
www.allitebooks.com

http://www.allitebooks.org

Microsoft® WSH and
VBScript Programming

for the Absolute Beginner,
Fourth Edition

Jerry Lee Ford, Jr.

Cengage Learning PTR

Australia, Brazil, Japan, Korea, Mexico, Singapore, Spain, United Kingdom, United States

www.allitebooks.com

http://www.allitebooks.org

© 2015 Cengage Learning PTR.

CENGAGE and CENGAGE LEARNING are registered trademarks of Cengage
Learning, Inc., within the United States and certain other jurisdictions.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited
to photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems,
except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

Microsoft is a registered trademark of Microsoft Corporation in the United
States and/or other countries. All other trademarks are the property of their
respective owners.

Cover images: © antishock/Shutterstock.com

All images © Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2014933749

ISBN-13: 978-1-305-26032-0

ISBN-10: 1-305-26032-5

Cengage Learning PTR
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit cengageptr.com.

Visit our corporate Web site at cengage.com.

Microsoft® WSH and VBScript Programming
for the Absolute Beginner, Fourth Edition
Jerry Lee Ford, Jr.

Publisher and General Manager,
Cengage Learning PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Senior Marketing Manager:
Mark Hughes

Senior Acquisitions Editor:
Mitzi Koontz

Project and Copy Editor:
Kate Shoup

Technical Reviewer:
Zac Hester

Interior Layout:
Shawn Morningstar

Cover Designer:
Mike Tanamachi

Indexer:
Larry Sweazy

Proofreader:
Sam Garvey

Printed in the United States of America
1 2 3 4 5 6 7 16 15 14

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

eISBN-10: 1-305-26033-3

www.allitebooks.com

http://www.cengage.com/permissions
http://www.antishock/Shutterstock.com
http://www.international.cengage.com/region
http://www.cengage.com
http://www.cengageptr.com
http://www.allitebooks.org

To my father;
to my children, Alexander, William, and Molly;

and to my beautiful wife, Mary.

www.allitebooks.com

http://www.allitebooks.org

There are a number of individuals to whom I owe many thanks for their help and assistance in
the development of the fourth edition of this book. I would start by thanking Mitzi Koontz, who
served as the book’s acquisitions editor. Special thanks also go out to Kate Shoup for serving as the
book’s project editor and copy editor. I also want to thank Zac Hester for all his valuable tech-
nical input and advice. In addition, I would like to thank everyone else at Cengage Learning for
all their hard work.

Acknowledgments

Jerry Lee Ford, Jr. is an author, educator, and IT professional with more than 24 years of expe-
rience in information technology, including roles as an automation analyst, technical manager,
technical support analyst, automation engineer, and security analyst. He is the author of 38 books
and co-author of two additional books. His published works include Microsoft Windows PowerShell
Programming for the Absolute Beginner ; Microsoft Visual Basic 2008 Express Programming for the
Absolute Beginner ; HTML, XHTML, and CSS for the Absolute Beginner ; XNA 3.1 Game Development
for Teens; and VBScript Professional Projects. Jerry has a master’s degree in business administration
from Virginia Commonwealth University in Richmond, Virginia, and has more than five years
of experience as an adjunct instructor teaching networking courses in information technology.

About the Author

www.allitebooks.com

http://www.allitebooks.org

Introduction . xv

Part I
Introducing the WSH and VBScript 1

Chapter 1 Getting Started with the WSH and VBScript 3
Project Preview: The Knock Knock Game. 3

What Is the WSH? . 4

WSH Scripting Engines . 5

Selecting a WSH Script Execution Host. 6

Introducing the WSH Core Object Model. 6

How Does the WSH Compare to Windows Shell Scripting? . 7

WSH Versus Windows PowerShell . 8

Understanding How the Windows Shell Works . 9

How Does It All Work? . 15

Operating System Compatibility . 15

How Do You Install It?. 16

How Does It Work with VBScript? . 17

What Other Scripting Languages Does the WSH Support? . 20

Introducing VBScript . 21

VBScript Capabilities. 22

VBScript’s Roots. 22

VBScript’s Cousins: Visual Basic and VBA . 23

Back to the Knock Knock Game. 25

Designing the Game. 25

The Final Result . 29

Summary . 29

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Chapter 2  An Introduction to the Windows Script Host 31
Project Preview: The Rock, Paper, and Scissors Game . 31

Examining Scripting Environments. 32

An Examination of WSH Components . 33

A Quick Introduction to the WSH Core Object Model . 34

Working with the WScript Object . 35

Configuring WSH Execution Hosts . 35

Configuring WScript.exe and CScript.exe Command-Line Execution. 36

Configuring WScript.exe Desktop Execution . 37

Overriding Command-Line Host Execution Settings . 38

Customizing WScript.exe Settings for Individual Desktop Scripts 39

Enabling and Disabling the Windows Script Host . 41

Back to the Rock, Paper, and Scissors Game . 43

Designing the Game. 43

The Final Result . 46

Summary . 47

Part II
Learning VBScript and WSH Scripting 49
Chapter 3 VBScript Basics 51
Project Preview: The Math Game . 51

VBScript Statements . 53

VBScript Syntax Rules . 54

Reserved Characters. 56

Adding Comments. 57

Mastering the VBScript Object Model. 58

Working with VBScript Run-Time Objects. 59

Properties . 61

Methods . 62

Using VBScript Run-Time Objects in Your Scripts . 64

Examining Built-in VBScript Functions . 66

Demo: The Square-Root Calculator. 66

Demo: A New and Improved Square-Root Calculator . 67

Displaying Script Output . 68

The WScript Object’s Echo() Method . 69

The WshShell Object’s Popup() Method . 69

The VBScript InputBox() Function . 71

The VBScript MsgBox() Function . 72

vi Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

www.allitebooks.com

http://www.allitebooks.org

Back to the Math Game. 74

A Quick Overview of the WshShell Object’s SendKeys() Method. 74

Designing the Game. 77

The Final Result . 81

Summary . 81

Chapter 4  Constants, Variables, Arrays, and Dictionaries 83
Project Preview: The Story of Captain Adventure . 83

Understanding How Scripts View Data . 84

Working with Data That Never Changes. 85

Assigning Data to Constants . 86

VBScript Run-Time Constants . 88

Storing Data That Changes During Script Execution . 91

VBScript Data Types . 91

Defining Variables . 93

Variable Naming Rules . 95

Variable Scope . 96

Modifying Variable Values with Expressions . 96

Using the WSH to Work with Environment Variables . 100

Working with Collections of Related Data . 103

Single-Dimension Arrays . 103

Multiple-Dimension Arrays . 105

Processing Array Contents . 105

Getting a Handle on the Size of Your Arrays . 108

Resizing Arrays . 109

Building Dynamic Arrays . 111

Erasing Arrays . 112

Storing Data in Dictionaries . 113

Keys and Values . 113

Adding Dictionary Items. 113

Retrieving Dictionary Items . 114

Deleting Dictionary Items. 114

Processing Data Passed to a Script at Run-Time. 114

Passing Arguments to Scripts . 114

Designing Scripts That Accept Argument Input . 115

Back to the Story of Captain Adventure . 117

Designing the Game . 117

The Final Result . 120

Summary . 121

viiTable of Contents

www.allitebooks.com

http://www.allitebooks.org

Chapter 5  Conditional Logic 123
Project Preview: The Planet Trivia Quiz Game. 123

Examining Program Data . 124

The If Statement. 125

The Select Case Statement. 133

Performing More Complex Tests with VBScript Operators . 135

Back to the Planet Trivia Quiz Game. 136

Game Development . 137

The Fully Assembled Script. 142

Summary . 142

Chapter 6 Processing Collections of Data 143
Project Preview: The Guess a Number Game . 143

Adding Looping Logic to Scripts . 144

The For…Next Statement . 145

The For Each…Next Statement . 147

The Do…While Statement . 149

The Do…Until Statement . 152

The While…Wend Statement . 153

Back to the Guess a Number Game . 154

Designing the Game . 154

The Final Result . 157

Creating Shortcuts for Your Game . 158

A Complete Shortcut Script . 163

Summary . 164

Chapter 7  Using Procedures to Organize Scripts 165
Project Preview: The BlackJack Lite Game . 165

Improving Script Design with Procedures . 167

Introducing Subroutines . 167

Creating Custom Functions . 168

Improving Script Manageability. 169

Writing Reusable Code . 170

The Guess a Number Game Revisited . 170

Working with Built-in VBScript Functions. 174

Limiting Variable Scope with Procedures . 174

Back to the BlackJack Lite Game . 176

Designing the Game . 176

The Final Result . 184

Summary . 184

viii Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

www.allitebooks.com

http://www.allitebooks.org

Part III
Advanced Topics 185

Chapter 8  Storing and Retrieving Data 187
Project Preview: The Lucky Lottery Number Picker . 187

Working with the Windows File System . 189

Opening and Closing Files . 191

Writing to Files. 194

Writing Characters. 194

Writing Lines . 195

Adding Blank Lines . 195

Reading from Files . 196

Skipping Lines . 198

Reading Files Character by Character . 198

Reading a File All at Once . 199

Managing Files and Folders . 199

Copying, Moving, and Deleting Files . 200

Copying One or More Files. 201

Moving One or More Files . 201

Deleting One or More Files . 202

Creating a New Folder . 202

Copying Folders . 202

Moving Folders. 203

Deleting Folders . 203

Storing Script Configuration Settings in External Files . 204

INI File Structure . 204

A Working Example . 205

Back to the Lucky Lottery Number Picker . 207

Designing the Game . 208

The Final Result . 216

Summary . 217

Chapter 9  Handling Script Errors 219
Project Preview: The Hangman Game. 219

Understanding VBScript Errors . 221

Understanding Error Messages . 221

Preventing Logical Errors . 222

Dealing with Errors . 223

Letting Errors Happen. 223

ixTable of Contents

www.allitebooks.com

http://www.allitebooks.org

Ignoring Errors. 224

Creating Error Handlers . 225

Reporting Errors . 227

Creating a Custom Log File. 228

Recording an Error Message in the Application Event Log . 229

Back to the Hangman Game. 230

Designing the Game . 230

The Final Result . 242

Summary . 243

Chapter 10  Using the Windows Registry
to Configure Script Settings 245

Project Preview: Part 2 of the Hangman Game . 245

Introducing the Windows Registry . 247

How Is the Registry Organized? . 248

Understanding How Data Is Stored in the Registry . 249

Accessing Registry Keys and Values . 250

Creating a Key and Value to Store Script Settings. 251

Creating or Modifying Registry Keys and Values . 252

Accessing Information Stored in the Registry . 252

Deleting Keys and Values. 252

Retrieving System Information Stored in the Registry . 253

Back to Part 2 of the Hangman Game . 254

Creating the Setup Script . 255

Updating the Hangman Game . 257

Summary . 262

Chapter 11  Working with Built-in VBScript Objects 265
Project Preview: The Tic Tac Toe Game . 265

Leveraging VBScript’s Built-in Collection of Objects . 267

Built-in Object Properties . 268

Built-in Object Methods . 268

Creating Custom Objects . 269

Defining a Custom Object. 270

Defining Object Properties and Methods . 270

Creating Event Procedures . 271

Working with the Err Object . 274

Working with Regular Expressions . 275

Replacing Matching Patterns . 276

Testing for Matching Patterns . 279

x Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Creating Matches Collections . 279

Back to the Tic Tac Toe Game. 280

Designing the Game . 281

The Final Result . 293

Summary . 294

Chapter 12  Combining Different Scripting Languages 295
Project Preview: The VBScript Game Console . 295

Introducing Windows Script Files . 297

Examining WSH-Supported XML Tags. 297

Using the <?job ?> Tag . 298

Using the <?xml ?> Tag . 299

The <comment> and </comment> Tags . 299

The <job> and </job> Tags . 300

The <package> and </package> Tags . 301

The <resource> and </resource> Tags . 302

The <script> and </script> Tags . 302

Executing Your Windows Script Files. 303

Back to the VBScript Game Console . 304

Designing the Game Console . 304

Using XML to Outline the Script’s Structure . 304

Writing the First JScript. 305

Developing the VBScript Game Console . 307

Writing the Second JScript . 315

The Final Result . 315

Summary . 316

Chapter 13  Working with the Windows
Management Instrumentation 317

Introducing the Windows Management Instrumentation. 317

WMI Infrastructure Overview . 319

Identifying WMI Consumers . 320

Examining the WMI Infrastructure . 320

Identifying Managed Resources . 323

Scripting the WMI. 323

Developing WMI Scripts . 323

Executing WMI Queries . 327

Using the WMI to Manipulate Managed Resources . 334

Locating CIM Information . 336

Summary . 336

xiTable of Contents

Chapter 14  Adding a GUI to Your Scripts 339
Project Preview: The HTA Rock, Paper, Scissors Game . 339

Introducing HTML Applications (HTAs) . 340

How Do HTAs Compare to HTML Pages? . 341

Creating and Executing an HTA. 342

Constructing an HTA . 343

Introducing the <HTA:APPLICATION> Tag . 343

The <script> </script> Tags . 347

The <body> </body>Tags . 348

The <style> </style> Tags . 349

Adding Interface Elements . 352

Creating Interface Controls Using the <input> Tag . 352

Adding a Button Control Using the <button> Tag. 360

Adding a Multi-Line Text Control Using the <textarea> Tag 360

Working with List Controls. 361

Integrating WSH into Your HTAs . 366

Starting Other Applications . 366

Using WMI to Capture Process Information . 367

Other HTA Examples. 370

Back to the Rock, Paper, Scissors Game. 370

Game Development . 371

The Fully Assembled Script. 375

Summary . 375

Part IV
Appendices 377

Appendix A  WSH Administrative Scripting 379
Desktop Administration . 380

Configuring the Desktop Background . 380

Configuring the Screensaver . 381

Network Administration. 383

Mapping Network Drives . 383

Disconnecting Mapped Drives . 385

Printer Administration . 386

Connecting to a Network Printer . 386

Disconnecting from a Network Printer . 387

xii Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Computer Administration . 389

Managing Services . 389

User Account Administration . 391

Disk Management . 392

Integrating VBScript with Other Applications . 394

Automating the Generation of Microsoft Word Reports . 394

Automating the Execution of Third-Party Applications . 397

HTML Applications. 399

Wrapping a GUI Around a WSH ping Script . 399

Automating Windows Shutdown . 402

Appendix B  Introducing Remote WSH 405
Introducing Remote WSH . 405

Understanding Remote WSH’s Supporting Architecture. 406

Executing Remote WSH Methods . 407

Responding to WSH Remote Events . 407

Accessing WSH Remote Properties . 408

Working with Remote WSH: A Demonstration . 409

Appendix C  The WSH Core Object Model 411
WSH Objects and Their Properties and Methods . 412

Examining Object Properties . 414

Working with Object Properties . 416

Examining Object Methods . 417

Working with Object Methods . 419

Appendix D  Built-in VBScript Functions 421

Appendix E What’s on the Companion Website? 427
Script Examples . 427

Index 433

xiiiTable of Contents

This page intentionally left blank

Welcome to the fourth edition of Microsoft WSH and VBScript Programming for the Absolute Beginner.
Visual Basic Scripting language (VBScript) is a member of the Visual Basic family of programming lan-
guages. Other members of this family include Visual Basic and Visual Basic for Applications (VBA). Visual
Basic is a very powerful and complex programming language used by programming professionals all over
the world. VBA is a programming language based on Visual Basic that is designed to provide a programming
environment for Microsoft Office applications such as Excel and Access.

Like VBA, VBScript represents a subset of the Visual Basic programming language. VBScripts can be run
on any computer running Windows 95 or later as long as the Windows Script Host (WSH) is installed.
The WSH represents one of several environments in which VBScripts can be run. Other environments in
which VBScripts can run include HTML pages processed by Internet Explorer–compatible Web browsers
and within Microsoft Outlook or Active Server Pages (ASP). Of all the environments in which VBScripts
can run, the WSH is the most commonly used. However, by learning to write VBScripts using the WSH,
you are also learning much of the prerequisite knowledge required to write VBScripts that will run in
each of these other environments.

The WSH provides VBScripts with the capability to execute on Windows computers and to directly access
and manipulate Windows resources such as the Windows desktop, file system, Registry, printers, network
resources, and so on. You can think of the relationship between VBScript and the WSH as follows: VBScript
provides the capability to create scripts and apply logic to perform specific tasks that manipulate Windows
resources, which are made available to the script via the WSH.

Why VBScript?
VBScript is an excellent first programming language to learn. Its simplicity makes learning basic program-
ming concepts easy. Yet VBScript is a powerful scripting language from which you can learn even the most
complex programming concepts such as how to perform object-based programming. Unlike Visual Basic,
VBA, and many other programming languages, there is no complex development environment to learn.
In fact, you can create all your VBScripts using a simple text editor such as Windows Notepad.

VBScript provides a foundation that will later make learning Visual Basic and VBA a lot easier. VBScript
is a great language for developing small but powerful scripts that perform all sorts of tasks. In fact, you’ll
find that many VBScripts are not very big at all when compared to programs written using more tradi-
tional programming languages. As you read through this book, I think you will be amazed at just what
you can do with only a handful of lines of VBScript code. This makes VBScript the perfect language for
rapid development, meaning that you can often write a VBScript to perform a task in a fraction of the
time that it might take to write a program that performs the same task using a different programming
language. Best of all, VBScript is free.

Introduction

Who Should Read This Book?
This book is designed to teach you how to begin developing VBScripts using the WSH. It does not assume
that you have a programming background. However, a basic understanding of computers and Microsoft
Windows is assumed.

If you are a first timer looking for a friendly language with which to begin a programming career or a
more experienced programmer who is looking for a book that provides you with a quick WSH and VBScript
learning curve, then give this book a try.

This book’s games-based teaching approach makes it very different from other books. This approach is
not only more fun, but is also an extremely helpful technique for learning a new programming language.

What You Need to Begin
To follow along and complete all the exercises that you’ll find in this book, you’ll need a number of things:

• A computer running Windows.

• The current version of the WSH, which is version 5.8. If your computer is running Windows 7,
Windows 8, or Windows 8.1, then you already have the version of WSH that you need. If you are
using Windows XP with Service Pack 3 or Windows Vista, you can download and install WSH 5.7
from www.microsoft.com/downloads/.

• A text editor that supports the creation of plain-text files to create and work with your VBScripts.
For this book, you can use the Windows Notepad application. Alternatively, you may prefer to
download and install a VBScript-compatible script editor. Specialized VBScript editors provide
numerous advanced features not provided by Notepad, including statement color-coding, a built-in
debugger, line and column numbering, script execution from within the editor, statement indentation,
and more. A good example of a VBScript editor is Adersoft VbsEdit. It is distributed as shareware
with a limited period of free trial and can be downloaded from www.vbsedit.com.

How This Book Is Organized
The fourth edition of Microsoft WSH and VBScript Programming for the Absolute Beginner has been
improved in a number of ways. For starters, it has been updated to cover WSH 5.8 and VBScript 5.8, both
of which were updated with the release of Windows 7. All scripts have been tested and their execution
verified on both Windows 7 and Windows 8.1. In addition, a new chapter has been added that provides an
introduction to HTML Applications (HTAs), which provide a mechanism for creating scripts that feature
a graphical user interface (GUI). Lastly, I have streamlined coverage of many topics spread throughout
the book to provide an even better learning experience.

This book is organized into four parts with the intention that you read it sequentially from beginning to end.
If you are a new or inexperienced programmer, you will want to read this book in this manner. However,

xvi Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

http://www.microsoft.com/downloads/
http://www.vbsedit.com

if you already know another programming language and feel that you have a strong enough background
in basic programming concepts, you might want to skip around and tackle each chapter in the order that
best suits your particular requirements.

Part I, “Introducing the WSH and VBScript,” consists of two chapters and provides an introduction to both
VBScript and the WSH. Part II, “Learning VBScript and WSH Scripting,” contains five chapters, which
cover the programming statements that make up the VBScript scripting language. In addition, you’ll find
coverage of the WSH woven throughout these chapters. The seven chapters in Part III, “Advanced Topics,”
are dedicated to covering a collection of advanced topics that include file and folder administration, error
handling, interaction with the Windows Registry, working with built-in VBScript objects, using XML
to create WSH files, working with Windows Management Instrumentation, and adding graphical user
interfaces to your scripts. Part IV, “Appendices,” is a collection of five appendices that provide you with
additional avenues of exploration, including examples of real-world scripts, an introduction to Remote
WSH, documentation of built-in VBScript functions, and a look at this book’s companion website.

The basic outline of the book is as follows:

• Chapter 1, “Getting Started with the WSH and VBScript.” This chapter provides a high-level
introduction to both the WSH and VBScript. This includes how to install the WSH and how to
create and execute your first VBScript.

• Chapter 2, “An Introduction to the Windows Script Host.” This chapter provides an introduction
to the WSH core object model and the objects that comprise it. Particular attention is paid to the
WScript root object. You’ll also learn how to configure the WSH and how to specify a default script
execution host.

• Chapter 3, “VBScript Basics.” This chapter begins your VBScript education. You’ll learn about
VBScript’s core and run-time objects and their properties and methods. You’ll learn about
other VBScript elements including VBScript’s built-in functions, syntax rules, and output methods.
You’ll also learn about various WSH output functions.

• Chapter 4, “Constants, Variables, Arrays, and Dictionaries.” This chapter shows you how to create
and reference data stored in the computer’s memory using constants, variables, and arrays. You’ll
learn about VBScript’s built-in collection constants. This chapter also presents the rules for variable
creation and the enforcement of variable use as well as the techniques required to store and retrieve
collections of data in arrays.

• Chapter 5, “Conditional Logic.” This chapter expands your scripting background to include an
understanding of how to add conditional logic to your scripts to provide alternative execution
paths for script execution. You’ll examine both the VBScript If and Select Case statements. In
addition, you’ll learn about VBScript operators and operator precedence.

• Chapter 6, “Processing Collections of Data.” This chapter teaches you how to process collections
of data and resources using various VBScript looping statements (For…Next, Do While, Do…Until,
While…End, and For Each…Next). You’ll learn how to write small scripts that can add shortcuts to
your scripts on the Windows desktop and Start menu.

xviiIntroduction

• Chapter 7, “Using Procedures to Organize Scripts.” In this chapter, you learn how to improve the
organization of your scripts using procedures. You’ll also be introduced to the concept of creating
reusable procedures. This will help you create scripts that are more complicated and easier to modify.

• Chapter 8, “Storing and Retrieving Data.” This chapter teaches you how to create VBScripts that
can write to and read from text files. In addition to learning how to create reports and log files,
this chapter shows you how to store and retrieve script configuration settings in INI files, thus
allowing you to externalize key script settings.

• Chapter 9, “Handling Script Errors.” This chapter focuses on teaching you how to deal with the
errors that occur during script development and execution. This chapter introduces errors during
script development and shows you how to troubleshoot them. In addition, you’ll learn how to
bypass errors and to develop code that handles specific error conditions.

• Chapter 10, “Using the Windows Registry to Configure Script Settings.” This chapter provides an
overview of the Windows Registry and shows you how to develop scripts that store and retrieve data
in Registry keys and values. Because most Windows functionality is controlled from the Registry, this
knowledge will provide the basic building blocks required to manipulate any number of Windows
settings.

• Chapter 11, “Working with Built-in VBScript Objects.” This chapter expands your understanding
of object-based programming by reviewing VBScript’s built-in collection of objects. Specifically,
you’ll learn new techniques for parsing and extracting data from strings.

• Chapter 12, “Combining Different Scripting Languages.” In this chapter, you learn how to take
advantage of the WSH’s support for Windows Script Files. Windows Script Files enable you to
combine two or more WSH-supported scripting languages, such as VBScript and JScript, into a
single script using XML. You’ll also learn a little about XML and the XML tags supported by the WSH.

• Chapter 13, “Working with the Windows Management Instrumentation.” This chapter was
added to the third edition of this book. It provides an overview of the WMI and the WMI model.
You will learn about WMI objects, namespaces, providers, and classes. You will also learn how to
develop scripts that use WMI to collect and process systems information.

• Chapter 14, “Adding a GUI to Your Scripts.” This chapter, which is entirely new to this edition of
the book, introduces HTML Applications (HTAs), which can be used to provide scripts with
graphical user interfaces (GUIs). This chapter explains how HTAs work and teaches you how to
add GUIs to your scripts, replete with radio buttons, checkboxes, text fields, drop-down lists, and
other attributes associated with Windows applications.

• Appendix A, “WSH Administrative Scripting.” In this appendix, I show you some practical examples
that demonstrate the use of VBScript and the WSH in real-world situations. This appendix will assist
you in making a transition from the book’s game-based approach to real-world script development.

• Appendix B, “Introducing Remote WSH.” This appendix was added to the third edition of this
book. In it, you will learn how to execute, monitor, and terminate the remote execution of scripts
using Remote WSH. You will learn about the objects that make up Remote WSH and how to work
with their properties and methods.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Editionxviii

Introduction xix

• Appendix C, “The WSH Core Object Model.” This appendix provides detailed information on the
WSH core object model using material previously presented in Chapter 2. This includes a detailed
examination of WSH objects’ methods and properties.

• Appendix D, “Built-in VBScript Functions.” In this appendix, I list and define all the functions
that are available as you develop your VBScripts.

• Appendix E, “What’s on the Companion Website?” In this appendix, I provide more information
about the sample scripts provided on the book’s companion website (www.cengageptr.com/downloads).

Conventions Used in This Book
To help make this book as easy as possible to read and understand, a number of conventions have been applied
to help highlight critical information and to emphasize specific points. These conventions are as follows:

Hint

Whenever I can, I provide tips on how to do things differently and point out techniques that you can try
to become a better programmer in “hint” boxes.

Trap

From time to time, I use “trap” boxes to point out areas where you are likely to run into problems and
then provide you with advice on how to deal with these situations—or, better yet, to prevent them from
happening in the first place.

Trick

Whenever I can, I share programming shortcuts that will help to make you a better and more efficient
programmer. These appear in “trick” boxes.

Throughout the book, I’ll stop along the
way to point out how the knowledge and
techniques that you are learning can be
applied to real-world scripting projects.
These will appear in “real world” boxes.

In
 t

he
 R

ea
l W

o
rl

d

Whenever a new term is introduced,
I will provide you with an explanation
of that term’s meaning in a “definition”
box.D

ef
in

it
io

n

www.allitebooks.com

http://www.cengageptr.com/downloads
http://www.allitebooks.org

In addition, toward the end of each chapter, you will find instructions that guide you through the devel-
opment of a new computer game. In most chapters, immediately following each game project, you will
find a series of suggestions or challenges designed to provide you with ideas that you should be able to
apply in order improve the game and further the development of your programming skills. These appear
under a “Challenge” heading.

Companion Website Downloads
You may download the files for this book from www.cengageptr.com/downloads. For more information
about what files are available, see Appendix E.

xx Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

http://www.cengageptr.com/downloads

IP
A

R
T

Introducing the
WSH and VBScript

Chapter 1: Getting Started with the
WSH and VBScript

Chapter 2: An Introduction to the
Windows Script Host

This page intentionally left blank

Getting Started with the
WSH and VBScript

1
I

n this chapter, you’ll be introduced to a number of topics. These include a high-level
overview of the Windows Script Host (WSH) and VBScript. You will learn how the
WSH and VBScript work together to provide a comprehensive scripting environment.

You will also be introduced to HTML Applications (HTAs) and learn how an HTA can be
used to provide your scripts with a graphical user interface (GUI). In addition, you’ll learn
a little bit about VBScript’s history and its relationship to other languages in the Visual Basic
programming family. As a wrap-up, you’ll learn how to create and execute your very first
VBScript.

Specifically, you will learn the following:

• The basic mechanics of the WSH

• How to write and execute VBScripts using the WSH

• Background information about VBScript and its capabilities

• How you can use HTAs to add GUIs to your scripts

• How to create your first VBScript game

Project Preview: The Knock Knock Game
In this chapter, as in all the chapters to follow, you will learn how to create a computer
game using VBScript. This chapter’s game is called the Knock Knock game. Actually, it’s
more of a riddle than a game, but it provides a great starting point for demonstrating how
VBScript works and how it can be used to develop games and other useful scripts.

4

The Knock Knock game begins by displaying a pop-up dialog box that reads “Knock Knock.” It then waits
for the user to respond with “Who’s there?” The dialog between the game and the player continues until
the computer finally displays the game’s punch line. Figures 1.1 through 1.3 demonstrate operations of the
script on Windows 7 and show the flow of the conversation between the game and the player. Figure 1.4
shows the message that appears if the player does not play the game correctly.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 1.1 The game begins by knocking on the door
and waiting for the player to respond. © 2014 Cengage Learning.

Figure 1.2 The first clue is provided.
© 2014 Cengage Learning.

Figure 1.3 The joke’s punch line is delivered.
© 2014 Cengage Learning.

Figure 1.4 If the user makes a mistake when playing the
game, an error message providing another invitation to play
the game appears. © 2014 Cengage Learning.

By the time you have created and run this game, you’ll have learned the fundamental steps involved in
writing and executing VBScripts. At the same time, you will have prepared yourself for the more advanced
programming concepts developed in later chapters, including how to use the WSH and VBScript to develop
some really cool games.

What Is the WSH?
The Windows Script Host (WSH) is a programming environment that allows you to write and execute
scripts that run on Windows operating systems. You can use the WSH to create and execute scripts—small
text-based files written in an English-like programming language—from the Windows command prompt
or directly from the Windows desktop. Scripts provide quick and easy ways to automate lengthy or mun-
dane tasks that take too much time or effort using the Windows graphical user interface (GUI). Scripts
are also better suited for automating tasks that are not complex enough to justify the development of an
entire application using a language such as C++ or Visual Basic.

The WSH is made up of a number of different components. These components include the following:

• Script engines

• Script execution hosts

• The WSH core object model

The relationship of each of the components to one another is shown in Figure 1.5.

WSH Scripting Engines
A script execution engine is a program that processes (interprets) the statements that make up scripts and
translates them into machine-readable code that the computer can understand and execute. By creating
an environment in which scripts can execute, the WSH makes script development a straightforward task.

The WSH provides each script with a number of resources. The WSH provides script engines for processing
scripts. By default, Microsoft provides two script engines for the WSH:

• VBScript. A scripting language based on Microsoft’s Visual Basic programming language.

• JScript. A scripting language based on Netscape’s JavaScript Web-scripting language.

Therefore, by default, the WSH can process scripts written in either VBScript or JScript. The WSH is
designed in a modular fashion, allowing Microsoft and third-party software developers to add support for
additional scripting engines. For example, script execution engines have been developed for Perl, Python,
and Rexx.

5Chapter 1 • Getting Started with the WSH and VBScript

Figure 1.5 The components that comprise the WSH.
© 2014 Cengage Learning.

Selecting a WSH Script Execution Host
To actually run a script, the WSH uses a script execution host to process a script after a script engine has
interpreted that script. The WSH supplies two different script execution hosts:

• CScript.exe. An execution host that enables scripts to execute from the Windows command

prompt and display text-based messages.

• WScript.exe. An execution host that enables scripts to execute from the Windows desktop, display

messages, and collect user input using graphical pop-up dialog boxes.

With the exception of the WScript.exe execution
host’s capability to display graphical pop-up dialog
boxes, the functionality provided by the WSH’s two
execution hosts is identical. In fact, if you run a script
using the CScript.exe execution host, the script can,
depending on how it is written, still display messages
using pop-up dialog boxes.

As both execution hosts provide the same basic functionality, you’re probably wondering which one you
should use. There’s no right or wrong answer here. Often, the selection of an execution host is simply a
matter of personal preference. However, there are some circumstances in which you may want to choose
one over the other. For example, if you plan to run your scripts in the background, or if you want to sched-
ule the execution of your scripts using the Windows Task Scheduler service and have no requirement for
interacting with the user, you might want to use CScript.exe. However, if your scripts need to interact with
the user—which will be the case with the games you’ll create with this book—you’ll want to use the
WScript.exe execution host. Another factor that may affect your selection of a script execution host is your
personal comfort level in working with the Windows command prompt.

Introducing the WSH Core Object Model
The WSH provides one final component, called the core object model, which is critically important to the
development and execution of scripts. The WSH core object model provides VBScript with direct access
to Windows resources.

Examples of the types of Windows resources to which the WSH core object model provides access include
the following:

• Windows desktop

• Windows Start menu

• Windows applications

• Windows file system

6 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Within the context of this discussion, the
term host describes an environment that
provides all the resources required for a
script to execute.D

ef
in

it
io

n

• Network printers

• Network drives

• Windows Registry

The Windows operating system can be viewed as a collection of objects. For example, a file is an object. So
is a folder, disk drive, printer, or any other resource that is part of the computer. What the core object
model does is expose these objects in a format that
allows scripts to view, access, and manipulate them.
Each exposed object has associated properties and
methods that scripts can then use to interact with
an object, as well as affect its behavior or status. For
example, a file is an object, and a file has a number
of associated properties, such as its name and file
extension. By exposing the Windows file system, the WSH enables scripts to access files and their proper-
ties and to perform actions, such as renaming a particular file or its file extension. Files also have methods
associated with them. Examples of these methods are those that perform the copy and move operations.
Using these methods, you can write scripts that can move or copy files from one folder to another or, if
you are working on a network, from one computer to another.

Don’t worry if the WSH core object model seems a little confusing right now. You will learn more about
it in Chapter 2, “An Introduction to the Windows Script Host.” In addition, you can jump to Appendix C,
“The WSH Core Object Model,” at any time for
additional insight. The important thing to understand
for now is that the WSH enables scripts to access
Windows resources (objects) and to change their
attributes (properties) or perform actions that affect
them (using object methods).

How Does the WSH Compare to Windows Shell Scripting?
Windows shell scripts are plain text files that have a .bat or .cmd file extension. Unlike scripts written
to work with the WSH, which are written using specific scripting languages like VBScript and JScript,
Windows shell scripts are developed using regular Windows commands and a collection of shell-scripting
statements. The WSH provides a more complete scripting environment due in large part to its core object
model. However, Windows shell scripts still offer a powerful scripting solution. This is partly because you
can execute any Windows command or command-line utility from within a shell script. Windows shell
scripting also provides a complete collection of programming statements that include support for variables,
looping, conditional logic, and procedures. For non-programmers, shell scripts may be easier to read,
understand, and modify.

Another difference between scripts written using the WSH and Windows shell scripts is that Windows shell
scripts only support text-based communications with the user. In other words, shell scripts cannot display
messages or prompt the user for information using graphical pop-up dialog boxes. Windows shell scripting
does not provide support for any type of object model like the WSH does. Therefore, Windows shell scripts
are not capable of directly interacting with many Windows resources. For example, Windows shell scripts
cannot directly edit the Windows Registry or create desktop shortcuts. However, Windows Resource Kits

7Chapter 1 • Getting Started with the WSH and VBScript

In this book, the term property refers to
an object-specific attribute, such as a file’s
name, that can be used to affect the status
of the object.D

ef
in

it
io

n

In this book, the term method is used to
refer to a built-in function that your scripts
can execute to perform an action on an
object, such as to copy or move a file to
another location.D
ef

in
it

io
n

provide Windows shell scripts with access to a number of command-line utilities that provide indirect
access to many Windows resources.

To write shell scripts, you must have a good understanding of Windows commands and their syntax. You
must also be comfortable working with the Windows command prompt. Conversely, to effectively use the
WSH, you must be well versed in one of
its supported scripting languages. There
are many cases in which you can accom-
plish the same task using either Windows
shell scripting or the WSH. As a general
rule, however, the more complex the
task, the more likely you’ll want, or need,
to use the WSH.

Hint

If you’re really interested in learning more about Windows shell scripting, read Microsoft Windows Shell
Script Programming for the Absolute Beginner (ISBN 1-59200-085-1).

WSH Versus Windows PowerShell
PowerShell is fully integrated into Microsoft’s .NET framework, providing system administrators with access
to system resources. Like VBScript and the WSH, Windows PowerShell is object oriented. PowerShell lets
you execute PowerShell commands, referred to as cmdlets, and develop and execute small scripts that use
those cmdlets.

Like WSH and VBScript, Windows PowerShell provides access to system resources and can be used to pro-
grammatically interact with the files system, Windows Registry, .NET, and WMI. WSH, VBScript, and
Windows PowerShell support a robust collection of language constructions like variables, conditional
logic, loops, and functions.

Unlike WSH and VBScript, PowerShell does not support the use of pop-up dialog boxes and is restricted
to the command line. Unlike VBScript, which is based on the widely popular and easy-to-use BASIC pro-
gramming language, Windows PowerShell represents a completely new scripting language, which is
arguably more difficult for new programmers to learn and understand.

Microsoft has put a lot of time and resources into the development of Windows PowerShell and is pro-
moting it as the future of Windows scripting. However, Microsoft is continuing to support the WSH as a
Windows scripting environment, as evidenced by the recent release of WSH 5.8. Microsoft will continue
to support the WSH—and for good reason. Companies all over the world have invested significant time
and resources in it and have developed hundreds of millions of lines of code that are used to run mission-
critical applications and administer servers and workstations.

8 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

A Windows Resource Kit is a combination of addi-
tional utilities and documentation designed for a
particular Windows operating system but provided
as a separate downloadable package. You can obtain
Windows Resource Kits via the Microsoft Download
Center (www.microsoft.com/en-us/download).

D
ef

in
it

io
n

http://www.microsoft.com/en-us/download

Companies continue to rely on the WSH and VBScript and extend their use. As such, WSH and VBScript
programming will remain essential for application developers and systems administrators for the foresee-
able future.

Hint

If you’re really interested in learning more about Windows PowerShell, read Microsoft Windows PowerShell
2.0 Programming for the Absolute Beginner, Second Edition (ISBN 1-59863-899-8).

Understanding How the Windows Shell Works
Even if you have used Windows operating systems for many years, chances are that you have only limited
experience working with the Windows shell. To become a really efficient and proficient script programmer,
you’ll need a solid understanding of what the Windows shell is and how to work with it.

An understanding of how to work with the Windows
shell is also important when learning how to work
with the Cscript.exe execution host, because scripts
run by this execution host are generally started from
the Windows command prompt. Finally, it’s impor-
tant to understand the Windows shell when working
with the WScript.exe execution host because it pro-
vides support for command-line script execution.

You cannot touch the Windows operating system itself. This would be far too complex and difficult.
Instead, you must go through an interface. Windows operating systems support two such interfaces:

• The Windows GUI. The Windows GUI is provided in the form of the Windows desktop, Start

menu, and other graphical elements with which you normally interact when using your computer.

The purpose of the GUI is to make the operating system easier to work with.

• The Windows shell. The Windows shell is a text-based interface between you or your scripts

and the operating system. You communicate with the Windows shell by typing commands in the

Windows command prompt; the Windows shell translates these commands into a format that

the operating system can process. The operating system then returns any results to the Windows

shell, which displays them in the Windows Console.

Accessing the Windows Console in Normal Mode
To access the Windows shell and begin working with it using the command prompt, you must first open a
Windows Console. To open a Windows Console on a computer running Windows Vista or Windows 7 (see
Figure 1.6), open the Start menu, choose All Programs, choose Accessories, and then choose Command
Prompt.

9Chapter 1 • Getting Started with the WSH and VBScript

The Windows command prompt enables
you to submit commands to the Windows
shell for processing. By default, the com-
mand prompt appears in the form of a drive
letter followed by a colon, the backslash
character, and then the greater-than char-
acter (for example, C:\>).

D
ef

in
it

io
n

www.allitebooks.com

http://www.allitebooks.org

To open a Windows Console on Windows 8.1, press the Windows key on the keyboard, type cmd, and then
press the Enter key.

Accessing the Windows Console in Elevated Mode
In previous editions of this book, all interaction with the Windows shell was done through the Windows
Console in what now can be referred to as normal mode. Starting with Windows Vista, however, Microsoft
introduced the concept of elevated command line access, such that there are now two different modes in
which the Windows Console can operate. In normal mode, you can execute any command or script as long
as it does not require administrative level privileges to run.

Hint

For most of the examples and work done in this book, accessing the command prompt through a
Windows Console operating in normal mode will be sufficient.

Starting an Elevated Windows Console

To execute commands and scripts requiring elevated access privileges, you need to open an elevated
instance of the Windows Console. Doing so is easy. On Windows Vista and Windows 7, all you have to do
is open the Start menu, type cmd in the Search field, right-click the cmd utility, and then choose Run as
Administrator from the pop-up menu that appears (see Figure 1.7).

10 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 1.6 The Windows 7 Console provides access to the Windows command prompt.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

In response, Windows Vista or Windows 7 will display the User Account Control dialog box shown in Figure
1.8. This dialog box requires you to confirm your command to run the Windows Console in elevated mode.
Click Yes; Windows will display the window shown in Figure 1.9. You can tell the Windows Console is run-
ning in elevated mode by the appearance of the word “Administrator” in the text string displayed in the
Windows Console’s title bar (see Figure 1.9).

11Chapter 1 • Getting Started with the WSH and VBScript

Figure 1.7 Accessing the Windows Console in elevated mode on a computer running Windows 7.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

Figure 1.8 The User Account Control dialog box on a computer running Windows 7.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

To open a Windows Console in elevated mode on Windows 8.1, move the cursor to the bottom-right corner
of the screen. This will display a list of icons, the top-most of which is the Search icon. Click this icon and
type cmd. When the Windows Console option appears, right-click it and select Run as Administrator from
the menu that appears.

Adding a Menu Command for Starting an Elevated Windows Console

If you find yourself frequently needing to work with Windows Console in elevated mode, you can configure
a Run as Administer menu option for the Windows Console to make things easier on yourself. The follow-
ing procedure outlines how to set this up on a computer running Windows 7.

1. Click the Start button, type Regedit in the Search field, and press the Enter key to open the Regedit

utility.

2. Click Yes when prompted by the User Account Control dialog box.

3. Navigate to the following key: HKEY_Classes_Root\VBSFile\Shell.

4. Right-click the key, select New > Key, and type RunAs as its name.

5. Right-click the RunAs key and select New > Key. Then type Command as its name.

6. Select the Command key and then double-click its (Default) value to open the Edit String dialog box.

7. Type “C:\Windows\System32\WScript.exe” “%1” %” as its Value data and click OK.

12 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 1.9 The Windows Console in elevated mode on a computer running Windows 7.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

8. Right-click on the Command key and select New > String Value. Then type IsolatedCommand and

press the Enter key.

9. Double-click the IsolatedCommand key to display the Edit String dialog box.

10. Type “C:\Windows\System32\WScript.exe” “%1” %” as its Value data and click OK.

11. Close the Regedit utility.

Now the next time you need to run a VBScript using the WScript host with elevated privileges, all you have
to do it right-click on the script and select Run as Administrator from the menu that appears, as shown in
Figure 1.10.

13Chapter 1 • Getting Started with the WSH and VBScript

Figure 1.10 Adding Run as Administrator as a menu option for your VBScripts.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

Interacting with the Windows Shell through the Command Prompt
As you can see, when the Windows Console first opens, it displays information about the version of Windows
in use and Microsoft’s copyright information. Then the command prompt appears. Just to the right of the
command prompt, you’ll see a blinking cursor or underscore character. This character indicates that the
command prompt is ready to accept input. For example, type the command DIR and then press the Enter
key. The DIR, or directory, command instructs Windows to display a list of all the files and folders in the
current working directory. The following output shows the results that were returned when I executed this
command on my computer:

C:\>dir

Volume in drive C is OS

Volume Serial Number is 2A2C-3CC5

Directory of C:\

03/29/2012 05:37 PM <DIR> Apps

03/29/2012 06:27 PM <DIR> Drivers

10/08/2013 09:44 AM <DIR> history

11/10/2013 11:14 PM <DIR> Program Files

11/10/2013 11:19 PM <DIR> Program Files (x86)

10/04/2013 04:23 PM <DIR> Scripts

01/23/2013 09:46 PM <DIR> Temp

03/03/2013 11:25 AM <DIR> Users

11/02/2013 10:39 AM <DIR> Windows

5 File(s) 40,180 bytes

17 Dir(s) 283,386,662,912 bytes free

C:\>

As you can see, the last line in the output is the Windows command prompt. The Windows shell redisplays
the command prompt as soon as the output of the DIR command is complete, allowing for the entry of
another command. For example, if I have a VBScript named Hello.vbs in a folder named Scripts on the
computer C: drive, I could execute it by typing CScript C:\Scripts\Hello.vbs and pressing the Enter
key. After the script finishes its execution, I could type additional commands, run more scripts, or end my
Window shell session by closing the Windows Console. The Windows Console is closed just like any other
Windows application: by clicking the Close (×) button in the upper-right corner of the Windows screen or
by right-clicking on the icon in the upper-left corner of the screen and selecting Close.

Hint

You also can close the Windows Console by typing Exit and pressing the Enter key.

14 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

How Does It All Work?
To execute a script using the WSH, you must first create the script using one of the WSH’s supported
scripting languages. In this book, that language is VBScript. Windows operating systems recognize the type
of data stored in files based on the file extension assigned to the file. For example, a file with a .txt file
extension is a text file. Windows automatically associates files with this file extension with its Notepad
application. Therefore, when you double-click on a file with a .txt extension to open it, Windows auto-
matically loads the file into Notepad.

When you create your VBScripts, you need to save them as plain-text files and assign them a .vbs file exten-
sion. That way, Windows will know that the file contains VBScripts. In a similar fashion, to write a script
using JScript, you must save the file with a .js file extension so that Windows can properly identify it as well.

As long as the WSH has been installed on your computer, all you have to do to execute a script that has
been saved with the appropriate file extension is to run it. There are several ways to run a script. One way
is to simply double-click on the file. Windows will recognize the file as a script and then automatically
process it using the appropriate WSH script engine (based on the script’s file extension). What happens
next depends on how you have configured the WSH. By default, the WSH is configured to run all scripts
using the WScript.exe execution host, although you can modify this default behavior to make the
CScript.exe execution host the default if you want. However, the WScript.exe execution host allows scripts
to display messages and to collect text input using graphical pop-up dialog boxes, but the CScript.exe exe-
cution host does not. As the script runs in the execution host, it can access and manipulate Windows
resources, thanks to the core object model.

Trap

Windows runs a script based on the authority of the person who starts it. Therefore, your scripts have no
more access to Windows and its resources than you do. If you try to create a script to perform a task that
you cannot perform manually via the GUI, your script will not work. If this is the case, you might want to talk
with your system administrator to see if you can be assigned additional access permissions and user rights.

Operating System Compatibility
The current version of the WSH is 5.8. This is the fifth version of the WSH released by Microsoft. The four
previous versions were versions 5.7, 5.6, 2.0, and 1.0. Depending on which operating system your com-
puter runs, you may already have access to one of these versions. For example, if you are using Windows
Server 2008 R2, Windows 7, Windows 8, or Windows 8.1, then you already have WSH 5.8. However, if you
work with other Windows operating systems, you likely have an older version of the WSH installed. Table 1.1
provides a list of Windows operating systems and the version of the WSH that is supplied with them.

This book covers WSH 5.8 and VBScript 5.8. However, because WSH 5.6 and WSH 5.7 and VBScript 5.6
and VBScript 5.7 are nearly identical, everything that you learn in this book should apply to these earlier
versions.

15Chapter 1 • Getting Started with the WSH and VBScript

Hint

Microsoft provides free downloads for WSH 5.7 for Windows 2000, Windows XP, and Windows 2003
from the Microsoft Download Center (www.microsoft.com/downloads/). As of the writing of this book,
no downloads were available for WSH 5.8. Windows XP users can also upgrade to WSH 5.7 by installing
Service Pack 3. WSH upgrades are not longer available for Windows 95, NT, 98, or Me.

How Do You Install It?
You can download and upgrade to WSH 5.7 on Windows 2000, XP, or 2003. Microsoft provides separate
downloads for each of these three operating systems at www.microsoft.com/downloads/. The steps involved
in upgrading to version 5.7 once you’ve downloaded it are outlined here:

1. Double-click on the Windows script host file that you downloaded to begin the installation process.

2. Click Next when the Software Update Installation wizard appears.

3. Click I Agree when prompted by the wizard to accept the license agreement.

4. The wizard will complete the installation process. Click Finish when prompted to close the wizard.

When the installation process is complete, the following components will have been installed. At this
point, your computer is ready to support the development and execution of VBScripts using the latest and
most reliable version of WSH and VBScript.

• Visual Basic Script Edition (VBScript) 5.7

• JScript 5.7

• Windows Script Host 5.7

16 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Operating System WSH Version

Windows 95 None

Windows NT 4.0 None

Windows 98 1.0

Windows 2000 2.0

Windows Me 2.0

Windows XP 5.6

Windows 2003 5.6

Operating System WSH Version

Windows 2008 5.7

Windows Vista 5.7

Windows 7 5.8

Windows 8 5.8

Windows 8.1 5.8

Windows 2012 5.8

TA B L E 1 .1 V E R S I O N S O F T H E WSH F O U N D

O N M I C R O S O F T O P E R AT I N G SY S T E M S

© Jerry Lee Ford, Jr. All Rights Reserved.

http://www.microsoft.com/downloads/
http://www.microsoft.com/downloads/

Hint

WSH 5.7 downloads as a Windows Package Installer file, allowing you to manage it using the Add/Remove
Programs option in the Windows Control Panel.

How Does It Work with VBScript?
Microsoft originally designed VBScript to operate as a Web-scripting language. That means it could run
only when embedded within HTML pages that were executed by Internet Explorer. VBScript’s success as
a Web-scripting language has always been limited. One reason for this is that Netscape never provided sup-
port for it in its Internet browser. In addition, from the beginning, Netscape provided JavaScript free of
charge. There was hesitation on the part of many programmers to abandon JavaScript for VBScript, which
Microsoft maintained as a proprietary technology, meaning that Microsoft and Microsoft alone owned
and controlled VBScript.

Microsoft has since created a modified version of VBScript that is designed to work with the WSH. This
version of VBScript lacks many of the features found in browser-based versions of VBScript. For example,
it does not work with forms and frames. Then again, as a WSH scripting language, VBScript doesn’t need
this functionality because these types of resources are beyond the scope of its environment.

Hello World: Creating and Executing Your First VBScript
Instead of being embedded within HTML pages, VBScripts run by the WSH are saved as standalone files
with a .vbs file extension. For example, take a look at the following VBScript:

MsgBox “Hello World!”

As you can see, the script consists of just one line of code. To create this script, open your editor and type
the line of code exactly as I’ve shown it here and then save the script as Hello.vbs. That’s it. Now run it:
First locate the folder in which you saved the script and then double-click on it. You should see a graphical
pop-up dialog box similar to the one shown in Figure 1.11.

Let’s talk about the script that you just wrote and executed. First of all, because you executed it by double-
clicking it, you ran it using the default execution host. The default execution host is WScritp.exe unless
you’ve changed it. (I’ll go over how to change the execution host in the next chapter.) The script itself exe-
cutes a VBScript function called MsgBox().

17Chapter 1 • Getting Started with the WSH and VBScript

Figure 1.11 Viewing the pop-up dialog box created by your first VBScript.
© 2014 Cengage Learning.

The MsgBox() function is a built-in VBScript function that you can call within your scripts to display mes-
sages in pop-up dialog boxes. As you can see, the text “Hello World!” was displayed when you ran the
script. This VBScript was run using a WSH execution engine (for example VBScript) and one of the WSH’s
two execution hosts (either WScript.exe or CScript.exe). However, the code itself was all VBScript.

Let’s modify the script just a little bit to demonstrate how to incorporate the WScript object. The WScript
object is one of a small number of objects that make up the WSH core object model. (I’ll go over this object
and the rest of the WSH core object model in greater detail in Chapter 2 and Appendix C.) Using your edi-
tor, open the Hello.vbs script and modify it so that it looks exactly like the following example:

Set WshShl = WScript.CreateObject(“WScript.Shell”)

WshShl.Popup “Hello World!”

Now save the script and run it again. This time, unless you entered
a typo, you should see a pop-up dialog box similar to the one
shown in Figure 1.12.

As you can see, things look pretty much the same. The same message is displayed and the words “Windows
Script H…” are now displayed in the pop-up dialog box’s title bar. Let’s break it down and examine exactly
how the script is now written. Don’t worry if you don’t fully understand everything that is covered here—
it’s fairly complex and you’ll be better prepared to understand it soon. For now, I’d like you to just read
along with the steps I’ll present so that you’ll understand the process involved in creating and executing
scripts using VBScript and the WSH.

First, the script uses the Set command to define a variable named WshShl. This variable is then assigned a
value using the following expression:

WScript.CreateObject(“WScript.Shell”)

This statement executes the WScript object’s CreateObject() method. This method is used to instantiate
(that is, create a new instance of) the WshShell object, which is another WSH core object. The second line
of code in the example uses the WshShell object’s Popup() method to display a pop-up dialog box.

18 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

A function is a collection
of statements that is called
and executed as a unit.

D
ef

in
it

io
n

Figure 1.12 The pop-up dialog box created by your modified VBScript.
© 2014 Cengage Learning.

Hint

The WScript object is one of the WSH’s core objects. Do not confuse it with the WSH WScript.exe
execution host. It is unfortunate that they share the same name because they are very different.

As the two versions of the previous script show, you can often perform the same task using either a
VBScript function or a WSH method. This script also demonstrates how easy script creation and execu-
tion can be, and how even a one- or two-line script can perform some pretty neat tricks, such as display-
ing a pop-up dialog box.

Executing Your Script from the Command Prompt
In the previous example, you executed your script by double-clicking on it, and everything worked fine.
That’s because the scripts were written so that they could run from the Windows desktop. Sometimes,
however, the execution host you use to run your script can have a big impact on how the script operates.
Let’s take a look at an example.

1. Open the Hello.vbs script again and replace the contents of the script with the following statement:

WScript.Echo “Hello World”

This statement uses the WScript object’s Echo() method to display a text message.

2. Save the script and execute it by double-clicking it. Unless you have modified the default WSH

configuration, the script will run using the WScript.exe execution host. The result is that the

message is displayed in a pop-up dialog box.

3. Copy the file to the C: drive on your computer and open a Windows Console.

4. At the command prompt, type CD \ and press the Enter key. This command changes the current

working directory to the root of the C: drive, where Hello.vbs script now resides.

5. Type the following command and press the Enter key:

CScript Hello.vbs

What you see this time is quite different. Instead of a pop-up dialog box, the script’s output is

written to the Windows console, as shown in Figure 1.13.

19Chapter 1 • Getting Started with the WSH and VBScript

In the previous example, you created your first VBScript by following the steps that I set down. Often,
depending on the size and complexity of the script that you’re going to develop, you can get away with
simply writing the script as you go. More often than not, however, you’ll want to take a more methodical
approach to script development. First, make sure you know exactly what you want to achieve. Then break
the task down into specific steps that, when combined, complete the task. Spend a little time sketching
out the design of your script and try to break the script into different sections. Then develop a section
at a time, making sure that one section works before moving on to the next. I’ll try to point out ways
to do this throughout the book.In

 t
he

 R
ea

l W
o

rl
d

www.allitebooks.com

http://www.allitebooks.org

20 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

6. As a final experiment, type the following command at the Windows command prompt:

WScript Hello.vbs

As you see, the message produced by the script is once again displayed in a pop-up dialog box

because even though the script was run from the Windows command prompt, the WScript.exe

execution host displays its output graphically.

What Other Scripting Languages Does the WSH Support?
As I have already alluded to, the WSH supports other languages besides VBScript. Microsoft ships the
WSH with both JScript and VBScript. JScript is Microsoft’s implementation of the ECMAScript language,
originally developed by Netscape as LiveScript and later renamed JavaScript. Like VBScript, the version of
JScript that is shipped with the WSH is a modified version of the browser-based scripting language. Also
like VBScript, JScript is a complete programming language replete with support for variables, conditional
logic, looping, arrays, and procedures.

JScript’s overall syntax structure is a little more difficult to master than VBScript’s unless you are already
familiar with JavaScript. VBScript provides better support for arrays, whereas JScript provides a stronger
collection of mathematical functions. JScripts are created as plain-text files and saved with a .js file extension.

Hint

To learn more about JScript, check out the JScript Documentation link on http://msdn.microsoft.com/en-us/
library/vstudio/72bd815a(v=vs.100).aspx.

Figure 1.13 Scripts executed by the CScript.exe execution host display their output in the Windows Console.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

http://msdn.microsoft.com/en-us/library/vstudio/72bd815a(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/vstudio/72bd815a(v=vs.100).aspx

In addition to VBScript and JScript, a number of third-party scripting languages are also designed to work
with the WSH, as outlined in Table 1.2.

Introducing VBScript
As you now know, VBScript is a scripting language that enables you to develop scripts that automate tasks
that would otherwise have to be manually performed in the environment in which they execute. VBScripts
are stored as plain-text files with a .vbs file extension and can be created using any text editor. This makes
them easy and quick to develop.

Unlike the standalone implementations of many scripting languages, such as Perl or Python, VBScripts
cannot execute without an execution host. VBScript was originally designed to execute as text embedded
within HTML pages inside the Internet Explorer browser. Over the years, however, Microsoft has extended
VBScript’s capabilities to enable it to function in numerous different settings. VBScript is now supported
in a number of different environments, including the following:

• Windows Script Host. VBScript provides a host automation language for performing system and

network tasks.

• Internet Explorer. VBScript supplies a client-side Web-scripting language.

• Microsoft Windows Script Console. This allows VBScript to be added to third-party applications

to incorporate its scripting capabilities.

• Internet Information Server (IIS) and Active Server Pages (ASP). VBScript can be embedded into

ASP to access local databases and help deliver dynamic Web content.

• Outlook Express. VBScript provides the ability to automate a number of Outlook’s functions.

As you can see, after you master VBScript within the context of WSH script development, you’ll have a
number of other avenues in which you can begin using your new VBScript programming skills.

21Chapter 1 • Getting Started with the WSH and VBScript

Language Website

PerlScript www.activestate.com

PythonScript www.sourceforge.com

ooRexx www.oorexx.org

RubyScript www.ruby-lang.org

ActiveScript www.php.net

TclScript www.sourceforge.com

TA B L E 1 . 2 T H I R D -PA R T Y WSH- C O M PAT I B L E S C R I P T E N G I N E S

© Jerry Lee Ford, Jr. All Rights Reserved.

http://www.activestate.com
http://www.sourceforge.com
http://www.oorexx.org
http://www.ruby-lang.org
http://www.php.net
http://www.sourceforge.com

VBScript Capabilities
VBScripts cannot execute without an execution host. Therefore, the language’s capabilities vary greatly
based on where they are run. For example, when embedded in HTML pages, VBScript can access and
manipulate forms, frames, links, images, and other objects that are based on Web pages. When placed
inside ASP pages, VBScripts have access to server-based resources such as databases. However, because the
purpose of this book is to teach you how to program using VBScript within the context of the WSH, I
think it’s best that we focus on the capabilities that VBScript has when executed in this environment.

As I’ll show you throughout this book, you can create games using VBScript and the WSH. While game
development is a great way to have fun while learning a new language, it’s important to understand the
reason Microsoft enabled VBScript to operate in the WSH and to be familiar with the capabilities that
Microsoft has given to VBScript within the context of WSH script development.

VBScript provides programmers with a quick development tool for creating small applications and utilities
and for prototyping new applications. System and network administrators use these tools to automate sys-
tem administrative tasks, such as the following:

• Creating user and group accounts

• Configuring the desktop

• Creating ad hoc reports

• Automating network file, folder, and drive administration

• Managing Windows services

• Administering local and network printers

Some tasks simply take a long time to perform manually or must be done so frequently that they become
bothersome. By providing the ability to automate these tasks, VBScript provides a powerful yet easy way
to use programming tools. Once developed, script execution can be automated using the Windows sched-
uling service. This allows you to run your scripts at the times that are most convenient for you.

For example, suppose you wrote a script that reorganizes files on your computer by moving them from
various folders into a centralized location. That way, at the end of each month, you can run the script and
reorganize a month’s worth of messy file placement. The number of files to be moved may be such that it
takes the script a while to complete its work, during which time the computer runs slowly and is no fun
to use. Fortunately for you, however, VBScripts can be scheduled. You can set up the execution of this
script to run at night, over the weekend, or any time you don’t plan on using your computer.

VBScript’s Roots
Microsoft first released VBScript in 1996 as a Web-based client-side scripting language for Internet Explorer
3.0. At the time, another Web-based client-side scripting language, JavaScript, was already making big waves
in the Internet community. Despite the similarity in name, JavaScript had very little in common with Java,
which was also fast becoming popular in the mid to late 1990s.

22 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

As mentioned, JavaScript’s popularity as a client-side Web-scripting language has continued over the
years, while VBScript’s stalled. Even today, the only way to perform client-side Web scripting and to be sure
that everyone with an Internet browser has access is to use JavaScript.

Still, Microsoft has remained committed to the development of VBScript over the years. It released VBScript
2.0, along with IIS 3.0, turning VBScript into a server-side Web-development language. Now Web devel-
opers could embed VBScripts into their ASP pages, giving them the ability to access local databases and
create dynamic HTML pages.

VBScript’s big break came with VBScript 3.0. This version was packaged with multiple Microsoft products,
including the following:

• Internet Explorer 4.0

• IIS 4.0

• Outlook 98

• Windows Scripting Host

VBScript 3.0 now could be used as a scripting language for Microsoft’s email client. However, VBScript
really took off when it was included as a scripting language for the WSH. Visual Basic programmers, com-
puter administrators, and technology enthusiasts with a background in Visual Basic found VBScript easy
to learn. It quickly proved to be a great language for developing small scripts to perform tasks that did not
merit the development of a complete standalone application.

Microsoft later released VBScript 4.0 as part of its Microsoft Visual Studio application development suite.
Microsoft gave VBScript 4.0 the capability to access the Windows file system; otherwise, VBScript 4.0
remained pretty much unchanged from the previous version.

In 2000, Microsoft released VBScript 5.0 as a component of Windows 2000, which included Internet
Explorer 5 and WSH 2.0. In 2001, Microsoft released Windows XP Professional, Windows XP Home Edition,
and Internet Explorer 6.0. Along with these goodies came WSH 5.6 and VBScript 5.6. VBScript 5.7 was made
available in 2007 as part of WSH 5.7. It was also made available as part of the install of Internet Explorer 7.
Likewise, VBScript 5.8 was made available in 2009 as part of WSH 5.8 and as part of the install of Internet
Explorer 8.

VBScript’s Cousins: Visual Basic and VBA
VBScript is the third member in a family of three closely related programming languages:

• Visual Basic

• Visual Basic for Applications (VBA)

• VBScript

23Chapter 1 • Getting Started with the WSH and VBScript

Visual Basic is the original member of this family. Microsoft first introduced it in 1991. Microsoft has steadily
improved Visual Basic, releasing a number of versions along the way. The most current version of Visual
Basic is Visual Basic 2012. As a .NET-compliant language, Visual Basic supports Microsoft’s .NET framework.

Hint

If you want to learn more about .NET, visit
www.microsoft.com/net.

Visual Basic is generally used to create standalone
programs. This means that once written and compiled
into executable code, a Visual Basic application does
not need anything other than a Windows operating
system to execute. Visual Basic earned a reputation
very early on for being easy to learn. As a result, it did not take Visual Basic long to become one of the most
popular programming languages ever developed. Today Visual Basic is taught in colleges around the world
and is used to build applications in companies of all sizes and types.

Visual Basic applications are created using Visual Basic’s built-in integrated development environment
(IDE). Visual Basic’s IDE includes a built-in compiler, debugger, help system, and tools for managing
Visual Basic projects. Although Visual Basic’s IDE provides a rich and powerful programming development
environment, it takes a substantial amount of time and effort to learn. Because of the complexities of its
IDE, Visual Basic is not well suited to the development of small scripts. Visual Basic’s strength lies in aiding
the development of larger and more complex programs that justify the time and effort required to develop
them.

Hint

To learn more about Microsoft Visual
Basic .NET, check out Microsoft Visual
Basic 2008 Express Programming for the
Absolute Beginner (ISBN 1-59863-900-5).

The next language in the Visual Basic family is
Visual Basic for Applications (VBA), which
Microsoft first released in 1993. VBA represents
a subset of Visual Basic and is designed to provide
applications with a Visual Basic–like programming
language. For example, using VBA for Microsoft Excel, programmers can develop entire applications using
features provided by Excel. Similarly, VBA for Microsoft Access provides a powerful programming language
for creating applications that require a Microsoft Access database.

.NET is a Microsoft framework that has
been designed by Microsoft from the
ground up to support integrated desktop,
local area network, and Internet-based
applications. Microsoft’s .NET framework
assists in developing applications by
facilitating data exchange over a network
—including the Internet.

24 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

D
ef

in
it

io
n

An IDE is an application development program
that gives programmers the tools required to
create applications using a particular program-
ming language. An IDE provides tools such as
a compiler, which translates application code
into a finished executable program; a debugger,
which assists in tracking down and fixing pro-
grams; and tools for managing projects, which
may consist of multiple applications.

D
ef

in
it

io
n

http://www.microsoft.com/net

Like Visual Basic applications, VBA applications are created using a sophisticated IDE program. Unlike
Visual Basic applications, which can be compiled into fully executable programs, VBA can only be compiled
into a format known as p-code, which you can think of as partial compilation. Using p-code, VBA code can
load and run more quickly than VBScript, which is an interpreted language, but will still run more slowly
than a Visual Basic application. VBA also requires a host application such as Microsoft Excel or Microsoft
Access.

VBA 7.1 was released as part of Microsoft Office 2010 and is still the current version. Using VBA, you can
develop programs for any of the following Microsoft applications:

• Word

• PowerPoint

• Excel

• Outlook

• Access

• FrontPage

Hint

To learn more about VBA and Microsoft Excel, check out Microsoft Excel VBA Programming for the Absolute
Beginner, by Duane Birnbaum. To learn more about VBA and Microsoft Access, check out Microsoft Access
VBA Programming for the Absolute Beginner, by Michael Vine.

Back to the Knock Knock Game
Let’s turn the focus of this chapter back to the development of the Knock Knock game. This project will
demonstrate the steps involved in creating and running your first VBScript game. Along the way, you’ll
learn how to use VBScript to create a script that can communicate with the user via pop-up dialog boxes.
You will also learn a little about conditional programming logic.

Designing the Game
The Knock Knock game’s design is very straightforward, involving basic programming techniques. The
game begins by displaying the message “Knock Knock” in a pop-up dialog box. It then waits for the player
to reply by typing “Who’s there?” The game then replies “Panther” and waits for the player to respond by
typing “Panther who?” at which time the punch line, “Panther no panths I’m going swimming” is displayed.
If the player fails to exactly type the proper responses at any point of the game, an error message will be
displayed inviting the player to try again.

25Chapter 1 • Getting Started with the WSH and VBScript

This project will be completed in five steps, as follows:

1. Present the player with the Knock Knock pop-up dialog box and collect the player’s response.

2. Validate the player’s reply and continue the game if appropriate. Otherwise, display an error message.

3. Present the player with the name of the person at the door and collect his or her reply.

4. Validate the player’s reply and continue the game if appropriate. Otherwise, display an error message.

5. Display the game’s punch line.

Starting the Script Development Process
The first step in creating the Knock Knock game is to start your script editor and use it to create an empty
VBScript file. For example, to create the script using the Notepad text editor on a computer running Win-
dows XP, you would execute the following steps:

1. Click the Start button, choose All Programs, select Accessories, and choose Notepad. The Notepad

application opens.

2. Open the File menu and choose Save. The Save As dialog box appears.

3. Specify the location where you want the script to be stored. Then type KnockKnock.vbs in the File

Name field at the bottom of the dialog box and click Save.

The Notepad editor should now display the name of the Knock Knock script in its title bar.

Starting the Game and Collecting Initial User Input
Now let’s begin the script by writing its first VBScript statement. The first thing the game is supposed to
do is display a pop-up dialog box with the “Knock Knock” message and then wait for the user response.
This task is performed surprisingly easily using VBScript, and can be done with a single statement:

Reply1 = InputBox(“Knock Knock!”)

In plain English, this VBScript statement displays a
pop-up dialog box with a “Knock Knock” message
and then waits for the player to type something into
the dialog box’s text field and click the OK button.

Let’s break this statement down into pieces and see how it works. First, the statement executes a built-in
VBScript function called InputBox(). This function displays a pop-up dialog box with a text entry field
that allows the script to collect text input from the player.

26 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

A statement generally consists of a single
line of code but can be spread over two
or more lines depending on the size of the
statement.D

ef
in

it
io

n

Hint

The VBScript InputBox() function is just one of a number of options for collecting input. The
InputBox() function facilitates direct interaction with users. When direct user interaction is not required,
you can also develop VBScripts that can read input from text files or the Windows Registry. I’ll show you
how to read data from text files in Chapter 8, “Storing and Retrieving Data,” and how to interact with
the Windows Registry in Chapter 10, “Using the Windows Registry to Configure Script Settings.” You can
also create VBScripts that process data passed to them at run-time. I’ll show you how this works in
Chapter 4, “Constants, Variables, Arrays, and Dictionaries.”

To communicate with the player, the InputBox() function allows you to display a message. In this exam-
ple, the message is simply “Knock Knock,” but could just as easily be “Hello, what is your name?” or any
other question that helps the player understand the type of information the script is trying to collect.

Finally, the text typed by the player in the pop-up dialog box’s text field is temporarily assigned to a vari-
able called Reply1. Variables provide scripts with the capability to store and later reference data used by
the script.

Functions and variables are fundamental components of VBScript. Unfortunately, it is difficult to write
even the simplest scripts without using them. For now, don’t worry too much about them and keep your
focus on the overall steps used to create and run the Knock Knock game. I’ll go over the use of variables
in great detail in Chapter 4 and the use of functions in Chapter 7, “Using Procedures to Organize Scripts.”

Validating User Input
The player’s role in this game is to first type the phrase “Who’s there?” Any variation in spelling or case will
result in an error. After the player has typed this message and clicked the OK button, the script needs to
perform a test that validates whether the player is playing the game properly.

The following three lines of code accomplish this task:

If Reply1 = “Who’s there?” Then

.

.

.

End If

If Reply1 <> “Who’s there?” Then MsgBox “Incorrect answer. Try again.”

The first two lines of actual code—If Reply1 = “Who’s there?” Then and End If—go together. The three
dots between these lines of code are placeholders for more statements that will be inserted in the next sec-
tion. The first of these two lines tests the value of Reply1. Remember that Reply1 is a variable that con-
tains the response typed by the player. This statement checks to see if the values stored in Reply1 match
the phrase “Who’s there?” If there is an exact match, then the lines of code that you will soon place within
the first two statements are executed. Otherwise, these statements are not processed. The third line of code

27Chapter 1 • Getting Started with the WSH and VBScript

inverts the test performed by the first two lines of code by checking to see if the player’s reply is not equal
to (that is, <>) the expected phrase. If this is the case, then the rest of the third statement executes the
display of an error message. The text performed by the third statement may prove true for a number of
reasons, including the following:

• The player clicked the Cancel button.

• The player clicked the OK button without typing a response.

• The player typed an incorrect response.

Finishing Input Collection
If you are creating the script as you read along, then your script should now contain the following statements:

Reply1 = InputBox(“Knock Knock!”)

If Reply1 = “Who’s there?” Then

.

.

.

End If

If Reply1 <> “Who’s there?” Then MsgBox “Incorrect answer. Try again.”

It’s now time to add three lines of code that will reside in the lines currently marked with periods. The first
of these three lines of code is as follows:

Reply2 = InputBox(“Panther!”)

This statement is very similar to the first statement in the script, except that instead of displaying the
message “Knock Knock,” it displays the message “Panther” and then waits for the player to type a response
(that is, “Panther who?”). The text typed by the player is then stored in a variable named Reply2.

Validating the User’s Last Response
The following two lines of code need to be inserted just after the previous statement:

If Reply2 = “Panther who?” Then _

MsgBox “Panther no panths I’m going swimming.”

If Reply2 <> “Panther who?” Then MsgBox “Incorrect answer. Try again.”

The first line checks to see if the value stored in Reply2 is equal to the phrase “Panther who?” If it is, then the
rest of the statement displays the joke’s punch line. If the player typed something other than “Panther who?”
then the second of these two statements executes, displaying a message that informs the player that he did
not provide the correct response.

28 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

The Final Result
Now let’s take a look at the fully assembled script.

Reply1 = InputBox(“Knock Knock!”)

If Reply1 = “Who’s there?” Then

Reply2 = InputBox(“Panther!”)

If Reply2 = “Panther who?” Then _

MsgBox “Panther no panths I’m going swimming.”

If Reply2 <> “Panther who?” Then MsgBox “Incorrect answer. Try again.”

End If

If Reply1 <> “Who’s there?” Then MsgBox “Incorrect answer. Try again.”

As you can see, the script only has seven lines of code, and yet it displays multiple graphical pop-up dialog
boxes that collect player text input and display any of three additional messages in pop-up dialog boxes.
In addition, this script demonstrates one way of testing player input and then altering the execution of the
script based on that input.

Save and then run the script, and make sure everything works as expected. If not, open the script and double-
check each statement to make sure you typed it correctly.

Summary
This chapter has covered a lot of ground for an introductory chapter. Not only did you create your first
VBScript, but you also learned how to use the WSH to execute it and to incorporate WSH elements within
your scripts. In addition, you learned a lot about VBScript and how it relates to other languages that make
up the Visual Basic family of programming languages. Finally, you created your first computer game,
learning how to collect and validate user input and to display output. All in all, I’d say that this has been a
very good start.

29Chapter 1 • Getting Started with the WSH and VBScript

1. The Knock Knock game is a very simple game. Its main purpose was to introduce you to the basics
of script and game development. Try to improve the game by adding additional jokes so that the
game does not end after the first joke.

2. Try running the Knock Knock game using both the CScript.exe and WScript.exe WSH execution
hosts. How does the execution of the script change and why?

3. See if you can create a new script that prompts you for your name and then displays a personalized
greeting message that includes your name. Hint: When displaying the customized greeting message,
you will need to concatenate (glue together) the name of the user with a greeting message as follows:

MsgBox “Greetings “ & UserName

C
ha

lle
ng

es

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

An Introduction to the
Windows Script Host

2
B

ecause VBScripts cannot execute without an execution host of some type, the WSH
is at the heart of any VBScript that you run from the Windows desktop or command
line. The WSH not only provides an environment in which VBScripts can execute,

but it also provides scripts with direct access to Windows resources such as the Windows
desktop, Start menu, Registry, event logs, and network resources. To effectively create and
execute VBScripts in this environment, it’s helpful to know a little something about the
WSH core object model. It is also important that you know how to configure the WSH to
best suit your needs. In this chapter, you will learn the following:

• About the objects that make up the WSH core object model

• How to configure scripts for command-line execution

• How to configure scripts for desktop execution

• How to override host execution settings

• How to enable and disable the WSH

Project Preview: The Rock, Paper, and Scissors Game
In this chapter, you will learn how to create a computer version of the Rock, Paper, and
Scissors game that you played as a child. The game begins by displaying its rules and then
asks the player to choose between one of the three possible choices. After the player makes
a selection, the game randomly makes its own selection and displays the results. Figures
2.1 through 2.3 demonstrate the flow of the game.

32

Through the development of this game, you’ll get a chance to practice incorporating WSH objects and
their methods into VBScripts. You’ll also learn how to perform a little simple conditional logic, as well as
take as a peek at using a number of built-in VBScript functions.

Examining Scripting Environments
As discussed in Chapter 1, “Getting Started with the WSH and VBScript,” this book’s primary focus in on
teaching you how to program through the development of VBScripts executed using the WSH. VBScript,
like JScript, is an ActiveX scripting engine. A scripting engine provides the operating system with access
to a dynamic link library (DLL), which supports a given scripting language. In the case of VBScript, the DLL
is VBScript.dll. (For JScript, it is JScript.dll.) These DLL files are stored in C:\Windows\System32. The
DLL itself never executes. Instead, it is called by an execution host like those provided by IE and the WSH.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 2.1 The script begins by displaying the rules of the game.
© 2014 Cengage Learning.

Figure 2.2 The player then types in a selection.
© 2014 Cengage Learning.

Figure 2.3 The script randomly picks a selection and
displays the results of the game. © 2014 Cengage Learning.

33Chapter 2 • An Introduction to the Windows Script Host

Before being adapted to work with the WSH, VBScript was used as a Web-scripting language designed
to support script execution within Internet Explorer and Internet Explorer–compatible Web browsers.
Internet Explorer provides VBScript with an environment that gives it access to things like forms, frames,
and various browser controls via the browser’s Document Object Model (DOM).

Like Internet Explorer, the WSH is also a programming environment that supports VBScript execution.
Rather than supporting the browser DOM, the WSH provides scripts with access to local computer resources
like the Windows Registry and file system through its own core object model. Whereas Internet Explorer
runs as a full-blown Windows application, consuming all resources that such an application requires
(including the memory required to formulate and maintain a graphical user interface), the WSH has
been streamlined to do just one thing: host and execute scripts. The WSH, therefore, requires fewer com-
puter resources to execute your scripts. There is no GUI to load. Less memory and fewer CPU cycles are
required to execute your scripts. As a result, your scripts execute more quickly.

In Chapter 14, “Adding a GUI to Your Scripts,” you will learn how to put your scripting skills to use in
the development of HTML Applications. This will enable you to develop scripts that look and operate
like desktop applications. This third scripting environment provides your scripts with the ability to
access both the Internet Explorer DOM as well as the WSH core object model. The end result is the abil-
ity to use the DOM to build graphical user interfaces for your scripts while still allowing them to access
and manipulate Windows resources via the WSH.

An Examination of WSH Components
Think of a computer, its operating system, and its hardware and software as being a collection of objects
such as files, disk drives, printers, and so on. To automate tasks on Windows operating systems, VBScript
needs a way of interacting with these objects. This is provided by the WSH’s core object model.

An understanding of the WSH core object model is
essential to your success as a VBScript programmer.
Not only will it provide the technical insights you’ll
need to develop scripts that will run on Windows
operating systems, but by introducing you to work-
ing with objects, it will also prepare you to work
with other object models. For example, many
Windows applications, including Microsoft Office
applications, expose their own object models, allow-
ing VBScript to programmatically manipulate them. In addition, other VBScript execution hosts, such
as Internet Explorer, provide VBScript with access to other object models. The WSH core object model
is complex and may at first seem rather daunting. But don’t worry—you’ll continue to develop your under-
standing of this complex topic as you go through the rest of this book. By the time you are finished, you
should have a solid grasp of the WSH core object model.

An object model is a representation of a
number of related objects that provide
a script or program with the capability to
view and interact with each of the objects
(files, disks, printers, and so on) represent-
ed in the object model.

D
ef

in
it

io
n

34 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

A Quick Introduction to the WSH Core Object Model
The WSH core object model provides access to 14 core objects through which you can programmatically
access different types of Windows resources. The objects that make up the WSH core object model are
depicted in Figure 2.4. Each of these objects provides you with access to a specific category of Windows
resources.

The WScript object lies at the top, or root, of the WSH core object model. All other WSH core object
model objects are created, or instantiated, from this object. The WScript object is automatically created
for you when the execution host starts and can therefore be referenced without first being instantiated
within your scripts. Once instantiated, you can work
with the properties and methods belonging to any of
the objects that comprise the WSH core object model.
For example, the following statement demonstrates how
to create a one-line script called Greeting.vbs that uses
the WScript object’s Echo method to display a text string.

WScript.Echo “Example: Using the WScript object’s Echo() method”

To test this script, open your script editor and type this statement. Then save the script (with a .vbs file
extension), and run it by double-clicking it. The pop-up dialog box, shown in Figure 2.5, should appear.
As this script demonstrates, you can automatically access any of the properties and methods belonging
to the WScript object directly from within your scripts.

Figure 2.4 Each of these 14 objects has properties and methods that expose different Windows operating system resources.
© 2014 Cengage Learning.

Instantiation describes the process of
creating a new instance of an object.

D
ef

in
it

io
n

Figure 2.5 A pop-up dialog box created using the WScript object’s Echo() method.
© 2014 Cengage Learning.

Working with the WScript Object
The WScript object is an extremely important object that you will find yourself working with all the time
in your VBScripts. It provides access to a number of very useful methods that you’ll see used throughout
this book. These methods include the following:

• CreateObject(). This establishes an instance of the specified object.

• DisconnectObject(). This prevents a script from accessing a previously instantiated object.

• Echo(). This displays a text message in the Windows Console or as a pop-up dialog box, depending

on which execution host runs the script.

• Quit(). This terminates a script’s execution.

• Sleep(). This pauses the execution of a script for a specified number of seconds.

The WScript object is referred to as a public or exposed object. The WSH core object model has three
other public objects: WshController, WshShell, and WshNetwork. Each of these three objects must be
instantiated within your scripts using the WScript object’s CreateObject() method. All the other objects
in the WSH core object model can be instantiated only by using properties or methods associated with
the WScript, WshController, WshShell, and WshNetwork objects.

Hint

You will see plenty more examples of how to work with the WScript object and most of the other objects
that comprise the WSH core object model as you make your way through this book. In addition, you will
find a detailed technical overview of all 14 of these objects, including their methods and properties, in
Appendix C, “The WSH Core Object Model.” As a sneak peek of what lies ahead, you may want to jump
to Appendix C now and spend a few minutes looking it over to get a better feeling of the steps involved
in instantiating objects and then working with their properties and methods.

Configuring WSH Execution Hosts
So far you’ve used the CScript.exe and WScript.exe execution hosts’ default settings for each script that
you’ve created and run. If you want to, you can modify these default settings to better suit your personal
preferences. The WSH provides separate configuration settings for the WScript.exe and CScript.exe exe-
cution hosts. Because the WScript.exe execution host can process scripts run from either the Windows
GUI or the Windows command line, there are two different ways to configure it. The WSH also allows you
to override execution host settings on the fly by passing configuration arguments to the execution host when
starting a script’s execution. Finally, the WScript.exe execution host allows you to set execution host set-
tings unique to a particular script using a WSH file. Each of these execution host configuration options is
examined in detail in the sections that follow.

35Chapter 2 • An Introduction to the Windows Script Host

36 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Configuring WScript.exe and CScript.exe Command-Line Execution
You can use either the WScript.exe or CScript.exe execution host to run any VBScript. Generally speaking,
you’ll use the WScript.exe execution host to run scripts that need to use pop-up dialog boxes and the
CScript.exe execution host to run scripts silently in the background.

Even though they have their own separate configuration settings, both the WScript.exe and CScript.exe
execution hosts are configured in the same way, using the exact same set of options. The syntax used to
configure these two execution hosts is as follows:

wscript [//options]

cscript [//options]

Begin by opening a Windows Console. At the Windows command prompt, type the name of the execution
host that you want to configure followed by one or more options, each of which is preceded by the //
characters.

Trap

Any changes you make to the default execution host will affect your scripts only. If you share a computer
with another user, that person’s WSH execution host settings will not be affected. If you want WSH
settings to be standardized for all users of the computer, make sure each user sets them accordingly.

Table 2.1 lists the configuration options supported by the WScript.exe and CScript.exe execution hosts.

Configuration Option Purpose
//? Displays the command syntax for the CScript.exe and WScript.exe execution hosts.

//b Runs a script in batch mode, where all errors and message output are suppressed.

//d Turns on script debugging.

//e:jscript | e:vbscript Sets the script engine that is to be used to run the script.

//h:wscript | h:script Sets the execution host that is to be used to run the script.

//i Runs the script interactively, displaying all errors and message output.

//job:id Identifies a specific job within a Windows script file to be run.

//logo Displays the CScript or WScript logo at the start of script execution.

//nologo Suppresses the display of the CScript or WScript logo at the start of script execution.

//s Saves the currently specified options and sets them as the default settings.

//t:nn Establishes a timeout value that limits how long a script can execute. By default, these
are not execution time limits imposed on script execution.

//x Turns off script debugging.

TA B L E 2 .1  C O M M A N D -L I N E O P T I O N S F O R T H E

WS C R I P T. E X E A N D CS C R I P T. E X E E X E C U T I O N H O S T S

© Jerry Lee Ford, Jr. All Rights Reserved.

Now let’s look at some examples of how to modify the configuration of the execution hosts. By default,
the WSH sets WScript.exe as the default execution host. However, you can change this by typing the fol-
lowing command and pressing the Enter key:

cscript //H:cscript //s

The //H:cscript option makes CScript.exe the default execution host and the //s option makes the
change permanent. If you left the //s option off the command, the change would be in effect for your
current working session only.

To change the default command-line execution host back to WScript.exe, type the following command
and press the Enter key:

wscript //H:wscript //s

Now let’s try an example that sets more than one configuration option:

wscript //H:cscript //nologo //t:60 //s

In this example, the CScript.exe execution host is set as the default. In addition, the //nologo option pre-
vents the display of the WScript logo during script execution. It also prevents the display of the follow-
ing text just before any output text when scripts are executed from the command line:

Microsoft (R) Windows Script Host Version 5.8

Copyright (C) Microsoft Corporation. All rights reserved.

The //t:60 option prevents any script from executing for more than 60 seconds. Finally, the //s option
saves all specified settings.

Trick

Even the best programmers can make mistakes. Sometimes these mistakes cause scripts to behave in
unexpected ways, such as being stuck in a loop that executes forever. By setting the //T:nn option for
both the WScript.exe and CScript.exe execution hosts, you can set up a sort of safety net that prevents
any script that you run from executing for more than a specified amount of time.

Configuring WScript.exe Desktop Execution
The WScript.exe execution host’s desktop configuration settings are different from its command-line
configuration settings. For one thing, there are only two configuration settings. The first specifies an
optional time limit for script execution, and the second specifies whether the WScript logo is displayed
when scripts are run from the Windows Console.

37Chapter 2 • An Introduction to the Windows Script Host

38 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

The steps involved in configuring the WScript.exe execution host from the Windows desktop are as follows:

1. Open a Windows Console.

2. Type WScript and then click OK. The Windows Script Host Settings dialog box appears, as shown

in Figure 2.6.

3. By default, the WScript.exe execution host does not have an execution time setting. To configure

one, select the Stop Script After Specified Number of Seconds checkbox and then specify a time

limit (in seconds).

4. By default, the WScript.exe execution host displays its logo when scripts are executed from the

Windows Console. To prevent this behavior, deselect the Display Logo When Script Executed in

Command Console checkbox.

5. Click OK.

The configuration settings established through this procedure are stored in the following registry key:
HKLM\Software\Microsoft Script Host\Settings.

Overriding Command-Line Host Execution Settings
So far, you’ve learned how to configure the default execution of the WScript.exe and CScript.exe execution
hosts from the Windows command line and desktop. Now let’s see how to override the default command-line
settings, without permanently changing them, to temporarily alter them for the execution of a specific script.

Figure 2.6 Modifying the WScript.exe execution host’s desktop
configuration. © 2014 Microsoft Corporation. Used with permission from Microsoft.

The syntax for temporarily overriding WScript.exe and CScript.exe execution is as follows:

wscript scriptname [//options] [arguments]

cscript scriptname [//options] [arguments]

First, open the Windows Console and type the name of the execution host you want to use to run the
script. Next, type the name and path of the script to be executed. Then type as many configuration set-
tings as you want, preceding each with a pair of // characters. If the script you’re executing expects any
input to be passed to it at execution time, specify the required arguments. Finally, press the Enter key.

Now let’s look at a few examples of how to override
host script execution settings. Let’s assume you’re
working with a script called Test.vbs and you want
to prevent it from executing for more than 30 sec-
onds. Open the Windows Command Console and
type the following command to run the script using
the WScript.exe execution host:

wscript Test.vbs //T:30

To execute the same script using the CScript.exe execution host for a maximum of 30 seconds, type the
following command:

cscript Test.vbs //T:30

Now let’s look at a slightly more complicated example, in which multiple configuration settings are over-
ridden:

wscript Test.vbs //T:30 //nologo

In this example, the script is prevented from executing for more than 30 seconds using the WScript.exe
execution host. In addition, the WScript.exe execution host’s logo is suppressed to prevent it from being
displayed at the beginning of the script’s execution.

Customizing WScript.exe Settings for Individual Desktop Scripts
The WSH also provides a way, using the WScript.exe execution host, to permanently override configura-
tion settings for specific scripts run from the Windows desktop. This is done by creating a text file with
the same name as the script and giving the file a .wsh extension. Then, within the WSH file, you can spec-
ify WSH configuration settings. For example, to set up a WSH file for a script named Test.vbs, you would
create a file called Test.wsh and save it in the same folder in which the Test.vbs script resides. You could
then run the script by double-clicking the WSH file or by double-clicking the script itself. If you double-
click the WSH file, the WSH automatically finds the script that is associated with it and, after processing
the configuration settings stored in the WSH file, runs the script. Conversely, whenever you double-click
a script, the WSH first looks to see if it has an associated WSH file before running it. If it does not, then
the WSH processes it using the execution host’s default configuration settings.

39Chapter 2 • An Introduction to the Windows Script Host

In the context of this discussion, an argu-
ment is a piece of data passed to a script
for processing. For example, if you wrote
a VBScript to create new user accounts,
your script might expect you to pass it one
or more usernames to process.

D
ef

in
it

io
n

www.allitebooks.com

http://www.allitebooks.org

The following statements show the contents of a typical WSH file:

[ScriptFile]

Path=C:\Test.vbs

[Options]

Timeout=30

DisplayLogo=0

The first line contains the section label called [ScriptFile]. The next statement provides the name and
path of the script associated with this WSH file. Next comes an [Options] section label. The last two lines
contain configuration settings specific to the execution of this script. Timeout=30 specifies that this script
will not be allowed to process for more than 30 seconds, and DisplayLogo=0 specifies that the WScript
logo is to be suppressed. An alternative setting for this option would be DisplayLogo=1, which would
enable the display of the WScript logo.

There are two ways to create a WSH file. One is to use a text editor, such as Windows Notepad, to man-
ually create the file. The other is to let Windows create the WSH file for you using the following procedure:

1. Locate the folder in which the VBScript is stored.

2. Right-click the script and select Properties from the menu that appears. The script’s Properties

dialog box opens, as shown in Figure 2.7.

40 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 2.7 Examining the properties on the
General tab of the script’s Properties dialog box.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

3. Click the Script tab, as shown in Figure 2.8.

4. Specify a script execution time limit, as required.

5. Enable or disable the display of the WScript logo as desired.

6. Click OK.

A new WSH file is created for you and stored in the same folder as the script.

Enabling and Disabling the Windows Script Host
It is no secret that today’s computers exist under the threat of viruses, worms, and other pesky computer
programs designed to spy on, disrupt, or otherwise harm or even take over your computer. In the past,
clever people exploited the power and convenience of the WSH to spread and infect computers using
scripts. Many defenses have been developed to combat these threats. For example, several email providers
scan emails and email attachments for threats and block them if a threat is discovered. Likewise, anti-
virus programs can be installed to help protect computers from these threats. Firewalls can also be use to
protect computers or entire computer networks.

Despite these protections and precautions, threats still persist. One way people have dealt with them in
the past has been to try to block the unauthorized execution of programs and scripts. In the case of the
WSH, some people have disabled it.

41Chapter 2 • An Introduction to the Windows Script Host

Figure 2.8 Configuring a WSH file via a script’s Properties
dialog box. © 2014 Microsoft Corporation. Used with permission from Microsoft.

If you have inherited a computer with the WSH disabled, you will receive the following notification the
first time you attempt to run a VBScript using the WSH:

CScript Error: Windows Script Host access is disabled on this machine. Contact your

administrator for details.

Re-enabling the WSH
If the WSH has been disabled on your computer, you can re-enable it using one of the following proce-
dures. However, doing so requires administrative-level privileges. If you lack these privileges, you will
need to seek out your computer administrator and request that this procedure be performed. The first
procedure will re-enable WSH only for yourself when you are logged on to the computer. The second
procedure will re-enable WSH execution for any user logged on to the computer.

To re-enable the WSH for an individual user, do the following:

1. Click the Start button, type Regedit in the Search field, and press Enter to open the Regedit utility.

2. Click Yes when prompted by the User Account Control dialog box.

3. Navigate to the following key: HKEY_CURRENT_USER\Software\Microsoft\Windows Script

Host\Settings.

4. Under DWORD, look for an Enabled entry. If it is present, double-click it and change its assigned

value to 1. If it is not present, right-click the Settings key and select New > DWORD. Then type

Enabled as its name. Finally, double-click the Enabled DWORD entry and assign it a value of 1.

5. Close Regedit.

To re-enable the WSH for all users of a computer, do the following:

1. Click the Start button, type Regedit in the Search field, and press Enter to open the Regedit utility.

2. Click Yes when prompted by the User Account Control dialog box.

3. Navigate to the following key: HKEY_LOCAL_MACHINE\Software\Microsoft\Windows Script

Host\Settings.

4. Under DWORD, look for an Enabled entry. If it is present, double-click it and change its assigned

value to 1. If it is not present, right-click the Settings key and select New > DWORD. Then type

Enabled as its name. Finally, double-click the Enabled DWORD entry and assign it a value of 1.

5. Close Regedit.

Disabling the WSH
If, after enabling the WSH on your computer, you decide that you need to return it to a disabled state,
you can do so using one of the following procedures. The first procedure blocks WSH execution only when
you are logged on to the computer. The second procedure affects any logged in user of the computer.

42 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

To disable the WSH for an individual user, follow these steps:

1. Click the Start button, type Regedit in the Search field, and press the Enter key to open the

Regedit utility.

2. Click Yes when prompted by the User Account Control dialog box.

3. Navigate to the following key: HKEY_CURRENT_USER\Software\Microsoft\Windows Script Host\

Settings.

4. Right-click the key and select New > DWORD. Then type Enabled as its name. By default, a value

of 0 (representing a value of False) is assigned to this entry.

5. Close Regedit.

To disable the WSH for all users of a computer, follow these steps:

1. Click the Start button, type Regedit in the Search field, and press the Enter key to open the

Regedit utility.

2. Click Yes when prompted by the User Account Control dialog box.

3. Navigate to the following key: HKEY_LOCAL_MACHINE\Software\Microsoft\Windows Script

Host\Settings.

4. Right-click the key and select New > DWORD. Then type Enabled as its name. By default, a value

of 0 (representing a value of False) is assigned to this entry.

5. Close Regedit.

Back to the Rock, Paper, and Scissors Game
Now it’s time to go back to where this chapter started—talking about the Rock, Paper, and Scissors game.
In this project, you will create a scripted version of this classic game. This version is a bit limited, given
that you’ve not yet had the chance to learn everything you’ll need to create a more sophisticated version.
However, you know enough to build the game’s foundation and get a working model going. In Chapter 5,
“Conditional Logic,” you’ll return to this project and spice things up a bit.

Designing the Game
The basic design of this game is simple. First, display the rules of the game, and then ask the player to
type rock, paper, or scissors. Next, have the script randomly pick a choice of its own and display the results.

This project is completed in six steps:

1. Define the resources used by this script.

2. Display the game’s instructions.

3. Provide a way for the user to select a choice.

43Chapter 2 • An Introduction to the Windows Script Host

4. Devise a way for the script to generate a random number.

5. Assign the computer’s choice based on the script’s randomly selected number.

6. Display the final results of the game.

Defining the Resources Used by the Script
Begin by opening your editor and saving a blank file with a name of RockPaperScissors.vbs. Next, add
the first few lines of the script as follows:

‘Formally declare variables used by the script before trying to use them

Dim WshShl, Answer, CardImage

‘Create an instance of the WScript object in order to later use the

‘Popup method

Set WshShl = WScript.CreateObject(“WScript.Shell”)

Notice that the first line begins with a ‘ character. This character identifies a VBScript comment. Comments
can be used to document the contents of scripts. Comments have no effect on the execution of a script.

The next line begins with the VBScript keyword Dim. This statement defines three variables that will be used
by the script. A variable is simply a portion of the computer memory where your scripts can store and
retrieve data. I’ll provide more information about variables and how they work in Chapter 4, “Constants,
Variables, Arrays, and Dictionaries.”

The third statement is another comment, and the fourth statement uses the WScript object’s CreateOb-
ject() method to set up an instance of the WshShell object. This statement allows the script to access
WshShell properties and methods.

Displaying the Rules of the Game
Next, let’s take advantage of the WshShell object that you just defined by using its Popup() method to
display a message in a graphical pop-up dialog box:

‘Display the rules of the game

WshShl.Popup “Welcome to the Rock, Paper, and Scissors game. Here are the “ & _

“rules of the game: 1. Guess the same thing as the computer “ & _

“to tie. 2. Paper covers rock and wins. 3. Rock breaks “ & _

“scissors and wins. 4. Scissors cut paper and win.”

This is really just two lines of code, although it looks like five. The first line is a comment. The second
line was so big that I chose to break it down into multiple pieces for display purposes. To do so, I broke
the message that I wanted to display into multiple segments of similar lengths, placing each segment
within a pair of quotation marks. To tie the different segments into one logical statement, I added the
VBScript & character to the end of each line, followed by the _ character.

44 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Collecting the Player’s Selection
When the player clicks OK, the pop-up dialog box displaying the game’s rules disappears and is replaced
with a new pop-up dialog box that is generated by the following code:

‘Prompt the user to select a choice

Answer = InputBox(“Type Paper, Rock, or Scissors.”, _

“Let’s play a game!”)

The first statement is a comment and can be ignored. The second statement uses the VBScript Input-
Box() function to display a pop-up dialog box into which the user can type “rock,” “paper,” or “scissors.”
The value typed by the user is then assigned to a variable called Answer.

Setting Up the Script’s Random Selection
Now that the player has made a choice, it’s the script’s turn to make a random selection on behalf of the
computer. This can be done in two statements, as shown by the following statements:

‘Time for the computer to randomly pick a choice

Randomize

GetRandomNumber = Int((3 * Rnd()) + 1)

The first line is a comment and can be ignored. The second line executes the Randomize statement, which
ensures that the computer generates a random number. If you leave this line out and run the script sev-
eral times, you’ll notice that after making an initial random choice, the script always makes the exact
same choice time and time again. The Randomize statement prevents this behavior by ensuring that a ran-
dom number is generated each time the script executes.

The next statement generates a random number between 1 and 3. I’ll break down the activity that occurs
in this statement. First, the Rnd() function generates a random number between 0 and 1. Next, the Int()
function, which returns the integer portion of a number, executes, multiplying 3 times the randomly gen-
erated number and then adding 1 to it. The final result is a randomly generated number with a value
between 1 and 3.

Assigning a Choice to the Script’s Selection
Next, you’ll need to assign a choice to each of the three possible numeric values randomly generated by
the script:

‘Assign a value to the randomly selected number

If GetRandomNumber = 3 then CardImage = “rock”

If GetRandomNumber = 2 then CardImage = “scissors”

If GetRandomNumber = 1 then CardImage = “paper”

If the number 3 is generated, then a value of rock is assigned as the computer’s selection. If the number 2
is generated, then a value of scissors is assigned as the computer’s selection. Finally, if the number 1 is
generated, then a value of paper is assigned as the computer’s selection.

45Chapter 2 • An Introduction to the Windows Script Host

Displaying the Results of the Game
After the script comes up with the computer’s selection, it’s time to display the results of the game so that
the user can see who won:

‘Display the game’s results so that the user can see if he or she won

WshShl.Popup “You picked: “ & Answer & Space(12) & “Computer picked: “ & _

CardImage

The WshShell object’s Popup() method is used to display the results of the game. Using the & concatena-
tion character, I pieced together the various parts of the message. These parts included text phrases
enclosed within quotation marks; the Answer variable; the CardImage variable, which represents the
user’s and computer’s choices; the Space() method, which adds 12 blank spaces to the text messages; and
the _ character, which allows me to spread the message out over two separate lines.

The Final Result
Now let’s put all the pieces of the script together and then save and run the script:

‘Formally declare variables used by the script before trying to use them

Dim WshShl, Answer, CardImage

‘Create an instance of the WScript object in order to later use the

‘Popup method

Set WshShl = WScript.CreateObject(“WScript.Shell”)

‘Display the rules of the game

WshShl.Popup “Welcome to the Rock, Paper, and Scissors game. Here are the “ & _

“rules for playing the game: 1. Guess the same thing as the “ & _

“computer to tie. 2. Paper covers rock and wins. 3. Rock breaks “ & _

“scissors and wins. 4. Scissors cut paper and win.”

‘Prompt the user to select a choice

Answer = InputBox(“Type Paper, Rock, or Scissors.”, _

“Let’s play a game!”)

‘Time for the computer to randomly pick a choice

Randomize

GetRandomNumber = Round(FormatNumber(Int((3 * Rnd()) + 1)))

‘Assign a value to the randomly selected number

If GetRandomNumber = 3 then CardImage = “rock”

46 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

If GetRandomNumber = 2 then CardImage = “scissor”

If GetRandomNumber = 1 then CardImage = “paper”

‘Display the game’s results so that the user can see if he or she won

WshShl.Popup “You picked: “ & Answer & Space(12) & “Computer picked: “ & _

CardImage

Summary
In this chapter, you were introduced to the WSH core object model and its 14 objects. You were intro-
duced to the WScript object and learned how to use it to display text messages in pop-up dialog boxes.
You also learned how to configure both the WScript.exe and CScript.exe execution hosts to best suit your
personal requirements and preferences. This included learning how to configure scripts for command-
line and desktop execution and to customize settings for individual desktop scripts. You also learned how
to enable and disable the Windows script host.

47Chapter 2 • An Introduction to the Windows Script Host

1. See whether you can expand RockPaperScissors.vbs by adding logic that compares the player’s
selection to the script’s random selection to determine the winner.

2. Based on the preceding comparison, display a little additional text that explicitly states the result
of the game—for example, “You Win!,” “You Lose!,” or “Tie!”

C
ha

lle
ng

es

This page intentionally left blank

Chapter 3: VBScript Basics

Chapter 4: Constants, Variables, Arrays,
and Dictionaries

Chapter 5: Conditional Logic

Chapter 6: Processing Collections of Data

Chapter 7: Using Procedures to Organize
Scripts

P
A

R
T

Learning VBScript
and WSH ScriptingII

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

VBScript Basics
3

T
his chapter begins your VBScript education by teaching you a number of important
concepts. You’ll learn about the objects that make up the VBScript core and run-time
object models. In addition, you’ll learn about basic VBScript syntax, functions, reserved

words, and special characters. You’ll also learn about VBScript and WSH output functions
and methods. Along the way, you’ll create a math game while learning more about how
VBScript works with the WSH. You also will learn the following:

• The basic rules that you must follow when writing VBScripts

• The objects that make up the VBScript core and run-time object models

• How to enhance your scripts using built-in VBScript functions

• Different ways of displaying script output

Project Preview: The Math Game
This chapter’s game project shows you a programming technique that enables you to write
VBScripts that can open and interact with other Windows applications. It’s called Math-
Game.vbs, and it tests the player’s understanding of the principle of precedence in solving
a numeric expression. If the user gets the answer correct, he or she is congratulated for
possessing superior math skills. If the player provides an incorrect answer, then the game
offers to teach the player how to solve the expression.

To teach the player how to solve the equation, the program opens the Microsoft WordPad
application and types out instructions that explain the steps required to solve the problem.
To further demonstrate how the equation is solved, the program starts the Windows Calcu-
lator application and uses it to solve the equation.

52 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

The WordPad and Calculator demonstrations play out almost like a movie or slide show, starting auto-
matically, pausing as input and text are automatically keyed in, and finally automatically closing when the
demonstrations end. Figures 3.1 through 3.4 show some of the screens that users will see when they play
the Math Game on a computer running Windows 8.1.

Figure 3.1 The game begins by asking the player to solve
a mathematical equation. © 2014 Cengage Learning.

Figure 3.2 If the player provides an incorrect answer,
the game offers to demonstrate how the equation is solved.
© 2014 Cengage Learning.

Figure 3.3 Using WordPad, the game types out detailed instructions for solving the problem.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

As you go through the steps involved in creating this game, you’ll learn how to use a number of WScript
and WshShell object methods. You’ll also get a brief introduction to VBScript’s support for conditional
programming logic.

VBScript Statements
Like any programming language, VBScript is composed of programming statements. As you go through
the chapters in this book, you’ll be introduced to the statements that make up the VBScript’s scripting
language, learning a few different statements in every chapter, until, by the end of the book, you’ve seen
and worked with most of them.

Table 3.1 lists the statements that make up the VBScript scripting language.

53Chapter 3 • VBScript Basics

Figure 3.4 The game then starts the Calculator
application and solves the equation again, just for fun.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

Statement Description

Call Executes a procedure

Class Defines a class name

Const Defines a constant

Dim Defines a variable

Do…Loop Repeatedly executes a collection of one or more statements as long as a
condition remains True or until the condition becomes True

Erase Reinitializes the elements stored in an array

Execute Executes a specified statement

TA B L E 3 .1 VBS C R I P T S TAT E M E N T S

VBScript Syntax Rules
To properly apply the programming statements that make up the VBScript programming language, you
must have an understanding of the syntax rules that govern these statements. Each VBScript statement
has its own particular syntax.

54 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Statement Description

ExecuteGlobal Executes a specified statement in a script’s global namespace

Exit Ends a loop, subroutine, or function

For Each…Next Processes all the elements stored in an array or collection

For…Next Repeats a collection of one or more statements a specified number of times

Function Defines a function and its associated arguments

If…Then…Else Executes one or more statements depending on the value of a tested condition

On Error Enables error handling

Option Explicit Forces explicit variable declaration

Private Defines a private variable

Property Get Defines a property name and its arguments and then returns its value

Property Let Defines a property procedure’s name, its arguments, and code that allows the
assignment of a property’s value

Property Set Defines a property procedure’s name, its arguments, and code that allows the
assignment of a property as a reference to an object

Public Defines a public variable

Randomize Initializes VBScript’s random-number generator

ReDim Defines or redefines the dimension of an array

Rem A comment statement

Select Case Defines a group of tests, of which only one will execute if a matching condition
is found

Set Sets up a variable reference to an object

Sub Defines a subroutine and its arguments

While…Wend Executes one or more statements as long as the specified condition is True

With Associates one or more statements that are to be executed for a specified object

TA B L E 3 .1 VBS C R I P T S TAT E M E N T S (C O N T I N U E D)

© Jerry Lee Ford, Jr. All Rights Reserved.

The following is a list of rules that you should keep in mind as you write your VBScripts:

• By default, all VBScript statements must fit on one line.

• You can spread a single statement out over multiple lines by ending each line with the _

(continuation) character.

• You can place more than one VBScript statement on a single line by ending each statement with

the : (colon) character.

• By default, VBScript is not case sensitive, meaning that VBScript regards different case spelling of

words used by variables, constants, procedures, and subroutines as the same.

• You can enforce case sensitivity by adding the Option Explicit statement to the beginning of

your VBScripts.

• By default, an error will halt the execution of any VBScript.

• You can prevent an error from terminating a VBScript’s execution by adding the On Error Resume

Next statement to your VBScripts.

• Extra blank spaces are ignored within scripts and can be used to improve scripts’ format and

presentation.

Every VBScript statement has its own specific syntax that must be exactly followed. Failure to properly
follow a statement’s syntax will result in an error. Let’s look at an example. The following statement tries
to use the VBScript’s MsgBox() function to display a text message:

MsgBox “Thanks for playing!

Unfortunately, the statement’s syntax requirements have not been followed. The MsgBox() function
requires that all text messages be enclosed within a pair of quotation marks. If you look closely, you will
see that the closing quotation mark is omitted. Figure 3.5 shows the error produced on a computer run-
ning Windows 8.1 by this statement at run-time.

55Chapter 3 • VBScript Basics

Figure 3.5 The error message caused by an unmatched quotation mark in a MsgBox() statement.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

56 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Reserved Characters
Like any programming language, VBScript has a collection of reserved words. Reserved words are words
that you cannot use within your scripts because VBScript also assigns a special meaning to them. Some
of these words are reserved because they are part of the language itself. Others are reserved for future use.
Table 3.2 lists VBScript’s reserved words. The important thing to remember when it comes to VBScript
reserved words is that you can only use them as intended (that is, you cannot use them as variables, con-
stants, or procedure names).

And EndIf LSet RSet

As Enum Me Select

Boolean Eqv Mod Set

ByRef Event New Shared

Byte Exit Next Single

ByVal False Not Static

Call For Nothing Stop

Case Function Null Sub

Class Get On Then

Const GoTo Option To

Currency If Optional True

Debug Imp Or Type

Dim Implements ParamArray TypeOf

Do In Preserve Until

Double Integer Private Variant

Each Is Public Wend

Else Let RaiseEvent While

ElseIf Like ReDim With

Empty Long Rem Xor

End Loop Resume

TA B L E 3 .2 VBS C R I P T ’ S C O L L E C T I O N O F R E S E R V E D WO R D S

© Jerry Lee Ford, Jr. All Rights Reserved.

Adding Comments
One of the easiest VBScript statements to understand is the comment statement. The comment statement
gives you the ability to add to your VBScripts descriptive text that documents why you wrote the script the
way you did. Documenting your scripts with comments makes them easier to support and helps others who
may come after you to pick up where you left off. Comments do not have any effect on the execution of
your scripts and you should use them liberally.

Comments can be added to scripts using the VBScript Rem (short for “remark”) statement, as follows:

Rem Use the VBScript MsgBox() function to display a message

MsgBox “Thanks for playing!”

Comments also can be created using the ‘ character:

‘Use the VBScript MsgBox() function to display a message

MsgBox “Thanks for playing!”

The ‘ character is my preferred style. I find it less visually intrusive and just as effective.

Also, you can add a comment to the end of any statement:

MsgBox “Thank you for playing” ‘Display a thank you message

Hint

One sign of an experienced programmer is the number and usefulness of comments added to his scripts.
Consider adding comments that describe the function of variables, constants, and arrays. Also use them
to explain complicated pieces of coding.

Comments can also be used to create a script template, which will provide additional structure to your
VBScripts. For example, consider the following template:

‘***

‘Script Name: ScriptName.vbs

‘Author: Author Name

‘Created: MM/DD/YY

‘Description: Xxxxxxxxxxxxxxxxxxxxxxxxx.

‘***

‘Initialization Section

Option Explicit

On Error Resume Next

Dim…

Const…

57Chapter 3 • VBScript Basics

Set…

‘Main Processing Section

‘Procedure Section

‘This function…

Function Xxxxx(Zzzz)

Xxxxxxxxxx

End Function

This template begins with a documentation section that provides a place to record the script’s name,
author, and creation date, as well as a brief description. Other information that you might want to add
here includes the following:

• Instructions for running the script

• Documentation for any arguments the script expects to receive at execution time

• Documentation of the recent updates to the script, including when, by whom, and why

• Copyright information

• Contact or support information

The rest of the template is divided into three sections:

• The initialization section. This contains statements that globally affect the scripts, including

Option Explicit and On Error, as well as the declaration of any variables, constants, arrays, and

objects used by the script.

• The main processing section. This section contains the statements that control the main processing

logic of the script. The statements in this section access the resources defined in the initialization

section as necessary, and call on the procedures and functions located in the procedure section.

• The procedure section. This section contains all the script’s procedures. Procedures are groups of

statements that can be called and executed as a unit. You’ll learn how to work with procedures in

Chapter 7, “Using Procedures to Organize Scripts.”

Mastering the VBScript Object Model
In Chapter 2, “An Introduction to the Windows Script Host,” you learned about the WSH core object
model and its properties and methods. You also learned how to instantiate WSH objects to access and
manipulate their properties and methods. VBScript also provides two collections of objects that you can
use in your scripts. Table 3.3 provides an overview of VBScript’s built-in or core objects.

58 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Check out Chapter 11, “Working with Built-in VBScript Objects,” to learn more about VBScript’s built-
in objects.

Working with VBScript Run-Time Objects
In addition to its core object model, VBScript’s FileSystemObject object also provides a number of run-
time objects. As Table 3.4 shows, your scripts can use these objects and their properties and methods to
interface with the Windows file system.

59Chapter 3 • VBScript Basics

Object Name Description

Class Provides access to class events

Err Provides access to information about run-time errors

Match Provides access to the read-only properties of a regular expression match

Matches Collection A collection of regular expression Match objects

RegExp Supports regular expressions

SubMatches Collection Provides access to read-only values of regular expression submatch strings

TA B L E 3 .3 VBS C R I P T B U I LT- I N O B J E C T S

Object Name Description Properties Methods

Dictionary Stores data keys, Count, Item, Key Add, Exists, Items,
item pairs Keys, Remove,

RemoveAll

Drive Provides access AvailableSpace, DriveLetter, None
to disk properties DriveType, FileSystem, FreeSpace,

IsReady, Path, RootFolder,
SerialNumber, ShareName,
TotalSize, VolumeName

Drives Provides access to Count, Item None
Collection information regarding

a drive’s location

TA B L E 3 .4 VBS C R I P T R U N -T I M E O B J E C T S

© Jerry Lee Ford, Jr. All Rights Reserved.

www.allitebooks.com

http://www.allitebooks.org

60 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Object Name Description Properties Methods

File Provides access Attributes, DateCreated, Copy, Delete, Move,
to file properties DateLastAccessed, OpenAsTextStream

DateLastModified, Drive,
Name, ParentFolder, Path,
ShortName, ShortPath,
Size, Type

Files Collection Provides access Count, Item None
to files stored in
a specified folder

FileSystemObject Provides access to Drives BuildPath, CopyFile,
the file system CopyFolder, CreateFolder,

CreateTextFile,
DeleteFile, DeleteFolder,
DriveExists, FileExists,
FolderExists,
GetAbsolutePathName,
GetBaseName, GetDrive,
GetDriveName,
GetExtensionName,
GetFile, GetFileName,
GetFolder,
GetParentFolderName,
GetSpecialFolder,
GetTempName,
MoveFile, MoveFolder,
OpenTextFile.

Folder Provides access to Attributes, DateCreated, Copy, Delete, Move,
folder properties DateLastAccessed, OpenAsTextStream

DateLastModified, Drive,
Files, IsRootFolder,
Name, ParentFolder,
Path, ShortName,
ShortPath, Size,
SubFolders, Type

Folders Provides access Count, Item Add
Collection to folders located

within another folder

TA B L E 3 .4 VBS C R I P T R U N -T I M E O B J E C T S (C O N T I N U E D)

The WSH core object model provides access to a number of Windows resources. Absent from this model
is a file system object. Therefore, to access system files from your VBScripts, you’ll need to learn how to
work with VBScript’s FileSystemObject object.

© Jerry Lee Ford, Jr. All Rights Reserved.

With this object, your scripts will be able to do the following

• Check for the existence of files and folders before attempting to work with them.

• Create and delete files and folders.

• Open and read files.

• Write or append to files.

• Close files.

• Copy and move files and folders.

Properties
Like WSH objects, VBScript run-time objects support a large number of properties. Table 3.5 provides a
complete list of VBScript run-time properties.

61Chapter 3 • VBScript Basics

Property Name Description

AtEndOfLine Returns a value of either true or false based on whether the file pointer
has reached the TextStream file object’s end-of-line marker (TextStream
is a built-in class that provides facilities for accessing files.)

AtEndOfStream Returns a value of either true or false based on whether the end of a
TextStream file object has been reached

Attributes Modifies or retrieves file and folder attributes

AvailableSpace Retrieves the amount of free space available on the specified drive

Column Retrieves the current column position in a TextStream file object

CompareMode Sets or returns the comparison mode used to compare a Dictionary
object’s string keys

Count Returns a value representing the number of the items in a collection or
Dictionary object

DateCreated Retrieves a file or folder’s creation date and time

DateLastAccessed Retrieves the date and time that a file or folder was last accessed

DateLastModified Retrieves the date and time that a file or folder was last modified

Drive Retrieves the drive letter where a file or folder is stored

DriveLetter Retrieves the specified drive’s drive letter

Drives Establishes a Drives collection representing all the drives found on the
computer

DriveType Returns a value identifying a drive’s type

TA B L E 3 .5 VBS C R I P T R U N -T I M E P R O P E R T I E S

Methods
VBScript run-time objects also support a larger number of methods, which you will find essential when
working with the Windows file system. These methods are outlined in Table 3.6.

62 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Property Name Description

Files Establishes a Files collection to represent all the File objects located
within a specified folder

FileSystem Retrieves the name of the file system used on the specified drive

FreeSpace Retrieves the amount of free space available on the specified drive

IsReady Returns a value of either true or false based on the availability of the
specified drive

IsRootFolder Returns a value of either true or false based on whether the specified
folder is the root folder

Item Retrieves or sets an item based on the specified Dictionary object key

Key Sets a Dictionary object key

Line Retrieves the current line number in the TextStream file object

Name Gets or modifies a file or folder’s name

ParentFolder Returns a reference to the specified file or folder’s parent folder object

Path Retrieves the path associated with the specified file, folder, or drive

RootFolder Retrieves the Folder object associated with the root folder on the specified
drive

SerialNumber Retrieves the specified disk volume’s serial number

ShareName Retrieves the specified network drive’s share name

ShortName Retrieves the specified file or folder’s 8.3-character short name

ShortPath Retrieves a file or folder’s short path name associated with a file or folder’s
8.3-character name

Size Returns the number of bytes that make up a file or folder

SubFolders Establishes a Folders collection made up of the folders located within a
specified folder

TotalSize Retrieves a value representing the total number of bytes available on a drive

Type Retrieves information about the specified file or folder’s type

VolumeName Gets or modifies a drive’s volume name

TA B L E 3 .5 VBS C R I P T R U N -T I M E P R O P E R T I E S (C O N T I N U E D)

© Jerry Lee Ford, Jr. All Rights Reserved.

63Chapter 3 • VBScript Basics

Method Name Description

Add (Dictionary) Adds a key and item pair to a Dictionary object

Add (Folders) Adds a Folder to a collection

BuildPath Appends a name to the path

Close Closes an open TextStream file object

Copy Copies a file or folder

CopyFile Copies one or more files

CopyFolder Recursively copies a folder

CreateFolder Creates a new folder

CreateTextFile Creates a file and a TextStream object so that it can be read from and
written to

Delete Deletes a file or folder

DeleteFile Deletes a file

DeleteFolder Deletes a folder’s contents

DriveExists Returns a value of true or false based on whether a drive exists

Exists Returns a value of true or false based on whether a key exists in a
Dictionary object

FileExists Returns a value of true or false based on whether the specified file can
be found

FolderExists Returns a value of true or false based on whether the specified folder can
be found

GetAbsolutePathName Retrieves a complete path name

GetBaseName Retrieves a file name without its file extension

GetDrive Returns the Drive object associated with the drive in the specified path

GetDriveName Returns the name of a drive

GetExtensionName Returns a file’s extension

GetFile Returns a File object

GetFileName Returns the last file name or folder of the specified path

GetFileVersion Returns a file’s version number

GetFolder Returns the Folder object associated with the folder in the specified path

GetParentFolderName Returns the name of the parent folder

GetSpecialFolder Returns a special folder’s name

TA B L E 3 .6 VBS C R I P T R U N -T I M E M E T H O D S

Using VBScript Run-Time Objects in Your Scripts
Now seems like a good time to look at an example of how to incorporate the VBScript FileSystemObject
object into your scripts and use its properties and methods to work with the Windows file system. Take
a look at the following script:

64 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Method Name Description

GetTempName Returns the name of a temporary file or folder

Items Returns an array where items in a Dictionary object are stored

Keys Returns an array containing the keys in a Dictionary object

Move Moves a file or folder

MoveFile Moves one or more files

MoveFolder Moves one or more folders

OpenAsTextStream Opens a file and retrieves a TextStream object to provide a reference to
the file

OpenTextFile Opens a file and retrieves a TextStream object to provide a reference to
the file

Read Returns a string containing a specified number of characters from a
TextStream file object

ReadAll Reads the entire TextStream file object and its contents

ReadLine Reads an entire line from the TextStream file object

Remove Deletes a Dictionary object’s key, item pair

RemoveAll Deletes all of a Dictionary object’s key, item pairs

Skip Skips a specified number of character positions when processing a
TextStream file object

SkipLine Skips an entire line when processing a TextStream file object

Write Places a specified string in the TextStream file object

WriteBlankLines Writes a specified number of new-line characters to the TextStream file
object

WriteLine Writes the specified string to the TextStream file object

TA B L E 3 .6 VBS C R I P T R U N -T I M E M E T H O D S (C O N T I N U E D)

© Jerry Lee Ford, Jr. All Rights Reserved.

‘***

‘Script Name: FreeSpace.vbs

‘Author: Jerry Ford

‘Created: 01/22/14

‘Description: This script demonstrates how to use VBScript run-time

‘objects and their properties and methods.

‘***

‘Initialization Section

Option Explicit

Dim FsoObject, DiskDrive, AvailSpace

‘Instantiate the VBScript FileSystemObject

Set FsoObject = WScript.CreateObject(“Scripting.FileSystemObject”)

‘Use the FileSystemObject object’s GetDrive method to set up a reference

‘to the computer’s C: drive

Set DiskDrive = FsoObject.GetDrive(FsoObject.GetDriveName(“c:”))

‘Main Processing Section

‘Use the FileSystemObject FreeSpace property to determine the amount of

‘free space (in MB) on the C: drive

AvailSpace = (DiskDrive.FreeSpace / 1024) / 1024

‘Use the VBScript FormatNumber function to format the results as a

‘whole number

AvailSpace = FormatNumber(AvailSpace, 0)

‘Display the amount of free space on the C: drive

WScript.Echo “You need 100 MB of free space to play this game. “ & _

vbCrLf & “Total amount of free space is currently: “ & AvailSpace & “ MB”

The script begins by instantiating the FileSystemObject object, as shown here:

Set FsoObject = WScript.CreateObject(“Scripting.FileSystemObject”)

The script then uses this instance of the FileSystemObject object to execute its GetDrive() method and
set up a reference to the computer’s C: drive:

Set DiskDrive = FsoObject.GetDrive(FsoObject.GetDriveName(“c:”))

65Chapter 3 • VBScript Basics

66 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

The next statement uses the FileSystemObject object’s FreeSpace property to retrieve the amount of
free space on the C: drive:

AvailSpace = (DiskDrive.FreeSpace / 1024) / 1024

This statement divides this value by 1,024, and then again by 1,024, to present the amount of free space
in megabytes.

The next statement formats this value further by eliminating any numbers to the right of the decimal point.
The last statement displays the final result. Figure 3.6 shows how this result looks on a computer running
Windows 8.1.

For more information on how to use the VBScript FileSystemObject object, see Chapter 5, “Conditional
Logic,” in which I’ll show you how to create and write to Windows files to produce reports and log files.
In Chapter 8, “Storing and Retrieving Data,” I’ll cover how to open and read from Windows files.

Examining Built-in VBScript Functions
One of the real advantages of working with VBScript is having access to its large number of built-in func-
tions. In the previous example, you saw how to use the FormatNumber() function. There are too many
built-in VBScript functions to try to list them all here. For a complete list, see Appendix D, “Built-in
VBScript Functions.”

Demo: The Square-Root Calculator
By using functions, you can really streamline your scripts. VBScript’s built-in functions provide built-in
code that you don’t have to write. The best way to illustrate this is to use two examples. In the first exam-
ple, I’ve written a small VBScript that prompts the user to type a number so that the script can calculate
its square root. The second script, discussed in the following section, is a rewrite of the first script, using
the VBScript Sqr() function in place of the original programming logic.

Figure 3.6 Using the FileSystemObject object to access
information about disk drives. © 2014 Cengage Learning.

Here’s the first example:

‘***

‘Script Name: SquareRoot-1.vbs

‘Author: Jerry Ford

‘Created: 01/22/14

‘Description: This script demonstrates how to solve square-root

‘calculations using a mathematic solution devised by Sir Isaac Newton

‘***

‘Initialization Section

Option Explicit

Dim UserInput, Counter, X

UserInput = InputBox (“Type a number”, “Square Root Calculator”)

X = 1

For Counter = 1 To 15

X = X - ((X^2 - UserInput) / (2 * X))

Next

MsgBox “The square root of “ & UserInput & “ is “ & X

As you can see, the first part of the script displays a pop-up dialog box to collect the number, and the last
part displays the script’s final results. The middle is where the real work results:

X = 1

For Counter = 1 To 15

X = X - ((X^2 - UserInput) / (2 * X))

Next

I won’t go into the mathematical logic behind these statements. Unless you’re a math major, it’s a bit of
a challenge to understand. This solution is based on Sir Isaac Newton’s solution for solving square-root
equations. Granted, it took only four lines of code to reproduce the formula, but would you like to have
tried to write these four statements from scratch? I don’t think so.

Demo: A New and Improved Square-Root Calculator
Now let’s look at a rewrite of the square-root calculator script in which I use VBScript’s built-in Sqr()
function to perform square-root calculations.

67Chapter 3 • VBScript Basics

‘***

‘Script Name: SquareRoot-2.vbs

‘Author: Jerry Ford

‘Created: 01/22/14

‘Description: This script demonstrates how to solve square-root

‘calculations using VBScript’s Built-in Sqr() function

‘***

‘Initialization Section

Option Explicit

Dim UserInput

UserInput = InputBox (“Type a number”, “Square Root Calculator”)

MsgBox “The square root of “ & UserInput & “ is “ & Sqr(UserInput)

As you can see, this time you don’t have to be a mathematician to write the script. All you have to know
is the correct way to use the Sqr() function, which is simply to pass it a number. (In the case of this script,
that number is represented by a variable named UserInput.) These two examples show clearly the advantage
of using VBScript’s built-in functions. These functions can save you a lot of time and effort and perhaps
a few headaches.

Figure 3.7 and Figure 3.8 demonstrate the operation of either version of these two scripts on a computer
running Windows 7.

Displaying Script Output
You’ve already seen many examples of how to display output messages in VBScripts. Output display is a
critical tool in any programmer’s toolbox. As a VBScript programmer working with the WSH, you have
four different options for displaying script output.

68 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 3.7 First, the script prompts the user to supply a number.
© 2014 Cengage Learning.

Figure 3.8 The script then determines the number’s
square root. © 2014 Cengage Learning.

Two of these options are provided by the WSH in the form of object methods:

• Echo(). This displays text messages in the Windows Console when processed by the CScript.exe

execution host, and in pop-up dialog boxes when processed by the WScript.exe execution host.

• Popup(). This displays text messages in pop-up dialog boxes, giving you control over the icons and

buttons that are displayed and, optionally, returning a value representing the button that is clicked.

In addition to these two WSH options, VBScript gives you two functions of its own:

• InputBox(). This displays a text-entry field in a pop-up dialog box to collect user input.

• MsgBox(). This displays text messages in pop-up dialog boxes, giving you control over the icons and

buttons that are displayed and, optionally, returning a value representing the button that is clicked.

The WScript Object’s Echo() Method
The WScript object’s Echo() method can display text output in the Windows Console or in a pop-up dialog
box, depending on the execution host that processes it. Table 3.7 outlines the Echo() method’s behavior
based on the execution host that processes it. Unlike other WSH output methods or VBScript functions,
the Echo() method cannot collect user input.

The syntax for the WScript object’s Echo() method is as follows:

WScript.Echo [Arg1] [,Arg2]…

The Echo() method can display any number of arguments:

WScript.Echo “This message appears differently depending on the “ & _

“execution host that runs it.”

The WshShell Object’s Popup() Method
The WshShell object’s Popup() method displays messages in pop-up dialog boxes. You can customize its
appearance by selecting the buttons and the icon to be displayed. You can also determine which button
the user clicked. To work with the WshShell object, you must first instantiate it within your script, which
you can do by adding a statement like the one shown here.

Set WshShl = WScript.CreateObject(“WScript.Shell”)

69Chapter 3 • VBScript Basics

WSH Execution Host Output

WScript.exe Displays text messages in graphical pop-up dialog boxes

CScript.exe Displays text messages in the Windows Console

TA B L E 3 .7 WS C R I P T E C H O () M E T H O D E X E C U T I O N O P T I O N S

© Jerry Lee Ford, Jr. All Rights Reserved.

www.allitebooks.com

http://www.allitebooks.org

70 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Once instantiated, you can access WshShell object’s methods and properties. The WshShell object’s
Popup() method can be used in either of two ways. The syntax of the first option is as follows:

Response = WScript.Popup(StrText,[Time],[TitleBarMsg],[DialogSettings])

The syntax of the second option is as follows:

WScript.Popup StrText,[Time],[TitleBarMsg],[DialogSettings]

Response is a variable that stores a number representing the button that was clicked by the user. StrText
represents the message text to be displayed. Time is a value that determines how long, in seconds, the pop-
up dialog box will be displayed; if omitted, the default is forever. TitleBarMsg is an optional message that
is displayed in the pop-up dialog box’s title bar. Finally, DialogSettings is a numeric value that specifies
the buttons and the icon that are to appear on the pop-up dialog box. If omitted, the pop-up dialog box
displays the OK button without an icon.

To determine what numeric value to specify as the DialogSettings value, see Table 3.8 and Table 3.9. Table
3.8 lists the different collections of buttons that can be displayed on pop-up dialog boxes created by the
Popup() method, and Table 3.9 displays the different icons that you can display using the Popup() method.

Value Button(s)

0 Displays the OK button
1 Displays the OK and Cancel buttons
2 Displays the Abort, Retry, and Ignore buttons
3 Displays the Yes, No, and Cancel buttons
4 Displays the Yes and No buttons
5 Displays the Retry and Cancel buttons

TA B L E 3 .8 P O P U P () M E T H O D B U T T O N T Y P E S

Value Icon

16 Displays the stop icon
32 Displays the question mark icon
48 Displays the exclamation mark icon
64 Displays the information icon

TA B L E 3 .9 P O P U P () M E T H O D I C O N T Y P E S

© Jerry Lee Ford, Jr. All Rights Reserved.

© Jerry Lee Ford, Jr. All Rights Reserved.

For example, to display a pop-up dialog box that contains the OK button without any icon, you would
specify a value of 0 for DialogSettings. As this is the default option for the Popup() method, you do not
have to specify this value at all. To display a pop-up dialog box with the Yes, No, and Cancel button and
no icon, you specify a value of 3 for DialogSettings. To display a pop-up dialog box with OK and Cancel
buttons and the information icon, you specify a value of 65 (that is, the collective sum of 1 and 64).

If you use the first form of the Popup() method (to be able to determine which button the user clicked),
you’ll need to examine the value of Response as demonstrated here:

Set WshShl = WScript.CreateObject(“WScript.Shell”)

Response = WshShl.Popup(“This is a text message”, ,”Test Script”, 5)

If Response = 4 Then

WshShl.Popup “You clicked on Retry”

End If

Table 3.10 lists the possible range of values that can be returned by the Popup() method.

The VBScript InputBox() Function
VBScript provides two built-in functions that you can use to display text messages and interact with
users. The InputBox() function displays your text message in a pop-up dialog box that also includes an
entry field. You have already seen the InputBox() function in action in both the Knock Knock game and
the Rock, Paper, and Scissors game.

The syntax for this function is as follows:

Response = InputBox(StrText[, TitleBarMsg][, default][, xpos][, ypos]

[, helpfile, context])

71Chapter 3 • VBScript Basics

Value Results

1 OK button

2 Cancel button

3 Abort button

4 Retry button

5 Ignore button

6 Yes button

7 No button

TA B L E 3 .10 P O P U P () M E T H O D R E T U R N VA L U E S

© Jerry Lee Ford, Jr. All Rights Reserved.

Response is a variable that stores a number representing the input typed by the user. StrText is the mes-
sage that you want to display. TitleBarMsg is an optional message that will be displayed in the pop-up
dialog box’s title bar. Default is an optional default answer that you can display in the pop-up dialog box.
xpos and ypos are optional arguments that specify, in twips, the horizontal and vertical location of the
pop-up dialog box on the screen. helpfile and context are also optional. They specify the location of
an optional context-sensitive help file.

The following statement provides another example of
how to use the VBScript InputBox() function:

PlayerName = InputBox(“Please type your name”)

MsgBox “You typed: “ & PlayerName

The VBScript MsgBox() Function
The VBScript MsgBox() function displays a pop-up dialog box that is very similar to the pop-up dialog
box produced by the WSH Popup() method. It gives you the ability to customize the appearance of the
dialog box by selecting the buttons and the icon to be displayed. You also can use it to determine which
button the user clicked.

The syntax for the MsgBox() function is as follows:

MsgBox(TextMsg[, buttons][, TitleBarMsg][, helpfile, context])

TextMsg is the message to be displayed in the dialog box. buttons is a representation of the buttons and
icons to appear in the pop-up dialog box . TitleBarMsg is an optional message that will be displayed in
the pop-up dialog box’s title bar. helpfile and context are optional; when used, they specify the location
of an optional context-sensitive help file.

Table 3.11 defines the different collections of buttons that can be appear on pop-up dialog boxes displayed
using the MsgBox() function.

72 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Twip stands for “twentieth of a point”
and represents a value of 1/1440 inch.

D
ef

in
it

io
n

Constant Value Description

vbOKOnly 0 Displays the OK button
vbOKCancel 1 Displays the OK and Cancel buttons
vbAbortRetryIgnore 2 Displays the Abort, Retry, and Ignore buttons
vbYesNoCancel 3 Displays the Yes, No, and Cancel buttons
vbYesNo 4 Displays the Yes and No buttons
vbRetryCancel 5 Displays the Retry and Cancel buttons

TA B L E 3 .1 1 VBS C R I P T M S G B OX () F U N C T I O N B U T T O N S

© Jerry Lee Ford, Jr. All Rights Reserved.

Table 3.12 defines the list of icons that you can add to the MsgBox() pop-up dialog box.

You can use the MsgBox() function in your scripts like this:

MsgBox “Thanks for playing!”

You also can use the MsgBox() like this:

UserSelected = MsgBox(“Would you like to play a game?”)

The advantage to this last option is that you can interrogate the button that the user clicks and use it to
drive the execution flow of your script like this:

UserSelected = MsgBox(“Would you like to play a game?”, 4, “Text Script”)

If UserSelected = 6 Then

MsgBox “OK, The rules of this game are as follows:!”

End If

Alternatively, you could rewrite the previous statements as follows:

UserSelected = MsgBox(“Would you like to play a game?”, 4, “Text Script”)

If UserSelected = vbYes Then

MsgBox “OK, let’s play!”

End If

Table 3.13 defines the list of return values associated with the various MsgBox() buttons.

73Chapter 3 • VBScript Basics

Constant Value Description

vbCritical 16 Displays the critical icon

vbQuestion 32 Displays the question mark icon

vbExclamation 48 Displays the exclamation mark icon

vbInformation 64 Displays the information icon

TA B L E 3 .12 VBS C R I P T M S G B OX () F U N C T I O N I C O N S

© Jerry Lee Ford, Jr. All Rights Reserved.

74 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Constant Value Description

vbOK 1 User clicked OK

vbCancel 2 User clicked Cancel

vbAbort 3 User clicked Abort

vbRetry 4 User clicked Retry

vbIgnore 5 User clicked Ignore

vbYes 6 User clicked Yes

vbNo 7 User clicked No

TA B L E 3 .13 VBS C R I P T M S G B OX () F U N C T I O N R E T U R N VA L U E S

Back to the Math Game
The Math Game is played by displaying a math equation and asking the player to provide the solution. If
the player provides the correct answer, the game ends; however, if the player gets the answer wrong, then
the script offers to show the player how to arrive at the correct answer. This is achieved in a slide slow or
movie-like fashion, in which the script first starts WordPad, then starts the Calculator application, and
finally uses these applications to solve the equation while the player sits back and watches. When the script
is finished with its presentation, it ends by closing both the WordPad and the Calculator applications.

A Quick Overview of the WshShell Object’s SendKeys() Method
Before I jump completely into the design of the Math Game, I need to give you one more piece of infor-
mation. The Math Game’s capability to interact with the WordPad and Calculator applications depends
on the use of the WshShell object’s SendKeys() method. This method is used to send keystrokes to the
currently active Windows application.

Because opening another window while the SendKeys() method is executing will divert the keystrokes
to the new window, you will want to find another way of integrating your scripts with other applications
whenever possible. Many applications, such as Excel and Word, provide their own built-in core object
model. WSH scripts can interact directly with these applications by first instantiating references to the
application’s objects and then accessing their methods and properties. The only trick here is that you
need to know the objects that make up the application’s object model, as well as their associated meth-
ods and properties. You can often get this information from the application vendor’s website or by
searching the Internet. Of course, if the application you want to work with does not expose an object
model for your scripts to work with, you can always try using the SendKeys() method.In

 t
he

 R
ea

l W
o

rl
d

© Jerry Lee Ford, Jr. All Rights Reserved.

Trap

Because it sends keystrokes to the currently active Windows application, it is very important that, when
the script is running, the player does not open any new windows (applications). If he does, the script will
begin sending keystrokes to whatever applications the player opened, causing any of a number of unpre-
dictable problems.

The syntax of the SendKeys() method is as follows:

SendKeys(string)

string is a value representing the keystrokes that are to be sent to the target application. You can send
more keystrokes by simply typing them out, like this:

SendKeys “I am “

SendKeys “38”

SendKeys “ years old.”

However, in many cases, you’ll want to send other types of keystrokes. For example, to send an Enter key
keystroke, you’ll need to type the following:

SendKeys “[td]”

Table 3.14 provides a list of SendKeys() keystrokes that you’re likely to want to use.

75Chapter 3 • VBScript Basics

Key Corresponding SendKeys() Codes

Backspace {BACKSPACE}, {BS}, or {BKSP}
Break {BREAK}

Caps Lock {CAPSLOCK}

Del or Delete {DELETE} or {DEL}
down arrow {DOWN}

End {END}

Enter {ENTER}or [td]
Esc {ESC}

Help {HELP}

Home {HOME}

Ins or Insert {INSERT} or {INS}
left arrow {LEFT}

TA B L E 3 .14 S E N D K E Y S () K E Y S T R O K E S

Besides the keystrokes outlined in Table 3.14, Table 3.15 lists three additional keystroke combinations
that can be used to send keystrokes that require a special key to be pressed in conjunction with another
key. For example, if you were working with an application that could be closed by holding down the Alt
key and pressing the F4 key, you could perform this operation as follows:

SendKeys “%{F4}”

76 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Key Corresponding SendKeys() Codes

Num Lock {NUMLOCK}

Page Down {PGDN}

Page Up {PGUP}

Print Screen {PRTSC}

right arrow {RIGHT}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

up arrow {UP}

F1 {F1}

F2 {F2}

F3 {F3}

F4 {F4}

F5 {F5}

F6 {F6}

F7 {F7}

F8 {F8}

F9 {F9}

F10 {F10}

F11 {F11}

F12 {F12}

F13 {F13}

F14 {F14}

F15 {F15}

F16 {F16}

TA B L E 3 .14 S E N D K E Y S () K E Y S T R O K E S (C O N T I N U E D)

© Jerry Lee Ford, Jr. All Rights Reserved.

Designing the Game
Let’s starting building the Math Game. This game will be assembled in five steps. The first three steps
create the logic that interacts with the user and plays the game. The last two steps perform the game’s
application demonstrations. These steps are as follows:

1. Add the standard documentation template and define any variables, constants, and objects used by

the script.

2. Present the player with the equation and then test the player’s response to determine whether he

provided an answer and whether that answer was numeric.

3. Test to see whether the player provided the correct answer. If not, offer to show the user how to

arrive at the correct answer.

4. Add the statements required to start and control the WordPad application.

5. Add the statements required to start and control the Calculator application.

Beginning the Math Game
Let’s begin by adding the script template that I introduced earlier in this chapter and then modifying it as
shown here. This includes initializing variables and constants and setting up object declaration statements.

‘***

‘Script Name: Mathgame.vbs

‘Author: Jerry Ford

‘Created: 01/23/14

‘Description: This script prompts the user to solve a mathematical

‘expression and demonstrates how to solve it in the event that the user

‘cannot

‘***

‘Initialization Section

Option Explicit

77Chapter 3 • VBScript Basics

Key Corresponding SendKeys() Codes

Shift +

Ctrl ^

Alt %

TA B L E 3 .15 S P E C I A L S E N D K E Y S () K E Y S T R O K E S

© Jerry Lee Ford, Jr. All Rights Reserved.

Dim WshShl, QuestionOne, ProveIt

‘Define the title bar message to be displayed in the script’s

‘pop-up dialog box

Const cTitlebarMsg = “The Math Game”

‘Instantiate an instance of the WshShell object

Set WshShl = WScript.CreateObject(“WScript.Shell”)

Collect the Player’s Answer and Test for Errors
Next, display the equation and store the player’s answer in a variable called QuestionOne, like this:

‘Present the player with the equation

QuestionOne = InputBox(“What is the sum of 1 + 5 * 9 / 3 ?”, cTitlebarMsg)

Now verify that the player actually typed an answer instead of just clicking OK or Cancel. If the player
did not type an answer, display an error message and end the game.

‘See if the player provided an answer

If Len(QuestionOne) = 0 Then

MsgBox “Sorry. You must enter a number to play this game.”

WScript.Quit

End If

Another good test to perform is to make sure that the player is, in fact, typing a number as opposed to a
letter or other special character:

‘Make sure that the player typed a number

If IsNumeric(QuestionOne) <> True Then

MsgBox “Sorry. You must enter a number to play this game.”

WScript.Quit

End If

Check for the Correct Answer
Okay, now add a test to see if the player provided the correct answer. If the answer provided is correct,
then compliment the player’s math skills. Otherwise, offer to teach the player how to solve the equation.

‘Check to see if the player provided the correct answer

If QuestionOne = 16 Then

MsgBox “Correct! You obviously know your math!”

Else

ProveIt = MsgBox(“Incorrect. Do you want to see me solve the “ & _

“equation?”, 36, cTitlebarMsg)

78 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

If ProveIt = 6 Then ‘Player wants to see the solution

.

.

.

End If

End If

As you can see, I left space in the previous statements. This space marks the spot where the rest of the
script’s statements will be written as you continue to develop the script.

Interacting with WordPad
For the script to work with the WordPad application, WordPad must first be started. This can be done
using the WshShell object’s Run() method.

WshShl.Run “WordPad”

It may take a moment or two for the application to finish starting, so pause the script’s execution for two
seconds and wait using the WScript object’s Sleep() method, like this:

WScript.Sleep 2000

Next add a series of statements that use the SendKeys() method to write text to WordPad. To slow things
down a bit and make the process run more like a slide show, add the Sleep() method after each write
operation. Finally, pause for a couple seconds and then close WordPad.

WshShl.SendKeys “To answer this question you must follow the “ & _

“correct order of precedence when performing your calculations.”

WScript.Sleep 2000

WshShl.SendKeys “[td][td]”

WshShl.SendKeys “1st, working from left to right multiply 5 * 9.”

WScript.Sleep 2000

WshShl.SendKeys “[td][td]”

WshShl.SendKeys “2nd, divide the result by 3.”

WScript.Sleep 2000

WshShl.SendKeys “[td][td]”

WshShl.SendKeys “3rd, add 1.”

WScript.Sleep 2000

WshShl.SendKeys “[td][td]”

WshShl.SendKeys “The final answer is 16.”

WScript.Sleep 2000

79Chapter 3 • VBScript Basics

WshShl.SendKeys “[td][td]”

WshShl.SendKeys “[td][td]”

WshShl.SendKeys “In case you question my math..... watch this!”

WScript.Sleep 2000

WshShl.SendKeys “%{F4}”

WshShl.SendKeys “%{N}”

Take notice of the last two statements. The first statement closed WordPad by sending the Alt+F4 key-
stroke. As a new document was just opened, WordPad displays a dialog box asking if you want to save it.
The last statement responds by sending the Alt+N keystrokes indicating a “no” response.

Interacting with the Calculator Application
The final piece of the game opens the Windows Calculator application and resolves the equation, just in
case the player has any doubts as to the answer you presented using WordPad. The statements required
to write this portion of the script are as follows:

‘Start the Calculator application

WshShl.Run “Calc”

‘Use the Calculator application to solve the equation

WScript.Sleep 2000

WshShl.SendKeys 5 & “{*}”

WScript.Sleep 2000

WshShl.SendKeys 9

WScript.Sleep 2000

WshShl.SendKeys “[td]”

WScript.Sleep 2000

WshShl.SendKeys “{/}” & 3

WScript.Sleep 2000

WshShl.SendKeys “[td]”

WScript.Sleep 2000

WshShl.SendKeys “{+}” & 1

WScript.Sleep 2000

WshShl.SendKeys “[td]”

WScript.Sleep 2000

WshShl.SendKeys “%{F4}”

As you can see, the same techniques have been used here to work with the Windows Calculator as were
used to control WordPad.

80 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

The Final Result
I suggest that you run and test this script to make sure it works as expected. For example, try typing a let-
ter instead of a number for the answer. Then try typing nothing at all and just click OK or Cancel. Finally,
try both a correct and then an incorrect answer and see what happens. This is a fairly lengthy script, so
the odds of typing it correctly the first time are slim. If you get errors when you run the script, read them
carefully and see if the error message tells you what’s wrong and then go fix it. Otherwise, you may need
to double-check your typing.

Trick

As your scripts grow more complex, you’re going to run into more and more errors while developing
them. I recommend that you learn to develop your scripts in a modular fashion, writing one section at a
time and then testing it before moving on to the next section. In Chapter 9, “Handling Script Errors,” I’ll
demonstrate how to do this.

Summary
In this chapter, you learned about the core and run-time VBScript objects and their associated properties
and methods, and were shown how to use them within your VBScripts. You also learned about VBScript
syntax, reserved words, and special characters. In addition, you learned about and saw the power and
convenience of VBScript functions. Finally, you learned four different ways to display script output.

81Chapter 3 • VBScript Basics

1. Change the Math Game to use a different equation and modify the logic required to adapt the
statements that work with the WordPad and Calculator applications.

2. Try using the SendKeys() method to work with other Windows applications, such as Notepad.

3. Spend some time reviewing VBScript’s built-in math functions and see if you can create a new
calculator similar to the square-root calculator.

4. Modify the VBScript template presented earlier in this chapter and adapt it to suit your personal
preferences. Then use it as you begin developing new VBScripts.

C
ha

lle
ng

es

This page intentionally left blank

Constants, Variables,
Arrays, and Dictionaries

4
T

his is the second of five chapters in this book that teaches the fundamentals of
VBScript. One of the key concepts that you need to understand when working with
VBScript, or any programming language, is how to store, retrieve, and modify data.

This chapter will teach you a number of different ways to perform these tasks. By the time
you have completed this chapter, you will know how to write scripts that can collect and
manipulate data. Specifically, you will learn the following:

• How to process data passed to the script at execution time

• How to store data that does not change

• How to work with data that can change during script execution

• How to process collections of related data as a unit

Project Preview: The Story of Captain Adventure
In this chapter, you will learn how to create a game that builds a comical adventure story
based on user input. The game begins by collecting answers to a series of questions with-
out telling the user how the answers will be used. After all the information that the script
needs is collected, the story is displayed. Figures 4.1 through 4.3 show the execution of
this script on a computer running Windows 8.1.

Through the development of this story-building game, you will learn a number of important programming
techniques, including how to collect, store, and reference data. In addition, you will learn how to control
the presentation of script output.

Understanding How Scripts View Data
VBScript, like other programming languages, needs a way of storing data so that it can be accessed
throughout the execution of a script. In this book, you have seen a number of examples of how VBScript
temporarily stores and references data. Now I’ll explain how this works.

84 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 4.1 The story’s initial splash screen.
© 2014 Cengage Learning.

Figure 4.2 The user is the star of the story.
© 2014 Cengage Learning.

Figure 4.3 After the script has all the information
it needs, the story is told. © 2014 Cengage Learning.

VBScript supplies a number of different statements that
enable you to define several different types of data.
These VBScript statements are outlined in Table 4.1.

The Const statement is used to define data that never
changes throughout the execution of a script. For
example, in this book you will sometimes see con-
stants used to define strings that define a standard
greeting message in a pop-up dialog box. The Dim
statement is used to define a variable. A variable
stores an individual piece of data such as a name,
number, or date. The ReDim statement is used to
create an array. Arrays are used to store groups of related information. For example, instead of defining
20 different variables to store information about 20 different people, a single array could be defined, and
then information about each person could be stored in it. Each of these statements will be examined in
greater detail throughout the rest of this chapter.

Working with Data That Never Changes
Data should be defined within a script according to the manner in which it will be used. If the script only
needs to reference a piece of data that has a value that is known during script development, then the data
can be defined as a constant. An example of a constant is the mathematical value of pi. Other examples
of constants include specific dates in history, the name of
places, and so on.

There are two sources of constants within scripts. First, you
can define your own constants within your scripts. Another
option is to reference a built-in collection of readily avail-
able constants provided by VBScript.

85Chapter 4 • Constants, Variables, Arrays, and Dictionaries

Data is information that a computer
program collects, modifies, stores,
and retrieves during execution.

D
ef

in
it

io
n

Statement Description

Const Defines a VBScript constant

Dim Defines a VBScript variable or array

ReDim Defines a dynamic VBScript array

TA B L E 4 .1 VBS C R I P T S TAT E M E N T S T H AT

D E T E R M I N E H O W DATA I S D E F I N E D

A variable is an individual piece of data
such as a name, number, or date that is
stored in memory. An array is used to store
groups of related information in memory.D

ef
in

it
io

n

A constant is a VBScript construct
that contains information that does
not change during the execution
of a script.D

ef
in

it
io

n

© Jerry Lee Ford, Jr. All Rights Reserved.

Assigning Data to Constants
If you’re going to write a script and know for a fact that you need to reference one or more values that
will not change during the execution of the script, then you can define each piece of data as a constant.
One of the nice features of constants is that, once defined, their value cannot be changed. This prevents
their values from being accidentally modified during the execution of the script.

Hint

If your script attempts to modify the value assigned to a constant after it has been initially assigned, you
will see an “Illegal assignment: ‘name of constant’” error message when the script executes. Open your
script, do a search for the name of the constant, and look for the statements that have attempted to
modify its value to find the source of the error.

To define a constant within a VBScript, you must use the Const statement. This statement has the follow-
ing syntax:

[Public | Private] Const ConstName = expression

Public and Private are optional keywords and are used to determine the availability of constants
throughout a script. Defining a constant as Public makes it available to all procedures within the scripts.
Defining a constant as Private makes it avail-
able only within the procedure that defines it.
ConstName is the name of the constant being
defined, and expression is the value that identi-
fies the data being defined. To make sense of all
this, let’s look at an example.

‘***

‘Script Name: LittlePigs.vbs

‘Author: Jerry Ford

‘Created: 01/28/14

‘Description: This script demonstrates how to use a constant to create a

‘standardized title bar message for pop-up dialog boxes displayed by the

‘script

‘***

‘Specify the message to appear in each pop-up dialog box’s title bar

Const cTitleBarMsg = “The Three Little Pigs”

86 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

A procedure is a collection of script state-
ments that are processed as a unit. In Chapter 7,
“Using Procedures to Organize Scripts,” you
will learn how to use procedures to improve
the overall organization of your scripts and
to create reusable units of code.

D
ef

in
it

io
n

‘Display the story

MsgBox “Once upon a time........”, vbOkOnly, cTitleBarMsg

MsgBox “There were 3 little pigs”, vbOkOnly, cTitleBarMsg

MsgBox “Who liked to build things.”, vbOkOnly, cTitleBarMsg

In this example, I wrote a small VBScript that tells a very brief story about three little pigs. The script
begins by defining a constant named cTitleBar. I then used three MsgBox() statements to display the text
that makes up the story. The first argument in each MsgBox() statement is a text message, which is then
followed by a VBScript MsgBox() constant vbOkOnly. This constant tells VBScript to only display the OK
button on the pop-up dialog box. (A complete listing of MsgBox() constants is available in Chapter 3,
“VBScript Basics.”) The last part of each MsgBox() statement is the cTitleBarMsg constant. VBScript
automatically substitutes the value assigned to the cTitleBarMsg constant whenever the script executes.
Figure 4.4 shows how the first pop-up dialog box appears when the script is executed on a computer run-
ning Windows 7.

Hint

I recommend you apply a naming convention for your constants. A good naming convention will make
your constants easy to identify and will improve the overall readability of your scripts. For example, in
this book I will use the following constant naming convention:

•Constant names begin with the lowercase letter C.

•Constant names describe their contents using English words or easily identifiable parts of words.

Other examples of tasks related to working with constants include assigning values such as numbers, strings,
and dates. For example, the following statement assigns a value of 1000 to a constant called cUpperLimit:

Const cUpperLimit = 1000

To define a text string, you must place the value being assigned within a pair of quotes, like this:

Const cMyName = “Jerry Lee Ford, Jr.”

In a similar fashion, you must use a pair of pound signs to store a date value within a constant, like this:

Const cMyBirthday = #11-20-64#

87Chapter 4 • Constants, Variables, Arrays, and Dictionaries

Figure 4.4 By referencing the value assigned to a constant, you can create a
standard title bar message for every pop-up dialog box displayed by your script.
© 2014 Cengage Learning.

88 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

VBScript Run-Time Constants
VBScript supplies you with an abundance of built-in constants. In Chapter 3 you learned about the con-
stants associated with the MsgBox() function. For example, the following VBScript statement executes the
MsgBox() function using the vbOkOnly constant:

MsgBox “Welcome to my VBScript game!”, vbOkOnly

This statement displays a pop-up dialog box that contains a single OK button. In addition to these con-
stants, VBScript supplies constants that help when you’re working with dates and times. VBScript also
supplies a number of constants that can help you manipulate the display of text output and test the type
of data stored within a variable.

Using Date and Time Constants
Table 4.2 lists VBScript date and time constants.

The following script demonstrates how the vbFriday constant, listed in Table 4.2, can be used to deter-
mine whether the end of the workweek is here:

‘***

‘Script Name: HappyHour.vbs

‘Author: Jerry Ford

‘Created: 01/28/14

‘Description: This script tells the user if it’s Friday

‘***

Constant Value Description

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

vbFirstFourDays 2 First full week with a minimum of four days in the new year

vbFirstFullWeek 3 First full week of the year

vbFirstJan1 1 Week that includes January 1

vbUseSystemDayOfWeek 0 Day of week as specified by the operating system

TA B L E 4 .2 VBS C R I P T DAT E A N D T I M E C O N S TA N T S

© Jerry Lee Ford, Jr. All Rights Reserved.

‘Perform script initialization activities

Dim TodaysDate

‘ Weekday is a VBScript function that returns the day of the week

TodaysDate = Weekday(Date)

If TodaysDate = vbFriday then MsgBox “Hurray, it is Friday. Time “ & _

“to get ready for happy hour!”

Trick

You may have noticed the use of the & character in the previous example. The & character is a VBScript
string concatenation operator. It allows you to combine two pieces of text into a single piece of text.

The first two lines of the script define a variable. (We’ll discuss variables in detail in the next section.)
The third line assigns a numeric value to the variable. In this case, the script used the VBScript Weekday()
function to execute the VBScript Date() function. The Date() function retrieves the current date from
the computer. The Weekday() function then provides a numeric value to represent the weekday for the
date. Table 4.2 provides a list of the possible range of values in its Value column. If the current day of the
week is Friday, then the value returned by the Weekday() function will be 6. Because the vbFriday con-
stant has a value of 6, all that has to be done to determine if it is Friday is to compare the value returned
by the Weekday() function to the vbFriday constant. If the two values are equal, a pop-up dialog box
displays the message “Hurray, it is Friday. Time to get ready for happy hour!”

Using String Constants
Another group of constants that you may find useful is the VBScript string constants listed in Table 4.3.

89Chapter 4 • Constants, Variables, Arrays, and Dictionaries

Constant Value Description
vbCr Chr(13) Executes a carriage return
vbCrLf Chr(13) and Chr(10) Executes a carriage return and a line feed
vbFormFeed Chr(12) Executes a form feed
vbLf Chr(10) Executes a line feed
vbNewLine Chr(13) and Chr(10) Adds a newline character
vbNullChar Chr(0) Creates a 0 or null character
vbNullString String with no value Creates an empty string
vbTab Chr(9) Executes a horizontal tab
vbVerticalTab Chr(11) Executes a vertical tab

TA B L E 4 .3 VBS C R I P T S T R I N G C O N S TA N T S

© Jerry Lee Ford, Jr. All Rights Reserved.

90 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Using the constants shown in Table 4.3, you can control the manner in which output text is displayed.
For example, take a look at the following script:

‘***

‘Script Name: MsgFormatter.vbs

‘Author: Jerry Ford

‘Created: 01/28/14

‘Description: This script demonstrates how to use VBScript string constants

‘to control how text messages are displayed.

‘***

‘Specify the message to appear in each pop-up dialog box title bar

Const cTitleBarMsg = “The three little pigs”

‘Specify variables used by the script

Dim StoryMsg

‘Specify the text of the message to be displayed

StoryMsg = “Once upon a time there were three little pigs” & vbCrLf & _

“who liked to build things.” & vbCrLf & vbCrLf & _

vbTab & “The End”

‘Display the story to the user

MsgBox StoryMsg, vbOkOnly + vbExclamation, cTitleBarMsg

The text message that is displayed by the script is as follows:

Once upon a time there were three little pigs who liked to build things. The

End

Notice how the vbCrLf and vbTab constants have been placed throughout the text to specify how
VBScript should display the message text. Figure 4.5 shows the output that is displayed when this script
is executed on a computer running Windows 8.1.

Figure 4.5 Using VBScript string constants to
manipulate the display of text in pop-up dialog boxes.
© 2014 Cengage Learning.

If the vbCrLf and vbTab constants were removed from the formatted message, the text displayed in the
pop-up dialog box would look completely different, as shown in Figure 4.6.

Storing Data That Changes During Script Execution
Chances are most programs that you write will have data in them that will need to be modified. For
example, you may write a script that asks the user for input and then modifies the data while processing it.
In this situation, you can define variables. Two categories of variables are available to your scripts: variables
that you define within your scripts and environment variables that are maintained by Windows that your
scripts can reference.

VBScript Data Types
Unlike many other programming languages, VBScript supports
only one type of variable, called a variant. However, a variant is
very flexible and can be used to store a number of different types
of data. Table 4.4 lists variant data types supported by VBScript.

91Chapter 4 • Constants, Variables, Arrays, and Dictionaries

Figure 4.6 Displaying the same output as the previous
example without the use of the vbCrLf and vbTab constants.
© 2014 Cengage Learning.

Subtype Description

Boolean A variant with a value of True or False
Byte An integer whose value is between 0 and 255
Currency A currency value between –922,337,203,685,477.5808 and 922,337,203,685,477.5807
Date A number representing a date between January 1, 100 and December 31, 9999
Double A floating-point number with a range of –1.79769313486232E308 to –4.94065645841247E-324

or 4.94065645841247E-324 to 1.79769313486232E308
Empty A variant that has not been initialized
Error A VBScript error number
Integer An integer with a value that is between –32,768 and 32,767

TA B L E 4 .4 VBS C R I P T S U P P O R T E D VA R I A N T S U B T Y P E S

A variant is a type of variable
that can contain any number
of different types of data.

D
ef

in
it

io
n

Variants automatically recognize the types of data that are assigned to them and act accordingly. In other
words, if a date value is assigned to a variant, then your script can use any of VBScript’s built-in date
functions to work with it. Likewise, if a text string is assigned to a variant, then your script can use any
of VBScript’s built-in string functions to work with it.

Like constants, VBScript provides you with some control over the way in which it identifies the types of
values stored in a variant. For example, if you assign 100 as the variable value, then VBScript automati-
cally interprets this value as a number. But if you enclose the value in quotation marks, VBScript treats
it like a string.

VBScript also provides the capability to convert data from one type to another using built-in VBScript
functions. You can use these functions within your
scripts to change the way VBScript views and works
with data. For example, the following VBScript
statement defines a variable named MyBirthday and
assigns it a text string of “November 20, 1964”:

MyBirthday = “November 20, 1964”

VBScript views this variable’s value as a text string.
However, using the Cdate() function, you can convert the string value to date format:

MyBirthday = CDate(MyBirthday)

Now, instead of seeing the variable’s value as “November 20, 1964”, VBScript sees it as 11/20/1964.

Hint

VBScript provides a large number of conversion functions that you can use to convert from one data type
to another. These functions include Asc(), Cbool(), Cbyte(), Cbur(), Cdate(), CDbl(), Chr(), Cint(),
CLng(), CSng(), and CStr(). For more information about how to use these functions, see Chapter 7.

92 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Subtype Description

Long An integer whose value is between –2,147,483,648 and 2,147,483,647
Null A variant set equal to a null value
Object An object
Single A floating-point number whose value is between –3.402823E38 and –1.401298E-45 or

1.401298E-45 and 3.402823E38
String A string up to two billion characters long

TA B L E 4.4 VBSC R I P T SU P P O R T E D VA R I A N T SU BT Y P E S (CONTINUED)

The term string and text string are used
synonymously throughout this book to
refer to text-based data or other types of
data that have been enclosed within a pair
of quotation marks.D

ef
in

it
io

n

© Jerry Lee Ford, Jr. All Rights Reserved.

Defining Variables
VBScript provides two ways of defining variables: dynamically, and formally, using the Dim statement. To
dynamically create a variable within a script, you simply need to reference it like this:

MyBirthday = #November 20, 1964#

Using this method, you can define variables anywhere within your script. However, I strongly recom-
mend against creating variables in this manner. It is much better to formally define any variables used in
a script all at once at the beginning of the script. This helps keep things organized. In addition, I also
strongly suggest that you use the Dim statement. The syntax of the Dim statement is as follows:

Dim VariableName

VariableName is the name of the variable being defined. For example, the following statement defines a
variable named MyBirthday:

Dim MyBirthday

After a variable has been defined, you can assign a value to it, like this:

MyBirthday = #November 20, 1964#

Always use the Dim statement to make your code more readable and to explicitly show your intentions.
You can define multiple variables within your scripts using multiple Dim statements:

Dim MyBirthday

Dim MyName

Dim MyAge

However, to reduce the number of lines of code in your scripts, you have the option of defining more
than one variable at a time using a single Dim statement, by separating each variable with a comma and
a space:

Dim MyBirthday, MyName, MyAge

As I already stated, it’s better to formally define a variable before using it. One way to make sure that you
follow this simple rule is to place the Option Explicit statement at the beginning of your scripts. The
Option Explicit statement generates an error during script execution if you attempt to reference a vari-
able without first defining it. Therefore, Option Explicit helps remind you to follow good programming
practices when working with variables.

To test the use of the Option Explicit statement, let’s take a look at another example:

‘***

‘Script Name: BigBadWolf.vbs

‘Author: Jerry Ford

‘Created: 01/29/14

93Chapter 4 • Constants, Variables, Arrays, and Dictionaries

‘Description: This script demonstrates how to use the Option Explicit

‘statement

‘***

‘For the explicit declaration of all variables used in this script

Option Explicit

‘Create a variable to store the name of the wolf

Dim WolfName

‘Assign the wolf’s name to the variable

WolfName = “Mr. Wiggles”

‘Display the story

MsgBox “Once upon a time there was a big bad wolf named “ & WolfName & _

“ who liked to eat little pigs”, vbOkOnly

In this example, the Option Explicit statement is the first statement in the script. By making it the first
statement in the script, Option Explicit will affect all variables that follow. The next statement defines
a variable representing the name of the wolf. The statement after that assigns a name to the variable,
which is then used by the script’s final statement to tell the story. Run the script and you’ll see that every-
thing works fine.

Next, modify the script by placing a comment in front of the Dim statement and run the script again. This
time, instead of executing properly, an error will appear, indicating that the script attempted to reference
an undefined variable. Figure 4.7 shows the error message that is displayed when the script is executed
on Windows 7.

94 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 4.7 Use the Option Explicit statement in all your scripts to prevent
the use of undefined variables. © 2014 Microsoft Corporation. Used with permission from Microsoft.

To summarize, the following list provides the guidelines that you should follow when working with vari-
ables:

• Define your variables at the beginning of your scripts in one location.

• Use the Option Explicit statement to enforce formal variable declaration.

• Use the Dim statement to define each variable.

Up to this point in the chapter, I have not been following these rules because I had not gotten to them
yet. However, from this point on, you’ll find them applied consistently in every script that uses variables.

Trick

There is one exception to the set of rules that I want to point out. In certain cases, you can limit the avail-
ability of a variable and its value to a specific portion of your scripts. This is called “creating a local vari-
able” and can be useful when manipulating a sensitive variable to make sure that its value is not acci-
dentally modified by other parts of the script. I’ll provide more information about local variables a little
later in this chapter.

Variable Naming Rules
Another important issue that merits attention is the proper naming of variables. VBScript has a number
of rules that you must follow to avoid errors from inappropriately named variables. These rules include
the following:

• Variable names must be fewer than 256 characters long.

• Variable names must begin with an alphabetic character.

• Only letters, numbers, and the underscore (_) character can be used when creating variable names.

• Reserved words cannot be used as variable names.

• Variable names cannot contain spaces.

• Variable names must be unique.

One more important thing to know about VBScript variables is that they are case insensitive. That means
capitalization does not affect VBScript’s capability to recognize a variable. Therefore, if a script defines a
variable as MyBirthday and then later references it as MYBIRTHDAY, VBScript will recognize both spellings
of the variable name as the same. However, mixing cases in this manner can be confusing to anyone look-
ing at your code, so you should do your best to use a consistent case throughout your scripts.

95Chapter 4 • Constants, Variables, Arrays, and Dictionaries

Variable Scope
Another key concept that you need to understand when working with variables is variable scope. In this
context, scope refers to the ability to reference a variable and its assigned value from various locations
within a script.

VBScript supports two different variable scopes: global and local. A variable with a global scope can be
accessed from any location within the script. However, a variable with a local scope can only be referenced
from within the procedure that defines it. VBScript supports two types of procedures, subroutines and
functions, both of which are discussed in detail in Chapter 7.

As you know, a procedure is a collection or group of statements that is executed as a unit. Without getting
too far ahead of myself, for now just note that a variable defined outside a procedure is global in scope,
meaning that it can be accessed from any location within the script, including from within the script’s
procedures. A variable that is local in scope is defined within a procedure.

Modifying Variable Values with Expressions
Throughout this chapter, you have seen the equals sign (=) used to assign value to variables, like this:

strMyName = “Jerry Lee Ford, Jr.”

To change the value assigned to a variable, all you have to do is use the equals sign again, along with a
new value, like this:

strMyName = “Jerry L. Ford, Jr.”

96 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

You should assign descriptive variable names in your scripts and select a standard approach in the way
that you use case in the spelling of your variables. Up to this point in the book, I have defined variables
using complete words or parts of words, and I have begun each word or part of a word with a capital
letter, as in Dim MyBirthday.

Another approach that many programmers take when naming variables is to add a three-character prefix,
sometimes referred to as “Hungarian Notation,” to the beginning of each variable name. For example,
instead of naming a variable MyBirthday, you would name it dtmMyBirthday. This way, when someone
examines the first three characters of the variable name, they’ll be able to tell that it contains a date.
The following list identifies typical prefixes associated with each of the variables subtypes supported
by VBScript.

Now that I have formally introduced you to Hungarian Notation, you’ll see it throughout the rest of this
book.

In
 t

he
 R

ea
l W

o
rl

d

• Boolean: bln
• Byte: byt
• Currency: cur
• Date: dtm

• Double: dbl
• Error: err
• Integer: int
• Long: lng

• Object: obj
• Single: sng
• String: str
• Variant: var

The two previous examples set and then modified the value assigned to a text variable. However, this
same approach works just as well for other types of variables, such as those that contain numeric values:

Option Explicit

Dim intMyAge

intMyAge = 37

intMyAge = 38

In this example, the variable is defined and then assigned a numeric value. The value assigned to that
variable is then modified to a different number. VBScript provides additional ways of modifying the value
of numeric variables using the equals sign and VBScript arithmetic operators. Table 4.5 lists the VBScript
arithmetic operators

The best way to explain how these arithmetic operators are used is to show you an example. Take a look
at the following script:

‘***

‘Script Name: MathDemo.vbs

‘Author: Jerry Ford

‘Created: 01/29/14

‘Description: This script demonstrates how to use various VBScript

‘arithmetic operators

‘***

‘Force the explicit declaration of all variables used in this script

Option Explicit

97Chapter 4 • Constants, Variables, Arrays, and Dictionaries

Operator Description

+ Addition
- Subtraction
* Multiplication
/ Division
- Negation
^ Exponentiation
\ Integer division
Mod Modulus

TA B L E 4 .5 VBS C R I P T A R I T H M E T I C O P E R AT O R S

© Jerry Lee Ford, Jr. All Rights Reserved.

‘Create a variable to store the name of the wolf

Dim intMyAge

‘Assign my initial starting age

intMyAge = 37

WScript.Echo “I am “ & intMyAge

‘Next year I will be

intMyAge = intMyAge + 1

WScript.Echo “Next year I will be “ & intMyAge

‘But I am not that old yet

intMyAge = intMyAge - 1

WScript.Echo “But I still am “ & intMyAge

‘This is how old I’d be if I were twice as old as I am today

intMyAge = intMyAge * 2

WScript.Echo “This is twice my age “ & intMyAge

‘And if I took that value, divided it by 5, added 3, and multiplied it

‘by 10

intMyAge = intMyAge / 5 + 3 * 10

WScript.Echo “This says that I will be “ & intMyAge

If you run this script on a computer running Windows 8.1, you’ll see the results shown in Figure 4.8.

The first four calculations should be fairly easy to understand. In the first calculation, I took the value of
intMyAge and added 1 to it. Similarly, I subtracted 1 in the next calculation and then multiplied intMyAge
by 2 in the third statement. The final calculation requires a little more explanation. You may have been
surprised by this calculation’s result. At first glance, it appears that VBScript will try to solve the equation
as follows:

1. Divide intMyAge (which is 74) by 5 to get 14.8.

2. Add 14.8 to 3, getting 17.8.

3. Multiply 17.8 by 10, getting as the final result 178.

However, VBScript says that the answer is actually 44.8. How could this be? The answer lies in something
called the “order of precedence,” which tells VBScript the order in which to perform individual calculations
within an equation or expression. Table 4.6 outlines the order in which VBScript order of precedence
occurs.

98 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Note: Operators appearing at the beginning of the table have precedence over operators appearing later in the table.

Exponentiation occurs before negation, negation occurs before multiplication, and so on. So when applied
to the last calculation in the previous example, VBScript solves the equation as follows:

1. Multiply 3 by 10 to get 30.

2. Divide intMyAge (which is 74) by 5 to get 14.8.

3. Add 14.8 to 30 to get the final result of 44.8.

99Chapter 4 • Constants, Variables, Arrays, and Dictionaries

Figure 4.8 Using VBScript arithmetic operators to modify numeric variables.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

Operator Description

^ Exponentiation

- Negation

* Multiplication

/ Division

Operator Description

\ Integer division

Mod Modulus

+ Addition

- Subtraction

TA B L E 4 .6 O R D E R O F P R E C E D E N C E F O R

VBS C R I P T A R I T H M E T I C O P E R AT O R S

© Jerry Lee Ford, Jr. All Rights Reserved.

You can add parentheses to your VBScript expressions to exercise control over the order in which indi-
vidual calculations are performed. For example, you could rewrite the last expression in the previous
example as follows:

intMyAge = ((intMyAge / 5) + 3) * 10

VBScript now performs individual calculations located within parentheses first, like this:

1. Divide intMyAge (which is 74) by 5 to get 14.8.

2. Add 14.8 to 3 to get 17.8.

3. Multiply 17.8 by 10 to get a final result of 178.

Using the WSH to Work with Environment Variables
Thus far, the scripts that you have worked with in this chapter have used variables that are defined by the
scripts themselves. A second type of variable, known as an environment variable, is also available to your
VBScripts. Windows operating systems automatically create and maintain environment variables.

The two types of environment variables are as follows:

• User. User environment variables are created during user login and provide information specific to

the currently logged on user.

• System. System environment variables are created based on what Windows learns about the com-

puter. They are available at all times, as opposed to user variables, which are available only when

you’re logged in to the computer.

Hint

You may end up writing scripts that are designed to run when no one is logged on to the computer. This
can be done using the Windows Scheduler Service to automate the execution scripts. In this case, user
environment variables will not be available to your scripts. It will be up to you to make sure that your
scripts do not depend on them.

User and system environment variables can be viewed from the Environment Variables dialog box. On
Windows 7, you can access this dialog box using the following procedure:

1. Click the Start button.

2. Right-click Computer and select Properties. A window showing basic system information is

displayed.

3. Click the Advanced system settings link. The System Properties window appears.

4. Click the Advanced tab and then click the Environment Variables button. A listing of environment

variables is displayed.

100 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

101Chapter 4 • Constants, Variables, Arrays, and Dictionaries

You can use the following procedure to access system environment variables on Windows 8.1:

1. Move the mouse pointer to the bottom-right side of the screen and click the Search icon when it is

displayed.

2. Type Control Panel in the Apps Search field and press Enter.

3. In the Control Panel, click the System and Security link, and then click the System link.

4. Click Advanced System Settings to display the System Properties window.

5. Click the Environment Variables button to display the Environment Variables window, shown in

Figure 4.9.

Examples of user environment variables include the following:

• TEMP. A folder where temporary files can be stored

• TMP. Another folder where temporary files can be stored

Examples of system environment variables include the following:

• NUMBER_OF_PROCESSORS. Displays a value of 1 for single-processor computers

• OS. Displays the operating system’s name

• Path. Specifies the current search path

• PATHEXT. Specifies a list of extensions that identify executable files

Figure 4.9 Examining Windows environment variables.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

• PROCESSOR_ARCHITECTURE. Identifies the computer’s processor type

• PROCESSOR_IDENTIFIER. Displays a detailed description of the computer’s processor

• PROCESSOR_LEVEL. Displays the processor’s stepping level

• PROCESSOR_REVISION. Displays the processor’s revision number

• TEMP. A folder in which temporary files can be stored

• TMP. Another folder in which temporary files can be stored

• Windir. Identifies the location of the Windows folder

To access environment variables, you need to use the WSH. For example, take a look at the following script:

‘***

‘Script Name: ComputerAnalyzer.vbs

‘Author: Jerry Ford

‘Created: 01/29/14

‘Description: This script demonstrates how to access environment

‘variables using the WSH

‘***

‘Force the explicit declaration of all variables used in this script

Option Explicit

‘Create a variable to store the name of the wolf

Dim objWshObject

‘Set up an instance of the WScript.WshShell object

Set objWshObject = WScript.CreateObject(“WScript.Shell”)

‘Use the WScript.Shell object’s ExpandEnvironmentStrings() method to view

‘environment variables

MsgBox “This computer is running a version of “ & _

objWshObject.ExpandEnvironmentStrings(“%OS%”) & vbCrLf & _

“and has “ & _

objWshObject.ExpandEnvironmentStrings(“%NUMBER_OF_PROCESSORS%”) & _

“ processor(s).”

The first statement in this example creates an instance of the WSH WScript.Shell object using the
WScript object’s CreateObject() method. The next part of the script uses the WScript.Shell object’s
ExpandEnvironmentStrings() method to display the value of specific environment variables.

102 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Working with Collections of Related Data
When using variables, you can store an incredible amount of information during the execution of your
scripts. Indeed, you’re limited only by the amount of memory available on your computer. However, keep-
ing up with large numbers of variables can be difficult and may make your scripts difficult to maintain.

Often, data items processed by a script have a relationship to one another. For example, if you write a
script that collects a list of names from the user to generate a list of personal contacts, it would be more
convenient to store and manage the list of names as a unit instead of as a collection of individual names.
VBScript provides support for arrays so that such a task can be performed.

For example, you can think of an array as being like
a collection of numbered index cards, where each
card contains the name of a person who has been
sent an invitation to a party. If you assigned a name
of ItsMyParty to the collection of cards, you could
then programmatically refer to any card in the col-
lection as ItsMyParty(index#), where index# is the
number written on the card.

The ItsMyParty collection is an example of a single-
dimension array. VBScript is capable of supporting arrays with as many as 60 dimensions. In most cases,
all you’ll need to work with are single-dimension arrays, so that’s where I’ll focus most of my attention.

Single-Dimension Arrays
To create a single-dimension array, you use the Dim statement. When used in the creation of arrays, the
Dim statement has to have the following syntax:

Dim ArrayName(dimensions)

103Chapter 4 • Constants, Variables, Arrays, and Dictionaries

Although the script demonstrates how to access environment variables, it really isn’t very useful. Another
use for environment variables might be to validate the operating system on which the script has been
started and to terminate script execution if it has been started on the wrong operating system like this:

Set objWshObject = WScript.CreateObject(“WScript.Shell”)

If objWshObject.ExpandEnvironmentStrings(“%OS%”) <> “Windows_NT” Then

MsgBox “This script is designed to only run on “ & _

“Windows 2000, XP, 2003, Vista, 2008, 2012, 7 or 8.”

WScript.Quit

End If

In this example, the first line of code checks to see if the script is being run on Windows NT, 2000, XP,
2003, Vista, 2008, 2012, 7, or 8. If it isn’t, then the second and third lines of code execute, informing
the user of the situation and terminating the script’s execution.

In
 t

he
 R

ea
l W

o
rl

d

An array is an indexed list of related data.
The first element, or piece of data, stored
in the array is assigned an index position
of 0. The second element is assigned an
index position of 1, and so on. Thus, by
referring to an element’s index position,
you can access its value.

D
ef

in
it

io
n

dimensions is a comma-separated list of numbers that specifies the number of dimensions that make up
the array. For example, the following VBScript statement can be used to create a single-dimension array
named ItsMyParty that can hold up to 10 names:

Dim ItsMyParty(9)

Notice that I used the number 9 to define an array that can hold up to 10 elements. This is because the
first index number in the array is automatically set to 0, thus allowing the array to store 10 elements (that
is, 0–9).

After an array is defined, it can be populated with data.

Hint

Because the first element stored in an array has an index of 0, its actual length is equal to the number
supplied when the array is first defined plus one.

The following VBScript statements demonstrate how you can assign data to each element in the array:

ItsMyParty(0) = “Jerry”

ItsMyParty(1) = “Molly”

ItsMyParty(2) = “William”

ItsMyParty(3) = “Alexander”

.

.

.

ItsMyParty(9) = “Mary”

As you can see, to assign a name to an element in the array, I had to specify the element’s index number.

After you populate the array, you can access any array element by specifying its index number, like this:

MsgBox ItsMyParty(1)

In this example, ItsMyParty(1) equates to Molly.

Hint

If you like the suggestions I made earlier in this chapter about naming constants and about using
Hungarian Notation when creating names for your variables, then you might want to combine these two
approaches when naming your arrays. For example, instead of naming an array ItsMyParty(), you
might want to name it astrItsMyParty(). The first character of the name identifies that it’s an array
and the next three characters identify the type of data that’s stored in the array. This is the naming stan-
dard that I’ll use when naming arrays throughout the rest of this book.

104 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Multiple-Dimension Arrays
As stated, VBScript can support arrays with as many as 60 dimensions, although one or two dimensions
are usually sufficient. Let’s take a look at how to define a two-dimensional array, which you can think of
as being like a two-column table. The first column contains the names of the guests invited to the party
and the second column stores the guests’ phone numbers.

Dim astrItsMyParty(3,1)

astrItsMyParty(0,0) = “Jerry”

astrItsMyParty(0,1) = “550-9933”

astrItsMyParty(1,0) = “Molly”

astrItsMyParty(1,1) = “550-8876”

astrItsMyParty(2,0) = “William”

astrItsMyParty(2,1) = “697-4443”

astrItsMyParty(3,0) = “Alexander”

astrItsMyParty(3,1) = “696-4344”

In this example, a two-dimensional array is created that is four rows deep and two columns wide, allow-
ing it to store up to eight pieces of data. To refer to any particular element in this two-dimensional array,
you must supply both its row and column coordinates, like this:

WScript.Echo astrItsMyParty(1,0)

WScript.Echo astrItsMyParty(1,1)

The first of the two previous statements refers to the Molly element. The second statement refers to the
phone number associated with Molly.

Hint

Another way of thinking about a two-dimensional array is to consider it a one-dimensional array made
up of a collection of one-dimensional arrays.

Processing Array Contents
So far, in all the examples, I have accessed each array element by specifically referencing its index posi-
tion. This works fine as long as the array is small, but it’s not a practical approach for processing the con-
tents of large arrays, which may contain hundreds or thousands of entries. To handle arrays of this size,
a different approach is needed. VBScript’s solution to this issue is the For…Each…Next loop. The syntax of
the For…Each…Next loop is as follows:

For Each element In group

Statements . . .

Next [element]

105Chapter 4 • Constants, Variables, Arrays, and Dictionaries

element is a variable that the loop uses to iterate through each array element. group identifies the name of
the array. Statements are the VBScripts statements that you add to process the contents of each array ele-
ment. The For…Each…Next loop continues processing until every element in the array has been examined.

The For…Each…Next loop lets your scripts process the entire contents of an array using just a few statements.
The number of statements required does not increase based on array size. Therefore, you can use a
For…Each…Next loop to process extremely large arrays with very little programming effort. For example,
the next script defines an array named GameArray() and populates it with five elements. It then processes
the entire array using just one line of code located within a For…Each…Next loop.

‘***

‘Script Name: ArrayDemo.vbs

‘Author: Jerry Ford

‘Created: 01/30/14

‘Description: This script demonstrates how to store and retrieve data

‘using a single-dimension VBScript array.

‘***

‘Perform script initialization activities

Option Explicit

‘Define variables used in the script

Dim intCounter ‘Variable used to control a For...Each loop

Dim strMessage ‘Message to be displayed in a pop-up dialog box

strMessage = “The array contains the following default game “ & _

“information: “ & vbCrLf & vbCrLf

Dim astrGameArray(4) ‘Define an array that can hold 5 index elements

astrGameArray(0) = “Joe Blow” ‘The default username

astrGameArray(1) = “Nevada” ‘A place worth visiting

astrGameArray(2) = “soda can” ‘An interesting object

astrGameArray(3) = “Barney” ‘A close friend

astrGameArray(4) = “Pickle” ‘A favorite dessert

For Each intCounter In astrGameArray

strMessage = strMessage & intCounter & vbCrLf

Next

WScript.Echo strMessage

If you run this script using the CScript.exe execution host on a computer running Windows 8.1, you
receive the output shown in Figure 4.10.

106 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

These same few lines of code can easily process the array, even if it has a hundred or a thousand elements.
The alternative to the For…Each…Next loop is to write an individual statement to access each element stored
within the array, like this:

‘Display the contents of the array

WScript.Echo strMessage

WScript.Echo astrGameArray(0)

WScript.Echo astrGameArray(1)

WScript.Echo astrGameArray(2)

WScript.Echo astrGameArray(3)

WScript.Echo astrGameArray(4)

Writing statements for individual access array contents may not seem like a lot of work in a small pro-
gram, but imagine trying to process an array with 1,000 elements!

Xref

For more information on how to work with the For…Each…Next loop, see Chapter 6, “Processing Collections
of Data.”

107Chapter 4 • Constants, Variables, Arrays, and Dictionaries

Figure 4.10 Iteratively processing all the contents of an array.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

Getting a Handle on the Size of Your Arrays
VBScript provides you with two built-in functions that make it easier to work with arrays:

• Ubound(). This returns a numeric value indicating the array’s upper bound or its highest element.

• Lbound(). This returns a numeric value indicating the array’s lower bound or its lowest element.

The Lbound() function isn’t really that useful because the lower bound of all VBScript arrays is always
equal to 0. On the other hand, the Ubound() function can be quite handy, especially when working with
dynamic arrays. I’ll cover dynamic arrays a little later in this chapter. The syntax of the Ubound() func-
tion is as follows:

Ubound(ArrayName, Dimension)

ArrayName is the name of the array whose upper bound is to be returned. Dimension is used to specify
the array dimension whose upper bound is to be returned. For example, you could retrieve the upper
bound of a single-dimension array called astrItsMyparty as shown here:

intSize = Ubound(astrItsMyParty)

In this case, the upper bound of the array is assigned to a variable named intSize. Let’s look at a quick
example of the Ubound() function in action:

Dim intCounter ‘Define a variable to be used when processing array

‘contents

Dim strMessage ‘Define a variable to be used to store display output

Dim astrGameArray(2) ‘Define an array that can hold three index elements

astrGameArray(0) = “Joe Blow” ‘The default username

astrGameArray(1) = “Nevada” ‘A place worth visiting

astrGameArray(2) = “soda can” ‘An interesting object

intSize = UBound(astrgameArray)

For intCounter = 0 to intSize

strMessage = strMessage & astrGameArray(intCounter) & vbCrLf

Next

MsgBox strMessage

Run this example and you’ll see that the script displays all three elements in the array in a pop-up dialog
box.

108 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Resizing Arrays
Sometimes it’s impossible to know how many elements an array will need to store when developing your
scripts. For example, you might develop a script that uses the InputBox() function to prompt the user to
specify the data to be stored in the array. You might expect the user to specify only a few pieces of data,
but the user may have an entirely different idea. To handle this type of situation, you need a way of resiz-
ing the array to allow it to store the additional data.

One way of dealing with this situation is to define the array without specifying its size, like this:

Dim astrGameArray()

This lets you define the array’s size later in the script. For example, you might want to define the array
and later ask the user how many pieces of data he intends to provide. This is accomplished by using the
ReDim statement:

ReDim astrGameArray(9)

This ReDim statement has set up the array to store up to 10 elements. After its size has finally been defined,
you can begin populating the array with data.

Trap

If you use the ReDim statement to set up a new array by accidentally specifying the name of an existing
array, the data stored in the existing array will be lost.

Another, more flexible way of setting up an array so that it can be later resized is to replace the array’s
original Dim definition statement with the ReDim statement. For example, the following statement sets up
a new array capable of holding up to 10 elements:

ReDim astrTestArray(9)

However, if you populate this array with data and then later attempt to resize it, as shown next, you’ll lose
all the data originally stored in the array.

ReDim astrTestArray(19)

To prevent this from happening, you can add the Preserve keyword to the ReDim statement, like this:

ReDim Preserve astrTestArray(19)

This statement instructs VBScript to expand the size of the array while preserving its current contents.
After the array is expanded, you can then add more elements to it. For example, take a look at the next
script. It defines an array with the capability to store five elements and then resizes the array to increase
its storage capacity to eight elements. The script then uses a For…Each…Next loop to display the contents
of the expanded array.

109Chapter 4 • Constants, Variables, Arrays, and Dictionaries

‘***

‘Script Name: ResizeArray.vbs

‘Author: Jerry Ford

‘Created: 01/30/14

‘Description: This script demonstrates how to resize an array during

‘execution

‘***

‘Perform script initialization activities

Option Explicit

‘Define variables used in the script

Dim intCounter ‘Variable used to control a For...Each loop

Dim strMessage ‘Message to be displayed in a pop-up dialog box

strMessage = “The array contains the following default game “ & _

“information: “ & vbCrLf & vbCrLf

ReDim astrGameArray(4) ‘Define an array that can hold five index elements

astrGameArray(0) = “Joe Blow” ‘The default username

astrGameArray(1) = “Nevada” ‘A place worth visiting

astrGameArray(2) = “soda can” ‘An interesting object

astrGameArray(3) = “Barney” ‘A close friend

astrGameArray(4) = “Pickle” ‘A favorite dessert

ReDim Preserve astrGameArray(7) ‘Change the array to hold eight entries

astrGameArray(5) = “Lard Tart” ‘Default villain name

astrGameArray(6) = “water gun” ‘Default villain weapon

astrGameArray(7) = “Earth” ‘Planet the villain wants to conquer

‘Display the contents of the array

For Each intCounter In astrGameArray

strMessage = strMessage & intCounter & vbCrLf

Next

WScript.Echo strMessage

Trap

Be careful not to accidentally lose any data if you decide to resize an array to a smaller size. For example,
if you defined an array that can hold 100 elements and then later resize it to hold 50 elements using the
Preserve keyword, only the first 50 elements in the array will actually be preserved.

110 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

111Chapter 4 • Constants, Variables, Arrays, and Dictionaries

Building Dynamic Arrays
Up to this point, all the arrays shown in this book have been static, meaning that their size was prede-
termined at execution time. But in the real world, you won’t always know how many elements your arrays
will need to store. For example, you might write a script that enables the user to supply a list of names of
people to be invited to a party. Depending on the number of friends the user has, the amount of data to
be stored in the array can vary significantly. VBScript’s solution to this type of situation is dynamic arrays.
A dynamic array is an array that can be resized during execution as many times as necessary.

You can use the Dim statement to define a dynamic array
as shown here:

Dim astrItsMyParty()

Note that an index number for the array was not supplied
inside the parentheses. This allows you to come back later
on in the script and resize the array using the ReDim statement as demonstrated here:

ReDim astrItsMyParty(2)

Once resized, you can add new entries:

astritsmyParty(0) = “Molly”

astrItsMyParty(1) = “William”

astrItsMyParty(2) = “Alexander”

If the script later needs to add more elements to the array, you can resize it again:

ReDim Preserve astrItsMyParty(4)

This statement has increased the size of the array so that it can now hold an additional two elements.
Note the use of the Preserve keyword on the ReDim statement. This parameter was required to prevent
the array from losing any data stored in it before the array’s size was increased.

Trap

Dynamic arrays can be increased or decreased in size. If you decrease the size of a dynamic array, all
elements stored in the array are lost even if the Preserve keyword is added to the ReDim statement.

Now let’s look at one more example of how to work with dynamic arrays. In this example, an array named
astrItsMyparty is initially set up with the capability to store one element. The user is then prompted to
provide a list of names to be added to the array. Each time a new name is supplied, the script dynamically
increases the size of the array by 1, allowing it to hold additional information.

Dim astrItsMyParty()

ReDim astrItsMyParty(0)

Dim intCounter, strListOfNames

A dynamic array is an indexed list of
related data stored in memory that
can be resized during execution.

D
ef

in
it

io
n

intCounter = 0

Do While UCase(strListOfNames) <> “QUIT”

strListOfNames = InputBox(“Enter the name of someone to be invited: “)

If UCase(strListOfNames) <> “QUIT” Then

astrItsMyParty(intCounter) = strListOfNames

Else

Exit Do

End If

intCounter = intCounter + 1

ReDim Preserve astrItsMyParty(intCounter)

Loop

In this example, the array is named astrItsMyParty. A Dim statement is used to define it and then a ReDim
statement is used to set its initial size, thus allowing it to store a single element. After setting up a couple
variables used by the script, I added a Do…While loop to collect user input. The loop runs until the user
types Quit.

Note

UCase() is a VBScript function that converts string characters to uppercase. Using UCase(), you can devel-
op scripts that process user input regardless of how the user employs capitalization when entering data.

Assuming that the user does not type Quit, the script adds the names entered by the user to a string,
which is stored in a variable named strListOfNames. Otherwise, the Do…While loop terminates. Each
time a new name is entered, the ReDim statement is executed to redimension the array by increasing its
size by one.

Erasing Arrays
When your script is finished working with the data stored in an array, you can erase or delete it, thus free-
ing up a small portion of the computer’s memory for other work. This is accomplished using the Erase
statement, which has the following syntax:

Erase ArrayName

For example, the following statement could be used to erase an array named astrGameArray:

Erase astrGameArray

112 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Storing Data in Dictionaries
In addition to variables and arrays, VBScript also lets you store and manage data using Dictionary
objects. With dictionaries, data is stored in an associative array and retrieved using key/value pairs (as
opposed to using the data index position, as is the case with arrays). Data is stored in a dictionary using
keys. Keys can be numbers, strings, or any other type of data supported by VBScript. Dictionaries pro-
vide the same benefits as arrays while also providing greater flexibility in the way data is stored and
retrieved. In addition, Dictionary objects provide you with access to a number of different properties
and methods that provide access and manage data.

The Dictionary object supports three properties, as listed here.

• Count. This returns the total number of items in a Dictionary object.

• Item. This retrieves or adds an item using a specified key in a Dictionary object.

• Key. This adds a key to a Dictionary object.

The Dictionary object also provides access to a number of methods:

• Add. This adds a key/item pair to a Dictionary object.

• Exists. This returns a Boolean value of true if a specified key exists in the Dictionary object and

false if the value does not exist.

• Items. This returns an array of all items from a Dictionary object.

• Keys. This returns an array of keys from a Dictionary object.

• Remove. This deletes a key/item pair from a Dictionary object.

• Remove All. This removes all key/item pairs from a Dictionary object.

Keys and Values
To work the Dictionary object into a VBScript, you must first define a variable through which it can be
referenced. Once this is done, you can create an instance of the object as demonstrated here:

Dim dictObject

Set dictObject = CreateObject(“Scripting.Dictionary”)

Adding Dictionary Items
After you have instantiated a Dictionary object, you can begin storing items in it as key/value pairs, as
demonstrated here:

dictObject.Add “Model555”, “Red Bike”

dictObject.Add “Model888”, “Blue Bike”

dictObject.Item(“Model999”) = “Green Bike”

113Chapter 4 • Constants, Variables, Arrays, and Dictionaries

114 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

The first statement uses the Dictionary object’s Add() method to add a key named Model555 to the
dictObject dictionary. A value of Red Bike is then assigned to this key. The second statement adds a sec-
ond key named Model888 to the dictionary, assigning it a value of Blue Bike. The last statement does
things a little differently, using the Item property to make a key/value assignment.

Retrieving Dictionary Items
After you have created and populated a dictionary, you can begin working with the data stored in it. As
an example of how to do so, look at the following statements:

If dictObject.Exists(“Model555”) = True Then

MsgBox “Model555 is a “ & dictObject.Item(“Model555”)

End If

In this example, the Dictionary object’s Exists() method is used to ascertain whether the specified key
exists. If it exists, the Item() method is used to retrieve the value associated with the key.

Deleting Dictionary Items
If necessary, you can delete key/value pairs from a dictionary just as easily as you added them. To do so,
you use the Dictionary object’s Remove() method. For example, the following statement shows how to
use the Remove() method to delete a data element using its associated key:

DictObject.Remove “Model555”

As you can see, this statement removes the value associated with the Model555 key from the dictionary.
Alternatively, you can use the Dictionary object’s RemoveAll() method to delete all of the key/value
pairs stored in a dictionary, as demonstrated here:

DictObject.RemoveAll

Processing Data Passed to a Script at Run-Time
Up to this point, every script you have seen in this chapter expects to have its data hard-coded as con-
stants, variables, and arrays. Another way for a script to access data for processing is to set it up so that
the user can pass it arguments for processing at execution time.

Passing Arguments to Scripts
To pass arguments to a script, you must start the
script from the command line, as follows:

CScript DisplayArgs.vbs tic tac toe

An argument is a piece of data passed to
the script at the beginning of its execution.
For example, a script that is designed to
copy a file from one location to another
might accept the name of the file to be
copied as an argument.

D
ef

in
it

io
n

In the previous statement, the CScript.exe execution host is used to start a VBScript named DisplayArgs.vbs.
Three arguments have been passed to the script for processing. Each argument is separated by a blank
space.

The next example shows a slight variation of the statement. In this case, the script still passes three argu-
ments, but because the second argument contains a blank space, it must be enclosed in quotation marks:

CScript DisplayArgs.vbs tic “super tac” toe

Of course, for a script to accept and process arguments at execution time, it must be set up to do so, as
demonstrated in the next section.

Designing Scripts That Accept Argument Input
To set a script up to accept arguments, as demonstrated in the previous section, you can use the WSH’s
WshArguments object as shown in the following script:

‘***

‘Script Name: ArgumentProcessor.vbs

‘Author: Jerry Ford

‘Created: 01/30/14

‘Description: This script demonstrates how to work with arguments passed

‘to the script by the user at execution time

‘***

‘For the explicit declaration of all variables used in this script

Option Explicit

‘Define variables used during script execution

Dim objWshArgs, strFirstArg, strSecondArg, strThirdArg

‘Set up an instance of the WshArguments object

Set objWshArgs = WScript.Arguments

‘Use the WshArguments object’s Count property to verify that three arguments

‘were received. If three arguments are not received then display an error

‘message and terminate script execution.

If objWshArgs.Count <> 3 then

WScript.Echo “Error: Invalid number of arguments.”

WScript.Quit

End IF

115Chapter 4 • Constants, Variables, Arrays, and Dictionaries

‘Assign each argument to a variable for processing

strFirstArg = objWshArgs.Item(0)

strSecondArg = objWshArgs.Item(1)

strThirdArg = objWshArgs.Item(2)

‘Display the value assigned to each variable

WScript.Echo “The first argument is “ & strFirstArg & vbCrLf &_

“The second argument is “ & strSecondArg & vbCrLf & _

“The third argument is “ & strThirdArg & vbCrLf

To use the WshArguments object, the script must first create an instance of it, like this:

Set objWshArgs = WScript.Arguments

Next, the script uses the WshArguments object’s Count property to make sure that three arguments have
been passed to the script. If more than or fewer than three arguments have been received, an error mes-
sage is displayed and the script terminates its execution. Otherwise, the script continues and assigns each
of the arguments to a variable. Each argument is stored in an indexed list by the WshArguments object and
is referenced using the object’s Item() method. Item(0) refers to the first arguments passed to the script.
Item(1) refers to the second argument, and Item(2) refers to the third argument.

Finally, the WScript.Echo method is used to display each of the arguments passed to the script. The fol-
lowing shows how the script’s output appears when executed using the CScript.exe execution host and
three arguments (tic, tac, and toe):

C:\>CScript.exe ArgumentProcessor.vbs tic tac toe

Microsoft (R) Windows Script Host Version 5.8

Copyright (C) Microsoft Corporation. All rights reserved.

The first argument is tic

The second argument is tac

The third argument is toe

C:\>

Similarly, the following output shows what happens when only two arguments are passed to the script:

C:\>CScript.exe ArgumentProcessor.vbs tic tac

Microsoft (R) Windows Script Host Version 5.8

Copyright (C) Microsoft Corporation. All rights reserved.

Error: Invalid number of arguments.

C:\>

116 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Back to the Story of Captain Adventure
Now let’s return to the chapter’s programming project, the Story of Captain Adventure. In this programming
project, you’ll develop a script that displays a story describing how the story’s hero, Captain Adventure,
first gets his superpowers. Through the development of this script, you’ll have the opportunity to put your
knowledge of how to work with VBScript constants, variables, and string formatting constants to the test.

Designing the Game
The basic design of this project is to ask the user a bunch of questions (without telling the player what the
answers will be used for) and then to use the information provided by the player to build a comical action
story about a fictional hero named Captain Adventure.

This project will be completed in five steps.

1. Add the standard documentation template and fill in its information.

2. Define the constants and variables that will be used by the script.

3. Create the splash screen that welcomes the user to the story.

4. Use the InputBox() function to create variables that store user-supplied data.

5. Write the story, adding the data stored in the script’s variables and constants. In addition, use

VBScript string constants to control the manner in which the story text is formatted before finally

displaying the story using the MsgBox() function.

Beginning the Captain Adventure Script
The first step in putting this project together, now that an outline of the steps involved has been defined,
is to open your editor and set up your script template as follows:

‘***

‘Script Name: Captain Adventure.vbs

‘Author: Jerry Ford

‘Created: 02/01/14

‘Description: This script prompts the user to answer a number of questions

‘and then uses the answers to create a comical action adventure story.

‘***

‘Perform script initialization activities

Option Explicit

This template, introduced in the last chapter, gives you a place to provide some basic documentation about
the script that you’re developing. In addition, the template includes the Option Explicit statement, based
on the assumption that just about any script that you’ll develop will use at least one variable.

117Chapter 4 • Constants, Variables, Arrays, and Dictionaries

118 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Setting Up Constants and Variables
The next step in creating the Captain Adventure script is to specify the constants and variables that will
be used by the script:

‘Specify the message to appear in each pop-up dialog box title bar

Const cGameTitle = “Captain Adventure”

‘Specify variables used by the script

Dim strWelcomeMsg, strName, strVacation, strObject, strFriend

Dim strFood, strStory

The first line of code defines a constant named cGameTitle. This constant will be used to define a mes-
sage that will be displayed in the title bar area of any dialog boxes displayed by the script. This allows you
to define the title bar message just once, and to apply it as needed throughout the script without having
to retype it each time.

The last line of code defines seven variables that the script will use. The first variable, strWelcomeMsg, will
store the message text that will be displayed in a splash screen that appears when the script first executes.

The next five variables (strName, strVacation, strObject, strFriend, and strFood) are used to store data
collected from the user; they will be used later in the script in assembling the Captain Adventure story.
The last variable, strStory, is used to store the fully assembled Captain Adventure story.

Creating a Splash Screen
As I said, adding a splash screen to your script gives you an opportunity to display your website address,
game instructions, or other information you think will be useful to the user.

The following statements show one way of building a splash screen. The StrWelcomeMsg variable is used
to define the text that will be displayed in the splash screen. The message text to be displayed is formatted
using VBScript string constants to make it more attractive.

‘Specify the message to be displayed in the initial splash screen

strWelcomeMsg = “Welcome to the story of” & vbCrLf & _

Sometimes splash screens are used to remind the user to register the application. In other instances,
splash screens are meant to distract the user when applications take a long time to load or may be used
to advertise the website of the application or script developer. Adding a splash screen to your script
gives you the chance to communicate with the user before the script begins its execution; it can be used
to display instructions or other useful information.

In
 t

he
 R

ea
l W

o
rl

d

vbCrLf & “CCC” & space(14) & “A” & vbCrLf & _

“C” & space(17) & “AAA” & vbCrLf & _

“CCCaptain A Adventure gets his super powers” & _

vbCrLf

‘ Welcome the user to the story

MsgBox strWelcomeMsg, vbOkOnly + vbExclamation, cGameTitle

Finally, the VBScript MsgBox() function is used to display the splash screen. In this case, the vbOkOnly +
vbExclamation constants in the MsgBox() function instruct VBScript to display only the OK button and
the exclamation mark graphic on the pop-up dialog box. In addition, the cGameTitle constant has been
added to display the script’s custom title bar message.

Collecting User Input
The next five lines of code, shown next, use the VBScript InputBox() function to collect data provided
by the user. This code contains the following five questions/instructions:

• What is your name?

• Name a place you would like to visit.

• Name a strange object.

• Type the name of a close friend.

• Type the name of your favorite dessert.

‘Collect story information from the user

strName = InputBox(“What is your name?”, cGameTitle,”Joe Blow”)

strVacation = InputBox(“Name a place you would like to visit.”, _

cGameTitle,”Nevada”)

strObject = InputBox(“Name a strange object.”, cGameTitle,”soda can”)

strFriend = InputBox(“Type the name of a close friend.”, _

cGameTitle,”Barney”)

strFood = InputBox(“Type the name of your favorite dessert.”, _

cGameTitle,”Pickle”)

Notice that the user is only given a little bit of information about the type of information the script is
looking for. This is intentional and is meant to provide a certain amount of unpredictability to the story
line.

You may have also noticed the final argument on each of the InputBox() statements. I have added the
argument so that each dialog box that is displayed by the script will automatically display a default
answer. Providing a default answer in this way helps the user by giving him an idea of the kind of infor-
mation you’re trying to collect.

119Chapter 4 • Constants, Variables, Arrays, and Dictionaries

Assembling and Displaying the Story
The last step in putting together the Captain Adventure script is to assemble the story. This is done by
typing out the story’s text while inserting references to the script’s variables at the appropriate locations
in the story. In addition, the vbCrLf string constant is used to improve the display of the story.

The entire story is assembled as a single string, which is stored in a variable called Story. Finally, the com-
pleted story is displayed using the VBScript MsgBox() function.

‘ Assemble the Captain Adventure story

strStory = “Once upon a time” & vbCrLf & vbCrLf & _

strName & “ went on vacation in the far away land of “ & strVacation & _

“. A local tour guide suggested cave exploration. While in the cave “ & _

strName & “ accidentally became separated from the rest of the tour “ & _

“group and stumbled into a part of the cave never visited before. “ & _

“It was completely dark. Suddenly a powerful light began to glow. “ & _

strName & “ saw that it came from a mysterious “ & strObject & “ “ & _

“located in the far corner of the cave room. “ & strName & “ picked “ & _

“it up and a flash of light occurred and “ &strName & “ was “ & _

“instantly transported to a far away world. There in front of him “ & _

“was “ & strFriend & “, the ancient God of the legendary cave “ & _

“people. “ & strFriend & “ explained to “ & strName & “ that “ & _

“destiny had selected him to become Captain Adventure! He was “ & _

“then returned to Earth and told to purchase a Winnebago and travel “ & _

“the countryside looking for people in need of help. To activate “ & _

“the superpowers bestowed by “ & strFriend & “ all that “ & strName & _

“ had to do was pick up the “ & strObject & “ and say “ & Chr(34) & _

strFood & Chr(34) & “ three times in a row.” & vbCrLf & vbCrLf & _

“The End”

‘Display the story

MsgBox strStory, vbOkOnly + vbExclamation, cGameTitle

Note the use of Chr(34) in the preceding statements. Chr(34) is a VBScript function that converts an
ANSI code to a character. An ANSI code of 34 represents a double quotation mark.

The Final Result
Run the script and test it to make sure that everything works as expected. Be aware that this script pushes
the string length allowed by VBScript to the limit. If the information you supply to the script is too long,
some of the story may end up truncated.

120 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

121Chapter 4 • Constants, Variables, Arrays, and Dictionaries

Summary
You covered a lot of ground in this chapter. You now know how to define and work with constants and
variables, including VBScript’s built-in constants and Windows environment variables. In addition, you
learned how to apply VBScript string constants to script output to control the manner in which output
is displayed. You also learned about the VBScript variant and how to use built-in VBScript functions to
convert data from one variant subtype to another. Finally, you learned how to store related collections of
data in arrays for more efficient storage and processing, and to develop scripts that can process input
passed to them at execution time.

1. Modify the Captain Adventure story by collecting additional user input and adding more text to the
story line.

2. Try using an array to store the user input collected in the Captain Adventure story instead of storing
data in individual variables.

3. Develop your own story for someone you know and email it to him or her as a sort of living greeting
card.

4. Experiment with the VBScript string constants when developing your own story to improve the format
and presentation of your story’s output.

C
ha

lle
ng

es

This page intentionally left blank

Conditional Logic
5

E
very programming language allows you to perform tests between two or more con-
ditions. This capability is one of the cornerstones of programming logic. It lets you
develop scripts that collect input from the user or the user’s computer and compare

it to one or more conditions. Using the results of the tests, you can alter the execution of
your scripts and create dynamic scripts that can adjust their execution according to the
data with which they’re presented.

By the time you have completed this chapter, you’ll have learned the following:

• How to write scripts that test two conditions

• How to write scripts that can test two or more conditions against a single value

• How to write scripts that can test for a variety of different types of conditions

• How to write scripts that work with a variety of built-in VBScript functions

Project Preview: The Planet Trivia Quiz Game
In this chapter, you’ll create a game that administers and scores a quiz based on the player’s
knowledge of the planets in the solar system. The game asks the player a series of questions
and then assigns a rank based on the player’s final score. Figures 5.1 through 5.3 show
some of the interaction between the player and the game when played on a computer
running Windows 8.1.

During the development of this game, you will learn how to apply sophisticated conditional logic. In
addition, you’ll learn how to work with a number of built-in VBScript functions.

Examining Program Data
In any programming language, you need to be able to test whether a condition is true or false to develop
complex logical processes. VBScript provides two different statements that perform this function. These
statements are as follows:

• If. This is a statement that allows or skips the execution of a portion of a program based on the

results of a logical expression or condition.

• Select Case. This is a formal programming construct that allows a programmer to visually organize

program flow when dealing with the results of a single expression.

You already saw short demonstrations of the If statement in earlier chapters of this book. This is because
even the simplest scripts require some form of conditional logic.

124 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 5.1 The game’s splash screen invites the user to take the quiz.
© 2014 Cengage Learning.

Figure 5.2 The player is presented with a series of questions
to answer. © 2014 Cengage Learning.

Figure 5.3 When the player finishes the questions, his
score is tallied, and a rank is assigned based on the number
of questions correctly answered. © 2014 Cengage Learning.

The power and importance of these two statements cannot be overstated. For example, let’s say you took
a job from someone without knowing exactly what you’d be paid, and now you’re finished with the job
and are waiting to be paid. As you’re waiting, you think about what you want to do with your newfound
fortune. After a few moments, you decide that if you’re paid $250, then you’ll by a TV. If you’re paid less,
you’ll buy a radio instead. This kind of test lends itself well to an If statement. Let’s rewrite this scenario
into a more program-like format:

If your pay is equal to $250

Then Buy a TV

Else
Buy a Radio

EndIf

As you can see, the logic is very straightforward and translates well from English into pseudo code. I used
bold text to identify portions of the example to point out the key VBScript programming components
that are involved. I’ll go into greater detail about what each of these keywords means a little later in the
chapter.

Back to our scenario: Perhaps after thinking about it a few more minutes, you decide there are a number
of things that you might do with your pay, depending on how much money you receive. In this case, you
can use the VBScript Select Case statement to outline the logic of your decisions in pseudo code format.

Select Case Your Pay

Case If you get $250 you’ll buy a TV

Case If you get $200 you’ll buy a VCR

Case If you get $100 you’ll buy a radio

Case Else You’ll just buy lunch

End Select

Again, I have used bold text to identify portions of
the example to point out key VBScript programming
components involved. In the next two sections of this chapter, I’ll break down the components of the If
and Select Case statements into greater detail and show you exactly how they work.

The If Statement
The VBScript If statement lets you test two values or conditions and alter the execution of the script
based on the results of the test. The syntax of this statement is as follows:

If condition Then

statements

ElseIf condition-n Then

statements

125Chapter 5 • Conditional Logic

Pseudo code is a rough, English-like out-
line or sketch of a script. By writing out the
steps you think will be required to write a
script in pseudo code, you provide yourself
with an initial first-level script design that
will serve as a basis for building the final
product.

D
ef

in
it

io
n

126 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

.

.

.

Else

statements

End If

Working with the If Statement
The If statement begins with the If keyword and ends with End If. condition represents the compar-
ison being performed. For example, you might want to see whether the value of X is equal to 250, like this:

If X = 250 Then

The keyword Then identifies the beginning of a list of one or more statements. statements is a place-
holder representing the location where you would supply whatever script statements you want executed.
For example, the following example displays a complete If statement that tests to see whether a variable
has a value of 250. If it does (that is, the test is equal to true), a message is displayed:

If X = 250 Then

WScript.Echo “Go buy that TV!”

End If

You may add as many statements as you want between the Then and End If keywords.

If X = 250 Then

WScript.Echo “Go buy that TV!”

WScript.Echo “Buy a TV Guide while you are at it.”

WScript.Echo “And do not forget to say thank you.”

End If

But what happens if the tested condition proves false? Well, in the previous test, nothing. However, by
adding the Else keyword and one or more additional statements, the script is provided with an addi-
tional execution path.

If X = 250 Then

WScript.Echo “Go buy that TV!”

WScript.Echo “Buy a TV Guide while you are at it.”

WScript.Echo “And do not forget to say thank you.”

Else

WScript.Echo “OK. Just purchase the radio for today.”

End If

Figure 5.4 provides a flowchart view of the logic used in this example.

You can expand the If statement by adding one or more ElseIf keywords, each of which can test another
alternative condition. For example, look at the following VBScript statements:

If X = 250 Then

WScript.Echo “Go buy that TV!”

WScript.Echo “Buy a TV Guide while you are at it.”

WScript.Echo “And do not forget to say thank you.”

ElseIf X = 200 Then

WScript.Echo “Buy the VCR”

ElseIf X = 100 Then

WScript.Echo “Buy the Radio.”

Else

WScript.Echo “OK. Maybe you had best just eat lunch.”

End If

Nesting If Statements
Another way to use If statements is to embed them within each other. This enables you to develop scripts
that test for a condition and then further test other conditions based on the result of the previous test.

127Chapter 5 • Conditional Logic

Figure 5.4 A flowchart outlining the logic
behind a typical If statement. © 2014 Cengage Learning.

Programmers sometimes begin script development by first creating a flowchart. The flowchart depicts
the logical flow of a script or program and serves as a visual tool for script development and provides
a valuable documentation tool. Flowchart development can be a big help in the creation of complex
scripts. Flowcharts help programmers formalize their thoughts before script development begins.

In
 t

he
 R

ea
l W

o
rl

d

To see what I mean, look at the following example (I have bolded the embedded If statement to make it easier
to see):

X = 250

If X = 250 Then

If Weekday(date()) = 1 Then
WScript.Echo “It’s Sunday. The TV store is closed on Sundays.”

Else
WScript.Echo “Go buy that TV!” & vbCrLf & _

“Buy a TV Guide while you are at it.” & vbCrLf & _
“And do not forget to say thank you.”

End If
Else

WScript.Echo “OK. Just purchase the radio for today.”

End If

In this example, the first statement performs a test to see whether the value assigned to a variable named
X is equal to 250. If it’s not equal to 250, the script skips all the statements located between the If X = 250
Then line and the Else line and displays the message “OK. Just purchase the radio for today.” However, if
the value of X is equal to 250, then the embedded If statement executes. This If statement begins by
determining whether the current day of the week is Sunday. If it is, the script informs the user that the
TV store is closed. Otherwise, it tells the user to go and make the purchase.

The test performed by the If statement in the previous example deserves a little extra explanation. As
you saw, it retrieved a numeric value representing the current day of the week. Here’s how to break down
the logic used by this statement. First, it executed the built-in VBScript Date() function. The value
retrieved by this function was then used by the built-in VBScript Weekday() function to determinate the
numeric value that represents the current day of the week. These values are as follows:

• 1 = Sunday

• 2 = Monday

• 3 = Tuesday

• 4 = Wednesday

• 5 = Thursday

• 6 = Friday

• 7 = Saturday

When this value was established, the If statement simply checked to see if it was equal to 1 (Sunday).

By taking advantage of built-in VBScript functions, you can perform some fairly complex tasks with
minimal coding. It’s a good idea to always check to see whether VBScript has a built-in function before
attempting to write a piece of code to perform a generic task.

128 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Hint

By embedding, or nesting one If statement within another If statement, you can develop complex
programming logic. There’s no limit on the number of If statements you can embed within one another.

RockPaperScissors.vbs Revisited
Okay. You’ve learned a lot about the If statement, including its syntax and various ways in which it can
be used. One of the biggest challenges I faced in coming up with the VBScript examples for the first four
chapters of this book was how to create VBScript-based games without using VBScript programming
statements that I had not yet covered. For the most part I was successful, but there was one exception: I
just could not avoid using the If statement—although I tried to use it as little as possible. In most cases,
this meant limiting the completeness of the games presented.

One such game was the one that used the RockPaperScissors.vbs script. Now that I’ve finally provided a
complete review of the If statement, let’s revisit the game and see how we can make it better.

‘Formally declare each variable used by the script before trying to

‘use them

Dim objWshShell, strAnswer, strCardImage, intGetRandomNumber

‘Create an instance of the WScript object in order to later use

‘the Popup method

Set objWshShell = WScript.CreateObject(“WScript.Shell”)

‘Display the rules of the game

objWshShell.Popup “Welcome to Rock, Paper, and Scissors game. “ & _

“Here are the “ & _

“rules of the game: 1. Guess the same thing as the computer “ & _

“to tie. 2. Paper covers rock and wins. 3. Rock breaks “ & _

“scissors and wins. 4. Scissors cut paper and win.”

‘Prompt the user to select a choice

strAnswer = InputBox(“Type Paper, Rock, or Scissors.”, _

“Let’s play a game!”)

‘Time for the computer to randomly pick a choice

Randomize

intGetRandomNumber = Round(FormatNumber(Int((3 * Rnd) + 1)))

‘Assign a value to the randomly selected number

If intGetRandomNumber = 3 then strCardImage = “rock”

129Chapter 5 • Conditional Logic

If intGetRandomNumber = 2 then strCardImage = “scissors”

If intGetRandomNumber = 1 then strCardImage = “paper”

‘Display the game’s results so that the user can see if he won

objWshShell.Popup “You picked: “ & strAnswer & Space(12) & _

“Computer picked: “ & strCardImage

Figure 5.5 shows the output of a complete game as the script currently is written when executed on a
computer running Windows 7.

First, let’s update the script by adding the script template that was introduced back in Chapter 3,
“VBScript Basics.”

‘***

‘Script Name: RockPaperScissors-2.vbs

‘Author: Jerry Ford

‘Created: 02/04/14

‘Description: This script revisits the RockPaperScissors.vbs script, first

‘introduced in Chapter 3, and updates it using advanced conditional logic.

‘***

Next, let’s rewrite the Dim statement by adding another variable called Results:

Dim objWshShell, strAnswer, strCardImage, strResults

strResults is used later in the scripts to store the results of the game (that is, who wins and who loses).
Next let’s add the following statement to the script:

Set objWshShell = WScript.CreateObject(“WScript.Shell”)

This statement creates an instance of the objWshShell object. This object’s Quit() method is used later
in the script to terminate its execution in the event the user fails to provide a valid selection (that is, the
player does not pick rock, paper, or scissors).

Now that the variables and objects to be used by the script have been defined, let’s assign a default value
of None to the strResults variable, like this:

strResults = “None”

130 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 5.5 Playing Rock, Paper, and Scissors.
© 2014 Cengage Learning.

Unless the player provides a correct selection, this value will remain equal to None throughout the script’s
execution and will eventually cause the script to terminate and display an error message. However, if the
player supplies a correct response, the response will be assigned to the strResults variable and then ana-
lyzed by the script.

The original RockPaperScissors.vbs script displayed the game’s instructions in one pop-up dialog box
and then prompted the player to specify a selection of rock, paper, or scissors in a second pop-up dialog
box. This works, but using two pop-up dialog boxes is a bit clunky. Let’s modify the scripts to display the
game’s directions and collect the player’s input at the same time, like this:

strAnswer = InputBox(“Please type paper, rock, or scissors “ & _

“in all lowercase letters.” & _

vbCrLf & vbCrLf & “Rules:” & vbCrLf & vbCrLf & _

“1. Guess the same thing as the computer to tie.” & vbCrLf & _

“2. Paper covers rock and wins.” & vbCrLf & _

“3. Rock breaks scissors and wins.” & vbCrLf & _

“4. Scissors cut paper and win.” & vbCrLf, “Let’s play a game!”)

As you can see, I used the VBScript InputBox() function to display the pop-up dialog box, and I formatted
the instructions for better presentation using the vbCrLf constant.

The next two sections of the script remain the same as in the original script:

Randomize

intGetRandomNumber = Round(FormatNumber(Int((3 * Rnd) + 1)))

If intGetRandomNumber = 3 then strCardImage = “rock”

If intGetRandomNumber = 2 then strCardImage = “scissors”

If intGetRandomNumber = 1 then strCardImage = “paper”

As explained in Chapter 2, “An Introduction to the Windows Script Host,” the first pair of statements
results in the selection of a random number with a value between 1 and 3. The next three lines assign a
value of “rock,” “paper,” or “scissors” to each of these values. The rest of the script will be composed of all
new code. Instead of simply displaying the player’s and the script’s selection of rock, paper, or scissors
and then leaving it up to the player to figure out who won, the script now performs the analysis. To begin,
add the following lines to the bottom of the script:

If strAnswer = “rock” Then

If intGetRandomNumber = 3 Then strResults = “Tie”

If intGetRandomNumber = 2 Then strResults = “You Win”

If intGetRandomNumber = 1 Then strResults = “You Lose”

End If

This set of statements executes only if the player typed rock. Three If statements then compare the user’s
selection to the script’s randomly selected decisions and determine the results of the game.

131Chapter 5 • Conditional Logic

Now replicate this collection of statements two times, and modify each set as follows to add tests for the
selection of both scissors and paper:

If strAnswer = “scissors” Then

If intGetRandomNumber = 3 Then strResults = “You Lose”

If intGetRandomNumber = 2 Then strResults = “Tie”

If intGetRandomNumber = 1 Then strResults = “You Win”

End If

If strAnswer = “paper” Then

If intGetRandomNumber = 3 Then strResults = “You Win”

If intGetRandomNumber = 2 Then strResults = “You Lose”

If intGetRandomNumber = 1 Then strResults = “Tie”

End If

Now add the following statements to the script:

If strResults = “None” Then

objWshShell.Popup “Sorry. Your answer was not recognized. “ & _

“Please type rock, paper, or scissors in all lowercase letters.”

WScript.Quit

End If

These statements execute only if the player fails to provide a correct response when playing the game. If
this happens, the value of strResults is never changed and will still be set to None as assigned at the
beginning of the script. In this case, the objWshShell object’s Popup() and Quit() methods are used to
display an error message and then end the game.

Now let’s wrap up this script by adding these last few lines of code:

objWshShell.Popup “You picked: “ & space(12) & strAnswer & vbCrLf & _

vbCrLf & “Computer picked: “ & space(2) & strCardImage & vbCrLf & _

vbCrLf & “================” & vbCrLf & vbCrLf & “Results: “ & _

strResults

These statements are executed only if the player provided a valid response. They use the objWshShell
object’s Popup() method to display the results of the game, including both the player’s and the script’s
selections.

Okay. That’s all there is to it. Save and execute the script. Figure 5.6 shows the initial pop-up dialog box
displayed by the script when executed on a computer running Windows 7.

Figure 5.7 shows the results of a typical game.

132 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

The Select Case Statement
The If statement provides a great tool for testing two expressions. Using ElseIf, you can modify the If state-
ment to perform additional tests. VBScript supplies another statement, Select Case, that also lets you per-
form comparative operations. Functionally, it’s not really very different from the If statement. However, the
Select Case statement is better equipped to perform large numbers of tests against a single expression.

Here is the syntax of the Select Case statement:

Select Case expression

Case value

statements

.

.

.

Case value

statements

Case Else

statements

End Select

The Select Case statement begins with Select Case. Then it specifies the expression to be compared
against one or more values specified in Case statements that follow the Select Case statement and pre-
cede the End Select statement. Optionally, a Case Else statement can be added to provide an alterna-
tive course of action should none of the Case statements’ values match up against the expression
specified by the Select Case statement.

To demonstrate how to work with the Select Case statement, I have rewritten most of the logic imple-
mented in the RockPaperScissors.vbs script. As the following complete script shows, not only did I reduce
the number of lines of code required for the script to work, but I also improved the script’s readability:

133Chapter 5 • Conditional Logic

Figure 5.6 The new version of RockPaperScissors.vbs
displays a friendlier initial dialog box. © 2014 Cengage Learning.

Figure 5.7 The results of a typical game of the new
version of RockPaperScissors.vbs. © 2014 Cengage Learning.

‘***

‘Script Name: RockPaperScissors-3.vbs

‘Author: Jerry Ford

‘Created: 02/04/14

‘Description: This script revisits the RockPaperScissors-2.vbs script,

‘replacing some of the If statements’ logic with a Case Select statement.

‘***

‘Perform script initialization activities

Dim objWshShell, strAnswer, strCardImage, strResults, intGetRandomNumber

Set objWshShell = WScript.CreateObject(“WScript.Shell”)

strResults = “None”

‘Prompt the user to select a choice

strAnswer = InputBox(“Please type paper, rock, or scissors “ & _

“in all lowercase letters.” & _

vbCrLf & vbCrLf & “Rules:” & vbCrLf & vbCrLf & _

“1. Guess the same thing as the computer to tie.” & vbCrLf & _

“2. Paper covers rock and wins.” & vbCrLf & _

“3. Rock breaks scissors and wins.” & vbCrLf & _

“4. Scissors cut paper and win.” & vbCrLf, “Let’s play a game!”))

‘Time for the computer to randomly pick a choice

Randomize

intGetRandomNumber = Round(FormatNumber(Int((3 * Rnd) + 1)))

If intGetRandomNumber = 3 then strCardImage = “rock”

If intGetRandomNumber = 2 then strCardImage = “scissors”

If intGetRandomNumber = 1 then strCardImage = “paper”

Select Case strAnswer
Case “rock”

If intGetRandomNumber = 3 Then strResults = “Tie”
If intGetRandomNumber = 2 Then strResults = “You Win”
If intGetRandomNumber = 1 Then strResults = “You Lose”

Case “scissors”
If intGetRandomNumber = 3 Then strResults = “You Lose”
If intGetRandomNumber = 2 Then strResults = “Tie”
If intGetRandomNumber = 1 Then strResults = “You Win”

134 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Case “paper”
If intGetRandomNumber = 3 Then strResults = “You Win”
If intGetRandomNumber = 2 Then strResults = “You Lose”
If intGetRandomNumber = 1 Then strResults = “Tie”

Case Else
objWshShell.Popup “Sorry. Your answer was not recognized. “ & _

“Please type rock, paper, or scissors in all lowercase letters.”
WScript.Quit

End Select

objWshShell.Popup “You picked: “ & space(12) & strAnswer & vbCrLf & _

vbCrLf & “Computer picked: “ & space(2) & strCardImage & vbCrLf & _

vbCrLf & “================” & vbCrLf & vbCrLf & “Results: “ & _

strResults

Performing More Complex Tests with VBScript Operators
Up to this point in the book, every example of an If or a Select Case statement that you have seen has
involved a single type of comparison: equality. This is a powerful form of comparison, but there will be times
when your scripts will need to test for a wider range of values. For example, suppose you want to write a script
that asks the user to type his age so you can determine whether the user is old enough to play your game.
(Maybe you don’t want a user to play the game if he is younger than 18.) It would be time-consuming to
write a script that used 100 If statements or one Select Case statement with 100 corresponding Case state-
ments just to test a person’s age. Instead, you could save a lot of time by comparing the user’s age against a
range of values. To accomplish this task, you could use the VBScript less-than operator (<) as follows:

intUserAge = InputBox(“How old are you?”)

If intUserAge < 18 Then

MsgBox “Sorry but you are too young to play this game.”

WScript.Quit()

Else

MsgBox “OK. Let’s play!”

End If

In this example, the VBScript InputBox() function collects the user’s age and assigns it to a variable
called intUserAge. An If statement then checks to see whether intUserAge is less than 18, and if it is, the
game is stopped.

Another way you could write the previous example is using the VBScript less-than-or-equal to operator
(<=), like this:

If intUserAge <= 17 Then

135Chapter 5 • Conditional Logic

136 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

If you use the <= operator, this statement will not execute if the user is 17 or fewer years old. VBScript
also supplies greater-than operator (>) and greater-than-or-equal-to operator (>=), allowing you to invert
the logic used in the preceding example:

intUserAge = InputBox(“How old are you?”)

If intUserAge > 17 Then

MsgBox “OK. Let’s play!”

Else

MsgBox “Sorry but you are too young to play this game.”

WScript.Quit()

End If

Table 5.1 lists VBScript comparison operators.

VBScript does not impose an order or precedence on comparison operators like it does with arithmetic
operators. Instead, each comparison operation is performed in the order in which it appears, going from
left to right.

Back to the Planet Trivia Quiz Game
Now let’s return to where we began this chapter, by developing the Planet Trivia Quiz game. In this pro-
gram, you will create a VBScript that presents the player with a quiz about Planet Trivia. The game presents
questions, collects the player’s answers, scores the final results, assigns a rank to the player based on his score,
and finally creates a summary text report. By working your way through this project, you will work more
with both the If and Select Case statements. You’ll also learn how to work with a number of built-in
VBScript functions.

Operator Description

= Equal

<> Not equal

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

TA B L E 5 .1 VBS C R I P T C O M PA R I S O N O P E R AT O R S

© Jerry Lee Ford, Jr. All Rights Reserved.

Game Development
The following steps outline the process you’ll need to go through to complete the development of the game:

1. Add the standard documentation template and fill in its information.

2. Define the constants and variables that will be used by the script.

3. Create the splash screen that welcomes the user to the game and determines whether the user

wants to play the game.

4. Use the InputBox() function to display questions, collect the player’s answers, and to add logic to

determine whether the player’s answers are right or wrong.

5. Use the Select Case statement to determine the rank to be assigned to the player, based on the

number of correctly answered questions.

6. Display the player’s score and rank.

Beginning the Planet Trivia Quiz Game
Begin this script by opening your script editor and cutting and pasting your script template from another
script. Then go back and modify the template with information relevant to the Planet Trivia Quiz game:

‘***

‘Script Name: PlanetTrivia.vbs

‘Author: Jerry Ford

‘Created: 02/04/14

‘Description: This script creates a Planet Trivia Quiz game.

‘***

‘Perform script initialization activities

Option Explicit

Setting Up Constants and Variables
The next step is to define the variables and constants used by the script:

Dim intPlayGame, strSplashImage, strAnswerOne, strAnswerTwo, strAnswerThree

Dim strAnswerFour, strAnswerFive, intNumberCorrect, strRank

Dim objFsoObject

Const cTitlebarMsg = “The Planet Trivia Quiz Game”

‘Start the user’s score at zero

intNumberCorrect = 0

137Chapter 5 • Conditional Logic

The intNumberCorrect variable is used to count the number of quiz answers the player gets right. I set
intNumberCorrect equal to 0 here to ensure that it has a value. It is possible that the player will miss every
answer; if that were to happen, this variable might not otherwise get set. I’ll explain what each of these
variables is used for as we go through the rest of the script-development process.

Creating a Splash Screen
Let’s create a spiffy splash screen that asks the user whether he wants to play the game. As you can see, I
added a graphic to spice up things a bit. Graphic development of this type takes a little time, as well as
some trial and error.

‘Display the splash screen and ask the user if he or she wants to play

strSplashImage = vbCrLf & vbCrLf & vbCrLf & space(15) & _

“W E L C O M E T O T H E” & vbCrLf & vbCrLf & _

space(9) & “P L A N E T T R I V I A Q U I Z” & vbCrLf & _

vbCrLf & space(35) & “G A M E !” & vbCrLf & vbCrLf & vbCrLf & vbCrLf & _

“Would you like to test your knowledge of the solar system?”

intPlayGame = MsgBox(strSplashImage, 36, cTitlebarMsg)

If intPlayGame = 6 Then ‘User elected to play the game

The splash screen is created using the VBScript InputBox() function. It displays the invitation to play the
game as well as Yes and No buttons. The value of the button the user clicks is assigned to the PlayGame
variable (that is, PlayGame will be set equal to 6 if the player clicks on the Yes button).

Now let’s check to see whether the user wants to play the game.

If intPlayGame = 6 Then ‘User elected to play the game

‘Insert statements that make up the game here

.

.

.

Else ‘User doesn’t want to play

MsgBox “Thank you for taking the Planet Trivia Quiz © Jerry Ford 2014.” & _

vbCrLf & vbCrLf & “Please play again soon!”, , cTitlebarMsg

WScript.Quit()

End If

As you can see, the first statement checks to see whether the user clicked the Yes button. I left some room
to mark the area where you will need to add the statements that actually make up the game in case the
user does want to play. If the user clicked No, then the VBScript displays a “thank you” message and ter-
minates its execution using the WScript object’s Quit() method.

138 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Display Quiz Questions and Collect the Player’s Answers
The next step is to add the questions that make up the game. The following questions make up the quiz:

• What is the name of the planet that is closest to the sun?

• What is the name of the red planet?

• Venus is how many planets away from the sun?

• What planet was named after the god of the sea?

• What is the name of your favorite planet?

The statements that display and grade the first quiz questions are as follows:

strAnswerOne = InputBox(“What is the name of the planet that is closest to “ & _

“the sun?”, cTitlebarMsg)

If LCase(strAnswerOne) = “mercury” Then

intNumberCorrect = intNumberCorrect + 1

End If

First the VBScript InputBox() function displays the question. The answer typed by the user is then
assigned to a variable named strAnswerOne. Next, an If statement is used to interrogate the player’s
answer and determine whether it’s correct. The VBScript LCase() function is used to convert the answer
the player types to all lowercase. That way, it doesn’t matter how the player types the answer. For example,
MERCURY, mercury, MeRcUrY, and Mercury would all end up as mercury. Finally, if the player provides the
correct answer, then the value of intNumberCorrect is increased by 1.

As you can see, the second quiz question, shown next, is processed exactly like the first question. The only
difference is the content of the question itself and the name of the variable used to store the player’s
answer to the question.

strAnswerTwo = InputBox(“What is the name of the red planet?”, cTitlebarMsg)

If LCase(strAnswerTwo) = “mars” Then

intNumberCorrect = intNumberCorrect + 1

End If

The statements that make up and process the quiz’s third question are shown next.

strAnswerThree = InputBox(“Venus is how many planets away from the “ & _

“sun?”, cTitlebarMsg)

139Chapter 5 • Conditional Logic

If CStr(strAnswerThree) = “2” Then

intNumberCorrect = intNumberCorrect + 1

End If

The statements that make up the fourth question follow the same pattern as the first two questions.

strAnswerFour = InputBox(“What planet was named after the god of the “ & _

“sea?”, cTitlebarMsg)

If LCase(strAnswerFour) = “neptune” Then

intNumberCorrect = intNumberCorrect + 1

End If

The construction of the fifth question, shown next, merits some additional examination. First, the fourth
statement uses the VBScript LCase() function to convert the player’s answer to all lowercase. The
VBScript Instr() function then takes the answer and searches the string mercuryvenusearth-
marsjupitersaturnuranusneptune to see whether it can find a match. This string contains a list of
names belonging to the solar system’s planets.

strAnswerFive = InputBox(“What is the name of your favorite planet?”,

cTitlebarMsg)

If Len(strAnswerFive) > 3 Then

If Instr(1, “mercuryvenusearthmarsjupitersaturnuranusneptune”,

LCase(strAnswerFive), 1) _

<> 0 Then

intNumberCorrect = intNumberCorrect + 1

End If

End If

So the InStr() function begins its search starting with the first character of the string to see whether it
can find the text string that it’s looking for (that is, mercury, venus, earth, mars, jupiter, saturn, uranus,
or neptune). The syntax of the Instr() function is as follows:

InStr([start,]string1, string2[, compare])

start specifies the character position in the script, from left to right, where the search should begin.
string1 identifies the string to search. string2 identifies the text to search for, and compare specifies the
type of search to perform. A value of 0 specifies a binary comparison, and a value of 1 specifies a textual
comparison.

The InStr() function returns the position of the first occurrence of string within another string. If it
does not find a matching text string in the list, then it will return to 0, in which case the user provided

140 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

the wrong answer. Otherwise, it will return the starting character position where the search string was
found. If the search string is found in the list, then the value returned by the InStr() function will be
greater than 1, in which case the value of intNumberCorrect will be incremented by 1.

However, it is always possible that the player doesn’t know the name of a planet, and that he or she will
just type a character or two, such as the letter A. Because the letter A is used in at least one of the planet’s
names, the player would end up getting credit for a correct answer to the question. Clearly, this is not good.
To try to keep the game honest, I used the VBScript Len() function to be sure that the user provided at
least a four-character name (that is, the length of the shortest name belonging to any planet). This way,
the player must know at least the first four characters of a planet’s name to get credit for a correct answer.

Scoring the Player’s Rank
At this point, the script has enough logic to display all five questions and determine which ones the player
got correct. In addition, it has been keeping track of the total number of correct answers. What you need
to do next is add logic to assign the player a rank based on the number of correctly answered questions.
This can be done using a Select Case statement, like this:

Select Case intNumberCorrect

Case 5 ‘User got all five answers right

strRank = intNumberCorrect & “ stars.”

Case 4 ‘User got four of five answers right

strRank = intNumberCorrect & “ stars.”

Case 3 ‘User got three of five answers right

strRank = intNumberCorrect & “ stars.”

Case 2 ‘User got two of five answers right

strRank = intNumberCorrect & “ stars.”

Case 1 ‘User got one of five answers right

strRank = intNumberCorrect & “ star.”

Case 0 ‘User did not get any answers right

strRank = intNumberCorrect & “ stars.”

End Select

The variable intNumberCorrect contains the number of answers that the player has correctly answered.
The value of this variable is then compared against six possible cases to determine how many stars to
award the player.

Displaying the Player’s Score and Rank
The last thing the game does is display the player’s score and rank in a pop-up dialog box:

MsgBox “You answered “ & intNumberCorrect & “ out of 5 correct.” & _

vbCrLf & vbCrLf & “You earned “ & _

strRank, , cTitlebarMsg

141Chapter 5 • Conditional Logic

As you can see, there is not much to this last statement. All you need to do is to use the VBScript MsgBox()
function, the strNumberCorrect and strRank variables, and the vbCrLf constant to display the message for
the player to see.

The Fully Assembled Script
That’s it! You have all of the information you need to create the Planet Trivia Quiz game. When you are
ready, start the game and put it through its paces. When you do, be sure to supply different combinations
of correct and incorrect answers and then validate that the game is correctly processing your answer.
When you are confident that things are working like they are supposed to, pass the game along to some
of your Trekkie friends and see what they think.

Summary
This chapter covered a lot of ground. You learned how to use the If and Case Select statements in a
number of different ways. Using this new information, you updated the Rock, Paper, and Scissors game
and created the Planet Trivia Quiz game.

142 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

1. Modify the Planet Trivia Quiz game so that it asks the player for his name and then uses the player’s
name at the end of the game to address him according to his rank.

2. Modify the Planet Trivia Quiz game so that it displays the correct answer for any question that the
player misses.

3. Expand the Planet Trivia Quiz game by adding more questions. Store a list of questions in an array
and then use a For…Each…Next loop to display and process both the questions and the player’s
answers.

C
ha

lle
ng

es

Processing Collections
of Data

6
I

n this chapter, you’ll learn how to use a number of VBScript statements that can help
you develop scripts capable of processing extremely large amounts of information—
in most cases with only a handful of script statements. Using these statements, you can

establish loops within your scripts to let the user iteratively enter as much data as needed,
to process the contents of array, to read the content’s files, and to control the execution of
VBScript games. I’ll also show you how to create shortcuts for your scripts, as well as how
to place them on the Windows desktop and Programs menu. Specifically, you will learn the
following:

• How to work with five different types of VBScript loops

• How to use loops to control the execution of your scripts (and games)

• How to programmatically create Windows shortcuts and use them to configure

Windows resources such as the desktop and Programs menu

Project Preview: The Guess a Number Game
In this chapter’s project, you’ll create a script that plays a number guessing game. The
game generates a random number between 1 and 100, then instructs the player to try to
guess it. As the player enters guesses, the game provides the player with hints to help him
figure out the number. If the player types an invalid guess, the game will let him know
that only numeric input is accepted. The player may quit at any time by simply clicking
on the Cancel button or by failing to type a guess before clicking OK. When the player
guesses the correct answer, the game displays the number of guesses it took him to find
the correct answer. Figures 6.1 through 6.4 provide a sneak peek of the game’s interaction
when executed on a computer running Windows 8.1.

The game uses a VBScript loop to continue executing until either the player guesses the correct answer
or quits. By developing and working with this game, you will solidify your understanding of iterative pro-
gramming while also learning specifically how to apply a loop using VBScript.

Adding Looping Logic to Scripts
One of VBScript’s best programming features is its strong support for looping or iterative statements. VBScript
provides five different statements that can create loops. Loops provide your scripts with the capability to
process large collections of data using a minimal number
of programming statements that are repeatedly executed,
either for each member of the collection or for a specified
number of times.

The following list provides a high-level description of each
of VBScript’s looping statements:

• For…Next. This establishes a loop that iterates for a specified number of times.

• For…Each…Next. This establishes a loop that iterates through all the properties associated with an

object.

• Do…While. This establishes a loop that iterates for as long as a stated condition continues to be true.

144 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 6.1 The Guess a Number game begins by prompting the
player to type a number between 1 and 100. © 2014 Cengage Learning.

Figure 6.2 The game tells the player to try again
if his guess is too low. © 2014 Cengage Learning.

Figure 6.3 The game tells the player to try again
if his guess is too high. © 2014 Cengage Learning.

Figure 6.4 When the player correctly guesses the game’s
number, the player is congratulated. © 2014 Cengage Learning.

A loop is a collection of statements
repeatedly executed to facilitate the
processing of large amounts of data.

D
ef

in
it

io
n

• Do…Until. This establishes a loop that iterates until a stated condition finally becomes true.

• While…Wend. This establishes a loop that iterates for as long as a condition continues to be true.

The For…Next Statement
The For…Next statement is used to create loops that execute a specific number of times. For example, if
you’re creating a game that requires the player to enter five guesses, you could use a For…Next loop to
control the logic that supports the data-collection portion of the script.

The syntax for the For…Next statement is as follows:

For counter = begin To end [Step StepValue]

statements

Next

counter is a variable used to control the execution of the loop. begin is a numeric value that specifies
the starting value of the counter variable. end specifies the ending value for the counter variable (that is, the
value that, when reached, terminates the loop’s execution). StepValue is an optional setting that speci-
fies the increment that the For…Next statement uses when incrementing the value of counter (that is, the
value added to counter at the end of each iteration). If omitted, the value assigned to StepValue is always
1.

To better understand the operation of a For…Next loop, look at one example that collects data without
using a loop and one that collects the same data using a For…Next loop. In the following example, let’s
assume you’re creating a game in which the player is expected to enter the name of his five favorite foods.
You could always handle this type of situation as follows:

Dim strFoodList

strFoodList = “ “

strFoodList = strFoodList & “ “ & InputBox(“Type the name of a food “ & _

“that you really like.”)

strFoodList = strFoodList & “ “ & InputBox(“Type the name of a food “ & _

“that you really like.”)

strFoodList = strFoodList & “ “ & InputBox(“Type the name of a food “ & _

“that you really like.”)

strFoodList = strFoodList & “ “ & InputBox(“Type the name of a food “ & _

“that you really like.”)

strFoodList = strFoodList & “ “ & InputBox(“Type the name of a food “ & _

“that you really like.”)

MsgBox “You like : “ & strFoodList

As you can see, this example repeats the same statement over and over again to collect user input. Then,
as proof that it did its job, it displays the data it collected using the MsgBox() function.

145Chapter 6 • Processing Collections of Data

146 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Collecting five pieces of data like this is a bit of a chore. Now imagine a situation in which you want to
collect a lot more data. Instead of typing the same statement over and over again, as done in the previous
example, you can use the For…Next loop.

Dim intCounter, strFoodList

strFoodList = “ “

For intCounter = 1 To 5

strFoodList = strFoodList & “ “ & InputBox(“Type the name of a “ & _

“food that you really like.”)

Next

MsgBox “You like : “ & strFoodList

Figure 6.5 shows the output produced by this example when executed on a computer running Windows 8.1.

Notice this new script is two lines shorter than the previous example. Unlike the previous example, other
than the value of the loop’s ending value, this script does not have to be modified to accommodate the
collection of additional data. For example, to change the For…Next loop so that it can accommodate the
collection of 10 pieces of data, all you’d have to do is modify it like this:

For intCounter = 1 To 10

strFoodList = strFoodList & “ “ & InputBox(“Type the name of a “ & _

“food that you really like.”)

Next

Optionally, you can use the Exit For statement to break out of a For…Next loop at any time, like this:

Dim intCounter, strFoodList, strNewFood

strFoodList = “ “

For intCounter = 1 To 5

strNewFood = InputBox(“Type the name of a food that you really like.”)

If strNewFood = “beans” Then

MsgBox “Sorry, but I don’t want to talk to anyone who likes beans!”

Figure 6.5 Using a For…Next loop to collect and process user input.
© 2014 Cengage Learning.

Exit For
End If

strFoodList = strFoodList & “ “ & strNewFood

Next

MsgBox “You like : “ & strFoodList

In this example, the assignment of data has been split into two different statements. The first of these
statements assigns the name of the food entered by the user to a variable called strNewFood. The value of
strNewFood is then added to the list of foods liked by the user only if it is not beans, in which case the
script displays a message and then terminates the execution of the For…Next loop. As a result, only the foods
entered by the user up to the point where beans was typed are displayed.

Let’s look at one last example before we examine the other loop statements supported by VBScript. In
this example, the For…Next statement’s optional keyword Step has been added to change the behavior of
the loop.

Dim intCounter

For intCounter = 1 To 9 Step 3

WScript.Echo intcounter

Next

In this example, the script will display the value of the counter variable, which is used to control the loop’s
execution. Instead of counting to nine by ones, the script will count by threes, as demonstrated here:

C:\>CScript TextScript.vbs

Microsoft (R) Windows Script Host Version 5.8

Copyright (C) Microsoft Corporation. All rights reserved.

1

4

7

C:\>

The For Each…Next Statement
VBScript’s For Each…Next statement is a programming tool for working with all the properties associ-
ated with objects. Every object has a number of properties associated with it. Using the For Each…Next
loop, you could write a script to loop through an object’s properties.

147Chapter 6 • Processing Collections of Data

The syntax of the For…Each…Next statement is as follows:

For Each element In collection

statements

Next [element]

element is a variable representing a property associated with the collection (or object). Look at the fol-
lowing example:

Dim objFsoObject, objFolderName, strMember, strFileList, strTargetFolder

Set objFsoObject = CreateObject(“Scripting.FileSystemObject”)

Set objFolderName = objFsoObject.GetFolder(“C:\Temp”)

For Each strMember in objFolderName.Files

strFileList = strFileList & strMember.name & vbCrLf

Next

MsgBox strFileList, ,”List of files in “ & objFolderName

This example begins by defining its variables and then establishing an instance of the FileSystemObject
object. It then uses the FileSystemObject object’s GetFolder() method to set a reference to a folder. Next,
using the folder reference, a For Each…Next loop processes all the files (which, in this case, are considered
to be properties of the folder) stored within the folder. As the For Each…Next loop executes, it builds a list
of files stored within the folder and uses the vbCrLf constant to format the list in an attractive manner.
Figure 6.6 shows the results displayed when this script is executed on a computer running Windows 7.

For Each…Next loops also are excellent programming tools for processing the contents of arrays. For example,
the following statements are all that are needed to process and display an array called astrGameArray, and
to display each of its elements:

For Each intCount In astrGameArray

strMessage = strMessage & intCounter & vbCrLf

Next

WScript.Echo strMessage

148 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 6.6 Using a For Each...Next loop to process the contents of a folder.
© 2014 Cengage Learning.

To learn more about arrays and see a more complete example of a script that uses the For Each…Next state-
ment, refer to the section “Processing Array Contents” in Chapter 4, “Constants, Variables, Arrays, and
Dictionaries.”

The Do…While Statement
The Do…While statement creates a loop that runs as long as a specified condition is true. VBScript supports
two different versions of the Do…While loop. The syntax for the first version of the Do…While loop is as
follows:

Do While condition

statements

Loop

condition is expressed in the form of an expression, like this:

intCounter = 0

Do While intCounter < 10

intCounter = intCounter + 2

Loop

In this example, the expression (intCounter < 10) allows the loop to continue as long as the value of
intCounter is less than 10. The value of intCounter is initially set to 0, but is increased by 2 every time
the loop executes. As a result, the loop iterates five times.

As the While keyword has been placed at the beginning of the loop, the loop will not execute if the value
of counter is already 10 or greater.

The syntax for the second format of the Do…While statement is as follows:

Do

statements

Loop While condition

As you can see, the While keyword had been moved from the beginning to the end of the loop. There-
fore, the loop will always execute at least once, even if the condition is initially false.

Let’s look at another example of the Do…While loop in action. In this example, the Do…While loop is set
up to collect names and phone numbers for an address book. The loop uses the VBScript InputBox()
function to collect the names and phone numbers. The names and addresses are added to a variable
string and formatted such that, when displayed, each entry is listed on a separate line. The user may enter
as many names and numbers as he wants. When done adding new address book entries, the user types
Quit as the final entry.

149Chapter 6 • Processing Collections of Data

150 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Dim intCounter, strAddressBook, strAddressEntry

intCounter = 0

Do While strAddressEntry <> “Quit”

strAddressEntry = InputBox(“Please type a name, a space, and then “ & _

“the person’s phone number”, “Personal Address Book”)

If strAddressEntry <> “Quit” Then

strAddressBook = strAddressBook & strAddressEntry & vbCrLf

intCounter = intCounter + 1

End If

Loop

MsgBox strAddressBook, ,”New Address Book Entries = “ & intCounter

Figure 6.7 shows the results that are displayed on a computer running Windows 7 when four names are
entered.

Alternatively, you could have written this as shown next. In this example, the While keyword and its asso-
ciated condition have been moved to the end of the loop. However, the script still operates exactly as in
the previous example.

Dim intCounter, strAddressBook, strAddressEntry

intCounter = 0

Do

strAddressEntry = InputBox(“Please type a name, a space, and then “ & _

“the person’s phone number”, “Personal Address Book”)

If strAddressEntry <> “Quit” Then

strAddressBook = strAddressBook & strAddressEntry & vbCrLf

intCounter = intCounter + 1

End If

Figure 6.7 Using a Do…While loop to collect new address book entries.
© 2014 Cengage Learning.

Loop While strAddressEntry <> “Quit”

MsgBox strAddressBook, ,”New Address Book Entries = “ & intCounter

One of the dangers of working with loops is that you may accidentally create a loop that has no way of
terminating its own execution. This is an endless loop. Endless loops run forever, needlessly consuming
computer resources and degrading a computer’s performance. For example, look at the following:

intCounter = 0

Do While intCounter < 10

intCounter = intCounter + 1

WScript.Echo intCounter

Loop

When executed, this script counts from 1 to 10.
Now look at the next script:

intCounter = 0

Do While intCounter < 10

intCounter = intCounter - 1

WScript.Echo intCounter

Loop

It looks almost exactly like the previous example, only instead of incrementing the value of intCounter
by 1, it increments the value of intCounter by –1, creating an endless loop. One way to protect against
the creation of an endless loop is to put in a safety net, like this:

intCounter = 0

Do While intCounter < 10

intCounter = intCounter - 1

intNoExecutions = intNoExecutions + 1
WScript.Echo intCounter

If intNoExecutions > 99 Then
Exit Do

End If
Loop

As you can see, I added to the script a variable called intNoExecutions that I then used to keep track of
the number of times that loop iterated. If the loop iterates 100 times, then something is wrong. So I
added an If statement to test the value of intNoExecutions each time the loop is processed and to exe-
cute the Exit Do statement in the event that something goes wrong. Of course, there is no substitute for
good program design and careful testing.

151Chapter 6 • Processing Collections of Data

An endless loop is a piece of code that
either has no terminating condition, or has
a terminating condition that can never be
met, and as such it iterates indefinitely.D

ef
in

it
io

n

The Do…Until Statement
The VBScript Do…Until statement creates a loop that executes as long as a condition is false (that is, until
it becomes true). VBScript supports two versions of the Do…Until statement. The syntax for the first version
is as follows:

Do Until condition

statements

Loop

Let’s look at an example that demonstrates how this loop works. In this example, shown next, the script
prompts the player to answer a question and uses a Do…Until loop to allow the user up to three chances
to correctly answer the question.

Dim intMissedGuesses, strPlayerAnswer

intMissedGuesses = 1

Do Until intMissedGuesses > 3

strPlayerAnswer = InputBox(“Where does Peter Pan live?”)

If strPlayerAnswer <> “Neverland” Then

intMissedGuesses = intMissedGuesses + 1

If intMissedGuesses < 4 Then

MsgBox “Incorrect: You have “ & 4 - intMissedGuesses & _

“ guesses left. Please try again.”

Else

MsgBox “Sorry. You have used up all your chances.”

End If

Else

intMissedGuesses = 4

MsgBox “Correct! I guess that you must believe in Faith, Trust “ & _

“and Pixie Dust!”

End If

Loop

In this example, the loop has been set up to execute until the value of a variable named intMissedGuesses
becomes greater than 3. The variable is initially set equal to 1 and is incremented by 1 each time the loop
executes, unless the player provides a correct answer, in which case the script sets the value of intMissedGuesses
to 4 to arbitrarily terminate the loop’s execution.

Figure 6.8 demonstrates the execution of this script on a computer running Windows 8.1 by showing the
pop-up dialog box that appears if the player guesses incorrectly on his first attempt to answer the question.

152 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

The syntax of the second form of the Do…Until statement is as follows:

Do

statements

Loop Until condition

As you can see, the Until keyword and its associated condition have been moved from the beginning to
the end of the loop, thus ensuring the loop executes at least once.

The While…Wend Statement
The While…Wend statement creates a loop that executes as long as a tested condition is true.

The syntax for this loop is as follows:

While condition

Statements

Wend

The Do…While and Do…Until loops provide the same functionality as the While…Wend loop. The general
rule of thumb, therefore, is that you should use one of the Do loops in place of this statement. However,
I’d be remiss if I failed to show you how this statement works, so take a look at the following example:

Dim intCounter, strCountList

intCounter = 0

While intCounter < 10

intCounter = intCounter + 1

strCountList = strCountList & intCounter & vbCrLf

Wend

MsgBox “This is how to count to 10:” & vbCrLf & vbCrLf & _

strCountList, , “Counting Example”

153Chapter 6 • Processing Collections of Data

Figure 6.8 Using a Do…Until loop to provide the player with
three chances to correctly answer a question. © 2014 Cengage Learning.

154 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

This example begins by initializing two variables. intCount is used to control the loop’s execution. strCountList
is used to build a formatted script containing the numbers counted by the script. The loop itself iterates
10 times. Figure 6.9 shows the output created by this example on a computer running Windows 7 when
run using the WScript.exe execution host.

Back to the Guess a Number Game
Let’s turn our attention back to the Guess a Number game. In this game, the player is prompted to guess
a randomly generated number between 1 and 100. Each time the player takes a guess, the script will check
to see if the correct number was guessed. If not, the script will provide a hint to help the player on his
next guess.

Developing this script will enhance your knowledge and understanding of working with the Do…Until
loop. You will also work with the If statement, and learn how to work with a number of new built-in
VBScript functions.

Designing the Game
The Guess a Number game begins by asking the player to guess a number between one and 100 and then
helps the user guess the number by providing hints. This project has five steps. These steps are as follows:

1. Add the standard documentation template and define any variables, constants, or objects used by

the script.

2. Generate a random number between one and 100.

3. Create a loop that runs until the player either guesses the correct answer or gives up.

4. Test the player’s answer to see whether it’s valid.

5. Test the player’s answer to see whether it is too low, too high, or correct.

Figure 6.9 Counting to 10 using a While…Wend loop.
© 2014 Cengage Learning.

As a kind of project bonus, after you have completed the Guess a Number game, I’ll show you how to
create a VBScript desktop shortcut for it. I’ll also show you how to use shortcuts to configure the Windows
7 Programs menu and the Windows 8.1 Apps group.

Beginning the Guess a Number Game
Begin by creating a new script and adding your script template.

‘***

‘Script Name: GuessANumber.vbs

‘Author: Jerry Ford

‘Created: 02/20/14

‘Description: This script plays a number-guessing game with the user

‘***

‘Initialization Section

Option Explicit

Next, create a constant and assign it the text message to be used in the title bar of the script’s pop-up dialog
boxes.

Const cGreetingMsg = “Pick a number between 1 - 100”

Define four variables as shown. Use intUserNumber is to store the player’s numeric guess. intRandomNo stores
the script’s randomly generated number. strOkToEnd is a variable the script uses to determine whether the
game should be stopped, and intNoGuesses keeps track of the number of guesses the player makes.

Dim intUserNumber, intRandomNo, strOkToEnd, intNoGuesses

Finally, set the initial value of intNoGuesses to 0, like this:

intNoGuesses = 0

Generating the Game’s Random Number
The following statements are next and are responsible for generating the game’s random number:

‘Generate a random number

Randomize

intRandomNo = FormatNumber(Int((100 * Rnd) + 1))

The Randomize statement ensures that a random number is generated each time the game is played. The
last statement uses the following built-in VBScript functions to generate a number between one and 100.

• Rnd(). This returns a randomly generated number.

• Int(). This returns the integer portion of a number.

• FormatNumber(). This returns an expression that has been formatted as a number.

155Chapter 6 • Processing Collections of Data

Creating a Loop to Control the Game
Now you’ll need to set up the Do…Until loop that controls the game’s execution. In this example, the loop
executes until the value assigned to the strOkToEnd variable is set to yes.

Do Until strOkToEnd = “yes”

‘Prompt users to pick a number

intUserNumber = InputBox(“Type your guess:”,cGreetingMsg)

intNoGuesses = intNoGuesses + 1

.

.

.

Loop

As you can see, the only statement inside the loop, for now, prompts the player to guess a number and
keeps track of the number of guesses made by the player.

Testing Player Input
Now let’s put together the code that performs validation of the data supplied by the player.

‘See if the user provided an answer

If Len(intUserNumber) <> 0 Then

‘Make sure that the player typed a number

If IsNumeric(intUserNumber) = True Then

.

.

.

Else

MsgBox “Sorry. You did not enter a number. Try again.”, , cGreetingMsg

End If

Else

MsgBox “You either failed to type a value or you clicked on Cancel. “ & _

“Please play again soon!”, , cGreetingMsg

strOkToEnd = “yes”

End If

The first validation test is performed using the built-in VBScript Len() function. It is used to ensure that
the player actually typed a number before clicking the OK button. If the player’s input is not 0 charac-
ters long, the game continues to the next test. Otherwise, an error message is displayed, and the value of
strOkToEnd is set to yes, terminating the loop and ending the game.

If the length test is passed, then the script performs a second validation test on the player’s input. This time,
the built-in VBScript IsNumeric() function is used to make sure that the player typed a number instead of

156 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

a letter or other special character. If a number was typed, then the game continues. If a number was not
typed, then an error message is displayed, but the game continues with the next iteration of the loop.

Determine Whether the Player’s Guess Is High, Low, or Correct
There are three more sets of statements that need to be added to the script. They will be inserted one after
another, just after the If statement that performs the game’s second validation test.

The first of these three sets of statements is shown here. It begins by verifying that the user’s guess
matches the game’s randomly selected number. Then it displays a message congratulating the player,
showing the random number, and showing the number of guesses that it took for the player to guess it.
Finally, the value of strOkToEnd is set equal to yes. This terminates the loop and allows the game to end.

‘Test to see if the user’s guess was correct

If FormatNumber(intUserNumber) = intRandomNo Then

MsgBox “Congratulations! You guessed it. The number was “ & _

intUserNumber & “.” & vbCrLf & vbCrLf & “You guessed it “ & _

“in “ & intNoGuesses & “ guesses.”, ,cGreetingMsg

strOkToEnd = “yes”

End If

The second of the three sets of statements provides the player with help if his guess is too low. The value
of strOkToEnd is set equal to no. This ensures that the loop that controls the game will continue.

‘Test to see if the user’s guess was too low

If FormatNumber(intUserNumber) < intRandomNo Then

MsgBox “Your guess was too low. Try again”, ,cGreetingMsg

strOkToEnd = “no”

End If

Finally, the last collection of statements provides the player with help if his guess is too high. The value
of strOkToEnd is set equal to no. This ensures that the loop that controls the game will continue.

‘Test to see if the user’s guess was too high

If FormatNumber(intUserNumber) > intRandomNo Then

MsgBox “Your guess was too high. Try again”, ,cGreetingMsg

strOkToEnd = “no”

End If

The Final Result
Okay, it’s time to run the script and see whether it works as promised (don’t worry, it will). After testing
to see whether the script works as expected, retest it to see whether you can break it. For example, try
feeding it special characters or letters instead of numbers. Once you’re satisfied with the operation of the
script, keep reading. I have one more little goodie for you in this chapter.

157Chapter 6 • Processing Collections of Data

Creating Shortcuts for Your Game
Until now, you have been running your scripts in one of two ways. One is by opening the Windows
Console and typing the name of an execution host followed by the path and filename of your scripts at the
Windows command prompt. The other is by locating the folder in which the script resides and opening
it (that is, double-clicking it).

Windows provides shortcuts as a convenient alternative for executing Windows applications and scripts
from the Windows desktop. A shortcut provides access to a Windows resource without requiring the user
to find or even know the actual location of the resource that it represents. For example, just about any new
application that you install on your computer automatically adds an application shortcut to the Programs
menu located on the Windows Start menu. In addition, most application installation procedures offer to
add a shortcut for the application on the Windows desktop.

Using VBScript and the WSH, you can create a setup script that configures shortcuts for your VBScript
games in any of these locations. Of course, you can always manually create shortcuts for your scripts, but
the advantage of scripting their setup is that, once written, you can re-create these shortcuts on any com-
puter. For example, if you purchase a new computer, all you’ll have to do is copy your VBScripts from
your older computer and then run your VBScript
setup script, and all your shortcuts will be re-created.
Likewise, if you give copies of your VBScript games
to all your friends, all they’ll have to do to set up
shortcuts for the scripts is to run the setup script.

Examining Shortcut Properties
Windows shortcuts are identified by a small arrow in the lower-left corner of the icon that represents
them. Shortcuts contain information, in the form of properties, about the Windows resources with which
they are associated. The most important of these properties is the path and name of the Windows resource
that the shortcut represents.

You can view the properties associated with any shortcut by right-clicking the shortcut and selecting
Properties. The shortcut’s Properties dialog box appears. Click the Shortcut tab to view these properties,
as shown in Figure 6.10.

Creating Desktop Shortcuts
You can create a desktop shortcut in just five simple steps. To demonstrate, let’s create a shortcut for the
GuessANumber.vbs game on the Windows desktop.

The first step in creating the game’s shortcut is to establish an instance of the WshShell object. The script
will need to use this object’s SpecialFolders property to access the folder that represents the Windows
desktop. In addition, you’ll need to use the WshShell object to instantiate the WshShortcut object in order
to set shortcut properties.

158 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Shortcuts are links or pointers to Windows
objects. These objects can be just about
anything, including Windows applications,
folders, files, printers, disk drives, and scripts.D

ef
in

it
io

n

The following statement establishes an instance of the WshShell object:

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

The second step in creating the shortcut is to set up a reference to the folder where the shortcut is to
reside. In Windows, everything, including the Windows desktop, is represented as a folder. Therefore, to
add a shortcut to the Windows desktop, all you have to do is save the shortcut in a special folder called
“Desktop” by specifying a value for the WshShell object’s SpecialFolder property.

strDesktopFolder = objWshShl.SpecialFolders(“Desktop”)

The third step required to set up the desktop shortcut is to use the WshShell object’s CreateShortcut()
method to define the shortcut and instantiate the WshShortcut object.

Set objNewShortcut = objWshShl.CreateShortcut(strDesktopFolder & _

“\\GuessANumber.lnk”)

strDesktopFolder provides a reference to the location of the Windows desktop and \\GuessANumber.lnk
is the name to be assigned to the shortcut.

The fourth step in creating the new shortcut is to configure properties associated with the shortcut. The
WshShortcut object provides access to these properties, which are listed in Table 6.1.

159Chapter 6 • Processing Collections of Data

Figure 6.10 Examining the properties associated
with a shortcut to the Windows Notepad application.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

Special folders are a Windows management
tool used to organize and manage the con-
tents of a number of Windows features,
including the Programs menu and desktop.D

ef
in

it
io

n

160 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Only the TargetPath property must be set to create a shortcut. Configuration of the remaining shortcut
properties is optional. The following statement configures the TargetPath property by setting it to
C:\GuessANumber.vbs:

objNewShortcut.TargetPath = “C:\ GuessANumber.vbs”

Examples of how to set other properties are as follows:

objNewShortcut.Description = “Guess a Number Game”

objNewShortcut.Hotkey = “Ctrl+Alt+G”

The first of these two statements adds a description to the shortcut. Once created, this description can be
viewed by moving the pointer over the shortcut’s icon for a few moments. The second statement defines
a keyboard keystroke sequence that, when executed, will activate the shortcut and thus open its associated
Windows resources (that is, run your script). In this case, pressing the Ctrl+Alt+G keys at the same time
will run the VBScript.

The fifth and final step in creating the shortcut is to save it using the WshShortcut object’s Save() method,
like this:

objNewShortcut.Save()

Let’s put all five of these statements together to complete the script:

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

strDesktopFolder = objWshShl.SpecialFolders(“Desktop”)

Set objNewShortcut = objWshShl.CreateShortcut(strDesktopFolder & _

“\\GuessANumber.lnk”)

objNewShortcut.TargetPath = “c:\GuessANumber.vbs”

objNewShortcut.Save()

Property Description

Arguments Sets arguments to be passed to the application or script associated with the shortcut
Description Adds a comment to the shortcut
Hotkey Sets a keyboard keystroke sequence that can be used to activate the application

associated with the shortcut
IconLocation Sets the shortcut’s icon
TargetPath Sets the path and file name of the object associated with the shortcut
WindowStyle Sets the window style used when the application associated with the shortcut is

opened (e.g., normal, minimized, or maximized)
WorkingDirectory Sets the default working directory or folder for the application associated with

the shortcut

TA B L E 6 .1 P R O P E R T I E S O F T H E W S H S H O R T C U T O B J E C T

© Jerry Lee Ford, Jr. All Rights Reserved.

Trick

It’s just as easy to delete a shortcut using VBScript and the WSH as it is to create one. For example, create
and run the following script to delete the shortcut the previous script created:

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

strTargetFolder = objWshShl.SpecialFolders(“Desktop”)

Set objFsoObject = CreateObject(“Scripting.FileSystemObject”)

Set objNewShortcut = objFsoObject.GetFile(strTargetFolder & _

“\\GuessANumber.lnk”)

objNewShortcut.Delete

The first statement establishes an instance of the WshShell object. The second statement uses the
WshShell object’s SpecialFolders property to identify the location of the shortcut. The third state-
ment creates an instance of the VBScript FileSystemObject object. The fourth statement uses the
FileSystemObject object’s GetFile() method to instantiate the File object and create a reference to
the shortcut. The final statement deletes the shortcut using the File object’s Delete() method.

Understanding How to Work with Special Folders
Windows operating systems use folders for a number of purposes. For example, folders are used to store
system files. You also use folders to store your own personal files. As you just learned, the Windows desk-
top is a special folder. Windows supports a number of special folders:

• Desktop

• Programs

• Favorites

• Startup

By adding and removing shortcuts to and from Windows special folders, you can change their contents.

Using Shortcuts to Add Your Script to the Programs Menu and Apps Group
To work with the folders that make up the Programs menu, you need to create a reference to the Program’s
special folder. Once established, you can add shortcuts to the Programs menu as demonstrated in the fol-
lowing example:

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

strTargetFolder = objWshShl.SpecialFolders(“Programs”)

Set objNewShortcut = objWshShl.CreateShortcut(strTargetFolder & _

“\\GuessANumber.lnk”)

objNewShortcut.TargetPath = “c:\GuessANumber.vbs”

objNewShortcut.Save

161Chapter 6 • Processing Collections of Data

Figure 6.11 demonstrates how the Programs menu now looks with its new shortcut.

If you run this example on a computer running Windows 8.1, it will add a shortcut for your script to the
Apps group, as shown in Figure 6.12.

162 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 6.11 The Programs menu, with a
shortcut to the GuessANumber.vbs game.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

Figure 6.12 The Windows 8.1 Apps group, with a shortcut for the GuessANumber.vbs game.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

Guess a Number

Guess a Number

A Complete Shortcut Script
Now let’s put together some of the shortcut examples you worked on previously to make a new script
that creates shortcuts for GuessANumber.vbs on the Windows desktop and Programs menu.

‘***

‘Script Name: ShortcutMaker.vbs

‘Author: Jerry Ford

‘Created: 02/20/14

‘Description: This script creates shortcuts for the GuessANumber.vbs

‘VBScript ‘on the Windows desktop and Programs menu.

‘***

‘Initialization Section

Option Explicit

Dim objWshShl, strTargetFolder, objDesktopShortcut, objProgramsShortcut

Dim strAppDataPath

‘Establish an instance of the WshShell object

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

‘Create the desktop shortcut - Works on Windows 7 and Windows 8.1

strTargetFolder = objWshShl.SpecialFolders(“Desktop”)

Set objDesktopShortcut = objWshShl.CreateShortcut(strTargetFolder + _

“\\GuessANumber.lnk”)

objDesktopShortcut.TargetPath = “C:\GuessANumber.vbs”

objDesktopShortcut.Description = “Guess a Number Game”

objDesktopShortcut.Hotkey = “Ctrl+Alt+G”

objDesktopShortcut.Save

‘Create the Programs menu shortcut on Windows 7 and a Apps group

‘shortcut on Windows 8.1

strTargetFolder = objWshShl.SpecialFolders(“Programs”)

Set objProgramsShortcut = objWshShl.CreateShortcut(strTargetFolder & _

“\\GuessANumber.lnk”)

objProgramsShortcut.TargetPath = “c:\GuessANumber.vbs”

objProgramsShortcut.Save

163Chapter 6 • Processing Collections of Data

I achieved a few economies of scale here. First, I had to instantiate the WshShell object only once. I also
reused the strTargetFolder variable over and over again. However, I thought that it made the script
more readable to assign a different variable to each special folder reference. Run this script on a computer
running Windows 7 and you should see shortcuts for GuessANumber.vbs added to the Windows desktop
and Programs menu. Run the script on a computer running Windows 8.1 and you should see a shortcut
on the desktop and in the Apps group.

Summary
In this chapter, you learned about loops and how to apply them to your VBScripts. You developed your
understanding of this fundamental programming concept through the creation of the Guess a Number
game. You also learned how to programmatically work with Windows shortcuts, including creating short-
cuts for your scripts. You also learned how to configure a number of Windows features, including the
Windows desktop and Programs menu.

164 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

1. Modify the Guess a Number Game by providing the players with better hints. For example, if a user’s
guess is within 20 numbers of the answer, tell the player that he is getting warm. As the player gets
even closer to the correct guess, tell him that he is getting very hot.

2. Change the Guess a Number game to increase the range of numbers from one to 100 to one to 1,000.

3. Rewrite the Guess a Number game so it uses a Do…While statement in place of a Do…Until statement.

4. Using ShortcutMaker.vbs as a starting point, write a new script that creates one or more shortcuts
for your favorite VBScript game. Alternatively, if you keep all your VBScripts in one location, create
a shortcut to that folder.

C
ha

lle
ng

es

Using Procedures to
Organize Scripts

7
B

y now you’ve seen and worked on a number of VBScript projects, and all of these
scripts have been organized the same way. First, you set up script initialization
processes (defining variables, constants, objects, and so on). Then you sequentially

wrote the rest of the script as one big collection of statements. You then used the If and
Select Case statements to organize your scripts. Finally, by embedding statements within
one another, you further refined your scripts’ organization. In this chapter, you will learn
how to further improve the organization of your VBScripts using procedures. Specifically,
you will learn the following:

• How to create your own customized functions

• How to create reusable collections of statements using subroutines

• How to break down scripts into modules of code to make them easier to manage

• How to control variable scope within your scripts using procedures

Project Preview: The BlackJack Lite Game
In this chapter, you will create a game called BlackJack Lite. This game is based on the
classic blackjack game played in casinos around the world. In this game, both the player
and the computer are dealt a single card, face up. The object of the game is to try to get
as close as possible to a value of 21 without going over. The player can ask for as many
extra cards (hits) as desired and can stop (stick) at any time. If the player goes over 21, he
busts. Otherwise, the computer plays its hand, stopping only after either reaching a total
of 17 or more or busting. Figures 7.1 through 7.4 demonstrate the game in action as
played on a computer running Windows 8.1.

By the time you’ve worked your way through this chapter and completed the BlackJack Lite game, you
will have gained a solid understanding of how to use procedures. You will be able to improve the overall
organization and functionality of your VBScripts and tackle even more challenging projects.

166 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 7.1 The game’s splash screen invites the user to play a game
of BlackJack Lite. © 2014 Cengage Learning.

Figure 7.2 If the user accepts the offer to play,
the initial hands are dealt. © 2014 Cengage Learning.

Figure 7.3 The user plays until either
busting or holding. © 2014 Cengage Learning.

Figure 7.4 The computer then plays and the
results of the game are shown. © 2014 Cengage Learning.

Improving Script Design with Procedures
VBScript procedures improve the overall organization and readability of scripts, giving you a way to group
related statements and execute them as a unit. Once written, a VBScript procedure can be called on from
any location in your script and can be executed over and over again as needed. This enables you to cre-
ate scripts that are smaller and easier to maintain.

VBScript provides support for two different types of procedures:

• Subroutine. This is a VBScript procedure that executes

a set of statements without returning a result.

• Function. This is a VBScript procedure that executes

a set of statements and, optionally, returns a result

to the statement that called it.

Trick

I recommend using procedures as the primary organization tool for all VBScripts. By organizing a script
into procedures, you break it down into a collection of units. This allows you to separate processes from
one another, making it easier to develop scripts in a modular fashion, one component at a time.

Introducing Subroutines
The VBScript Sub procedure is used to create subroutines. Subroutines are great for grouping together
statements that perform a common task from which a result is not required. When called, subroutines
execute their statements and then return processing control back to the calling statement.

The syntax for this type of procedure is as follows:

[Public | Private] Sub name [(arglist)]

statements

End Sub

Private is an optional keyword that specifies the subroutine cannot be called by other procedures within
the script, thus limiting the ability to reference it. Public is an optional keyword that specifies the sub-
routine can be called by other procedures within the script. name is the name assigned to the subroutine.
As with variables, a subroutine’s name must be unique within the script that defines it. arglist represents
a list of one or more comma-separated arguments that can be passed to the subroutine for processing,
and statements represents the statements that make up the subroutine.

For example, the next subroutine is called DisplaySplashScreen(). It does not accept any arguments and
it does not return anything back to the VBScript statement that calls it. What it does is display a script’s
splash screen any time it is called.

167Chapter 7 • Using Procedures to Organize Scripts

A procedure is simply a collection
of VBScript statements that, when
called, are executed as a unit.

D
ef

in
it

io
n

Sub DisplaySplashScreen()

MsgBox “Thank you for playing the game. © Jerry Ford 2014.” & _

vbCrLf & vbCrLf & “Please play again soon!”, 4144, “Test Game”

End Sub

You can execute this subroutine by calling it from anywhere within your script using the following statement:

DisplaySplashScreen()

The following example is a rewrite of the previous subroutine, only this time the subroutine accepts an
argument. The argument passed to the subroutine will be a message. Using a subroutine in this manner,
you can develop scripts that display all their pop-up dialog boxes using one subroutine.

Sub DisplaySplashScreen(strMessage)

MsgBox strMessage, 4144, “Test Game”

End Sub

You can call this subroutine from anywhere within your script like this:

DisplaySplashScreen(“Thank you for playing the game. © Jerry Ford “ &_

“2014.” & vbCrLf & vbCrLf & “Please play again soon!”)

Creating Custom Functions
Functions are almost exactly like subroutines. Functions can do anything that a subroutine can do. In
addition, a function can return a result to the statement that called it. As a result (to keep things simple),
I usually use functions, rather than subroutines, within my VBScripts.

The syntax for a function is as follows:

[Public | Private] Function name [(arglist)]

statements

End Function

Private is an optional keyword that specifies that the function cannot be called by other procedures
within the script, thus limiting the ability to reference it. Public is an optional keyword that specifies that
the function can be called by other procedures within the script. name is the name assigned to the func-
tion. As with variables, a function’s name must be unique within the script that defines it. arglist rep-
resents a list of one or more comma-separated arguments that can be passed to the function for
processing, and statements represents the statements that make up the function.

Let’s look at an example of a function that does not return a result to its calling statement:

Function DisplaySplashScreen()

MsgBox “Thank you for playing the game. © Jerry Ford 2014.” & _

vbCrLf & vbCrLf & “Please play again soon!”, 4144, “Test Game”

End Function

168 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

169Chapter 7 • Using Procedures to Organize Scripts

As written, this function performs the exact same operation as the subroutine you saw previously. This
function can be called from anywhere in your script using the following statement:

DisplaySplashScreen()

As with subroutines, you may pass any number of arguments to your functions, as long as commas sep-
arate the arguments, like this:

Function DisplaySplashScreen(strMessage)

MsgBox strMessage, 4144, “Test Game”

End Function

Once again, this function is no different from the corresponding subroutine example you just saw, and
can be called as follows:

DisplaySplashScreen(“Thank you for playing the game. © Jerry Ford “ &_

“2014.” & vbCrLf & vbCrLf & “Please play again soon.”)

Functions also can be set up to return a result to their calling statement. This is achieved by creating a
variable within the function that has the same name as the function, and by setting the variable equal to
the result that you want the function to return.

Again, this technique can best be demonstrated with an example:

strPlayersName = GetPlayersName()

MsgBox “Greetings “ & strPlayersName

Function GetPlayersName()

GetPlayersName = InputBox(“What is your first name?”)

End Function

The first statement calls a function named GetPlayersName(). The second statement displays the results
returned by the function and stored in the variable called PlayersName. The next three lines are the actual
function, which consists of a single statement that collects the player’s name and assigns it to a variable
named GetPlayersName so that it can be passed back to the calling statement.

Another way to call a function is to reference it as part of another VBScript statement, like this:

MsgBox “Greeting “ & GetPlayersName()

Improving Script Manageability
As I said, by organizing your VBScripts into procedures, you make them more manageable, allowing you
to create larger and more complex scripts without adding mounds of complexity. As an example, say you’re
developing a game that performs the following five major activities:

• It initializes variables, constants, and objects used by the script.

• It asks the player whether he wants to play the game.

170 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

• It collects the player’s name.

• It displays a story, substituting the player’s name at predetermined locations within the story.

• It displays a closing dialog box, inviting the player to play again on another day.

One way to design your script would be to first define the variables, constants, and object references, and
then create a series of functions and subroutine calls from the script’s main processing section. The rest of
the script would then consist of individual functions and subroutines, each of which would be designed
to perform one of the activities outlined in the previous list.

Writing Reusable Code
One of the biggest advantages of using functions and subroutines is the capability to create reusable code
within your VBScripts. Any time you find yourself needing to perform the same task over and over in a
script—such as displaying messages in pop-up dialog boxes or retrieving random numbers—consider
creating a function or subroutine. Then, by using a single statement to call the appropriate procedure, you
can reuse the statements located within the procedure over and over again.

Functions and subroutines help make for smaller scripts. They also make script maintenance and
enhancement much easier and quicker. For example, it’s a lot easier to change one line of code located in
a procedure than it is to make that same change in numerous places throughout a script.

The Guess a Number Game Revisited
So far, you have seen examples of small pieces of code that work with functions and subroutines. Now
let’s take a look at how to apply procedures to a larger script. To begin, go back and review the Guess a
Number game in Chapter 6, “Processing Collections of Data.” This script, like all other scripts in this
book prior to this chapter, was written without the use of procedures.

I deliberately avoided using procedures in the script from Chapter 6, so I had to use other techniques to
organize the script’s programming logic. What I chose to do was to put everything in the script’s main
processing section as follows:

• I added statements to generate a random number.

• I added a Do…Until loop to control the game’s execution.

One sign of a world-class programmer is the path that he leaves behind—in other words, the professional
way in which the programmer organizes and documents his scripts. One organizational technique used
by experienced programmers is to group all functions and subroutines together in one place, apart from
the initialization and main processing sections of the script. This makes them easy to locate and maintain.
Usually, you’ll find a script’s functions and subroutines located at the bottom of the script. I suggest
you modify your script template to include a “procedure” section for this purpose.

In
 t

he
 R

ea
l W

o
rl

d

• I embedded an If statement within the Do…Until loop to ensured the player typed a number.

• I embedded a second If statement within the previous If statement to make sure the data the

player typed was numeric.

• I embedded three more If statements within the previous If statement to determine whether the

player’s guess was low, high, or correct.

As you can see, I had to embed a lot of statements within one another to organize the script into a work-
able game. As the script itself was not exceptionally large, this was a manageable task. However, had the
script been much larger or more complex, it would have been difficult to keep track of all the embedded
logic.

Now that you understand what procedures are and what they’re used for, let’s take a moment and go back
and redesign the Guess a Number game using them. One way of doing this is as follows:

‘***

‘Script Name: GuessANumber-2.vbs

‘Author: Jerry Ford

‘Created: 02/01/14

‘Description: This script plays a number-guessing game with the user

‘***

‘Initialization Section

Option Explicit

Const cGreetingMsg = “Pick a number between 1 - 100”

Dim intUserNumber, intRandomNo, strOkToEnd, intNoGuesses, strBadData

strOkToEnd = “no”

intNoGuesses = 0

‘Main Processing Section

RandomNumber() ‘Get the game’s random number

PlayTheGame() ‘Start the game

WScript.Quit() ‘End the game

‘Procedure Section

‘Generate the game’s random number

171Chapter 7 • Using Procedures to Organize Scripts

Function RandomNumber()

‘Generate a random number

Randomize

intRandomNo = FormatNumber(Int((100 * Rnd) + 1))

End Function

‘Set up a Do...Until loop to control the execution of the game

Function PlayTheGame()

‘Loop until the user either guesses correctly or clicks on Cancel

Do Until strOkToEnd = “yes”

‘Prompt user to pick a number

intUserNumber = InputBox(“Type your guess:”, cGreetingMsg)

intNoGuesses = intNoGuesses + 1

strBadData = “no”

‘Go see if there is anything wrong with the player’s input

ValidateInput()

If strOkToEnd <> “yes” Then ‘The player typed in something

If strBadData <> “yes” Then ‘The player typed in a number

TestAnswer() ‘Let’s see how good the player’s guess was

End If

End If

Loop

End Function

‘Determine if there are any problems with the data entered by the player

Function ValidateInput()

‘See if the player provided an answer

If Len(intUserNumber) = 0 Then

MsgBox “You either failed to type a value or you clicked on “ & _

“Cancel. Please play again soon!”, , cGreetingMsg

strOkToEnd = “yes”

Else

‘Make sure that the player typed a number

If IsNumeric(intUserNumber) = False Then

MsgBox “Sorry. You did not enter a number. Try again.”, , _

172 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

cGreetingMsg

strBadData = “yes”

End If

End If

End Function

‘Determine if the player’s guess is too low, too high, or just right

Function TestAnswer()

‘Test to see if the user’s guess was correct

If FormatNumber(intUserNumber) = intRandomNo Then

MsgBox “Congratulations! You guessed it. The number was “ & _

intUserNumber & “.” & vbCrLf & vbCrLf & “You guessed it “ & _

“in “ & intNoGuesses & “ guesses.”, ,cGreetingMsg

strOkToEnd = “yes”

End If

‘Test to see if the user’s guess was too low

If FormatNumber(intUserNumber) < intRandomNo Then

MsgBox “Your guess was too low. Try again”, ,cGreetingMsg

strOkToEnd = “no”

End If

‘Test to see if the user’s guess was too high

If FormatNumber(intUserNumber) > intRandomNo Then

MsgBox “Your guess was too high. Try again”, ,cGreetingMsg

strOkToEnd = “no”

End If

End Function

As you can see, the script’s initialization section remained unchanged except for the addition of one more
variable, which is to indicate that the player has typed an invalid character. However, the main process-
ing section is now quite different. Instead of having all the script’s statements embedded within it, this
section now drives the script by maintaining high-level control over a collection of functions, each of
which performs a specific process for the script.

The main processing section now does three things:

• It calls a function that gets the game’s random number (RandomNumber()).

• It calls a function that controls the play of the game (PlayTheGame()).

• It ends the game by executing the WScript object’s Quit() method.

173Chapter 7 • Using Procedures to Organize Scripts

The RandomNumber() function generates the random number used by the game. The PlayTheGame()
function controls play of the game itself. Instead of making this a really large function, I simplified it a
bit by removing and modifying the two If statements that perform input validation and placing them
within their own function called ValidInput(). Likewise, I moved and modified the three If statements
that determine whether the player’s guess was low, high, or correct to their own function called Tes-
tAnswer(). The only other modification made to the script was the addition of the following statements
in the PlayTheGame() function. These statements were needed to test the values of variables manipulated
in the ValidateInput() and TestAnswer() functions:

If strOkToEnd <> “yes” Then ‘The player typed in something

If strBadData <> “yes” Then ‘The player typed in a number

TestAnswer() ‘Let’s see how good the player’s guess was

End If

End If

Working with Built-in VBScript Functions
VBScript provides a large collection of built-in functions that you can add to your scripts to save yourself
time and effort. Obviously, leveraging the convenience and power of these built-in VBScript functions is
a smart thing to do.

In fact, VBScript’s built-in functions are so essential to VBScript development that it’s difficult to write a
script of any complexity without using them. I have already demonstrated this fact many times through-
out the book. A complete list of all VBScript built-in functions appears in Appendix D, “Built-in VBScript
Functions.”

Limiting Variable Scope with Procedures
You have seen and worked with variables throughout this book. Thus far, all the variables that you have
worked with have had a global or script-level scope, meaning they could be accessed from any point within
the script. Any variable that is defined outside of a VBScript procedure (that is, function or subroutine)
is global in scope.

In contrast, any variable defined within a procedure is local in scope, meaning it exists and can only be
referenced within the procedure that defines it. The best way to demonstrate the concept of global and
local variable scope is in an example. The following script creates two variables, one at the beginning of
the script and the other within a function:

Option Explicit

Dim intFirstRandomNumber

174 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

intFirstRandomNumber = GetRandomNumber()

MsgBox “The first random number is “ & intFirstRandomNumber

GenerateLocalizedVariable()

MsgBox “The second random number is “ & intSecondRandomNumber

WScript.Quit()

Function GenerateLocalizedVariable()

Dim intSecondRandomNumber

intSecondRandomNumber = GetRandomNumber()

MsgBox “The second random number is “ & intSecondRandomNumber

End Function

Function GetRandomNumber()

‘Generate a random number between 1 and 10

Randomize

GetRandomNumber = FormatNumber(Int((10 * Rnd) + 1))

End Function

When you run this script, the first variable is defined at the beginning of the script, making it a global
variable. The value of the variable is then immediately displayed. The second variable is defined within
a function named GenerateLocalizedVariable(). As a result, the variable can be referenced only within
this function, as proven when the function’s MsgBox() statement displays its value. When the Generate-
LocalizedVariable() function completes its execution, processing control returns to the statement that
called the function. This statement is immediately followed by another MsgBox() statement, which
attempts to display the value of the variable defined in the GenerateLocalizedVariable() function.
However, this variable was destroyed as soon as that function ended, so instead of seeing the variable’s
value, an error message is displayed. Figure 7.5 shows the error message that is displayed if this script is
run on Windows 7.

175Chapter 7 • Using Procedures to Organize Scripts

Figure 7.5 Attempting to access a localized variable
outside the procedure that defined it results in an error.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

176 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Back to the BlackJack Lite Game
Now let’s return to the development of the BlackJack Lite game. In this game, you’ll develop your own version
of the casino game blackjack. BlackJack Lite is a card game that pits the player against the computer. The
object of the game is to come as close to 21 as possible without going over and to beat the computer’s hand.
The computer, like a real casino blackjack dealer, waits for the player to finish before playing. The computer
must then take hits until its hand busts (goes over 21) or reaches at least 17, at which time it must stop.

Designing the Game
The BlackJack Lite game is more complex than the other VBScripts that you’ve seen so far in this book.
The game itself has a large number of different functions to perform. For example, the initial hand must
be dealt for both the player and the computer. Then the game has to facilitate the dealing of cards to the
player and later to the computer. In addition, numerous smaller processes must occur along the way.

Because this script is rather complex, I’ve decided to organize it into procedures. Each procedure will be
assigned a specific activity to perform. As part of my preparation for the design of the game, I have drawn
a high-level flowchart of the game’s overall structure and processing logic. This flowchart is shown in Fig-
ure 7.6.

Figure 7.6 A flowchart outlining the overall design and
execution flow of the BlackJack Lite game. © 2014 Cengage Learning.

The script consists of nine functions. These functions and their purposes are as follows:

• DoYouWantToPlay(). This displays the game’s splash screen and invites the user to play the game.

• NowGoPlay(). This controls the overall execution of the game, calling upon other procedures as

required.

• DealFirstHand(). This presents the initial cards for both the player and the computer.

• PlayTheGame(). This asks the player whether he would like another card and determines when the

player has either busted or decided to hold.

• DealAnotherCard(). This retrieves another card for the player’s hand.

• GetRandomNumber(). This function is called by several other functions in the script. It returns a

random number between 1 and 13, representing the value of a playing card.

• ComputerPlay(). This plays the computer’s hand, taking hits until either the computer’s hand is

busted or is greater than 17.

• DetermineWinner(). This compares the player’s hand to the computer’s hand to determine who

has won. It then offers to let the player play another hand. If the player accepts, the NowGoPlay()

function is called, starting a new hand.

• DisplaySplashScreen(). This displays information about the game and its author, and invites the

player to return and play again before finally ending the game.

Setting Up the Initialization Section
You begin the development of the BlackJack Lite game the same way that you’ve begun all your other
games: by first creating a new file and adding in your VBScript template, and then setting up the variables,
constants, and object references in the script’s initialization section.

‘***

‘Script Name: BlackJack.vbs

‘Author: Jerry Ford

‘Created: 02/03/14

‘Description: This script creates a scaled-down version of the casino

‘blackjack card game

‘***

‘Initialization Section

Option Explicit

Dim intPlayGame, strCardImage, intUserCard, intComputerCard, intAnotherCard

Dim intUserNextCard, strUserDone, intNewComputerCard, intPlayAgain

Dim strUserBusted, strTextMsg

177Chapter 7 • Using Procedures to Organize Scripts

strUserDone = “False”

strUserBusted = “False”

This game is fairly lengthy and requires a number of variables:

• intPlayGame. This stores the player’s reply when asked if he wants to play a game.

• strCardImage. This stores the message displayed in the game’s initial pop-up dialog box.

• intUserCard. This stores the total value of the cards dealt to the user.

• intComputerCard. This stores the total value of the cards dealt to the computer.

• intAnotherCard. This stores the player’s reply to the question of whether he wants another card.

• intUserNextCard. This stores the value returned by the function that retrieves a random number

and is later added to the value of the intUserCard variable.

• strUserDone. This stores a value indicating whether the player is ready to hold.

• intNewComputerCard. This stores the value returned by the function that retrieves a random

number and is later added to the value of the intComputerCard variable.

• intPlayAgain. This stores the player’s reply when asked whether he wants to play another game.

• strUserBusted. This stores a value indicating whether the player has busted.

• strTextMsg. This stores text to appear in pop-up dialog boxes displayed by the game.

Developing the Logic for the Main Processing Section
The script’s main processing section is very small and consists only of a call to the DoYouWantToPlay()
function to determine whether the player wants to play the game, followed by the Select Case statement,
which determines the player’s reply.

‘Main Processing Section

‘Ask the user if he or she wants to play

intPlayGame = DoYouWantToPlay()

Select Case intPlayGame

Case 6 ‘User clicked on Yes

NowGoPlay()

Case 7 ‘User clicked on No

DisplaySplashScreen()

End Select

If the player clicks the Yes button, then the NowGoPlay() function is called. Otherwise, the DisplaySplashScreen()
function is called. This function displays a pop-up dialog box providing information about the game and
then terminates the game’s execution.

178 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Creating the DoYouWantToPlay() Function
This function displays the game’s initial pop-up dialog box and invites the player to play a game of
BlackJack Lite. Much of the text displayed in this pop-up dialog box is dedicated to creating an image
depicting the ace of spades. Also included on this pop-up dialog box is a brief set of instructions.

function DoYouWantToPlay()

strCardImage = “ ===============” & Space(5) & “Rules and “ & _

“Instructions” & vbCrLf & _

“| * “ & vbTab & Space(22) & “|” & Space(5) & “=============” & _

“==========” & vbCrLf & _

“| * * “ & vbTab & Space(22) & “|” & Space(5) & “1. Try to get” & _

“ to 21 without going over.” & vbCrLf & _

“| *** “ & vbTab & Space(22) & “|” & Space(5) & “2. Aces count” & _

“ as 11s (not 1s).” & vbCrLf & _

“| * * “ & vbTab & Space(22) & “|” & Space(5) & “3. The dealer “ & _

“must stop at 17 or later.” & vbCrLf & _

“|” & Space(15) & “****” & vbTab & Space(6) & “|” & vbCrLf & _

“|” & Space(17) & “**” & vbTab & Space(6) & “|” & vbCrLf & _

“|” & Space(14) & “* ** *” & vbTab & space(6) & “|” & vbCrLf & _

“|” & Space(12) & “********” & Space(13) &”|” & vbCrLf & _

“|” & Space(11) & “**********” & Space(11) & “|” & vbCrLf & _

“|” & Space(11) & “**********” & Space(11) & “|” & vbCrLf & _

“|” & Space(13) & “********” & Space(12) & “|” & vbCrLf & _

“|” & Space(14) & “******” & vbTab & Space(6) & “|” & vbCrLf & _

“|” & Space(16) & “****” & vbTab & Space(6) & “|” & vbCrLf & _

“|” & Space(17) & “ *” & Space(18) & “|” & vbCrLf & _

“|” & vbTab & vbTab & “* * |” & vbCrLf & _

“|” & vbTab & vbTab & “*** |” & vbCrLf & _

“|” & vbTab & vbTab & “* * |” & vbCrLf & _

“|” & vbTab & vbTab & Space(1) & “ * |” & vbCrLf & _

“ ===============” & vbCrLf & vbCrLf & vbCrLf & vbCrLf & _

“Would you like to play a game?”

DoYouWantToPlay = MsgBox(strCardImage, 36, “BlackJack Lite”)

End Function

If the player clicks the Yes button, the value of DoYouWantToPlay() is set to 6. This value will later be
tested in the script’s main processing section to determine whether the game should continue.

179Chapter 7 • Using Procedures to Organize Scripts

Creating the NowGoPlay() Function
The NowGoPlay() function is called when the player clicks the Yes button on the script’s initial pop-up
dialog box, indicating that he wants to play the game.

function NowGoPlay()

DealFirstHand()

PlayTheGame()

If strUserBusted = “False” Then

ComputerPlay()

End If

DetermineWinner()

End Function

This function controls the actual play of the game. It is made up of calls to several other functions. First
it calls the DealFirstHand() function, which deals both the user and the computer their initial cards. Next
it calls the PlayTheGame() function, which allows the user to continue to take hits or hold, and determines
whether the player busted. The NowGoPlay() function then checks the value of the strUserBusted variable
to see whether the game should continue. If the user decides to hold, then the ComputerPlay() function
is called so the computer’s (or dealer’s) hand can finish being dealt. Regardless of whether the user busts
or the ComputerPlay() function is called, eventually control returns to the NowGoPlay() function and the
DetermineWinner() function is called. This function determines the winner of the hand and gives the
player an opportunity to play another hand.

Creating the DealFirstHand() Function
The DealFirstHand() function makes two calls to the GetRandomNumber() function to deal both the
player’s and the computer’s initial cards:

function DealFirstHand()

intUserCard = GetRandomNumber()

intComputerCard = GetRandomNumber()

End Function

Creating the PlayTheGame() Function
The PlayTheGame() function, shown next, sets up a Do…Until loop that executes until the player either
busts or decides to hold. The first statement in the loop prompts the player to decide whether he wants
another card. If the player clicks Yes, the DealAnotherCard() function is called. The PlayTheGame() func-
tion then checks to see whether the player has busted, setting the value of the strUserBusted and
strUserDone variables if appropriate (True). If the player decides to hold and clicks the No button, the
value of strUserDone is also set to True.

180 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

function PlayTheGame()

Do Until strUserDone = “True”

intAnotherCard = MsgBox(“User: “ & Space(8) & intUserCard & vbCrLf & _

“Computer: “ & intComputerCard & vbCrLf & vbCrLf & _

“[Click on YES for another card]” & vbCrLf & _

“[Click on NO to stick]”, 4, “Initial Deal”)

Select Case intAnotherCard

Case 6 ‘User clicked on Yes

‘MsgBox “You decided to take a hit.”

DealAnotherCard()

Case 7 ‘User clicked on No

strUserDone = “True”

End Select

If intUserCard > 21 then

strUserBusted = “True”

strUserDone = “True”

End If

Loop

End Function

Creating the GetRandomNumber() Function
When called, the GetRandomNumber() function generates a random number from 1 to 13. If the randomly
generated number is equal to 1 (equivalent to an ace) then a value of 11 is returned. If the randomly gen-
erated number is greater than 10 (equivalent to a jack, queen, or king) then a value of 10 is returned. Any
other random value is returned as is.

function GetRandomNumber()

Randomize

GetRandomNumber = Round(FormatNumber(Int((13 * Rnd) + 1)))

If GetRandomNumber = 1 then GetRandomNumber = 11

If GetRandomNumber > 10 then GetRandomNumber = 10

End Function

181Chapter 7 • Using Procedures to Organize Scripts

Creating the DealAnotherCard() Function
The DealAnotherCard() function is called from the PlayTheGame() function when the player elects to
take a hit (asks for another card). This function consists of two statements. The first statement assigns
the card number returned to it from the GetRandomNumber() function to a variable named
intUserNextCard. The second statement tallies the player’s hand by adding the value of the new card to
the cards already in the player’s hand.

function DealAnotherCard()

intUserNextCard = GetRandomNumber()

intUserCard = intUserCard + intUserNextCard

End Function

Creating the ComputerPlay() Function
The ComputerPlay() function, shown here, is responsible for dealing the computer’s hand. It uses a
Do…While loop to continue dealing the computer’s hand until either the computer’s hand exceeds a total
of 17 but remains under 21 or it busts.

function ComputerPlay()

Do While intComputerCard < 17

intNewComputerCard = GetRandomNumber()

intComputerCard = intComputerCard + intNewComputerCard

Loop

End Function

Inside the Do…While loop are two statements. The first statement deals the computer a new card by call-
ing the GetRandomNumber() function. The second statement uses the value returned by the GetRandom-
Number() function to update the computer’s hand (that is, its total).

Creating the DetermineWinner() Function
The DetermineWinner() function, shown here, checks to see whether the value of strUserBusted is set
to True. It also checks to see whether the computer has busted by checking to see whether the value of
intComputerCard is greater than 21. If either of these conditions is true, the script assigns an appropri-
ate text message to the strTextMsg variable. This variable is used as input in an InputBox() pop-up dia-
log box that shows the player the results of the game. If neither of these conditions is true, the
DetermineWinner() function performs three tests to determine whether the player won, the computer
won, or there was a tie. The function then sets the value of strTextMsg accordingly.

function DetermineWinner()

If strUserBusted = “True” Then

strTextMsg = “The user has busted!”

Else

182 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

If intComputerCard > 21 then

strTextMsg = “The Computer has busted!”

Else

If intUserCard > intComputerCard Then strTextMsg = “The user wins!”

If intUserCard = intComputerCard Then strTextMsg = “Push (i.e. Tie)!”

If intUserCard < intComputerCard Then strTextMsg = “The “ & _

“Computer wins!”

End If

End If

intPlayAgain = MsgBox(strTextMsg & vbCrLf & vbCrLf & “User: “ & _

Space(8) & intUserCard & vbCrLf & “Computer: “ & intComputerCard & _

vbCrLf & vbCrLf & vbCrLf & _

“Would you like to play another game?”, 4, “Initial Deal”)

If intPlayAgain = 6 Then

strUserBusted = “False”

strUserDone = “False”

NowGoPlay()

End If

DisplaySplashScreen()

End Function

Finally, the game’s results are displayed by showing the value of strTextMsg and the value of the player’s
and the computer’s final hands. The pop-up dialog box also asks the player whether he would like to play
again. If the player clicks the Yes button, the NowGoPlay() function is called and the game starts over
again. Otherwise, the DisplaySplashScreen() function is called and the game ends.

Creating the DisplaySplashScreen() Function
This final function displays the game’s splash screen, providing a little information about the game and
its creator and inviting the player to return and play the game again another time.

function DisplaySplashScreen()

MsgBox “Thank you for playing BlackJack Lite © Jerry Ford 2014.” & _

vbCrLf & vbCrLf & “Please play again soon!”, 4144, “BlackJack Lite”

WScript.Quit()

End Function

After displaying the splash screen in a pop-up dialog box, the DisplaySplashScreen() function ends the
game by executing the WScript Quit() method.

183Chapter 7 • Using Procedures to Organize Scripts

The Final Result
Take a few minutes to double-check all your work and then give this game a whirl. This is a pretty big
script, so you may have to fix a few syntax errors introduced by typos you may have made when keying
in the script. Once everything is working correctly, you should have a really cool game to share with—
and impress—all your friends!

Summary
In this chapter, you learned how to use procedures to streamline the organization of your VBScripts,
enabling you to develop larger and more complex scripts and, of course, games. In addition, you learned
how to create reusable units of code, enabling you to make your scripts smaller and easier to manage.
Finally, you learned how to control variable scope by localizing variables within procedures.

184 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

1. Give the BlackJack Lite game’s splash screen a more polished look by providing additional infor-
mation in the “Rules and Instructions” section of the dialog box.

2. Improve the BlackJack Lite game by adding logic to include the selection of the card’s suit (club,
heart, spade, or diamond).

3. Once you have modified the BlackJack Lite game to assign cards that include both the card’s suit
and number, add logic to ensure that the same card is not used twice in the same hand.

4. Add scorekeeping logic to the BlackJack Lite game and display the number of won and lost hands
at the end of each game.

C
ha

lle
ng

es

Chapter 8: Storing and Retrieving Data

Chapter 9: Handling Script Errors

Chapter 10: Using the Windows Registry
to Configure Script Settings

Chapter 11: Working with Built-in VBScript
Objects

Chapter 12: Combining Different Scripting
Languages

Chapter 13: Working with the Windows
Management Instrumentation

Chapter 14: Adding a GUI to Your Scripts

P
A

R
T

Advanced
TopicsIII

This page intentionally left blank

Storing and
Retrieving Data

8
N

ow that you’ve learned the basics of VBScript programming using the WSH, it’s
time to tackle more advanced topics. In this chapter, you’ll learn how to work
with and administer Windows files and folders, including storing data in reports

and creating log files. You’ll see how to open and programmatically read the contents of
text files to process script input. You’ll learn how to retrieve script configuration settings stored
in external files and then use this information to control the way your scripts execute.
Finally, I’ll show you how to automate file and folder management by using VBScript to
copy, move, and delete individual and groups of files and folders. Specifically, you will learn
the following:

• How to create and write data to text files

• How to open and process data stored in text files

• How to copy, move, and delete files and folders

• How to retrieve script configuration settings from external files

Project Preview: The Lucky Lottery Number Picker
This chapter shows you how to create the Lucky Lottery Number Picker game, which ran-
domly generates lottery ticket numbers. The player needs only to specify how many lottery
tickets he plans to purchase; the game then generates the appropriate numbers. By default,
the game assumes that it should generate six numbers for each lottery ticket the player wants
to purchase. However, by editing an external configuration file that stores the game’s execu-
tion settings, the player can modify the game to generate any amount of numbers per play.

By the time you’ve completed this chapter and created the Lucky Lottery Number Picker game, you will
have mastered the building blocks required to work with and administer Windows files and folders. By
learning how to store script configuration settings in external files, you’ll also learn how to make your
VBScripts easier to control and modify.

188 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 8.2 By default, the game displays configuration
information at the top of its output followed by the lottery
numbers. © 2014 Cengage Learning.

Figure 8.1 The game begins by asking the player
how many different sets of lottery numbers should
be generated. © 2014 Cengage Learning.

Figure 8.3 By changing script configuration settings stored in an
external configuration file, the player can tell the script to provide
only summary level information. © 2014 Cengage Learning.

Figures 8.1 through 8.3 show the Lucky Lottery Number Picker in action on a computer running Windows 7.

Working with the Windows File System
The WSH core object model provides the capability to interact with all sorts of Windows resources, such as
the Windows desktop and Registry. However, it fails to provide any access to the Windows file system, so you
cannot use it to access local disk drives or to work with files and folders. Instead of providing this function-
ality as part of the WSH core object model, Microsoft chose to implement it via the FileSystemObject
object, which is one of VBScript’s run-time objects. Refer to Table 3.4 in Chapter 3, “VBScript Basics,” for
a complete listing of VBScript’s run-time objects.

The FileSystemObject object is VBScript’s primary run-time object. All other run-time objects, except for
the Dictionary object, are derived from it. To use the FileSystemObject object, you must instantiate it
as shown here:

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

The first step in setting up an instance of the FileSystemObject object is to use the Set statement to
associate a variable with it. This is accomplished by using the WScript object’s CreateObject() method
and specifying the FileSystemObject object as Scripting.FileSystemObject. Once instantiated, you
can interact with the FileSystemObject object by referencing the variable that has been set up, thus pro-
viding access to all FileSystemObject object properties and methods.

To jump-start your understanding of the FileSystemObject object and how to use it, let’s begin with
an example. In this example, a VBScript is created that uses the FileSystemObject object to retrieve and
display the properties associated with a file named Sample.txt. The script begins by instantiating the
FileSystemObject object and associating it with a variable named objFso. Next, the FileSystemObject
object’s GetFile() method retrieves a reference to the File object that specifically refers to Sample.txt,
which is located in the C:\Temp folder.

The main processing of the script then makes a series of procedure calls. The CreateDisplayString()
function uses several File object properties to collect information about the Sample.txt file. The next
two functions display the information that has been collected about the file and then terminate the
script’s execution.

‘***

‘Script Name: ExtractFileProperties.vbs

‘Author: Jerry Ford

‘Created: 02/10/14

‘Description: This script demonstrates how to retrieve file information

‘***

‘Initialization Section

Option Explicit

189Chapter 8 • Storing and Retrieving Data

On Error Resume Next

Dim objFso, strInputFile, strDisplayString

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

Set strInputFile = objFso.GetFile(“C:\Temp\Sample.txt”)

‘Main Processing Section

CreateDisplayString()

DisplayMessage()

TerminateScript()

‘Procedure Section

Function CreateDisplayString()

strDisplayString = “C:\Temp\Sample.txt” & vbCrLf & _

vbCrLf & “Created on: “ & vbTab & strInputFile.DateCreated & _

vbCrLf & “Last Modified: “ & vbTab & strInputFile.DateLastModified & _

vbCrLf & “Last Accessed: “ & vbTab & strInputFile.DateLastAccessed & _

vbCrLf

End Function

Function DisplayMessage()

MsgBox strDisplayString

End Function

Function TerminateScript()

‘Stop the execution of this script

WScript.Quit()

End Function

The main thing to take away from this example is that it interacts with the Windows file system using
properties belonging to the File object to collect information about a given file. To work with the File
object, you have to use the FileSystemObject object’s GetFile() method, which first requires that you
set up an instance of the FileSystemObject object.

If you run this script on a computer running Windows 8.1, you’ll see output similar to that shown in Fig-
ure 8.4.

190 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Opening and Closing Files
Now that you know how to instantiate the FileSystemObject object within your VBScripts and have seen
an example of how to use it to reference other run-time objects and their associated properties, you are
ready to start learning how to work with files and folders.

Before you open a file or create a new file, you must determine whether the file already exists. You can do
this using the FileSystemObject object’s FileExists() method as demonstrated here:

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

If (objFso.FileExists(“C:\Temp\Sample.txt”)) Then

. . .

End If

To begin working with a file, you must open it. This is done using the FileSystemObject object’s Open-
TextFile() method, which requires that you provide the following pieces of information:

• Name and path of the file

• How to open the file

• Whether to create a new file if the file does not already exist

Table 8.1 defines constants and the values you will use to tell the OpenTextFile() method how to open
the file.

191Chapter 8 • Storing and Retrieving Data

Figure 8.4 Using FileSystemObject object properties
to retrieve information about a file. © 2014 Cengage Learning.

Constant Description Value

ForReading Opens a file in preparation for reading 1

ForWriting Opens a file in preparation for writing 2

ForAppending Opens a file allowing text to be written to the end of the file 8

TA B L E 8 .1  O P E N T E X T F I L E () C O N S TA N T S

© Jerry Lee Ford, Jr. All Rights Reserved.

192 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Table 8.2 outlines the two available options that determine what the OpenTextFile() method should do
if the file does not already exist.

You must be careful to always specify the appropriate constant value when telling the OpenTextFile()
method how to open a file. For example, if you accidentally open a file in ForWriting mode when you actu-
ally meant to append to the end of the file, then you will overwrite the contents already stored in the file.

Let’s look at a VBScript that puts what you have just learned into action. In this example, the script opens
a file named Sample.txt, which resides in the Temp directory on the computer’s C: drive. If the file exists,
the script opens it. If the file doesn’t already exist, the script creates it. Once opened, the script writes a
few lines of text and then closes the file.

‘***

‘Script Name: FileCreate.vbs

‘Author: Jerry Ford

‘Created: 02/10/14

‘Description: This script demonstrates how to create, open, and write

‘a line of text to a text file.

‘***

‘Initialization Section

Option Explicit

Dim objFso, objFileHandle, strFileName

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

strFileName = “C:\Temp\Sample.txt”

‘Main Processing Section

OpenTextFile()

WriteTextOutput()

CloseTextFile()

TerminateScript()

Value Description

True Open a file if it already exists; create and open a new file if it does not already exist

False Open a file if it already exists; otherwise, take no additional action

TA B L E 8 .2 O P E N T E X T F I L E () F I L E C R E AT I O N O P T I O N S

© Jerry Lee Ford, Jr. All Rights Reserved.

‘Procedure Section

Function OpenTextFile()

‘If exists open it in append mode, otherwise create and open a new file

If (objFso.FileExists(strFileName)) Then

Set objFileHandle = objFso.OpenTextFile(strFileName, 8)

Else

Set objFileHandle = objFso.OpenTextFile(strFileName, 2, “True”)

End If

End Function

Function WriteTextOutput()

‘Write three lines of text to the text file

objFileHandle.WriteLine “Once upon a time there was a little boy who”

objFileHandle.WriteLine “lived in a shoe. Unfortunately it was two sizes”

objFileHandle.WriteLine “too small!”

End Function

Function CloseTextFile()

‘Close the file when done working with it

objFileHandle.Close()

End Function

Function TerminateScript()

‘Stop the execution of this script

WScript.Quit()

End Function

It is very important that you always remember to close any open files before allowing your scripts to end.
You do this by using the FileSystemObject object’s Close() method as shown here:

objFileHandle.Close()

If you forget to close a file after working with it, the file might become corrupted because the end-of-file
marker has not been created for it.

Trap

You can open a file using only one mode at a time. In other words, if you open a file in ForReading mode,
your script cannot write new text to the file unless you first close the file and then open it again in
ForWriting mode.

193Chapter 8 • Storing and Retrieving Data

194 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

If you save and run this script on a computer running Windows 8.1 and then open the Sample.txt file
using Windows Notepad, you’ll see the output shown in Figure 8.5.

Writing to Files
You have a number of different options when it comes to how your VBScripts write text to files:

• Writing one or more characters at a time

• Writing a line at a time

• Writing blank lines

Writing text one or more characters at a time is good when you need to carefully format text output, such
as when you want to create reports with data lined up in columns. On the other hand, writing out one
line of text at a time is convenient when the format is more free form. Finally, inserting or writing blank
lines into text files helps you improve the file’s appearance, such as adding space between the heading and
the text in a formal report.

Writing Characters
To write text to a file one or more characters at a time, you need to use the FileSystemObject object’s
Write() method. This method does not append a carriage return to the end of any text that it writes. If
two back-to-back write operations are performed using the Write() method, for example, the text from
the second write operation is inserted into the text file on the same line immediately following the text
written by the first write operation. To see how this works, take at look at the following example:

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

Set objFileHandle = _

objFso.OpenTextFile(“C:\Temp\Sample.txt”, 2, “True”)

objFileHandle.Write(“Once upon a time there “)

objFileHandle.Write(“were three little bears.”)

objFileHandle.Close()

Figure 8.5 Writing to a new or existing text file. © 2014 Microsoft Corporation. Used with permission from Microsoft.

If you save and run this example on a computer running Windows 8.1, you’ll see that the output added
to the text file by the script is placed on the same line, as shown in Figure 8.6.

Writing Lines
You can modify the previous example to write text output to the file a line at a time by replacing the
Write() method with the WriteLine() method:

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

Set objFileHandle = _

objFso.OpenTextFile(“C:\Temp\Sample.txt”, 2, “True”)

objFileHandle.WriteLine(“Once upon a time there were three little bears.”)

objFileHandle.Close()

If you save and run this example, you’ll find that the results are almost exactly the same as those pro-
duced by the previous example. The one difference is that the cursor is now positioned at the beginning
of the next row in the text file when you run this example, whereas the cursor was left at the end of the
first row when you ran the previous example. This is because the WriteLine() method automatically
appends a linefeed to the end of each write operation.

Adding Blank Lines
You can add blank lines to the output generated by your VBScripts to make it look better by using the
FileSystemObject object’s WriteBlankLines() method. This method executes by writing a blank line
and then advancing the cursor down to the beginning of the next row in the file.

The following example demonstrates how to use the FileSystemObject object’s WriteBlankLines() method:

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

Set strInputFile = objFso.GetFile(“C:\VBScriptGames\Hangman.vbs”)

Set objFileHandle = _

objFso.OpenTextFile(“C:\Temp\Sample.txt”, 2, “True”)

195Chapter 8 • Storing and Retrieving Data

Figure 8.6 Writing characters to a text file. © 2014 Microsoft Corporation. Used with permission from Microsoft.

196 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

objFileHandle.WriteBlankLines(1)

objFileHandle.WriteLine(“C:\VBScriptGames\Hangman.vbs Properties”)

objFileHandle.WriteBlankLines(1)

objFileHandle.WriteLine(“———————————————————————-”)

objFileHandle.WriteBlankLines(1)

objFileHandle.WriteLine(“Creation Date: “ & strInputFile.DateCreated)

objFileHandle.WriteBlankLines(1)

objFileHandle.WriteLine(“Last Modified: “ & strInputFile.DateLastModified)

objFileHandle.WriteBlankLines(1)

objFileHandle.WriteLine(“———————————————————————-”)

objFileHandle.Close()

Figure 8.7 shows how the Sample.txt file looks after the script has executed on a computer running Win-
dows 8.1.

Reading from Files
VBScript makes it just about as easy to read from a file as it is to write to one. However, before you
attempt to read or process the contents of a text file, you should first make sure the file has data in it. If
the file has no data, opening the file and attempting to read it is pointless.

You can use the TestStream object’s AtEndOfStream property to determine whether a file contains data.
Not only should you check the AtEndOfStream property before you begin reading a file, but your script
should continue to check this property before each additional read operation to make sure data is still in
the file for the script to read. In other words, you need to keep checking to make sure that your script has
not reached the end-of-file marker.

Figure 8.7 Blank lines improve the presentation of reports created by your VBScripts.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

To demonstrate how all this works, let’s build an example. For starters, create a new VBScript and add the
following statements to it:

Dim objFso, objFileHandle, strDisplayString

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

Set objFileHandle = objFso.OpenTextFile(“C:\Temp\Sample.txt”, 1)

The first statement defines variables to be used by the script. The next statement instantiates the
FileSystemObject object. The third statement sets up an object reference to the Sample.txt file and opens
it in ForReading mode. Now add the following statements to the script:

Do While objFileHandle.AtEndOfStream = False

strDisplayString = strDisplayString & objFileHandle.ReadLine() & vbCrLf

Loop

MsgBox strDisplayString

The first statement sets up a Do…While loop that checks on each iteration to determine whether the end-
of-file marker has been reached. As long as the end of the file has not been reached, another line of the
file is read and appended to the end of a variable named strDisplayString.

Finally, close the file by adding the following statement:

objFileHandle.Close

If you run this script on a computer running Windows 8.1, you’ll see output similar to that shown in Figure 8.8.

This example showed you how to read an entire file, a line at a time. Other options that are available to
you when reading files include the following:

• Skipping lines

• Reading one or more characters at a time

• Reading the entire file at one time

197Chapter 8 • Storing and Retrieving Data

Figure 8.8 Creating a VBScript that reads and displays the content of text files.
© 2014 Cengage Learning.

Skipping Lines
Often text reports and other files begin with some type of heading or other information that you might not
be particularly interested in. In these cases, you can skip the reading of these lines using the FileSystemObject
object’s Skip() and SkipLine() methods. The Skip() method allows your script to skip a specific num-
ber of characters at a time, whereas the SkipLine() method allows your script to skip entire lines.

To use the Skip() method, you must pass it the number of characters that you want skipped as demon-
strated here:

objFileHandle.Skip(25)

The SkipLine() method does not accept any arguments, so it can only be used to skip one line at a time.
However, by wrapping the execution of this method up within a loop, you can skip as many lines as you
want as demonstrated here:

For intCounter = 1 To 5

objFileHandle.SkipLine()

Next

Reading Files Character by Character
To read a file one or more characters at a time, you need to work with the FileSystemObject object’s Read()
method. This might be necessary for reading files with fixed length data. For example, you might have a
report file that lists a certain category or information in a column that begins at character position 20 and
ends at character position 30 on each line of the report. Using the Read() method, you could develop a
VBScript that reads the file and pulls out only the information stored in that column for each line of the file.

To get a glimpse of the Read() method in action, consider the following example. This script uses a For
loop and the SkipLine() method to skip the reading of the first five lines of the Sample.txt file. The Skip()
method skips the first 15 characters on the next line in the file (line 6). The Read() method reads the next
22 characters from the file. The file is then closed and the text that was read from the file is displayed.

Dim objFso, objFileHandle, intCounter, strDisplayString

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

Set objFileHandle = objFso.OpenTextFile(“C:\Temp\Sample.txt”, 1)

For intCounter = 1 To 5

objFileHandle.SkipLine()

Next

objFileHandle.Skip(15)

strDisplayString = objFileHandle.Read(22)

objFileHandle.Close

MsgBox “C:\Temp\Sample.txt was created on “ & strDisplayString

198 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Reading a File All at Once
Sometimes all you need to do is read an entire file in a single operation, such as when the file to be read
is already formatted to produce the output that you want. You can do this using the FileSystemObject
object’s ReadAll() method as demonstrated here:

Dim objFso, objFileHandle, strDisplayString

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

Set objFileHandle = objFso.OpenTextFile(“C:\Temp\Sample.txt”, 1)

strDisplayString = objFileHandle.ReadAll()

objFileHandle.Close()

MsgBox strDisplayString

As you can see, the script reads the entire file using just one ReadAll() operation and then displays what
it read using a MsgBox() statement. The output displayed when you run this script is exactly the same as
that shown in Figure 8.8, in which the script read the entire text file a line at a time before displaying the
file’s contents.

Managing Files and Folders
In addition to using VBScript and the WSH to read and write to and from text files, you can use them to
help administer all your files and folders. By administer, I mean to help keep them organized—or more
specifically, to automate the organization process. For example, if your computer is connected to a local
area network, you can create a VBScript that makes copies of all the files it finds in certain folders and
stores them on a network server. That way, if something ever happens to your original files, you can always
recover them by retrieving a backup copy.

The FileSystemObject object provides several methods for developing scripts that can automate file
administration:

• CopyFile(). This copies one or more files.

• MoveFile(). This moves one or more files.

• DeleteFile(). This deletes one or more files.

• FileExists(). This determines whether a file exists.

The FileSystemObject object also provides a large collection of methods for automating folder admin-
istration:

• CopyFolder(). This copies one or more folders.

• MoveFolder(). This moves one or more folders.

• DeleteFolder(). This deletes one or more folders.

• FolderExists(). This determines whether or not a folder exists.

• CreateFolder(). This creates a new folder.

199Chapter 8 • Storing and Retrieving Data

Trick

As an alternative to working with methods belonging to the FileSystemObject object, you also can
work with methods that jointly belong to the File and Folder objects:

•Copy(). This copies a single file or folder.

•Delete(). This removes a single file or folder.

•Move(). This moves a single file or folder.

There are a few drawbacks to these methods. First, using these methods requires that you instantiate
both the FileSystemObject object and the File or Folder object, which is just a little more work. Second,
they work with just one file at a time as opposed to the methods belonging to the FileSystemObject
object, which can work on more than one file or folder at a time. Finally, because the File and Folder
objects share the same methods, it’s sometimes easy to make a mistake and accidentally mess things
up. For example, if you have a file and a folder in the same location with the same or a similar name, it’s
easy to accidentally delete the wrong one.

Copying, Moving, and Deleting Files
Using the FileSystemObject object’s CopyFile() method, you can create a VBScript that can copy one
or more files, as demonstrated in the following example:

Dim objFso

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

objFso.CopyFile “C:\Temp\Sample.txt”, “C:\VBScriptGames\Sample.txt”

In this example, a file named Sample.txt located in the Temp folder on the C: drive is copied to the
VBScriptGames folder on the C: drive. By modifying this example, as shown here, you can change the
script so that it copies more than one file. Specifically, this example results in all files named “Sample”
being copied, regardless of their file extensions.

Dim objFso

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

objFso.CopyFile “C:\Temp\Sample.*”, “C:\VBScriptGames”

Trick

Wildcard characters make it possible to copy, move, or delete more than one file or folder at a time. The
? and * wildcard characters enable pattern matching. The ? character is used to specify a single char-
acter match. The * character is used to match against an unlimited number of characters. For example,
specifying *.txt results in a match with all files that have a .txt file extension. Specifying sampl?.txt
results in a match only with files that have a six-character-long file name with “Sampl” as the first five
characters, and a .txt file extension.

200 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Copying One or More Files
You can copy one or more files using the CopyFile() method. This method also supports an additional
parameter that allows you to specify what to do if the script attempts to copy a file to a folder that already
contains a file with the same name. You specify a value of either True or False for this parameter. A
value of True tells CopyFile() to replace or override files with duplicate file names. A value of False tells
CopyFile() to cancel the copy operation for any files with matching file names.

The following example demonstrates how to copy all files with a .txt file extension located in the C:\Temp
folder to a folder called C:\VBScriptGames without allowing any duplicate files already located in the
destination folder to be overridden:

Dim objFso

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

objFso.CopyFile “C:\Temp*.txt”, “C:\VBScriptGames”, “False”

This next example does the exact same thing as the previous example, except that it allows duplicate files
to be overridden:

Dim objFso

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

objFso.CopyFile “C:\Temp*.txt”, “C:\VBScriptGames”, “True”

Trick

Remember, you can avoid errors by using the FileSystemObject object’s FileExists and FolderExists
properties to verify whether a file or folder exists before manipulating it.

Moving One or More Files
The difference between moving and copying files is that after you copy a file, you end up with two copies
in two places, whereas when you move a file, only the one file exists in its new location. You can move
files from one folder to another using the FileSystemObject object’s MoveFile() method:

Dim objFso

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

objFso.MoveFile “C:\Temp*.txt”, “C:\VBScriptGames”

In this example, all files with a .txt file extension are moved from the C:\Temp folder into the
C:\VBScriptGames folder.

201Chapter 8 • Storing and Retrieving Data

Deleting One or More Files
You can delete one or more files using the FileSystemObject object’s DeleteFile() method:

Dim objFso

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

objFso.DeleteFile “C:\VBScriptGames*.txt”

In this example, all the files in the C:\VBScriptGames folder with a .txt file extension are deleted.

Creating a New Folder
You can create new folders by using the FileSystemObject object’s CreateFolder() method. For exam-
ple, the following script checks to see whether a folder named VBScriptGames already exists on the com-
puter’s C: drive. If it does not exist, the script creates it.

Dim objFso, strNewFolder

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

If (objFso.FolderExists(“C:\VBScriptGames”) = False) Then

Set strNewFolder = objFso.CreateFolder(“C:\VBScriptGames”)

End If

Trap

Always check to be sure that a folder does not exist before trying to create it. If the folder that you are
trying to create already exists, your script will get an error.

Copying Folders
The only differences between copying a folder and copying a file are that you specify the CopyFolder()
method instead of the CopyFile() method and specify a folder name instead of a file name. Of course,
not only is the specified folder copied to a new location, but also all its contents are copied, as demon-
strated in the following example:

Dim objFso

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

objFso.CopyFolder “C:\Temp”, “C:\VBScriptGames\Temp”

Here, a complete copy of the Temp folder and everything stored in it is replicated inside the
C:\VBScriptGames folder.

Trick

If you want, you can give the new copy of the specified folder a new name when copying it by simply
specifying a new folder name:
objFso.CopyFolder “C:\Temp”, “C:\VBScriptGames\Temporary”

202 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

If a folder with the same name already exists in the destination specified by the CopyFolder() method,
the contents of the source folder are added to the files and folders that are already present. You can tell
the CopyFolder() method what to do if duplicate file and folder names are found in the destination
folder by adding an optional third parameter and setting its value to either True or False. Specifying a
value of True causes matching files to be overridden. Specifying a value of False prevents matching files
from being overridden. For example, the following VBScript statements prevent files with duplicate file
names from being overridden:

Dim objFso

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

objFso.CopyFolder “C:\Temp”, “C:\VBScriptGames\Temp”, “False”

This next example allows files with duplicate names to be overridden:

Dim objFso

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

objFso.CopyFolder “C:\Temp”, “C:\VBScriptGames\Temp”, “True”

Moving Folders
You can use the FileSystemObject object’s MoveFolder() method to move folders from one location to
another. Of course, when you move a folder, you also move all its contents to the new destination. Take
a look at the following example:

Dim objFso

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

objFso.MoveFolder “C:\Temp”, “C:\VBScriptGames\Temp”

The Temp folder and all its contents are moved from the root of the C: drive to the C:\VBScriptGames
folder.

Deleting Folders
You can use the FileSystemObject object’s DeleteFolder() method to delete one or more folders. This
method deletes the folder and any subfolders or files stored inside it. To see how it works, look at the fol-
lowing example, which deletes a folder named Temp from the C:\VBScriptGames folder.

Dim objFso

Set objFso = WScript.CreateObject(“Scripting.FileSystemObject”)

objFso.DeleteFolder “C:\VBScriptGames\Temp”

Trap

Be extra careful when using the DeleteFolder() method. When executed, this method deletes not only
the specified folder, but also anything stored within it.

203Chapter 8 • Storing and Retrieving Data

Storing Script Configuration Settings in External Files
Up to this point in the book, all the scripts you’ve seen have been controlled by configuration settings
embedded within the scripts themselves. By configuration settings, I mean constants and variables that
were set up to store data that was then used to control how the scripts executed. For example, I’ve con-
trolled the text that the scripts display in pop-up dialog boxes by assigning a text string to a constant that
I’ve defined at the beginning of each script. To change this display text for a given script, you must open
the script and modify it. However, every time you open a script to make even the most simple change,
you run the risk of accidentally making a typo that breaks something.

It’s often a good idea to remove or externalize script configuration settings. One way of doing this is to
store the script configuration settings in external text files from which your scripts can then open and
retrieve the settings. This is accomplished using INI (pronounced “eye en eye”) files. INI or initialization
files are plain-text files that have an .ini file extension. Programmers use INI files to store configuration
settings for the operating systems, hardware settings, and software settings.

The nice thing about using INI files is that if you make a mistake when editing them, and as a result your
scripts break, it’s much easier to find your typo in the INI file than it would be in your script. Also, if you
plan to share your scripts with other people—especially people without programming backgrounds—once
explained, they’ll find modifying INI files relatively easy, whereas editing your scripts might overwhelm
them.

Note

You also can externalize script configuration settings by storing them in the Windows Registry. You’ll
learn how to do this in Chapter 10, “Using the Windows Registry to Configure Script Settings.”

INI File Structure
INI files have a specific structure that you need follow when creating them, as shown here:

;Sample INI file

[Section1]

key1=value1

key2=value2

For starters, INI files are organized into sections. Each section’s beginning has a section header enclosed
within a pair of matching brackets. In the example, Section1 is the only section. Sections are made up of
zero or more key-value pairs. In the example, there are two key-value pairs. You can think of a key as
being akin to a variable name and a value as being the data that is assigned to the key.

INI files also can have comments, which begin with the ; character, as demonstrated in the previous INI
file. INI files also can contain any number of blank lines, which can be added to the INI file to make it
easier to read.

204 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

INI files are processed in a top-down order. They can have any number of sections, and these sections can
contain any number of key-value pairs. INI files are typically named after the script or program that is
associated with them. For example, if you create an INI file to be used by a VBScript named INIDemo.vbs,
you would probably name its INI file INIDemo.ini.

A Working Example
To better understand how to work with INI files, let’s look at an example. This example consists of a script
named INIDemo.vbs that is designed to retrieve configuration settings from an INI file named INIDemo.ini.
Figure 8.9 illustrates the format of the INI file, as shown on a computer running Windows 7.

The VBScript statements that make up the INIDemo.vbs script are shown here. The script is relatively
short, but it is a little involved, so I embedded a lot of comments to help explain what the script is doing.

Set objFso = CreateObject(“Scripting.FileSystemObject”)

strIniFile = “C:\VBScriptGames\INIDemo.ini” ‘Specify INI file location

If (objFso.FileExists(strIniFile)) Then ‘Make sure INI file exists

‘Open for reading

Set objOpenFile = objFso.OpenTextFile(strIniFile, 1)

Do Until Mid(strInput, 1, 14) = “[GameControls]” ‘Find right section

strInput = objOpenFile.ReadLine ‘Read line from the INI file

Loop

‘Read until end of the file

Do Until objOpenFile.AtEndOfStream = “True”

205Chapter 8 • Storing and Retrieving Data

Figure 8.9 The INI file used by the INIDemo.vbs script contains a single section made up of two key-value pairs.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

strInput = objOpenFile.ReadLine ‘Read a line from the file

If Mid(strInput, 1, 1) = “[“ Then

Exit do ‘A new section has been found

End If

If Len(strInput) <> 0 Then ‘If not a blank line

intFindEquals = Instr(strInput, “=”) ‘Locate the equals character

strKeyName = Mid(strInput, 1, intFindEquals - 1) ‘set key value

Select Case strKeyName ‘Match up key value to scripts settings

Case “Greeting”

strGreetingMsg = _

Mid(strInput, intFindEquals + 1, Len(strInput))

Case “DisplayFormat”

strDisplayType = _

Mid(strInput, intFindEquals + 1, Len(strInput))

End Select

End If

Loop

objOpenFile.Close() ‘ close the INI file when done reading it

End If

‘Display the configuration setting retrieved from the INI file

MsgBox “Configuration setting: strGreetingMsg = “ & strGreetingMsg & _

vbCrLf & vbCrLf & “Configuration setting: strDisplayType = “ & _

strDisplayType

The script begins by instantiating an instance of the FileSystemObject object. Next, a variable named
strIniFile is used to store the script’s INI file location. The FileSystemObject object’s FileExists()
method is used to verify that the INI file exists. The FileSystemObject object’s OpenTextFile() method
is then used to open the INI file in ForReading mode.

A Do…Until loop executes until the “GameControls” section is located. This is accomplished using the
built-in VBScript Mid() function. After the section is found, a second Do…Until loop executes and runs
until the end of the file is reached (until objOpenFile.AtEndOfStream = “True”). However, if a new sec-
tion is found while the rest of the INI file is being read, the Do…Until loop is terminated using an Exit
Do statement. Next, the VBScript Len() function is used to determine whether the current line is blank.
If it’s not blank, then the key portion of the key-value pair is processed by first locating the equals sign
and then assigning all text before the equals sign to a variable named strKeyName.

206 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

207Chapter 8 • Storing and Retrieving Data

Trick

The trick to extracting script configuration settings from key-value pairs in INI files is the script’s use
of the built-in VBScript Mid() function. This function retrieves or parses out a specified number of char-
acters from a string. The Mid() function has the following syntax:

Mid(string, StartPosition[, Length])

string represents the string that the Mid() function is to parse. StartPosition identifies the character
position within the specified string where the parsing operation should begin. Length is optional. When
identified, Length specifies the number of characters to be returned. If omitted, then all characters from
the start position to the end of the string are returned.

After a key has been processed, a Select Case statement is set up to inspect the value associated with the
key to determine what it is equal to. After the “GameControls” section has been processed, the Do…Until
loop terminates and the script displays the configuration settings that were extracted from the INI file as
shown in Figure 8.10, which shows the results on a computer running Windows 7.

Of course, a script that only displays the configuration settings that it extracts from its INI file isn’t really
that useful. However, it does provide a working example of how to process INI files. You’ll get the chance
to modify this example by adapting its logic to work with the Lucky Lottery Number Picker game.

Back to the Lucky Lottery Number Picker
The heart of the Lucky Lottery Number Picker game resides in the script’s main processing section, which
contains a collection of function calls and two loops that control the generation of as many sets of lottery
numbers as the player asked for. Script configuration settings are stored in an external INI file, which is
retrieved by the script at execution. The configuration settings are used to specify the following:

• How many lottery numbers are required to complete a full set

• The message text to be displayed in the title bar or the pop-up dialog boxes displayed by the script

• The range of numbers from which lottery numbers are to be selected

• Whether to display the results generated by the script in full or summary format

Figure 8.10 The output displayed by the INIDemo.vbs script demonstrates
how to extract configuration settings from INI files. © 2014 Cengage Learning.

Designing the Game
In total, the script will consist of 10 functions, each of which is designed to perform a specific task. The
names of these 10 functions and the tasks they perform are as follows:

• SetVariableDefaults(). This establishes default values for a number of script variables.

• ProcessScriptIniFile(). This retrieves configuration settings from the script’s external INI file.

• CollectPlayerInput(). This prompts the player to specify the number of lottery numbers to be

generated.

• GetRandomNumber(). This generates random lottery numbers.

• ProcessRandomNumber(). This ensures that duplicate lottery numbers are not generated.

• DetermineIfSetIsComplete(). This determines when a full set of lottery numbers has been

generated.

• BuildDisplayString(). This assembles the display string that will be used to show the player the

lottery numbers generated by the script.

• ResetVariableDefaults(). This resets default variables to prepare the script for the generation of

additional sets of lottery numbers.

• DisplayFinalResults(). This displays the lottery numbers generated by the script.

• DisplaySplashScreen(). This displays information about the script and its author.

Designing the Script’s INI File
The first step in creating the Lucky Lottery Number Picker game is to create the game’s INI file, which
will be named LuckyLotteryNumberPicker.ini. The complete text of this INI file is shown here:

;LuckyLotteryNumberPicker.ini file

[GameControls]

Greeting=Lucky Lottery Number Picker

DisplayFormat=Full

NoOfPicks=6

RangeOfNumbers=50

The INI file consists of a single section named “GameControls.” A total of four key-value pairs have been
defined.

Setting Up the Initialization Section
As with all the scripts in this book, development begins with the script’s initialization section as shown
here:

208 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

‘***

‘Script Name: LuckyLotteryNumberPicker.vbs

‘Author: Jerry Ford

‘Created: 02/08/14

‘Description: This script randomly picks lottery numbers

‘***

‘Initialization Section

Option Explicit

Dim aintLotteryArray(10) ‘Stores randomly generated lottery numbers

Dim blnAllNumbersPicked ‘Determines when a set of numbers has been created

Dim blnInputValidated ‘Set to True when the player enters a valid number

Dim intNumberCount ‘Tracks the number of picks for a given play

Dim intNoOfValidPicks ‘Tracks the number of valid selections for a given set

Dim intNoOfPlays ‘Determines how many sets of lottery numbers to create

Dim intSetCount ‘Used to track how many sets have been generated

Dim intRandomNo ‘Used to store randomly generated lottery numbers

Dim intNoOfPicksToSelect ‘Specifies how many numbers to generate for each set

Dim intRangeOfNumbers ‘Specifies range to use when generating random numbers

Dim strLotteryList ‘Displays a string showing one set of lottery numbers

Dim strDisplayString ‘Used to display the list of selected lottery numbers

Dim strDisplayType ‘Specifies whether to show full or summary data

Dim strTitleBarMsg ‘Specifies title bar message in pop-up dialog boxes

Because the script uses an array and a large number of variables, I chose to define them individually and
to document each variable’s purpose by adding a comment just to the right of each variable.

Developing the Logic for the Main Processing Section
The script’s main processing section controls the overall execution of the script. It consists of 10 function
calls and two loops:

SetVariableDefaults()

ProcessScriptIniFile()

CollectPlayerInput()

For intSetCount = 1 to intNoOfPlays

Do Until blnAllNumbersPicked = “True”

GetRandomNumber()

209Chapter 8 • Storing and Retrieving Data

ProcessRandomNumber()

DetermineIfSetIsComplete()

Loop

BuildDisplayString()

ResetVariableDefaults()

Next

DisplayFinalResults()

DisplaySplashScreen()

The first loop is controlled by a For statement that is responsible for making sure that the script gener-
ates the number of sets of lottery numbers specified by the player. The second loop is controlled by a
Do…Until statement and is responsible for making sure that a full count of numbers is generated for each
set (or play).

Building the SetVariableDefaults() Function
The SetVariableDefaults() function, shown here, is responsible for establishing default values for a
number of variables used by the script. The first two variables are Boolean and are used to determine
when a full set of lottery numbers has been generated and when the player has specified a valid number
of plays. The second pair of variables is used to store integer data. The first variable in this pair is used
to keep track of the number of lottery numbers generated for each play. The second variable is used to
track the number of sets of lottery numbers as the script is generating them.

Function SetVariableDefaults()

blnAllNumbersPicked = “False”

blnInputValidated = “False”

intNumberCount = 0

intNoOfValidPicks = 0

End Function

Building the ProcessScriptIniFile() Function
The ProcessScriptIniFile() function, shown here, is responsible for reading in script configuration
settings from the game’s INI file. Because of the unique task assigned to this function, I chose to make it
completely self contained. Therefore, it begins by defining its own objects and variables. To make the
purpose of each variable clear, I documented each one by adding comments to the right of each variable
when defined as well as to key statements throughout the function.

Function ProcessScriptIniFile()

Dim FsoObject ‘Sets up a reference to the FileSystemObject

Dim OpenFile ‘Sets up a reference to the script’s INI file

210 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Set FsoObject = WScript.CreateObject(“Scripting.FileSystemObject”)

Dim intEquals ‘Used to parse INI file data

Dim strKeyName ‘Represents a key in the script’s INI file

Dim strSourceFile ‘Specifies the name of the script’s INI file

Dim strInput ‘Represents a line in the script’s INI file

strSourceFile = “LuckyLotteryMachine.ini” ‘Identify script’s INI file

If (FsoObject.FileExists(strSourceFile)) Then ‘Make sure INI file exists

‘Open for reading

Set OpenFile = FsoObject.OpenTextFile(strSourceFile, 1)

Do Until Mid(strInput, 1, 15) = “[GameControls]” ‘Find right section

strInput = OpenFile.ReadLine ‘Read line from the INI file

Loop

‘Read until end of file reached

Do Until OpenFile.AtEndOfStream = “True”

strInput = OpenFile.ReadLine ‘Read a line from the file

If Mid(strInput, 1, 1) = “[“ Then

Exit do ‘If executed, new sections have been found

End If

If Len(strInput) <> 0 Then ‘Executes if a blank line is not found

intEquals = Instr(strInput, “=”) ‘Locate the equals character

strKeyName = Mid(strInput, 1, intEquals - 1) ‘Set key value

Select Case strKeyName ‘Match up key value to script settings

Case “Greeting”

strTitleBarMsg = Mid(strInput, intEquals + 1, Len(strInput))

Case “DisplayFormat”

strDisplayType = Mid(strInput, intEquals + 1, Len(strInput))

Case “NoOfPicks”

intNoOfPicksToSelect = Cint(Mid(strInput, intEquals + 1, _

211Chapter 8 • Storing and Retrieving Data

Len(strInput)))

Case “RangeOfNumbers”

intRangeOfNumbers = Cint(Mid(strInput, intEquals + 1, _

Len(strInput)))

End Select

End If

Loop

OpenFile.Close()’Close the INI file when done reading it

Else

MsgBox “The INI file is missing. Unable to execute.”

WScript.Quit()

End If

End Function

The function begins by instantiating an instance of the FileSystemObject object. It then specifies the
location of its INI file. Next, it checks to make sure that the INI file exists and then opens it. The function
then reads the INI file until it finds the “GameControls” section. Once found, the function begins reading
the rest of the INI file. The function then parses through the key-value pairs and assigns values to matching
script variables using a Select Case statement.

Building the CollectPlayerInput() Function
The CollectPlayerInput() function is responsible for collecting and validating player input. The over-
all execution of this function is controlled by the following Do…Until loop, which executes as long as a
Boolean variable named blnInputValidated is not equal to True:

Function CollectPlayerInput()

Do Until blnInputValidated = “True”

intNoOfPlays = InputBox(“How many sets of numbers do “ & _

“you want?”, strTitleBarMsg)

If IsNumeric(intNoOfPlays) <> True Then

MsgBox “Sorry. You must enter a numeric value. Please “ & _

“try again.”, ,strTitleBarMsg

212 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Else

If Len(intNoOfPlays) = 0 Then

MsgBox “Sorry. You must enter a numeric value. Please “ & _

“try again.”, ,strTitleBarMsg

Else

If intNoOfPlays = 0 then

MsgBox “Sorry. Zero is not a valid selection. Please “ & _

“try again.”, ,strTitleBarMsg

Else

blnInputValidated = “True”

End If

End If

End If

Loop

End Function

Three validation tests are performed. The first test uses the VBScript IsNumeric() function to ensure that
the input is numeric. The second test uses the Len() function to ensure that the player actually typed in
input as opposed to simply clicking OK or Cancel. The last validation test checks to make sure that the
player did not enter a value of 0. If the input provided by the player passes all three of these tests, then a
value of True is assigned to blnInputValidated and the function finishes executing.

Building the GetRandomNumber() Function
The GetRandomNumber() function, shown here, is responsible for retrieving random numbers for the script.
It begins with the Randomize statement to ensure that numbers are randomly generated. Next, a random
number is generated. The range from which the number is created is dictated by the value assigned to
intRangeOfNumber, which was previously established by retrieving its value from the script’s INI file.

Function GetRandomNumber()

Randomize

intRandomNo = cInt(FormatNumber(Int((intRangeOfNumbers * Rnd) + 1)))

End Function

Building the ProcessRandomNumber() Function
The ProcessRandomNumber() function, shown here, is responsible for ensuring that the same lottery
number is not picked twice for a given play or set. It accomplishes this by establishing an array named
aintLotteryArray. The array is set up to handle up to 11 entries, based on the assumption that this is
large enough to handle any amount of lottery numbers a given lottery game might require.

213Chapter 8 • Storing and Retrieving Data

Function ProcessRandomNumber()

Select Case intRandomNo

Case aintLotteryArray(0)

Case aintLotteryArray(1)

Case aintLotteryArray(2)

Case aintLotteryArray(3)

Case aintLotteryArray(4)

Case aintLotteryArray(5)

Case aintLotteryArray(6)

Case aintLotteryArray(7)

Case aintLotteryArray(8)

Case aintLotteryArray(9)

Case aintLotteryArray(10)

Case Else

strLotteryList = strLotteryList & “ “ & intRandomNo & vbTab

intNoOfValidPicks = intNoOfValidPicks + 1

aintLotteryArray(intNumberCount) = intRandomNo

intNumberCount = intNumberCount + 1

End Select

End Function

This function begins by comparing the value of the last lottery number that was generated to the num-
bers stored in the array. The first time through, there won’t be any lottery numbers stored in the array
yet. As a result, the lottery number is stored as the first entry in the array. Also, the lottery number is
added to a string that is stored in a variable named strLotteryList, which is used elsewhere in the script.
Finally, the total number of valid lottery numbers is tracked by adding 1 to intNoOfValidPicks each time
a unique lottery number is generated.

Each time this function is called, it checks to see whether the most recently generated random number
matches any of the numbers already stored in the array. If it does, nothing happens; otherwise, that num-
ber is added to the array.

Building the DetermineIfSetIsComplete() Function
The DetermineIfSetIsComplete() function, shown here, compares the value stored in intNoOfValidPicks
to the value stored in intNoOfPicksToSelect to determine whether a complete set of lottery numbers
has been generated. If a complete set has been generated, then DetermineIfSetIsComplete() sets the value
assigned to blnAllNumbersPicked equal to True. Otherwise, the value assigned to this variable remains
set equal to False.

Function DetermineIfSetIsComplete()

If intNoOfValidPicks = intNoOfPicksToSelect Then

214 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

blnAllNumbersPicked = “True”

End If

End Function

Building the BuildDisplayString() Function
The BuildDisplayString() function, shown here, uses the string stored in the strLotteryList variable—
which is created by the ProcessRandomNumber() function—to build a larger string made up of all the sets
of lottery numbers generated by the game. This string is later used to display the game’s result to the
player. To make the displayed output more attractive, this function uses the vbTab constant to organize
output into a multi-column format.

Function BuildDisplayString()

strLotteryList = intSetCount & “)” & vbTab & strLotteryList

strDisplayString = strDisplayString & strLotteryList & _

vbCrLf & vbCrLf & vbCrLf

End Function

Building the ResetVariableDefaults() Function
The ResetVariableDefaults() function, shown here, is used to reset variable values back to their initial
default settings after a full set of lottery numbers has been generated. This readies the script to begin gen-
erating additional sets of numbers.

Function ResetVariableDefaults()

blnAllNumbersPicked = “False”

intNoOfValidPicks = 0

intNumberCount = 0

strLotteryList = “”

End Function

Building the DisplayFinalResults() Function
The DisplayFinalResults() function, shown next, is responsible for displaying all the sets of lottery
numbers that are generated. It displays this information in one of two formats based on the value
assigned to strDisplayType, which is a variable whose value was set earlier in the script by retrieving its
value from the script’s INI file. If strDisplayType is equal to Full, then the function displays information
regarding the number of lottery numbers generated per set as well as the total number of sets created,
followed by the numbers that made up each set. However, if the value assigned to strDisplayType is
equal to anything other than Full, then only the sets of lottery numbers are displayed.

Function DisplayFinalResults()

If strDisplayType = “Full” Then

MsgBox vbCrLf & _

215Chapter 8 • Storing and Retrieving Data

“L U C K Y L O T T E R Y N U M B E R P I C K E R” & _

vbCrLf & vbCrLf & _

“——————————————————————————-” & _

“——————————————-” & vbCrLf & vbCrLf & _

“Number of plays: “ & intNoOfPlays & vbCrLf &vbCrLf & _

“Number of picks per play: “ & intNoOfPicksToSelect & _

vbCrLf & vbCrLf & _

“——————————————————————————-” & _

“——————————————-” & vbCrLf & vbCrLf & vbCrLf & _

“Your lottery numbers are: “ & vbCrLf & vbCrLf & vbCrLf & _

strDisplayString, , strTitleBarMsg

Else

MsgBox vbCrLf & _

“L U C K Y L O T T E R Y N U M B E R P I C K E R” & _

vbCrLf & vbCrLf & _

“——————————————————————————-” & _

“——————————————-” & vbCrLf & vbCrLf & _

“Your lottery numbers are: “ & vbCrLf & vbCrLf & vbCrLf & _

strDisplayString, , strTitleBarMsg

End If

End Function

Building the DisplaySplashScreen() Function
This last function in the script displays the game’s splash screen, providing information about the game
and its creator as well as an invitation for the player to return and play again another time.

Function DisplaySplashScreen()

MsgBox “Thank you for using the Lucky Lottery Number Picker “ & _

“© Jerry Ford 2014.” & vbCrLf & vbCrLf & “Please play again “ & _

“soon!”, 4144, strTitleBarMsg

WScript.Quit()

End Function

The last statement in the function terminates the script’s execution using the WScript Quit() method.

The Final Result
Okay. At this point you should have all of the information required to complete the Lucky Lottery Num-
ber Picker game. If you have not done so yet, go ahead and create your own copy of the game and then
crank it up and see how it works. After you’ve cleaned out any errors that you might have made when
typing, you’ll have a pretty cool script.

216 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

217Chapter 8 • Storing and Retrieving Data

Summary
In this chapter, you learned how to create and store data in text files. You also learned how to open text
files and read or process their contents as input. In addition, you learned how to use properties and meth-
ods belonging to the WSH FileSystemObject object to perform assorted file administration tasks,
including copying, moving, and deleting individual and groups of files and folders.

You now understand the fundamentals of working with files and folders and know everything you need
to begin developing scripts than can create reports and log files. On top of all this, you also can now
develop and leverage the power of INI files as a repository for externalizing script configuration settings.

1. As it is currently written, the Lucky Lottery Number Picker game attempts to display as many sets
of lottery numbers as it is asked for. However, depending on the screen resolution, only so many
sets of numbers can be displayed at one time. The result is that when too many sets of numbers
are specified, some won’t be visible to the player. To remedy this, modify the script so that it will
display only 10 sets of numbers at a time using as many pop-up dialog boxes as required to display
all the script’s output.

2. Provide the player with the capability to save the lottery numbers generated by the game to a text
file. This allows players to print their numbers and take the list with them when they go to purchase
their lottery tickets.

3. The Lucky Lottery Number Picker game is set up so that it always displays a closing splash screen
before ending. Modify the script and its associated INI file so that the player can enable or disable
the display of the splash screen.

4. As it is currently written, the Lucky Lottery Number Picker game prevents the player from entering
nonnumeric input such as letters and special characters. It also forces the player to enter something.
(The player can’t just click OK or Cancel.) However, there is no logic in the script to prevent negative
numbers from being accepted. As unlikely as it may be for the player to enter a negative number,
it’s a good idea to modify the script to prevent them from being accepted anyway.

C
ha

lle
ng

es

This page intentionally left blank

Handling Script Errors
9

E
very programmer, no matter how good he may be, runs into errors when writing
and testing scripts and programs. Like any other programming language, VBScript
is subject to many types of errors. Errors may be inevitable, but you can minimize

their number and lessen their effects. In this chapter, I’ll demonstrate a number of script-
ing errors and show you how to deal with them. Specifically, you will learn the following:

• How to fix errors by reading and analyzing error messages

• How to write VBScripts that can ignore errors and keep going

• How to create error-handling routines to recover from many error situations

• How to generate test errors to validate the performance of your error-handling

routines

• How to keep a record of errors using log files and the Windows application event log

Project Preview: The Hangman Game
This chapter’s programming project is the creation of a VBScript version of the classic
children’s game Hangman. Developing this game will require you to use all the VBScript
knowledge that you’ve accumulated so far, including applying advanced conditional logic,
organizing critical processes into procedures, and validating player input to prevent errors
from prematurely terminating the game.

The Hangman game begins by presenting the player with a number of blank spaces representing the let-
ters of the game’s mystery word. The player is then prompted to guess the letters that make up the word.
If the player guesses the word before making six incorrect guesses, he wins. Otherwise, the game ends by
displaying the mystery word, and the player is asked if he would like to play again. Unfortunately, because
of the display limitations of the WSH, you won’t be able to actually animate a hanging in the event the
player loses. Still, by creating a well-formatted output, the player will probably never even notice.

Figures 9.1 through 9.4 demonstrate the overall flow of the game from beginning to end on a computer
running Windows 8.1.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition220

Figure 9.1 The Hangman game begins with a graphical welcome
message and an invitation to play. © 2014 Cengage Learning.

Figure 9.2 The game displays both the letters that the
player has correctly guessed and the letters the player has
incorrectly guessed. © 2014 Cengage Learning.

Figure 9.3 A number of possible messages may be
displayed if the player does not play the game correctly.
© 2014 Cengage Learning.

Figure 9.4 Each game ends by displaying the hidden
word, the results of the game, and an invitation to play again.
© 2014 Cengage Learning.

Understanding VBScript Errors
Errors can appear, even in small scripts, for many reasons. Errors may be generated when a script is first
loaded or interpreted. Errors occurring at this stage are referred to as syntax errors. Syntax errors are often
the result of typos. For example, you might accidentally type a single quote when you meant to type a
double quote. Syntax errors also occur when you inadvertently mistype a VBScript keyword. Because
syntax errors are discovered during the initial loading of
a script, they are usually easily caught and corrected
during script development.

Errors can also be generated during script execution.
These types of errors are referred to as run-time errors.
Run-time errors appear only when the statements that
generate them are executed. As a result, some run-time
errors might not be detected when the script executes (if the statement containing the error is not executed).
For example, a run-time error might be hidden deep within a function or subroutine that is seldom called.

With proper testing of all the components of a script,
most run-time errors can be discovered and fixed during
script development. I say “most” because not all run-time
errors can be caught. For example, those caused by unfore-
seen circumstances may be impossible to detect during
script development. Perhaps the person running the script
incorrectly supplied input in a manner that you could not
have anticipated, or perhaps something is wrong with the environment in which the script is being exe-
cuted. Or maybe the hard disk has become full, preventing your VBScript from writing to a file, or the
network goes down as your script is executing a file copy or move operation. In cases such as these, often
the best you can do is to end the script gracefully, without confusing the user or making the situation worse.

Another category of error to which scripts are susceptible
is logical errors. Logical errors are mistakes made by the
script developer. For example, instead of looping 10 times,
you might accidentally set up an endless loop. Another
example of a logical error is a situation in which a script
adds two numbers that should have been multiplied.

Understanding Error Messages
VBScript error messages are generated for both syntax and run-time errors. These errors are displayed in
the form of pop-up dialog boxes, as shown in Figure 9.5, which shows the result of a script executed on a
computer running Window 7. Each error message displays information about the error, including a brief
description of the error, an error number, and the source of the error.

Chapter 9 • Handling Script Errors 221

A syntax error is an error that occurs
as a result of improperly formatted
statements within scripts.

D
ef

in
it

io
n

A run-time error is an error that
occurs when a script tries to perform
an illegal action, such as multiplying
a numeric and a character value.D
ef

in
it

io
n

A logical error is an error produced
as a result of a programming mistake
on the part of the script developer.

D
ef

in
it

io
n

222 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

The error message displayed in Figure 9.5 is the result of a syntax error. As you can see, a lot of useful
information about the error is automatically provided. The ability to interpret and understand this infor-
mation is critical for troubleshooting and fixing your VBScripts.

The following information has been provided in this error message:

• Script. The name and location of the VBScript that produced the error

• Line. The line number within the VBScript where the error was detected

• Char. The column number position within the line where the error was detected

• Error. A brief description of the error

• Code. An error number identifying the type of error

• Source. The resource that reported the error

You can see in Figure 9.5 that a VBScript named Test.vbs located in C:\Temp generated the error. Line 6
of the script that generated this error looks like the following statement:

If X > 5 MsgBox “Hello World!”

This If statement uses the VBScript MsgBox() function to display a text string. The error message indi-
cates that the problem is that VBScript expected to find the Then keyword and did not. If you look at the
middle of this statement, you’ll see that, in fact, the Then keyword is absent. To correct this error, you
would add the missing keyword, like this:

If X > 5 Then MsgBox “Hello World!”

To verify that the error has been eliminated, you could then save and run the script again.

Preventing Logical Errors
Your VBScripts will do exactly what you tell them to do, even if that’s not what you really mean for them
to do. Therefore, it’s extremely important that you plan your VBScript project carefully. For example, you
should begin with a pseudo code outline and then translate that into a flowchart, outlining each of the
script’s major components. You should, as much as possible, develop the script a component at a time,

Figure 9.5 A typical VBScript error message.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

testing each component as you go. I’ll show you some different ways to test individual script components
as you develop the Hangman game.

Logical errors often make their presence known by presenting incorrect or unexpected results, and can
be the most difficult type of error to track down. Unlike syntax and run-time errors, which display mes-
sages that describe the nature of their problems, logical errors force you to look through some or all of
your script a line at a time to find the faulty logic. The good news is that with careful planning and
design, logical errors can be avoided.

Dealing with Errors
There are many measures you can take to prevent errors from occurring in your VBScripts. I’ve already
mentioned the need to plan and carefully design and test your scripts. In addition, you can avoid many
errors by taking the following advice:

• Provide a simple, easy-to-use interface (such as pop-up dialog boxes).

• Provide clear instructions so the user will understand exactly what is expected of him.

• Reuse code from existing scripts whenever possible by cutting and pasting code that has already

been thoroughly tested.

• Validate input data as much as possible.

• Explicitly declare all your variables.

• Use a consistent naming scheme for all constants, variables, object references, arrays, functions,

and subroutines.

• Be on guard for endless loops.

• Do your best to anticipate and handle specific situations where errors are likely to occur.

Unfortunately, errors will occur. There are three basic ways that you can deal with them as they arise in
your VBScripts:

• Simply let them happen and deal with the consequences as problems are uncovered.

• Tell VBScript to ignore errors and keep going.

• Attempt to anticipate where errors are most likely to occur and try to handle them in a way that

either terminates the script’s execution gracefully or allows the script to recover and keep going.

Letting Errors Happen
Errors are going to happen. One way of dealing with them is to simply let them happen and instruct users
to report them when they occur, along with as much information as possible about what the user was
doing when the error occurred. That way, you can attempt to reproduce the error, figure out what caused
it, and then fix it.

Chapter 9 • Handling Script Errors 223

Normally I would not recommend this approach. After all, your reputation as a VBScript guru depends
on the soundness and reliability of your scripts. However, a cost is associated with every VBScript that
you write. You may measure this cost in terms of time, effort, or by some other scale. Each time you sit
down to create a new script, you must make a judgment call as to how much time and energy you have
available to put into the project. You also need to consider the consequences of an error occurring in the
script that you’re developing. After all, it is entirely possible to develop a simple script in a matter of min-
utes and spend another hour or more trying to make it bulletproof, only to find that something has gone
wrong anyway.

If you’re developing an extremely important script that will have high visibility and for which you will
be held accountable if a problem arises, then you’ll want to do everything you can to keep errors from
happening. On the other hand, if you have been asked to create a “quick and dirty” script to help some-
one perform a noncritical task, you might be able to get away with simply letting any errors occur. All
you may need to do is tell the person for whom you wrote the script to give you call if a problem arises
so that you can make a quick modification to the script to fix it.

Just keep this thought in mind: Most users will have no idea what a typical VBScript error message means
or what to do if they receive one. It’s important to, at a minimum, provide clear instructions on how to
use your VBScripts and what to do if an error does occur.

Ignoring Errors
Another option that you might want to consider when developing your scripts is to tell VBScript to ignore
any errors that occur. In some cases, this will work just fine. For example, suppose you wrote a VBScript
that was supposed to connect to a number of networked computers and copy over a file located in a cer-
tain folder at regular intervals throughout the day. As problems sometimes occur on networks, it may be
acceptable to ignore situations in which the script is unable to connect to a particular network drive,
especially if you know that the script will run again later and get another chance to copy the missing file.

This approach, while effective, should be used with caution. There are few situations in which skipping
an error will not result in the generation of another error later in a script. For example, if your script was
supposed to perform another operation on each file copied from the network drive, then depending on
how you wrote the script, the part of the script that performs this next step might generate an error.

To tell VBScript to ignore errors within your script, add the following statement, exactly as shown, to the
beginning of your script:

On Error Resume Next

Even if you add this statement to your scripts, certain errors will still be reported. The key to using this
statement is that it must be placed in your script before any statements in which you think an error is
likely to occur. You can later cancel the effects of this statement using the following statement:

On Error GoTo 0

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition224

225Chapter 9 • Handling Script Errors

For example, the following statement will produce an error message because the keyword WScript is mis-
spelled:

WScrip.Echo “Hello world!”

Adding On Error Resume Next before the statement prevents the error from appearing and allows the rest
of the script to continue:

On Error Resume Next

WScrip.Echo “Hello world!”

Now look at two more statements:

On Error Resume Next

WScrip.Echo “Hello world!”

On Error Goto 0

WScrip.Echo “Goodbye world!”

The On Error Goto 0 statement nullifies the effects of the On Error Resume Next statements for all statements
that follow. Therefore, the first error is ignored, but the second error is reported and the script halts its
execution.

Like with variables, VBScript allows you to localize the effects of the On Error Resume Next statement to
the procedure level. In other words, if this statement is placed within a procedure, then it will be in effect
only for as long as the procedure executes, and will be nullified when the procedure (that is, the function
or subroutine) finishes executing. Combining the On Error Resume Next statement with procedures enables
you to significantly limit the effects of this powerful statement.

Creating Error Handlers
The third option that you have for dealing with errors in your VBScripts is to create error handlers. To
effectively use error handlers, you must be able to anticipate locations within your scripts where errors
are likely to occur and then develop the appropriate programming logic to deal with, or handle, these errors.

You can handle errors in different ways. For example, you can create error handlers that do the following:

• Reword cryptic VBScript errors.

• Provide the user with instructions.

• Give the user another try.

• Apologize for the error.

• Ask the user to report the error.

• Take a corrective action.

• Log the occurrence of the error.

An error handler is an error-triggered rou-
tine that alters the execution environment’s
default handling of an error condition.

D
ef

in
it

io
n

226 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

To set up an error handler, you need to know how to work with the Err object. The Err object provides
a number of properties and methods that allow your scripts to access error information and clear error
conditions. To access information about an error, you need to reference the following three properties:

• Number. This retrieves the last error number.

• Description. This retrieves the last error message.

• Source. This retrieves the name of the object that raised (or caused) the error.

You can modify the contents of any of these three properties, which enables you to reassign a custom
error number and message and even modify source information. For example, in a particularly complex
script, you might want to create and document your own custom set of error messages.

The first step in creating an error handler is to add the On Error Resume Next statement to your VBScript.
You can then add the error-handling statements like this:

On Error Resume Next

NonExistentFunction()

If Err > 0 then

Err.Number = 9999

Err.Description = “This script is still a work in progress.”

MsgBox “Error: “ & Err.Number & “ - “ & Err.Description

Err.Clear

End if

Save these statements as a script and execute them. Because the script does not contain a procedure named
NonExistentFunction(), an error will be generated. However, instead of displaying a VBScript run-time
error message, the error-handling routine creates and displays the error message shown in Figure 9.6.

The Err object also provides two very useful methods. One of these methods is the Clear() method. This
method clears out or removes the previous error, ensuring that the next time a script checks for an error,
it will not get a false status (that is, it won’t see an already-handled error).

Figure 9.6 A custom error message generated by a VBScript error
handler, as seen on a computer running Windows 7. © 2014 Cengage Learning.

To use the Clear() method, place it at the end of your error-handling routine, as demonstrated in the
previous example. VBScript automatically executes the Clear() method on several occasions, including
the following:

• Whenever the On Error Resume Next statement executes

• Whenever an Exit Sub statement executes

• Whenever an Exit Function statement executes

The second Err object method is the Raise() method. This method allows you to generate error messages
to test your error-handling routines. Without this method, the only way that you could test your error-
handling routines would be to deliberately introduce an error situation into your code. This method is
easy to use, as demonstrated by the following:

Err.Raise(500)

For example, if you save the previous statement as a script and run it on a computer running Windows 7,
you will see the error message shown in Figure 9.7.

To use the Raise() method, add it, along with the error number indicating the error that you want to
generate, just before the error-handling procedure that you want to test in your script. After you have val-
idated that the error handler is working as expected, remove the Raise() statement from your VBScript.

Reporting Errors
The best solution for errors is to prevent them from occurring in the first place. However, that’s not
always possible. The next best solution is to devise a way of dealing with errors, whether it be handling
them or simply ignoring them. Another option is to report errors by recording them to a log file for later
review. This enables you to come back and check to see whether any errors have occurred. This is impor-
tant because many times users do not report errors when they occur, allowing the errors to go on forever.
By logging error messages, you create an audit log that you can come back to and review from time to
time to identify and fix any errors that may have occurred.

Chapter 9 • Handling Script Errors 227

Figure 9.7 Using the Err object’s Raise() method to generate a test error.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

When logging error messages, you have two options:

• Creating your own custom log file

• Recording error messages in the Windows application event log

Creating a Custom Log File
To create a custom log file, you must instantiate the FileSystemObject object in your VBScript and then
use its OpenTextFile() method to open the log file so that your script can write to it, as demonstrated
in the following example:

On Error Resume Next

Err.Raise(7)

Set objFsoObject = WScript.CreateObject(“Scripting.FileSystemObject”)

If (objFsoObject.FileExists(“C:\ScriptLog.txt”)) Then

Set objLogFile = objFsoObject.OpenTextFile(“C:\ScriptLog.txt”, 8)

Else

Set objLogFile = objFsoObject.OpenTextFile(“C:\ScriptLog.txt”, 2, “True”)

End If

objLogFile.WriteLine “Test.vbs Error: “ & Err.Number & “, Description = “ & _

Err.Description & “ , Source = “ & Err.Source

objLogFile.Close()

In this example, the On Error Resume Next statement is used to allow the script to recover from errors and
the Err.Raise(7) statement is used to simulate an “out of memory” error. The rest of the script logs the
error in a file called ScriptLog.txt, located on the computer’s C: drive. If the file does not exist, it is created.
Error messages are appended to the bottom of the file each time they are written, allowing a running history
of information to accumulate. For more information about how to work with the FileSystemObject
object and its methods and properties, refer to Chapter 8, “Storing and Retrieving Data.”

You can adapt the previous example as the basis for developing an error-logging routine in your VBScripts.
Simply copy and paste all but the first two lines into a function and call it whenever errors occur. Just
make sure that you call the function before clearing the error. Alternatively, you can modify the example
to use variable substitution and pass the function the error number and description as arguments.

Trap

Be sure you always close any file that you open before allowing your script to terminate. If you don’t,
you may have problems with the file the next time you want to open it because its end-of-file marker
may be missing.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition228

229Chapter 9 • Handling Script Errors

Recording an Error Message in the Application Event Log
An alternative to creating custom log files for your scripts is to record error messages in the Windows
application event log. This is achieved using the WshShell object’s LogEvent() method:

On Error Resume Next

Err.Raise(7)

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

objWshShl.LogEvent 1, “Test.vbs Error: “ & Err.Number & “, Description = “ & _

Err.Description & “ , Source = “ & Err.Source

In this example, an “out of memory” error has again been simulated, only this time, the error has been
written to the Windows application event log using the WshShell object’s LogEvent() method. Only two
arguments were processed. The first is a number indicating the type of event being logged. Table 9.1 lists
the different types of events that are supported by Windows. The second argument was the message to
be recorded. Figure 9.8 shows how the message will appear when viewed from the Event Viewer on a
computer running Windows 7.

Value Description

0 Indicates a successful event
1 Indicates an error event
2 Indicates a warning event
4 Indicates an informational event
8 Indicates a successful audit event
16 Indicates a failed audit event

TA B L E 9 .1  E V E N T LO G E R R O R I N D I C AT O R S

Figure 9.8 Writing error messages to the Windows application
event log using the WshShell object’s LogEvent() method.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

© Jerry Lee Ford, Jr. All Rights Reserved.

230 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Back to the Hangman Game
Now that you’ve reviewed the basic steps involved in dealing with VBScript errors, let’s return to the Hangman
game and begin its development. I’m going to cover the development of this game from a different angle
than in previous chapters. By now, you should have a pretty good idea of how things work, and you should
be able to read and understand the scripts that you’ll see throughout the remainder of this book. (Just in
case, I’ll leave plenty of comments in the code to help you along.) This time, I’ll provide a much higher-
level explanation of what is going on and offer suggestions for ways to test and develop this script one step
at a time. I’ll also point out techniques that you can use to test and track the results of functions within
the script so that you can validate their operation without having to first complete the entire script.

Designing the Game
The overall design of the Hangman game is fairly complex. To simplify things, I’ll begin the game-development
process by designing a flowchart, shown in Figure 9.9, that breaks the game down into distinct units, each
of which is responsible for performing a unique task.

Figure 9.9 A flowchart providing a high-level design for the Hangman game.
© 2014 Cengage Learning.

In addition to the initialization section and the main processing section, this script is made up of 13 separate
procedures. Therefore, you will develop this game in 15 steps, as follows:

1. Create a new script, adding your VBScript template and defining the variables, constants, and

arrays that are used by this script.

2. Develop the controlling logic for the main processing section.

3. Use the DoYouWantToPlay() function to create an introductory game splash screen and determine

whether the user wants to play.

4. Assign a list of game words to an array using the FillArray() function.

5. Create a loop in the PlayTheGame() function that controls the actual flow of the game, collecting

player guesses and calling other functions as required.

6. Retrieve a randomly selected game word using the RetrieveWord() function.

7. Display space-separated underscore characters representing each letter in the game word using the

InitialDisplayString() function.

8. Use the FirstLevelValidation() function to validate the player’s input to make sure the player is

providing valid guesses.

9. Use the SecondLevelValidation() function to test whether the player has already tried guessing a

letter before accepting it as input.

10. Use the TestLetterGuess() function to check to see whether the player made an incorrect guess.

11. Use the NonGuessedString() function to create a temporary string blanking out the letters correctly

guessed by the player.

12. Use the CheckIfGameWon() function to check to see whether the player has guessed all the letters

that make up the mystery word.

13. Use the FlipString() function to spin through the script created in step 11, and reverse the display

of each character of the string (that is, now only show the correctly guessed letters).

14. Tell the player whether he won or lost using the DisplayGameResults() function.

15. Display information about the game as it finishes using the SplashScreen() function.

Setting Up the Script Template and Initialization Section
This portion of the script, shown next, should look pretty familiar to you by now, and does not require
much explanation. As you can see from the code, this section consists of the script template and the def-
inition of the script’s constant, variables, and array.

Chapter 9 • Handling Script Errors 231

‘Script Name: Hangman.vbs

‘Author: Jerry Ford

‘Created: 02/30/02

‘Description: This script demonstrates how to create a game of Hangman

‘ using VBScript and the WSH.

‘***

‘Initialization Section

Option Explicit

Const cTitlebarMsg = “VBScript HANGMAN”

Dim strChoice, strGameWord, intNoMisses, intNoRight, strSplashImage

Dim intPlayOrNot, strMsgText, intPlayAgain, strWrongGuesses

Dim strRightGuesses, blnWordGuessed, intLetterCounter

Dim strTempStringOne, strTempStringTwo, strWordLetter, strDisplayString

Dim intFlipCounter, intRandomNo, strProcessGuess, blnGameStatus

Dim strCheckAnswer

Dim astrWordList(9) ‘Define an array that can hold 10 game words

Putting Together the Logic for the Main Processing Section
Like the other scripts you have seen in this book, the logic located in the script’s main processing section
is very straightforward. It calls upon procedures that determine whether the user wants to play, loads the
game words into an array, starts the game, and ultimately ends the game by displaying a splash screen
and executing the WScript.Quit() statement.

‘Main Processing Section

intPlayOrNot = DoYouWantToPlay()

If intPlayOrNot = 6 Then ‘User elected to play the game

FillArray()

PlayTheGame()

End If

SplashScreen()

WScript.Quit()

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition232

Trick

At this point in the script, you have enough code in place to run your first test and see whether there are
any syntax errors. For now, I recommend that you go ahead and define a procedure for each of the pre-
ceding functions, placing a MsgBox() function that simply displays the name of the function inside each
one. Save and execute the script and make sure the pop-up dialog boxes all appear when they should.
You can leave the functions as they are until you are ready to complete them.

Trick

Using the WScript.Quit() method, as I did in this section, is not required. Script execution would have
ceased after the display of the splash screen anyway. I added this statement for the sake of clarity, and
to prevent any statements that I might have inadvertently left outside of a function in the procedure sec-
tion from accidentally being executed.

Building the DoYouWantToPlay() Function
You’ve seen functions very similar to this one in previous chapters. All the DoYouWantToPlay() function
does is display a clever graphic and ask the user if he wants to play a game of Hangman.

Function DoYouWantToPlay()

‘Display the splash screen and ask the user if he wants to play

strSplashImage = Space(88) & “***********” & vbCrLf & _

“W E L C O M E T O “ & Space(55) & “*” & Space(13) & “*” & _

vbCrLf & Space(88) & “0” & Space(13) & “*” & vbCrLf & _

“V B S c r i p t H A N G M A N !” & Space(35) & “—||—” & _

Space(10) & “*” & vbCrLf & Space(87) & “/” & Space(1) & “\” & _

Space(12) & “*” & vbCrLf & Space(103) & “*” & vbCrLf & Space(103) & _

“*” & vbCrLf & space(99) & “ ***** “ & vbCrLf & _

“Would you like to play a game?” & vbCrLf & “ “

DoYouWantToPlay = MsgBox(strSplashImage, 36, cTitlebarMsg)

End Function

This is a good place to pause and perform another test of your script to ensure that this function looks
and works like it should. This test allows you to evaluate the operation of all the controlling logic in the
main processing section.

Building the FillArray() Function
The FillArray() function, shown next, simply loads a list of words into an array. Later, another procedure
will randomly select a game word from the array.

Chapter 9 • Handling Script Errors 233

Function FillArray()

‘Add the words to the array

astrWordList(0) = “AUTOMOBILE”

astrWordList(1) = “NETWORKING”

astrWordList(2) = “PRACTICAL”

astrWordList(3) = “CONGRESS”

astrWordList(4) = “COMMANDER”

astrWordList(5) = “STAPLER”

astrWordList(6) = “ENTERPRISE”

astrWordList(7) = “ESCALATION”

astrWordList(8) = “HAPPINESS”

astrWordList(9) = “WEDNESDAY”

End Function

You can’t perform much of a test on this function at this point, but you can always save and run the script
again to see whether you have any syntax problems. You should create a temporary script, copy this func-
tion into it, and then create a For…Next loop that processes and displays the contents of the array to
ensure that the function is loading as expected. Next, delete the For…Next loop and add the following
statements to the beginning of the temporary script:

Dim astrWordList(9) ‘Define an array that can hold 10 game words

FillArray()

Save this script again. A little later, I’ll show you how to modify and use this temporary script to perform
another test.

Building the PlayTheGame() Function
The PlayTheGame() function, shown next, controls the play of the Hangman game. When I developed
this function, I wrote a few lines, stopped and tested it, and then wrote some more. Specifically, each time
I added a call to an external function I stopped, wrote the function that I called, and then did a test to be
sure that everything worked before continuing. However, it would take me too long to guide you through
every step along the way. Instead, I’ll leave it up to you to follow this basic process, and will instead focus
on the development of the other functions that make up the script, most of which are called from within
the PlayTheGame() function.

Function PlayTheGame()

‘Initialize variables displayed by the game’s initial pop-up dialog box

intNoMisses = 0

intNoRight = 0

strWrongGuesses = “”

strRightGuesses = “”

234 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Chapter 9 • Handling Script Errors 235

‘Get the game a mystery word

strGameWord = RetrieveWord()

‘Call function that formats the initial pop-up dialog box’s display string

strDisplayString = InitialDisplayString()

strTempStringOne = strGameWord

‘Let the player start guessing

Do Until intNoMisses = 6

‘Collect the player’s guess

strChoice = InputBox(vbCrLf & vbTab & strDisplayString & vbCrLf & _

vbCrLf & vbCrLf & “No. of Misses: “ & intNoMisses & _

“ “ & vbTab & “Incorrect:” & strWrongGuesses & vbCrLf _

& vbCrLf & vbCrLf & _

“Type a letter and click on OK.” , cTitleBarMsg)

‘Determine if the player has quit

If strChoice = “” Then

Exit Function

End If

strProcessGuess = FirstLevelValidation()

‘The player wants to quit the game

If strProcessGuess = “ExitFunction” Then

Exit Function

End If

‘The player typed invalid input

If strProcessGuess <> “SkipRest” Then

strProcessGuess = SecondLevelValidation()

Select Case strProcessGuess

Case “DuplicateWrongAnswer”

MsgBox “Invalid: You’ve already guessed this incorrect letter.”

Case “DuplicateRightAnswer”

MsgBox “Invalid: You’ve already guessed this correct letter.”

Case Else

strCheckAnswer = TestLetterGuess()

If strCheckAnswer <> “IncorrectAnswer” Then

‘Reset the value of variable used to build a string containing

‘the interim stage of the word as currently guessed by player

strTempStringTwo = “”

NonGuessedString()

‘Check to see if the player has guessed the word

blnGameStatus = CheckIfGameWon()

If blnGameStatus = “True” Then

blnWordGuessed = “True”

Exit Do

End If

‘Set the value of the temporary string equal to the string

‘created by the Previous For...Next loop

strTempStringOne = strTempStringTwo

‘Clear out the value of the strDisplayString variable

strDisplayString = “”

FlipString()

End If

End Select

End If

Loop

DisplayGameResults()

End Function

Building the RetrieveWord() Function
This function is designed to retrieve a randomly selected word to be used by the game. RetrieveWord()
first selects a random number between 1 and 10, and then uses that number to retrieve a game word from
the WordList() array. This function randomly retrieves a word from an array.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition236

Function RetrieveWord()

Randomize

intRandomNo = FormatNumber(Int(10 * Rnd))

RetrieveWord = astrWordList(intRandomNo)

End Function

This is a good place to perform another test. This time, open the temporary script that you created a lit-
tle earlier in the “Building the FillArray() Function” section and cut and paste it into the statements
located in the previous function. Paste the three statements into the temporary file, making them lines 3
though 5 in the script. Next, add the following statement as line 6:

MsgBox RetrieveWord

Save and run the script. Each time you execute the temporary script, a different randomly selected word
should be displayed. If this is not the case, then something is wrong. Locate and fix any errors that may
occur until the temporary script works as expected. Then, cut and paste any corrected script statements
back into your Hangman script and move on to the next section.

Building the InitialDisplayString() Function
This function is used to display a series of underscore characters representing each letter that makes up
the mystery game word:

Function InitialDisplayString()

‘Create a loop that processes each letter of the word

For intLetterCounter = 1 to Len(strGameWord)

‘Use underscore characters to display a string representing each

‘letter

InitialDisplayString = InitialDisplayString & “_ “

Next

End Function

You can run a quick test of this function by creating a new temporary VBScript, cutting and pasting the
statements from within this function into the temporary script, and modifying it.

For intLetterCounter = 1 to Len(“DOG”)

‘Use underscore characters to display a string representing each letter

InitialDisplayString = InitialDisplayString & “_ “

Next

MsgBox InitialDisplayString

When you run the script, you should see three underscore characters separated by blank spaces, indicating
the length of the word. If anything is wrong, fix it and then copy the corrected statement(s) back into the
Hangman script.

Chapter 9 • Handling Script Errors 237

Building the FirstLevelValidation() Function
The FirstLevelValidation() function, shown next, ensures that the player is providing valid input. It
checks to make sure that the player typed something, that the player did not type more than one character,
and that a number or a symbol was not provided as input.

‘Validate the player’s input

Function FirstLevelValidation()

‘See if the player clicked Cancel or failed to enter any input

If strChoice = “” Then

FirstLevelValidation = “ExitFunction”

Exit Function

End If

‘Make sure the player only typed one letter

If Len(strChoice) > 1 Then

MsgBox “Invalid: You must only enter one letter at a time!”

FirstLevelValidation = “SkipRest”

Else

‘Make sure the player did not type a number by accident

If IsNumeric(strChoice) = “True” Then

MsgBox “Invalid: Only letters can be accepted as valid input!”

FirstLevelValidation = “SkipRest”

Else

FirstLevelValidation = “Continue”

End If

End If

End Function

Building the SecondLevelValidation() Function
Like the previous function, the SecondLevelValidation() function, shown here, performs additional
tests on the player’s guess to make sure that the player is not trying to guess the same letter twice.

Function SecondLevelValidation()

‘Check to see if this letter is already on the list of incorrect guesses

If Instr(1, strWrongGuesses, UCase(strChoice), 1) <> 0 Then

SecondLevelValidation = “DuplicateWrongAnswer”

Else

‘Check to see if this letter is already on the list of correct guesses

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition238

If Instr(1, strRightGuesses, UCase(strChoice), 1) <> 0 Then

SecondLevelValidation = “DuplicateRightAnswer”

End If

End If

End Function

Building the TestLetterGuess() Function
The TestLetterGuess() function, shown here, checks to see whether the letter is part of the word and
keeps track of missed guesses. If the total number of missed guesses equals 6, then this function assigns
a value of False to the blnWordGuessed variable. This variable is a flag that is later checked to see whether
the player has lost the game.

Function TestLetterGuess()

If Instr(1, UCase(strGameWord), UCase(strChoice), 1) = 0 Then

‘Add the letter to the list of incorrectly guessed letters

strWrongGuesses = strWrongGuesses & “ “ & UCase(strChoice)

‘Increment the number of guesses that the player has made by 1

intNoMisses = intNoMisses + 1

‘If the player has missed six guesses then he has used up all chances

If intNoMisses = 6 Then

blnWordGuessed = “False”

End If

TestLetterGuess = “IncorrectGuess”

Else

TestLetterGuess = “CorrectGuess”

End If

End Function

Building the NonGuessedString() Function
As I was creating the game, I wanted an easy way of seeing what game word had been randomly selected
and of tracking which letters had yet to be guessed. The NonGuessedString() function, shown next, builds
a string that, if it were displayed, would show all the letters that make up the word, minus the letters that
the player has correctly guessed. This function gave me a tool for displaying how the game was keeping
track of the game word.

Function NonGuessedString()

‘Loop through the temporary string

For intLetterCounter = 1 to Len(strTempStringOne)

‘Examine each letter in the word one at a time

strWordLetter = Mid(strTempStringOne, intLetterCounter, 1)

Chapter 9 • Handling Script Errors 239

‘Otherwise add an underscore character indicating a nonmatching guess

If UCase(strWordLetter) <> UCase(strChoice) Then

strTempStringTwo = strTempStringTwo & strWordLetter

Else

‘The letter matches player’s guess. Add it to the temporary string

intNoRight = intNoRight + 1

strRightGuesses = strRightGuesses & “ “ & UCase(strChoice)

strTempStringTwo = strTempStringTwo & “_”

End If

Next

End Function

After I developed this function, I added the following statement as the last statement in the function:

MsgBox “ **** = “ & strTempStringTwo

This way, each time the function ran, I was able to see the contents of the string. For example, if the game
word is “DOG” and the player has missed his first guess, this string would be displayed in a pop-up dia-
log box as “D O G.” If the player then guessed the letter O, then the string would display as “D_G” the
next time this function ran. This function allowed me to visually track the progress of the string as the
game ran and manipulated its contents.

Building the CheckIfGameWon() Function
The CheckIfGameWon() function checks to see whether the number of correctly guessed letters is equal
to the length of the word. If this is the case, then the player has guessed all the letters that make up the
word and won the game.

Function CheckIfGameWon()

‘Check and see if the player has guessed all the letters that make up

‘the word. If so, set indicator variable and exit the Do...Until loop

If intNoRight = Len(strGameWord) Then

CheckIfGameWon = “True”

End If

End Function

Again, a well-placed MsgBox() in this function can be used to track the value of the CheckIfGameWon
variable.

Building the FlipString() Function
The problem with the string produced by the NonGuessedString() function was that it displayed a string
in exactly the opposite format that I wanted to ultimately display. In other words, if the game word was
“DOG” and the player had correctly guessed the letter O, then I wanted the game to display the word as

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition240

“_O_” and not as “D_G.” So I developed the FlipString() function. It loops through each character of
the string created by the NonGuessedString() function and reverses the display of character data.

Function FlipString()

‘Spin through and reverse the letters in the strTempStringTwo variable

‘in order to switch letters to underscore characters and underscore

‘characters to the appropriate letters

For intFlipCounter = 1 to Len(strTempStringTwo)

‘Examine each letter in the word one at a time

strWordLetter = Mid(strTempStringTwo, intFlipCounter, 1)

‘Replace each letter with the underscore character

If strWordLetter <> “_” Then

strDisplayString = strDisplayString & “_ “

Else

‘Replace each underscore with its appropriate letter

strDisplayString = strDisplayString & _

Right(Left(strGameWord,intFlipCounter),1) & “ “

End If

Next

End Function

Here again, a well-placed statement that contains the MsgBox() function can be used to display the activity
of this function as it attempts to spin through and reverse the display of the letters that make up the game
word.

Building the DisplayGameResults() Function
The DisplayGameResults() function, shown here, determines whether the player won or lost the game.
It is also responsible for displaying the results of the game and for determining whether the player wants
to play again. If the user elects to play another game, the strings that are used to track the status of the
game word are blanked out and the PlayTheGame() function is called. Otherwise, the function ends and
processing control is passed back to the end of the current iteration of the PlayTheGame() function. This
then returns control to the main processing section where the SplashScreen() function is called.

‘Determine if the player won or lost and display game results

Function DisplayGameResults()

‘Select message based on whether or not the player figured out the word

If blnWordGuessed = “True” Then

strMsgText = “Congratulations, You Win!”

Else

strMsgText = “Sorry, You Lose.”

End If

Chapter 9 • Handling Script Errors 241

‘Display the results of the game

intPlayAgain = MsgBox(vbCrLf & “The word was: “ & _

UCase(strGameWord) & vbCrLf & vbCrLf & vbCrLf & strMsgText & _

vbCrLf & vbCrLf & vbCrLf & _

“Would you like to play again?” , 4, cTitleBarMsg)

‘Find out if the player wants to play another game

If intPlayAgain = 6 Then

‘If the answer is yes reset the following variables & start a new game

strDisplayString = “”

strTempStringTwo = “”

PlayTheGame()

End If

End Function

Building the SplashScreen() Function
The SplashScreen() function is the last function in the script. As you have seen in other games in this book,
this function displays some information about the game and its creator. After this function is processed,
the main processing section executes the WScript.Quit() method, terminating the game’s execution.

‘This function displays the game splash screen

Function SplashScreen()

MsgBox “Thank you for playing VBScript Hangman [cw] Jerry Ford 2014.” & _

vbCrLf & vbCrLf & “Please play again soon!”, , cTitlebarMsg

End Function

The Final Result
By now you should have all the pieces and parts of the Hangman script assembled and ready for execution.
Save your work and give it a shot. After you have everything working correctly, you can remove or comment
out any of the extra statements that use the MsgBox() function to track the game’s intermediate results.

After you’ve thoroughly tested the script, give it to somebody else to test. Ask your tester to play the game
according to the rules. Then ask him to play it by not following the rules. Ask your tester to keep track of
any problems that he experiences and to record any error messages that might appear. If an error does
appear, get the player to write down exactly what steps he took so you can generate the error yourself and
begin debugging it.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition242

Chapter 9 • Handling Script Errors 243

Summary
In this chapter, you learned how to add programming logic to your scripts to help deal with errors. This
included everything from rewriting error messages to making them more user friendly to ignoring errors
to creating error-handling routines that enable your scripts to recover from certain types of errors. I also
provided advice that can help you prevent errors from occurring in the first place, or at least minimize
their frequency. Finally, I reviewed the different ways of reporting errors that cannot otherwise be handled.
On top of all this, you learned how to create the Hangman game and how to test it at various stages of
development.

1. Make the Hangman game more fun and interesting by expanding the pool of game words.

2. Improve the Hangman program by keeping track of the number of games played during a session
and displaying a summary of the overall number of times the player won and lost.

3. Add logic to the Hangman game that allows you to track its use. For example, prompt the player
for his name, and then write a message to either a log file or the Windows application event log
each time the player plays the game.C

ha
lle

ng
es

This page intentionally left blank

Using the Windows Registry
to Configure Script Settings

10
S

o far, all the scripts you’ve worked with in this book collected configuration infor-
mation and input from three places: the user, within the script itself, or INI files. In
this chapter, I’ll show you another option for externalizing script settings by storing

and retrieving configuration data using the Windows Registry. As a bonus, in this chapter’s
game project, I’ll also demonstrate how to retrieve input data from files. Specifically, you
will learn the following:

• How to review the overall organization and design of the Windows Registry

• How to programmatically create, modify, and delete Registry keys and values

• How to read data stored in external files and process it as input

Project Preview: Part 2 of the Hangman Game
In this chapter, you will enhance the Hangman game you began developing in Chapter 9,
“Handling Script Errors.” You’ll begin by creating a new setup script that uses the Windows
Registry to store the location of the folder where new external text files are stored. These
text files contains lists of words that the new version of the Hangman game will use to stump
the player. You’ll then modify the Hangman script by removing the array that stores game
words within the script and tweaking the script so that it retrieves words from the exter-
nal text files. You will also modify the game to allow the player to select the category of
words to play in. For example, you might want to create different text files containing
words for categories such as “Foods” or “Places.”

Figures 10.1 through 10.5 demonstrate the overall flow of the game from beginning to end
on a computer running Windows 7.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition246

Figure 10.1 First, you need to run the Hangman setup
script one time to establish the game’s new Registry setting.
© 2014 Cengage Learning.

Figure 10.2 The Hangman game begins exactly as it did
before, by inviting the user to play a game. © 2014 Cengage Learning.

Figure 10.3 Now a list of word categories is
dynamically generated, allowing the player to select
a category of words to play in. © 2014 Cengage Learning.

Figure 10.4 The flow of the game runs exactly as it did
before, by randomly selecting a word from whichever word
category the player selected. © 2014 Cengage Learning.

Figure 10.5 When the game ends, the results are
displayed and the player is invited to guess a new word.
© 2014 Cengage Learning.

By the time you’ve finished writing the new Hangman setup script and modifying the original Hangman
game, you’ll have a basic understanding of the Windows Registry and what it means to access and modify
its contents. You will also know how to retrieve data stored in external files to use it as input in your VBScripts.

Introducing the Windows Registry
Since the introduction of Windows 95, the Registry has been the central repository for configuration
information on all Microsoft operating systems. The Registry is a type of built-in database that acts as a
central repository for configuration settings. Windows uses it to store information that affects every com-
ponent of the computer, including the following

• Windows operating system configuration settings

• Software configuration settings

• User configuration settings

• Windows services configuration settings

• Hardware configuration settings

• Software device driver configuration settings

As you can see, the Registry is used to store information regarding just about every aspect of the computer
and its operation. It only makes sense, then, that by making changes to the Registry, you can configure
the appearance, behavior, and operation of just about anything that affects the computer. For example,
you could directly change the appearance and behavior of the Windows desktop or screensaver by making
the appropriate changes to the Registry.

The Registry is so critical to the operation of Windows computers that you actually interact with it just
about every day, perhaps without ever even realizing it. For example, just about every time you open the
Windows Control Panel and make a change using one of its utilities or applets, you change a configura-
tion setting stored in the Registry. In the case of the Control Panel applets, Microsoft has just made things
easy for you by creating a collection of specialized graphical interfaces, each of which is designed to help
you change the way the computer is configured. Alternatively, you can use the Windows Regedit Registry
editor utility that comes with Windows to view and make changes to the Registry.

Because the Registry is a very reliable repository for storing and retrieving information, many application
developers take advantage of it by storing their application’s settings there. In a similar fashion, you can
migrate settings from your VBScripts into the Registry.

You can also create VBScripts that can manipulate
Registry contents to affect virtually every aspect of
your computer’s operation.

Chapter 10 • Using the Windows Registry to Configure Script Settings 247

The Windows Registry is a built-in data-
base that the operating system uses to
store configuration information about itself,
as well as the computer’s software, hard-
ware, and applications.D

ef
in

it
io

n

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition248

How Is the Registry Organized?
The Registry is organized as a collection of five root or parent keys, which are defined in Table 10.1. All the
data in the Registry is stored in a tree-like fashion under one of these keys.

Although the Registry is logically organized into five root keys, physically it consists of many files. Files
belonging to the Registry can be found in the %systemroot%\system32\config folder. These files include
the following:

• DEFAULT

• SYSTEM

• SECURITY

• SAM

• SOFTWARE

Trick

%systemroot% is an environment variable created and maintained by the operating system. This variable
identifies the location of the folder where Windows stores system files and folders. By default, this is
C:\Windows.

Information managed by the Windows Registry also consists of data stored about each user of the computer.
This data is stored in user profiles, which are located in either the Documents and Settings or the Users folder
(depending on which version of Windows you are using) belonging to each user of the computer.

Even though the Registry has five root keys, as a VBScript programmer, chances are you’ll only need to work
with three of them. To help make things easier on you, Microsoft has created a short-name reference for
each of these three keys. You can see these short names listed in the second column of Table 10.1.

Key Short Name Description

HKEY_CLASSES_ROOT HKCR Stores information about Windows file associations

HKEY_CURRENT_USER HKCU Stores information about the currently logged-on user

HKEY_LOCAL_MACHINE HKLM Stores global computer settings

HKEY_USERS — Stores information about all users of the computer

HKEY_CURRENT_CONFIG — Stores information regarding the computer’s current
configuration

TA B L E 10 .1  R E G I S T R Y R O O T K E Y S

© Jerry Lee Ford, Jr. All Rights Reserved.

You can, however, still interact with the remaining two keys by specifying their full names (HKEY_CURRENT
_CONFIG and HKEY_USERS).

Understanding How Data Is Stored in the Registry
Data stored in the Windows Registry is organized into a hierarchy. This hierarchy consists of keys and values.
A key is a container that holds values or other keys.
Values are used to store actual data. All data stored
in the Windows Registry has the following format:

Key : key_type : value

Key specifies the name of a Registry key. For exam-
ple, to reference the Control Panel subkey, you
would specify HKCU\Control Panel\. To reference
the Desktop subkey, which is located under the Control Panel subkey, you would specify HKCU\Control
Panel\Desktop\. Note that in both examples, the name of the last subkey is followed by the \ character.
This character identifies that what is being referenced is a key and not a value.

value specifies the container used to store actual
data. To reference a value, instead of the key that
stores it, you must add the name of the value with-
out the closing \ character. For example, to reference
the ScreenSaveActive value stored in the Desktop
subkey, you would specify HKCU\Control Panel\

Desktop\ScreenSaveActive.

key_type identifies the type of data that has been
stored. The Registry is capable of storing many types of data, as shown in Table 10.2.

Chapter 10 • Using the Windows Registry to Configure Script Settings 249

A Registry key is a container that stores
other Registry keys and values. You can
think of a key as being akin to a folder in
the Windows file system.D

ef
in

it
io

n

Within the context of the Windows
Registry, a value represents the name of
an element to which data is assigned.
Therefore, a Registry value acts in many
ways like a file, which is a container for
storing data in a Windows file system.

D
ef

in
it

io
n

Data Type Description

REG_BINARY Stores a binary value

REG_DWORD Stores a hexadecimal DWORD value

REG_EXPAND_SZ Stores an expandable string

REG_MULTI_SZ Stores multiple strings

REG_SZ Stores a string

TA B L E 10 .2 DATA T Y P E S S U P P O R T E D

B Y T H E W I N D O W S R E G I S T R Y

© Jerry Lee Ford, Jr. All Rights Reserved.

Every value within the Registry falls into one of two types: named or unnamed. The most common type
of value is named. Named values have been assigned an explicit name. This allows you to retrieve the data
stored in the value by specifying its name. Unnamed values, as you might guess, do not have a name
assigned to them. One unnamed value is stored under every key. This value represents the key’s default
value. In other words, it’s the value that would be retrieved if you did not specify a specific value by name.
Windows graphically identifies unnamed values by displaying a label of “Default.” Figure 10.6 shows this
on a computer running Windows 8.1.

Accessing Registry Keys and Values
You can manually view the contents of the Windows Registry using the Regedit utility supplied with
every version of Windows. (On Windows 7, type Regedit in the Start menu’s Start Search text field and
press Enter. On Windows 8.1, type Regedit at the Windows Start screen and press Enter.) For example,
Figure 10.7 provides a high-level view of the Registry on Windows 8.1. As you can see, the five root keys
are visible, and one of the root keys has been partially expanded to reveals its tree-like structure.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition250

Figure 10.6 Unnamed values are assigned a label of “Default.”
© 2014 Microsoft Corporation. Used with permission from Microsoft.

Unnamed value Named values

Trap

One of the easiest ways to mess things up on a computer is to modify the Windows Registry without
knowing what you’re doing. The Windows Registry stores extremely critical system information.
Incorrectly configuring keys and values stored in the Registry can have a disastrous effect on the com-
puter, and could potentially prevent Windows from starting. Unless you’re absolutely sure how a change
will affect the Registry, don’t make the change.

Creating a Key and Value to Store Script Settings
The WSH WshShell object supplies three methods that provide VBScript with the capability to access,
modify, and delete Registry keys and values. These methods, which are demonstrated in the sections that
follow, are as follows:

• RegWrite(). This provides the ability to create and modify a Registry key or value.

• RegRead(). This provides the ability to retrieve a Registry key or value.

• RegDelete(). This provides the ability to delete a Registry key or value.

Chapter 10 • Using the Windows Registry to Configure Script Settings 251

Figure 10.7 Examining the Windows Registry using the Regedit utility.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

Creating or Modifying Registry Keys and Values
The first step in creating a new Registry key and value is to instantiate the WshShell object within your
VBScript. Then, using the WshShell object’s RegWrite() method, all you have to do is provide the name
of a new key or value and its location within one of the five Registry root keys. For example, the follow-
ing statements create a new key called GameKey under the HKEY_Current_User root key, and then create a
value called HomeFolder and assign it a string of “C:\VBScript\Games”.

Set objWshShell = WScript.CreateObject(“WScript.Shell”)

objWshShell.RegWrite “HKCU\GameKey\HomeFolder”, “C:\VBScript\Games”

You can later modify the Registry value by simply changing its assignment like this:

Set objWshShell = WScript.CreateObject(“WScript.Shell”)

objWshShell.RegWrite “HKCU\GameKey\HomeFolder”, “C:\MyGames\VBScript”

A single Registry key can be used to store any number of values. For example, the following statements
establish a second value named FileType under the GameKey key and assign it a string of “.txt”:

Set objWshShell = WScript.CreateObject(“WScript.Shell”)

objWshShell.RegWrite “HKCU\GameKey\FileType”, “.txt”

Accessing Information Stored in the Registry
After a Registry key and one or more values have been established, you can read them using the WshShell
object’s RegRead() method. For example, the following statements read and then display the value stored
in the previous example:

Set objWshObject = WScript.CreateObject(“WScript.Shell”)

strResults = objWshObject.RegRead(“HKCU\GameKey\FileType”)

MsgBox strResults

Deleting Keys and Values
Now let’s delete one of the two Registry values that we’ve just created using the WshShell object’s RegDelete()
method, as follows:

Set objWshObject = WScript.CreateObject(“WScript.Shell”)

objWshObject.RegDelete “HKCU\GameKey\FileType”

In a similar fashion, you can delete the GameKey key, thus deleting all the values that it stores, like this:

Set objWshObject = WScript.CreateObject(“WScript.Shell”)

objWshObject.RegDelete “HKCU\GameKey\”

Take note of the \ character that follows GameKey in the previous statement. This character tells the
RegDelete() method that the specified element is a Registry key and not a value.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition252

Retrieving System Information Stored in the Registry
Now that you know the basics of reading, writing, modifying, and deleting Registry keys and values, look
at the following example. In this example, the ProcessorInfo.vbs script shows how to retrieve information
about the processor (that is, the CPU) of the computer on which the script is run.

‘***

‘Script Name: ProcessorInfo.vbs

‘Author: Jerry Ford

‘Created: 02/13/14

‘Description: This script collects CPU information about the computer that

‘it is running on.

‘***

‘Initialization Section

Option Explicit

Dim objWshShl, intResponse, strCpuSpeed, strCpuVendor, strCpuID

‘Set up an instance of the WshShell object

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

‘Main Processing Section

‘Prompt for permission to continue

intResponse = MsgBox(“This VBScript gathers information about your “ & _

“processor from the Windows Registry.” & vbCrLf & vbCrLf & _

“Do you wish to continue?”, 4)

‘Call the function that collects CPU information

If intResponse = 6 Then

GetProcessorInfo()

End If

WScript.Quit()

‘Procedure Section

Function GetProcessorInfo()

‘Get the processor speed

Chapter 10 • Using the Windows Registry to Configure Script Settings 253

strCpuSpeed = objWshShl.RegRead _

(“HKLM\HARDWARE\DESCRIPTION\System\CentralProcessor\0\~MHz”)

‘Get the manufacturer name

strCpuVendor = objWshShl.RegRead _

(“HKLM\HARDWARE\DESCRIPTION\System\CentralProcessor\0\VendorIdentifier”)

‘Get processor ID information

strCpuID = objWshShl.RegRead _

(“HKLM\HARDWARE\DESCRIPTION\System\CentralProcessor\0\Identifier”)

MsgBox “Speed: “ & strCpuSpeed & vbCrLf & “Manufacturer: “ & _

strCpuVendor & vbCrLf & “ID: “ & strCpuID

End Function

The script’s initialization section defines its variables and instantiates the WshShell object. The main pro-
cessing section prompts the user for confirmation before continuing and then calls the GetProcessorInfo()
function before executing the WScript.Quit() method, thus terminating the script’s execution.

The GetProcessorInfo() function performs three Registry read operations using the WshShell object’s
RegRead() method. Each read operation retrieves a different piece of information about the computer’s
processor. The function then uses the VBScript MsgBox() function to display a text string of the infor-
mation collected about the computer’s processor.

For additional examples of how to use VBScript to interact with the Windows Registry, see the “Desktop
Administration” section in Appendix A, “WSH Administrative Scripting.” You’ll find two scripts that
demonstrate how to perform desktop administration by manipulating Registry settings to configure the
Windows desktop and screensaver.

Back to Part 2 of the Hangman Game
Now that you’ve had a review of the Windows Registry, including its overall structure and design, let’s
modify the Hangman game to work with the Registry. You might want to take a few minutes to review
the design of the Hangman script, shown at the end of Chapter 9.

Because you already have the basic Hangman script written, all you have to do to complete this chapter’s
project is to focus on creating the new Hangman setup script and on modifying the parts of the original
Hangman script affected by the changes. You tackle this project in two stages: creating a setup script that
establishes Registry settings and updating the Hangman script to retrieve the Registry settings each time
the game executes.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition254

Creating the Setup Script
First, you’ll create a VBScript called HangmanSetup.vbs. This script will create and store a Registry key
called Hangman in the HKEY_CURRENT_USER root key (referred to in the script as HKCU). Within this key, a
value called ListLocation will be created and assigned a string identifying the location where you plan
to store your Hangman word files. The HangmanSetup.vbs script will be developed in three steps.

1. Create a new script, adding your VBScript template and defining the variables and objects used by

this VBScript.

2. Set up the controlling logic in the Main Processing Section, first prompting for confirmation

before continuing, and then finally calling the procedure that creates the Registry key and value.

3. Set up the Procedure Section by adding the SetHangmanKeyAndValue() function, which performs

the actual modification of the Registry.

Defining Variables and Objects
By now, this step should be very familiar to you. Begin by copying over your VBScript template and filling
in information about the new script.

‘***

‘Script Name: HangmanSetup.vbs

‘Author: Jerry Ford

‘Created: 02/22/14

‘Description: This script configures Registry entries for the Hangman.vbs

‘game.

‘***

‘Initialization Section

Option Explicit

Next, define the variables and objects required by the script. As you can see here, this is a very simple
script, with only a few items that need to be defined:

Dim objWshShl, intResponse

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

The first variable represents the WshShell object, and the second variable stores the user’s response when
asked whether he wants to make the Registry change.

Get Confirmation First
The Main Processing Section prompts the user for confirmation and then tests the results returned by
the InputBox() function before proceeding. If the value returned is equal to 6, then the user elected to
continue. Otherwise, the WScript object’s Quit() method terminates script execution.

Chapter 10 • Using the Windows Registry to Configure Script Settings 255

‘Main Processing Section

‘Ask for confirmation before proceeding

intResponse = MsgBox(“This VBScript establishes Registry settings “ & _

“for the Hangman game. Do you wish to continue?”, 4)

If intResponse = 6 Then

SetHangmanKeyAndValue()

End If

WScript.Quit()

Modify the Registry
The final step in creating this script is to define a function that creates the new Registry key and value.
As you saw earlier in this chapter, this operation is accomplished using the WshShell object’s RegWrite()
method.

Trap

When deciding what Registry key and value to create in situations like this, it’s critical that you take
steps to ensure that you don’t accidentally overwrite an already existing key or value of the same name.
Otherwise, you might accidentally disable another application or even a Windows component. In the
case of this script, it’s virtually certain that the key and value I defined will not be in use. However, if
there is any doubt, you can add logic to your VBScripts that first check to determine whether the key
and value already exist before proceeding.

‘Procedure Section

Function SetHangmanKeyAndValue()

objWshShl.RegWrite “HKCU\VBGames\Hangman\ListLocation”, “c:\Hangman”

End Function

Assembling the Entire Setup Script
Now let’s put the three sections of this script together; then run the script and click on Yes when
prompted for confirmation. If you want to, you can use the Regedit utility to go behind your script and
make sure that it created the new Registry key and value as expected.

You only need to run this script one time to set up a computer to play the Hangman game. However, you
need to modify and rerun this script if you decide to change the location of the folder in which you plan
to store your Hangman word files.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition256

Updating the Hangman Game
In this second part of the project’s development, you will modify the original Hangman script so that it
retrieves from the Registry the location of the folder that stores the Hangman text files that contain the
lists of words that players will be challenged to guess. You’ll also add logic that enables the script to open
and read the contents of the text files. To accomplish this goal, the original Hangman script needs to be
modified in five steps.

1. Open the Hangman script and modify its initialization section to include additional variables and

object references required to support the script’s new functionality.

2. Delete the FillArray() function, which was responsible for retrieving a randomly selected word

from an internal array, from the script.

3. Modify the RetrieveWord() function to call two new functions, GetWordFileLocation() and

SelectAWordCategory(). Add logic that processes the text file specified by the player to randomly

select a game word.

4. Create the GetWordFileLocation() function, which retrieves the location of the folder where the

text files are stored from the Windows Registry.

5. Create the SelectAWordCategory() function, which presents the player with a list of word categories

based on the text files that it finds in the folder.

Trick

You should make a copy of your current Hangman script and modify the copy instead of the original script.
That way, if something goes wrong, you’ll still have your original working version of the game to play.

Updating the Initialization Section
You need to make several changes to the Hangman script’s initialization section. These include defining new
variables used by new portions of the script. These variables appear in boldface in the following section:

‘Initialization Section

Option Explicit

Const cTitlebarMsg = “VBScript HANGMAN”

Dim strChoice, strGameWord, intNoMisses, intNoRight, strSplashimage

Dim intPlayOrNot, strMsgText, intPlayAgain, strWrongGuesses

Dim strRightGuesses, blnWordGuessed, intLetterCounter

Dim strTempStringOne, strTempStringTwo, strWordLetter, strDisplayString

Dim strFlipCounter, intRandomNo, strProcessGuess, blnGameStatus

Chapter 10 • Using the Windows Registry to Configure Script Settings 257

Dim strCheckAnswer, objWshShl, strGameFolder, objFsoObject, objGameFiles
Dim strSelection, strFileString, strCharactersToRemove
Dim blnValidResponse, strSelectCategory, strInputFile, strWordFile
Dim intNoWordsInFile, intLinesInFile, strWordList

In addition, you need to delete the following statement because the array that held the game words used
in the original version of the script is no longer supported:

Dim astrWordList(9) ‘Define an array that can hold 10 game words

Finally, you need to instantiate both the FileSystemObject object and the WshShell object like this:

‘Set up an instance of the FileSystemObject object

Set objFsoObject = CreateObject(“Scripting.FileSystemObject”)

‘Set up an instance of the WshShell object

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

Methods and properties belonging to the FileSystemObject object are required to read and process the
words stored in the game’s text files. In addition, the WshShell object’s RegRead() method is needed to
retrieve the location of the folder where the game’s text files are stored.

Removing Obsolete Statements
The next thing to do is copy and paste each of the words defined in the FillArray() function array into
a blank Notepad file, each on its own separate line. Save the file in a folder called Hangman on your com-
puter’s C: drive and name the file General.txt (that is, save it as C:\Hangman\General.txt). This text file
will be used to retrieve game words for the new and improved version of the game.

Once you have created and saved the General.txt file, delete the FillArray() statement shown here from
the script:

FillArray()

This statement currently precedes the call to the PlayTheGame() function.

Then, because it is not longer needed, delete the FillArray() function definition that’s located after the
DoYouWantToPlay() function definition:

FillArray()

Function FillArray()

‘Add the words to the array

astrWordList(0) = “AUTOMOBILE”

astrWordList(1) = “NETWORKING”

astrWordList(2) = “PRACTICAL”

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition258

astrWordList(3) = “CONGRESS”

astrWordList(4) = “COMMANDER”

astrWordList(5) = “STAPLER”

astrWordList(6) = “ENTERPRISE”

astrWordList(7) = “ESCALATION”

astrWordList(8) = “HAPPINESS”

astrWordList(9) = “WEDNESDAY”

End Function

While you’re at it, you might want to create one or two other text files, add a list of suitable game words
to them, give them names that describe their contents, and then save them in the Hangman folder. That
way, the player will have more than one category of words to choose from when playing the game.

Modifying the RetrieveWord() Function
You should begin modifying the RetrieveWord() function by first deleting all its statements and then
adding the statements shown next. As you can see, I have added a number of comments to this code to
explain its construction in detail.

‘This function retrieves a randomly selected word from a word file

Function RetrieveWord()

‘Locate the folder where collections of game words are stored

strGameFolder = GetstrWordFileLocation()

‘Get the player to select a word category

strSelectCategory = SelectAWordCategory(strGameFolder)

‘Create the complete path and file name for the selected text file

strInputFile = strGameFolder & “\” & strSelectCategory

‘Open the file for reading

Set strWordFile = objFsoObject.OpenTextFile(strInputFile, 1)

‘Set this variable to zero. It represents the number of words in the file

intNoWordsInFile = 0

‘Count the number of words in the file

Do while False = strWordFile.AtEndOfStream

‘Read a line

strWordFile.ReadLine()

‘Keep count of the number of words (or lines) read

intNoWordsInFile = intNoWordsInFile + 1

Chapter 10 • Using the Windows Registry to Configure Script Settings 259

‘If the loop iterates more than 50 times something is wrong

If intNoWordsInFile > 50 Then

Exit Do

End If

Loop

‘Close the file when done counting the number of words (or lines)

strWordFile.Close

‘Pick a random number between 1 and the number of words in the file

Randomize

intRandomNo = FormatNumber(Int((intNoWordsInFile + 1) * Rnd),0)

‘Open the file for reading

Set strWordFile = objFsoObject.OpenTextFile(strInputFile, 1)

‘Skip the reading of all words prior to the randomly selected word

For intLinesInFile = 1 to intRandomNo - 1

‘Read the randomly selected word

strWordFile.SkipLine()

Next

‘Return the randomly selected word to the calling statement

RetrieveWord = strWordFile.ReadLine()

‘Close the file when done

strWordFile.Close

End Function

Trap

Make sure any text files you create to store game words have at least one word in them. An empty text
file with no words in it will result in an error.

Create the GetWordFileLocation() Function
The RetrieveWord() function calls upon the GetWordFileLocation() function, shown here, to retrieve
the location of the folder where the Hangman game’s text files are stored (that is, the function retrieves
the information stored in the Windows Registry by the HangmanSetup.vbs script).

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition260

‘This function retrieves the location of folder where text files are stored

Function GetstrWordFileLocation()

‘Get the folder name and path from its assigned Registry value

GetstrWordFileLocation = _

objWshShl.RegRead(“HKCU\VBGames\Hangman\ListLocation”)

End Function

Create the SelectAWordCategory() Function
The RetrieveWord() function also calls upon the SelectAWordCategory() function, shown next, to
prompt the player to select a word category from which the game’s mystery word should be randomly
selected. This function takes one argument, TargetFolder, which is the location of the folder where the
text files are stored. The function then displays a list of word categories based on the text files stored in
the folder and prompts the player to select one. If the player fails to make a selection, the function auto-
matically specifies the General category as the default. Again, I’ve added plenty of comments to the func-
tion to document its construction.

‘This function returns a word category

Function SelectAWordCategory(TargetFolder)

‘Specify the location of the folder that stores the text files

Set strGameFolder = objFsoObject.GetFolder(TargetFolder)

‘Get a list of files stored in the folder

Set objGameFiles = strGameFolder.Files

strSelection = “”

‘Loop through the list of text files

For Each strWordList In objGameFiles

‘Build a master string containing a list of all the text files

strFileString = strFileString & strWordList.Name

‘Remove the .txt portion of each file’s file name.

strCharactersToRemove = Len(strWordList.Name) - 4

‘Build a display string showing the category names of each text file

strSelection = strSelection & _

Left(strWordList.Name, strCharactersToRemove) & vbCrLf

Next

blnValidResponse = “False”

Chapter 10 • Using the Windows Registry to Configure Script Settings 261

‘Loop until a valid category strSelection has been made

Do Until blnValidResponse = “True”

‘Prompt the player to select a word category

strChoice = InputBox(“Please specify the name of a word category “ & _

“from which game words will be selected.” & vbCrLf & vbCrLf & _

“Available Categories:” & vbCrLf & vbCrLf & _

strSelection, “Pick a Category” , “General”)

‘If input is not in master string the player must try again

If InStr(UCase(strFileString), UCase(strChoice)) = 0 Then

MsgBox “Sorry but this is not a valid category. Please try again.”

Else

blnValidResponse = “True”

End If

Loop

‘If the player typed nothing then specify a default word category

If Len(strChoice) = 0 Then

strChoice = “General”

End If

‘Add the .txt portion of the file name back

SelectAWordCategory = strChoice & “.txt”

End Function

Viewing the Completed Hangman Script
That’s it! Assuming you did not skip any steps or make any typos when updating the Hangman game,
you’re new and improved version of the Hangman script should be ready for testing. Don’t forget to test
it thoroughly and to have someone else test it as well.

Summary
In this chapter, you learned how to write scripts that programmatically interact with the Windows Registry.
This included reading, writing, and modifying Registry keys and values. These new programming tech-
niques provide you with tools for externalizing script configuration information, allowing you to change
your script configuration settings without having to make direct modifications to your scripts, and with-
out having to worry about making mistakes while you do it. In addition, I showed you how to used text
files as another source of data input for your VBScripts.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition262

Chapter 10 • Using the Windows Registry to Configure Script Settings 263

1. Create a new collection of text files to increase the number of categories available to the player.

2. Add an error-handling routine to the HangmanSetup.vbs script and use it to report any problems
that may occur when the script attempts to perform the RegWrite() method.

3. Modify HangmanSetup.vbs to display a pop-up dialog box that asks the user to agree to abide by
any terms that you choose to specify to play the game. Store a value indicating whether the user
has accepted the terms in the Registry. Check this value each time the Hangman game is started,
allowing the user to play only if the terms have been accepted. Prompt the user to accept the terms
again if they have not been accepted yet.

4. Create and store a variable in the Registry and modify Hangman.vbs to increment it every time the
game is started. Use this value to track the number of games played. Check this value each time the
game starts to determine whether it exceeds a value of 20. Then, if the user has not yet accepted
your terms, prevent the game from running and force the user to accept your terms to play.

C
ha

lle
ng

es

This page intentionally left blank

Working with Built-in
VBScript Objects

11
T

o get any real work done, VBScript depends on access to objects and their associated
properties and methods. So far, you have learned how to work with objects provided
by the WSH and the VBScript run-time object model. Besides these collections of

objects, your VBScripts have access to a small collection of built-in or core objects. Using
these built-in VBScript objects, you can create scripts that react to errors, create their own
custom objects, and perform a host of complex parsing operations when dissecting the
contents of strings. Besides discussing VBScript’s built-in objects, this chapter also assists
you in creating a Tic Tac Toe game. Specifically, you will learn about the following:

• VBScript’s built-in objects and collections

• How to define your own custom objects

• How to associate properties and methods with custom objects

• How to trigger events associated with custom objects

• How to perform advanced string parsing operations

Project Preview: The Tic Tac Toe Game
In this chapter, you will develop a Tic Tac Toe game. Through the development of this game,
you will learn how to create and control a two-player game. To do this, you will have to
develop the logic that controls who goes next while simultaneously making sure that
every player’s move is valid. Figures 11.1 through 11.5 demonstrate the overall flow of the
game from beginning to end, as seen on a computer running Windows 8.1.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition266

Figure 11.1 The game begins by displaying
a blank game board and prompting the first
player to make a move. © 2014 Cengage Learning.

Figure 11.2 The game automatically
updates the game board after each player’s
move. © 2014 Cengage Learning.

The game keeps track
of each player’s turn

The game validates all
player input to ensure
that only valid moves
are accepted

Figure 11.3 Messages that provide players
with additional instruction when needed are
posted at the top of the game board.
© 2014 Cengage Learning.

The game prevents
players from acciden-
tally missing a turn
by clicking a button
without first providing
input

By the end of this chapter, you will have learned a great deal about how to work with VBScript’s built-in
collection of objects. You will also have developed your first multi-player VBScript game.

Leveraging VBScript’s Built-in Collection of Objects
VBScript provides a small collection of built-in objects. The VBScript interpreter provides access to these
objects. Therefore, they are available to any VBScript regardless of the execution host running it. These objects,
though not numerous, provide VBScript with a powerful arsenal of capabilities, including the following:

• Creating customized objects complete with their own properties and methods

• Intercepting and dealing with run-time errors that your VBScripts may encounter

• Performing complex regular expression pattern matching

Table 11.1 displays a list of VBScript’s built-in objects and provides a description of each object, as well
as a complete listing of all the properties, methods, and events associated with the objects.

Chapter 11 • Working with Built-in VBScript Objects 267

Figure 11.4 The results of each game are posted
at the top of the game board. © 2014 Cengage Learning.

Figure 11.5  At the end of each game, players are
prompted to play again. © 2014 Cengage Learning.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition268

Object Description Properties Methods Events

Class Used to create new None None Initialize,
custom objects Terminate

Err Used to retrieve Description, Clear, Raise None
information about HelpContext,
run-time errors. HelpFile,

Number, Source

Match Used to access read- FirstIndex, None None
only properties associated Length, Value
with regular expression
match strings.

Matches Represents a collection None None None
of regular expression
Match objects.

RegExp Provides the ability to Global, Execute, None
work with regular IgnoreCase Replace,
expressions. Pattern Test

SubMatches Used to access read- None None None
Collection only values associated

with regular expression
submatch strings.

TA B L E 1 1 .1  VBS C R I P T ’ S C O L L E C T I O N O F B U I LT- I N O B J E C T S

Built-in Object Properties
As you can see in Table 11.1, VBScript’s built-in objects have a number of associated properties. A descrip-
tion of each of these properties is provided in Table 11.2.

Built-in Object Methods
Of all the VBScript built-in objects, only the Err object and the RegExp objects have methods associated
with them. Methods associated with the Err object generate and clear errors, as outlined here:

• Clear(). This clears out Err object property settings.

• Raise(). This provides the ability to simulate a run-time error.

Methods associated with the RegExp object provide the ability to search strings and to replace portions
of strings as outlined here:

• Execute(). This performs a regular expression search.

• Replace(). This replaces specified text during a regular expression search.

• Test(). This returns a Boolean value indicating whether a matching pattern is located within a string.

© Jerry Lee Ford, Jr. All Rights Reserved.

Creating Custom Objects
VBScript enables you to store data in constants, variables, and arrays. VBScript supports a wide variation
of variable subtypes, such as date, string, and integer. However, VBScript does not provide for strict
enforcement of variable subtypes, meaning that you can store any type of value in any variable and then
change the value type and value later on without raising any errors. Although all this flexibility is great,
it also makes it easy to introduce errors. That’s why it’s best to use strict discipline when working with
variables to ensure that you don’t allow your scripts to mix data types. VBScript’s support for arrays pro-
vides for the storage and retrieval of more complex data structures. But again, there is nothing built into
VBScript to prevent you from mixing and matching data types within your arrays.

By providing you with access to the Class object, VBScript gives you the ability to create complex data
structures in the form of custom objects. You can then define properties and methods for your custom
objects. Once created, you can access custom objects just like you do any other objects. Custom objects
help to improve data consistency because they give you the ability to establish validation procedures that
ensure data consistency and enforce strict control over object manipulation.

Chapter 11 • Working with Built-in VBScript Objects 269

Property Description

Description Returns error messages associated with the Err object

FirstIndex Returns the starting character location of a substring within a string

Global Returns a Boolean value

HelpContext Returns the context ID associated with Help file topic

HelpFile Retrieves the path of the specified Help file

IgnoreCase Returns a value of True or False depending on whether a pattern search is
case-sensitive

Length Retrieves the number of characters associated with a search string match

Number Retrieves an error number

Pattern Returns a regular expression pattern from a search operation

Source Returns the object name responsible for generating an error

Value Retrieves a value from a search string match

TA B L E 1 1 . 2  B U I LT- I N VBS C R I P T O B J E C T P R O P E R T I E S

© Jerry Lee Ford, Jr. All Rights Reserved.

Defining a Custom Object
You can create a custom object using the Class…End Class statement. The Class object provides a template
for the creation of new objects. Once defined, custom objects must be instantiated just like any other
object. The syntax of the Class…End Class statement follows:

Class ClassName

Statements

End Class

ClassName is used to specify the name assigned to the new object. Statements are variables, properties,
and methods that you define within the object. You define object properties for objects by adding any of
the following statements within the Class…End Class statement:

• Property Get. This enables the retrieval of a value assigned to a private variable.

• Property Let. This enables the modification of a value assigned to a private variable.

• Property Set. This enables the modification of a value assigned to a public variable.

Defining Object Properties and Methods
Within the Class…End Class statement, variables, properties, and methods can be defined as either private
or public using the Private and Public keywords. Labeling a variable, property, or method as private
restricts access to only within the class. Labeling a variable, property, or method as public makes it acces-
sible throughout a script.

When not specified, it is assumed that variables, properties, and methods are public. However, it is gen-
erally not a good idea to allow variables to be defined with a public scope. Making variables public removes
the capability to strictly control their value within an object. Instead, it’s better to make object variables
private and then allow them to be accessed using the Property Get and Property Let statements.

To best demonstrate how all this works, let’s look at an example. Here a new custom object is defined and
assigned the name of SuperHero.

Class SuperHero

Private strName

Public Property Let Name(strIdentity)

strName = strIdentity

End property

Function DisplayName()

MsgBox “Our new hero’s name is “ & strName & “!”

End Function

End Class

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition270

The first statement defines the object and assigns its name. The next statement defines a private variable
named strName. The three statements that follow define an object property and make it writable by the
rest of the script. The next three statements define a method for the object called DisplayName(). The last
statement ends the definition of the SuperHero object.

To exercise your new object definition, create a new script and add the preceding statements to the script’s
procedure section. Then add the following statements to the initialization section. These statements
define a variable and then use the variable to instantiate a new SuperHero object.

Dim objFirstHero

Set objFirstHero = New SuperHero

Once instantiated, you can assign a value to the object’s Name property by adding the following statement
to the script’s main processing section:

objFirstHero.Name = “Captain Adventure”

You then can execute the object’s DisplayName() method by adding the following statement to the main
processing section:

objFirstHero.DisplayName()

Once assembled, the previous example displays the output shown in Figure 11.6 when executed on a
computer running Windows 7.

Creating Event Procedures
Custom VBScript objects automatically support two events. These events execute as follows:

• Class_Initialize. This executes whenever a new instance of an object is instantiated.

• Class_Terminate. This executes whenever an instance of an object is destroyed.

The defining of these procedures is optional. When defined, the Class_Initialize procedure performs
tasks such as the definition of variable default values. Similarly, the Class_Terminate procedure per-
forms any cleanup that may be required after an object is no longer needed. For example, the following
statements define an initialization procedure for the SuperHero object from the previous example.

Chapter 11 • Working with Built-in VBScript Objects 271

Figure 11.6 Creating and instantiating a new SuperHero object.
© 2014 Cengage Learning.

Private Sub Class_Initialize

MsgBox “In a blast of smoke and lightning another new super “ & _

“hero is born!”

End Sub

These statements must be added inside the Class…End Class statements. Once defined, they will auto-
matically execute any time a new instance of the SuperHero object is established.

Trick

If your script instantiates an object that it does not need anymore, it can destroy that object instance as
shown here.

Set objFirstHero = Nothing

In this example, the object instance is set equal to Nothing. This disassociates the specified object vari-
able from an object, releasing any memory allocated to it.

The following example further demonstrates how to define a custom object complete with multiple
properties and its own method and event definition:

‘***

‘Script Name: NewObjectDemo.vbs

‘Author: Jerry Ford

‘Created: 02/20/14

‘Description: This script demonstrates how to create a custom object

‘ with its own properties, methods, and events

‘***

‘Initialization Section

Option Explicit

Dim objFirstHero ‘Object variable representing the first super hero

Dim objSecondHero ‘Object variable representing the second super hero

‘Main Processing Section

ProcessFirstHero()

ProcessSecondHero()

WScript.Quit()

‘Procedure Section

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition272

Function ProcessFirstHero()

Set objFirstHero = New SuperHero ‘Instantiate a new SuperHero object

objFirstHero.Name = “Captain Adventure” ‘Assign value to Name property

objFirstHero.Power = “Laser Vision” ‘Assign value to Power property

objFirstHero.Weakness = “Dog Whistle” ‘Assign value to Weakness property

objFirstHero.Identity = “Bruce Tracy” ‘Assign value to Identity property

objFirstHero.DisplayIdentity() ‘Execute the SuperHero object’s method

End Function

Function ProcessSecondHero()

Set objSecondHero = New SuperHero

objSecondHero.Name = “Captain Marvelous” ‘Assign value to Name property

objSecondHero.Power = “Lightning Speed” ‘Assign value to Power property

objSecondHero.Weakness = “Blue Jello” ‘Assign value to Weakness property

objSecondHero.Identity = “Rob Denton” ‘Assign value to Identity property

objsecondHero.DisplayIdentity() ‘Execute the SuperHero object’s method

End Function

Class SuperHero

Private strName, strPower, strWeakness, strIdentity ‘Define variables

‘used by this class

Public Property Let Name(strIdentity) ‘Define the Name property

strName = strIdentity

End property

Public Property Let Power(strSuperPower) ‘Define the Power property

strPower = strSuperPower

End property

Public Property Let Weakness(strHurtBy) ‘Define the Weakness property

strWeakness = strHurtBy

End property

Public Property Let Identity(strSecretIdentity) ‘Define the Identity

strIdentity = strSecretIdentity ‘property

End property

Chapter 11 • Working with Built-in VBScript Objects 273

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition274

Function DisplayIdentity() ‘This function defines the SuperHero object’s

‘DisplayIdentity() method

MsgBox strName & vbCrLf & vbCrLf & _

“Hero Power: “ & vbTab & strPower & vbCrLf & _

“Hero Weakness: “ & vbTab & strWeakness & vbCrLf & _

“Hero Identity: “ & vbTab & strIdentity

End Function

Private Sub Class_Initialize ‘This event automatically executes when

‘the SuperHero object is instantiated

MsgBox “In a blast of smoke and lightning another new super “ & _

“hero is born!”

End Sub

End Class

As the script runs, pop-up dialog boxes will be displayed. Figure 11.7 and Figure 11.8 demonstrate the
execution of the Class_Initialize event and the object’s DisplayIdentity() method on a computer
running Window 7.

Working with the Err Object
The Err object provides access, via its properties, to information about run-time errors. For example, using
the Err object’s Description property, you can retrieve a string containing an error’s description. Using the
Err object’s Number property, you can retrieve the error number associated with an error. And using the Err
object’s Source property, you can retrieve the name of the resource that reported the error.

Figure 11.7 The Class_Initialize event occurs every time a new
instance of the SuperHero object is established. © 2014 Cengage Learning.

Figure 11.8 The SuperHero object’s DisplayIdentity() method displays the
value of all properties assigned to an instance of an object. © 2014 Cengage Learning.

The Err object also provides access to two methods:

• Clear(). The Clear() method clears out the properties belonging to the Err object. This is handy

in situations when you can develop an effective error-handling routine that enables your script to

recover from an error and keep running.

• Raise(). The Raise() method is equally useful, giving you the ability to simulate run-time errors

so you can test your script’s error-handling procedures.

For additional information and examples on how to work with the Err object, refer to Chapter 9, “Handling
Script Errors.”

Working with Regular Expressions
All remaining VBScript built-in objects and collections deal with regular expressions. A regular expression
is a pattern consisting of characters and metacharacters. Regular expressions are used as a means of search-
ing and replacing patterns within strings.

The first step in preparing your VBScripts to work with regular expressions is to instantiate the RegExp object.
This object provides access to the remaining built-in VBScript objects. The RegExp object is instantiated
as follows:

Dim objRegExp

Set objRegExp = New RegExp

The RegExp object provides access to the following properties:

• Pattern. This identifies the pattern to be matched.

• IgnoreCase. This contains a value of True or False depending on whether a case-sensitive search

is performed.

• Global. This is an optional Boolean value used to indicate whether all occurrences of the specified

pattern are to be replaced.

The RegExp object provides access to several methods, including the following:

• Replace(). This replaces matching string patterns.

• Test(). This performs a pattern search, generating a Boolean value based on whether a match is

found.

• Execute(). This provides the ability to generate a Matches collection.

Chapter 11 • Working with Built-in VBScript Objects 275

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition276

Replacing Matching Patterns
Using the RegExp object’s Replace() method, you can replace matching patterns within a string. The syn-
tax for this method is as follows:

RegExp.Replace(String1, String2)

String1 identifies the string to search and String2 identifies the replacement string. For an illustration
of how to work with the Replace() method, look at the following example:

Dim objRegExp

Set objRegExp = New RegExp

objRegExp.Pattern = “planet”

MsgBox objRegExp.Replace(“A long time ago on a far away planet”, “world”)

In this example, a variable name objRegExp is defined and then used to instantiate a reference to the RegExp
object. Next, a value of planet is assigned to the RegExp object’s Pattern property to define a search pat-
tern. Finally, the Replace() method is used to force the replacement of the word planet with the word world.
Figure 11.9 shows the output generated when this example is run on a computer running Windows 8.1.

By default, the Replace() method replaces only the first occurrence of a match within the specified
search string. However, by setting the value of the RegExp object’s Global property to True, you can force
the replacement of all matching patterns. To see this in action, modify the previous example as follows.

Dim objRegExp

Set objRegExp = New RegExp

objRegExp.Pattern = “planet”

objRegExp.Global = “True”

MsgBox objRegExp.Replace(“A long time ago

on a far away planet”, “world”)

VBScript’s support for regular expressions includes the capability to define a host of complex pattern
matches through the use of metacharacters. Table 11.3 lists all the metacharacters supported by VBScript.

Figure 11.9 Using regular expression matching,
you can substitute a portion of any string.
© 2014 Cengage Learning.

A metacharacter is a special character used
to provide information about other char-
acters. In the case of regular expressions,
metacharacters specify how a matching
pattern is to be processed.D

ef
in

it
io

n

Chapter 11 • Working with Built-in VBScript Objects 277

Character Description

\ Sets the next character as a special character, a back reference, a literal, or an octal
escape

^ Matches the beginning of the input string

$ Matches the end of the input string

* Matches the preceding expression (zero or more times)

+ Matches the preceding expression (one or more times)

? Matches the preceding expression (zero or one time)

{n} Matches exactly n times

{n,} Matches a minimum of n times

{n,m} Matches a minimum of n times and a maximum of m times

. Matches any individual character except the newline character

(pattern) Matches a pattern and allows the matched substring to be retrieved from the Matches
collection

x|y Matches x or y

[xyz] Matches any of the specified characters

[^xyz] Matches any character except those specified

[a-z] Matches characters specified in the range

[^a-z] Matches characters except for those specified in the range

\b Matches on a word boundary

\B Matches on a non-word boundary

\cx Matches the control character specified as x

\d Matches a single digit number

\D Matches any single non-numeric character

\f Matches the form-feed character

\n Matches the new-line character

\r Matches the carriage-return character

\s Matches any white-space character (for example, space, tab, form-feed)

\S Matches any non–white-space character

\t Matches the tab character

TA B L E 1 1 . 3  VBS C R I P T R E G U L A R E X P R E S S I O N

M E TA C H A R A C T E R S

To better understand how to take advantage of metacharacters, take a look at the following example:

Dim objRegExp

Set objRegExp = New RegExp

objRegExp.Pattern = “[\d]”

objRegExp.Global = “True”

MsgBox objRegExp.Replace(“1 years ago on a far away planet”, “1000”)

In this example, specifying the \d metacharacter as the value assigned to the RegExp object’s Pattern
property results in a replacement operation where any single numeric character is identified as a match.
Figure 11.10 shows the output generated when you run this example. As you can see in this example, exe-
cuted on a computer running Windows 8.1, the number 1 is replaced by the number 1000.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition278

Character Description

\v Matches the vertical tab character

\w Matches any word character

\W Matches any non-word character

\xn Matches n, where n is a two-digit hexadecimal escape value

\num Matches num, where num is a positive integer in a backward reference to captured matches

\n Specifies an octal escape value or a back reference

\nml Matches octal escape value nml where n is an octal digit in the range of 0–3 and m and l
are octal digits in the range of 0–7

\un Matches n, where n is a four-digit hexadecimal Unicode character

TA B L E 1 1 . 3  VBS C R I P T R E G U L A R E X P R E S S I O N

M E TA C H A R A C T E R S (C O N T I N U E D)

Figure 11.10 Using metacharacters enables
you to perform complex substitutions.
© 2014 Cengage Learning.

© Jerry Lee Ford, Jr. All Rights Reserved.

Testing for Matching Patterns
The RegExp object’s Test() method performs a pattern match without actually performing a replacement
operation. The syntax for the Test() method is as follows:

RegExp.Test(string)

The following statements demonstrate how to use this method. In this example, the script displays one
of two messages, depending on whether the string assigned to the Pattern property is found within the
search string.

Dim objRegExp

Set objRegExp = New RegExp

objRegExp.Pattern = “planet”

If objRegExp.Test(“A long time ago on a far away planet”) = “True” Then

MsgBox “The word “ & objRegExp.Pattern & “ was found!”

Else

MsgBox “The word “ & objRegExp.Pattern & “ was not found!”

End If

Creating Matches Collections
Using the RegExp object’s Execute() method, you can generate a Matches collection as a result of a reg-
ular expression search. The syntax of the Execute() method is as follows:

RegExp.Execute(string)

Once generated, the Matches collection is read-only. It is made up of individual Match objects. Each
Match object has its own set of properties, which include the following:

• FirstIndex. This retrieves the starting character positions of a match within a string.

• Length. This returns the length of a match found within a string.

• Value. This retrieves the text of the match found within a string.

Once a Matches collection has been generated, you can process all the members of the collection using a
loop, as demonstrated by the next example:

Dim objRegExp, objMatchCollection, objMatch, strStory, strDisplayMsg

Set objRegExp = New RegExp

objRegExp.Pattern = “bear”

objRegExp.Global = “True”

Chapter 11 • Working with Built-in VBScript Objects 279

strStory = “Once upon a time there were three little bears. There “ & _

“was a mama bear, a papa bear, and a baby bear. There was a cousin bear too!”

Set objMatchCollection = objRegExp.Execute(strStory)

For Each objMatch in objMatchCollection

strDisplayMsg = strDisplayMsg & “An instance of “ & _

objRegExp.Pattern & “ found at position “ & objMatch.FirstIndex & _

vbCrLf

Next

MsgBox strDisplayMsg

In this example, a For Each…Next loop was set up to process each Match object in the collection. The
Match object’s FirstIndex property was used to retrieve the starting position of each matching pattern
in the search string, which was then used to generate the output shown in Figure 11.11, as seen on a com-
puter running Windows 8.1.

Back to the Tic Tac Toe Game
The heart of the Tic Tac Toe game lies in the design of its game board, which is divided into three sections.
Status and error messages are displayed at the top of the board to assist players when mistakes are made
playing the game.

In the middle of the game’s screen is an image of a traditional Tic Tac Toe board. To the right and top of
the Tic Tac Toe board are letters and numbers, the coordinates of each cell that make up the game board.
Players play the game by using these letters and numbers to specify what cell they want to select as their next
move. Embedded within the board are variables representing each cell on the board. The values assigned
to these variables are set to either X or O based on the moves made by each player as the game progresses.

The bottom of the game board is made up of an input text field that enables players to enter their moves.
In addition, instruction is provided just above this text field in the form of a text message, which is used
to keep track of player turns.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition280

Figure 11.11 Using the RegExp object’s Execute() method
to generate and process the contents of a Matches collection.
© 2014 Cengage Learning.

Designing the Game
Besides its initialization and main processing sections, the game is made up of nine functions. Each func-
tion performs a specific task. Here is a list of the script’s functions along with a brief description of their
associated tasks:

• SetVariableDefaults(). This establishes default values for various script variables.

• ClearGameBoard(). This resets each cell on the Tic Tac Toe game board so that it appears blank or

empty.

• ManageGamePlay(). This controls the overall execution of the game, calling on other functions as

necessary.

• DisplayBoard(). This displays the game board along with instructions, error messages, and any

moves already made by each player.

• DisplayGameResults(). This displays the final results of each game, identifying who won or

whether the game resulted in a tie.

• ValidateInput(). This ensures that players are only allowed to enter valid cell coordinates when

taking their turns.

• MarkPlayerSelection(). This associates input provided by players with the appropriate cell coor-

dinates on the game board.

• SeeIfWon(). This checks the game board to determine whether a player has won or whether the

game has ended in a tie.

• DisplaySplashScreen(). This displays information about the script and its author.

Setting Up the Script’s Template and Initialization Section
The Tic Tac Toe game begins by defining the constants and variables used by the game. Because the game
uses a large number of variables, I embedded comments to the right of each variable to identify its purpose.

‘***

‘Script Name: TicTacToe.vbs

‘Author: Jerry Ford

‘Created: 02/25/14

‘Description: This script is a VBScript implementation of the

‘ Tic Tac Toe game

‘***

‘Initialization Section

Option Explicit

Const cTitleBarMsg = “VBScript T I C T A C T O E”

Chapter 11 • Working with Built-in VBScript Objects 281

Dim A1, A2, A3, B1, B2, B3, C1, C2, C3 ‘Variables representing sections

‘of the Tic Tac Toe game board

Dim blnGameOver ‘Boolean variable that determines when to end game

Dim blnPlayerTypedQuit ‘Variable to track whether a player typed Quit

Dim blnStopGame ‘Variable used in main processing section to

‘determine when to stop the game

Dim blnValidCell ‘Boolean variable that determines whether a player

‘specified a valid cell

Dim intNoMoves ‘Variable to keep track of the number of plays

Dim intPlayAgain ‘Variable holds player response when asked to play

‘again

Dim strNotificationMsg ‘Variable to display messages to player

Dim strPlayer ‘Variable to identify whose turn it is

Dim strWinner ‘Variable to determine whether the game is won

Dim strPlayerInput ‘Variable to hold the player’s cell selection

Dim strDirection ‘Variable identifies how the player won the game

blnStopGame = “False”

Developing the Logic for the Main Processing Section
The game’s main processing section is made up of a Do…Until loop and a series of procedure calls. The
loop is set up to execute until the players decide to stop playing the game, as tracked using a Boolean vari-
able named blnStopGame.

Do Until blnStopGame = “True” ‘Keep playing until players decide to stop

SetVariableDefaults()

ClearGameBoard()

ManageGamePlay()

If blnPlayerTypedQuit = “True” Then ‘One of the players typed Quit

blnStopGame = “True”

Else ‘The game is over. Ask the players whether they’d like to play again

intPlayAgain = MsgBox(“Would you like to play another game of “ & _

“Tic Tac Toe?”, 4, cTitleBarMsg)

If intPlayAgain = 7 Then ‘A player clicked on No. B break out of loop

blnStopGame = “True”

End If

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition282

End If

Loop

DisplaySplashScreen()

Building the SetVariableDefaults() Function
The SetVariableDefaults() function, shown here, is straightforward. It is responsible for setting default
variable values.

Function SetVariableDefaults() ‘Establish default variable settings

blnGameOver = “False”

blnPlayerTypedQuit = “False”

blnValidCell = “False”

intNoMoves = 0

strNotificationMsg = “Welcome! To play Tic Tac Toe follow the “ & _

“instructions at the bottom of the screen. Type Quit to terminate “ & _

“the game at any time.”

strPlayer = “X”

strWinner = “None”

strDirection = “”

End Function

Building the ClearGameBoard() Function
The ClearGameBoard() function that follows is executed to clear the contents of the game board to pre-
pare it for a new game. As you can see, the game board is cleared by assigning a blank space to each cell
of the board, thus removing any Xes or Os that may be present from a previous game.

Function ClearGameBoard() ‘Reset the game board

A1 = “ “

A2 = “ “

A3 = “ “

B1 = “ “

B2 = “ “

B3 = “ “

C1 = “ “

C2 = “ “

C3 = “ “

End Function

Chapter 11 • Working with Built-in VBScript Objects 283

Building the ManageGamePlay() Function
The ManageGamePlay() function that follows is controlled by a Do…Until loop that executes until the
value assigned to a variable named blnGameOver is set equal to True. Within the loop, the function begins
by performing a series of checks to determine whether the game has already been won. The first check
looks to see whether player X has won. If this is the case, the value assigned to strNotificationMsg is
set to Game over! Player X wins and the value assigned to a variable named strDirection is used to iden-
tify how the game was won. The display string assigned to strNotificationMsg is later used by the
DisplayGameResults() function. The next check looks to see whether player O won. The last check looks
to see whether the game has ended in a tie.

Function ManageGamePlay() ‘Manage the overall execution of the game

Do Until blnGameOver = “True”

‘Start by checking to see if the game has already been completed

If strWinner = “X” Then

strNotificationMsg = “Game over! Player X wins “ & strDirection

DisplayGameResults()

blnGameOver = “True”

End If

If strWinner = “O” Then

strNotificationMsg = “Game over! Player O wins “ & strDirection

DisplayGameResults()

blnGameOver = “True”

End If

If strWinner = “Nobody” Then

strNotificationMsg = “Game over. It’s a tie!”

DisplayGameResults()

blnGameOver = “True”

End If

If blnGameOver <> “True” Then ‘If game is not over display the board

DisplayBoard() ‘in order to collect next player’s input

ValidateInput() ‘Validate the input

If UCase(strPlayerInput) = “QUIT” Then ‘See if a player typed Quit

blnPlayerTypedQuit = “True”

blnValidCell = “False”

blnGameOver = “True”

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition284

End If

End If

‘Count the number of valid cell selections

If blnValidCell = “True” Then

intNoMoves = intNoMoves + 1

MarkPlayerSelection()

End If

‘If all nine cells have been filled in we have a tie

If intNoMoves = 9 Then

SeeIfWon()

If strWinner = “None” Then

strWinner = “Nobody”

End If

Else

SeeIfWon()

End If

‘Time to switch player turns

If blnValidCell = “True” Then

If strPlayer = “X” Then

strPlayer = “O”

Else

strPlayer = “X”

End If

End If

Loop

End Function

If the game is not over yet—that is, if blnGameOver <> “True”—then the game board is displayed and a
player is prompted to make a move. The player’s move is then validated. If the player typed Quit, then
the script sets a number of controlling variables to indicate that the game is about to be terminated.
Otherwise, the value assigned to intNoMoves is incremented by 1 to keep track of the game’s progress and
the MarkPlayerSelection() function is called to associate the player’s move with a specific cell on the
game board. Next, the value assigned to intNoMoves is examined. If it is equal to 9, then the game is over
and the script calls on SeeIfWon() to ascertain whether there was a winner. If nine moves were made and
no winner is identified, the game is declared a tie and the value assigned to strWinner is set equal to Nobody.

Chapter 11 • Working with Built-in VBScript Objects 285

If nine moves have not been made yet, the script still executes the SeeIfWon() function to see whether
player X or player O has managed to line up three cells in a row. Finally, the last set of statements inside
the loop controls player turns by switching the value assigned to strPlayer to either X or O.

Building the DisplayBoard() Function
The DisplayBoard() function consists of text designed to provide a graphic-like display. Embedded
inside the game board displayed by this function are nine variables named A1–A3, B1–B3, and C1–C3,
each representing a different cell on the game board.

Function DisplayBoard() ‘Display the game board

strPlayerInput = UCase(InputBox(vbCrLf & strNotificationMsg & _

vbCrLf & vbCrLf & vbCrLf & vbCrLf & _

vbTab & “1” & vbTab & vbTab & “2” & vbTab & vbTab & “3” & vbCrLf & _

vbCrLf & vbTab & vbTab & “|” & vbTab & vbTab & “|” & vbTab & _

vbCrLf & “A” & vbTab & A1 & vbTab & “|” & vbTab & A2 & vbTab & _

“|” & vbTab & A3 & vbCrLf & vbTab & vbTab & “|” & vbTab & vbTab & _

“|” & vbTab & vbCrLf & “ ————————————————-” & _

“———————————————————” & vbCrLf & vbTab & _

vbTab & “|” & vbTab & vbTab & “|” & vbTab & vbCrLf & “B” & vbTab & _

B1 & vbTab & “|” & vbTab & B2 & vbTab & “|” & vbTab & B3 & _

vbCrLf & vbTab & vbTab & “|” & vbTab & vbTab & “|” & vbTab & _

vbCrLf & “ ———————————————————————” & _

“————————————-” & vbCrLf & vbTab & vbTab & “|” & _

vbTab & vbTab & “|” & vbTab & vbCrLf & “C” & vbTab & C1 & vbTab & _

“|” & vbTab & C2 & vbTab & “|” & vbTab & C3 & vbCrLf & vbTab & _

vbTab & “|” & vbTab & vbTab & “|” & vbTab & vbCrLf & vbCrLf & _

vbCrLf & vbCrLf & “Player “ & strPlayer & _

“‘s turn. Type your move:”, cTitleBarMsg))

End Function

Whenever this function is called, it displays the game board, including the values assigned to each of its
nine embedded variables (as either Xes or Os). This gives the game the capability to dynamically display
each move made as the game progresses.

Building the DisplayGameResults() Function
The DisplayGameResults() function that follows is responsible for displaying the final results of the game.
The dialog box generated by this function is not much different from the dialog box created by the
DisplayBoard() function, except that this function uses the MsgBox() function in place of the InputBox()
function. The MsgBox() function is more appropriate for this function because it can be used to display
a dialog box with a single OK button, whereas using the InputBox() function would have resulted in the
unnecessary display on a text input field at the bottom of the dialog box.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition286

Function DisplayGameResults() ‘Game is over. Display the results.

MsgBox vbCrLf & _

strNotificationMsg & _

vbCrLf & vbCrLf & vbCrLf & vbCrLf & _

vbTab & “1” & vbTab & vbTab & “2” & vbTab & vbTab & “3” & vbCrLf & _

vbCrLf & vbTab & vbTab & “|” & vbTab & vbTab & “|” & vbTab & _

vbCrLf & “A” & vbTab & A1 & vbTab & “|” & vbTab & A2 & vbTab & _

“|” & vbTab & A3 & vbCrLf & vbTab & vbTab & “|” & vbTab & vbTab & _

“|” & vbTab & vbCrLf & _

“ ————————————————————————————” & _

vbCrLf & vbTab & vbTab & “|” & vbTab & vbTab & _

“|” & vbTab & vbCrLf & “B” & vbTab & B1 & vbTab & “|” & vbTab & _

B2 & vbTab & “|” & vbTab & B3 & vbCrLf & vbTab & vbTab & “|” & _

vbTab & vbTab & “|” & vbTab & vbCrLf & “ —————————” & _

“———————————————————” & vbCrLf & _

vbTab & vbTab & “|” & vbTab & vbTab & “|” & vbTab & vbCrLf & _

“C” & vbTab & C1 & vbTab & “|” & vbTab & C2 & vbTab & “|” & vbTab & _

C3 & vbCrLf & vbTab & vbTab & “|” & vbTab & vbTab & “|” & vbTab & _

vbCrLf & vbCrLf & vbCrLf & vbCrLf, , cTitleBarMsg

End Function

Building the ValidateInput() Function
The ValidateInput() function, shown here, uses a Select Case statement to process the input provided
by players to determine whether it is valid. Input is valid only if it is provided in the form of a valid cell
range. Next, the function checks to make sure the player did not accidentally click OK before entering a
move. The last validation test performed by this function checks to make sure that the cell specified by
the player has not already been selected. This is done by checking to see whether the value assigned to the
cell is anything other than a blank space. If it is, then regardless of whether a value of X or O has been
assigned, the cell is not available.

Function ValidateInput() ‘Run tests to determine if player input is valid

Select Case strPlayerInput ‘Ensure a valid cell was specified

Case “A1”

blnValidCell = “True”

Case “A2”

blnValidCell = “True”

Case “A3”

blnValidCell = “True”

Chapter 11 • Working with Built-in VBScript Objects 287

Case “B1”

blnValidCell = “True”

Case “B2”

blnValidCell = “True”

Case “B3”

blnValidCell = “True”

Case “C1”

blnValidCell = “True”

Case “C2”

blnValidCell = “True”

Case “C3”

blnValidCell = “True”

Case Else

blnValidCell = “False”

strNotificationMsg = “Invalid cell. Please try again.”

End Select

If strPlayerInput = “” Then ‘Player must type something

strNotificationMsg = “Missing entry. Please try again.”

blnValidCell = “False”

End If

‘Check each cell to make sure that it has not already been selected

If strPlayerInput = “A1” Then

If A1 <> “ “ Then

blnValidCell = “False”

strNotificationMsg = “Invalid entry. Cell already selected. “ & _

“Please try again.”

End If

End If

If strPlayerInput = “A2” Then

If A2 <> “ “ Then

blnValidCell = “False”

strNotificationMsg = “Invalid entry. Cell already selected. “ & _

“Please try again.”

End If

End If

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition288

If strPlayerInput = “A3” Then

If A3 <> “ “ Then

blnValidCell = “False”

strNotificationMsg = “Invalid entry. Cell already selected. “ & _

“Please try again.”

End If

End If

If strPlayerInput = “B1” Then

If B1 <> “ “ Then

blnValidCell = “False”

strNotificationMsg = “Invalid entry. Cell already selected. “ & _

“Please try again.”

End If

End If

If strPlayerInput = “B2” Then

If B2 <> “ “ Then

blnValidCell = “False”

strNotificationMsg = “Invalid entry. Cell already selected. “ & _

“Please try again.”

End If

End If

If strPlayerInput = “B3” Then

If B3 <> “ “ Then

blnValidCell = “False”

strNotificationMsg = “Invalid entry. Cell already selected. “ & _

“Please try again.”

End If

End If

If strPlayerInput = “C1” Then

If C1 <> “ “ Then

blnValidCell = “False”

strNotificationMsg = “Invalid entry. Cell already selected. “ & _

“Please try again.”

End If

End If

Chapter 11 • Working with Built-in VBScript Objects 289

If strPlayerInput = “C2” Then

If C2 <> “ “ Then

blnValidCell = “False”

strNotificationMsg = “Invalid entry. Cell already selected. “ & _

“Please try again.”

End If

End If

If strPlayerInput = “C3” Then

If C3 <> “ “ Then

blnValidCell = “False”

strNotificationMsg = “Invalid entry. Cell already selected. “ & _

“Please try again.”

End If

End If

End Function

Building the MarkPlayerSelection() Function
The MarkPlayerSelection() function that follows is responsible for associating the player’s move with
the appropriate cell on the game board. It does this by assigning the value stored in strPlayer to the
specified cell. Remember, the value assigned to strPlayer is either an X or an O, depending on whose turn
it is.

Function MarkPlayerSelection() ‘Mark an X or O in the appropriate cell

If strPlayerInput = “A1” Then

A1 = strPlayer

End If

If strPlayerInput = “A2” Then

A2 = strPlayer

End If

If strPlayerInput = “A3” Then

A3 = strPlayer

End If

If strPlayerInput = “B1” Then

B1 = strPlayer

End If

If strPlayerInput = “B2” Then

B2 = strPlayer

End If

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition290

If strPlayerInput = “B3” Then

B3 = strPlayer

End If

If strPlayerInput = “C1” Then

C1 = strPlayer

End If

If strPlayerInput = “C2” Then

C2 = strPlayer

End If

If strPlayerInput = “C3” Then

C3 = strPlayer

End If

End Function

Building the SeeIfWon() Function
The SeeIfWon() function, shown here, performs a series of eight tests to see whether the game has been
won by one of the players. These tests include checking all three cells in each row and in each column to
see whether the same player has selected them. The function also checks diagonally to see whether there
is a winner.

Function SeeIfWon()

‘Check across the first row

If A1 = strPlayer Then

If A2 = strPlayer Then

If A3 = strPlayer Then

strWinner = strPlayer

strDirection = “- First row across!”

End If

End If

End If

‘Check across the second row

If B1 = strPlayer Then

If B2 = strPlayer Then

If B3 = strPlayer Then

strWinner = strPlayer

strDirection = “- Second row across!”

End If

End If

End If

Chapter 11 • Working with Built-in VBScript Objects 291

‘Check across the third row

If C1 = strPlayer Then

If C2 = strPlayer Then

If C3 = strPlayer Then

strWinner = strPlayer

strDirection = “- Third row across!”

End If

End If

End If

‘Check the first column

If A1 = strPlayer Then

If B1 = strPlayer Then

If C1 = strPlayer Then

strWinner = strPlayer

strDirection = “- First column down!”

End If

End If

End If

‘Check the second column

If A2 = strPlayer Then

If B2 = strPlayer Then

If C2 = strPlayer Then

strWinner = strPlayer

strDirection = “- Second column down!”

End If

End If

End If

‘Check the third column

If A3 = strPlayer Then

If B3 = strPlayer Then

If C3 = strPlayer Then

strWinner = strPlayer

strDirection = “- Third column down!”

End If

End If

End If

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition292

‘Check diagonally

If A1 = strPlayer Then

If B2 = strPlayer Then

If C3 = strPlayer Then

strWinner = strPlayer

strDirection = “- Diagonally A1 - C3!”

End If

End If

End If

‘Check the diagonally

If A3 = strPlayer Then

If B2 = strPlayer Then

If C1 = strPlayer Then

strWinner = strPlayer

strDirection = “- Diagonally C1 - A3!”

End If

End If

End If

End Function

Building the DisplaySplashScreen() Function
The script’s final function, DisplaySplashScreen(), is shown here. This function displays information
about the script and its author and then terminates the script’s execution by using the WScript object’s
Quit() method.

Function DisplaySplashScreen() ‘Display splash screen and terminate game

MsgBox “Thank you for playing Tic Tac Toe” & _

“© Jerry Ford 2014.” & vbCrLf & vbCrLf & “Please play again “ & _

“soon!”, 4144, cTitleBarMsg

WScript.Quit()

End Function

The Final Result
That’s it. You have all the necessary pieces to assemble the game. Once you have keyed everything, run
through the Tic Tac Toe game a few times to be sure you haven’t accidentally made a few typos when key-
ing in the script. After you have everything working just right, go out and get a friend to play with and
show off what you have learned.

Chapter 11 • Working with Built-in VBScript Objects 293

Summary
In this chapter, you learned how to work with built-in VBScript objects. This included learning how to create
custom objects with their own unique sets of properties and methods. You also learned how to trigger
events associated with custom objects. On top of all this, you learned how to perform complex parsing
operations by working with the RegExp object, and you created your first multi-player VBScript game.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition294

1. Enhance the Tic Tac Toe game by adding options that allow the players to get help.

2. If you have a website, considering modifying the game’s closing splash screen to display its address.

3. Try making a computerized version of this game where a single player goes head to head against
the computer.

4. Add logic that keeps track of the total number of games played and display this information, along
with the total number of games won by each player, at the end of the final game.

C
ha

lle
ng

es

Combining Different
Scripting Languages

12
I

n this chapter, you will learn how to develop a new type of script, called a Windows Script
File, which enables you to combine VBScript with one or more other WSH-supported
scripting languages to create a single executable script. Doing so enables you to create

scripts that can take advantage of the strengths of each individual scripting language.
Specifically, in this chapter I’ll demonstrate how to develop Windows Script Files that com-
bine VBScript and JScript. Along the way, you’ll be introduced to the Extensible Markup
Language, or XML, which allows different scripting languages to be combined into Windows
Script Files. Specifically, you will learn the following:

• How to combine VBScript with another scripting language to create Windows Script

Files

• How XML is used to format Windows Script Files

• A sneak peek at the JScript scripting language

• How to execute Windows Script Files

Project Preview: The VBScript Game Console
In this chapter’s project, you will learn how to create Windows Script Files that combine
VBScript with a little bit of JScript to create a game console for all your VBScript games.
Once started, the game console displays a dynamically created numbered list of your
VBScript games and enables the user to choose which game to play by either typing the
name of the game or typing its assigned number.

296

Figure 12.1 A JScript that displays the game console’s initial splash
screen is executed. © 2014 Cengage Learning.

Figure 12.2 The core logic for the game console is
provided by a VBScript, which is responsible for displaying
and controlling the execution of your VBScript games.
© 2014 Cengage Learning.

Figure 12.3 The game console remains tucked away in the corner
while the player enjoys playing your VBScript game. © 2014 Cengage Learning.

Figure 12.4 By selecting the About option, the
user can get more information about the game
console and its author. © 2014 Cengage Learning.

Figure 12.5 When the game console is finally closed,
another JScript is run to display a closing splash screen.
© 2014 Cengage Learning.

When started, the game console appears in the upper-left corner of the display area. As games are selected,
they will appear in the middle of the screen. This keeps the game console handy without making it intrusive.
Figures 12.1 through 12.5 demonstrate the overall operation of the game console from beginning to end
when executed on a computer running Windows 7.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Introducing Windows Script Files
One of the strengths of the WSH is that it supports a number of different scripting languages, including
VBScript, JScript, Perl, Python, and REXX. Microsoft automatically equips the WSH with VBScript and
JScript. Third-party software developers provide support for the other scripting languages. Besides executing
scripts written in any of these scripting languages, the WSH enables you to put any combination of these
languages into a single script file known as a Windows Script File.

Extensible Markup Language, or XML, provides the
glue for combining different scripts into a Windows
Script File. In this chapter, I’ll cover some of the more
commonly used WSH-supported XML statements.
However, there simply is not enough space available
in this book to completely cover every single XML
element supported by the WSH.

Using XML, you specify the components that make
up Windows Script Files. For example, you use XML
to mark the locations within Windows Script Files
where individual scripts (written in scripting lan-
guages such as VBScript or JScript) are embedded.
Windows Script Files are saved as plain-text files
with a .wsf file extension and can be created using any plain-text or script editor.

XML is case-sensitive and imposes a strict set of rules on the format of Windows Script Files. For exam-
ple, within the context of the WSH, most XML tags occur in pairs with one opening and one closing tag.
Failure to include a matching closing tag will result in an error.

Trick

WSH supports XML version 1.0. Version 1.0 supports both uppercase and lowercase spelling of tag ele-
ments. Lowercase spelling is preferred, and I recommend that you use it. That way, if lowercase spelling
becomes a requirement in a future version of XML, you will not have to retrofit your Windows Scripts
Files for them to continue to run.

Examining WSH-Supported XML Tags
XML represents an extensive and powerful multipurpose markup language. XML is therefore often used
in many environments, including the WSH. In this chapter, I’ll introduce you to a number of commonly
used XML tags, and I’ll provide examples of how they’re used to build Windows Script Files.

To begin, take a look at Table 12.1, which shows the XML tags that you’ll see demonstrated in this chap-
ter’s examples.

Chapter 12 • Combining Different Scripting Languages 297

A Windows Script File is a type of script
that allows multiple scripts, written in any
WSH-supported scripting language, to be
combined to create a single script.D

ef
in

it
io

n
Extensible Markup Language, or XML, is a
language similar in design and syntax to
HTML. It is used within the context of the
WSH to define the structure of Windows
Script Files.D

ef
in

it
io

n

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition298

Tag Description

<?job ?> Enables or disables error handling and debugging for a specified job

<?xml ?> Specifies the Windows Script File’s XML level

<comment> </comment> Embeds comments within Windows Script Files

<script> </script> Identifies the beginning and ending of a script within a Windows Script File

<job> </job> Identifies the beginning and ending of a job inside a Windows Script File

<package> </package> Enables multiple jobs to be defined within a single Windows Script File

<resource> </resource> Defines static data (constants) that can be referenced by scripts within a
Windows Script File

TA B L E 12 .1  XML TA G S C O M M O N LY U S E D

I N W I N D O W S S C R I P T F I L E S

Using the <?job ?> Tag
The <?job ?> tag allows you to enable or disable error reporting and debugging within your Windows
Script Files. The use of this tag is optional. Unlike most tags, the <?job ?> tag does not have a closing tag.
The syntax for this tag is as follows:

<?job error=”flag” debug=”flag” ?>

Both error and debug are Boolean values. By default, both are set equal to false. Setting error=“true” turns
on error reporting, thus allowing syntax and run-time error messages to be reported. Setting debug=“true”
turns on debugging for Windows Script Files, allowing them to start the Windows script debugger.

Trick

To take advantage of the <?job ?> tag’s debug capability, you’ll need to install the Microsoft Windows
script debugger utility. This utility is designed to assist programmers in debugging script errors. To learn
more about this utility, check out msdn.microsoft.com/en-us/library/ms875975(v=exchg.65).aspx.

The following example demonstrates how to use the <?job ?> tag within a Windows Script File:

<job>

<?job error=”true” debug=”true”?>
<script language=”VBScript”>

MsgBox “Error handling and debugging have been enabled. “

</script>

</job>

© Jerry Lee Ford, Jr. All Rights Reserved.

http://www.msdn.microsoft.com/en-us/library/ms875975(v=exchg.65).aspx

As you can see, both error reporting and script debugging have been enabled.

Using the <?xml ?> Tag
The <?xml ?> tag is used to specify the version of XML required to support a Windows Script File. As with
the <?job ?> tag, the use of this tag is optional.

When used, the <?xml ?> tag must be the first tag defined as the first statement in the Windows Script
File. The syntax for the <?xml ?> tag is as follows:

<?xml version=”version” standalone=”DTDflag” ?>

version specifies the version of XML required to support the Windows Script File. The current version
is 1.0. standalone is used to specify an external document type definition, which is a feature not cur-
rently supported by the WSH. You can include it if you want, but you’ll have to specify it as having a value
of Yes, and it will be ignored.

When used, the <?xml ?> tag enforces stricter interpretation of all XML statements. It also enforces case-
sensitivity while requiring that all values be specified within either single or double quotes. Omitting this
tag provides for a less restrictive syntax. Let’s look at the following example, which demonstrates the
placement of an <?xml ?> tag at the beginning of a small Windows Script File:

<?xml version=”1.0” standalone=”yes” ?>
<job>

<?job error=”true” debug=”true”?>

<script language=”VBScript”>

MsgBox “Error handling and debugging have been enabled. “

</script>

</job>

The <comment> and </comment> Tags
You can document the XML statements used within your Windows Script Files using the XML <comment>
and </comment> tags. Using these tags, you can spread comments over multiple lines. The syntax for the
<comment> and </comment> tags is as follows:

<comment> Comment Text </comment>

The following example demonstrates the use of the XML <comment> and </comment> tags.

<?xml version=”1.0” standalone=”yes” ?>

<job>

<?job error=”true” debug=”true”?>

<comment>The following VBScript displays an information message</comment>
<script language=”VBScript”>

Chapter 12 • Combining Different Scripting Languages 299

MsgBox “Error handling and debugging have been enabled File.”

</script>

</job>

The <job> and </job> Tags
To embed a script into a Windows Script File, you must first define a pair of root tags. The <job> and
</job> tags provide one type of root tag pair.

All Windows Script Files are composed of at least one job. The beginning and ending of a job are iden-
tified by the <job> and </job> tags. The syntax for the tags is as follows:

<job [id=JobID]>

. . .

</job>

When only one job is defined within a Windows Script File, the id=JobID parameter can be omitted from
the opening <job> tag. However, if two or more jobs are defined within a single Windows Script File, each
must be given a unique ID assignment. This assignment allows you to execute any job within the Win-
dows Script File.

The following example shows a Windows Script File that contains a single job. The job itself is made up
of two different scripts:

<?xml version=”1.0” standalone=”yes” ?>

<job>
<?job error=”true” debug=”true”?>

<comment>The following VBScript displays an information message</comment>

<script language=”VBScript”>

MsgBox “VBScript has displayed this message.”

</script>

<comment>The following JScript displays an information message</comment>

<script language=”JScript”>

WScript.Echo(“JScript has displayed this message.”);

</script>

</job>

If you double-click the file, you’ll see two pop-up dialog boxes appear. Figure 12.6 and Figure 12.7 show
how these dialog boxes appear when this example is executed on a computer running Windows 8.1. The
VBScript generates the first pop-up dialog box and the JScript generates the second. To place more than one
job within a Windows Script File, you must use the <package> and </package> tags, which I’ll explain next.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition300

Figure 12.6 A pop-up dialog box displayed by the
Windows Script File’s VBScript. © 2014 Cengage Learning.

Figure 12.7 A pop-up dialog box displayed by the
Windows Script File’s JScript. © 2014 Cengage Learning.

The <package> and </package> Tags
To place more than one job within a Windows Script File, you must enclose the jobs within the <package>
and </package> tags. The syntax for these tags is as follows:

<package>

. . .

</package>

To understand their use, look at the following example:

<?xml version=”1.0” standalone=”yes” ?>

<package>
<comment>The following job contains a VBScript and a JScript</comment>

<job id=”job1”>

<?job error=”true” debug=”true”?>

<comment>The following VBScript displays an information message</comment>

<script language=”VBScript”>

MsgBox “A VBScript has displayed this message.”

</script>

<comment>The following JScript displays an information message</comment>

<script language=”VBScript”>

WScript.Echo “A JScript has displayed this message.”

</script>

</job>

<comment>The following job contains one VBScript</comment>

<job id=”job2”>

<script language=”VBScript”>

MsgBox “A second VBScript has displayed this message.”

</script>

</job>

</package>

Chapter 12 • Combining Different Scripting Languages 301

In this Windows Script File, the <package> and </package> tags are used to define two jobs. The first job
is assigned an ID of job1, and the second job has been assigned an ID of job2.

The <resource> and </resource> Tags
You have already learned about the advantages of defining constants within your VBScripts. However,
these constants are available only within the script that defines them. Using the XML <resource> and
</resource> tags, you can define constants within your Windows Script Files that can then be accessed
by every script located within the same job. Therefore, when used, these tags must be placed within the
<job> and </job> tags.

The syntax of the <resource> and </resource> tags is as follows:

<resource id=”resourceID”> . . .

</resource>

resource id specifies the name of the constant whose value is then assigned when you type it between
the opening and closing tags, as demonstrated in the following example:

<job>

<resource id=”cTitleBarMsg”>TestScript.wsh</resource>
<script language=”VBScript”>

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

MsgBox “Greetings”, , getResource(“cTitleBarMsg”)

</script>

</job>

The <script> and </script> Tags
You’ve already seen the <script> and </script> tags in action a number of times in this chapter. They
are used to mark the beginning and ending of individual scripts embedded within jobs in Windows
Script Files. The syntax for these tags is as follows:

<script language=”language” [src=”externalscript”]>

. . .

</script>

language specifies the scripting language used to create a script. The src argument is used to specify an
optional reference to an external script. If used, the external script is called and executed just as if it were
embedded within the Windows Script File.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition302

In the real world, time is money. Saving time during script development means that you can get more
done in less time. One way experienced programmers save time is by creating reusable code. You can
use Windows Script Files to save development time by externalizing scripts that perform common tasks.
That way, you can set up a reference to those scripts in any number of Windows Script Files without
having to reinvent the wheel. In addition, you’ll save yourself a lot of maintenance work because if you
ever need to modify a commonly used external script, you’ll only have to make the change to the script
once. This is preferable to making the same change over and over again in any scripts where you
embedded copies of the script.In

 t
he

 R
ea

l W
o

rl
d

Let’s look at an example of how to create a Windows Script File that includes both an embedded VBScript
and one that is externally referenced. As you can see, the following Windows Script File includes a refer-
ence to two VBScripts:

<job>

<script language=”VBScript”>
MsgBox “This message is being displayed by an embedded VBScript”

</script>
<script language=”VBScript” src=”TestScript.vbs” />

</job>

The embedded VBScript simply displays a text message stating that it has executed. Similarly, the external
VBScript might consist of a single statement that uses the MsgBox() function to display a similar message:

MsgBox “This message is being displayed by an external VBScript”

If you create both of these scripts and then double-click the Windows Script File, you’ll see that both
scripts will execute and display their pop-up dialog box in sequence.

Executing Your Windows Script Files
As you know, you can run a Windows Script File by double-clicking it. When started this way, the Win-
dows Script File runs the first job that has been defined. If more than one job has been defined within
the Windows Script File, you can execute any job by running the script from the Windows command
prompt and specifying the job’s ID, as demonstrated next. Of course, every script contained within the
job that is run will be executed.

Let’s look at some examples of how to run Windows Script Files from the Windows command prompt.
To run the first script in a Windows Script File that contains two jobs, just type the name of an execution
host followed by the name of the Windows Script File:

cscript TestWsfScript.wsf

Chapter 12 • Combining Different Scripting Languages 303

If the two jobs in the Windows Script Files have been assigned job IDs of job1 and job2, you can selec-
tively execute either job by specifying its ID:

wscript TestWsfScript.wsf //job:job2

Back to the VBScript Game Console
The VBScript game console project is actually a Windows Script File designed to display a list of VBScript
games that is dynamically generated based on the contents of a game folder. Once started, the VBScript
game console gives the user easy access to any VBScript games that you have stored in the game folder.

The VBScript game console is actually made up of three different scripts, two written in JScript and the
other in VBScript. The rest of this chapter explains how the VBScript game console is built.

Designing the Game Console
The VBScript game console consists of three scripts written using two different WSH-supported scripting
languages, VBScript and JScript. Because JScript is a full-featured scripting language in its own right, I won’t
be able to go into great detail about its syntax or structure. However, I’ve tried to organize this Windows
Script File in such a way as to ensure that the JScript you see is not overly complex. Hopefully, given the
comments I have added to each script, you will be able to understand what’s happening in each JScript.

The VBScript game console will be created in four stages:

• Stage 1: Create a WSF and add the XML statements required to define the script’s structure.

• Stage 2: Create the first JScript, which will be responsible for displaying the VBScript game console’s

initial splash screen and determining whether the user wants to open the console.

• Stage 3: Design the Windows Script File’s VBScript, wherein the logic that controls the operation

of the game console is stored.

• Stage 4: Create a second JScript, which is responsible for displaying the VBScript game console’s

closing splash screen.

Using XML to Outline the Script’s Structure
The first stage in developing the VBScript game console involves two activities. First, create a new file and
save it with a .wsf file extension, thus creating a new Windows Script File. Second, add the XML tags
required to outline the overall structure of the Windows Script File, like this:

<package>

<comment>This .WSF file builds a VBScript game console</comment>

<job>

<resource id=”cTitlebarMsg”>VBScript Game Console</resource>

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition304

Chapter 12 • Combining Different Scripting Languages 305

<script language=”JScript”> </script>

<script language=”VBScript”> </script>

<script language=”JScript”> </script>

<script language=”JScript”> </script>

</job>

</package>

The <package> and </package> tags were not required because this Windows Script File contains only
one job. I added them anyway, just in case I ever decide to expand the script by adding another job. For
example, if script configurations are ever migrated to the Windows Registry, it might be helpful to define
a second job to the Windows Script File specifying a setup script.

The <comment> and </comment> tags were added to help document the function of the Windows Script
File. The opening <job> and closing </job> tags define the Windows Script File’s only job. As only one job
was defined, I did not bother to add the <job> tag’s id attribute. Finally, three separate sets of <script> and
</script> tags have been created, marking the location at which each script that makes up the Windows
Script File will be placed.

Writing the First JScript
Because the focus of this book is on VBScript as a WSH scripting language and not on JScript, I’m not
going to attempt to explain in detail the following JScript. This script is relatively simple, and you should
be able to tell what’s going on by looking at the comments embedded within the script itself.

//***

//Script Name: N/A

//Author: Jerry Ford

//Created: 03/01/14

//Description: Display the WSF's initial splash screen

//***

//Initialization Section

var objWshShl = WScript.CreateObject(“WScript.Shell”);

var strWelcome;

var strInstructions;

var intResults;

var intReply;

var strTitleBarMsg;

strWelcome = “Welcome to the VBScript Game Console. “;

strInstructions = “Click on OK to play a VBScript game!”;

//Main Processing Section

//Verify that the user wants to open the VBScript game console

intReply = DisplayInitialSplashScreen();

//intReply will be set equal to 2 if the user clicks on Cancel

if (intReply == 2) {

//Close the VBScript game console

WScript.Quit();

}

//Procedure Section

//This procedure prompts the user for confirmation

function DisplayInitialSplashScreen() {

strTitleBarMsg = getResource(“cTitlebarMsg”);

//Display pop-up dialog box using the WshShell object’s Popup() method

intResults = objWshShl.Popup(strWelcome +

strInstructions, 0, strTitleBarMsg, 1);

//Return the result to the calling statement

return intResults

}

Trick

One way to develop each of the three scripts used in this Windows Script File is to create each script as
a standalone script and get them all working as expected, and then to cut and paste the scripts into the
Windows Script File in the areas identified for each script by the XML tags.

As you can see, this JScript is broken down into the same three sections that I’ve been using to organize
this book’s VBScripts (that is, the initialization section, the main processing section, and the procedure
section). Comments in JScript are created using the // characters, and I have added a number of them
to the script to explain its operation. The script’s only function, DisplayInitialSplashScreen(), is
responsible for displaying the VBScript game console’s initial splash screen, which it does using the WshShell
object’s Popup() method. JScript does not provide any functions that work similarly to the VBScript
MsgBox() or InputBox() functions. Therefore, to display text in a pop-up dialog box using JScript, you
must use either the WshShell object’s Popup() method or the WScript object’s Echo() method.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition306

Developing the VBScript Game Console
The VBScript portion of the VBScript game console contains the bulk of the complexity and programming
logic. The first step in developing this VBScript is to insert your VBScript template and fill it in, as follows:

‘***

‘Script Name: N/A

‘Author: Jerry Ford

‘Created: 03/01/14

‘Description: Display the VBScript game console interface

‘***

‘Initialization Section

Option Explicit

Defining the Elements in the Initialization Section
Next, let’s define the variables, objects, and array used by the VBScript. In most of the VBScripts that
you’ve seen in this book, I’ve included a constant that defines the title bar message to be displayed in the
script’s pop-up dialog boxes. However, this time I’ve omitted this constant in the VBScript because I have,
instead, defined this value using the <reference> and </reference> tags at the beginning of the Windows
Script File. This allows me to retrieve the constant and create a standard title bar message for every script
defined in the Windows Script File.

Dim objFsoObject, objWshShl, strPlayOrNot, strConsoleStatus

Dim objGameFolder, objGames, strSelection, objWordList

Dim strFileString, intCount, strDisplayString, intNoFilesFound

Dim strTitleBarMsg, intResults, strGamePath

‘Specify the location where the game script files are stored

strGamePath = “C:\VBScriptGames”

Dim ConsoleArray()

‘Set up an instance of the FileSystemObject object

Set objFsoObject = CreateObject(“Scripting.FileSystemObject”)

‘Set up an instance of the WshShell object

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

‘Retrieve the title bar message to the displayed in pop-up dialog boxes

strTitleBarMsg = getResource(“cTitlebarMsg”)

Chapter 12 • Combining Different Scripting Languages 307

Building the Main Processing Section
The statements listed in the main processing section are straightforward. I began by first checking the value
of intResults, which was set by the previous JScript. If intResults is equal to 2, then the player told the
JScript to shut down the game console. However, after executing the WScript object’s Quit() method,
inside the JScript, the WSF script keeps running, executing the VBScript. Therefore, you’ll need to include
this additional check and execute the WScript object’s Quit() method a second time to prevent the VBScript
from displaying the game console.

I then used the FileSystemObject object’s GetFolderMethod() to establish a reference to the location
where the VBScript games to be displayed in the game console are stored. A For Each loop that spins
through the list of files stored in this folder, keeping a record of the number of files counted, is executed.

Trap

As the VBScript is currently written, it expects to find only VBScript files stored in the game folder.
Therefore, no steps have been taken to filter out other file types. If you plan to store different files in the
game folder, you will need to add logic to the VBScript to prevent it from displaying those files as well.

Next, the VBScript’s array is resized according to the number of files found. This array is used to store
the names of each VBScript game and to associate each VBScript game with its assigned number as
shown in the game console’s dialog box. Finally, the ConsoleLoop() function is called. This function is
responsible for the overall operation of the VBScript game console.

‘Main Processing Section

If intResults = 2 Then

WScript.Quit()

End If

‘Specify the location of the folder where game script files are stored

Set objGameFolder = objFsoObject.GetFolder(“C:\VBScriptGames”)

‘Get a list of files stored in the folder

Set objGames = objGameFolder.Files

‘Look and count the number of game script files

For Each objWordList In objGames

intNoFilesFound = intNoFilesFound + 1

Next

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition308

‘Redefine the script’s array based on number of game script files found

ReDim ConsoleArray(intNoFilesFound)

‘Call the function that displays the VBScript game console

ConsoleLoop()

Creating the ConsoleLoop() Function
The VBScript game console is controlled by the ConsoleLoop() function. This function is responsible for
assigning a number to each VBScript, for loading the VBScript’s array, for interrogating user input, and
for performing the appropriate action based on that input.

‘This functions displays the VBScript game console, accepts user

‘input, validates the input, and starts other VBScript games

Function ConsoleLoop()

‘This string contains a list of all the script game files discovered

‘in the target folder

strSelection = “”

‘This counter will be used to track individual script game files and

‘will be kept in sync with array entries

intCount = 0

‘Loop through the list of script game files

For Each objWordList In objGames

‘Build a master string containing a list of all the script game files

‘But exclude the VBScriptGameConsole.wsf file from this list

If objWordList.Name <> “VBScriptGameConsole.wsf” Then

‘Increment count each time through the loop

intCount = intCount + 1

strFileString = strFileString & “ “ & objWordList.Name

‘Build another list, adding number for later display

strSelection = strSelection & intCount & “. “ & _

objWordList.Name & vbCrLf

‘Load the name of each script into the array

Chapter 12 • Combining Different Scripting Languages 309

ConsoleArray(intCount) = objWordList.Name

End If

Next

‘This variable is used to determine when to close the console

strConsoleStatus = “Active”

‘Create loop & keep it running until the user decides to close it

Do Until strConsoleStatus = “Terminate”

‘Interrogate the user’s input

strPlayOrNot = UCase(PickAGame())

‘If the user did not type anything or if he clicked on

‘Cancel then exit the function let things come to an end

If strPlayOrNot = “” Then

Exit Function

End If

‘Define a Select Case statement and use it to test the various

‘possible types of user input

Select Case UCase(strPlayOrNot)

‘If the user typed QUIT then exit the function let things

‘come to an end

Case “QUIT”

Exit Function

‘If the user typed ABOUT call the function that displays

‘additional information about the VBScript game console

Case “ABOUT”

AboutFunction()

‘If the user typed HELP call the function that provides

‘additional help information

Case “HELP”

HelpFunction()

‘Otherwise call the function that runs the selected VBScript

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition310

Case Else

ValidateAndRun()’

End Select

Loop

End Function

Creating the ValidateAndRun() Function
When called by the ConsoleLoop() function, the ValidateAndRun() function, shown here, validates user
input by making sure the user has supplied either a valid game number or valid game name. If a valid
number or name is not supplied, then the function calls the InvalidChoice() function, which displays
a generic error message telling the user how to properly operate the VBScript game console. If a valid
number or name is supplied, then the function calls the RunScript() function, which then executes the
specified VBScript game.

‘This function validates user input and if appropriate calls

‘functions that display further instructions or run the selected

‘VBScript

Function ValidateAndRun()

‘Check to see if the user provided a valid game number

If IsNumeric(strPlayOrNot) <> 0 Then

‘Make sure that the user did not type a negative number

If strPlayOrNot > 0 Then

‘Make sure that the user did not type an invalid number

If CInt(strPlayOrNot) <= CInt(intCount) Then

‘If the number is valid then find the associated script

strPlayOrNot = ConsoleArray(strPlayOrNot)

‘Call the procedure that will then run the selected script

RunScript()

Else

‘Call this procedure if the user has not typed a valid

‘script number

InvalidChoice()

End If

Else

InvalidChoice()

End If

Chapter 12 • Combining Different Scripting Languages 311

‘Check to see instead if the user provided a valid game name

Else

‘Proceed only if the input typed by the user is a valid VBScript

‘game (e.g. its name appears in the previously built list of

‘VBScript game names

If InStr(1, strSelection, strPlayOrNot, 1) > 1 Then

‘If the user didn’t type the .vbs file extension, add it

If InStr(1, strPlayOrNot, “.VBS”, 1) = 0 Then

strPlayOrNot = strPlayOrNot & “.vbs”

‘Recheck to make sure that the script name is still valid

If InStr(1, strSelection, strPlayOrNot, 1) > 1 Then

‘Call the procedure that runs the selected script

RunScript()

Else

‘Call this procedure if the user has not typed a valid

‘script name

InvalidChoice()

End If

Else

‘If the user specified the script’s .vbs file extension and

‘it is found in the previously built list of VBScript game

‘names then go ahead and call the procedure that will run

‘the script

If InStr(1, strSelection, strPlayOrNot, 1) > 1 Then

RunScript()

Else

‘Run this procedure if user fails to supply valid input

InvalidChoice()

End If

End If

Else

‘If user-supplied input is not found in the previously

‘built list of VBScript game names, call this procedure

InvalidChoice()

End If

End If

End Function

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition312

Creating the PickAGame() Function
The PickAGame() function, shown next, is charged with displaying the contents of the VBScript game
console whenever it is called. It does this by first building a primary display string that consists of a list
of all VBScript games that have been found, as well as instructions for getting help, information about
the script and its author, and information about closing the game console.

The display string, which is aptly named DisplayString, is then plugged into a VBScript InputBox()
function, thus displaying information about your VBScript games and providing the user with a means
of selecting those games.

‘This function displays the main VBScript game console and collects

‘user input

Function PickAGame()

strDisplayString = strSelection & vbCrLf & _

“Or Type: [Help] [About] [Quit]” & vbCrLf

PickAGame = InputBox(“W e l c o m e t o t h e” & vbCrLf & _

vbCrLf & “V B S c r i p t G a m e C o n s o l e !” & _

vbCrLf & vbCrLf & “Pick a Game:” & vbCrLf & vbCrLf & _

strDisplayString, strTitleBarMsg, “”, 50, 50)

End Function

By default, all WSH and VBScript pop-up dialog boxes are displayed in the middle of the display area.
However, in the previous example I specified values of 50 and 50 as the last two attributes of the InputBox()
function. These two values specify the location where the pop-up dialog box should be displayed on the
user’s screen. In this case, the pop-up dialog box will be displayed in the upper-left corner of the screen.
This keeps it handy without crowding the display area in the middle of the screen, where the VBScript
games are displayed.

Creating the RunScript() Function
The RunScript() function, shown here, is very straightforward. When called, it uses the WshShell object’s
Run() method to execute the VBScript selected by the user, as specified in the variable called PlayOrNot.

‘This function starts the VBScript selected by the user

Function RunScript()

objWshShl.Run “WScript “ & strGamePath & “\” & strPlayOrNot

End Function

Creating the InvalidChoice() Function
The InvalidChoice() function, shown next, is responsible for displaying a generic error message using
the VBScript MsgBox() function whenever the user provides the VBScript game console with invalid

Chapter 12 • Combining Different Scripting Languages 313

input. Examples of invalid input include numbers that have not been assigned to a VBScript listed in the
console, such as –4 or 9999, as well as misspelled names of listed VBScript games.

‘This function is called whenever the user provides invalid input

Function InvalidChoice()

MsgBox “Sorry. Your selection was not valid. A valid “ & _

“selection consists of one of the following:” & vbCrLf & _

vbCrLf & “* The number associated with one of the listed “ & _

“VBScript games” & vbCrLf & “* The name of a listed “ & _

“VBScript game” & vbCrLf & “* The name of a listed “ & _

“VBScript game plus its file extension” & vbCrLf & _

“* Help - To view help information.” & vbCrLf & _

“* About - To view additional information about this game “ & _

“and its Author” & vbCrLf & “* Quit - To close the “ & _

“VBScript Game Console” & vbCrLf & vbCrLf & _

“Please try again.”, , strTitleBarMsg

End Function

Creating the HelpFunction() Function
The HelpFunction() function, shown next, uses the VBScript MsgBox() function to display additional help
information about the VBScript game console. It is called anytime the user types help and clicks OK.

‘This function displays help information in a pop-up dialog box

Function HelpFunction()

MsgBox “Additional help information for the VBScript Game “ & _

“Console can be found at:” & vbCrLf & vbCrLf & _

“www.xxxxxxxx.com.”, , strTitleBarMsg

End Function

Creating the AboutFunction() Function
The final function in the VBScript, shown next, is responsible for displaying information about the
VBScript game console and its author. It is called whenever the user types about in the VBScript game
console and clicks OK. As you can see, the function consists of a single statement that uses the MsgBox()
function. The information included here is really just a brief template; I leave it to you to finish adding
whatever content you think is appropriate.

‘Display information about the VBScript game console and its author

Function AboutFunction()

MsgBox “VBScript Game Console © Jerry Ford 2014” & vbCrLf & _

vbCrLf & “Email the author at: xxxxx@xxxxxxxx.com.”, , strTitleBarMsg

End Function

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition314

Writing the Second JScript
The final script defined in this Windows Script File, shown next, is JScript. It displays the game’s closing
splash screen and is designed in the same basic manner as the first JScript, using the WshShell object’s
Popup() method to display its graphical pop-up dialog box.

//**

//Script Name: N/A

//Author: Jerry Ford

//Created: 03/01/14

//Description: Display the WSF's closing splash screen

//**

//Initialization Section

var objWshShl = WScript.CreateObject(“WScript.Shell”);

var strMessage;

var strAuthor;

var dtmDate;

var strTitleBarMsg;

strMessage = “Thank you for using the VBScript Game Console © “;

strAuthor = “Jerry Ford “;

dtmDate = “2014”;

//Main Processing Section

strTitleBarMsg = getResource(“cTitlebarMsg”);

//Display a pop-up dialog box using the WshShell object’s Popup() method

objWshShl.Popup(strMessage + strAuthor + dtmDate, 0, strTitleBarMsg);

The Final Result
That’s it. If you have not already done so, go ahead and assemble the entire Windows Script File. Before you
run it for the first time, be sure you’ve first created a folder called C:\VBScriptGames and that you’ve copied
both the VBScript game console script as well as a few other of your VBScript games into the folder.

Chapter 12 • Combining Different Scripting Languages 315

Summary
In this chapter, you learned how to combine two or more different scripts into a single script using Windows
Script Files. Windows Script Files are created using XML and a combination of different scripting languages.
In addition, you got the opportunity to demonstrate your ability to work with Windows Script Files by
developing the VBScript game console.

At this point, you should have a solid understanding of both VBScript and the WSH and should feel con-
fident not just in your game-development capabilities but also your ability to apply the knowledge and
skills you’ve learned here in real-world situations.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition316

Working with the
Windows Management

Instrumentation

13
T

his book has demonstrated the power and flexibility of the WSH and VBScript. This
included teaching you how to develop scripts that are capable of interacting with
both the Windows file system and Registry and of executing system commands to

perform all kinds of administrative tasks. All these types of tasks were performed using
different WSH and VBScript objects and their associated properties and methods. In addi-
tion to administering system resources using WSH and VBScript objects, the WSH also
enables you to interact with the Windows Management Instrumentation, or WMI, to query
and interact with managed resources available on your computer and network. In this
chapter, you will learn the following:

• About the WMI infrastructure

• The basic steps involved in retrieving WMI data and scripting WMI tasks

• How to work with the WMI Query Language

• How to develop VBScripts that execute WMI queries

Introducing the Windows Management Instrumentation
The Windows Management Instrumentation (WMI) is Microsoft’s primary systems and
applications management support technology for its Windows operating systems. The WMI
provides the infrastructure through which Windows resources are accessed and managed.
The WMI also provides a framework through which Windows resources are defined and
exposed, making them available for monitoring and configuration, thus providing a means
for administrating system, application, and network resources.

Through interaction with the WMI, you can create and execute VBScripts that execute under the control
of the WSH, which are capable of reporting on, interacting with, and administering many different
resources, such as available disk space, the motherboard, and virtual memory. As will be demonstrated,
the WMI provides the ability to access and manage a host of different resources, including the following:

• The file system

• Event logs

• Printers

• Disk drives

• The Registry

• Shares

• Active processes

• Services

• The scheduler

• Performance data

• Network services (DHCP, DNS, and SNMP)

• System hardware (motherboard, memory, etc.)

In addition to providing access to data for all of these resources, the WMI also supports the ability to set
up the real-time monitoring of resources such as the generation of event log records or the modification
of the Windows Registry or file system.

Microsoft originally released the WMI as part of Service Pack 4 for Windows NT back in 1998. It has since
come pre-installed on all Windows computers starting with Windows 2000. The WMI is actually a Microsoft
implementation of a Web-Based Enterprise Management (WBEM) standard. WMI also complies with the
Common Information Model (CIM) standard. Both of these standards were developed by the Distributed
Management Task Force, also known as the DMTF.

Hint

The DMTF is an industry consortium composed of more than 100 companies, like Microsoft, IBM, Intel, Dell,
Hewlett-Packard, and Oracle. It is dedicated to the development of standards for systems manageability.
You can learn more about it by visiting its website at www.dmtf.org/home.

Among the benefits of the WMI is the ability to locally and remotely manage computers running
Microsoft operating systems. Thus, using a scripting language like VBScript, along with the WSH, you
can programmatically interact with and manage just about every major component that operates on a
Windows computer, both hardware and software. The WMI also provides access to network resources,
including DNS and DHCP, enabling the administration of different network resources. The WMI also
supports the remote administration of Windows computers across a network, provided that administra-
tors executing the scripts have the appropriate access permissions to resources on remote systems.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition318

http://www.dmtf.org/home

WMI Infrastructure Overview
The WMI framework is composed of an architecture that is made up of three primary parts:

• Consumers. A script, application, or management utility that accesses and administers managed

resources using the WMI infrastructure.

• The WMI infrastructure. Four components (WMI scripting library, CIM object manager, WMI

providers, and Common Information Model) that provide the framework through which managed

resources are defined and accessed.

• Managed resources. Physical or logical components (such as a disk drives and Windows services)

that are exposed by the WMI, allowing data to be collected regarding the state of resources and for

resources to be monitored and managed.

Figure 13.1 provides a depiction of how these different components interact and work together to sup-
port the operation of the WMI.

A high-level understanding of what each of the components shown in Figure 13.1 does is essential to
understanding how to work with the WMI and is provided in the sections that follow.

Chapter 13 • Working with the Windows Management Instrumentation 319

Figure 13.1 A depiction of the components that
make up the WMI infrastructure. © 2014 Cengage Learning.

Identifying WMI Consumers
The management resources exposed by the WMI are made available to WMI consumers. A WMI consumer
is any script, program, or utility that accesses and administers managed resources via the WMI infrastruc-
ture. WMI consumers occur in many forms, including enterprise management applications like Microsoft
Systems Management Server and VBScripts executed by the WSH. This chapter will demonstrate how to
develop VBScripts, which as WMI consumers, access and administer Windows resources.

Examining the WMI Infrastructure
The WMI infrastructure consists of four major components. It is through these four components that
managed resources are exposed, accessed, and managed. The components are as follows:

• WMI scripting library. This is a collection of objects that offer access to the WMI infrastructure,

providing you with everything needed to programmatically retrieve WMI data and administer

managed resources.

• CIM object manager (CIMOM). This is the WMI component responsible for managing the

exchange of data between consumer applications and WMI providers.

• Common Information Model (CIM). This is a repository used to store and manage all WMI

namespaces, which contain class definitions for every managed resource.

• WMI providers. These serve as an interface through which the WMI interacts with and manages

resources.

The WMI Scripting Library
To develop WMI consumers using VBScript, you need to learn how scripts interact with the WMI script-
ing library. The WMI scripting library facilitates the scripting of WMI-managed resources by providing
access to a set of objects that allow you access to the WMI infrastructure. The objects provide a consis-
tent interface for accessing the WMI infrastructure.

As you will learn later in this chapter, you can access WMI resources from within VBScripts by connect-
ing to the WMI service and then retrieving an instance of a WMI managed resource with which you can
access properties and methods belonging to specific types of WMI classes. You can also execute queries
that retrieve data based on your specified criteria.

The CIM Object Manager
The CIM object manager, or CIMOM, manages the exchange of data between providers and consumers.
In addition to managing the retrieval of data from managed resources, the CIMOM also serves as the
interface through which consumers access the WMI and submit requests.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition320

The CIMOM provides a range of services on behalf of the WMI, including the following:

• Query management. CIMOM allows consumers to submit queries that collect WMI information

using the WMI Query Language (WQL).

• Routing management. CIMOM automatically routes information requests to the appropriate

provider to retrieve data for a specified managed resource.

• Remote access management. CIMOM facilitates remote access to network computers by establish-

ing connections to the CIMOM running on other network computers.

• Provider registration. CIMOM allows providers to register with the WMI and to identify the

types of data and tasks they can perform.

• WMI security. CIMOM restricts access to WMI resources by ensuring that the user has appropriate

security permissions.

The CIMOM retrieves information from the Common Information Model (CIM). This enables the CIMOM
to determine which provider to hand off requests to in order to fulfill WMI requests.

The Common Information Model
The WMI maintains information about the different types of resources through class definitions stored
in the Common Information Model, or CIM. The CIM serves as a repository for information collected by
WMI providers and is responsible for managing the definitions for all repository objects.

The CIM is an object-oriented repository that defines all the different objects that make up a managed
system. The CIM organizes this information into classes. A class defines all the properties and methods
that describe and control the interaction of managed resources. The CIM stores classes using a hierarchy,
similar to the way Windows manages the Windows file system. Within this hierarchy, the term namespace is
roughly equivalent to that of a file system’s folder.
The CIM maintains namespaces in a hierarchy,
where child classes inherit attributes from their
parent classes. An example of a namespace is the
root\cimv2 namespace, within which a series of
classes is stored that define managed resources
for the computer and its operating system.

The CIM contains a class for every managed resource. For example, the Win32_OperatingSystem class
represents the computer’s operating system. This class defines an abundance of properties and methods.
One such property is BootDevice, which identifies the disk drive used to load the Windows operating
system when the computer is started. This class defines
numerous methods, including the Win32Shutdown
method, which can be used to shut down a computer
using any of the options supported by Windows (log
off, shutdown, reboot, etc.).

Chapter 13 • Working with the Windows Management Instrumentation 321

A class is a template used to define and
create objects, which include properties that
describe object attributes and methods for
interacting with and controlling objects that
are instantiated based on the class.D

ef
in

it
io

n

A namespace is a hierarchal container
used to organize and maintain relation-
ships between classes.

D
ef

in
it

io
n

You will see examples of scripts that demonstrate how to work with and extract data using a number of
different classes in this chapter. These classes include the following:

• Win32_Service

• Win32_BIOS

• Win32_BaseBoard

• Win32_NTLogEvent

• Win32_OperatingSystem

Hint

Within the CIM, classes are used to outline descriptions of managed resources. Because of the dynamic
nature of computer systems, data about managed resources is not stored in the CIM. Instead it is collected
when needed, ensuring that it is always up to date and accurate. To interact with specific managed
resources, you must instantiate specific instances of objects, using the appropriate classes as the basis
for instantiating the objects.

Working with WMI Providers
The WMI provides access to managed resources through providers. Providers serve as intermediaries
between the WMI, or more specifically the CIMOM, and the different parts of the operating system, net-
work, and applications. A different WMI provider exists for each type of managed resource.

WMI providers are responsible for collecting data from managed resources and for sending management
instructions to them. Examples of providers include the Win32, Event Log, Registry, and Active Directory
providers. The Win32 provider gives you access to information about the computer, including the file
systems, disk drives, operating system, services, printers, shares, etc. The Event Log provider offers the
ability to access, read, delete, copy, and monitor event logs. The Registry provider offers the ability to pro-
grammatically access, modify, and delete Registry keys and values. The Active Directory provider allows
you to interact with and manage Active Directory objects.

The WMI is an extensible framework, enabling software developers to develop additional providers to expose
different parts of their applications, thus allowing their management through WMI. Examples of such
applications include the Internet Information Server and Systems Management Server applications.

Hint

To learn more about the different types of WMI providers now available, visit the “WMI Providers” page
at http://msdn.microsoft.com/en-us/library/aa394570(VS.85).aspx.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition322

http://msdn.microsoft.com/en-us/library/aa394570(VS.85).aspx

Identifying Managed Resources
A managed resource is any hardware or software component exposed by the WMI (for which a class has
been defined). The WMI uses providers to communicate with managed resources. Managed resources
include such things as the Windows file system, disk drives, event logs, printers, the Registry, the mother-
board, processes, services, and shares.

Scripting the WMI
Thanks to the WMI scripting library, you can create
scripts that interact with the WMI. These scripts can
execute locally on your computer or remotely, across
a network, on any computer for which you have administrative access. The scripts that you execute do
not have to be pre-deployed on remote computers. The WMI will automatically create a temporary copy
of any script that it is asked to execute to the remote computer, significantly simplifying the overall effort
involved.

Developing WMI Scripts
As you are about to learn, most VBScripts that interact with the WMI do so by executing three basic steps:

1. Connecting to the WMI

2. Retrieving access to a WMI-managed resource

3. Retrieving results or executing class methods

To connect to the WMI, either on your own computer or remotely to a networked computer, you call
upon the GetObject function, passing it the name of the WMI scripting library and of the computer on
which the script is to execute, as demonstrated here:

set WMIServices = GetObject(“winmgmts:\\DELL-PC”)

The WMI moniker is “winmgmts:”. The name of the computer is formed by typing the characters \\ fol-
lowed by the computer’s name. Specifying your computer’s name allows you to execute your VBScript
locally on your computer. By specifying the name of a remote computer, you can execute your script on
a different network computer, provided you have permission to do so. As an alternative to specifying the
name of your computer to run a script locally, you may instead execute the script locally by substituting
“.” in place of the computer’s name. As such, you could rewrite the following statement

Set WMIServices = GetObject(“winmgmts:\\DELL-PC”)

as shown here:

Set WMIServices = GetObject(“winmgmts:\\.”)

Chapter 13 • Working with the Windows Management Instrumentation 323

A managed resource is a hardware or
software component that is exposed
and therefore manageable by the WMI.

D
ef

in
it

io
n

Trick

A quick and easy way to determine a computer’s name is to log on to it and type hostname at the command
prompt, as demonstrated here:

C:\Users\Jerry>hostname

DELL-PC

Here, the computer’s name is DELL-PC.

Once executed, the GetObject function returns a reference to an object named SWbemServices, which is
one of the objects that the WMI makes available through its scripting library. The SWbemServices object
has a method named InstancesOf, which you can use to retrieve data from a specified WMI class, as
demonstrated here:

set WMICollection = WMIServices.InstancesOf(“Win32_OperatingSystem”)

The InstancesOf method retrieves a collection named SWbemObjectSet, which is automatically populated
with a list of all instances of the managed resources identified for the specified class name. Each item
in the SWbemObjectSet collection represents an instance of the specified managed resource. Once the
SWbemObjectSet collection has been generated, you can process its contents and use different SWbemObject
properties and methods.

Retrieving Operating System Data
Okay, that’s enough information about the WMI’s architecture. It is time to begin putting your newfound
understanding of the WMI to work. Let’s begin by developing a script that demonstrates how to retrieve
information about the operating system on which the script executes. This script, named GetOSInfo.vbs,
is shown here:

‘***

‘Script Name: GetOSInfo.vbs

‘Author: Jerry Ford

‘Created: 03/06/14

‘Description: This script demonstrates how to use WMI to retrieve

‘ operating system information

‘***

‘Initialization Section

Option Explicit

‘Main Processing Section

DisplayData(“DELL-PC”) ‘Set the computer on which the script will execute

WScript.Quit() ‘Terminate script execution

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition324

‘Procedure Section

‘This function retrieves and displays operating system information

Function DisplayData(trgtSystem)

DIM WMIServices, WMICollection, WMIObject

Set WMIServices = GetObject(“winmgmts:\\” & trgtSystem)

Set WMICollection = WMIServices.InstancesOf(“Win32_OperatingSystem”)

For Each WMIObject In WMICollection

Wscript.Echo “Operating System: “ & WMIObject.Caption

Wscript.Echo “OS Version Number: “ & WMIObject.Version

Wscript.Echo “OS Manufacturer: “ & WMIObject.Manufacturer

Wscript.Echo “Service Pack: “ & WMIObject.ServicePackMajorVersion

Wscript.Echo “SystemDirectory: “ & WMIObject.SystemDirectory

Next

End Function

This script executes a function named DisplayData(), passing it the name of the computer upon which
the script should execute. Once executed, the DisplayData() function uses the GetObject method to
retrieve a reference to the SWbemServices object. Next, using the InstancesOf method and the
Win32_OperatingSystem class, a collection representing the Windows operating system is returned. (Because
the computer has a single operating system, the collection consists of a single entry.) This class provides
access to dozens of properties that contain information about the operating system, a few of which are
displayed when the script’s loop executes. Figure 13.2 shows the output generated when I executed this script
on a computer running Windows 7.

Chapter 13 • Working with the Windows Management Instrumentation 325

Figure 13.2 Using the WMI to retrieve and
display information about the computer upon
which the VBScript is executed.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

Hint

The WMI maintains a WMI class for every managed resource. To learn more about the different types
of WMI classes now available, visit the “WMI Classes” page at http://msdn.microsoft.com/en-us/library/
aa394554(VS.85).aspx.

Retrieving Information About Windows Services
As the following script will demonstrate, you can use this same basic set of steps to retrieve and display
information about any managed resource. Consider, for example, the following script, which is almost
identical to the script that was provided in the previous section. The only difference here is that instead
of referencing the Win32_OperatingSystem class, this script references the Win32_Service class, along
with properties provided by that class.

‘***

‘Script Name: GetServicesInfo.vbs

‘Author: Jerry Ford

‘Created: 03/06/14

‘Description: This script demonstrates how to use WMI to retrieve

‘ information about Windows services

‘***

‘Initialization Section

Option Explicit

‘Main Processing Section

DisplayData(“.”) ‘Set the local system as the target

WScript.Quit() ‘Terminate script execution

‘Procedure Section

‘This function displays the amount of physical memory on the target system

Function DisplayData(trgtSystem)

DIM WMIServices, WMICollection, WMIObject

Set WMIServices = GetObject(“winmgmts:\\” & trgtSystem)

Set WMICollection = WMIServices.InstancesOf(“Win32_Service”)

For Each WMIObject In WMICollection

WScript.Echo “Name: “ & WMIObject.DisplayName & vbCrLf & _

“State: “ & WMIObject.State

Next

End Function

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition326

http://msdn.microsoft.com/en-us/library/aa394554(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa394554(VS.85).aspx

Chapter 13 • Working with the Windows Management Instrumentation 327

Hint

Note the use of “.” in place of a hard-coded computer name in this example. This makes it easier to
copy the script to another computer and run it locally; you won’t have to first remember to modify the
script to reflect the computer’s name.

The Win32_Service class represents the services running on a Windows computer. Its properties contain
information about the current status of the service and its methods allow you to manage that service.
Because the Windows operating system runs many services, the results that are displayed when the script
executes will not all fit on the command console. Figure 13.3 shows the results returned when this script was
executed on a computer running Windows 7.

Executing WMI Queries
In addition to collecting data by retrieving instances of specified managed resources, you can also use the
WMI Query Language (WQL) to submit queries that, when processed, retrieve information for any match-
ing WMI resources. The WQL is a retrieval-only language, derived from the standard SQL language. It
consists of a small collection of statements, as outlined in Table 13.1.

Figure 13.3 Retrieving information about all the services currently running on the computer where
the script was executed. © 2014 Microsoft Corporation. Used with permission from Microsoft.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition328

Keyword Description

and Returns a result of true if the result returned by both of two combined Boolean
expressions is equal to true

associators of Returns a list of every instance of a given resource type

class Refers to the class associated with a specified query object

from Specifies the class to be used in the select statement

group clause Instructs the WMI to create a single notification representing a group of events

having Refines a select statement query by specifying the type of events to be
processed during the group interval by the within keyword

is Performs a comparison of query data

isa Performs a comparison against the subclasses belonging to a specified class

keysonly Reduces query overhead by populating query results with the keys of instances
produced by references of and associations of queries

like Refines query results by determining whether a string appears within the query results

not Inverts the logic used when processing query results

null A value that indicates that an object does not have an assigned value

or Combines two conditions when formulating a query

references of Returns all instances that refer to a specified source instance

select Indicates specific properties to be used when formulating a query

true A Boolean value representing a true result

where Refines a query’s scope by allowing the specification of required criteria

within Sets the polling or grouping interval to be used by an event query

false A Boolean value representing a false result

TA B L E 13 .1  WQL K E Y W O R D S

In addition to its language keywords, the WQL also supports a standard set of comparison operators that
you can use in conjunction with the where keyword when developing select clauses. These operators are
listed is Table 13.2.

The next couple of examples will demonstrate how to integrate WQL queries into your VBScripts.

Hint

The WQL does not permit the creation of cross-namespace queries, limiting you to query a single class
at a time.

© Jerry Lee Ford, Jr. All Rights Reserved.

Retrieving Event Log Records
As an initial example of how to work with the WQL, let’s look at a script that retrieves event log records from
the Windows System event log. To write this script, shown here, you will need to use the WMI ExecQuery
method in place of the InstancesOf method.

‘***

‘Script Name: GetEventLogInfo.vbs

‘Author: Jerry Ford

‘Created: 03/06/14

‘Description: This script demonstrates how to use WMI to retrieve

‘ records from the Windows event log

‘***

‘Initialization Section

Option Explicit

‘Main Processing Section

DisplayData(“.”) ‘Set the local system as the target

WScript.Quit() ‘Terminate script execution

‘Procedure Section

‘This function retrieves and displays operating system information

Function DisplayData(trgtSystem)

DIM WMIServices, WMICollection, WMIObject

Chapter 13 • Working with the Windows Management Instrumentation 329

Operator Description

= Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

!= Not equal to

<> Not equal to

TA B L E 13 .2 WMI Q U E R Y L A N G U A G E O P E R AT O R S

© Jerry Lee Ford, Jr. All Rights Reserved.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition330

Set WMIServices = GetObject(“winmgmts:\\” & trgtSystem)

Set WMICollection = _

WMIServices.ExecQuery(“Select * from Win32_NTLogEvent where “ & _

“LogFile = ‘System’ and EventType = 1”, , 48)

For Each WMIObject In WMICollection

Wscript.Echo “Operating System: “ & WMIObject.Message

Next

End Function

As this example demonstrates, when working with the ExecQuery method, you must pass it a query string
that identifies the WMI class that you want to access. Here, the query string begins with the Select key-
word followed by the * character, which instructs the WMI to return all matching instances from the
Win32_NTLogEvent class. Next, the where keyword is used to refine the query. When used, the where keyword
creates a clause made up of a class property, an operator, and a constant value. In the case of this script,
two properties are specified, LogFile and EventType, and the equals operator is used. Figure 13.4 pro-
vides an example of the type of output that you might see when this example is executed on a computer
running Windows 8.1. System is specified as the value for LogFile, and 1 is specified for EventType.

Hint

You can modify the script to work with different event logs by specifying a different log name, such as
application. By setting EventType to 1, you instructed the query to retrieve error records. You could just
as easily assign a value of 2 to retrieve warning records, 3 for information records, 4 for security audit
success, or 5 for security audit failure records.

Figure 13.4 Using the
WMI to retrieve error records
from the System event log.

© 2014 Microsoft Corporation.
Used with permission from Microsoft.

Trap

Depending on how large your event log files are, this script may take a considerable amount of time to
execute.

Retrieving BIOS Information
This next example demonstrates how to formulate a query that retrieves BIOS information, demon-
strating WMI’s ability to collect and process data that would otherwise be difficult to obtain.

‘***

‘Script Name: GetBIOSInfo.vbs

‘Author: Jerry Ford

‘Created: 03/06/14

‘Description: This script demonstrates how to use WMI to retrieve

‘ System BIOS information

‘***

‘Initialization Section

Option Explicit

‘Main Processing Section

DisplayData(“.”) ‘Set the local system as the target

WScript.Quit() ‘Terminate script execution

‘Procedure Section

‘This function retrieves and displays operating system information

Function DisplayData(trgtSystem)

DIM WMIServices, WMICollection, WMIObject

Set WMIServices = GetObject(“winmgmts:\\” & trgtSystem)

Set WMICollection = WMIServices.ExecQuery(“Select * from Win32_BIOS”, , 48)

For Each WMIObject In WMICollection

Wscript.Echo “Name: “ & WMIObject.Name

Wscript.Echo “Manufacturer: “ & WMIObject.Manufacturer

Wscript.Echo “Serial Number: “ & WMIObject.SerialNumber

Wscript.Echo “Version: “ & WMIObject.Version

Wscript.Echo “Status: “ & WMIObject.Status

Next

End Function

Chapter 13 • Working with the Windows Management Instrumentation 331

As you can see, this query retrieves all available records using the Win32_BIOS class and then displays a
subset of the information that is available by referencing Win32_BIOS class properties. Figure 13.5 shows
the output produced when this script was executed on a computer running Windows 8.1.

Retrieving Motherboard Data
In addition to retrieving operating system and BIOS information, the WMI also puts motherboard infor-
mation at your fingertips, as demonstrated in the following script:

‘***

‘Script Name: GetMotherBoardInfo.vbs

‘Author: Jerry Ford

‘Created: 03/06/14

‘Description: This script demonstrates how to use WMI to retrieve

‘ motherboard information

‘***

‘Initialization Section

Option Explicit

‘Main Processing Section

DisplayData(“.”) ‘Set the local system as the target

WScript.Quit() ‘Terminate script execution

‘Procedure Section

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition332

Figure 13.5 Formulating a WMI
query to retrieve information about
the computer’s BIOS.

© 2014 Microsoft Corporation.
Used with permission from Microsoft.

‘This function retrieves and displays operating system information

Function DisplayData(trgtSystem)

DIM WMIServices, WMICollection, WMIObject

Set WMIServices = GetObject(“winmgmts:\\” & trgtSystem)

Set WMICollection = _

WMIServices.ExecQuery(“Select * from Win32_BaseBoard”, , 48)

For Each WMIObject In WMICollection

Wscript.Echo “Name: “ & WMIObject.Name

Wscript.Echo “Manufacturer: “ & WMIObject.Manufacturer

Wscript.Echo “Status: “ & WMIObject.Status

Wscript.Echo “Class Name: “ & WMIObject.CreationClassName

Wscript.Echo “Version: “ & WMIObject.Version

Next

End Function

As you can see, this script’s WMI query pulls data from the Win32_BaseBoard class. Figure 13.6 shows an
example of the output produced when this script was executed on a computer running Windows 8.1.

Hint

Not all motherboards report the same data. Do not be surprised if you run this script on your computer
and some of the specified properties are not reported.

Chapter 13 • Working with the Windows Management Instrumentation 333

Figure 13.6 Using the WMI to
retrieve information about your
computer’s motherboard.

© 2014 Microsoft Corporation.
Used with permission from Microsoft.

Using the WMI to Manipulate Managed Resources
So far, all of the examples that you have seen have demonstrated how to retrieve and display WMI infor-
mation. However, as the following example demonstrates, in addition to retrieving WMI data, you can
also use the WMI to interact with and administer managed resources, which in the case of the following
example happen to be Windows services.

‘***

‘Script Name: WMIServiceCycler.vbs

‘Author: Jerry Ford

‘Created: 03/06/14

‘Description: This script demonstrates how to use VBScript to stop and

‘ start Windows services.

‘***

‘Initialization Section

Option Explicit

Dim strServiceToManage

‘Main Processing Section

‘Prompt the user to specify the name of the service to cycle

strServiceToManage = InputBox(“What service would you like to cycle?”)

‘Call the procedure that stops a service

StopService(strServiceToManage)

‘Pause for 5 seconds

WScript.Sleep(5000)

‘Call the procedure that starts a service

StartService(strServiceToManage)

‘Terminate script execution

WScript.Quit()

‘Procedure Section

‘This subroutine stops a specified service

Function StopService(ServiceName)

Dim wbemService, listOfServices, windowsService

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition334

Set wbemService = GetObject(“winmgmts:\\.”)

Set listOfServices = wbemService.InstancesOf(“Win32_Service”)

For Each windowsService In listOfServices

If windowsService.Name = ServiceName Then

MsgBox(“Stopping “ + windowsService.Name)

windowsService.StopService

End If

Next

End Function

‘This subroutine starts a specified service

Function StartService(ServiceName)

Dim wbemService, listOfServices, windowsService

Set wbemService = GetObject(“winmgmts:\\.”)

Set listOfServices = wbemService.InstancesOf(“Win32_Service”)

For Each windowsService In listOfServices

If windowsService.Name = ServiceName Then

MsgBox(“Starting “ + windowsService.Name)

windowsService.StartService

End If

Next

End Function

When executed, this script begins by displaying a pop-up dialog box that requests the name of the Windows
service to be stopped and then restarted. Figure 13.7 shows the pop-up dialog box that is displayed when
the script is first started on a computer running Windows 8.1.

Chapter 13 • Working with the Windows Management Instrumentation 335

Figure 13.7 The script needs to know the name of the service that you want to cycle.
© 2014 Cengage Learning.

Next, a function named StopService() is called and passed the name of the service as an argument. The
script then pauses its execution for five seconds before calling on a function named StartService(), pass-
ing it the name of the service so that it can be restarted. Both the StopService() and the StartService()
functions start by connecting to the WMI and then use the Win32_Service class to generate a list of
Windows services. When executed, the StopService() function stops the specified service, passed to it
as an argument using the StopService() method. Similarly, the StartService() function uses the
StartService() method to start the service back up again. Figure 13.8 shows the two pop-up dialog boxes
that are displayed by these two functions when the script executes on a computer running Windows 8.1.

Locating CIM Information
The CIM is the repository used to store and organize all the classes managed by the WMI. As mentioned,
the WMI organizes classes into a hierarchy of namespaces. The hardest thing about working with the
WMI is arguably finding the class that you need to work with when developing an administrative script.
One excellent source of documentation regarding WMI classes is maintained at the Microsoft TechNet
website at http://msdn.microsoft.com/en-us/library/aa394554(v=vs.85).aspx (see Figure 13.9).

Here you will not only find a listing of class names but, by drilling down into specific classes, you’ll get lists
of all the properties and methods defined in specific classes. Not all classes are available on all Windows
operating systems; by referring to this WMI documentation, you can save yourself a great deal of frustration
and confusion when you write script that works correctly on one type of Windows operating system but
not another.

Summary
In this chapter, you learned how the WMI is architected and how its different components work together
to facilitate the administration of managed resources. This chapter demonstrated how to retrieve and
process WMI data using different classes. You learned how to use the WMI Query Language to formu-
late queries and retrieve WMI data and then learned how to incorporate the WMI into your VBScripts.
In addition to using the WMI to retrieve data provided by different managed resources, you also learned
how to use the WMI to interact with and administer resources. Lastly, you learned where to go online to
learn more about the different providers, classes, properties, and methods supported by the WMI.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition336

Figure 13.8 The script ensures that the administrator is kept aware of its actions.
© 2014 Cengage Learning.

http://msdn.microsoft.com/en-us/library/aa394554(v=vs.85).aspx

Chapter 13 • Working with the Windows Management Instrumentation 337

Figure 13.9 Visit the Microsoft Developer Network for more information on WMI classes.
© 2014 Microsoft Corporation. Used with permission from Microsoft.

This page intentionally left blank

Adding a GUI to
Your Scripts

14
A

s you have no doubt come to understand, VBScripts executed by the WSH run
within the constraints of either the WScript.exe or CScript.exe execution host. As
such, other than the ability to display text in a couple of pop-up dialog boxes, your

scripts are invariably tied to the Windows command prompt. However, there is another
Windows scripting technology capable of leveraging the WSH while at the same time enabling
you to wrap your scripts up inside a graphical user interface (GUI). This technology is
known as HTML Applications (HTAs). This chapter will provide you with an overview of
HTAs and examples of their usage.

Specifically, you will learn the following:

• About the components that make up HTAs

• How to wrap your scripts up in GUIs using HTML

• How to create event driven scripts

• How to configure the appearance of your GUI applications using Cascading Style

Sheets (CSS)

Project Preview: The HTA Rock, Paper, Scissors Game
As this book’s final project, you will learn how to update the Rock, Paper, Scissors game
that you worked on in Chapter 5, “Conditional Logic”. You will accomplish this by con-
verting the Rock, Paper, Scissors game into an HTA, adding the HTML tags and content
needed to create the game’s interface as well as a little CSS to improve the application’s
presentation. Figures 14.1 and 14.2 demonstrate the operation of both the WSH and the
new HTA version of the game as seen on a computer running Windows 7.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition340

Figure 14.1 It is obvious from the start that the HTA version of the Rock, Paper, Scissors game looks and acts
a lot more like a Windows application. © 2014 Cengage Learning.

Figure 14.2 The HTA version of the game is played by clicking on graphical button controls,
speeding up game play and eliminating typos. © 2014 Cengage Learning.

Introducing HTML Applications (HTAs)
An HTML Application (HTA) is a Windows program made up of HTML and a scripting language. The
scripting language, which in the case of this book is VBScript, must be an Internet Explorer–supported
scripting language.

HTAs are full-featured Windows applications. HTAs
look and execute like other Windows applications,
including those developed using programming
languages like Visual Basic, Java, and C++. An HTA
executes as a trusted Windows application. As such,
it executes outside of the constraints of Internet
Explorer’s security restrictions.

WSH HTA

An HTML Application (HTA) is computer
program that consists of HTML, Dynamic
HTML, and Internet Explorer–supported
scripting languages like VBScript, which has
a GUI and executes without the limitations
that Internet Explorer normally imposes on
applications.

D
ef

in
it

io
n

This allows it to do things that browser-based scripting otherwise prevents, like accessing the computer’s
file system and Registry. HTAs can also interact with WMI. HTAs enable administrators to wrap their
scripts up inside a graphical user interface (GUI). HTAs are also used to prototype Windows applications,
create desktop applications, develop wizards, and so on.

Even though they include HTML, HTAs execute in a different process than Internet Explorer. HTAs are
executed by the mshta.exe execution host, which is analogous to the WSH WScript.exe and CScript.exe
execution hosts. When you execute an HTA script, the mshta.exe execution host first instantiates Internet
Explorer’s rendering engine and the appropriate scripting engine (for example, vbscript.dll). Execution
by the mshta.exe execution host allows scripts to access the WSH core object model. There are, however,
some limitations. For example, an HTA cannot access the WScript object’s methods, most notably Quit,
Echo, and Sleep. These methods are available only when your scripts are executed by the WScript.exe or
CScript.exe execution hosts. The mshta.exe execution host has no equivalents.

HTAs have access to the Internet Explorer DOM, which provides them with access to browser controls
(for example, text boxes, option buttons, checkbox controls, etc.). Using these elements, you can construct
the GUIs for your scripts. Another benefit of HTAs is that in addition to the Internet Explorer DOM, they
have access to HTML, XHTML, and even CSS. You can therefore leverage these optional technologies in
your HTAs.

Trap

To execute an HTA, Internet Explorer must be enabled on the computer. Other Web browsers are not
supported. Therefore, any computer on which you wish to execute an HTA must have Internet Explorer
enabled. Starting with Microsoft Vista, Internet Explorer is an optional application, so it may not always
be available.

How Do HTAs Compare to HTML Pages?
Like WSH scripts, HTAs are text files. HTA files are organized like HTML files, however. If you are famil-
iar with Web page development, then learning how to develop HTA files should come easily to you. Even
if you have not done prior Web development, don’t worry. This chapter will teach the basics and get you
up and running quickly. The following example shows the construction of a basic HTML page:

<html>

<head>

<title>A Simple HTML Page</title>

</head>

<body>

<h2>Hello World!</h2>

</body>

</html>

Chapter 14 • Adding a GUI to Your Scripts 341

If you save this HTML page and then load it using Internet Explorer, you’ll see the output shown in Fig-
ure 14.3.

Like HTML pages, content in an HTA is marked up using HTML tags. Every HTML page begins and ends
with the <html> </html> tags. Inside these tags are two more sets of high level tags: the <head> </head>
tags and the <body> </body> tags. Other tags, text, graphics, and media are embedded within the <head>
</head> and <body> </body> sections, providing the HTML page’s content. For example, the preceding
HTML page uses the <title> </title> tags to display a text string in the browser window’s title bar. It
also displays a text message of “Hello World!” on the window itself using the <h2> </h2> tags. The <h2>
</h2> tags are level-two heading tags that display enclosed text in an enlarged font size.

Creating and Executing an HTA
HTAs are developed in much the same way as HTML pages, the major difference being that they are saved
with an .hta file extension. In fact, you can create an HTA by simply creating and saving a text file with an
.hta file extension. To test this out, use Notepad to create a new text file. Then type the following text in
it and save the file with name of HelloWorld.hta:

Hello World!

The .hta file extension identifies the file as an HTA. As a result, Windows will automatically run the HTA
file using the mshta.exe execution host. To execute this HTA, double-click on it. A window similar to the
one shown in Figure 14.4 will be displayed.

A simple HTA is displayed using various defaults that specify how its GUI window looks and operates.
These defaults are called out in Figure 14.4. However, you can configure application window features by
adding the <HTA:APPLICATION> tag to the script file. This optional tag exposes a collection of window
attributes that you can specify and configure, determining which window features are added to the appli-
cation window. These attributes also control certain behaviors, such as whether more than one instance
of the HTA can be run at a time.

342 Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition

Figure 14.3 A simple HTML page that
displays a text string, as seen on a computer
running Windows 7. © 2014 Cengage Learning.

343Chapter 14 • Adding a GUI to Your Scripts

Constructing an HTA
To create an HTA that does something other than display plain text in a window, you must add some
more HTML to the HTA file. Before you can do this, you must understand how HTAs are organized.
While structured as HTML pages, there are really three main parts and an optional fourth part to an HTA
that you must focus on. These parts include the following:

• <HTA:APPLICATION> tag. This provides control over the appearance of an HTA’s application window.

• <script> </script> tags. These contain the VBScript statements, functions, and subroutines, and

the WSH objects that make your HTAs work.

• <body> </body> tags. These contain the HTML tags (elements) that make up an HTA’s interface.

• <style> </style> tags (optional). These contain Cascading Style Sheets (CSS), which are used to

describe the way HTML content is presented.

Introducing the <HTA:APPLICATION> Tag
HTA files are organized like HTML files. The <HTA:APPLICATION> tag is placed in an HTA file’s <head>
</head> section. This tag is optional. If not included, a default HTA window is displayed without any
customization. This tag exposes the HTA DOM, providing access to a collection of attributes that allow
HTA to customize the application window within which it executes, specifying features like text box controls,
buttons, radio buttons, checkbox controls, etc. The following example converts the preceding HTML page
to an HTA (after adding the <HTA:APPLICATION> tag and saving it with an .hta file extension).

<html>

<head>

<title>My First HTA</title>

<HTA:APPLICATION

SysMenu

Figure 14.4 A simple HTA made up of a text string, as seen on a computer running Windows 7.
© 2014 Cengage Learning.

Scrollbar

Title bar caption Minimize Maximize

Close

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition344

ID=”htaHelloWorldApp”

APPLICATIONNAME=”Hello World”

SCROLL=”yes”

SINGLEINSTANCE=”yes”>

>

</head>

<script language=”VBScript”>

</script>

<body>

<h2>Hello World!</h2>

</body>

</html>

HTAs look and execute just like a Windows application. To run the previous example, all you have to do
it double-click on it. Figure 14.5 shows how the HTA looks on a computer running Windows 7.

Note that unlike the simple line HTA that was previously presented, the presentation of the text string
“Hello World” is governed by its enclosure within the <h2> and </h2> tags.

An Overview of <HTA:APPLICATION> Tag Attributes and Properties
The inclusion of the <HTA:APPLICATION> tag in the <head> </head> section of an HTA provides you with
the ability to customize the look and operation of the window within which the HTA executes. Table 14.1
provides a list of all the attributes and properties that are exposed by the HTA:APPLICATION object. By
specifying and configuring these attributes in the <HTA:APPLICATION> tag, you can exercise detailed con-
trol over the look and operation of the application window within which an HTA executes.

Figure 14.5 A simple HTA made
up of a text string. © 2014 Cengage Learning.

Chapter 14 • Adding a GUI to Your Scripts 345

Attribute Property Description

APPLICATIONNAME applicationName Assigns or retrieves the name of an HTA

BORDER border Assigns or retrieves the type of window border for an HTA

BORDERSTYLE borderStyle Assigns or retrieves the border style for an HTA

CAPTION caption Assigns or retrieves a Boolean value indicating if the HTA
window should display a caption in its title bar

commandLine Retrieves arguments passed to the HTML Application when
it was started

CONTEXTMENU contextMenu Assigns or retrieves a text string that is used to display a
context menu when the user right-clicks

ICON icon Assigns or retrieves the path and name of an HTA’s icon

INNERBORDER innerBorder Assigns or retrieves a text string specifying whether a 3D
border is displayed

MAXIMIZEBUTTON maximizeButton Assigns or retrieves a text string indicating whether a
Maximize button is displayed on the HTA’s title bar

MINIMIZEBUTTON minimizeButton Assigns or retrieves a text string indicating whether a
Minimize button is displayed on the HTA’s title bar

NAVIGABLE navigable Assigns or retrieves a text string indicating if linked
documents should be loaded into the HTA window or
into a new browser window

SCROLL scroll Assigns or retrieves a text string indicating whether a
scrollbar should be displayed

SCROLLFLAT scrollFlat Assigns or retrieves a text string indicating the type of
scrollbar to display: flat or 3D

SELECTION selection Assigns or retrieves a text string indicating whether data
content can be selected using the keyboard or mouse

SHOWINTASKBAR showInTaskBar Assigns or retrieves a test string indicating whether the
Windows taskbar should display the HTA

SINGLEINSTANCE singleInstance Assigns or retrieves a text string specifying that only a
single instance of the HTA can run at a time

SYSMENU sysMenu Assigns or retrieves a Boolean value that specifies
whether a system menu is displayed in the HTA

VERSION version Assigns or retrieves the HTA version number

WINDOWSTATE windowState Assigns or retrieves an HTA window’s initial size

TA B L E 14 .1  HTML A P P L I C AT I O N AT T R I B U T E S

A N D P R O P E R T I E S R E F E R E N C E

© Jerry Lee Ford, Jr. All Rights Reserved.

Table 14.1 provides a high-level overview of all of the attributes and properties belonging to the
<HTA:APPLICATION> tag. However, there is a lot more to these attributes and properties than there is room
to cover in this chapter. For example, consider the BORDER attribute/border property, shown here:

<HTA:APPLICATION BORDER = “sType” ... >

sType is a text string specifying one of the following values:

• thick. This results in a thick window border that includes a size grip and sizing border, enabling

the user to manually resize the window.

• Dialog. This results in a dialog box window border.

• none. This results in the display of a window without a border.

• thin. This results in a thin window border with no title bar.

To effectively work with the attributes and properties supported by the <HTA:APPLICATION> tag, you need to
know their syntax and the range of values they support. Microsoft provides this information to you via
the HTML Applications Reference, located at http://msdn.microsoft.com/en-us/library/ms536473%28VS.85
%29.aspx.

Customizing the HTA Attributes and Properties
By specifying and configuring different HTA attributes and properties in the <HTA:APPLICATION> tag, you
can exercise detailed control over the appearance and operation of the window in which an HTA exe-
cutes. As an example of how to do this, consider the following:

<html>

<head>

<title>Window Without a Title Bar</title>

<HTA:APPLICATION

ID=”htaNoTitleBar”

APPLICATIONNAME=”Window Without a Titlebar”

SCROLL=”auto”

SINGLEINSTANCE=”yes”

CAPTION=”no”

>

</head>

<script language =”VBScript”>

Sub CloseWindow

self.close

End Sub

</script>

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition346

http://msdn.microsoft.com/en-us/library/ms536473%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms536473%28VS.85%29.aspx

<body onkeypress=”CloseWindow”>

Press any key to close this window.

</body>

</html>

Here, the <HTA:APPLICATION> tag has been assigned an ID of htaNoTitlebar and an application name of
Window Without a Titlebar. In addition, the window has been configured to display a scrollbar, and only
one instance of the application can be executed at a time. Lastly, the value of CAPTION has been set to no,
hiding the display of the window’s title bar. Figure 14.6 shows how this example looks when executed on
a computer running Windows 7.

An application window like the one shown in Figure 14.6 can be used to display a splash screen or other
type of higher customized window. Because the HTA’s title bar has been removed, the HTA must provide
another means of terminating the application’s execution. This will be achieved by assigning the name of
the CloseWindow subroutine to the onkeypress event. This event occurs whenever the user presses any
keyboard key. When this happens, the CloseWindow subroutine executes. It contains a single statement.
self is a property of the window object that provides a convenient reference back to the window and
close() is a window object method that closes the application window.

Trick

You can also terminate an HTA’s execution using the Task Manager to locate and terminate the mshta.exe
execution host process.

The <script> </script> Tags
Most HTA pages include one or more script files, which are embedded within <script> </script> tags.
All these scripts are organized as named subroutines or functions. HTAs are event-driven applications, so
these scripts are configured to execute when particular events occur. HTAs react to events that occur when,
for example, an application initially starts or when the administrator clicks an interface button or other
control. In short, HTAs start and wait for instructions on what to do based on user input and interaction.

Chapter 14 • Adding a GUI to Your Scripts 347

Figure 14.6 An HTA without a title bar cannot be
moved and does not feature SysMenu, Minimize,
Maximize, or Close buttons. © 2014 Cengage Learning.

Unlike WSH administrative scripts, which usually start and run to completion immediately upon execu-
tion, HTAs start by displaying a GUI and then pause to wait and respond to events that occur. Events
occur for all sorts of reasons. When an HTA first starts, the application window’s onLoad event occurs. In
addition, interface controls generate an onClick event when selected or clicked. You can use these events
to trigger the execution of VBScripts (functions and subroutines) by specifying the name of a script to
be executed when an event occurs.

An example of a event that occurs with every HTA is the onLoad event, which occurs when an HTA’s win-
dow is started. You can automatically execute program statements when an application starts by adding
a Window_onLoad subroutine inside the <script> </script> tags with any code statements you wish to
execute. The following example demonstrates how to work with this event:

<script language=”VBScript”>

Sub Window_OnLoad

self.resizeTo 600, 300

End Sub

Sub ShowResult

MsgBox “Hello “ & textBox.value

textBox.value = “”

End Sub

</script>

Here, two scripts have been embedded within the <script> </script> tags of an HTA. Each script has
been saved as a subroutine. The first subroutine is named Window_OnLoad and the second subroutine is
named ShowResult. As stated, the first script automatically executes when the HTA’s window is loaded.
Using this script, you can execute any programming logic that needs to occur before the user has the
opportunity to interact with the HTA. This script consists of a single statement, which executes the win-
dow object’s resizeTo() method. This resizes the width and length of the window, which in the exam-
ple is 600 pixels wide by 300 pixels high.

The ShowResult subroutine can be called by another script or triggered by a control. In the example,
ShowResult uses the VBScript MsgBox() function to display a text message.

The <body> </body>Tags
An HTA’s GUI is laid out using HTML tags defined in the application’s <body> </body> section. The fol-
lowing HTML tags build out a simple GUI made up of a label, a text control, and a button control. All
these tags are embedded within the <body> </body> tags.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition348

Hint

A complete review of HTML and all the tags that it supports is beyond the scope of this book. Instead,
you will be introduced to commonly used tags that are required to build effective GUIs. To take a deeper
dive into HTML, you may wish to read HTML, XHTML, and CSS for the Absolute Beginner (ISBN: 978-1-
4354-5423-1).

<body>

<p>

<label for = “userName”>Enter your name:</label>

<input type=”text” name=”textBox” id = “userName” size=”50”

maxlength = “50”>

</p>

<input type=”button” value=”Click me!” onClick=”ShowResult”>

</body>

In this example, the <label> </label> tags are used to display a text string at the top of the window.
Immediately following the label is a text control. The text control is defined using an <input> tag with a
type assignment of text. It is assigned a name of textBox, allowing it to be programmatically referenced.
The text control is assigned a size that specifies its length (that is, how many characters it can display)
and is assigned a maximum length (that is, the total number of characters it can contain). All of these
tags are themselves enclosed within a pair of <p> and </p> tags, which are paragraph tags that add a bit
of space in between interface controls. The last HTML tag in the <body> </body> section is a second <input>
tag, assigned a type of button, which is used to add a button control to the window. Its value property
is assigned a value of Click me!. This string is displayed on top of the button. Lastly, ShowResult is
assigned to the button’s onClick event. As a result, the subroutine is executed whenever the button
is clicked.

The <style> </style> Tags
An HTA’s <style> </style> tags are used to specify Cascading Style Sheet (CSS) rules governing the pre-
sentation of the application. CSS is a style sheet programming language that influences the presentation
of HTML content. CSS provides numerous advantages, including separation of content and presenta-
tion.

CSS has a prioritization scheme that governs how style rules are applied when one or more rules match
the same element. As a result, CSS rules cascade downward to document elements (HTML tags) in a pre-
dictable manner. CSS rules are used to control presentation aspects such as font type, size, and color, as
well as background styles, borders, and the alignment of content.

Chapter 14 • Adding a GUI to Your Scripts 349

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition350

Hint

A complete review of CSS is beyond the scope of this book. Instead, you will be introduced to a small number
of commonly used CSS rules needed to complete the HTA presented in this chapter. To learn more about
CSS, you may wish to read HTML, XHTML, and CSS for the Absolute Beginner (ISBN: 978-1-4354-5423-1).

CSS has a simple syntax based on English keywords that specify styles and their values. CSS style sheets are
made up of lists of rules. As outlined in Figure 14.7, CSS rules are made up of selectors and declaration
blocks.

CSS rules identify the element(s) they affect through the selector. Selectors specify the HTML elements to
which rules apply. You can specify multiple selectors in a rule, provided you separate them by commas.
A declaration block consists of one or more declarations that allow you to modify one or more aspects of
an element’s presentation. Declarations are placed inside an
opening { character and a closing } character. They consist of
one or more property/value pairs, as shown in Figure 14.8.

A property identifies a presentation aspect that the rule will
modify. Property names are separated from their corresponding
values using a colon. A value is a setting applied to a specified
property for the selected elements. Property/value pairs are
separated from other property/value pairs using a semi-colon.

Figure 14.7 A CSS rule is made up of one or more
selectors and a declaration block. © 2014 Cengage Learning.

A selector identifies an HTML
element to which a CSS rule is
applied.

D
ef

in
it

io
n

Figure 14.8 Declarations consist of property/value pairs.
© 2014 Cengage Learning.

A declaration block is a CSS
organization construct made up
of one or more declarations.

D
ef

in
it

io
n

A property specifies the presentation
aspect that a CSS rules modifies.

D
ef

in
it

io
n

A declaration is a statement that
modifies one or more aspects of
an element’s presentation.

D
ef

in
it

io
n

A value is a setting assigned to a prop-
erty for a selected element.

D
ef

in
it

io
n

CSS Selectors
Selectors identify the effect of a CSS rule. In other words, it determines which elements are affected by
the rule. Table 14.2 identifies a number of the most commonly used CSS selectors and explains their
precedence.

If multiple rules select the same element(s), they will attempt to modify the same property. If this occurs,
the more exclusive rule’s declaration of that property will be applied. Because an ID selector is more
exclusive than the universal selector, a rule matched by an element’s ID can override property values
declared in a rule that matches all elements in the document.

Adding Style Rules to Your HTA
To integrate CSS rules into your HTAs, you embed them within the HTA’s <style> </style> tags. The CSS
rules are then applied to matching elements found within the HTA. The following example demonstrates
the construction of a small set of CSS rules. Note that in CSS, comments begin with the /* characters
and end with the */ characters.

<style>

/*This rule formats all level 1 headings*/

h1 {

color: purple;

text-decoration: underline;

text-align: center;

}

/*This rule formats all paragraphs*/

p {

font-weight: bold;

Chapter 14 • Adding a GUI to Your Scripts 351

Name Example Description

Universal * {color: red;} A universal selector matches every element found in an HTA
file. It is defined using the * character. When executed, the
rule in the “Example” column displays all text in the HTA
window in red.

Element p { color: green;} An element selector matches all instances of a specified
element within an HTA window. In the example provided,
any text enclosed by <p> </p> tags is colored green.

ID #score {color: blue;} An ID selector matches a single unique element as specified
by its ID attribute. In the example provided, the element
who’s ID is score is displayed in blue.

TA B L E 14 .2 C O M M O N LY U S E D CSS S E L E C T O R S

© Jerry Lee Ford, Jr. All Rights Reserved.

font-style: italic;

color: blue;

}

/*This rule formats an element whose id = p1*/

#p1 {

color: red;

}

</style>

The first CSS rule modifies the appearance of text embedded within any <h1> </h1> tags in the HTA,
changing their text color to purple and making the text underlined and centered. The second CSS rule
affects paragraph presentation, displaying their text as bold, italic, and blue. The third rule applies to a
specific element whose ID is p1. CSS denotes IDs by pre-appending a # character to them.

The third rule demonstrates CSS specificity by modifying the presentation of one specific paragraph tag.
The color property assignment in the third rule conflicts with that of the second rule. CSS resolves this
by using the color property from the more specifically selected rule to override the color property from
the less specifically selected rule.

Adding Interface Elements
You have already seen an example of how to add a text control and a button control to an HTA. Now it
is time to look deeper into how these two controls are constructed and to look at other types of controls
that you can add to your HTAs. These include controls like radio buttons and checkboxes as well as var-
ious types of list box and text controls. Each of these controls is examined in the sections that follow.

Hint

If you want some help developing your HTAs, consider downloading HTA Helpomatic. HTA Helpomatic
is a free tool provided by Microsoft that assists you in developing script code. HTA Helpomatic presents
you with a list of HTA elements, such as buttons, checkboxes, and text area controls. It then displays the
HTML code required to generate these controls. It also displays program code that can be used to gen-
erate a subroutine for each control, upon which you can then expand. To get HTA Helpomatic, go to
www.microsoft.com/download/en/default.aspx and search for its name.

Creating Interface Controls Using the <input> Tag
As you have already seen, the <input> tag is one of the most versatile HTML tags. It is used to create a
number of different types of interface controls. This range of controls includes the following:

• Text field controls

• Password field controls

• Checkbox controls

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition352

• Radio button controls

• Button controls

http://www.microsoft.com/download/en/default.aspx

To specify the type of control you want using the <input> tag, you must specify the control’s type using the
<input> tag’s type attribute as well as a number of other control attributes using the syntax outlined here:

<input type=”ControlType” name=”ControlName” value=”ControlValue”

onClick=”FunctionName”>

Table 14.3 outlines the function of each of the <input> tag attributes outlined in the previous example.

Adding Text Controls
As demonstrated, if you place an <input> tag in the <body> </body> section of an HTA and assign its
type attribute a value of text, a single-line text control is added to the application window. The text con-
trol is made up of a rectangular text field with an inset border. Text controls are used to collect small
amounts of text input. The following example demonstrates how to add text control to an HTA.

<p>

<label for = “userName”>Enter your name:</label>

<input type=”text” name=”textBox” id = “userName” size=”50”

maxlength = “50”>

</p>

Here, the <input> tag includes a number of additional optional attributes that further configure the result-
ing text control. These attributes are explained here:

• size. This specifies the width (in number of characters) of the text control.

• maxlength. This specifies the total number of characters of input (including blank spaces) that the

text control can store.

Chapter 14 • Adding a GUI to Your Scripts 353

Attribute Description

type Specifies the type of control to be placed on the application window (text, password,
checkbox, radio, button)

name Specifies the name assigned to the control, allowing it to be referenced
programmatically

value Either the label displayed by a control or the default data assigned to the control

onClick The name of a function or subroutine called by the control when the control is selected

TA B L E 14 .3 < I N P U T > TA G AT T R I B U T E S

© Jerry Lee Ford, Jr. All Rights Reserved.

The following HTA demonstrates the use of a text and button control:

<html>

<head>

<title>Text Box Demo</title>

<HTA:APPLICATION

ID=”htaTextBoxApp”

APPLICATIONNAME=Text Box Demo”

SCROLL=”auto”

SINGLEINSTANCE=”yes”

>

</head>

<script language=”VBScript”>

Sub Window_OnLoad

self.resizeTo 600, 300

End Sub

Sub ShowResult

MsgBox “Hello “ & textBox.value

textBox.value = “”

End Sub

</script>

<body>

<p>

<label for = “userName”>Enter your name:</label>

<input type=”text” name=”textBox” id = “userName” size=”50”
maxlength = “50”>

</p>

<input type=”button” value=”Click me!” onClick=”ShowResult”>
</body>

</html>

Figure 14.9 shows how the HTA generated by the previous example looks when executed on a computer
running Windows 7.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition354

Adding a Password Control
A password control is a specialized type of text control that masks its input using asterisk or bullet characters
to prevent it from being seen by spying eyes. To add a password control to an HTA, add an <input> tag
and assign its type attribute a value of password, as shown here.

<p>

<label for = “passwordBox”>Enter your password:</label>

<input type = “password” name = “passwordBox” id=”passwordBox” size = “20”

maxlength = “10” >

</p>

Figure 14.10 show how the previous example looks on a computer running Windows 7 when used to pro-
vide an HTA with its GUI. Note that nine characters have been typed into the password control, none of
which are visible.

Adding a Checkbox Control
Checkbox controls provide another way of collecting input. A checkbox control consists of a small square,
which users can click to select or unselect it. When selected, a checkbox control displays a checkmark or
similar character inside the control. An unselected checkbox appears as an empty box.

Chapter 14 • Adding a GUI to Your Scripts 355

Figure 14.9 An HTA whose GUI includes a text
control and a button control. © 2014 Cengage Learning.

Figure 14.10 An HTA whose GUI includes
a password control. © 2014 Cengage Learning.

Checkbox controls can be used to display a list of choices. Each checkbox control works independently
of other checkbox controls. You create a checkbox control by adding an <input> tag to an HTA and setting
its type attribute to checkbox. Each checkbox control must be assigned a unique name and value. Optionally,
you can pre-check a checkbox control by assigning the input element’s checked attribute a value of checked.

The following example demonstrates the use of the checkbox control in an HTA. Note that the five
<input> tags defined in the <body> </body> section are each followed by a text string that mirrors their
assigned value. It is this trailing text that is displayed in the HTA window.

<html>

<head>

<title>Checkbox Demo</title>

<HTA:APPLICATION

ID=”htaCheckBoxApp”

APPLICATIONNAME=”Checkbox Demo”

SCROLL=”auto”

SINGLEINSTANCE=”yes”

>

</head>

<script language=”VBScript”>

Sub Window_OnLoad

self.resizeTo 600, 300

End Sub

Sub ShowResult

strChoices = vbCrLf

If ChkBox1.Checked then strChoices = strChoices & “* “ & _

ChkBox1.value & vbCrLf

If ChkBox2.Checked then strChoices = strChoices & “* “ & _

ChkBox2.value & vbCrLf

If ChkBox3.Checked then strChoices = strChoices & “* “ & _

ChkBox3.value & vbCrLf

If ChkBox4.Checked then strChoices = strChoices & “* “ & _

ChkBox4.value & vbCrLf

If ChkBox5.Checked then strChoices = strChoices & “* “ & _

ChkBox5.value

MsgBox “You selected: “ & strChoices

End Sub

</script>

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition356

<body>

<label>Pick your toppings:</label>

<p>

<input type=”checkbox” name=”ChkBox1” value=”Cheese”

checked> Cheese

<input type=”checkbox” name=”ChkBox2” value=”Pepperoni”> Pepperoni

<input type=”checkbox” name=”ChkBox3” value=”Sausage”> Sausage

<input type=”checkbox” name=”ChkBox4” value=”Ham”> Ham

<input type=”checkbox” name=”ChkBox5” value=”Veggie”> Veggie

</p>

<input type=”button” value=”Process” onClick=”ShowResult”>

</body>

</html>

The ShowResult subroutine, located inside the <script> </script> tags, is used to inspect each of the
checkbox controls and determine which ones were selected. Figure 14.11 shows an example of this HTA
in action on a computer running Windows 7.

Adding a Radio Button Control
Like checkbox controls, radio button controls allow for the selection of preconfigured options. They differ
from checkbox controls in that radio button controls are designed to be organized into groups. This is
accomplished by assigning the same name to every radio button control that is in the same group. Also,
unlike checkbox controls, radio button controls are mutually exclusive, meaning that you can choose only
one radio button out of the group.

Like checkbox controls, you should use the <input> tag’s value attribute to assign a value to a radio control.
This is necessary to be able to identify which radio button is selected. If beneficial, you can use the checked
attribute to pre-select a given radio button control within its group.

Chapter 14 • Adding a GUI to Your Scripts 357

Figure 14.11 An example of the HTA in operation and the resulting application output.
© 2014 Cengage Learning.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition358

The following example demonstrates how to work with the radio button control:

<label>Pick a color:</label>

<p>

<input type=”radio” name=”radioButton” value=”Blue”

checked> Blue

<input type=”radio” name=”radioButton” value=”Red”> Red

<input type=”radio” name=”radioButton” value=”Green”> Green

<input type=”radio” name=”radioButton” value=”Yellow”> Yellow

<input type=”radio” name=”radioButton” value=”Orange”> Orange

</p>

<input type=”button” value=”Process” onClick=”ShowResult”>

Hint

The
 tag forces a single line of elements to break into two lines of elements at the location of the tag,
enabling you to add extra blank space where needed to improve presentation in your HTA GUIs.

Here, a group of five radio buttons named radioButton has been defined. The first radio button in the
group has been pre-selected. The last statement in this example adds a button control to the HTA, which,
when clicked, execute the ShowResult subroutine. This subroutine is shown next. When executed, it uses
a loop to determine which radio button control has been selected. The result is displayed in a MsgBox()
pop-up dialog box.

Sub ShowResult

For Each i in radioButton

If i.Checked Then

MsgBox “You selected: “ & i.value

End If

Next

End Sub

Figure 14.12 shows an example of this HTA in action on a computer running Windows 7.

Adding a Button Control
As has been the case with all the controls that have been examined so far, you can use the <input> tag to add
a button control to an HTA. To do so, all you have to do is set the <input> tag’s type attribute to button.
Button controls usually display text indicating their purpose, which you can assign by setting the <input>
tag’s value attribute. Button controls have a single purpose: to initiate an onClick event when clicked. By
assigning a subroutine or function name to a button control’s onClick event, you can trigger its execution.

The following example demonstrates how use the <input> tag to add a button control to an HTA.

<body>

<input type=”button” value=”Click on Me” onClick=”RunProgram”>

</body>

Here, a single button control makes up the HTA’s GUI. Its onClick setting has been configured to execute
a subroutine named RunProgram. This subroutine is shown next. When executed, it displays a text message
in a MsgBox() pop-up dialog box.

Sub RunProgram

MsgBox “You clicked on the button!”

End Sub

Figure 14.13 shows the previous example in action on a computer running Windows 7.

Chapter 14 • Adding a GUI to Your Scripts 359

Figure 14.12 An example of the HTA in operation and the resulting application output.
© 2014 Cengage Learning.

Figure 14.13 Buttons provide a means for manually initiating the execution of a specific subroutine or function in an HTA.
© 2014 Cengage Learning.

Adding a Button Control Using the <button> Tag
In addition to using the <input> tag to add button controls to you HTAs, you can use the <button> tag.
To work with the <button> tag, all you have to do is assign its type attribute a value of button and con-
figure its onClick event to call on a function or subroutine. Optionally, you can assign the button a name,
enabling you to programmatically reference it if need be from within your VBScript.

The following example demonstrates how use the <button> tag to add a button to an HTA:

<body>

<button onClick=”RunProgram”>Click on Me</button>

</body>

Both functionally and from a presentation standpoint, there is no outward difference in a button control
added using the <button> tag versus one added using the <input> tag.

Adding a Multi-Line Text Control Using the <textarea> Tag
You learned how to add a text control and other types of controls by assigning a value of text to the
<input> tag’s type attribute. Text controls are great for collecting small amounts of text. But if you need
to collect anything more than a single line of text, you will need to use the <textarea> tag, which creates
a multi-line text field. The size of the field is specified by the numeric values assigned to its rows and cols

attributes. If the amount of text entered exceeds the size of the control, the control’s scrollbar is auto-
matically enabled.

The following example demonstrates the usage of this control. Note that in this example, the control has
been configured to be 10 rows high by 60 characters across.

<label>Type something here:</label>

<p>

<textarea name=”textBox” rows=”10” cols=”60”></textarea>

</p>

<input type=”button” value=”Process” onClick=”ShowResult”>

You can programmatically access the contents typed into this control by specifying the control’s assigned
name and its value property, as demonstrated in the following subroutine:

Sub ShowResult

MsgBox “You typed: “ & textBox.value

textBox.value = “”

End Sub

If necessary, the control can be pre-populated with text, as shown here:

<label>Type something here:</label>

<p>

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition360

<textarea name=”textBox” rows=”10” cols=”60”>

This text will be displayed within the multi-line text box control

when it is initially displayed.</textarea>

</p>

<input type=”button” value=”Process” onClick=”ShowResult”>

Figure 14.14 shows an example of a pre-populated multi-line text control on a computer running Win-
dows 7.

Working with List Controls
Another type of useful controls are list-based controls. These include the list box control, the drop-down
list control, and the multi-line list control. As with checkbox and radio button controls, list-based controls
display a pre-defined list of options from which the user can select.

Adding a List Box
A list box control displays a pre-defined list of options from which a single selection can be made. Selection
of an item from the list can be used to trigger an event. However, it is more common to not trigger an event in
this manner, and instead to add a button control to trigger the event. This allows the user to make a selec-
tion, change his mind, and then make a different selection before initiating the processing of the selection.

A list box is added to an HTA using a combination of the <select> and <option> tags. The first step in
creating a list box control is to use the select element to define the control using the format shown here:

<label>Pick Your Size</label>

<p>

<select size=”4” name=”PickSize” onChange=”ShowResult”>

</select>

</p>

Chapter 14 • Adding a GUI to Your Scripts 361

Figure 14.14 A multi-line text control enables
the collection of large amounts of text input.
© 2014 Cengage Learning.

As currently configured, any selection will trigger the execution of the ShowResult subroutine. The next
step in the creation of a list box control is to populate it with items from which to choose. You do this by
embedding multiple instances of the <option> </option> tags inside the <select> </select> tags. The
<option> </option> tags can contain only text, as shown here.

<p>

<label>T-shirt Size Options:</label>

<select size=”1” name=”PickSize” onChange=”ShowResult”>

<option value=”“>Pick your size</option>

<option value=”Small”>Small</option>

<option value=”Medium”>Medium</option>

<option value=”Large”>Large</option>

<option value=”X-Large”>X-Large</option>

</select>

</p>

The following HTA provides a complete example of how to work with the list box control:

<html>

<head>

<title>List Box Demo</title>

<HTA:APPLICATION

ID=”hta:ListBoxApp”

APPLICATIONNAME=”List Box Demo”

SCROLL=”auto”

SINGLEINSTANCE=”yes”

>

</head>

<script language=”VBScript”>

Sub Window_OnLoad

self.resizeTo 600, 300

End Sub

Sub ShowResult

If PickSize.value <> “” Then

MsgBox “You selected “ & PickSize.Value & “.”

End If

End Sub

</script>

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition362

<body>

<p>

<select size=”4” name=”PickSize” onChange=”ShowResult”>
<option value=”Small”>Small</option>
<option value=”Medium”>Medium</option>
<option value=”Large”>Large</option>
<option value=”X-Large”>X-Large</option>

</select>
</p>

</body>

</html>

Note that you can programmatically determine which item in the list box has been selected by referencing
the value property of the control. Figure 14.15 shows an example of this HTA in action on a computer
running Windows 7.

Adding a Multi-Selection List Box
The multi-selection list box is a variation of the list box control. The difference is that with a multi-selection
list box, the user can select more than one item from the list. To do so, he needs only to hold down the Alt
key while clicking different items in the list. The control is constructed exactly like the list box control
except that a size attribute is specified and assigned a value of 2 or more, and a multiple keyword is
added to the end of the opening <select> tag.

Unlike with the list box control, you cannot use the onClick event to trigger script execution. If you do,
the script will execute as soon as the first selection is made. Instead, you should use another control such
as a button control to initiate script execution. This will allow the user to select as many items as neces-
sary from the list before initiating processing.

Chapter 14 • Adding a GUI to Your Scripts 363

Figure 14.15 A list box control configured to trigger the execution of a script whenever an item is selected.
© 2014 Cengage Learning.

The following example shows how to add this control to an HTA:

<p>

<select size=”4” name=”PickTeam” multiple>

<option value=”Small”>Small</option>

<option value=”Medium” selected=”selected”>Medium</option>

<option value=”Large”>Large</option>

<option value=”X-Large”>X-Large</option>

</select>

</p>

<input type=”button” value=”Process” onClick=”ShowResult”>

As shown next, you will need to process a multi-selection list box with a loop to determine which items
have been selected:

Sub ShowResult

strChoices = vbCrLf

For Each i in PickTeam.Options

If i.Selected Then

strChoices = strChoices & i.Value & vbCrLf

End If

Next

MsgBox “You selected: “ & strChoices

End Sub

Figure 14.16 shows how this example would look if you were to turn it into an HTA and execute is on a
computer running Windows 7.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition364

Figure 14.16 A multi-selection list box control allows for the selection of one or more items from the list.
© 2014 Cengage Learning.

Adding a Drop-Down List Box
Another control that is commonly used is the drop-down list box. This control is also formulated using
the select and option tags. Drop-down list boxes are space savers, allowing a lot of items to be displayed
on demand, in a list that drops down, without requiring all the space that a list box control would other-
wise need to display the same elements. The drop-down list box is formulated exactly like the list box
except that the size attribute is set to 1. (Set it to anything higher, and you get a list box.)

The following example converts the list box presented earlier into a drop-down list box:

<p>

<label>T-shirt Size Options:</label>

<select size=”1” name=”PickSize” onChange=”ShowResult”>

<option value=”“>Pick your size</option>

<option value=”Small”>Small</option>

<option value=”Medium”>Medium</option>

<option value=”Large”>Large</option>

<option value=”X-Large”>X-Large</option>

</select>

</p>

Note the inclusion of an extra set of <option> </option> tags immediately following the opening <select>
tag. Absent this extra item, the item that would otherwise appear first in the drop-down list box control
is automatically made the default selection. By configuring the control with this extra item, you can
programmatically determine whether the user has actually made a selection, as demonstrated when the
control triggers the execution of the ShowResult subroutine:

Sub ShowResult

If PickSize.value <> “” Then

MsgBox “You selected “ & PickSize.Value & “.”

End If

End Sub

Figure 14.17 shows how the drop-down list box looks on a computer running Windows 7 when initially
selected on by the user.

Chapter 14 • Adding a GUI to Your Scripts 365

Figure 14.17  No action is taken until the user makes
a valid selection from the list. © 2014 Cengage Learning.

Integrating WSH into Your HTAs
This far, the focus of this chapter has been teaching you the fundamentals of how to create HTA GUIs.
With this accomplished, it is time to refocus your attention on the WSH and to demonstrate how to
develop HTAs that integrate the WSH and WMI.

Starting Other Applications
The following HTA leverages the WSH to instantiate the WScript.Shell object. It can then execute the
object’s Run method to start the Notepad application and load a text file into it.

<html>

<head>

<title>Starting a Windows Application</title>

<HTA:APPLICATION

ID=”htaStartWindowsApp”

APPLICATIONNAME=”Starting Notepad”

SCROLL=”auto”

SINGLEINSTANCE=”yes”

>

<script language=”VBScript”>

Sub Window_OnLoad

self.resizeTo 600, 300

End Sub

Sub RunProgram

Set objShell = CreateObject(“Wscript.Shell”)
objShell.Run “notepad.exe c:\scripts\test.txt”

End Sub

</script>

</head>

<body>

<p> <button onclick=”RunProgram”>Run Program</button> </p>

</body>

</html>

As you can see, a VBScript containing the WSH statements has been integrated into the HTA’s RunProgram
subroutine, which is executed when the button labeled “Run Program” is clicked. To test the execution of
this HTA, create a text file named test.txt containing the following text and store it in a folder named
scripts located on your computer’s C: drive.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition366

This text file has been opened by a WSH script embedded within

an HTML Application.

Now, run the HTA and then click the button control. In response, Notepad will start and load the file.
Figure 14.18 shows the results as displayed on a computer running Windows 7.

Hint

You can use the WshShell object’s ShellExecute method instead of the Run method to start Notepad (or
any other Windows application) and have it open the test file. To so do, simply replace the HTA’s RunProgram
subroutine with the subroutine provided here:

Sub RunProgram

Set objShell = CreateObject(“Shell.Application”)

objShell.ShellExecute “notepad.exe”, “C:\scripts\test.txt”, , , 1

End Sub

Using WMI to Capture Process Information
As demonstrated, integrating WSH into an HTA is a straightforward process. Let’s take a look at a more
involved example—one that leverages WMI and its ability to retrieve detailed information from the oper-
ating system. I should point out that WMI is not part of WSH; it is its own technology. So technically, what
follows is not a WSH integration example. This HTA, shown here, begins with the <HTA:APPLICATION>
tag and a little CSS, which applies text type, size, weight, and color formatting to the text displayed on the
HTA window.

The HTA’s programming logic is made up of two subroutines:

• The first resizes the HTA’s window when the application is started and then uses the window object’s

setInterval method to execute the GetServiceData subroutine every second. As a result, the HTA

will continuously display updated process data for as long as it runs.

• The second uses WMI to retrieve process data from the operating system. A display string is for-

mulated and application output is then written to a pair of tags, displaying it directly on

the HTA window.

Chapter 14 • Adding a GUI to Your Scripts 367

Figure 14.18 An HTA that includes a
subroutine containing a VBScript that
leverages WSH objects and methods.

© 2014 Microsoft Corporation.
Used with permission from Microsoft.

<html>

<head>

<title>Process Monitor Application</title>

<HTA:APPLICATION

ID=”htaProcessMonitor”

APPLICATIONNAME=”Process Monitor”

SINGLEINSTANCE=”yes”

>

<style>

body { /* Display all text in Courier font */

font-family: Courier;

}

#ProcessOutPut { /* Set output font size to 9 points */

font-size: 9pt;

}

#TotalOutPut { /* Display Total Process count */

font-size: 12pt; /* in 12 point, bold, red font */

font-weight:bold;

color: #FF0000;

}

</style>

</head>

<script language=”VBScript”>

‘This subroutine resizes the HTA window and schedules

‘the execution of the GetServiceData subroutine to run once per second

Sub Window_OnLoad

self.resizeTo 400, 800

serviceList = window.setInterval(“GetServiceData”, 1000)

End Sub

‘This subroutine retrieves and displays process information

Sub GetServiceData

strProcessList = “”

intCount = 0

‘Instantiate the WMI object and use it to collect process data

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition368

Set objWMI = GetObject(“winmgmts:\\.\root\cimv2”)

Set astrProcesses = objWMI.ExecQuery(“Select * from Win32_Process”)

‘Loop though data and create string made up of process IDs and names

For Each strProcess in astrProcesses

strProcessList = strProcessList & strProcess.ProcessId & “ - “ _

& strProcess.name & “
”

intCount = intCount + 1

Next

‘Display output in the respective HTML span tags

ProcessOutPut.InnerHTML = strProcessList

TotalOutPut.InnerHTML = “Process Count = “ & intCount

End Sub

</script>

<body>

<div id=”ProcessOutPut”></div> <!— Display

process list here —>

<div id=”TotalOutPut”></div> <!— Display

total count here —>

</body>

</html>

Note the use of the InnerHTML property to refer to the
 tags. By assigning the output string to InnerHTML,
the new process data is automatically displayed within the
tags, over-writing any previously displayed data. Figure 14.19
shows an example of this HTA in action on a computer run-
ning Windows 7.

Chapter 14 • Adding a GUI to Your Scripts 369

Figure 14.19 This HTA auto-refreshes every second
to provide up to date process data collected via WMI.
© 2014 Cengage Learning.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition370

Other HTA Examples
For more HTA examples, check out Appendix A, “WSH Administrative Scripting.” There, you will find two
additional HTAs, shown in Figure 14.20. One wraps the ping command inside an HTA GUI and another
automates the shutdown of a Windows computer.

Back to the Rock, Paper, Scissors Game
Now let’s return to where we began this chapter, by developing an HTA version of the Rock, Paper, Scissors
game. As part of this project, you will modify the Rock, Paper, Scissors game discussed in Chapter 5. In doing
so, you will convert the WSH script to an HTA, provide it with a suitable GUI, and enhance its presenta-
tion with a little CSS. Figure 14.21 provides a side-by-side comparison of the WSH and HTA versions of
the Rock, Paper, Scissors game, as seen on a computer running Windows 7.

Figure 14.21 Side-by-side comparison of the WSH and HTA versions of the Rock, Paper, Scissors game.
© 2014 Cengage Learning.

WSH HTA

Figure 14.20 Additional HTA examples of
greater complexity, shown here executing on
Windows 8.1, are available in Appendix A.
© 2014 Cengage Learning.

Game Development
The following steps outline the process you’ll go through to complete the development of the game:

1. Create a basic HTML file and add the <HTA:APPLICATION> tag to it.

2. Build the application’s GUI by adding appropriate controls in the <body> </body> section.

3. Port over and convert the WSH Rock, Paper, Scissors game’s programming logic.

4. Add a CSS to the application to further enhance its presentation.

Step 1: Start with a Basic HTML File
Begin this project by creating a new HTA named RockPaperScissors.HTA. Then add the following HTML
to it. As you can see, there is nothing here other than the standard HTA template with a little tweaking
of the <HTA:APPLICATION> tag.

<html>

<head>

<title></title>

<HTA:APPLICATION

ID=”htaGame”

APPLICATIONNAME=”Rock Paper Scissors Game”

SCROLL=”auto”

SINGLEINSTANCE=”yes”

>

<style>

</style>

</head>

<script language=”VBScript”>

</script>

<body>

</body>

</html>

Step 2: Build the Application’s GUI
Now it is time to add the HTML required to provide the new HTA with its GUI. Begin by adding the fol-
lowing statement in the <body> </body> section. This statement will place a level 1 heading on the HTA
window that displays the name of the game in a large font.

<h1>The Rock, Paper, Scissors Game</h1>

Chapter 14 • Adding a GUI to Your Scripts 371

Next, add the following statement to the <body> </body> section immediately following the previous
statement. This statement places three image files, representing graphic buttons, inside the <div> </div>
tags. These three graphic buttons will display side by side on the application window in the space set aside
for the <div> </div> tags. Note that each of the embedded images is placed in the HTA window using the
<input> tag while specifying a type of image. Also note the onClick event assignment for each <input>
tag. These assignments initiate a new round of play by executing the play() function and passing it a text
string specifying the player’s move.

<div>

<input type=”image” src=”rock.png” onClick=”play("Rock")”>

<input type=”image” src=”paper.png” onClick=”play("Paper")”>

<input type=”image” src=”scissors.png” onClick=”play("Scissors")”>

</div>

Hint

You can download copies of the rock.png, paper.png, and scissors.png files from this book’s companion
website, located at www.cengageptr.com/download. Search for this book’s title to locate the site.

Instead of displaying game results in a pop-up dialog box, as was done in the WSH version of the game,
the results of each round of play will be displayed in the HTA window. To set this up, add the following
statements to the <body> </body> section immediately following the previous set of statements. The <p>
</p> (paragraph) tags are used to pad a little blank space above and below the text embedded within them.
This text includes two embedded pairs of tags, which are used to display the computer’s
and player’s moves.

<p>

Computer’s Move:

Player’s Move:

</p>

Lastly, add the following statements to the end of the <body> </body> section. These statements display
a text message showing the results of the game.

<p>

Result:

</p>

Step 3: Port Over the Program Code
Now that you have created a new HTA file and built its GUI, it is time to modify and port over the appli-
cation’s programming logic as a function. Before you do that, however, you need to add one new piece of
program code.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition372

http://www.cengageptr.com/download

Its purpose is to resize the HTA’s window at startup. To do this, add the following inside the <script>
</script> tags:

Sub Window_OnLoad

self.resizeTo 500, 300

End Sub

All the programming logic that controls the Rock, Paper, Scissors game will be placed within a single
function named play(), which is provided here. Place this function inside the HTA’s <script>
</script> tags, immediately following the Window_OnLoad subroutine.

This function is executed each time the player clicks one of the game’s three graphic controls, signaling a
new round of play. The player’s move is passed to the function as a text string argument. Next, a random
number between 1 and 3 is generated, and is used to trigger the computer’s move. A Select Case statement
is then set up to determine the results of the game, comparing the player’s and the computer’s moves to
determine who won. Once this analysis has been performed, the results of the game are displayed.

function play(strPlayerMove)

‘Time for the computer to randomly pick a choice

Randomize

intGetRandomNumber = Round(FormatNumber(Int((3 * Rnd) + 1)))

If intGetRandomNumber = 3 then strComputerMove = “Rock”

If intGetRandomNumber = 2 then strComputerMove = “Scissors”

If intGetRandomNumber = 1 then strComputerMove = “Paper”

‘Compare the computer’s and the player’s move

Select Case strPlayerMove

Case “Rock”

If strComputerMove = “Rock” Then

document.getElementById(“result”).innerHTML = “You tie!”

End If

If strComputerMove = “Scissors” Then

document.getElementById(“result”).innerHTML = “You win!”

End If

If strComputerMove = “Paper” Then

document.getElementById(“result”).innerHTML = “You lose!”

End If

Case “Scissors”

If strComputerMove = “Paper” Then

document.getElementById(“result”).innerHTML = “You win!”

End If

Chapter 14 • Adding a GUI to Your Scripts 373

If strComputerMove = “Scissors” Then

document.getElementById(“result”).innerHTML = “You tie!”

End If

If strComputerMove = “Rock” Then

document.getElementById(“result”).innerHTML = “You lose!”

End If

Case “Paper”

If strComputerMove = “Rock” Then

document.getElementById(“result”).innerHTML = “You win!”

End If

If strComputerMove = “Scissors” Then

document.getElementById(“result”).innerHTML = “You lose!”

End If

If strComputerMove = “Paper” Then

document.getElementById(“result”).innerHTML = “You tie!”

End If

End Select

document.getElementById(“computer”).innerHTML = strComputerMove

document.getElementById(“player”).innerHTML = strPlayerMove

End Function

Note that instead of displaying game results as a preformatted text string in a pop-up dialog box as was
done in the WSH version of the game, the document.getElementById() method is now used to retrieve
a reference to the tags where player moves and the result of game play is displayed. The
innerHTML property is then used to overwrite this data in those locations.

Step 4: Spruce Up the Application’s Presentation with a Little CSS
At this point, your copy of the HTA Rock, Paper, Scissors game is complete and is ready to run. However,
before you run it, let’s spruce things up by enhancing its presentation with some CSS, as shown here:

h1 {

color: MidnightBlue;

text-align: center;

font-family: Arial;

font-size: 26px;

}

div {

text-align: center;

}

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition374

p {

text-align: center;

font-family: Arial;

font-size: 18px;

}

Place these statements inside the <style> </style> tags, located in the HTA’s <head> </head> section.
As you can see, there are three CSS rules here:

• The first rule applies to the content of the <h1> </h1> tags, centering it and displaying it in an

Arial font that is 26 pixels high.

• The second rule centers the display of the three graphical controls displayed in the HTA <div>

</div> tags.

• The third CSS rule center-aligns text stored within paragraph tags, displaying it in an Arial font

that is 18 pixels high.

The Fully Assembled Script
Okay, you have all the information you need to create an HTA version of the Rock, Paper, Scissors game.
Once complete, start the game and put it through its paces. While you are at it, start up the WSH Rock,
Paper, Scissors game and compare the look and feel of the two games. I think you will agree that the HTA
version has definitely given the game a nice face lift!

Summary
In this chapter, you learned how to make the leap from command line to Windows desktop development
by leveraging the technologies associated with HTA. You learned about the different components that
make up HTAs and how to use them to wrap a GUI around your WSH scripts. This included leaning how
to work with HTML, the <HTA:APPLICATION> tag, and CSS.

Chapter 14 • Adding a GUI to Your Scripts 375

1. This new version of the Rock, Paper, Scissors game is more inviting than its WSH counterpart.
Consider enhancing its appearance even further by giving it a different background color or by
using a more visually appealing font.

2. Another way to improve the Rock, Paper, Scissors game is to enhance its graphics. Consider replacing
the game’s three graphic buttons with graphics that are more eye popping.

3. The text string “Let’s play a game!” is displayed in the title bar of the game window. Consider chang-
ing this text during game play to reflect the state of the game.

C
ha

lle
ng

es

This page intentionally left blank

Appendix A: WSH Administrative Scripting

Appendix B: Introducing Remote WSH

Appendix C: The WSH Core Object Model

Appendix D: Built-in VBScript Functions

Appendix E: What’s on the Companion
Web Site?

P
A

R
T

AppendicesIV

This page intentionally left blank

WSH Administrative
Scripting

A
I

n this book, you learned a great deal about both VBScript and the WSH by develop-
ing computer games. In the real world, of course, VBScript and the WSH are used to
automate tasks. These tasks are typically mundane, repetitive, and time-consuming,

or extremely complex and therefore subject to human error. Automating such tasks using
VBScript and the WSH makes perfect sense. The purpose of this appendix is to provide
you with a collection of sample scripts that demonstrate some real-world tasks that can
be scripted.

None of the VBScripts that you will see in this appendix should be considered finished
products. For example, you won’t see any complex programming logic or a lot of error
checking. These scripts were developed on computers running Windows 7 and Windows
8.1; you should review and test the scripts before running them on other operating sys-
tems. My intention for providing these sample scripts is to give you a feel for some of the
real-world tasks that you can automate using VBScript and the WSH. I wanted to provide
you with a collection of starter scripts from which you can begin to create and develop your
own collection of scripts. Also included in this appendix are a pair of HTML Applications
(HTAs) that demonstrate the execution of WSH administrative scripts that have been
given a Windows graphical user interface.

I won’t spend a lot of time going over the development of these scripts, nor will I attempt
to explain every operation they perform. By now, you should be able to look at each of these
scripts and determine what it is doing. To help you out a little, I made sure to include
plenty of comments.

Desktop Administration
The administration of the Windows desktop on a single computer isn’t terribly time-consuming. How-
ever, for those responsible for the maintenance and care of a large number of computers, scripting is a
godsend. For example, a lot of small companies purchase their computers directly from the manufac-
turer. These computers arrive with the operating system already installed. However, desktop settings such
as the color of the Windows desktop background or screensaver settings will vary depending on how the
computer manufacturer chose to set them up.

Companies often try to keep the configuration of their computer settings standardized. This makes main-
taining their computers easier and reduces a lot of user confusion. One way of configuring computers in
this scenario is to develop VBScripts that automate the configuration of desktop settings according to
company policy. Then, all you need to do to prepare a new computer for deployment is to copy over the
scripts and have the user run them the first time he logs on to the computer.

Configuring the Desktop Background
The following VBScript demonstrates how to use the WshShell object’s RegWrite() method to configure
values that are stored in the Windows Registry and affect the Windows desktop background:

‘***

‘Script Name: Background.vbs

‘Author: Jerry Ford

‘Created: 02/25/14

‘Description: This script changes the user’s background selection to none

‘and sets the default background color to white.

‘***

‘Initialization Section

Option Explicit

On Error Resume Next

Dim objWshShl, intChangeSettings

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

‘Main Processing Section

‘Verify that the user intends to change his screensaver settings

intChangeSettings = PromptForConfirmation()

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition380

If intChangeSettings = 6 Then

ModifySettings()

End If

WScript.Quit()

‘Procedure Section

‘This function determines if the user wishes to proceed

Function PromptForConfirmation()

PromptForConfirmation = MsgBox(“Set standard desktop background?”, 36)

End Function

‘This subroutine alters screensaver settings

Sub ModifySettings()

‘Turn off the wallpaper setting

objWshShl.RegWrite “HKCU\Control Panel\Desktop\Wallpaper”, “”

‘Setting the background color to white

objWshShl.RegWrite “HKCU\Control Panel\Colors\Background”, “255 255 255”

End Sub

The script begins by prompting for confirmation and then proceeds to modify the following Registry
values:

objWshShl.RegWrite “HKCU\Control Panel\Desktop\Wallpaper”, “”

objWshShl.RegWrite “HKCU\Control Panel\Colors\Background”, “255 255 255”

The first statement sets the Windows Wallpaper setting to “”. This is equivalent to right-clicking the
Windows desktop, selecting Properties, and then setting the Background setting on the Desktop tab of
the Windows Display Properties dialog box to None.

The second statement sets the value of the Background setting to 255 255 255. This is the equivalent of
selecting white as the color setting on the Desktop tab.

To test this script, run it and then log off and on again.

Configuring the Screensaver
The following VBScript demonstrates how to change the configuration of the Windows screensaver. The
overall construction of this script is very similar to the previous example, the only difference being which
Registry keys are edited.

Appendix A • WSH Administrative Scripting 381

‘***

‘Script Name: ScreenSaver.vbs

‘Author: Jerry Ford

‘Created: 02/25/14

‘Description: This script changes the user’s screensaver to a default

‘collection of settings.

‘***

‘Initialization Section

Option Explicit

On Error Resume Next

Dim objWshShl, intChangeSettings

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

‘Main Processing Section

‘Verify that the user intends to change his screensaver settings

intChangeSettings = PromptForConfirmation()

If intChangeSettings = 6 Then

ModifySettings()

End If

WScript.Quit()

‘Procedure Section

‘This function determines if the user wishes to proceed

Function PromptForConfirmation()

PromptForConfirmation = _

MsgBox(“Set standard screensaver settings?”, 36)

End Function

‘This subroutine alters screensaver settings

Sub ModifySettings()

‘Enables the Windows screensaver

objWshShl.RegWrite “HKCU\Control Panel\Desktop\ScreenSaveActive”, 1

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition382

‘Turns on password protection

objWshShl.RegWrite “HKCU\Control Panel\Desktop\ScreenSaverIsSecure”, 1

‘Establishes a 10-minute inactivity period (600 seconds)

objWshShl.RegWrite “HKCU\Control Panel\Desktop\ScreenSaveTimeOut”, 600

‘Enables the Mystify screensaver

objWshShl.RegWrite “HKCU\Control Panel\Desktop\SCRNSAVE.EXE”, _

“C:\Windows\System32\Mystify.scr”

End Sub

As you can see, this script modifies four Registry values. The modification of the first value enables the
Windows screensaver. The modification of the second value enables screensaver password protection, which
means that if the screensaver kicks in, the user has to retype his password to get back into Windows. The
third modification sets up the screensaver to begin running after a 10-minute period of user inactivity.
Finally, the last modification selects the screensaver that is to be run. To test this script, run it and then
log off and on again.

Network Administration
Network administration means many things to many people. For one thing, it may mean establishing
connections to network drives so that a script can move, copy, create, and delete files and folders resid-
ing on network computers. Network management also means establishing or removing connections to
network printers. In the next several sections, I’ll provide you with scripts that demonstrate how to con-
nect to, and disconnect from, network drives and printers.

Mapping Network Drives
When you create a connection to a network drive (known as mapping), you make the network drive look
as if it were local to your computer by assigning it a local drive letter—that is, as long as you have the
appropriate set of security permissions on the network drive. Connecting to and disconnecting from a
network drive is achieved using methods belonging to the WshNetwork object.

To create a drive mapping, you must use the WshNetwork object’s MapNetworkDrive() method:

WshNetwork.MapNetworkDrive letter, name, [persistent], [username],

[password]

letter is an available logical disk drive letter on your computer. name is the universal naming convention
(UNC) name and network path of the network drive. persistent is optional; it determines whether the
mapping is permanent. A value of True creates a permanent mapping. The default value of this setting is
False, which causes the connection to last only for the current working session. username and password

are optional and are used to supply the username and password required to access the drive.

Appendix A • WSH Administrative Scripting 383

Trap

When you run scripts from the Windows desktop or command line, they execute using your security
credentials. However, if you schedule the execution of your VBScript, then your scripts will not have the
authority that you have and will be unable to establish a network drive connection. One way to get
around this is to embed a username and password inside your script. However, doing so is really bad for
security. Another option is to set up your script to prompt for a valid username and password at execu-
tion time and authorize someone who might be around to supply these credentials.

The following VBScript demonstrates how to establish a temporary network drive mapping:

‘***

‘Script Name: DriveMapper.vbs

‘Author: Jerry Ford

‘Created: 02/25/14

‘Description: This script demonstrates how to add logic to VBScripts in

‘order to support network drive mapping.

‘***

‘Initialization Section

Option Explicit

On Error Resume Next

Dim objWshNet

‘Instantiate the objWshNetwork object

Set objWshNet = WScript.CreateObject(“WScript.Network”)

‘Main Processing Section

‘Call the procedure that maps drive connections, passing it an available

‘drive letter and the UNC pathname of the drive

MapNetworkDrive “X:”, “\\HP-PC\Scripts”

WScript.Quit() ‘Terminate script execution

‘Procedure Section

‘This subroutine creates network drive mappings

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition384

Sub MapNetworkDrive(DriveLetter, NetworkPath)

‘Use the objWshNetwork object’s MapNetworkDrive() method to map to drive

objWshNet.MapNetworkDrive DriveLetter, NetworkPath

End Sub

Disconnecting Mapped Drives
You can use the WshNetwork objects’ RemoveNetworkDrive() method to disconnect a mapped drive when
it’s no longer needed. For example, you might want to do this at the end of the script that created the
drive mapping, after it has completed its assigned task. The syntax of the RemoveNetworkDrive() method
is as follows:

WshNetwork.RemoveNetworkDrive letter, [kill], [persistent]

letter is the drive that has been assigned to the mapped drive. kill is an optional setting with a value
of either True or False. Setting it to True disconnects a mapped drive even if it is currently in use.
persistent is also optional. Set it to True to disconnect a permanently mapped drive.

The following VBScript demonstrates how to disconnect the network drive that was mapped by the pre-
vious script:

‘***

‘Script Name: DriveBuster.vbs

‘Author: Jerry Ford

‘Created: 02/25/14

‘Description: This script demonstrates how to add logic to VBScripts in

‘order to terminate a network drive mapping.

‘***

‘Initialization Section

Option Explicit

On Error Resume Next

Dim objWshNet

‘Instantiate the objWshNetwork object

Set objWshNet = WScript.CreateObject(“WScript.Network”)

‘Main Processing Section

‘Call procedure that deletes network drive connections, passing it

‘the drive letter to be removed

Appendix A • WSH Administrative Scripting 385

MapNetworkDrive “X:”

WScript.Quit() ‘Terminate script execution

‘Procedure Section

‘This subroutine disconnects the specified network drive connection

Sub MapNetworkDrive(DriveLetter)

‘Use the objWshNetwork object’s RemoteNetworkDrive() method to disconnect

‘the specified network drive

objWshNet.RemoveNetworkDrive DriveLetter

End Sub

Printer Administration
Printer administration involves many tasks. One task is setting up network printer connections. Others
include managing print jobs and physically managing the printer, including refilling its paper, ink, rib-
bon, or toner supply. Another task includes removing printer connections when they are no longer
needed. The next two sections demonstrate how to use VBScript and the WSH to set up and disconnect
network printer connections.

Connecting to a Network Printer
To create a connection to a network printer, you need to use the WshNetwork object’s AddWindowsPrinter
Connection() method. This method has two different types of syntax, depending on the operating system
on which the script is executed.

The syntax for the AddWindowsPrinterConnection() method, when used on a computer running Windows
7 and Windows 8.1 is as follows:

WshNetwork.AddWindowsPrinterConnection(strPrinterPath)

strPrinterPath is the UNC path and name for the network printer.

The following VBScript demonstrates how to set up a network printer connection:

‘***

‘Script Name: PrinterMapper.vbs

‘Author: Jerry Ford

‘Created: 02/25/14

‘Description: This script demonstrates how to use a VBScript to set up a

‘connection to a network printer.

‘***

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition386

‘Initialization Section

Option Explicit

Dim objWshNet

‘Instantiate the objWshNetwork object

Set objWshNet = WScript.CreateObject(“WScript.Network”)

‘Main Processing Section

‘Call the procedure that creates network printer connections, passing

‘it a port number and the UNC pathname of the network printer

SetupNetworkPrinterConnection “\\HP-PC\HPLaserJet”

WScript.Quit() ‘Terminate script execution

‘Procedure Section

Sub SetupNetworkPrinterConnection(NetworkPath)

‘Use the objWshNetwork object’s AddWindowsPrinterConnection() method

‘to connect to the network printer

objWshNet.AddWindowsPrinterConnection NetworkPath

End Sub

Disconnecting from a Network Printer
As with network drives, removing a printer connection is a little easier to do than connecting it initially.
Printer connections need to be removed for a number of reasons. For example, every printer eventually
breaks and must be replaced. Sometimes people move from one location to another, necessitating
changes to printer connections. By scripting the setup and removal of printer connections, you can auto-
mate this process. To remove a network printer connection, you need to use the WshNetwork object’s
RemovePrinterConnection() method:

WshNetwork.RemovePrinterConnection resource, [kill], [persistent]

resource identifies the printer connection and may be either the connection’s assigned port number or
its UNC name and path. kill is an optional setting with a value of either True or False. Setting it to True
disconnects a printer connection even if it is currently in use. persistent is also optional. Set it to True to
disconnect a permanent printer connection.

Appendix A • WSH Administrative Scripting 387

The following VBScript demonstrates how to remove the printer connection established by the previous
VBScript:

‘***

‘Script Name: PrinterBuster.vbs

‘Author: Jerry Ford

‘Created: 02/25/14

‘Description: This script demonstrates how to use a VBScript to disconnect

‘a network printer connection.

‘***

‘Initialization Section

Option Explicit

Dim objWshNet

‘Instantiate the objWshNetwork object

Set objWshNet = WScript.CreateObject(“WScript.Network”)

‘Main Processing Section

‘Call the procedures that disconnect network printer connections, passing

‘it the UNC pathname of the network printer

SetupNetworkPrinterConnection “\\HP-PC\HPLaserJet”

‘Terminate script execution

WScript.Quit()

‘Procedure Section

Sub SetupNetworkPrinterConnection(NetworkPath)

‘Use the objWshNetwork object’s RemovePrinterConnection() method to

‘disconnect from a network printer

objWshNet.RemovePrinterConnection NetworkPath, “True”, “True”

End Sub

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition388

Computer Administration
The term computer administration represents a very broad category of tasks. Rather than try to list or
explain them all, I’ll simply present you with two computer administration examples. The first example
demonstrates how to use VBScript and the WSH to manage Windows services, and the second example
demonstrates automated user account creation.

Managing Services
On computers running the Windows 7 and Windows 8.1 operating systems, much of the operating sys-
tem’s core functionality is provided in the form of services. These services perform tasks, such as man-
aging Windows plug and play, handling the spooling of printer jobs, and administering the execution of
scheduled tasks. By starting and stopping Windows services, you can enable and disable specific Windows
functions—that is, control just what users can and cannot do.

You can use the Windows net stop and net start commands to stop and start Windows services. To
execute these commands from within a VBScript, you can use the WshShell object’s Run() method, as
demonstrated in the following script:

Trap

This script requires that you execute it with elevated privileges. To do so, locate and right-click the
Windows Command Prompt icon and choose Run as Administrator from the menu that appears. Then
navigate to the folder where the script resides and execute it.

‘***

‘Script Name: ServiceCycler.vbs

‘Author: Jerry Ford

‘Created: 02/25/14

‘Description: This script demonstrates how to use VBScript to stop and

‘start Windows services.

‘***

‘Initialization Section

Option Explicit

On Error Resume Next

Dim objWshShl, strServiceToManage

Appendix A • WSH Administrative Scripting 389

‘Instantiate the WshShell object

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

‘Main Processing Section

‘Prompt the user to specify the name of the service to cycle

strServiceToManage = InputBox(“What service would you like to cycle?”)

‘Call the procedure that stops a service

StopService(strServiceToManage)

‘Pause for five seconds

WScript.Sleep(5000)

‘Call the procedure that starts a service

StartService(strServiceToManage)

‘Terminate script execution

WScript.Quit()

‘Procedure Section

‘This subroutine stops a specified service

Function StopService(ServiceName)

objWshShl.Run “net stop “ & ServiceName, 0, “True”

End Function

‘This subroutine starts a specified service

Function StartService(ServiceName)

objWshShl.Run “net start “ & ServiceName, 0, “True”

End Function

Hint

The ServiceCycler.vbs script uses the Windows net stop and net start commands to stop and start ser-
vices. You can also use the WMI to control service status. An example of how to stop and start services
using the WMI was provided in Chapter 13, “Working with the Windows Management Instrumentation.”

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition390

User Account Administration
User administration involves many tasks, including creating, modifying, and removing user accounts from
the computer or the Windows domain to which the computer is a member. To perform user account
administration, you need to have administrative privileges within the context that the script will execute
(that is, on the computer or at the domain level).

One way to create a new user account is with the Windows net user command.

Trick

You also can use the net group command to add a newly created user account into a global domain
group account or the net localgroup command to add the user account to a local group.

For example, the following VBScript uses the WshShell object’s Run() method. The net user command can
be used to create a new user account on Windows 7 or Windows 8.1.

Trap

This script requires that you execute it with elevated privileges. To do so, locate and right-click the
Windows Command Prompt icon and click Run as Administrator in the menu that appears. Once started
in this manner, navigate to the folder where the script resides and execute it.

‘***

‘Script Name: AccountCreator.vbs

‘Author: Jerry Ford

‘Created: 02/25/14

‘Description: This script demonstrates how to use VBScript to create new

‘user accounts.

‘***

‘Initialization Section

Option Explicit

On Error Resume Next

Dim objFsoObject, objWshShl, strNewAccts, strAcctName

‘Instantiate the FileSystemObject object

Set objFsoObject = CreateObject(“Scripting.FileSystemObject”)

Appendix A • WSH Administrative Scripting 391

‘Instantiate the WshShell object

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

‘Specify the location of the file containing the new user account name

Set strNewAccts = _

objFsoObject.OpenTextFile(“C:\Temp\UserNames.txt”, 1, “True”)

‘Main Processing Section

CreateNewAccts() ‘Call the procedure that creates new user accounts

WScript.Quit() ‘Terminate script execution

‘Procedure Section

Sub CreateNewAccts() ‘This procedures creates new accounts

‘Create a Do...While loop to process each line in the input file

Do while False = strNewAccts.AtEndOfStream

‘Each line of the file specifies a unique username

strAcctName = strNewAccts.ReadLine()

‘Create the new account

objWshShl.Run “net user “ & strAcctName & “ “ & strAcctName & _

“ /add”, 0

Loop

‘Close the input file

strNewAccts.Close

End Sub

To make the script more flexible, it has been set up to use VBScript FileSystemObject methods, which
enable it to open and retrieve a list of names from an external file called UserNames.txt, located in the
C:\Temp folder. That way, the script can be used over and over again without any modification. All you
need to do is modify the script’s input text file.

Disk Management
VBScripts provide an excellent tool for automating the execution of various Windows system adminis-
tration utilities. An example of one such utility is Windows Disk Cleanup. Like many Windows utilities,
this utility provides a command-line interface, meaning you can control its execution via your scripts using
the WshShell object’s Run() method.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition392

The Windows Disk Cleanup utility recovers lost disk space by deleting unnecessary files stored on the
computer’s disk drive. When executed, the Disk Cleanup utility deletes the following files:

• Files found in the Recycle Bin

• Temporary files

• Downloaded program files

• Temporary Internet files

• Catalog files for the Content Indexer

• WebClient/Publisher temporary files

Before you can automate the execution of the Disk Cleanup utility, you must perform a one-time con-
figuration process as outlined here:

1. Click Start and then Run. The Run dialog box opens.

2. Type cleanmgr /sageset:1 and then click on OK.

3. The Disk Cleanup Settings dialog box opens. Select the types of files that you want the Disk

Cleanup process to remove and then click on OK.

After you’ve completed the configuration process, you can create your Disk Cleanup execution script using
the following example as a template:

‘***

‘Script Name: VBSCleanup.vbs

‘Author: Jerry Ford

‘Created: 02/25/14

‘Description: This script automates the execution of the Windows Disk

‘ Cleanup utility.

‘***

‘Initialization Section

Option Explicit

Dim objWshShl

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

‘Main Processing Section

ExecuteCleanupUtility()

RecordMsgToAppEventLog()

Appendix A • WSH Administrative Scripting 393

WScript.Quit() ‘Terminate the script’s execution

‘Procedure Section

Function ExecuteCleanupUtility() ‘Run the Windows Disk Cleanup utility

objWshShl.Run “C:\WINDOWS\SYSTEM32\cleanmgr /sagerun:1”

End Function

Function RecordMsgToAppEventLog() ‘Record message in Application event log

objWshShl.LogEvent 4, “VBSCleanup.vbs - Disk Cleanup has been started.”

End Function

When you create your script, make sure you specify the /sagerun:1 parameter exactly as shown here:

objWshShl.Run “C:\WINDOWS\SYSTEM32\cleanmgr /sagerun:1”

Integrating VBScript with Other Applications
In addition to creating VBScripts that can interact with and control Windows resources, you can also cre-
ate VBScripts that automate the execution of popular Windows applications such as Microsoft Word and
WinZip. In this section, you’ll see examples of how to use VBScript and the WSH to create a Word doc-
ument and a ZIP file.

Automating the Generation of Microsoft Word Reports
To use VBScript to automate Word tasks, you need to know a little something about the Word object
model. The Application object resides at the top of the Word object model. The Application object is
automatically instantiated when Word is started. Using properties and methods associated with the
Application object, you can access lower-level objects and collections in the Word model. Using the prop-
erties and methods associated with the lower-level objects, you can automate any number of Word tasks.

The following script provides a working example of how to use VBScript and the WSH to automate the
creation of a Word document. Comments embedded within the script provide additional information
about the Word object model.

Trick

The Word object model is far too large and detailed to be covered in this book. You can learn more about
it here: http://msdn.Microsoft.com/office.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition394

http://msdn.Microsoft.com/office

‘***

‘Script Name: WordObjectModelExample.vbs

‘Author: Jerry Ford

‘Created: 02/25/14

‘Description: This script demonstrates how to integrate VBScript and

‘ the Microsoft Word object model.

‘***

‘Initialization Section

Option Explicit

On Error Resume Next

Dim objWord ‘Used to establish a reference to Word application object

Set objWord = WScript.CreateObject(“Word.Application”) ‘Instantiate Word

‘Main Processing Section

CreateNewWordDoc()

WriteWordReport()

SaveWordDoc()

CloseDocAndEndWord()

TerminateScript()

‘Procedure Section

Function CreateNewWordDoc()

‘Documents is a collection. Add() is a method belonging to the Documents

‘collection that opens a new empty Word document

objWord.Documents.Add()

End Function

Function WriteWordReport()

‘Specify Font object’s Name, Size, Underline, and Bold properties

objWord.Selection.Font.Name = “Arial”

objWord.Selection.Font.Size = 16

objWord.Selection.Font.Underline = True

objWord.Selection.Font.Bold = True

‘Use the Selection object’s TypeText() method to write text output

objWord.Selection.TypeText(“Sample VBScript Word Report”)

Appendix A • WSH Administrative Scripting 395

‘Use the Selection object’s TypeParagraph() method to insert linefeeds

objWord.Selection.TypeParagraph

objWord.Selection.TypeParagraph

objWord.Selection.TypeParagraph

‘Use the Font object’s Underline and Bold properties

objWord.Selection.Font.Underline = False

objWord.Selection.Font.Bold = False

‘Use the Font object’s Size and Bold properties

objWord.Selection.Font.Size = 12

objWord.Selection.Font.Bold = False

‘Use the Selection object’s TypeText() method to write text output

objWord.Selection.TypeText(“Prepared on “ & Date())

‘Use the Selection object’s TypeParagraph() method to insert linefeeds

objWord.Selection.TypeParagraph

objWord.Selection.TypeParagraph

‘Use the Selection object’s TypeText() method to write text output

objWord.Selection.TypeText(“Copyright - Jerry Lee Ford, Jr.”)

End Function

Function SaveWordDoc()

‘The Applications object’s ActiveDocument property establishes a

‘reference to the current Word document.

‘The Document object’s SaveAs() method provides the ability to save

‘the Word file

‘Save the new document to C:\Temp

objWord.ActiveDocument.SaveAs(“c:\Temp\TextFile.doc”)

End Function

Function CloseDocAndEndWord()

‘Use the Document object’s Close() method to close the document

objWord.ActiveDocument.Close()

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition396

‘Terminate Word

objWord.Quit()

End Function

Function TerminateScript()

WScript.Quit() ‘Terminate script execution

End Function

Figure A.1 shows how the Word document created by this script looks after it has been created.

Automating the Execution of Third-Party Applications
Using VBScript and the WSH, you can automate the functionality of any application that exposes its
object model. However, not every Windows application does this. Instead, many applications provide the
capability to automate functions via built-in command-line interfaces, meaning that you can send com-
mands to the application, which the application then processes. A good example of one such application
is WinZip. For example, you can send commands to WinZip by executing its WinZip32.exe program and
passing it arguments. The following VBScript demonstrates how to create a script that automates the
creation of a new ZIP file named VBScripts.zip. The syntax for WinZip32.exe is embedded as comments
within the script.

Appendix A • WSH Administrative Scripting 397

Figure A.1 Automating the
creation of a Word document.

© 2014 Microsoft Corporation.
Used with permission from Microsoft.

Hint

For this script to run, you must have a registered copy of WinZip installed on your computer.

‘***

‘Script Name: WinZipDemo.vbs

‘Author: Jerry Ford

‘Created: 02/25/14

‘Description: This script creates a new ZIP file made up of all the

‘ VBScripts found in the C:\VBScriptsGames folder.

‘***

‘Initialization Section

Option Explicit

Dim intUserResponse, objWshShl

‘Instantiate the Windows shell object

Set objWshShl = WScript.CreateObject(“WScript.Shell”)

‘Main Processing Section

PromptForPermission()

If intUserResponse = vbYes Then

CreateZipFile()

End If

TerminateScriptExecution()

‘Procedure Section

Function PromptForPermission() ‘Ask user for permission to continue

intUserResponse = MsgBox(“This script creates a ZIP file containing” & _

“ all the VBScripts found in C:\VBScriptGames.” & vbCrLf & vbCrLf & _

“Do you wish to continue?”, 36, “VBScript Zipper!”)

End Function

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition398

Function CreateZipFile() ‘Create the new ZIP file

‘WINZIP32 Command Syntax:

‘WINZIP32 [-min] action [options] filename[.zip] files

‘ -min - Tells WinZip to run minimized

‘ action – Represents any one of the following arguments

‘ -a Create new ZIP file

‘ -f Refresh existing archive

‘ -u Update an existing archive

‘ -m Move archive to specified location

‘ options - Optional arguments that include

‘ -r Add files and folders when adding to ZIP file

‘ -p Include information about any added folders

‘ filename[.zip] – name of ZIP file to be created

‘ files – names of file to be added to the ZIP file

objWshShl.Run _

“WINZIP32 -a C:\Temp\VBScripts.zip D:\VBScriptGames*.vbs”, 0, True

End Function

Function TerminateScriptExecution() ‘Terminate the script’s execution

WScript.Quit()

End Function

HTML Applications
Chapter 14, “Adding a GUI to Your Scripts,” introduced you to HTML Applications (HTAs) and explained
how you can use them as a means for providing a graphical user interface (GUI) for your scripts. This
appendix closes with two sample HTAs. One demonstrates how to wrap a GUI around a WSH that executes
and retrieves the results of the ping command. The other demonstrates how to wrap a WSH script that
automates the shutdown of a computer inside a GUI, providing the user with a friendly notification of
the pending shutdown and means for overriding it.

Wrapping a GUI Around a WSH ping Script
You can create HTAs for the purpose of wrapping a GUI around any number of command-line commands.
In doing so, you can simplify their use and even make them available to non-technical people, who might
otherwise be unable to make proper use of them. The following HTA provides a working example of how
to wrap the ping command inside a GUI. Comments are embedded throughout the application to explain
its construction. Figure A.2 shows an example of the HTA in action.

Appendix A • WSH Administrative Scripting 399

Begin Note

Note the different types of comments in the HTA. HTML comments begin with <!— and end with —>. CSS
comments begin with /* and end with */. VBScript comments begin with ‘ and have no ending character.

<head>

<title>HTA Ping Application</title> <!—Specify title bar text—>

<HTA:APPLICATION ID=”htaPingApp”

APPLICATIONNAME=”HTA Ping”

BORDER=”thin”

BORDERSTYLE=”normal”

SINGLEINSTANCE=”yes”

>

<style>

body { /*Set style for body section*/

background-color:#AAAAAA; /*Set background color to gray*/

font:16px “Arial”} /*Set font type size*/

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition400

Figure A.2 Using an HTA to wrap
a GUI around the ping command on a
computer running Windows 8.1.
© 2014 Cengage Learning.

span {color:red; /*Set color in the span tag*/

font-weight:bold} /*Set font-weight for span tag*/

</style>

<script type=”text/vbscript”>

Sub Window_OnLoad ‘Specify window size at load time

self.resizeTo 750, 240

End Sub

Sub submitButton_onClick ‘Subroutine that executes ping

textOutput.innerHTML = “”

self.resizeTo 750, 680 ‘Resize window to display data

‘Specify temporary text file to use to hold ping command results

strTempFile = “C:\Temp\PingFile.txt”

‘Instantiate FileSystemObject and WshShell objects

Set WshFSO = CreateObject(“Scripting.FileSystemObject”)

Set WshShell = CreateObject(“Wscript.Shell”)

‘Execute ping command and pipe output to temporary file

WshShell.Run “cmd.exe /c ping.exe “ & textField.value & “ > “ & _

strTempFile, 0, True

‘Open temporary file, loop through results, and build display string

Set objTextFile = WshFSO.OpenTextFile(strTempFile, 1)

Do While objTextFile.AtEndOfStream <> True

strOutput = strOutput & objTextFile.ReadLine & “
”

Loop

‘Display ping command output inside the <div></div> tags

textOutput.innerHTML = strOutput

objTextFile.Close ‘Close the temporary file

End Sub

</script>

</head>

Appendix A • WSH Administrative Scripting 401

<body>

<p>IP Address/Hostname: <input type=”text” name=”textField” size=”50”>

<input type=”button” name=”submitButton” value=”Initiate Ping”></p>

<div id=”textOutput”>Please be patient when waiting for results. The

ping command can take a while to execute. </div>

</body>

</html>

Automating Windows Shutdown
The following example demonstrates how to create an HTA that automates the shutdown of a Windows
computer. This application begins by displaying a GUI window announcing that the automated shutdown
process has begun. A 60-second countdown is then started. Unless interrupted, the shutdown process is
initiated at the end of the countdown. The user may, however, click the Cancel button at any time dur-
ing the 60-second countdown to halt it. Embedded comments document the constructions of the HTA.
Figure A.3 shows an example of the HTA when executed on a computer running Windows 8.1.

<html>

<title>SHUTDOWN IN PROGRESS</title> <!—Specify title bar text—>

<HTA:APPLICATION

ID=”htaShutdownApp”

APPLICATIONNAME=”Shutdown Demo”

SCROLL=”auto”

SINGLEINSTANCE=”yes”

>

<head>

<style>

body { /*Set style for body section*/

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition402

Figure A.3 An example of the automated
shutdown HTA in action. © 2014 Cengage Learning.

font-family: Arial; /*Set font type*/

text-align: center; /*Set text alignment*/

}

#msgTitle { /*Set style for the title element*/

margin: 12px 0 0; /*Set margin to 12 pixels*/

}

#msgCountdown { /*Set Style for the countdown element*/

color: #FF00FF; /*Set color to purple*/

}

</style>

<script type=”text/vbscript”>

Sub Window_OnLoad ‘Subroutine that specifies window size

self.resizeTo 700, 300

End Sub

Sub SystemShutdown ‘Subroutine that shuts down Windows

Set objSystemSet = GetObject _

(“winmgmts:{impersonationLevel=impersonate, (Shutdown)}”)_

.InstancesOf(“Win32_OperatingSystem”)

For Each objSystem In objSystemSet

objSystem.Win32Shutdown 5

Next

End Sub

Sub StopCountdown ‘Subroutine that terminates the HTA

Set WshShell = CreateObject(“WScript.Shell”)

Window.Close

End Sub

</script>

</head>

<body>

<!—Display text as Level 1 heading—>

<h1 id=”msgTitle”>Automated System Shutdown</h1>

<!—Display instructions explaining how to halt automated shutdown—>

<p id=”msgText”>A shutdown of this system has been initiated.

Click on Cancel to override.</p>

Appendix A • WSH Administrative Scripting 403

<!—Displays countdown. Shutdown occurs when count reaches zero.—>

<div id=”msgCountdown”>

</div>

<!—Displays button used to call subroutine that terminates shutdown—>

<p>

<input type=”button” value=”Cancel” name=”btnCancel”

onclick=”StopCountdown”>

</p>

<script type=”text/vbscript”>

noOfIterations = 60 ‘Specify countdown length (in seconds)

SixtySecondCountdown() ‘Call subroutine that manages countdown

‘Subroutine responsible for counting down and starting system shutdown

Sub SixtySecondCountdown

‘Pause application execution for one second

timerProcess = _

window.setTimeout(“SixtySecondCountdown”, 1000, “VBScript”)

‘Keep count of the remaining number of pauses

noOfIterations = noOfIterations - 1

‘Display the number of pauses remaining (e.g. the countdown)

document.getElementById(“msgCountdown”).innerHTML = noOfIterations

‘When the number of pauses remaining is zero, stop counting and

‘execute the subroutine that shuts down the computer system

If noOfIterations = 0 Then

window.clearTimeout(timerProcess)

SystemShutdown()

End If

End Sub

</script>

</body>

</html>

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition404

Introducing Remote WSH
B

O
ne new WSH technology introduced in WSH 5.6 was Remote WSH. Remote WSH
provides the ability to initiate and monitor the remote execution of scripts. Remote
WSH initially faced some problems with deadlocks and error code reliability. These

issues have been pretty much eliminated with Remote WSH 5.7. This appendix will intro-
duce you to Remote WSH, explain its underlying architecture, and demonstrate its use.

Introducing Remote WSH
Remote WSH provides programmers with the ability to remotely start and monitor the
execution of scripts across a network. Using data returned during script execution, you can
programmatically react to remote script execution, terminating it if necessary. For you to
be able to take advantage of Remote WSH, the following requirements must be met:

• The local computer must be running WSH version 5.6 or higher.

• The remote computer must be running WSH version 5.6 or higher.

• Both the local and remote computers must be running Windows 2000, XP, 2003,

Vista, 2008, 2012, 7, or 8.

• You must have administrative privileges on the remote computer.

Trap

Remote WSH has several limitations. First, it cannot support the remote execution of
statements that generate pop-up dialog boxes. These include the VBScript MsgBox() and
InputBox() functions and the WSH Echo() and Popup() methods. In addition, Remote WSH
scripts cannot access shared folders on remote computers. Finally, Remote WSH does not
provide a means of returning output from remotely executed scripts.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition406

To work with Remote WSH, it must be enabled on any computer where remote scripts will be executed.
To enable it, you must add a new value named Remote to the following Registry key and set it equal to 1:

HKCU\Software\Microsoft\Windows Script Host\Settings\

In addition to modifying the Registry, you must also register the WScript.exe execution host as a remote
COM server by executing the following command on the remote Windows computer:

WScript –regserver

Understanding Remote WSH’s Supporting Architecture
Remote WSH is made up of three objects, each of which supports various methods, properties, and events.
Figure B.1 shows the relationships that these objects and their properties, methods, and events have to
one another.

As shown in Figure B.1, the WshController object it the top-most of these three objects. The following
statement demonstrates how to instantiate the WshController object:

Set WshControl = CreateObject(“WshController”)

Figure B.1 The Remote WSH is made up of three high-level objects and
their associated methods, properties, and events. © 2014 Cengage Learning.

The WshController object has a single method, CreateScript(), that is used when instantiating a new
WshRemote object. The CreateScript() method has the following syntax:

ObjectReference.CreateScript(CommandLine,[ComputerName])

ObjectReference represents a reference to a WshController object. CommandLine is a text string specify-
ing the location of the remote script and any switches that need to be included. ComputerName identifies
the UNC name of the network computer on which the remote script is to run. If this is omitted, the script
will be run locally.

The following statements demonstrate how to instantiate a WshController object named RemoteScript
to copy and then load a script named Test.vbs to a remote computer named DSKTP001.

Set WshControl = CreateObject(“WshController”)

Set RemoteScript = WshControl.CreateScript(Test.vbs, DSKTP001)

Although this example instantiates a WshRemote object and copies a script to a remote computer, it does
not execute the script. You will learn how to do this shortly.

Executing Remote WSH Methods
The WshRemote object supports two methods. The Execute() method provides the ability to initiate the
remote execution of a script. The syntax supported by this method is outlined here:

ObjectReference.Execute

ObjectReference specifies the name of a WshRemote object. So to execute the Test.vbs script that was
copied over to the remote computer in the previous example, you would need to execute the following
statement:

RemoteScript.Execute

The second method supported by the WshRemote object is the Terminate() method. This method gives
you the ability to halt a remote script’s execution. This method has the following syntax:

ObjectReference.Terminate

ObjectReference specifies the name of a WshRemote object. So to halt the execution of the Test.vbs script
on the DSKTP001 computer, you could do so by executing the following statement:

RemoteScript.Terminate

Responding to WSH Remote Events
Remotely executed scripts generate any of three different events when they execute. These three types of
events are outlined in Table B.1.

Appendix B • Introducing Remote WSH 407

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition408

Event Description

Start Triggered when the remote script begins executing

End Triggered when the remote script stops executing

Error Triggered if the remote script experiences an error

TA B L E B .1  WSH R E M O T E S C R I P T E V E N T S

You can capture and respond to these events. To capture these remote events, you must use the WScript
object’s ConnectObject() method, which has the following syntax:

ObjectReference.ConnectObject(TargetObject, EventPrefix)

ObjectReference represents the WScript object. TargetObject identifies the object for which the con-
nection is being set up, and EventPrefix specifies the event’s prefix.

Using the ConnectObject() method, you connect an object’s events to a subroutine or function whose
name contains the specified prefix. You must then create a procedure for each event you wish to capture.
You do so by assigning each procedure a name that begins with the specified prefix followed by the
underscore character and the event name. For example, the following statement would enable local script
to capture events returned by a remote script using a prefix of RemoteScript_.

WScript.ConnectObject RemoteScript, “RemoteScript_”

Having established a means of capturing remote events, you next need to create event handlers for the
events to which you want to be able to respond, as demonstrated here:

Function RemoteScript_Start()

‘Add statements here to process the start event.

End Function

In this example, an event handler has been set up to execute when a remote script starts its execution.
You can set up similar event-handling procedures for both the End and Error events.

Accessing WSH Remote Properties
If an error occurs with a remotely executed script, the Error event will trigger, which you can capture by
setting up an event handler. Using this procedure, you can evaluate error information by examining dif-
ferent properties belonging to the WshRemoteError object. WSH Remote automatically captures and stores
error information available through this object.

© Jerry Lee Ford, Jr. All Rights Reserved.

If an error occurs, you can retrieve information about the error using the WshRemote object’s Error
property. This property is used to access to the WshRemoteError object, so that you can then access
WshRemoteError object properties where detailed error information is stored. Table B.2 provides a listing
of all the properties belonging to the WshRemoteError object.

In addition to the Error property, the WshRemote object also has a Status property you can use to keep
track of the status of remote scripts as they execute. Table B.3 provides a list of the possible range of val-
ues supported by this property and explains their meaning.

Working with Remote WSH: A Demonstration
To understand how to work with Remote WSH, it helps to see an example in action. The following example
demonstrates how to remotely execute a VBScript named Test.vbs on a remote computer named DSKTP001.

Appendix B • Introducing Remote WSH 409

Property Description

Description A description of error

Number The numeric error code associated with the error

Line The line number where the error occurred

Source The object responsible for reporting the error

SourceText The line of code that generated the error

Character The character position in the line of code where the error occurred

TA B L E B .2 R E M O T E WSH E R R O R P R O P E R T I E S

© Jerry Lee Ford, Jr. All Rights Reserved.

Value Description

0 The remote script has not started executing yet.

1 The remote script is now executing.

2 The remote script has finished executing.

TA B L E B .3 WSH R E M O T E E X E C U T I O N S TAT U S

© Jerry Lee Ford, Jr. All Rights Reserved.

‘***

‘Script Name: WSHRemoteDemo.vbs

‘Author: Jerry Ford

‘Created: 03/14/14

‘Description: This script controls the remote execute of a VBScript named

‘ Test.vbs on a computer named DSKTP001.

‘***

‘Initialization Section

Option Explicit

Set wshController = CreateObject(“WshController”)

Set wshRemote = wshController.CreateScript(“Test.vbs”, “\\DSKTP001”)

‘Main Processing Section

WScript.ConnectObject wshRemote, “RemoteScript_”

wshRemote.Execute

Do Until wshRemote.Status = 2

WScript.Sleep 1000

Loop

‘Procedure Section

Sub RemoteScript_Start()

MsgBox “Test.vbs has started!”

End Sub

Sub RemoteScript_End()

MsgBox “Test.vbs has terminated!”

End Sub

When executed, this script begins by setting up an instance of the WshController object. It then sets up
an instance of the WshRemote object and copies the Test.vbs script into the memory of the DSKTP001
computer. The ConnectObject() method is then used to define an event prefix, allowing the script to
capture events returned during the remote execution of Test.vbs. The WshRemote object’s Execute() method
is then used to initiate the execution of the remote script. A loop is set up that executes every two seconds,
stopping only when the value of the WshRemote object’s Status property indicates that the remote script
has finished executing.

Two subroutines are defined in the script’s procedure section that serve as event handlers. The first subrou-
tine executes when the Start event occurs and the second subroutine executes when the End event occurs.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition410

The WSH Core
Object Model

C
T

he WSH core object model provides programmatic access to Windows resources.
There are 14 objects in the WSH core object model, as depicted in Figure C.1. Each
of these objects provides access to a particular category of Windows resources.

At the top, or root, of the WSH core object model is the WScript object. All other objects
are instantiated from this object. The WScript object is automatically established during
the startup of the execution host and can therefore be referenced without first being
instantiated within your scripts. The WScript object is referred to as a public or exposed
object. The WSH core object model has three other public objects: WshController,
WshShell, and WshNetwork. Each of these three objects must be instantiated within your
scripts using the WScript object’s CreateObject() method. All the other objects in the WSH
core object model can only be instantiated by using properties or methods associated with
the WScript, WshController, WshShell, and WshNetwork objects.

Figure C.1 The WSH core object model consists of 14 objects, all of which have properties and methods that
expose various parts of the Windows operating system. © 2014 Cengage Learning.

Table C.1 lists the rest of the objects in the WSH core object model, as well as the object properties or
methods required to instantiate them.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition412

Object Method of Instantiation

WshArguments WScript.Arguments

WshNamed WScript.Arguments.Named

WshUnnamed WScript.Arguments.Unnamed

WshRemote WshController.CreateScript()

WshRemoteError WshRemote.Error

WshShortcut WshShell.CreateShortcut()

WshUrlShortcut WshShell.CreateShortcut()

WshEnvironment WshShell.Environment

WshSpecialFolders WshShell.SpecialFolders

WshScriptExec WshShell.Exec()

TA B L E C .1  WO R K I N G W I T H LO W E R -L E V E L WSH O B J E C T S

© Jerry Lee Ford, Jr. All Rights Reserved.

Object Description Properties Methods

WScript This is the WSH root object. It Arguments, FullName ConnectObject(),
provides access to a number of Interactive, Name, CreateObject(),
useful properties and methods. Path, ScriptFullName, DisconnectObject(),
It also provides access to the ScriptName, StdErr, Echo(), GetObject(),
rest of the objects in the WSH StdIn, StdOut, and Quit(), and Sleep()
core object model. Version

WshArguments This object enables you to Count, Item, Length, Count() and
access command-line Named, Unnamed ShowUsage()
arguments passed to the
script at execution time.

TA B L E C .2 WSH C O R E O B J E C T S

WSH Objects and Their Properties and Methods
Each object in the WSH core object model provides access to, or exposes, a particular subset of Windows
functionality. Table C.2 lists all 14 of the WSH core objects, provides a high-level description of these
objects, and lists all the properties and methods associated with each object.

Appendix C • The WSH Core Object Model 413

Object Description Properties Methods

WshNamed This object provides Item and Count() and
access to a set of named Length Exists()
command-line arguments.

WshUnnamed This object provides Item and Count()
access to a set of Length
unnamed command-line
arguments.

WshController This object provides the None CreateScript()
capability to create a
remote script process.

WshRemote This object provides Status and Execute() and
the capability to Error Terminate()
administrator remote
computer systems using
scripts over a network.

WshRemoteError This object provides Description, None
access to information Line, Character,
on errors produced by SourceText,
remote scripts. Source, and Number

WshNetwork This object provides ComputerName, AddWindowsPrinterConnection(),
access to a number of UserDomain, and AddPrinterConnection(),
different network UserName EnumNetworkDrives(),
resources such as EnumPrinterConnection(),
network printers and MapNetworkDrive(),
drives. RemoveNetworkDrive(),

RemovePrinterConnection(),
and SetDefaultPrinter()

WshShell This object provides access CurrentDirectory, AppActivate(),
to the Windows Registry, Environment, and CreateShortcut()
event log, environmental SpecialFolders ExpandEnvironmentStrings(),
variables, shortcuts, and LogEvent(), Popup(),
applications. RegDelete(), RegRead(),

RegWrite(), Run(),
SendKeys(), and Exec()

WshShortcut This object provides Arguments, Save()
scripts with methods Description,
and properties for creating FullName, HotKey,
and manipulating Windows IconLocation,
shortcuts. TargetPath,

WindowStyle, and
WorkingDirectory

TA B L E C .2 WSH C O R E O B J E C T S (C O N T I N U E D)

Examining Object Properties
By accessing object properties, your scripts can gather all kinds of information when they execute. For
example, using the properties associated with the WshNetwork object, your scripts can collect information
about the Windows domain that the person who ran the script has logged in to, as well as the computer’s
name and the user’s name. This information could then be used, for example, to prevent the script from
executing on certain domains or computers.

More than three dozen properties are associated with various WSH objects. In many cases, properties are
associated with more than one object. Refer to Table C.2 to see which properties are associated with which
objects. Table C.3 provides a complete review of WSH object properties.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition414

Object Description Properties Methods

WshUrlShortcut This object provides FullName and Save()
scripts with methods and TargetPath
properties for creating and
manipulating URL shortcuts.

WshEnvironment This object provides access Item and Length Remove() and Count()
to Windows environmental
variables.

WshSpecialFolders This object provides access Item Count()
to special Windows folders
that allow scripts to
configure the Start menu,
desktop, Quick Launch
Toolbar, and other special
Windows folders.

WshScriptExec This object provides access Status, StdOut, StdIn, Terminate()
to error information from and StdErr
scripts run using the Exec
method.

TA B L E C .2 WSH C O R E O B J E C T S (C O N T I N U E D)

© Jerry Lee Ford, Jr. All Rights Reserved.

Appendix C • The WSH Core Object Model 415

Property Description

Arguments Sets a pointer reference to the WshArguments collection

AtEndOfLine Returns either true or false depending on whether the end-of-line
marker has been reached in the stream

AtEndOfStream Returns either true or false depending on whether the end of the input
stream has been reached

Character Identifies the specific character in a line of code where an error occurs

Column Returns the current column position in the input stream

ComputerName Retrieves a computer’s name

CurrentDirectory Sets or retrieves a script’s current working directory

Description Retrieves the description for a specified shortcut

Environment Sets a pointer reference to the WshEnvironment

Error Provides the ability to expose a WshRemoteError object

ExitCode Returns the existing code from a script started using Exec()

FullName Retrieves a shortcut or executable program’s path

HotKey Retrieves the hotkey associated with the specified shortcut

IconLocation Retrieves an icon’s location

Interactive Provides the ability to programmatically set script mode

Item Retrieves the specified item from a collection or provides access to items
stored in the WshNamed object

Length Retrieves a count of enumerated items

Line Returns the line number for the current line in the input stream or identifies
the line number within a script on which an error occurred

Name Returns a string representing the name of the WScript object

Number Provides access to an error number

Path Returns the location of the folder where the CScript.exe or WScript.exe
execution hosts reside

ProcessID Retrieves the process ID (PID) for a process started using the WshScriptExec
object

ScriptFullName Returns an executing script’s path

ScriptName Returns the name of the executing script

Source Retrieves the identity of the object that caused a script error

SourceText Retrieves the source code that created the error

TA B L E C .3 WSH O B J E C T P R O P E R T I E S

Working with Object Properties
Now let’s take a look at an example of a VBScript that demonstrates how to instantiate an instance of the
WshNetwork object and access its properties. The script is called NetInfo.vbs and is as follows:

Set WshNtwk = WScript.CreateObject(“WScript.Network”)

PropertyInfo = “User Domain” & vbTab & “= “ & WshNtwk.UserDomain & _

vbCrLf & “Computer Name” & vbTab & “= “ & WshNtwk.ComputerName & _

vbCrLf & _ “User Name” & vbTab & “= “ & WshNtwk.UserName & vbCrLf

MsgBox PropertyInfo, vbOkOnly , “WshNtwk Properties Example”

As you can see, it isn’t a very big script. It begins by using a Set statement to create an instance of the
WshNetwork object, which is associated with a variable name of WshNtwk. After you have established an
instance of the WshNetwork object in this manner, you can reference the object’s properties and methods
using its variable name assignment.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition416

Property Description

SpecialFolders Provides access to the Windows Start menu and desktop folders

Status Provides status information about a remotely executing script or a script
starting with Exec()

StdErr Enables a script to write to the error output stream or provides access to
read-only error output from an Exec object

StdIn Enables read access to the input stream or provides access to the write-only
input stream for the Exec object

StdOut Enables write access to the output stream or provides access to the write-
only output stream of the Exec object

TargetPath Retrieves a shortcut’s path to its associated object

UserDomain Retrieves the domain name

UserName Retrieves the currently logged-on user’s name

Version Retrieves the WSH version number

WindowStyle Retrieves a shortcut’s window style

WorkingDirectory Returns the working directory associated with the specified shortcut

TA B L E C .3 WSH O B J E C T P R O P E R T I E S (C O N T I N U E D)

© Jerry Lee Ford, Jr. All Rights Reserved.

The next statement is very long. To improve the script’s readability, I decided to break it into three lines and
end each of the first two lines with the & and _ characters. The & character is a concatenation character
and is used to append two strings. The _ character is a continuation character and is used to indicate that
a statement is continued on the next line. This statement displays the values of the following WshShell
properties:

• WshNetwork.UserDomain. The name of the domain that the person running the script is logged in to

• WshNetwork.ComputerName. The name of the computer on which the script is being executed

• WshNetwork.UserName. The username of the person who ran the script

To improve the presentation of the message, I formatted it using the VBScript vbTab and vbCrLf constants.
The vbTab constant is used to line up the output at the point of the equals sign. The vbCrLf constant is used
to execute a line feed and carriage return at the end of each line of output. The last thing the script does is
display the message using the following statement:

MsgBox PropertyInfo, vbOkOnly , “WshNetwork Properties Example”

MsgBox() is a built-in VBScript function that displays a text message in a pop-up dialog box. PropertyInfo
is a variable that I used to store the output message. vbOkOnly is a VBScript constant that tells the MsgBox()
function to only display the OK button in the pop-up dialog box. The last part of the previous statement
is a message that will be displayed in the pop-up dialog box’s title bar. If you save and execute this script on
a computer running Windows 7, you should see a pop-up dialog box similar to the one shown in Figure C.2.

Examining Object Methods
The WSH also provides a large collection of object methods. By using these methods in your VBScripts,
you’ll be able to manipulate the Windows resources associated with objects. For example, using the WshShell
object’s RegRead(), RegWrite(), and RegDelete() methods, you can create scripts that can access and
manipulate the contents of the Windows Registry. Using these methods, you can create scripts that can con-
figure just about any Windows resource. Table C.4 provides a complete review of WSH object methods.

Appendix C • The WSH Core Object Model 417

Figure C.2 A pop-up dialog box displaying properties associated with the WshNetwork object.
© 2014 Cengage Learning.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition418

Method Description

AddPrinterConnection() Creates printer mappings

AddWindowsPrinterConnection() Creates a new printer connection

AppActivate() Activates the targeted application window

Close() Terminates or ends an open data stream

ConnectObject() Establishes a connection to an object

Count Retrieves the number of switches found in the WshNamed and
WshUnnamed objects

CreateObject() Creates a new instance of an object

CreateScript() Instantiates a WshRemote object representing a script that is running
remotely

CreateShortcut() Creates a Windows shortcut

DisconnectObject() Terminates a connection with an object

Echo() Displays a text message

EnumNetworkDrives() Enables access to network drives

EnumPrinterConnections() Enables access to network printers

Exec() Executes an application in a child command shell and provides
access to the environment variables

Execute() Initiates the execution of a remote script object

Exists() Determines a specified key exists within the WshNamed object

ExpandEnvironmentStrings() Retrieves a string representing the contents of the Process
environmental variable

GetObject() Retrieves an Automation object

GetResource() Retrieves a resource’s value as specified by the <resource> tag

LogEvent() Writes a message in the Windows event log

MapNetworkDrive() Creates a network drive mapping

Popup() Displays a text message in a pop-up dialog box

Quit() Terminates, or ends, a script

Read() Retrieves a string of characters from the input stream

ReadAll() Retrieves the string that is made up of the characters in the input
stream

ReadLine() Retrieves a string containing an entire line of data from the input
stream

TA B L E C .4 WSH O B J E C T M E T H O D S

Working with Object Methods
To really understand how object methods work, it helps to have an example. In this example, let’s work
with the WshShell object. This object provides access to a number of Windows resources, including the
following:

• The Windows application log

• The Windows Registry

• Any Windows command-line command

Let’s look at an example of how to use the WshShell object’s LogEvent() method to write a message to the
Windows event log. The Windows event log is accessed differently depending on which version of Windows

Appendix C • The WSH Core Object Model 419

Method Description

RegDelete() Deletes a Registry key or value

RegRead() Retrieves a Registry key or value

RegWrite() Creates a Registry key or value

Remove() Deletes the specified environmental variable

RemoveNetworkDrive() Deletes the connection to the specified network drive

RemovePrinterConnection() Deletes the connection to the specified network printer

Run() Starts a new process

Save() Saves a shortcut

SendKeys() Emulates keystrokes and sends typed data to a specified window

SetDefaultPrinter() Establishes a default Windows printer

ShowUsage() Retrieves information regarding the way a script is supposed to be
executed

Skip() Skips x number of characters when reading from the input stream

SkipLine() Skips an entire line when reading from the input stream

Sleep() Pauses script execution for x number of seconds

Terminate() Stops a process started by Exec()

Write() Places a string in the output stream

WriteBlankLines() Places a blank in the output stream

WriteLine() Places a string in the output stream

TA B L E C .4 WSH O B J E C T M E T H O D S (C O N T I N U E D)

© Jerry Lee Ford, Jr. All Rights Reserved.

you use. For example, on Windows 8.1 you can click the Start button, type View Event Logs, and press
Enter, and then click View Event Logs to open the Event Viewer console. To view the application event log,
drill down into the Windows Logs node and click on Application log. You can then click on any event
entry in the application event log to examine it.

The scripting logic to write a message to the Windows application event log is very simple:

Set WshShl = WScript.CreateObject(“WScript.Shell”)

WshShl.LogEvent 0, “EventLogger.vbs - Beginning script execution.”

The first line of this script establishes an instance of the WshShell object. The second line uses the
WshShell object’s LogEvent() method to write a message to the event log.

Tip

One really good use of the WshShell object’s LogEvent() method is to log the execution of scripts run using
the Windows Event Scheduler service. This way, you can review the application event log each day and
make sure that your scripts are executing when you expect them to.

Using your script editor, create a new script called EventLogger.vbs that contains the previous statements.
Run the script and then check the application event log; you should find the message added by the script.
Select it and you should see the Event Properties dialog box for the event, as shown in Figure C.3.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition420

Figure C.3 Viewing the event that the EventLogger.vbs script added to the Windows application
event log on a computer running Windows 8.1. © 2014 Microsoft Corporation. Used with permission from Microsoft.

Built-in VBScript Functions
D

V
BScript provides an enormous collection of built-in functions, as outlined in Table
D.1. You can use these functions in your VBScripts to shorten your development
time and save yourself from having to reinvent the wheel.

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition422

Function Name Description

Abs Returns a number’s absolute value

Array Returns an array based on the supplied argument list

Asc Returns the ANSI code of the first letter in the supplied argument

Atn Inverse trigonometric function that returns the arctangent of the argument

CBool Converts an expression to a Boolean value and returns the result

CByte Converts an expression to a variant subtype of Byte and returns the result

CCur Converts an expression to a variant subtype of Currency and returns the result

CDate Converts an expression to a variant subtype of Date and returns the result

CDbl Converts an expression to a variant subtype of Double and returns the result

Chr Returns a character based on the supplied ANSI code

CInt Converts an expression to a variant subtype of Integer and returns the result

CLng Converts an expression to a variant subtype of Long and returns the result

Cos Trigonometric function that returns the cosine of the argument

CreateObject Creates an automation object and returns a reference to it

CSng Converts an expression to a variant subtype of Single and returns the result

Date Returns the current date

DateAdd Adds an additional time interval to the current date and returns the result

DateDiff Compares two dates and returns the number of intervals between them

DatePart Returns a portion of the specified date

DateSerial Returns a variant (subtype Date) based on the supplied year, month, and day

DateValue Converts a string expression into a variant of type Date and returns the result

Day Converts an expression representing a date into a number between 1 and 31
and returns the result

Eval Returns the results of an evaluated expression

Exp Returns the value of an argument raised to a power

Filter Returns an array based on a filtered set of elements using supplied filter criteria

FormatCurrency Returns an expression that has been formatted as a currency value

FormatDateTime Returns an expression that has been formatted as a date or time value

FormatNumber Returns an expression that has been formatted as a numeric value

FormatPercent Returns an expression that has been formatted as a percentage (including the
accompanying %)

TA B L E D.1  B U I LT- I N VB S C R I P T F U N C T I O N S

Appendix D • Built-in VBScript Functions 423

Function Name Description

GetLocale Returns the locale ID

GetObject Returns a reference for an automation object

GetRef Returns a reference for a procedure

Hex Returns a hexadecimal string that represents a number

Hour Returns a whole number representing an hour in a day (0 to 23)

InputBox Returns user input from a dialog box

InStr Returns the starting location of the first occurrence of a substring within a string

InStrRev Returns the ending location of the first occurrence of a substring within a string

Int Returns the integer portion from the supplied number

IsArray Returns a value of True or False, depending on whether a variable is an array

IsDate Returns a value of True or False, depending on whether an expression is
properly formatted for a date conversion

IsEmpty Returns a value of True or False, depending on whether a variable is initialized

IsNull Returns a value of True or False, depending on whether an expression is set to
Null

IsNumeric Returns a value of True or False, depending on whether an expression
evaluates to a number

IsObject Returns a value of True or False, depending on whether an expression has a
valid reference for an automation object

Join Returns a string that has been created by concatenating the contents of an array

Lbound Returns the smallest possible subscript for the specified array dimension

Lcase Returns a lowercase string

Left Returns characters from the left side of a string

Len Returns a number or string’s character length

LoadPicture Returns a picture object

Log Returns the natural log of the specified argument

LTrim Trims any leading blank spaces from a string and returns the result

Mid Returns a number of characters from a string based on the supplied start and
length arguments

Minute Returns a number representing a minute within an hour in range of 0 to 59

Month Returns a number representing a month within a year in the range of 1 to 12

MonthName Returns a string containing the name of the specified month

TA B L E D.1  B U I LT- I N VBS C R I P T F U N C T I O N S (C O N T I N U E D)

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition424

Function Name Description

MsgBox Returns a value specifying the button users click in a dialog box

Now Returns the current date and time

Oct Returns a string containing an octal number representation

Replace Returns a string after replacing occurrences of one substring with
another substring

RGB Returns a number that represents an RGB color

Right Returns characters from the right side of a string

Rnd Returns a randomly generated number

Round Returns a number after rounding it by a specified number of decimal
positions

RTrim Trims any trailing blank spaces from a string and returns the result

ScriptEngine Returns a string identifying the current scripting language

ScriptEngineBuildVersion Returns the scripting engine’s build number

ScriptEngineMajorVersion Returns the scripting engine’s major version number

ScriptEngineMinorVersion Returns the scripting engine’s minor version number

Second Returns a number representing a second within a minute in range of 0
to 59

Sgn Returns the sign of the specified argument

Sin A trigonometric function that returns the sine of the argument

Space Returns a string consisting of a number of blank spaces

Split Organizes a string into an array

Sqr Returns a number’s square root

StrComp Returns a value that specifies the results of a string comparison

String Returns a character string made up of a repeated sequence of characters

Tan A trigonometric function that returns the tangent of the argument

Time Returns a variant of subtype Date that has been set equal to the
system’s current time

Timer Returns a value representing the number of seconds that have passed
since midnight

TimeSerial Returns a variant of subtype Date that has been set equal to the
specified hour, minute, and second

TA B L E D.1  B U I LT- I N VBS C R I P T F U N C T I O N S (C O N T I N U E D)

Appendix D • Built-in VBScript Functions 425

Function Name Description

TimeValue Returns a variant of subtype Date that has been set using the specified time

Trims Returns a string after removing any leading or trailing spaces

TypeName Returns a string that specifies the variant subtype information regarding the
specified variable

Ubound Returns the largest subscript for the specified array dimension

Ucase Returns an uppercase string

VarType Returns a string that specifies the variant subtype information regarding the
specified variable

Weekday Returns a whole number in the form of 1 to 7, which represents a given day in
a week

WeekdayName Returns a string identifying a particular day in a week

Year Returns a number specifying the year

TA B L E D.1  B U I LT- I N VBS C R I P T F U N C T I O N S (C O N T I N U E D)

© Jerry Lee Ford, Jr. All Rights Reserved.

This page intentionally left blank

What’s on the
Companion Website?

E
T

he best way to become a good script developer is to spend time writing new scripts.
However, it helps to have a collection of scripts from which you can cut and paste
when starting out. Hopefully, you’ve been creating the scripts that you’ve seen in

this book as you’ve gone along. But just in case you missed some, I’ve added copies of each
script to the book’s companion website. In this appendix, I’ll provide a brief reference to each
of the scripts. The companion website can be found at www.cengageptr.com/downloads.
Enter the name of the book or ISBN to find the files.

Script Examples
Table E.1 provides a quick overview of all the sample scripts from this book that are
located on the companion website.

http://www.cengageptr.com/downloads

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition428

Reference Script Description

Chapter 1 Hello-1.vbs Displays the classic “Hello World!” message

Hello-2.vbs Displays a message using the WshShell object’s Popup()
method

Hello-3.vbs Displays a message using the WScript object’s Echo() method

KnockKnock.vbs A “knock knock” joke game

Chapter 2 RockPaperScissors.vbs A “rock, paper, and scissors” game

Chapter 3 FreeSpace.vbs Demonstrates how to determine how much free space is left
on a disk drive

MathGame.vbs Prompts the user to solve a mathematical equation and
demonstrates how to solve it in the event that the user
cannot do so

SquareRootCalc – 1.vbs Demonstrates how to solve square-root calculations using a
mathematic solution devised by Sir Isaac Newton

SquareRootCalc – 2.vbs Demonstrates how to solve square-root calculations using
VBScript’s built-in Sqr() function

Chapter 4 ArgumentProcessor.vbs Demonstrates how to work with arguments passed to the
script by the user at execution time

ArrayDemo.vbs Demonstrates how to store and retrieve data using a single-
dimension VBScript array

BigBadWolf.vbs Demonstrates how to use the Option Explicit statement

CaptainAvenger.vbs Prompts the user to answer a number of questions and then
uses the answers to create a comical action-adventure story

ComputerAnalyzer.vbs Demonstrates how to access environment variables using
the WSH

HappyHour.vbs Tells the user whether it’s Friday

LittlePigs.vbs Demonstrates how to use a constant to create a
standardized title-bar message for pop-up dialog boxes
displayed by the script

MathDemo.vbs Demonstrates how to use various VBScript arithmetic
operators

MsgFormatter.vbs Demonstrates how to use VBScript string constants to
control how text messages are displayed

ResizeArray.vbs Demonstrates how to resize an array during execution

TA B L E E .1  S A M P L E S C R I P T S O N T H E C O M PA N I O N W E B S I T E

Appendix E • What’s on the Companion Website? 429

Reference Script Description

Chapter 5 RockPaperScissors – 2.vbs Revisits the RockPaperScissors.vbs script first introduced in
Chapter 2 and updates it using advanced conditional logic

RockPaperScissors – 3.vbs Revisits the RockPaperScissor – 2.vbs script, replacing some
of the If statement logic with a Select Case statement

PlanetTrivia.vbs Creates a “planet trivia” quiz game

Chapter 6 GuessANumber.vbs Plays a number-guessing game with the user

ShortcutMaker.vbs Creates shortcuts on the Windows desktop, Programs menu,
and Quick Launch Toolbar for the GuessANumber.vbs
VBScript

Chapter 7 BlackJack.vbs Creates a scaled-down version of casino blackjack

GuessANumber – 2.vbs Plays a number-guessing game with the user

Chapter 8 LuckyLotteryMachine.vbs Assists players by automating the random generation of
lottery numbers

ExtractFileProperties.vbs Demonstrates how to access any file’s properties

FileCreate.vbs Demonstrates how to create and write to a new text file

INIDemo.vbs Demonstrates how to read and process the content of an
INI file

Chapter 9 Hangman.vbs Demonstrates how to create a game of hangman using
VBScript and the WSH

Chapter 10 Hangman – 2.vbs Completes the Chapter 9 hangman game by configuring it
to store and retrieve game settings using the Windows
Registry

HangmanSetup.vbs Loads configuration settings for the hangman game into the
Windows Registry

ProcessorInfo.vbs Demonstrates how to retrieve information about the
computer’s processor.

Chapter 11 NewObjectDemo.vbs Demonstrates how to create customized objects

TicTacToe.vbs Creates a two-player tic-tac-toe game

Chapter 12 VBScriptGameConsole.wsf Creates a game console that builds a dynamic list of
VBScript games for the player to select from

TA B L E E .1  S A M P L E S C R I P T S O N

T H E C O M PA N I O N W E B S I T E (C O N T I N U E D)

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition430

Reference Script Description

Chapter 13 GetBIOSInfo.vbs Demonstrates how to retrieve BIOS information using WMI

GetEventLogInfo.vbs Demonstrates how to retrieve event-log data using WMI

GetMotherboardInfo.vbs Demonstrates how to retrieve motherboard information using
WMI

GetOSInfo.vbs Demonstrates how to retrieve operating-system information
using WMI

GetServicesInfo.vbs Demonstrates how to retrieve information about services
using WMI

WMIServiceCycler.vbs Demonstrates how to stop and start Windows services using WMI

Chapter 14 HelloWorld.html A basic HTML file

HelloWorld.hta A simple one-line HTA

htaHelloWorld.hta A basic HTA

WindowWithoutTitleBar.hta An HTA that displays a windows without a title bar

TextBox.hta An HTA that demonstrates how to create and work with a
text box control

PasswordBox.hta An HTA that demonstrates how to create and work with a
password box control

Checkbox.hta An HTA that demonstrates how to create and work with a
checkbox control

RadioButtons.hta An HTA that demonstrates how to create and work with radio
button controls

Button.hta An HTA that demonstrates how to create and work with a
button control created with the <input> tag

Button-2.hta An HTA that demonstrates how to create and work with a
button control created with the <button> tag

Multi-lineTextBox.hta An HTA that demonstrates how to create and work with a
multi-line text box control

Multi-lineTextBox-2.hta An HTA that demonstrates how to create and work with a
checkbox control that contains pre-populated text

ListBox.hta An HTA that demonstrates how to create and work with a list
box control

TA B L E E .1  S A M P L E S C R I P T S O N

T H E C O M PA N I O N W E B S I T E (C O N T I N U E D)

Appendix E • What’s on the Companion Website? 431

Reference Script Description

Chapter 14 Multi-ListBox.hta An HTA that demonstrates how to create and work with a
multiple selection list box control

Drop-downListBox.hta An HTA that demonstrates how to create and work with a
drop-down list box control

StartNotepad.hta An HTA that demonstrates how to start a Windows
application using the WSCript.Shell object’s Run method

StartNotepad-2.hta An HTA that demonstrates how to start a Windows application
using the WshShell object’s ShellExecute method

AutoRefreshProcessList.hta An HTA that demonstrates how to use WMI to retrieve and
continuously monitor a list of Windows processes

RockPaperScissors.hta An HTA implementation of the Rock, Paper, Scissors game

HTATempFile.hta A template used as the basis for creating new HTAs

Appendix A ScreenSaver.vbs Changes the user’s screensaver settings

BackGround.vbs Changes the user’s background selection to None and sets
the default background color to white

DriveMapper.vbs Demonstrates how to add logic to VBScripts to set up a
network drive mapping

DriveBuster.vbs Demonstrates how to add logic to VBScripts to terminate a
network drive mapping

PrinterMapper.vbs Demonstrates how to use a VBScript to set up a connection
to a network printer

PrinterBuster.vbs Demonstrates how to use a VBScript to disconnect a network
printer connection

ServiceCycler.vbs Demonstrates how to use a VBScript to stop and start Windows
services

AccountCreator.vbs Demonstrates how to use a VBScript to create new user accounts

VBSCleanup.vbs Demonstrates how to use a VBScript to automate the
execution of the Windows Disk Cleanup utility

WordObjectModelExample.vbs Demonstrates how to use a VBScript to automate the creation
of a new Word document

WinZipDemo.vbs Demonstrates how to use a VBScript to automate the creation
of a new ZIP file

TA B L E E .1  S A M P L E S C R I P T S O N

T H E C O M PA N I O N W E B S I T E (C O N T I N U E D)

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition432

Reference Script Description

Appendix B WSHRemoteDemo.vbs Demonstrates how to remotely execute a VBScript on a
network computer

Appendix C EventLogger.vbs Demonstrates how to write messages to the Windows
application event log

NetInfo.vbs Demonstrates how to collect network information

TA B L E E .1  S A M P L E S C R I P T S O N

T H E C O M PA N I O N W E B S I T E (C O N T I N U E D)

© Jerry Lee Ford, Jr. All Rights Reserved.

Index

SYMBOLS
_ (underscore), 95

%systemroot% environment
variable, 248

& character, 89

* (ampersand), 200

= (equals sign), 96

? (question mark), 200

A
AboutFunction() function, 314

accounts, managing users, 391–392

adding

blank lines, 195–196

comments, 57–58

controls

buttons, 358–359, 360

checkboxes, 355–357

multi-line text, 360–361

passwords, 355

radio buttons, 357–358

text, 353–355

dictionary items, 113–114

drop-down lists, 365

elements to interfaces, 352–365

GUIs to scripts, 339–375

Run as Administrator menu
option, 13

scripts

Apps group, 162

Programs menu, 161–162

style rules, 351–352

administrative scripting, 379–404

computers, 389–392

desktop, 380–383

disk management, 392–394

networks, 383–386

printers, 386–388

ampersand (*), 200

answers

Math game

checking for correct, 78–79

collecting player’s, 78

Planet Trivia game, 139–141

applications

event logs, recording, 229

HTAs, 3, 339

adding style rules, 351–352

overview of, 340–341

HTML, 399–404

starting, 366–367

third-party, automating
execution, 397–399

VBScript, integrating, 394–399

Windows, 33

WMI, 317. See also WMI

Apps group, adding scripts, 162

architecture, Remote WSH,
406–409

arguments

definitions, 114

definitions of, 39

input, accepting, 115–116

scripts, passing, 114–115

arithmetic operators, 97, 99

ArrayName, 108

arrays, 83

contents, processing, 105–107

definitions, 103

dynamic, building, 111–112

erasing, 112

multiple-dimension, 105

resizing, 109–110

single-dimension, 103–104

sizing, 108

ASP (Active Server Pages), 21

attributes

<HTA:APPLICATION> tag,
344–347

<input> tag, 353

automating

third-party applications,
executing, 397–399

Windows shutdown, 402–404

Word (Microsoft) reports,
394–397

B
backgrounds, configuring desk-

top, 380–381

BIOS, retrieving information,
331–332

BlackJack Lite game, 165–166

ComputerPlay() function, 182

DealAnotherCard() function,
182

DealFirstHand() function, 180

design, 176–177

DetermineWinner() function,
182–183

DisplaySplashScreen() func-
tion, 183

DoYouWantToPlay() function,
179

GetRandomNumber() function,
181

initialization sections, 177–178

main processing sections, 178

NowGoPlay() function, 180

PlayTheGame() function,
180–181

results, 184

blank lines, adding, 195–196

blocks, declaration, 350

boxes, lists, 361

BuildDisplayString() function,
215

built-in functions, 66–68, 174,
421–425

built-in objects, 265–293

accessing, 267–269

customizing, 269–274

methods, 268–269

properties, 268

VBScript, 59

buttons, adding controls,
358–359, 360

<button> tag, 360

C
C++, 4

Calculator, 51–52, 80

Call statement, 53

characters

wildcard, 200

writing, 194–195

checkboxes, adding controls, 355–357

CheckIfGameWon() function, 240

CIM (Common Information Model),
318, 320, 321–322, 336

CIMOM (CIM object manager), 320–321

classes, WMI, 326

Class_Initialize event, 274

Class object, 268

Class statement, 53

ClearGameBoard() function, 283

Clear() method, 226, 268, 275

closing

files, 191–194

Windows Console, 14

code

pseudo, 125

reusable, 170, 303

collections, 103–112, 143–164

built-in objects, 268

Do...Until statements, 145, 152–153

Do...While statements, 144, 149–151

For Each...Next statements, 144,
147–149

For...Next statements, 144, 145–147

Matches, 279–280

scripts, adding looping logic to, 144–154

While...Wend statements, 145, 153–154

CollectPlayerInput() function, 212–213

command-line execution

configuring, overriding settings, 38–39

CScript.exe/WScript.exe, configuring,
36–37

command prompts

accessing, 10

navigating, 14

scripts, executing, 19–20

commands, entering, 14

comments, adding, 57–58

<comment> tag, 299–300

common website, navigating, 427–432

comparison operators, 135–136

compatibility

operating systems, 15–16

third-party script engines, 21

components, 33–35

WMI infrastructure, 319

WSH, 5

ComputerPlay() function, 182

computers, administrative scripting,
389–392

concatenating strings, 89

conditional logic, 123–142

conditions, testing, 126

configuration settings, storing in
external files, 204–207

configuring

BlackJack Lite game

initialization sections, 177–178

main processing sections, 178

command-line execution, 36–37

CScript.exe, 36–37

desktops

backgrounds, 380–381

screensavers, 381–383

execution hosts, 35–43

file properties, 41

multiple users, 36

Rock, Paper, and Scissors game random
selection, 45

Run as Administrator menu option,
12–13

scripts, Registry (Windows), 245–262

settings, overriding, 38–39

WScript.exe

command-line execution, 36–37

customizing, 39–41

desktop execution, 37–38

ConsoleLoop() function, 309–311

consoles (game), 295–296, 304–315

AboutFunction() function, 314

ConsoleLoop() function, 309–311

design, 304

development, 307–314

HelpFunction() function, 314

initialization sections, 307

InvalidChoice() function, 313–314

JScript, writing, 305–306, 315

main processing sections, 308–309

PickAGame() function, 313

results, 315

RunScript() function, 313

ValidateAndRun() function, 311–312

XML, using to outline script structure,
304–305

constants, 83

defining, 86

definitions, 85

OpenTextFile() method, 191

Planet Trivia game, 137–138

run-time, 88–91

scripts, 85, 86–87

Story of Captain Adventure, The, 118

strings, 89–91

values, referencing, 87

Const statement, 53, 86

consumers (WMI), 319, 320

contents, processing arrays, 105–107

controls

buttons, adding, 358–359, 360

checkboxes, adding, 355–357

interfaces, formatting, 352–353

lists, applying, 361–365

multi-line text, adding, 360–361

passwords, adding, 355

radio buttons, adding, 357–358

text, adding, 353–355

converting

data, 92

functions, 92

copying

files, 200

folders, 202–203

multiple files, 201

core object models, 5, 6–7, 34, 411–420

CreateObject() method, 35, 44, 102

creating. See formatting

cross-namespace queries, 328

CScript.exe, 6

command-line execution, configuring,
36–37

scripts, executing, 20

CSS (Cascading Style Sheets), 339

rules, 350

selectors, 351

customizing

built-in objects, 269–274

functions, 168–169

<HTA:APPLICATION> tag, 344–347

log files, 228

WScript.exe, 39–41

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition434

D
data

collections, processing, 143–164

converting, 92

definitions, 85

operating systems, retrieving, 324–326

program, viewing, 124–135

receiving, 187–216

scripts, viewing, 84–85

storage, 187–216

applying WSH, 189–191

dictionaries, 113–114

modifying during script execution,
91–103

Registry (Windows), 249–250

types

Registry (Windows), 249

VBScript, 91–92

VBScript statements, defining, 85

databases, 247. See also Registry
(Windows)

Date() function, 89

dates, constants, 88–91

DealAnotherCard() function, 182

DealFirstHand() function, 180

debugging, enabling/disabling, 298

declarations

blocks, 350

statements, 350

default command-line execution hosts, 37

definitions

arguments, 39, 114

arrays, 103

command prompts, 9

constants, 85

data, 85

declaration blocks, 350

dynamic arrays, 111

endless loops, 151

errors

logical, 221

run-time, 221

syntax, 221

event handlers, 225

HTAs, 340–341

IDEs, 24

instantiation, 34

keys (Registry), 249

loops, 144

methods, 7

.NET, 24

object models, 33

procedures, 86, 167

properties, 7, 350

pseudo code, 125

Registry (Windows), 247

selectors, 350

shortcuts, 158

special folders, 159

strings, 92

text strings, 92

values, 249

variables, 44, 85

variants, 91

Windows Resource Kits, 8

Windows Script Files, 297

XML, 297

deleting

dictionary items, 114

files, 200

folders, 203

multiple files, 202

demos

improved square-root calculator,
67–68

Remote WSH, 409–410

square-root calculators, 66–67

Description property, 226, 269

design

BlackJack Lite game, 176–177

consoles (game), 304

Guess a Number game, 154–155

Hangman game, 230–231

Knock Knock game, 25–26

Lucky Lottery Number Picker game,
208

Math game, 77–80

Rock, Paper, and Scissors game, 43–44

scripts, accepting argument input,
115–116

Story of Captain Adventure, The, 117

Tic Tac Toe game, 281

desktops

administrative scripting, 380–383

backgrounds, configuring, 380–381

execution, configuring WScript.exe,
37–38

screensavers, configuring, 381–383

shortcuts, 158–161

DetermineIfSetIsComplete() function,
214–215

DetermineWinner() function, 182–183

development

consoles (game), 307–314

flowcharts, 127

Knock Knock game, 26

Microsoft Developer Network, 337

Planet Trivia game, 137

Rock, Paper, and Scissors game,
371–375

scripts, 19

WMI scripts, 323–324

dialog boxes

Environment Variables, 100

Properties, 40

User Account, 11

Windows Script Host Settings, 38

dictionaries, 83, 113–114

dimensions, 104

Dim statement, 53, 93

directories, 14

DisconnectObject() method, 35

disk management, 392–394

DisplayBoard() function, 286

DisplayData() function, 325

DisplayFinalResults() function,
215–216

DisplayGameResults() function,
241–242, 286–287

DisplaySplashScreen() function, 183,
216, 293

diverting keystrokes, 74

DLL (dynamic link library), 32. See also
execution hosts

DMTF (Distributed Management Task
Force), 318

documentation, 58, 170

Do...Loop statement, 53

DOM (Document Object Model), 33

Do...Until statement, 145, 152–153

Do...While statement, 144, 149–151

downloading WSH, 16

DoYouWantToPlay() function, 179, 233

drives, networks

disconnecting, 385–386

mapping, 383–385

drop-down lists, adding, 365

dynamic arrays, building, 111–112

dynamic link library. See DLL

Index 435

E
Echo() method, 34, 35, 69

elevated mode, accessing Windows
Console, 10–13

ElseIf keywords, 127

End If keyword, 126

endless loops, 151

engines

scripts, 5

selecting, 6

environments

scripts, navigating, 32–33

variables, 100–103

Environment Variables dialog box, 100

equals sign (=), 96

Erase statement, 53

erasing arrays, 112

Err object, 268, 274–275

errors

definitions

logical, 221

run-time, 221

syntax, 221

handlers, creating, 225–227

logical, preventing, 222–223

Remote WSH properties, 409

reporting, enabling/disabling, 298

scripts, 219–242

messages, 221–222

overview of, 221–223

reporting, 227–229

troubleshooting, 223–227

testing, 78

events

Class_Initialize, 274

handlers, 225

logs, 227–229

procedures, formatting, 271–274

records, retrieving, 329–331

Remote WSH, 407–408

examples

HTAs, 370

INI files, 205–207

scripts, 427–432

ExecuteGlobal statement, 54

Execute() method, 268

Execute statement, 53

executing

command-lines, configuring, 36–37

For...Next statements, 144, 145–147

HTAs, 341, 342–343

Remote WSH, 409

scripts, 15

command prompt, 19–20

modifying data during, 91–103

statements, 18

third-party applications, automating,
397–399

Windows Script Files, 303–304

WMI queries, 327–329

execution hosts

configuring, 35–43

default command-line, 37

scripts, 5

Exit Function statement, 227

Exit statement, 54

Exit Sub statement, 227

ExpandEnvironmentStrings() method,
102

exponentiation, 99

expressions

regular, applying, 275–280

variables, modifying, 96–100

external files, storing configuration
settings, 204–207

F
FileExists() method, 191

files, 7. See also objects

closing, 191–194

copying, 200

deleting, 200

external, storing configuration settings,
204–207

formatting, 40

INI, 205

examples, 205–207

Lucky Lottery Number Picker
game, 208

logs, customizing, 228

managing, 199–203

moving, 200

multiple

copying, 201

deleting, 202

moving, 201

opening, 191–194

properties, configuring, 41

reading from, 196–199

text, viewing, 197

Windows Script Files

definitions, 297

executing, 303–304

writing to, 194–196

FileSystemObject object, 59, 65, 66,
190, 191

FillArray() function, 233–234

finishing user input, 28

FirstIndex property, 269

FirstLevelValidation() function, 238

FlipString() function, 240–241

flowcharts, 127

folders

copying, 202–203

deleting, 203

formatting, 202

managing, 199–203

moving, 203

special

applying, 161

definitions, 159

For Each...Next loop, 107

For Each...Next statement, 54, 144,
147–149

FormatNumber() function, 155

formatting

comments, 57

errors, handlers, 225–227

events, procedures, 271–274

files, 40

flowcharts, 127

folders, 202

HTAs, 342–343, 343–352

interfaces, controls, 352–353

keys, Registry (Windows), 251–254

loops, 155

Matches collections, 279–280

scripts, 255–256, 302–303

shortcuts (Guess a Number game),
158–164

splash screens (Planet Trivia game), 138

splash screens (The Story of Captain
Adventure), 118–119

tags, 297

values, Registry (Windows), 251–254

WScript objects, 34

For...Next statement, 54, 144, 145–147

ForReading mode, 193

frameworks, WMI. See WMI

functionality, VBScript, 17

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition436

functions

AboutFunction(), 314

BuildDisplayString(), 215

built-in, 421–425

CheckIfGameWon(), 240

ClearGameBoard(), 283

CollectPlayerInput(), 212–213

ComputerPlay(), 182

ConsoleLoop(), 309–311

converting, 92

customizing, 168–169

Date(), 89

DealAnotherCard(), 182

DealFirstHand(), 180

definition of, 18

DetermineIfSetIsComplete(),

214–215

DetermineWinner(), 182–183

DisplayBoard(), 286

DisplayData(), 325

DisplayFinalResults(), 215–216

DisplayGameResults(), 241–242,
286–287

DisplaySplashScreen(), 183, 216,
293

DoYouWantToPlay(), 179, 233

FillArray(), 233–234

FirstLevelValidation(), 238

FlipString(), 240–241

FormatNumber(), 155

GetRandomNumber(), 181, 213

GetWordFileLocation(), 260–261

HelpFunction(), 314

InitialDisplayString(), 237

InputBox(), 109

Int(), 155

InvalidChoice(), 313–314

ManageGamePlay(), 284–286

MarkPlayerSelection(), 290–291

MsgBox(), 18, 55

NonExistentFunction(), 226

NonGuessedString(), 239–240

NowGoPlay(), 180

PickAGame(), 313

PlayTheGame(), 180–181, 234–236

ProcessRandomNumber(), 213–214

ProcessScriptIniFile(), 210–212

RandomNumber(), 174

ResetVariableDefaults(), 215

RetrieveWord(), 236–237, 259–260

Rnd(), 155

RunScript(), 313

SecondLevelValidation(), 238–239

SeeIfWon(), 291–293

SelectAWordCategory(), 261–262

SetVariableDefaults(), 210, 283

SplashScreen(), 242

Sqr(), 66

StartService(), 336

StopService(), 336

TestLevelGuess(), 239

UCase(), 112

ValidateAndRun(), 311–312

ValidateInput(), 287–290

VBScript, 66–68, 174

Weekday(), 89

Function statement, 54

G
games. See also specific games

BlackJack Lite, 165–166

consoles, 295–296, 304–315. See also
consoles (game)

Guess a Number, 143–144, 154–164

Hangman, 219–220, 230–242,
245–247, 254–262

Knock Knock, 3–4, 25–29

Lucky Lottery Number Picker,
187–188, 207–216

Math, 51–53, 74–81

Planet Trivia, 123–124, 136–142

Rock, Paper, and Scissors, 31–32,
43–47, 129–133, 339–340, 370–375

Story of Captain Adventure, The,
83–84, 117–120

Tic Tac Toe, 265–267

GetDrive() method, 65

GetRandomNumber() function, 181, 213

GetWordFileLocation() function,
260–261

Global property, 269

groups, adding scripts to Apps, 162

Guess a Number game, 143–144

design, 154–155

loops, creating to control games, 155

player input

testing, 156–157

verifying, 157

procedures, 170–174

random numbers, generating, 155

results, 157

shortcuts, creating, 158–164

starting, 155

GUIs (graphical user interfaces), 3, 4

ping scripts, 399–402

scripts

adding, 339–375

comparing HTAs to HTML pages,
341–342

elements, 352–365

executing HTAs, 342–343

formatting HTAs, 343–352

navigating HTAs, 340–341

H
handlers

errors, creating, 225–227

events, definitions, 225

Hangman game, 219–220, 230–242,
245–247, 254–262

CheckIfGameWon() function, 240

design, 230–231

DisplayGameResults() function,
241–242

DoYouWantToPlay() function, 233

FillArray() function, 233–234

FirstLevelValidation() function,
238

FlipString() function, 240–241

InitialDisplayString() function,
237

initialization sections, 231–232,
257–258

main processing sections, 232–233,
255–256

NonGuessedString() function,
239–240

PlayTheGame() function, 234–236

results, 242

RetrieveWord() function, 236–237

scripts

creating setup, 255–256

viewing, 262

SecondLevelValidation() function,
238–239

SplashScreen() function, 242

templates, 231–232

TestLevelGuess() function, 239

updating, 257–262

Hello World, creating, 17–19

Index 437

HelpContext property, 269

HelpFile property, 269

HelpFunction() function, 314

history of VBScript, 22–23

hosts

definition of, 6

execution. See execution hosts

<HTA:APPLICATION> tag, 343–346

HTAs (HTML Applications), 3, 339

definitions, 340–341

formatting, 342–343, 343–352

HTML, comparing to, 341–342

interfaces, adding elements to,
352–365

overview of, 340–341

style rules, adding, 351–352

WSH, integrating, 366–370

HTML (Hypertext Markup Language)

applications, 399–404

HTAs, comparing to, 341–342

<html> tag, 342

Hungarian Notation, 104

I
If statement, 124, 125–133

If...Then...Else statement, 54

IgnoreCase property, 269

IIS (Internet Information Service), 21

improved square-root calculator demo,
67–68

indexes, dynamic arrays, 111

indicators, event log errors, 229

infrastructure, WMI, 319–323

INI files, 205

examples, 205–207

Lucky Lottery Number Picker game,
208

InitialDisplayString() function, 237

initialization sections

BlackJack Lite game, 177–178

comment templates, 58

consoles (game), 307

Hangman game, 231–232, 257–258

Lucky Lottery Number Picker game,
208–209

Tic Tac Toe game, 281–282

input

arguments, accepting, 115–116

collecting (The Story of Captain
Adventure), 119

testing, 156–157

verifying, 157

InputBox() method, 45, 69, 71–72, 109

<input> tag, 352–353

installing WSH, 16–17

InstancesOf method, 325

instantiation, definition of, 34

integrating

VBScript into other applications,
394–399

WSH into HTAs, 366–370

interfaces, 3

controls, formatting, 352–353

elements, adding, 352–365

scripts, adding, 339–375

Internet Explorer

scripting environments, 33

VBScript, 21

interpreters, accessing built-in objects,
267

Int() function, 155

InvalidChoice() function, 313–314

iteration, processing arrays, 107

iterative statements, 144

J
<job> tag, 300–301

<?job ?> tag, 298

JScript, 5, 305–306, 315

K
keys

definitions, 249

deleting, 252

dictionaries, 113

Registry (Windows)

accessing, 250–251

formatting, 251–254

root (Registry), 248

keystrokes

diverting, 74

SendKeys() method, 75–76

keywords

ElseIf, 127

End If, 126

If, 126

Preserve, 110

Then, 126

WQL, 328

Knock Knock game, 3–4, 25–29

L
languages, 4

learning new, 22

programming, 23

scripts

combining, 295–315

support, 297

support, 20–21

WQL, 327–329

last responses, validating, 28

Lbound() method, 108

learning new languages, 22

Length property, 269

libraries, WMI scripting, 320

limiting scope, variables, 174–175

lines

blank, adding, 195–196

skipping, 198

writing, 195

lists

boxes, 361

controls, applying, 361–365

drop-down, adding, 365

logic

conditional, 123–142

Hangman game, 232–233

main processing sections (BlackJack
Lite game), 178

scripts, adding looping, 144–154

Tic Tac Toe game, 282–283

logical errors

definitions, 221

preventing, 222–223

logs

events, 227–229

files, customizing, 228

records, retrieving, 329–331

loops. See also statements

creating, 155

definitions, 144

endless, 151

For Each...Next, 107

logic, adding to scripts, 144–154

lowercase, formatting tags, 297

Lucky Lottery Number Picker game,
187–188, 207

BuildDisplayString() function, 215

CollectPlayerInput() function,
212–213

design, 208

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition438

DetermineIfSetIsComplete()

function, 214–215

DisplayFinalResults() function,
215–216

DisplaySplashScreen() function,
216

GetRandomNumber() function, 213

initialization sections, 208–209

main processing sections, 209–210

ProcessRandomNumber() function,
213–214

ProcessScriptIniFile() function,
210–212

ResetVariableDefaults() function,
215

results, 216

SetVariableDefaults() function, 210

M
main processing sections

BlackJack Lite game, 178

comment templates, 58

consoles (game), 308–309

Hangman game, 232–233, 255–256

Lucky Lottery Number Picker game,
209–210

Tic Tac Toe game, 282–283

managed resources (WMI), 319, 323,
334–336

ManageGamePlay() function, 284–286

managing

disk management, 392–394

files, 199–203

Registry (Windows), 248

scripts, 165–184

limiting scope with variables,
174–175

optimizing, 169–170

services, 389–390

user accounts, 391–392

WMI, 317–336

mapping network drives, 383–385

MarkPlayerSelection() function,
290–291

Matches collections, creating, 279–280

Matches object, 268

matching patterns

replacing, 276–278

testing, 279

Match object, 268

Math game, 51–53, 74–81

answers

checking for correct, 78–79

collecting player’s, 78

Calculator, 80

design, 77–80

results, 81

SendKeys method, 74–77

starting, 77–78

WordPad, 79–80

menus

Programs, adding scripts, 161–162

Run as Administrator, configuring,
12–13

messages

errors, 221–222

recording, 229

methods

built-in objects, 268–269

Clear(), 226, 268, 275

CreateObject(), 35, 44, 102

definition of, 7

DisconnectObject(), 35

Echo(), 34, 35, 69

Execute(), 268

ExpandEnvironmentStrings(), 102

FileExists(), 191

GetDrive(), 65

InputBox(), 45, 69, 71–72

InstancesOf, 325

Lbound(), 108

MsgBox(), 69, 72–74

objects, 412–414, 417–420

OpenTextFile(), 191

Popup(), 44, 69–71

Quit(), 35

Raise(), 268, 275

RegDelete(), 251

RegRead(), 251

RegWrite(), 251, 380

Remote WSH, 407

Replace(), 268

Rnd(), 45

SendKeys, 74–77

Sleep(), 35

Test(), 268

Ubound(), 108

VBScript run-time, 62–64

WScript.Quit(), 232, 233

Microsoft Developer Network, 337

Microsoft Windows Script Console, 21

models

core object, 5, 6–7, 34, 411–420

objects, 58–59

modes, ForReading, 193

motherboard data, retrieving, 332–333

moving

files, 200

folders, 203

multiple files, 201

MsgBox() method, 18, 55, 69, 72–74

multi-line text controls, adding, 360–361

multiple-dimension arrays, 105

multiple files

copying, 201

deleting, 202

moving, 201

multiple users, 36

N
named values, 250

naming

constants, 86, 87

variables, 95–96

negation, 99

nesting If statements, 127–128

networks

administrative scripting, 383–386

drives

disconnecting, 385–386

mapping, 383–385

Microsoft Developer Network, 337

Newton, Isaac, 67

NonExistentFunction() function, 226

NonGuessedString() function, 239–240

normal mode, accessing Windows con-
sole, 9–10

notation, Hungarian Notation, 104

NowGoPlay() function, 180

Number property, 226, 269

numbers, generating random, 155

numeric variables, modifying, 99

O
objects, 7

built-in, 265–293. See also built-in
objects

Class, 268

core object models, 34, 411–420

defining, 255

Err, 268, 274–275

Index 439

objects (continued...)

FileSystemObject, 59, 65, 66, 190, 191

Match, 268

Matches, 268

methods, 412–414, 417–420

properties, 414–417

SubMatches Collection, 268

VBScript

built-in, 59

models, 58–59

run-time, 59–61

WScript, 18, 19

applying, 35

formatting, 34

WshShortcut properties, 160

obsolete statements, removing, 258–259

Office (Windows) applications, 33

On Error Resume Next statement, 226

On Error statement, 54

opening

files, 191–194

Windows console in normal mode,
9–10

OpenTextFile() method, 191

operating systems

compatibility, 15–16

data, retrieving, 324–326

Windows Registry, 248

WMI, 317. See also WMI

operators

& (string concatenation), 89

arithmetic, 97, 99

VBScript, 135–136

WQL, 329

optimizing scripts

managing, 169–170

with procedures, 167–174

Option Explicit statement, 54, 93, 94

organizing. See also managing

Registry (Windows), 248

scripts, 165–184

outlining script structures, 304–305

Outlook Express, 21

output, scripts, 68–74

overriding command-line execution
settings, 38–39

P
<package> tag, 301–302

passing arguments to scripts, 114–115

passwords, adding controls, 355

Pattern property, 269

patterns, matching

replacing, 276–278

testing, 279

permissions, 15

PickAGame() function, 313

ping scripts, 399–402

Planet Trivia game, 123–124, 136–142

assembling, 142

constants, 137–138

development, 137

questions/answers, 139–141

scores, 141–142

splash screens, formatting, 138

starting, 137

variables, 137–138

player input

testing, 156–157

verifying, 157

player’s answers (Math game), 78

player’s selections (Rock, Paper, and
Scissors game), 45

PlayTheGame() function, 180–181,
234–236

Popup() method, 44, 69–71

PowerShell, 8–9

precedence, 51, 99

Preserve keyword, 110

printers

administrative scripting, 386–388

connecting, 386–387

disconnecting, 387–388

Private statement, 54

privileges, configuring, 13

procedures, 165–184

definitions, 86, 167

events, formatting, 271–274

Guess a Number game, 170–174

scope with variables, limiting, 174–175

scripts, optimizing, 167–174

procedure section (comment template), 58

ProcessRandomNumber() function, 213–214

ProcessScriptIniFile() function,
210–212

program data, viewing, 124–135

programming

Knock Knock game, 25–29

languages, 23

overview of, 4–21

Programs menu, adding scripts, 161–162

projects. See also specific games

BlackJack Lite game, 165–166

game consoles, 295–296

Guess a Number game, 143–144,
154–164

Hangman game, 219–220, 230–242,
245–247, 254–262

Knock Knock game, 3–4

Lucky Lottery Number Picker game,
187–188, 207–216

Math game, 51–53, 74–81

Planet Trivia game, 123–124, 136–142

Rock, Paper, and Scissors game,
31–32, 129–133, 339–340, 370–375

Story of Captain Adventure, The,
83–84, 117–120

Tic Tac Toe game, 265–267

properties

built-in objects, 268

definitions, 350

Description, 226, 269

files, configuring, 41

FirstIndex, 269

Global, 269

HelpContext, 269

HelpFile, 269

<HTA:APPLICATION> tag, 344–347

IgnoreCase, 269

Length, 269

Number, 226, 269

objects, 414–417

Pattern, 269

Remote WSH, 408–409

shortcuts, 158

Source, 226, 269

Value, 269

VBScript run-time, 61–62

viewing, 40

WshShortcut object, 160

Properties dialog box, 40

Property Get statement, 54

Property Let statement, 54

Property Set statement, 54

providers (WMI), 320, 322

pseudo code, 125

Public statement, 54

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition440

Q
queries

cross-namespace, 328

WMI, executing, 327–329

question mark (?), 200

questions (Planet Trivia game), 139–141

Quit() method, 35

R
radio buttons, adding controls, 357–358

Raise() method, 268, 275

Randomize statement, 54, 155

RandomNumber() function, 174

random numbers, generating, 155

random selection, 43, 45

ranking scores (Planet Trivia game),
141–142

reading

files

all at once, 199

character by character, 198

from files, 196–199

receiving data, 187–216

ReDim statement, 54, 109

referencing constant values, 87

RegDelete() method, 251

Registry (Windows)

accessing, 250–251

keys

accessing, 250–251

formatting, 251–254

modifying, 256

overview of, 247–250

scripts, configuring, 245–262

system information from, retrieving,
253–254

values

accessing, 250–251

formatting, 251–254

RegRead() method, 251

regular expressions, applying, 275–280

RegWrite() method, 251, 380

Remote WSH, 405–401, 406–409

removing obsolete statements, 258–259

Rem statement, 54

Replace() method, 268

replacing matching patterns, 276–278

reporting errors, 227–229, 298

reports, automating Word (Microsoft),
394–397

reproducing errors, 223

reserved words, 56

ResetVariableDefaults() function, 215

resizing arrays, 109–110

resources

accessing, 8

defining, 44

managed. See managed resources (WMI)

types of, 6

WMI, 318. See also WMI

<resource> tag, 302

results

BlackJack Lite game, 184

consoles (game), 315

Guess a Number game, 157

Hangman game, 242

Lucky Lottery Number Picker game,
216

Math game, 81

Rock, Paper, and Scissors game, 46–47

Story of Captain Adventure, The, 120

Tic Tac Toe game, 293

RetrieveWord() function, 236–237,
259–260

retrieving

BIOS information, 331–332

dictionary items, 114

event log records, 329–331

motherboard data, 332–333

operating system data, 324–326

system information from Registry,
253–254

Windows services information,
326–327

reusable code, 170, 303

rights, user, 15

Rnd() function, 155

Rnd() method, 45

Rock, Paper, and Scissors game, 31–32,
43–47, 129–133, 339–340, 370–375

assembling, 375

design, 43–44

development, 371–375

player’s selection, collecting, 45

random selection, configuring, 45

resources, defining, 44

results, 46–47

rules, displaying, 44

script selection, assigning choice, 45

root keys (Registry), 248

rules

CSS, 350

displaying (Rock, Paper, and Scissors
game), 44

styles, adding, 351–352

variables, naming, 95–96

VBScript syntax, 54–58

Run as Administrator menu,
configuring, 12–13

RunScript() function, 313

run-time

constants, 88–91

errors, 221

methods, 62–64

objects

scripts, 64–66

VBScript, 59–61

properties, VBScript, 61–62

scripts, processing data passed at,
114–116

S
scope

limiting, 174–175

variables, 96

scores, Planet Trivia game, 141–142

screensavers, configuring desktop, 381–383

scripts, 4

administrative scripting, 379–404

Apps group, adding, 162

arguments, passing, 114–115

assembling, 256

assigning (Rock, Paper, and Scissors
game), 45

command prompt, executing, 19–20

constants, 85, 86–87

data

processing passed to at run time,
114–116

viewing, 84–85

design, accepting argument input,
115–116

development, 19

documentation, 170

engines, 5, 6

environments, navigating, 32–33

errors, 219–242

messages, 221–222

overview of, 221–223

Index 441

scripts (continued...)

preventing logical errors, 222–223

reporting, 227–229

troubleshooting, 223–227

examples, 427–432

executing, 15, 91–103

execution hosts, 5

formatting, 302–303

GUIs

adding, 339–375

comparing HTAs to HTML pages,
341–342

elements, 352–365

executing HTAs, 342–343

formatting HTAs, 343–352

navigating HTAs, 340–341

Hangman game, viewing, 262

Hello World, creating, 17–19

Knock Knock game, 25–29

languages

combining, 295–315

support, 297

libraries, 320

logic, adding looping, 144–154

managing, 165–184

optimizing, 169–170

procedures, optimizing, 167–174

Programs menu, adding, 161–162

Registry (Windows), 245–262. See also
Registry (Windows)

run-time

objects, 64–66

processing data passed at,
114–116

setup, creating, 255–256

shortcuts, 163–164

sorting, 37

storage, configuration settings in
external files, 204–207

structure, outlining, 304–305

testing, 34

VBScript, 53, 68–74. See also VBScript

WMI, 323–336

<script> tag, 302–303, 347–348

searching CIM, 336

SecondLevelValidation() function,
238–239

sections of documentation, 58

SeeIfWon function, 291–293

SelectAWordCategory() function, 261–262

Select Case statement, 54, 124, 133–135

selecting script engines, 6

selectors

CSS, 351

definitions, 350

SendKeys method, 74–77

services

managing, 389–390

Windows, retrieving information
about, 326–327

Set statement, 54

setup, creating scripts, 255–256

SetVariableDefaults() function, 210,
283

shell scripts

how to work with, 9

WSH, comparing to, 7–8

shortcuts

Guess a Number game, 158–164

scripts, 163–164

shutdown, automating Windows,
402–404

single-dimension arrays, 103–104

sizing

arrays, 108

dynamic arrays, 111

skipping lines, 198

Sleep() method, 35

sorting scripts, 37

Source property, 226, 269

special folders

applying, 161

definitions, 159

special keystrokes, SendKeys() method, 77

SplashScreen() function, 242

splash screens

Planet Trivia game, 138

Story of Captain Adventure, The,
118–119

Sqr() function, 66

square-root calculator demo, 66–67

starting. See also enabling

an elevated Windows Console, 10–12

applications, 366–367

Guess a Number game, 155

Knock Knock game, 26–27

math games, 77–78

Planet Trivia game, 137

user input, 26–27

StartService() function, 336

statements, 106

Const, 86

declarations, 350

defining, 299

Dim, 93

Do...Until, 145, 152–153

Do...While, 144, 149–151

On Error Resume Next, 226

executing, 18

Exit Function, 227

Exit Sub, 227

For Each...Next, 144, 147–149

For...Next, 144, 145–147

If, 124, 125–133

iterative, 144

obsolete, removing, 258–259

Option Explicit, 93, 94

Randomize, 155

ReDim, 109

Select Case, 124, 133–135

VBScript, 53–54, 85

While...Wend, 145, 153–154

StopService() function, 336

storage

data, 187–216

applying WSH, 189–191

dictionaries, 113–114

modifying during script execu-
tion, 91–103

Registry (Windows), 249–250

scripts, configuration settings in
external files, 204–207

Story of Captain Adventure, The, 83–84,
117–120

assembling, 120

constants, 118

design, 117

input, collecting, 119

results, 120

splash screen, 118–119

variables, 118

strings

concatenation, 89

constants, 89–91

definitions, 92

text, 92

structure, outlining scripts, 304–305

styles, adding rules, 351–352

<style> tag, 349–352

SubMatches Collection object, 268

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition442

subroutines, overview of, 167–168

Sub statement, 54

subtypes, variants, 91–92

support

data types, Registry (Windows), 249

languages, 20–21

PowerShell, 8

scripting languages, 297

VBScript, 21

XML, 297

syntax

errors, 221

rules, VBScript, 54–58

SendKeys() method, 75

system environment variables, 100

system information from Registry,
retrieving, 253–254

T
tags

<button>, 360

formatting, 297

<HTA:APPLICATION>, 343–346

<html>, 342

<input>, 352–353

<script>, 347–348

<style>, 349–352

<textarea>, 360–361

XML, 297–298. See also XML

<comment>, 299–300

<job>, 300–301

<?job ?>, 298

<package>, 301–302

<resource>, 302

<script>, 302–303

<?xml ?>, 299

TaskScheduler, 6

templates

comments, adding, 57

Hangman game, 231–232

Tic Tac Toe game, 281–282

testing

conditions, 126

errors, 78

matching patterns, 279

player input, 156–157

scripts, 34

TestLevelGuess() function, 239

Test() method, 268

text

controls, adding, 353–355

files, viewing, 197

scripts, comparing WSH to shell
scripts, 7–8

strings, 92

<textarea> tag, 360–361

third-party applications, automating
execution, 397–399

third-party script engines, compatibility,
21

Tic Tac Toe game, 265–267, 280–293

ClearGameBoard() function, 283

design, 281

DisplayBoard() function, 286

DisplayGameResults() function,
286–287

DisplaySplashScreen() function, 293

initialization sections, 281–282

main processing sections, 282–283

ManageGamePlay() function, 284–286

MarkPlayerSelection() function,
290–291

results, 293

SeeIfWon function, 291–293

SetVariableDefaults() function,
283

templates, 281–282

ValidateInput() function, 287–290

time

constants, 88–91

scripts, sorting, 37

tools. See also statements

troubleshooting scripts, 219–242

types

data

Registry (Windows), 249

VBScript, 91–92

of resources, 6

U
Ubound() method, 108

UCase() function, 112

UNC (universal naming convention), 383

undefined variables, preventing, 94

underscore (_), 95

unnamed values, 250

updating Hangman game, 257–262

uppercase, formatting tags, 297

User Account dialog box, 11

users

accounts, managing, 391–392

input

collecting (The Story of Captain
Adventure), 119

finishing, 28

starting, 26–27

validating, 27–28

multiple, configuring, 36

rights, 15

V
ValidateAndRun() function, 311–312

ValidateInput() function, 287–290

validating

last responses, 28

user input, 27–28

Value property, 269

values

constants, referencing, 87

definitions, 249

deleting, 252

dictionaries, 113

named/unnamed, 250

Registry (Windows)

accessing, 250–251

formatting, 251–254

variables, modifying, 96–100

variables, 44, 83

defining, 93–95, 255

definitions, 85

environments, 100–103

modifying, 96–100

naming, 95–96

numeric, modifying, 99

Planet Trivia game, 137–138

scope, 96, 174–175

Story of Captain Adventure, The, 118

undefined, preventing, 94

variants, 91

VBA (Visual Basic for Applications), 23,
24

VBScript, 3, 5

applications, integrating, 394–399

arithmetic operators, 97, 99

built-in functions, 66–68, 174,
421–425

built-in objects, 265–293

capabilities, 22

comments, adding, 57–58

Index 443

VBScript (continued...)

constants

date/time, 88–89

run time, 88–91

strings, 89

data types, 91–92

development, 19

errors, 221. See also errors

executing, 15

game consoles, 295–296, 304–315. See
also consoles (game)

Hello World, creating, 17–19

history of, 22–23

navigating, 51–81

objects

built-in, 59

models, 58–59

run-time, 59–61

operators, 135–136

overview of, 21–25

reserved words, 56

run-time

methods, 62–64

properties, 61–62

scripts

applying run-time objects in,
64–66

output, 68–74

statements, 53–54, 85

support, 21

syntax rules, 54–58

WSH, functionality, 17

verifying player input, 157

versions of WSH, 15–16

viewing

Hello World dialog box, 17

program data, 124–135

properties, 40

scripts

data, 84–85

Hangman game, 262

VBScript, 68–74

Story of Captain Adventure, The, 120

text files, 197

Visual Basic, 4, 23, 24

Visual Basic for Applications. See VBA

W
WBEM (Web-Based Enterprise

Management), 318

Web-Based Enterprise Management.
See WBEM

websites, navigating, 427–432

Weekday() function, 89

While...Wend statement, 54, 145, 153–154

wildcard characters, 200

Windows

applications, 33

services, retrieving information
about, 326–327

shutdown, automating, 402–404

Windows Console

closing, 14

elevated mode, accessing, 10–13

Normal mode, accessing, 9–10

Windows GUI, 9. See also GUIs

Windows Management
Instrumentation. See WMI

Windows PowerShell, comparing to
WSH, 8–9

Windows Registry. See also Registry
(Windows)

accessing, 250–251

overview of, 247–250

scripts, configuring, 245–262

Windows Script Files

definitions, 297

executing, 303–304

Windows Script Host. See WSH

Windows Script Host Settings dialog
box, 38

Windows shell, how it works, 9

Windows Task Scheduler, 6

With statement, 54

WMI (Windows Management
Instrumentation), 317–336

infrastructure, 319–323

overview of, 317–318

scripts, 323–336

WMI Query Language. See WQL

Word (Microsoft), automating reports,
394–397

WordPad, 51–52

WordPad (Math game), 79–80

words, reserved, 56

WQL (WMI Query Language), 327–329

wrapping GUIs, ping scripts, 399–402

writing

characters, 194–195

comments, 57

to files, 194–196

JScript to consoles (game), 305–306,
315

Knock Knock game, 25–29

lines, 195

reusable code, 170

shell scripts, 8

WScript.exe, 6

command-line execution, configuring,
36–37

customizing, 39–41

desktop execution, configuring, 37–38

WScript objects, 18, 19

applying, 35

formatting, 34

WScript.Quit() method, 232, 233

WSH (Windows Script Host), 3

administrative scripting, 379–404

applying, 189–191

command prompt, navigating, 14

core object models, 6–7, 411–420

disabling, 42–43

enabling, 41–42

HTAs, integrating, 366–370

installing, 16–17

navigating, 31–47

operating system compatibility, 15–16

overview of, 4–21

Remote, 405–401

scripting engines, 5, 6

shell scripts, comparing to, 7–8

VBScript, 17, 21. See also VBScript

Windows PowerShell, comparing to,
8–9

WshShortcut object, properties, 160

X
XML (Extensible Markup Language),

297

consoles (game), using to outline
script structure, 304–305

tags, 297–298

<comment>, 299–300

<job>, 300–301

<?job ?>, 298

<package>, 301–302

<resource>, 302

<script>, 302–303

<?xml ?>, 299

Microsoft WSH and VBScript Programming for the Absolute Beginner, Fourth Edition444

	Cover
	Table of Contents
	Introduction
	Part I: Introducing the WSH and VBScript
	Chapter 1 Getting Started with the WSH and VBScript
	Project Preview: The Knock Knock Game
	What Is the WSH?
	Introducing VBScript
	Back to the Knock Knock Game
	Summary

	Chapter 2 An Introduction to the Windows Script Host
	Project Preview: The Rock, Paper, and Scissors Game
	Examining Scripting Environments
	An Examination of WSH Components
	Configuring WSH Execution Hosts
	Back to the Rock, Paper, and Scissors Game
	Summary

	Part II: Learning VBScript and WSH Scripting
	Chapter 3 VBScript Basics
	Project Preview: The Math Game
	VBScript Statements
	VBScript Syntax Rules
	Mastering the VBScript Object Model
	Working with VBScript Run-Time Objects
	Using VBScript Run-Time Objects in Your Scripts
	Examining Built-in VBScript Functions
	Displaying Script Output
	Back to the Math Game
	Summary

	Chapter 4 Constants, Variables, Arrays, and Dictionaries
	Project Preview: The Story of Captain Adventure
	Understanding How Scripts View Data
	Working with Data That Never Changes
	Storing Data That Changes During Script Execution
	Working with Collections of Related Data
	Storing Data in Dictionaries
	Processing Data Passed to a Script at Run-Time
	Back to the Story of Captain Adventure
	Summary

	Chapter 5 Conditional Logic
	Project Preview: The Planet Trivia Quiz Game
	Examining Program Data
	Performing More Complex Tests with VBScript Operators
	Back to the Planet Trivia Quiz Game
	Summary

	Chapter 6 Processing Collections of Data
	Project Preview: The Guess a Number Game
	Adding Looping Logic to Scripts
	Back to the Guess a Number Game
	Summary

	Chapter 7 Using Procedures to Organize Scripts
	Project Preview: The BlackJack Lite Game
	Improving Script Design with Procedures
	Working with Built-in VBScript Functions
	Limiting Variable Scope with Procedures
	Back to the BlackJack Lite Game
	Summary

	Part III: Advanced Topics
	Chapter 8 Storing and Retrieving Data
	Project Preview: The Lucky Lottery Number Picker
	Working with the Windows File System
	Opening and Closing Files
	Writing to Files
	Reading from Files
	Managing Files and Folders
	Storing Script Configuration Settings in External Files
	Back to the Lucky Lottery Number Picker
	Summary

	Chapter 9 Handling Script Errors
	Project Preview: The Hangman Game
	Understanding VBScript Errors
	Dealing with Errors
	Reporting Errors
	Back to the Hangman Game
	Summary

	Chapter 10 Using the Windows Registry to Configure Script Settings
	Project Preview: Part 2 of the Hangman Game
	Introducing the Windows Registry
	Accessing Registry Keys and Values
	Creating a Key and Value to Store Script Settings
	Back to Part 2 of the Hangman Game
	Summary

	Chapter 11 Working with Built-in VBScript Objects
	Project Preview: The Tic Tac Toe Game
	Leveraging VBScript’s Built-in Collection of Objects
	Creating Custom Objects
	Working with the Err Object
	Working with Regular Expressions
	Back to the Tic Tac Toe Game
	Summary

	Chapter 12 Combining Different Scripting Languages
	Project Preview: The VBScript Game Console
	Introducing Windows Script Files
	Back to the VBScript Game Console
	Summary

	Chapter 13 Working with the Windows Management Instrumentation
	Introducing the Windows Management Instrumentation
	WMI Infrastructure Overview
	Scripting the WMI
	Summary

	Chapter 14 Adding a GUI to Your Scripts
	Project Preview: The HTA Rock, Paper, Scissors Game
	Introducing HTML Applications (HTAs)
	How Do HTAs Compare to HTML Pages?
	Creating and Executing an HTA
	Constructing an HTA
	Adding Interface Elements
	Integrating WSH into Your HTAs
	Back to the Rock, Paper, Scissors Game
	Summary

	Part IV: Appendices
	Appendix A: WSH Administrative Scripting
	Desktop Administration
	Network Administration
	Printer Administration
	Computer Administration
	Disk Management
	Integrating VBScript with Other Applications
	HTML Applications

	Appendix B: Introducing Remote WSH
	Introducing Remote WSH
	Understanding Remote WSH’s Supporting Architecture
	Working with Remote WSH: A Demonstration

	Appendix C: The WSH Core Object Model
	WSH Objects and Their Properties and Methods

	Appendix D: Built-in VBScript Functions
	Appendix E: What’s on the Companion Website?
	Script Examples

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

