
www.allitebooks.com

http://www.allitebooks.org

Maven Essentials

Get started with the essentials of Apache Maven
and get your build automation system up and
running quickly

Prabath Siriwardena

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Maven Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1251115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-676-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Prabath Siriwardena

Reviewer
Antonio Mendoza Pérez

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Shaon Basu

Content Development Editor
Samantha Gonsalves

Technical Editor
Vivek Pala

Copy Editor
Pranjali Chury

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Prabath Siriwardena is the director of Security Architecture at WSO2 Inc., a
company that produces a wide variety of open source software from data to screen.
He is a member of OASIS Identity Metasystem Interoperability (IMI) TC, OASIS
eXtensible Access Control Markup Language (XACML) TC, OASIS Security Services
(SAML) TC, OASIS Identity in the Cloud TC, and OASIS Cloud Authorization
(CloudAuthZ) TC. Prabath is also a member of PMC Apache Axis and has spoken
at numerous international conferences, including OSCON, ApacheCon, WSO2Con,
EIC, IDentity Next, and OSDC. He has more than 10 years of industry experience
and has worked with many Fortune 100 companies.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I would first like to thank Shaon Basu, an acquisition editor at Packt
Publishing, who came up with the idea of writing a book on Apache
Maven; then, Samantha Gonsalves, a content development editor
at Packt Publishing, who I worked with closely throughout the
project—thank you very much, Samantha, for your patience and
flexibility. Also, I would like to thank all the others at Packt Publishing
who helped me to make this book a reality from the initial idea. Thank
you very much for all your continuous support.

Dr. Sanjiva Weerawarana, the CEO of WSO2, and Paul Fremantle,
the CTO of WSO2, have always been my mentors. I am truly grateful
to both Dr. Sanjiva and Paul for everything they have done for me.

I would like to thank my beloved wife, Pavithra, and my loving little
daughter, Dinadi. Pavithra wanted me to write this book even more
than I wanted to. If I say she is the driving force behind this book, I
am not exaggerating. She simply went beyond by not only feeding
me with encouragement, but also by helping immensely in reviewing
the book and developing samples. She was always the first reader.
Thank you very much, Pavithra. Also, thanks to little Dinadi for your
patience—it was your time that I spent writing the book.

I would also like to thank all the technical reviewers of the book.
All your suggestions and thoughts are extremely valuable and
much appreciated.

My parents and my sister have been the driving force behind me
since my birth. If not for them, I wouldn't be who I am today. I am
grateful to them for everything they have done for me. Last but not
least, my wife's parents were amazingly helpful in making sure
that the only thing I had to do was to write this book, taking care of
almost all the other things that I was supposed to do.

Although this sounds like a one-man effort, it's actually a team
effort. Thanks to everyone who supported me in different ways.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Antonio Mendoza Pérez is a senior software engineer with over 9 years of
experience of developing Java EE applications. He also has an increasing interest
in Scala, Groovy, and other JVM programming languages. He has contributed to
several projects by developing the core element in both frontend and backend, such
as customizing its construction and distribution with Maven.

He also has been a reviewer of JBPM6 Developer Guide, Packt Publishing.

You can get in touch with him through his blog at http://antmendoza.com.

I would like to thank my parents and sisters who have always been
there for me.

www.allitebooks.com

http://antmendoza.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Apache Maven Quick Start 1

Installing Apache Maven 1
Installing Apache Maven on Ubuntu 2
Installing Apache Maven on Mac OS X 3
Installing Apache Maven on Microsoft Windows 4

Configuring the heap size 5
Hello Maven! 6
Convention over configuration 7
Maven repositories 9
IDE integration 9

NetBeans integration 9
IntelliJ IDEA integration 10
Eclipse integration 10

Troubleshooting 10
Enabling Maven debug level logs 10
Building a dependency tree 10
Viewing all the environment variables and system properties 11
Viewing the effective POM file 12
Viewing the dependency classpath 13

Summary 13
Chapter 2: Understanding the Project Object Model (POM) 15

Project Object Model (POM) 15
POM hierarchy 17
Super POM 18
POM extending and overriding 23
Maven coordinates 25
The parent POM 27

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Managing POM dependencies 29
Transitive dependencies 33
Dependency scopes 35
Optional dependencies 38

Dependency exclusion 39
Summary 42

Chapter 3: Maven Archetypes 43
Archetype quickstart 44
Batch mode 47
Archetype catalogues 47

Building an archetype catalogue 51
Public archetype catalogues 51
The anatomy of archetype – catalog.xml 53

The archetype plugin goals 54
Java EE web applications with the archetype plugin 55

Deploying web applications to a remote Apache Tomcat server 57
Android mobile applications with the archetype plugin 59
EJB archives with the archetype plugin 61
JIRA plugins with the archetype plugin 64
Spring MVC applications with the archetype plugin 65
Summary 66

Chapter 4: Maven Plugins 67
Common Maven plugins 69

The clean plugin 69
The compiler plugin 70
The install plugin 73
The deploy plugin 73
The surefire plugin 75
The site plugin 77
The jar plugin 80
The source plugin 81
The resources plugin 82
The release plugin 83

Plugin discovery and execution 84
Plugin management 87
Plugin repositories 87
Plugin as an extension 89

Summary 89

Table of Contents

[iii]

Chapter 5: Build Lifecycles 91
Standard lifecycles in Maven 92

The clean lifecycle 92
The default lifecycle 95
The site lifecycle 100

Lifecycle bindings 101
Lifecycle extensions 105
Summary 108

Chapter 6: Maven Assemblies 109
The assembly plugin 110
The assembly descriptor 112
Artifact/resource filtering 125
Assembly help 125
A runnable standalone Maven project 126
Summary 131

Chapter 7: Best Practices 133
Dependency management 134
Defining a parent module 136
POM properties 137
Avoiding repetitive groupIds and versions, and inheriting from
the parent POM 141
Following naming conventions 141
Think twice before you write your own plugin. You may not need it! 143
The Maven release plugin 144
The Maven enforcer plugin 145
Avoiding the use of unversioned plugins 147
Descriptive parent POM files 149
Documentation is your friend 150
Avoid overriding the default directory structure 151
Using SNAPSHOT versioning during the development 152
Get rid of unused dependencies 152
Avoiding keeping credentials in application POM files 153
Avoiding using deprecated references 154
Avoiding repetition – use archetypes 155
Avoiding using maven.test.skip 155
Summary 157

Index 159

[v]

Preface
Maven is the number one build tool used by developers, and it has been there for
more than a decade. Maven stands out among other build tools due to its extremely
extensible architecture, which is built on top of the concept convention over
configuration. This, in fact, has made Maven the de-facto tool to manage and build
Java projects. It's being used widely by many open source Java projects under the
Apache Software Foundation, SourceForge, Google Code, and many more.

This book provides a step-by-step guide, showing the readers how to use Apache
Maven in an optimal way to address enterprise build requirements. Following the book,
readers will be able to gain a thorough understanding of the following key areas:

• How to get started with Apache Maven, applying Maven best practices in
order to design a build system to improve a developer's productivity

• How to customize the build process to suit it exactly to your enterprise's
needs by using appropriate Maven plugins, lifecycles, and archetypes

• How to troubleshoot build issues with greater confidence
• How to design the build in a way that avoids any maintenance nightmares

with proper dependency management
• How to optimize Maven configuration settings
• How to build your own distribution archive using Maven assemblies

Preface

[vi]

What this book covers
Chapter 1, Apache Maven Quick Start, focuses on building a basic foundation around
Maven to get started. It starts by explaining the basic steps to install and configure
Maven on Ubuntu, Mac OS X, and Microsoft Windows operating systems. The latter
part of the chapter covers some of the common useful Maven tips and tricks.

Chapter 2, Understanding the Project Object Model (POM), focuses on the Maven Project
Object Model (POM) and how to adhere to the industry-wide accepted best practices
to avoid maintenance nightmares. The key elements of a POM file, POM hierarchy
and inheritance, managing dependencies, and related topics are covered here.

Chapter 3, Maven Archetypes, focuses on how Maven archetypes provide a way
of reducing repetitive work in building Maven projects. There are thousands of
archetypes out there that are available publicly to help you build different types of
projects. This chapter covers a commonly used set of archetypes.

Chapter 4, Maven Plugins, covers some of the most commonly used Maven plugins
and then explains how plugins are discovered and executed. Maven only provides
a build framework, while the Maven plugins perform the actual tasks. Maven has a
large, rich set of plugins, and the chances are very small that you will have to write
your own custom plugin.

Chapter 5, Build Lifecycles, explains how the three standard lifecycles work and how
we can customize them. Later in the chapter, we discuss how to develop our own
lifecycle extensions.

Chapter 6, Maven Assemblies, covers real-world examples of how to use the Maven
assembly plugin in detail, and finally concludes with an end-to-end sample
Maven project.

Chapter 7, Best Practices, looks at and highlights some of the best practices to
be followed in a large-scale development project with Maven. It is always
recommended to follow the best practices since it will drastically improve developer
productivity and reduce any maintenance nightmares.

Preface

[vii]

What you need for this book
To follow the examples that are presented in this book, you will need the
following software:

• Apache Maven 3.3.x, which you can find at http://maven.apache.org/
download.cgi

• Java 1.7+ SDK, which you can find at http://www.oracle.com/
technetwork/java/javase/downloads/index.html

• Operating Systems: Windows, Linux, or Mac OS X.

Who this book is for
The book is ideal for experienced developers who are already familiar with build
automation, but want to learn how to use Maven and apply its concepts to the most
difficult scenarios in build automation.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"When you type mvn clean install, Maven will execute all the phases in the
default lifecycle up to install (including the install phase)."

A block of code is set as follows:

<project>
 [...]
 <build>
 [...]
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>

http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Preface

[viii]

 </plugin>
 </plugins>
 [...]
 </build>
 [...]
</project>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<project>
 [...]
 <build>
 [...]
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 [...]
 </build>
 [...]
</project>

Any command-line input or output is written as follows:

$ mvn install:install

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[ix]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Apache Maven Quick Start
Apache Maven is popular as a build tool. However, in reality, it goes beyond being
just a build tool. It provides a comprehensive build management platform. Prior to
Maven, developers had to spend a lot of time in building a build system. There was
no common interface. It differed from project to project, and each time a developer
moved from one project to another, there was a learning curve. Maven filled this gap
by introducing a common interface. It merely ended the era of the build engineer.

In this chapter, we will talk about the following topics:

• Installing and configuring Maven on Ubuntu, Mac OS X, and Microsoft
Windows

• IDE integration
• Tips and tricks for using Maven effectively

Installing Apache Maven
Installing Maven on any platform is more than a straightforward task. At the
time of writing this book, the latest version was 3.3.3, which is available for
download at http://maven.apache.org/download.cgi. This version requires
JDK 1.7.0 or above.

You should keep a note on the Java requirement for version
3.3.3, if you are planning to upgrade from versions 3.0.*, 3.1.*,
or 3.2.*. Prior to Maven 3.3.x, the only requirement was JDK
1.5.0. or JDK 1.6.0 (for 3.2.*).

Apache Maven is an extremely lightweight distribution. It does not have any hard
requirements on memory, disk space, or CPU. Maven itself is built on top of Java,
and it would work on any operating system that runs Java virtual machine (JVM).

www.allitebooks.com

http://maven.apache.org/download.cgi
http://www.allitebooks.org

Apache Maven Quick Start

[2]

Installing Apache Maven on Ubuntu
Installing Maven on Ubuntu is a single line command. Proceed with the following
steps:

1. Run the following apt-get command in the command prompt. You need to
have the sudo privileges to execute this:
$ sudo apt-get install maven

2. This takes a few minutes to complete. Upon the completion of the
installation, you can run the following command to verify the installation:
$ mvn -version

3. You should get an output similar to the following, if Apache Maven has been
installed successfully:
$ mvn -version

Apache Maven 3.3.3

Maven home: /usr/share/maven

Java version: 1.7.0_60, vendor: Oracle Corporation

Java home: /usr/lib/jvm/java-7-oracle/jre

Default locale: en_US, platform encoding: UTF-8

OS name: "linux", version: "3.13.0-24-generic", arch: "amd64",
family: "unix"

4. Maven is installed under the /usr/share/maven directory. To check the
directory structure behind the Maven installation directory, use the following
command:
$ ls /usr/share/maven

bin boot conf lib man

5. Maven configuration files can be found at /etc/maven, which can be listed
using the following command:
$ ls /etc/maven

m2.conf settings.xml

If you don't want to work with the apt-get command, there is another way of
installing Maven under any Unix-based operating system. We will discuss this in
the next section. Since Mac OS X has a kernel built at the top of the Unix kernel,
installing Maven on Mac OS X would be the same as installing it on any Unix-based
operating system.

Chapter 1

[3]

Installing Apache Maven on Mac OS X
Most of the OS X distributions prior to OS X Mavericks had Apache Maven
preinstalled. To verify that you've got Maven installed in your system, try out the
following command. If it does not result in a version, then it means you do not have
it installed:

$ mvn –version

The following steps will guide you through the Maven installation process on Max
OS X Yosemite:

1. First, we need to download the latest version of Maven. Throughout this
book, we will use Maven 3.3.3, which was the latest version at the time of
writing this book. Maven 3.3.3 ZIP distribution can be downloaded from
http://maven.apache.org/download.cgi.

2. Unzip the downloaded ZIP file into /usr/share/java. You need to have the
sudo privileges to execute this:
$ sudo unzip apache-maven-3.3.3-bin.zip -d /usr/share/java/

3. In case you already have Maven installed in your system, use the following
command to unlink. /usr/share/maven is only a symlink to the directory
where Maven is installed:
$ sudo unlink /usr/share/maven

4. Use the following command to create a symlink to the latest Maven
distribution that you just unzipped. You need to have the sudo privileges to
execute this:
$ sudo ln -s /usr/share/java/apache-maven-3.3.3 /usr/share/maven

5. Use the following command to update the value of the PATH environment
variable:
$ export PATH=$PATH:/usr/share/maven/bin

6. Use the following command to update (or set) the value of the M2_HOME
environment variable:
$ export M2_HOME=/usr/share/maven

7. Verify the Maven installation with the following command:
$ mvn -version

 Apache Maven 3.3.3 (7994120775791599e205a5524ec3e0dfe41d4a06;
2015-04-22T04:57:37-07:00)

 Maven home: /usr/share/maven

 Java version: 1.7.0_75, vendor: Oracle Corporation

http://maven.apache.org/download.cgi

Apache Maven Quick Start

[4]

 Java home: /Library/Java/JavaVirtualMachines/jdk1.7.0_75.jdk/
Contents/Hom e/jre

 Default locale: en_US, platform encoding: UTF-8

 OS name: "mac os x", version: "10.10.2", arch: "x86_64",
family: "mac"

8. If you get the following error while running the preceding command, it
means you have another version of Maven running in your system, and the
PATH system variable includes the path to its bin directory. If that is the case,
you need to clean out the value of the PATH system variable by removing the
path to the old Maven installation:
 -Dmaven.multiModuleProjectDirectory system property is not
set. Check $M2_HOME environment variable and mvn script match.

Maven can also be installed on Mac OS X with Homebrew.
This video explains the installation process in detail—
https://www.youtube.com/watch?v=xTzLGcqUf8k

Installing Apache Maven on Microsoft
Windows
First, we need to download the latest version of Maven. Apache Maven 3.3.3 ZIP
distribution can be downloaded from http://maven.apache.org/download.cgi.
Then, we need to perform the following steps:

1. Unzip the downloaded ZIP file into the C:\Program Files\ASF directory.
2. Set the M2_HOME environment variable and point it to C:\Program Files\

ASF\apache-maven-3.3.3.
3. Verify the Maven installation with the following command on the command

prompt:
mvn –version

To know more about how to set the environment variables on
Microsoft Windows, refer to http://www.computerhope.
com/issues/ch000549.htm.

https://www.youtube.com/watch?v=xTzLGcqUf8k
http://maven.apache.org/download.cgi
http://www.computerhope.com/issues/ch000549.htm
http://www.computerhope.com/issues/ch000549.htm

Chapter 1

[5]

Configuring the heap size
Once you have Maven installed in your system, the very next step is to fine-tune it
for an optimal performance. By default, the maximum heap allocation is 512 MB,
which starts from 256 MB (-Xms256m to -Xmx512m). This default limit is not good
enough to build a large, complex Java project, and it is recommended that you have
at least 1024 MB of the maximum heap.

If you encounter java.lang.OutOfMemoryError at any point during a Maven build,
then it is mostly due to a lack of memory. You can use the MAVEN_OPTS environment
variable to set the maximum allowed heap size for Maven at a global level. The
following command will set the heap size in any Unix-based operating system,
including Linux and Mac OS X. Make sure that the value set as the maximum heap
size does not exceed your system memory of the machine, which runs Maven:

$ export MAVEN_OPTS="-Xmx1024m -XX:MaxPermSize=128m"

If you are on Microsoft Windows, use the following command:

$ set MAVEN_OPTS=-Xmx1024m -XX:MaxPermSize=128m

Here, -Xmx takes the maximum heap size and -XX:MaxPermSize takes the maximum
Permanent Generation (PermGen) size.

Maven runs as a Java process on JVM. As it proceeds with a build,
it keeps on creating Java objects. These objects are stored in the
memory allocated to Maven. This area of memory where Java
objects are stored is known as heap. Heap is created at the JVM
start and it increases as more and more objects are created up to
the defined maximum limit. The -Xms JVM flag is used to instruct
JVM about the minimum value that it should set at the time of
creating the heap. The -Xmx JVM flag sets the maximum heap size.

PermGen is an area of memory managed by JVM, which stores
the internal representations of Java classes. The maximum size of
PermGen can be set by the -XX:MaxPermSize JVM flag.

When the Java virtual machine cannot allocate enough memory
to Maven, it could result in an OutOfMemoryError. To know
more about the Maven OutOfMemoryError, refer to https://
cwiki.apache.org/confluence/display/MAVEN/
OutOfMemoryError.

https://cwiki.apache.org/confluence/display/MAVEN/OutOfMemoryError
https://cwiki.apache.org/confluence/display/MAVEN/OutOfMemoryError
https://cwiki.apache.org/confluence/display/MAVEN/OutOfMemoryError

Apache Maven Quick Start

[6]

Hello Maven!
The easiest way to get started with a Maven project is to use the generate goal of
the archetype plugin to generate a simple Maven project. Maven archetypes are
discussed in detail in Chapter 3, Maven Archetypes, and plugins are covered in Chapter
4, Maven Plugins.

Let's start with a simple example:

$ mvn archetype:generate

 -DgroupId=com.packt.samples

 -DartifactId=com.packt.samples.archetype

 -Dversion=1.0.0

 -DinteractiveMode=false

This command will invoke the generate goal of the Maven archetype plugin
to create a simple Java project. You will see that the following project structure is
created with a sample POM file. The name of the root or the base directory is derived
from the value of the artifactId parameter:

com.packt.samples.archetype
 |-pom.xml
 |-src
 |-main/java/com/packt/samples/App.java
 |-test/java/com/packt/samples/AppTest.java

The sample POM file will only have a dependency to the junit JAR file with test as
the scope:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.samples</groupId>
 <artifactId>com.packt.samples.archetype</artifactId>
 <packaging>jar</packaging>
 <version>1.0.0</version>
 <name>com.packt.samples.archetype</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Chapter 1

[7]

The generated App.java class will have the following template code. The name
of the package is derived from the provided groupId parameter. If you want to
have a different value as the package name, then you need to pass this value in the
command itself as -Dpackage=com.packt.samples.application:

package com.packt.samples;

/**
 * Hello world!
 *
 */
public class App
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

To build the sample project, run the following command from the com.packt.
samples.archetype directory, where the pom.xml file exists:

$ mvn clean install

Convention over configuration
Convention over configuration is one of the main design philosophies behind
Apache Maven. Let's go through a few examples.

A complete Maven project can be created using the following configuration
file (pom.xml):

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>sample-one</artifactId>
 <version>1.0.0</version>
</project>

The Maven POM file starts with the <project> element. Always
define the <project> element with the schema. Some tools can't
validate the file without it:

<project xmlns=http://maven.apache.org/POM/4.0.0
 xmlns:xsi=………
 xsi:schemaLocation="…">

Apache Maven Quick Start

[8]

The pom.xml file is the heart of any Maven project and is discussed in detail
in Chapter 2, Understanding the Project Object Model (POM). Copy the previous
configuration element and create a pom.xml file out of it. Then, place it in a directory
called chapter-01, and then create the following child directories under it:

• chapter-01/src/main/java

• chapter-01/src/test/java

Now, you can place your Java code under chapter-01/src/main/java and test
cases under chapter-01/src/test/java. Use the following command to run the
Maven build from where the pom.xml is:

$ mvn clean install

This little configuration that you found in the sample pom.xml file is tied up with
many conventions:

• Java source code is available at {base-dir}/src/main/java
• Test cases are available at {base-dir}/src/test/java
• The type of the artifact produced is a JAR file
• Compiled class files are copied to {base-dir}/target/classes
• The final artifact is copied to {base-dir}/target
• http://repo.maven.apache.org/maven2, is used as the repository URL.

If someone needs to override the default, conventional behavior of Maven, then it is
possible too. The following sample pom.xml file shows how to override some of the
preceding default values:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>sample-one</artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>

 <build>
 <sourceDirectory>${basedir}/src/main/java</sourceDirectory>
 <testSourceDirectory>${basedir}/src/test/java
 </testSourceDirectory>
 <outputDirectory>${basedir}/target/classes
 </outputDirectory>
 </build>
</project>

http://repo.maven.apache.org/maven2

Chapter 1

[9]

Maven repositories
The magic behind how Maven finds and loads dependent jars for a given Maven
project is Maven repositories. In the corresponding pom.xml file of your Maven project,
under the <dependencies> element, you can define references to all the dependent
jar files required to build your project successfully. Each dependency defined in the
pom.xml file is identified uniquely using Maven coordinates. Maven coordinates
uniquely identify a project, a dependency, or a plugin defined in a POM. Each entity
is uniquely identified by the combination of a group identifier, an artifact identifier,
and version (and, of course, with the packaging and the classifier). Maven coordinates
are discussed in detail in Chapter 2, Understanding the Project Object Model (POM). Once
Maven finds out all the required dependencies for a given project, it loads them to the
local file system of Maven repositories, and adds them to the project classpath.

By convention, Maven uses http://repo.maven.apache.org/maven2 as the
repository. If all the artifacts required to build the project are present in this
repository, then those will be loaded into the local file system or the local Maven
repository, which is, by default, at USER_HOME/.m2/repository. You can add
custom repositories at the project level under the <repositories> element of the
pom.xml file or at the global level under the MAVEN_HOME/conf/settings.xml file.

IDE integration
Most of the hardcore developers never want to leave their IDE. Not just for coding,
but for building, deploying, testing, and for everything if possible - they would
happily do these from the IDE itself. Most of the popular IDEs support Maven
integration, and they have developed their own plugins to support Maven.

NetBeans integration
NetBeans 6.7 or newer ships with in-built Maven integration, while NetBeans 7.0
has newer versions that bundle a complete copy of Maven 3 and runs it for builds
just like you would from the command line. For version 6.9 or older, you have
to download a Maven build and configure the IDE to run this. More information
corresponding to Maven and NetBeans integration is available at http://wiki.
netbeans.org/MavenBestPractices.

http://repo.maven.apache.org/maven2
http://wiki.netbeans.org/MavenBestPractices
http://wiki.netbeans.org/MavenBestPractices

Apache Maven Quick Start

[10]

IntelliJ IDEA integration
IntelliJ IDEA has inbuilt support for Maven; hence, you don't need to perform
any additional steps to install it. More information corresponding to Maven and
IntelliJ IDEA integration is available at http://wiki.jetbrains.net/intellij/
Creating_and_importing_Maven_projects.

Eclipse integration
The M2Eclipse project provides first class Maven support through the Eclipse IDE.
More information corresponding to Maven and the Eclipse integration is available at
https://www.eclipse.org/m2e/.

The book Maven for Eclipse, published by Packt Publishing,
discusses in detail Maven and Eclipse integration at
https://www.packtpub.com/application-
development/maven-eclipse.

Troubleshooting
If everything works fine, we should never have to worry about troubleshooting.
However, most of the time this is not the case. A Maven build can fail for many
reasons, some of which are under your control and also out of your control. Knowing
proper troubleshooting tips helps you to pinpoint the exact problem. The following
section lists some of the most used troubleshooting tips. We will expand the list as
we proceed in this book.

Enabling Maven debug level logs
Once the Maven debug level logging is enabled, it will print all the actions that it
takes during the build process. To enable debug level logging, use the following
command:

$ mvn clean install –X

Building a dependency tree
If you find any issue with any dependency in your Maven project, the first step is to
build a dependency tree. This shows where each dependency comes from. To build
the dependency tree, run the following command against your project POM file:

$ mvn dependency:tree

http://wiki.jetbrains.net/intellij/Creating_and_importing_Maven_projects
http://wiki.jetbrains.net/intellij/Creating_and_importing_Maven_projects
https://www.eclipse.org/m2e/
https://www.packtpub.com/application-development/maven-eclipse
https://www.packtpub.com/application-development/maven-eclipse

Chapter 1

[11]

The following shows the truncated output of the previous command executed
against the Apache Rampart project:

[INFO] --

[INFO] Building Rampart - Trust 1.6.1-wso2v12

[INFO] --

[INFO]

[INFO] --- maven-dependency-plugin:2.1:tree (default-cli) @ rampart-
 trust ---

[INFO] org.apache.rampart:rampart-trust:jar:1.6.1-wso2v12

[INFO] +- org.apache.rampart:rampart-policy:jar:1.6.1-wso2v12:compile

[INFO] +- org.apache.axis2:axis2-kernel:jar:1.6.1-wso2v10:compile

[INFO] | +- org.apache.ws.commons.axiom:axiom-api:jar:1.2.11-
 wso2v4:compile (version managed from 1.2.11)

[INFO] | | \- jaxen:jaxen:jar:1.1.1:compile

[INFO] | +- org.apache.ws.commons.axiom:axiom-impl:jar:1.2.11-
 wso2v4:compile (version managed from 1.2.11)

[INFO] | +- org.apache.geronimo.specs:geronimo-ws-
 metadata_2.0_spec:jar:1.1.2:compile

[INFO] | +- org.apache.geronimo.specs:geronimo-
 jta_1.1_spec:jar:1.1:compile

[INFO] | +- javax.servlet:servlet-api:jar:2.3:compile

[INFO] | +- commons-httpclient:commons-httpclient:jar:3.1:compile

[INFO] | | \- commons-codec:commons-codec:jar:1.2:compile

[INFO] | +- commons-fileupload:commons-fileupload:jar:1.2:compile

Viewing all the environment variables and
system properties
If you have multiple JDKs installed in your system, you may wonder what is being
used by Maven. The following command will display all the environment variables
and system properties set for a given Maven project:

$ mvn help:system

The following is the truncated output of the previous command:

======================Platform Properties Details====================

===
System Properties

www.allitebooks.com

http://www.allitebooks.org

Apache Maven Quick Start

[12]

===

java.runtime.name=Java(TM) SE Runtime Environment
sun.boot.library.path= /Library/Java/JavaVirtualMachines/jdk1.7.0_75.jdk/
Contents/Home/jre/lib

java.vm.version= 24.75-b04
awt.nativeDoubleBuffering=true
gopherProxySet=false
mrj.build=11M4609
java.vm.vendor=Apple Inc.
java.vendor.url=http://www.apple.com/
guice.disable.misplaced.annotation.check=true
path.separator=:
java.vm.name=Java HotSpot(TM) 64-Bit Server VM
file.encoding.pkg=sun.io
sun.java.launcher=SUN_STANDARD
user.country=US
sun.os.patch.level=unknown

==
Environment Variables

==

JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Versions/
CurrentJDK/Home

HOME=/Users/prabath

TERM_SESSION_ID=C2CEFB58-4705-4C67-BE1F-9E4179F96391
M2_HOME=/usr/share/maven/maven-3.3.3/
COMMAND_MODE=unix2003
Apple_PubSub_Socket_Render=/tmp/launch-w7NZbG/Render
LOGNAME=prabath
USER=prabath

Viewing the effective POM file
Maven uses default values for configuration parameters when they are not
overridden in the configuration. This is exactly what we discussed under the
Convention over configuration section. If we take the same sample POM file that we used
before in this chapter, we can see how the effective POM file would look using the
following command. This is also the best way to see what default values are being
used by Maven:

$ mvn help:effective-pom

Chapter 1

[13]

More details about the effective-pom command are discussed
in Chapter 2, Understanding the Project Object Model (POM).

Viewing the dependency classpath
The following command will list all the JAR files and directories in the build
classpath:

$ mvn dependency:build-classpath

The following shows the truncated output of the previous command executed
against the Apache Rampart project:

[INFO] --
[INFO] Building Rampart - Trust 1.6.1-wso2v12
[INFO] --
[INFO]
[INFO] --- maven-dependency-plugin:2.1:build-classpath (default-cli) @
rampart-trust ---
[INFO] Dependencies classpath:
/Users/prabath/.m2/repository/bouncycastle/bcprov-jdk14/140/bcprov-
jdk14-140.jar:/Users/prabath/.m2/repository/commons-cli/commons-cli/1.0/
commons-cli-1.0.jar:/Users/prabath/.m2/repository/commons-codec/commons-
codec/1.2/commons-codec-1.2.jar:/Users/prabath/.m2/repository/commons-
collections/commons-collections/3.1/commons-collections-3.1.jar

Summary
This chapter focused on building a basic foundation around Maven to bring all the
readers into a common ground. It started with explaining the basic steps to install
and configure Maven under Ubuntu, Mac OS X, and Microsoft Windows operating
systems. The latter part of the chapter covered some of the common useful Maven
tips and tricks. As we proceed with the book, some of the concepts touched in this
chapter will be discussed in detail.

In the next chapter, we will discuss Maven Project Object Model (POM)
in detail.

[15]

Understanding the Project
Object Model (POM)

POM is at the heart of any Maven project. This chapter focuses on the core concepts and
best practices related to POM in building a large-scale, multi-module Maven project.

As we proceed with this chapter, the following topics will be covered in detail:

• The POM hierarchy, super POM, and parent POM
• Extending and overriding POM files
• Maven coordinates
• Managing dependencies
• Transitive dependencies
• Dependency scopes and optional dependencies

Project Object Model (POM)
Any Maven project must have a pom.xml file. POM is the Maven project descriptor
just like the web.xml file in your Java EE web application, or the build.xml file in
your Ant project. The following code lists out all the key elements in a Maven pom.
xml file. As we proceed with the book, we will discuss how to use each element in
the most effective manner:

<project>

 <parent>...</parent>

 <modelVersion>4.0.0</modelVersion>
 <groupId>...</groupId>

Understanding the Project Object Model (POM)

[16]

 <artifactId>...</artifactId>
 <version>...</version>
 <packaging>...</packaging>

 <name>...</name>
 <description>...</description>
 <url>...</url>
 <inceptionYear>...</inceptionYear>
 <licenses>...</licenses>
 <organization>...</organization>
 <developers>...</developers>
 <contributors>...</contributors>

 <dependencies>...</dependencies>
 <dependencyManagement>...</dependencyManagement>
 <modules>...</modules>
 <properties>...</properties>

 <build>...</build>
 <reporting>...</reporting>

 <issueManagement>...</issueManagement>
 <ciManagement>...</ciManagement>
 <mailingLists>...</mailingLists>
 <scm>...</scm>
 <prerequisites>...</prerequisites>

 <repositories>...</repositories>
 <pluginRepositories>...</pluginRepositories>

 <distributionManagement>...</distributionManagement>

 <profiles>...</profiles>
</project>

The following code shows a sample pom.xml file:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>

 <build>

Chapter 2

[17]

 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-scm-plugin</artifactId>
 <version>1.9</version>
 <configuration>
 <connectionType>connection</connectionType>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 </dependencies>
</project>

POM hierarchy
POM files maintain a parent-child relationship between them. A child POM file
inherits all the configuration elements from its parent POM. Using this trick, Maven
sticks to its design philosophy convention over configuration. The minimal POM
configuration for any Maven project is extremely simple, which is as follows:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>sample-one</artifactId>
 <version>1.0.0</version>
</project>

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Understanding the Project Object Model (POM)

[18]

Super POM
Any POM file can point to its parent POM. In case the parent POM element is
missing, there is a system wide POM file that is automatically treated as the parent
POM. This POM file is well known as the super POM. Ultimately, all the application
POM files get extended from the super POM. The super POM file is at the top of the
POM hierarchy and is bundled inside MAVEN_HOME/lib/maven-model-builder-
3.3.3.jar - org/apache/maven/model/pom-4.0.0.xml. In Maven 2, this was
bundled inside maven-2.X.X-uber.jar. All the default configurations are defined
in the super POM file. Even the simplest form of a POM file will inherit all the
configurations defined in the super POM file. Whatever configuration you need to
override, you can do it by redefining the same section in your application POM file.
The following lines of code show the super POM file configuration, which comes
with Maven 3.3.3:

<project>
 <modelVersion>4.0.0</modelVersion>

The Maven central is the only repository defined under the repositories section. It will
be inherited by all the Maven application modules. Maven uses these repositories
defined under the repositories section to download all the dependent artifacts during
a Maven build. The following code snippet shows the configuration block in pom.
xml, which is used to define repositories:

 <repositories>
 <repository>
 <id>central</id>
 <name>Central Repository</name>
 <url>http://repo.maven.apache.org/maven2</url>
 <layout>default</layout>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

Chapter 2

[19]

There are two types of repositories in Maven: local and remote.
The local repository is maintained in your local machine—by
default at USER_HOME/.m2/repository. Anything that you
build locally with mvn install will get deployed into the local
repository. When you start with a fresh Maven repository, it will
be empty. You need to download everything—from the simplest
maven-compiler-plugin to all your project dependencies.
A Maven build can either be an online or offline build. By
default, it is an online build, unless you add -o into your
Maven build command. If it's an offline build, Maven assumes
that all the related artifacts are readily available in the local
Maven repository; if not, it will complain. If it is an online build,
Maven will download the artifacts from remote repositories and
store them in the local repository. The Maven local repository
location can be changed to a preferred location by editing
MAVEN_HOME/conf/settings.xml to update the value of the
localRepository element:

<localRepository>/path/to/local/repo</
localRepository>

Plugin repositories define where to find Maven plugins. We'll be talking about
Maven plugins in Chapter 4, Maven Plugins. The following code snippet shows the
configuration related to the plugin repositories:

 <pluginRepositories>
 <pluginRepository>
 <id>central</id>
 <name>Central Repository</name>
 <url>http://repo.maven.apache.org/maven2</url>
 <layout>default</layout>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <updatePolicy>never</updatePolicy>
 </releases>
 </pluginRepository>
 </pluginRepositories>

The build configuration section includes all the information required to build
a project:

 <build>
 <directory>${project.basedir}/target</directory>
 <outputDirectory>${project.build.directory}/classes
 </outputDirectory>

Understanding the Project Object Model (POM)

[20]

 <finalName>${project.artifactId}-${project.version}
 </finalName>
 <testOutputDirectory>${project.build.directory}/test-classes
 </testOutputDirectory>
 <sourceDirectory>${project.basedir}/src/main/java
 </sourceDirectory>
 <scriptSourceDirectory>${project.basedir}/src/main/scripts
 </scriptSourceDirectory>
 <testSourceDirectory>${project.basedir}/src/test/java
 </testSourceDirectory>

 <resources>
 <resource>
 <directory>${project.basedir}/src/main/resources
 </directory>
 </resource>
 </resources>
 <testResources>
 <testResource>
 <directory>${project.basedir}/src/test/resources
 </directory>
 </testResource>
 </testResources>

 <pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.3</version>
 </plugin>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-5</version>
 </plugin>
 <plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.8</version>
 </plugin>
 <plugin>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.3.2</version>
 </plugin>
 </plugins>
 </pluginManagement>

 </build>

Chapter 2

[21]

The reporting section includes the details of report plugins, which are used to
generate reports and are later displayed on the site generated by Maven. The super
POM only provides a default value for the output directory:

 <reporting>
 <outputDirectory>${project.build.directory}/site
 </outputDirectory>
 </reporting>

The following code snippet defines the default build profile. When no profiles are
defined at the application level, the default build profile will get executed. We will be
talking about profiles in Chapter 7, Best Practices:

 <profiles>
 <profile>
 <id>release-profile</id>

 <activation>
 <property>
 <name>performRelease</name>
 <value>true</value>
 </property>
 </activation>

 <build>
 <plugins>
 <plugin>
 <inherited>true</inherited>
 <artifactId>maven-source-plugin</artifactId>
 <executions>
 <execution>
 <id>attach-sources</id>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <inherited>true</inherited>
 <artifactId>maven-javadoc-plugin</artifactId>
 <executions>
 <execution>
 <id>attach-javadocs</id>
 <goals>
 <goal>jar</goal>
 </goals>

Understanding the Project Object Model (POM)

[22]

 </execution>
 </executions>
 </plugin>
 <plugin>
 <inherited>true</inherited>
 <artifactId>maven-deploy-plugin</artifactId>
 <configuration>
 <updateReleaseInfo>true</updateReleaseInfo>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>

</project>

The following figure shows an abstract view of the super POM file with key
configuration elements:

Chapter 2

[23]

POM extending and overriding
Let's see how POM overriding works. In the following example, we extend the
repositories section to add one more repository than what is defined in the Maven
super POM:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>sample-one</artifactId>
 <version>1.0.0</version>

 <repositories>
 <repository>
 <id>wso2-nexus</id>
 <name>WSO2 internal Repository</name>
 <url>http://maven.wso2.org/nexus/content/
 groups/wso2-public/
 </url>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>daily</updatePolicy>
 <checksumPolicy>ignore</checksumPolicy>
 </releases>
 </repository>
 </repositories>

</project>

Execute the following command from the directory where the above POM file
is located:

$ mvn help:effective-pom

This will display the effective POM for the application, which combines all the default
settings from the super POM file and the configuration defined in your application
POM. In the following code snippet, you can see that the <repositories> section in
the super POM file is being extended by your application-specific configuration. Now,
the <repositories> section has the central repository defined in the super POM as
well as your application-specific repository:

<repositories>
 <repository>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>daily</updatePolicy>

Understanding the Project Object Model (POM)

[24]

 <checksumPolicy>ignore</checksumPolicy>
 </releases>
 <id>wso2-nexus</id>
 <name>WSO2 internal Repository</name>
 <url>
 http://maven.wso2.org/nexus/content/groups/wso2-public/
 </url>
 </repository>
 <repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Central Repository</name>
 <url>https://repo.maven.apache.org/maven2</url>
 </repository>
</repositories>

If you want to override any of the configuration elements corresponding to the
Maven central repository inherited from the super POM file, then you have to define
a repository in your application POM with the same repository id (as of the Maven
central repository), and override the configuration element that you need.

One main advantage of the POM hierarchy in Maven is that you can extend as
well as override the configuration inherited from the top. Say, for example, that
you may need to keep all the plugins defined in the super POM, but just want to
override the version of maven-release-plugin. The following configuration
shows how to do it. By default, in the super POM, the maven-release-plugin
version is 2.3.2, and here, we update it to 2.5 in our application POM. If you run mvn
help:effective-pom again against the updated POM file, you will notice that the
plugin version is updated, whereas the rest of the plugin configuration from the
super POM remains unchanged:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>sample-one</artifactId>
 <version>1.0.0</version>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-release-plugin</artifactId>

Chapter 2

[25]

 <version>2.5</version>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

</project>

To override the configuration of a given element or an artifact in the POM hierarchy,
Maven should be able to uniquely identify the corresponding artifact. In the
preceding scenario, the plugin was identified by its artifactId. In Chapter 4, Maven
Plugins we will further discuss how Maven locates plugins.

Maven coordinates
Maven coordinates uniquely identify a project, dependency, or plugin defined in a
POM. Each entity is uniquely identified by the combination of a group identifier, artifact
identifier, and the version (and, of course, with the packaging and the classifier). The
group identifier is a way of grouping different Maven artifacts. For example, a set of
artifacts produced by a company can be grouped under the same group identifier. The
artifact identifier is the way you identify an artifact, which could be a JAR, WAR, or any
type of an artifact uniquely identified within a given group. The version element lets
you keep the same artifact in different versions in the same repository.

A valid Maven POM file must have groupId, artifactId,
and version. The groupId and version elements can also
be inherited from the parent POM.

All the three coordinates of a given Maven artifact are used to define its path in the
Maven repository. If we take the following example, the corresponding JAR file is
installed into the local repository with the path M2_REPO/repository/com/packt/
sample-one/1.0.0/:

<groupId>com.packt</groupId>
<artifactId>sample-one</artifactId>
<version>1.0.0</version>

If you have gone through the elements of the super POM file carefully, you might
have noticed that it does not have any of the previously mentioned elements—no
groupId, artifactId, or version. Does this mean that the super POM file is not
a valid POM? The super POM file is similar to an abstract class in Java. It does not
work by itself; it must be inherited by a child POM. Another way to look at the super
POM file is that it's the Maven's way of sharing default configurations.

Understanding the Project Object Model (POM)

[26]

Once again, if you look at the <pluginManagement> section of the super POM, as
shown in the following code snippet, you will notice that a given plugin artifact
is only identified by its artifactId and version elements. This contradicts what
was mentioned before: a given artifact is uniquely identified by the combination of
groupId, artifactId, and version. How is this possible?

<plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.3</version>
</plugin>

There is an exception for plugins. You need not specify groupId for a plugin in the
POM file—it is optional. By default, Maven uses org.apache.maven.plugins or
org.codehaus.mojo as groupId. Have a look at the following section in MAVEN_
HOME/conf/settings.xml. Everything that you define in this file will be globally
applicable for all the Maven builds, which run in the corresponding machine. In case
you want to keep the configuration at user level (in a multi-user environment), you
can simply copy the settings.xml file from MAVEN_HOME/conf to USER_HOME/.m2. If
you want to add the additional groupId elements for plugin lookup, you will have to
uncomment the following section and add them there:

 <!-- pluginGroups
 | This is a list of additional group identifiers that
 | will be searched when resolving plugins by their prefix, i.e.
 | when invoking a command line like "mvn prefix:goal".
 | Maven will automatically add the group identifiers
 | "org.apache.maven.plugins" and "org.codehaus.mojo"
 | if these are not already contained in the list.
 |-->
 <pluginGroups>
 <!-- pluginGroup
 | Specifies a further group identifier to use for plugin
 | lookup.
 <pluginGroup>com.your.plugins</pluginGroup>
 -->
 </pluginGroups>

We will be discussing Maven plugins in detail in
Chapter 4, Maven Plugins.

Chapter 2

[27]

The parent POM
When we deal with hundreds of Maven modules, we need to structure the project
to avoid any redundancies or duplicate configurations. If not, it will lead to a huge
maintenance nightmare. Let's have a look at some popular open source projects.

The WSO2 Carbon Turing project, available at https://svn.wso2.org/repos/
wso2/carbon/platform/branches/turing/, has more than 1000 Maven modules.
Anyone who downloads the source code from the root should be able to build it
with all the components. The pom.xml file at the root acts as a module aggregating
POM. It defines all the Maven modules that need to be built under the <modules>
element. Each module element defines the relative path (from the root POM) to
the corresponding Maven module. There needs to be another POM file under the
defined relative path. The root POM in the WSO2 Carbon Turing project only acts
as an aggregator module. It does not build any parent-child relationship with other
Maven modules. The following code snippet shows the module configuration in the
root pom.xml:

<modules>
 <module>parent</module>
 <module>dependencies</module>
 <module>service-stubs</module>
 <module>components</module>
 <module>platform-integration/clarity-framework</module>
 <module>features</module>
 <module>samples/shopping-cart</module>
 <module>samples/shopping-cart-global</module>
</modules>

Now, let's have a look at the POM file inside the parent module. This POM file
defines plugin repositories, a distribution repository, plugins, and a set of properties.
This does not have any dependencies, and this is the POM file that acts as the
parent for all the other Maven submodules. The parent POM file has the following
coordinates:

<groupId>org.wso2.carbon</groupId>
<artifactId>platform-parent</artifactId>
<version>4.2.0</version>
<packaging>pom</packaging>

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/

Understanding the Project Object Model (POM)

[28]

If you look at the POM file inside the components module, it refers to parent/
pom.xml as the parent Maven module. The value of the relativePath element, by
default, refers to the pom.xml file a level above, that is, ../pom.xml. However, in this
case, it is not the parent POM; hence, the value of the element must be overridden
and set to ../parent/pom.xml, shown as follows:

<groupId>org.wso2.carbon</groupId>
<artifactId>carbon-components</artifactId>
<version>4.2.0</version>
<parent>
 <groupId>org.wso2.carbon</groupId>
 <artifactId>platform-parent</artifactId>
 <version>4.2.0</version>
 <relativePath>../parent/pom.xml</relativePath>
</parent>

If you go inside the components module and run mvn help:effective-pom, you
will notice that an effective POM aggregates both the configurations defined in
parent/pom.xml and components/pom.xml. Parent POM files help to propagate
common configuration elements to downstream Maven modules, and it can go up
to many levels. The components/pom.xml file acts as the parent POM for Maven
modules below its level. For example, let's have a look at the following components/
identity/pom.xml file. It has a reference to the components/pom.xml file as its
parent. Note that here we do not need to use the relativePath element, since the
corresponding parent POM is at the default location:

<groupId>org.wso2.carbon</groupId>
<artifactId>identity</artifactId>
<version>4.2.0</version>
<parent>
 <groupId>org.wso2.carbon</groupId>
 <artifactId>carbon-components</artifactId>
 <version>4.2.0</version>
</parent>

A complete list of elements in a POM file is explained in detail
at http://maven.apache.org/ref/3.3.3/maven-
model/maven.html.

http://maven.apache.org/ref/3.3.3/maven-model/maven.html
http://maven.apache.org/ref/3.3.3/maven-model/maven.html

Chapter 2

[29]

Managing POM dependencies
In a large-scale development project with hundreds of Maven modules, managing
dependencies could be a hazardous task. There are two effective ways to manage
dependencies: POM inheritance and dependency grouping. With POM inheritance,
the parent POM has to define all the common dependencies used by its child
modules under the dependencyManagement section. In this way, we can avoid
all the duplicate dependencies. Also, if we have to update the version of a given
dependency, then we only have to make changes in one place. Let's take the same
example we discussed before using the WSO2 Carbon Turing project. Let's have a
look at the dependencyManagement section of parent/pom.xml (only a part of the
POM file is shown here):

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-transport-mail</artifactId>
 <version>${axis2-transports.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.ws.commons.axiom.wso2</groupId>
 <artifactId>axiom</artifactId>
 <version>${axiom.wso2.version}</version>
 </dependency>
 </dependencies>
</dependencyManagement>

To know more about dependency management, refer
to Introduction to the Dependency Mechanism, available at
http://maven.apache.org/guides/introduction/
introduction-to-dependency-mechanism.html.

Let's have a look at the dependency section of identity/org.wso2.carbon.
identity.core/4.2.3/pom.xml, which extends from components/pom.xml. Here,
you will only see groupId and artifactId of a given dependency, and not version.
The version of each dependency is managed through the dependencyManagement
section of the parent POM. In case any child Maven module wants to override the
version of an inherited dependency, it can simply add the version element:

<dependencies>
 <dependency>
 <groupId>org.apache.axis2.wso2</groupId>
 <artifactId>axis2</artifactId>

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Understanding the Project Object Model (POM)

[30]

 </dependency>
 <dependency>
 <groupId>org.apache.ws.commons.axiom.wso2</groupId>
 <artifactId>axiom</artifactId>
 </dependency>
</dependencies>

Another best practice to highlight here is the way dependency versions are specified
in the parent POM file, which is as follows:

<version>${axiom.wso2.version}</version>

Instead of specifying the version number inside the dependency element itself, here,
we have taken it out and represented the version as a property. The value of the
property is defined under the properties section of the parent POM, as shown in
the following line of code. This makes POM maintenance extremely easy:

<properties>
 <axis2.wso2.version>1.6.1.wso2v10</axis2.wso2.version>
</properties>

The second approach to manage dependencies is through dependency grouping.
All the common dependencies can be grouped into a single POM file. This approach
is much better than POM inheritance. Here, you do not need to add references
to individual dependencies. Let's go through a simple example. First, we need to
logically group all the dependencies into a single POM file.

Apache Axis2 is an open source SOAP engine. To build an Axis2 client, you need to
have all the following dependencies added to your project:

 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-adb</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-transport-http</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>

Chapter 2

[31]

 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-transport-local</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-xmlbeans</artifactId>
 <version>1.6.2</version>
 </dependency>

If you have multiple Axis2 client modules, in each module,
you need to duplicate all these dependencies. The complete
source code of the Apache Axis2 project is available at
http://svn.apache.org/viewvc/axis/axis2/java/
core/trunk/modules/.

To avoid dependency duplication, we can create a Maven module with all the
previously mentioned five dependencies, as shown in the following project. Make
sure to set the value of the packaging element to pom:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>axis2-client</artifactId>
 <version>1.0.0</version>
 <packaging>pom</packaging>

 <dependencies>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-adb</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-transport-http</artifactId>
 <version>1.6.2</version>
 </dependency>

www.allitebooks.com

http://svn.apache.org/viewvc/axis/axis2/java/core/trunk/modules/
http://svn.apache.org/viewvc/axis/axis2/java/core/trunk/modules/
http://www.allitebooks.org

Understanding the Project Object Model (POM)

[32]

 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-transport-local</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-xmlbeans</artifactId>
 <version>1.6.2</version>
 </dependency>
 </dependencies>

</project>

Now, in all of your Axis2 client projects, you only need to add a dependency to the
com.packt.axis2-client module, shown as follows:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>my-axis2-client</artifactId>
 <version>1.0.0</version>

 <dependencies>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>axis2-client</artifactId>
 <version>1.0.0</version>
 <type>pom<type>
 </dependency>
 </dependencies>

</project>

Make sure to set the value of the type element to pom under
the dependency element, as we are referring to a dependency
of pom packaging here. In case it is skipped, Maven, by default,
will look for an artifact with the jar packaging:

Chapter 2

[33]

Transitive dependencies
The transitive dependency feature was introduced in Maven 2.0, which automatically
identifies the dependencies of your project dependencies and gets all of them into the
build path of your project. Let's take the following POM as an example. It only has a
single dependency:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>

 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 </dependencies>

</project>

If you try to create an Eclipse project from the previous POM file using the mvn
eclipse:eclipse command, it will result in the following .classpath file. There
you can see, in addition to the nimbus-jose-jwt-2.26.jar file, three more JARs
have been added. These are the transitive dependencies of the nimbus-jose-jwt
dependency:

<classpath>
 <classpathentry kind="src" path="src/main/java"
 including="**/*.java"/>
 <classpathentry kind="output" path="target/classes"/>
 <classpathentry kind="con"
 path="org.eclipse.jdt.launching.JRE_CONTAINER"/>
 <classpathentry kind="var" path="M2_REPO/com/nimbusds/nimbus-
 jose-jwt/2.26/nimbus-jose-jwt-2.26.jar"/>
 <classpathentry kind="var" path="M2_REPO/net/jcip/jcip-
 annotations/1.0/jcip-annotations-1.0.jar"/>
 <classpathentry kind="var" path="M2_REPO/net/minidev/json-
 smart/1.1.1/json-smart-1.1.1.jar"/>
 <classpathentry kind="var"
 path="M2_REPO/org/bouncycastle/bcprov-jdk15on/1.50/bcprov-
 jdk15on-1.50.jar"/>
</classpath>

Understanding the Project Object Model (POM)

[34]

If you look at the POM file of the nimbus-jose-jwt project, you will see that the
previously mentioned transitive dependencies are defined there as dependencies.
Maven does not define a limit for transitive dependencies. One transitive
dependency may have a reference to another transitive dependency, and it can go on
like that endlessly, given that there are no cyclic dependencies found.

Transitive dependencies can cause some pain too, if not used with care. If we take the
same Maven module that we discussed before as an example, and have the following
Java code inside the src/main/java directory, it will compile exquisitely with no
errors. This only has a single dependency—nimbus-jose-jwt-2.26.jar. However,
the net.minidev.json.JSONArray class comes from a transitive dependency,
which is json-smart-1.1.1.jar. The build works fine, because Maven gets all the
transitive dependencies into the project build path. Everything will work finely until,
one fine day, you update the version of nimbus-jose-jwt and the new version has
a reference to a new version of the json-smart JAR, which is not compatible with
your code. This could easily break your build, or it may cause test cases to fail. This
would create hazards, and it would be a nightmare to find out the root cause.

The following Java code uses the JSONArray class from json-smart-1.1.1.jar:

import net.minidev.json.JSONArray;
import com.nimbusds.jwt.JWTClaimsSet;

public class JOSEUtil {

 public static void main(String[] args) {

 JWTClaimsSet jwtClaims = new JWTClaimsSet();

 JSONArray jsonArray = new JSONArray();

 jsonArray.add("maven-book");

 jwtClaims.setIssuer("https://packt.com");

 jwtClaims.setSubject("john");

 jwtClaims.setCustomClaim("book", jsonArray);

 }
}

Chapter 2

[35]

To avoid such a nightmare, you need to follow a simple rule of thumb. If you have
any import statement in a Java class, you need to make sure that the dependency
JAR file corresponding to this is being added to the project POM file.

The Maven dependency plugin helps you to find such inconsistencies in your Maven
module. Run the following command and observe its output:

$ mvn dependency:analyze

[INFO] --- maven-dependency-plugin:2.8:analyze (default-cli) @
 jose ---

[WARNING] Used undeclared dependencies found:

[WARNING] net.minidev:json-smart:jar:1.1.1:compile

Note the two warnings in the previous output. It clearly says that we have an
undeclared dependency for json-smart jar.

The Maven dependency plugin has several goals to find out
inconsistencies and possible loopholes in how you manage
dependencies. For more details on this, refer to http://maven.
apache.org/plugins/maven-dependency-plugin/.

Dependency scopes
Maven defines the following six scope types. If there is no scope element defined for
a given dependency, the default scope—compile - will be applied.

• compile: This is the default scope. Any dependency defined under the
compile scope will be available in all the class paths. It will be packaged
into the final artifact produced by the Maven project. If you are building a
WAR type artifact, then the referred JAR files with the compile scope will be
embedded into the WAR file itself.

• provided: This scope would expect that, the corresponding dependency
would be provided either by the JDK or a container that runs the application.
The best example is the servlet API. Any dependency with the provided
scope will be available in the build time class path, but it won't be packaged
into the final artifact. If it's a WAR file, the servlet API will be available in the
class path during build time, but won't get packaged into the WAR file. See
the following example of the provided scope:
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.0.1</version>

http://maven.apache.org/plugins/maven-dependency-plugin/
http://maven.apache.org/plugins/maven-dependency-plugin/

Understanding the Project Object Model (POM)

[36]

 <scope>provided</scope>
 </dependency>

• runtime: Dependencies defined under the runtime scope will be available
only during the runtime, not in the build time class path. These dependencies
will be packaged into the final artifact. You may have a web-based app that
talks to a MySQL database in runtime. Your code does not have any hard
dependency to the MySQL database driver. The code is written against the
Java JDBC API, and it does not need the MySQL database driver at build
time. However, during runtime, it needs the driver to talk to the MySQL
database. For this, the driver should be packaged into the final artifact.

• test: Dependencies are only needed for test compilation (for example, JUnit
and TestNG), and execution must be defined under the test scope. These
dependencies won't get packaged into the final artifact.

• system: This is very much similar to the scope provided. The only difference
is that with the system scope, you need to tell Maven how to find it. System
dependencies are useful when you do not have the referred dependency
in a Maven repository. With this you need to make sure that all the system
dependencies are available to download with the source code itself. It is
always recommended to avoid using system dependencies. The following
code snippet shows how to define a system dependency:
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>
 <scope>system</scope>
 <systemPath>${basedir}/lib/jose.jar</systemPath>
 </dependency>

basedir is an inbuilt property defined in Maven to represent
the directory, which has the corresponding POM file.

• import: This is only applicable for dependencies defined under the
dependencyManagement section with the packaging type pom. Let's take the
following POM file; it has the packaging type defined as pom:
 <project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>axis2-client</artifactId>
 <version>1.0.0</version>
 <packaging>pom</packaging>

Chapter 2

[37]

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-adb</artifactId>
 <version>1.6.2</version>
 </dependency>
 </dependencies>
 </dependencyManagement>
 </project>

Now, from a different Maven module, we add a dependency under the
dependencyManagement section to the previous module, with the scope
value set to import and the value of type set to pom:
 <project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>my-axis2-client</artifactId>
 <version>1.0.0</version>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>axis2-client</artifactId>
 <version>1.0.0</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <project>

Now, if we run mvn help:effective-pom against the above POM file, we
will see that the dependencies from the first are being imported as follows:

 <dependencyManagement>
 <dependencies>
 <dependency>

Understanding the Project Object Model (POM)

[38]

 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-adb</artifactId>
 <version>1.6.2</version>
 </dependency>
 </dependencies>
 </dependencyManagement>

Optional dependencies
Let's say that we have a Java project that has to work with two different OSGi
runtimes. We have written almost all the code to the OSGi API, but there are
certain parts in the code that consumes the OSGi runtime-specific APIs. When the
application is running, only the code path related to the underneath OSGi runtime
will get executed, not both. This raises the need to have both the OSGi runtime
JARs at the build time. However, in runtime, we do not need both code execution
paths, only the one related to the corresponding OSGi runtime. We can meet these
requirements by optional dependencies, shown as follows:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>osgi.client</artifactId>
 <version>1.0.0</version>

 <dependencies>
 <dependency>
 <groupId>org.eclipse.equinox</groupId>
 <artifactId>osgi</artifactId>
 <version>3.1.1</version>
 <scope>compile</scope>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>org.apache.phoenix</groupId>
 <artifactId>phoenix-core</artifactId>
 <version>3.0.0-incubating</version>
 <scope>compile</scope>
 <optional>true</optional>

Chapter 2

[39]

 </dependency>
 </dependencies>

<project>

For any client project that needs com.packt.osgi.client to work in an Equinox
OSGi runtime, it must explicitly add a dependency to the Equinox JAR file, as shown
in the following code:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>my.osgi.client</artifactId>
 <version>1.0.0</version>

 <dependencies>
 <dependency>
 <groupId>org.eclipse.equinox</groupId>
 <artifactId>osgi</artifactId>
 <version>3.1.1</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>osgi.client</artifactId>
 <version>1.0.0</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>

</project>

Dependency exclusion
Dependency exclusion helps to avoid getting a selected set of transitive
dependencies. Say, for example, that we have the following POM file with two
dependencies: one for nimbus-jose-jwt and the other for the json-smart artifact:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>

Understanding the Project Object Model (POM)

[40]

 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 <dependency>
 <groupId>net.minidev</groupId>
 <artifactId>json-smart</artifactId>
 <version>1.0.9</version>
 </dependency>
 </dependencies>

</project>

If you try to run mvn eclipse:eclipse against the previous POM file, you will see
the following .classpath file having a dependency on the json-smart file version
1.0.9, as rightly expected:

<classpathentry kind="var" path="M2_REPO/net/minidev/json-
 smart/1.0.9/json-smart-1.0.9.jar"/>

Let's say that we have another project that refers the same nimbus-jose-jwt artifact,
and a newer version of the json-smart JAR file:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose.ext</artifactId>
 <version>1.0.0</version>

 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 <dependency>
 <groupId>net.minidev</groupId>
 <artifactId>json-smart</artifactId>
 <version>1.1.1</version>
 </dependency>
 </dependencies>

</project>

Chapter 2

[41]

If you try to run mvn eclipse:eclipse against the previous POM file, you will
see the following .classpath file having a dependency on the json-smart artifact
version 1.1.1:

<classpathentry kind="var" path="M2_REPO/net/minidev/json-
 smart/1.1.1/json-smart-1.1.1.jar"/>

Still, we do not see a problem. Now, say that we build a WAR file having
dependencies to both the previous Maven modules:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose.war</artifactId>
 <version>1.0.0</version>
 <version>war</version>

 <dependencies>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>
 </dependency>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>jose.ext</artifactId>
 <version>1.0.0</version>
 </dependency>
 </dependencies>

</project>

Once the WAR file is created inside WEB-INF/lib, we can only see version 1.1.1 of
the json-smart JAR file. This comes as a transitive dependency of the com.packt.
jose.ext project. There can be a case where the WAR file does not need version
1.1.1 in its runtime, but version 1.0.9. To achieve this, we need to exclude the version
1.1.1 of the json-smart JAR file from the com.packt.jose.ext project, as shown in
the following code:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose.war</artifactId>
 <version>1.0.0</version>

Understanding the Project Object Model (POM)

[42]

 <version>war</version>

 <dependencies>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>
 </dependency>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>jose.ext</artifactId>
 <version>1.0.0</version>
 <exclusions>
 <exclusion>
 <groupId>net.minidev</groupId>
 <artifactId>json-smart</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>

</project>

Now, if you look inside WEB-INF/lib, you will only see version 1.0.9 of the
json-smart JAR file.

Summary
In this chapter, we focused our discussion around Maven POM, and how to adhere
to industry-wide accepted best practices to avoid maintenance nightmares. The key
elements of a POM file, POM hierarchy and inheritance, managing dependencies,
and related topics were covered here.

In the next chapter, we will have a look at Maven archetypes.

[43]

Maven Archetypes
The word archetype has its roots in Greek literature. It's derived from two
Greek words, archein and typos. The word archein means original or old, while
typos means patterns.

The word archetype means original patterns. The famous psychologist, Carl Gustav
Jung introduced the archetype concept in psychology. Jung argued that there are
12 different archetypes that represent human motivation, and he further divided
them into three categories: ego, soul, and self. The innocent, regular guy, hero, and
caregiver fall under the ego type. The explorer, rebel, lover, and creator fall under the
soul type. The self type includes jester, sage, magician, and ruler. The concept behind
Maven archetypes does not deviate a lot from what Jung explained in psychology.

The following figure shows the relationship between a Maven project, a project
archetype, and projects generated from the archetype:

Maven Archetypes

[44]

When we create a Java project, we need to structure it in different ways based on the
type of the project. If it's a Java EE web application, then we need to have a WEB-INF
directory and a web.xml file. If it's a Maven plugin project, we need to have a Mojo
class that extends from org.apache.maven.plugin.AbstractMojo. As each type of
project has its own predefined structure, why would everyone have to build the same
structure again and again? Why not start with a template? Each project can have its
own template, and developers can extend the template to suite their requirements.
Maven archetypes address this concern. Each archetype is a project template.

A list of Maven archetypes can be found at
http://maven-repository.com/archetypes.

In this chapter, we will discuss the following topics:

• The Maven archetype plugin
• The most used archetypes

Archetype quickstart
The Maven archetype is a plugin in itself. We will discuss plugins in detail in
Chapter 4, Maven Plugins. The generate goal of the archetype plugin has been used
to generate a Maven project from an archetype. Let's start with a simple example:

$ mvn archetype:generate

 -DgroupId=com.packt.samples

 -DartifactId=com.packt.samples.archetype

 -Dversion=1.0.0

 -DinteractiveMode=false

This command will invoke the generate goal of the Maven archetype plugin to
create a simple Java project. You will see that the following project structure has been
created with a sample POM file. The name of the root or the base directory is derived
from the value of the artifactId parameter:

com.packt.samples.archetype
 |-pom.xml
 |-src
 |-main/java/com/packt/samples/App.java
 |-test/java/com/packt/samples/AppTest.java

http://maven-repository.com/archetypes

Chapter 3

[45]

The sample POM file will only have a dependency to the junit JAR file, with test
as the scope:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.samples</groupId>
 <artifactId>com.packt.samples.archetype</artifactId>
 <packaging>jar</packaging>
 <version>1.0.0</version>
 <name>com.packt.samples.archetype</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

The generated App.java class will have the following template code. The name of
the package is derived from the provided groupId parameter. If we want a different
value as the package name, then we need to pass this value in the command itself as
-Dpackage=com.packt.samples.application:

package com.packt.samples;

/**
 * Hello world!
 *
 */
public class App
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

This is the simplest way to get started with a Maven project. In the previous example,
we used the non-interactive mode by setting interactiveMode=false. This will
force the plugin to use whatever values we passed in the command itself, along with
the default values.

Maven Archetypes

[46]

To invoke the plugin in the interactive mode, just type mvn archetype:generate.
This will prompt for user inputs as the plugin proceeds with its execution. The very
first one is to ask for a filter or a number for the type of the archetype. The filter can
be specified in the format of [groupdId:]artifactId, shown as follows:

Choose a number or apply filter (format: [groupId:]artifactId, case
 sensitive contains): 471:

When you type the filter criteria, for example, org.apache.maven.
archetypes:maven-archetype-quickstart, the plugin will display the number
associated with it, shown as follows:

Choose a number or apply filter (format: [groupId:]artifactId, case
 sensitive contains): 471: org.apache.maven.archetypes:maven-
 archetype-quickstart

Choose archetype:

1: remote -> org.apache.maven.archetypes:maven-archetype-quickstart
 (An archetype which contains a sample Maven project.)

Choose a number or apply filter (format: [groupId:]artifactId, case
 sensitive contains): 1:

In this case, there is only one archetype which matches the filter, and the number
associated with it is 1. If you press Enter against the last line in the previous output,
or just type 1, the plugin will start to proceed with the org.apache.maven.
archetypes:maven-archetype-quickstart archetype.

Something that you might have already noticed is that as soon as you type
mvn archetype:generate, the plugin displays a long list of Maven archetypes
supported by the plugin, and each archetype has a number associated with it.
You can avoid this long list by specifying a filter criterion with the command itself,
shown as follows:

$ mvn archetype:generate

 –Dfilter=org.apache.maven.archetypes:maven-archetype-quickstart

Choose archetype:

1: remote -> org.apache.maven.archetypes:maven-archetype-quickstart
 (An archetype which contains a sample Maven project.)

Choose a number or apply filter (format: [groupId:]artifactId, case
 sensitive contains): 1:

Chapter 3

[47]

Batch mode
The archetype plugin can operate in the batch mode either by setting the
interactiveMode argument to false or passing -B as an argument. When
operating in the batch mode, you need to clearly specify which archetype you are
going to use with the arguments archetypeGroupId, archetypeArtifactId, and
archetypeVersion. You also need to clearly identify the resultant artifact with the
groupId, artifactId, version, and package arguments, shown as follows:

$ mvn archetype:generate -B

 -DarchetypeGroupId=org.apache.maven.archetypes

 -DarchetypeArtifactId=maven-archetype-quickstart

 -DarchetypeVersion=1.0

 -DgroupId=com.packt.samples

 -DartifactId=com.packt.samples.archetype

 -Dversion=1.0.0

 -Dpackage=1.5

Any inquisitive mind should be asking a very valid question by now.

In the non-interactive mode, we did not type any filter or provide any Maven
coordinates for the archetype in the very first example. So, how does the plugin know
about the archetype? When no archetype is specified, the plugin goes with the default
one, which is org.apache.maven.archetypes:maven-archetype-quickstart.

Archetype catalogues
How does the plugin find all the archetypes available in the system? When you just
type mvn archetype:generate, a list of archetypes is displayed by the plugin for the
user selection. The complete list is around 1100, but only the first 10 are shown here:

1: remote -> br.com.ingenieux:elasticbeanstalk-service-webapp-
 archetype (A Maven Archetype Encompassing RestAssured, Jetty,
 Jackson, Guice and Jersey for Publishing JAX-RS-based Services on
 AWS' Elastic Beanstalk Service)

2: remote -> br.com.ingenieux:elasticbeanstalk-wrapper-webapp-
 archetype (A Maven Archetype Wrapping Existing war files on AWS'
 Elastic Beanstalk Service)

3: remote -> br.com.otavio.vraptor.archetypes:vraptor-archetype-blank
 (A simple project to start with VRaptor 4)

4: remote -> br.gov.frameworkdemoiselle.archetypes:demoiselle-html-
 rest (Archetype for web applications (HTML + REST) using Demoiselle
 Framework)

Maven Archetypes

[48]

5: remote -> br.gov.frameworkdemoiselle.archetypes:demoiselle-jsf-jpa
 (Archetype for web applications (JSF + JPA) using Demoiselle
 Framework)

6: remote -> br.gov.frameworkdemoiselle.archetypes:demoiselle-minimal
 (Basic archetype for generic applications using Demoiselle
 Framework)

7: remote -> br.gov.frameworkdemoiselle.archetypes:demoiselle-vaadin-
 jpa (Archetype for Vaadin web applications)

8: remote -> ch.sbb.maven.archetypes:iib9-maven-projects (IBM
 Integration Bus 9 Maven Project Structure)

9: remote -> ch.sbb.maven.archetypes:wmb7-maven-projects (WebSphere
 Message Broker 7 Maven Project Structure)

10: remote -> co.ntier:spring-mvc-archetype (An extremely simple
 Spring MVC archetype, configured with NO XML.)

Going back to the original question, how does the plugin find these details about
different archetypes?

The archetype plugin maintains the details about different archetypes in an internal
catalogue, which comes with the plugin itself. The archetype catalogue is simply
an XML file. The following shows the internal catalogue of the archetype plugin:

<archetype-catalog>

<!-- Internal archetype catalog listing archetypes from the Apache
Maven project. -->

 <archetypes>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-archetype</artifactId>
 <version>1.0</version>
 <description>An archetype which contains a sample
 archetype.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-j2ee-simple</artifactId>
 <version>1.0</version>
 <description>An archetype which contains a simplifed sample
 J2EE application.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>

Chapter 3

[49]

 <artifactId>maven-archetype-plugin</artifactId>
 <version>1.2</version>
 <description>An archetype which contains a sample Maven
 plugin.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-plugin-site</artifactId>
 <version>1.1</version>
 <description>An archetype which contains a sample Maven plugin
 site.This archetype can be layered upon an existing Maven
 plugin project.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-portlet</artifactId>
 <version>1.0.1</version>
 <description>An archetype which contains a sample JSR-268
 Portlet.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-profiles</artifactId>
 <version>1.0-alpha-4</version>
 <description></description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-quickstart</artifactId>
 <version>1.1</version>
 <description>An archetype which contains a sample Maven
 project.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-site</artifactId>
 <version>1.1</version>
 <description>An archetype which contains a sample Maven site
 which demonstrates some of the supported document types like
 APT, XDoc, and FML and demonstrates how to i18n your site.
 This archetype can be layered upon an existing Maven
 project.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>

Maven Archetypes

[50]

 <artifactId>maven-archetype-site-simple</artifactId>
 <version>1.1</version>
 <description>An archetype which contains a sample Maven
 site.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-webapp</artifactId>
 <version>1.0</version>
 <description>An archetype which contains a sample Maven Webapp
 project.</description>
 </archetype>
 </archetypes>
</archetype-catalog>

In addition to the internal catalogue, you can also maintain a
local archetype catalogue. This is available at USER_HOME/.m2/
archetype-catalog.xml, and by default, it's an empty file.

There is also a remote catalogue available at http://repo1.
maven.org/maven2/archetype-catalog.xml.

By default, the archetype plugin will load all the available archetypes from the
local and remote catalogues. If we go back to the archetype list displayed by the
plugin and type mvn archetype:generate, then by looking at each entry, we
can determine whether a given archetype is loaded from the internal, local, or
remote catalogue.

For example, the following archetype is loaded from the remote catalogue:

1: remote -> br.com.ingenieux:elasticbeanstalk-service-webapp-
 archetype (A Maven Archetype Encompassing RestAssured, Jetty,
 Jackson, Guice and Jersey for Publishing JAX-RS-based Services on
 AWS' Elastic Beanstalk Service)

If you want to force the archetype plugin to list all the archetypes from the internal
catalogue only, then you need to use the following command:

$ mvn archetype:generate -DarchetypeCatalog=internal

To list all the archetypes from the local catalogue only, you need to use the
following command:

$ mvn archetype:generate -DarchetypeCatalog=local

http://repo1.maven.org/maven2/archetype-catalog.xml
http://repo1.maven.org/maven2/archetype-catalog.xml

Chapter 3

[51]

To list all the archetypes from the internal, local, and remote catalogues, you
need to use the following command:

$ mvn archetype:generate -DarchetypeCatalog=internal,local,remote

Building an archetype catalogue
In addition to the internal, local, and remote catalogues, you can also build your
own catalogue. Say you have developed your own set of Maven archetypes and need
to build a catalogue out of them, which can be shared with others by publicly hosting
it. Once you have built the archetypes, they will be available in your local Maven
repository. The following command will crawl through the local Maven repository
and build an archetype catalogue from all the archetypes available there. Here, we
use the crawl goal of the archetype plugin:

$ mvn archetype:crawl -Dcatalog=my-catalog.xml

Public archetype catalogues
People who develop archetypes for their projects will list them in publicly hosted
archetype catalogues. The following list shows some of the publicly available Maven
archetype catalogues:

• Fuse: The Fuse archetype catalogue can be found at http://repo.
fusesource.com/nexus/content/groups/public/archetype-catalog.xml

• Java.net: The Java.net archetype catalogue can be found at
http://download.java.net/maven/2/archetype-catalog.xml

• Cocoon: The Cocoon archetype catalogue can be found at
http://cocoon.apache.org/archetype-catalog.xml

• MyFaces: The MyFaces archetype catalogue can be found at
http://myfaces.apache.org/archetype-catalog.xml

• Apache Synapse: The Apache Synapse archetype catalogue can be found
at http://synapse.apache.org/archetype-catalog.xml

Let's take Apache Synapse as an example. Synapse is an open source Apache project
that builds an enterprise service bus (ESB). The following command uses the
Apache Synapse archetype to generate a Maven project:

$ mvn archetype:generate

 -DgroupId=com.packt.samples

 -DartifactId=com.packt.samples.synapse

 -Dversion=1.0.0

http://repo.fusesource.com/nexus/content/groups/public/archetype-catalog.xml
http://repo.fusesource.com/nexus/content/groups/public/archetype-catalog.xml
http://download.java.net/maven/2/archetype-catalog.xml
http://cocoon.apache.org/archetype-catalog.xml
http://myfaces.apache.org/archetype-catalog.xml
http://synapse.apache.org/archetype-catalog.xml

Maven Archetypes

[52]

 -Dpackage=com.packt.samples.synapse.application

 -DarchetypeCatalog=http://synapse.apache.org

 -DarchetypeGroupId=org.apache.synapse

 -DarchetypeArtifactId=synapse-package-archetype

 -DarchetypeVersion=2.0.0

 -DinteractiveMode=false

The previous command will produce the following directory structure. If you look at
the pom.xml file, you will notice that it contains all the necessary instructions along
with the required dependencies to build the Synapse project:

com.packt.samples.synapse
 |-pom.xml
 |-src/main/assembly/bin.xml
 |-conf/log4j.properties
 |-repository/conf
 |-axis2.xml
 |-synapse.xml

Let's have a look at the previous Maven command that we had used to build
the project with the Synapse archetype. The most important argument is
archetypeCatalog. The value of the archetypeCatalog argument can point
directly to the archetype-catalog.xml file or to a directory that contains the
archetype-catalog.xml file. The following configuration shows the archetype-
catalog.xml file corresponding to the Synapse archetype. It only has a single
archetype, but with two different versions:

<archetype-catalog>
 <archetypes>
 <archetype>
 <groupId>org.apache.synapse</groupId>
 <artifactId>synapse-package-archetype</artifactId>
 <version>1.3</version>
 <repository>http://repo1.maven.org/maven2</repository>
 <description>Create a Synapse 1.3 custom package</description>
 </archetype>
 <archetype>
 <groupId>org.apache.synapse</groupId>
 <artifactId>synapse-package-archetype</artifactId>
 <version>2.0.0</version>
 <repository>
 http://people.apache.org/repo/m2-snapshot-repository
 </repository>
 <description>Create a Synapse 2.0.0 custom
 package</description>

Chapter 3

[53]

 </archetype>
 </archetypes>
</archetype-catalog>

The value of the archetypeCatalog parameter can
be a comma-separated list, where each item points to an
archetype-catalog.xml file or to a directory, which
contains archetype-catalog.xml. The default values are
remote and local, where the archetypes are loaded from
the local repository and the remote repository. If you want
to load an archetype-catalog.xml file from the local
file system, then you need to prefix the absolute path to the
file with file://. The value local is just a shortcut for
file://~/.m2/archetype-catalog.xml.

In the previous Maven command, we used the archetype plugin in the non-
interactive mode, so we had to be very specific with the archetype that we needed to
generate the Maven project. This was done with the following three arguments. The
value of these three arguments must match the corresponding elements defined in
the associated archetype-catalog.xml file:

-DarchetypeGroupId=org.apache.synapse
-DarchetypeArtifactId=synapse-package-archetype
-DarchetypeVersion=2.0.0

The anatomy of archetype – catalog.xml
We have already gone through a couple of sample archetype-catalog.xml files
and their uses. The XML schema of the archetype-catalog.xml file is available at
http://maven.apache.org/xsd/archetype-catalog-1.0.0.xsd. The following
shows an archetype-catalog.xml file skeleton with all the key elements:

<archetype-catalog>
 <archetypes>
 <archetype>
 <groupId></groupId>
 <artifactId></artifactId>
 <version></version>
 <repository></repository>
 <description></description>
 </archetype>
 ...
 </archetypes>
</archetype-catalog>

http://maven.apache.org/xsd/archetype-catalog-1.0.0.xsd

Maven Archetypes

[54]

The archetypes parent element can hold one or more archetype child elements.
Each archetype element should uniquely identify the Maven artifact corresponding
to it. This is done by combining the groupId, artifactId, and version elements of
the artifact. These three elements carry the exact same meaning that we discussed
under Maven coordinates. The description element can be used to describe the
archetype. The value of the description element will appear against the archetype
when it is listed by the archetype plugin. For example, the following output is
generated according to the pattern—groupId:artifactId (description) from the
archetype-catalog.xml file when you type mvn archetype:generate:

Choose archetype:

1: remote -> org.apache.maven.archetypes:maven-archetype-quickstart
 (An archetype which contains a sample Maven project.)

Each archetype child element can carry a value for the repository element. This
instructs the archetype plugin where to find the corresponding artifact. When no
value is specified, the artifact is loaded from the repository, where the catalogue file
comes from.

The archetype plugin goals
So far in this chapter, we have only discussed the generate and crawl goals of the
archetype plugin. All the useful functionalities in the Maven build process are
developed as plugins. A given Maven plugin can have multiple goals, where each
goal carries out a very specific task. We will discuss plugins in detail in Chapter 4,
Maven Plugins.

The following goals are associated with the archetype plugin:

• archetype:generate: The generate goal creates a Maven project
corresponding to the selected archetype. This accepts the archetypeGroupId,
archetypeArtifactId, archetypeVersion, filter, interactiveMode,
archetypeCatalog, and baseDir arguments. We have already discussed
almost all of these arguments in detail.

• archetype:update-local-catalog: The update-local-catalog goal has
to be executed against a Maven archetype project. This will update the local
archetype catalog with the new archetype. The local archetype catalog is
available at ~/.m2/archetype-catalog.xml.

Chapter 3

[55]

• archetype:jar: The jar goal has to be executed against a Maven
archetype project, which will create a JAR file out of it. This accepts the
archetypeDirectory argument, which contains the classes; it also accepts
the finalName argument, the name of the JAR file to be generated, and
the outputDirectory argument, which is the location where the final
output is copied.

• archetype:crawl: The crawl goal crawls through a local or a file system-
based Maven repository (not remote or via HTTP) and creates an archetype
catalogue file. This accepts catalogFile as an argument (which maps into
the catalog system property), which is the name of the catalogue file to be
created. By default, this crawls through the local Maven repository, and
to override the location, we need to pass the corresponding repository URL
with the repository argument.

• archetype:create-from-project: The create-from-project goal creates
an archetype project from an existing project. If you compare this with the
generate goal, then generate, in fact, creates a new Maven project from
scratch corresponding to the selected archetype, while create-from-project
creates a Maven archetype project from an existing project. In other words,
create-from-project generates a template out of an existing Maven project.

• archetype:integration-test: The integration-test goal will execute
the integration tests associated with the Maven archetype project.

• archetype:help: The help goal will display the manual associated with
the archetype plugin, listing out all the available goals. If you want to get a
detailed description of all the goals, then use the -Ddetail=true parameter
along with the command. It is also possible to get help for a given goal. For
example, the following command will display the help associated with the
generate goal:

$ mvn archetype:help -Ddetail=true -Dgoal=generate

Java EE web applications with the
archetype plugin
If you want to start with a Java EE web application, you can simply use the
maven-archetype-webapp archetype to generate the Maven project skeleton,
shown as follows:

$ mvn archetype:generate -B

 -DgroupId=com.packt.samples

 -DartifactId=my-webapp

Maven Archetypes

[56]

 -Dpackage=com.packt.samples.webapp

 -Dversion=1.0.0

 -DarchetypeGroupId=org.apache.maven.archetypes

 -DarchetypeArtifactId=maven-archetype-webapp

 -DarchetypeVersion=1.0

The preceding command will produce the following directory structure. One issue
here is that it does not have the java directory just after src/main. If you want
to add any Java code, you need to make sure that you first create an src/main/
java directory and create your Java package under it; otherwise, with the default
configuration settings, Maven won't pick your classes for compilation. By default,
Maven looks for the source code inside src/main/java:

my-webapp
 |-pom.xml
 |-src/main/webapp
 |-index.jsp
 |-WEB-INF/web.xml
 |- src/main/resources

The maven-archetype-webapp archetype is not the only archetype to generate a Java
EE project using the archetype plugin. Codehaus, a collaborative environment to build
open source projects, also provides a few archetypes to generate web applications. The
following example uses the webapp-javaee6 archetype from Codehaus:

$ mvn archetype:generate -B

 -DgroupId=com.packt.samples

 -DartifactId=my-webapp

 -Dpackage=com.packt.samples.webapp

 -Dversion=1.0.0

 -DarchetypeGroupId=org.codehaus.mojo.archetypes

 -DarchetypeArtifactId=webapp-javaee6

 -DarchetypeVersion=1.3

The preceding command will produce the following directory structure. This
overcomes one of the issues in the maven-archetype-webapp archetype, and creates
the src/main/java and src/test/java directories. The only issue here is that it
does not create the src/main/webapp/WEB-INF directory, which you will have to
create manually:

my-webapp
 |-pom.xml
 |-src/main/webapp/index.jsp
 |-src/main/java/com/packt/samples/webapp/
 |-src/test/java/com/packt/samples/webapp/

Chapter 3

[57]

Deploying web applications to a remote
Apache Tomcat server
Now, we have created a template web application either using the maven-
archetype-webapp or webapp-javaee6 archetype. Let's see how to deploy this web
application into a remote Apache Tomcat application server from Maven itself. Most
developers would love doing this rather than manual copying.

This assumes you have already installed Apache Tomcat
in your environment. If not, you can download Tomcat
7.x distribution from http://tomcat.apache.org/
download-70.cgi and set it up.

To deploy the web application, perform the following steps:

1. As we are going to deploy the web application to a remote Tomcat server,
we need to have a valid user account that has the privilege to deploy a
web application. Add the following entries to the TOMCAT_HOME/conf/
tomcat-users.xml file under the tomcat-users root element. This will
create a user with the name admin and the password password, and the
manager-gui and manager-script roles:
<role rolename="manager-gui"/>
<role rolename="manager-script"/>
<user username="admin" password="password" roles="manager-
 gui,manager-script" />

2. Now, we need to configure Maven to talk to the remote Tomcat server. Add
the following configuration to USER_HOME/.m2/settings.xml under the
servers element, shown as follows:
<server>
 <id>apache-tomcat</id>
 <username>admin</username>
 <password>password</password>
</server>

3. Go inside the root directory of the template web application that we
generated before (my-webapp), and then add the tomcat7-maven-plugin to
the pom.xml file available there. The complete pom.xml file will look like this:
<project >
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.samples</groupId>
 <artifactId>my-webapp</artifactId>
 <packaging>war</packaging>

http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/download-70.cgi

Maven Archetypes

[58]

 <version>1.0.0</version>
 <name>my-webapp Maven Webapp</name>
 <url>http://maven.apache.org</url>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <finalName>my-webapp</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <url>http://localhost:8080/manager/text</url>
 <server>apache-tomcat</server>
 <path>/my-webapp</path>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

4. Use the following Maven command to build and deploy the sample web
application into the Tomcat server. Once it is deployed, you can access it via
http://localhost:8080/my-webapp/:
$ mvn clean install tomcat7:deploy

5. To redeploy, use the following command:
$ mvn clean install tomcat7:redeploy

6. To undeploy, use the following command:
$ mvn clean install tomcat7:undeploy

Chapter 3

[59]

Android mobile applications with the
archetype plugin
If you are an Android application developer who wants to start with a skeleton
Android project, you can use the android-quickstart archetype developed by
akquinet, shown as follows:

$ mvn archetype:generate -B

 -DarchetypeGroupId=de.akquinet.android.archetypes

 -DarchetypeArtifactId=android-quickstart

 -DarchetypeVersion=1.0.4

 -DgroupId=com.packt.samples

 -DartifactId=my-android-app

 -Dversion=1.0.0

This command produces the following skeleton project:

my-android-app
 |-pom.xml
 |-AndroidManifest.xml
 |-android.properties
 |-src/main/java/com/packt/samples/HelloAndroidActivity.java
 |-res/drawable-hdpi/icon.png
 |-res/drawable-ldpi/icon.png
 |-res/drawable-mdpi/icon.png
 |-res/layout/main.xml
 |-res/values/strings.xml
 |-assets

To build the Android skeleton project, run the following Maven command from the
my-android-app directory:

$ mvn clean install -Dandroid.sdk.path=/path/to/android/sdk

Maven Archetypes

[60]

The previous command looks straightforward, but is based on your Android SDK
version; therefore, you might encounter certain issues. Some of the possible issues
and solutions are as follows:

• You will see the following error if you pass an invalid value to the android.
sdk.path argument:
[ERROR] Failed to execute goal
 com.jayway.maven.plugins.android.generation2:maven-android-
 plugin:2.8.3:generate-sources (default-generate-sources) on
 project my-android-app: Execution default-generate-sources
 of goal com.jayway.maven.plugins.android.generation2:maven-
 android-plugin:2.8.3:generate-sources failed: Path
 "/Users/prabath/Downloads/adt-bundle-mac-x86_64-
 20140702/platforms" is not a directory.

The path will point to the Android sdk directory, and right under this, you
will find the platforms directory. By setting android.sdk.path to the
correct path, you can avoid this error.

• By default, the android-quickstart archetype assumes the Android
platform to be 7. You will see the following error if the Android platform
installed in your local machine is different from this:
[ERROR] Failed to execute goal com.jayway.maven.plugins.android.
generation2:maven-android-
 plugin:2.8.3:generate-sources (default-generate-sources) on
 project my-android-app: Execution default-generate-sources
 of goal com.jayway.maven.plugins.android.generation2:maven-
 android-plugin:2.8.3:generate-sources failed: Invalid SDK:
 Platform/API level 7 not available.

To fix this, open the pom.xml file and set the right platform version with
<sdk><platform>20</platform></sdk>.

• By default, the android-quickstart archetype assumes that the aapt
tool is available under sdk/platform-tools. However, with the latest sdks,
it's being moved to sdk/build-tools/android-4.4W; you will get the
following error:
[ERROR] Failed to execute goal
 com.jayway.maven.plugins.android.generation2:maven-android-
 plugin:2.8.3:generate-sources (default-generate-sources) on
 project my-android-app: Execution default-generate-sources
 of goal com.jayway.maven.plugins.android.generation2:maven-
 android-plugin:2.8.3:generate-sources failed: Could not find
 tool 'aapt'.

To fix the error, you need to update the maven-android-plugin version
and artifactId.

Chapter 3

[61]

Open up the pom.xml file inside the my-android-app directory and find the
following plugin configuration. Change artifactId to android-maven-
plugin and version to 4.0.0-rc.1, shown as follows:

 <plugin>
 <groupId>
 com.jayway.maven.plugins.android.generation2
 </groupId>
 <artifactId>android-maven-plugin</artifactId>
 <version>4.0.0-rc.1</version>
 <configuration></configuration>
 <extensions>true</extensions>
 </plugin>

Once the build is complete, android-maven-plugin will produce the
my-android-app-1.0.0.apk and my-android-app-1.0.0.jar artifacts inside
the target directory.

To deploy the skeleton Android application (apk) to the connected device, use the
following Maven command:

$ mvn android:deploy -Dandroid.sdk.path=/path/to/android/sdk

EJB archives with the archetype plugin
Here, we will discuss how to create a Maven Enterprise JavaBeans (EJB) project
using the ejb-javaee6 archetype developed by Codehaus, which is a collaborative
environment to build open source projects:

$ mvn archetype:generate -B

 -DgroupId=com.packt.samples

 -DartifactId=my-ejbapp

 -Dpackage=com.packt.samples.ejbapp

 -Dversion=1.0.0

 -DarchetypeGroupId=org.codehaus.mojo.archetypes

 -DarchetypeArtifactId=ejb-javaee6

 -DarchetypeVersion=1.5

The previous command produces the following skeleton project. You can create your
EJB classes inside src/main/java/com/packt/samples/ejbapp/:

my-ejbapp
 |-pom.xml
 |-src/main/java/com/packt/samples/ejbapp/
 |-src/main/resources/META-INF/MANIFEST.MF

Maven Archetypes

[62]

If you look at the following pom.xml file inside my-ejbapp directory, you will notice
that maven-ejb-plugin is used internally to produce the EJB artifact:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-ejb-plugin</artifactId>
 <version>2.3</version>
 <configuration:
 <ejbVersion>3.1</ejbVersion>
 </configuration>
</plugin>

Even though we have highlighted ejb-javaee6, it is not the best out there to generate
a Maven EJB project. The template produced by the ejb-javaee6 archetype is very
basic. Oracle WebLogic has developed a better EJB archetype,—basic-webapp-ejb.
The following example shows how to use the basic-webapp-ejb archetype:

$ mvn archetype:generate -B

 -DarchetypeGroupId=com.oracle.weblogic.archetype

 -DarchetypeArtifactId=basic-webapp-ejb

 -DarchetypeVersion=12.1.3-0-0

 -DgroupId=com.packt.samples

 -DartifactId=my-ejbapp

 -Dpackage=com.packt.samples.ejbapp

 -Dversion=1.0.0

Prior to executing the previous command, there is more homework to be done. The
basic-webapp-ejb archetype is not available in any public Maven repositories. First,
you need to download the WebLogic distribution from http://www.oracle.com/
webfolder/technetwork/tutorials/obe/java/wls_12c_netbeans_install/
wls_12c_netbeans_install.html, and then install it locally by performing the
instructions given in the README.txt file. Once the installation is complete, the
basic-webapp-ejb archetype and weblogic-maven-plugin can be installed into the
local Maven repository, shown as follows:

1. Go to wls12130/wlserver/server/lib and execute the following command.
This will build the plugin JAR file using the WebLogic JarBuilder tool:
$ java -jar wljarbuilder.jar -profile weblogic-maven-plugin

2. The previous command will create the weblogic-maven-plugin.jar file.
Now, we need to extract it out to get the pom.xml file. From wls12130/
wlserver/server/lib, execute the following command:
$ jar xvf weblogic-maven-plugin.jar

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/wls_12c_netbeans_install/wls_12c_netbeans_install.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/wls_12c_netbeans_install/wls_12c_netbeans_install.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/wls_12c_netbeans_install/wls_12c_netbeans_install.html

Chapter 3

[63]

3. Now, we need to copy the pom.xml file to wls12130/wlserver/server/lib.
From wls12130/wlserver/server/lib, execute the following command:
$ cp META-INF/maven/com.oracle.weblogic/weblogic-maven-
plugin/pom.xml .

4. Now, we can install weblogic-maven-plugin.jar into the local Maven
repository. From wls12130/wlserver/server/lib, execute the following
command:
$ mvn install:install-file -Dfile=weblogic-maven-plugin.jar -
DpomFile=pom.xml

5. In addition to the plugin, we also need to install the basic-webapp-ejb
archetype. To do this, go to wls12130/oracle_common/plugins/maven/
com/oracle/maven/oracle-maven-sync/12.1.3 and execute the following
two commands. Note that oracle_common is a hidden directory. If you are
using a different version of WebLogic instead of 12.1.3, use the number
associated with your version:
$ mvn install:install-file -DpomFile=oracle-maven-sync-
12.1.3.pom -Dfile=oracle-maven-sync-12.1.3.jar

$ mvn com.oracle.maven:oracle-maven-sync:push -Doracle-maven-
sync.oracleHome=/Users/prabath/Downloads/wls12130 -Doracle-
maven-sync.testingOnly=false

Once you are done with these steps, you can execute the following command to
generate the EJB template project using the WebLogic basic-webapp-ejb archetype.
Make sure that you have the right version of archetypeVersion; this should match
the archetype version that comes with your WebLogic distribution:

$ mvn archetype:generate -B

 -DarchetypeGroupId=com.oracle.weblogic.archetype

 -DarchetypeArtifactId=basic-webapp-ejb

 -DarchetypeVersion=12.1.3-0-0

 -DgroupId=com.packt.samples

 -DartifactId=my-ejbapp

 -Dpackage=com.packt.samples.ejbapp

 -Dversion=1.0.0

This command produces the following skeleton project:

my-ejbapp
 |-pom.xml
 |-src/main/java/com/packt/samples/ejbapp
 |-entity/Account.java

Maven Archetypes

[64]

 |-service/AccountBean.java
 |-service/AccountManager.java
 |-service/AccountManagerImpl.java
 |-interceptor/LogInterceptor.java
 |-interceptor/OnDeposit.java
 |-src/main/resources/META-INF/persistence.xml
 |-src/main/scripts
 |-src/main/webapp/WEB-INF/web.xml
 |-src/main/webapp/WEB-INF/beans.xml
 |-src/main/webapp/css/bootstrap.css
 |-src/main/webapp/index.xhtml
 |-src/main/webapp/template.xhtml

To package the EJB archive, execute the following command from the my-ejbapp
directory. This will produce basicWebappEjb.war inside the target directory.
Now, you can deploy this WAR file into your Java EE application server, which
supports EJB:

$ mvn package

JIRA plugins with the archetype plugin
JIRA is an issue-tracking system developed by Atlassian. It is quite popular among
many open source projects. One of the extension points in JIRA is its plugins. Here,
we will see how to generate a skeleton JIRA plugin using jira-plugin-archetype
developed by Atlassian:

$ mvn archetype:generate -B

 -DarchetypeGroupId=com.atlassian.maven.archetypes

 -DarchetypeArtifactId=jira-plugin-archetype

 -DarchetypeVersion=3.0.6

 -DgroupId=com.packt.samples

 -DartifactId=my-jira-plugin

 -Dpackage=com.packt.samples.jira

 -Dversion=1.0.0

 -DarchetypeRepository=

 http://repo.jfrog.org/artifactory/libs-releases/

This command will produce the following project template:

my-jira-plugin
 |-pom.xml
 |-README

Chapter 3

[65]

 |-LICENSE
 |-src/main/java/com/packt/samples/jira/MyPlugin.java
 |-src/main/resources/atlassian-plugin.xml
 |- src/test/java/com/packt/samples/jira/MyPluginTest.java
 |-src/test/java/it/MyPluginTest.java
 |-src/test/resources/TEST_RESOURCES_README
 |-src/test/xml/TEST_XML_RESOURCES_README

Spring MVC applications with the
archetype plugin
Spring model view controller (MVC) is a web application framework developed
under the Spring framework, which is an open source application framework and
an inversion of the control container. Here, we will see how to generate a template
Spring MVC application using the spring-mvc-quickstart archetype.

To know more about the Spring MVC framework, refer to
http://docs.spring.io/spring/docs/current/
spring-framework-reference/html/mvc.html.

Currently, the spring-mvc-quickstart archetype is not available in any of the
public Maven repositories, so we have to download it from GitHub and build from
the source, shown as follows:

$ git clone https://github.com/kolorobot/spring-mvc-quickstart-
archetype.git

$ cd spring-mvc-quickstart-archetype

$ mvn clean install

Once the archetype is built from the source and is available in the local Maven
repository, you can execute the following command to generate the template Spring
MVC application:

$ mvn archetype:generate -B

 -DarchetypeGroupId=com.github.spring-mvc-archetypes

 -DarchetypeArtifactId=spring-mvc-quickstart

 -DarchetypeVersion=1.0.0-SNAPSHOT

 -DgroupId=com.packt.samples

 -DartifactId=my-spring-app

 -Dpackage=com.packt.samples.spring

 -Dversion=1.0.0

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

Maven Archetypes

[66]

This will produce the following project template:

my-spring-app
 |-pom.xml
 |-src/main/java/com/packt/samples/spring/Application.java
 |-src/main/webapp/WEB-INF/views
 |-src/main/webapp/resources
 |-src/main/resources
 |-src/test/java/com/packt/samples/spring
 |-src/test/resources

Let's see how to run the template Spring MVC application with the embedded
Tomcat via Maven itself. Once the server is up, you can browse through the web
application via http://localhost:8080/my-spring-app. The embedded Tomcat
can be launched via the run goal of the tomcat7 plugin, shown as follows:

$ mvn test tomcat7:run

More details about the tomcat7 plugin are available
at http://tomcat.apache.org/maven-plugin-
trunk/tomcat7-maven-plugin/.

Summary
In this chapter, we focused on Maven archetypes. Maven archetypes provide a way
of reducing repetitive work in building Maven projects. There are thousands of
archetypes out there available publicly to assist you when building different types of
projects. This chapter covered a commonly used set of archetypes.

In the next chapter, we will look into Maven plugins.

http://tomcat.apache.org/maven-plugin-trunk/tomcat7-maven-plugin/
http://tomcat.apache.org/maven-plugin-trunk/tomcat7-maven-plugin/

[67]

Maven Plugins
The roots of Maven go back to the Jakarta Turbine project, which was started as
an attempt to simplify the build process of Jakarta Turbine. The beauty of Maven
is its design. It does not try to do everything by itself, but rather delegates to a
plugin framework. When you download Maven from its website, it's only the core
framework, and the plugins are downloaded on demand. All the useful functionalities
in the build process are developed as Maven plugins. You can also call Maven a
plugin execution framework. The following figure shows the Maven plugins:

A Maven plugin can be executed on its own or can be executed as a part of a Maven
lifecycle. We will discuss Maven lifecycles in Chapter 5, Build Lifecycles.

A Maven build lifecycle consists of a set of well-defined phases.
Each phase groups a set of goals defined by Maven plugins and
the lifecycle defines the order of execution. Maven comes with
three standard lifecycles: default, clean, and site. Each lifecycle
defines its own set of phases.

Maven Plugins

[68]

Each plugin has its own set of goals, and each goal is responsible for performing a
specific action. Let's see how to execute the clean goal of the Maven clean plugin.
The clean goal will attempt to clean the working directory and the associated files
created during the build:

$ mvn clean:clean

Maven plugins can be self-executed as mvn
plugin-prefix-name:goal-name.

The same clean plugin can be executed via the clean lifecycle, as shown in the
following command:

$ mvn clean

The clean goal of the Maven clean plugin is associated with the clean phase of the
clean lifecycle. The clean lifecycle defines three phases: pre-clean, clean, and post-
clean. A phase in a lifecycle is just an ordered placeholder in the build execution
path. For example, the clean phase in the clean lifecycle cannot do anything on
its own. In the Maven architecture, it has two key elements: nouns and verbs. Both
nouns and verbs, which are related to a given project, are defined in the POM file.
The name of the project, the name of the parent project, the dependencies, and the
type of packaging are nouns. Plugins bring verbs into the Maven build system,
and they define what needs to be done during the build execution via its goals. A
plugin is a group of goals. Each goal of a plugin can be executed on its own or can
be registered as part of a phase in a Maven build lifecycle. One difference here is that
when you execute a Maven plugin on its own, it only runs the goal specified in the
command; however, when you run it as a part of a lifecycle, then Maven executes all
the plugin goals associated with the corresponding lifecycle up until the specified
phase (including that phase).

When you type mvn clean, it executes all the phases defined in the clean lifecycle
up to and including the clean phase. Don't be confused; in this command, clean
is not the name of the lifecycle, it's the name of a phase. It's only a coincidence that
the name of the phase happens to be the name of the lifecycle. In Maven, you cannot
simply execute a lifecycle by its name—it has to be the name of a phase. Maven will
find the corresponding lifecycle and will execute all phases in it up to the given
phase (including that phase).

In this chapter, we will be talking about the following topics:

• Commonly used Maven plugins and their usage
• Plugin discovery and execution process

Chapter 4

[69]

Common Maven plugins
Maven plugins are mostly developed under the Apache Maven project itself, as well
as under the Codehaus and Google Code projects. The following sections list out a
set of commonly used Maven plugins and their usages.

The clean plugin
As discussed earlier, the clean plugin executes the clean goal of the Maven clean
plugin to remove any of the working directories and other resources created during
the build, as follows:

$ mvn clean:clean

The Maven clean plugin is also associated with the clean lifecycle. If you just
execute mvn clean, the clean goal of the clean plugin will get executed.

You do not need to explicitly define the Maven clean plugin in your project
POM file. Your project inherits it from the Maven super POM file. In Chapter 2,
Understanding the Project Object Model (POM), we discussed the Maven super POM
file in detail. The following configuration in the super POM file associates the Maven
clean plugin with all the Maven projects:

<plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.5</version>
 <executions>
 <execution>
 <id>default-clean</id>
 <phase>clean</phase>
 <goals>
 <goal>clean</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The Maven default lifecycle includes the phases: validate,
initialize, generate-sources, process-sources, generateresources,
process-resources, compile, process-classes, generate-test-sources,
process-test-sources, generate-testresources, process-test-resources,
test-compile, process-testclasses, test, prepare-package, package,
pre-integration-test, integration-test, post-integration-test, verify,
install, deploy.

Maven Plugins

[70]

By default, the clean goal of the clean plugin runs under the clean phase of the
Maven clean lifecycle. If your project wants the clean plugin to run by default, then
you can associate it with the initialize phase of the Maven default lifecycle. You
can add the following configuration to your application POM file:

<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.5</version>
 <executions>
 <execution>
 <id>auto-clean</id>
 <phase>initialize</phase>
 <goals>
 <goal>clean</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

Now, the clean goal of the clean plugin will get executed when you execute any of
the phases in the Maven default lifecycle; there is no need to explicitly execute the
clean phase of the clean lifecycle. For example, mvn install will run the clean
goal in its initialize phase. This way, you can override the default behavior
of the Maven clean plugin. A complete Maven sample project with the previous
plugin configuration is available at https://svn.wso2.org/repos/wso2/people/
prabath/maven-mini/chapter04/jose.

The compiler plugin
The compiler plugin is used to compile the source code. This has two goals:
compile and testCompile. The compile goal is bound to the compile phase of the
Maven default lifecycle. When you type mvn clean install, Maven will execute
all the phases in the default lifecycle up to the install phase, which also includes
the compile phase. This, in turn, will run the compile goal of the compiler plugin.

https://svn.wso2.org/repos/wso2/people/prabath/maven-mini/chapter04/jose
https://svn.wso2.org/repos/wso2/people/prabath/maven-mini/chapter04/jose

Chapter 4

[71]

The following command shows how to execute the compile goal of the compiler
plugin by itself. This will simply compile your source code:

$ mvn compiler:compile

All the Maven projects inherit the compiler plugin from the super POM file. As
shown in the following configuration, the super POM defines the compiler plugin. It
associates the testCompile and compile goals with the test-compile and compile
phases of the Maven default lifecycle:

<plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <executions>
 <execution>
 <id>default-testCompile</id>
 <phase>test-compile</phase>
 <goals>
 <goal>testCompile</goal>
 </goals>
 </execution>
 <execution>
 <id>default-compile</id>
 <phase>compile</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
</plugin>

By default, the Maven compiler plugin assumes JDK 1.5 for both the source and
target elements. JVM identifies the Java version of the source code via the source
configuration parameter and the version of the compiled code via the target
configuration parameter. If you want to break the assumption made by Maven and
specify your own source and target versions, you need to override the compiler
plugin configuration in your application POM file, as follows:

<project>
 [...]
 <build>
 [...]
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

www.allitebooks.com

http://www.allitebooks.org

Maven Plugins

[72]

 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 [...]
 </build>
 [...]
</project>

You can pass any argument to the compiler plugin under the compilerArgument
element, not just the source and target elements. This is more useful when the Maven
compiler plugin does not have an element defined for the corresponding JVM
argument. For example, the same source and target values can also be passed in
the following manner:

<project>
 [...]
 <build>
 [...]
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <compilerArgument>-source 1.7 –target
 1.7</compilerArgument>
 </configuration>
 </plugin>
 </plugins>
 [...]
 </build>
 [...]
</project>

Chapter 4

[73]

The install plugin
The install plugin will deploy the final project artifacts into the local Maven
repository defined under the localRepository element of MAVEN_HOME/conf/
settings.xml, where the default location is USER_HOME/.m2/repository. The
install goal of the install plugin is bound to the install phase of the Maven
default lifecycle. When you type mvn clean install, Maven will execute all the
phases in the default lifecycle up to and including the install phase.

The following command shows how to execute the install goal of the install
plugin by itself:

$ mvn install:install

All the Maven projects inherit the install plugin from the super POM file. As
shown in the following configuration, the super POM defines the install plugin. It
associates the install goal with the install phase of the Maven default lifecycle:

 <plugin>
 <artifactId>maven-install-plugin</artifactId>
 <version>2.4</version>
 <executions>
 <execution>
 <id>default-install</id>
 <phase>install</phase>
 <goals>
 <goal>install</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

The install goal of the install plugin does not have any configurations to be
overridden at the project level.

The deploy plugin
The deploy plugin will deploy the final project artifacts into a remote Maven
repository. The deploy goal of the deploy plugin is associated with the deploy
phase of the default Maven lifecycle. To deploy an artifact via the default
lifecycle, mvn clean install is not sufficient. It has to be mvn clean deploy.
Any guesses why?

Maven Plugins

[74]

The deploy phase of the default Maven lifecycle comes after the install phase.
Executing mvn clean deploy will execute all the phases of the default Maven
lifecycle up to and including the deploy phase, which also includes the install
phase. The following command shows how to execute the deploy goal of the deploy
plugin by itself:

$ mvn deploy:deploy

All the Maven projects inherit the deploy plugin from the super POM file. As shown
in the following configuration, super POM defines the deploy plugin. It associates
the deploy goal with the deploy phase of the Maven default lifecycle:

 <plugin>
 <artifactId>maven-deploy-plugin</artifactId>
 <version>2.7</version>
 <executions>
 <execution>
 <id>default-deploy</id>
 <phase>deploy</phase>
 <goals>
 <goal>deploy</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

Before executing either mvn deploy:deploy or mvn deploy, you need to set
up the remote Maven repository details in your project POM file, under the
distributionManagement section, as follows:

[...]
 <distributionManagement>
 <repository>
 <id>wso2-maven2-repository</id>
 <name>WSO2 Maven2 Repository</name>
 <url>scp://dist.wso2.org/home/httpd/dist.wso2.org/
 maven2/</url>
 </repository>
 </distributionManagement>
[...]

Chapter 4

[75]

In this example, Maven connects to the remote repository via scp. Secure Copy
(scp) defines a way of securely transferring files between two nodes in a computer
network, which is built on top of popular SSH. To authenticate to the remote server,
Maven provides two ways; one is based on a username and password, and the
other one is based on SSH authentication keys. To configure username/password
credentials against the Maven repository, we need to add the following <server>
configuration element to USER_HOME/.m2/settings.xml. The value of the id
element must carry the value of the remote repository hostname:

<server>
 <id>dist.wso2.org</id>
 <username>my_username</username>
 <password>my_password</password>
</server>

If the remote repository only supports SSH authentication keys, then we need to
specify the location of the private key, as follows:

<server>
 <id>dist.wso2.org</id>
 <username>my_username</username>
 <privateKey>/path/to/private/key</privateKey>
</server>

The deploy goal of the deploy plugin does not have any configurations to be
overridden at the project level.

The surefire plugin
The surefire plugin will run the unit tests associated with the project. The test
goal of the surefire plugin is bound to the test phase of the default Maven
lifecycle. When you type mvn clean install, Maven will execute all the phases in
the default lifecycle up to and including the install phase, which also includes the
test phase.

The following command shows how to execute the test goal of the
surefire plugin:

$ mvn surefire:test

All the Maven projects inherit the surefire plugin from the super POM file. As
shown in the following configuration, the super POM defines the surefire plugin.
It associates the test goal with the test phase of the Maven default lifecycle:

<plugin>
 <artifactId>maven-surefire-plugin</artifactId>

Maven Plugins

[76]

 <version>2.12.4</version>
 <executions>
 <execution>
 <id>default-test</id>
 <phase>test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Since the surefire plugin is defined in the super POM file, you do not need to add it
explicitly to your application POM file. However, you need to add a dependency to
junit, as follows:

<dependencies>
 [...]
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.1</version>
 <scope>test</scope>
 </dependency>
 [...]
</dependencies>

The surefire plugin is not just coupled to JUnit, it can be used with other testing
frameworks as well. If you are using TestNG, then you need to add a dependency to
testng, as follows:

<dependencies>
 [...]
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>6.3.1</version>
 <scope>test</scope>
 </dependency>
 [...]
</dependencies>

Chapter 4

[77]

The surefire plugin introduces a concept called test providers. You can specify a
test provider within the plugin itself; if not, it will be derived from the dependency
JAR file. For example, if you want to use the junit47 provider, then within the
plugin configuration, you can specify it as shown here. The surefire plugin
supports, by default, four test providers: surefire-junit3, surefire-junit4,
surefire-junit47, and surefire-testng:

<plugins>
[...]
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.17</version>
 <dependencies>
 <dependency>
 <groupId>org.apache.maven.surefire</groupId>

 <artifactId>surefire-junit47</artifactId>
 <version>2.17</version>
 </dependency>
 </dependencies>
 </plugin>
[...]
</plugins>

Since all the Maven projects inherit the surefire plugin from the super POM file,
you do not need to override its configuration in the application POM file unless it's
an absolute necessity. One of the reasons to override the parent configuration is to
override the default test provider selection algorithm.

The site plugin
The site plugin generates static HTML web content for a Maven project, including
the reports configured in the project. This defines eight goals, where each goal runs
in one of the four phases defined in the Maven site lifecycle: pre-site, site, post-
site, and site-deploy, which can be described as follows:

• site:site: This goal generates a site for a single Maven project
• site:deploy: This goal deploys the generated site via a Wagon supported

protocol to the site URL specified in the <distributionManagement> section
of the POM file

• site:run: This goal opens the site with the Jetty web server

Maven Plugins

[78]

• site:stage: This goal generates a site in a local staging or mock directory
based on the site URL specified in the <distributionManagement> section
of the POM file

• site:stage-deploy: This goal deploys the generated site to a staging or
mock directory to the site URL specified in the <distributionManagement>
section of the POM file

• site:attach-descriptor: This goal adds the site descriptor (site.xml) to
the list of files to be installed/deployed

• site:jar: This goal bundles the site output into a JAR file so that it can be
deployed to a repository

• site:effective-site: This goal calculates the effective site descriptor after
inheritance and interpolation of site.xml

All the Maven projects inherit the site plugin from the super POM file. As shown
in the following configuration, the super POM defines the site plugin. It associates
the site and deploy goals with the site and site-deploy phases of the Maven
default lifecycle:

<plugin>
 <artifactId>maven-site-plugin</artifactId>
 <version>3.3</version>
 <executions>
 <execution>
 <id>default-site</id>
 <phase>site</phase>
 <goals>
 <goal>site</goal>
 </goals>
 <configuration>
 <outputDirectory>
 PROJECT_HOME/target/site</outputDirectory>
 <reportPlugins>
 <reportPlugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>
 maven-project-info-reports-plugin
 </artifactId>
 </reportPlugin>
 </reportPlugins>
 </configuration>
 </execution>
 <execution>
 <id>default-deploy</id>

Chapter 4

[79]

 <phase>site-deploy</phase>
 <goals>
 <goal>deploy</goal>
 </goals>
 <configuration>
 <outputDirectory>
 PROJECT_HOME/target/site</outputDirectory>
 <reportPlugins>
 <reportPlugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>
 maven-project-info-reports-plugin
 </artifactId>
 </reportPlugin>
 </reportPlugins>
 </configuration>
 </execution>
 </executions>
 <configuration>
 <outputDirectory>
 PROJECT_HOME/target/site</outputDirectory>
 <reportPlugins>
 <reportPlugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>
 maven-project-info-reports-plugin
 </artifactId>
 </reportPlugin>
 </reportPlugins>
 </configuration>
</plugin>

As defined in the previous configuration, when you run mvn site or mvn site:site,
the resultant HTML web content will be created inside the target/site directory
under the project home. The site goal of the site plugin only generates the HTML
web content; to deploy it, you need to use the deploy goal. To deploy site to a
remote application server, you need to specify the remote machine details under the
distributionManagement section of your application POM file, as follows:

<project>
 ...
 <distributionManagement>
 <site>
 <id>mycompany.com</id>
 <url>scp://mycompany/www/docs/project/</url>

Maven Plugins

[80]

 </site>
 </distributionManagement>
 ...
</project>

To configure credentials to connect to the remote computer, you need to add the
following <server> configuration element under the <servers> parent element of
USER_HOME/.m2/settings.xml:

<server>
 <id>mycompany.com</id>
 <username>my_username</username>
 <password>my_password</password>
</server>

The generated site or the web content can be deployed to the remote location by
executing the deploy goal of the Maven site plugin, as follows:

$ mvn site:deploy

In most of the cases, you do not need to override the site plugin configuration.

The jar plugin
The jar plugin creates a JAR file from your Maven project. The jar goal of the jar
plugin is bound to the package phase of the Maven default lifecycle. When you
type mvn clean install, Maven will execute all the phases in the default lifecycle
up to and including the install phase, which also includes the package phase.

The following command shows how to execute the jar goal of the jar plugin:

$ mvn jar:jar

All the Maven projects inherit the jar plugin from the super POM file. As shown in
the following configuration, the super POM defines the jar plugin. It associates the
jar goal with the package phase of the Maven default lifecycle.

 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.4</version>
 <executions>
 <execution>
 <id>default-jar</id>
 <phase>package</phase>
 <goals>
 <goal>jar</goal>
 </goals>

Chapter 4

[81]

 </execution>
 </executions>
 </plugin>

In most of the cases, you do not need to override the jar plugin configuration,
except in a case where you need to create a self-executable JAR file.

Creating a self-executable JAR file with maven-jar-plugin
can be found at http://maven.apache.org/shared/
maven-archiver/examples/classpath.html.

The source plugin
The source plugin creates a JAR file with the project source code. It defines five goals:
aggregate, jar, test-jar, jar-no-fork, and test-jar-no-fork. All these five
goals of the source plugin run under the package phase of the default lifecycle.

Unlike any of the plugins we discussed earlier, if you want to execute the source
plugin with the Maven default lifecycle, it has to be defined in the project POM file,
as shown here. The super POM file does not define the source plugin; it has to be
defined within your Maven project itself:

<project>
...
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-source-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <outputDirectory>
 /absolute/path/to/the/output/directory
 </outputDirectory>
 <finalName>filename-of-generated-jar-file</finalName>
 <attach>false</attach>
 </configuration>
 </plugin>
 </plugins>
 </build>
...
</project>

http://maven.apache.org/shared/maven-archiver/examples/classpath.html
http://maven.apache.org/shared/maven-archiver/examples/classpath.html

Maven Plugins

[82]

What is the difference between the jar plugin and the source plugin? Both create
JAR files; however, the jar plugin creates a JAR file from the binary artifact, while
the source plugin creates a JAR file from the source code. Small-scale open source
projects use this approach to distribute the corresponding source code along with the
binary artifacts.

The resources plugin
The resources plugin copies the resources associated with the main project as well
as the tests to the project output directory. The resources goal of the resources
plugin copies the main resources into the main output directory, and it runs under
the process-resources phase of the Maven default lifecycle. The testResources
goal copies all the resources associated with the tests to the test output directory, and
it runs under the process-test-resources phase of the Maven default lifecycle.
The copyResources goal can be configured to copy any resource to the project output
directory, and this is not bound to any of the phases in the Maven default lifecycle.

All the Maven projects inherit the resources plugin from the super POM file. As
shown in the following configuration, super POM defines the resources plugin. It
associates resources and testResources goals with the process-resources and
process-test-resources phases of the Maven default lifecycle. When you type
mvn clean install, Maven will execute all the phases in the default lifecycle up
to and including the install phase, which also includes the process-resources
and process-test-resources phases.

<plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <id>default-resources</id>
 <phase>process-resources</phase>
 <goals>
 <goal>resources</goal>
 </goals>
 </execution>
 <execution>
 <id>default-testResources</id>
 <phase>process-test-resources</phase>
 <goals>
 <goal>testResources</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Chapter 4

[83]

In most of the cases, you do not need to override the resources plugin
configuration, unless you have a specific need to filter resources.

More details about resource filtering with maven-
resources-plugin can be found at http://maven.
apache.org/plugins/maven-resources-plugin/
examples/filter.html.

The release plugin
Releasing a project requires a lot of repetitive tasks. The objective of the Maven
release plugin is to automate them. The release plugin defines the following
eight goals, which are executed in two stages: preparing the release and performing
the release:

• release:clean: This goal cleans up after a release preparation
• release:prepare: This goal prepares for a release in Software

Configuration Management (SCM)
• release:prepare-with-pom: This goal prepares for a release in SCM, and it

generates release POMs by fully resolving the dependencies
• release:rollback: This goal rolls back to a previous release
• release:perform: This goal performs a release from SCM
• release:stage: This goal performs a release from SCM into a staging

folder/repository
• release:branch: This goal creates a branch of the current project with all the

versions updated
• release:update-versions: This goal updates the versions in POM(s)

The preparation stage will complete the following tasks with the
release:prepare goal:

• It verifies that all the changes in the source code are committed.
• It ensures that there are no SNAPSHOT dependencies. During the project

development phase, we use SNAPSHOT dependencies; however, at the time
of the release, all the dependencies should be changed to the latest released
version of each dependency.

• The version of the project POM file will be changed from SNAPSHOT to a
concrete version number.

http://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html
http://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html
http://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html

Maven Plugins

[84]

• The SCM information in the project POM file will be changed to include the
final destination of the tag.

• It execute all the tests against the modified POM files.
• It commits the modified POM files to SCM and tag the code with the

version name.
• It changes the version in POM files in the trunk to a SNAPSHOT version and

commits the modified POM files to the trunk.

Finally, the release will be performed with the release:perform goal. This will
check out the code from the release tag in the SCM, and run a set of predefined
goals: site and deploy-site.

The maven-release-plugin is not defined in the super POM file; it should be
explicitly defined in your application POM file. The releaseProfiles configuration
element defines the profiles to be released, and the goals configuration element
defines the plugin goals to be executed during release:perform, as follows:

<plugin>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <releaseProfiles>release</releaseProfiles>
 <goals>deploy assembly:single</goals>
 </configuration>
</plugin>

Plugin discovery and execution
To associate a plugin with your Maven project, you have to either define it explicitly
in your application POM file, or you should inherit it from a parent POM or the
super POM file. Let's take a look at the Maven jar plugin. The jar plugin is defined
by the super POM file, and all the Maven projects inherit it. To define a plugin
(which is not inherited from the POM hierarchy), or associate a plugin with your
Maven project, you must add the plugin configuration under the build/plugins/
plugin element of your application pom.xml. In this way, you can associate any
number of plugins with your project, as shown here:

<project>
...
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>

Chapter 4

[85]

 <version>2.4</version>
 <executions>
 <execution>
 <id>default-jar</id>
 <phase>package</phase>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
...
</project>

In the Maven execution environment, what matters is not just your application POM
file but the effective POM file. The effective POM file is constructed by the project
POM file, any parent POM files, and the super POM file.

A Maven plugin can be executed in two ways:

• Using a lifecycle
• Directly invoking a plugin goal

If it is executed via a lifecycle, then there are plugin goals associated with different
phases of the lifecycle. When each phase gets executed, all the plugin goals will
also get executed only if the effective POM file of the project has defined the
corresponding plugins under its plugins configuration. The same applies even when
you try to invoke a plugin goal directly (for example, mvn jar:jar), the goal will be
executed only if the corresponding plugin is associated with the project.

In either way, how does Maven find the plugin corresponding to the provided
plugin goal?

Similar to any other dependency in Maven, a plugin is also uniquely identified by three
coordinates: groupId, artifactId, and version. For plugins, however, you do not
need to explicitly specify groupId. Maven assumes two groupId elements by default:
org.apache.maven.plugins and org.codehaus.mojo. First, it will try to locate the
plugin from USER_HOME/.m2/repository/org/apache/maven/plugins, and if that
fails, it will locate it from USER_HOME/.m2/repository/org/codehaus/mojo.

In the previous sample plugin configuration, you may not find groupId. The jar
plugin is available at USER_HOME/.m2/repository/org/apache/maven/plugins/
maven-jar-plugin.

Maven Plugins

[86]

Maven also lets you add your own plugin groups, and they can be included in the
plugin discovery. You can do it by updating USER_HOME/.m2/settings.xml or
MAVEN_HOME/conf/settings.xml, as shown in the following manner:

<pluginGroups>
 <pluginGroup>com.packt.plugins</pluginGroup>
</pluginGroups>

Maven will always give priority to the previous configuration and then start looking
for the well-known groupId elements: org.apache.maven.plugins and org.
codehaus.mojo.

Let's take a look at some of the sample plugin configurations used in some popular
open source projects.

Apache Felix provides a bundle plugin for Maven, which creates an OSGi bundle
out of a Maven project. Another open source project, WSO2 Carbon, uses this bundle
plugin in its development. You can find a sample POM file, which consumes the
plugin at https://svn.wso2.org/repos/wso2/carbon/platform/branches/
turing/service-stubs/org.wso2.carbon.qpid.stub/4.2.0/pom.xml. This
is a custom plugin, which does not fall into any of the groupId elements known
to Maven by default. In that case, anyone who uses the plugin must qualify the
plugin with groupId, or they must add the corresponding groupId element to the
pluginGroups configuration element, as discussed earlier.

The following code shows the plugin configuration from the WSO2 Carbon project:

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>
 ${project.artifactId}</Bundle-SymbolicName>
 <Bundle-Name>${project.artifactId}</Bundle-Name>
 <Carbon-Component>UIBundle</Carbon-Component>
 <Import-Package>
 org.apache.axis2.*;
 version="${axis2.osgi.version.range}",
 org.apache.axiom.*;
 version="${axiom.osgi.version.range}",
 *;resolution:=optional
 </Import-Package>
 <Export-Package>

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/service-stubs/org.wso2.carbon.qpid.stub/4.2.0/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/service-stubs/org.wso2.carbon.qpid.stub/4.2.0/pom.xml

Chapter 4

[87]

 org.wso2.carbon.qpid.stub.*;
 version="${carbon.platform.package.export.version}",
 </Export-Package>
 </instructions>
 </configuration>
</plugin>

Plugin management
If you take a look at the previous configuration carefully, you do not see a version for
the bundle plugin. This is where the pluginManagement element comes into play.
With the pluginManagement configuration element, you can avoid repetitive usage
of the plugin version. Once you define a plugin under pluginManagement, all the
child POM files will inherit that configuration.

The WSO2 Carbon project defines all the plugins used by its child projects under
the pluginManagement section of https://svn.wso2.org/repos/wso2/carbon/
platform/branches/turing/parent/pom.xml, and all the projects inherit it. A
truncated part of the configuration is as follows:

<pluginManagement>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.3.5</version>
 <extensions>true</extensions>
 </plugin>
</pluginManagement>

We'll discuss plugin management in detail in Chapter 7,
Best Practices.

Plugin repositories
Maven downloads plugins on demand when it cannot find a plugin in its local
repository. By default, Maven looks for any plugin that is not available locally in the
Maven plugin repository defined by the super POM file (this is the default behavior;
you can also define plugin repositories in your application POM file). The following
code snippets shows how to define plugin repositories:

<pluginRepositories>
 <pluginRepository>
 <id>central</id>

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml

Maven Plugins

[88]

 <name>Maven Plugin Repository</name>
 <url>http://repo1.maven.org/maven2</url>
 <layout>default</layout>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <updatePolicy>never</updatePolicy>
 </releases>
 </pluginRepository>
</pluginRepositories>

If you develop a custom plugin, just like the Apache Felix bundle plugin, you must
make it available for the rest via a plugin repository, and any other consumer of that
plugin, such as the WSO2 Carbon project, must define the corresponding plugin
repository in its POM file or in a parent POM file.

The WSO2 Carbon project defines two plugin
repositories in its parent POM file at https://svn.
wso2.org/repos/wso2/carbon/platform/
branches/turing/parent/pom.xml.
The Apache Felix bundle plugin is available at
http://dist.wso2.org/maven2/org/apache/
felix/maven-bundle-plugin/.

The following configuration is a part of the WSO2 Carbon project parent/pom.xml,
which defines the two plugin repositories:

<pluginRepositories>
 <pluginRepository>
 <id>wso2-maven2-repository-1</id>
 <url>http://dist.wso2.org/maven2</url>
 </pluginRepository>
 <pluginRepository>
 <id>wso2-maven2-repository-2</id>
 <url>http://dist.wso2.org/snapshots/maven2</url>
 </pluginRepository>
</pluginRepositories>

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml
http://dist.wso2.org/maven2/org/apache/felix/maven-bundle-plugin/
http://dist.wso2.org/maven2/org/apache/felix/maven-bundle-plugin/

Chapter 4

[89]

Plugin as an extension
If you look at the definition of the Apache Felix bundle plugin, you might have
noticed the extensions configuration element, which is set to true:

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
</plugin>

As we discussed earlier, the goal of the bundle plugin is to build an OSGi bundle
from a Maven project. In other words, the Apache Felix bundle plugin introduces
a new packaging type with an existing file extension, .jar. If you look at the POM
file of the WSO2 Carbon project, which consumes the bundle plugin, you can see
the packaging of the project is set to bundle (https://svn.wso2.org/repos/wso2/
carbon/platform/branches/turing/service-stubs/org.wso2.carbon.qpid.
stub/4.2.0/pom.xml), as follows:

<packaging>bundle</packaging>

If you are associating a plugin with your project, which introduces a new packaging
type or a customized lifecycle, then you must set the value of the extensions
configuration element to true. Once this is done, the Maven engine will go
further and will look for the components.xml file inside META-INF/plexus of the
corresponding jar plugin.

Summary
In this chapter, we focused on Maven plugins. Maven only provides a build
framework while the Maven plugins perform the actual tasks. Maven has a large,
rich set of plugins, and the chances that you have to write your own custom plugin
are very slim. This chapter covered some of the most commonly used Maven
plugins, and later explained how plugins are discovered and executed. If you would
like to know about custom plugin development, refer to the book, Mastering Apache
Maven 3 by Packt Publishing.

In the next chapter, we will focus on Maven build lifecycle.

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/service-stubs/org.wso2.carbon.qpid.stub/4.2.0/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/service-stubs/org.wso2.carbon.qpid.stub/4.2.0/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/service-stubs/org.wso2.carbon.qpid.stub/4.2.0/pom.xml

[91]

Build Lifecycles
A Maven build lifecycle consists of a set of well-defined phases. Each phase groups
a set of goals defined by Maven plugins, and the lifecycle defines the order of
execution. A Maven plugin is a collection of goals where each goal is responsible
for performing a specific action. We discussed Maven plugins in detail in Chapter 4,
Maven Plugins.

In this chapter, the following topics will be covered:

• Standard lifecycles in Maven
• Lifecycle bindings
• Building custom lifecycle extensions

The following figure shows the relationship between Maven plugin goals and
lifecycle phases:

Build Lifecycles

[92]

Let's take the simplest Maven build command that every Java developer is
familiar with:

$ mvn clean install

What will this do? As a developer, how many times have you executed the previous
command? Have you ever thought of what happens inside? If not, it's time to explore
it now.

Standard lifecycles in Maven
Maven comes with three standard lifecycles:

• clean

• default

• site

Each lifecycle defines its own set of phases.

The clean lifecycle
The clean lifecycle defines three phases: pre-clean, clean, and post-clean. A
phase in a lifecycle is just an ordered placeholder in the build execution path. For
example, the clean phase in the clean lifecycle cannot do anything on its own. In
the Maven architecture, it has two key elements: nouns and verbs. Both nouns and
verbs, which are related to a given project, are defined in the POM file. The name
of the project, the name of the parent project, the dependencies, and the type of
packaging are nouns. Plugins bring verbs into the Maven build system, and they
define what needs to be done during the build execution via its goals. A plugin is a
group of goals. Each goal of a plugin can be executed on its own or can be registered
as part of a phase in a Maven build lifecycle.

When you type mvn clean, it executes all the phases defined in the clean lifecycle
up to and including the clean phase. Don't be confused; in this command, clean is
not the name of the lifecycle it's the name of a phase. It's only a coincidence that the
name of the phase happens to be the name of the lifecycle. In Maven, you cannot
simply execute a lifecycle by its name—it has to be the name of a phase. Maven will
find the corresponding lifecycle and will execute all phases in it up to the given
phase (including that phase).

Chapter 5

[93]

When you type mvn clean, it cleans out project's working directory (by default, it's
the target directory). This is done via the Maven clean plugin. To find more details
about the Maven clean plugin, type the following command. It describes all the
goals defined inside the clean plugin:

$ mvn help:describe -Dplugin=clean

Name: Maven Clean Plugin

Description: The Maven Clean Plugin is a plugin that removes files
 generated at build-time in a project's directory.

Group Id: org.apache.maven.plugins

Artifact Id: maven-clean-plugin

Version: 2.5

Goal Prefix: clean

This plugin has 2 goals.

clean:clean

Description: Goal, which cleans the build. This attempts to clean a
 project's working directory of the files that were generated at
 build-time. By default, it discovers and deletes the directories
 configured in project.build.directory,
 project.build.outputDirectory, project.build.testOutputDirectory,
 andproject.reporting.outputDirectory.Files outside the default may
 also be included in the deletion by configuring the filesets tag.

clean:help

Description: Display help information on maven-clean-plugin.Call

mvn clean:help -Ddetail=true -Dgoal=<goal-name> to display parameter
 details.

For more information, run 'mvn help:describe [...] -Ddetail'

Everything in Maven is a plugin. Even the command we
executed previously to get goal details of the clean plugin
executes another plugin—the help plugin. The following
command will describe the help plugin:
$ mvn help:describe -Dplugin=help

describe is a goal defined inside the help plugin.

Build Lifecycles

[94]

The clean plugin has two goals defined in it: clean and help. As mentioned
previously, each goal of a plugin can be executed on its own or can be registered as
part of a phase in a Maven build lifecycle. The clean goal of the clean plugin can be
executed on its own with the following command:

$ mvn clean:clean

The following figure shows the relationship between the Maven clean plugin goals
and the clean lifecycle phases:

The first instance of the clean word in the previous command is the prefix of
the clean plugin, while the second one is the name of the goal. When you type
mvn clean, it's the same clean goal that gets executed. However, this time, it gets
executed through the clean phase of the clean lifecycle, and it also executes all the
phases in the corresponding lifecycle up to, and including, the clean phase—not just
the clean phase. The clean goal of the clean plugin is configured by default to get
executed during the clean phase of the clean lifecycle. The plugin goal to lifecycle
phase mapping can be provided through the application POM file; if not, it will be
inherited from the super POM file. The super POM file, which defines the clean
plugin by default, adds the plugin to the clean phase of the clean lifecycle. You
cannot define a phase with the same name in two different lifecycles.

The following code snippet shows how the clean goal of the Maven clean plugin is
associated with the clean phase of the clean lifecycle:

<plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.5</version>

Chapter 5

[95]

 <executions>
 <execution>
 <id>default-clean</id>
 <phase>clean</phase>
 <goals>
 <goal>clean</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The pre-clean and post-clean phases of the clean lifecycle do not have any
plugin bindings. The objective of the pre-clean phase is to perform any operations
prior to the cleaning task and the objective of the post-clean phase is to perform
any operations after the cleaning task. If you need to associate any plugins with these
two phases, you simply need to add them to the corresponding plugin configuration.

The default lifecycle
The default lifecycle in Maven defines 23 phases. When you run the mvn clean
install command, it will execute all the phases from the default lifecycle up to,
and including, the install phase. To be precise, Maven will first execute all the
phases in the clean lifecycle up to, and including, the clean phase, and it will then
execute the default lifecycle up to, and including, the install phase.

The phases in the default lifecycle do not have any associated plugin goals. The
plugin bindings for each phase are defined by the corresponding packaging (that is,
jar or war). If the type of packaging of your Maven project is jar, then it will define
its own set of plugins for each phase. If the packaging type is war, then it will have
its own set of plugins. The following points summarize all the phases defined under
the default lifecycle in their order of execution:

• validate: This phase validates the project POM file and ensures that all the
necessary information related to carrying out the build is available.

• initialize: This phase initializes the build by setting up the right directory
structure and initializing properties.

• generate-sources: This phase generates any required source code.
• process-sources: This phase processes the generated source code; for

example, there can be a plugin running in this phase to filter the source code
based on some defined criteria.

• generate-resources: This phase generates any resources that need to be
packaged with the final artifact.

Build Lifecycles

[96]

• process-resources: This phase processes the generated resources.
It copies the resources to their destination directories and makes them
ready for packaging.

• compile: This phase compiles the source code.
• process-classes: This phase can be used to carry out any bytecode

enhancements after the compile phase.
• generate-test-sources: This phase generates the required source code

for tests.
• process-test-sources: This phase processes the generated test source

code; for example, there can be a plugin running in this phase to filter the
source code based on some defined criteria.

• generate-test-resources: This phase generates all the resources required
to run tests.

• process-test-resources: This phase processes the generated test
resources. It copies the resources to their destination directories and makes
them ready for testing.

• test-compile: This phase compiles the source code for tests.
• process-test-classes: This phase can be used to carry out any bytecode

enhancements after the test-compile phase.
• test: This phase executes tests using the appropriate unit test framework.
• prepare-package: This phase is useful in organizing the artifacts to be

packaged.
• package: This phase packs the artifacts into a distributable format, for

example, JAR or WAR.
• pre-integration-test: This phase performs the actions required (if any)

before running integration tests. This may be used to start any external
application servers and deploy the artifacts into different test environments.

• integration-test: This phase runs integration tests.
• post-integration-test: This phase can be used to perform any cleanup

tasks after running the integration tests.
• verify: This phase verifies the validity of the package. The criteria to check

the validity needs to be defined by the respective plugins.
• install: This phase installs the final artifact in the local repository.
• deploy: This phase deploys the final artifact to a remote repository.

Chapter 5

[97]

The packaging type of a given Maven project is defined under
the <packaging> element in the pom.xml file. If the element
is omitted, then Maven assumes it as a jar packaging.

The following figure shows all the phases defined under the Maven default
lifecycle and their order of execution:

More details about Maven lifecycles can be found at
http://maven.apache.org/ref/3.3.3/maven-
core/lifecycles.html.

Let's take a look at a concrete example. Run the following command against a Maven
project having the jar packaging:

$ mvn help:describe -Dcmd=deploy

http://maven.apache.org/ref/3.3.3/maven-core/lifecycles.html
http://maven.apache.org/ref/3.3.3/maven-core/lifecycles.html

Build Lifecycles

[98]

If you do not have such a project, you can download
a sample Maven project from https://svn.wso2.
org/repos/wso2/people/prabath/maven-mini/
chapter05/jose/.

Here, we are using the Maven help plugin to find more details about the deploy
phase corresponding to the jar packaging, and it will produce the following output:

It is a part of the lifecycle for the POM packaging 'jar'. This lifecycle
includes the following phases:

* validate: Not defined

* initialize: Not defined

* generate-sources: Not defined

* process-sources: Not defined

* generate-resources: Not defined

* process-resources: org.apache.maven.plugins:maven-resources-
 plugin:2.6:resources

* compile: org.apache.maven.plugins:maven-compiler-
 plugin:2.5.1:compile

* process-classes: Not defined

* generate-test-sources: Not defined

* process-test-sources: Not defined

* generate-test-resources: Not defined

* process-test-resources: org.apache.maven.plugins:maven-
 resources-plugin:2.6:testResources

* test-compile: org.apache.maven.plugins:maven-compiler-
 plugin:2.5.1:testCompile

* process-test-classes: Not defined

* test: org.apache.maven.plugins:maven-surefire-plugin:2.12.4:test

* prepare-package: Not defined

* package: org.apache.maven.plugins:maven-jar-plugin:2.4:jar

* pre-integration-test: Not defined

* integration-test: Not defined

* post-integration-test: Not defined

* verify: Not defined

* install: org.apache.maven.plugins:maven-install-
 plugin:2.4:install

* deploy: org.apache.maven.plugins:maven-deploy-plugin:2.7:deploy

https://svn.wso2.org/repos/wso2/people/prabath/maven-mini/chapter05/jose/
https://svn.wso2.org/repos/wso2/people/prabath/maven-mini/chapter05/jose/
https://svn.wso2.org/repos/wso2/people/prabath/maven-mini/chapter05/jose/

Chapter 5

[99]

The output lists out all the Maven plugins registered against different phases of
the default lifecycle for the jar packaging. The jar goal of maven-jar-plugin is
registered against the package phase, while the install goal of maven-install-
plugin is registered in the install phase.

Let's run the previous command against a POM file having the war packaging. It
produces the following output:

It is a part of the lifecycle for the POM packaging 'war'. This life
includes the following phases:

* validate: Not defined

* initialize: Not defined

* generate-sources: Not defined

* process-sources: Not defined

* generate-resources: Not defined

* process-resources: org.apache.maven.plugins:maven-resources-
 plugin:2.6:resources

* compile: org.apache.maven.plugins:maven-compiler-
 plugin:2.5.1:compile

* process-classes: Not defined

* generate-test-sources: Not defined

* process-test-sources: Not defined

* generate-test-resources: Not defined

* process-test-resources: org.apache.maven.plugins:maven-resources-
 plugin:2.6:testResources

* test-compile: org.apache.maven.plugins:maven-compiler-
 plugin:2.5.1:testCompile

* process-test-classes: Not defined

* test: org.apache.maven.plugins:maven-surefire-plugin:2.12.4:test

* prepare-package: Not defined

* package: org.apache.maven.plugins:maven-war-plugin:2.2:war

* pre-integration-test: Not defined

* integration-test: Not defined

* post-integration-test: Not defined

* verify: Not defined

* install: org.apache.maven.plugins:maven-install-plugin:2.4:install

* deploy: org.apache.maven.plugins:maven-deploy-plugin:2.7:deploy

Now, if you look at the package phase, you will notice that we have a different
plugin goal: the war goal of maven-war-plugin.

Build Lifecycles

[100]

Similar to the jar and war packaging, each of the other packaging type defines its
own binding for the default lifecycle.

The site lifecycle
The site lifecycle is defined with four phases: pre-site, site, post-site, and
site-deploy. The site lifecycle has no value without the Maven site plugin. The
site plugin is used to generate static HTML content for a project. The generated
HTML content will also include appropriate reports corresponding to the project.
The site plugin defines eight goals, and two of them are directly associated with the
phases in the site lifecycle.

Let's run the following command against a POM file to describe the site goal:

$ mvn help:describe -Dcmd=site

As shown in the following output, the site goal of the site plugin is associated
with the site phase, while the deploy goal of the site plugin is associated with the
site-deploy phase:

[INFO] 'site' is a lifecycle with the following phases:

* pre-site: Not defined

* site: org.apache.maven.plugins:maven-site-plugin:3.3:site

* post-site: Not defined

* site-deploy: org.apache.maven.plugins:maven-site-plugin:3.3:deploy

The following figure shows the relationship between the Maven site plugin goals
and the site lifecycle phases:

Chapter 5

[101]

Lifecycle bindings
Under the discussion of the default lifecycle, we briefly touched upon the concept
of lifecycle bindings. The default lifecycle is defined without any associated
lifecycle bindings, while both the clean and site lifecycles are defined with
bindings. The standard Maven lifecycles and their associated bindings are defined
under the file META-INF/plex/components.xml of MAVEN_HOME/lib/maven-core-
3.3.3.jar.

Here is the configuration for the default lifecycle without any associated
plugin bindings:

<component>
 <role>org.apache.maven.lifecycle.Lifecycle</role>
 <implementation>
 org.apache.maven.lifecycle.Lifecycle
 </implementation>
 <role-hint>default</role-hint>
 <configuration>
 <id>default</id>
 <phases>
 <phase>validate</phase>
 <phase>initialize</phase>
 <phase>generate-sources</phase>
 <phase>process-sources</phase>
 <phase>generate-resources</phase>
 <phase>process-resources</phase>
 <phase>compile</phase>
 <phase>process-classes</phase>
 <phase>generate-test-sources</phase>
 <phase>process-test-sources</phase>
 <phase>generate-test-resources</phase>
 <phase>process-test-resources</phase>
 <phase>test-compile</phase>
 <phase>process-test-classes</phase>
 <phase>test</phase>
 <phase>prepare-package</phase>
 <phase>package</phase>
 <phase>pre-integration-test</phase>
 <phase>integration-test</phase>
 <phase>post-integration-test</phase>
 <phase>verify</phase>
 <phase>install</phase>
 <phase>deploy</phase>
 </phases>
 </configuration>
</component>

Build Lifecycles

[102]

The components.xml file, which is also known as the component descriptor, describes
the properties required by Maven to manage the lifecycle of a Maven project. The role
element specifies the Java interface exposed by this lifecycle component and defines
the type of the component. All the lifecycle components must have org.apache.
maven.lifecycle.Lifecycle as the role. The implementation tag specifies the
concrete implementation of the interface. The identity of a component is defined by the
combination of the role and the role-hint elements. The role-hint element is not a
mandatory element; however, if we have multiple elements of the same type, then we
must define a role-hint element. Corresponding to Maven lifecycles, the name of the
lifecycle is set as the value of the role-hint element.

Maven uses components.xml to define more other
components than Maven lifecycles. Based on the type of the
component, the value of the role element is set.

The clean lifecycle is defined with an associated plugin binding to the clean goal of
maven-clean-plugin. The plugin binding is defined under the element default-
phases. The configuration is as follows:

<component>
 <role>org.apache.maven.lifecycle.Lifecycle</role>
 <implementation>
 org.apache.maven.lifecycle.Lifecycle
 </implementation>
 <role-hint>clean</role-hint>
 <configuration>
 <id>clean</id>
 <phases>
 <phase>pre-clean</phase>
 <phase>clean</phase>
 <phase>post-clean</phase>
 </phases>
 <default-phases>
 <clean>
 org.apache.maven.plugins:maven-clean-plugin:2.4.1:clean
 </clean>
 </default-phases>
 </configuration>
</component>

Chapter 5

[103]

The site lifecycle is defined with associated plugin bindings to the site and site-
deploy goals of maven-site-plugin. The plugin bindings are defined under the
default-phases element, with the following configuration:

<component>
 <role>org.apache.maven.lifecycle.Lifecycle</role>
 <implementation>
 org.apache.maven.lifecycle.Lifecycle
 </implementation>
 <role-hint>site</role-hint>
 <configuration>
 <id>site</id>
 <phases>
 <phase>pre-site</phase>
 <phase>site</phase>
 <phase>post-site</phase>
 <phase>site-deploy</phase>
 </phases>
 <default-phases>
 <site>
 org.apache.maven.plugins:maven-site-plugin:2.0.1:site
 </site>
 <site-deploy>
 org.apache.maven.plugins:maven-site-plugin:2.0.1:deploy
 </site-deploy>
 </default-phases>
 </configuration>
</component>

Finally, let's take a look at how the jar plugin binding for the default lifecycle is
defined. The following component element defines a plugin binding to an existing
lifecycle. The associated lifecycle is defined under the configuration/lifecycles/
lifecycle/id element:

<component>
 <role>
 org.apache.maven.lifecycle.mapping.LifecycleMapping
 </role>
 <role-hint>jar</role-hint>
 <implementation>org.apache.maven.lifecycle.mapping.
DefaultLifecycleMapping
 </implementation>
 <configuration>

Build Lifecycles

[104]

 <lifecycles>
 <lifecycle>
 <id>default</id>
 <phases>
 <process-resources>
 org.apache.maven.plugins:maven-resources-
plugin:2.4.3:resources
 </process-resources>
 <compile>
 org.apache.maven.plugins:maven-compiler-
plugin:2.3.2:compile
 </compile>
 <process-test-resources>
 org.apache.maven.plugins:maven-resources-
plugin:2.4.3:testResources
 </process-test-resources>
 <test-compile>
 org.apache.maven.plugins:maven-compiler-
plugin:2.3.2:testCompile
 </test-compile>
 <test>
 org.apache.maven.plugins:maven-surefire-plugin:2.5:test
 </test>
 <package>
 org.apache.maven.plugins:maven-jar-plugin:2.3.1:jar
 </package>
 <install>
 org.apache.maven.plugins:maven-install-
plugin:2.3.1:install
 </install>
 <deploy>
 org.apache.maven.plugins:maven-deploy-plugin:2.5:deploy
 </deploy>
 </phases>
 </lifecycle>
 </lifecycles>
 </configuration>
</component>

Chapter 5

[105]

Lifecycle extensions
The lifecycle extensions in Maven allow you to customize the standard build behavior.
Let's take a look at the org.apache.maven.AbstractMavenLifecycleParticipant
class. A custom lifecycle extension should extend from the
AbstractMavenLifecycleParticipant class, which provides the following three
methods that you can override:

• afterProjectsRead(MavenSession session): This method is invoked
after all the Maven project instances have been created. There will be one
project instance for each POM file. In a large-scale build system, you have
one parent POM and it points to multiple child POM files.

• afterSessionEnd(MavenSession session): This method is invoked after
all Maven projects are built.

• afterSessionStart(MavenSession session): This method is invoked
after the MavenSession instance is created.

Let's try out the following example:

package com.packt.lifecycle.ext;

import org.apache.maven.AbstractMavenLifecycleParticipant;
import org.apache.maven.MavenExecutionException;
import org.apache.maven.execution.MavenSession;
import org.codehaus.plexus.component.annotations.Component;

@Component(role = AbstractMavenLifecycleParticipant.class, hint
 ="packt")
public class PACKTLifeCycleExtension extends
 AbstractMavenLifecycleParticipant {

 @Override
 public void afterProjectsRead(MavenSession session) {

 System.out.println("All Maven project instances are created.");
 System.out.println("Offline building: " + session.isOffline());
 }

 @Override
 public void afterSessionEnd(MavenSession session)
 throws MavenExecutionException {
 System.out.println("All Maven projects are built.");
 }
}

Build Lifecycles

[106]

The previous code can be built with the following application POM file:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>com.packt.lifecycle.ext</artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>

 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-compat</artifactId>
 <version>3.2.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-core</artifactId>
 <version>3.2.1</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.plexus</groupId>
 <artifactId>plexus-component-metadata</artifactId>
 <version>1.5.5</version>
 <executions>
 <execution>
 <goals>
 <goal>generate-metadata</goal>
 <goal>generate-test-metadata</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Here, in the POM file, we use the plexus-component-metadata plugin to generate
the Plexus descriptor from the source tags and class annotations.

Chapter 5

[107]

Once the extension project is built successfully with mvn clean install, we need to
incorporate the extension to other Maven builds. You can do it in two ways; one is by
adding it to the project POM as an extension, as shown in the following code:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>
 com.packt.lifecycle.ext.sample.project
 </artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>
 <name>Custom Lifecycle Extension Project</name>

 <build>
 <extensions>
 <extension>
 <groupId>com.packt</groupId>
 <artifactId>com.packt.lifecycle.ext</artifactId>
 <version>1.0.0</version>
 </extension>
 </extensions>
 </build>
</project>

Now, you can build the sample project with mvn clean install. It will produce the
following output:

[INFO] Scanning for projects...

All Maven project instances are created.

Offline building: false

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1.328 s

[INFO] Finished at: 2014-07-29T11:29:52+05:30

[INFO] Final Memory: 6M/81M

[INFO] --

All Maven projects are built.

Build Lifecycles

[108]

If you want to execute this extension for all your Maven projects without changing
each and every POM file, then you need to add the lifecycle extension JAR file to
MAVEN_HOME/lib/ext.

The complete source code corresponding to the lifecycle
extension project can be downloaded from https://svn.
wso2.org/repos/wso2/people/prabath/maven-
mini/chapter05/.

Summary
In this chapter, we focused on Maven lifecycles and explained how the three
standard lifecycles work and how we can customize them. Later in the chapter, we
discussed how to develop our own lifecycle extensions.

In the next chapter, we will discuss how to build Maven assemblies.

https://svn.wso2.org/repos/wso2/people/prabath/maven-mini/chapter05/
https://svn.wso2.org/repos/wso2/people/prabath/maven-mini/chapter05/
https://svn.wso2.org/repos/wso2/people/prabath/maven-mini/chapter05/

[109]

Maven Assemblies
Maven provides an extensible architecture via plugins and lifecycles. Archive types
such as .jar, .war, .ear, and many more are supported by plugins and associated
lifecycles. The JAR plugin creates an artifact with the .jar extension and the
relevant metadata, according to the JAR specification. The JAR file is, in fact, a ZIP
file with the optional META-INF directory. You can find more details about the JAR
specification from http://docs.oracle.com/javase/7/docs/technotes/guides/
jar/jar.html.

The JAR file aggregates a set of class files to build a single distribution unit. The WAR
file aggregates a set of JAR files, Java classes, JSPs, images, and many more resources
into a single distribution unit that can be deployed in a Java EE application server.
However, when you build a product, you may need to aggregate many JAR files from
different places, WAR files, README files, LICENSE files, and many more into a
single ZIP file. To build such an archive, we can use the Maven assembly plugin.

The following figure shows the possible contents of a Maven assembly:

http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html

Maven Assemblies

[110]

In this chapter, we will discuss the following topics:

• Maven assembly plugin
• Assembly descriptor
• Artifact/resource filters
• End-to-end example to build a custom distribution archive

The Maven assembly plugin produces a custom archive, which adheres to a
user-defined layout. This custom archive is also known as the Maven assembly. In
other words, a Maven assembly is a distribution unit, which is built according to a
custom layout.

The assembly plugin
Let's take a quick look at a real-world example, which uses the assembly plugin.

WSO2 Identity Server (WSO2 IS) is an open source identity and entitlement
management product distributed under the Apache 2.0 license as a ZIP file. The ZIP
distribution is assembled using the Maven assembly plugin. Let's take a look at the root
POM file of the distribution module of WSO2 IS, which builds the Identity Server
distribution, available at https://svn.wso2.org/repos/wso2/carbon/platform/
branches/turing/products/is/5.0.0/modules/distribution/pom.xml.

First, pay attention to the plugins section of the POM file. Here, you can see
that maven-assembly-plugin is associated with the project. Inside the plugin
configuration, you can define any number of executions with the execution element,
which is a child element of the executions element, which has the following
configuration:

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <executions>
 <execution>
 <id>copy_components</id>
 <phase>test</phase>
 <goals>
 <goal>attached</goal>
 </goals>
 <configuration>
 <filters>
 <filter>
 ${basedir}/src/assembly/filter.properties

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/is/5.0.0/modules/distribution/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/is/5.0.0/modules/distribution/pom.xml

Chapter 6

[111]

 </filter>
 </filters>
 <descriptors>
 <descriptor>src/assembly/dist.xml</descriptor>
 </descriptors>
 </configuration>
 </execution>
 <execution>
 <id>dist</id>
 <phase>package</phase>
 <goals>
 <goal>attached</goal>
 </goals>
 <configuration>
 <filters>
 <filter>
 ${basedir}/src/assembly/filter.properties
 </filter>
 </filters>
 <descriptors>
 <descriptor>src/assembly/bin.xml</descriptor>
 <descriptor>src/assembly/src.xml</descriptor>
 <descriptor>src/assembly/docs.xml</descriptor>
 </descriptors>
 </configuration>
 </execution>
 </executions>
 </plugin>

If you look at the first execution element, it associates the attached goal of the
assembly plugin with the test phase of the default lifecycle. In the same manner,
the second execution element associates the attached goal with the package phase
of the default lifecycle.

The Maven default lifecycle includes: validate, initialize,
generate-sources, process-sources, generate-resources,
process-resources, compile, process-classes, generate-
test-sources, process-test-sources, generate-test-
resources, process-test-resources, test-compile,
process-test-classes, test, prepare-package, package,
pre-integration-test, integration-test, post-
integration-test, verify, install, deploy.

Maven Assemblies

[112]

Everything inside the configuration element is plugin specific. In this case, the Maven
assembly plugin knows how to process the filters and descriptors elements.

In this particular example, only the attached goal of the assembly plugin is used.
The assembly plugin introduces eight goals; however, six of them are deprecated,
including the attached goal. It is not recommended to use any of the deprecated
goals. Later, we'll see how to use the single goal of the assembly plugin instead of
the deprecated attached goal. The following lists out the six deprecated goals of the
assembly plugin. In case you are using any of them, you should migrate your project
to use the single goal, except for the fourth one, the unpack goal. For that, you need
to use the unpack goal of the Maven dependency plugin. The following lists out the
six deprecated goals of the assembly plugin:

• assembly:assembly

• assembly:attached

• assembly:directory

• assembly:unpack

• assembly:directory-single

• assembly:directory-inline

More details about the Maven assembly plugin and its goals
can be found at http://maven.apache.org/plugins/
maven-assembly-plugin/plugin-info.html.

The assembly descriptor
The assembly descriptor is an XML-based configuration, which defines how to build
an assembly and how its content should be structured.

If we go back to our previous example, the attached goal of the assembly plugin
creates a binary distribution according to the assembly descriptor, both in the test
and the package phases of the default Maven lifecycle. The assembly descriptors
for each phase can be specified under the descriptors element. As in the case of
this particular example, there are multiple descriptor elements defined under
the descriptors parent element. For the package phase, it has three assembly
descriptors, as shown in the following configuration:

<descriptors>
 <descriptor>src/assembly/bin.xml</descriptor>
 <descriptor>src/assembly/src.xml</descriptor>
 <descriptor>src/assembly/docs.xml</descriptor>
</descriptors>

http://maven.apache.org/plugins/maven-assembly-plugin/plugin-info.html
http://maven.apache.org/plugins/maven-assembly-plugin/plugin-info.html

Chapter 6

[113]

Each descriptor element instructs the assembly plugin from where to load
the descriptor, and each descriptor file will be executed sequentially in the
defined order.

Let's take a look at the src/assembly/bin.xml file, which is shown here:

<assembly>
 <formats>
 <format>zip</format>
 </formats>

The file path in the descriptor element is given relative to the root
POM file under the distribution module. You can find the
complete bin.xml file at https://svn.wso2.org/repos/
wso2/carbon/platform/branches/turing/products/
is/5.0.0/modules/distribution/src/assembly/bin.xml.

The value of the format element specifies the ultimate type of the artifact to be
produced. It can be zip, tar, tar.gz, tar.bz2, jar, dir, or war. You can use the
same assembly descriptor to create multiple formats. In that case, you need to
include multiple format elements under the formats parent element.

Even though you can specify the format of the assembly in the
assembly descriptor, it is recommended to do it via the plugin
configuration. In the plugin configuration, you can define different
formats for your assembly, as shown in the following block of code.
The benefit here is that you can have multiple Maven profiles to build
different archive types. We will discuss Maven profiles in Chapter 7,
Best Practices:

<plugin>
 <executions>
 <execution>
 <configuration>
 <formats>
 <format>zip</format>
 </formats>
 </configuration>
 </execution>
 </executions>
</plugin>

 <includeBaseDirectory>false</includeBaseDirectory>

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/is/5.0.0/modules/distribution/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/is/5.0.0/modules/distribution/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/is/5.0.0/modules/distribution/pom.xml

Maven Assemblies

[114]

When the value of the includeBaseDirectory element is set to false, the artifact
will be created with no base directory. If this is set to true, which is the default
value, the artifact will be created under the base directory. You can specify a value
for the base directory under the baseDirectory element. In most cases, the value
of includeBaseDirectory is set to false so that the final distribution unit directly
packs all the artifacts right under it, without having another root directory:

 <fileSets>
 <fileSet>
 <directory>target/wso2carbon-core-4.2.0</directory>
 <outputDirectory>wso2is-${pom.version}</outputDirectory>
 <excludes>
 <exclude>**/*.sh</exclude>

Each fileSet element under the fileSets parent element specifies the set of files to
be assembled to build the final archive. The first fileSet element instructs to copy
all the content from directory (which is target/wso2carbon-core-4.2.0) to the
outputDirectory, excluding all the files defined under each exclude element. If
no exclusions are defined, then all the content inside the directory will be copied
into the outputDirectory. In this particular case, the value of ${pom.version}
will be replaced by the version of the artifact, defined in the pom.xml file under the
distribution module.

The first exclude element instructs not to copy any file having the extension .sh from
anywhere inside target/wso2carbon-core-4.2.0 to the outputDirectory element:

 <exclude>**/wso2server.bat</exclude>
 <exclude>**/axis2services/sample01.aar</exclude>

The second exclude element instructs not to copy any file having the name
wso2server.bat from anywhere inside target/wso2carbon-core-4.2.0 to
outputDirectory.

The third exclude element instructs not to copy the file axis2services /sample01.
aar from anywhere inside target/wso2carbon-core-4.2.0 to outputDirectory:

 <exclude>**/axis2services/Echo.aar</exclude>
 <exclude>**/axis2services/Version.aar</exclude>
 <exclude>**/pom.xml</exclude>
 <exclude>**/version.txt</exclude>
 <exclude>**/README*</exclude>
 <exclude>**/carbon.xml</exclude>
 <exclude>**/axis2/*</exclude>
 <exclude>**/LICENSE.txt</exclude>
 <exclude>**/INSTALL.txt</exclude>

Chapter 6

[115]

 <exclude>**/release-notes.html</exclude>
 <exclude>**/claim-config.xml</exclude>
 <exclude>**/log4j.properties</exclude>
 <exclude>**/registry.xml</exclude>
 </excludes>
 </fileSet>

 <fileSet>
 <directory>
 ../p2-profile-gen/target/wso2carbon-core-4.2.0/repository/conf/
identity
 </directory>
 <outputDirectory>wso2is-${pom.version}/repository/conf/identity
 </outputDirectory>
 <includes>
 <include>**/*.xml</include>
 </includes>

The include element instructs to copy only the files having the .xml extension
from anywhere inside the ../p2-profile-gen/target/wso2carbon-core-4.2.0/
repository/conf/identity directory to outputDirectory. If no include element
is defined, everything will be included:

 </fileSet>
 <fileSet>
 <directory>
 ../p2-profile-gen/target/wso2carbon-core-4.2.0/repository/
resources/security/ldif
 </directory>

 <outputDirectory>wso2is-${pom.version}/repository/resources/
security/ldif
 </outputDirectory>
 <includes>
 <include>identityPerson.ldif</include>
 <include>scimPerson.ldif</include>
 <include>wso2Person.ldif</include>
 </includes>

The three include elements mentioned in the preceding code instruct to copy
only the files having specific names from anywhere inside the ../p2-profile-
gen/target/wso2carbon-core/4.2.0/repository/resources/security/ldif
directory to the outputDirectory:

 </fileSet>

 <fileSet>

Maven Assemblies

[116]

 <directory>
 ../p2-profile-gen/target/wso2carbon-core-4.2.0/repository/
deployment/server/webapps
 </directory>
 <outputDirectory>${pom.artifactId}-${pom.version}/repository/
deployment/server/webapps
 </outputDirectory>
 <includes>
 <include>oauth2.war</include>
 </includes>

The include element instructs to copy only the WAR file with the name oauth2.
war from anywhere inside the ../p2-profile-gen/target/wso2carbon-
core/4.2.0/repository/resources/deployment/server/webappas directory to
the outputDirectory:

 </fileSet>

 <fileSet>
 <directory>
 ../p2-profile-gen/target/wso2carbon-core-4.2.0/repository/
deployment/server/webapps
 </directory>
 <outputDirectory>${pom.artifactId}-${pom.version}/repository/
deployment/server/webapps
 </outputDirectory>
 <includes>
 <include>authenticationendpoint.war</include>
 </includes>
 </fileSet>

 <fileSet>
 <directory>
 ../styles/service/src/main/resources/web/styles/css
 </directory>
 <outputDirectory>${pom.artifactId}-${pom.version}/resources/
allthemes/Default/admin
 </outputDirectory>
 <includes>
 <include>**/**.css</include>
 </includes>

Chapter 6

[117]

The include element instructs to copy any file with the extension .css from
anywhere inside the ../styles/service/src/main/resources/web/styles/css
directory to the outputDirectory:

 </fileSet>

 <fileSet>
 <directory>
 ../p2-profile-gen/target/WSO2-CARBON-PATCH-4.2.0-0006
 </directory>
 <outputDirectory>
 wso2is-${pom.version}/repository/components/patches/
 </outputDirectory>
 <includes>
 <include>**/patch0006/*.*</include>
 </includes>

The include element instructs to copy all the files inside the patch006 directory
from anywhere inside the ../p2-profile-gen/target/WSO2-CARBON-
PATCH-4.2.0-0006 directory to outputDirectory:

 </fileSet>
 </fileSets>

 <files>

The files element is very much similar to the fileSets element in terms of the key
functionality. Both can be used to control the contents of the assembly.

The files/file element should be used when you are fully
aware of the exact source file location while the fileSets/
fileSet element is much flexible in picking files from a
source based on a defined pattern.

The fileMode element in the following snippet defines a set of permissions to be
attached to the copied file. The permissions are defined as per the four digit octal
notation. You can read more about the four digit octal notation from http://
en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_
additional_permissions:

 <file>
 <source>../p2-profile-gen/target/WSO2-CARBON-PATCH-${carbon.
kernel.version}-0006/lib/org.wso2.ciphertool-1.0.0-wso2v2.jar
 </source>
 <outputDirectory>

http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_additional_permissions
http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_additional_permissions
http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_additional_permissions

Maven Assemblies

[118]

 ${pom.artifactId}-${pom.version}/lib/
 </outputDirectory>
 <filtered>true</filtered>
 <fileMode>644</fileMode>
 </file>
 <files>
</assembly>

There are three descriptor elements defined under the assembly plugin for the
package phase. The one we discussed earlier will create the binary distribution,
while the src/assembly/src.xml and src/assembly/docs.xml files will create the
source distribution and the documentation distribution respectively.

Let's also look at the assembly descriptor defined for the test phase:

<descriptors>
 <descriptor>src/assembly/dist.xml</descriptor>
</descriptors>

This is quite short and only includes the configuration required to build the initial
distribution of the WSO2 Identity Server. Even though this project does this at the
test phase, it seems like it has no value. In this case, it seems like maven-antrun-
plugin, which is also associated with the package phase, but prior to the definition
of the assembly plugin, needs the ZIP file distribution. Ideally, you should not have
the assembly plugin run at the test phase unless there is a very strong reason to do
so. You may need the distribution ready to run the integration tests; however, the
integration tests should be executed in the integration-test phase, which comes
after the package phase. In most cases, the assembly plugin is associated with the
package phase of the Maven default lifecycle.

The following code shows the assembly descriptor defined in src/assembly/dist.
xml for the test phase:

<assembly>
 <formats>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <!-- Copying p2 profile and osgi bundles-->
 <fileSet>
 <directory>
 ../p2-profile-gen/target/wso2carbon-core-
 4.2.0/repository/components
 </directory>

Chapter 6

[119]

 <outputDirectory>wso2is-${pom.version}/repository/components
 </outputDirectory>
 <excludes>
 <exclude>**/eclipse.ini</exclude>
 <exclude>**/*.lock</exclude>
 <exclude>**/.data</exclude>
 <exclude>**/.settings</exclude>
 </excludes>
 </fileSet>
 </fileSets>
 <dependencySets>
 <dependencySet>
 <outputDirectory>
 wso2is-${pom.version}/repository/deployment/client/modules
 </outputDirectory>
 <includes>
 <include>org.apache.rampart:rampart:mar</include>
 </includes>
 </dependencySet>
 </dependencySets>
</assembly>

This configuration introduces a new element that we have not seen before, that is,
dependencySet. The dependencySet element lets you include or exclude project
dependencies to/from the final assembly that we are building. In the previous
example, it adds the rampart module into the outputDirectory element. The value
of the include element should be in the format of groupdId:artifactId:type[
:classifier][:version]. Maven will first look for this artifact with the defined
coordinates in its local Maven repository, and if found, it will copy it to the location
defined under the outputDirectory element.

Unlike the fileSet and file elements, the dependencySet element does not
define a concrete path to pick and copy the dependency from. Maven finds the
artifacts via the defined coordinates. If you want to include a dependency just by
its groupId element and the artifactId coordinates, then you can follow the
pattern groupdId:artifactId. The particular artifact should be declared under the
dependencies section of the POM file, which has the assembly plugin defined. You
can find the following dependency definition for the rampart module in the POM
file under the distribution module. If two versions of the same dependency are
being defined in the same POM file (which is rather unlikely), then the last in the
order will be copied:

<dependency>
 <groupId>org.apache.rampart</groupId>
 <artifactId>rampart</artifactId>

Maven Assemblies

[120]

 <type>mar</type>
 <version>1.6.1-wso2v12</version>
</dependency>

You can also include a dependency by its groupId, artifactId, and type, as shown
in the following configuration. Then, you can follow the pattern groupdId:artifact
Id:type[:classifier]. This is the exact pattern followed in the previous example:

<includes>
 <include>org.apache.rampart:rampart:mar</include>
</includes>

If you want to be more precise, you can also include the version into the pattern. In
this case, it will look like this:

<includes>
 <include>
 org.apache.rampart:rampart:mar:1.6.1-wso2v12
 </include>
</includes>

Most of the time we talk about four Maven coordinates; however,
to be precise, there are five. A Maven artifact can be uniquely
identified by these five coordinates: groupdId:artifactId:
type[:classifier]:version. We have already discussed
the four main coordinates, but not the classifier. This is very
rarely used; it can be quite useful in a scenario where we build
an artifact out of the same POM file but with multiple target
environments. We will be talking about classifiers in detail
in Chapter 7, Best Practices.

The previous example only covered a very small subset of the assembly descriptor.
You can find all available configuration options at http://maven.apache.org/
plugins/maven-assembly-plugin/assembly.html, which is quite an
exhaustive list.

It is a best practice or a convention to include all the assembly
descriptor files inside a directory called assembly, though
it is not mandatory.

Let's take a look at another real-world example with Apache Axis2. Axis2 is an
open source project released under the Apache 2.0 license. Axis2 has three types of
distributions: a binary distribution as a ZIP file, a WAR file distribution, and a source
distribution as a ZIP file. The binary ZIP distribution of Axis2 can be run on its own,
while the WAR distribution must be deployed in a Java EE application server.

http://maven.apache.org/plugins/maven-assembly-plugin/assembly.html
http://maven.apache.org/plugins/maven-assembly-plugin/assembly.html

Chapter 6

[121]

All three Axis2 distributions are created from the POM file inside the distribution
module, which can be found at http://svn.apache.org/repos/asf/axis/axis2/
java/core/trunk/modules/distribution/pom.xml.

This POM file associates the single goal of the Maven assembly plugin with the
project, which initiates the process of creating the final distribution artifacts. The
assembly configuration points to three different assembly descriptors—one for the ZIP
distribution, the second for the WAR distribution, and the third for the source code
distribution. The following code snippet shows the assembly plugin configuration:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <executions>
 <execution>
 <id>distribution-package</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <finalName>axis2-${project.version}</finalName>
 <descriptors>
 <descriptor>
 src/main/assembly/war-assembly.xml
 </descriptor>
 <descriptor>
 src/main/assembly/src-assembly.xml
 </descriptor>
 <descriptor>
 src/main/assembly/bin-assembly.xml
 </descriptor>
 </descriptors>
 </configuration>
 </execution>
 </executions>
</plugin>

Let's take a look at the bin-assembly.xml file—the assembly descriptor, which
builds the ZIP distribution:

<assembly>
 <id>bin</id>

http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/distribution/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/distribution/pom.xml

Maven Assemblies

[122]

 <includeBaseDirectory>true</includeBaseDirectory>
 <baseDirectory>axis2-${version}</baseDirectory>
 <formats>
 <!--<format>tar.gz</format>
 //uncomment,if tar.gz archive needed-->
 <format>zip</format>
 </formats>

This is exactly what we discussed earlier, and exactly what we wanted to avoid due
to the same reason as in the comment, in the preceding code snippet. If we want to
build a tar.gz distribution, then we need to modify the file. Instead of doing that,
we can move the format configuration element out of the assembly descriptor to
the plugin configuration defined in the pom.xml file. Then, you can define multiple
profiles and configure the archive type based on the profile:

 <fileSets>
 ………………..
 </fileSets>

 <dependencySets>
 <dependencySet>
 <useProjectArtifact>false</useProjectArtifact>

The useProjectArtifact configuration element instructs the plugin whether to
include the artifact produced in this project build into the dependencySet element.
By setting the value to false, we avoid it:

 <outputDirectory>lib</outputDirectory>
 <includes>
 <include>*:*:jar</include>
 </includes>
 <excludes>
 <exclude>
 org.apache.geronimo.specs:geronimo-activation_1.1_spec:jar
 </exclude>
 </excludes>
 </dependencySet>
 <dependencySet>
 <useProjectArtifact>false</useProjectArtifact>
 <outputDirectory>lib/endorsed</outputDirectory>
 <includes>
 <include>javax.xml.bind:jaxb-api:jar</include>
 </includes>
 </dependencySet>
 <dependencySet>

Chapter 6

[123]

 <useProjectArtifact>false</useProjectArtifact>
 <includes>
 <include>org.apache.axis2:axis2-webapp</include>
 </includes>
 <unpack>true</unpack>

The includes and excludes configuration elements will ensure that all the
artifacts defined under the dependencies section of the distribution/pom.
xml file will be included in the assembly, except the artifacts defined under the
excludes configuration element. If you do not have any include elements, all the
dependencies defined in the POM file will be included in the assembly, except what
is defined under the excludes section.

Once the unpack configuration element is set to true, all the dependencies
defined under the include elements will be unpacked into outputDirectory.
The plugin is capable of unpacking jar, zip, tar.gz, and tar.bz archives. The
unpackOptions configuration element, shown in the following configuration, can
be used to filter out the content of the dependencies getting unpacked. According
to the following configuration, only the files defined under the include elements
under the unpackOptions element will be included; the rest will be ignored and
won't be included in the assembly. In this particular case, axis2-webapp is a WAR
file (which is defined under the include element of the previous configuration)
and the distributions/pom.xml file has a dependency to it. This web app will be
exploded (extracted), and then all the files inside the WEB-INF/classes and axis2-
web directories will be copied into the webapp directory of the ZIP distribution, along
with the WEB-INF/web.xml file:

 <outputDirectory>webapp</outputDirectory>
 <unpackOptions>
 <includes>
 <include>WEB-INF/classes/**/*</include>
 <include>WEB-INF/web.xml</include>
 <include>axis2-web/**/*</include>
 </includes>
 </unpackOptions>
 </dependencySet>
 </dependencySets>
</assembly>

Maven Assemblies

[124]

Now, let's take a look at war-assembly.xml—the assembly descriptor, which
builds the WAR distribution. There is nothing new in this configuration, except
the outputFileNameMapping configuration element. Since the value of the
format element is set to zip, this assembly descriptor will produce an archive file
conforming to the ZIP file specification. The value of the outputFileNameMapping
configuration element gets applied to all the dependencies. The default value is
parameterized: ${artifactId}-${version}${classifier?}.${extension}. In
this case, it's hardcoded to axis2.war, so the axis2-webapp artifact will be copied to
the location defined under the outputDirectory element as axis2.war. Since there
is no value defined for the outputDirectory element, the files will be copied to the
root location, as shown here:

<assembly>
 <id>war</id>
 <includeBaseDirectory>false</includeBaseDirectory>
 <formats>
 <format>zip</format>
 </formats>
 <dependencySets>
 <dependencySet>
 <useProjectArtifact>false</useProjectArtifact>
 <includes>
 <include>org.apache.axis2:axis2-webapp</include>
 </includes>
 <outputFileNameMapping>axis2.war</outputFileNameMapping>
 </dependencySet>
 </dependencySets>
 <fileSets>
 <fileSet>
 <directory>../..</directory>
 <outputDirectory></outputDirectory>
 <includes>
 <include>LICENSE.txt</include>
 <include>NOTICE.txt</include>
 <include>README.txt</include>
 <include>release-notes.html</include>
 </includes>
 <filtered>true</filtered>
 </fileSet>
 </fileSets>
</assembly>

Chapter 6

[125]

Artifact/resource filtering
We had a filters configuration, defined for the assembly plugin in the first
example with the WSO2 Identity Server. This instructs the assembly plugin to apply
the filter criteria defined in the provided filter or the set of filters for the files that are
being copied to the final archive file. If you want to apply a filter to a given file, then
you should set the value of the filtered element to true.

The following configuration shows how to define a filter:

<filters>
 <filter>${basedir}/src/assembly/filter.properties</filter>
</filters>

Let's take a look at the file ${basedir}/src/assembly/filter.properties. This
file defines a set of name/value pairs. The name is a special placeholder, which
should be enclosed between ${ and } in the file to be filtered, and it will be replaced
by the value during the filtering process:

product.name=WSO2 Identity Server
product.key=IS
product.version=5.0.0
hotdeployment=true
hotupdate=true
default.server.role=IdentityServer

Assembly help
As we discussed earlier, the assembly plugin currently only has two active goals:
single and help; all the others are deprecated. As we witnessed in the previous
example, the single goal is responsible for creating the archive with all sorts of
other configurations.

The following command shows how to execute the help goal of the assembly
plugin. This has to be executed from a directory with a POM file:

$ mvn assembly:help -Ddetail=true

If you see the following error when you run this command, you may not have the
latest version. In that case, update the plugin version to 2.4.1 or later:

[ERROR] Could not find goal 'help' in plugin
org.apache.maven.plugins:maven-assembly-plugin:2.2-beta-2 among
available goals assembly, attach-assembly-descriptor, attach-
component-descriptor, attached, directory-inline, directory,
directory-single, single, unpack -> [Help 1]

Maven Assemblies

[126]

A runnable standalone Maven project
Since we have covered a lot of ground-related information of the Maven assembly
plugin, let's see how to build a complete end-to-end runnable standalone project
with the assembly plugin. You can find the complete sample at https://svn.wso2.
org/repos/wso2/people/prabath/maven-mini/chapter06. Proceed with the
following steps to create a runnable standalone Maven project:

1. First, create a directory structure, as shown here:
 |-pom.xml
 |-modules
 |- json-parser
 |- src/main/java/com/packt/json/JSONParser.java
 |- pom.xml
 |- distribution
 |- src/main/assembly/dist.xml
 |- pom.xml

2. The JSONParser.java file is a simple Java class, which reads a JSON file and
prints to the console, as shown here:
package com.packt.json;

import java.io.File;
import java.io.FileReader;
import org.json.simple.JSONObject;

public class JSONParser {

 public static void main(String[] args) {

 FileReader fileReader;
 JSONObject json;

 org.json.simple.parser.JSONParser parser;
 parser = new org.json.simple.parser.JSONParser();

 try {

 if (args == null || args.length == 0 || args[0] ==
 null || !new File(args[0]).exists())
 {
 System.out.println("No valid JSON file provided");
 } else {
 fileReader = new FileReader(new File(args[0]));

https://svn.wso2.org/repos/wso2/people/prabath/maven-mini/chapter06
https://svn.wso2.org/repos/wso2/people/prabath/maven-mini/chapter06

Chapter 6

[127]

 json = (JSONObject) parser.parse(fileReader);

 if (json != null) {
 System.out.println(json.toJSONString());
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

3. Now, we can create a POM file under modules/json-parser to build our
JAR file, as follows:
<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>json-parser</artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>
 <name>PACKT JSON Parser</name>

 <dependencies>
 <dependency>
 <groupId>com.googlecode.json-simple
 </groupId>
 <artifactId>json-simple</artifactId>
 <version>1.1</version>
 </dependency>
 </dependencies>

</project>

4. Once we are done with the json-parser module, the next step is to create
the distribution module. The distribution module will have a POM file
and an assembly descriptor. Let's first create the POM file under modules/
distribution, which is shown here. This will associate two plugins with the
project: maven-assembly-plugin and maven-jar-plugin. Both the plugins
get executed in the package phase of the Maven default lifecycle. Since the
maven-assembly-plugin is defined prior to the maven-jar-plugin, it will
get executed first:
<project>
 <modelVersion>4.0.0</modelVersion>

Maven Assemblies

[128]

 <groupId>com.packt</groupId>
 <artifactId>json-parser-dist</artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>
 <name>PACKT JSON Parser Distribution</name>

 <dependencies>
<!—
Under the dependencies section we have to specify all the
dependent jars that must be assembled into the final artifact.
In this case we have two jar files. The first one is the external
dependency that we used to parse the JSON file and the second one
includes the class we wrote.
-->
 <dependency>
 <groupId>com.googlecode.json-simple</groupId>
 <artifactId>json-simple</artifactId>
 <version>1.1</version>
 </dependency>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>json-parser</artifactId>
 <version>1.0.0</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <executions>
 <execution>
 <id>distribution-package</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <finalName>json-parser</finalName>
 <descriptors>
 <descriptor>
 src/main/assembly/dist.xml
 </descriptor>
 </descriptors>

Chapter 6

[129]

 </configuration>
 </execution>
 </executions>
 </plugin>

<!—
Even though the maven-jar-plugin is inherited from the
super pom, here we have redefined it because we need to add some
extra configurations. Since we need to make our final archive
executable, we need to define the class to be executable in the
jar manifest. Here we have set com.packt.json.JSONParser as our
main class. Also – the classpath is set to the lib directory. If
you look at the assembly descriptor used in the assembly plugin,
you will notice that, the dependent jar files are copied into the
lib directory. The manifest configuration in the maven-jar-plugin
will result in the following manifest file (META-
INF/MANIFEST.MF).

Manifest-Version: 1.0
Archiver-Version: Plexus Archiver
Created-By: Apache Maven
Built-By: prabath
Build-Jdk: 1.6.0_65
Main-Class: com.packt.json.JSONParser
Class-Path: lib/json-simple-1.1.jar lib/json-parser-
 1.0.0.jar
-->

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.3.1</version>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 <classpathPrefix>lib/</classpathPrefix>
 <mainClass>com.packt.json.JSONParser
 </mainClass>
 </manifest>
 </archive>
 </configuration>
 </plugin>

 </plugins>
 </build>
</project>

Maven Assemblies

[130]

5. The following configuration shows the assembly descriptor (module/
distribution/src/main/assembly/dist.xml), corresponding to the
assembly plugin defined in the previous step:
<assembly>
 <id>bin</id>
 <formats>
 <format>zip</format>
 </formats>

 <dependencySets>
 <dependencySet>
 <useProjectArtifact>false</useProjectArtifact>
 <outputDirectory>lib</outputDirectory>
 <unpack>false</unpack>
 </dependencySet>
 </dependencySets>

 <fileSets>
 <fileSet>
 <directory>${project.build.directory}</directory>
 <outputDirectory></outputDirectory>
 <includes>
 <include>*.jar</include>
 </includes>
 </fileSet>
 </fileSets>
</assembly>

6. Now, we are done with the distribution module too. Next, we will
create the root POM file, which aggregates both the json-parser and
distribution modules, as follows:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>json-parser-aggregator</artifactId>
 <version>1.0.0</version>
 <packaging>pom</packaging>
 <name>PACKT JSON Parser Aggregator</name>
 <modules>
 <module>modules/json-parser</module>
 <module>modules/distribution</module>
 </modules>
</project>

Chapter 6

[131]

7. We are all set to build the project. From the root directory, type mvn clean
install. This will produce the json-parser-bin.zip archive inside the
modules/distribution/target directory. The output will be as follows:
[INFO] --

[INFO] Reactor Summary:

[INFO]

[INFO] PACKT JSON Parser............... SUCCESS [1.790 s]

[INFO] PACKT JSON Parser Distribution.. SUCCESS [0.986 s]

[INFO] PACKT JSON Parser Aggregator.... SUCCESS [0.014 s]

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

8. Go to modules/distribution/target and unzip json-parser-bin.zip.
9. To run the parser, type the following command, which will produce No

valid JSON file provided as the output:
$ java -jar json-parser/json-parser-dist-1.0.0.jar

10. Once again, run the parser with a valid JSON file. You need to pass the path
to the JSON file as an argument:
$ java -jar json-parser/json-parser-dist-1.0.0.jar
myjsonfile.json

The following is the output produced by the preceding command:

{

 "bookName" : "Mastering Maven", "publisher" : "PACKT"

}

Summary
In this chapter, we focused on the Maven assembly plugin. The assembly plugin
provides a way of building custom archive files, aggregating many other custom
configurations and resources. Most of the Java based products use the assembly
plugin to build the final distribution artifacts. These can be a binary distribution, a
source code distribution, or even a documentation distribution. This chapter covered
real-world examples on how to use the Maven assembly plugin in detail, and finally,
concluded with an end-to-end sample Maven project.

In the next chapter, we will discuss best practices in Maven.

[133]

Best Practices
In this book, so far, we discussed most of the key concepts related to Maven. In this
chapter, we will focus on best practices associated with all of these core concepts.
The following best practices constitute an essential ingredient in creating a successful
and productive build environment. The criteria listed here will help you to evaluate
the efficiency of your Maven project, mostly if you are dealing with a large-scale
multi-module project:

• The time taken by a developer to get started with a new project and add it to
the build system

• The effort required to upgrade a version of a dependency across all the
project modules

• The time taken to build the complete project with a fresh local
Maven repository

• The time taken to do a complete offline build
• The time taken to update the versions of Maven artifacts produced by the

project; for example, from 1.0.0-SNAPSHOT to 1.0.0
• The effort required for a completely new developer to understand what your

Maven build does
• The effort required to introduce a new Maven repository
• The time taken to execute unit tests and integration tests

The rest of the chapter talks about 25 industry-accepted best practices that would help
you to improve developer productivity and reduce any maintenance nightmares.

Best Practices

[134]

Dependency management
In the following example, you will notice that the dependency versions are added to
each and every dependency defined in the application POM file:

<dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 <version>1.2</version>
 </dependency>
</dependencies>

Imagine you have a set of application POM files in a multi-module project having the
same set of dependencies. If you have duplicated the artifact version with each and
every dependency, then to upgrade to the latest dependency you need to update all
the POM files, which can easily lead to a mess.

Not just that, if you have different versions of the same dependency used in different
modules of the same project, then it's going to be a debugging nightmare in the case
of an issue.

With dependencyManagement, we can overcome both these issues. If it's a
multi-module Maven project, you need to introduce dependencyManagement
in the parent POM, so it will be inherited by all the other child modules:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 <version>1.2</version>
 </dependency>
 </dependencies>
</dependencyManagement>

Chapter 7

[135]

Once you define dependencies under the dependencyManagement section, as shown
in the preceding code, you only need to refer a dependency from its groupId and
the artifactId elements. The version element is picked from the appropriate
dependencyManagement section:

<dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 </dependency>
</dependencies>

With this, if you want to upgrade or downgrade a dependency, you only need to
change the dependency version under the dependencyManagement section.

The same principle applies to plugins as well. If you have a set of plugins, which are
used across multiple modules, you should define them under the pluginManagement
section of the parent module. In this way, you can downgrade or upgrade plugin
versions seamlessly just by changing the pluginManagement section of the parent
POM, as shown in the following code:

<pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.4.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-site-plugin</artifactId>
 <version>2.0-beta-6</version>
 </plugin>
 <plugin>
 <artifactId>maven-source-plugin</artifactId>
 <version>2.0.4</version>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.13</version>
 </plugin>
 </plugins>
</pluginManagement>

Best Practices

[136]

Once you define the plugins in the plugin management section, as shown in
the preceding code, you only need to refer a plugin from its groupId (optional)
and artifactId elements. The version is picked from the appropriate
pluginManagement section:

<plugins>
 <plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <executions>……</executions>
 </plugin>
 <plugin>
 <artifactId>maven-site-plugin</artifactId>
 <executions>……</executions>
 </plugin>
 <plugin>
 <artifactId>maven-source-plugin</artifactId>
 <executions>……</executions>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <executions>……</executions>
 </plugin>
</plugins>

Maven plugins were discussed in detail in Chapter 4, Maven Plugins.

Defining a parent module
In most of the multi-module Maven projects, there are many things that are shared
across multiple modules. Dependency versions, plugin versions, properties, and
repositories are only some of them. It is a common (and a best) practice to create
a separate module called parent and define everything in common in its POM
file. The packaging type of this POM file is pom. The artifact generated by the pom
packaging type is itself a POM file.

The following are few examples of Maven parent modules:

• Apache Axis2 project: http://svn.apache.org/repos/asf/axis/axis2/
java/core/trunk/modules/parent/

• WSO2 Carbon project: https://svn.wso2.org/repos/wso2/carbon/
platform/trunk/parent/

http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/parent/
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/parent/
https://svn.wso2.org/repos/wso2/carbon/platform/trunk/parent/
https://svn.wso2.org/repos/wso2/carbon/platform/trunk/parent/

Chapter 7

[137]

Not all the projects follow this approach. Some just keep the parent POM file
under the root directory (not under the parent module). The following are a
couple of examples:

• Apache Synapse project: http://svn.apache.org/repos/asf/synapse/
trunk/java/pom.xml

• Apache HBase project: http://svn.apache.org/repos/asf/hbase/
trunk/pom.xml

Both the approaches deliver the same results, yet the first one is much preferred.
With the first approach, the parent POM file only defines the shared resources across
different Maven modules in the project while there is another POM file at the root of
the project, which defines all the modules to be included in the project build. With
the second approach, you define all the shared resources as well as all the modules to
be included in the project build in the same POM file, which is under the project root
directory. The first approach is better than the second one, based on the separation of
concerns principle.

POM properties
There are six types of properties that you can use within a Maven application
POM file:

• Built-in properties
• Project properties
• Local settings
• Environmental variables
• Java system properties
• Custom properties

It is always recommended that you use properties instead of hardcoding values in
application POM files. Let's see a few examples.

http://svn.apache.org/repos/asf/synapse/trunk/java/pom.xml
http://svn.apache.org/repos/asf/synapse/trunk/java/pom.xml
http://svn.apache.org/repos/asf/hbase/trunk/pom.xml
http://svn.apache.org/repos/asf/hbase/trunk/pom.xml

Best Practices

[138]

Let's consider the example of the application POM file inside the Apache Axis2
distribution module, which is available at http://svn.apache.org/repos/asf/
axis/axis2/java/core/trunk/modules/distribution/pom.xml. This defines
all the artifacts created in the Axis2 project that need to be included in the final
distribution. All the artifacts share the same groupId element as well as the version
elements of the distribution module. This is a common scenario in most of
the multimodule Maven projects. Most of the modules (if not all) share the same
groupId and the version elements:

<dependencies>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-java2wsdl</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-adb</artifactId>
 <version>${project.version}</version>
 </dependency>
</dependencies>

In the preceding configuration, instead of duplicating the version element, Axis2
uses the project property ${project.version}. When Maven finds this project
property, it reads the value from the project POM version element. If the project
POM file does not have a version element, then Maven will try to read it from
the immediate parent POM file. The benefit here is, when you upgrade your
project version some day, you only need to upgrade the version element of the
distribution POM file (or its parent).

The preceding configuration is not perfect; it can be further improved as follows:

<dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>axis2-java2wsdl</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>

http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/distribution/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/distribution/pom.xml

Chapter 7

[139]

 <artifactId>axis2-kernel</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>axis2-adb</artifactId>
 <version>${project.version}</version>
 </dependency>
</dependencies>

Here, we also replace the hardcoded value of the groupId element in all the
dependencies with the project property ${project.groupid}. When Maven finds
this project property, it reads the value from the project POM groupId element.
In case the project POM file does not have a groupId element, then Maven will try
to read it from the immediate parent POM file.

Here is a list of some of the built-in properties and project properties of Maven:

• project.version: This refers to the value of the version element of the
project POM file

• project.groupId: This refers to the value of the groupId element of the
project POM file

• project.artifactId: This refers to the value of the artifactId element of
the project POM file

• project.name: This refers to the value of the name element of the project
POM file

• project.description: This refers to the value of the description element
of the project POM file

• project.basedir: This refers to the path of the project's base directory
The following is an example, which shows the usage of this project property.
Here, we have a system dependency, which needs to be referred from a file
system path:
<dependency>
 <groupId>org.apache.axis2.wso2</groupId>
 <artifactId>axis2</artifactId>
 <version>1.6.0.wso2v2</version>
 <scope>system</scope>
 <systemPath>${project.basedir}/
 lib/axis2-1.6.jar</systemPath>
</dependency>

Best Practices

[140]

In addition to the project properties, you can also read properties from the
USER_HOME/.m2/settings.xml file. For example, if you want to read the path to the
local Maven repository, you can use the property, ${settings.localRepository}.
In the same way, with the same pattern, you can read any of the configuration
elements, which are defined in the settings.xml file.

The environment variables defined in the system can be read using the env prefix
within an application POM file. The ${env.M2_HOME} property will return the
path to Maven home, while ${env.java_home} returns the path to the Java home
directory. These properties will be quite useful within certain Maven plugins.

Maven also lets you define your own set of custom properties. Custom properties are
mostly used when defining dependency versions.

You should not scatter custom properties all over the places. An ideal place to define
them is the parent POM file in a multimodule Maven project, which will then be
inherited by all the other child modules.

If you look at the parent POM file of the WSO2 Carbon project, you will find a large
set of custom properties is defined (https://svn.wso2.org/repos/wso2/carbon/
platform/branches/turing/parent/pom.xml). The following block of code
contains some of those custom properties:

<properties>
 <rampart.version>1.6.1-wso2v10</rampart.version>
 <rampart.mar.version>1.6.1-wso2v10</rampart.mar.version>
 <rampart.osgi.version>1.6.1.wso2v10</rampart.osgi.version>
</properties>

When you add a dependency to the Rampart jar, you do not need to specify the
version there. Just refer it by the ${rampart.version} property name. Also, keep in
mind that all the custom-defined properties are inherited and can be overridden in
any child POM file:

<dependency>
 <groupId>org.apache.rampart.wso2</groupId>
 <artifactId>rampart-core</artifactId>
 <version>${rampart.version}</version>
</dependency>

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml

Chapter 7

[141]

Avoiding repetitive groupIds and versions,
and inheriting from the parent POM
In a multimodule Maven project, most of the modules (if not all) share the same
groupId and the version elements. In that case, you can avoid adding version
and groupId elements to your application POM file, as those will be automatically
inherited from the corresponding parent POM.

If you look at axis2-kernel (which is a module of the Apache Axis2 project), you
will find that no groupId or a version element is defined: (http://svn.apache.
org/repos/asf/axis/axis2/java/core/trunk/modules/kernel/pom.xml).
Maven reads them from the parent POM file:

<project>
 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-parent</artifactId>
 <version>1.7.0-SNAPSHOT</version>
 <relativePath>../parent/pom.xml</relativePath>
 </parent>

 <artifactId>axis2-kernel</artifactId>
 <name>Apache Axis2 - Kernel</name>

</project>

Following naming conventions
When defining coordinates for your Maven project, you must always follow the
naming conventions.

The value of the groupId element should follow the same naming convention you
use in Java package names. It has to be a domain name (the reverse of the domain
name) that you own—or at least that your project is developed under.

The following list covers some of the groupId naming conventions:

• The name of the groupId element has to be in lower case.
• Use the reverse of a domain name that can be used to uniquely identify your

project. This will also help to avoid collisions between artifacts produced by
different projects.

http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/kernel/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/kernel/pom.xml

Best Practices

[142]

• Avoid using digits or special characters (for example, org.wso2.carbon.
identity-core).

• Do not try to group two words into a single word by camel casing
(for example, org.wso2.carbon.identityCore).

• Ensure that all the subprojects developed under different teams in the same
company finally inherit from the same groupId and extend the name of the
parent groupId rather than defining their own.

Let's go through some examples. You will notice that all the open source projects
developed under Apache Software Foundation (ASF) use the same parent groupId
(org.apache) and define their own groupId, which extends from the parent:

• Apache Axis2 project: org.apache.axis2, which inherits from the org.
apache parent groupId

• Apache Synapse project: org.apache.synapse, which inherits from the
org.apache parent groupId

• Apache ServiceMix project: org.apache.servicemix, which inherits from
the org.apache parent groupId

• WSO2 Carbon project: org.wso2.carbon

Apart from the groupId, you should also follow the naming conventions while
defining artifactIds.

The following lists out some of the artifactId naming conventions:

• The name of the artifactId has to be in lower case.
• Avoid duplicating the value of groupId inside the artifactId. If you find

a need to start your artifactId element with the groupId element and add
something to the end, then you need to revisit the structure of your project.
You may need to add more module groups.

• Avoid using special characters (for example, #, $, &, %).
• Do not try to group two words into a single word by camel casing

(for example, identityCore).

The following naming conventions for version are also equally important. The
version of a given Maven artifact can be divided into four parts:

<Major version>.<Minor version>.<Incremental version>-<Build number or
the qualifier>

Chapter 7

[143]

The major version reflects the introduction of a new major feature. A change in
the major version of a given artifact could also mean that the new changes are not
necessarily backward compatible with the previously released artifact. The minor
version reflects an introduction of a new feature to the previously released version
in a backward compatible manner. The incremental version reflects a bug fixed
release of the artifact. The build number can be the revision number from the source
code repository.

This versioning convention is not just for Maven artifacts. Apple did a major release
of its iOS mobile operating system in September 2014: iOS 8.0.0. Soon after the
release, they discovered a critical bug in it that had an impact on cellular network
connectivity and the TouchID on the iPhone. Then they released iOS 8.0.1 as a patch
release to fix the issues.

Let's go through some examples:

• Apache Axis2 1.6.0 release: http://svn.apache.org/repos/asf/axis/
axis2/java/core/tags/v1.6.0/pom.xml.

• Apache Axis2 1.6.2 release: http://svn.apache.org/repos/asf/axis/
axis2/java/core/tags/v1.6.2/pom.xml.

• Apache Axis2 1.7.0-SNAPSHOT: http://svn.apache.org/repos/asf/
axis/axis2/java/core/trunk/pom.xml.

• Apache Synapse 2.1.0-wso2v5: http://svn.wso2.org/repos/wso2/tags/
carbon/3.2.3/dependencies/synapse/2.1.0-wso2v5/pom.xml. Here the
synapse code is maintained under the WSO2 source repository, not under
Apache. In this case, we use the wso2v5 classifier to make it different from
the same artifact produced by Apache Synapse.

Think twice before you write your own
plugin. You may not need it!
Maven is all about plugins! There is a plugin out there for almost everything you
need to do. If you find a need to write a plugin, spend some time doing some
research on the web to see whether you can find something similar—the chances
are very high. You can also find a list of available Maven plugins at http://maven.
apache.org/plugins.

http://svn.apache.org/repos/asf/axis/axis2/java/core/tags/v1.6.0/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/tags/v1.6.0/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/tags/v1.6.2/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/tags/v1.6.2/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/pom.xml
http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/dependencies/synapse/2.1.0-wso2v5/pom.xml
http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/dependencies/synapse/2.1.0-wso2v5/pom.xml
http://maven.apache.org/plugins
http://maven.apache.org/plugins

Best Practices

[144]

The Maven release plugin
Releasing a project requires a lot of repetitive tasks. The objective of the Maven
release plugin is to automate them. The release plugin defines following eight goals,
which are executed in two stages—preparing the release and performing the release:

• release:clean: This cleans up after a release preparation
• release:prepare: This prepares for a release in SCM (Software

Configuration Management)
• release:prepare-with-pom: This prepares for a release in SCM, and

generates release POMs by fully resolving the dependencies
• release:rollback: This rolls back to a previous release
• release:perform: This performs a release from SCM
• release:stage: This performs a release from SCM into a staging

folder or repository
• release:branch: This creates a branch of the current project with all

versions updated
• release:update-versions: This updates the versions in the POM(s)

The preparation stage will complete the following tasks with the
release:prepare goal:

• Verify that all the changes in the source code are committed.
• Make sure that there are no SNAPSHOT dependencies. During the project

development phase we use SNAPSHOT dependencies, but, at the time of
release, all the dependencies should be changed to a released version.

• The version of project POM files will be changed from SNAPSHOT to a
concrete version number.

• The SCM information in the project POM will be changed to include the final
destination of the tag.

• Execute all the tests against the modified POM files.
• Commit the modified POM files to SCM and tag the code with a

version name.
• Change the version of POM files in the trunk to a SNAPSHOT version and

then commit the modified POM files to the trunk.

Finally, the release will be performed with the release:perform goal. This will
check out the code from the release tag in the SCM and run a set of predefined goals:
site and deploy-site.

Chapter 7

[145]

The maven-release-plugin is not defined in the super POM, and should be
explicitly defined in your project POM file. The releaseProfiles configuration
element defines the profiles to be released, and the goals configuration element
defines the plugin goals to be executed during release:perform. In the following
configuration, the deploy goal of the maven-deploy-plugin and the single goal of
the maven-assembly-plugin will get executed:

<plugin>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <releaseProfiles>release</releaseProfiles>
 <goals>deploy assembly:single</goals>
 </configuration>
</plugin>

More details about the Maven Release plugin are
available at http://maven.apache.org/maven-
release/maven-release-plugin/.

The Maven enforcer plugin
The Maven Enforce plugin lets you control or enforce constraints in your build
environment. These could be the Maven version, Java version, operating system
parameters, and even user-defined rules.

The plugin defines two goals: enforce and displayInfo. The enforcer:enforce
goal will execute all the defined rules against all the modules in a multimodule
Maven project, while enforcer:displayInfo will display the project compliance
details with respect to the standard rule set.

The maven-enforcer-plugin is not defined in the super POM, and should be
explicitly defined in your project POM file:

<plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.3.1</version>
 <executions>
 <execution>
 <id>enforce-versions</id>
 <goals>
 <goal>enforce</goal>

http://maven.apache.org/maven-release/maven-release-plugin/
http://maven.apache.org/maven-release/maven-release-plugin/

Best Practices

[146]

 </goals>
 <configuration>
 <rules>
 <requireMavenVersion>
 <version>3.2.1</version>
 </requireMavenVersion>
 <requireJavaVersion>
 <version>1.6</version>
 </requireJavaVersion>
 <requireOS>
 <family>mac</family>
 </requireOS>
 </rules>
 </configuration>
 </execution>
 </executions>
 </plugin>
</plugins>

The preceding plugin configuration enforces the Maven version to be 3.2.1, Java
version to be 1.6, and the operating system to be in the Mac family.

The Apache Axis2 project uses the enforcer plugin to make sure that no application
POM file defines Maven repositories. All the artifacts required by Axis2 are expected
to be in the Maven central repository. The following configuration element is
extracted from http://svn.apache.org/repos/asf/axis/axis2/java/core/
trunk/modules/parent/pom.xml. Here, it bans all the repositories and plugin
repositories, except snapshot repositories:

<plugin>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.1</version>
 <executions>
 <execution>
 <phase>validate</phase>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>
 <requireNoRepositories>
 <banRepositories>true</banRepositories>
 <banPluginRepositories>true</banPluginRepositories>
 <allowSnapshotRepositories>true
 </allowSnapshotRepositories>

http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/parent/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/parent/pom.xml

Chapter 7

[147]

 <allowSnapshotPluginRepositories>true
 </allowSnapshotPluginRepositories>
 </requireNoRepositories>
 </rules>
 </configuration>
 </execution>
 </executions>
</plugin>

In addition to the standard rule set shipped with the
enforcer plugin, you can also define your own rules.
More details about how to write custom rules are
available at http://maven.apache.org/enforcer/
enforcer-api/writing-a-custom-rule.html.

Avoiding the use of unversioned plugins
If you have associated a plugin with your application POM, without a version, then
Maven will download the corresponding maven-metadata.xml file and store it
locally. Only the latest released version of the plugin will be downloaded and used
in the project. This can easily create uncertainties. Your project may work fine with
the current version of a plugin, but later, if there is a new release of the same plugin,
your Maven project will start to use the latest one automatically. This can result in an
unpredictable behavior and lead to a debugging mess.

It is always recommended that you specify the plugin
version along with the plugin configuration.

You can enforce this as a rule with the Maven enforcer plugin, shown as follows:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.3.1</version>
 <executions>
 <execution>
 <id>enforce-plugin-versions</id>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>

http://maven.apache.org/enforcer/enforcer-api/writing-a-custom-rule.html
http://maven.apache.org/enforcer/enforcer-api/writing-a-custom-rule.html

Best Practices

[148]

 <requirePluginVersions>
 <message>………… <message>
 <banLatest>true</banLatest>
 <banRelease>true</banRelease>
 <banSnapshots>true</banSnapshots>
 <phases>clean,deploy,site</phases>
 <additionalPlugins>
 <additionalPlugin>
 org.apache.maven.plugins:maven-eclipse-plugin
 </additionalPlugin>
 <additionalPlugin>
 org.apache.maven.plugins:maven-reactor-plugin
 </additionalPlugin>
 </additionalPlugins>
 <unCheckedPluginList>
 org.apache.maven.plugins:maven-enforcer-plugin,
 org.apache.maven.plugins:maven-idea-plugin
 </unCheckedPluginList>
 </requirePluginVersions>
 </rules>
 </configuration>
 </execution>
 </executions>
</plugin>

The following explains each of the key configuration elements defined in the
preceding code:

• message: This is used to define an optional message to the user, in case the
rule execution fails.

• banLatest: This is used to restrict the use of "LATEST" as a version for
any plugin.

• banRelease: This is used to restrict the use of "RELEASE" as a version for
any plugin.

• banSnapshots: This is used to restrict the use of SNAPSHOT plugins.
• banTimestamps: This is used to restrict the use of SNAPSHOT plugins with

timestamp versions.
• phases: This is a comma separated list of phases that should be used to find

lifecycle plugin bindings. The default value is "clean,deploy,site".

Chapter 7

[149]

• additionalPlugins: This is a list of additional plugins to enforce having
versions. These plugins may not be defined in application POM files, but are
used anyway, like help, eclipse, and so on. The plugins should be specified in
the form groupId:artifactId.

• unCheckedPluginList: This is a comma separated list of plugins to skip
version checking.

You can read more about the requirePluginVersions rule from
http://maven.apache.org/enforcer/enforcer-rules/
requirePluginVersions.html.

Descriptive parent POM files
Make sure your project's parent POM file is descriptive enough to list out what the
project does, who the developers and contributors are, their contact details, the license
under which the project artifacts are released, where to report issues, and so on. Here is
a good example of a descriptive POM file, which is available at http://svn.apache.
org/repos/asf/axis/axis2/java/core/trunk/modules/parent/pom.xml:

<project>
 <name>Apache Axis2 - Parent</name>
 <inceptionYear>2004</inceptionYear>
 <description>Axis2 is an effort to re-design and totally re-
 implement both Axis/Java……</description>
 <url>http://axis.apache.org/axis2/java/core/</url>
 <licenses>
 <license>http://www.apache.org/licenses/
 LICENSE-2.0.html</license>
 </licenses>
 <issueManagement>
 <system>jira</system>
 <url>http://issues.apache.org/jira/browse/AXIS2</url>
 </issueManagement>
 <mailingLists>
 <mailingList>
 <name>Axis2 Developer List</name>
 <subscribe>java-dev-subscribe@axis.apache.org</subscribe>
 <unsubscribe>java-dev-unsubscribe@
 axis.apache.org</unsubscribe>
 <post>java-dev@axis.apache.org</post>
 <archive>http://mail-archives.apache.org/
 mod_mbox/axis-java-dev/</archive>
 <otherArchives>

http://maven.apache.org/enforcer/enforcer-rules/requirePluginVersions.html
http://maven.apache.org/enforcer/enforcer-rules/requirePluginVersions.html
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/parent/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/parent/pom.xml

Best Practices

[150]

 <otherArchive>http://markmail.org/search/list:
 org.apache.ws.axis-dev</otherArchive>
 </otherArchives>
 </mailingList>
 <developers>
 <developer>
 <name>Sanjiva Weerawarana</name>
 <id>sanjiva</id>
 <email>sanjiva AT wso2.com</email>
 <organization>WSO2</organization>
 </developer>
 <developers>
 <contributors>
 <contributor>
 <name>Dobri Kitipov</name>
 <email>kdobrik AT gmail.com</email>
 <organization>Software AG</organization>
 </contributor>
 </contributors>
</project>

Documentation is your friend
If you are a good developer you know the value of documentation. Anything you
write should not be cryptic or only be understood by you. Let it be a Java, .NET,
C++ project, or a Maven project—the documentation is your friend. A code with
a good documentation is extremely readable. If any configuration you add into an
application POM file is not self-descriptive, make sure you add at least a single line
comment explaining what it does.

Here to follow some good examples from the Apache Axis2 project:

<profile>
 <id>java16</id>
 <activation>
 <jdk>1.6</jdk>
 </activation>
 <!-- JDK 1.6 build still use JAX-WS 2.1 because integrating
 Java endorsed mechanism with Maven is bit of complex -
 ->
 <properties>
 <jaxb.api.version>2.1</jaxb.api.version>
 <jaxbri.version>2.1.7</jaxbri.version>
 <jaxws.tools.version>2.1.3</jaxws.tools.version>

Chapter 7

[151]

 <jaxws.rt.version>2.1.3</jaxws.rt.version>
 </properties>
</profile>

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <!-- Minimum required version here is 2.2-beta-4 because
 org.apache:apache:7 uses the runOnlyAtExecutionRoot
 parameter, which is not supported in earlier
 versions. -->
 <version>2.2-beta-5</version>
 <configuration>
 <!-- Workaround for MASSEMBLY-422 / MASSEMBLY-449 -->
 <archiverConfig>
 <fileMode>420</fileMode><!-- 420(dec)=644(oct) -->
 <directoryMode>493</directoryMode><!--493(dec)=755(oct)-->
 <defaultDirectoryMode>493</defaultDirectoryMode>
 </archiverConfig>
 </configuration>
</plugin>

<!-- No chicken and egg problem here because the plugin doesn't expose
any extension. We can always use the version from the current build.
-->
<plugin>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-repo-maven-plugin</artifactId>
 <version>${project.version}</version>
</plugin>

Avoid overriding the default directory
structure
Maven follows the design philosophy Convention over Configuration. Without
any configuration changes, Maven assumes the location of the source code is
${basedir}/src/main/java, the location of tests is ${basedir}/src/test/java,
and the resources are available at ${basedir}/src/main/resources. After a
successful build, Maven knows where to place the compiled classes (${basedir}/
target/classes) and where to copy the final artifact (${basedir}/target/). It is
possible to change this directory structure, but it's recommended not to do so. Why?

Best Practices

[152]

Keeping the default structure improves the readability of the project. Even a fresh
developer knows where to look, if he is familiar with Maven. Also, if you have
associated plugins and other Maven extensions with your project, you will be able to
use them with minimal changes if you have not altered the default Maven directory
structure. Most of these plugins and other extensions assume the Maven convention
by default.

Using SNAPSHOT versioning during the
development
You should use the SNAPSHOT qualifier for the artifacts produced by your project
if those are still under development and deployed regularly to a Maven snapshot
repository. If the version to be released is 1.7.0, then you should use the version
1.7.0-SNAPSHOT while it's under development. Maven treats the version SNAPSHOT in
a special manner. If you try to deploy 1.7.0-SNAPSHOT into a repository, Maven will
first expand the SNAPSHOT qualifier into a date and time value in UTC (Coordinated
Universal Time). If the date/time at the time of deployment is 10.30 AM, November
10th, 2014, then the SNAPSHOT qualifier will be replaced with 20141110-103005-1, and
the artifact will be deployed with the version 1.7.0-20141110-103005-1.

Get rid of unused dependencies
Always ensure that you maintain a clean application POM file. You should not have
any unused dependencies defined or used undeclared dependencies. The Maven
dependency plugin helps you in identifying such discrepancies.

The maven-dependency-plugin is not defined in the super POM and should be
explicitly defined in your project POM file:

<plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.0</version>
</plugin>

Once the preceding configuration is added into your application POM file, you need
to run the analyze goal of the dependency plugin against your Maven project:

$ mvn dependency:analyze

Chapter 7

[153]

Here, you can see a sample output, which complains about an unused declared
dependency:

[WARNING] Unused declared dependencies found:

[WARNING] org.apache.axis2:axis2-kernel:jar:1.6.2:compile

More details about the Maven dependency plugin are
available at http://maven.apache.org/plugins/
maven-dependency-plugin/.

Avoiding keeping credentials in
application POM files
During a Maven build you need to connect to external repositories outside your
firewall. In a tightly secured environment, any outbound connection has to go through
an internal proxy server. The following configuration in MAVEN_HOME/conf/settings.
xml shows how to connect to an external repository via a secured proxy server:

<proxy>
 <id>internal_proxy</id>
 <active>true</active>
 <protocol>http</protocol>
 <username>proxyuser</username>
 <password>proxypass</password>
 <host>proxy.host.net</host>
 <port>80</port>
 <nonProxyHosts>local.net|some.host.com</nonProxyHosts>
</proxy>

Also, the Maven repositories can be protected for legitimate access. If a given
repository is protected with HTTP Basic Authentication, the corresponding
credentials should be defined as follows, under the server element of
MAVEN_HOME/conf/settings.xml:

<server>
 <id>central</id>
 <username>my_username</username>
 <password>my_password</password>
</server>

Keeping confidential data in configuration files in clear text is a security threat
that must be avoided. Maven provides a way of encrypting configuration data in
settings.xml.

http://maven.apache.org/plugins/maven-dependency-plugin/
http://maven.apache.org/plugins/maven-dependency-plugin/

Best Practices

[154]

First, we need to create a master encryption key, shown as follows:

$ mvn -emp mymasterpassword

{lJ1MrCQRnngHIpSadxoyEKyt2zIGbm3Yl0ClKdTtRR6TleNaEfGOEoJaxNcdMr+G}

With the output from the above command, we need to create a file called settings-
security.xml under USER_HOME/.m2/ and add the encrypted master password
there, as follows:

<settingsSecurity>
<master>
{lJ1MrCQRnngHIpSadxoyEKyt2zIGbm3Yl0ClKdTtRR6TleNaEfGOEoJaxNcdMr+G}
</master>
</settingsSecurity>

Once the master password is configured properly, we can start encrypting rest of the
confidential data in settings.xml. Let's see how to encrypt the server password.
First, we need to generate the encrypted password for the cleartext one using the
following command. Note that earlier we used emp (encrypt master password) and
now we are using ep (encrypt password):

$ mvn -ep my_password

{PbYw8YaLb3cHA34/5EdHzoUsmmw/u/nWOwb9e+x6Hbs=}

Copy the value of the encrypted password and replace the corresponding value in
settings.xml:

<server>
 <id>central</id>
 <username>my_username</username>
 <password>
 {PbYw8YaLb3cHA34/5EdHzoUsmmw/u/nWOwb9e+x6Hbs=}
 </password>
</server>

Avoiding using deprecated references
Since Maven 3.0 onwards, all the properties starting with pom.* are deprecated.
Avoid using any of the deprecated Maven properties and, if you have used them
already, ensure that you migrate to the equivalent ones.

Chapter 7

[155]

Avoiding repetition – use archetypes
When we create a Java project, we need to structure it in different ways based on the
type of the project. If it's a Java EE web application then we need to have a WEB-INF
directory and a web.xml file. If it's a Maven plugin project, we need to have a Mojo
class, which extends from org.apache.maven.plugin.AbstractMojo. Since each type
of project has its own predefined structure, why would everyone have to build the same
structure again and again? Why don't we start with a template? Each project can have
its own template and the developers can extend the template to suit their requirements.
Maven archetypes address this concern. Each archetype is a project template.

We discussed Maven archetypes in detail, in Chapter 3, Maven Archetypes.

Avoiding using maven.test.skip
You may manage an extremely small project that does not evolve a lot without unit
tests. But, any large-scale project cannot exist without unit tests. Unit tests provide
the first level of guarantee that you do not break any existing functionality with a
newly introduced code change. In an ideal scenario, you should not commit any
code to a source repository without building the complete project with unit tests.

Maven uses the surefire plugin to run tests and as a malpractice developers are
used to skip the execution of unit tests by setting the maven.test.skip property to
true, as follows:

$ mvn clean install –Dmaven.test.skip=true

This can lead to serious repercussions in the later stage of the project, and you must
ensure that all your developers do not skip tests while building.

Using the requireProperty rule of the Maven enforcer plugin, you can ban
developers from using the maven.test.skip property.

The following shows the enforcer plugin configuration that you need to add to
your application POM:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.3.1</version>
 <executions>
 <execution>
 <id>enforce-property</id>
 <goals>
 <goal>enforce</goal>

Best Practices

[156]

 </goals>
 <configuration>
 <rules>
 <requireProperty>
 <property>maven.test.skip</property>
 <message>maven.test.skip must be specified</message>
 <regex>false</regex>
 <regexMessage>You cannot skip tests</regexMessage>
 </requireProperty>
 </rules>
 <fail>true</fail>
 </configuration>
 </execution>
 </executions>
</plugin>

Now, if you run mvn clean install against your project, you will see the
following error message:

maven.test.skip must be specified

This means you need to specify Dmaven.test.skip=false every time you run
mvn clean install:

$ mvn clean install –Dmaven.test.skip=false

But if you set –Dmaven.test.skip=true, then you will see the following error:

You cannot skip tests

Still, you will find it a bit annoying to type –Dmaven.test.skip=false whenever
you run a build. To avoid that, into your application POM file, add the property
maven.test.skip and set its value to false:

<project>

 <properties>
 <maven.test.skip>false</maven.test.skip>
 </properties>

</project>

More details about requireProperty rule are available at
http://maven.apache.org/enforcer/enforcer-rules/
requireProperty.html.

http://maven.apache.org/enforcer/enforcer-rules/requireProperty.html
http://maven.apache.org/enforcer/enforcer-rules/requireProperty.html

Chapter 7

[157]

Summary
In this chapter, we looked at and highlighted some of the best practices to be
followed in a large-scale development project with Maven. Most of the points
highlighted here were discussed in detail in previous chapters throughout the book.
It is always recommended to follow best practices since it will drastically improve
developer productivity and will reduce any maintenance nightmares.

Overall, the book covered Apache Maven 3 and its core concepts with examples,
including Maven archetypes, plugins, assemblies, and lifecycles.

[159]

Index
A
Android mobile applications

with archetype plugin 59, 60
Apache Axis2 120
Apache Maven

about 1
installing, on Mac OS X 3, 4
installing, on Microsoft Windows 4
installing, on Ubuntu 2
URL 1

Apache Software Foundation (ASF) 142
Apache Synapse

URL 51
archetype

about 43-46
catalogues 47-51
plugin goals 54, 55
URL 44

archetype catalogue
about 47-51
building 51
catalog.xml file 53, 54
public archetype catalogues 51, 53

archetype plugin
Android mobile applications 59-61
EJB archives 61-64
Java EE web applications 55, 56
JIRA plugins 64
Spring MVC applications 65, 66

artifact/resource filtering 125
assembly descriptor

about 112-118
defining 118-124
URL 120

assembly plugin
about 110-112
help goal 125
single goal 125
URL 112

B
batch mode 47
best practices

application POM files, credentials
avoiding 153, 154

default directory structure override,
avoiding 151, 152

dependency management 134-136
deprecated references, usage avoiding 154
descriptive parent POM files 149
documentation 150
Maven enforcer plugin 145, 146
Maven release plugin 144, 145
maven.test.skip, usage avoiding 155, 156
naming conventions, following 141-143
parent module, defining 136, 137
parent POM, inheriting from 141
plugins 143
POM, properties 137-140
repetition, avoiding 155
repetitive groupIds and versions,

avoiding 141
SNAPSHOT versioning, using on

development 152
unused dependencies, avoiding 152, 153
unversioned plugins, usage

avoiding 147, 148

[160]

bundle plugin
URL 88

C
clean lifecycle 92-95
clean plugin 69, 70
Cocoon

URL 51
compiler plugin 70, 71
component descriptor 102
convention

versus configuration 7, 8

D
default lifecycle 95-99
default lifecycle, phases

compile 96
deploy 96
generate-resources 95
generate-sources 95
generate-test-resources 96
generate-test-sources 96
initialize 95
install 96
integration-test 96
package 96
post-integration-test 96
pre-integration-test 96
prepare-package 96
process-classes 96
process-resources 96
process-sources 95
process-test-classes 96
process-test-resources 96
process-test-sources 96
test 96
test-compile 96
validate 95
verify 96

dependency management
about 134-136
URL 29

deploy plugin 73-75
descriptive parent POM files 149
digit octal notation

URL 117

distribution module, Axis2
URL 121

E
Eclipse integration

about 10
reference link 10

EJB archives
with archetype plugin 61-63

enterprise service bus (ESB) 51
environment variables, Microsoft Windows

URL 4

F
Fuse

URL 51

H
heap size

configuring 5
Hello Maven! 6, 7

I
IDE integration

about 9
Eclipse integration 10
NetBeans integration 9

installation, Apache Maven
about 1
on Mac OS X 3, 4
on Microsoft Windows 4
on Ubuntu 2
URL 4

install plugin 73
IntelliJ IDEA integration

about 10
reference link 10

J
JAR file

about 109
URL 109

[161]

jar plugin
about 80
URL 81

Java EE web applications
with archetype plugin 55, 56

Java.net
URL 51

Java virtual machine (JVM) 1
JIRA plugins

with archetype plugin 64

L
lifecycle bindings

about 101
default lifecycle, coding 101-103

lifecycle extensions
about 105
example 105-107
reference link 108

M
Mac OS X

Apache Maven, installing on 3, 4
Maven coordinates 25, 26
Maven dependency plugin

URL 35
Maven enforcer plugin 145-147
Maven plugins

about 69
as extension 89
clean plugin 69, 70
compiler plugin 70, 71
deploy plugin 73, 75
discovering 84-86
executing 84-86
install plugin 73
jar plugin 80
management 87
reference link 70
release plugin 83, 84
repositories 87
resources plugin 82
site plugin 77-79
source plugin 81
surefire plugin 75-77
URL 143

Maven release plugin 144, 145
Maven repositories

about 9
reference link 9

Microsoft Windows
Apache Maven, installing on 4

MyFaces
URL 51

N
naming conventions 141-143
NetBeans integration

about 9
reference link 9

O
OutOfMemoryError

URL 5

P
parent module

defining 136, 137
parent POM 27, 28
Permanent Generation (PermGen) 5
plugin management 87
plugin repositories

about 87, 88
URL 88

Project Object Model (POM)
about 15, 16
dependencies, managing 29-32
elements, URL 28
extending 23-25
hierarchy 17
overriding 23-25
parent POM 27, 28
properties 137-140
super POM 18-22

Project Object Model (POM), dependencies
exclusion 39-42
optional 38, 39
scopes 35-37
transitive dependencies 33-35

[162]

public archetype catalogues
Apache Synapse 51
Cocoon 51
Fuse 51
Java.net 51
MyFaces 51

R
release plugin 83, 84
remote catalogue

URL 50
requirePluginVersions rule

URL 149
requireProperty rule

URL 156
resources plugin

about 82
URL 83

runnable standalone Maven project
building 126-131
URL 126

S
Secure Copy (scp) 75
site plugin 77, 79
Software Configuration Management

(SCM) 83
source plugin 81
Spring MVC framework

URL 65
standard lifecycles

about 92
clean lifecycle 92-95
default lifecycle 95-99
site lifecycle 100
URL 97

super POM 18
surefire plugin 75-77

T
tomcat7 plugin

URL 66
Tomcat 7.x distribution

URL 57
troubleshooting

about 10
dependency classpath, viewing 13
dependency tree, building 10, 11
effective POM file, viewing 12
environment variables, viewing 11
Maven debug level logs, enabling 10
system properties, viewing 11

U
Ubuntu

Apache Maven, installing on 2
unversioned plugins

usage, avoiding 149

W
web applications

deploying, to remote Apache
Tomcat server 57, 58

WebLogic distribution
URL 62

WSO2 Carbon project
URL 86, 140

WSO2 Identity Server (WSO2 IS)
about 110
URL 110

Thank you for buying
Maven Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Android Application Development
with Maven
ISBN: 978-1-78398-610-1 Paperback: 192 pages

Learn how to use and configure Maven to support all
phases of the development of an Android application

1. Learn how to effectively use Maven to create,
test, and release Android applications.

2. Customize Maven using a variety of suggested
plugins for the most popular Android tools.

3. Discover new ways of accelerating the
implementation, testing, and maintenance
using this step-by-step simple tutorial
approach.

Maven Build Customization
ISBN: 978-1-78398-722-1 Paperback: 270 pages

Discover the real power of Maven 3 to manage your
Java projects more effectively than ever

1. Administer complex projects customizing the
Maven framework and improving the software
lifecycle of your organization with "Maven
friend technologies".

2. Automate your delivery process and make it
fast and easy.

3. An easy-to-follow tutorial on Maven
customization and integration with a real
project and practical examples.

Please check www.PacktPub.com for information on our titles

Mastering Apache Maven 3
ISBN: 978-1-78398-386-5 Paperback: 298 pages

Enhance developer productivity and address exact
enterprise build requirements by extending Maven

1. Develop and manage large, complex projects
with confidence.

2. Extend the default behavior of Maven with
custom plugins, lifecycles, and archetypes.

3. Explore the internals of Maven to arm yourself
with knowledge to troubleshoot build issues.

Apache Maven Cookbook
ISBN: 978-1-78528-612-4 Paperback: 272 pages

Over 90 hands-on recipes to successfully build and
automate development life cycle tasks following
Maven conventions and best practices

1. Understand the features of Apache Maven that
makes it a powerful tool for build automation.

2. Full of real-world scenarios covering
multi-module builds and best practices
to make the most out of Maven projects.

3. A step-by-step tutorial guide full of
pragmatic examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	Untitled
	Table of Contents
	Preface
	Chapter 1: Apache Maven Quick Start
	Installing Apache Maven
	Installing Apache Maven on Ubuntu
	Installing Apache Maven on Mac OS X
	Installing Apache Maven on Microsoft Windows

	Configuring the heap size
	Hello Maven!
	Convention over configuration
	Maven repositories
	IDE integration
	NetBeans integration
	IntelliJ IDEA integration
	Eclipse integration

	Troubleshooting
	Enabling Maven debug level logs
	Building a dependency tree
	Viewing all the environment variables and system properties
	Viewing the effective POM file
	Viewing the dependency classpath

	Summary

	Chapter 2: Understanding the Project Object Model (POM)
	Project Object Model (POM)
	POM hierarchy
	Super POM
	POM extending and overriding
	Maven coordinates
	The parent POM
	Managing POM dependencies
	Transitive dependencies
	Dependency scopes
	Optional dependencies
	Dependency exclusion

	Summary

	Chapter 3: Maven Archetypes
	Archetype quickstart
	Batch mode
	Archetype catalogues
	Building an archetype catalogue
	Public archetype catalogues
	The anatomy of archetype – catalog.xml

	The archetype plugin goals
	Java EE web applications with the archetype plugin
	Deploying web applications to a remote Apache Tomcat server

	Android mobile applications with the archetype plugin
	EJB archives with the archetype plugin
	JIRA plugins with the archetype plugin
	Spring MVC applications with the archetype plugin
	Summary

	Chapter 4: Maven Plugins
	Common Maven plugins
	The clean plugin
	The compiler plugin
	The install plugin
	The deploy plugin
	The surefire plugin
	The site plugin
	The jar plugin
	The source plugin
	The resources plugin
	The release plugin

	Plugin discovery and execution
	Plugin management
	Plugin repositories
	Plugin as an extension

	Summary

	Chapter 5: Build Lifecycles
	Standard lifecycles in Maven
	The clean lifecycle
	The default lifecycle
	The site lifecycle

	Lifecycle bindings
	Lifecycle extensions
	Summary

	Chapter 6: Maven Assemblies
	The assembly plugin
	The assembly descriptor
	Artifact/resource filtering
	Assembly help
	A runnable standalone Maven project
	Summary

	Chapter 7: Best Practices
	Dependency management
	Defining a parent module
	POM properties
	Avoiding repetitive groupIds and versions, and inheriting from the parent POM
	Following naming conventions
	Think twice before you write your own plugin. You may not need it!
	The Maven release plugin
	The Maven enforcer plugin
	Avoiding the use of unversioned plugins
	Descriptive parent POM files
	Documentation is your friend
	Avoid overriding the default directory structure
	Using SNAPSHOT versioning during the development
	Get rid of unused dependencies
	Avoiding keeping credentials in application POM files
	Avoiding using deprecated references
	Avoiding repetition – use archetypes
	Avoiding using maven.test.skip
	Summary

	Index

