	costmap.	The	rolling_window	parameter	makes	the	costmap	centered
around	the	robot.	If	we	set	this	parameter	to	true,	we	will	get	a	costmap	that	is	built
centered	around	the	robot.	The	width	,	height,	and	resolution	parameters	are	the	width,



height,	and	resolution	of	the	costmap.

The	next	step	is	to	configure	the	base	local	planner.

Configuring	base	local	planner	parameters
The	main	function	of	the	base	local	planner	is	to	compute	the	velocity	commands	from	the
goal	sent	from	the	ROS	nodes.	This	file	mainly	contains	the	configurations	related	to
velocity,	acceleration,	and	so	on.	The	base	local	planner	configuration	file	of	this	robot	is
in	chefbot_bringup/param/base_local_planner_params.yaml.	The	definition	of	this
file	is	as	follows:

TrajectoryPlannerROS:

#	Robot	Configuration	Parameters,	these	are	the	velocity	limit	of	the	robot

		max_vel_x:	0.3

		min_vel_x:	0.1

#Angular	velocity	limit

		max_vel_theta:		1.0

		min_vel_theta:	-1.0

		min_in_place_vel_theta:	0.6

#These	are	the	acceleration	limits	of	the	robot		

		acc_lim_x:	0.5

		acc_lim_theta:	1.0

#	Goal	Tolerance	Parameters:	The	tolerance	of	robot	when	it	reach	the	goal	

position

		yaw_goal_tolerance:	0.3

		xy_goal_tolerance:	0.15

#	Forward	Simulation	Parameters

		sim_time:	3.0

		vx_samples:	6

		vtheta_samples:	20

#	Trajectory	Scoring	Parameters

		meter_scoring:	true

		pdist_scale:	0.6

		gdist_scale:	0.8

		occdist_scale:	0.01

		heading_lookahead:	0.325

		dwa:	true

#	Oscillation	Prevention	Parameters

		oscillation_reset_dist:	0.05

#	Differential-drive	robot	configuration	:	If	the	robot	is	holonomic	

configuration,	set	to	true	other	vice	set	to	false.	Chefbot	is	a	non	

holonomic	robot.

	

		holonomic_robot:	false

		max_vel_y:	0.0



		min_vel_y:	0.0

		acc_lim_y:	0.0

		vy_samples:	1

Configuring	DWA	local	planner	parameters
The	DWA	planner	is	another	local	planner	in	ROS.	Its	configuration	is	almost	the	same	as
the	base	local	planner.	It	is	located	in	chefbot_bringup/param/
dwa_local_planner_params.yaml.	We	can	either	use	the	base	local	planner	or	the	DWA
local	planner	for	our	robot.

Configuring	move_base	node	parameters
There	are	some	configurations	to	the	move_base	node	too.	The	move_base	node
configuration	is	placed	in	the	param	folder.	Following	is	the	definition	of
move_base_params.yaml:

#This	parameter	determine	whether	the	cost	map	need	to	shutdown	when	

move_base	in	inactive	state

shutdown_costmaps:	false

#The	rate	at	which	move	base	run	the	update	loop	and	send	the	velocity	

commands

controller_frequency:	5.0

#Controller	wait	time	for	a	valid	command	before	a	space-clearing	

operations

controller_patience:	3.0

#The	rate	at	which	the	global	planning	loop	is	running,	if	it	is	0,	planner	

only	plan	when	a	new	goal	is	received

planner_frequency:	1.0

#Planner	wait	time	for	finding	a	valid	path	befire	the	space-clearing	

operations

planner_patience:	5.0

#Time	allowed	for	oscillation	before	starting	robot	recovery	operations

oscillation_timeout:	10.0

#Distance	that	robot	should	move	to	be	considered	which	not	be	oscillating.	

Moving	above	this	distance	will	reset	the	oscillation_timeout

oscillation_distance:	0.2

#	local	planner	-	default	is	trajectory	rollout

base_local_planner:	"dwa_local_planner/DWAPlannerROS"

We	have	discussed	most	of	the	parameters	used	in	the	Navigation	stack,	the	gmapping
node,	and	the	move_base	node.	Now	we	can	start	running	a	gmapping	demo	for	building
the	map.

Start	the	robot’s	tf	nodes	and	base	controller	nodes:



$	roslaunch	chefbot_bringup	robot_standalone.launch

Start	the	gmapping	nodes	using	the	following	command:

$		roslaunch	chefbot_bringup	gmapping_demo.launch

This	gmapping_demo.launch	will	launch	the	3Dsensor,	which	launches	the	OpenNI
drivers	and	depth	to	the	laser	scan	node,	and	launches	gmapping	node	and	movebase	node
with	necessary	parameters.

We	can	launch	a	teleop	node	for	moving	the	robot	to	build	the	map	of	environment.	The
following	command	will	launch	the	teleop	node	for	moving	the	robot:

$	roslaunch	chefbot_bringup	keyboard_teleop.launch

We	can	see	the	map	building	in	RViz,	which	can	be	invoked	using	the	following
command:

$	roslaunch	chefbot_bringup	view_navigation.launch

We	are	testing	this	robot	in	a	plane	room;	we	can	move	robot	in	all	areas	inside	the	room.
If	we	move	the	robot	in	all	the	areas,	we	will	get	a	map	as	shown	in	the	following
screenshot:

Figure	10:	Creating	a	map	using	gmapping	is	shown	in	RViz

After	completing	the	mapping	process,	we	can	save	the	map	using	the	following
command:

$	rosrun	map_server	map_saver	-f	/home/lentin/room



The	map_server	package	in	ROS	contains	the	map_server	node,	which	provides	the
current	map	data	as	an	ROS	service.	It	provides	a	command	utility	called	map_saver,
which	helps	to	save	the	map.

It	will	save	the	current	map	as	two	files:	room.pgm	and	room.yaml.	The	first	one	is	the
map	data	and	the	next	is	its	meta	data	which	contains	the	map	file’s	name	and	its
parameters.	The	following	screenshot	shows	map	generation	using	the	map_server	tool,
which	is	saved	in	the	home	folder:

Figure	11:	Terminal	messages	while	saving	a	map

The	following	is	the	room.yaml:

image:	room.pgm

resolution:	0.010000

origin:	[-11.560000,	-11.240000,	0.000000]

negate:	0

occupied_thresh:	0.65

free_thresh:	0.196

The	definition	of	each	parameter	follows:

image:	The	image	contains	the	occupancy	data.	The	data	can	be	absolute	or	relative
to	the	origin	mentioned	in	the	YAML	file.
resolution:	This	parameter	is	the	resolution	of	the	map,	which	is	meters/pixels.
origin:	This	is	the	2D	pose	of	the	lower	left	pixel	in	the	map	as	(x,	y,	yaw)	in	which
yaw	as	counter	clockwise(yaw	=	0	means	no	rotation).
negate:	This	parameter	can	reverse	the	semantics	of	white/black	in	the	map	and	the
free	space/occupied	space	representation.
occupied_thresh:	This	is	the	threshold	deciding	whether	the	pixel	is	occupied	or
not.	If	the	occupancy	probability	is	greater	than	this	threshold,	it	is	considered	as	free
space.
free_thresh:	The	map	pixel	with	occupancy	probability	less	than	this	threshold	is
considered	completely	occupied.

After	mapping	the	environment,	we	can	quit	all	the	terminals	and	rerun	the	following
commands	to	start	AMCL.	Before	starting	the	amcl	nodes,	we	will	look	at	the
configuration	and	main	application	of	AMCL.



Understanding	AMCL
After	building	a	map	of	the	environment,	the	next	thing	we	need	to	implement	is
localization.	The	robot	should	localize	itself	on	the	generated	map.	We	have	worked	with
AMCL	in	Chapter	4,	Using	the	ROS	MoveIt!	and	Navigation	Stack.	In	this	section,	we	will
see	a	detailed	study	of	the	amcl	package	and	the	amcl	launch	files	used	in	Chefbot.

AMCL	is	probabilistic	localization	technique	for	robot	working	in	2D.	This	algorithm	uses
particle	filter	for	tracking	the	pose	of	the	robot	with	respect	to	the	known	map.	To	know
more	about	this	localization	technique,	you	can	refer	to	a	book	called	Probabilistic
Robotics	by	Thrun	(http://www.probabilistic-robotics.org/).

The	AMCL	algorithm	is	implemented	in	the	AMCL	ROS	package
(http://wiki.ros.org/amcl),	which	has	an	amcl	node	that	subscribes	the	scan
(sensor_msgs/LaserScan),	the	tf	(tf/tfMessage),	the	initial	pose
(geometry_msgs/PoseWithCovarianceStamped),	and	the	map
(nav_msgs/OccupancyGrid).

After	processing	the	sensor	data,	it	publishes	amcl_pose
(geometry_msgs/PoseWithCovarianceStamped),
particlecloud(geometry_msgs/PoseArray)	and	tf	(tf/Message).

The	amcl_pose	is	the	estimated	pose	of	the	robot	after	processing,	where	the	particle	cloud
is	the	set	of	pose	estimates	maintained	by	the	filter.

If	the	initial	pose	of	the	robot	is	not	mentioned,	the	particle	will	be	around	the	origin.	We
can	set	the	initial	pose	of	the	robot	in	RViz	using	the	2D	Pose	estimate	button.	We	can	see
the	amcl	launch	file	used	in	this	robot.	Following	is	the	main	launch	file	for	starting	amcl,
called	amcl_demo.launch:

<launch>

		<rosparam	command="delete"	ns="move_base"	/>

		<include	file="$(find	chefbot_bringup)/launch/3dsensor.launch">

				<arg	name="rgb_processing"	value="false"	/>

				<arg	name="depth_registration"	value="false"	/>

				<arg	name="depth_processing"	value="false"	/>

				

				<!--	We	must	specify	an	absolute	topic	name	because	if	not	it	will	be	

prefixed	by	"$(arg	camera)".

				<arg	name="scan_topic"	value="/scan"	/>

		</include>

		<!--	Map	server	-->

		<arg	name="map_file"	default="$(find	turtlebot_navigation)/maps/willow-

2010-02-18-0.10.yaml"/>

		<node	name="map_server"	pkg="map_server"	type="map_server"	args="$(arg	

map_file)"	/>

		<arg	name="initial_pose_x"	default="0.0"/>	<!--	Use	17.0	for	willow's	map	

in	simulation	-->

		<arg	name="initial_pose_y"	default="0.0"/>	<!--	Use	17.0	for	willow's	map	

in	simulation	-->

http://www.probabilistic-robotics.org/
http://wiki.ros.org/amcl


		<arg	name="initial_pose_a"	default="0.0"/>

		<include	file="$(find	chefbot_bringup)/launch/includes/amcl.launch.xml">

				<arg	name="initial_pose_x"	value="$(arg	initial_pose_x)"/>

				<arg	name="initial_pose_y"	value="$(arg	initial_pose_y)"/>

				<arg	name="initial_pose_a"	value="$(arg	initial_pose_a)"/>

		</include>

		<include	file="$(find	

chefbot_bringup)/launch/includes/move_base.launch.xml"/>

</launch>

The	preceding	launch	file	starts	the	3D	sensors	related	nodes,	the	map	server	for	providing
the	map	data,	the	amcl	node	for	performing	localization,	and	the	move_base	node	to	move
the	robot	from	the	commands	getting	from	higher	level.

The	complete	amcl	launch	parameters	are	mentioned	inside	another	sub	file	called
amcl.launch.xml.	It	is	placed	in	chefbot_bringup/launch/include.	Following	is	the
definition	of	this	file:

<launch>

		<arg	name="use_map_topic"		default="false"/>

		<arg	name="scan_topic"					default="scan"/>

		<arg	name="initial_pose_x"	default="0.0"/>

		<arg	name="initial_pose_y"	default="0.0"/>

		<arg	name="initial_pose_a"	default="0.0"/>

		<node	pkg="amcl"	type="amcl"	name="amcl">

				<param	name="use_map_topic"													value="$(arg	use_map_topic)"/>

		......................

		......................

				<!--	Increase	tolerance	because	the	computer	can	get	quite	busy	-->

				<param	name="transform_tolerance"							value="1.0"/>

				<param	name="recovery_alpha_slow"							value="0.0"/>

				<param	name="recovery_alpha_fast"							value="0.0"/>

				<param	name="initial_pose_x"												value="$(arg	initial_pose_x)"/>

				<param	name="initial_pose_y"												value="$(arg	initial_pose_y)"/>

				<param	name="initial_pose_a"												value="$(arg	initial_pose_a)"/>

				<remap	from="scan"																						to="$(arg	scan_topic)"/>

		</node>

</launch>

We	can	refer	the	ROS	amcl	package	wiki	for	getting	more	details	about	each	parameter.

We	will	see	how	to	localize	and	path	plan	the	robot	using	the	existing	map.

Rerun	the	robot	hardware	nodes	using	the	following	command:

$	roslaunch	chefbot_bringup	robot_standalone.launch

Run	the	amcl	launch	file	using	the	following	command:

$	roslaunch	chefbot_bringup	amcl_demo.launch	



map_file:=/home/lentin/room.yaml

We	can	launch	RViz	for	commanding	the	robot	to	move	to	a	particular	pose	on	the	map.

We	can	launch	RViz	for	navigation	using	the	following	command:

$	roslaunch	chefbot_bringup	view_navigation.launch

The	following	is	the	screenshot	of	RViz:

Figure	12:	Robot	autonomous	navigation	using	AMCL

We	will	see	more	about	each	option	in	RViz	and	how	to	command	the	robot	in	the	map	in
the	following	section.



Understanding	RViz	for	working	with	the
Navigation	stack
We	will	explore	various	GUI	options	inside	RViz	to	visualize	each	parameter	in	the
Navigation	stack.

2D	Pose	Estimate	button
The	first	step	in	RViz	is	to	set	the	initial	position	of	the	robot	on	the	map.	If	the	robot	is
able	to	localize	on	the	map	by	itself,	there	is	no	need	to	set	the	initial	position.	Otherwise,
we	have	to	set	the	initial	position	using	the	2D	Pose	Estimate	button	in	RViz,	as	shown	in
the	following	screenshot:



Figure	13:	RViz	2D	Pose	Estimate	button

Press	the	2D	Pose	Estimate	button	and	select	a	pose	of	the	robot	using	the	left	mouse
button,	as	shown	in	the	preceding	figure.	Check	if	the	actual	pose	of	the	robot	and	the
robot	model	in	RViz	are	the	same.	After	setting	the	pose,	we	can	start	path	plan	the	robot.

The	green	color	cloud	around	the	robot	is	the	particle	cloud	of	amcl.	If	the	particle	amount
is	high,	it	means	the	uncertainty	in	the	robot	position	is	high,	and	if	the	cloud	is	less,	it
means	that	uncertainty	is	low	and	the	robot	is	almost	sure	about	its	position.	The	topic
handling	the	robot’s	initial	pose	is:

Topic	Name:	initialpose
Topic	Type:	geometry_msgs/PoseWithCovarianceStamped

Visualizing	the	particle	cloud
The	particle	cloud	around	the	robot	can	be	enabled	using	the	PoseArray	display	topic.
Here	the	PoseArray	topic	is	/particlecloud	displayed	in	RViz.	The	PoseArray	type	is
renamed	as	Amcl	Particles.

Topic:	/particlecloud
Type:	geometry_msgs/PoseArray

Figure	14:	Visualizing	AMCL	particles

The	2D	Nav	Goal	button
The	2D	Nav	Goal	button	is	used	to	give	a	goal	position	to	the	move_base	node	in	the	ROS
Navigation	stack	through	RViz.	We	can	select	this	button	from	the	top	panel	of	RViz	and



can	give	the	goal	position	inside	the	map	by	left	clicking	the	map	using	the	mouse.	The
goal	position	will	send	to	the	move_base	node	for	moving	the	robot	to	that	location.

Topic:	move_base_simple/goal
Topic	Type:	geometry_msgs/PoseStamped

Figure	15	[	]:Setting	robot	goal	position	in	RViz	using	2D	Nav	Goal

Displaying	the	static	map
The	static	map	is	the	map	that	we	feed	into	the	map_server	node.	The	map_server	node
serves	the	static	map	in	the	/map	topic.

Topic:	/map
Type:	nav_msgs/GetMap

The	following	is	the	static	map	in	RViz:



Figure	16:	Visualizing	static	map	in	RViz

Displaying	the	robot	footprint
We	have	defined	the	robot	footprint	in	the	configuration	file	called
costmap_common_params.yaml.	This	robot	has	a	circular	shape,	and	we	have	given	the
radius	as	0.45	meters.	It	can	visualize	using	the	Polygon	display	type	in	RViz.	The
following	is	the	circular	footprint	of	the	robot	around	the	robot	model	and	its	topics:

Topic:
/move_base/global_costmap/obstacle_layer_footprint/footprint_stamped

Topic:
/move_base/local_costmap/obstacle_layer_footprint/footprint_stamped

Type:	geometry_msgs/Polygon



Figure	17:	global	and	local	robot	footprint	in	RViz

Displaying	the	global	and	local	cost	map
The	following	RViz	screenshot	shows	the	local	cost	map,	the	global	cost	map,	the	real
obstacles,	and	the	inflated	obstacles.	The	display	type	of	each	of	these	maps	is	map	itself.

Local	cost	map	topic:	/move_base/local_costmap/costmap
Local	cost	map	topic	type:	nav_msgs/OccupancyGrid
Global	cost	map	topic:	/move_base/global_costmap/costmap
Global	cost	map	topic	type:	nav_msgs/OccupancyGrid



Figure	18	:	Visualizing	global	and	local	map,	and	real	and	inflated	obstacle	in	RViz

To	avoid	collision	with	the	real	obstacles,	it	is	inflated	to	some	distance	from	real
obstacles	called	inflated	obstacle	as	per	the	values	in	the	configuration	files.	The	robot
only	plans	a	path	beyond	the	inflated	obstacle;	inflation	is	a	technique	to	avoid	collision
with	the	real	obstacles.

Displaying	the	global	plan,	local	plan,	and	planner	plan
The	global	plan	from	the	global	planner	is	shown	as	green	in	the	next	screenshot.	The
local	plan	is	shown	as	red	and	the	planner	plan	as	black.	The	local	plan	is	each	section	of
the	global	plan	and	the	planner	plan	is	the	complete	plan	to	the	goal.	The	global	plan	and
the	planner	plan	can	be	changed	if	there	are	any	obstacles.	The	plans	can	be	displayed
using	the	Path	display	type	in	RViz.

Global	plan	topic:	/move_base/DWAPlannerROS/global_plan
Global	plan	topic	type:	nav_msgs/Path
Local	plan	topic:	/move_base/DWAPlannerROS/local_plan
Local	plan	topic	type:	nav_msgs/Path
Planner	plan	topic:	/move_base/NavfnROS/plan
Planner	plan	topic	type:	nav_msgs/Path



Figure	19:	Visualizing	global,	local,	and	planner	plan	in	RViz

The	current	goal
The	current	goal	is	the	commanded	position	of	the	robot	using	the	2D	Nav	Goal	button	or
using	the	ROS	client	nodes.	The	red	arrow	indicates	the	current	goal	of	the	robot.

Topic:	/move_base/current_goal
Topic	type:	geometry_msgs/PoseStamped



Figure	20:	Visualizing	robot	goal	position



Obstacle	avoidance	using	the	Navigation	stack
The	Navigation	stack	can	avoid	a	random	obstacle	in	the	path.	The	following	is	a	scenario
where	we	have	placed	a	dynamic	obstacle	in	the	planned	path	of	the	robot.

The	first	figure	shows	a	path	planning	without	any	obstacle	on	the	path.	When	we	place	a
dynamic	obstacle	on	the	robot	path,	we	can	see	it	planning	a	path	by	avoiding	the	obstacle.

Figure	21:	Visualizing	obstacle	avoidance	capabilities	in	RViz



Working	with	Chefbot	simulation
The	chefbot_gazebo	simulator	package	is	available	along	with	the	chefbot_bringup
package,	and	we	can	simulate	the	robot	in	Gazebo.	We	will	see	how	to	build	a	room
similar	to	the	room	we	tested	with	hardware.	First	we	will	check	how	to	build	a	virtual
room	in	Gazebo.

Building	a	room	in	Gazebo
We	will	start	building	the	room	in	Gazebo,	save	into	Semantic	Description	Format
(SDF),	and	insert	in	the	Gazebo	environment.

Launch	Gazebo	with	Chefbot	robot	in	an	empty	world:

$	roslaunch	chefbot_gazebo	chefbot_empty_world.launch

It	will	open	the	Chefbot	model	in	an	empty	world	on	Gazebo.	We	can	build	the	room
using	walls,	windows,	doors,	and	stairs.

There	is	a	Building	Editor	in	Gazebo.	We	can	take	this	editor	from	the	menu	Edit	|
Building	Editor.	We	will	get	an	editor	in	Gazebo	viewport.

Figure	22:	Building	walls	in	Gazebo

We	can	add	walls	by	clicking	the	Add	Wall	option	on	the	left	side	pane	of	Gazebo.	In	the
Building	Editor,	we	can	draw	the	walls	by	clicking	the	left	mouse	button.	We	can	see
adding	walls	in	editor	will	build	real	3D	walls	in	Gazebo.	We	are	building	a	similar	layout
of	the	room	that	we	tested	for	the	real	robot.



Save	the	room	through	the	Save	As	option,	or	press	the	Done	button;	a	box	will	pop	up	to
save	the	file.	The	file	will	get	saved	in	the	.sdf	format.	We	can	save	this	example	as
final_room.

After	saving	the	room	file,	we	can	add	the	model	of	this	room	in	the	gazebo	model	folder,
so	that	we	can	access	the	model	in	any	simulation.

Adding	model	files	to	the	Gazebo	model	folder
The	following	procedure	is	to	add	a	model	to	the	gazebo	folder:

1.	 Locate	the	default	model	folder	of	Gazebo,	which	is	located	in	the	folder
~/.gazebo/models.

2.	 Create	a	folder	called	final_room	and	copy	final_room.sdf	inside	this	folder.	Also,
create	a	file	called	model.config,	which	contains	the	details	of	the	model	file.	The
definition	of	this	file	follows:

<?xml	version="1.0"?>

<model>

<!--	Name	of	model	which	is	displaying	in	Gazebo	-->

		<name>Test	Room</name>

		<version>1.0</version>

<!--	Model	file	name	-->

		<sdf	version="1.2">final_room.sdf</sdf>	

		<author>

				<name>Lentin	Joseph</name>

				<email>qboticslabs@gmail.com</email>

		</author>

		<description>

				A	test	room	for	performing	SLAM

		</description>

</model>

After	adding	this	model	in	the	model	folder,	restart	the	Gazebo	and	we	can	see	the	model
named	Test	Room	in	the	entry	in	the	Insert	tab,	as	shown	in	the	next	screenshot.	We	have
named	this	model	as	Test	Room	in	the	model.config	file;	that	name	will	show	on	this	list.
We	can	select	this	file	and	add	to	the	viewport,	as	shown	next:



Figure	23:	Inserting	the	walls	in	Chefbot	simulation

After	adding	to	the	viewport,	we	can	save	the	current	world	configuration.	Take	File	from
the	Gazebo	menu	and	Save	World	As	option.	Save	the	file	as	test_room.sdf	in	the
worlds	folder	of	the	chefbot_gazebo	ROS	package.

After	saving	the	world	file,	we	can	add	it	into	the	chefbot_empty_world.launch	file	and
save	this	launch	file	as	the	chefbot_room_world.launch	file,	which	is	shown	next:

		<include	file="$(find	gazebo_ros)/launch/empty_world.launch">

				<arg	name="use_sim_time"	value="true"/>

				<arg	name="debug"	value="false"/>

<!--	Adding	world	test_room.sdf	as	argument	-->	

				<arg	name="world_name"	value="$(find	

chefbot_gazebo)/worlds/test_room.sdf"/>	

		</include>

After	saving	this	launch	file,	we	can	start	the	launch	file	chefbot_room_world.launch	for
simulating	the	same	environment	as	the	hardware	robot.	We	can	add	obstacles	in	Gazebo
using	the	primitive	shapes	available	in	it.

Instead	of	launching	the	robot_standalone.launch	file	from	chefbot_bringup	for
hardware,	we	can	start	chefbot_room_world.launch	for	getting	the	same	environment	of
the	robot,	and	the	odom	and	tf	data	in	simulation.

$	roslaunch	chefbot_gazebo	chefbot_room_world.launch

Other	operations,	such	as	SLAM	and	AMCL,	have	the	same	procedure	as	we	followed	for
the	hardware.	The	following	launch	files	are	used	to	perform	SLAM	and	AMCL	in
simulation:



Running	SLAM	in	simulation:

$	roslaunch	chefbot_gazebo	gmapping_demo.launch

Running	the	Teleop	node:

$	roslaunch	chefbot_brinup	keyboard	keyboard_teleop.launch

Running	AMCL	in	simulation:

$	roslaunch	chefbot_gazebo	amcl_demo.launch



Sending	a	goal	to	the	Navigation	stack	from	a	ROS
node
We	have	seen	how	to	send	a	goal	position	to	a	robot	for	moving	it	from	point	A	to	B,	using
the	RViz	2D	Nav	Goal	button.	Now	we	will	see	how	to	command	the	robot	using
actionlib	client	and	ROS	C++	APIs.	Following	is	a	sample	package	and	node	for
communicating	with	Navigation	stack	move_base	node.

The	move_base	node	is	SimpleActionServer.	We	can	send	and	cancel	the	goals	to	the
robot	if	the	task	takes	a	lot	of	time	to	complete.

The	following	code	is	SimpleActionClient	for	the	move_base	node,	which	can	send	the
x,	y,	and	theta	from	the	command	line	arguments.	The	following	code	is	in	the
chefbot_bringup/src	folder	with	the	name	of	send_robot_goal.cpp:

#include	<ros/ros.h>

#include	<move_base_msgs/MoveBaseAction.h>

#include	<actionlib/client/simple_action_client.h>

#include	<tf/transform_broadcaster.h>

#include	<sstream>

#include	<iostream>

//Declaring	a	new	SimpleActionClient	with	action	of	

move_base_msgs::MoveBaseAction

typedef	

actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction>	

MoveBaseClient;

int	main(int	argc,	char**	argv){

		ros::init(argc,	argv,	"navigation_goals");

//Initiating	move_base	client

		MoveBaseClient	ac("move_base",	true);

//Waiting	for	server	to	start

		while(!ac.waitForServer(ros::Duration(5.0))){

				ROS_INFO("Waiting	for	the	move_base	action	server");

		}

//Declaring	move	base	goal

		move_base_msgs::MoveBaseGoal	goal;

//Setting	target	frame	id	and	time	in	the	goal	action

		goal.target_pose.header.frame_id	=	"map";

		goal.target_pose.header.stamp	=	ros::Time::now();

//Retrieving	pose	from	command	line	other	vice	execute	a	default	value

		try{

				goal.target_pose.pose.position.x	=	atof(argv[1]);

				goal.target_pose.pose.position.y	=	atof(argv[2]);

				goal.target_pose.pose.orientation.w	=	atof(argv[3]);

					}

		catch(int	e){

				goal.target_pose.pose.position.x	=	1.0;

				goal.target_pose.pose.position.y	=	1.0;

				goal.target_pose.pose.orientation.w	=	1.0;

		}



		ROS_INFO("Sending	move	base	goal");

//Sending	goal

		ac.sendGoal(goal);

		ac.waitForResult();

		if(ac.getState()	==	actionlib::SimpleClientGoalState::SUCCEEDED)

				ROS_INFO("Robot	has	arrived	to	the	goal	position");

		else{

				ROS_INFO("The	base	failed	for	some	reason");

		}

		return	0;

}	

The	following	lines	are	added	to	CMakeLists.txt	for	building	this	node:

add_executable(send_goal	src/send_robot_goal.cpp)

target_link_libraries(send_goal		${catkin_LIBRARIES}		)

Build	the	package	using	catkin_make	and	test	the	working	of	the	client	using	the
following	set	of	commands	using	Gazebo.

Start	Gazebo	simulation	in	a	room:

$	roslaunch	chefbot_gazebo	chefbot_room_world.launch

Start	the	amcl	node	with	the	generated	map:

$	roslaunch	chefbot_gazebo	amcl_demo.launch	map_file:=final_room.yaml

Start	RViz	for	navigation:

$	roslaunch	chefbot_bringup	view_navigation.launch

Run	the	send	goal	node	for	sending	the	move	base	goal:

$	rosrun	chefbot_bringup	send_goal	1	0	1	

We	will	see	the	red	arrow	appear	when	this	node	runs,	which	shows	that	the	pose	is	set	on
RViz.

Figure	24:	Sending	a	goal	to	move_base	node	from	C++	APIs



After	completing	the	operation,	we	will	see	the	following	messages	in	the	send	goal
terminal:

Figure	25:	Terminal	messages	printing	when	a	goal	is	send	from	action	client

We	will	get	the	desired	pose	of	the	robot	in	the	map	by	using	the	RViz	2D	Nav	goal
button.	Simply	echoing	the	topic	/move_base/goal	will	print	the	pose	that	we	commanded
through	RViz.	We	can	use	these	values	as	command	line	arguments	in	the	send_goal
node.





Questions
1.	 What	are	the	basic	requirements	for	working	with	ROS	Navigation	stack?
2.	 What	are	the	main	configuration	files	for	working	with	ROS	Navigation	stack?
3.	 How	does	AMCL	package	in	ROS	work?
4.	 What	are	the	methods	to	send	a	goal	pose	to	Navigation	stack?





Summary
In	this	chapter,	we	mainly	covered	interfacing	a	DIY	autonomous	mobile	robot	to	ROS
and	navigation	package.	We	saw	an	introduction	of	this	robot	and	the	necessary
components	and	connection	diagrams	of	the	same.	We	saw	the	robot	firmware	and	how	to
flash	it	into	the	real	robot.	After	flashing	the	firmware,	we	learned	how	to	interface	it	to
ROS	and	saw	the	Python	nodes	for	interfacing	the	LaunchPad	controller	in	the	robot	and
the	nodes	for	converting	twist	message	to	motor	velocities	and	encoder	ticks	to	odom	and
tf.

After	discussing	the	interconnection	of	the	Chefbot	nodes,	we	covered	the	C++	port	of
some	important	nodes	for	odometry	calculation	and	the	base	controller	node.	After
discussing	these	nodes,	we	saw	detailed	configurations	of	the	ROS	Navigation	stack.	We
also	did	gmapping.	AMCL	and	came	into	detail	description	of	each	options	in	RViz	for
working	with	Navigation	stack.	We	also	covered	the	obstacle	avoidance	using	the
Navigation	stack	and	worked	with	Chefbot	simulation.	We	set	up	a	similar	environment	in
Gazebo	like	the	environment	of	the	real	robot	and	went	through	the	steps	to	perform
SLAM	and	AMCL.	At	the	end	of	this	chapter,	we	saw	how	we	can	send	a	goal	pose	to	the
Navigation	stack	using	actionlib.





Chapter	10.	Exploring	the	Advanced
Capabilities	of	ROS-MoveIt!
In	the	previous	chapter,	we	covered	ROS	navigation	stack	and	interfacing	a	mobile	robotic
hardware	to	the	navigation	stack.	Similarly,	in	this	chapter,	we	are	going	to	cover	the
capabilities	of	MoveIt!,	such	as	collision	avoidance,	perception	using	3D	sensors,
grasping,	picking,	and	placing.	After	this,	we	will	see	the	interfacing	of	a	robotic
manipulator	hardware	to	MoveIt!.

The	following	are	the	main	topics	discussed	in	this	chapter:

Motion	planning	of	arm	using	MoveIt!	C++	APIs
Working	with	collision	checking	in	robot	arm	using	MoveIt!
Working	with	perception	in	MoveIt!	and	Gazebo
Understanding	grasping	using	the	moveit_simple_grasps	ROS	package
Simple	robot	pick	and	place	using	MoveIt!
Understanding	Dynamixel	ROS	servo	controllers	for	robot	hardware	interfacing
Interfacing	7-DOF	Dynamixel	based	robotic	arm	to	ROS	MoveIt!

In	Chapter	3,	Simulating	Robots	Using	ROS	and	Gazebo	and	Chapter	4,	Using	the	ROS
MoveIt!	and	Navigation	Stack,	we	discussed	MoveIt!	and	how	to	simulate	an	arm	in
Gazebo	and	motion	plan	using	MoveIt!.	In	this	chapter,	we	can	see	some	of	the	advanced
capabilities	of	MoveIt!	and	how	to	interface	a	real	robotic	manipulator	to	ROS	MoveIt!.

The	first	topic	that	we	are	going	to	discuss	is	how	to	motion	plan	our	robot	using	MoveIt!
C++	APIs.



Motion	planning	using	the	move_group
C++	interface
In	Chapter	4,	Using	the	ROS	MoveIt!	and	Navigation	Stack,	we	discussed	about	how	to
interact	with	a	robot	arm	and	how	to	plan	its	path	using	MoveIt!	RViz	motion	planning
plugin.	In	this	section,	we	will	see	how	to	program	the	robot	motion	using	the	move_group
C++	APIs.	Motion	planning	using	RViz	can	also	be	done	programmatically	through	the
move_group	C++	APIs.

The	first	step	to	start	working	with	C++	APIs	is	to	create	another	ROS	package	that	has
the	MoveIt!	packages	as	dependencies.	You	can	get	an	existing	package
seven_dof_arm_test	from	chapter_10_codes/.	We	can	create	this	same	package	using
the	following	command:

$	catkin_create_pkg	seven_dof_arm_test	catkin	cmake_modules	

interactive_markers	moveit_core	moveit_ros_perception	

moveit_ros_planning_interface	pluginlib	roscpp	std_msgs



Motion	planning	a	random	path	using	MoveIt!
C++	APIs
The	first	example	that	we	are	going	to	see	is	random	motion	planning	using	MoveIt!	C++
APIs.	You	will	get	the	code	named	test_random.cpp	from	the	src	folder.	The	code	and
the	description	of	each	line	follows.	When	we	execute	this	node,	it	will	plan	a	random
path	and	execute	it:

//MoveIt!	header	file

#include	<moveit/move_group_interface/move_group.h>

int	main(int	argc,	char	**argv)

{

		ros::init(argc,	argv,	

"test_random_node",ros::init_options::AnonymousName);

		//	start	a	ROS	spinning	thread

		ros::AsyncSpinner	spinner(1);

		spinner.start();

		//	this	connects	to	a	running	instance	of	the	move_group	node

		//	Here	the	Planning	group	is	"arm"

		move_group_interface::MoveGroup	group("arm");

		//	specify	that	our	target	will	be	a	random	one

		group.setRandomTarget();

		//	plan	the	motion	and	then	move	the	group	to	the	sampled	target

		group.move();

		ros::waitForShutdown();

}

To	build	the	source	code,	we	should	add	the	following	lines	of	code	to	CMakeLists.txt.
You	will	get	the	complete	CMakeLists.txt	file	from	the	existing	package	itself:

add_executable(test_random_node	src/test_random.cpp)

add_dependencies(test_random_node	seven_dof_arm_test_generate_messages_cpp)

target_link_libraries(test_random_node

${catkin_LIBRARIES}	)

We	can	build	the	package	using	the	catkin_make	command.	Check	whether
test_random.cpp	is	built	properly	or	not.	If	the	code	is	built	properly,	we	can	start	testing
the	code.

The	following	command	will	start	the	RViz	with	7-DOF	arm	with	motion	planning	plugin:

$	roslaunch	seven_dof_arm_config	demo.launch

Move	the	end-effector	to	check	whether	everything	is	working	properly	in	RViz.

Run	the	C++	node	for	planning	to	a	random	position	using	the	following	command:

$	rosrun	seven_dof_arm_test	test_random_node

The	output	of	RViz	is	shown	next.	The	arm	will	select	a	random	position	that	has	a	valid
IK	and	motion	plan	from	the	current	position:



Figure	1:	Random	motion	planning	using	move_group	APIs



Motion	planning	a	custom	path	using	MoveIt!	C++
APIs
We	saw	random	motion	planning	in	the	preceding	example.	In	this	section,	we	will	check
how	to	command	the	robot	end-effector	to	move	to	a	custom	goal	position.	The	following
example	test_custom.cpp	will	do	that	job:

//Move	It	header	files

#include	<moveit/move_group_interface/move_group.h>

#include	<moveit/planning_scene_interface/planning_scene_interface.h>

#include	<moveit_msgs/DisplayRobotState.h>

#include	<moveit_msgs/DisplayTrajectory.h>

#include	<moveit_msgs/AttachedCollisionObject.h>

#include	<moveit_msgs/CollisionObject.h>

int	main(int	argc,	char	**argv)

{

		ros::init(argc,	argv,	"test_custom_node");

		ros::NodeHandle	node_handle;

		ros::AsyncSpinner	spinner(1);

		spinner.start();

		moveit::planning_interface::MoveGroup	group("arm");

		moveit::planning_interface::PlanningSceneInterface	

planning_scene_interface;

		ros::Publisher	display_publisher	=	

node_handle.advertise<moveit_msgs::DisplayTrajectory>

("/move_group/display_planned_path",	1,	true);

		moveit_msgs::DisplayTrajectory	display_trajectory;

		///Setting	custom	goal	position

		geometry_msgs::Pose	target_pose1;

		target_pose1.orientation.w	=	0.726282;

		target_pose1.orientation.x=	4.04423e-07;

		target_pose1.orientation.y	=	-0.687396;

		target_pose1.orientation.z	=	4.81813e-07;

		target_pose1.position.x	=	0.0261186;

		target_pose1.position.y	=	4.50972e-07;

		target_pose1.position.z	=	0.573659;

		group.setPoseTarget(target_pose1);

		///Motion	plan	from	current	location	to	custom	position

		moveit::planning_interface::MoveGroup::Plan	my_plan;

		bool	success	=	group.plan(my_plan);

		ROS_INFO("Visualizing	plan	1	(pose	goal)	%s",success?"":"FAILED");

		/*	Sleep	to	give	RViz	time	to	visualize	the	plan.	*/

		sleep(5.0);

		ros::shutdown();

		return	0;

}

The	following	are	the	extra	lines	of	code	added	on	CMakeLists.txt	for	building	the
source	code:

add_executable(test_custom_node	src/test_custom.cpp)

add_dependencies(test_custom_node	seven_dof_arm_test_generate_messages_cpp)



target_link_libraries(test_custom_node

${catkin_LIBRARIES}	)

Following	is	the	command	to	execute	the	custom	node:

$	rosrun	seven_dof_arm_test	test_custom_node

The	following	screenshot	shows	the	result	of	test_custom_node:

Figure	2:	Custom	motion	planning	using	MoveIt!	C++	APIs





Collision	checking	in	robot	arm	using
MoveIt!
Along	with	motion	planning	and	IK	solving	algorithm,	one	of	the	important	tasks	that	is
done	in	parallel	in	MoveIt!	is	collision	checking	and	its	avoidance.	The	collision	can	be
self	collision	or	environmental	collision.	MoveIt!	can	handle	both	the	environment
collision	and	the	self	collision.	The	MoveIt!	package	is	inbuilt	with	FCL	(Flexible
Collision	Library)
(http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.html),	which	is	an	open
source	project	that	implements	various	collision	detection	and	avoidance	algorithms.
MoveIt!	takes	the	power	of	FCL	and	handles	collision	inside	planning	scene	using	a
collision_detection::CollisionWorld	class.	The	MoveIt!	collision	checking	includes
objects	such	as	meshes,	primitives	shapes	such	as	boxes	and	cylinders,	and	OctoMap.	The
OctoMap	(http://octomap.github.io/)	library	implements	a	3D	occupancy	grid	called
octree	that	consists	of	probabilistic	information	of	obstacles	in	the	environment.	The
MoveIt!	package	can	build	an	OctoMap	using	3D	point	cloud	information	and	can	directly
feed	the	OctoMap	to	FCL	for	collision	checking.

Similar	to	motion	planning,	collision	checking	is	also	very	computationally	intensive.	We
can	fine	tune	the	collision	checking	between	two	bodies,	say	a	robot	link	or	with	the
environment,	using	a	parameter	called	ACM	(Allowed	Collision	Matrix).	If	the	value	of
a	collision	between	two	links	is	set	to	1	in	ACM,	there	will	not	be	any	collision	checks.
We	may	set	this	for	links	that	are	far	from	each	other.	We	can	optimize	the	collision
checking	process	by	optimizing	this	matrix.

http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.html
http://octomap.github.io/


Adding	a	collision	object	in	MoveIt!
We	can	add	a	collision	object	to	the	MoveIt!	planning	scene	and	can	see	how	the	motion
planning	works.	For	adding	a	collision	object,	we	can	use	mesh	files,	which	can	directly
be	imported	from	the	MoveIt!	interface,	and	also	can	be	added	by	writing	a	ROS	node
using	MoveIt!	APIs.

We	will	first	discuss	how	to	add	a	collision	object	using	the	ROS	node:

1.	 In	the	node	add_collision_objct.cpp	which	is	inside	the	seven_dof_arm_test/src
folder,	we	are	starting	an	ROS	node	and	creating	an	object	of
moveit::planning_interface::PlanningSceneInterface,	which	can	access	the
planning	scene	of	MoveIt!	and	can	perform	any	action	on	the	current	scene.	We	are
adding	a	sleep	of	5	seconds	to	wait	for	the	planningSceneIntertface	object
instantiation:

moveit::planning_interface::PlanningSceneInterface	current_scene;

sleep(5.0);

2.	 In	the	next	step,	we	need	to	create	an	instance	of	the	collision	object	message
moveit_msgs::CollisionObject.	This	message	is	going	to	be	sent	to	the	current
planning	scene.	Here	we	are	making	a	collision	object	message	for	a	cylinder	shape
and	the	message	is	given	as	seven_dof_arm_cylinder.	When	we	add	this	object	to
the	planning	scene,	the	name	of	the	object	is	its	ID:

moveit_msgs::CollisionObject	cylinder;

cylinder.id	=	"seven_dof_arm_cylinder";

3.	 After	making	the	collision	object	message,	we	have	to	define	another	message	of
type	shape_msgs::SolidPrimitive,	which	is	used	to	define	what	kind	of	primitive
shape	we	are	using	and	its	properties.	In	this	example,	we	are	creating	a	cylinder
object	as	shown	next.	We	have	to	define	the	type	of	shape,	the	resizing	factor,	the
width,	and	the	height	of	the	cylinder:

shape_msgs::SolidPrimitive	primitive;

primitive.type	=	primitive.CYLINDER;

primitive.dimensions.resize(3);

primitive.dimensions[0]	=	0.6;

primitive.dimensions[1]	=	0.2;

4.	 After	creating	the	shape	message,	we	have	to	create	a	geometry_msgs::Pose
message	to	define	the	pose	of	this	object.	We	define	a	pose	which	may	be	closer	to
robot.	We	can	change	the	pose	after	the	creation	of	the	object	in	the	planning	scene:

geometry_msgs::Pose	pose;

pose.orientation.w	=	1.0;

pose.position.x	=		0.0;

pose.position.y	=	-0.4;

pose.position.z	=		-0.4;

5.	 After	defining	the	pose	of	the	collision	object,	we	need	to	add	the	defined	primitive
object	and	the	pose	to	the	cylinder	collision	object.	The	operation	we	need	to



perform	is	adding	the	planning	scene:

cylinder.primitives.push_back(primitive);

cylinder.primitive_poses.push_back(pose);

cylinder.operation	=	cylinder.ADD;

6.	 In	the	next	step,	we	create	a	vector	called	collision_objects	of	type
moveit_msgs::CollisionObject.	After	creating	the	vector,	we	push	the	collision
object	to	this	vector:

std::vector<moveit_msgs::CollisionObject>	collision_objects;

collision_objects.push_back(cylinder);

7.	 After	pushing	the	collision	object,	we	will	add	this	vector	to	the	current	planning
scene	using	the	following	line	of	code.	addCollisionObjects()	inside	the
PlanningSceneInterface	class	is	used	to	add	the	object	to	the	planning	scene:

current_scene.addCollisionObjects(collision_objects);

Following	are	the	compile	and	build	lines	of	the	code	in	CMakeLists.txt:

add_executable(add_collision_objct	src/add_collision_objct.cpp)

add_dependencies(add_collision_objct	

seven_dof_arm_test_generate_messages_cpp)

target_link_libraries(add_collision_objct

${catkin_LIBRARIES}	)

Let’s	see	how	this	node	works	in	RViz	with	MoveIt!	motion	planning	Plugin:

1.	 We	will	start	demo.launch	inside	the	seven_dof_arm_config	package	for	testing	this
node:

$	roslaunch	seven_dof_arm_config	demo.launch

2.	 Next,	add	the	following	collision	object:

$	rosrun	seven_dof_arm_test	add_collision_objct

When	we	run	the	add_collision_objct	node,	a	green	cylinder	will	pop	up	and	we	can
move	the	collision	object	as	shown	in	the	following	screenshot.	When	the	collision	object
is	successfully	added	to	the	planning	scene,	it	will	list	out	in	the	Scene	Objects	tab.	We
can	click	on	the	object	and	modify	its	pose.	We	can	also	attach	the	new	model	in	any	links
of	robots	too.	There	is	a	Scale	option	to	scale	down	the	collision	model:



Figure	3	:	Adding	collision	objects	to	RViz	using	MoveIt!!	C++	APIs

The	RViz	Motion	Planning	plugin	also	gives	an	option	to	import	a	3D	mesh	to	the
planning	scene.	Click	the	Import	File	button	for	importing	the	meshes.	The	following
image	shows	our	importing	a	cube	mesh	DAE	file,	which	is	imported	along	with	the
cylinder	in	the	planning	scene:



Figure	4:	Adding	collision	objects	by	importing	meshes

We	can	scale	up	the	collision	object	using	the	Scale	slider	and	set	the	desired	pose	using
the	Manage	Pose	option.	When	we	move	the	arm	end	effector	to	any	of	these	collision
objects,	MoveIt!	detects	it	as	collision.	The	MoveIt!	collision	detection	can	detect
environment	collision	as	well	as	self	collision.	Following	is	a	snapshot	of	a	collision	with
the	environment:

Figure	5:	Visualizing	collided	link.

The	collided	link	will	turn	red	when	the	arm	touches	the	object.	In	self	collision	also,	the
collided	link	will	turn	red.	We	can	change	the	color	setting	of	the	collision	in	the	Motion
Planning	plugin	settings.



Removing	a	collision	object	from	the	planning
scene
Removing	the	collision	object	from	the	planning	scene	is	pretty	easy.	We	have	to	create	an
object	of	moveit::planning_interface::PlanningSceneInterface,	like	we	did	in	the
previous	example,	along	with	some	delay:

moveit::planning_interface::PlanningSceneInterface	current_scene;

sleep(5.0);

Next,	create	a	vector	of	the	string	that	contains	the	collision	object	IDs.	Here	our	collision
object	ID	is	seven_dof_arm_cylinder.	After	pushing	the	string	to	this	vector,	we	will	call
removeCollisionObjects(object_ids),	which	will	remove	the	collision	objects	from	the
planning	scene:

std::vector<std::string>	object_ids;

object_ids.push_back("seven_dof_arm_cylinder");

current_scene.removeCollisionObjects(object_ids);

This	code	is	placed	in	seven_dof_arm_test/src/remove_collision_objct.cpp.



Checking	self	collision	using	MoveIt!	APIs
We	have	seen	how	to	detect	collision	in	RViz,	but	what	do	we	have	to	do	if	we	want	to	get
collision	information	in	our	ROS	node.	In	this	section,	we	will	discuss	how	to	get	the
collision	information	of	our	robot	in	an	ROS	code.	This	example	can	check	self	collision
and	environment	collision,	and	also	tell	which	links	were	collided.	The	example	called
check_collision.cpp	is	placed	in	the	seven_dof_arm_test/src	folder.	This	code	is	a
modified	version	of	the	collision	checking	example	of	PR2	MoveIt!	robot	tutorials
(https://github.com/ros-planning/moveit_pr2/tree/indigo-devel/pr2_moveit_tutorials).

In	this	code,	the	following	snippet	loads	the	kinematic	model	of	the	robot	to	the	planning
scene:

robot_model_loader::RobotModelLoader	

robot_model_loader("robot_description");

robot_model::RobotModelPtr	kinematic_model	=	robot_model_loader.getModel();

planning_scene::PlanningScene	planning_scene(kinematic_model);

To	test	self	collision	in	the	robot’s	current	state,	we	can	create	two	instances	of	class
collision_detection::CollisionRequest	and
collision_detection::CollisionResult,	which	have	the	name	of	collision_request
and	collision_result.	After	creating	these	objects,	pass	it	MoveIt!	collision	checking
function,	planning_scene.checkSelfCollision(),	which	can	give	the	collision	result	in
collision_result	object	and	we	can	print	the	details,	which	are	shown	next:

planning_scene.checkSelfCollision(collision_request,	collision_result);

ROS_INFO_STREAM("1.	Self	collision	Test:	"<<	(collision_result.collision	?	

"in"	:	"not	in")

<<	"	self	collision");

If	we	want	to	test	collision	in	a	particular	group,	we	can	do	that	by	mentioning
group_name	as	shown	next.	Here	group_name	is	arm:

collision_request.group_name	=	"arm";

current_state.setToRandomPositions();

//Previous	results	should	be	cleared

collision_result.clear();

planning_scene.checkSelfCollision(collision_request,	collision_result);

ROS_INFO_STREAM("3.	Self	collision	Test(In	a	group):	"<<	

(collision_result.collision	?	"in"	:	"not	in"));

For	performing	a	full	collision	check,	we	have	to	use	the	following	function	called
planning_scene.checkCollision().	We	need	to	mention	the	current	robot	state	and	the
ACM	matrix	in	this	function.

The	following	is	the	code	snippet	to	perform	full	collision	checking	using	this	function:

collision_detection::AllowedCollisionMatrix	acm	=	

planning_scene.getAllowedCollisionMatrix();

robot_state::RobotState	copied_state	=	planning_scene.getCurrentState();

planning_scene.checkCollision(collision_request,	collision_result,	

copied_state,	acm);

ROS_INFO_STREAM("6.	Full	collision	Test:	"<<	(collision_result.collision	?	

https://github.com/ros-planning/moveit_pr2/tree/indigo-devel/pr2_moveit_tutorials


"in"	:	"not	in")

<<	"	collision");

We	can	launch	the	demo	of	motion	planning	and	run	this	node	using	the	following
command:

$	roslaunch	seven_dof_arm_config	demo.launch

Run	the	collision	checking	node:

$	roslaunch	seven_dof_arm_test	check_collision

You	will	get	a	report	such	as	the	one	shown	in	the	following	image.	The	robot	is	now	not
in	collision;	if	it	is	in	collision,	it	will	send	a	report	of	it:

Figure	6:	Collision	information	messages.





Working	with	perception	using	MoveIt!
and	Gazebo
Till	now,	in	MoveIt!,	we	have	worked	with	arm	only.	In	this	section,	we	will	see	how	to
interface	a	3D	vision	sensor	data	to	MoveIt!.	The	sensor	can	be	either	simulated	using
Gazebo	or	you	can	directly	interface	an	RGB-D	sensor	such	as	Kinect	or	Xtion	Pro	using
the	openni_launch	package.	Here	we	will	work	using	Gazebo	simulation.

We	will	add	sensors	to	MoveIt!	for	vision	assisted	pick	and	place.	We	will	create	a	grasp
table	and	a	grasp	object	in	gazebo	for	the	pick	and	place	operation.	We	will	add	two
custom	models	called	grasp_table	and	grasp_object.	The	sample	models	are	located
along	with	the	chapter	codes	and	it	should	copy	to	the	~/.gazebo/models	folder	for
accessing	the	models	from	gazebo.

The	following	command	will	launch	the	robot	arm	and	the	Asus	Xtion	pro	simulation	in
gazebo:

$	roslaunch	seven_dof_arm_gazebo	seven_dof_arm_bringup_grasping

This	command	will	open	up	gazebo	with	arm	joint	controllers	and	gazebo	plugin	for	3D
vision	sensor.	We	can	add	a	grasp	table	and	grasp	objects	to	the	simulation,	as	shown	in
the	following	image,	by	simply	clicking	and	dragging	them	to	the	workspace.	We	can
create	any	kind	of	table	or	object.	The	objects	shown	in	the	following	image	are	only	for
demonstration	purposes.	We	can	edit	the	model	SDF	file	for	changing	the	size	and	shape
of	the	model:

Figure	7:	Robot	arm	with	grasp	table	and	object	in	Gazebo



Check	the	topics	generated	after	starting	the	simulation:

$	rostopic	list

Make	sure	that	we	are	getting	the	RGB-D	camera	topics,	as	shown	next:

Figure	8:	Listing	RGB-D	sensor	topics

We	can	view	the	point	cloud	in	RViz	using	the	following	command:

$	rosrun	rviz	rviz	-f	base_link

The	following	is	the	output	generated:



Figure	9:	Visualizing	point	cloud	data	in	RViz

After	confirming	the	point	cloud	data	from	the	Gazebo	plugins,	we	have	to	add	some	files
to	the	MoveIt!	configuration	package	of	this	arm,	that	is,	seven_dof_arm_config,	for
bringing	the	point	cloud	data	from	Gazebo	into	the	MoveIt!	planning	scene.

The	robot	environment	is	mapped	as	octree	representation
(https://en.wikipedia.org/wiki/Octree),	which	can	be	built	using	a	library	called	OctoMap,
which	we	have	already	seen	in	the	previous	section.	The	OctoMap	is	incorporated	as	a
plugin	in	MoveIt!,	called	the	Occupany	Map	Updator	plugin,	which	can	update	octree
from	different	kinds	of	sensor	inputs	such	as	point	cloud	and	depth	images	from	3D	vision
sensors.	Currently,	there	are	following	plugins	for	handling	3D	data:

PointCloud	Occupancy	Map	Updater:	This	plugin	can	take	input	in	the	form	of
point	clouds	(sensor_msgs/PointCloud2)
Depth	Image	Occupancy	Map	Updater:	This	plugin	can	take	input	in	the	form	of
input	depth	images	(sensor_msgs/Image)

The	first	step	is	to	write	a	configuration	file	for	these	plugins.	This	file	contains
information	about	which	plugin	are	we	using	in	this	robot	and	what	are	its	properties.	We
are	using	point	cloud	data	and	the	configuration	is	saved	in	sensors_rgbd.yaml,	which	is
included	in	the	seven_dof_arm_config/config	folder.	The	definition	of	this	file	follows:

sensors:

-	sensor_plugin:	occupancy_map_monitor/PointCloudOctomapUpdater

		point_cloud_topic:	/rgbd_camera/depth/points

		max_range:	10

		padding_offset:	0.01

https://en.wikipedia.org/wiki/Octree


		padding_scale:	1.0

		point_subsample:	1

		filtered_cloud_topic:	output_cloud

The	explanation	of	a	general	parameter	is:

sensor_plugin:	This	parameter	specifies	the	name	of	the	plugin	we	are	using	in	the
robot

Following	are	the	parameters	of	the	given	sensor_plugin:

point_cloud_topic:	The	plugin	will	listen	to	this	topic	for	point	cloud	data.
max_range:	This	is	the	distance	limit	in	meters	in	which	points	above	the	range	will
not	be	used	for	processing.
padding_offset:	This	value	will	be	taken	into	account	for	robot	links	and	attached
objects	when	filtering	clouds	containing	the	robot	links	(self-filtering).
padding_scale:	This	value	will	also	be	taken	into	account	while	self-filtering.
point_subsample:	If	the	update	process	is	slow,	points	can	be	subsampled.	If	we
make	this	value	greater	than	1,	the	points	will	be	skipped	instead	of	processed.
filtered_cloud_topic:	This	is	the	final	filtered	cloud	topic.	We	will	get	the
processed	point	cloud	through	this	topic.	It	can	be	used	mainly	for	debugging.

If	we	are	using	the	DepthImageUpdater	plugin,	we	can	have	a	different	configuration	file.
We	are	not	using	this	plugin	in	this	robot,	but	we	can	see	its	usage	and	properties.

sensors:

	-	sensor_plugin:	occupancy_map_monitor/DepthImageOctomapUpdater

			image_topic:	/head_mount_kinect/depth_registered/image_raw

			queue_size:	5

			near_clipping_plane_distance:	0.3

			far_clipping_plane_distance:	5.0

			skip_vertical_pixels:	1

			skip_horizontal_pixels:	1

			shadow_threshold:	0.2

			padding_scale:	4.0

			padding_offset:	0.03

			filtered_cloud_topic:	output_cloud

queue_size:	This	is	the	queue	size	for	the	depth	image	transport	subscriber.
near_clipping_plane_distance:	This	is	the	minimum	valid	distance	from	the
sensor.
far_clipping_plane_distance:	This	is	the	maximum	valid	distance	from	the
sensor.
skip_vertical_pixels:	This	is	the	number	of	pixels	have	to	skip	from	top	and
bottom	of	the	image.	If	we	give	a	value	of	5,	it	will	skip	five	columns	from	first	and
last	of	the	image.
skip_horizontal_pixels:	Skipping	pixels	in	horizontal	direction.
shadow_threshold:	In	some	situations,	points	can	appear	below	the	robot	links.	This
happens	because	of	padding.	shadow_threshold	removes	those	points	whose
distance	is	greater	than	shadow_threshold.

After	discussing	about	the	OctoMap	update	plugin	and	its	properties,	we	can	switch	to	the



launch	files,	necessary	to	initiate	this	plugin	and	parameters.

The	first	file	we	need	to	create	is	inside	the	seven_dof_arm_config/launch	folder	with
the	name	seven_dof_arm_moveit_sensor_manager.launch.

Following	is	the	definition	of	this	file.	This	launch	file	basically	loads	the	plugin
parameters:

<launch>

		<rosparam	command="load"	file="$(find	

seven_dof_arm_config)/config/sensors_rgbd.yaml"	/>

</launch>	

The	next	file	that	we	need	an	editing	is	sensor_manager.launch	,	which	is	located	inside
the	launch	folder.	The	definition	of	this	file	follows:

<launch>

		<!--	This	file	makes	it	easy	to	include	the	settings	for	sensor	managers	

-->		

		<!--	Params	for	the	octomap	monitor	-->

		<!--		<param	name="octomap_frame"	type="string"	value="some	frame	in	

which	the	robot	moves"	/>	-->

		<param	name="octomap_resolution"	type="double"	value="0.015"	/>

		<param	name="max_range"	type="double"	value="5.0"	/>

		<!--	Load	the	robot	specific	sensor	manager;	this	sets	the	

moveit_sensor_manager	ROS	parameter	-->

		<arg	name="moveit_sensor_manager"	default="seven_dof_arm"	/>

		<include	file="$(find	seven_dof_arm_config)/launch/$(arg	

moveit_sensor_manager)_moveit_sensor_manager.launch.xml"	/>

</launch>

The	following	line	is	commented	because	it	can	be	used	if	the	robot	is	mobile.	In	our	case,
our	robot	is	static.	If	it	is	a	fixed	on	a	mobile	robot,	we	can	give	the	frame	value	as	odom	or
odom_combined	of	the	robot:

<param	name="octomap_frame"	type="string"	value="some	frame	in	which	the	

robot	moves"	/>

The	following	parameter	is	the	resolution	of	OctoMap,	which	is	visualizing	in	RViz
measured	in	meters.	The	rays	beyond	the	max_range	value	will	be	truncated.

		<param	name="octomap_resolution"	type="double"	value="0.015"	/>

		<param	name="max_range"	type="double"	value="5.0"	/>

The	interfacing	is	now	complete.	We	can	test	the	MoveIt!	interface	using	the	following
command.

Launch	Gazebo	for	perception	using	the	following	command,	and	add	the	desired	grasp
table	and	grasp	object	model:

$	roslaunch	seven_dof_arm_gazebo	seven_dof_arm_bringup_grasping.launch



Start	the	MoveIt!	planner	with	sensor	support:

$	roslaunch	seven_dof_arm_config	moveit_planning_execution.launch

Now	RViz	has	sensor	support.	We	can	see	the	OctoMap	in	front	of	the	robot	in	the
following	screenshot:

Figure	10	:	Visualizing	octomap	in	RViz





Grasping	using	MoveIt!
One	of	the	main	applications	of	robot	manipulators	is	picking	an	object	and	placing	it.
Grasping	is	the	process	of	picking	the	object	by	the	robot	end-effector.	It	is	actually	a
complex	process	because	lot	of	constraints	are	required	in	picking	an	object.

We	humans	handle	our	grasping	using	our	intelligence,	but	in	the	robot	we	have	to	create
rules	for	it.	One	of	the	constraints	in	grasping	is	force;	the	gripper/end-effector	should
adjust	the	grasping	force	for	picking	the	object	but	not	make	any	deformation	on	the
object	while	grasping.

One	of	the	ROS	packages	for	generating	the	grasp	poses	for	simple	objects	such	as	blocks
and	cylinders,	which	can	work	along	with	the	MoveIt!	pick	and	place	pipeline,	is
moveit_simple_grasps.	It’s	a	simple	grasp	generator.	It	takes	the	pose	of	grasping	object
as	input	and	generates	the	grasping	sequences	for	picking	the	object.	It	filters	and	removes
kinematically	infeasible	grasps	via	threaded	IK	solvers.	The	package	provides	grasp
generators,	grasp	filters,	and	visualization	tools.

This	package	already	supports	robots	such	as	Baxter,	REEM,	and	Clam	arm.	We	can
interface	a	custom	arm	to	this	package	with	a	minor	tweak	of	the	package	code.	The
package	used	for	this	experiment	is	inside	the	chapter	codes.	The	main	package	code	is	on
GitHub,	and	we	can	find	it	at:

https://github.com/davetcoleman/moveit_simple_grasps

It	is	also	available	as	a	Debian	package	as	moveit-simple-grasps,	but	it	will	be	better	to
use	our	own	customized	package	to	work	with	this	experiment.	Copy	the
moveit_simple_grasps	package	from	chapter_10_codes/	to	your	catkin	workspace	and
build	it	using	the	catkin_make	command

After	building	the	package,	we	have	to	check	whether	the	following	launch	file	is
working:

$	roslaunch	seven_dof_arm_gazebo	grasp_generator_server.launch

If	it	is	working	well,	we	will	get	log	messages	as	in	the	following	screenshot:

https://github.com/davetcoleman/moveit_simple_grasps


Figure	11	:	Launching	grasp	generator	server.

The	definition	of	this	launch	file	follows.	Basically,	it	starts	a	grasp	server	that	provides
grasp	combination	to	a	grasp	client	node.	We	have	to	provide	the	planning	group	and	the
end-effector	group	inside	this	launch	file,	which	is	needed	by	the	grasp	server.	The	grasp
server	will	execute	feasible	motion	plan	on	the	arm.	It	needs	detailed	configuration	of	the
gripper:

<launch>

		<arg	name="robot"	default="seven_dof_arm"/>

		<arg	name="group"								default="arm"/>

		<arg	name="end_effector"	default="gripper"/>

		<node	pkg="moveit_simple_grasps"	type="moveit_simple_grasps_server"	

name="moveit_simple_grasps_server">

				<param	name="group"	value="$(arg	group)"/>	

				<param	name="end_effector"	value="$(arg	end_effector)"/>

				<rosparam	command="load"	file="$(find	

seven_dof_arm_gazebo)/config/$(arg	robot)_grasp_data.yaml"/>	

		</node>

</launch>

Next	is	the	definition	of	seven_dof_arm_grasp_data.yaml	and	its	explanation:

base_link:	'base_link'

gripper:

		#The	end	effector	name	for	grasping

		end_effector_name:	'gripper'



		#	Gripper	joints

		joints:	['finger_joint1',	'finger_joint2']

		#Posture	of	grippers	before	grasping

		pregrasp_posture:	[0.0,	0.0]

		

		

		pregrasp_time_from_start:	4.0

		grasp_posture:	[1.0,	1.0]

		grasp_time_from_start:	4.0

		postplace_time_from_start:	4.0

		#	Desired	pose	from	end	effector	to	grasp	[x,	y,	z]	+	[R,	P,	Y]

		grasp_pose_to_eef:	[0.0,	0.0,	0.0]

		grasp_pose_to_eef_rotation:	[0.0,	0.0,	0.0]

		end_effector_parent_link:	'gripper_roll_link'

These	parameters	are	all	related	to	the	grasping	task.	We	can	fine	tune	these	parameters	for
better	grasping.

Next,	we	will	see	how	to	do	a	pick	and	place	task	using	this	grasp	server	and	a	custom
client.





Working	with	robot	pick	and	place	task
using	MoveIt!
We	can	do	pick	and	place	in	various	ways.	One	is	by	using	pre	defined	sequences	of	joint
values;	in	this	case,	we	put	the	object	in	a	predefined	position	and	move	the	robot	into	that
position	by	providing	direct	joint	values	or	forward	kinematics.	Another	method	of	pick
and	place	is	by	using	inverse	kinematics	without	any	visual	feedback;	in	this	case,	we
command	the	robot	to	go	to	an	X,Y,	and	Z	position	with	respect	to	the	robot,	and	by
solving	IK,	the	robot	can	reach	that	position	and	pickup	that	object.	One	more	method	is
vision	assisted	pick	and	place;	in	this	case,	a	vision	sensor	is	used	to	identify	the	object’s
position	and	the	arm	goes	to	that	location	by	solving	IK	and	picks	the	object.

In	this	section,	we	will	demonstrate	a	pick	and	place	in	which	we	will	give	the	grasping
object	position	and	the	robot	will	move	to	that	coordinate	and	pick	the	object.	It	can	be
tied	up	with	vision	in	such	a	way	that	we	need	to	tell	the	object	position,	which	is	seen	by
the	sensor	in	robot	coordinate	system.	Here	we	are	not	performing	object	recognition	and
finding	position	of	the	object.	Instead	of	that,	we	are	directly	giving	the	object	position.

We	can	work	with	this	example	along	with	Gazebo	or	simply	use	the	MoveIt!	demo
interface.	First,	we	will	look	at	a	direct	pick	and	place	mechanism	by	giving	the	grasp
object	position	in	MoveIt!	using	the	python	grasp	client.

Launch	MoveIt!	demo:

$	roslaunch	seven_dof_config	demo.launch	

Launch	MoveIt!	Grasp	server:

$	roslaunch	seven_dof_arm_gazebo		grasp_generator_server

Run	the	Grasp	client:

$	rosrun	seven_dof_arm_gazebo	pick_and_place.py

This	will	do	a	basic	pick	and	place	routine	with	a	grasp	object	inserted	in	the	planning
scene.

Following	is	the	screenshot	of	the	grasping	process:



Figure	12	:	Pick	and	place	sequences	using	MoveIt!.

The	various	steps	in	the	grasping	process	are	explained	next:

Step	1-	Grasp	Pose:	In	the	first	step,	we	can	see	a	green	block,	which	is	the	object
that	is	going	to	be	grasped	by	the	robot	gripper.	We	have	created	this	object	inside	the
planning	scene	using	the	pick_and_place.py	node	and	it	gives	the	block	position	to
the	grasp	server.	When	the	pick	and	place	starts,	we	can	see	a	Pose	Array	of	values
from	the	/grasp	topic,	indicating	that	this	is	the	grasp	object	position.
Step	2	-	Pick	Action:	After	getting	the	grasp	object	position,	this	grasp	client
sends	this	position	of	pick	and	place	to	the	grasp	server	to	generate	IK	and	check
whether	any	feasible	IK	for	this	object	position.	If	it	is	a	valid	IK,	the	arm	gripper
will	come	to	pick	the	object.
Step	3,4,5,6	Place	Action	-	After	picking	the	block,	the	grasp	server	checks	for	the
valid	IK	pose	in	the	place	pose.	If	there	is	a	valid	IK	in	the	place	pose,	the	gripper
holds	the	object	in	a	trajectory	and	places	it	in	the	appropriate	position.	The	place
Pose	Array	is	shown	as	blue	color	from	the	topic	/place.



We	can	have	a	look	on	to	the	pick_and_place.py	code,	this	is	a	modified	version	of
sample	code	mentioned	in	the	following	Git	repository.
(https://github.com/AaronMR/Learning_ROS_for_Robotics_Programming_2nd_edition.git)

https://github.com/AaronMR/Learning_ROS_for_Robotics_Programming_2nd_edition.git)


Creating	Grasp	Table	and	Grasp	Object	in	MoveIt!
We	have	to	create	a	table	and	a	grasp	object	similar	to	the	robot	environment.	Here	we	are
creating	a	table	almost	the	same	as	in	the	gazebo	simulation.	If	the	table	size	and	the	pose
of	gazebo	and	MoveIt!	are	same,	we	can	set	the	position	of	the	grasping	object:

				def	_add_table(self,	name):

								p	=	PoseStamped()

								p.header.frame_id	=	self._robot.get_planning_frame()

								p.header.stamp	=	rospy.Time.now()

								#Table	position

								p.pose.position.x	=	0.45

								p.pose.position.y	=	0.0

								p.pose.position.z	=	0.22

								q	=	quaternion_from_euler(0.0,	0.0,	numpy.deg2rad(90.0))

								p.pose.orientation	=	Quaternion(*q)

								#	Table	size	from	~/.gazebo/models/grasp_table/model.sdf,	using	the	

values

								#	for	the	surface	link.

								self._scene.add_box(name,	p,	(0.5,	0.4,	0.02))

								return	p.pose

Following	is	the	creation	of	the	grasp	object.	We	are	creating	a	random	grasp	object	here.
You	can	change	the	pose	and	size	of	it	according	to	your	environment:

				def	_add_grasp_block_(self,	name):

								p	=	PoseStamped()

								p.header.frame_id	=	self._robot.get_planning_frame()

								p.header.stamp	=	rospy.Time.now()

								p.pose.position.x	=	0.25			

								p.pose.position.y	=	0.05

								p.pose.position.z	=	0.32

								q	=	quaternion_from_euler(0.0,	0.0,	0.0)

								p.pose.orientation	=	Quaternion(*q)

								#	Grasp	Object	can	size	from	

~/.gazebo/models/grasp_object/model.sdf,

								self._scene.add_box(name,	p,	(0.03,	0.03,	0.09))

								return	p.pose

After	creating	the	grasp	object	and	the	grasp	table,	we	will	see	how	to	set	the	pick	position
and	the	place	position	from	the	following	code	snippet.	Here	the	pose	of	the	grasp	object
created	in	the	planning	scene	is	retrieved	and	fed	into	the	place	pose	in	which	the	Y	axis	of
the	place	pose	is	subtracted	by	0.06.	So	when	the	pick	and	place	happens,	the	object	will
place	into	0.06	away	from	the	object	in	the	Y	direction.

								#	Add	table	and	grap	object	to	the	planning	scene:



								self._pose_table				=	self._add_table(self._table_object_name)

								self._pose_grasp_obj	=	

self._add_grasp_block_(self._grasp_object_name)

								rospy.sleep(1.0)

								#	Define	target	place	pose:

								self._pose_place	=	Pose()

								self._pose_place.position.x	=	self._pose_grasp_obj.position.x	

								self._pose_place.position.y	=	self._pose_grasp_obj.position.y	-	

0.06

								self._pose_place.position.z	=	self._pose_grasp_obj.position.z	

								self._pose_place.orientation	=	

Quaternion(*quaternion_from_euler(0.0,	0.0,	0.0))

The	next	step	is	to	generate	the	grasp	Pose	Array	data	for	visualization	and	then	send	the
grasp	goal	to	the	grasp	server.	If	there	is	a	grasp	sequence,	it	will	be	published,	else	it	will
show	as	an	error.

def	_generate_grasps(self,	pose,	width):

								#	Create	goal:

								goal	=	GenerateGraspsGoal()

								goal.pose		=	pose

								goal.width	=	width

								......................

								.......................

								state	=	self._grasps_ac.send_goal_and_wait(goal)

								if	state	!=	GoalStatus.SUCCEEDED:

												rospy.logerr('Grasp	goal	failed!:	%s'	%	

self._grasps_ac.get_goal_status_text())

												return	None

								grasps	=	self._grasps_ac.get_result().grasps

								#	Publish	grasps	(for	debugging/visualization	purposes):

								self._publish_grasps(grasps)

								return	grasps

This	function	will	create	a	Pose	Array	data	for	the	pose	of	the	place.

			def	_generate_places(self,	target):

								#	Generate	places:

								places	=	[]

								now	=	rospy.Time.now()

								for	angle	in	numpy.arange(0.0,	numpy.deg2rad(360.0),	

numpy.deg2rad(1.0)):

												#	Create	place	location:

												place	=	PlaceLocation()



	 				............................................

.......................................

			#	Add	place:

												places.append(place)

								#	Publish	places	(for	debugging/visualization	purposes):

								self._publish_places(places)

The	following	function	will	create	a	goal	object	for	picking	the	object,	which	has	to	send
into	MoveIt!.

def	_create_pickup_goal(self,	group,	target,	grasps):

								"""

								Create	a	MoveIt!!	PickupGoal

								"""

								#	Create	goal:

								goal	=	PickupGoal()

								goal.group_name		=	group

								goal.target_name	=	target

				

				 	 .............

								return	goal

Also,	there	is	the	def	_create_place_goal(self,	group,	target,	places)	function	to
create	place	goal	for	MoveIt!.

The	important	functions	which	are	performing	picking	and	placing	are	given	below.

These	functions	will	generate	a	pick	and	place	sequence,	which	will	be	sent	to	MoveIt!
and	print	the	result	of	the	motion	planning,	whether	it	is	succeeded	or	not:

def	_pickup(self,	group,	target,	width)

def	_place(self,	group,	target,	place)





Pick	and	place	action	in	Gazebo	and	real
Robot
The	grasping	sequence	executed	in	the	MoveIt!	demo	uses	fake	controllers.	We	can	send
the	trajectory	to	the	actual	robot	or	Gazebo.	In	Gazebo,	we	can	launch	the	grasping	world
to	perform	this	action.	The	following	commands	will	perform	pick	and	place	in	Gazebo.

Launch	Gazebo	for	grasping:

$	roslaunch	seven_dof_arm_gazebo	seven_dof_arm_bringup_grasping.launch

Start	MoveIt!	motion	planning:

$	roslaunch	seven_dof_arm_config	moveit_planning_execution.launch

Launch	MoveIt!	Grasp	server:

$	roslaunch	seven_dof_arm_gazebo		grasp_generator_server

Run	the	Grasp	client:

$	rosrun	seven_dof_arm_gazebo	pick_and_place.py

In	the	real	hardware,	the	only	difference	is	that	we	need	to	create	joint	Trajectory
controllers	for	the	arm.	One	of	the	commonly	used	hardware	controllers	is	Dynamixel
controller.	We	will	learn	more	about	the	Dynamixel	controllers	in	the	next	section.





Understanding	Dynamixel	ROS	Servo
controllers	for	robot	hardware	interfacing
Till	now,	we	have	learned	about	MoveIt!	interfacing	using	Gazebo	simulation.	In	this
section,	we	will	see	how	to	replace	Gazebo	and	put	a	real	robot	interface	to	MoveIt!.	Let’s
discuss	the	Dynamixel	Servos	and	the	ROS	controllers.



The	Dynamixel	Servos
The	Dynamixel	Servos	are	smart,	high	performance	networked	actuators	for	high	end
robotics	applications.	These	servos	are	manufactured	by	a	Korean	company	called
ROBOTIS	(http://en.robotis.com/).	These	servos	are	very	popular	among	robotics
enthusiasts	because	they	can	provide	excellent	position	and	torque	control,	and	also
provide	variety	of	feedback,	such	as	position,	speed,	temperature,	voltage,	and	so	on.

One	of	their	useful	features	is	that	they	can	be	networked	as	a	daisy	chain	manner.	This
feature	is	very	useful	in	multijoint	systems	such	as	a	robotic	arm,	humanoid	robots,
robotic	snakes,	and	such	others.

The	servos	can	be	directly	connected	to	PCs	using	a	USB	to	Dynamixel	controller,	which
is	provided	from	ROBOTIS.	This	controller	has	a	USB	interface	and	when	it	is	plugged
into	the	PC,	it	acts	as	a	virtual	COM	port.	We	can	send	data	to	this	port	and	internally	it
will	convert	the	RS	232	protocol	to	TTL	(Transistor-Transistor	Logic)	and	in	RS	485
standards.	The	Dynamixel	can	be	powered	and	connect	the	USB	to	dynamixel	controller
to	start	working	with	it.	Dynamixel	servos	support	both	TTL	and	RS	485	level	standards.
The	following	figure	shows	the	Dynamixel	servos	called	MX-106	and	USB	To
Dynamixel	controller.

Figure	13	:	Dynamixel	Servo	and	USB	to	Dynamixel	controller.

There	are	different	series	of	Dynamixel	available	in	the	market.	Some	of	the	series	are	MX
-	28,	64	and	106,	RX	-	28,64,	106,	and	so	on.	The	following	is	the	connection	diagram	of

http://en.robotis.com/


Dynamixel,	USB	to	Dynamixel	to	PC:

Figure	14	:	Dynamixel	Servos	connected	to	PC	using	USB	To	Dynamixel	controller.

The	Dynamixel	can	be	connected	as	daisy	chain,	as	shown	in	the	preceding	figure.	Each
Dynamixel	has	a	firmware	setting	inside	its	controller.	We	can	assign	the	ID	of	servo,	the
joint	limits,	the	position	limits,	the	position	commands,	the	PID	values,	the	voltage	limits,
and	so	on,	inside	the	controller.	There	are	ROS	drivers	and	controllers	for	Dynamixel
which	are	available	at:

http://wiki.ros.org/dynamixel_motor.

http://wiki.ros.org/dynamixel_motor.


Dynamixel-ROS	interface
The	ROS	stack	for	interfacing	the	Dynamixel	motor	is	dynamixel_motor.	This	stack
contains	interface	for	Dynamixel	motors	such	as	MX-28,	MX64,	MX-106,	RX-28,	RX64,
EX106,	AX-12,	and	AX-18.	The	stack	consists	of	the	following	packages:

dynamixel_driver:	This	package	is	the	driver	package	of	Dynamixel,	which	can	do
low	level	IO	communication	with	Dynamixel	from	PC.	This	driver	has	hardware
interface	for	the	previously	mentioned	series	of	servos	and	can	do	the	read	/write
operation	to	Dynamixel	through	this	package.	This	package	is	used	by	high	level
packages	such	as	dynamixel_controllers.	There	are	only	few	cases	when	the	user
directly	interacts	with	this	package.
dynamixel_controllers:	This	is	a	higher	level	package	that	works	using	the
dynamixel_motor	package.	Using	this	package,	we	can	create	a	ROS	controller	for
each	Dynamixel	joint	of	the	robot.	The	package	contains	a	configurable	node,
services,	and	spawner	script	to	start,	stop,	and	restart	one	or	more	controller	plugins.
In	each	controller,	we	can	set	the	speed	and	the	torque.	Each	Dynamixel	controller
can	be	configured	using	the	ROS	parameters	or	can	be	loaded	by	a	YAML	file.	The
dynamixel_controllers	packages	support	the	following	kinds	of	controllers:

Joint	Position	controllers
Joint	Torque	controllers
Joint	Trajectory	Action	controller

dynamixel_msgs:	These	are	the	message	definitions	which	are	used	inside	the
dynamixel_motor	stack.





Interfacing	seven	DOF	Dynamixel	based
robotic	arm	to	ROS	MoveIt!
In	this	section,	we	will	discuss	a	7	DOF	robot	manipulator	called	COOL	arm-5000,
which	is	manufactured	by	a	company	called	ASIMOV	Robotics
(http://asimovrobotics.com/).	The	robot	is	built	using	Dynamixel	servos
(http://www.robotis.com/xe/dynamixel_en).	We	will	see	how	to	interface	a	Dynamixel-
based	robotic	arm	to	ROS	using	dynamixel_controllers.

The	following	is	a	diagram	of	a	COOL	arm-5000:

Figure	15	:	COOL	Arm	illustration.

COOL	arm	robots	are	fully	compatible	with	ROS	and	MoveIt!	and	are	mainly	used	in
education	and	research.	The	price	range	is	between	5K	-	10K	USD.

Following	are	the	details	of	the	arms:

Degree	of	Freedom:	7	DOF
Types	of	Actuators:	Dynamixel	MX-64	and	MX-28
List	of	Joints:	Shoulder	Roll,	Shoulder	Pitch,	Elbow	Roll,	Elbow	Pitch,	Wrist	Yaw,
Wrist	Pitch,	and	Wrist	Roll
Payload:	5K
Reach:	1	meter
Work	Volume:	2.09	m3
Repeatability:	+/-	0.05	mm
Gripper	with	3	fingers

http://asimovrobotics.com
http://www.robotis.com/xe/dynamixel_en


ROS	support



Creating	a	controller	package	for	COOL	arm	robot
The	first	step	is	to	create	a	controller	package	for	COOL	arm	for	interfacing	to	ROS.	The
cool	arm	controller	package	is	available	for	download	along	with	the	book	codes.

The	following	command	will	create	the	controller	package	with	necessary	dependencies.
The	important	dependency	of	this	package	is	the	dynamixel_controller	package.

$	catkin_create_pkg	cool5000_controller	roscpp	rospy	dynamixel_controller	

std_msgs	sensor_msgs

The	next	step	is	to	create	configuration	file	for	each	joint.	The	configuration	file	is
called	cool5000.yaml,	which	contains	definition	of	each	controller	name,	its	type,
and	its	parameters.	We	can	see	this	file	in	the	cool5000_controller/config	folder.	We
have	to	create	parameters	for	the	seven	joints	in	this	arm.	Following	is	a	snippet	of
this	config	file:

joint1_controller:

				controller:

								package:	dynamixel_controllers

								module:	joint_position_controller

								type:	JointPositionController

				joint_name:	joint1

				joint_speed:	0.1

				motor:

								id:	0

								init:	2048

								min:	320

								max:	3823

joint2_controller:

				controller:

								package:	dynamixel_controllers

								module:	joint_position_controller

								type:	JointPositionController

				joint_name:	joint2

				joint_speed:	0.1

				motor:

								id:	1

								init:	2048

								min:	957

								max:	3106	

The	controller	configuration	file	mentions	the	joint	name,	package	of	the	controller,
controller	type,	joint	speed,	motor	ID,	initial	position,	and	minimum	and	maximum	limits
of	the	joint.	We	can	connect	as	many	motors	as	we	want	and	can	create	a	controller
parameters	by	including	in	this	configuration	file.

Next	configuration	file	is	to	create	a	Joint	Trajectory	controller	configuration.	MoveIt!	can
only	interface	if	the	robot	has	the	FollowJointTrajectory	action	server.	The	file	called
cool5000_trajectory_controller.yaml	is	put	in	the	cool5000_controller/config



folder	and	its	definition	is	given	next:

cool5000_trajectory_controller:

			controller:

							package:	dynamixel_controllers

							module:	joint_trajectory_action_controller

							type:	JointTrajectoryActionController

			joint_trajectory_action_node:

							min_velocity:	0.0

							constraints:

											goal_time:	0.01

After	creating	the	JointTrajectory	controller,	we	need	to	create	a
joint_state_aggregator	node	for	combining	and	publishing	the	joint	states	of	the
robotic	arm.	You	can	find	this	node	from	the	cool5000_controller/src	folder	named
joint_state_aggregator.cpp.	The	function	of	this	node	is	to	subscribe	controller	states
of	each	controller	having	message	type	of	dynamixel::JointState	and	combine	each
message	of	the	controller	into	the	sensor_msgs::JointState	messages	and	publish	in	the
/joint_states	topic.	This	message	will	be	the	aggregate	of	the	joint	states	of	all	the
dynamixel	controllers.

The	definition	of	joint_state_aggregator.launch,	which	runs	the
joint_state_aggregator	node	with	its	parameters,	follows.	It	is	placed	in	the
cool5000_controller/launch	folder:

<launch>

				<node	name="joint_state_aggregator"	pkg="cool5000_controller"	

type="joint_state_aggregator"	output="screen">

				<rosparam>

												rate:	50

												controllers:

																				-	joint1_controller

																				-	joint2_controller

																				-	joint3_controller

																				-	joint4_controller

																				-	joint5_controller

																				-	joint6_controller

																				-	joint7_controller

																				-	gripper_controller

								</rosparam>

				</node>

</launch>

We	can	launch	the	entire	controller	using	the	following	launch	file	called
cool5000_controller.launch,	which	is	inside	the	launch	folder.

The	code	inside	this	launch	file	will	start	communication	between	the	PC	and	the
Dynamixel	servos	and	start	the	controller	manager.	The	controller	manager	parameters	are
serial	port,	baud	rate,	servo	ID	range,	and	update	rate.

<launch>

				<!--	Start	the	Dynamixel	motor	manager	to	control	all	cool5000	servos	-

->



			<node	name="dynamixel_manager"	pkg="dynamixel_controllers"	

type="controller_manager.py"	required="true"	output="screen">

								<rosparam>

												namespace:	dxl_manager

												serial_ports:

																dynamixel_port:

																				port_name:	"/dev/ttyUSB0"

																				baud_rate:	1000000

																				min_motor_id:	0

																				max_motor_id:	6

																				update_rate:	20

								</rosparam>

				</node>

In	the	next	step,	it	should	launch	the	controller	spawner	by	reading	the	controller	config
file:

				

						<!--	Load	joint	controller	configuration	from	YAML	file	to	parameter	

server	-->

		<rosparam	file="$(find	cool5000_controller)/config/cool5000.yaml"	

command="load"/>

				<!--	Start	all		Cool	Arm	joint	controllers	-->

				<node	name="controller_spawner"	pkg="dynamixel_controllers"	

type="controller_spawner.py"

										args="--manager=dxl_manager

																--port	dynamixel_port

																joint1_controller

																joint2_controller

																							joint3_controller

																							joint4_controller

																							joint5_controller

																							joint6_controller

													joint7_controller

																							gripper_controller"

													output="screen"/>

In	the	next	section	of	the	code,	it	will	launch	the	JointTrajectory	controller	from	the
controller	configuration	file:

			<!--	Start	the	cool5000	arm	trajectory	controller	-->

			<rosparam	file="$(find	

cool5000_controller)/config/cool5000_trajectory_controller.yaml"	

command="load"/>

				<node	name="controller_spawner_meta"	pkg="dynamixel_controllers"	

type="controller_spawner.py"	

				args="--manager=dxl_manager

										--type=meta	

										cool5000_trajectory_controller	

										joint1_controller	

										joint2_controller	

										joint3_controller	

										joint4_controller	

										joint5_controller	



										joint6_controller"	

										output="screen"/>

The	following	section	will	launch	the	joint	state	aggregator	node	and	the	robot	description
from	the	cool5000_description	package:

		<!--	Publish	combined	joint	info	-->

		<include	file="$(find	

cool5000_controller)/launch/joint_state_aggregator.launch"	/>

		

		<param	name="robot_description"	command="$(find	xacro)/xacro.py	'$(find	

cool5000_description)/robots/cool5000.xacro'"	/>

		<node	name="joint_state_publisher"	pkg="joint_state_publisher"	

type="joint_state_publisher"	output="screen">

				<rosparam	param="source_list">[joint_states]</rosparam>

				<rosparam	param="use_gui">FALSE</rosparam>

		</node>

This	is	all	about	the	cool	arm	controller	package.	Next,	we	need	to	setup	the	controllers
configuration	inside	the	MoveIt!	configuration	package	of	cool	arm	called
cool5000_moveit_config.



MoveIt!	configuration	of	the	COOL	Arm
The	first	step	is	to	configure	controllers.yaml,	which	is	inside	the
cool5000_moveit_config/config	folder.	The	definition	of	this	file	follows.	We	are	only
focusing	on	moving	the	arm	and	not	on	handling	the	gripper	control	for	now.	So	the
configuration	only	contains	the	arm	group	joints:

controller_list:

		-	name:	cool5000_trajectory_controller

				action_ns:	follow_joint_trajectory

				type:	FollowJointTrajectory

				default:	true

				joints:

						-	joint1

						-	joint2

						-	joint3

						-	joint4

						-	joint5

						-	joint6

						-	joint7

The	following	is	the	definition	of
cool5000_description_moveit_controller_manager.launch.xml	inside
cool5000_moveit_config/launch:

<launch>

<!--

	Set	the	param	that	trajectory_execution_manager	needs	to	find	the	

controller	plugin	

-->

<arg	name="moveit_controller_manager"	

default="MoveIt_simple_controller_manager/MoveItSimpleControllerManager"/>

<param	name="MoveIt_controller_manager"	value="$(arg	

MoveIt_controller_manager)"/>

<!--		load	controller_list		-->

<rosparam	file="$(find	cool5000_moveit_config)/config/controllers.yaml"/>

</launch>

After	configuring	MoveIt!,	we	can	start	working	on	the	arm.	Apply	proper	power	supply
on	the	arm	and	connect	it	to	USB	To	Dynamixel.	Plug	the	USB	TO	Dynamixel	to	a	PC.
We	will	see	a	serial	device	generate;	it	may	be	either	/dev/ttyUSB0	or	/dev/ttyACM0	.
According	to	the	device,	change	the	port	name	inside	the	controller	launch	file.

Start	the	cool5000	arm	controller	using	the	following	command:

$	roslaunch	cool5000_controller	cool5000_controller.launch

Start	the	RViz	demo	and	start	path,	planning.	If	we	press	the	Execute	button,	the	trajectory
will	execute	on	the	hardware	arm:

$	roslaunch	cool5000_moveit_config	demo.launch



A	random	pose,	which	is	shown	in	RViz,	and	the	cool	arm	is	shown	in	the	following
image:

Figure	16	:	COOL-Arm-5000	prototype	with	MoveIt!	visualization





Questions
1.	 What	is	the	role	of	the	FCL	library	in	MoveIt!?
2.	 How	does	MoveIt!	build	OctoMap	of	the	environment?
3.	 What	is	the	main	function	of	grasp	server?
4.	 What	are	the	main	features	of	dynamixel	servos?





Summary
In	this	chapter,	we	explored	some	advanced	features	of	MoveIt!	and	how	we	can	interface
it	into	a	real	hardware.	The	chapter	started	with	a	discussion	on	collision	checking	using
MoveIt!.	We	saw	how	to	add	a	collision	object	using	MoveIt!	APIs	and	also	saw	the	direct
importing	of	mesh	to	the	planning	scene.	We	discussed	a	ROS	node	to	check	collision
using	MoveIt!	APIs.	After	learning	about	collisions,	we	moved	to	perception	using
MoveIt!.	We	connected	the	simulated	point	cloud	data	to	MoveIt!	and	created	an	OctoMap
in	MoveIt!.	The	next	topic	we	discussed	was	grasping,	using	the	moveit_simple_grasp
package.	We	saw	the	grasp	generator	using	this	package	and	we	made	a	simple	pick	and
place	task	using	the	grasp	server	and	the	pick	and	place	node.	After	discussing	these
things,	we	switched	to	hardware	interfacing	of	MoveIt!	using	dynamixel	servos	and	its
ROS	controllers.	In	the	end,	we	saw	a	real	robotic	arm	called	COOL	arm	and	its
interfacing	to	MoveIt!,	which	was	completely	built	using	dynamixel	controllers.





Chapter	11.	ROS	for	Industrial	Robots
In	the	previous	chapter,	we	have	seen	some	advanced	concepts	in	ROS-MoveIt!	Until
now,	we	have	been	discussing	mainly	about	interfacing	personal	and	research	robots	with
ROS,	but	one	of	the	main	areas	where	robots	are	extensively	used	are	industries.	Does
ROS	support	industrial	robots?	Do	any	of	the	companies	use	ROS	for	the	manufacturing
process?	The	ROS-Industrial	packages	comes	with	a	solution	to	interface	industrial	robot
manipulators	to	ROS	and	controlling	it	using	the	power	of	ROS,	such	as	MoveIt!,	Gazebo,
RViz,	and	so	on.

In	this	chapter,	we	will	discuss	the	following	topics:

Understanding	ROS-Industrial	packages
Installing	ROS-Industrial	packages	in	ROS
Block	diagram	of	ROS-Industrial	packages
Creating	URDF	for	an	industrial	robot
Creating	the	MoveIt!	interface	for	an	industrial	robot
Installing	ROS-Industrial	packages	of	Universal	robotic	arms
Understanding	MoveIt!	configuration	of	a	universal	robotic	arm
Working	with	MoveIt!	configuration	of	ABB	robots
Understanding	ROS-Industrial	robot	support	packages
ROS-Industrial	robot	client	package
ROS-Industrial	robot	driver	package
Understanding	MoveIt!	IKFast	plugin
Creating	the	MoveIt!	IKFast	plugin	for	an	ABB-IRB6640	robot

Let’s	start	with	a	brief	overview	of	ROS-Industrial.



Understanding	ROS-Industrial	packages
ROS-Industrial	basically	extends	the	advanced	capabilities	of	ROS	software	to	industrial
robots	working	in	the	production	process.	ROS-Industrial	consists	of	many	software
packages,	which	can	be	used	for	interfacing	industrial	robots.	These	packages	are	BSD
(legacy)	/	Apache	2.0	(preferred)	licensed	program,	which	contain	libraries,	drivers,	and
tools	for	industrial	hardware.	The	ROS-Industrial	is	now	guided	by	the	ROS-Industrial
Consortium.	The	official	website	of	ROS-I	is	http://rosindustrial.org/.	The	following
diagram	is	the	logo	of	ROS-I:

Figure	1:	Logo	of	ROS-Industrial

http://rosindustrial.org/


Goals	of	ROS-Industrial
The	main	goals	behind	developing	ROS-Industrial	are	given	as	follows:

Combine	strengths	of	ROS	to	the	existing	industrial	technologies	for	exploring
advanced	capabilities	of	ROS	in	the	manufacturing	process
Developing	a	reliable	and	robust	software	for	industrial	robots	application.
Provide	an	easy	way	for	doing	research	and	development	in	industrial	robotics
Create	a	wide	community	supported	by	researchers	and	professionals	for	industrial
robotics
Provide	industrial	grade	ROS	application	and	become	a	one-stop	location	of	industry-
related	applications



ROS-Industrial	–	a	brief	history
In	2012,	the	ROS-Industrial	open	source	project	started	as	the	collaboration	of	Yaskawa
Motoman	Robotics	(http://www.motoman.com/),	Willow	Garage
(https://www.willowgarage.com/)	and	Southwest	Research	Institute	(SwRI)	at
http://www.swri.org/	for	using	ROS	research	and	development	in	Industrial
manufacturing.	The	ROS-I	was	founded	by	Shaun	Edwards	in	January	2012.

In	2013,	the	ROS-I	Consortium	Americas	launched	in	March	2013	led	by	SwRI	and	ROS-
I	Consortium	Europe	led	by	Fraunhofer	IPA	in	Germany.

http://www.motoman.com/
https://www.willowgarage.com/
http://www.swri.org/


Benefits	of	ROS-Industrial
Let’s	see	the	benefits	ROS-I	provides	to	the	community:

Explore	the	features	in	ROS:	The	ROS-Industrial	packages	are	tied	to	the	ROS
framework	so	that	we	can	use	all	ROS	features	in	industrial	robots	too.	Using	ROS,
we	can	create	custom	IK	solvers	for	each	robot,	object	manipulation	using	2D/3D
perception.	ROS	also	provides	a	rich	toolset,	such	as	RViz,	Gazebo,	and	rqt_gui	for
visualization,	simulation,	and	debugging
Out-of-the-box	applications:	The	ROS	interface	enables	advanced	perception	in
robots	for	working	with	picking	and	placing	complex	objects.
Simplifies	robotic	programming:	ROS-I	eliminates	teaching	and	planning	paths	of
robots	and	instead	of	it,	automatically	calculates	a	collision-free	optimal	path	for	the
given	points.
Low	Cost:	Instead	of	costly	proprietary	robotic	simulators,	ROS-I	is	an	open	source
software	that	allows	commercial	use	without	any	restrictions.





Installing	ROS-Industrial	packages
Installing	ROS-I	packages	can	be	done	using	package	managers	or	building	from	the
source	code.	If	we	have	installed	the	ros-desktop-full	installation,	we	can	use	the
following	command	to	install	ROS-Industrial	packages	on	Ubuntu	14.04.3.	The	following
command	will	install	ROS-Industrial	packages	on	ROS	Indigo:

$	sudo	apt-get	install	ros-indigo-industrial-core	ros-indigo-open-

industrial-ros-controllers

The	preceding	command	will	install	the	core	packages	of	ROS-Industrial	packages.	The
industrial-core	stack	includes	the	following	set	of	ROS	packages:

industrial-core:	This	stack	contains	packages	and	libraries	for	supporting
industrial	robotic	systems.	The	stack	consists	of	nodes	for	communicating	with
industrial	robot	controllers,	industrial	robot	simulators,	and	also	provides	ROS
controllers	for	industrial	robots.
industrial_deprecated:	This	package	contains	nodes,	launch	files,	and	so	on	that
are	going	to	be	deprecated.	The	files	inside	this	package	will	delete	soon	from	the
repository,	so	we	should	look	for	the	replacement	of	these	files	before	the	content	is
going	to	be	deleted.
industrial_msgs:	This	package	contains	message	definitions,	which	are	specific	to
the	ROS-Industrial	packages.
simple_message:	This	is	a	part	of	ROS-Industrial	stacks,	which	is	a	standard
message	protocol	containing	a	simple	messaging	framework	for	communicating	with
industrial	robot	controllers.
industrial_robot_client:	This	package	contains	a	generic	robot	client	for
connecting	to	industrial	robot	controllers,	which	is	running	an	industrial	robot	server
and	can	communicate	using	a	simple	message	protocol.
industrial_robot_simulator:	This	package	simulates	the	industrial	robot
controller,	which	follows	the	ROS-Industrial	driver	standard.	Using	this	simulator,
we	can	simulate	and	visualize	the	industrial	robot.
industrial_trajectory_filters:	This	package	contains	libraries	and	plugins	for
filtering	the	trajectories,	which	is	sent	to	the	robot	controller.





Block	diagram	of	ROS-Industrial
packages
The	following	diagram	a	simple	block	diagram	representation	of	ROS-I	packages,	which
are	organized	on	top	of	ROS.	We	can	see	the	ROS-I	layer	on	top	of	the	ROS	layers.	We
can	see	a	brief	description	of	each	of	the	layers	for	better	understanding.	The	following
diagram	is	taken	from	ROS-I	wiki	page	(http://wiki.ros.org/Industrial).

Figure	2:	The	block	diagram	of	ROS-Industrial

The	ROS	GUI:	This	layer	includes	the	ROS	plugin-based	GUI	tools	layer,	which
consists	of	tools	such	as	RViz,	rqt_gui,	and	so	on
The	ROS-I	GUI:	These	GUIs	are	standard	industrial	UI	for	working	with	industrial
robots	which	may	be	implemented	in	the	future
The	ROS	Layer:	This	is	the	base	layer	in	which	all	communications	are	taking	place
The	MoveIt!	Layer:	The	MoveIt!	layer	provides	a	direct	solution	to	industrial
manipulators	in	planning,	kinematics,	and	pick	and	place
The	ROS-I	Application	Layer:	This	layer	consists	of	an	industrial	process	planner,
which	is	used	to	plan	what	is	to	be	manufactured,	how	it	will	be	manufactured,	and

http://wiki.ros.org/Industrial


what	resources	are	needed	for	the	manufacturing	process
The	ROS-I	Interface	Layer:	This	layer	consists	of	the	industrial	robot	client,	which
can	connect	to	the	industrial	robot	controller	using	the	simple	message	protocol
The	ROS-I-	Simple	Message	Layer:	This	is	the	communication	layer	of	the
industrial	robot,	which	is	a	standard	set	of	protocol	that	will	send	data	from	the	robot
client	to	the	controller	and	vice	versa.
The	ROS-I	Controller	Layer:	This	layer	has	vendor-specific	industrial	robot
controllers.

After	discussing	the	basic	concepts,	we	can	start	working	on	interfacing	an	industrial	robot
to	ROS	using	ROS-I.	The	following	are	the	major	issues	we	need	to	address:

How	to	create	a	URDF	model	for	an	industrial	manipulator
How	to	create	MoveIt!	interface	for	an	industrial	manipulator
What	are	industrial	robot	driver	packages?
What	are	support	packages	in	ROS-I	and	how	are	created?
How	to	create	IKFast	MoveIt!	plugins	for	Industrial	robots

We	can	see	each	issue	and	its	solutions	with	an	example





Creating	URDF	for	an	industrial	robot
Creating	the	URDF	file	for	an	ordinary	robot	and	industrial	robot	are	the	same,	but	in
industrial	robots,	there	are	some	standards	that	should	be	strictly	followed	during	its
URDF	modeling,	which	are	as	follows:

Simplify	the	URDF	design:	The	URDF	file	should	be	simple	and	readable	and	only
need	the	important	tags
Common	design:	Developing	a	common	design	formula	for	all	industrial	robots	by
various	vendors
Modularizing	URDF:	The	URDF	needs	to	modularize	using	XACRO	macros	and	it
can	be	included	in	a	large	URDF	file	without	much	hassle.

The	following	points	are	the	main	difference	in	the	URDF	design	followed	by	ROS-I.

Collision-Aware:	The	industrial	robot	IK	planners	are	collision	aware	so	the	URDF
should	contain	accurate	collision	3D	mesh	for	each	link.	Every	link	in	the	robot
should	export	to	STL	or	DAE	with	a	proper	coordinate	system.	The	coordinate
system	which	ROS-I	is	following	are	X-axis	pointing	forward	and	Z-axis	pointing	up
when	each	joint	is	in	zero	position.	It	is	also	to	be	noted	that	if	the	joint’s	origin
coincides	with	the	base	of	the	robot,	the	transformation	will	be	simpler.	It	will	be
good	if	we	are	putting	robot-based	joints	in	zero	position	(origin),	which	can	simplify
the	robot	design.
In	ROS-I,	the	mesh	file	used	for	visual	purpose	is	highly	detailed,	but	the	mesh	file
used	for	collision	will	not	be	detailed,	because	it	takes	more	time	to	perform	collision
checking.	In	order	to	remove	the	mesh	details,	we	can	use	tools	such	as	MeshLab
(http://meshlab.sourceforge.net/)	using	its	option	(Filters	->	Remeshing,
Simplification	and	Reconstruction	->	Convex	Hull).
URDF	Joint	conventions:	The	orientation	value	of	each	robot	joint	is	limited	to
single	rotation,	that	is,	out	of	the	two	orientation	(roll,	pitch,	and	yaw)	values,	only
one	value	will	be	there.
Xacro	Macros:	In	ROS-I,	the	entire	manipulator	section	is	written	as	a	macro	using
xacro.	We	can	add	an	instance	of	this	macro	in	another	macro	file,	which	can	be	used
for	generating	a	URDF	file.	We	can	also	include	additional	end	effector	definitions
on	this	same	file.
Standards	Frames:	In	ROS-I,	the	base_link	frame	should	be	the	first	link	and
tool0	(tool-zero)	should	be	the	end	effector	link.	Also,	the	base	frame	should	match
with	the	base	of	the	robot	controller.	In	most	cases,	transform	from	base	to
base_link	is	treated	as	fixed.

After	building	the	xacro	file	for	the	industrial	robot,	we	can	convert	to	URDF	and	verify	it
using	the	following	command:

$	rosrun	xacro	xacro.py	-o	<urdf_file>	<xacro_file>

$	check_urdf	<urdf_file>

Next,	we	can	discuss	the	differences	in	creating	the	MoveIt!	configuration	for	an	industrial

http://meshlab.sourceforge.net/


robot.





Creating	MoveIt!	configuration	for	an
industrial	robot
The	procedure	for	creating	the	MoveIt!	interface	for	industrial	robots	are	same	as	the	other
ordinary	robot	manipulators	except	in	some	standard	conventions.	The	following
procedures	give	a	clear	idea	about	these	standard	conventions:

Launch	the	MoveIt!	setup	assistant	using	the	following	command:

$	roslaunch	moveit_setup_assistant	setup_assistant.launch

Load	the	URDF	from	the	robot	description	folder	or	convert	xacro	to	URDF	and	load
to	the	setup	assistant
Create	a	Self-Collision	matrix	with	Sampling	Density	about	~	80,000.	This	value
can	increase	the	collision	checking	in	the	arm
Add	a	Virtual	Joint	matrix	as	shown	in	the	following	screenshot.	Here	the	virtual
and	parent	frame	names	are	arbitrary.

Figure	3:	Adding	MoveIt!	-	Virtual	joints

In	the	next	step,	we	are	adding	Planning	Groups	for	manipulator	and	End
Effector,	here	also	the	group	names	are	arbitrary.	The	default	plugin	is	KDL,	we	can
change	it	even	after	creating	the	MoveIt!	configuration.



Figure	4:	Creating	Planning	Groups	in	MoveIt!

The	planning	groups,	that	is,	the	manipulator	plus	the	end	effector	configuration,	will	be
shown	like	this:



Figure	5:	Planning	groups	of	manipulator	+	end	effector	in	MoveIt!

We	can	assign	Robot	Poses,	such	as	home	position,	up	position,	and	so	on.	This
setting	is	an	optional	one.
We	can	assign	End	Effectors	as	shown	in	the	following	screenshot;	this	is	also	an
optional	setting:

Figure	6:	Setting	End	Effectors	in	MoveIt!	Setup	Assistant

After	setting	the	end	effector,	we	can	directly	generate	the	configuration	files.	It
should	be	noted	that	the	moveit-config	package	should	be	named	as
<robot_name>_moveit_config,	where	robot_name	is	the	name	of	the	URDF	file.
Also,	if	we	want	to	move	this	generated	config	package	to	another	PC,	we	need	to



edit	the	.setup_assistant	file	which	is	inside	the	moveit	package.	We	should
change	the	absolute	path	to	the	relative	path.	Here	is	an	example	of	the	abb_irb2400
robot.	We	should	mention	the	relative	path	of	URDF	and	SRDF	in	this	file,	as
follows:

moveit_setup_assistant_config:

		URDF:

				package:	abb_irb2400_support

				relative_path:	urdf/irb2400.urdf

		SRDF:

				relative_path:	config/abb_irb2400.srdf

		CONFIG:

				generated_timestamp:	1402076252



Updating	the	MoveIt!	configuration	files
After	creating	the	MoveIt!	configuration,	we	should	update	the	controllers.yaml	file
inside	the	config	folder	of	the	MoveIt!	package.	Here	is	an	example	of
controllers.yaml:

controller_list:

		-	name:	""

				action_ns:	follow_joint_trajectory

				type:	FollowJointTrajectory

				joints:

						-	shoulder_pan_joint

						-	shoulder_lift_joint

						-	elbow_joint

						-	wrist_1_joint

						-	wrist_2_joint

						-	wrist_3_joint

We	should	also	update	joint_limits.yaml	about	the	joint	information.	Here	is	a	code
snippet	of	joint_limits.yaml:

joint_limits:

		shoulder_pan_joint:

				has_velocity_limits:	true

				max_velocity:	2.16

				has_acceleration_limits:	true

				max_acceleration:	2.16

We	can	also	change	the	Kinematic	solver	plugin	by	editing	the	kinematics.yaml	file.
After	editing	all	the	configuration	files,	we	need	to	edit	the	controller	manager	launch
file	(<robot>_moveit_config/launch/<robot>_moveit_controller_manager.launch).

Here	is	an	example	of	the	controller	manager.launch	file:

<launch>

		<rosparam	file="$(find	ur10_moveit_config)/config/controllers.yaml"/>

		<param	name="use_controller_manager"	value="false"/>

		<param	name="trajectory_execution/execution_duration_monitoring"	

value="false"/>

		<param	name="moveit_controller_manager"	

value="moveit_simple_controller_manager/MoveItSimpleControllerManager"/>

</launch>

After	creating	the	controller	manger,	we	need	to	create	the
<robot>_moveit_planning_execution.launch	file.	Here	is	an	example	of	this	file:

<launch>

		<arg	name="sim"	default="false"	/>

		<arg	name="limited"	default="false"/>

		<arg	name="debug"	default="false"	/>



		<!--	Remap	follow_joint_trajectory	-->

		<remap	if="$(arg	sim)"	from="/follow_joint_trajectory"	

to="/arm_controller/follow_joint_trajectory"/>

		<!--	Launch	moveit	-->

		<include	file="$(find	ur10_moveit_config)/launch/move_group.launch">

				<arg	name="limited"	default="$(arg	limited)"/>

				<arg	name="debug"	default="$(arg	debug)"	/>

		</include>

</launch>



Testing	the	MoveIt!	configuration
After	editing	the	configuration	and	launch	files	in	the	MoveIt!	configuration,	we	can	start
running	the	robot	simulation	and	can	check	whether	the	MoveIt!	configuration	is	working
well	or	not.	Ensure	the	ros-industrial-simulator	package	is	installed	properly.	Here
are	the	steps	to	test	an	industrial	robot.

Start	the	robot	simulator
Start	the	MoveIt!	planning	execution	launch	file	using	the	following	command	line:

$	roslaunch	<robot>_moveit_config	moveit_planning_execution.launch

Open	RViz	and	load	RViz	Motion	planning	plugin	using	the	Plan	and	Execute
button.	We	can	plan	and	execute	the	trajectory	on	the	simulated	robot.





Installing	ROS-Industrial	packages	of
universal	robotic	arm
The	Universal	Robots	(http://www.universal-robots.com/)	is	an	industrial	robot
manufacturer	based	in	Denmark.	The	company	mainly	manufactures	three	arms	UR3,
UR5,	and	UR10.	The	robots	are	shown	in	the	following	screenshot:

Figure	7:	UR-3,	UR-5,	and	UR-10	robots

The	smaller	one	is	UR-3,	UR-5	is	the	one	in	the	center,	and	the	big	one	is	UR-10.	The
specifications	of	these	robots	are	given	in	the	following	table:

Robot UR-3 UR-5 UR-10

Working	radius 500	mm 850	mm 1300	mm

Payload 3	kg 5	kg 10	kg

Weight 11	kg 18.4	kg 28.9	kg

Footprint 118	mm 149	mm 190	mm

We	are	mainly	discussing	ROS	interfacing	of	UR-5	and	UR-10	using	ROS-I	packages.

We	can	install	the	packages	of	these	robots	and	can	work	with	the	MoveIt!	interface	and
simulation	interface	of	these	robots	in	Gazebo.

http://www.universal-robots.com/


Installing	the	ROS	interface	of	universal	robots
We	can	install	the	latest	packages	of	the	universal	robot	using	the	source	installation.

Create	a	workspace	for	the	industrial	robot	packages	called	ros_industrial_ws	and	clone
the	universal	robot	code	to	the	src	folder	as	follows:

ros_industrial_ws/src$	git	clone	https://github.com/ros-

industrial/universal_robot.git

We	can	also	install	its	Ubuntu	binary	packages	using	the	following	command:

$	sudo	apt-get	install	ros-indigo-universal-robot

The	universal	robot	stack	consists	of	the	following	packages:

ur_description:	This	package	consists	of	the	robot	description	and	gazebo
description	of	UR-5	and	UR-10.
ur_driver:	This	package	contains	client	nodes,	which	can	communicate	to	the	UR-5
and	UR-10	robot	hardware	controllers.
ur_bringup:	This	package	consists	of	launch	files	to	start	communication	with	the
robot	hardware	controllers	to	start	working	with	the	real	robot.
ur_gazebo:	This	package	consists	of	gazebo	simulations	of	both	UR-5	and	UR-10.
ur_msgs:	This	package	contains	ROS	messages	used	for	communication	between
various	UR	nodes.
ur10_moveit_config/ur5_moveit_config:	These	are	the	moveit	config	files	of	UR-
5	and	UR-10	robots.
ur_kinematics:	This	package	contains	kinematic	solver	plugins	for	UR-5	and	UR-
10.	We	can	use	this	solver	plugin	in	MoveIt!.

Build	the	packages	using	the	catkin_make	command	and	add	the	following	line	to	the
.bashrc	file	for	accessing	the	preceding	packages:

source	~/ros_industrial_ws/devel/setup.bash

We	can	launch	the	simulation	in	Gazebo	of	UR-10	robot	using	the	following	command:

$	roslaunch	ur_gazebo	ur10.launch



Figure	8:	Universal	robot,	UR-10	model	simulation	in	Gazebo

We	can	see	the	robot	controller	configuration	file	for	interfacing	into	the	MoveIt!	package.
The	following	YAML	file	defines	the	JointTrajectory	controller.	It	is	placed	in	the
ur_gazebo/controller	folder	with	a	name	arm_controller_ur10.yaml:

arm_controller:

		type:	position_controllers/JointTrajectoryController

		joints:

					-	shoulder_pan_joint

					-	shoulder_lift_joint

					-	elbow_joint

					-	wrist_1_joint

					-	wrist_2_joint

					-	wrist_3_joint

		constraints:

						goal_time:	0.6

						stopped_velocity_tolerance:	0.05

						shoulder_pan_joint:	{trajectory:	0.1,	goal:	0.1}

						shoulder_lift_joint:	{trajectory:	0.1,	goal:	0.1}

						elbow_joint:	{trajectory:	0.1,	goal:	0.1}

						wrist_1_joint:	{trajectory:	0.1,	goal:	0.1}

						wrist_2_joint:	{trajectory:	0.1,	goal:	0.1}

						wrist_3_joint:	{trajectory:	0.1,	goal:	0.1}

		stop_trajectory_duration:	0.5

		state_publish_rate:		25

		action_monitor_rate:	10

We	can	see	the	necessary	settings	which	have	to	be	done	in	the	robot	Moveit!	config
package	for	interfacing	the	Gazebo	controller.





Understanding	the	Moveit!	configuration
of	a	universal	robotic	arm
The	changes	that	we	need	to	make	in	the	industrial	MoveIt!	configuration	are	almost	the
same	as	the	arm	we	already	worked	with.

First,	we	have	to	define	the	controller.yaml	file,	which	has	to	create	inside
ur10_moveit_config/config.	Here	is	the	definition	of	the	controller.yaml	of	UR-10:

controller_list:

		-	name:	""

				action_ns:	follow_joint_trajectory

				type:	FollowJointTrajectory

				joints:

						-	shoulder_pan_joint

						-	shoulder_lift_joint

						-	elbow_joint

						-	wrist_1_joint

						-	wrist_2_joint

						-	wrist_3_joint

The	kinematics.yaml	file	inside	the	config	folder	contains	the	IK	solvers	used	for	this
arm;	we	can	use	the	following	IK	solvers.	The	contents	of	this	file	are	given	as	follows:

#manipulator:

#		kinematics_solver:	ur_kinematics/UR10KinematicsPlugin

#		kinematics_solver_search_resolution:	0.005

#		kinematics_solver_timeout:	0.005

#		kinematics_solver_attempts:	3

manipulator:

		kinematics_solver:	kdl_kinematics_plugin/KDLKinematicsPlugin

		kinematics_solver_search_resolution:	0.005

		kinematics_solver_timeout:	0.005

		kinematics_solver_attempts:	3

The	UR-10	and	UR-5	have	their	custom	IK	solver	plugins	and	we	can	switch	from	the
default	KDL	kinematics	plugins	to	the	robot	specific	solver.

The	definition	of	ur10_moveit_controller_manager.launch	inside	the	launch	folder	is
given	as	follows.	This	launch	file	loads	the	trajectory	controller	configuration	and	starts
the	trajectory	controller	manager:

<launch>

		<rosparam	file="$(find	ur10_moveit_config)/config/controllers.yaml"/>

		<param	name="use_controller_manager"	value="false"/>

		<param	name="trajectory_execution/execution_duration_monitoring"	

value="false"/>

		<param	name="moveit_controller_manager"	

value="moveit_simple_controller_manager/MoveItSimpleControllerManager"/>

</launch>

After	discussing	these	files,	let’s	see	how	to	execute	motion	planning	in	MoveIt!	and
executing	in	Gazebo:



1.	 Start	the	simulation	of	UR-10	with	joint	trajectory	controllers:

$	roslaunch	ur_gazebo	ur10.launch

2.	 Start	the	MoveIt!	nodes	for	motion	planning.	We	need	to	use	sim:=true,	if	we	are
trying	MoveIt!	along	with	the	simulation:

$	roslaunch	ur10_moveit_config	ur10_moveit_planning_execution.launch	

sim:=true

3.	 Launch	RViz	with	the	MoveIt!	visualization	plugin:

$	roslaunch	ur10_moveit_config	moveit_rviz.launch	config:=true

Figure	9:	Motion	planning	in	UR-10	model	in	RViz

We	can	move	the	end	effector	position	of	the	robot	and	plan	the	path	using	the	Plan
button.	When	we	press	the	Execute	button	or	the	Plan	and	Execute	button,	the	trajectory
should	send	to	the	simulated	robot,	which	is	shown	as	follows.



Figure	10	:	Motion	planned	trajectory	from	MoveIt!	executing	in	Gazebo

We	have	seen	a	universal	robot	and	its	simulation	in	Gazebo.	Next,	we	can	work	with
ABB	robots.





Working	with	MoveIt!	configuration	of
ABB	robots
We	will	work	with	the	motion	planning	of	the	popular	ABB	industrial	robot	models	such
as	IRB	2400	and	IRB	6640.	The	following	are	the	images	of	these	two	robots	and	their
specifications.

Figure	11:	ABB	IRB	2400	and	IRB	6640

The	arm	specification	of	the	IRB	2400-10	and	6640-130	models	are	given	in	the	following
table:

Robot IRB	2400-10 IRB	6640-130

Working	radius 1.55	m 3.2	m

Payload 12	kg 130	kg

Weight 380	kg 1310-1405	kg

Footprint 723x600	mm 1107	x	720	mm



To	work	with	ABB	packages,	clone	the	ROS	packages	of	the	robot	into	the	catkin
workspace.	We	can	use	the	following	command	to	do	this	task:

$	git	clone	https://github.com/ros-industrial/abb

We	can	also	install	packages	using	the	Ubuntu	binary	packages.	The	following	package
will	install	a	complete	set	of	ABB	robot	packages:

$	sudo	apt-get	install	ros-<distro>-abb

Build	the	source	packages	using	catkin_make	and	the	following	command	will	launch
ABB	IRB	6640	in	RViz	for	motion	planning:

$	roslaunch	abb_irb6640_moveit_config	demo.launch

The	following	RViz	window	will	appear	and	we	can	start	motion	planning	the	robot	in
RViz:

Figure	12:	Motion	planning	of	ABB	IRB	6640

One	of	the	other	ABB	robot	model	is	IRB	2400.	We	can	launch	the	robot	in	RViz	using	the
following	command:

$	roslaunch	abb_irb2400_moveit_config	demo.launch

The	following	is	a	screenshot	of	motion	planning	this	robot:



Figure	13:	Motion	planning	of	ABB	IRB	2400





Understanding	the	ROS-Industrial	robot
support	packages
The	ROS-I	robot	support	packages	are	a	new	convention	followed	for	industrial	robots.
The	aim	of	these	support	packages	are	to	standardize	the	ways	of	maintaining	ROS
packages	for	a	wide	variety	of	industrial	robot	types	of	different	vendors.	Because	of	a
standardized	way	of	keeping	files	inside	support	packages,	we	don’t	have	any	confusion	in
accessing	the	files	inside	it.	We	can	demonstrate	a	support	package	of	an	ABB	robot	and
can	see	the	folders	and	files	and	its	uses.

We	have	already	cloned	the	ABB	robot	packages	and	inside	this	folder	we	can	see	three
support	packages	that	support	three	variety	of	ABB	robots.	Here	we	are	taking	the	ABB
IRB	2,400	model	support	package:	abb_irb2400_support.	This	is	the	support	package	of
the	ABB	industrial	robot	model	called	IRB	2400.	The	following	list	shows	the	folders	and
files	inside	this	package:

config:	As	the	name	of	the	folder,	this	contains	the	configuration	files	of	joint
names,	RViz	configuration,	and	robot	model	specific	configuration

joint_names_irb2400:	Inside	the	config	folder,	there	is	a	configuration	file,
which	contains	the	joint	names	of	the	robot	which	is	used	by	the	ROS	controller.

launch:	This	folder	contains	the	launch	file	definitions	of	this	robot.	These	files	are
following	a	common	convention	in	all	industrial	robots.

load_irb2400.launch:	This	file	simply	loads	robot_description	on	the
parameter	server.	According	to	the	complexity	of	the	robot	the	number	of	xacro
files	can	be	increased.	This	file	loads	all	xacro	in	a	single	launch	file.	Instead	of
writing	separate	code	for	adding	robot_description	in	other	launch	files,	we
can	simply	include	this	launch	file.
test_irb2400.launch:	This	launch	file	can	visualize	the	loaded	URDF.	We	can
inspect	and	verify	the	URDF	in	RViz.	This	launch	file	includes	the	preceding
launch	files	and	starts	joint_state_publisher	and	robot_state_publisher
nodes,	which	helps	to	interact	with	the	user	on	RViz.	This	will	work	without	the
need	for	real	hardware.
robot_state_visualize_irb2400.launch:	This	launch	file	visualizes	the
current	state	of	the	real	robot	by	running	nodes	from	the	ROS-Industrial	driver
package	with	appropriate	parameters.	The	current	state	of	the	robot	is	visualized
by	running	RViz	and	the	robot_state_publisher	node.	This	launch	file	needs	a
real	robot	or	simulation	interface.	One	of	the	main	arguments	provided	along
with	this	launch	file	is	the	IP	address	of	the	industrial	controller.	Also	note	that
the	controller	should	run	a	ROS-Industrial	server	node.
robot_interface_download_irb2400.launch:	This	launch	file	starts	bi-
directional	communication	with	the	industrial	robot	controller	to	ROS	and	vice
versa.	There	are	industrial	robot	client	nodes	for	reporting	the	state	of	robot
(robot_state	node)	and	subscribing	the	joint	command	topic	and	issuing	the



joint	position	to	the	controller	(joint_trajectory	node).	This	launch	file	also
requires	access	to	the	simulation	or	real	robot	controller	and	needs	to	mention
the	IP	address	of	the	industrial	controllers.	The	controller	should	run	the	ROS-
Industrial	server	programs	too.

urdf:	This	folder	contains	the	set	of	standardized	xacro	files	of	the	robot	model:

irb2400_macro.xacro:	This	is	the	xacro	definition	of	a	specific	robot.	It	is	not	a
complete	URDF,	but	it’s	a	macro	definition	of	the	manipulator	section.	We	can
include	this	file	inside	another	file	and	create	an	instance	of	this	macro.
irb2400.xacro:	This	is	the	top	level	xacro	file,	which	creates	an	instance	of	the
macro,	which	is	discussed	in	the	preceding	section.	This	file	doesn’t	include	any
other	files	other	than	the	macro	of	the	robot.	This	xacro	file	will	be	loading
inside	the	load_irb2400.launch	file	that	we	have	already	discussed.
irb2400.urdf:	This	is	the	URDF	generated	from	the	preceding	xacro	file	using
the	xacro	tool.	This	file	is	used	when	the	tools	or	packages	can’t	load	xacro
directly.	This	is	the	top-level	URDF	for	this	robot

meshes:	This	contains	meshes	for	visualization	and	collision	checking
irb2400:	This	folder	contains	mesh	files	for	a	specific	robot
visual:	This	folder	contains	STL	files	used	for	visualization
collision:	This	folder	contains	STL	files	used	for	collision	checking
tests:	The	folder	contains	the	test	launch	file	to	test	all	the	preceding	launch	files
roslaunch_test.xml:	This	launch	file	tests	all	the	launch	files.



Visualizing	the	ABB	robot	model	in	RViz
After	creating	the	robot	model,	we	can	test	it	using	the	test_irb2400.launch	file.	The
following	command	will	launch	the	test	interface	of	the	ABB	IRB	2400	robot:

$	roslaunch	abb_irb2400_support	test_irb2400.launch

It	will	show	the	robot	model	in	RViz	with	a	joint	state	publisher	node	as	shown	in	the
following	screenshot:

Figure	14:	ABB	IRB	2400	with	joint	state	publisher	on	RViz

We	can	adjust	the	robot	joints	by	adjusting	the	joint	state	publisher	sliders’	values.	Using
this	testing	interface,	we	can	confirm	whether	the	URDF	design	is	correct	or	not.





ROS-Industrial	robot	client	package
The	industrial	robot	client	nodes	are	responsible	for	sending	robot	position/trajectory	data
from	ROS	MoveIt!	to	the	industrial	robot	controller.	The	industrial	robot	client	converts
the	trajectory	data	to	simple_message	and	communicates	to	the	robot	controller	using	the
simple_message	protocol.	The	industrial	robot	controller	running	a	server	and	industrial
robot	client	nodes	are	connecting	to	this	server	and	start	communicating	with	this	server.



Designing	industrial	robot	client	nodes
The	industrial_robot_client	package	contains	various	classes	to	implement	industrial
robot	client	nodes.	The	main	functionalities	that	a	client	should	have	is,	it	can	update	the
robot	current	state	from	the	robot	controller,	and	also	it	can	send	joint	trajectories/joint
position	message	to	the	controller.

There	are	two	main	nodes	that	are	responsible	for	getting	robot	state	and	sending	joint
trajectory/position	values.

The	robot_state	node:	This	node	is	responsible	for	publishing	the	robot’s	current
position,	status,	and	so	on
The	joint_trajectory	node:	This	node	subscribes	the	robot’s	command	topic	and
sends	the	joint	position	commands	to	the	robot	controller	via	the	simple	message
protocol

The	following	screenshot	gives	the	list	of	APIs	provided	by	the	industrial	robot	client:

Figure	15:	A	list	of	the	industrial	robot	client	APIs

We	can	briefly	go	through	these	APIs	and	their	functionalities	as	follows:

RobotStateInterface:	This	class	contains	methods	to	publish	the	current	robot
position	and	status	at	regular	intervals	after	receiving	the	position	data	from	the	robot
controller.
JointRelayHandler:	The	RobotStateInterface	class	is	a	wrapper	around	a	class
called	MessageManager.	What	it	does	is,	it	listens	to	the	simple_	message	robot
connection	and	processes	each	message	handling	using	Messagehandlers.	The
JointRelayHandler	functionality	is	a	MessageHandler	and	its	function	is	to	publish
the	joint	position	in	the	joint_states	topic.
RobotStatusRelayHandler:	This	is	another	MessageHandler,	which	can	publish	the
current	robot	status	info	in	the	robot_status	topic.
JointTrajectoryInterface:	This	class	contains	methods	to	send	the	robot’s	joint
position	to	the	controller	when	it	receives	a	ROS	trajectory	command.
JointTrajectoryDownloader:	This	class	is	derived	from	the
JointTrajectoryInterface	class,	and	it	implements	a	method	called



send_to_robot().	This	method	sends	an	entire	trajectory	as	a	sequence	of	messages
to	the	robot	controller.	The	robot	controller	will	execute	the	trajectory	in	the	robot
only	after	getting	all	sequences	sent	from	the	client.
JointTrajectoryStreamer:	This	class	is	the	same	as	the	preceding	class	except	in
the	implementation	of	the	send_to_robot()	method.	This	method	sends	independent
joint	values	to	the	controller	in	separate	threads.	Each	position	command	is	sent	only
after	the	execution	of	the	existing	command.	In	the	robot	side,	there	will	be	a	small
buffer	for	receiving	the	position	to	make	the	motion	smoother.

The	list	of	nodes	inside	the	industrial	robot	client	are	as	follows:

robot_state:	This	node	is	running	based	on	RobotStateInterface,	which	can
publish	the	current	robot	states
motion_download_interface:	This	node	runs	JointTrajectoryDownloader,	which
will	download	trajectory	in	sequence	to	the	controller
motion_streaming_interface:	This	node	runs	JointTrajectoryStreamer,	which
will	send	the	joint	position	in	parallel	using	threading
joint_trajectory_action:	This	node	provides	a	basic	actionlib	interface





ROS-Industrial	robot	driver	package
In	this	section,	we	can	discuss	the	industrial	robot	driver	package.	If	we	take	the	ABB
robot	as	an	example,	it	has	a	package	called	abb_driver.	This	package	is	responsible	for
communicating	with	the	industrial	robot	controller.	The	package	contains	industrial	robot
clients	and	launches	the	file	to	start	communicating	with	the	controller.

We	can	check	what’s	inside	the	abb_driver/launch	folder.	The	following	is	a	definition
of	a	launch	file	called	robot_interface.launch:

<launch>

		<!--	robot_ip:	IP-address	of	the	robot's	socket-messaging	server	-->

		<arg	name="robot_ip"	/>

		<!--	J23_coupled:	set	TRUE	to	apply	correction	for	J2/J3	parallel	linkage	

-->

		<arg	name="J23_coupled"	default="false"	/>

		<!--	copy	the	specified	arguments	to	the	Parameter	Server,	for	use	by	

nodes	below	-->

		<param	name="robot_ip_address"	type="str"	value="$(arg	robot_ip)"/>

		<param	name="J23_coupled"	type="bool"	value="$(arg	J23_coupled)"/>

		<!--	robot_state:	publishes	joint	positions	and	robot-state	data

																			(from	socket	connection	to	robot)	-->

		<node	pkg="abb_driver"	type="robot_state"	name="robot_state"/>

		<!--	motion_download_interface:	sends	robot	motion	commands	by	

DOWNLOADING	path	to	robot

																																		(using	socket	connection	to	robot)	-->

<node	pkg="abb_driver"	type="motion_download_interface"	

name="motion_download_interface"/>

		<!--	joint_trajectory_action:	provides	actionlib	interface	for	high-level	

robot	control	-->

		<node	pkg="industrial_robot_client"	type="joint_trajectory_action"	

name="joint_trajectory_action"/>

</launch>

This	launch	file	provides	a	socket-based	connection	to	ABB	robots	using	the	standard
ROS-Industrial	simple_message	protocol.

Several	nodes	are	started	to	supply	both	low-level	robot	communication	and	high-level
actionlib	support:

robot_state:	This	publishes	the	current	joint	positions	and	robot	state	data
motion_download_interface:	This	commands	the	robot	motion	by	sending	motion
points	to	the	robot
joint_trajectory_action:	This	is	the	actionlib	interface	to	control	the	robot
motion



Their	usage	is	as	follows:

robot_interface.launch	robot_ip:=<value>	[J23_coupled:=false]

We	can	see	the	abb_irb6600_support/launch/
robot_interface_download_irb6640.launch	file	and	this	is	the	driver	for	the	ABB	IRB
6640	model.	This	definition	of	launch	is	given	in	the	following	code.	The	preceding	driver
launch	file	is	included	in	this	launch	file.	In	other	support	packages	of	other	ABB	models,
use	the	same	driver	with	different	joint	configuration	parameter	files:

<launch>

		<arg	name="robot_ip"	/>

		<arg	name="J23_coupled"	default="true"	/>

		<rosparam	command="load"	file="$(find	

abb_irb2400_support)/config/joint_names_irb2400.yaml"	/>

		<include	file="$(find	abb_driver)/launch/robot_interface.launch">

				<arg	name="robot_ip"				value="$(arg	robot_ip)"	/>

				<arg	name="J23_coupled"	value="$(arg	J23_coupled)"	/>

		</include>

</launch>

The	preceding	file	is	the	manipulator-specific	version	of	'robot_interface.launch'	(of
abb_driver).

Defaults	provided	for	IRB	2400:	-	J23_coupled	=	true
Usage:	robot_interface_download_irb2400.launch	robot_ip:=<value>

We	should	run	the	driver	launch	file	to	start	communicating	with	the	real	robot	controller.
For	ABB	robot	IRB	2,400,	we	can	use	the	following	command	to	start	bi-directional
communication	with	the	robot	controller	and	the	ROS	client:

$	roslaunch	abb_irb2400_support	robot_interface_download_irb2400.launch	

robot_ip:=<value>

After	launching	the	driver,	we	can	start	planning	using	the	MoveIt!	interface.	It	should
also	be	noted	that	the	ABB	robot	should	be	configured	and	the	IP	of	the	robot	controller
should	be	found	before	starting	the	robot	driver.





Understanding	MoveIt!	IKFast	plugin
One	of	the	default	numerical	IK	solvers	in	ROS	is	KDL.	KDL	is	mainly	using	DOF	>	6.	In
robots	DOF	<=	6,	we	can	use	analytic	solvers,	which	is	much	faster	than	numerical
solvers	such	as	KDL.	Most	of	the	industrial	arms	are	having	DOF	<=	6,	so	it	will	be	good
if	we	make	an	analytical	solver	plugin	for	each	arm.

The	robot	will	work	on	the	KDL	solver	too,	but	if	we	want	fast	IK	solution,	we	can	choose
something	such	as	the	IKFast	module	to	generate	analytical	solver-based	plugins	for
MoveIt!.	We	can	check	which	all	are	the	IKFast	plugin	packages	present	in	the	robot,	for
example,	universal	robots	and	ABB.

ur_kinematics:	This	package	contains	IKFast	solver	plugins	of	UR-5	and	UR-10
robots	from	universal	robotics
abb_irb2400_moveit_plugins/irb2400_kinematics:	This	package	contains	IKFast
solver	plugins	for	the	ABB	robot	model	IRB	2400

We	can	go	through	the	procedures	to	build	an	IKFast	plugin	for	MoveIt!.	It	will	be	useful
when	we	create	an	IK	solver	plugin	for	a	custom	industrial	robotics	arm.	Let’s	see	how	to
create	a	MoveIt!	IKFast	plugin	for	the	industrial	robot	ABB-IRB6640.





Creating	the	MoveIt!	IKFast	plugin	for
the	ABB-IRB6640	robot
We	have	seen	the	MoveIt!	package	for	the	ABB	robot	IRB	6640	model.	But	the	robot	is
working	using	the	KDL	plugin,	which	is	a	default	numerical	solver.	For	generating	IK
solver	plugin	using	IKFast,	we	can	follow	the	procedure	mentioned	in	this	section.	At	the
end	of	this	section,	we	can	run	the	MoveIt!	demo	of	this	robot	using	our	custom	moveit-
ikfast	plugin.

In	short,	we	will	build	an	IKFast	MoveIt!	plugin	for	robot	ABB	-IRB	66400.	This	plugin
can	be	selected	during	the	MoveIt!	setup	wizard	or	we	can	mention	it	in	the
config/kinematics.yaml	file	of	the	moveit-config	package



Prerequisites	for	developing	the	MoveIt!	IKFast
plugin
The	following	is	the	configuration	we	have	used	for	developing	the	MoveIt!	IKFast
plugin:

Ubuntu	14.04.3	LTS	x86_64	bit
ROS-Indigo	desktop-full,	Version	1.11.13
Open-Rave	0.9



OpenRave	and	IK	Fast	Module
OpenRave	is	a	set	of	command	line	and	GUI	tools	for	developing,	testing,	and	deploying
motion	planning	algorithms	in	real-world	applications.	One	of	the	OpenRave	modules	is
IKFast,	which	is	a	robot	kinematics	compiler.	OpenRave	was	created	by	a	Robotic
researcher	called	Rosen	Diankov.

The	IKFast	compiler	analytically	solves	the	inverse	kinematics	of	a	robot	and	generates
optimized	and	independent	C++	files,	which	can	be	deployed	in	our	code	for	solving	IK.
The	IKFast	compiler	generates	analytic	solutions	of	IK,	which	is	much	faster	than
numerical	solutions	provided	by	KDL.	The	IK	Fast	compiler	can	handle	any	number	of
DOF,	but	practically	it	is	well	suited	for	DOF	<=	6.

The	IKFast	is	a	Python	script	that	takes	arguments	such	as	IK	types,	robot	model,	joint
position	of	base	link,	and	end	effector.

The	following	are	the	main	IK	types	supported	by	IKFast:

Transform6D:	This	end	effector	should	reach	the	commanded	6D	transformation
Rotation	3D:	This	end	effector	should	reach	the	commanded	3D	rotation
Translation	3D:	This	end	effector	origin	should	reach	the	desired	3D	translation

MoveIt!	IK	Fast
The	moveit-ikfast	ROS	package	contains	tools	to	generate	a	kinematic	solver	plugin	for
MoveIt!	using	the	OpenRave	generated	CPP	file.	We	will	use	this	tool	to	generate	a	IK
Fast	plugin	for	MoveIt!.

Installing	MoveIt!	IKFast	package
The	following	command	will	install	the	moveit-ikfast	package	in	ROS	Indigo:

$	sudo	apt-get	install	ros-indigo-moveit-ikfast

Installing	OpenRave	on	Ubuntu	14.04.3
Installing	OpenRave	on	the	latest	Ubuntu	is	a	tedious	task.	We	can	install	OpenRave	from
its	repository	or	from	the	source	itself.	The	repository	installation	has	some	issues	so	we
have	installed	this	application	on	Ubuntu	14.04.3	from	the	source	code	using	the	following
procedure:

1.	 Clone	the	source	code	in	the	home	folder.	The	file	size	is	in	the	range	of	300-400
MB.

$	git	clone	--branch	latest_stable	

https://github.com/rdiankov/openrave.git

2.	 For	compiling	the	source	code,	we	need	to	install	some	packages:

Installing	boost,	Python	development	packages	and	NumPy:

$	sudo	apt-get	install	libboost-python-dev	python	python-dev	

python-numpy	ipython



Installing	scientific	Python	and	its	package	to	handle	symbolic	mathematics:

$	sudo	apt-get	install	python-scipy	python-sympy

Installing	open	asset	import	library	to	handle	3D	file	formats:

$	sudo	apt-get	install	libassimp-dev	assimp-utils	python-pyassimp

3.	 Add	the	following	lines	on	/etc/apt/source.list:

deb	http://ppa.launchpad.net/openrave/testing/ubuntu	trusty	main

deb-src	http://ppa.launchpad.net/openrave/testing/ubuntu	trusty	main

4.	 Then,	update	the	package	list	using	the	following	command:

$	sudo	apt-get	update

5.	 Install	the	following	packages	from	the	preceding	repository	using	the	following
commands.	It	will	install	the	collada	file	handling	package	and	Qt4	GUI	toolkit	for
the	inventor	app.

$	sudo	apt-get	install	collada-dom2.4-dp*

$	sudo	apt-get	install	libsoqt4-dev

Now,	we’ll	see	how	to	install	cmake-gui	for	configuring	and	generating	Makefiles	from
CMakeLists.txt.

The	OpenRave	project	is	based	on	CMake,	so	we	need	this	tool	for	generating	Makefiles.

$	sudo	apt-get	install	cmake-qt-gui

Then,	we’ll	perform	the	following	steps:

1.	 The	first	procedure	of	installing	OpenRave	is	to	generate	the	UNIX	Makefiles	from
CMakeLists.txt	file.

2.	 Create	a	build	folder	inside	the	OpenRave	cloned	folder	and	open	cmake-gui	for
configuring	and	building	Makefiles.

3.	 Browse	the	source	code	and	the	build	folder,	as	shown	in	the	following	screenshot,
and	after	configuring	uncheck	support	for	Matlab	and	Octave	interfaces:



Figure	15:	Configuring	OpenRave	with	cmake-gui

4.	 Click	on	the	Generate	button	to	generate	the	Makefiles	in	the	build	folder.
5.	 Switch	to	the	build	folder	and	build	the	code	and	install	using	the	following

command:

$	make

$	sudo	make	install

6.	 After	installing	OpenRave,	execute	the	following	command	to	check	OpenRave	is
working:

$	openrave

If	everything	works	fine,	it	will	open	a	3D	view	port.





Creating	the	COLLADA	file	of	a	robot	to
work	with	OpenRave
In	this	section,	we	can	discuss	how	to	convert	the	robot	URDF	model	to	the	collada	file
(.dae)	format	to	work	with	OpenRave.	There	is	a	ROS	package	called	collada_urdf,
which	contains	nodes	to	convert	URDF	into	collada	files.	The	URDF	file	of	ABB-IRB
6640	model	is	on	abb_irb6600_support/urdf	folder	named	irb6640.urdf.	Copy	this	file
into	your	working	folder	and	run	the	following	command	for	the	conversion:

Start	roscore

$	roscore

Run	the	conversion	command.	We	need	to	mention	the	URDF	file	and	the	output	DAE
file:

$	rosrun	collada_urdf	urdf_to_collada	irb6640.urdf	irb6640.dae

Tip
In	most	of	the	cases,	this	command	fails	because	most	of	the	URDF	file	contains	STL
meshes	and	it	may	not	convert	into	DAE	as	we	expected.	If	the	robot	meshes	in,	in	DAE
format,	it	will	work	fine.	If	it	happens,	follow	this	procedure:

Install	Meshlab	tool	for	viewing	and	editing	meshes	using	the	following	command:
Open	meshes	present	at	abb_irb6600_support/meshes/irb6640/visual	in	Meshlab
and	export	the	file	into	DAE	with	the	same	name.
Edit	the	irb6640.urdf	file	and	change	the	visual	meshes	in	STL	extension	to	DAE.
This	tool	only	process	meshes	for	visual	purpose	only,	so	we	will	get	a	final	DAE
model.

$	sudo	apt-get	install	meshlab

We	can	open	the	irb6640.dae	file	using	OpenRave	with	the	following	command:

$	openrave	irb6640.dae

We	will	get	the	model	in	OpenRave	as	shown	in	the	following	screenshot:



Figure	16:	Viewing	the	ABB	6640	model	on	OpenRave

We	can	check	the	link	information	of	the	robot	using	the	following	command:

$	/usr/bin/openrave-robot.py	irb6640.dae	--info	links

We	can	get	link	info	about	the	robot	in	the	following	format:

name										index	parents

---------------------------------

base_link					0

base										1					base_link

link_1								2					base_link

link_2								3					link_1

link_4								5					link_3

link_5								6					link_4

link_6								7					link_5

tool0									8					link_6

link_cylinder	9					link_1

link_piston			10				link_cylinder

---------------------------------

name										index	parents





Generating	the	IKFast	CPP	file	for	the
IRB	6640	robot
After	getting	the	link	info,	we	can	start	generating	the	IK	solver	CPP	file	for	handling	the
IK	of	this	robot.

Use	the	following	command	to	generate	the	IK	solver	for	the	IRB	6640	robot:

$	python	`openrave-config	--python-dir`/openravepy/_openravepy_/ikfast.py	-

-robot=irb6640.dae	--iktype=transform6d	--baselink=1	--eelink=8	--

savefile=output_ikfast61.cpp

The	preceding	command	generates	a	CPP	file	called	output_ikfast61.cpp	in	which	the
IK	type	is	transform6d,	the	position	of	the	baselink	is	1,	and	the	end	effector	link	is	8.
We	need	to	mention	the	robot	DAE	file	as	the	robot	argument.

We	can	test	this	file	using	the	following	procedure:

1.	 Download	the	IKFast	demo	code	file	from	http://kaist-ros-
pkg.googlecode.com/svn/trunk/arm_kinematics_tools/src/ikfastdemo/ikfastdemo.cpp.

2.	 Also,	copy	IKFast.h	to	the	current	folder.	This	file	is	present	in	the	cloned	file	of
OpenRave.	We	will	get	this	header	from	openrave/python.

3.	 After	getting	output_ikfast61.cpp,	ikfastdemo.cpp,	and	ikfast.h	on	the	same
folder,	we	need	to	edit	ikfastdemo.cpp	and	change	the	following	portion.	Here,	we
are	commenting	a	header,	and	instead	of	that,	we	add	the	CPP	file	that	we	have
generated,	that	is	output_ikfast61.cpp.

#define	IK_VERSION	61

#include	"output_ikfast61.cpp"

//#include	"ikfast61.Transform6D.0_1_2_3_4_5.cpp"

4.	 Compile	the	edited	file	and	check	whether	you	are	getting	any	errors.	Here	is	the
command	to	compile	and	execute	this	code:

$	g++	ikfastdemo.cpp	-lstdc++	-llapack	-o	compute	-lrt

$	./compute

If	the	demo	is	working,	we	can	go	to	the	next	step.	Now,	we	have	successfully	created	the
IK	solver	CPP	file;	the	next	step	is	to	create	a	MoveIt!	IK	Fast	plugin	using	this	source
code.

http://kaist-ros-pkg.googlecode.com/svn/trunk/arm_kinematics_tools/src/ikfastdemo/ikfastdemo.cpp


Creating	the	MoveIt!	IKFast	plugin
Creating	a	MoveIt!	IKFast	plugin	is	easy.	There	is	no	need	to	write	code;	everything	can
be	generated	using	some	tools.	The	only	thing	we	need	to	do	is	to	create	an	empty	ROS
package.	The	following	are	the	procedures	to	create	a	plugin:

1.	 Switch	to	the	ros_industrial	workspace	in	the	src	folder:

$	cd	~/ros_industrial_ws/src

2.	 Create	an	empty	package	in	which	the	name	should	contain	the	robot	name	and
model	number.	This	package	is	going	to	convert	into	the	final	plugin	package	using
the	plugin	generation	tool:

$	catkin_create_pkg	abb_irb6640_moveit_plugins

3.	 Build	the	workspace	using	the	catkin_make	command.
4.	 After	building	the	workspace,	copy	ikfast.h	to

abb_irb6640_moveit_plugins/include

5.	 Switch	to	the	folder	where	we	created	the	output_ikfast61.cpp	file	and	the	robot
DAE	file.	Rename	the	output_ikfast61.cpp	file	to
abb_irb6640_manipulator_ikfast_solver.cpp.	This	filename	consists	of	robot
name,	model	number,	type	of	robot,	and	so	on.	This	kind	of	naming	is	necessary	for
the	generating	tool.

After	performing	these	steps,	open	two	terminals	in	the	current	path	where	the	IK	solver
CPP	file	exists.	In	one	terminal,	start	the	roscore	command.

In	the	next	terminal,	we	can	enter	the	plugin	creation	command	as	follows:

$	rosrun	moveit_ikfast	create_ikfast_moveit_plugin.py	abb_irb6640	

manipulator	abb_irb6640_moveit_plugins	

abb_irb6640_manipulator_ikfast_solver.cpp

The	moveit_ikfast	ROS	package	consists	of	the	create_ikfast_moveit_plugin.py
script	for	the	plugin	generation.	The	first	parameter	is	the	robot	name	with	the	model
number,	the	second	argument	is	the	type	of	robot,	the	third	argument	is	the	package	name
we	have	created	earlier,	and	the	fourth	argument	is	the	name	of	the	IK	solver	CPP	file.
This	tool	needs	the	abb_irb6640_moveit_config	package	for	its	working.	It	will	search
this	package	using	the	given	name	of	the	robot.	So,	if	the	name	of	the	robot	is	wrong,	the
tool	for	raising	an	error	will	say	that	it	couldn’t	find	the	robot	moveit	package.

If	the	creation	is	successful,	the	messages	in	the	following	screenshot	will	be	displayed:



Figure	17:	Terminal	messages	of	successful	creation	of	IKFast	plugin	for	MoveIt!

Note
Note	the	possible	errors	that	are	discussed	at	https://github.com/ros-
planning/moveit_ikfast/pull/48.

Build	ros_industrial_ws	again,	and	we	can	see	that	a	new	plugin	is	building	properly.	If
it	is	built,	we	can	replace	the	default	KDL	IK	solver	in	the
abb_irb6640_moveit_config/config/	kinematics.yaml	file	to	the	new	solver	as
follows:

manipulator:

		kinematics_solver:	

abb_irb6640_manipulator_kinematics/IKFastKinematicsPlugin

		kinematics_solver_search_resolution:	0.005

		kinematics_solver_timeout:	0.005

		kinematics_solver_attempts:	3

#manipulator:

#		kinematics_solver:	kdl_kinematics_plugin/KDLKinematicsPlugin

#		kinematics_solver_search_resolution:	0.005

#		kinematics_solver_timeout:	0.005

#		kinematics_solver_attempts:	3

After	changing	this	kinematics	solver,	we	can	start	working	on	the	robot	using	the
following	command:

$	roslaunch	abb_irb6640_moveit_config	demo.launch

We	will	get	the	planning	window	with	a	new	IK	solver	as	follows:

https://github.com/ros-planning/moveit_ikfast/pull/48


Figure	18:	Motion	planning	of	ABB	6640	using	custom	IKFast	Plugin





Questions
Here	are	some	common	questions	that	will	help	you	better	learn	and	understand	this
chapter:

What	are	the	main	benefits	in	using	ROS-Industrial	packages?
What	are	the	conventions	followed	by	ROS-I	in	designing	URDF	for	industrial
robots?
What	is	the	purpose	of	ROS’s	support	packages?
What	is	the	purpose	of	ROS’s	driver	packages?
Why	we	need	an	IKFast	plugin	for	our	industrial	robot	rather	than	the	default	KDL
plugin?





Summary
In	this	chapter,	we	have	been	discussing	a	new	interface	of	ROS	for	industrial	robots
called	ROS-Industrial.	We	have	seen	the	basic	concepts	in	developing	the	industrial
packages	and	installed	it	on	Ubuntu.	After	installation,	we	have	seen	the	block	diagram	of
this	stack	and	started	discussing	about	developing	the	URDF	model	for	industrial	robots
and	also	about	creating	the	MoveIt!	interface	for	an	industrial	robot.	After	discussing	a	lot
on	these	topics,	we	have	installed	some	industrial	robot	packages	of	universal	robots	and
ABB.	We	have	learned	the	structure	of	the	MoveIt!	package	and	then	shifted	to	the	ROS-
Industrial	support	packages.	We	have	discussed	in	detail	and	switched	onto	concepts	such
as	the	industrial	robot	client	and	about	how	to	create	MoveIt!	IKFast	plugin.	In	the	end,
we	have	used	the	developed	plugin	in	the	ABB	robot.

In	the	next	chapter,	we	look	at	the	troubleshooting	and	best	practices	in	ROS	software
development.





Chapter	12.	Troubleshooting	and	Best
Practices	in	ROS
In	the	previous	chapter,	we	discussed	about	ROS-Industrial	and	worked	with	motion
planning	of	some	industrial	robots.	In	this	chapter,	we	will	discuss	setting	the	ROS
development	environment	in	Eclipse	IDE,	best	practices	in	ROS,	and	troubleshooting	tips
in	ROS.	This	is	the	last	chapter	of	this	book,	so	before	we	start	development	in	ROS,	it
will	be	good	if	we	know	the	standard	methods	for	writing	code	using	ROS.	Following	are
the	topics	that	we	are	going	to	discuss	in	this	chapter:

Setting	the	ROS	development	environment	in	Eclipse	IDE
Best	practices	in	ROS
Best	coding	practices	in	ROS	using	C++
Important	troubleshooting	tips	in	ROS

Before	start	coding	in	ROS,	it	will	be	good	if	we	set	ROS	development	environment	in	an
IDE.	Setting	an	IDE	for	ROS	is	not	mandatory	but	it	can	save	developer	time.	IDEs	can
provide	auto	completion	features	that	can	make	programming	easy.	We	can	use	any	editors
such	as	Sublime	and	VIM	or	simply	gedit	for	coding	in	ROS.	It	will	be	good	if	you	choose
IDEs	when	you	are	planning	a	big	project	in	ROS.

In	this	chapter,	we	will	demonstrate	how	to	set	up	the	ROS	development	environment	in
Eclipse	IDE.	Let’s	see	how	to	download,	install,	and	the	setting	of	ROS	on	the	latest
Eclipse	IDE	on	Ubuntu	14.04.3.



Setting	up	Eclipse	IDE	on	Ubuntu	14.04.3
Eclipse	needs	Java	Runtime	Environment	(JRE)	in	order	to	work.	The	following
command	can	install	JRE	in	Ubuntu:

$	sudo	apt-get	install	default-jre

The	first	step	is	to	download	the	latest	eclipse	IDE.	We	can	get	the	latest	version	of
Eclipse	at	https://www.eclipse.org/downloads/?osType=linux.

https://www.eclipse.org/downloads/?osType=linux


Figure	1:	Eclipse	IDE	download	page

Download	and	extract	the	Eclipse	IDE	for	C/C++	Developers	that	is	marked	on	the
preceding	image.	Extract	the	Eclipse	archive	file	using	the	following	command.	Here	we
are	using	Eclipse	mars	for	Linux	64	bit:

$	tar	-xvzf	eclipse-cpp-<name_version>-linux-gtk-x86_64.tar.gz

We	will	get	a	folder	called	eclipse	after	extraction.	Copy	the	eclipse	folder	to	the	/opt
folder	using	the	following	command:

$	sudo	cp	-r	eclipse	/opt/

Create	a	desktop	file	for	the	eclipse	for	accessing	from	the	Ubuntu	search	bar:

$	sudo	nano	/usr/share/applications/eclipse.desktop

Copy	and	paste	the	following	content	to	this	file.	This	file	consists	of	the	location	of	the
eclipse	executable	and	its	icon:

[Desktop	Entry]

Version=4.4.1

Name=Eclipse	Mars	Java	EE

GenericName=IDE

Comment=Eclipse	IDE	for	Java	C++	Developers

Exec=/opt/eclipse/eclipse

Terminal=false

Icon=/opt/eclipse/icon.xpm

Type=Application

Categories=Utility;Application;

After	saving	this	file,	you	can	access	Eclipse	from	the	search	bar	itself.





Setting	ROS	development	environment	in
Eclipse	IDE
In	this	section,	we	can	see	the	necessary	settings	that	we	need	to	do	for	compiling	ROS
C++	nodes	in	Eclipse.	There	are	several	methods	available	to	configure	ROS	development
environment	in	Eclipse.	We	are	going	to	see	one	of	the	tested	methods	that	is	used	to	set
the	ROS	environment.



Global	settings	in	Eclipse	IDE
Following	are	the	global	settings	that	we	have	to	do	in	Eclipse	IDE.	We	don’t	need	to	do
these	settings	for	each	project.	These	are	only	one-time	settings.

Launch	Eclipse	IDE	from	the	Ubuntu	search	bar.
Go	to	Window	|	Preferences.	from	the	Preferences	Window,	choose	C/C++	|	Build	|
Settings	and	then	choose	the	Discovery	tab.	Select	CDT	GCC	Build	Output	Parser
[Shared].	Select	the	Compiler	command	pattern	to	(.*gcc)|(.*[gc]\+\+)|
(.*clang).	Also	check	the	Project	option	that	is	a	part	of	Container	to	keep
discovered	entries.	Click	on	the	Apply	button	and	then	on	the	OK	button	to	confirm
the	settings.	These	settings	enable	eclipse	to	find	C++	11	traits	inside	the	package.
The	settings	are	shown	in	the	following	screenshot:

Figure	2:	Settings	inside	Eclipse	Preferences

In	the	next	step,	click	on	the	CDT	GCC	Built-in	Compiler	Settings	[	Shared	]
option	from	the	Discovery	tab	and	change	the	entry	under	Command	to	get
compiler	specs	to	${COMMAND}	-E	-P	-v	-dD	-std=c++11	"${INPUTS}".



Figure	3:	Eclipse	Compiler	settings

ROS	compile	script	for	Eclipse	IDE
Compiling	ROS	nodes	needs	the	ROS	environment.	We	have	to	source
/opt/ros/indigo/setup.bash	to	access	the	ROS	environment	in	the	current	terminal.	We
can	work	from	the	system	terminal	because	we	already	added	this	line	to	the	.bashrc	file,
but	when	we	work	using	Eclipse,	we	have	to	make	a	script	to	do	this.

Create	a	file	called	eclipsemake	in	/usr/local/bin	using	the	following	command:

$	sudo	nano	/usr/local/bin/eclipsemake

Enter	the	following	commands	in	this	file:

#!/bin/bash

source	/opt/ros/indigo/setup.bash

make	"$@"	VERBOSE=1	-j8



Figure	4:	Script	to	source	the	ROS	environment

Create	another	file	called	eclipsemake-tests	for	testing	the	purpose	on	the	same	path.
Create	a	file	using	the	following	command:

$	sudo	nano	/usr/local/bin/eclipsemake-tests

Enter	the	following	content	into	the	file:

#!/bin/bash

source	/opt/ros/indigo/setup.bash

make	"$@"	VERBOSE=1	-j8	run_tests

Figure	5:	Script	to	source	the	ROS	environment	and	running	test

If	you	are	using	Eclipse	in	Virtual	Box,	use	-j1	instead	of	-j8.



After	creating	these	two	files,	change	the	permission	of	these	two	using	the	following
command:

$	sudo	chmod	+x	/usr/local/bin/eclipsemake*

Adding	ROS	Catkin	package	to	Eclipse
After	doing	the	preceding	configuration,	we	can	start	adding	ROS	packages	to	Eclipse
IDE.	Click	on	File	Menu	|	Project…	from	the	New	Project	wizard,	select	C/C++	|
MakeFile	Project	with	Existing	Code:

Figure	6:	Open	the	ROS	package	from	the	catkin	workspace

There	was	a	hello_world	ROS	package	in	ros_catkin_ws;	we	are	opening	this	project.
This	package	consists	of	two	ROS	nodes,	talker.cpp	and	listener.cpp.	You	can	open
any	packages	on	your	workspace.

Give	a	name	for	this	project	as	hello_world	and	browse	the	ROS	package	from	the
catkin	workspace	as	shown	in	the	following	screenshot:



Figure	7:	Giving	project	and	location

After	opening	the	project,	right-click	on	the	project	and	go	to	Properties	of	the	project.
From	the	Properties,	click	on	the	C/C++	Build	option,	and	from	the	Builder	Settings
tab,	change	the	Build	command	to	the	custom	command	called	eclipsemake.	Browse
Build	location	of	the	ROS	package	by	clicking	on	the	File	System	button,	as	shown	in	the
following	screenshot:



Figure	8:	Eclipse	build	settings	for	ROS

In	C/C++	Build	|	Environment,	add	a	new	variable	called	VERBOSE	and	set	the	value	as	1,
as	shown	in	the	following	screenshot:



Figure	9:	Setting	VERBOSE	in	ROS	project	properties

In	C/C++	General,	select	Path	and	Symbols,	choose	the	Symbols	tab,	and	add	a	symbol
called	__GXX_EXPERIMENTAL_CXX0X__	in	GNU	C++	with	no	values.	Click	on
Apply	|	OK	to	confirm	the	settings,	as	shown	in	the	following	screenshot:



Figure	10:	Setting	path	and	symbols	for	the	ROS	project

In	C/C++	General,	choose	Preprocessor	Includes	Paths,	Macros	etc.	from	the
Providers	tab,	check	the	options	CDT	GCC	Build	Output	Parser	[Shared]	and	GCC
Built-in	Compiler	Settings	[Shared].	We	should	also	verify	the	Use	global	provider
shared	between	projects	option	in	both.	Click	on	Apply	and	then	click	on	OK,	as	shown
in	the	following	screenshot:



Figure	11:	Setting	Pre-processor	in	the	project	properties

After	doing	these	all	settings,	we	should	clean	the	project	by	right-clicking	on	the	Project
|	Clean	Project.	After	cleaning,	build	the	project	(Ctrl+B).

Adding	run	configurations	to	run	ROS	nodes	in	Eclipse
After	building	the	project,	we	may	can	run	the	node	from	Eclipse	or	from	a	terminal.	For
running	the	node	inside	Eclipse,	right-click	on	the	project	and	go	to	Run	as	|	Run
Configurations.

Create	a	New	Launch	Configuration	under	C/C++	Application.	In	the	Main	tab,	browse
the	executable	path	in	C/C++	Application.	While	we	build	the	nodes	in	Eclipse,	we	can
see	the	executable	generating	path.	Browse	the	path	of	the	executables	here.

Here	we	are	creating	a	launcher	for	the	talker	node,	as	shown	in	the	following
screenshot:



Figure	12:	Creating	the	launcher	for	the	talker	node

After	the	preceding	settings,	click	on	the	Environment	tab	and	insert	two	variables:

ROS_MASTER_URI	:	http://localhost:11311

ROS_ROOT	:	/opt/ros/indigo/share/ros



Figure	13:	Setting	the	ROS	environment	variable	inside	the	launcher	configuration

After	doing	these	setting,	we	can	run	the	talker	node	by	performing	the	following	steps:

Start	roscore	in	one	terminal.
Start	the	talker	node	by	pressing	the	Run	key	on	the	Eclipse,	as	shown	in	the
following	screenshot:

Figure	14:	Launching	the	talker	node

We	can	see	the	output	in	the	Eclipse	console,	as	shown	in	the	following	screenshot:



Figure	15:	Talker	node	running	on	the	Eclipse	terminal

In	the	next	section,	we	will	look	at	some	of	the	best	practices	that	should	be	followed
when	working	with	ROS.





Best	practices	in	ROS
This	section	gives	you	a	brief	idea	of	the	best	practices	that	can	be	followed	when	we
develop	something	with	ROS.	ROS	provides	detailed	tutorials	about	its	QA	(Quality
Assurance)	process.	QA	process	provides	a	detailed	developers	guide	which	mentions
C++	and	Python	code	style	guides,	naming	conventions,	and	so	on.

First	we	can	discuss	the	ROS	C++	coding	styles.



ROS	C++	coding	style	guide
ROS	C++	nodes	are	following	a	coding	style	to	make	the	code	more	readable,	debuggable,
and	maintainable.	If	the	code	is	properly	styled,	it	will	be	very	easy	to	re-use	and
contribute	to	the	current	code.	In	this	section,	we	can	quickly	go	through	some	commonly
used	coding	styles.

Standard	naming	conventions	used	in	ROS
Here	we	are	using	the	text	Helloworld	to	demonstrate	the	naming	patterns	we	are	using	in
ROS:

HelloWorld:	This	name	starts	with	an	uppercase	letter,	and	each	new	word	starts
with	an	uppercase	letter	with	no	space	or	underscores.
helloWorld:	In	this	naming	method,	the	first	letter	will	be	lowercase	but	new	words
will	be	in	uppercase	letters	without	spaces.
hello_world:	This	only	contains	lowercase	letters.	Words	are	separated	with
underscores.
HELLO_WORLD:	All	are	uppercase	letters.	Words	are	separated	by	an	underscore.

The	following	are	the	naming	conventions	followed	by	each	component	in	ROS:

Packages,	Topics/Services,	Files,	Libraries:	These	ROS	components	are	following
the	hello_world	pattern.
Classes/Types:	These	classes	are	following	the	HelloWorld	kind	of	naming
conventions,	for	example,	class	ExampleClass.
Functions/Methods:	Functions	follow	helloWorld	naming	conventions	and	function
arguments	are	following	the	hello_world	pattern,	for	example,	void
exampleMethod(int	sample_arg);.
Variables:	Generally,	variables	follow	the	hello_world	pattern.
Constants:	Constants	follow	the	HELLO_WORLD	pattern.
Member	variables:	The	member	variable	inside	a	class	follows	the	hello_world
pattern,	with	a	trailing	underscore	added,	for	example,	int	sample_int_.
Global	variables:	Global	variables	follow	hello_world,	with	a	leading	g_,	for
example,	int	g_samplevar;.
Namespace:	This	follows	the	hello_world	naming	pattern.

Code	license	agreement
We	should	add	a	license	statement	on	the	top	of	code.	ROS	is	an	open	source	software
framework	and	it’s	in	the	BSD	license.	The	following	is	a	code	snippet	of	LICENSE,	which
has	to	be	inserted	on	the	top	of	the	code.	You	will	get	the	license	agreement	from	any	of
the	ROS	nodes	from	the	main	repository.	You	can	check	the	source	code	from	the
following	ROS	tutorial	at	https://github.com/ros/ros_tutorials.

/*********************************************************************

	*	Software	License	Agreement	(BSD	License)

	*

	*		Copyright	(c)	2012,	Willow	Garage,	Inc.

https://github.com/ros/ros_tutorials


	*		All	rights	reserved.

	*

	*		Redistribution	and	use	in	source	and	binary	forms,	with	or	without

	*		modification,	are	permitted	provided	that	the	following	conditions

	*		are	met:

*********************************************************************/

/*	Author:	Lentin	Joseph	*/

For	more	information	about	various	licensing	schemes	in	ROS,	refer	to
http://wiki.ros.org/DevelopersGuide#Licensing.

ROS	code	formatting
One	thing	that	needs	to	be	taken	care	of	while	developing	code	is	its	formatting.	One	of
the	basic	things	in	formatting	is	that	each	code	blocks	in	ROS	separated	by	two	spaces.
Given	in	the	following	is	a	code	snippet	showing	the	formatting:

if(a	<	b)

{

		//	do	stuff

}

else

{

		//	do	other	stuff

}

Given	in	the	following	is	an	example	code	snippet	in	the	ROS	standard	formatting	style:

#include	<boost/tokenizer.hpp>

#include	<moveit/macros/console_colors.h>

#include	<moveit/move_group/node_name.h>

static	const	std::string	ROBOT_DESCRIPTION	=	"robot_description";				//	

name	of	the	robot	description	(a	param	name,	so	it	can	be	changed	

externally)

namespace	move_group

{

class	MoveGroupExe

{

public:

		MoveGroupExe(const	planning_scene_monitor::PlanningSceneMonitorPtr&	psm,	

bool	debug)	:

				node_handle_("~")

		{

				//	if	the	user	wants	to	be	able	to	disable	execution	of	paths,	they	can	

just	set	this	ROS	param	to	false

				bool	allow_trajectory_execution;

				node_handle_.param("allow_trajectory_execution",	

allow_trajectory_execution,	true);

				context_.reset(new	MoveGroupContext(psm,	allow_trajectory_execution,	

debug));

http://wiki.ros.org/DevelopersGuide#Licensing


				//	start	the	capabilities

				configureCapabilities();

		}

		~MoveGroupExe()

		{

ROS	code	documentation
The	developer	should	be	documented	inside	the	code	and	should	provide	API
documentation	using	tools	such	as	Doxygen	(www.doxygen.org/).	The	following	is	the
method	to	generate	documentation	using	Doxygen	for	a	ROS	package:

http://wiki.ros.org/PackageDocumentation

Console	output
Avoid	printf	/	cout	statements	for	printing	debug	messages	inside	ROS	nodes.	We	can
use	rosconsole	(http://wiki.ros.org/rosconsole)	for	debugging,	which	provides	five
verbosity	levels.

For	detailed	coding	styles,	refer	to	http://wiki.ros.org/CppStyleGuide.

http://www.doxygen.org/
http://wiki.ros.org/PackageDocumentation
http://wiki.ros.org/rosconsole
http://wiki.ros.org/CppStyleGuide




Best	practices	in	the	ROS	package
Following	are	the	key	points	while	creating	and	maintaining	a	package:

Version	Control:	ROS	supports	version	control	using	Git,	Mercurial,	and
Subversion.	We	can	host	our	code	in	GitHub	and	Bit	bucket.	Most	of	the	ROS
packages	are	in	GitHub.
Packaging:	Inside	a	ROS	catkin	package,	there	will	be	a	package.xml,	and	this	file
should	contain	the	author	name,	description,	and	license.	The	following	is	an
example	of	a	package.xml:

<?xml	version="1.0"?>

<package>

		<name>roscpp_tutorials</name>

		<version>0.6.1</version>

		<description>

				This	package	attempts	to	show	the	features	of	ROS	step-by-step,

				including	using	messages,	servers,	parameters,	etc.

		</description>

		<maintainer	email="dthomas@osrfoundation.org">Dirk	

Thomas</maintainer>

		<license>BSD</license>

		<url	type="website">http://www.ros.org/wiki/roscpp_tutorials</url>

		<url	

type="bugtracker">https://github.com/ros/ros_tutorials/issues</url>

		<url	type="repository">https://github.com/ros/ros_tutorials</url>

		<author>Morgan	Quigley</author>





Important	troubleshooting	tips	in	ROS
We	will	look	at	some	of	the	common	issues	when	working	with	ROS	as	well	as	tips	to
solve	them.

One	of	the	ROS	inbuilt	tools	to	find	issues	in	a	ROS	system	is	roswtf.	roswtf,	which
checks	issues	in	following	areas	of	ROS:

Environment	variables	and	configuration	issues
It	can	scan	a	package	or	meta-package	to	report	potential	issues
It	can	check	a	launch	file	for	its	potential	issues
It	can	check	system	issues	and	online	graph	issues
It	can	report	warnings	and	errors—warnings	can	be	avoided	but	are	not	necessary,
errors	should	be	addressed



Usage	of	roswtf
We	can	check	the	issues	inside	a	ROS	package	by	simply	entering	the	package	and
entering	roswtf.	We	can	also	check	issues	in	the	launch	file	using	the	following
command:

$	roswtf	<file_name>.launch

We	may	get	a	report	if	there	are	issues	associated	with	the	package.

Figure	16:	roswtf	command	output	for	a	ROS	package

The	wiki	page	of	roswtf	is	available	at	http://wiki.ros.org/roswtf.

The	following	are	some	of	the	common	issues	faced	when	working	with	ROS:

Issue	1:

Error	message:	Failed	to	contact	master	at	[localhost:11311].	Retrying…

Figure	17:	Failed	to	contact	master	error	message

Solution:	This	message	comes	when	the	ROS	node	executes	without	running	the
roscore	command.

Issue	2:

Error	message:	Could	not	process	inbound	connection:	topic	types	do	not	match

http://wiki.ros.org/roswtf


Figure	18:	Inbound	connection	warning	messages

Solution:	This	happens	when	there	is	a	topic	message	mismatch,	when	we	publish
and	subscribe	a	topic	with	different	ROS	message	type.

Issue	3:

Error	message:	Couldn’t	find	executables

Figure	19:	Couldn’t	fine	executables

Solution:	One	of	the	reasons	for	this	error	is	if	we	are	not	including
catkin_package()	inside	CMakeLists.txt.	In	this	situation,	the	executable	will	not
build	on	the	expected	location,	so	rosrun	will	not	find	the	executable.	We	can
generate	this	error	by	commenting	this	line	in	CMakeLists.txt,	as	shown	in	the
following:

Figure	20:	CMakeLists.txt	without	catkin_package()

Issue	4:

Error	message:	roscore	command	is	not	working



Figure	21:	roscore	command	is	not	running	properly

Solution:	One	of	the	reasons	that	can	hang	the	roscore	command	is	the	definition	of
ROS_IP	and	ROS_MASTER_URI.	When	we	run	ROS	in	multiple	computers,	each
computer	has	to	assign	its	own	IP	as	ROS_IP,	and	ROS_MASTER_URI	as	the	IP	of	the
computer,	which	is	running	roscore.	If	this	IP	is	incorrect,	roscore	will	not	run.	This
error	can	be	generated	by	assigning	an	incorrect	IP	on	these	variables.

Figure	22:	Incorrect	ROS_MASTER_URI

Issue	5:

Error	message:	Compiling	and	Linking	Errors

Figure	23:	Compiling	and	linking	errors

Solution:	If	the	CMakeLists.txt	has	no	dependencies,	which	are	required	to	compile
the	ROS	nodes,	it	can	show	this	error.	We	have	to	check	the	package	dependencies	in
package.xml	and	CMakeLists.txt.	Here	we	are	generating	this	error	by	commenting
roscpp	dependencies.



Figure	24:	CMakeLists.txt	without	package	dependency

Some	of	the	troubleshooting	tips	from	ROS	wiki	are	given	at
http://wiki.ros.org/ROS/Troubleshooting.

http://wiki.ros.org/ROS/Troubleshooting




Questions
1.	 Why	do	we	need	an	IDE	to	work	with	ROS?
2.	 What	are	the	common	naming	conventions	used	in	ROS?
3.	 Why	is	documentation	important	when	we	create	a	package?
4.	 What	is	the	use	of	the	roswtf	command?





Summary
In	this	chapter,	we	discussed	working	with	an	Eclipse	IDE	and	setting	the	ROS
development	environment	inside	IDE.	After	setting	ROS	in	Eclipse,	we	discussed	some	of
the	best	practices	in	ROS	that	consist	of	naming	conventions,	coding	styles,	best	practices
while	creating	a	ROS	package,	and	so	on.	After	discussing	best	practices,	we	switched	to
ROS	troubleshooting.	In	the	troubleshooting	section,	we	discussed	various	troubleshooting
tips	which	can	occur	when	we	work	with	ROS.
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