

Mobile	Web	Performance	Optimization

Table	of	Contents

Mobile	Web	Performance	Optimization

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Pillars	of	Mobile	Web	Performance	Optimization

A	brief	history	of	mobile	development

Three	main	pillars

Battery

How	a	3G	wireless	state	machine	works

How	a	4G	LTE	wireless	state	machine	works

Opening	and	closing	connections

Speed

Bandwidth

Available	browsers

Safari

Chrome

Internet	Explorer

Firefox

Opera	mini

Mobile	OS

Apple	iOS

Google	Android

Microsoft	Windows	Phone	8

BlackBerry	10	OS

Summary

2.	Mobile	Web	Optimization	Essentials

Mobile-only	websites	versus	responsive	websites

HTTP	requests

Combined	files

CSS	sprites

Image	maps

Remove	duplicate	scripts

Enable	Gzip	compression

Image	size	matters

Resize	your	images	to	correct	image	resolution

Reduce	the	file	size

Image	compression	tools

Tiny	PNG

ImageOptim

Kraken

Unnecessary	contents

Clean	design

Duplicate	content

Why	design	and	UX	are	important

Summary

3.	How	to	Optimize	Your	Mobile	Website

Use	of	HTML5	and	CSS3

Hardware	acceleration	and	the	Graphics	Processing	Unit

HTML5	form	attributes	and	input	types

Using	web	storage	in	place	of	cookies

Using	CSS3	effects	instead	of	requesting	heavy	images

Border-radius	for	rounded	corners

Box-shadow	for	drop	shadows	and	glow

Linear	and	radial	gradients

Transform	properties	for	rotation

Understanding	CSS	Filter	Effects

CSS	animation	versus	JavaScript

CSS	animations

Iconic	fonts

Font	Awesome	icons

IcoMoon	icons

How	to	use	media	queries

Displaying	none	in	CSS

Video	and	images	via	media	queries

CSS	preprocessors

SASS	and	LESS

Variables

SASS

LESS

Partials

SASS	and	LESS

Mixins

SASS

LESS

Minifying	CSS	and	JavaScript

Minifying	CSS

Minifying	JavaScript

Summary

4.	Caching	and	Optimizing

Caching

Cache-Control

Content	prefetching

Make	favicon	icon	small	and	cacheable

File	order	of	external	style	sheets	and	scripts

Empty	source	and	link	attributes

CSS	and	JavaScript	frameworks

Bootstrap

Zurb	Foundation

UIkit

Semantic-UI

Susy

jQuery

AngularJS

Ember

Aurelia

Knockout.js

How	to	optimize	JavaScript

Load	only	what	is	needed

Reduce	the	number	of	DOM	elements

Summary

5.	Monitoring	and	Debugging	Our	Website

Profiling	tools

GPU	Overdraw	Walkthrough

GPU	Rendering	Walkthrough

A	browser’s	DevTools	performance

Remote	debugging

Performance	tools	in	Firefox,	Safari,	and	IE

Firefox	Developer	Tools

IE	11	Developer	Tools

Safari	Developer	Toolbar

The	Google	Chrome	emulator

Google	PageSpeed	Insights

YSlow

Summary

6.	Managing	Third-Party	Components

Eliminating	404	errors	and	missing	assets

HTTP	300,	400,	and	500	codes

Content	Delivery	Network

Third-party	plugins

Opening	connection

Closing	connection

Offloading	to	Wi-Fi

Screen	rotations

Flash	files

Summary

7.	Tips	and	Tricks

Built	for	performance

When	to	optimize

Invest	for	performance

Design	tools

Performing	actions	optimistically

Move	bits	when	no	one	is	watching

Less	work	for	the	end	user

New	Relic

We	can’t	predict	the	future,	nevertheless	embrace	it

Summary

Index

Mobile	Web	Performance	Optimization

Mobile	Web	Performance	Optimization
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1161215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-997-2

www.packtpub.com

http://www.packtpub.com

Credits
Author

S.	S.	Niranga

Reviewer

Ankit	Aggarwal

Commissioning	Editor

Veena	Pagare

Acquisition	Editor

Sonali	Vernekar

Content	Development	Editor

Pooja	Mhapsekar

Technical	Editor

Mohita	Vyas

Copy	Editor

Imon	Biswas

Project	Coordinator

Francina	Pinto

Proofreader

Safis	Editing

Indexer

Rekha	Nair

Graphics

Abhinash	Sahu

Production	Coordinator

Melwyn	Dsa

Cover	Work

Melwyn	Dsa

About	the	Author
S.	S.	Niranga	is	a	senior	tech	lead	at	Netstarter	Pvt	Ltd,	and	he	has	more	than	9	years	of
experience	as	a	software	engineer	and	a	web	developer.	During	this	period,	he	has	built
more	than	300	websites	including	numerous	e-commerce	websites,	such	as	JAX	Tyres,
ActiveSkin,	Athlete	foots,	JVC,	Pegasus,	and	the	world’s	first	Magento	2	website,	Venroy.
Also,	he	is	an	active	developer	on	Upwork	as	well.

Niranga	is	a	certified	Magento	frontend	developer,	a	Microsoft	technical	specialist,	and	a
scrum	master.	Currently,	he	is	pursuing	a	master’s	degree	in	IT	at	the	Sri	Lanka	Institute	of
Information	Technology.

Niranga	has	done	a	few	Tech	Talk	sessions	regarding	web	optimization	and	e-commerce.
This	is	his	first	effort	as	an	author.

When	I	was	about	to	give	up,	you	were	always	there	to	support	me	and	cheer	me	up.	Your
help	and	encouragement	were	what	made	this	book	possible.	Thank	you	Iresha
Wijethunga,	for	your	understanding	and	love	during	the	past	few	years.

Also,	I	would	like	to	thank	Asanka	Mawilmada	for	his	support	and	guidance	over	the	past
few	years.	You	are	an	awesome	friend!!!

About	the	Reviewer
Ankit	Aggarwal	has	been	fascinated	with	science	and	technology	since	childhood.	He
likes	to	experiment	and	learn	about	new	things.	He	is	a	software	engineer	and	researcher
by	profession	and	loves	computer	science.	He	wants	to	solve	world	problems	using
technology.	His	interests	range	from	science,	to	technology,	academic	research,	music,
photography,	entrepreneurship,	DIY,	movies,	anime,	and	much	more.

He	has	been	working	in	networking,	distributed	systems,	pervasive/mobile	computing,
data	science,	AI,	computer	vision,	and	the	list	goes	on.	He	is	a	published	author	of	IEEE
Xplore	research	papers	and	an	active	contributor	and	author	on	multiple	open	source
projects.	He	is	socially	active,	blogs	occasionally,	and	maintains	his	website	on
http://ankitaggarwal.me.

In	his	free	time,	he	reads,	takes	part	in	competitive	programming,	captures	nature	with	a
lens,	and	watches	TV	shows,	movies,	and	anime.	When	he	is	not	doing	these	things,	he
can	be	found	jogging	at	the	nearest	ground.

http://ankitaggarwal.me

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
This	book	is	for	anyone	who	has	basic	knowledge	of	web	development	and	who	wants	to
enhance	their	knowledge	on	mobile	website	performance	optimization.	By	reading	this
book,	a	user	will	get	to	know	how	to	measure	their	website’s	performance,	the	tools	they
can	use	to	debug	and	monitor	their	website,	and	the	tips	and	tricks	to	optimize	their
website.

What	this	book	covers
Chapter	1,	Pillars	of	Mobile	Web	Performance	Optimization,	discusses	mobile	history	and
why	mobile	web	optimization	is	necessary.	Also,	we	will	talk	about	the	three	main	pillars
that	are	important	in	the	mobile	world,	and	also	discuss	the	major	browsers	and	popular
OSes	in	the	market.

Chapter	2,	Mobile	Web	Optimization	Essentials,	explains	the	importance	of	reducing
HTTP	requests	and	enabling	Gzip	on	the	server	and	its	benefits.	We	will	discuss	the
importance	of	image	optimization	and	the	tools	we	can	use.	Also,	we	will	see	content
management,	the	importance	of	UX,	and	how	it	affects	a	mobile	site.

Chapter	3,	How	to	Optimize	Yours	Mobile	Website,	discusses	HTML5	and	CSS3	and	how
to	use	their	features	for	performance	optimization.	We	will	especially	talk	about	the
importance	of	hardware	acceleration	and	GPU,	CSS3	animations	versus	JavaScript
animations,	and	how	to	use	iconic	fonts	instead	of	images.	After	that,	we	will	see	how	to
use	media	queries	and	display	none	in	CSS.	We	will	also	explore	CSS	preprocessors	and
the	importance	of	minifying	CSS	and	JS.

Chapter	4,	Caching	and	Optimizing,	shows	how	the	caching	mechanism	works.	After	that,
we	will	see	how	a	developer	should	call	JavaScript	and	CSS	files	and	why	we	should
avoid	empty	source	and	link	attributes.	Then	we	will	have	a	brief	introduction	to	CSS	and
JavaScript	frameworks.	The	later	part	of	the	chapter	explains	how	we	can	optimize
JavaScript	to	gain	performance	and	the	importance	of	reducing	DOM	elements.

Chapter	5,	Monitoring	and	Debugging	Our	Website,	demonstrates	how	to	use	profiling
tools	such	as	GPU	Overdraw	Walkthrough	and	GPU	Rendering	Walkthrough.	After	that,
we	will	see	the	features	of	browser’s	DevTools	and	how	we	can	remote	debug	our	website
using	devices	actually	connecting	to	our	PC.	Also,	we	will	discuss	the	Firefox,	Safari,	and
IE	developer	toolbar	and	how	we	can	use	them	for	debugging.	In	the	later	part	of	the
chapter,	we	will	go	through	the	Google	emulator	and	see	how	we	can	use	it	as	a	testing
environment.	Finally,	we	will	see	how	to	get	a	performance	score	and	rating	for	our
website	using	Google	PageSpeed	and	YSlow.

Chapter	6,	Managing	Third-Party	Components,	teaches	you	how	to	check	404	errors	in
our	website,	why	it	is	important	to	eliminate	404	errors,	and	how	we	can	do	that.	Not	only
404,	but	we	should	also	learn	and	understand	300,	400,	and	500	error	messages	as	well.
Then,	we	will	discuss	CDN	networks	and	the	benefits	that	we	can	get	using	a	CDN
network.	Then	we	will	cover	how	to	open	and	close	connection	works	and	the	importance
of	offloading	to	Wi-Fi.	After	that,	we	will	discuss	screen	rotation	and	how	we	can	use	it	to
optimize	our	website.	Finally,	we	will	see	Adobe	Flash	and	you	are	recommended	not	to
use	it.

Chapter	7,	Tips	and	Tricks,	discusses	why	we	should	build	for	performance	and	how	we
can	convince	our	clients	to	approve	a	budget	for	performance.	Also,	in	the	chapter,	we	will
see	what	the	limitations	of	our	design	tools	are	and	how	we	can	get	the	best	out	of	them.
Finally,	we	will	discuss	the	New	Relic	mobile	app,	a	tool	that	we	can	use	to	monitor	our

application’s	performance.	The	tool	generates	a	very	detailed	report,	which	helps
developers	in	many	aspects.

What	you	need	for	this	book
The	software	used	in	this	book	are	as	follows:

Software	required Free/Proprietary Download	links	to	the	software

Tiny	png Free https://tinypng.com/

ImageOptim Free https://imageoptim.com/

Kraken Free https://kraken.io/

Font	Awesome	Icons Free https://fortawesome.github.io/Font-Awesome/icons/

IcoMoon	Icons Free https://icomoon.io/

SASS Free http://sass-lang.com/

LESS Free http://lesscss.org/

GPU	Overdraw	Walkthrough Free 	

Browser	DevTools	Performance	Tools Free 	

Firefox	Developer	Tools Free 	

IE	11	Developer	Tools Free 	

Safari	Developer	toolbar Free 	

YSlow Free http://yslow.org/

Web	page	test Free www.webpagetest.org

https://tinypng.com/
https://imageoptim.com/
https://kraken.io/
https://fortawesome.github.io/Font-Awesome/icons/
https://icomoon.io/
http://sass-lang.com/
http://lesscss.org/
http://yslow.org/
http://www.webpagetest.org

Who	this	book	is	for
This	book	is	for	anyone	who	has	basic	knowledge	of	web	development	and	who	wants	to
enhance	their	knowledge	of	mobile	website	performance	optimization.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“In
Apache,	you	can	add	the	following	code	to	the	.htaccess	file.”

A	block	of	code	is	set	as	follows:

#	compress	text,	html,	javascript,	css,	xml:

AddOutputFilterByType	DEFLATE	text/plain

AddOutputFilterByType	DEFLATE	text/html

ddOutputFilterByType	DEFLATE	text/css

AddOutputFilterByType	DEFLATE	application/javascript

AddOutputFilterByType	DEFLATE	application/x-javascript

AddOutputFilterByType	DEFLATE	text/xml

AddOutputFilterByType	DEFLATE	application/xml

AddOutputFilterByType	DEFLATE	application/xhtml+xml

AddOutputFilterByType	DEFLATE	application/rss+xml

#	Or,	compress	certain	file	types	by	extension:

<files	*.html>

SetOutputFilter	DEFLATE

</files>

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Go	to	the	taskbar	and
click	on	Server	Manager.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/MobileWebPerformanceOptimization_ColoredImages.pdf

https://www.packtpub.com/sites/default/files/downloads/MobileWebPerformanceOptimization_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Pillars	of	Mobile	Web
Performance	Optimization
If	you	are	into	mobile	web	or	application	development,	it’s	essential	to	learn	about	the
basics	of	mobile	and	how	it	has	evolved	over	the	last	few	decades.	By	learning	about	these
topics,	you	will	gain	basic	knowledge	about	mobiles,	which	will	help	you	to	understand
the	concepts	that	we	are	going	to	discuss	in	later	chapters.	Also,	in	the	context	of	mobile
web	optimization,	you	can’t	ever	forget	the	three	main	constraints	that	mobile	devices
have,	and	you	are	going	to	learn	about	these	three	constraints	later.

In	this	chapter,	we	will	discuss	the	following	topics:

Brief	history	of	mobile	development
Three	main	pillars
Available	browsers
Mobile	OS

A	brief	history	of	mobile	development
It	is	said	that:

“The	Apollo	11	mission’s	computers	were	less	powerful	than	today’s	mobile	phones.”

In	1970,	a	year	after	the	human	race	set	foot	on	the	moon,	Martin	Cooper	of	Motorola
conceived	the	idea	of	the	first	handheld	mobile	phone.	Since	then,	the	mobile	phone	has
evolved	at	a	rapid	rate,	and	evidence	showed	that	it’s	not	going	to	stop	any	sooner.	It’s
difficult	to	imagine	how	we	made	such	an	advance	in	mobile	technology	in	such	a	short
period,	and	reached	a	point	where	today,	most	of	us	use	mobile	devices	to	complete	many
activities	in	our	day-to-day	life.

I	still	remember	the	day	I	bought	my	first	mobile	phone.	It	didn’t	have	any	fancy	stuff	that
you	find	in	today’s	mobile	phones.	The	only	advanced	feature	that	it	had	was	the	Short
Message	Service	(SMS).	It	didn’t	have	a	camera,	all	the	applications	were	pre-installed,
the	user	couldn’t	install	any	applications,	and	there	was	no	Internet	browsing.

However,	nowadays,	we	use	mobile	devices	for	many	things	because	communication
through	a	mobile	device	is	faster,	cheaper,	and	can	connect	to	anyone	from	anywhere.
According	to	surveys,	the	number	of	active	mobile	devices	and	human	beings	crossed
over	somewhere	around	the	7.19	billion	mark.	It	means	that	each	and	every	person	in	the
world	most	likely	has	a	mobile	device.	Because	of	this	large	consumer	group,	many
organizations	and	consumers	invested	and	made	their	marketing	campaigns	to	cater	to
mobile	users	and	as	a	result,	each	and	every	day	thousands	of	new	mobile	applications	and
mobile	websites	have	been	introduced	into	the	market.

However,	today	mobile	applications	and	mobile	websites	have	a	fatal	flow.	Websites’	sizes
are	getting	bigger	at	an	alarming	rate,	and	we	are	quickly	heading	towards	the	wrong	way.
We	never	notice	it	as	it	happens,	and	when	we	do,	it’s	often	too	late.

I	had	the	privilege	to	work	with	excellent	internal	developers	to	complete	a	website	a
couple	of	months	back,	and	our	initial	goal	was	to	build	the	website	in	such	a	manner	that
it	loads	at	top	speed.	Although	we	planned	everything	upfront	to	achieve	our	goal,	we
made	a	fundamental	mistake.	When	we	saw	the	designs,	it	was	already	approved	by	the
top	management	and	we	never	saw	the	designs	upfront	before	they	were	sent	to	the	client.
Then	we	got	the	internal	deadline	defined	by	the	management,	and	it	was	too	tight.	Then,
Make	it	fast	turned	into	Make	it	work	and	we	thought	we	can	make	it	faster	later;	of	course
that	later	never	came.

After	a	couple	of	months’	hard	work,	we	managed	to	launch	the	website,	but	it	was	a
disaster.	The	site	looked	great	in	frontend,	but	it	took	more	than	20	seconds	to	load	the
home	page.	The	website	was	responsive,	and	when	we	came	into	a	mobile	breakpoint,	it
loaded	a	lot	of	unwanted	elements	that	shouldn’t	be	there.	Once	we	saw	this	flaw,	we	had
to	work	very	hard	even	at	night	to	tweak	the	website,	and	after	a	massive	effort,	we
managed	to	load	the	website	within	7	seconds.

That	day	we	promised	ourselves	to	check	and	plan	everything	upfront,	and	never	leave

anything	behind	to	damage	the	site’s	performance.	So,	in	this	book,	I	am	going	to	discuss
a	few	tips,	tricks,	and	tools	that	I	have	learned	in	the	past	couple	of	years.	I	hope	it	will
help	you	to	improve	your	website’s	loading	time	by	at	least	a	couple	of	seconds.

Remember,	many	studies	and	surveys	have	shown	how	a	website’s	performance	has	a
direct	impact	on	the	user’s	interaction	with	the	website.	I’ve	listed	a	few	of	these	as
follows:

4	percent	of	mobile	phone	users	visiting	a	mobile	site	will	abandon	a	site	that	takes
longer	than	five	seconds	to	load.	(Source	of	this	information:
https://blog.kissmetrics.com/loading-time/.)
Every	additional	second	added	to	the	site’s	load	time	results	in	a	7	percent	loss	in
conversions.
Similarly,	shaving	two	seconds	off	of	Mozilla’s	landing	pages	led	to	a	15.4	percent
increase	in	conversions,	which	meant	60	million	more	downloads	per	year.	This	is
just	a	two-second	difference,	so	any	impact	that	you	can	make	will	have	the	potential
to	improve	your	business.	(Source	of	this	information:
http://www.yottaa.com/blog/application-optimization/marketing-web-performance-
101-how-site-speed-impacts-your-metrics-.)
46	percent	of	the	people	who	abandon	their	shopping	carts	cite	slow	website	speeds
to	be	the	reason	to	do	so.
79	percent	of	shoppers	who	are	dissatisfied	with	the	website’s	performance	are	less
likely	to	buy	from	the	same	site	again.	(Source	of	this	information:
http://conversionxl.com/11-low-hanging-fruits-for-increasing-website-speed-and-
conversions/.)

https://blog.kissmetrics.com/loading-time/
http://www.yottaa.com/blog/application-optimization/marketing-web-performance-101-how-site-speed-impacts-your-metrics-
http://conversionxl.com/11-low-hanging-fruits-for-increasing-website-speed-and-conversions/

Three	main	pillars
It’s	true	that	the	mobile	phone	has	come	a	long	way	since	1970.	Today,	we	use	the	mobile
phone	for	navigation,	communication,	and	entertainment.	We	even	use	it	as	an	electronic
valet.	Although,	we	use	mobile	devices	for	hundreds	of	different	tasks,	it	has	a	few
limitations.	Mobile	devices	have	a	limited	screen	size,	so	whatever	you	do,	you	have	to
build	your	application	or	website	in	a	way	that	it	fits	into	that	limited	space.	Also,	if	your
device	is	truly	a	portable	device,	you	will	be	able	to	carry	it	around.	As	a	result,	mobile
manufacturers	have	to	compact	everything	into	a	smaller	size.

Finally,	when	you	develop	mobile	websites	or	applications,	you	have	to	consider	the
features	that	mobile	users	actually	expect	from	their	devices,	which	are	as	follows:

Speed

64	percent	of	mobile	users	expect	pages	or	apps	to	load	in	less	than	4	seconds.
(Source:	https://econsultancy.com/blog/10936-site-speed-case-studies-tips-and-
tools-for-improving-your-conversion-rate/)

Battery

Better	battery	life	(6.1	people	out	of	10	are	satisfied	by	this)
72	percent	of	the	people	rate	their	phone	as	very	good	or	excellent
Users	don’t	want	to	exceed	their	datacap

Reasonable	data	usage

Users	don’t	want	to	exceed	their	datacap

The	following	chart	explains	the	significance	of	the	three	main	features	for	any	mobile
device:

https://econsultancy.com/blog/10936-site-speed-case-studies-tips-and-tools-for-improving-your-conversion-rate/

Battery
Out	of	these	three	factors,	our	primary	focus	will	always	be	on	the	mobile’s	battery
because	unlike	personal	computers,	mobile	phones	do	not	have	an	unlimited	power
source.	Most	of	the	time,	users	have	to	charge	their	mobile	phones	daily.	It’s	a	known	fact
that	when	you	turn	on	the	mobile’s	Wi-Fi,	3G,	or	4G	data	connections,	your	battery	starts
to	drain.	This	is	because	once	you	turn	on	Wi-Fi,	3G,	or	4G	data	connections,	your	mobile
phone	begins	to	exchange	data,	thereby	consuming	more	power.

No	one	will	want	to	visit	your	website	or	use	your	application	if	they	feel	that	your
website	or	application	is	draining	their	battery.	So,	you	should	always	optimize	your
website	or	application	in	such	a	way	that	it	uses	minimum	power.	To	do	that,	you	need	to
have	a	better	understanding	about	energy	consumption	in	mobile	phones.

How	a	3G	wireless	state	machine	works
In	the	following	diagram,	you	can	see	how	a	3G	wireless	state	machine	works:

Learning	about	this	will	give	you	an	idea	about	how	mobile	devices	consume	power	when
they	start	to	exchange	data	using	3G:

As	the	preceding	diagram	indicates,	the	mobile	device	is	initially	on	standby	mode
(A).
As	number	1	indicates,	when	we	start	the	3G	connection,	it	will	have	a	2	second
latency.	The	mobile	device	will	push	to	its	maximum	state	and	begin	to	consume
maximum	power	(A	to	B).
The	mobile	device	will	continue	to	be	in	this	state	as	long	as	it	receives	data.	As	long
as	it	is	connected	to	your	website	or	app	it	will	use	battery	power	at	a	higher	rate	(B).

If	your	device	didn’t	get	data	from	the	website	or	app,	it	will	keep	the	connection	for
another	5	seconds,	after	which	it	will	go	to	a	lower	power	state	(460mw)	–	number	2
(B	to	C).
If	the	device	makes	a	connection	with	the	website	or	app	at	this	stage	again,	it	will
take	1.5	seconds	to	go	to	a	higher	level	of	power	consumption	–	(C	to	B).
If	the	device	didn’t	succeed	to	make	the	connection	with	the	website	or	app	(C	state
),	it	would	remain	there	for	another	12	seconds	and	after	that	it	will	come	to	a
standby	mode	(C	to	A).

Assuming	that	you	have	gained	the	basic	knowledge	about	how	3G	wireless	state	machine
works,	let’s	now	see	how	the	4G	Long-Term	Evolution	(LTE)	wireless	state	machine
works.

How	a	4G	LTE	wireless	state	machine	works
In	the	following	image,	you	can	see	how	a	4G	LTE	wireless	state	machine	works:

Following	is	a	description	of	the	preceding	figure:

In	the	idle	state,	the	radio	is	off	and	uses	low	power	(<15mW)	(A)
In	the	connected	state,	the	radio	is	on	and	uses	high	power	(1000	—	3500	mW)	while
it	either	transmits	data	or	waits	for	data	(B)
When	data	is	received,	the	machine	goes	to	the	Short	DRX	mode	(T1)
If	there	is	no	data,	it	switches	to	the	Long	DRX	mode	(T2)
In	the	Long	DRX	state,	the	radio	prepares	to	switch	to	the	idle	state	but	it’s	still	using
high	power	and	waiting	for	data
If	more	data	arrives,	then	the	radio	returns	to	the	continuous	transmission	state
If	it	does	not	receive	any	more	data,	it	switches	to	the	low	power	(<15mW)	idle	state
and	switches	off	(T3)

In	the	context	of	both	3G	and	4G	data	connections,	as	long	as	we	keep	the	connection
open	to	receive	data,	the	mobile	goes	to	full	power	and	starts	to	consume	more	battery
power.

For	example,	take	a	person	who	is	supposed	to	bring	goods	from	a	supermarket	and	they
use	their	vehicles	to	bring	them	in.	If	they	didn’t	get	any	request	to	bring	anything,	then
they	are	in	an	idle	state,	and	do	not	waste	any	energy.	Suddenly,	someone	comes	up	to
them	and	asks	them	to	bring	a	pack	of	sugar	from	the	supermarket.	So,	now	they	have	to
start	the	car	and	go	to	the	supermarket	to	bring	that	item.	In	this	particular	event,	they	have
consumed	some	energy.	Once	they	deliver	the	goods,	the	same	person	asks	them	to	bring
another	thing	from	the	supermarket.	Now,	they	again	have	to	proceed	with	the	same
routine,	which	again	leads	to	consumption	of	energy.

Imagine	a	situation	where	they	have	to	go	through	the	same	routine	a	couple	of	times.
Apparently,	it	wastes	both	the	person’s	time	and	money,	and	it	could	have	been	easily
avoided	if	the	task	was	planned	properly	and	all	the	items	were	requested	at	the	same	time.

The	same	situation	holds	true	for	mobiles	as	well.	So,	keep	in	mind	that	when	you	develop
a	website	or	app,	you	have	to	think	about	these	little	details	to	build	an	optimized	website
or	app.

Opening	and	closing	connections
As	you	can	see,	mobile	devices	drain	more	battery	power	as	long	as	they	go	to	the	3G	and
4G	mode.	So,	in	order	to	minimize	power	consumption,	the	developer	should	always
remember	to	close	the	connection	as	soon	as	possible.	The	main	reason	for	this	is	that	the
device	goes	to	higher	state,	stays	there	for	a	longer	period,	leaves	a	connection	open	long
after	data	has	been	transmitted,	and	the	files	are	requested	by	the	users	in	lengthy	stretches
of	time.

However,	as	developers,	we	can	minimize	this	issue	by	taking	the	following	measures:

Downloading	the	content	as	quickly	as	possible
Grouping	the	TCP	packets	together	when	opening	a	connection
Prefetching	the	content
Closing	the	connection	quickly	after	data	is	transmitted

By	following	these	methods	the	developer	can	reduce	energy	consumption	and	network
latency,	and	can	load	the	website	or	application	faster,	which	will	lead	to	happier	users.
The	following	image	shows	the	issue	of	a	connection	that	was	closed	inefficiently.	In	the
Bursts	row	of	this	image,	the	bursts	(in	green	and	red)	between	10	and	40	seconds	on	the
timeline	were	used	to	download	data.	While	the	burst	(in	blue)	around	the	80	second	mark
represents	a	request	to	close	the	earlier	connection.	Notice	that	the	radio,	represented	on
the	RRC	States	row	below	the	Bursts	row,	is	turned	back	on	just	to	close	the	connection.
This	can	be	seen	at	the	80	second	mark	below	the	narrow	burst	(in	blue).	The	RRC	States
row	also	shows	that	the	radio	is	not	just	simply	turned	on	and	off.	It	remains	on	for	a	set
period,	including	time	in	a	high	energy	state,	then	low	energy,	and	all	the	related	tail	time
(wasted	energy)	before	it	turns	off.

Speed
When	a	customer	enters	the	supermarket,	they	always	seek	and	expect	a	fast	and	friendly
service	from	the	staff.	If	they	got	a	good	service	from	the	store,	chances	are	really	high
that	they	shared	that	experience	with	their	friends	and	family,	which	will	lead	to	more
customers	going	to	the	supermarket.	Also,	if	they	have	to	wait	for	a	long	period	in	a	queue
to	get	clarification	for	something	or	if	the	support	staff	didn’t	offer	a	friendly	service	to
them,	they	will	share	these	bad	experience	with	their	friends.	This	will	damage	the	store’s
reputation,	which	is	very	hard	to	restore.	This	is	why	many	companies	nowadays	spend
millions	and	billions	of	dollars	on	customer	services.	They	will	always	try	to	keep	the
customer	happy.

This	is	true	for	your	website	or	app	as	well.	If	you	want	to	attract	more	clients	or	users	to
your	product,	you	should	give	100	percent	speed	to	the	visitors	all	the	time.	This	is	why
you	should	always	provide	an	optimized	website	or	app	to	the	client.	So,	once	they	visit
your	application,	they	will	get	a	smooth	and	fast	experience	that	will	generate	more
revenue.	Also,	unlike	desktop	users,	mobile	users	don’t	stick	to	one	place	for	a	long	period
of	time.	They	won’t	wait	until	your	website	gets	loaded,	they	will	just	ignore	your	website
and	will	visit	your	competitor’s	website.	This	is	why	speed	matters.

According	to	researchers,	a	fast	browsing	experience	will	increase	the	following:

Minimum	bounce	rates:	The	percentage	of	visitors	to	a	particular	website	who
navigate	away	from	the	site	after	viewing	only	one	page
Order	size	:	Customers	will	order	more	products	from	your	website
Customer	satisfaction:	Customer	will	love	to	browser	your	website
SEO	rankings:	Your	website	will	get	a	better	ranking	from	the	search	engines

In	Google	site	rankings,	loading	time	is	given	more	weight	(source:
http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-
ranking.html).	If	you	expect	your	website	to	have	an	increase	in	the	rankings,	you	should
consider	your	application’s	performance,	and	this	is	why	optimization	is	necessary.

http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html

Bandwidth
When	I	was	in	school,	I	used	a	dial-up	connection	to	connect	to	the	Internet.	It	was	a	56	K
connection,	and	I	still	remember	that	it	took	ages	to	download	a	3	MB	file.	Since	then,
Internet	service	providers	have	come	a	long	way,	and	now	many	of	us	can	download	a
complete	movie	in	less	than	5	minutes.

Although	now	we	have	faster	connections,	in	many	countries,	the	Internet	is	still	not	that
cheap.	Users	have	to	pay	a	premium	to	get	a	connection,	and	they	have	to	pay	a	monthly
payment	to	sustain	it.

In	many	countries,	now	it’s	easy	to	get	a	connection;	with	mobiles,	it’s	just	following	a
few	steps	and	within	30	minutes,	most	of	us	can	obtain	a	3G	or	4G	connection.	However,
many	of	these	packages	have	a	bandwidth	constraint.	For	an	example,	users	will	get	faster
connection	with	X	GB	but,	once	the	user	exceeds	it,	they	have	to	pay	extra.

So,	when	developing	a	website	or	app,	you	should	always	keep	in	mind	that	consuming
their	bandwidth	immensely	will	result	in	them	ignoring	your	website	or	app	and	moving
on	to	an	alternate	website.

Managing	the	bandwidth	is	not	that	difficult,	go	through	a	few	simple	steps	and	you	will
be	able	to	save	a	few	extra	MBs	of	your	site,	which	will	help	you	to	increase	revenue.

Available	browsers
When	building	a	mobile	website,	you	should	always	identify	the	sort	of	browser	that	the
end	user	uses.	These	days,	looking	at	analytics	data,	the	developer	can	easily	find	out	what
type	of	customers	they	have	and	their	needs.	By	having	those	data	upfront,	the	developer
can	easily	use	browser	features	more	effectively.	In	this	section,	we	will	discuss	some	of
the	major	browsers	available	in	the	market.

Analytic	data

You	can	find	the	top	browser	share	trend	of	mobile/tablet	in	the	following	screenshot	and
the	source	to	this	data	is	https://www.netmarketshare.com/browser-market-share.aspx?
qprid=1&qpcustomb=1:

Mobile/Tablet	Top	Browser	Share	Trend

https://www.netmarketshare.com/browser-market-share.aspx?qprid=1&qpcustomb=1

Safari
Known	for	its	natural	ease	of	use,	Safari	is	Apple’s	lightweight	and	smooth	web	browser.
Since	2007,	Safari	has	become	the	most	favorite	browser	in	the	mobile	world.	The	Safari
browser	is	quick	and	simple	to	use.	However,	it	does	not	have	the	customization	option
that	a	large	number	of	clients	look	for	in	a	browser	nowadays.

Each	and	every	browser	has	some	unique	features,	and	Safari	does	too.	Safari	is
amazingly	quick.	It	takes	less	than	two	seconds	for	the	program	to	load	and	even	less	time
to	navigate	interfaces	on	the	site.	Safari	offers	various	features	to	users,	such	as	tabs,
spellcheck,	and	a	secret	key	administrator.	However,	customizing	the	browser	is	a	bit
difficult.	Also,	Safari	additionally	needs	parental	and	zoom	controls.

One	other	main	benefit	that	Safari	has	is	its	security	features.	The	browser	provides
security	from	a	wide	range	of	malware	and	phishing	sites.

Chrome
Since	2008,	after	the	first	release,	Chrome	has	gradually	gained	the	largest	market	share	in
global	Internet	usage.	The	browser	upholds	Google’s	reputation	for	innovation	and
industry	dominance.	In	the	beginning,	the	Chrome	browser	got	many	ideas	from	other
browsers,	but	now,	other	browsers	are	inspired	by	Chrome.

Google	Chrome’s	best	features	are	simplicity	and	speed,	which	is	better	than	other
browsers.	The	browser	has	earned	many	awards	for	its	minimum	loading	time	and
seamless	navigation.

Google	Chrome	offers	many	security	features	to	its	users	to	keep	them	safe	from	malware
and	phishing.	Its	auto-update	feature	ensures	the	installation	of	all	the	latest	security	fixes
with	ease.	When	a	user	navigates	to	a	website	that	contains	malware	or	phishing,	this
browser	displays	a	warning.

Internet	Explorer
When	compared	to	other	browsers,	Internet	Explorer	has	been	the	longest	in	the	run.	It
was	the	most	popular	browser	in	the	past,	but	it	was	suppressed	by	others	because	of	its
lack	of	security	and	features.	However,	recently	Microsoft	has	placed	a	heavy	focus	on
enhancing	the	security	and	features	to	give	more	options	to	users.

Internet	Explorer	may	be	not	the	fastest	browser	on	the	market,	but	Internet	Explorer	has
many	new	features	such	as	tabbed	browsing	and	most	visited	sites	based	on	browsing
history	that	works	great	with	the	touchscreen.	Also,	the	browser	provides	a	variety	of	add-
ons	for	a	fully	customized	browsing	experience.	The	add-ons	are	categorized	into	four
groups	such	as	accelerators,	search	providers,	Web	Slices,	and	toolbars.	In	each	category,
the	user	can	find	many	downloads,	and	most	of	them	are	free.

Internet	Explorer	has	had	an	awful	run	in	the	past;	many	hackers	attacked	Windows	OS
because	of	its	larger	market	share,	and	it	has	affected	Internet	Explorer	very	badly.
However,	the	latest	version	of	the	browser	had	included	effective	updates	and	patches	to
reduce	those	loopholes,	and	the	browser	provides	a	very	user-friendly	interface.

Firefox
Mozilla	developers	are	always	offering	products	that	represent	the	open	web	concept.
They	always	try	to	keep	the	standards	of	their	product	and	versions.	Firefox,	Mozilla’s
web	browser,	has	always	upheld	these	standards	and	has	given	a	true	mobile	experience	to
its	users.

All	the	features	in	Firefox	are	fairly	standard,	and	their	security	features	always	keep	the
users	in	a	safe	place.	Also,	the	user	can	easily	sync	this	mobile	browser	with	their	desktop
versions	of	Firefox	and	the	home	panel	for	the	app	is	customizable	with	the	user’s	choice.
Adding	to	this,	the	swiping	gestures	and	simple	interfaces	that	Firefox	has	work	well	in
smartphones	and	tablets,	which	gives	a	very	pleasant	experience	to	its	users.

Opera	mini
As	I	have	mentioned	in	the	previous	section,	if	you	have	a	limited	mobile	data	package,
every	byte	you	download	is	really	important.	If	that	person	is	you	and,	if	you	don’t	care
about	the	fancy	features	that	conventional	browsers	offer,	you	should	go	with	Opera	Mini.

In	the	context	of	Opera	Mini,	the	browser	has	a	best	image	compression	mechanism,	and
auto-play	videos	are	disabled	by	default.	This	will	save	you	90	percent	data	compared	to
other	browsers.

On	the	surface,	Opera	mini	doesn’t	have	a	lot	of	variations	compared	to	Opera’s	main
version	or	any	other	browser.	However,	when	you	try	to	download	an	image-heavy	site
such	as	Facebook	or	Tumblr,	you	will	notice	the	difference.	The	images	that	you	are
downloading	from	these	sites	look	blurry	compared	to	other	browsers,	but	you	will	save	a
massive	amount	of	mobile	data.

Mobile	OS
Choosing	a	mobile	OS	is	not	an	easy	task.	The	mobile	world	is	divided	into	Google
Android,	Apple	iOS,	Windows	and	a	few	up	and	coming	players.	The	OS	you	choose	will
define	the	kind	of	app	or	website	that	you	are	going	to	build.	The	good	news	is	when	it
comes	to	the	mobile	web,	there	isn’t	much	difference	from	those	players.

Smartphone	OS	Market	Share

However,	the	difference	between	mobile	browsers	always	comes	down	to	three	factors:
hardware,	application,	and	customizability.	At	the	moment,	Google	Android	has	the
highest	market	share,	iOS	has	the	most	popular	apps,	while	Windows	Phone	8	and
Blackberry	OS	10	lag	behind.

Apple	iOS
Style	and	simplicity	are	the	main	indicators	of	iOS,	which	comes	with	iPhones	and	tabs.
iOS	has	a	very	simple,	logical,	and	consistent	design	throughout	the	OS,	and	the	home
screen	contains	a	grid	of	movable	icons.	The	built-in	applications	of	iOS	are	well	designed
and	user-friendly,	the	new	iOS	version	includes	Facebook	and	Twitter	integration,	built-in
video	chat,	and	the	Passbook	virtual	wallet.

The	best	strength	of	iOS	is	the	massive	collection	of	apps	and	most	probably	it	has	the
best	app	store	in	the	market.	Most	of	the	time	app	developers	choose	their	primary	target
as	iOS,	and	Apple	offers	the	industry’s	best	collection	of	books,	music	and	TV	to	its	users.

Google	Android
Google	Android’s	best	strength	is	that	the	OS	is	available	on	more	phones	and	more
carriers	than	any	other	mobile	operating	system.	As	an	Android	user,	people	have	a	wide
range	of	device	selection,	and	they	can	pick	whatever	they	like,	touchscreen	to	the
physical	keyboard,	and	any	shape	to	any	size.

The	latest	Android	OS	has	the	same	or	more	number	of	features	than	iOS,	and	the	OS	can
be	easily	customized.	Compared	to	iOS,	the	user	can	easily	edit	the	home	screen	and	can
add	widgets,	favorite	contacts,	or	usual	arrays	of	apps	with	ease,	which	makes	the	Android
home	screen	experience	really	powerful	than	iOS.

The	user	can	find	and	download	hundreds	and	thousands	of	applications	for	every	possible
scenario	in	Google	Play	Store,	and	most	of	them	are	free.	Also,	many	developers	use
Google	Android	as	their	playground,	so	sometimes	it	may	contain	some	security	issues	as
well.

Microsoft	Windows	Phone	8
Microsoft’s	mobile	OS	has	the	balance	between	iOS’	simplicity	and	Android’s
customizability.	The	main	feature	of	this	OS	is	live	tiles,	which	are	preprogrammed
squares	that	the	user	can	easily	rearrange	it	as	they	desire.	Windows	Phone	8	has	inbuilt
Facebook	and	Twitter	and	works	brilliantly	with	Microsoft	Exchange,	MS	Office,	and
XBOX	live	to	game.

However,	compared	to	iOS	and	Android,	Windows	mobile	OS	gets	a	lower	score.	This	is
because	of	limited	hardware	options	and	limited	applications	availability	than	iOS	and
Android.	The	operating	system	uses	the	Bing	search	engine,	which	scores	well	behind
Google’s	on	accuracy	and	features.

BlackBerry	10	OS
With	Blackberry’s	new	OS,	the	user	can	access	a	universal	inbox	that	has	all	the	e-mails
and	social-network	messages	with	ease.	It	has	an	efficient	and	clean	interface	in	the	OS,
mainly	focusing	on	communication	and	messaging,	and	it	already	has	more	than	100,000
apps.	However,	some	of	the	popular	and	useful	apps	from	iOS	and	Android	are	still
missing.

The	OS	home	screen,	customizable	to	some	extent,	is	similar	to	Android	and	Windows
mobile	OS,	but	the	user	cannot	add	widgets	or	contacts	as	icons	the	way	the	user	can	on
Windows	and	Android.	Blackberry	has	the	best	touch	keyboard	in	the	market,	and	their
design	is	much	easier	to	type	on.

Blackberry	has	a	Web	kit-based	web	browser,	and	it	uses	technology	from	Torch	Mobile.
The	browser	has	a	private	browsing	mode,	desktop	mode,	and	it	uses	Bing	as	the	default
search	engine,	but	the	user	can	change	it.

Summary
In	this	chapter,	we	have	discussed	the	history	of	mobiles	and	why	mobile	web
optimization	is	necessary.	Also,	we	have	discussed	the	three	main	pillars	that	are
important	in	the	mobile	world,	and	you	have	seen	how	3G	and	4G	data	connections	can
drain	the	user’s	battery.	After	this,	we	went	through	the	major	browsers	and	popular	OSs
in	the	market,	and	we	have	discussed	negatives	and	positives	in	those.

In	the	next	chapter,	we	will	take	a	look	at	the	essential	components	in	mobile	web
optimization.	The	chapter	will	help	you	learn	about	the	differences	between	mobile	sites
and	responsive	websites,	and	you	will	also	learn	some	of	the	image	optimization	tools	and
more.

Chapter	2.	Mobile	Web	Optimization
Essentials
By	now	you	know	the	limitations	of	the	mobile	devices	and	why	Mobile	Web
Optimization	is	necessary.	In	this	chapter,	I	will	share	with	you	some	of	my	experiences
that	I	have	learned	from	in	the	last	couple	of	years.	The	majority	of	these	techniques	are
fairly	easy	to	implement,	but	the	outcome	that	they	produce	is	huge.	So,	I	encourage	you
to	go	through	each	section	thoroughly	because	they	hold	the	key	to	revealing	the	secrets	of
Mobile	Web	Optimization	world.

Also,	I	assume	you	at	least	have	a	basic	knowledge	of	web	design	and	frontend	web
development	to	understand	this	chapter	properly.	However,	if	you	are	new	to	the	game,
don’t	worry;	I	can	assure	you	going	through	the	following	sections	is	not	going	to	be	a
waste	of	time,	and	you	will	get	many	things	out	of	them	that	you	are	going	to	remember
for	a	long	time.

In	this	chapter,	we	are	going	to	discuss	the	following	sections:

Mobile-only	websites	versus	responsive	websites
How	to	reduce	HTTP	requests
Image	size	matters
Unnecessary	contents
Why	design	and	UX	are	important

Mobile-only	websites	versus	responsive
websites
A	couple	of	years	ago	I	was	given	the	opportunity	to	build	a	website	for	an	insurance
company.	The	website	was	modern,	and	it	had	many	features.	Even	a	user	was	able	to
customize	and	purchase	an	insurance	policy	by	spending	a	couple	of	minutes	browsing	the
website.	After	launching	the	website,	the	client	realized	that	he	had	an	excellent
opportunity	to	enter	the	mobile	market	because	back	then,	mobile	browsing	was	in	its
early	stages.	So,	the	following	month	he	contacted	us	and	asked	us	to	build	a	mobile
version	of	the	website.

When	we	read	the	requirement,	we	realized	that	the	mobile	website	had	a	similar
functionality;	only	the	UI	was	going	to	be	different.	So,	we	used	the	same	codebase	that
the	desktop	version	had,	and	we	created	a	new	website	using	the	existing	code.	This	was	a
popular	method	at	that	time,	and	the	mobile	website	had	a	different	URL.	Once	the	user
entered	the	original	website	using	a	mobile	device,	our	script	detected	the	device	and
redirected	the	user	to	the	mobile	website.	This	is	how	a	Mobile-only	website	works.
However,	this	method	has	some	flaws.

To	avoid	these	flaws,	we	now	use	another	method	to	build	the	mobile	websites.	It	is	not
another	website,	we	use	CSS	media	quarries	and	give	a	different	look	and	feel	to	the
website	by	detecting	the	device	screen	size.	Once	we	do	this,	the	desktop,	tablets,	and
mobiles	will	have	the	same	codebase	but	a	different	look.	This	is	what	we	call	Responsive
web	design.

In	the	following	code,	you	can	see	how	it	is	possible	to	have	different	backgrounds	for
various	screen	sizes	using	the	CSS	media	quarries:

@media	screen	and	(max-width:	320px)	{

				body	{

								background-color:	Yellow;

				}

}

@media	screen	and(min-width:	321px)	and	(max-width:	768px)	{

				body	{

								background-color:	Pink;

				}

}

@media	screen	and	(min-width:	769px)	and	(max-width:	1024px)	{

				body	{

								background-color:Green;

				}

}

If	we	compare	the	Mobile-only	websites	and	responsive	websites,	we	will	find	that	both	of
them	have	positive	as	well	as	negative	qualities.	However,	if	you	are	going	after	100
percent	performance	of	your	mobile	website	and	you	don’t	want	to	worry	about	any	other
stuff,	my	recommendation	will	be	that	you	go	for	the	Mobile-only	website	because	you
will	have	a	separate	code	for	the	mobile	device,	and	you	can	only	use	mobile-related

content.	However,	as	mentioned	earlier,	it	has	some	negative	impacts	as	well.

In	the	following	table,	you	will	see	the	comparison	between	Mobile-Only	site	versus
Responsive	Design.

	 Mobile-only	website Responsive	website

Domain
Protection

Mobile-only	sites	will	have	a	different	URL
(m.domain.com)	that	will	hurt	organic	search	traffic.

Developers	have	to	manage	two	code	bases.

Responsive	websites	use	the	same	domain,	and
only	the	backend	code	will	differ.

Many	search	engines	show	that	this	is	the	best
method	for	SEO.

Link
Equity

Mobile-only	websites	use	a	separate	domain,	which	does
not	count	as	a	primary	site	URL,	and	is	not	useful	when
searching	online.

Responsive	websites	have	the	same	URL,
which	counts	as	the	primary	site	URL.	This	can
be	whatever	the	device	used	to	browse,	which
would	be	the	best	option	for	searching	online.

Rendering
Experience

The	Mobile-only	website	uses	a	different	code	base	that
is	only	allocated	to	mobile	browsing.	Using	optimization
techniques	and	new	browser	features,	the	developers	can
provide	an	optimized	solution	to	the	end	user.

This	is	a	flexible	solution,	but	sometimes
mobile	devices	will	have	some	unwanted
elements	related	to	a	desktop	site	that	will	have
some	impact	on	performance.

Future-
Ready

The	developers	have	to	maintain	two	code	bases	that	are
expensive	and	difficult	to	maintain

This	technology	is	more	future	ready	because
developers	can	add	or	change	the	layout	easily
by	simply	manipulating	CSS.

HTTP	requests
Do	you	remember	the	example	of	the	supermarket	that	was	given	in	Chapter	1,	Pillars	of
Mobile	Web	Performance	Optimization?	In	that	instance,	I	explained	how	inefficient	we
are	going	to	be	if	we	make	round	trips	to	buy	each	and	every	item	from	the	shop.	To
overcome	this	issue,	most	of	the	time,	we	make	a	list	before	going	shopping,	and	we	add
all	those	items	into	our	shopping	cart	before	making	the	payment.

We	can	apply	this	technique	to	our	website	as	well.	According	to	researchers	(source:
https://developer.yahoo.com/performance/rules.html),	the	end	users	spend	80	percent	of
their	response	time	on	downloading	frontend	contents.	Most	of	this	time	is	associated	with
downloading	images,	scripts,	and	style	sheets	that	are	essential	to	the	rendering	of	the
page.	However,	if	we	can	reduce	these	components	that	are	getting	downloaded,	then	we
can	reduce	the	HTTP	requests.

When	doing	a	mobile	web	optimization,	reducing	the	number	of	HTTP	requests	in	your
website	is	the	best	place	to	begin.	According	to	researchers,	40-60	percent	of	daily	visitors
come	to	a	website	with	an	empty	cache	and	they	probably	are	new	visitors.	So,	making	the
mobile	site	fast	for	those	visitors	is	key	to	a	better	user	experience.

By	simplifying	the	design	of	the	page,	we	can	easily	reduce	the	number	of	HTTP	requests
of	the	page,	but	we	cannot	always	have	a	simplified	design	because	sometimes,	we	need
content-rich	websites.	In	this	section,	we	are	going	to	discuss	a	few	techniques	for
reducing	the	number	of	HTTP	requests.

In	the	following	screenshot,	you	can	see	some	of	the	content	that	is	downloaded	when	we
browse	a	mobile	website:

https://developer.yahoo.com/performance/rules.html

Combined	files
By	combining	files	together,	the	developer	can	easily	reduce	the	number	of	HTTP	requests
that	they	make.	By	combining	all	the	scripts	and	CSS	into	single	style	sheets,	the
developer	can	easily	archive	this.	These	days,	many	platforms	offer	this	service	in	their
backend	as	a	feature.	So,	if	you	are	a	developer	make	sure	that	you	use	those	advanced
options	as	much	as	you	can.	However,	combining	files	together	is	not	that	easy	when	the
scripts	and	style	sheets	vary	from	page	to	page.	Even	so,	including	this	part	in	your	release
plan	improves	the	response	time.

If	you	have	a	website	that	uses	some	third-party	plugins	and	components,	you	will	get
many	style	sheets	and	script	files.	Take	a	look	at	the	following	example.	This	is	a	website
that	was	recently	built	and	it	had	15	style	sheets	and	24	scripts	calls:

<head>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/styles.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/common.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/jquery-ui.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/owl.carousel.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/widgets.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/colorbox.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/jquery.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/uniform.default.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/mainNavigation.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/checkout.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/internal.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/product-details.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/product-category.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/dashboard.css"	media="all"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/print.css"	media="print"	/>

<script	type="text/javascript"	src="http://www.mywebsite.com/js/jquery-

1.8.3.min.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/prototype/prototype.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/lib/ccard.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/prototype/validation_activeskin.js">

</script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/scriptaculous/dragdrop.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/scriptaculous/controls.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/scriptaculous/slider.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/varien/js.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/varien/form.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/varien/menu.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/mage/translate.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/mage/cookies.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/appmerce/eway/validation.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/modernizr/modernizr_media_query.js">

</script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/scripts.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/jquery.uniform.min.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/jquery.selectbox-0.2.js"></script>

src="http://www.mywebsite.com/js/jquery.touchSwipe.min.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/owl.carousel.min.js"></script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/product_landing.js"></script>

</head>

Using	CSS	and	script	margin	techniques,	the	developer	was	able	to	reduce	it	to	three	style
sheets	and	three	scripts,	as	shown	here:

<head>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/14837ec795666b5925528c0efc58abcd.css"	

plugins	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/5037f5bb18003f8450323e3332151234.css"	

media="print"	/>

<link	rel="stylesheet"	type="text/css"	

href="http://www.mywebsite.com/css/392070536b949cf42f6724d96f21a2c34.css"	

media="all"	/>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/810d4cd77db5b6cd2688a4a14e6fqwer.js">

</script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/88ef80fd45f12b34285737f3133asdf.js">

</script>

<script	type="text/javascript"	

src="http://www.mywebsite.com/js/2d10391171b5d322415d3c3c16a1zxcv.js">

</script>

</head>

However,	merging	files	sometimes	can	create	unpredicted	issues	such	as	the	following:

Sometimes,	it	may	create	namespace	conflicts	with	other	scripts	and	create
unpredictable	bugs
If	the	developer	made	a	change	to	one	file,	it	would	invalidate	the	whole	combined
file	and	browsers	will	have	to	cache	it	again
Combined	files	may	become	large,	and	it	will	take	additional	time	to	download
Combined	files	lose	the	benefits	of	having	CDN	(we	will	discuss	the	CDN	later)
capability

In	the	following	diagram,	you	can	see	how	merging	files	affects	HTTP	requests.

CSS	sprites
CSS	sprite	is	not	a	new	technique.	It	is	a	well	established	concept,	and	many	developers
use	CSS	sprites	as	a	common	practice.	It	is	true	that	we	do	not	need	to	use	sprites	for
every	situation,	but	using	sprites	will	reduce	the	server	load	immensely,	and	it	will	help	us
to	improve	the	performance	of	the	page.	If	you	do	not	have	any	idea	about	this	technique,
now	is	the	time	to	learn	what	it	is	and	how	it	works.

As	mentioned	earlier,	the	concept	of	sprites	is	not	a	new	invention;	it	dates	back	to	the
mid-1970s.	Video	game	developers	used	this	concept	because	of	the	increased	complexity
of	video	games	at	that	time.	The	developers	had	to	deal	with	a	detailed	graphic	object
while	keeping	the	game	play	as	it	is,	so	they	used	this	one	large	combined	image	to	get	the
result	and	the	position	of	the	sprite	image	controlled	by	the	hardware	controllers.

Time	passed	and	in	the	late	2000s,	web	developers	had	identified	the	significance	of	this
method	and	the	web	developers	started	to	use	this	technique	on	their	websites.	Creating
and	using	sprites	is	not	a	difficult	process.	The	developer	has	to	combine	multiple	images
that	have	been	used	throughout	the	website	to	make	a	master	image.	Then,	using	the
background-position	property	in	CSS,	the	developer	can	define	the	exact	position	of	the
image	to	be	displayed.

When	the	page	is	loaded,	it	will	load	the	master	image	at	once	rather	than	loading	single
images	one	by	one.	It	might	not	seem	like	an	improvement,	but	it	actually	is.	Imagine	a
situation	where	a	mobile	website	has	millions	of	page	impressions	per	day.	If	we	can	save
10	HTTP	requests	for	one	user,	you	can	do	the	calculation	and	see	for	yourself	the	savings
that	we	can	make.	This	is	why	CSS	sprites	are	heavily	used	these	days,	particularly	when
we	create	icons	and	buttons.

In	the	following	screenshot,	you	can	see	one	of	the	sprite	images	that	the	developer	has
created,	after	which	you	will	find	a	sample	CSS	code	that	is	used	to	create	a	simple
button:

Sample	CSS	code:

.button-clear	{

								background:	transparent	url(sprite.png)0	-210px	no-repeat;

				}

.button-clear:hover	{

								background-position:	0	-236px;

				}

When	creating	a	sprite	image,	considering	the	following	points	will	help	you	to	create	an
optimized	CSS	sprite:

Arranging	the	images	horizontally	rather	than	vertically	will	reduce	the	file	size.
Combining	similar	color	images	into	a	sprite	will	help	you	to	reduce	the	color	count.
Don’t	leave	big	gaps	in	between	images.	This	will	not	reduce	the	file	size	much,	but
it	will	help	the	user	agent	to	decompress	the	image	efficiently.
Combine	PNG	and	Gif	images	first.
You	may	use	a	spiriting	service	that	makes	the	process	easy.
Sprites	may	be	displayed	differently	in	different	browsers.
You	have	to	provide	the	exact	coordinates	in	the	CSS	files	to	define	the	correct
location	in	the	sprite	image.
Combine	all	the	small	images	to	one	image	so	that	it	will	reduce	the	HTTP	request	to
one.
Combine	cacheable	images.

Image	maps
Similar	to	sprites,	image	maps	can	be	created	by	combining	several	images	together	into	a
single	image.	It	will	keep	the	same	file	size,	but	because	of	the	reduced	HTTP	requests	it
will	speed	up	the	time	taken	to	load	the	page.	An	image	map	will	be	ideal	for	contiguous
images	and	scenarios	such	as	navigation	bars.	However,	defining	the	coordination	of	an
image	map	can	be	a	hectic	process.

There	are	two	types	of	image	maps	available,	which	are	as	follows:

Client-side:	When	a	user	activates	a	selected	area	in	an	image,	the	pixel	coordination
defined	to	it	is	identified	by	the	browser	and	the	browser	will	perform	the	task
allocated	to	it
Server-side:	When	a	user	activates	a	selected	area	in	an	image,	the	user	agent	sends
that	data	to	the	server	and	the	server	will	perform	the	task	allocated	to	it

Remove	duplicate	scripts
Many	developers	think	that	the	occurrence	of	duplicate	scripts	in	a	web	page	is	very	rare
but	research	indicates	otherwise.	According	to	Yahoo!
(https://developer.yahoo.com/performance/rules.html),	20	percent	of	websites	contain	a
duplicate	script.	The	main	reason	behind	this	was	that	the	development	team	was	too
large,	and	there	were	too	many	scripts	that	had	been	used.	When	this	happens,	duplicate
scripts	decrease	mobile	performance	by	creating	additional	HTTP	requests	and	wasted
java	script	executions.	To	prevent	this,	the	developers	can	a	use	common	practice	or
method,	such	as	a	script	management	module	to	include	scripts.

The	usual	method	to	insert	a	script	in	a	page	is	to	use	a	script	tag	on	the	page:

<script	type="text/javascript"	src="helloworld.js"></script>

However,	by	using	an	alternative	function,	the	developer	can	do	this	easily.

<?php	insertScript("helloworld.js")	?>

Using	the	preceding	method	will	prevent	inclusion	of	the	same	script	twice	on	the	page
and	can	also	be	used	to	do	a	dependency	check	and	add	a	version	number	to	script
filenames.

https://developer.yahoo.com/performance/rules.html

Enable	Gzip	compression
According	to	the	data,	Gzip	has	the	capability	to	reduce	the	response	size	by	about	70
percent.	90	percent	of	today’s	Internet	traffic	has	the	capability	to	support	Gzip.	Gzip
compression	is	a	very	simple	and	efficient	method	to	save	bandwidth	and	speed	up	the
website.

Before	we	understand	Gzip,	let’s	see	how	our	regular	browser	and	server	handles	a
request.

When	we	request	the	webpage	from	the	server,	it	goes	through	the	following	process:

1.	 The	browser	asks	the	server	to	send	the	index.html	file.
2.	 The	server	receives	the	request,	and	searches	the	index.html	file.
3.	 When	the	server	finds	the	file,	it	sends	the	file	to	the	browser.
4.	 Then,	the	browser	loads	the	file	as	it	is.

So,	this	is	how	the	browser	and	server	normally	interact	with	each	other.	If	the	server	finds
a	300	KB	page,	it	sends	the	file	as	it	is	to	the	browser	and	the	browser	will	download	the
300	KB	file	and	show	it	to	the	user.

Consider	a	situation	where	the	server	can	send	a	ZIP	file	to	the	browser	rather	than
sending	the	index.html	file.

In	this	case,	the	process	will	look	like	the	following:

1.	 The	browser	asks	the	server	to	send	the	index.html	or	index.html.zip	file,	if	it’s
available.

2.	 The	server	receives	the	request,	and	it	will	search	the	index.html	file.
3.	 When	the	server	finds	the	file	(300	KB),	it	will	zip	the	file	(index.html.zip)	and

send	it	to	the	browser	(15	KB).
4.	 The	browser	receives	the	index.html.zip	file,	unzips	it,	and	shows	it	to	the	user.

To	follow	the	preceding	process,	the	browser	and	server	should	have	a	better
understanding	about	each	other,	and	the	agreement	has	two	parts:

The	server	will	get	a	message	from	the	browser	that	it	accepts	the	compressed
contents	(there	are	two	compression	methods,	Gzip	and	deflate)

Accept-Encoding:	gzip,	deflate

Then,	the	server	sends	the	compressed	content,	if	it’s	available

Content-Encoding:	gzip

If	the	server	does	not	send	the	compressed	content	to	the	requested	browser,	the	browser
will	take	it	as	a	no,	and	it	will	start	to	download	the	regular	version.	These	days,	many
browsers	have	the	capability	to	send	the	request	but	our	servers	are	not	configured	to
respond.

Configuring	the	server	is	a	fairly	straightforward	process.	In	Apache,	you	can	add	the

following	code	to	the	.htaccess	file:

#	compress	text,	html,	javascript,	css,	xml:

AddOutputFilterByType	DEFLATE	text/plain

AddOutputFilterByType	DEFLATE	text/html

ddOutputFilterByType	DEFLATE	text/css

AddOutputFilterByType	DEFLATE	application/javascript

AddOutputFilterByType	DEFLATE	application/x-javascript

AddOutputFilterByType	DEFLATE	text/xml

AddOutputFilterByType	DEFLATE	application/xml

AddOutputFilterByType	DEFLATE	application/xhtml+xml

AddOutputFilterByType	DEFLATE	application/rss+xml

#	Or,	compress	certain	file	types	by	extension:

<files	*.html>

SetOutputFilter	DEFLATE

</files>

To	enable	compression	in	IIS,	you	have	to	first	install	it	on	your	server.	To	install	static	or
dynamic	compression,	use	the	following	steps
(https://www.iis.net/configreference/system.webserver/security/ipsecurity).

For	Windows	Server	2012	or	Windows	Server	2012	R2,	use	the	following	steps:

1.	 Go	to	the	taskbar	and	click	on	Server	Manager.
2.	 In	Server	Manager,	choose	the	Manage	menu,	and	then	click	on	Add	Roles	and

Features.
3.	 In	the	Add	Roles	and	Features	wizard,	click	on	Next.	Select	the	installation	type

and	click	on	Next.	Select	the	destination	server	and	click	on	Next.
4.	 On	the	Server	Roles	page,	navigate	to	Web	Server	(IIS)	|	Web	Server	|

Performance	and	select	Static	Content	Compression	and/or	Dynamic	Content
Compression.	Click	Next.

https://www.iis.net/configreference/system.webserver/security/ipsecurity

5.	 On	the	Select	features	page,	click	on	Next.
6.	 On	the	Confirm	installation	selections	page,	click	on	Install.
7.	 On	the	Results	page,	click	on	Close.

For	Windows	8	or	Windows	8.1,	use	the	following	steps:

1.	 On	the	Start	screen,	move	the	pointer	all	the	way	to	the	bottom-left	corner,	right-
click	on	the	Start	button,	and	then	click	on	Control	Panel.

2.	 In	Control	Panel,	click	on	Programs	and	Features,	and	then	click	on	Turn
Windows	features	on	or	off.

3.	 Navigate	to	Internet	Information	Services	|	World	Wide	Web	Services	|
Performance	Features	|	Dynamic	Content	Compression	|	Static	Content
Compression.

4.	 Click	on	OK	and	close.

For	Windows	Server	2008	or	Windows	Server	2008	R2,	use	the	following	steps:

1.	 On	the	taskbar,	click	on	Start,	navigate	to	Administrative	Tools	|	Server	Manager.
2.	 In	the	Server	Manager	hierarchy	pane,	navigate	to	Roles	|	Web	Server	(IIS).
3.	 In	the	Web	Server	(IIS)	pane,	scroll	to	the	Role	Services	section,	and	then	click	on

Add	Role	Services.
4.	 On	the	Select	Role	Services	page	of	the	Add	Role	Services	wizard,	select	Dynamic

Content	Compression	if	you	want	to	install	dynamic	compression	or	Static	Content
Compression	if	you	want	to	install	static	compression,	and	then	click	on	Next.

5.	 On	the	Confirm	Installation	Selections	page,	click	on	Install.
6.	 On	the	Results	page,	click	on	Close.

For	Windows	Vista	or	Windows	7,	use	the	following	steps:

1.	 On	the	taskbar,	click	on	Start,	and	then	click	on	Control	Panel.
2.	 In	Control	Panel,	click	on	Programs	and	Features,	and	then	click	on	Turn

Windows	Features	on	or	off.
3.	 Navigate	to	Internet	Information	Services	|	World	Wide	Web	Services	|

Performance	Features.
4.	 Select	Http	Compression	Dynamic	if	you	want	to	install	dynamic	compression	or

Static	Content	Compression	if	you	want	to	install	static	compression.

5.	 Click	on	OK.

After	you	have	installed	compression	you	have	to	enable	it	for	your	application	or	website,
and	you	can	do	this	by	using	the	following	steps,

1.	 Open	Internet	Information	Services	(IIS)	Manager.
2.	 Next,	in	the	Connections	pane,	go	to	the	connection,	site,	application,	or	directory

for	which	you	want	to	enable	compression.
3.	 In	the	Home	pane,	double-click	on	Compression.

4.	 In	the	Compression	pane,	check	the	boxes	to	enable	static	or	dynamic	compression
or	remove	the	check	marks	to	disable	static	or	dynamic	compression.

5.	 Once	you	have	completed	the	preceding	steps,	click	on	Apply	in	the	Actions	pane.

Once	you	do	this,	you	can	check	this	by	using	the	web	developer	toolbar	on	your	browser
(we	will	discuss	this	in	a	later	chapter),	or	you	can	use	an	online	Gzip	testing	tool.

Enabling	compress	mechanism	is	one	of	the	fastest	ways	to	improve	mobile	websites’
performance,	and	it	can	be	done	by	following	some	very	simple	steps.	So,	enjoy	the
benefits.

Image	size	matters
As	mentioned	in	the	previous	chapter,	mobile	networks	have	many	limitations	compared
to	a	wired	connection.	So,	reducing	the	file	size	as	much	as	possible	is	really	essential	in
mobile	web	development.	According	to	the	data
(https://developer.yahoo.com/performance/rules.html),	70-80	percent	of	sites’	bandwidth
is	consumed	by	the	images.	Therefore,	delivering	smaller	file	size	images	with	acceptable
quality	to	the	mobile	will	always	provide	a	better	outcome.

When	it	comes	to	image	optimization,	there	are	two	key	factors	that	you	need	to	always
keep	in	mind.	They	are	as	follows:

Resize	your	images	to	correct	image	resolution
Reduce	the	file	size.

https://developer.yahoo.com/performance/rules.html

Resize	your	images	to	correct	image	resolution
There	are	two	methods	to	measure	the	size	of	an	image.	You	can	get	the	image	height	and
width	and	calculate	the	physical	image	size	as	well	as	the	number	of	pixels.	Also,	you	can
measure	the	file	size	by	calculating	the	byte	count.

Images	that	are	not	appropriately	sized	will	cause	serious	rendering	issues	in	mobile
devices.	The	developers	should	make	sure	that	they	resize	the	images	to	fit	into	the
available	area	before	they	deliver	content	to	the	mobile.

Since	the	display	sizes	vary	from	the	smallest	device	to	the	biggest	tablet,	some
developers	save	multiple	size	images	and	send	the	most	suitable	image	to	each	device.	On
the	other	hand,	using	one	image	for	all	devices	will	give	rise	to	some	serious	issues,
especially	in	the	small	screens.	When	you	double	the	width	and	height	of	an	image,	the
image	size	increases	by	4X,	which	causes	delays	in	loading.

As	mentioned	earlier,	the	basic	method	that	we	can	use	to	avoid	this	is	to	have	an	image
for	each	and	every	screen	size	but,	the	developer	has	to	create	this	manually.	This	is	a
superb	solution	but	identifying	each	and	every	screen	size	is	a	hectic	process.	However,
there	are	free	tools	available	to	profile	every	device	and	this	will	simplify	this	issue.

There	is	another	method	that	developers	use	nowadays.	They	use	CSS	media	quarries	to
manage	images	by	manipulating	the	CSS	code.

The	following	code	shows	how	we	can	use	a	different	image	for	the	horizontal	and
vertical	screens:

/*	Portrait	*/

@media	only	screen	

and	(min-device-width:	320px)	

and	(max-device-width:	480px)	

and	(orientation:	portrait)	{

body{

background-image:url(images/bg-portrait.gif);

}

/*	Landscape	*/

@media	only	screen	

and	(min-device-width:	320px)	

and	(max-device-width:	480px)	

and	(orientation:	landscape)	{

body{

background-image:url(images/bg-landscape.gif);

}

}

However,	regardless	of	the	challenge,	the	recommendation	is	to	resize	the	images	for
mobile	devices	whenever	possible.	The	properly	resized	image	can	save	many	bytes	and
will	improve	the	user	experience.

Reduce	the	file	size
Reducing	the	overall	data	contained	in	an	image	file	can	reduce	the	image	file	size.	This
can	be	done	by	reducing	the	file	size	using	a	compression	mechanism,	or	by	physically
reducing	the	file	size	by	cropping	it.

You	can	use	two	methods	to	compress	an	image	file,	lossy	and	lossless:

Lossy	compression	can	save	up	to	90	percent	of	the	initial	file	size	by	removing
information	from	the	original	file.	It	can	give	outstanding	results	with	just	a	fraction
of	image	quality	lost.
Lossless	optimization	keeps	the	original	information	intact,	but	it	will	push	the	image
to	the	extreme	to	get	the	result.	This	option	is	good	if	you	are	concerned	about	the
image	quality,	but	this	mode	is	time-consuming.

Image	compression	tools
We	use	various	image	formats	for	our	websites.	Whatever	the	format	you	use,	it	is
essential	to	optimize	those	images	properly.

Also,	Google	has	developed	a	new	image	format	called	WebP	that	is	supported	in
Chrome,	Opera,	and	Android.	The	new	format	is	optimized	to	enable	faster	and	smaller
images	on	the	Web	and	it	is	about	30	percent	smaller	in	size	compared	to	JPG	and	PNG
while	the	visual	quality	remains	the	same.	Also,	The	WebP	format	has	features	that	are
present	in	other	formats	as	well.	It	supports	the	following:

Lossless	compression:	The	lossless	compression	format	is	developed	by	the	WebP
team.
Lossy	compression:	The	lossy	compression	is	based	on	the	VP8	key	frame	encoding.
VP8	is	a	video	compression	format	created	by	On2	Technologies	as	a	successor	to
the	VP7	format.
Color	profile:	It	may	have	an	embedded	ICC	profile.
Metadata:	It	may	have	EXIF	and	XMP	metadata	(used	by	cameras).
Transparency:	The	8-bit	alpha	channel	is	useful	for	graphical	images.	The	alpha
channel	can	be	used	along	with	lossy	RGB,	a	feature	that’s	currently	not	available	in
any	other	format.
Animation:	It	supports	true-color	animated	images.

Because	it	results	in	better	compression	of	images	and	has	all	these	features,	the	WebP
format	could	be	an	excellent	replacement	for	PNG,	JPG,	and	GIF.

Those	who	still	use	PNG,	JPG,	or	GIF,	can	get	the	best	out	of	it	by	optimizing	those
images	properly.	For	image	optimization,	there	are	a	number	of	free	tools	available	on	the
Internet.	You	can	download	them;	most	of	those	tools	are	really	easy	to	deal	with.

Tiny	PNG
According	to	the	website,	https://tinypng.com/:

“TinyPNG	uses	smart	lossy	compression	techniques	to	reduce	the	file	size	of	your
PNG	files.	By	selectively	decreasing	the	number	of	colors	in	the	image,	fewer	bytes
are	required	to	store	the	data.	The	effect	is	nearly	invisible,	but	it	makes	a	very	large
difference	in	file	size!”

Working	with	Tiny	PNG	is	really	easy.	You	just	have	to	drag	and	drop	your	PNG	or	JPG
file	into	their	website,	and	you	will	get	the	optimized	image.

To	illustrate	their	optimization,	I	have	uploaded	five	images,	and	I	got	the	following	result:

https://tinypng.com/

As	you	can	see,	I	have	just	saved	234	KB	only	uploading	five	images	to	their	website.

ImageOptim
There	is	another	tool	call	ImageOptim,	and	you	can	download	a	free	version	from
https://imageoptim.com/.

According	to	the	website:

“ImageOptim	is	a	free	app	that	makes	images	take	up	less	disk	space	and	load	faster,
without	sacrificing	quality.	It	optimizes	compression	parameters,	removes	junk
metadata	and	unnecessary	color	profiles.”

To	illustrate	its	optimization,	I	have	downloaded	their	tool	and	used	the	same	five	images
that	I	have	used	in	the	previous	example,	and	I	got	the	following	output:

https://imageoptim.com/

Kraken
According	to	the	website	https://kraken.io/:

“We	optimize	your	images	and	accelerate	your	websites.

Kraken	is	a	robust,	ultra-fast	image	optimizer	and	compressor	with	best-in-class
algorithms.	We’ll	save	you	bandwidth	and	storage	space	and	will	dramatically
improve	your	website’s	load	times.”

Kraken	is	another	online	tool	that	we	can	use	to	compress	our	images.	It	is	a	free	service,
and	you	can	visit	their	website	https://kraken.io/.	Unlike	TinyPNG,	Kraken	has	a	few
options	that	we	use	to	customize	our	image	settings.

To	illustrate	their	optimization,	I	have	used	the	same	five	images,	and	their	output	is	as
follows:

Image	optimization	is	really	essential	when	we	build	a	mobile	website.	There	are	a
number	of	free	tools	available	on	the	Internet	that	we	can	use	to	compress	our	images.
Size	does	matter,	make	sure	to	use	the	correct	image	size	and	optimized	images	to	build	a

https://kraken.io/
https://kraken.io/

mobile	website.	By	doing	so,	you	can	give	a	better	user	experience	to	visitors.

Unnecessary	contents
Mobile	devices	have	had	an	exquisite	journey	so	far,	but	there	are	still	some	issues	with
them,	because	of	their	physical	limitations.	There	are	different	sizes	of	smartphones	and
tablets	available	in	the	market	and	to	serve	those	devices,	the	developer	should	include
flexibility	into	his	design.	However,	many	mobile	users	still	find	it	a	bit	difficult	to	read
mobile	content	because	many	developers	try	to	add	as	much	information	on	the	mobile
screen	and	most	of	the	time	they	try	to	replicate	the	desktop	screen	in	the	mobile.

However,	doing	this	does	not	only	create	performance	issues	for	the	mobile	devices	but	it
will	also	create	some	issues	in	user	experience	as	well.	So,	when	building	a	mobile
website,	developers	should	ask	the	following	questions	to	themselves:

What	are	my	users	going	to	do	with	my	mobile	website	or	application?
What	are	the	commonly	used	cases	for	my	mobile	application	or	website?
What	is	the	most	important	information	that	I	should	provide	for	my	user?
Am	I	delivering	suitable	content	that	is	appropriate	for	my	website,	users,	and	mobile
devices?

Clean	design
Asking	these	questions	upfront,	developers	can	have	a	proper	understanding	of	the	content
that	they	need,	and	they	can	present	this	to	the	designer	so	that	the	designer	can	come	up
with	good	and	clean	design.	Also,	when	having	the	discussion	with	the	designer,	both
designer	and	the	developer	should	consider	the	following	points:

A	smaller	file	size	with	adequate	quality	is	always	a	better	option	for	mobile	devices
and	simplified	design	always	helps.
Sometimes	the	developers	are	going	to	use	the	same	desktop	content	on	mobile
devices	without	any	review.	Before	doing	this,	make	sure	your	content	is	going	to	fit
in	your	mobile	device.
Make	sure	that	the	font	sizes	are	large	and	clean	enough	so	that	they	are	easy	to	read.
Have	a	flexible	design	that	would	cater	to	all	the	device	types	including	the	smallest
smartphones	to	the	largest	tablets.
Consider	all	the	scenarios	that	the	user	is	going	to	face	in	your	website,	and	then	plan
accordingly.

As	I	discussed	earlier,	many	developers	nowadays	build	responsive	websites,	and	it	is	a
trend.	However,	unlike	mobile-only	websites,	a	responsive	web	should	have	special
attention,	and	it	should	be	built	carefully.	To	ease	this	process,	the	designers	and	the
developer	can	use	the	following	tips:

Using	a	few	images	with	smaller	file	size	will	help	you	to	save	screen	space	as	well
as	it	will	reduce	load	time
Use	one	column	layout	if	possible	and	it	will	simplify	the	design
Simple	navigation	will	help	you	to	use	larger	buttons	and	good	for	UX
Always	add	a	link	to	the	desktop	version,	because	some	user	prefers	to	do	that

Duplicate	content
When	we	browse	a	page,	if	we	download	an	identical	piece	of	content	such	as	images,
scripts,	and	stylesheets	from	the	server,	it	will	create	duplicate	contents.	The	duplicate
content	will	slow	down	our	website	or	application	and	will	also	create	unnecessary	load
on	the	network	as	well.

To	illustrate	this	properly,	imagine	a	situation	that	you	are	going	to	send	the	same	5	KB
image	twice	to	your	user.	If	your	website	has	4,000	daily	users,	you	are	sending	an
additional	20	MB	data	to	your	users.	The	battery	consumption	for	these	4,000	additional
downloads	could	be	similar	to	draining	30-35	percent	of	phone	battery.

To	overcome	this	issue,	we	have	to	go	through	with	our	design	and	code	properly,	and	we
have	to	investigate	our	website	or	application	thoroughly.	Doing	that	we	can	identify	the
issues,	which	we	have,	and	we	can	propose	a	better	solution	to	prevent	this	and	also,	we
can	introduce	a	proper	caching	mechanism	to	the	project.

We	are	going	to	discuss	caching	in	the	later	part	of	this	book.	Until	then	remember	that
caching	is	really	important	because	of	the	following	reasons:

Without	any	delay,	you	can	access	cached	files	immediately,	which	will	give	you	a
faster	experience
The	cached	file	will	save	the	battery	of	the	user’s	device,	and	it	will	keep	your	users
from	leaving	your	website	or	app
The	cached	file	will	save	your	users	data	because	the	users	do	not	have	to	download
files	each	and	every	time	they	visit	your	application

Because	of	the	aforementioned	reasons,	it	is	essential	to	manage	your	website’s	content
properly.	Having	simplified	designs	and	a	proper	development	plan	will	give	you	a	chance
to	improve	your	content	management,	and	it	will	help	you	to	have	a	good	caching
mechanism.

Why	design	and	UX	are	important
UX	is	not	a	new	concept	to	the	mobile	world.	Because	of	the	limitations	of	the	mobile
devices	many	designers	and	developers	give	their	attention	to	UX	but,	the	question	of
compromising	between	performance	and	UX	still	seeks	a	clear	answer.

The	fundamental	of	mobile	UX	is	very	similar	to	desktop	UX.	However,	the	mobile
technology	is	still	evolving	at	a	rapid	pace,	and	the	UX	best	practices	are	still	emerging.

Mobile	UX	is	all	about	how	to	keep	the	balance	between,	things	that	you	are	going	to	keep
on	the	home	page	and	how	are	you	going	to	manage	the	rest	of	the	contents.	Also,	it	is
really	important	that	you	provide	a	strong	visual	element	to	the	user	to	help,	how	to
navigate	the	site.	As	an	example,	you	should	clearly	define	the	clickable	area	in	your
website	or	application.	Without	clearly	defined	buttons,	the	user	will	get	confused,	and
they	will	spend	more	time	trying	to	find	the	website’s	behavior.

The	following	are	a	few	points	that	you	can	consider	when	you	enhance	UX	in	your
application:

Having	a	clear	navigation	will	give	a	good	user	journey	to	the	end-user.	When
building	a	mobile	website,	you	should	have	clear	vision	whether	you	are	you	going	to
use	a	dropdown	menu	or	traditional	standard	menu.
Having	a	proper	color	scheme	will	enhance	your	site’s	UX.	Especially,	using	borders
and	drop-shadows,	the	developer	can	define	buttons,	and	more.
Have	a	proper	understanding	about	the	animation,	durations	and	how	it’s	behaving	in
the	device.	Especially,	if	you	have	swipe	or	pulled	menu	or	content,	consider	about
the	response	time.
Use	proper	input	fields.	With	HTML5,	you	can	define	the	input	field	type	so,	when
you	click	on	the	input	field,	it	will	bring	the	numerical	keypad	or	normal	keypad.
A	Touch	area	should	follow	the	fat	finger	rule	and	make	sure	not	to	encroach	on
surroundings.

A	good	UX	will	bring	success	to	every	website.	Consider	every	scenario	that	the	user	is
going	to	face	in	your	site	and	don’t	leave	any	room	where	the	user	has	to	think	about	what
they	have	to	do	next.	It	should	flow	like	a	river	without	any	obstacles.

Summary
In	this	chapter,	we	have	discussed	the	importance	of	reducing	HTTP	requests	and	how	to
do	so	by	using	techniques	such	as	CSS	sprites	and	combining	files.	Also,	we	talked	about
the	enabling	of	Gzip	on	the	server	and	its	benefits.	We	have	discussed	the	importance	of
image	optimization	and	the	tools	that	we	can	use	to	do	so.	We	have	also	discussed	a	few
free	online	tools	that	we	can	make	use	of,	and	found	that	they	are	easy	to	handle.	After
this,	we	discussed	content	management	and	why	it	is	necessary	to	remove	duplicate
contents.	Finally,	we	explored	the	importance	of	UX	and	its	effects	on	a	mobile	site.

In	the	next	chapter,	we	will	take	a	look	at	the	techniques	that	we	can	use	to	optimize	our
mobile	website.	The	chapter	will	guide	you	on	how	to	use	HTML	5,	CSS3,	media
quarries,	and	much	more.

Chapter	3.	How	to	Optimize	Your	Mobile
Website
In	the	previous	chapter,	you	learned	about	the	essentials	of	Mobile	Web	Optimization.	I
can	assure	you,	the	technics	that	you	have	learned	so	far	are	very	powerful	and	very	easy
to	implement,	but	the	outcome	they	produce	is	massive.	So,	I	would	like	to	expand	on	that
area	more	in	this	chapter.

When	developing	a	website,	the	frontend	developer	plays	a	huge	role.	Having	your
development	team	apply	frontend	optimization	techniques	to	your	mobile	website	can
dramatically	improve	the	site’s	performance	for	mobile	users.	As	I	discussed	in	the
previous	chapter,	many	of	those	frontend	principles	are	fairly	straightforward	to
implement.

To	go	through	with	this	chapter,	I	assume	you	have	a	basic	knowledge	of	frontend	web
development.	In	this	chapter,	we	are	going	to	cover	the	following	topics:

Use	of	HTML5	and	CSS3
CSS	animation	versus	JavaScript
Iconic	fonts
How	to	use	media	queries
Displaying	none	in	CSS
Video	and	images	via	media	queries
CSS	preprocessors
Minifying	CSS	and	JavaScript

Use	of	HTML5	and	CSS3
Performance	and	user	experience	can	make	or	break	your	mobile	app	or	website,	so	in
today’s	consumer	market	it	is	important	to	focus	on	both.	Nowadays	in	a	mobile	web
environment,	many	developers	struggle	with	choppy	transitions,	endless	spinning,	and
periodic	delays	in	tap	and	touch	events.	Developers	are	trying	very	hard	to	get	closer	to
native	behaviors,	but	to	do	that	they	have	to	use	many	hacks,	resets,	and	third-party
frameworks.

However,	using	HTML5	and	CSS3	features,	they	can	overcome	this	issue	to	some	extent,
and	I	would	like	to	discuss	some	of	these	methods	with	you.

Hardware	acceleration	and	the	Graphics
Processing	Unit
The	Graphic	Processing	Unit	(GPU)	is	a	specialized	unit	that	was	built	to	accelerate	an
image’s	output	to	a	display.	Generally,	the	GPU	is	very	efficient	and	is	more	effective	than
the	general-purpose	CPU,	and	it	can	process	algorithms	efficiently.	Most	modern	mobile
devices	now	have	advanced	chipsets,	and	GPUs	are	an	essential	part	of	this.

In	normal	circumstances,	GPUs	handle	advanced	graphic	calculations	such	as	3D
modeling	details	and	advanced	diagrams.	However,	we	can	use	a	GPU	to	perform	our
primitive	drawings	such	as	DIVs,	drop	shadows,	and	backgrounds.	Unfortunately,	most
frontend	developers	use	third-party	framework	and	scripts	to	perform	those	tasks	without
using	CSS3	features,	and	the	third-party	frameworks	use	our	device’s	hardware	to	perform
those	tasks.

As	developers,	we	should	make	sure	we	avoid	using	a	device’s	CPU	and	GPU	as	much	as
possible,	and	we	should	make	the	browser	perform	those	actions	for	us.	Preferably,	the
CPU	will	set	up	the	initial	animation	and	the	GPU	will	only	be	responsible	for
compositing	different	layers	during	the	process.	In	CSS3,	translateZ,	scale3d,	and
translate3d	do	this	by	animating	elements	in	their	own	layer.

This	is	an	essential	step	to	follow	when	we	travel	down	the	mobile	optimization	path.	Let
me	give	you	some	reasons	why	we	should	use	these	features:

Memory	allocation	and	calculation	overhead:	This	is	a	very	critical	point	because
some	developers	are	only	concerned	with	hardware	acceleration	and	because	of	that,
they	create	every	element	in	the	DOM.	However,	this	will	be	an	issue	when	you
maintain	your	code.
Power	consumption:	I	have	already	discussed	why	the	power	consumption	is
important.	It’s	a	known	fact	that	when	we	use	hardware	in	a	mobile,	we	consume
battery	power	too.	Usually,	when	we	build	an	application	or	a	mobile	website,
developers	have	to	follow	certain	guidelines.	So,	it	is	essential	to	restrict	a	browser’s
access	to	a	device’s	hardware	as	much	as	we	can.
Conflicts:	Sometimes	this	feature	may	create	unwanted	behaviors	in	the	application
when	we	are	trying	to	accelerate	a	section	using	hardware	acceleration.	So,	we	have
to	be	very	careful	with	this.

HTML5	form	attributes	and	input	types
HTML5	now	has	some	new	types	of	input	fields	and	attributes,	which	are	really	effective.
Most	modern	web	browsers	offer	support	for	these	new	elements	and	using	those,
developers	can	reduce	JavaScript	and	browser	hacks.

This	is	a	list	of	the	new	HTML5	input	types:

<input	type="email"	/>

<input	type="number"/>

<input	type="url"/>

<input	type="color"	/>

<input	type="time"/>

<input	type="datetime-local"/>

<input	type="datetime"/>

<input	type="date"/>

<input	type="month"/>

<input	type="range"/>

<input	type="search"/>

This	is	a	list	of	the	new	HTML5	attributes	types:

autofocus

autocomplete

required

pattern

novalidate	and	formnovalidate

The	attributes	mentioned	here	are	very	powerful,	because	earlier	the	developer	had	to	use
JavaScript	or	hacks	to	add	a	validator,	color	picker,	date	picker,	and	so	on,	but	with	these
new	fields	and	attributes,	it’s	just	one	line	of	HTML	code.	However,	some	browsers	still
don’t	support	some	of	the	input	types	and	attributes,	and	they	will	display	this	as	a	normal
input	field.

Using	web	storage	in	place	of	cookies
We	have	been	using	cookies	to	track	users’	data	for	years,	but	they	have	a	serious
disadvantage.	The	largest	issue	is	that	cookies	data	is	added	to	each	HTTP	header	request,
and	it	creates	a	massive	performance	issue.	To	minimize	that,	we	have	to	reduce	the
cookie’s	size,	but	with	HTML5	we	can	use	session	storage	and	local	storage	to	replace
cookies.

Using	CSS3	effects	instead	of	requesting	heavy
images
CSS3	has	many	new	styling	options	that	we	can	use	to	replace	images,	and	it	will	reduce
the	HTTP	request	as	well.	Also,	if	we	can	replace	a	2	K	image	with	100	bytes	of	CSS,	this
is	a	massive	saving.

I	have	listed	some	of	the	CSS	3	properties	that	we	can	use	in	the	next	few	sections.

Border-radius	for	rounded	corners
I	still	remember	the	early	days	when	we	got	a	button	or	a	widget	with	rounded	corners	and
we	had	to	create	images	for	each	corner—it	was	so	annoying.	However,	with	the	border-
radius	property,	we	can	achieve	this	easily:

#element	{

				border-radius:	25px	25px	25px	25px;

}

Box-shadow	for	drop	shadows	and	glow
Using	the	box-shadow	CSS	property	values	for	color,	size,	offset,	and	blur,	developers	can
easily	add	multiple	drop	shadows	on	a	box	element	(inner	or	outer):

.shadow	{

		box-shadow:	0px	0px	35px	7px	rgba(0,0,0,0.75);

}

Linear	and	radial	gradients
CSS3	gradients	allow	developers	to	show	smooth	transitions	between	two	or	more	defined
colors.	Back	in	the	day,	developers	had	to	use	multiple	images	for	this	requirement.	But
now,	using	the	CSS3	gradients	property,	developers	can	eliminate	images	and	minimize
download	time	and	bandwidth	usage.	Also,	elements	with	gradients	look	better	when
zoomed	in,	because	the	browser	generates	the	gradient.

In	CSS3,	developers	can	use	two	types	of	gradient:

Radial	gradients	(defined	by	their	center)
Linear	gradients	(these	go	up/down/left/right/diagonally)

.background{

		background:	linear-gradient(to	bottom,	#0071ea	0%,#ff0c0c	100%);

}

Transform	properties	for	rotation
The	transform	property	can	be	used	to	apply	a	3D	or	2D	transformation	to	an	element.
This	CSS3	property	allows	developers	to	rotate,	move,	scale,	and	skew	elements:

.transform{

		transform:	rotate(23deg)	scale(0.937)	skew(-9deg)	translate(3px);

}

Understanding	CSS	Filter	Effects
The	CSS3	filters	are	very	powerful	and	developers	can	use	them	to	show	many	visual
effects.	The	CSS3	Filter	property	can	be	used	to	create	effects	such	as	color	shifting	or
blur	on	an	element’s	rendering	before	the	element	is	displayed	in	the	browser.	The	CSS3
filters	are	mainly	used	to	adjust	the	rendering	of	an	image,	a	background,	or	a	border.

There	are	many	CSS3	filters	available	at	the	moment:

blur()

brightness()

opacity()

invert()

drop-shadow()

grayscale()

hue-rotate()

saturate()

sepia()

contrast()

Using	the	following	CSS	code,	you	can	use	any	of	the	available	filters:

.filter	{

		filter:	<filter-function>	[<filter-function>]*	|	none

}

An	example	of	this	is	as	follows:

.blur	{

		filter:	blur(10px);

}

CSS	animation	versus	JavaScript
Having	a	nice	animation	or	a	text	effect	doesn’t	have	a	direct	impact	on	your	mobile	site’s
conversion	rate,	but	it	will	give	your	website	an	attractive	look	and	feel.	Nowadays,
developers	use	CSS	or	JavaScript	to	create	animations,	and	both	of	these	have	negatives
and	positives.	Which	method	to	use	totally	depends	on	the	project	and	what	kind	of
animation	the	developer	is	going	to	use.	Anyway,	I	think	CSS	animations	are	excellent	for
simple	animations	such	as	toggling	the	UI	element	state,	and	JavaScript	animations	are
good	for	complex	effects	such	as	bouncing,	playing,	stopping,	and	so	on.

Most	simple	animations	can	be	created	using	JavaScript	or	CSS,	but	the	time	you	have	to
spend	creating	them	will	be	different.	So	in	my	opinion:

CSS	animations	are	good	for	smaller,	self-contained	states	for	UI	elements.	For	an
example,	when	creating	a	navigation	menu	or	a	tooltip,	developers	can	use	a	CSS
transition	property.
If	you	need	total	control	of	an	element,	you	should	use	a	JavaScript	animation.	For	an
example,	if	you	need	a	dynamic	calculation	or	a	complex	animation,	you	should	use
JavaScript.

For	an	example,	please	look	at	the	following	image:

We	are	going	to	create	two	separate	animations	to	convert	this	image	using	CSS3	and
jQuery	to	the	following:

When	we	use	CSS3	transitions,	the	animation	is	pretty	smooth.	The	following	image
shows	the	full	extent	of	the	animation.	There	are	a	few	of	things	that	we	can	identify.
Firstly,	the	frame	rate	has	been	capped,	so	unwanted	repaints	and	calculations	aren’t	done
and	only	the	area	required	is	repainted,	in	this	scenario,	the	rectangle	surrounding	the
squares.	The	browser	can	choose	the	number	of	frames,	how	much	data	should	change	up
front,	and	how	to	proceed.	The	animation	is	going	to	complete	or	stop/pause	half	way
through	and	it	would	be	difficult	for	us	to	start	suddenly	animating	different	properties
half	way	through.

In	this	animation	with	CSS3,	only	around	40	events	happened.

However,	with	jQuery	animation	when	you	try	to	do	that,	you	will	feel	that	the	animation
is	not	as	smooth	compared	to	the	CSS3	version.	This	is	mainly	because	the	recalculate
style	is	run	for	every	element	that	needs	to	be	animated	and	it	has	to	recalculate	around
9,500	styles	during	the	animation.

As	a	result,	only	a	small	amount	of	repaints	could	be	completed.	The	browser	cannot
foresee	what’s	going	to	happen	next	because	JavaScript	could	do	anything	at	any	time.

CSS	animations
Without	question,	if	you	need	to	move	an	element	from	one	place	to	another	place,
animation	with	CSS	is	the	simplest	solution.

The	following	is	CSS	code	that	will	move	an	element	200	px	on	both	the	X	and	Y-axes.
This	is	done	by	using	a	CSS	transition	that	is	set	to	take	1,000	ms.	When	the	move	class	is
added,	the	transform	value	is	changed,	and	the	transition	begins:

.element	{

		-webkit-transform:	translate(0,	0);

		-webkit-transition:	-webkit-transform	1000ms;

		transform:	translate(0,	0);

		transition:	transform	1000ms;

}

.element.move	{

		-webkit-transform:	translate(200px,	200px);

		transform:	translate(200px,	200px);

}

Other	than	the	transition	duration,	you	can	add	options	such	as	easing	for	the	animation,	so
it	will	give	you	a	smooth	transition:

transition:	transform	1000ms	ease-out;

Also,	you	can	combine	this	with	JavaScript	as	well.	All	you	have	to	do	is	create	a	separate
CSS	class	and	toggle	that	with	JavaScript:

element.classList.add('move');

Having	this	kind	of	method	gives	your	application	a	nice	balance	as	you	can	manage	the
state	with	JavaScript	and	your	browser	will	handle	the	animations.

Iconic	fonts
In	earlier	days,	frontend	developers	used	raster	files	such	as	PNGs	or	JPGs	when	they
needed	to	add	an	icon	to	a	page.	However,	because	of	responsive	web	development,
different	mobile	screen	sizes,	and	retina	display	nowadays,	it’s	hard	to	predict	the	screen
size	and	as	a	result,	the	raster	files	appear	pixelated.	To	prevent	this	issue,	developers	have
to	create	multiple	images	to	cater	to	different	screen	sizes,	which	has	created	a
performance	issue.

Luckily,	using	iconic	fonts	we	can	prevent	many	of	the	issues	just	mentioned,	and	it’s
much	easier	to	use.	Iconic	fonts	are	just	fonts	that	contain	symbols	and	glyphs,	and	the
developer	can	style	them	the	same	as	regular	text	using	CSS.

As	well	as	this,	using	iconic	fonts	offers	many	benefits	to	us	over	raster	files,	and	I	have
listed	some	of	them	here:

Developers	can	easily	apply	any	CSS	property	to	iconic	fonts,	which	gives	total
control	to	the	developer
Font	icons	are	vectors,	and	because	of	that	we	can	increase	or	decrease	the	size
without	losing	the	quality,	which	is	especially	effective	for	retina	displays
It	reduces	HTTP	requests	because	we	only	have	to	make	one	or	a	few	HTTP	requests
Iconic	fonts	are	very	small	compared	to	images	and	as	result,	they	load	really	fast
Iconic	fonts	are	supported	in	all	mobile	browsers

However,	we	can’t	use	iconic	fonts	for	all	situations.	As	an	example,	if	you	are	going	to
show	a	complex	image	with	multiple	colors,	then	an	iconic	font	is	not	the	solution.	Iconic
fonts	are	usually	a	single	color	and	are	designed	according	to	a	special	grid.

In	this	section,	I	am	going	to	discuss	a	couple	of	iconic	font	solutions	in	the	industry,	and
they	are	really	good.

Font	Awesome	icons
By	the	time	I	have	written	this	book,	Font	Awesome	will	offer	585	icon	collections	either
for	free	or	for	commercial	or	personal	use.	Developers	can	include	Font	Awesome	in	their
project	through	CDN	or	manually	by	downloading	it.

Once	you	download	it,	you	have	to	add	the	font	folder	to	your	project	and	the	font-
awesome.css	file	to	your	CSS	folder.

Then,	call	the	font-awesome.css	file	in	your	project.	Make	sure	you	check	that	the
@font-face	src	URL	paths	in	your	CSS	file	correlate	to	the	suitable	folder.

To	use	an	icon,	you	should	place	it	inside	of	an	i	element	or	a	span.	Then,	add	two	classes
to	the	element	and	you	can	call	in	any	icon.

For	example,	you	might	want	to	call	the	camera	icon	as	follows:

If	so,	you	have	to	use	the	following	code:

<i	class="fa	fa-camera-retro	fa-lg"></i>	fa-lg

<i	class="fa	fa-camera-retro	fa-2x"></i>	fa-2x

<i	class="fa	fa-camera-retro	fa-3x"></i>	fa-3x

<i	class="fa	fa-camera-retro	fa-4x"></i>	fa-4x

<i	class="fa	fa-camera-retro	fa-5x"></i>	fa-5x

IcoMoon	icons
IcoMoon	is	another	popular	free	iconic	font	solution	in	the	industry.	IcoMoon	has	a	2,000
plus	vector	icon	collection	and	developers	can	search	and	download	more	than	4,000	plus
icons.	One	of	the	options	I	like	best	about	IcoMoon	is	that	I	can	upload	my	own	SVG
image	to	my	collection,	edit	it	using	their	online	app,	and	create	a	font.

Unlike	Font	Awesome,	we	can	choose	what	fonts	we	need	from	their	collection	and
generate	them.	Also,	there	is	an	option	to	download	a	SVG,	PDF,	or	PNG	as	well.

Once	we	have	downloaded	IcoMoon,	we	have	to	follow	the	same	method	that	we	did	in
Font	Awesome.	Identical	to	Font	Awesome,	if	you	wish	to	use	an	icon,	you	have	to	place
it	inside	of	a	span	element.

How	to	use	media	queries
CSS	media	queries	are	an	excellent	way	to	deliver	different	content	to	different	devices
and	screen	sizes,	giving	the	best	user	experience	for	each	type	of	user.	Media	queries	use
media	attributes	to	apply	a	CSS	style	to	your	website	based	on	a	device’s	properties,	such
as	screen	width,	orientation,	resolution,	and	more.	So,	when	it	comes	to	performance
optimization,	using	media	queries	properly	is	essential.

A	simple	media	query	will	look	like	the	following:

<link	href="css/mobile.css"	rel="stylesheet"	type="text/css"	media="only	

screen	and	(max-width:	768px)"	>

<link	href="css/tab.css"	rel="stylesheet"	type="text/css"	media="only	

screen	and	(min-width:	769px)	and	(max-width:	1024px)	"	>

As	mentioned	in	the	example,	we	are	using	two	style	sheets	for	our	website:	mobile.css
for	mobile	devices	and	tab.css	for	tablet	devices.

So,	if	your	screen	size	is	less	than	768	px,	the	device	will	load	and	use	mobile.css,	and	if
the	screen	size	is	between	769	px	and	1,024	px,	the	device	will	load	and	use	the	tab.css
file.	This	way,	developers	can	maintain	different	styles	for	mobiles	and	tablets.

Also,	apart	from	min-width	and	max-width,	there	are	some	other	properties	that	we	can
use	as	well:

Attribute Output

min-width Minimum	width	of	the	display	area.

max-width Maximum	width	of	the	display	area.

min-height Minimum	height	of	display	area.

max-height The	maximum	height	of	display	area.

orientation=portrait Applied	for	any	browser	where	the	height	is	equal	or	greater	than	to	the	width.

orientation=landscape
Applied	for	any	browser	where	the	width	is	greater	than	the	height.	This	is	for	any	browser
where	the	width	is	greater	than	the	height.

I	assume	now	you	have	an	idea	about	CSS	media	queries.	Let’s	see	how	we	can	use	this	in
a	real	situation	to	enhance	the	performance	on	a	mobile.

For	example,	when	we	build	responsive	websites,	we	often	use	a	larger	background	image
to	cater	websites.	But,	when	it	comes	to	mobile	devices,	we	use	a	smaller	background
image	because	we	can’t	show	larger	images	on	a	mobile	screen.

Normal	CSS	code	will	look	like	this:

/*Desktop*/

body{	background:	url(background.jpg);	}

/*mobile*/

Body.mobile{	background:	url(background-mobile.jpg);	}

When	a	developer	writes	CSS	code,	most	of	the	time	they	call	in	images	for	both	desktop
and	mobile,	and	whether	we	use	them	or	not,	the	mobile	device	has	to	download	both
images,	which	affects	performance.

However,	using	CSS	media	queries,	we	can	avoid	this	very	easily.	All	you	have	to	do	is
define	a	breakpoint	and	call	the	background	image	relevant	to	the	screen	size:

/*Desktop*/

@media	(min-width:	768px)	{	

		body	{

				background:	url(background.jpg);	

		}

}

/*mobile*/

@media	(max-width:	767px)	{	

		body	{

				background:	url(background-mobile.jpg);	

		}

}

As	you	can	see,	we	only	added	a	few	extra	lines	of	code	into	our	style	sheets	file.	So	now,
devices	that	have	a	width	up	to	767	px	(most	mobile	devices)	will	only	load	the
background-mobile.jpg	file,	which	is	optimized	for	mobiles.	Using	this	method,
developers	can	call	in	optimized	CSS	properties	for	mobiles.

Displaying	none	in	CSS
When	we	apply	display:none	rule	using	CSS	we	can	hide	HTML	elements.	Although
you	can	hide	an	element	from	the	frontend	view	using	display:none	property,	this	doesn’t
prevent	the	object	from	being	downloaded	to	mobile	devices.	As	a	result,	these	elements
will	slow	down	your	mobile	site	or	application.

However,	if	you	are	going	to	hide	an	image	from	mobile	devices	and	your	intention	is	to
remove	it	completely	from	mobiles,	there	is	a	method	that	you	can	use.	For	example,	to
hide	an	image	from	being	displayed,	we	use	the	following	code:

<div	style="display:none;">

</div>

However,	this	method	doesn’t	prevent	it	being	downloaded	to	the	device.	To	avoid	this,
we	can	use	this	image	as	a	DIV	background	and	hide	it	using	CSS:

<style>

.imagehide	{display:	none;}

.mybackground	{background:	url(myimage.jpg)	no-repeat;	}

</style>

<div	class="mybackground	imagehide">	</div>

Using	the	preceding	method,	we	can	stop	images	from	being	downloaded	to	mobile
devices	without	any	issues.

Video	and	images	via	media	queries
Media	assets’	weight	is	one	of	the	biggest	enemies	of	mobile	devices.	It	says	that	roughly
60	to	70	percent	of	a	site’s	weight	is	consumed	by	images,	and	this	has	been	growing
rapidly	due	to	high-density	displays.

When	we	build	responsive	websites,	we	remove	the	width	and	height	attribute	of	an
image,	and	we	set	the	max-width	100	percent	using	CSS.	By	doing	this,	we	make	this
image	responsive	and	whatever	the	screen	size	is,	the	image	will	be	resized	for	that	screen.

Of	course,	this	strategy	requires	developers	to	use	images	that	are	at	least	as	large	as	the
largest	screen	size	at	which	they’ll	be	displayed;	if	an	image	is	expected	as	part	of	a
layout,	that	could	be	anywhere	from	320	px	to	1,600	px,	and	the	developer	still	requires	to
serve	an	image	with	an	inherent	width	of	at	least	1,600	px.	That’s	a	tremendous	amount	of
drained	bandwidth	and	processing	power	for	a	mobile	device,	with	no	obvious	advantage
to	the	user.	This	bandwidth	cost	is	increased	by	400	percent	when	we	update	our	assets	to
support	HD	displays.	For	an	example,	retina	images	are	big	in	both	dimensions,	so	this	is
four	times	larger	than	a	typical	image.

So	what	can	happen	is	either	it	would	be	tremendously	wasteful,	or	an	older	mobile
browser	might	see	all	this	data	bearing	down	on	it	and	fail	completely,	leaving	the	page
unrendered.

However,	using	HTML5’s	video	element,	we	can	show	assets	that	best	suit	different
screen	sizes:

<video>

<source	src="video-large.webm"	media="(min-width:	640px)"

type="video/webm">

<source	src="video-large.ogg"	media="(min-width:	640px)"	type="video/ogg">

<source	src="video-large.mp4"	media="(min-width:	640px)"

type="video/mp4">

<source	src="video-small.webm"	type="video/webm">

<source	src="video-small.ogg"	type="video/ogg">

<source	src="video-small.mp4"	type="video/mp4">

<!--	Fallback	for	browsers	that	don't	support	'video':	-->

Watch	Video

</video>

In	the	preceding	example,	the	smaller	of	the	two	video	files,	in	whichever	format	is
supported	by	the	browser,	is	displayed	to	any	user	with	a	display	width	less	than	640	px.
This	property	is	well	supported,	and	will	work	with	current	versions	of	Chrome,	Firefox,
Opera,	Safari,	Internet	Explorer,	iOS,	Windows	Phone,	BlackBerry,	and	Android.

CSS	preprocessors
If	you	are	a	frontend	developer,	you	already	know	how	important	it	is	to	write	proper	CSS
for	your	website.	Actually,	CSS	code	doesn’t	have	a	direct	relationship	with	performance
optimization	apart	from	style	sheets’	file	size	and	duplicated	classes.	However,	if	you	are
planning	to	write	code	that	is	future-ready	and	easily	maintainable,	using	a	CSS
preprocessor	will	ease	your	workload.

Of	course,	if	you	are	working	on	a	simple	website,	a	preprocessor	might	not	be	required
always.	But,	if	you	are	working	on	a	larger	website	and	you	have	to	deal	with	multiple
style	sheets	and	many	CSS	rules,	a	preprocessor	will	come	in	handy	and	will	improve
your	code’s	quality.

In	this	section,	I	will	briefly	discuss	SASS	and	LESS,	the	most	popular	CSS	preprocessors
available	out	there.

SASS	and	LESS
Both	SASS	and	LESS	are	backward-compatible,	and	developers	can	easily	convert	their
CSS	files	into	LESS	or	SASS	by	just	renaming	the	CSS	file	extension	to	.less	or	.scss,
respectively.

LESS	is	based	on	JavaScript	and	SASS	is	Ruby-based,	but	when	using	these	two,
developers	don’t	have	to	know	anything	about	either	language	or	use	the	command-line
compiler	to	compile	the	files	into	CSS	because	there	are	many	free	applications	available
on	the	market	to	do	the	job.	These	applications	will	watch	for	any	changes	that	you	make
to	your	.less	or	.sass	file	and	they	will	automatically	compile	those	changes	and	update
your	CSS.

There	are	many	benefits	for	developers	who	use	SASS	or	LESS	in	their	project,	and	I	will
discuss	some	of	them	here.

Variables
When	you	deliver	a	completed	project	to	a	client,	how	many	times	did	you	get	a	request
from	a	client	that	they	need	to	change	the	main	font	to	something	else	or	they	need	to
change	the	color	scheme	of	the	site?	I	often	get	this	request	from	clients,	and	it’s	so
frustrating	because	I	have	to	go	through	each	style	sheet	and	make	the	change,	and
sometimes	I	miss	some	sections.	However,	by	using	SASS/LESS	variables,	we	can
eliminate	this	possibility	completely.

SASS

Variables	in	SASS	are	defined	using	the	$	symbol:

/*	Variable	for	primary	color*/	$primaryColor:	#000000;

$base-font-size:	14px;

body	{

						background:	$primaryColor;

				font-size:	$base-font-size;

}

LESS

Variables	in	LESS	are	defined	using	the	@	symbol:

/*Variable	for	primary	color*	@primaryColor:	#000000;

@base-font-size:	14px;

body	{

						background:	@primaryColor;

				font-size:	@base-font-size;

}

As	I	showed	in	the	preceding	code,	you	can	use	the	$primaryColor/@primaryColor	value
throughout	the	site,	and	once	we	change	the	value,	it	will	apply	to	all	places.

Partials

Partials	allow	us	to	modularize	our	CSS	and	keep	things	easier	to	maintain.	In	other
words,	developers	can	write	different	CSS	files	for	different	sections	of	a	website	and
inject	it	into	one	.sass	or	.less	file.

SASS	and	LESS

In	the	following	example,	we	use	two	break	points:	one	for	mobiles	and	one	for	tablet
devices.	Using	partials,	we	can	maintain	two	separate	files	for	each	version:

@import	"partials/custom/variables";

@import	"partials/custom/settings";

@import	"partials/custom/mixins";

@media	#{$small-only}	{

		@import	"partials/mobile/checkout-mobile";

}

@media	#{$medium-only-v}	{

		@import	"partials/tab/checkout-tab";

}

Mixins
Mixins	are	a	very	powerful	feature	that	are	offered	by	CSS	preprocessors.	They	are	similar
to	functions	where	we	pass	in	variables	as	parameters	so	that	we	can	give	a	dynamic	feel
to	our	website.

For	example,	if	you	need	to	create	a	rectangle,	but	use	different	sizes	and	different
background	colors,	the	variable	values	can	be	added	to	mixins,	between	the	parentheses,
as	parameters.	Then	we	add	the	variable	name	to	the	relevant	property	value.	When
separated	by	a	comma,	mixins	can	have	one	or	more	parameters.

SASS

We	can	use	the	following	SASS	code	to	create	two	different	size	rectangles:

@mixin	rectangle($width,$height,$bgColor){

								width:	$width;

								height:	$height;

								background-color:$bgColor;

				}

				.box1	{

								@include	rectangle(100px,50px,	#ccc);

				}

				.box2	{

								@include	rectangle(200px,	100px,	#ddd);

				}

LESS

We	can	use	the	following	LESS	code	to	create	two	different	size	rectangles:

rectangle(@width,@height,@bgColor){

								width:	@width;

								height:	@height;

								background-color:@bgColor;		

				}

				.box1	{

						.rectangle(100px,50px,	#ccc);

				}

				.box2	{

						.rectangle(200px,	100px,	#ddd);

				}

Here,	I	covered	some	of	the	features	that	SASS	and	LESS	offers	to	us,	but	really	this	is
just	the	tip	of	the	iceberg.	SASS	and	LESS	are	extremely	powerful	tools	that	a	developer
can	use	to	do	many	extravagant	things.

Minifying	CSS	and	JavaScript
When	we	develop	our	websites,	we	often	leave	white	space	and	comments	in	our	code	so
humans	can	easily	read	and	understand	it.	However,	when	the	code	file	is	being	executed
on	our	devices,	excess	white	spaces	and	comments	no	longer	convey	a	meaning	to
humans.	So,	if	we	can	remove	the	extra	characters	from	our	files,	it	will	reduce	our	file
size	and	enhance	the	performance	of	our	website.	There	are	many	tools	available	out	there
that	we	can	use	to	remove	unnecessary	characters	(minify	them)	from	our	code.

Minifying	CSS
In	the	preceding	section,	I	discussed	CSS	preprocessors.	Both	SASS	and	LESS	have	CSS
minifying	options	that	developers	can	easily	use.	The	main	advantage	of	CSS	preprocessor
minification	is	that	developers	are	never	going	to	touch	the	CSS	file	and	only	work	with
.sass	or	.less.	So,	they	can	keep	the	white	space	and	comments	in	their	raw	file	and
when	compiling,	all	the	unnecessary	characters	will	be	removed.	Apart	from	that,	there	are
many	online	tools	available	and	developers	can	paste	their	CSS	code	into	that	and
generate	a	minified	version.

Some	online	tools	that	developers	can	use	are:

http://www.cleancss.com/css-minify/
http://csscompressor.com/
http://cssminifier.com/

http://www.cleancss.com/css-minify/
http://csscompressor.com/
http://cssminifier.com/

Minifying	JavaScript
The	same	as	CSS	minification,	there	are	many	free	online	tools	available	to	minify
JavaScript,	and	some	of	the	Integrated	Development	Environments	(IDE)	have	a	built-
in	option	for	this.

A	few	online	tools	that	developers	can	use	include:

http://www.cleancss.com/javascript-minify/
http://javascript-minifier.com/
http://jscompress.com/

As	I	mentioned	earlier,	developers	can	use	online	tools	or	third-party	applications	to
minify	their	code.	By	doing	so,	they	can	reduce	the	file	size,	allowing	them	to	transmit	and
process	quickly.	As	a	result,	developers	can	remove	a	few	milliseconds	from	the	app’s
loading	time.

http://www.cleancss.com/javascript-minify/
http://javascript-minifier.com/
http://jscompress.com/

Summary
In	this	chapter,	we	discussed	HTML5	and	CSS3	and	how	to	use	their	features	to	create
performance	optimization.	In	particular,	we	talked	about	the	importance	of	hardware
acceleration	and	GPU,	and	we	used	CSS3	effects	instead	of	using	heavy	images.	Also,	we
talked	about	CSS3	animations	versus	JavaScript	animations	and	how	to	use	iconic	fonts
instead	of	images.	After	that,	we	discussed	how	to	use	media	queries	and	display	none	in
CSS.	Finally,	we	explored	CSS	preprocessors	and	the	importance	of	minifying	CSS	and
JavaScript.

In	the	next	chapter,	I	will	discuss	caching	and	optimizing	techniques	that	we	can	use	to
enhance	performance	much	more.

Chapter	4.	Caching	and	Optimizing
In	the	previous	chapter,	we	learned	how	to	use	frontend	techniques	to	optimize	our
application	or	website.	Actually,	I	believe	all	the	frontend	developers	need	to	follow	this
guideline	for	all	types	of	web	development,	and	not	just	for	mobiles.	Some	of	the
techniques	that	I	have	discussed	in	the	previous	chapter	do	not	have	a	direct	relationship
with	performance.	However,	this	will	create	a	well-structured	environment,	which	will
make	it	easier	to	focus	on	performance.

In	this	chapter,	I	will	discuss	a	whole	different	area	that	is	related	to	performance
optimization,	which	is	really	essential	and	easy	to	understand.	To	go	through	this	chapter,
you	need	to	have	a	basic	understanding	of	HTML,	CSS,	and	JavaScript.

In	this	chapter,	we	are	going	to	cover	the	following	topics:

Caching
File	order	of	external	style	sheets	and	scripts
Empty	source	and	link	attributes
CSS	and	JavaScript	frameworks
How	to	optimize	JavaScript
Load	only	what	is	needed
Reduce	the	number	of	DOM	elements

Caching
I	assume	that	you	remember	the	three	main	pillars	of	a	mobile	device	that	we	discussed	in
the	Three	main	pillars	section	of	Chapter	1,	Pillars	of	Mobile	Web	Performance
Optimization.	Without	a	doubt,	every	developer	should	consider	these	three	factors	when
they	build	a	mobile	website	or	application.	Whether	your	site	is	for	a	small	coffee	shop	or
a	larger	online	shop,	you	just	cannot	ignore	these	three	factors,	and	this	is	why	caching	is
important.	It	is	an	excellent	way	to	download	websites	faster,	saving	some	parts	of	them	in
your	browser	and	then	when	you	visit	that	site	again	you	don’t	have	to	download	or
calculate	that	section	again.	Using	the	cache,	the	developer	can	improve	speed,	energy
consumption,	and	user	experience	of	his	application	or	website.

Cache-Control
When	we	cache	a	file,	it	is	available	to	reuse	straightaway,	which	makes	our	application	or
website	appear	fast	in	performance.	Also,	enabling	caching	and	using	cache-control
directives	correctly,	we	can	reduce	unwanted	data	consumption	and	connections.	These
savings	will	help	the	user	to	stay	under	his	data	cap	and	will	save	his	battery	power	from
draining,	and	enhance	his	site’s	responsiveness	of	wireless	network	that	have	a	limited
bandwidth.	Although	it	has	many	benefits,	some	applications	or	websites	don’t	use	the
caching	mechanism	properly.

Through	the	cache-control	general-header	of	each	request	and	response	message,	the
HTTP	1.1	protocol	supports	cache	management.	In	the	HTTP	1.1	protocol	there	are	two
caching	mechanisms,	that	is	validation	and	expiration.

Validation	is	the	method	that	cross-checks	cache	data	with	the	main	server	whether
caching	data	is	useable	or	not.	When	a	server	sends	a	full	response	to	a	client,	the	server
attaches	a	validator	to	it	and	the	client	keeps	that	entry	with	the	resource.	When	the	client
sends	another	full	request	to	the	server,	it	sends	that	validator	with	the	request	and	then	the
server	sends	that	validator	with	the	new	validator	attached	to	new	resources.	If	the	two
validators	are	identical,	the	server	sends	a	nonmodified	304	message	to	the	client,	and	the
client	uses	the	cached	entry.	This	method	saves	a	lot	of	bandwidth	and	time	because,	the
client	doesn’t	have	to	download	resources	from	the	server	again.	However,	if	the	validator
is	not	identical,	the	server	sends	full	information	so	that	client	doesn’t	have	to	worry	about
seeing	old	content.

Using	the	expiration	method,	the	client	can	completely	avoid	making	a	request	to	the
server.	This	is	done	by	the	server	setting	up	a	specific	expiration	time	for	resources.
Caching	can	check	the	expiration	time	and	make	the	request	accordingly.	The	server	adds
the	expiration	time	using	expiration	headers	or	using	max-age	cache-control	directives.

These	two	mechanisms	determine	how	to	get	data	from	the	server	and	how	often	it	should
be	updated.	However,	to	manage	cache	properly,	a	client	or	a	server	should	provide
explicit	directives.	We	are	using	cache-control	headers	to	do	this	task.	In	both	caching
methods,	priority	is	given	to	the	explicit	directives	rather	than	implicit	directives	in	the
caching-header.	For	example,	max-age	directives	have	the	priority	over	the	expiration	time
set	in	expires	headers.

To	implement	a	caching	mechanism	in	your	application,	you	can	use	a	few	methods.	There
are	libraries	available	to	enable	this	task,	and	some	operating	systems	have	an	inbuilt
function	for	this.	However,	the	best	way	to	do	this	is	by	incorporating	a	response	entity
cache	functionality	in	your	code.

Content	prefetching
When	delivering	content	to	your	user,	you	should	always	keep	in	your	mind	that	wireless
networks	are	slower	than	the	wired	networks,	and	this	makes	content	delivery	slower	to
the	end	user.	Also,	wireless	users	expect	the	same	fast	service	as	a	wired	connection.	To
balance	these	expectations,	developers	should	have	a	proper	content	management	plan,
and	that	plan	should	have	a	choice,	such	as	should	we	deliver	the	content	to	the	user	only
if	the	user	requested	it?	Or	should	we	anticipate	user	behaviors	and	download	the	data
before	the	user	requests	it?

Prefetching	is	the	method	of	downloading	and	caching	data	before	the	user	requests	it.	If
we	use	this	method	wisely,	we	can	speed	up	user	experience	on	our	website	or	mobile
application.

In	prefetching,	we	are	going	to	use	some	predictions	of	contents	that	the	user	is	going	to
request	next.	So,	once	we	downloaded	data	for	our	initial	request,	the	application	begins	to
download	data	as	we	predicted,	and	it	will	store	in	our	cache.	By	storing	those	prefetched
data	in	the	cache,	the	application	makes	sure	to	present	those	data	quickly	when	the	user
made	the	request.

When	designing	the	prefetched	content,	the	developer	needs	to	ask	the	following
questions:

For	a	different	type	of	content,	what	are	the	goals?
What	workload	will	be	used	in	testing?
What	will	the	underlying	baseline	system	be	for	how	prefetching	is	applied?
Which	key	performance	metrics	are	we	going	to	use?

However,	prefetching	should	be	used	wisely	as	I	have	mentioned	earlier	because	of	the
following	reasons:

Sometimes	the	user’s	behavior	is	hard	to	predict
The	user	may	download	content	that	he	is	never	going	to	see,	which	creates	unwanted
overheads
If	the	user	has	a	data	cap,	unnecessary	content	will	cause	an	issue	to	their	data	plan
Analytics	may	become	invalid	because	some	content	will	be	registered	as	being	seen,
but	this	is	not	the	case
Also,	if	you	prefetched	too	much	content	into	the	user’s	device,	it	will	consume	the
memory	of	their	device,	which	may	slow	down	its	performance

Make	favicon	icon	small	and	cacheable
I	assume	you	already	know	what	favicon	is,	and	why	we	are	using	it	on	a	website.
Anyway,	if	you	don’t	have	an	idea	about	it,	the	favicon	is	the	small	square	image	that	is
placed	on	left	side	of	the	browser’s	address	bar,	and	it	gives	a	graphical	representation
about	your	website.	Usually,	favicons	are	16*16	pixel	image:

We	generally	place	favicons	in	our	server	root.	We	have	to	include	a	favicon	in	our
website	because	the	browser	always	requests	this	icon	from	the	server,	and	if	we	don’t
send	it	then	the	browser	will	receive	a	404	not	found	error.	Because	the	favicons	are	on	the
same	server,	when	the	image	is	requested,	the	cookies	will	be	sent	each	and	every	time.
This	image	also	plays	a	vital	role	in	the	download	sequence.	As	an	example,	when	we
request	extra	components	on	page	load,	before	the	additional	components	get	downloaded,
the	favicon	will	be	downloaded	to	the	client’s	mobile	device.

So,	when	we	use	a	favicon	on	our	website,	to	minimize	these	issues	we	should	use	a	small
optimized	image	as	a	favicon.	Also,	we	can	set	expires	headers	as	we	have	discussed	in
the	previous	section	as	well.

File	order	of	external	style	sheets	and
scripts
When	we	render	a	page,	the	order	of	the	CSS	and	JavaScript’s	files	that	are	located	in	the
code	have	a	direct	impact	on	how	quickly	that	we	can	show	the	page	to	the	user.	If	we	can
load	the	CSS	files	before	the	JavaScript	files,	the	page	can	start	the	rendering	straight
away,	and	we	can	download	other	files	parallel	to	the	rendering	which	increase	the	website
rendering	speed.

On	the	other	hand,	if	we	wait	to	download	CSS	files	after	the	JavaScript	files,	the	website
will	have	to	wait	until	all	the	JavaScript	files	get	downloaded	to	start	the	page	rendering.
Another	issue	with	this	is	that	if	a	JavaScript	code	has	a	CSS	code	dependency,	there	will
be	a	conflict.

To	minimize	the	impact,	the	recommended	method	is	to	load	the	style	sheet	files	first,	then
push	the	scripts	to	the	bottom	of	the	page	as	much	as	possible.

Empty	source	and	link	attributes
If	we	have	an	HTML	tag	containing	an	attribute,	without	value,	we	say	it	is	an	empty
attribute.	The	issue	with	this	empty	attribute	is,	if	the	empty	attribute	is	a	source	or	a	link,
some	browsers	will	still	try	to	connect	to	the	server,	even	we	set	it	as	an	empty	value.	This
unwanted	request	and	overhead	will	create	delays	in	our	mobile	website	or	application.	As
an	example,	take	a	look	at	the	following	anchor	tag	and	image	tag:

Also,	take	a	look	at	the	following	JavaScript	code:

var	image	=	new	Image();

image.src	=	""

Usually,	the	HTML	recommendation	is	that	if	there	is	an	src	attribute,	it	should	contain	a
URL.	However,	if	you	are	using	HTML5,	you	can	have	an	empty	attribute	because,
HTML5	uses	specified	algorithm	to	avoid	extra	requests	if	there	is	an	empty	attribute.

But,	if	you	are	not	using	HTML5	different	browsers	will	behave	differently:

Some	browsers	make	the	request	to	the	same	page
Some	browsers	ignore	the	request	if	it’s	an	empty	tag
Some	browsers	make	a	request	to	the	file	location	directory

As	a	result	of	these	different	behaviors,	it	will	create	an	unwanted	overhead	in	your
website	or	application.	The	most	critical	section	that	we	have	to	address	is	that	sometimes
content	management	systems	and	template	engineers	forget	to	add	URL	to	the	attribute
and	without	the	developer’s	knowledge	the	website	or	application	will	have	empty
attributes.

So,	as	a	practice	you	need	to	always	be	careful	with	the	following	tags:

href	src

img	src

iframe	src

script	src

link	href

CSS	and	JavaScript	frameworks
If	you	are	building	a	responsive	website,	for	mobiles	as	well	as	for	desktop,	I	think	you
need	to	use	a	CSS/JavaScript	framework.	Some	people	can	argue	that	using	a	framework
can	decrease	your	site’s	performance	because	of	the	unwanted	component	that	bundles	up
with	the	framework.	There	are	some	components	in	the	framework	that	you	are	never
going	to	use.	However,	I	have	a	different	opinion	in	this	regard.	Most	of	the	frameworks
now	have	the	option	to	choose.	With	the	components	that	we	are	going	to	have	and	as	per
our	requirement,	we	can	customize	our	framework.	Using	this	customizing	option,	we	can
get	the	following	benefits	of	frameworks:

You	don’t	have	to	be	a	professional	programmer	to	build	a	website
Using	a	framework	will	drastically	cut	down	our	development	time,	and	you	can
invest	that	saving	on	performance	optimization
You	can	plug	in	new	components	with	ease
The	framework	code	is	well	tested	and	has	a	lot	of	community	support
You	will	get	regular	updates	and	new	features	for	the	framework
As	I	have	mentioned	earlier,	because	of	the	community	support	and	regular	updates,
you	don’t	have	to	worry	about	the	security

There	are	many	CSS	and	JavaScript	frameworks	out	there	to	choose	from
(http://www.awwwards.com/what-are-frameworks-22-best-responsive-css-frameworks-
for-web-design.html),	and	I	will	try	to	list	down	a	few	of	them	here.

http://www.awwwards.com/what-are-frameworks-22-best-responsive-css-frameworks-for-web-design.html

Bootstrap
The	framework	was	originally	created	by	a	designer	and	a	developer	at	Twitter	in	mid-
2010.	Since	then,	Bootstrap	has	become	one	of	the	most	popular,	successful	frontend
frameworks	and	open	source	projects	in	the	world.	If	you	are	familiar	with	LESS,	you	can
work	with	Bootstrap	easily	because	it	has	a	LESS	version,	which	is	easy	to	customize.

If	a	developer	needs	to	customize	anything	within	the	framework,	it	can	be	done	easily
because	the	framework	is	built	on	12	responsive	column	grids,	layouts,	and	components.
For	both	fluid	and	responsive	width	layout,	nesting	and	offsetting	are	possible.	Also,	using
responsive	utility	classes	the	developer	can	make	a	certain	block	of	content	visible	or
hidden	only	on	devices	based	on	their	screen	size.	This	proves	to	be	very	useful	when	a
developer	prefers	to	hide	some	content	based	on	screen	size.

Adding	a	class	such	as	.visible	to	an	element	will	make	it	visible	only	to	mobile	users.
There	are	similar	classes	for	tablets	and	desktops.

Zurb	Foundation
Zurb	Foundation	has	its	own	styleguide	with	a	collection	of	HTML	and	CSS.	It	helps
developers	to	build	amazing	websites	very	quickly.	The	framework	now	is	very	powerful
and	popular,	and	millions	of	developers	use	it	to	build.

The	Foundation	framework	has	many	benefits.	The	framework	is	built	with	compass;	it
allows	the	abstraction	of	presentation	to	be	easier	and	faster.	Also,	it	has	no	extraneous
IDs,	classes,	or	non-semantic	empty	HTML	elements.	The	framework	contains	cleaner
markups,	so	it’s	much	easier	to	maintain	and	reuse.	Also,	Foundation	is	built	with	the
mobile	first	approach,	in	the	true	spirit	of	progressive	enhancement.

Foundation	is	optimized	for	mobile	devices.	The	framework’s	newest	version	takes	it	even
further	with	greater	support	for	touch	input.	Hardware	acceleration	has	added	to	the
framework	for	smoother	transitions	and	animations.	It	makes	your	application	more	native
on	your	mobile.

UIkit
UIkit	was	developed	by	YOOtheme,	and	the	current	version	is	2.21.0.	Compared	with
other	frameworks,	UIkit	is	lightweight	and	the	framework	was	created	with	an	eye	on
modern	trends.	There	have	been	responsive	design	and	grid	sets	-	the	underlying	trend,	so
they	have	been	released	in	UIkit	as	its	core	features.	Such	technologies	aren’t	surprising
nowadays,	but	these	features	are	made	on	a	really	high	level.

Semantic-UI
This	is	another	new	framework	in	the	market,	and	its	popularity	is	increasing	day	by	day.
This	framework	gives	a	very	good	competition	to	Bootstrap	and	Foundation	with	its	new
advanced	features.	It	comes	with	many	integrated	third-party	libraries	such	as	Ember,
Angular,	and	Meteor.	With	these	libraries,	you	can	build	a	large	and	complex	website	with
ease.

Susy
Susy	has	a	really	advanced	grid	system.	Unlike	other	frameworks,	Susy	doesn’t	have	a
prebuilt	grid	system.	However,	using	Susy	mixins,	you	can	make	any	kind	of	grid,	and
you	don’t	have	any	restrictions.	Also,	if	we	compare	Susy	with	Foundation	or	Bootstrap,
Susy	doesn’t	have	a	very	large	package,	but	Susy	is	all	about	the	grid.

jQuery
Without	a	doubt,	jQuery	is	the	most	popular	JavaScript	library	for	developers.	jQuery	was
released	in	2006	as	an	open	source	project	and	since	then,	its	popularity	is	growing	at	a
rapid	rate.	Working	with	jQuery	is	really	easy	if	you	are	familiar	with	HTML,	CSS,	and
JavaScript.

Also,	we	can	now	use	the	jQuery	mobile	framework	to	create	a	mobile	application	as	well.
jQuery	mobile	is	a	user	interface	framework	built	on	top	of	the	jQuery	library.	The	most
important	part	of	the	jQuery	mobile	is	that	it’s	used	only	HTML5	standard	code.

These	are	the	features	of	jQuery	mobile:

Open	source	and	free	to	use
Cross-browser,	cross-platform,	and	cross-device	compatible
The	user	interface	is	optimized	for	touch	devices
Only	uses	semantic	HTML5	code
AJAX	calls	are	made	automatically	to	load	dynamic	content
Lightweight	in	size
Accessibility	support

AngularJS
AngularJS	is	a	JavaScript	framework	developed	by	Google	to	simplify	the	frontend
development.	If	you	are	building	single	page	apps,	AngularJS	would	be	the	best	option	for
you.	When	you	write	AngularJS	code,	you	can	modularize	it,	which	means	you	can	follow
MVS	patterns,	and	it	will	increase	reusability	of	your	code.	Also,	it’s	much	easier	to	test
and	maintain.

Another	option	that	AngularJS	presents	is	that	we	can	declaratively	bind	our	model	to
HTML	elements.	So,	when	the	model	is	changed,	the	view	will	change	automatically	and
vice	versa.	This	can	reduce	a	lot	of	unwanted	code	lines.

Also,	the	best	thing	about	AngularJS	is	that	many	developers	can	work	simultaneously
without	an	issue.	Adding	to	this,	AngularJS	offers	features	such	as	routing,	filters,	and
animations	as	well.

Ember
Ember.js	is	another	open	source	JavaScript	framework	built	and	based	on	MVS	patterns.	It
allows	developers	to	create	a	single-page	web	application	with	ease.	Currently,	Ember	has
400,000	downloads	per	month,	and	many	modern	applications	use	Ember	as	their
framework.	Ember	always	uses	future	technology	in	today’s	applications,	keeping	the
backward	compatibility.	Similar	to	Angular,	Ember	has	its	own	routing	system	represented
by	a	URL.	Also,	Ember	templates	are	used	to	create	the	application’s	HTML.

Aurelia
Aurelia	is	another	JavaScript	framework	in	the	market,	and	it’s	an	official	product	of
Durandal.Inc.	Aurelia	is	a	completely	free	and	open	source	framework,	and	it	can	be
customized	easily.	It	has	no	external	dependencies	except	polyfills,	and	it	uses	future
technology	to	build	today’s	applications.	One	of	the	main	features	of	Aurelia	is	that	it	has
two-way	data	binding	to	any	object.	Also,	it	can	be	used	to	extend	HTML	elements	and
developers	can	create	custom	HTML	elements	with	ease.

Aurelia	has	an	advanced	client-side	router	with	its	pluggable	pipeline,	dynamic	route
pattern,	and	asynchronous	screen	activation.	Also,	applications	built	using	Aurelia	can	be
tested	quickly.

Knockout.js
Knockout.js	is	another	popular	MVC	based	JavaScript	framework,	and	it	has	a	convenient
data	binding	feature	similar	to	Angular	JS.	Knockout.js	is	best	for	prototyping	small
applications	or	it	can	be	used	to	introduce	data	binding	to	a	legacy	code.	It’s	developed
and	maintained	as	an	open	source	framework	by	Steve	Sanderson,	a	Microsoft	employee,
and	as	he	said,	“It	will	stay	as	it	is	in	future	as	well.”	The	frameworks	have	declarative
data	binding,	automatic	UI	refresh,	dependency	tracking,	and	templating	systems.

How	to	optimize	JavaScript
Nowadays,	we	use	JavaScript	in	our	application	or	website	to	create	visual	effects.
Sometimes,	it	creates	these	visual	effects	by	manipulating	styles	or	doing	calculations
such	as	sorting	or	searching.	However,	if	we	don’t	use	these	properly,	JavaScript	can	cause
performance	issues	on	our	website	or	application.	To	minimize	these	impacts	on	the
website,	you	should	consider	the	following:

Avoid	using	setTimeout	or	setInterval	for	visual	updates.	Instead	of	these	you	can
use	requestAnimationFrame.
Move	long-running	JavaScript	main	thread	to	Web	workers.
Use	browser	development	tools	to	profile	JavaScript	and	assess	the	impact.
Use	micro-tasks	to	make	DOM	changes	rather	than	using	several	frames.
Keep	your	HTML	code	clean	by	removing	unwanted	DIV	and	SPAN	tags.
When	updating	styles,	do	them	as	a	batch.
Build	DOM	separately,	before	it	is	added	to	the	page.
Remember	to	unbind	events	when	they	are	no	longer	needed.
Learn	about	event	bubbling.	Use	jQuery.bind()	instead	of	jQuery.live()	and
jQuery.delegate().
Avoid	creating	unnecessary	functions.
Learn	and	use	native	JavaScript	functions	and	constructs.

Load	only	what	is	needed
With	the	help	of	AJAX	we	now	use	lazy	loaders	in	our	websites.	The	advantage	of	lazy
loading	is	that	we	can	load	the	resources	when	we	need	them	rather	than	having	them
around	all	the	time.	Using	this	technique,	we	can	boost	up	the	website’s	loading	time	and
stay	under	the	user’s	data	cap.	For	example,	we	don’t	have	to	load	large	images	in	mobiles
that	are	intended	for	the	desktop	version,	and	we	don’t	have	to	load	scripts	on	Android
devices	if	it’s	only	meant	for	iOS.

JavaScript	is	good	at	testing	for	support	and	then	loading	resources	on	demand.	However,
we	don’t	use	it	properly.	At	the	moment,	we	use	more	and	more	solutions	that	load	large
amounts	of	high-end	resources	because	we	assume	that	caching	will	improve	the
experience	as	the	user	moves	through	the	site.	Actually,	this	is	a	waste	of	time	as	it	doesn’t
help	the	users	who	will	never	benefit	from	that	high-end	experience.	It	might	not	seem	to
be	a	problem	for	people	who	have	a	fast	connection.	However,	we	are	not	building
applications	or	websites	only	for	those	people.	So,	the	more	we	can	delay	loading
unnecessary	content	or	subsequently	storing	it	on	the	user’s	device,	instead	of	repeatedly
loading	it,	the	better	our	solutions	will	be.

I	think	we	need	to	avoid	using	preloading	content	as	much	as	possible.	To	do	so,	consider
before	adding	10	different	fonts	for	your	homepage,	the	CSS	framework	that	we	use	only
to	create	a	two-column	layout,	a	JavaScript	library	only	to	create	a	button	event	handler.
Instead	of	doing	all	these,	check	the	available	screen	space	before	loading	content	and
hide	the	elements	if	these	are	located	on	the	outside	of	the	screen.	So,	the	user	actually
scrolls	them	into	view	we	load	them	in	the	screen.

There	is	natural	downtime	in	the	interaction	with	our	apps.	For	example,	people	will	spend
some	time	entering	data	into	forms.	So,	why	not	use	that	time	to	load	additional	resources?
A	focus	handler	on	the	first	text	field	could	trigger	good	resources	download.	If	the	user
never	enters	the	form,	nothing	needs	to	happen.

Reduce	the	number	of	DOM	elements
If	we	have	a	sophisticated	website,	that	means	we	have	to	download	more	bytes	and
slower	DOM	access	in	JavaScript.	There	is	a	difference	between	looping	through	500
DOM	elements	versus	5,000	DOM	elements,	if	you	need	to	add	an	event	handler	to	an
element.

If	a	page	has	a	huge	number	of	DOM	elements,	it	means	that	there	is	room	for
improvement.	So,	you	should	go	through	with	your	code	and	enhance	it	without	removing
valuable	content.

Using	a	CSS	framework	such	as	Bootstrap	or	Foundation	can	eliminate	those	issues,
because	they	have	a	proper	structure.	Also,	using	the	reset.css	style	sheet	file,	the
developer	can	remove	default	browser	formatting.	Additionally,	if	you	are	going	to	use	a
new	HTML	tag,	use	it	only	when	it	makes	sense	semantically,	and	not	because	it	renders.

Finally,	testing	the	number	of	DOM	elements	on	a	page	is	easy.	Simply	type	the	following
command	in	browser	toolbar	console:

document.getElementsByTagName('*').length

Summary
In	this	chapter,	we	have	discussed	the	importance	of	cache	and	how	the	caching
mechanism	works.	Having	a	proper	caching	plan	can	boost	up	your	site	performance
immensely.	After	this,	I	have	explained	how	a	developer	should	call	JavaScript	and	CSS
files	and	why	we	should	avoid	empty	source	and	link	attributes.	Then,	I	have	gave	a	brief
introduction	to	CSS	and	JavaScript	frameworks.	These	frameworks	are	really	powerful,
and	we	can	use	their	advanced	technology	for	our	benefit.	In	the	later	part	of	the	chapter,	I
have	explained	how	we	can	optimize	JavaScript	to	gain	performance	and	why	we	should
load	what	is	needed.	Finally,	I	have	discussed	the	importance	of	reducing	DOM	elements.

In	the	next	chapter,	I	will	discuss	how	to	monitor	and	debug	issues	in	an	application	or
mobile	website.

Chapter	5.	Monitoring	and	Debugging
Our	Website
In	the	previous	chapters,	we	went	through	some	of	the	techniques	that	we	can	use	to
improve	our	website’s	performance.	Actually,	most	of	the	methods	that	we	discussed	were
straightforward	and	really	easy	to	implement.	As	an	example,	optimizing	images,
minifying	CSS	and	JS,	and	using	CSS3	and	HTML	as	much	as	possible	is	really	doable
with	minimum	front-end	development	knowledge.	However,	using	caching	techniques,
optimizing	JavaScript,	and	choosing	a	CSS	framework	for	your	website	requires	some
expertise	in	the	domain.	So,	if	you	are	going	to	build	a	website	by	hiring	a	third-party
agency	or	a	freelancer,	you	should	always	consider	these	factors.	Because,	every
developer	doesn’t	have	the	skills	to	build	for	performance.

In	this	chapter,	I	am	going	to	discuss	an	interesting	area.	That	is,	how	to	monitor	and
debug	your	mobile	website.	Actually,	you	don’t	have	to	be	a	developer	to	go	through	with
this	chapter	and	use	the	methods	that	I	am	going	to	show,	as	you	can	test	your	own
website	and	evaluate	it	by	yourself.	However,	to	go	through	with	this	chapter	you	should
at	least	have	some	knowledge	of	web	browsers	and	how	they	work.	Also,	the	tools
discussed	in	this	chapter	require	hands-on	practice.	So,	I	encourage	you	to	practice	with
those	tools	as	much	as	possible.

In	this	chapter,	we	are	going	to	cover	the	following	topics:

Profiling	tools
A	browser’s	DevTools	performance
Performance	tools	in	Firefox,	Safari,	and	IE
A	Google	Chrome	emulator
Google	PageSpeed	Insights
YSlow

Note
Portions	of	this	chapter	are	modifications	based	on	work	created	and	shared	by	the
Android	Open	Source	Project	and	is	used	according	to	terms	described	in	the	Creative
Commons	2.5	Attribution	License.

Profiling	tools
Normally,	mobile	devices	use	four	primary	pieces	of	hardware	to	render	a	web	page	on	to
your	screen.	The	CPU	calculates	all	the	display	units,	the	GPU	renders	all	the	images	to
the	screen,	the	memory	stores	all	the	data,	and	the	battery	provides	the	necessary	electric
power.	All	of	these	hardware	units	have	their	own	limitations.	Forcing	or	exceeding	those
limitations	will	cause	your	application	or	website	to	become	slow,	have	a	rendering	issue,
or	will	drain	the	battery.

To	discover	the	reasons	for	specific	performance	issues	and	to	find	a	solution,	you	have	to
take	a	look	at	your	application’s	backend	layer,	use	a	tool	to	collect	data	about	your
application’s	behavior,	generate	a	report	with	graphics,	study	those	reports,	and	enhance
your	code.

Nowadays,	many	mobile	development	platforms	and	mobile	devices	provide	profiling
tools	to	generate	visualized	reports	such	as	rendering,	computing,	and	the	battery
performance	of	your	application.

GPU	Overdraw	Walkthrough
Using	a	color	coding	interface,	GPU	Overdraw	Walkthrough	shows	elements	based	on
how	often	they	are	drawn	underneath	on	your	mobile	devices.	This	tool	helps	us	to
identify	where	our	application	is	doing	heavy	rendering	work	and	helps	us	see	where	we
can	improve	rendering	overhead.	To	use	this	profiling	tool,	you	should	enable	developer
options	on	your	mobile	device.

To	enable	GPU	Overdraw	Walkthrough	on	your	mobile	device:

1.	 Go	to	Settings	on	your	mobile	device	and	tap	Developer	Options.
2.	 Select	Debug	GPU	Overdraw	in	the	Hardware	accelerated	rendering	section.
3.	 Select	Show	overdraw	areas	in	the	Debug	GPU	Overdraw	popup.

4.	 You	will	see	that	your	device	has	changed	to	a	delirium	of	colors.	The	colors	will
help	you	to	diagnose	your	application’s	display	behavior.

5.	 The	colors	indicates	the	overdraw	area	on	your	screen	for	each	pixel,	as	follows:

True	Color:	No	overdraw
Blue:	Overdrawn	once
Green:	Overdrawn	twice
Pink:	Overdrawn	three	times
Red:	Overdrawn	four	or	more	times

6.	 Anyway,	some	of	the	overdraw	area	is	unavoidable.	However,	you	should	aim	to
arrive	at	a	visualization	that	shows	true	colors	and	a	1X	overdraw	in	blue	mostly.

GPU	Rendering	Walkthrough
Profile	GPU	Rendering	Walkthrough	gives	you	a	graphical	representation	of	how	much
time	it	takes	to	render	the	frames	of	a	UI	window	against	the	16	ms	per	frame	benchmark.
This	tool	is	good	if	you	want	to	observe	how	a	UI	window	performs	against	a	16	ms	per
frame	target,	and	using	the	processing	time,	we	can	identify	any	exceeded	section	of	the
rendering	pipeline.	Also,	using	this	tool,	we	can	monitor	spikes	in	the	frame	rendering
time	associated	with	a	user	or	a	program	action.	To	use	this	tool,	you	should	have	at	least
Android	4.1	and	have	enabled	the	developer	options	on	your	device.

1.	 Navigate	to	Settings	|	Developer	Options	in	your	device.
2.	 Select	Profile	GPU	Rendering	in	the	monitoring	section.
3.	 In	the	Profile	GPU	Rendering	popup,	select	On	screen	as	bars	to	overlay	the

graphs	on	the	screen	of	your	mobile	device.
4.	 Go	to	the	application	that	you	want	to	profile.

Once	you	activate	this	profiler,	you	will	see	a	separate	graph	for	each	visible	application:

The	vertical	axis	shows	the	time	per	frame	in	milliseconds	and	the	horizontal	axis
shows	the	time	elapsing.
When	you	interact	with	your	application,	vertical	bars	will	appear	on	the	screen	from
left	to	right,	graphing	the	frame’s	performance	over	time.
Each	vertical	bar	represents	one	frame	of	rendering.	The	taller	the	bar,	the	longer	it
took	to	render.
The	green	line	marks	the	16-millisecond	target.	Every	time	a	frame	crosses	the	green
line,	your	app	is	missing	a	frame,	and	your	users	may	see	this	as	stuttering	images.

In	the	profile	GPU	rendering	graph,	each	color	in	the	colored	sections	of	the	graph
represents	each	rendering	pipeline.

Here	is	the	brief	description	about	the	preceding	image:

The	green	line	indicates	the	16	milliseconds	mark.	To	achieve	60	frames	per	second,
the	vertical	bar	should	remain	below	the	green	line,	as	any	frame	above	the	green	line
may	cause	pauses	in	the	animations.

The	blue	section	of	the	bar	indicates	the	time	taken	to	create	and	update	the	view’s
display	list.	If	the	section’s	bar	is	tall,	there	may	be	a	lot	of	custom	view	drawing	or
the	onDraw	method	may	have	a	lot	of	work	to	do.
The	purple	section	of	the	bar	represents	the	time	spent	transferring	resources	to	the
render	thread.
The	red	section	of	the	bar	represents	the	time	spent	by	Android’s	2D	renderer	issuing
commands	to	OpenGL	to	draw	and	redraw	display	lists.	The	height	of	this	bar	is
directly	proportional	to	the	sum	of	the	time	it	takes	each	display	list	to	execute—
more	display	lists	equals	a	taller	red	bar.
The	orange	section	of	the	bar	represents	the	time	the	CPU	is	waiting	for	the	GPU	to
finish	its	work.	If	this	bar	gets	tall,	it	means	the	app	is	doing	too	much	work	on	the
GPU.

Anyway,	although	this	tool	is	named	Profile	GPU	Rendering,	all	the	processes	mentioned
actually	happen	in	the	CPU.

A	browser’s	DevTools	performance
In	the	Google	Chrome	web	browser,	Developer	Tools	(press	F12	or	Ctrl	+	Shift	+	I	to
open	the	DevTool)	provides	an	overview	report	about	your	web	application’s	loading	time,
such	as	how	long	the	browser	has	taken	to	process	DOM	events,	paint	elements	to	the
screen,	or	render	the	page	layout.	It	allows	you	to	go	deep	into	your	application’s	events,
frames,	and	actual	memory	usage,	and	it	will	help	you	to	identify	the	root	causes	of	your
application’s	slowness.

Right	now,	we	are	going	to	have	a	look	at	the	frame	mode,	which	allows	you	to	see	how
the	browser	performs	when	generating	a	single	frame.	By	default,	the	timeline	won’t	show
any	data,	and	you	can	record	a	session	with	the	tool	by	opening	your	application	and
clicking	on	the	record	button	(the	grey	circle)	on	the	screen.	You	can	use	the
Command/Ctrl	+	E	shortcut	as	well.

When	you	click	the	record	button,	it	will	turn	to	red	and	will	start	to	capture	the	timeline
of	your	page.	Complete	a	few	actions	inside	your	application	(button	click/scrolling,	and
so	on)	and	after	a	few	seconds,	it	stops	the	recording.

Clicking	on	a	record	will	display	extended	information	about	the	record,	and	using	that
information	you	can	improve	the	particular	event.

At	the	top	of	the	timeline,	the	summary	view	displays	horizontal	bars	representing	the
HTML	and	network	parsing	(blue	color),	JavaScripts	(yellow	color),	painting	and
compositing	events	(green	color),	and	style	recalculation	and	layout	(purple	color)	for
your	page.	When	we	make	visual	changes	such	as	scrolling	or	resizing,	it	will	ask	the
browser	to	repaint	the	browser	events.	If	we	change	the	CSS	properties,	then	recalculation
occurs,	while	layout	events	(or	reflows)	are	due	to	changes	in	the	element’s	position.

In	Chrome,	there	are	a	few	other	tools	available	for	us	to	use,	so	before	going	into
tweaking	rendering	performance	issues,	I	would	like	to	discuss	those	as	well.

In	Google	Chrome	web	browser,	DevTool	has	a	shortcut	allowing	developer	to	toggle	the
visible:hidden	of	an	element.	When	visibility:	hidden	is	applied	to	an	element,	it	is	not
going	to	restructure	the	whole	DOM	tree,	because	the	element	will	available	in	the	page
layout	as	an	unchanged	element.	To	use	the	shortcut,	open	the	Developer	Toolbar	(F12)
and	select	a	DOM	element	using	the	element	panel	that	you	wish	to	hide	and	press	the	H
key.

When	coupling	this	with	the	paint	rectangle	and	timeline,	we	can	easily	observe	which
item	takes	a	longer	period	to	paint.

Some	of	the	user’s	interactions	cause	style	changes	to	the	DOM	elements	and	changes	to
the	DOM	nodes.	As	a	result,	sometimes	the	browser	has	to	repaint	some	of	the	areas.	To
understand	why	repaints	occur,	we	can	use	the	Enable	continuous	page	repainting
feature	by	navigating	to	Drawer	|	Rendering.

This	feature	in	the	Drawer	panel	helps	us	to	identify	elements	that	have	a	high	paint	cost
on	the	page.	It	forces	the	page	to	do	continuous	repainting,	providing	a	counter	showing
how	much	paint	work	is	being	done.	You	can	use	the	H	shortcut	I	mentioned	earlier	to
toggle	different	style	to	observe	what	is	causing	the	issue.

Another	feature	that	we	can	use	in	the	Chrome	Developer	Toolbar	is	the	Show
composited	layer	borders	feature.	You	can	activate	this	in	the	same	location,	and	this
feature	allows	us	to	see	the	DOM	element	that	is	being	manipulated	at	the	GPU	level.

If	an	element	gets	the	advantage	of	GPU	acceleration,	there	will	be	an	orange	border
around	the	element.

Remote	debugging
It’s	a	bit	hard	to	build	a	mobile	website	or	an	application	without	debugging	it	on	actual
devices.	Luckily,	nowadays	modern	web	browsers	provide	the	necessary	tools	to	debug
your	websites	on	the	desktop	as	well	as	for	mobiles.	Using	these	tools,	developers	can
connect	their	device	to	a	PC	and	run	a	debug	session.

Normally,	we	can	remotely	debug	by	connecting	our	mobile	device	to	our	PC	using	a	USB
cable.	When	you	connect	your	device	to	the	debugging	PC,	you	can	profile	pages	using
the	timeline,	and	you	can	view	and	edit	HTML,	CSS,	and	scripts	until	you	have	the
optimized	result.

As	I	mentioned	earlier,	every	major	browser	such	as	Chrome,	Safari,	Opera,	and	Firefox
now	has	a	remote	debugging	facility,	and	setting	it	up	for	your	mobile	device	can	be	done
in	a	few	steps.	So,	please	learn	how	to	connect	your	device	for	remote	debugging,	which
you	can	learn	about	by	reading	the	remote	debugging	guidelines.

Performance	tools	in	Firefox,	Safari,	and
IE
We	discussed	Google	Chrome’s	Developer	Tools,	which	we	can	use	to	debug	our	website.
However,	if	you	are	an	IE,	Safari,	or	Firefox	user,	don’t	worry,	as	those	browsers	offer
their	own	developer’s	toolbar	for	developers	as	well.

Firefox	Developer	Tools
The	same	as	Chrome,	Firefox	has	a	feature	called	paint	flashing,	which	can	be	used	to
find	the	areas	that	require	repainting.	When	we	turn	this	feature	on,	it	will	tint	each	region
with	a	random	color	so	we	can	identify	the	section	easily.	Regions	that	have	a	heavy	paint
flashing	are	the	areas	that	we	have	to	worry	about.	So,	we	have	to	minimize	them	as	much
as	possible.

To	enable	paint	flashing:

1.	 Open	Firefox.
2.	 Type	about:config	in	the	address	bar	and	press	Enter.
3.	 Accept	the	warning.
4.	 Right	click	and	select	New	|	Boolean.
5.	 Type	nglayout.debug.paint_flashing.
6.	 Set	the	option	to	True.

You	will	see	something	like	the	following	screenshot	when	you	turned	on
paint_flashing:

IE	11	Developer	Tools
Surprisingly,	the	IE	11	Developer	Toolbar	has	many	new	features	including	special	UI
responsiveness	to	profile	performance,	slowness,	and	CPU	and	memory	usage.

When	you	load	the	page	in	IE	11,	open	the	Developers	Toolbar	(F12),	and	start	a	new
profiling	session	on	UI	responsive	tab	by	clicking	the	record	button.	Once	clicked,	don’t
do	any	fancy	actions	on	the	page,	so	you	will	be	able	to	pinpoint	the	exact	reason	for	the
issue.

Once	you	have	completed	the	required	action,	stop	the	recording	and	the	toolbar	will
generate	a	report	for	you.	Using	the	report,	you	can	find	out	which	area	has	issues	and
what	actions	have	caused	them.

Also,	IE	11’s	Developer	Toolbar	has	another	feature	called	Network.	Using	this,	you	can
find	out	which	requests	you	made	when	you	opened	a	page,	and	how	much	data	and	time
are	consumed	to	complete	each	action.

Not	only	these,	but	the	IE	11	Developer	Toolbar	also	has	many	other	features	available,
and	using	these	features,	we	can	easily	observe,	HTML,	and	CSS	phrasing,	network
requests,	image	decodes,	script	evaluation,	animation	frame	callbacks,	and	more.	To	learn
more	about	the	IE11	Developer	Toolbar,	check	out	the	official	IE	11	Developer	Toolbar
guidelines.

Safari	Developer	Toolbar
Apple	has	also	been	working	on	their	Safari	browser	and	with	their	Developer	Toolbar,	we
can	track	and	improve	our	website’s	performance	easily.	Using	the	layer	details	sidebar,
we	can	get	insights	into	WebKit’s	compositing	of	elements.	When	you	select	a	layer	in	the
sidebar,	you	can	get	summarized	information	related	to	that	layer.

The	same	as	Chrome,	you	can	also	display	compositing	layer	borders,	generated	in	DOM
tree’s	navigation	bar,	which	overlays	your	page	to	provide	a	clear	visualization	of	the
layers	and	the	number	of	times	they	are	being	repainted.

The	following	are	the	reasons	for	compositing:

1.	 Open	the	website	in	Safari
2.	 Open	the	web	inspector
3.	 Click	on	the	layers	button
4.	 When	you	hover	over	the	element,	you	can	see	the	reason	for	the	layer’s	promotion

You	can	also	show	the	number	of	times	a	layer	was	repainted.	This	is	helpful	so	you	can
understand	which	part	of	your	page	is	getting	excessively	painted	because	of	your	scripts.

The	Google	Chrome	emulator
We	have	already	discussed	a	few	tools	that	we	can	use	in	Chrome’s	Developer	Toolbar	to
test	a	website’s	performance.	Now	I	am	going	to	discuss	how	we	can	use	the	device	mode
in	Developer	Toolbar.	The	benefits	of	this	feature	are	that	we	can	use	our	browser’s
viewport	as	a	device	emulator,	and	we	can	test	our	website’s	responsiveness.

To	turn	on	the	device	mode,	open	Developer	Toolbar	and	click	on	the	toggle	device	mode
icon.	When	the	mode	is	activated,	the	icon	turns	blue	and	the	viewport	will	transform	into
an	emulator.

You	can	use	Chrome’s	DevTools	device	mode	to:

Check	the	responsive	design	on	different	screen	sizes	and	resolutions	including	retina
displays
Inspect,	edit,	and	visualize	CSS	media	queries
Simulate	the	device	input	for	orientation,	touch,	and	geolocation
Enhance	your	current	debugging	workflow	by	combining	the	existing	DevTools	with
the	device	mode

As	I	mentioned	earlier,	using	the	preset,	you	can	easily	switch	to	any	device	that	is	in	the
list.

Each	preset	automatically	configures	the	device’s	emulation	in	the	following	ways:

If	available,	it	enables	touch	emulation
It	emulates	mobile	scrollbar	overlays	and	meta	viewport
It	auto	sizes	(boosts)	text	for	pages	without	a	defined	viewport
It	specifies	the	User	Agent	(UA)	string	for	requests
It	sets	the	device	resolution	and	pixel	ratio

Also,	using	the	network	dropdown	options,	you	can	choose	various	network	speeds	such
as	3G,	Edge,	DSL,	offline,	and	more.	This	is	really	beneficial	if	you	want	to	observe	how
your	website	responds	and	unfolds	under	different	Internet	speeds.

Google	PageSpeed	Insights
Google	PageSpeed	Insights	(https://developers.google.com/speed/pagespeed/insights/)	can
be	used	to	measure	the	performance	of	a	page	for	mobile	devices.	PageSpeed	fetches	the
URL	twice,	once	for	the	desktop	user	agent	and	once	for	the	mobile	user-agent.

The	PageSpeed	gives	a	score	of	0	to	100	points	to	your	page,	and	a	higher	score	is	better.
If	you	can	get	more	than	85	points	on	a	page,	it	will	indicate	that	the	page	is	performing
well.	However,	this	tool	is	being	continually	improved,	and	the	score	will	differ	from	time
to	time.

PageSpeed	Insight	gives	feedback	on	two	areas,	how	to	improve	the	page	performance:

Time	to	above-the-fold	load:	How	much	time	has	been	consumed	from	when	a	user
made	the	request	and	when	the	browser	rendered	the	above-the-fold	content	(portion
of	a	webpage	users	see	on	their	screen	before	they	scroll)
Time	to	full	page	load:	The	total	consumed	time	from	the	first	user	request	to	when
the	completed	page	is	rendered	by	the	browser

Once	you	run	your	page’s	URL	using	the	tool,	you	will	get	the	page’s	score	and	some	of
the	recommendations	that	you	could	implement	for	your	page.

https://developers.google.com/speed/pagespeed/insights/

However,	you	have	to	consider	that	the	performance	of	the	network	connection	that	you
use	has	a	direct	impact	on	the	page’s	score.

YSlow
YSlow	is	a	tool	developed	by	Yahoo!	and	it	examines	all	the	components	of	your	page’s
performance	and	offers	suggestions	for	improvements.	YSlow	is	integrated	into	the
Firebug	web	development	tool	for	Firefox,	and	for	Chrome	you	can	download	their
extension.

The	Yahoo!	team	has	identified	34	rules	that	affect	a	web	page’s	performance	and	YSlow
is	based	on	23	of	these	34	rules.	Studies	have	shown	that	if	a	developer	can	improve	the
following	23	rules,	they	can	enhance	web	performance	from	up	to	25	to	50	percent.

Minimize	HTTP	requests
Use	a	CDN
Avoid	an	empty	src	or	href
Add	expires	or	a	Cache-Control	Header
Gzip	components
Put	style	sheets	at	the	top
Put	scripts	at	the	bottom
Avoid	CSS	expressions
Make	JavaScript	and	CSS	external
Reduce	DNS	lookups
Minify	JavaScript	and	CSS
Avoid	redirects
Remove	duplicate	scripts
Configure	ETags
Make	AJAX	cacheable
Use	GET	for	AJAX	requests
Reduce	the	number	of	DOM	elements
Ensure	no	404s
Reduce	cookie	size
Use	cookie-free	domains	for	components
Avoid	filters
Do	not	scale	images	in	HTML
Make	any	favicon.ico	icons	small	and	cacheable

When	analyzing	the	YSlow	page	test,	it	gives	a	certain	number	of	marks	for	each	point,
and	based	on	the	total	marks,	it	gives	an	overall	grade	to	your	page.

Summary
In	this	chapter,	we	discussed	how	to	use	profiling	tools	such	as	GPU	Overdraw
Walkthrough	and	GPU	Rendering	Walkthrough	to	debug	and	enhance	our	website’s
performance.	After	that,	I	explained	the	features	of	browser’s	DevTools	and	how	we	can
remotely	debug	our	website	using	actual	devices	connecting	to	our	PC.	Also,	I	explained
the	Firefox,	Safari,	and	IE	developer	toolbars	and	how	we	can	use	those	for	debugging.

In	the	latter	part	of	the	chapter,	we	went	through	the	Google	emulator	and	how	we	can	use
it	as	a	testing	environment.	Finally,	I	showed	you	how	to	get	a	performance	score	and
rating	for	our	website	using	Google	PageSpeed	Insights	and	YSlow.	Using	that	report’s
recommendations,	we	can	enhance	our	website’s	performance	by	making	simple	tweaks.

In	the	next	chapter,	I	am	going	to	discuss	how	to	manage	third-party	components	to
increase	our	website’s	performance.

Chapter	6.	Managing	Third-Party
Components
In	the	previous	chapter,	we	have	discussed	how	to	monitor	and	debug	a	mobile	website
using	browser’s	DevTools.	Most	of	the	modern	web	browsers	now	include	an	advanced
toolbar	that	helps	developers	to	monitor	and	optimize	their	websites	with	ease.	Many	of
these	toolbars	have	the	same	features	list,	so	if	you	could	master	one	toolbar,	I	am	sure
you	could	apply	the	same	mechanism	for	the	others.	Also,	we	have	briefly	discussed
Google	PageSpeed	Insights	and	YSlow,	which	you	can	use	to	check	your	website’s
performance.	The	most	valuable	thing	about	these	tools	is	that	you	can	use	their
recommendations	to	enhance	your	website’s	performance.

In	this	chapter,	I	am	going	to	discuss	how	to	manage	third-party	components	for	optimal
results.	This	is	another	crucial	chapter	for	optimization,	however,	we	tend	to	forget	to
check	and	apply	many	of	following	points.	To	go	through	this	chapter,	you	don’t	have	to
be	a	pro,	a	basic	knowledge	of	web	development	is	sufficient.

I	am	going	to	discuss	the	following	topics	in	this	chapter:

Eliminating	404	errors	and	missing	assets
HTTP	300,	400,	and	500	codes
Content	Delivery	Network	(CDN)
Third-party	plugins
Opening	connection
Closing	connection
Offloading	to	Wi-Fi
Screen	rotations
Flash	files

Eliminating	404	errors	and	missing	assets
Getting	404	errors	is	the	most	annoying	thing	that	the	user	can	have	when	they	visit	your
website.	Search	engine	crawlers	have	also	taken	this	up	as	a	serious	issue.	If	you	use	the
Google	analytics	tool	on	your	website,	you	can	get	all	the	404	pages	in	your	website.	To
do	this,	navigate	to	Google	analytic	|	Behavior	|	Site	Content	|	Content	Drilldown	and
search	for	404.

Using	this	information,	you	can	fix	your	site’s	404	errors	with	ease.	Also,	remember	that
sometimes	we	can’t	prevent	the	occurrence	of	all	the	404	errors	on	the	website	because	we
are	constantly	working	on	our	website,	and	it’s	a	never	ending	process.	However,	make
sure	that	you	are	aware	of	it	so	that	you	can	fix	it	later.

Also,	you	can	find	the	404	errors	that	the	search	engine	crawlers	have	encountered	using
webmaster	tools.	There	are	three	main	webmasters	tools	available	out	there	and	they	will
tell	you	which	404	errors	they	have	found:

Google	search	console
Bing	web	master	console
Yandex	web	master

When	you	have	found	a	404	error	in	your	website,	and	you	know	the	reason	for	its
occurrence,	you	should	fix	it	as	soon	as	possible.	This	will	indicate	the	quality	of	your
website	for	both	users	and	search	engines.

However,	although	you	may	have	fixed	these	404	errors	on	your	website,	it	will	take	a
while	for	the	search	engine	to	index	them.	So,	if	you	can	redirect	those	pages	to
appropriate	pages,	then	do	so.

To	create	redirects,	you	can	use	the	following	methods:

Create	them	manually	in	the	.htaccess	file:	This	is	the	fastest	way	that	you	can
follow	if	you	know	how	to	access	the	.htaccess	file.
Use	a	redirect	plugin:	There	are	a	number	of	redirect	plugins	available	in	the
market;	you	can	use	any	one	of	them	depending	on	your	platform.	However,	use	this
with	caution	because	sometimes	these	plugins	will	slow	down	your	application.

Also,	going	through	your	server	logs,	you	can	get	a	different	kind	of	404	error	other	than
missing	pages,	such	as	broken	images	or	broken	videos.	Additionally,	beware	of	broken
embedded	video	URLs	such	as	YouTube	because	sometimes	they	do	not	appear	in	server
logs.	All	of	these	missing	assets	don’t	cause	the	whole	page	not	to	work,	but	they	do	look
sloppy.	These	types	of	issues	are	more	difficult	to	find	because	web	master	tools	don’t
report	them	correctly.

The	easiest	method	to	find	these	missing	assets	is	to	use	a	tool	such	as	Screaming	Frog.
The	tool	is	very	reliable	when	it	comes	to	finding	broken	images.	Also,	you	can	go
through	your	server	log	and	do	a	search	using	a	combination	such	as	404	and	.jpg/.png.

I	suggest,	as	a	practice,	that	you	check	your	website’s	404	errors	every	month.	If	it’s	a
large	website	that	has	a	massive	number	of	pages,	then	checking	for	errors	every	week	is
recommended.	When	you	run	the	test	at	first,	you	will	get	a	huge	numbers	of	404	errors
but	gradually,	this	number	will	decrease.

HTTP	300,	400,	and	500	codes
If	you	get	a	3XX	class	of	HTTP	status	code,	it	means	that	the	user	agent	needs	to	take
some	additional	actions	to	fulfill	the	request.	The	required	action	is	fulfilled	by	the	user
agent	without	any	involvement	of	the	user,	if	and	only	if,	the	method	used	in	the	second
request	is	HEAD	or	GET.	A	client	needs	to	detect	infinite	redirection	loops	in	the	website
because	for	each	redirection,	it	will	generate	network	traffic.

Receiving	an	HTTP	301	status	code:	An	HTTP	301	status	code	specifies	that
requested	resources	by	the	user	have	permanently	moved	to	another	location.	The
HTTP	response	that	carries	this	code	needs	to	also	include	the	new	location,	and	the
client	should	use	this	new	URL	the	next	time	they	try	to	get	the	same	resource.	If	it’s
possible,	a	client	needs	to	update	all	references	to	the	requested	URL	when	an	HTTP
301	status	code	pops	up.
Receiving	an	HTTP	302	status	code:	An	HTTP	302	status	code	specifies	that
requested	resources	by	the	user	have	temporarily	moved	to	another	location.	The
HTTP	response	that	carries	this	code	needs	to	also	include	the	new	location.	This
code	implies	to	the	client	that	they	need	to	continue	using	the	same	URL	to	access
this	resource.
Receiving	an	HTTP	303	status	code:	This	status	code	specifies	that	the	server	sent
this	response	to	direct	the	client	to	get	the	requested	resource	to	another	URL	with	a
GET	request.	It’s	essential	to	know	what	the	HTTP	400	and	500	error	codes	mean	so
that	you	can	fix	the	issues	that	they	raise,	especially	if	you	have	control	over	the
cause.
Receiving	an	HTTP	400	status	code	(bad	request):	This	error	specifies	that	the
user’s	request	carries	incorrect	syntax.
Receiving	an	HTTP	401	status	code	(unauthorized):	This	error	specifies	that	the
requested	file	needs	authentication	(a	username	and	password).
Receiving	an	HTTP	403	status	code	(forbidden):	This	error	specifies	that	the
server	is	not	allowed	to	access	the	requested	file.	If	a	user	received	this	message,	you
need	to	check	the	file	permission	settings	or	verify	that	the	file	is	protected.
Receiving	an	HTTP	404	status	code	(not	found):	We	have	already	discussed	this
code	in	a	previous	section.	If	you	are	getting	a	5XX	error,	it	means	that	your	server
cannot	fulfill	a	valid	request	from	a	visitor.	To	resolve	this	type	of	issues,	most	of	the
time,	you	need	to	get	support	from	a	server	administrator.
Receiving	an	HTTP	500	status	code	(internal	server	error):	Usually,	you	get	this
type	of	error	code	because	of	incorrect	server	configuration.
Receiving	an	HTTP	501	status	code	(not	implemented):	This	error	occurs	when
the	user’s	request	is	not	supported	by	the	server.	This	can	happen	because	of	outdated
servers.
Receiving	an	HTTP	502	status	code	(bad	gateway):	This	error	occurs	because	of
the	incorrect	configurations	of	proxy	servers.	Also,	the	error	could	arise	because	of
poor	IP	communication	between	backend	computers.
Receiving	an	HTTP	503	status	code	(service	unavailable):	This	error	occurs	when

the	server	has	been	temporarily	closed	due	to	maintenance	or	because	of	a	large
number	of	requests.
Receiving	an	HTTP	504	status	code	(gateway	timeout):	This	error	occurs	when	the
server	doesn’t	get	a	response	from	a	server	further	up	the	chain.	This	issue	happens
mainly	because	of	slow	communication	between	upstream	computers.
Receiving	an	HTTP	505	status	code	(version	not	supported):	This	error	message
occurs	when	the	server	refuses	to	fulfill	the	request	made	by	the	client.	This	issue
happens	mainly	because	of	the	invalid	protocol	specified	by	the	customer	device.
Receiving	an	HTTP	506	status	code	(variant	also	negotiates):	This	error	specifies
wrong	server	configurations.
Receiving	an	HTTP	507	status	code	(insufficient	storage):	This	error	occurs
because	of	memory	outage	of	the	server.
Receiving	an	HTTP	509	status	code	(bandwidth	limit	exceeded):	This	error	occurs
when	the	bandwidth	limit	exceeds	the	limit	that	was	set	by	the	system	administrator.
Receiving	an	HTTP	510	status	code	(not	extended):	This	error	occurs	when	an
extension	attached	to	an	HTTP	request	is	not	supported	by	the	server.	As	I	have
explained,	every	developer	needs	to	know	the	meanings	of	these	error	codes.	Then,
they	can	understand	the	root	cause	and	act	upon	it.	Not	only	for	mobiles,	but	this	is
also	crucial	for	every	platform.

Content	Delivery	Network
The	user’s	geographic	location	and	the	distance	on	which	your	web	server	has	a	direct
impact	on	response	time	is	limited.	So,	dividing	your	website’s	content	across	multiple
geographic	locations	will	enhance	page	loading	time.	A	Content	Delivery	Network
(CDN)	hosts	files	in	different	locations	so	that	the	person	who	visits	your	website	can
receive	the	nearest	copy	faster.

Most	CDNs	are	used	to	host	statistic	content	such	as	JavaScripts,	CSS,	images,	videos,
and	fonts.	Other	than	these,	there	are	many	benefits	that	we	can	get	if	we	use	a	CDN
network:

Different	domains:	For	a	single	domain,	there	is	a	limit	for	the	concurrent
connection	made	by	browsers.	Most	of	the	time,	it’s	between	4-8	and	other
connections	have	to	wait	until	they	are	completed.	However,	CDN	files	are	hosted	on
a	different	domain,	so	the	browser	permits	to	download	CDN	hosted	files	exceeding
the	normal	limit.
Files	can	be	pre-cached:	There	is	a	high	probability	that	someone	may	visit	the
website	using	Google	CDN	before	you	visit	(files	such	as	jQuery).	So,	files	can	be
already	cached,	and	you	don’t	have	to	download	them	again.
High-capacity	infrastructures:	You	can	get	a	flexible	and	reliable	service	from	a
reputed	CDN	provider	who	will	have	a	higher	availability,	lower	network	latency,
and	less	packet	loss.
Distributed	data	centers:	If	your	web	server	is	located	in	Texas	and	the	user	is
visiting	from	Asia,	they	have	to	make	a	number	of	transcontinental	electronic	hops
before	they	can	access	your	files.	Using	a	CDN,	we	can	eliminate	this	because	it
serves	the	closest	data	to	the	user.
Built-in	version	control:	Most	of	the	CDN	has	an	integrated	version	control,	so	you
can	serve	your	desired	version	to	the	end	user.
Boosts	performance	and	saves	money:	Using	a	CDN,	you	can	distribute	the	load,
increase	performance,	and	save	bandwidth,	which	is	the	expected	goal	when	it	comes
to	mobile	web	optimization.

Third-party	plugins
Connecting	and	using	third-party	applications	has	increased	in	the	last	couple	of	years,
and	this	may	slow	down	your	application.	I	think	this	is	a	huge	issue	that	we	face	these
days,	and	if	an	external	plugin	takes	a	longer	period	to	load,	it	will	have	an	enormous
effect	on	customer	experience.

Most	of	the	time,	third-party	applications	provide	a	broad	range	of	functionality,	such	as
widgets,	analytics,	ads,	and	tracking	software.	However,	they	can	cause	performance
issues.

The	issue	with	third-party	applications	is	responsiveness	and	availability.	Some	scripts
may	be	optimized	for	performance	but	most	are	not.	Also,	even	if	you	are	using	a	reliable
third-party	script,	it	may	have	an	outage.

Using	a	third-party	application	may	bring	many	functionalities	to	your	application.
However,	it	is	important	to	decide	if	it	is	worth	the	risk	because	one	line	of	third-party
application	code	can	crash	your	application.

To	minimize	the	impact	of	the	third-party	application	on	your	application,	consider	the
following	recommendations:

Weigh	the	benefits	versus	risk	value	on	performance	and	use	add-ons	as	much	as
possible
If	you	have	decided	to	use	third-party	applications,	load	them	asynchronously

Opening	connection
When	you	load	a	JavaScript	file	synchronously	in	the	Head	tag	of	an	HTML	page,	other
requested	files	have	to	wait	until	the	JavaScript	file	gets	downloaded.	This	is	more	visible
to	the	end-user	because,	he	cannot	see	any	content	until	all	the	files	in	the	HEAD	area	get
downloaded.	However,	using	the	asynchronous	method	to	download	the	file	we	can
resolve	this	issue	to	some	extent.

When	we	specify	JavaScript	files	to	be	loaded	in	the	HEAD	section	of	the	HTML,	it	is
essential	to	know	the	two	different	ways	that	we	can	use	to	load	the	data,	which	are	as
follows:

Synchronous:	The	requested	file	will	load	before	the	parsing	of	the	page	continues
Asynchronously:	The	other	requested	files	will	be	downloaded	parallel	to	the
requested	file

So,	the	best	practice	will	be	the	JavaScript	files	located	in	the	HEAD	section	of	the	HTML
file	load	asynchronously.	By	doing	so,	we	can	eliminate	page	rendering	delays.

Closing	connection
Most	of	the	time,	many	mobile	applications	leave	their	connections	open	after	they	have
transmitted	necessary	data.	This	usually	happens	if	we	don’t	close	the	connection
manually,	once	our	transmission	is	completed.

As	a	practice,	you	need	to	always	close	the	opened	connection	as	soon	as	possible	once
the	transfer	is	completed.	Promptly	closing	connections	eliminates	you	from	having	to
open	the	purpose	of	closing	connection	due	to	timeouts.	By	discarding	as	many	of	these
inefficient	connections	as	you	can	will	help	you	to	save	energy	and	optimize	your
application.

Offloading	to	Wi-Fi
If	you	are	connecting	to	the	network	using	3G,	4G	or	HSPA	regardless	of	the	carrier,	they
use	radio	state	machine	to	manage	the	radio	resources.	On	the	other	hand,	Wi-Fi
connections	are	much	more	efficient	than	3G	and	4G.	For	Wi-Fi,	there	is	no	need	for	the
state	machine.	As	a	developer,	you	can	use	this	to	your	advantage.

Although	there	is	less	latency	for	connection	setup,	many	applications	fail	to	obtain	this
advantage.	Offloading	to	Wi-Fi	offers	has	several	benefits,	which	are	as	follows:

Lower	data	cost
Extended	battery	life
Faster	connection
Improved	network	traffic
Improved	customer	experience

However,	if	you	use	Wi-Fi	extensively,	it	will	drain	your	battery	faster	than	compared	to	a
3G	or	4G	data	connection.	However,	if	you	use	it	occasionally,	the	impact	will	be
minimal.

You	can	use	a	Wi-Fi	connection	for	the	following	situations:

If	your	application	requires	real-time	interaction	with	the	server,	Wi-Fi	will	be	the
best	option.
If	you	have	a	heavy	data	usage	application,	use	Wi-Fi	as	much	as	possible.	You	can
use	a	tool	such	as	WifiManager	to	scan	for	Wi-Fi	networks	near	you.

Screen	rotations
The	introduction	of	the	accelerometer	in	mobile	devices	has	created	new	opportunities	for
developers	to	create	an	application	that	is	creative,	innovative,	and	user-friendly.	The
accelerometer	allows	the	device	to	detect	the	physical	orientation	of	the	device	so	we	can
use	that	information	in	our	application.	For	example,	if	you	open	the	calculator	application
on	your	device,	in	vertical	view	it	will	behave	like	a	regular	calculator.	If	you	change	the
orientation	to	horizontal,	the	calculator	will	turn	into	a	scientific	calculator.	However,	if
we	don’t	manage	the	screen	rotation	efficiently,	it	may	cause	issues.

With	some	mobile	applications,	screen	orientation	initiates	network	connection	just	for
that	event.	This	wastes	the	device’s	battery	power	and	consumes	network	resources.

However,	to	use	the	accelerometer	efficiently,	you	need	to	track	the	orientation	locally	and
send	these	details	at	scheduled	intervals,	bundled	with	another	event.	Using	this	method,
we	can	save	power	and	data	usage.

When	we	rotate	our	screen,	we	will	get	a	different	option	and	user	interface:

Flash	files
Adobe	Flash	is	used	to	create	rich	Internet	applications,	vector	graphics,	animations,	and
games.	It’s	been	very	successful	in	the	past	but	now	the	current	versions	of	Android	and
iOS	no	longer	support	it.	So,	if	your	application	uses	Flash,	your	application	will	face	a
breakdown.

Because	of	the	lack	of	support	from	the	device’s	OS,	using	Flash	content	is	not
recommended:

iOS	don’t	support	flash
The	Adobe	Flash	Player	can	only	be	supported	on	Android	2.2	through	Android	4.0,
Blackberry	PlayBook,	and	HP	webOS
Adobe	itself	has	stopped	supporting	the	Flash	Player

So	the	recommendation	is	that	you	need	to	avoid	using	Flash	content	on	your	website	or
application.

Summary
In	this	chapter,	we	have	discussed	how	we	can	check	404	errors	in	our	website,	why	it	is
important	to	eliminate	404	errors,	and	how	we	can	do	so.	Not	only	404	errors,	but	we	also
learned	and	understood	300,	400,	and	500	error	messages	as	well.	Then,	we	have
discussed	CDN	networks	and	the	benefits	of	using	a	CDN	network.	Also,	you	need	to
manage	third-party	plugins	in	your	website	properly	in	order	to	get	an	optimized	website.

In	the	later	part	of	this	chapter,	I	have	explained	how	the	opening	and	closing	of	a
connection	works	and	the	importance	of	offloading	to	Wi-Fi.	After	this,	we	have	discussed
screen	rotation	and	how	we	can	use	it	to	optimize	our	website.	Finally,	we	went	through
Adobe	Flash	and	recommended	not	use	it.

In	the	next	chapter,	which	is	also	the	final	chapter,	I	am	going	to	give	you	some	tips	and
tricks	that	you	can	use	to	enhance	your	application’s	performance.

Chapter	7.	Tips	and	Tricks
In	the	previous	chapter,	we	discussed	the	reasons	why	we	should	eliminate	404	errors	and
missing	elements	on	our	mobile	website.	Also,	the	developer	should	have	an	excellent
knowledge	of	300,	400,	and	500	codes,	and	I	have	briefly	explained	these	code	types.
Using	a	CDN	is	a	superb	method	to	boost	your	website,	and	it	allows	you	to	deliver	your
website	content	faster	to	the	end-user.	Managing	third-party	plugins	in	the	proper	way	is
really	essential	because	it	can	make	or	break	your	website.	I	have	explained	the
importance	of	opening	and	closing	the	connection	and	managing	it	properly;	you	can
enhance	the	performance	of	your	website	as	well	as	save	bandwidth	and	battery	power	of
the	user’s	device.

We	have	discussed	the	benefits	of	offloading	through	Wi-Fi	rather	than	using	3G,	4G,	or
HSPA	for	connectivity.	Finally,	I	have	explained	how	to	manage	screen	rotation	and	why
we	should	eliminate	Flash	file	usage	on	mobile	devices.

With	the	information	given	in	all	the	chapters	that	you	have	gone	through	so	far,	I	assume
you	have	learned	many	mobile	optimization	techniques.	It’s	true	that	when	it	comes	to	the
real	world,	applying	all	of	these	techniques	to	a	website	is	not	possible.	However,	as	a
developer,	manager,	or	a	business	person	you	should	try	to	implement	these	as	much	as
possible.

In	this	chapter,	which	is	also	the	last	chapter,	I	am	going	to	discuss	a	few	tips	and	tricks
that	we	can	use	to	enhance	mobile	web	performance.	The	topics	covered	are	as	follows:

Built	for	performance
When	to	optimize
Invest	for	performance
Design	tool
Performing	actions	optimistically
Move	bits	when	no	one	is	watching
Less	work	for	the	end	user
New	relic

Built	for	performance
Now	we	all	know	why	performance	optimization	is	important	for	a	mobile	application	or
website.	However,	to	implement	and	develop	websites	for	performance,	it	takes	time	and
money.	If	you	fail	to	get	budget	approval	from	stakeholders	for	a	project	before	it	begins,
you	will	have	a	really	hard	time.	However,	convincing	them	to	do	so	is	not	that	easy
because	usually,	no	one	wants	to	invest	if	there	is	no	valuable	return	to	them.

It’s	easy	to	get	excited	about	reducing	metrics	like	load	time	and	page	weight,	but	they’re
probably	not	what	matters	to	the	people	you	need	to	get	support	from.	Most	of	the	time,
stakeholders	want	to	hear	about	what	optimization	will	do	for	the	things	they	care	about.
Some	people	will	want	to	observe	how	it	affects	the	bottom	line.	Others	may	be	concerned
more	about	what	it	means	for	page	views	and	bounce	rates.	Learn	what	others	care	about
and	focus	on	prioritizing	how	performance	improves	those	factors.	You’ll	have	a	lot	more
success	convincing	them	of	the	importance	of	performance	if	you	can	show	some
statistical	data	that	matters	to	them.

If	you	are	pitching	your	idea	and	importance	of	performance	to	a	client	or	top
management,	use	visuals	to	convince	them.	One	excellent	method	is	to	show	the	client
their	competitor’s	application	or	website’s	performance	and	convince	them	how	to	take
advantage	over	their	client’s	website.	If	your	customer	is	smart	enough,	they	will
understand	this	straight	away	because	no	one	likes	to	lose	to	their	opponent.

There	are	a	couple	of	tools	available	online	and	by	visiting	www.webpagetest.org	you	can
do	this	easily.	Once	you	load	www.webpagetest.org,	go	to	Visual	Comparison.

Type	in	the	URLs	that	you	want	to	compare:

http://www.webpagetest.org
http://www.webpagetest.org

Once	you	click	on	the	START	TEST	button,	the	tool	will	begin	to	generate	a
comprehensive	report.	Using	the	Create	video	button	you	can	make	a	video	as	well.	This
tool	will	capture	screenshots	throughout	the	loading	process	so	you	can	see	exactly	when
things	start	to	load	on	each	second.

When	to	optimize
When	it	comes	to	web	optimization,	most	of	us	leave	the	discussion	of	performance	to	the
end	of	the	conversation,	when	we	mention	it	in	passing;	we	underplay	its	importance	to
the	project.	By	not	bringing	it	up	throughout	the	process,	we	are	saying	that	we	don’t	think
it	is	important	enough	to	discuss	further.	We’re	saying	it’s	something	that	does	not	have
much	value.	If	we	want	to	start	correcting	the	course	of	performance	on	the	Web,	we	must
have	the	discussion	on	performance	from	the	very	beginning	of	the	process,	and	we	must
be	strict	about	it.	One	of	the	best	ways	to	do	this	is	to	set	a	performance	budget.

Most	of	the	time	we	hear	many	people	say	in	the	early	stages	of	a	project	that	they	want
their	site	to	be	fast,	only	to	see	it	turn	into	another	one	of	those	things	that	would	be	nice
to	fix	eventually.	We	can	get	this	done	by	setting	up	a	performance	budget.	A	performance
budget	is	exactly	what	it	sounds	like.	You	set	a	budget	for	your	page	and	do	not	allow	the
page	to	exceed	that	number.

Starting	with	page	load	time	is	a	splendid	idea,	but	the	budget	you	set	and	refer	to	will
hold	more	weight	if	you	can	specify	the	actual	page	weight	or	request	count.	Referencing
a	particular	page	weight	or	a	number	of	requests	instead	of	just	a	particular	load	time
makes	the	conversation	easier.

For	example,	suppose	your	budget	says	that	the	site	must	load	in	less	than	six	seconds	on	a
3G	network,	and	you’re	trying	to	decide	whether	or	not	to	add	a	gallery	to	the	page.	To	do
this,	you	must	first	translate	those	six	seconds	into	a	weight	or	request	count	to	be	able	to
make	that	determination	upfront.

Request	count	and	page	weight	are	also	a	relatively	easy	thing	to	reinforce	in	your	build
process,	allowing	you	to	enforce	the	budget	rigidly	if	you	so	choose.	Knowing	that
performance	affects	just	about	every	important	business	metric,	the	ideal	scenario	is	to
make	your	site	as	fast	as	possible.	Also,	get	to	know	about	as	many	details	as	possible	is
critical	to	web	optimization.	There	are	two	additional	criteria	that	you	can	consider	when
you	define	a	budget,	which	are	as	follows:

Current	performance	of	your	website:	First	of	all	you	have	to	audit	and	measure
your	website’s	performance	under	different	network	conditions.	When	you	do	that
test,	make	sure	that	you	measure	the	loading	time,	page	weight,	and	the	number	of
HTTP	requests	that	you	made.
Current	performance	of	your	competitor’s	website:	Do	the	same	test	for	other
similar	sites	in	the	industry.

Then,	you	can	get	an	idea	of	how	your	websites	perform	and	using	this	data	you	can
decide	your	budget.

Also,	when	you	define	a	performance	budget,	be	realistic.	Make	sure	that	you	set	goals
that	you	can	achieve,	such	as	No	more	than	20	HTTP	requests	or	maximum	page	size
going	to	be	600	KB.	If	you	target	an	unrealistic	budget,	chances	are	you	are	not	going	to
achieve	it.	So,	be	strict,	but	understand	the	reality.

Invest	for	performance
Performance	budget	is	an	excellent	way	to	ensure	performance	remains	part	of	the	project.
However,	as	we	discussed	earlier,	the	budget	must	be	defined	as	soon	as	possible.	If	you
are	half	way	through	a	project	without	a	performance	budget,	you	will	have	a	difficult
time	to	convince	the	stakeholders	or	top	management.	Also,	by	then,	there	may	already	be
approved	designs	or	features	that	immediately	crush	whatever	budget	you	may	have
needed	to	set.

Another	important	thing	is	that	when	you	define	the	budget,	and	as	you	enforce	it,	you
should	already	know	what	content	needs	to	be	on	the	page.	When	you	allocate	a
performance	budget	to	your	project,	it	should	help	you	to	decide	how	to	display	your
content,	rather	than	not	what	content	to	display.	Removing	content	from	your	page	is	not	a
strategy	of	performance.

Design	tools
Mobile	web	optimization	requires	teamwork;	it’s	not	just	the	developer’s	job	to	enhance
the	performance	of	a	website.	Project	plan,	designs,	developments,	and	QA	all	should	be
linked	together	to	achieve	a	performance	goal.	If	we	take	the	designers,	they	play	a	huge
role	in	developing	a	website.	So,	they	have	to	be	involved	when	they	do	their	visuals.	For
example,	we	all	know	how	flawed	designing	websites	with	software	like	Photoshop	is.

I	think	the	more	it	gets	discussed,	the	more	we	realize	that,	as	with	any	tool,	Photoshop
has	many	positives	as	well	as	negatives.	We’ll	never	fully	get	rid	of	image	manipulation
software	in	the	design	process	and,	frankly,	that	shouldn’t	be	the	goal.	But	it’s	important	to
consider	what	shortcomings	it	has	so	that	our	process	can	take	them	into	account.

One	valid	concern	about	spending	too	much	time	in	Photoshop	versus	the	browser	is	that
you	see	a	picture	of	a	website	under	ideal	situations	and	at	a	particular,	exact	size.	This	is
frequently	cited	as	a	problem	for	responsive	design,	but	it	is	also	a	performance	issue.
Usually	you	can’t	mock-up	performance	in	Photoshop.

Checking	your	application	or	websites	in	a	browser	beforehand	can	help	you	identify
potential	performance	bumps	before	they	have	a	chance	to	get	completely	out	of	control.
That	mock-up	where	every	element	has	a	semi-transparent	shadow	may	look	beautiful,	but
when	loading	it	on	a	mobile	device	you	may	notice	that	scrolling	is	an	arduous	task.
Identifying	the	problem	at	an	early	stage	allows	you	to	consider	other	solutions.

To	be	clear,	these	other	solutions	needn’t	be	devoid	of	those	kinds	of	embellishments
altogether.	Performance	sites	needn’t	be	visually	ugly	or	boring.	There’s	a	series	of	trade-
offs	to	be	made	by	weighing	the	benefits	and	the	costs.	Performance	and	visual	creativity
are	both	necessary,	your	site	needs	to	balance	the	two.	Getting	real	code	on	real	devices	as
early	as	possible	will	help	you	to	maintain	that	balance.

One	of	the	best	ways	to	allow	you	to	get	into	the	browser	early	is	to	think	about	your	site
regarding	reusable	components.	Have	a	question	about	how	that	fancy	navigation
embellishment	is	going	to	perform	on	different	devices?	Load	that	in	the	browser,	develop
that	part,	and	take	it	for	a	test	run.

There	are	a	number	of	ways	to	do	this.	My	recommendation	is	to	break	website	elements
down	into	their	smallest	forms	allowing	you	to	build,	say,	a	footnote,	without	committing
to	making	the	rest	of	the	page	as	well.	This	enables	you	to	quickly	see	how	different
pieces	may	work	at	different	resolutions	and	with	different	input	methods.	The	particular
tool	you	use	is	less	important	than	the	result:	being	able	to	quickly	test	bits	and	pieces	to
identify	performance	issues	before	you’re	too	far	down	the	road	to	turn	back.

Performing	actions	optimistically
If	one	of	your	visitors	on	your	website	decided	to	leave	a	comment,	they	would	click	on	a
button	that	submits	the	form.	When	they	do	that,	two	actions	take	place.	The	form,	using
AJAX,	sends	a	request	to	the	server,	and	a	loading	graphic	appears	to	notify	the	user	that
their	submission	is	in	the	process.	When	the	script	hears	back	from	the	server	that	the	task
has	been	completed	successfully,	it	updates	the	page	alerting	the	visitor.

This	is	the	way	it’s	usually	done,	but	maybe	it’s	not	the	best	way.	This	request,	particularly
on	a	high-latency	network,	can	take	several	hundred	milliseconds,	which	is	a	very
noticeable	delay	for	the	person	trying	to	submit	their	comment.

Instagram	has	taken	a	different	approach	to	avoid	that	delay.	As	soon	as	the	person
submits	the	comment,	it	appears	on	the	page.	The	request	happens	in	the	background.	To
the	person	submitting	the	comment,	it	looks	like	it	happens	instantaneously.	In	reality,	it
takes	as	long	to	process	as	any	other	form	online	but	the	perception	is	dramatically
improved.

This	is	called	asynchronous	UI,	and	we	have	discussed	that	in	a	previous	chapter.	The	idea
we	use	here	is	the	same.	We	removed	the	loading	state	and	let	the	user	feel	that	things	are
moving	more	quickly.	If	the	task	fails,	then	gently	alert	them	somehow	and	let	them
resubmit	immediately.

Another	great	example	is	Polar	(https://www.polarb.com/),	the	popular	polling	application.
When	you	create	a	poll,	it	shows	up	instantly	on	your	feed.	Again,	there’s	some	smart
asynchronous	UI	at	work.	What	actually	happens	when	you	create	a	new	poll	is	that	Polar
creates	a	temporary	local	copy	of	the	poll	and	pushes	it	to	the	top	of	your	feed.	The
temporary	copy	is	fully	functional.	You	can	vote	and	comment	on	it,	and	those	votes	and
comments	will	get	pushed	to	the	actual	poll	once	it’s	been	uploaded.

https://www.polarb.com/

In	the	background,	Polar	uploads	the	temporary	copy	to	its	servers.	If	that	fails,	they	try
again	a	few	times	before	finally	admitting	defeat	to	the	user.	The	result,	once	again,	is	that
the	process	seems	to	appear	as	incredibly	fast.

It’s	important	to	note	that	for	both	Instagram	and	Polar,	these	solutions	are	not	exactly
ideal	from	an	engineering	perspective.	There’s	a	hell	of	a	bit	more	complexity	involved.
But	the	trade-off	is	that	the	users	get	a	system	that	feels	instantaneous.

Move	bits	when	no	one	is	watching
When	users	sign	up	for	Instagram,	they	are	asked	to	fill	out	some	basic	details.	While	this
is	going	on,	in	the	background,	Instagram	starts	looking	for	recommendations	on	who	to
follow.

The	result	is	that	by	the	time	the	user	submits	the	form	with	their	account	information,
recommendations	are	presented	nearly	instantly.

Instagram	uses	the	same	trick	on	image	uploads.	After	you	select	the	filter	for	your	image,
you	can	choose	options	such	as	where	to	share	the	image,	or	geotag	it	with	a	location.	All
the	while,	Instagram	is	already	uploading	the	image	in	the	background	to	reduce	the	time
users	have	to	wait	at	the	end	of	the	process.

It	is	worth	noting	that	in	both	of	the	cases,	there’s	a	very	high	likelihood	that	the	person
will	end	up	moving	forward	to	those	next	pages.	It’s	a	slippery	slope	between	moving	bits
while	no	one	is	watching	and	using	up	everyone’s	bandwidth	and	data	for	pages	they	may
never	view	and	assets	they	may	never	need.	But	if	there	is	a	high	likelihood	that	your
visitor	will	end	up	needing	these	assets	at	some	point,	it	makes	sense	to	do	a	little	pre-
caching	to	stay	a	step	ahead.

Less	work	for	the	end	user
Each	of	the	principles	mentioned	earlier	is	ultimately	about	reducing	the	amount	of	time	it
takes	for	the	user	to	complete	a	given	task.	The	importance	of	task	completion	can’t	be
overlooked.	There’s	the	classic	study	conducted	by	UIE	back	in	2001	on	the	impact	of	the
time	taken	to	complete	a	task	on	a	visitor’s	perception	of	performance.	Researchers	sat
people	down	in	front	of	10	different	sites	using	a	56	kbps	modem	and	gave	them	tasks	to
complete.

The	surprise	came	when	people	rated	the	slowest	site	(http://www.amazon.com/)	as	one	of
the	fastest	when	asked.	The	reason	was	that	http://www.amazon.com/	allowed	people	to
complete	their	tasks	in	fewer	steps.

Ultimately,	this	is	what	it	comes	down	to:	how	fast	the	user	feels	the	site	is.	You	can	go	a
long	way	by	implementing	the	performance	techniques	so	frequently	cited	for	developers,
but	to	influence	how	your	users	feel	about	the	performance	of	your	site,	performance
optimization	has	to	involve	the	designer.

If	you’re	a	designer,	consider	yourself	the	first	line	of	defense.	Yes,	ultimately	the
developer	will	have	to	make	many	of	the	specific	optimizations,	but	you	are	the	person
who	gets	to	set	the	stage.	You	must	make	the	decisions	early	on	that	will	either	encourage
the	site	to	be	as	fast	as	it	is	beautiful	or	encourage	it	to	be	beautiful,	yet	bloated.

http://www.amazon.com/
http://www.amazon.com/

New	Relic
In	Chapter	5,	Monitoring	and	Debugging	Our	Website,	we	have	discussed	a	few	tools	that
we	can	use	to	debug	our	mobile	application	or	a	website.	Using	those	tools	you	can	get	an
idea	about	your	product	and	how	it	behaves.	However,	using	New	Relic	Mobile	you	can
get	a	comprehensive	idea	about	your	project,	and	it	helps	you	to	build	high-performance,
stable	mobile	applications	with	ease.

The	most	challenging	part	of	application	building	is	that	we	can’t	predict	how	it’s	going	to
behave	in	the	complex	real	world	environment.	New	Relic’s	Mobile	APM	(mAPM)
toolset	fetches	performance	data	to	the	developers,	so	they	can	focus	on	ensuring	that
users	undergo	a	great	experience.	With	New	Relic	Mobile,	you	can	get	the	following
features:

See	how	services	are	affecting	your	app:	Quickly	find	and	fix	performance	issues
caused	by	third-party	API	calls	or	internal	backend	services
Diagnose	performance	by	operating	systems,	devices,	and	versions:	View	and
categorize	performance	reports	into	a	particular	one	across	all	OSs,	devices	and	app
versions
Discover	regions	affected	by	poor	app	performance:	Observe	the	effect	of	your
app’s	performance	across	geographical	regions	because	of	the	response	time,	network
failures,	and	data	transfer
Understand	how	your	app	runs	on	a	different	carrier’s	network:	Get	your	app’s
breakdown	of	performance	across	each	wireless	carrier	or	Wi-Fi	network

Following	areas	will	check	by	New	Relic	Mobile	APM

Also,	it	is	essential	to	learn	how	the	performance	issue	affects	the	user’s	experience.	With
New	Relic	Mobile,	you	can	see	the	code-level	inefficiencies	related	to	how	your
customers	use	your	application.	In	other	words,	it	helps	you	to	see	your	application’s
behavior	as	the	end	user.	Using	this	tool	you	can	achieve	the	following:

Code-level	visibility	for	a	user’s	interactions	on	your	app:	View	detailed	timeline
breakdowns	of	your	slowest	or	most	expensive	interactions	according	to	data
distribution	across	background	and	foreground	threads.
Identify	how	your	apps	consume	device	resources:	Get	an	idea	about	your
application’s	CPU	and	memory	usage	at	the	local	device	level.
Track	unique	interactions	with	custom	events:	Monitor	a	custom	event	in	the
application	as	interactions,	business	transactions,	and	in-app	purchases.	New	Relic
provides	the	same	degree	of	granularity	for	all	user	events.

Crash	reporting	is	the	newly	introduced	feature	by	the	New	Relic	Mobile.	It	helps	a	user
to	identify	the	reasons	behind	app	crashing	and	helps	to	fix	them	immediately	and
efficiently,	and	prevents	it	from	happening	again.

Minimal	effort,	smarter	troubleshooting:	The	tool	identifies	the	crashing	patterns
and	rolls	up	the	important	details.
Understand	how	and	why	your	apps	crash:	The	developer	can	determine	when	the
application	crashes	by	observing	recurrence	patterns	and	stack	follows.	Once	the
developer	has	fixed	it,	the	tool	utilizes	week	by	week	correlations	to	check	whether

the	developer	is	enhancing	the	circumstance.
New	Relic	Mobile	keeps	you	informed,	so	you	never	miss	a	problem:	With	e-mail
alerts,	you	will	get	a	message	when	a	crash	happen,	so	you	can	fix	it	immediately.

We	can’t	predict	the	future,	nevertheless
embrace	it
We	live	in	a	rapidly	changing	and	fascinating	world.	Every	day,	new	devices,	browsers,
and	technologies	keep	emerging.	It’s	hard	to	keep	a	track	on	all	the	scenarios	and	build
applications	compatible	with	it.	For	example,	building	applications	for	screen	size	is	a
never	ending	process.	At	some	point,	we	have	to	come	to	a	conclusion	as	to	what	really
matters.

We	develop	our	process	and	design	phases	to	the	final	product	to	keep	our	clients	happy
and	give	an	ultimate	experience	to	them	so	that	they	can	do	their	task	as	efficiently	and
quickly	as	possible.

We	are	here	to	solve	a	problem	and	give	a	better	solution	to	our	customers.	We	must
understand	that,	and	we	should	see	our	solutions	from	their	perspective.	With	this	in	mind,
we	can	build	an	amazing	experience	for	our	clients.	Finally,	whatever	the	things	you	get	as
input,	you	should	observe	the	situation,	analyze	it,	and	give	an	optimized	solution	to	your
customers.

Summary
In	this	chapter,	we	have	discussed	why	we	should	build	for	performance	and	how	we	can
convince	our	clients	to	approve	a	budget	for	performance.	It	is	crucial	to	get	the	client	on
your	side	as	early	as	possible.	As	I	have	mentioned,	you	can	use	an	online	tool	such	as
WebPagetest	to	generate	visuals	so	that	you	can	convince	your	client	easily.	Sometimes,
we	tend	to	leave	the	optimization	bit	to	a	latter	part	of	the	project.	This	is	really	dangerous
and	ineffective,	and	you	should	plan	and	start	optimization	at	the	beginning	of	the	project.
Again,	it	is	vital	to	invest	in	performance,	and	I	have	explained	how	we	can	do	that
aligning	with	your	budget.

Also	in	the	chapter,	I	have	explained	what	the	limitations	in	our	design	tools	are	and	how
we	can	get	the	best	out	of	it.	It’s	really	hard	to	compare	a	design	tool	like	Adobe
Photoshop	and	a	web	browser,	so	you	should	test	your	design	as	soon	as	possible	on	your
browser.	In	the	next	part	of	the	chapter,	we	discussed	how	we	can	enhance	the	user’s
experience	by	applying	some	advanced	techniques.	Many	of	the	popular	solutions	such	as
Instagram	are	using	these	methods	to	give	an	optimized	solution	for	their	customers.	So,
why	can’t	we	use	these	methods?	Also,	as	a	solution	provider	you	should	always	expect
less	work	from	your	clients,	that’s	how	they	behave,	and	that’s	what	they	expect.	For	the
sake	of	a	good	provider-customer	relationship,	you	must	always	leave	less	work	for	your
visitors.

With	this	chapter	I	am	going	to	conclude	the	book.	In	this	book,	I	have	tried	to	cover	many
areas	related	to	mobile	web	optimization	and	most	of	them	are	relatively	easy	to
implement.	However,	I	recommend	that	you	to	go	through	with	each	and	every	chapter
carefully	and	thoroughly	because,	you	will	get	a	clear	idea	about	what	to	do	and	what	not
to	do	when	you	build	a	mobile	application	or	a	website.	Also,	you	should	try	to	practice
the	aforementioned	tools	as	much	as	possible	because	by	doing	so,	you	will	get	a	superfast
and	error	free	end-product.

Thank	you!!

Index
A

actions
performing	optimistically	/	Performing	actions	optimistically

Adobe	Flash
about	/	Flash	files

Amazon
URL	/	Less	work	for	the	end	user

AngularJS
about	/	AngularJS

Apple	iOS	/	Apple	iOS
attributes

min-width	/	How	to	use	media	queries
max-width	/	How	to	use	media	queries
min-height	/	How	to	use	media	queries
max-height	/	How	to	use	media	queries
orientation=portrait	/	How	to	use	media	queries
orientation=landscape	/	How	to	use	media	queries

Aurelia
about	/	Aurelia

available	browsers
about	/	Available	browsers
URL	/	Available	browsers
Safari	/	Safari
Chrome	/	Chrome
Internet	Explorer	/	Internet	Explorer
Firefox	/	Firefox
Opera	mini	/	Opera	mini

B
bandwidth

about	/	Bandwidth
BlackBerry	10	OS	/	BlackBerry	10	OS
Bootstrap

about	/	Bootstrap
Browser	DevTools	performance	tools

about	/	A	browser’s	DevTools	performance
remote	debugging	/	Remote	debugging

browsing	experience
benefits	/	Speed

C
Cache-Control

about	/	Cache-Control
caching

about	/	Caching
Chrome

about	/	Chrome
connection

opening	/	Opening	connection
closing	/	Closing	connection

content	delivery	network	(CDN)
about	/	Content	Delivery	Network
benefits	/	Content	Delivery	Network

content	prefetching
about	/	Content	prefetching

crash	reporting
about	/	New	Relic

CSS
none,	displaying	/	Displaying	none	in	CSS
minifying	/	Minifying	CSS	and	JavaScript,	Minifying	CSS
online	tools,	URL	/	Minifying	CSS

CSS/JavaScript	frameworks
about	/	CSS	and	JavaScript	frameworks
reference	link	/	CSS	and	JavaScript	frameworks
Bootstrap	/	Bootstrap
Uikit	/	UIkit
Semantic-UI	/	Semantic-UI
Susy	/	Susy
jQuery	/	jQuery
AngularJS	/	AngularJS
Ember	/	Ember
Aurelia	/	Aurelia
Knockout.js	/	Knockout.js

CSS3
using	/	Use	of	HTML5	and	CSS3
styling	options,	using	/	Using	CSS3	effects	instead	of	requesting	heavy	images
Filter	property	/	Understanding	CSS	Filter	Effects

CSS	animation
versus	JavaScript	/	CSS	animation	versus	JavaScript
about	/	CSS	animations

CSS	preprocessors
about	/	CSS	preprocessors
SASS	/	SASS	and	LESS

LESS	/	SASS	and	LESS
CSS	sprites	/	CSS	sprites

D
design	tool

developing	/	Design	tools
duplicate	scripts

removing	/	Remove	duplicate	scripts

E
404	errors

eliminating	/	Eliminating	404	errors	and	missing	assets
Ember

about	/	Ember
empty	source	/	Empty	source	and	link	attributes
expected	features,	mobile	phone

speed	/	Three	main	pillars
battery	/	Three	main	pillars
reasonable	data	usage	/	Three	main	pillars

F
favicon	icon

making	small	/	Make	favicon	icon	small	and	cacheable
making	cacheable	/	Make	favicon	icon	small	and	cacheable

file	order,	of	external	scripts	/	File	order	of	external	style	sheets	and	scripts
file	order,	of	external	stylesheets	/	File	order	of	external	style	sheets	and	scripts
Firefox

about	/	Firefox
Firefox	Developer	Tools

about	/	Firefox	Developer	Tools
Flash	files	/	Flash	files
Font	Awesome

icons	/	Font	Awesome	icons
form	attributes,	HTML5	/	HTML5	form	attributes	and	input	types

G
3G	wireless	state	machine

working	/	How	a	3G	wireless	state	machine	works
4G	wireless	state	machine

working	/	How	a	4G	LTE	wireless	state	machine	works
Google	Android	/	Google	Android
Google	Chrome	emulator

about	/	The	Google	Chrome	emulator
Google	PageSpeed	Insights

about	/	Google	PageSpeed	Insights
URL	/	Google	PageSpeed	Insights
feedback,	on	improving	page	performance	/	Google	PageSpeed	Insights

Google	site	rankings
URL	/	Speed

GPU	Overdraw	Walkthrough
about	/	GPU	Overdraw	Walkthrough

GPU	Rendering	Walkthrough
about	/	GPU	Rendering	Walkthrough

Graphic	Processing	Unit	(GPU)
about	/	Hardware	acceleration	and	the	Graphics	Processing	Unit

Gzip	compression
enabling	/	Enable	Gzip	compression

H
hardware	acceleration	/	Hardware	acceleration	and	the	Graphics	Processing	Unit
HTML5

using	/	Use	of	HTML5	and	CSS3
form	attributes	/	HTML5	form	attributes	and	input	types
input	types	/	HTML5	form	attributes	and	input	types
web	storage,	using	/	Using	web	storage	in	place	of	cookies

HTTP	300	code	/	HTTP	300,	400,	and	500	codes
HTTP	301	status	code

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	302	status	code

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	303	status	code

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	400	code	/	HTTP	300,	400,	and	500	codes
HTTP	400	status	code	(bad	request)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	401	status	code	(unauthorized)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	403	status	code	(forbidden)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	404	status	code	(not	found)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	500	code	/	HTTP	300,	400,	and	500	codes
HTTP	500	status	code	(internal	server	error)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	501	status	code	(not	implemented)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	502	status	code	(bad	gateway)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	503	status	code	(service	unavailable)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	504	status	code	(gateway	timeout)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	505	status	code	(Version	not	supported)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	506	status	code	(variant	also	negotiates)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	507	status	code	(insufficient	storage)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	509	status	code	(bandwidth	limit	exceeded)

receiving	/	HTTP	300,	400,	and	500	codes
HTTP	510	status	code	(not	extended)

receiving	/	HTTP	300,	400,	and	500	codes
Http	request	/	HTTP	requests

I
IcoMoon

icons	/	IcoMoon	icons
iconic	fonts

about	/	Iconic	fonts
benefits	/	Iconic	fonts
Font	Awesome	icons	/	Font	Awesome	icons
IcoMoon	icons	/	IcoMoon	icons

IE	11	Developer	Tools
about	/	IE	11	Developer	Tools

image	maps
creating	/	Image	maps
client-side	/	Image	maps
server-side	/	Image	maps

ImageOptim
about	/	ImageOptim
URL	/	ImageOptim

image	optimization
URL	/	Image	size	matters
factors	/	Image	size	matters

images
size	/	Image	size	matters
resizing,	for	image	resolution	correction	/	Resize	your	images	to	correct	image
resolution
file	size,	reducing	/	Reduce	the	file	size
lossy	compression	/	Reduce	the	file	size
lossless	optimization	/	Reduce	the	file	size
compression	tools	/	Image	compression	tools
creating,	via	media	queries	/	Video	and	images	via	media	queries

images	compression	tools
Tiny	PNG	/	Tiny	PNG
ImageOptim	/	ImageOptim
Kraken	/	Kraken

input	types,	HTML5	/	HTML5	form	attributes	and	input	types
Instagram

about	/	Move	bits	when	no	one	is	watching
Integrated	Development	Environments	(IDE)	/	Minifying	JavaScript
Internet	Explorer

about	/	Internet	Explorer
ipSecurity

URL	/	Enable	Gzip	compression

J
JavaScript

minifying	/	Minifying	CSS	and	JavaScript,	Minifying	JavaScript
online	tools,	URL	/	Minifying	JavaScript
optimizing	/	How	to	optimize	JavaScript

jQuery
about	/	jQuery

jQuery	mobile
features	/	jQuery

K
Knockout.js

about	/	Knockout.js
Kraken

URL	/	Kraken

L
lazy	loading

advantage	/	Load	only	what	is	needed
LESS

about	/	SASS	and	LESS
variables	/	LESS
partials	/	SASS	and	LESS
mixins	/	LESS

link	attributes	/	Empty	source	and	link	attributes
Long-Term	Evolution	(LTE)	/	How	a	3G	wireless	state	machine	works
Long	DRX	mode	/	How	a	4G	LTE	wireless	state	machine	works

M
media	queries

using	/	How	to	use	media	queries
used,	for	creating	videos	/	Video	and	images	via	media	queries
used,	for	creating	images	/	Video	and	images	via	media	queries

Microsoft	Windows	Phone	8	/	Microsoft	Windows	Phone	8
missing	assets

eliminating	/	Eliminating	404	errors	and	missing	assets
mixins

in	SASS	/	Mixins
in	LESS	/	Mixins,	LESS

Mobile	APM	(mAPM)	/	New	Relic
mobile	battery

about	/	Battery
3G	wireless	state	machine,	working	/	How	a	3G	wireless	state	machine	works
4G	LTE	wireless	state	machine,	working	/	How	a	4G	LTE	wireless	state
machine	works
connections,	opening	/	Opening	and	closing	connections
connections,	closing	/	Opening	and	closing	connections

mobile	development
history	/	A	brief	history	of	mobile	development

mobile	device
uses	/	Three	main	pillars
expected	features	/	Three	main	pillars

mobile	only	website
versus	responsive	website	/	Mobile-only	websites	versus	responsive	websites

mobile	only	website,	versus	responsive	website
about	/	Mobile-only	websites	versus	responsive	websites
domain	protection	/	Mobile-only	websites	versus	responsive	websites
link	equity	/	Mobile-only	websites	versus	responsive	websites
rendering	experience	/	Mobile-only	websites	versus	responsive	websites
future-ready	/	Mobile-only	websites	versus	responsive	websites
Http	request	/	HTTP	requests
combined	files	/	Combined	files
CSS	sprites	/	CSS	sprites
image	maps	/	Image	maps
duplicate	scripts,	removing	/	Remove	duplicate	scripts
Gzip	compression,	enabling	/	Enable	Gzip	compression

mobile	optimization
features,	using	/	Hardware	acceleration	and	the	Graphics	Processing	Unit

mobile	OS
about	/	Mobile	OS
Apple	iOS	/	Apple	iOS

Google	Android	/	Google	Android
Microsoft	Windows	Phone	8	/	Microsoft	Windows	Phone	8
BlackBerry	10	OS	/	BlackBerry	10	OS

mobile	UX
about	/	Why	design	and	UX	are	important
importance	/	Why	design	and	UX	are	important
enhancing	/	Why	design	and	UX	are	important

mobile	website
building	/	Unnecessary	contents
clean	design,	considerations	/	Clean	design
designing,	tips	/	Clean	design
duplicate	content	/	Duplicate	content

N
New	Relic	Mobile

about	/	New	Relic
features	/	New	Relic
tasks	/	New	Relic
crash	reporting	/	New	Relic

number	of	DOM	elements
reducing	/	Reduce	the	number	of	DOM	elements

O
Opera	mini

about	/	Opera	mini

P
Paint	Flashing

enabling	/	Firefox	Developer	Tools
partials

in	LESS	/	Partials
in	SASS	/	Partials

performance	budget
discussing	/	Invest	for	performance

performance	tools
in	Firefox	/	Performance	tools	in	Firefox,	Safari,	and	IE
in	Safari	/	Performance	tools	in	Firefox,	Safari,	and	IE
in	IE	/	Performance	tools	in	Firefox,	Safari,	and	IE
URL	/	Built	for	performance

performance	website
developing	/	Built	for	performance
implementing	/	Built	for	performance

Polar
URL	/	Performing	actions	optimistically

profiling	tools
about	/	Profiling	tools
GPU	Overdraw	Walkthrough	/	GPU	Overdraw	Walkthrough
GPU	Rendering	Walkthrough	/	GPU	Rendering	Walkthrough

R
Responsive	web	design	/	Mobile-only	websites	versus	responsive	websites

S
Safari

about	/	Safari
benefits	/	Safari

Safari	Developer	Toolbar
about	/	Safari	Developer	Toolbar

SASS
about	/	SASS	and	LESS
variables	/	SASS
partials	/	SASS	and	LESS
mixins	/	SASS

Screaming	Frog	/	Eliminating	404	errors	and	missing	assets
screen	rotations	/	Screen	rotations
Semantic-UI

about	/	Semantic-UI
Short	DRX	mode	/	How	a	4G	LTE	wireless	state	machine	works
Short	Message	Service	(SMS)	/	A	brief	history	of	mobile	development
speed

reference	blogs	/	Three	main	pillars
about	/	Speed

styling	options,	CSS3
using	/	Using	CSS3	effects	instead	of	requesting	heavy	images
border-radius,	for	rounded	corners	/	Border-radius	for	rounded	corners
box-shadow	CSS	property,	using	/	Box-shadow	for	drop	shadows	and	glow
linear	gradients	/	Linear	and	radial	gradients
radial	gradients	/	Linear	and	radial	gradients
transform	property	/	Transform	properties	for	rotation

Susy
about	/	Susy

T
technology

overview	of	future	/	We	can’t	predict	the	future,	nevertheless	embrace	it
third-party	plugins	/	Third-party	plugins
Tiny	PNG

URL	/	Tiny	PNG
about	/	Tiny	PNG

U
Uikit

about	/	UIkit
User	Agent	(UA)	/	The	Google	Chrome	emulator
user	task

completion	time,	reducing	/	Less	work	for	the	end	user

V
validation

about	/	Cache-Control
variables

in	SASS	/	Variables
in	LESS	/	LESS

videos
creating,	via	media	queries	/	Video	and	images	via	media	queries

W
web

optimization	/	When	to	optimize
optimization,	criteria	/	When	to	optimize

web	design
importance	/	Why	design	and	UX	are	important

WebP	format
about	/	Image	compression	tools
lossless	compression	/	Image	compression	tools
lossy	compression	/	Image	compression	tools
color	profile	/	Image	compression	tools
metadata	/	Image	compression	tools
transparency	/	Image	compression	tools
animation	/	Image	compression	tools

website	performance
impact,	on	user’s	interaction	/	A	brief	history	of	mobile	development
URLs	/	A	brief	history	of	mobile	development

Wi-Fi
offloading	to	/	Offloading	to	Wi-Fi

Y
Yahoo!

URL	/	HTTP	requests,	Remove	duplicate	scripts
YSlow

about	/	YSlow

	Mobile Web Performance Optimization
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Pillars of Mobile Web Performance Optimization
	A brief history of mobile development
	Three main pillars
	Battery
	How a 3G wireless state machine works
	How a 4G LTE wireless state machine works
	Opening and closing connections
	Speed
	Bandwidth
	Available browsers
	Safari
	Chrome
	Internet Explorer
	Firefox
	Opera mini
	Mobile OS
	Apple iOS
	Google Android
	Microsoft Windows Phone 8
	BlackBerry 10 OS
	Summary
	2. Mobile Web Optimization Essentials
	Mobile-only websites versus responsive websites
	HTTP requests
	Combined files
	CSS sprites
	Image maps
	Remove duplicate scripts
	Enable Gzip compression
	Image size matters
	Resize your images to correct image resolution
	Reduce the file size
	Image compression tools
	Tiny PNG
	ImageOptim
	Kraken
	Unnecessary contents
	Clean design
	Duplicate content
	Why design and UX are important
	Summary
	3. How to Optimize Your Mobile Website
	Use of HTML5 and CSS3
	Hardware acceleration and the Graphics Processing Unit
	HTML5 form attributes and input types
	Using web storage in place of cookies
	Using CSS3 effects instead of requesting heavy images
	Border-radius for rounded corners
	Box-shadow for drop shadows and glow
	Linear and radial gradients
	Transform properties for rotation
	Understanding CSS Filter Effects
	CSS animation versus JavaScript
	CSS animations
	Iconic fonts
	Font Awesome icons
	IcoMoon icons
	How to use media queries
	Displaying none in CSS
	Video and images via media queries
	CSS preprocessors
	SASS and LESS
	Variables
	SASS
	LESS
	Partials
	SASS and LESS
	Mixins
	SASS
	LESS
	Minifying CSS and JavaScript
	Minifying CSS
	Minifying JavaScript
	Summary
	4. Caching and Optimizing
	Caching
	Cache-Control
	Content prefetching
	Make favicon icon small and cacheable
	File order of external style sheets and scripts
	Empty source and link attributes
	CSS and JavaScript frameworks
	Bootstrap
	Zurb Foundation
	UIkit
	Semantic-UI
	Susy
	jQuery
	AngularJS
	Ember
	Aurelia
	Knockout.js
	How to optimize JavaScript
	Load only what is needed
	Reduce the number of DOM elements
	Summary
	5. Monitoring and Debugging Our Website
	Profiling tools
	GPU Overdraw Walkthrough
	GPU Rendering Walkthrough
	A browser's DevTools performance
	Remote debugging
	Performance tools in Firefox, Safari, and IE
	Firefox Developer Tools
	IE 11 Developer Tools
	Safari Developer Toolbar
	The Google Chrome emulator
	Google PageSpeed Insights
	YSlow
	Summary
	6. Managing Third-Party Components
	Eliminating 404 errors and missing assets
	HTTP 300, 400, and 500 codes
	Content Delivery Network
	Third-party plugins
	Opening connection
	Closing connection
	Offloading to Wi-Fi
	Screen rotations
	Flash files
	Summary
	7. Tips and Tricks
	Built for performance
	When to optimize
	Invest for performance
	Design tools
	Performing actions optimistically
	Move bits when no one is watching
	Less work for the end user
	New Relic
	We can't predict the future, nevertheless embrace it
	Summary
	Index

