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Preface

Accurate analysis and synthesis of human behavior in crowds, a large and dense
group of people with varying characteristics and goals, is a common requirement
across a wide range of domains. If the human behavior, including those of individu-
als, small groups of people, and even the crowd as a whole – can be interpreted and
anticipated in arbitrary real-world situations, a repertoire of important applications,
many of which are societally important, can be realized: For example, perpetrators
disguised in a busy street corner will be easily spotted and tracked in a surveillance
video feed; new buildings, public places and outdoor environments will be designed
to optimize the space use with the dynamically changing flow of people in mind,
while minimizing the time need for evacuation whenever necessary; and the social
psychology of people can be studied based on large-scale, longitudinal observations,
and many more.

The goal of this book is to provide the readers a comprehensive map of the
current state of the art in distinct but related fields, mainly in computer vision,
graphics, and evacuation dynamics, towards the common goal of better analyzing
and synthesizing the pedestrian movement in dense, heterogeneous crowds. The
monograph is organized into different parts that consolidate various aspects of
research towards this common goal, namely the modeling, simulation, and visual
analysis of crowds. Many of the chapters in these parts extend the works that were
presented at the first workshop on the same topic at International Conference on
Computer Vision, 2011, and collectively cover the diverse challenges involved in
better understanding of human crowds. Our hope is, through this book, the readers
will see the common ideas and vision as well as the different challenges and
techniques for modeling, analyzing, and simulating crowds, that will stimulate novel
approaches to getting us a step closer to fully grasping “crowds.”

This book grew out of the first IEEE Workshop on Modeling, Simulation and
Visual Analysis of Large Crowds, that was held in conjunction with International
Conference of Computer Vision 2011. Therefore, first of all we would like to
acknowledge the workshop program committee who worked tirelessly for the
success of the workshop and authors that contributed their valuable pieces of work.
We would also like to thank Prof. Jie Yang and National Science Foundation (NSF)
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vi Preface

funding based on grant IIS-1142382 to provide travel support for the workshop.
We are also grateful to our host institutions (SRI International, Drexel University,
University of North Carolina and University of Central Florida) for providing a
highly stimulating research environment that enables pursuit of new research ideas
and discoveries. Springer has provided excellent support throughout the preparation
of the book, and we would like to specially thank their staff for their support
and professionalism. Many people have helped proof reading draft material and
providing comments and suggestions. We would like to thank all of them for their
time and valuable contribution towards improving the quality of the book.

Princeton, NJ, USA Saad Ali
Philadelphia, PA, USA Ko Nishino
Chapel Hill, NC, USA Dinesh Manocha
Orlando, FL, USA Mubarak Shah
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Chapter 1
Modeling, Simulation and Visual Analysis
of Crowds: A Multidisciplinary Perspective

Saad Ali, Ko Nishino, Dinesh Manocha, and Mubarak Shah

Abstract Over the last several years there has been a growing interest in devel-
oping computational methodologies for modeling and analyzing movements and
behaviors of ‘crowds’ of people. This interest spans several scientific areas that
includes Computer Vision, Computer Graphics, and Pedestrian Evacuation Dynam-
ics. Despite the fact that these different scientific fields are trying to model the same
physical entity (i.e. crowd of people), research ideas have evolved independently.
As a result each discipline has developed techniques and perspectives that are
characteristically it’s own. In this chapter we provide a brief overview of major
research themes from these different scientific fields, discuss common challenges
and point to problem areas that will benefit from common synthesis of perspectives
from these fields. In addition we introduce various pieces of work that appear in this
monograph as separate chapters.
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1.1 Introduction

Over the last several years there has been a growing interest in developing com-
putational methodologies for modeling and analyzing movements and behaviors of
‘crowds’ of people. This interest spans several scientific areas: in Computer Vision
the need to carry out visual surveillance in crowded scenes is fueling research on
topics related to visual representations of crowds [2], tracking of individuals and
groups [3, 18, 32, 45], detection of normal and abnormal behaviors [44, 62], seg-
mentation and classification of motion patterns [2, 63], and mathematical modeling
of interactions among the pedestrians in the crowd [81]; in Computer Graphics
the goal of modeling and simulating crowd behaviors in different real-world or
synthetic environments, including models for homogeneous and heterogeneous
crowd simulation [30, 66], is advancing the state of art in areas aggregate flow
[30, 31, 91], agent-based motion simulation [49, 84, 96], motion planning for large
scale crowds [36,70,71,94], obstacle and collision avoidance [52,82,92], modeling
group behaviors [57, 65], and representation of virtual humans at multiple levels of
detail [16, 60, 61]; in Evacuation Dynamics a parallel effort is underway to develop
motion, interaction and self-organization models for pedestrian simulation and
evacuation analysis [24]. However, as opposed to computer graphics, the emphasis
is more on empirical validation of simulated movements and collective behaviors in
terms of fundamental diagrams (which captures relationship between crowd density
and velocity) and flows [11,82]. In addition to above mentioned scientific areas, the
diversity of context in which ‘crowds’ are studied has a long history and includes
studies from areas of Anthropology, Psychology, and Sociology [9, 53].

Despite the fact that these different scientific fields are trying to model the same
physical entity (i.e. crowds of people), many research ideas have evolved indepen-
dently, and as a result each discipline has developed techniques and perspectives that
are characteristically it’s own. However, we strongly believe that in order to make
the next big leap in terms of solving the crowd modeling and related computational
problems, there is a need to develop common insights and understanding of general
principles that characterize various aspects of a crowd. This requires development
of a common-platform for cross-disciplinary exchange of ideas and interaction that
allows benefiting from each other’s experience and scientific discoveries. Some of
the recent research in computer vision [3, 62, 69, 99] points towards merits of such
cross-disciplinary work, where pedestrian interaction pedestrian interaction models,
originally developed in evacuation dynamics, have been successfully used to carry
out visual tracking and abnormal behavior estimation. Similarly, recent research in
data-driven crowd simulation in computer graphics makes use of crowd trajectories
and behaviors that are extracted from videos using computer vision algorithms
[52, 67, 72].

The central goal of this monograph is to facilitate a process of cross-disciplinary
interaction among researchers from areas of compute vision, computer graphics and
evacuation dynamics by providing a common platform. For this purpose, a number
of peer-reviewed chapters from leading researchers in these fields are compiled.
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These chapters provide an understanding of the state of the art and open problems
related to crowd modeling in each scientific discipline.

The rest of the chapter is organized as follows: In Sect. 1.2 we discuss various
aspects of crowd which make their modeling a challenging task. In Sect. 1.3 we
introduce central themes of the book and provide an overview of the related
literature. In Sect. 1.4 we provide an overview of the organization of the rest of
the book.

1.2 Aspects of Crowds

In order to bring about a common understanding of concepts and approaches related
to crowds of people, it is important to answer the question: how should we think
about crowds? What are the particular characteristic of crowds which make its
modeling a challenging task? As to the former, in the most basic sense, a crowd
is any collection of individuals or pedestrians where behavior of one individual is
influenced by the other. We believe the flexible nature of this definition makes it
applicable to all scientific areas that are focus of this monograph. For instance, we
have examples of computer vision techniques which represent this influence at a
notional level through particle interactions [2] or through dynamic floor fields [3].
Similarly, in computer graphics and simulated environment, this influence is taken
into consideration during design of algorithms for collision avoidance and local
interaction [20, 92]. Finally, in evacuation dynamics, computational approaches for
emergent behaviors tend to use force-based models and cellular automata [82].
Various chapters of the monograph will provide many more example of how
influence among participants of crowds are represented in different settings.

Agreeing to this definition leads us to the next question. What are the particular
aspects of crowds which make them really challenging to model. We list some of
them next in no particular order:

• Human behavior is extremely complex and exhibit large variation based on
situations and settings. It also depends on individual characteristics such as age,
sex, height, and cultural background, to name the few. There is no existing math-
ematical model that can account of all these complexities in human behavior.

• Human behavior can vary drastically based on the given situation. For instance,
transition from walking to panic can be instantaneous given a dangerous situation
(e.g. stampede).

• When viewed from visual sensors, it is hard to discern individuals in dense
crowds due to low resolution (i.e. few pixels per individual). This results in
appearance ambiguity and severe occlusion which often results in breakdown
of visual processing pipelines. For instance, detection of individual person in the
crowd might not be possible.

• Inability to detect individuals in a crowds that are observed through visual sensors
makes it difficult to explicitly model interactions among individuals.
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• Crowds tend to be heterogeneous in nature and within the same scene some parts
of the crowd may be behaving very differently. This makes it hard to represent
the dynamics of the crowd using a single global model.

• Behavior and dynamics of an individual in a crowd are connected with other
individuals, both at the level of structure as well as behavior. This means actions
of individuals can not be modeled in isolation and the fact that crowd will react
to it has to be taken into consideration.

• Lack of datasets representing the richness of crowd behaviors and associated
ground truth (e.g. 3D scene layout, individual tracks, personal characteristics
such as height, sex etc.) makes it difficult to verify and validate crowd modeling
techniques.

1.3 Central Themes and Topics

With this set of ideas in mind, we now introduce some of the main themes and topics
considered in this monograph and the ways in which they reinforce the underlying
principles related to modeling crowds. We also provide pointers to the chapters that
are related to each of these themes.

1.3.1 Visual Analysis of Crowds

Visual analysis of crowded scenes is an integral component of a wide array of
applications that span a number of areas with direct social impact. For instance,
the rising prevalence of video recording technology in crowded areas presents a
dire need for automatic visual analysis that can operate on videos containing a large
numbers of individuals. Due to a large number of pedestrians in close proximity,
crowded areas are at a high risk for dangerous activities including crowd panic,
stampedes, and accidents involving a large number of individuals. Crowded scenes,
are one such scenario of high-density, cluttered scenes that contain a large number
of individuals. The extent of activity within such scenes is difficult for even human
observers to analyze, making crowded scenes perhaps in the most need of automatic
video analysis. Analyzing the behavior of pedestrians in such crowded scenes is
also essential to the understanding and prediction of human behavior in similar but
different scene context. Video analysis of crowded scenes can thus directly serve as
the means to obtain in situ measurements of human behavior for data-driven crowd
simulation.

Despite these strong needs, crowded scenes pose unique challenges that severely
impede the development of robust video analysis methods. The complexity of
the scene, largely owing to the sheer number of people in the crowds, becomes
a direct burden on the computational method for visually analyzing the scene.
Such complexity manifests itself in frequent, partial or complete occlusions among
the pedestrians; the fact that every individual is moving and also surrounded by



1 Modeling, Simulation and Visual Analysis of Crowds 5

other moving people blurs the boundary of foreground and background pixels
in the scene; and the arbitrary directions pedestrians may take based on their
personal goals, neighboring pedestrians, and the physical obstacles within the scene.
These all combined result in a heterogeneous and dynamically evolving crowd
motion that is often too complex to analyze with conventional computer vision
methods.

Conventional video analysis methods learn the behavior of the scene in three
steps: detecting objects, tracking objects, and compiling the tracked results into
higher order models for individual or global crowd behavior modeling. The
applicability of such object-centric methods is limited to scenes with relatively
few objects. Discerning individuals in crowded scenes is difficult since they are
typically surrounded by other moving pedestrians. Tracking is also difficult due to
the frequent partial or complete occlusions in crowded scenes. Finally, such methods
suffer from problems of scale: each new pedestrian that enters the scene increases
the complexity of the model.

Next we briefly describe some popular approaches to modeling crowds and their
behaviors in videos.

1.3.1.1 Object-Centric Visual Analysis

Conventional video analysis methods are mostly object-centric; they begin by ana-
lyzing each scene object. Such methods detect the scene objects (e.g., pedestrians or
automobiles), track them, and then analyze the trajectories to model the behavior of
the objects. These methods work well on scenes that are relatively sparse (roughly
5–20 pedestrians) and, as noted by Zhan et al. [102], are not appropriate for
dense crowded scenes. We review related object-centric work that are designed for
crowded scenes, but emphasize that there are many challenges in videos containing
high density crowds.

Detecting the scene objects is often the first step in object-centric video analysis.
Zhao et al. [103], for example, track pedestrians in videos of crowds by detecting
each individual using a model of human shapes. Rodriguez and Shah [76] detect
pedestrians using a voting scheme on the contours around each individual. The
contours are computed by subtracting the background from each video frame.
In high density crowded scenes, however, the background is rarely visible and
pedestrians are often partially occluded, making the contours difficult to estimate.
Leibe et al. [51] also segment pedestrians from the background, but use global
image cues to add robustness to partial occlusions. Their method handles some
partial occlusions well, but assumes that the torso of the pedestrian is visible. This
is often not the case in near-view scenes where only the heads of most pedestrians
are visible.

Other work detect pedestrians by assuming that they exhibit unique motion. Bros-
tow and Cipolla [8] group short feature tracks (or “tracklets”) to identify similarly
moving pedestrians. They assume that the subjects move in distinct directions and
thus disregard possible local motion inconsistencies between different body parts.
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As noted by Sugimura et al. [90], such inconsistencies cause a single pedestrian to
be detected as multiple targets. In addition, pedestrians that are moving in the same
direction are identified as a single group. Crowded scenes, especially when captured
in relatively near-field views, as is often the case in video surveillance, necessitate a
method that represents the multiple motions of a single individual or similar motions
of different pedestrians.

After detection, the objects are tracked as they move through the scene. Data
association methods, such as that of Betke et al. [7] or Gilbert and Bowden [19],
track multiple targets in cluttered scenes by associating detection results of con-
secutive frames. These techniques assume that the detection is always reliable, and
thus degrade in very crowded scenes. Wu and Nevatia [97] are able to track partially
occluded pedestrians by detecting body parts, rather than the full pedestrian. The
data association problem itself is NP-hard, and thus becomes less tractable in scenes
with a large number of pedestrians. Often, approximation techniques are used to
estimate a solution such as the Bayesian framework of Li et al. [54].

Other data association methods do not rely on detecting individuals. Khan
et al. [40] model the interaction among detected interest points to improve the
tracking of each object. Hue et al. [29] use a Markovian model on each tracked
point to augment data association in generic domains. As noted by Khan et al. [41],
however, a single point may be shared between multiple targets and can result in
ambiguities. Shared points are often the result of motion boundaries or clutter, both
of which occur frequently in videos of crowded scenes.

After tracking, the trajectories are used to characterize behaviors of objects
within the scene. Wang et al. [95], for example, cluster trajectories to learn the
common routes taken by pedestrians and automobiles. Dee and Hogg [14] use
the tracking information to identify pedestrians that deviate from a goal-specific
behavior. Hu et al. [26] learn global motion patterns (i.e., that describe motion over
the entire frame) and use them to detect anomalies and predict future behaviors.
Johnson and Hogg [34] estimate different distributions of trajectories, and attach
semantics to each in order to identify specific events within the scene. Such methods
not only depend on reliable detection and tracking, which may not be available in
videos of crowded scenes, but also face problems of scale, in terms of handling
large, crowded scenes. As more pedestrians enter the scene, the complexity of
these methods increases and may become intractable with even moderately dense
crowds.

1.3.1.2 Crowd Motion Patterns

To address the complexity of real-world scenes containing crowds, many researchers
propose holistic techniques that characterize the scene as a collection of local
motion estimates rather than a collection of objects. Often, holistic methods aim to
identify behaviors within the scene that are part of the same physical process [27].
Mahadevan et al. [58] describe the typical dynamics of the crowd with a mixture of
dynamic textures (previously used for segmentation by Chan and Vasconcelos [10]).
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Using dynamic textures, however, retains appearance variations which can introduce
noise into the model and degrade results. This approach is further elaborated in
Chap. 11.

Moore et al. [64], Mehran et al. [63], and Ali and Shah [3] model crowds based
on a hydrodynamics model that essentially treats each pedestrian as a particle in a
fluid. As noted by Still [88], however, specific behaviors that occur in crowds, such
as lane formations or clustering, do not occur in fluids. While particles are affected
only by the external forces around them (such as other particles or the environment),
the motion of pedestrians is a result of both external forces and their individual
desires. Such differences between individual pedestrians form dynamic space-time
structures in the crowd motion that can not be represented with a hydrodynamics
model.

Other work assumes that the crowd flow is constant over the entire video. Ali
and Shah [2] average the optical flow over a video clip, and use it to model a Finite
Time Lyapunov Exponent field for segmenting the motion of the crowd. Similarly,
Mehran et al. [62] measure the “social force” [25] by comparing the instantaneous
optical flow to the optical flow averaged over the video clip. Raghavendra et al. [73]
also estimate the social force, but do so using a particle swarm method that
clusters similar motion vectors. In many crowded scenes, especially those with
unconstrained environments, the motion of pedestrians can change dramatically in
a short period of time as individuals move towards different goals.

Some researchers assume the crowd exhibits homogeneous motion in each area
of the scene. Hu et al. [28], for example, identify global motion patterns (i.e., ones
that take up the entire frame) in crowded scenes by clustering optical flow vectors
in similar spatial regions. Similarly, Cheriyadat and Radke [13] detect dominant
motions in crowds by clustering low-level tracked features. Such methods can not
handle dynamically varying crowds or those with heterogeneous motions in local
areas. A crosswalk, for example, naturally has pedestrians moving in two directions
who emerge together as they pass each other.

Other methods capture the multi-modal nature of the crowd, but ignore the
important temporal relationship between sequentially occurring motions exhibited
by pedestrians. Rodriguez et al. [77] use a topical model (similar to the bag-of-
word models) over quantized optical flow directions to describe the crowd motion.
They later improve their tracking using a crowd density estimate [78]. Though they
model the heterogeneous nature of the crowd, they does not encode the relationship
between temporally co-occurring motions. By disregarding the temporal variations
in the motions exhibited by pedestrians, these approaches cannot represent the
underlying temporal pattern within the crowd motion.

Andrade et al. [4, 5] captures the temporal structure of the crowd by training
hidden Markov models on optical flow vectors. They demonstrate that their method
is a good indicator of emergency situations in simulated crowd flow data. Real-
world crowded scenes, however, were not evaluated. Kratz and Nishino [44]
modeled the local motion patterns with the distribution of the spatio-temporal
gradients and derived a distribution-based hidden Markov model to encode their
spatio-temporal variations. They successfully demonstrated the use of this crowd
motion model for anomaly detection [44] and tracking of individuals [45, 47] in
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very crowded scenes. They further extended this model with directional statistics
distributions to more faithfully encode the local motion patterns and introduced the
use of pedestrian efficiency for modeling the magnitude of deviation of a person
from the crowd motion to better detect and track unusual activities [46]. Saleemi
et al. [79] developed a statistical representation of motion patterns of pedestrians
in a scene observed by a static camera. Motion patterns are learned in an unsu-
pervised manner directly from the salient patterns of optical using mixture model
representation.

1.3.1.3 Particle-Based Representation of Crowds

To overcome the difficulty of detection individual objects in dense crowded scene,
a particle based representation of crowd motion has been used by many researchers.
Ali and Shah [2] introduced this representation where crowd motion is represented
in terms of trajectories of a dense grid on particles. They used this representation
to carry out segmentation dynamically distinct crowd flows (further elaborated in
Chap. 8). In following years, particle based representation has been successfully
used for tracking individual pedestrians in crowds [3], abnormal event detection [62,
98], and semantic scene understanding [55]. The work of Moore et al. [64] provides
an expanded explanation of the intuition behind the particle based representation
and its applicability to various problem areas.

1.3.1.4 Abnormal Event Detection

Various approaches have been proposed to perform abnormal event detection in
dense crowded scenes. These can be characterized based on whether abnormality is
detected locally or globally in the scene. The local abnormality detection methods
mostly employ local 2D or 3D motion or appearance features with some added
information to capture the local context information (e.g. using co-occurrence
matrices). For instance, Adam et al. [1] measure the probability of optical flow in a
local patch using histograms for detecting abnormal patterns. Kratz and Nishino [44]
fit a Gaussian model to spatio-temporal gradients and then use HMM to detect
abnormal events. Kim and Grauman [42] model local optical flow and enforce the
consistency using Markov Random Field for detection of abnormal motion patterns.
Mahadevan et al. [58] model the normal crowd behavior by mixtures of dynamic
textures.

The global abnormality detection approaches label the motion in the entire scene
as abnormal. This often happens in cases of panic situations such as stampede.
In this direction, Mehran et al. [62] proposed a formulation of abnormal crowd
behavior by adopting the social force model and then using Latent Dirichlet
Allocation (LDA) to detect abnormality. In [98], chaotic invariants of particle
trajectories are used for detecting abnormal motion.

Next we describe related approaches from area of crowd simulation and pedes-
trian evacuation dynamics.

www.allitebooks.com
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1.3.2 Crowd Simulation and Behavior Modeling

Techniques to simulate and understand crowd behaviors and motion have been
studied in computer graphics, virtual reality, social science, statistical physics,
robotics, pedestrian and evacuation dynamics, and other areas of science and
engineering. One of the major goals is to develop appropriate models that can be
used to simulate and predict crowd behaviors in different real-world or synthetic
environments. A key computation within these models at the microscopic level is
to simulate the trajectory of each agent that avoids the static or dynamic obstacles
and other human agents in the environment. The microscopic models also take into
account the psychological and social behavior of each individual and how they
respond to external events or stress. At the same time, we are also interested in
macroscopic techniques that focus on the tendency and movement pattern of the
entire crowd or the aggregate flow. These models seek to predict plausible or likely
motion of human-like agents in terms of paths as well as other characteristics such
as densities, speeds, and emerging behaviors. Overall, the design and formulation
of such crowd simulation models is a challenging and multi-faceted problem. The
range of trajectories that the humans follow, the pattern of crowd behaviors that
we observe, and the variety of situations which the humans encounter are almost
endless. As a result, crowd simulation remains an active area of research in many
disciplines.

Any model for crowd simulation needs to take into account several components.
This includes specifying a computer-based geometric model of the environment;
computing the movement and trajectories of various agents, taking into account
the interactions amongst the agents and with the environment; model external and
dynamic events that affect crowd behavior. Some of the widely used models are
based on multi-agent simulation. A crowd is composed of human-like agents (i.e.,
individuals in the crowds), with a collection of goals and a set of obstacles that
constitute the environment. The individuals constituting a crowd may have similar
or distinct goals. In heterogeneous crowd simulation, each individual in the crowd
is assumed to have a physically embodied goal. The representation of this goal can
vary based on the simulation scenario; for example, a goal may correspond to a
specific position or a certain region in the environment. These goals may be dynamic
and may change over time, say following some other individual or dynamic obstacle
in the crowd. In addition to specifying the region and goals for each agent, the
model must take into account the environment, which consists of walls, obstacles
or other regions that may not be accessible to human-agents. These obstacles may
be static (e.g. buildings) or dynamic (e.g. moving vehicles). Given the description
of the agents and the environment, a key component of crowd simulation is the
computation of trajectories for each agent that adhere to environmental factors,
avoid collisions with the obstacles and other agents, and guide each agent towards
its immediate goal. In particular, Reynolds refers to this process of intermediate-
level planning as steering behaviors [75]. These steering behaviors are largely
independent of the particulars of the agent’s means of locomotion, but are used
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to navigate around the environment in a life-like and improvisational manner, and
also results in collision avoidance. The combinations of such steering behaviors can
be used to achieve some higher level goals, like following a walkay or a corridor,
joining some other group of agents, etc.

1.3.2.1 Models for Crowd Motion

There is extensive literature on simulating crowd movements and dynamics. Many
techniques have been proposed to compute the motion of individuals in crowds.
Their application depends on the type of crowd patterns or behaviors that we want
to simulate and the surrounding environment. An important issue with respect
to crowd simulation is whether the crowds being simulated are homogeneous or
heterogeneous. Homogeneous crowds correspond to instances where each agent
has very similar behavior or goal. The study of heterogeneous crowds dates back
to at least the work of Le Bon more than a century ago, who analyzed how
members of a crowd can have different races, genders, intents, and backgrounds
[50]. In heterogeneous crowds, every individual agent in the crowd maintains a
distinct, observable identity. This identity is observed in the goals, desired speeds,
aggressiveness, cooperation, and many other factors which affect the motion and
trajectory of each agent. In contrast, homogeneous crowds are observed when a clear
unity of action leads to a “disappearance of conscious personality”, which results
in a homogeneity of motion [50]. In terms of simulating homogeneous crowds,
it may be possible to exploit the coherence in individual motion to accelerate the
overall simulation. These include flow-based models [30, 31] that are governed by
differential equations that uniformly dictate the flow of crowds across space. Other
examples include models based on continuum crowds [91], which allow a small,
fixed number of goals, and aggregate dynamics for dense crowd simulation [66].

1.3.2.2 Agent-Based Crowd Simulations

In contrast to continuum methods, agent-based simulation methods allow for true
heterogeneity in simulating the motion and trajectory of each individual. In these
simulations, each human-like character in the crowd is represented as a simulated
agent. Since the motion of each agent is computed separately, it is possible to
simulate crowds with varying characteristics and personalities for each agent. One
of the most popular agent-based approaches was proposed by Reynolds in the
Boids algorithm [74], which can generate steering behaviors that resemble flocking,
herding, and school behaviors commonly observed in animal motion. This algorithm
has been widely used in games and generating special effects in movies.

There is considerable literature in robotics and related areas on computing the
motion and trajectories of multiple agents in a shared environment. The underlying
motion-planning problem is known to have exponential complexity in terms of
number of agents or the degrees of freedom [49]. At a broad level, prior work on
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motion planning can be classified into two kinds of approaches. The centralized
approaches [48,49] consider the sum of all the robots or agents and treat the resulting
system as a single composite system. In these methods, the configuration spaces of
individual robots are combined (using the Cartesian product) in a composite space,
and the resulting algorithm searches for a solution in this combined configuration
space. In contrast, the decoupled planners proceed in a distributed manner, and
coordination among them is often handled by exploring a coordination space, which
represents the parameters along each specific path or are computed some kind of
local rules. Decoupled approaches [84,96] are much faster than centralized methods,
but may not be able to guarantee theoretical completeness. Some of the techniques
from robot motion planning have been used to generate group behaviors [6, 37] and
real-time navigation of large numbers of agents amongst obstacles [17, 89].

Most widely-used techniques for handling a large number of human-like agents
are based on decentralized methods. This is a challenging task, particularly in
densely-packed, crowded scenarios with several hundreds or thousands of agents.
Each agent essentially has to navigate through an unknown dynamic environment;
it has no prior knowledge of how other agents or the dynamic obstacles will move
in the future. The standard approach to this class of problems is to let each agent run
a continuous cycle of sensing and acting. During each cycle, the agent observes its
surroundings, acquires information about the positions and velocities of other agents
and obstacles in the synthetic environment, and computes a local path towards a
goal that avoids collisions. If this cycle is executed at a high frequency, the agent
is able to react in a timely way to changes in its surroundings. The computation of
an agent’s motion breaks down into two tasks: global and local navigation. Global
navigation aims at computing a collision-free path towards a goal position that only
takes into account the static obstacles, while local navigation techniques are used
to avoid collisions with other agents and dynamic obstacles and steer each agent
towards its goal position.

1.3.2.3 Global Navigation

Global path computation is typically performed using a global data structures,
such as roadmaps or navigation meshes. A roadmap is a graph consisting of a
set of vertices positioned in freespace (i.e. not inside an obstacle) and a set of
edges connecting these vertices. Two vertices are connected by an edge if and
only if the direct path between the two nodes is collision-free (i.e. no obstacles
block the direct path). Such roadmaps can be constructed by an artist, or can be
automatically generated using visibility graphs [56], probabilistic methods [39],
or other techniques [48, 49]. Each agent can compute its global path using such
roadmaps and performing graph search, such as Dijkstra’s algorithm [15] or A*
search [23]. In games and related applications, navigation meshes [36, 86, 94] have
begun to supplant roadmaps. A navigation mesh is a decomposition of the freespace
of the environment into a mesh consisting of convex polygons. As in roadmaps,
the connectivity of the mesh is stored as a graph; however, navigation meshes have
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advantages over roadmaps in that all edges of a polygon are implicitly connected to
each other, i.e. because of the convexity there is a straight-line path from any point
in the polygon to any boundary. In addition, a single navigation mesh can encode
clearance for arbitrarily sized agents. Computing a global path with a navigation
mesh simply requires searching the connectivity graph for the shortest path between
two nodes. The cost of a graph edge between two polygons depends on the length
of the shared edge of those two polygons. If the edge is not large enough to
accommodate the agent, the cost is infinite.

1.3.2.4 Local Navigation and Crowd Simulation

Several techniques have been proposed to animate or simulate large groups of
autonomous agents or crowds. Most of these methods use a rather simple represen-
tation for each agent – for example, a circular shape in a 2D plane or a cylindrical
object in the 3D space – and compute a collision-free trajectory for each agent. After
computing the trajectory using a simple representation, these techniques use either
footstep planning or walking synthesis methods to compute a human-like motion
for each agent along the given trajectory.

Local navigation computation takes into account the motion of dynamic obstacles
and other agents in the environment. At a broad level, prior methods for local
collision avoidance and navigation can be classified into the following categories:

• Potential-based methods: These algorithms focus on modeling agents as particles
with potentials and forces [24].

• Boid-like methods: These approaches, based on the seminal work of Reynolds,
create simple rules for computing the velocities [74, 75].

• Geometric and velocity methods: These algorithms compute collision-free paths
using sampling in the velocity space obstacles [92] or by using optimization
methods [20, 85, 93].

• Field based methods: These algorithms compute fields for agents to follow [12,
33, 72, 100], or generate navigation fields for different agents [67].

• Least effort crowds: These methods for modeling the paths of crowds are based
on the classic principle of Least Effort proposed by Zipf [104], many researchers
have used that formulation to model the paths of crowds [35,38,80,87]. Recently,
it has been combined with multi-agent collision avoidance algorithms [93] and
used to efficiently and automatically generate emergent behaviors for a large
number of agents [21].

• Data-driven methods: These methods use real-world or data-driven techniques to
simulate realistic crowd simulation as well as evaluate their accuracy [52,72,82].

In addition to these broad classifications, there are many other specific approaches
designed to simulate crowd behavior based on cognitive modeling and behavior
[83, 101], sociological or psychological factors [68], personality models [22], and
dynamic behaviors [43].
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1.4 Looking Ahead

Through the collection of chapters presented in this book, we hope to provide
reader with an insight that will ultimately lead to addressing some of the following
questions:

• What are the general principles that characterize complex crowd behavior of
heterogeneous individuals?

• How can verifiable mathematical models of crowd motion and interaction can be
developed based on these principles?

• How these general principles can be used to enhance performance of low level
vision tasks such as object detection, tracking, and activity analysis in crowds?

• What are the possible problem areas in visual analysis of crowds that will benefit
from crowd simulation and behavior models (e.g. tracking, target acquisition
across sensor gaps, and sensor hand-off techniques etc.) and vice versa.

The rest of the book is organized into two parts. The first part presents a collection
of chapters that focus on experimental validation of various pedestrian motion
and interaction models (Chaps. 2 and 4), crowd simulation and behavior modeling
(Chaps. 5–8), and relationship between micro and macroscopic models (Chap. 3).
The second part of the book focus on approaches of visual analysis of crowded
scenes. It covers topics of modeling crowd flows (Chaps. 9, 10, and 12), interaction
among crowd participants (Chaps. 11 and 13), crowd counting (Chap. 14) and
abnormal event detection (Chap. 15).
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Crowd Simulation and Behavior Modeling



Chapter 2
On Force-Based Modeling of Pedestrian
Dynamics

Mohcine Chraibi, Andreas Schadschneider, and Armin Seyfried

Abstract A brief overview of mathematical modeling of pedestrian dynamics is
presented. Hereby, we focus on space-continuous models which include inter-
actions between the pedestrian by forces. Conceptual problems of such models
are addressed. Side-effects of spatially continuous force-based models, especially
oscillations and overlapping which occur for erroneous choices of the forces, are
analyzed in a quantitative manner. As a representative example of force-based
models the Generalized Centrifugal Force Model (GCFM) is introduced. Key
components of the model are presented and discussed. Finally, simulations with
the GCFM in corridors and bottlenecks are shown and compared with experimental
data.

2.1 Introduction

The study of pedestrian dynamics has gained special interest due to the increasing
number of mass events, where several thousand people gather in restricted areas.
In order to understand the laws that govern the dynamics of a crowd several
experiments were performed and evaluated. A brief overview can be found in
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Fig. 2.1 Left: Von-Neumann neighborhood. Middle: Moore neighborhood. Right: Hexagonal
neighborhood

[26]. Due to ethical and technical limitations, experimental studies with large
numbers of pedestrians are often restricted to controlled labor experiments in
specific geometries e.g., bottlenecks [3,10,12,14,15,28,29,35], T-junctions [37] and
corridors [1, 5, 31, 38, 39]. Nevertheless, those experiments are beneficial to study
quantitative and qualitative properties of pedestrian dynamics. Furthermore, they
provide an empirical basis for model development and validation. In fact, validated
models can be used to extrapolate the empirical knowledge to cover situations that
are difficult to produce with experiments.

Several mathematical models have been developed. Based on their properties,
existing models can be categorized into different classes [26]. An increasingly
important type of model is based on individual description of pedestrians by means
of intrinsic properties and spatial interactions between individuals. Those models
state that phenomena which emerge at a macroscopic level arise as a result of
interactions at a microscopic level.

Probably, the most investigated microscopic models are the Cellular Automata
models (CA), which are “mathematical idealizations of physical systems in which
space and time are discrete, and physical quantities take on finite set of discrete
values.” [34] In the simplest case, CA models decompose space into a rectangular or
hexagonal lattice with a cell size of 40×40cm2. The state of each cell is described
by a discrete variable; “1” for occupied and “0” for empty. It is updated in time
according to a set of predefined (stochastic) rules depending on the states of the cells
in a certain neighborhood. Depending on the system different neighborhoods can be
defined. Figure 2.1 depicts schematically three of the most common neighborhoods
used in CA applied to pedestrian dynamics. The full specification of the dynamics
of a CA model requires to specify the order in which cells are updated. The most
common update strategy is the parallel or synchronous update where all cells are
updated at the same time.

CA models describe properties of pedestrian traffic fairly well. However, the
discretization of space is not always possible in sensible way. For more details the
reader is referred to [27].

Another type of microscopic models which, contrary to CA models, is defined in
a continuous space, are force-based models. Force-based models describe the move-
ment of individuals by means of non-linear second-order differential equations.
In this chapter, we address properties of force-based models. The question of their
realism and ability to describe pedestrian dynamics is discussed in the following.
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2.2 Force-Based Models

As early as 1950s, several second-order models has been developed to study traffic
dynamics [21–23]. By means of differential equations the change of the system
with respect to time can be described microscopically by those models. Following
Newtonian dynamics, change of state results from the existence of exterior forces.
As such it can be concluded that the origin of force-based modeling can be traced
back to the beginning of the 1950s. An explicit formulation of this forced-based
principle in pedestrian dynamics was expressed in [11], who presented a CA-model
that “hypothesizes the existence of repulsive forces between pedestrians so that
as the subject approaches another pedestrian the ‘potential energy’ of his position
rises and the ‘kinetic energy’ of his speed drops” [11]. However, the first space-
continuous force-based model was introduced by Hirai et al. [8].

Further models for pedestrian dynamics that are based on this force-Ansatz
followed [6, 7, 13, 18, 30].

2.2.1 Definition and Issues

Given a pedestrian i with coordinates
−→
Ri one defines the set of all pedestrians that

influence pedestrian i at a certain moment as Ni and the set of walls or boundaries
that act on i as Wi. In general the forces defining the equation of motion are
split into driving and repulsive forces. The repulsive forces model the collision-
avoidance performed by pedestrians and should in principle guarantee a certain
volume exclusion for each pedestrian. The driving force, on the other hand, models
the intention of a pedestrian to move to a certain destination and walk with a desired
speed.

Formally the movement of each pedestrian is defined by the equation of motion

mi
d

dt2

−→
Ri =

−→
Fi =

−→
Fi

drv + ∑
j∈Ni

−→
Fi j

rep + ∑
w∈Wi

−→
Fiw

rep , (2.1)

where
−→
Fi j

rep denotes the repulsive force from pedestrian j acting on pedestrian i,−→
Fiw

rep is the repulsive force emerging from the obstacle w and
−→
Fi

drv is a driving
force and mi is the mass of pedestrian i. In [8] the equation of motion (2.1)
contains a coefficient of viscosity. However, the influence of this coefficient was
not investigated.
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For a system of n pedestrians we define the state vector
−→
X (t) as

−→
X (t) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−→
R1(t)

...−→
Rn(t)−→v1 (t)

...
−→vn (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2)

According to Eq. (2.1) the change of
−→
X (t) over time is described by:

d
dt
−→
X (t) =

( −→v (t)−→
F (t)/m

)
, (2.3)

with

−→
F (t) =

⎛
⎜⎝

−→
F1
...−→

Fn

⎞
⎟⎠ , −→v (t) =

⎛
⎜⎝
−→v1
...
−→vn

⎞
⎟⎠ and mi = m ∀i ∈ [1, n]. (2.4)

The state vector at time t +Δ t is then obtained by integrating (2.3):

−→
X (t +Δ t) =

t+Δ t∫

t

( −→v (t̃)−→
F (t̃)/m

)
dt̃ +

−→
X (t). (2.5)

In general the integral in (2.5) may not be expressible in closed form and must be
solved numerically.

Force-based models are able to describe qualitatively and quantitatively some
aspects of pedestrian dynamics. Nevertheless, they have some conceptual problems.
The first problem is Newton’s third law. According to this principle two particles
interact by forces of equal magnitudes and opposite directions. For pedestrians this
law is unrealistic since e.g. normally a pedestrian does not react to pedestrians
behind him/her. Even if the angle of vision is taken into account, the forces mutually
exerted on each other are not of the same magnitude. In classical mechanics
the acceleration of a particle is linear in the force acting on it. Consequently
the acceleration resulting from several forces is summed up from accelerations
computed from each force. The superposition-principle however, leads to some side-
effects when modeling pedestrian dynamics, especially in dense situations where
unrealistic backwards movement or high velocities can occur.
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Further problems are related to the Newtonian equation of motion describing
particles with inertia. This could lead to overlapping and oscillations of the modeled
pedestrians.

On one hand, the particles representing pedestrians can excessively overlap and
thus violate the principle of volume exclusion. On the other hand, pedestrians can
be pushed backwards by repulsive forces and so perform an oscillating movement
towards the exit. This leads to unrealistic behavior especially in evacuation scenarios
where a forward movement is dominating. Depending on the strength of the
repulsive forces, overlapping and oscillations of pedestrians can be mitigated.
However, since both phenomena are related to the repulsive forces this can not
be achieved simultaneously in a satisfactory way. Reducing the overlapping-issue
by increasing the strength of the repulsive forces would lead to an increase of the
oscillations in the system. On the other hand, reducing the strength of the repulsive
forces may solve the problem of oscillations, but at the same time increase the
tendency of overlapping.

In order to solve this overlapping-oscillations duality one can introduce extra
rules. One possible solution may be avoiding oscillations by choosing adequate
values of the repulsive forces and deal with overlapping among pedestrians with an
“overlap-eliminating” algorithm [13]. In [36] a “collision detection technique” was
introduced to modify the state variables of the system each time pedestrians overlap
with each other. The other possible solution goes in the opposite direction, namely
avoiding overlapping by strong repulsive forces and simply eliminate oscillations
by setting the velocity to zero [7, 16].

Even if those extra rules may solve the problematic duality, it seems that they
are redundant since interactions among pedestrians are no longer expressed only by
repulsive forces. This redundancy adds an amount of complexity to the model and is
clearly in contradiction to the minimum description length principle [24]. Besides, it
is unclear how the modification of the state vector X(t) (2.2) influences the stability
of the Eq. (2.5). For those reasons, it is necessary to investigate solutions for the
overlapping-oscillations duality without dispensing with the simplicity of the model
as originally described with the equation of movement (2.3).

In order to understand the relation between overlapping and oscillations with the
repulsive force and hence investigate solutions for the aforementioned problem, we
first try to quantify those phenomena and study their behavior with respect to the
strength of the repulsive force.

2.2.2 Overlapping

Overlapping is a simulation-specific phenomenon that arises in some models. Unlike
CA-models, where volume exclusion is given with the discretization of the space, in
poorly calibrated force-based models, unrealistic overlapping between pedestrians
are not excluded (Fig. 2.2).
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Fig. 2.2 Evacuation through a bottleneck. The simulation screen-shot highlights the problem of
excessive overlapping

In order to measure the overlapping that arise during a simulation an
“overlapping-proportion” is defined as

o(v) =
1

nov

tend

∑
t=0

N

∑
i=1

N

∑
j>i

oi j , (2.6)

with

oi j =
Ai j

min(Ai,A j)
≤ 1, (2.7)

where N is the number of simulated pedestrians and tend the duration of the
simulation. Ai j is the overlapping area of the geometrical forms representing i and j
with areas Ai and A j, respectively. nov is the cardinality of the set

O := {oi j : oi j �= 0} . (2.8)

For nov = 0, o(v) is set to zero.

2.2.3 Oscillations

Oscillations are backward movements fulfilled by pedestrians when moving under
high repulsive forces. Figure 2.3 shows a simulation where pedestrians are force to
move in the opposite direction of the exit.

For a pedestrian with velocity −→vi and desired velocity
−→
v0

i the “oscillation-
proportion” is defined as

o(s) =
1

nos

tend

∑
t=0

N

∑
i=1

Si , (2.9)
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Fig. 2.3 Evacuation through a bottleneck. The simulation screen-shot highlights the problem of
oscillations. Note the pedestrians near the walls have the wrong orientation

where Si quantifies the oscillation-strength of pedestrian i and is defined as follows:

Si =
1
2
(−si + |si|) , (2.10)

with

si =
−→vi ·−→vi

0

‖ −→v0
i ‖2

, (2.11)

and nos is the cardinality of the set

S := {si : si �= 0}. (2.12)

Here again o(s) is set to zero if nos = 0. Note that Si in Eq. (2.10) is zero if the
angle between the velocity and the desired velocity is less that π/2. This means a
realistic deviation of the velocity from the desired direction is not considered as an
“oscillation”.

The proportions o(v) and o(s) are normalized to 1 and describe the evolution of
the overlapping and oscillations during a simulation. The change of o(v) and o(s) is
measured with respect to the strength of the repulsive force η . This dependence as
well as the overlapping-oscillation duality is showcased in Fig. 2.4.

Increasing the strength of the repulsive force (η) to make pedestrians “impen-
etrable” leads to a decrease of the overlapping-proportion o(v). Meanwhile, the
oscillation-proportion o(s) increases, thus the system tends to become unstable.
Large values of the oscillation-proportion o(s) imply less stability. For si = 1 one has−→vi = −−→vi

0, i.e., a pedestrian moves backwards with desired velocity. Even values
of si higher than 1 are not excluded and can occur during a simulation.

It should be mentioned that the proportions o(v) and o(s) introduced here are
diagnostic tools that help calibrating the strength of the repulsive force in order to
minimize overlapping as well as oscillations.
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Fig. 2.4 The change of the overlapping-proportion (2.6) and the oscillation-proportion (2.9) in
dependence of the repulsive force strength. For each η , 200 simulations were performed

2.3 The Generalized Centrifugal Force Model (GCFM)

The GCFM [2] describes the two-dimensional projection of the human body, by
means of ellipses with velocity-dependent semi-axes. It takes into account the
distance between the “edges” of the pedestrians as well as their relative velocities.
An elliptical volume exclusion has several advantages over a circular one. Because
a circle is symmetric with respect to its center, it is inconsistent with the asymmetric
space requirement of pedestrians in their direction of motion and transverse to it.
One possible remedy would be allowing the center of mass to be different from the
geometrical center of the circle. Whether this leads to realistic compliance with the
volume exclusion is not clear and should be studied in more detail.

As a force-based model, the GCFM describes the time evolution of pedestrians
by a system of superposing short-range forces. Besides the geometrical shape of
modeled pedestrians, it emphasizes the relevance of clear model definition without
any hidden restrictions on the state variables. Furthermore, quantitative validation,
with help of experimental data taken from different scenarios, plays a key role in the
development of the model.

2.3.1 Volume Exclusion of Pedestrians

As mentioned earlier, one drawback of circles that impact negatively the dynamics
is their rotational symmetry with respect to their centers. Therefore, they occupy

www.allitebooks.com

http://www.allitebooks.org


2 On Force-Based Modeling of Pedestrian Dynamics 31

the same amount of space in all directions. In single file movement this is irrelevant
since the circles are projected to lines and only the required space in movement
direction matters. However, for two-dimensional movement, a rotational symmetry
has a negative impact on the dynamics of the system due to unrealistically large
lateral space requirements.

In [4] Fruin introduced the “body ellipse” to describe the plane view of the
average adult male human body. Pauls [19] presented ideas about an extension
of Fruin’s ellipse model to better understand and model pedestrian movement
as density increases. Templer [32] noticed that the so called “sensory zone”,
which can be interpreted as a “safety” space between pedestrians and other
objects in the environment to avoid physical conflicts and for “psychocultural
reasons”, varies in size and takes the shape of an ellipse. In fact, ellipses are
closer to the projection of required space of the human body on the plane,
including the extent of the legs during motion and the lateral swaying of the
body. Introducing an elliptical volume exclusion for pedestrians has the advantage
over circles (or points) to adjust independently the two semi-axes of the ellipse
such that one- and two-dimensional space requirement is described with higher
fidelity.

Given a pedestrian i, an ellipse with center (xi,yi), major semi-axis a and minor
semi-axis b can be defined. a models the space requirement in the direction of
movement,

a = amin + τavi (2.13)

with two parameters amin and τa.
Fruin [4] observed body swaying during both human locomotion and while

standing. Pauls [20] remarks that swaying laterally should be considered while
determining the required width of exit stairways. In [10], characteristics of lateral
swaying are determined experimentally. Observations of experimental trajectories
in [10] indicate that the amplitude of lateral swaying varies from a maximum bmax

for slow movement and gradually decreases to a minimum bmin for free movement
when pedestrians move with their free velocity. Thus with b the lateral swaying of
pedestrians is defined as

b = bmax − (bmax −bmin)
vi

v0
i

. (2.14)

Since a and b are velocity-dependent, the inequality

b ≤ a (2.15)

does not always hold for the ellipse i. In the rest of this work we denote the semi-axis
in the movement direction by a and its orthogonal semi-axis by b.
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−→vi

−→vj
Oi

Oj

ri

rj

αi

αj

−→eij

dij

Fig. 2.5 di j is the distance between the borders of the ellipses i and j along a line connecting their
centers

2.3.2 Repulsive Force

Assuming the direction connecting the positions of pedestrians i and j is given by

−→
Ri j =

−→
R j −−→

Ri ,
−→ei j =

−→
Ri j

‖ −→Ri j ‖
, (2.16)

the repulsive force reads

−→
Fi j

rep =−miki j
(η ‖ −→v0

i ‖+vi j)
2

di j

−→ei j, (2.17)

with the effective distance between pedestrians i and j

di j =‖ −→Ri j ‖ −ri(vi)− r j(v j). (2.18)

ri is the polar radius of pedestrian i (Fig. 2.5).
This definition of the repulsive force reflects several aspects. First, the force

between two pedestrians decreases with increasing distance. In the GCFM it is
inversely proportional to their distance (2.18). Furthermore, the repulsive force takes
into account the relative velocity vi j between pedestrians i and pedestrian j. The
following special definition ensures that for constant di j slower pedestrians are less
affected by the presence of faster pedestrians than by that of slower ones:

vi j =Θ
(
(−→vi −−→v j ) ·−→ei j

)
· (−→vi −−→v j ) ·−→ei j, (2.19)
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fm

repsl̃ r ′
c rcs0

dij

‖ −−→
F

rep
ij ‖

Fig. 2.6 The interpolation of the repulsive force between pedestrians i and j Eq. (2.17) depending
on di j and the distance of closest approach l̃ [40]. As the repulsive force also depends on the relative
velocity vi j , this figure depicts the curve of the force for vi j = const. The right and left dashed
curves are defined by a Hermite-interpolation at rc and r′eps. The wall-pedestrian interaction has an
analogous form

withΘ() is the Heaviside function.
As in general pedestrians react only to obstacles and pedestrians that are within

their perception, the reaction field of the repulsive force is reduced to the angle of
vision (180◦) of each pedestrian, by introducing the coefficient

ki j =Θ(−→vi ·−→ei j) · (−→vi ·−→ei j)/ ‖ −→vi ‖ . (2.20)

The coefficient ki j is maximal when pedestrian j is in the direction of movement of
pedestrian i and minimal when the angle between j and i is bigger than 90◦. Thus
the strength of the repulsive force depends on the angle.

The interaction of pedestrians with walls is similar to Eq. (2.17). In GCFM walls
are treated as three static pedestrians. The number of points is chosen to avoid
“going through” walls for pedestrians that are walking almost parallel to walls.

To enhance the numerical behavior of the function (2.17) at small distances
a Hermite-interpolation is performed. Furthermore, the force range is reduced to
a certain distance rc. This is especially necessary to avoid summing over distant
pedestrians. Figure 2.6 depicts a possible curve of the repulsive force extended by
the above mentioned right and left Hermite-interpolation (dashed curves).
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Fig. 2.7 Expected evolution of a pedestrian’s velocity with respect to time

2.3.3 Driving Force

From a mathematical standpoint the acceleration of pedestrians may be of different
nature e.g., Dirac-like, linear or exponential. According to [21], the later type is
more realistic and can take the following expression:

−→vi (t) =
−→
v0

i ·
(

1− exp

(
− t
τ

))
, (2.21)

with τ a time constant. Figure 2.7 shows the evolution of the velocity in time. See
Fig. 2.7.

Differentiation of Eq. (2.21) with respect to t yields

d
dt
−→vi (t) =

1
τ
·
−→
v0

i exp
(
− t
τ

)
. (2.22)

From Eq. (2.21) one gets

−→
v0

i exp
(
− t
τ

)
=
−→
v0

i −−→vi (t). (2.23)

Combining (2.22) and (2.23) and considering Newton’s second law, the force acting
on i with mass mi is

−→
Fi

drv = mi

−→
v0

i −−→vi

τ
. (2.24)
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This mathematical expression of the driving force, is systematically used in all
known force-based models and describes well the free movement of pedestrians.
In [33] is has been reported that evaluation of empirical data yields τ = 0.61 s. A
different value of 0.54 s was reported in [17].

2.4 Steering Mechanisms

In this section the effects of the desired direction on the dynamics by measuring the
outflow from a bottleneck with different widths is studied. Two different methods
for setting the direction of the desired velocity are discussed.

2.4.1 Directing Towards the Middle of the Exit

This is probably the most obvious mechanism. Herein, the desired direction
−→
e0

i for
pedestrian i is permanently directed towards a reference point that exactly lies on
the middle of the exit. In some situations it happens that pedestrians can not get to
the chosen reference point without colliding with walls. To avoid this and to make
sure that all pedestrians can “see” the middle of the exit the reference point e1 is
shifted by half the minimal shoulder length bmin = 0.2m (Fig. 2.8).

Figure 2.9 shows a simulation with 180 pedestrians with this steering mechanism.
Even if the entrance of the bottleneck is relatively wide, because of the steering the
pedestrians do not make optimal use of the full width and stay oriented towards the
middle of the bottleneck.

2.4.2 Mechanism with Directing Lines

In this section we introduce a mechanism that is, unlike the previous one, applicable
to all geometries even if the exit point is not visible. Three different lines are

e2
bmin

e1

Fig. 2.8 All pedestrians are directed towards the reference points e1 and e2
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Fig. 2.9 Screen-shot of a simulation. Width of the bottleneck w = 2.5m

e1

Fig. 2.10 Guiding line segments in front of the generated

defined (Fig. 2.10) which allow to “ease” the movement of pedestrians through the
bottleneck. The nearest point from each pedestrian to those lines define its desired
direction.

The blue line set (down the dashed line segment) is considered by pedestrians in
the lower half and the red line set by pedestrians in the upper half of the bottleneck.
For a pedestrian i at position pi we define the angle

θi = arccos

( −−→pie1 ·−−→pili j

‖ −−→pie1 ‖ · ‖ −−→pili j ‖

)
, (2.25)

with li j the nearest point of the line j to the pedestrian i.
The next direction is then chosen as

−→
e0

i =

−−→
pili j

‖ −−→pili j ‖
(2.26)

with j such that θ j = min{θ1,θ2,θ3}. The direction lines are shifted in x- and
y-direction by bmin to mitigate blocking in the corners.
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Fig. 2.11 Screenshot of a simulation with directing lines. Width of the bottleneck w = 2.5m

Figure 2.11 shows the form of the jam in front of the bottleneck for w = 2.5m.
In comparison to the first steering mechanism, where pedestrians were direction
towards the middle of the bottleneck, here pedestrians make better use of the whole
width, which influences the qualitative behavior of pedestrians positively.

2.5 Simulation Results

The free parameters of the model are systematically calibrated by considering single
file movement, two dimensional movement in corridors, bottlenecks and corners. In
this chapter only simulations results in wide corridors and bottlenecks are presented.

The initial value problem in Eq. (2.1) was solved using an Euler scheme with
fixed-step size Δ t = 0.01s. First the state variables of all pedestrians are determined.
Then the update to the next step is performed. Thus, the parallelism of the update is
ensured.

The desired speeds of pedestrians are Gaussian distributed with mean μ =
1.34m/s and standard deviation σ = 0.26m/s. Since there is no uniquely accepted
experimental value for the time constant τ in the driving force Eq. (2.24), we set
for simplicity τ = 0.5s, i.e. τ 
 Δ t. The mass mi is set to unity. In all following
simulations the set of parameters is not changed.

To compare the presented steering mechanisms several simulations in a bottle-
neck are performed. For each mechanisms only the width of the bottleneck is varied
from 1 to 2.4 m.

On the basis of a quantitative analysis, the importance of the steering of
pedestrians for the observed behavior can be estimated. In the following, for each
mechanism the flow through bottlenecks of varying width w is measured. The flow
is measured directly at the entrance of the bottleneck according to
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Fig. 2.12 Flow through a bottleneck with different widths

J =
NΔ t −1
Δ t

, (2.27)

with NΔ t = 180 pedestrians and Δ t the time necessary that all pedestrians pass the
measurement line. In Fig. 2.12 the resulting flow in comparison with experimental
data is presented.

Keeping the same values of model parameters, the fundamental diagram in a
corridor with closed boundary conditions is measured. Here again, for the sake of
comparison simulations with circles and ellipses are performed. Results are then
validated against experimental data (Figs. 2.13 and 2.14).

2.6 Conclusion and Outlook

In this chapter a brief overview of force-based modeling of pedestrian dynamics is
given. Force-based models continuously describe in space the movement of pedes-
trians by means of differential equations. One can track the origin of this Ansatz
back to early 1950s, where first models were developed to describe lane-movement
in traffic flow. Since then, force-based models have been successful in describing
fairly well the dynamics of pedestrians. Nevertheless, several problems arise from
the analogy to Newtonian dynamics. Therefore, principles like superposition, actio
et reactio should be revised when applied to pedestrian dynamic.
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Fig. 2.13 Density-velocity relation with ellipses in a corridor of dimensions 25 × 1m2 in
comparison with experimental data obtained in the HERMES-project [9, 25]

Fig. 2.14 Density-velocity relation with circles in a corridor of dimensions 25×1m2 in compar-
ison with experimental data obtained in the HERMES-project [9, 25]. In these simulations b is set
to be equal to a
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By considering the GCFM as an example for force-based models, several
important aspects of force-based models were addressed. First, the definition of the
repulsive force is presented. By means of a Hermite-interpolation it was possible
to overcome the instability of the force at small distances and restrict its range
to a maximum distance. Second, several steering mechanism in the driving force
are discussed. Finally, simulation results in corridors and bottlenecks are compared
to experimental data. It was shown, that it is possible to describe quantitatively
pedestrian dynamics in several geometries with one set of parameters.
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Chapter 3
Connection Between Microscopic
and Macroscopic Models

Jan-Frederik Pietschmann

Abstract This chapter is devoted to the detailed study of the relation between
a microscopic cellular automation and a macroscopic partial differential equation
model for the movement of pedestrians. We describe the mathematical tools
allowing to derive the macroscopic from the microscopic model. Such a connection
between discrete, particle based and continuous, density based models can help to
improve the understanding of basic properties of human crowds. We exemplify this
by applying our results to typical cases. The first one is the formation of lanes in
bi-directional flow. The second is the analysis of the fundamental diagram. Our
analysis provides (at least qualitatively) a connection between these phenomena and
model parameters. We conclude by pointing out a number of possible directions of
future research.

3.1 Introduction

A good understanding of the collective behavior of large human crowds (crowd
motion) is of importance for several reasons. First of all, a growing fraction of
humanity is living in urban regions. These regions especially include facilities such
as airports or shopping malls in which a large number of people is concentrated in a
relatively small place. Appropriate mathematical models can help to optimize these
buildings in order to avoid congestion and allow for faster operation. Even more
important, they can be used to create and validate (using numerical simulations)
evacuation plans which are of course of highest importance.

Therefore the ultimate goal in terms of mathematical modeling is to develop
a model which is able to describe (at least qualitatively) the behavior of human

J.-F. Pietschmann (�)
Numerical Analysis and Scientific Computing, Department of Mathematics, TU Darmstadt,
Dolivostr. 15, 64293 Darmstadt
e-mail: pietschmann@mathematik.tu-darmstadt.de

S. Ali et al. (eds.), Modeling, Simulation and Visual Analysis of Crowds, The International
Series in Video Computing 11, DOI 10.1007/978-1-4614-8483-7__3,
© Springer Science+Business Media New York 2013

43

mailto:pietschmann@mathematik.tu-darmstadt.de


44 J.-F. Pietschmann

crowds over a large range of situations. Such a model does not yet exist and in
the following we shall outline the difficulties in creating it. A major issue here is
obviously the complexity of the humans involved. Their behavior depends on the
individual characteristics of each agent such as age, height, sex or even cultural
heritage [8]. Furthermore the behavior of each individual may change drastically
depending on the situation (e.g. normal walking versus panic). However, even if
it is assumed that all people behave exactly the same way, the situation remains
complicated. This becomes clearer by comparing a human crowd with a multi
particle system from physics (e.g. an electron gas or a plasma). The usual strategy
in physics to understand these complex systems is to start from a simple case, i.e.
the interaction between only two particles. This process is governed by a simple
physical law which then acts as a starting point for the understanding of the complete
system using certain mathematical tools. In crowd motion, however, the interaction
of a small number of people is already difficult to understand and therefore the
principle “from simple to complex” is not applicable. As a result, most existing
models are built upon simplified hypotheses and are mostly phenomenological.

3.2 Related Work

In crowd modelling, one can distinguish between two general approaches: micro-
scopic and macroscopic models. In the microscopic framework, people are treated
as individual entities (particles). The evolution of the particles in time is determined
by physical and social laws which describe the interaction among the particles as
well as their interactions with the physical surrounding. Examples for microscopic
methods are social force models (see [17] and the references therein), cellular
automata, [12, 28], queuing models, [40], or continuum dynamic approaches like
[37]. Social force models are also popular in computer vision, see [24, 27, 30, 39].
For an extensive review of different microscopic approaches we refer to [14]. In
contrast to microscopic models, macroscopic models treat the whole crowd as an
entity without considering the movement of single individuals. The crowd is often
represented by a density function depending on (‘continuous’) space and time.
Classical approaches use well known concepts from fluid or gas dynamics, see [18].
More recent models are based on optimal transportation methods [26], mean field
games, cf. [22] (see [23] for a general introduction) or non-linear conservation laws
[11]. In [31], an approach based on time-evolving measures is presented. We finally
note that crowd motion models share many features with traffic models, cf. [2].

We remark that, that due to the difficulties mentioned above, there is in many
cases no connection between microscopic and macroscopic models. However, such
an approach would be useful: While microscopic models are closest to observations
and are a very intuitive approach, many interesting quantities (such as density or
velocity) are macroscopic. Also collective self-organization phenomena (e.g. lane
formation) appears on a macroscopic scale.



3 Connection Between Microscopic and Macroscopic Models 45

In this work we describe in detail how such a connection can be derived between
a cellular automaton model introduced in [21] and a system of partial differential
equations similar to the ones in [4, 6]. We will discuss lane formation and the
analysis of the fundamental diagram as two possible applications.

3.2.1 Notation

Throughout this chapter we use the following notation:
R Set of real numbers,
R
+ Set of positive real numbers,

N Set of positive integers,
∂t partial derivative with respect to t,
∇ Vector containing all partial derivatives with respect to the space variable x,

i.e. ∇= (∂x1 ,∂x2 , . . . ,∂xn)
T for x ∈ R

n,
∇· divergence operator, i.e. for V = (V1, . . . ,Vn)

T ∈ R
n we have

∇ ·V (x) = ∑n
i=1 ∂xiVi(x), x ∈ R

n

∇2 The Laplace operator, i.e. ∇2u(x) = ∑n
i=1 ∂xixiu(x).

3.3 The Microscopic Model for Two Species

We start from a cellular automaton model for human crowd motion introduced in
[21]. The model is based on an asymmetric simple exclusion process (ASEP) on
a two-dimensional grid of size mx · ny (the size of one cell is typically about 40×
40cm2, cf. [33], originating from a maximal density of 6.25 people per m2, cf. [38]).
Given a discrete time step, the model provides for each individual in a given cell
the probability to jump into a neighboring cell. This probability is determined by
several factors: First of all, individuals are not allowed to jump to an occupied cell
(size exclusion, cf. [36]). Furthermore, there exist two driving forces, called ”floor
fields”, cf. [7], a static field S and a dynamic field D on which the jump-probability
depends exponentially. The static field S provides individuals with a sense of their
environment, increasing towards locations they want to reach, such as doors. The
dynamic field D is created by the particles themselves and accounts for herding
effects. This is a key feature of the model and one goal of this chapter is to examine
its impact on the formation of lanes. Being zero at the initial time, the value of D
is increased whenever a particle leaves a cell, modeling the tendency of people to
follow others. Note that the concept of floor fields is also used in computer vision,
cf. [1]. It is straightforward to extend this model to multiple species, each of them
coupled to its own dynamic and static field. In the following, we consider the case of
two species (labeled red or r and blue or b). For simplicity, we shall only explain the
model for particles of group r with corresponding fields Dr and Sr. The probability
of a particle to jump into a neighboring cell i, j is given by
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(Pr)i, j = (Nr)i, j exp(kD (Dr)i, j)exp(kS(Sr)i, j)(1− ri, j −bi, j). (3.1)

The term (1 − ri, j − bi, j) accounts for the size exclusion effect rendering the
probability zero if a cell is occupied. The positive constants kD and kS regulate the
relative influence of the two floor fields. Finally, (Nr)i, j is a normalization factor
given by

(Nr)
−1
i, j = ∑

k={i−1,i+1}
∑

l={ j−1, j+1}
ekD(Dr)k,l ekS(Sr)k,l . (3.2)

The dynamic field Dr is zero at the beginning of a simulation. In every step, it is
updated using the following rules

• It is increased by one whenever a particle left a cell, i.e.

(Dr)
k+1
i, j =

{
(Dr)

k
i, j +1 if (rk

i, j − rk+1
i, j ) = 1

(Dr)
k
i, j otherwise

(3.3)

• If Dr ≥ 1, it decreases by a given probability δ > 0, i.e. given a random number p

(Dr)
k+1
i, j =

{
(Dr)

k
i, j −1 if p < δ

(Dr)
k
i, j otherwise

(3.4)

• The diffusion is implemented in the following way: With a probability of κ/4,
κ ∈R

+ a particle jumps to one of its neighboring fields. With probability (1−κ),
it stays at its place.

Note that these rules imply that the value of Dr is always a non-negative integer.

3.4 Derivation of the Macroscopic Model

In this section we describe the derivation of a (system of) partial differential
equations from the modified ASEP introduced above, cf. [4,36]. The resulting model
is macroscopic is the following sense: In the ASEP, pedestrians are represented
by particles and at each time step, the position of each particle is known. On the
contrary, the PDE model describes the evolution of densities. These densities can be
understood as the average number of pedestrians at a certain point in time and space.
Therefore, this model is not able to produce trajectories of individual pedestrian.
On the other hand, due to the intrinsic averaging, global quantities (which are for
example necessary to compute the fundamental diagram) can be extracted easily.

For the sake of clarity, we perform the derivation in one space dimension only. It
is analogous in higher dimensions.
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Fig. 3.1 The microscopic setting in one space dimension

3.4.1 Setup

In one space dimension, the model reduces to a row of N cells of width h, as shown
in Fig. 3.1. We scale the width of the cells such that the total length of the row is
one, i.e. chose h such that hN = 1. Furthermore, we denote by xi the midpoint of cell
i, i = 1, . . . ,N. In the microscopic model, all quantities are discrete: ri and bi denote
the number of red and blue particles in cell i, respectively. The values of the floor
fields are assumed to be constant in each cell resulting in a finite number of values
Si and Di. On the other hand, the densities appearing in the macroscopic model are
functions of continuous space and time variables (x ∈ [0,1], t ∈ R

+). Therefore, we
introduce the functions

S̃r : [0,1] → R
+ S̃b : [0,1] → R

+

D̃r : [0,1]×R
+ → R

+ D̃b : [0,1]×R
+ → R

+

r̃ : [0,1]×R
+ → [0,1] b̃ : [0,1]×R

+ → [0,1].
(3.5)

To connect these functions with their discrete analogues (i.e. S̃ with Si, D̃ with Di,
etc.), we define them as constant on each cell. For example

S̃r(x) =

⎧⎪⎪⎨
⎪⎪⎩

S1, if 0 ≤ x < h,
. . . ,

Si, if hi ≤ x < h(i+1),
. . . .

(3.6)

In other words, the functions are piecewise constant and in each cell attain the value
of their discrete analogue. With these definitions, the probability of a particle to
jump into the cell with midpoint xi is given by

P̃c(xi, tk) = NekDc D̃c(xi,tk)ekSc S̃c(xi)(1− r̃i(xi, tk)− b̃i(xi, tk)), c = r, b, (3.7)

with

Ñc(xi, tk) =
1

∑i+1
k=i−1 ekDc D̃c(xi,tk)ekSc S̃c(xi)

, c = r, b.

Note that even though these expressions look very similar to (3.1) and (3.2) they are
different as they are valid for arbitrary x �= xi, i = 1, . . . ,N and t �= tk, k ∈ N+.
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Closure Assumption A priori, only ni, j, i.e. the information whether cell (i, j)
is occupied or not is known. However, in (3.7) we replaced ni, j by r̃i(xi, tk)+
b̃i(xi, tk), i.e. the probability of the cell being occupied or not. This is needed
to obtain a closed equation and therefore called a “closure assumption”. In
cases in which the macroscopic limit can be justified rigorously, this closure
assumption turns out to be the right one, cf. [13], which motivates our choice.

3.4.2 Master Equation

We will now formulate the dynamics of the macroscopic model by using a so-called
master-equation, see for example [3]. This equation describes how the probabilities
to find a particle in a certain cell evolve in time. To increase readability, we will
neglect the tildes from the previous section and write r, b, S, D instead of r̃, b̃, S̃, D̃.
For red and blue particles, the corresponding master equations are given by

r(xi, tk+1) = Pr(xi, tk)(r(xi−1, tk)+ r(xi+1, tk)) (3.8)

+ r(xi, tk)(1−Pr(xi−1, tk)−Pr(xi+1, tk)),

b(xi, tk+1) = Pb(xi, tk)(b(xi−1, tk)+b(xi+1, tk)) (3.9)

+b(xi, tk)(1−P(xi−1, tk)−P(xi+1, tk)),

These equations states the probability of finding a particle at position xi at time tk+1

given the state of the system at time tk. Since the ASEP allows particles to jump only
one cell per time step, we only need to take the cells i, i−1 and i+1 into account.
Roughly speaking, the master equation consists of two terms: The probability of a
particle at cell i± 1 to jump into cell i (first term) and probability for a particle to
stay in cell i (i.e. one minus the probability to jump out of the cell, second term).
Note that since the probabilities are real numbers in [0,1], the values of r and b
do not need to be discrete integers anymore. For corresponding equations for the
dynamic fields read as

Dr(xi, tk+1) = Dr(xi, tk)+(Δ t)r(xi, tk)(Pr(xi−1, tk)+Pr(xi+1, tk)) (3.10)

−δDr(xi, tk),

Db(xi, tk+1) = Db(xi, tk)+(Δ t)b(xi, tk)(Pb(xi−1, tk)+Pb(xi+1, tk)) (3.11)

−δDb(xi, tk).

i.e. value of D increases, whenever a particle leaves an occupied field and decreases
with rate δ > 0.



3 Connection Between Microscopic and Macroscopic Models 49

We are now ready to perform the limiting procedure which transforms the ASEP
into a system of partial differential equations. We will only consider red particles
from now on as the strategy is exactly the same for the blue ones. The mathematical
strategy to obtain the microscopic model is to perform the limit Δ t → 0, h → 0. In
other words: We let the width of the cells and the length of the discrete time steps
tend to zero. Since the total length is fixed by hN = 1 this means that the number of
cells tend to infinity. If we multiply the master equation for r, (3.8), by 1

Δ t we obtain

1
Δ t

(r(xi, tk+1)− r(xi, tk)) =
1
Δ t

(Pr(xi, tk)(r(xi−1, tk)+ r(xi+1, tk))

+ r(xi, tk)(1−Pr(xi−1, tk)−Pr(xi+1, tk))),

we see that in the limit Δ t → 0, the left hand side will converge to ∂t r. However,
the resulting equation is still discrete in space and it is not clear what happens to the
right hand side in the limit. We therefore perform a Taylor expansion of the right
hand side around xi. Remember that we are planing to let h tend to zero, therefore it
is reasonable to assume it to be small which justifies the Taylor expansion. We first
take a closer look at Eq. (3.12). Taylor expansion of the right hand side around the
point x = xi yields

r(xi, t +Δ t)− r(xi, t)

= h2P(xi, t)∂xr(xi+1, t)−h2r(xi, t)∂xP(xi+1, t)

= h2P(xi, t)∂xr(xi, t)−h2r(xi, t)

∂x

(
NekSr Sr ekDr Dr [(1− r(xi, t))(∂xD+∂xS)−∂xr(xi, t)]

)

= h2∂x

(
NekSr Sr ekDr Dr∂xr(xi, t)

)

−h2∂x

(
NekSr Sr ekDr Dr r(xi, t)(1− r(xi, t))(∂xD+∂xS)

)
.

The final step before we actually pass to the limit is to chose the relation between Δ t
and h, the so-called scaling, [13]. If we divide again by Δ t, we see that the quantity
h2

Δ t appears on the right hand side. Thus we chose h2

Δ t =: P = const > 0. The constant
P acts as a diffusion coefficient. Then, the left hand side will converge to the time
derivative ∂t r, while the right hand side does not depend on h or Δ t anymore (up to
higher order terms which vanish as h → 0). Thus passing to the limit h, Δ t → 0 we
obtain

∂t r+
P
3
∂x (r(1− r)(kSr∂xSr + kD∂xDr)) =

P
3
∂xxr. (3.12)

We made use of the fact that
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Fi(h
2) := ekDr Dr(xi)ekSr Sr(xi,t)Ni =

ekDr Dr(xi,t)ekSr Sr(xi)

3ekDr Dr(xi,t)ekSr Sr(xi) +O(h2)

h→0−→ 1
3
. (3.13)

For (3.10), we apply the same procedure yielding

Dr(xi, t +Δ t)−Dr(xi, t)
Δ t

= ri(t)(P(xi+1, t)+P(xi−1, t))−δDr(xi, tk)

= r(xi, t)(Fi+1(h
2)(1− r(xi+1, t)+Fi−1(h

2)(1− r(xi−1, t))−δDr(xi, tk)

= r(xi, t)
(
Fi+1(h

2)(1− r(xi, t)+Fi−1(h
2)(1− r(xi, t)

)−δDr(xi, tk)

+ r(xi, t)

(
h

(
Fi+1(h

2)
∂ r(xi, t)
∂x

−Fi−1(h
2)
∂ r(xi, t)
∂x

))
−δDr(xi, tk)

+O(h2)

In the limit Δ t, h2 → 0, the last term on the right hand side vanishes and we obtain

∂tDr =−δDr +
2
3

r(1−ρ).

As it is well known, cf. [9, 10], that the diffusion algorithm described in Sect. 3.3
yields, in the continuum limit a term κ∂xxDr, we arrive at

∂tDr = κ∂xxDr −δDr +
2
3

r(1−ρ). (3.14)

3.4.3 The Macroscopic PDE Limit

As the limiting procedure can be performed in arbitrary spatial dimensions,
we finally obtain the following non-linear Nernst-Planck type equations for the
densities r and b

∂t r =∇ ·P((1−ρ)∇r+ r∇ρ+ r(1−ρ)∇(kSr Sr + kDr Dr)), (3.15)

∂tb =∇ ·P((1−ρ)∇b+b∇ρ+b(1−ρ)∇(kSr Sb + kDr Db)), (3.16)

coupled to

∂tDr =κ∇2Dr −δ1Dr + r(1−ρ), (3.17)

∂tDb =κ∇2Db −δ1Db +b(1−ρ), (3.18)
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with x ∈Ω ⊂ R
n, t > 0. Appropriate initial and boundary conditions depend on the

application and will be discussed below. We remark that neglecting the dynamic
fields, this model has been analyzed extensively in [4, 5].

3.5 Application I: Linear Stability Analysis
and the Formation of Lanes

Video recordings of real crowds show that they exhibit a wide range of what is
called collective phenomena. One common example among them is lane formation,
see for example [15] and [17]. Pedestrians with the same desired walking direction
prefer to walk in lanes. Typically, the number of lanes depends on the width of the
street and on the density of pedestrians. One possible explanation for lane formation
is as follows: Pedestrians walking against the stream have a high relative velocity.
As a consequence, these pedestrians change their walking direction sideways to
avoid collisions, which finally leads to separation [16]. The formation of lanes
for two species (but without static field) has already been briefly demonstrated
numerically in [32]. In this section, we provide simulation results of the microscopic
model demonstrating the occurrence of lanes. This motivates the use linear stability
analysis of our macroscopic model (3.15)–(3.18) to obtain insight into the role of
the dynamic fields in this process.

3.5.1 Monte Carlo Simulations

We performed simulations of the above model on a 20× 100 cell grid. We used
a Mersenne twister, cf. [25], to create the pseudo-random numbers needed. The
main issue here is to deal with so-called “conflicts”, i.e. the case when two particles
want to jump into the same cell. In our implementation, we followed the strategy
described in [20]. The basic idea is the following: A new parameter λ ∈ [0,1]
in introduced. If two or more particles want to jump to the same cell, this new
parameter determines their behavior: With probability λ , none of the particles
jumps and the cell remains empty. With probability (1−λ ), one particle is chosen
randomly and jumps into the target cell. In our set-up, red particles enter the domain
from the left and blue particles from the right. Both species are supplemented
with a static field transporting them through the channel. For this simulation, we
chose the following parameters: δ = 0.05, kD = 1.0, kS = 7,κ = 0.5. The diffusion
coefficients of r and b are chosen as 0.0005 in x- and 0.1 in y-direction. The
boundary conditions are implemented as follows: In each step, for each cell on
the left boundary, a random number is generated. If this number is below a given
value bcl , a virtual particle is created. This particle evolves due to the usual
probabilities given by the model and can either jump into the domain or vanishes. On

www.allitebooks.com

http://www.allitebooks.org
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Fig. 3.2 (Color online) Results of the Monte Carlo simulations: Snapshot of a single simulation
after 1,000 steps (top); density of red particles after 2,000 steps, averages over 35 runs (bottom);
density of blue particles after 2,000 steps, averages over 35 runs (middle)

the right side, the boundary conditions are implemented in the same way with a cor-
responding boundary value bcr. In our experiment, we added small perturbations in
y-direction, i.e.

bcl = b̃cl +0.04sin

(
2kπ
nx

i

)
, i = 1, . . . ,nx, (3.19)

bcr = b̃cr +0.04sin

(
2kπ
nx

i+π
)
, i = 1, . . . ,nx. (3.20)

Here, we chose b̃cl = b̃cr = 0.06. In Fig. 3.2 (top), we show a snapshot of one
simulation demonstrating the formation of two lanes. Figure 3.2 (bottom), we show
the average density of red particles at step 2,000 averages over 35 simulations, in
Fig. 3.2 (middle), we same is shown for the blue species.

3.5.2 Linear Stability Analysis

The idea is as follows: We consider an equilibrium state of the system in which both
red and blue particles are uniformly distributed within the whole domain. Then,
we add a small, asymmetric perturbation and observe the system’s reaction as time
evolves. The question is under which conditions the perturbations do not smooth
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Fig. 3.3 Geometry of the
domain on which the linear
stability analysis is performed

out, but grow in time. The procedure is summarized in Fig. 3.4. We remark we do
not assume that individuals have a tendency to prefer a special walking site.

To be able to obtain an explicit condition, we make the following assumptions:

• The static floor fields are acting only in x-direction, we assume the special case

∇Sr = (1,0), ∇Sb = (−1,0), (3.21)

meaning that the red and blue individuals have opposite preferred walking
directions.

• The diffusion of particles in x-directions vanishes, which is reasonable in case of
pedestrians walking along a corridor, as it is unlikely for them to go randomly
forward or backward.

• The diffusion of the dynamic floor fields Dc, c = r,b vanishes in y-direction,
corresponding to small movements orthogonal to the walking direction.

• The evolution of the dynamic floor fields is slow compared to that of the densities
r and b. Therefore, we only consider the stationary version of (3.17) and (3.18).

• The coupling constants to static and dynamic field are equal for both species, i.e.

kSr = kSb = kS, kDr = kDb = kD.

• All calculations are performed on the two-dimensional domain Ω = [0,L]×
[0, l]⊂ R

2 depicted in Fig. 3.3.

Under these assumptions, Eqs. (3.15)–(3.18) reduce to

∂t r =P∂y ((1−b)∂yr+ r∂yb)+PkS∂x(r(1−ρ))+PkD∇(r(1−ρ)∇Dr) (3.22)

=∇ · (−Jr)

∂tb =P∂y ((1− r)∂yb+b∂yr)−PkS∂x(b(1−ρ))+PkD∇(b(1−ρ)∇Db) (3.23)

=∇ · (−Jb),

0 =κ∂xxDr −δ1Dr + r(1−ρ), (3.24)

0 =κ∂xxDb −δ1Db +b(1−ρ) (3.25)

Hence, the total flux of red and blue particles, respectively, is given by
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Fig. 3.4 (a) Constant densities req, beq, (b) small perturbations εξ and εη added

Jr =−P

(
kSr(1−b)+ kD(r(1−ρ)∂xDr

(1−b)∂yr− r∂yρ+ kD(r(1−ρ)∂yDr

)
,

and

Jb =−P

(
kSb(1− r)+ kD(b(1−ρ)∂xDb

(1− r)∂yb−b∂yρ+ kD(b(1−ρ)∂yDb

)
.

We supplement this system with the following boundary conditions: We assume
constant influxes of r and b at the left or right end of the corridor, respectively.
Furthermore, we say that the particles are leaving the domain at with a constant
velocity v0 and with a rate proportional to their density. This leads to

Jr ·
(−1

0

)
= Jin

r = const and Jb ·
(−1

0

)
= bv0.

At x = L, we obtain

Jr ·
(

1
0

)
= rv0 and Jb ·

(
1
0

)
= Jin

b = const.

We assume no-flux boundary conditions in y-direction:

Jr ·
(

0
1

)
= Jb ·

(
0
1

)
= 0 for y = 0, l,
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meaning that particles can only enter or leave the corridor though the left or right
entrance. Now we are able to perform the linear stability analysis explained above:
We call the constant equilibrium states req and beq as well as Deq

r and Deq
b . Then we

add the following perturbations:

req → req + εξ , beq → beq + εη ,

Deq
r → Deq

r + εΨr, Deq
b → Deq

b + εΨb,

where ξ (x, t), η(x, t), Ψr(x, t) and Ψb(x, t) denote the time and space dependent
perturbations and ε
 1. If we insert this ansatz into the system of equations (3.22)–
(3.25) (with given external potentials) and neglect all terms of order ε2 and higher
(first order approximation), we obtain the following linear system describing the
evolution of the perturbations:

∂tξ =P((1−beq)∂yyξ − req∂yyη)+PkS∂x((1−ρeq)ξ − req(ξ −η))
+PkDreq(1−ρeq)(∂xx +∂yy)Ψr,

∂tη =P((1− req)∂yyη−beq∂yyξ )−PkS∂x((1−ρeq)η−beq(−ξ +η))
+PkDbeq(1−ρeq)(∂xx +∂yy)Ψb,

0 =κ∂xxΨr −δΨr +(1−ρeq − req)ξ + reqη ,

0 =κ∂xxΨb −δΨb +(1−ρeq −beq)η+beqξ .

The first two equations of this system can be written in the form

∂t

(
ξ
η

)
= A

(
ξ
η

)
,

with a 2× 2 matrix A that depends on P, req, beq, kSr , kSb ,kDr , kDb , κ and δ . From
this representation it is clear that the evolution of ξ and η is determined by the
largest eigenvalue of A: If it is negative, ξ and η will converge to zero as t → ∞
meaning that the system will return to its constant stationary state. If the eigenvalue
is positive, ξ and η will stay positive which corresponds to the formation of lanes. In
order to calculate an explicit condition for the sign of the eigenvalues, we consider
cosinusoidal shaped perturbation in the y direction (as depicted in Fig. 3.4), hence
the number of (possible) lanes is given by the mode of the cosine. We are able
to predict for several densities and geometries of the domain how many lanes are
formed.
The detailed derivation of this condition and the condition itself is stated in the
appendix. In the following, we will use it to analyze to interesting special cases.



56 J.-F. Pietschmann

Fig. 3.5 Number of lanes versus density

3.5.3 Number of Lanes for Varying Density

We are able to predict instabilities, thus forming of lanes and the number of lanes,
depending on the equilibrium density req. In Fig. 3.5, the number of lanes k is plotted
versus the density. In this setup, we choose as length l in y-direction to be 7 m. The
length L in Fig. 3.5 is 100 m. The decay parameter δ is given by 0.05, and kD = 1.
We set kS = 7. Without the dynamic fields Dc, c = r, b, (i.e. kD = 0) the first lane
in each direction arises at densities of approximately 0.45 in each direction. If we
include the dynamic fields, the first lanes are formed at densities of approximately
0.35. Hence, the inclusion of the dynamic fields leads increases the tendencies to
follow others.

3.5.4 Number of Lanes for Varying Length

Figure 3.6 shows the number of lanes plotted versus channel length L. We chose
the same parameters as before, the density is set to req = 0.33. It is obvious that the
herding behavior does not lead to an increase in the number of lanes. As expected,
the tendency to follow others is more pronounced, resulting in less lanes.
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Fig. 3.6 Number of lanes versus length L

3.6 Application II: The Fundamental Diagram

The relation between density ρ and velocity v or total flux (or flow) j, also known
as fundamental diagram, is a key property of pedestrian movement, [34, 35]. In
particular, it can be used to estimate the capacity of facilities such as corridors
or streets. There is a lot of experimental data available for different situations,
starting from the classical review of Weidmann [38] up to many more recent studies
[8, 19, 35]. Thus, the fundamental diagram can also be used as a test to validate
crowd motion models. One advantage of our macroscopic model is that the density-
velocity relationship in encoded in the structure of the partial differential equation.
If we consider the model for one species, e.g. red particles, only and neglect the
dynamic field Eqs. (3.15)–(3.18) reduce to

∂t r = ∇2r−div(r(1− r)(kSr∇Sr)). (3.26)

This corresponds to a uni-directional flow of one species. In this model, the total
flux j is given by

j := r(1− r)(kS∇S)−∇r.
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Fig. 3.7 Fundamental
diagram for uni-directional
flow as predicted by the
macroscopic model without
dynamic field

Using the relation r∇ ln(r) = ∇r, the flux can be rewritten in the form rv, i.e.

j = rv = r((1− r)(kS∇S)−∇ln(r)).

If we assume a constant density r and a constant preferred walking direction ∇S, we
recover a linear fundamental diagram v ∼ (1− r) and the density-flow relationship
is given by r(1− r) as shown in Fig. 3.7. Even though this is far away from detailed
experimental results, the key properties are still present: The flow increases with
the density until it reaches a maximum. When the density increases further, i.e.
the situation becomes more crowded, the individuals are not able to move at their
preferred walking speed anymore and the flux decreases until the critical density, at
which no movement is possible anymore, is reached. This is of particular interest
since situations involving high densities are hard to realize experimentally.

Recent experimental results for bi-directional flow (i.e. two species of people
walking in opposite directions), have shown to exhibit a significantly different
fundamental diagram compared to uni-directional flow, cf. [41, Fig. 6]. In particular,
the maximum is lower but shifted to higher densities. In fact, there seems to be a
flat region. One possible explanation is that individuals that are walking towards
each other have a stronger dependency to avoid the other. This can easily be
incorporated into the microscopic ASEP model by allowing red and blue particles
to “switch” their places, as sketched in Fig. 3.8. Such a mechanism is also known
from models for intracellular transport, cf. [29]. Thus a rewarding direction of
future research is to derive and analyze the corresponding macroscopic formulation
for this modified model and compare the resulting fundamental diagram with the
experimental results. Another extension is to include the dynamical floor fields and
produce fundamental diagrams using numerical simulations.

3.7 Conclusion and Future Work

We established a link between an extended floor field model and a system of
non-linear partial differential equations. Using this connection, we were able to
give conditions on the formation of lanes depending on the density of particles
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Fig. 3.8 Two particles switching there places in the cellular automata model

as well as the geometry on the domain. The effect of the floor field presenting
herding behavior is that lanes are formed at lower densities. A logical next
step would be to systematically verify these conditions using the Monte Carlo
simulations described above. Also, it would be worthwhile to perform detailed
simulations on the macroscopic model (using, e.g. a finite difference scheme) and
to compare these results with the microscopic simulations. This would lead to a
unified understanding of lane formation in these kind of models. Furthermore, we
used the macroscopic description to extract fundamental properties of pedestrian
movement, namely the fundamental diagram. We explained how the density-flow
relationship can easily be obtained from the macroscopic and briefly mentioned
possible extensions to cover recent experimental results regarding bi-directional
flow.
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(both WWU Münster) as well as A. Seyfried (Jülich/Wuppertal).

Appendix

The linear stability approach described in Sect. 3.5 yields the following linear
system for the perturbations
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∂tξ =P((1−beq)∂yyξ − req∂yyη)+PkS∂x((1−ρeq)ξ − req(ξ −η)) (3.27)

+PkDreq(1−ρeq)(∂xx +∂yy)Ψr,

∂tη =P((1− req)∂yyη−beq∂yyξ )−PkS∂x((1−ρeq)η−beq(−ξ +η)) (3.28)

+PkDbeq(1−ρeq)(∂xx +∂yy)Ψb,

0 =κ∂xxΨr −δΨr +(1−ρeq − req)ξ + reqη , (3.29)

0 =κ∂xxΨb −δΨb +(1−ρeq −beq)η+beqξ . (3.30)

We denote length of the domain in y-direction by l, the length in x-direction is
denoted by L, see Fig. 3.3. The perturbations are assumed as

ξ =U(x)cos

(
kπ
l

y

)
exp(λ t), (3.31)

η =V (x)cos

(
kπ
l

y

)
exp(λ t), (3.32)

Ψr = Yr(x)cos

(
kπ
l

y

)
exp(λ t), (3.33)

Ψb = Yb(x)cos

(
kπ
l

y

)
exp(λ t). (3.34)

where U(x), V (x), Yr(x) and Yb(x) denote perturbations in the x-direction, and k
denotes the mode of the perturbation in y-direction. From now on, we assume req =
beq. Inserting this ansatz into Eqs. (3.27) and (3.28) we obtain

λ/PU =− (1− req)γU + reqγV + kS(1−3req)U ′+ kSreqV ′

− kDreq(1−2req)(γ+Γ )Yr (3.35)

λ/PV =− (1− req)γV + reqγU − kS(1−3req)V ′ − kSreqU ′

− kDreq(1−2req)(γ+Γ )Yb, (3.36)

where we used γ = k2π2

l2 , ′ denotes the derivative with respect to x, Γ = π2

L2 and
we assume perturbations Yi of a sinusoidal or cosinusoidal type Y ′′

i = −ΓYi. The
equations for U and V finally read, using (3.29) and (3.30):

[λ/P +(1− req)γ ]U − reqγV + kDreq(1−2req)
γ+Γ
κΓ +δ

[(1−3req)U + reqV ]

= kS(1−3req)U ′+μreqV ′, (3.37)
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[λ/P +(1− req)γ ]V − reqγU + kDreq(1−2req)
γ+Γ
κΓ +δ

[(1−3req)V + reqU ]

= −kS(1−3req)V ′ −μreqU ′. (3.38)

We denoteΘ = γ+Γ
κΓ+δ . The summation of (3.37) and (3.38) is given by

[λ/P+(1−2req)γ+ kDreq(1−2req)2Θ ](U +V ) = kS(1−4req)(U ′ −V ′).
(3.39)

The derivatives of (3.37) and (3.38) are given by

[λ/P+(1− req)γ ]U ′ − reqγV ′+ kDreq(1−2req)Θ
[
(1−3req)U ′+ reqV ′]

= kS(1−3req)U ′′+μreqV ′′, (3.40)

[λ/P+(1− req)γ ]V ′ − reqγU ′+ kDreq(1−2req)Θ
[
(1−3req)V ′+ reqU ′]

=− kS(1−3req)V ′′ −μreqU ′′. (3.41)

Subtracting these equation yields

[λ/P+ γ+ kDreq(1−2req)(1−4req)Θ ](U ′ −V ′)

= kS(1−2req)(U ′′+V ′′). (3.42)

Combining (3.39) and (3.42) leads to

[λ/P+(1−2req)γ+ kDreq(1−2req)2Θ ](U +V ) = (3.43)

k2
S

(1−4req)(1−2req)

λ/P+ γ+ kDreq(1−2req)(1−4req)Θ
(U ′′+V ′′).

In the following, we assume perturbations U and V in x-direction of a sinusoidal
type, due to the homogeneous boundary conditions. This leads to

U ′′ =−m2π2

L2 U, V ′′ =−m2π2

L2 V,

where L denotes the length of the domain in x direction. In the following, we take
m = 1, as we are only interested in lanes forming along the x-direction. We finally
arrive at

0 = [λ 2/P2 +2λ/P[γ(1− req)+ kDreq(1−2req)(1−3req)Θ ]

+ γ2(1−2req)+2γkDreq(1−2req)3Θ

+ k2
D(r

eq)2(1−2req)3(1−4req)Θ 2
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+ k2
SΓ (1−4req)(1−2req)](U +V ). (3.44)

Accordingly, the equation for λ is given by

λ1/2 =−P[(1− req)γ+ kDreq(1−2req)(1−3req)Θ ]

±P
√
(req)2[γ− kDreq(1−2req)Θ ]2 − k2

SΓ (1−4req)(1−2req). (3.45)

The parameter λ is supposed to be real-valued for all k, particularly for k = 1. From
that we conclude

(req)2[γ− kDreq(1−2req)Θ ]2 ≥ k2
SΓ (1−4req)(1−2req). (3.46)

As req ≤ 1/2, (3.46) is always fulfilled in case that req ≥ 1/4. This means that
instabilities arise only in case req ≥ 1/4. To obtain instabilities increasing in time,
λ > 0 has to be satisfied. This means

[(1− req)γ+ kDreq(1−2req)(1−3req)Θ ]2

< (req)2γ2 −2γkD(r
eq)3(1−2req)Θ

+ k2
D(r

eq)4(1−2req)2Θ 2 − k2
SΓ (1−4req)(1−2req) (3.47)

Assuming (1−2req)> 0, which means that the overall density is below maximum,
we obtain

γ2 +2γkDreq(1−2req)2Θ

+ k2
D(r

eq)2(1−2req)2(1−4req)Θ 2 + k2
SΓ (1−4req)< 0. (3.48)

The mode of the cosinusoidal perturbation in y-direction is given by k, hence it gives
the number of lanes of particles moving in opposite direction which are amplified
during time. If k = 1, we obtain one lane in each direction. Accordingly, we obtain
as inequality for γ = k2π2

l2

γ2
[

1+2kDreq(1−2req)2 1
κΓ +δ

+k2
Dreq2(1−2req)2(1−4req)

1
(κΓ +δ )2

]

+ γ
[

2kDreq(1−2req)2 Γ
κΓ +δ

+2k2
Dreq2(1−2req)2(1−4req)

Γ
(κΓ +δ )2

]
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+ k2
Dreq2(1−2req)2(1−4req)

Γ 2

(κΓ +δ )2 + k2
SΓ (1−4req)

< 0. (3.49)

The evaluation of (3.49) leads to a condition on k which determines under which
conditions instabilities, which lead to lane formation, appear.
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Chapter 4
Analysis of Crowd Dynamics with Laboratory
Experiments

Maik Boltes, Jun Zhang, and Armin Seyfried

Abstract For the proper understanding and modelling of crowd dynamics, reliable
empirical data is necessary for analysis and verification. Laboratory experiments
give us the opportunity to selectively analyze parameters independently of undesired
influences and adjust them to high densities seldom seen in field studies. The setup
of the experiments, the extraction of the trajectories of the pedestrians and the
analysis of the resulting data are discussed.

Two strategies for the time-efficient automatic collection of accurate pedestrian
trajectories from stereo recordings are presented. One strategy uses markers for
detection and the other one is based on a perspective depth field. Measurement
methods for quantities like density, velocity and specific flow are compared. The
fundamental diagrams from trajectories for different experiments are analyzed.

4.1 Introduction

Design of egress routes for buildings and large scale events is one application for
models of pedestrian streams [1–5]. Typical questions regarding the capacity of
facilities for pedestrians are: Is the width of a door or a corridor large enough to
evacuate a certain amount of people in a given time? How long does it take to
clear a building? The methods and tools available to evaluate or to dimension these
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facilities can be categorized in legal regulations, handbooks [6–8] and computer
simulations [9–12]. Legal regulations are based on prescriptive methods using static
rules which depend on the occupancy of the building. Two examples of rules are the
minimal width of doors in dependence of the number of people in the room and the
maximal length of an escape route. But static rules cannot consider the dynamics of
an evacuation process and methods with a higher fidelity are necessary to resolve
the development over time. Handbooks for example, use macroscopic models of
streams and provide a description of the evacuation process in time and space. These
models forecast when and where congestions will occur. However, macroscopic
models give only a coarse description of pedestrian flow by modeling the streams
as an entity with quasi-constant size and density. Microscopic models instead
describe the individual movement of all pedestrians and are thus able to resolve
the dynamics on an individual scale. Regardless of the fidelity of the models the
basic aim should be to describe quantitatively the transport properties of pedestrian
streams.

Quantities describing the performance of facilities and the transport properties
of pedestrian streams are borrowed from the physics of fluids. The flow J gives
the throughput at a certain cross section and is defined as the number of persons
N passing the cross section in the time interval Δ t. To express the degree of
congestion the density ρ = N/A, which is the number of persons in an area A, is
used. The velocity v specifies how long it takes to reach the exit of the building.
These quantities depend on each other and the empirical relation between them
(J(ρ) or v(ρ)) is commonly called the fundamental diagram. This relation is a
basis for quantifying the transport properties of driven systems in stationary states.
One major problem is that the empirical data base is rudimentary and inconsistent.
Even basic questions and relations are queried and discussed contradictory in
the literature [13]. E.g., how the maximal possible flow through a bottleneck
depends on the width of the opening [14, 15], at which density jams occur [16]
or whether the fundamental diagrams for uni- or bidirectional streams differ or
not [17].

Several research groups started in the last decade performing experiments to
address these as well as other questions. Before introducing our contribution we
give an overview of the activities by countries and by citing the recent articles
without any claim to comprehensiveness. These are in China [18–25], in France
the Pedigree project [26–29], in the Netherlands [30, 31], in Japan [32–35] and in
Germany [36,37]. We want to note that these experiments and field studies cover in
their differentness the complexity and diversity of pedestrian traffic.

Since the year 2005 we performed in cooperation with the universities of Cologne
and Wuppertal more than 300 experiments to improve the database for model
validation. We focused on experiments under well controlled laboratory conditions
due to several reasons. Pedestrians are subject to a lot of influences which cannot
be controlled in field studies. To study the influence of one single parameter it is
helpful to control external influences (light, sound, ground, etc.), boundaries and
initial conditions. Even under laboratory conditions this is difficult to achieve, see
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e.g. [31]. Moreover, the variability allows a survey of a parameter range e.g. for
the bottleneck width or length, or the density inside a corridor. Another reason for
performing controlled experiments is the interest in high densities, which are seldom
observable in field studies. With increasing number of participants we improved
the methods to extract the individual walking paths automatically from video
footage.

For the design of the experiments we started with simple geometries (corridors,
bottlenecks, etc.) and flow types (unidirectional, bidirectional). Then we extended
the experiments to consider more complex scenarios with bends, stairs and merging
streams. The experiments are designed to ensure that the influence of one parameter
on the quantity of interest can be studied. The data can then be used to develop and
to systematically validate mathematical models.

4.2 Experiments and Data Capturing

4.2.1 Experiment Overview

Performing experiments under laboratory conditions gives the opportunity to
analyze parameters of interest under well defined constant conditions. For self-
initiated experiments the location and the structure of the test persons (e.g. culture,
fitness, age, gender, size) can be determined. For this reason, series of pedestrian
experiments have been designed and carried out since 2005.

The first experiments were designed to study the relation between density
and velocity of single file movement [38]. With the same experimental setup the
influence of motivation and culture [39] was analyzed.

After the one dimensional experiments, we have made experiments on plane
ground focusing on bottlenecks and corridors. 99 runs with up to 250 test persons
have been performed [40].

For the development of an evacuation assistant in the project Hermes [41] the
experimental database was expanded by experiments on different types of stairs,
straight corridors, corners and T-junctions. 170 runs with up to 350 people have
been made in artificial environments, and additionally inside the facilities of the
stadium for which the evacuation system has been developed.

In Sect. 4.3 some details of these experiments will be described.
For capturing the experiments by video recordings the cameras can be chosen

appropriate to the coverage area and ceiling height. Overhead recordings perpendic-
ular to the floor allow a view without occlusion for a range of body heights, so that
an individual detection and tracking without estimation of the persons’ route can
be performed. To get constant lighting conditions the experiments have primarily
been made indoor with uniform artificial light. The extraction process of the route
of every person is outlined in the following sections.
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4.2.2 Trajectory Extraction

The goal of the extraction process are trajectories, pi(t), i ∈ [1,N], as exact as
possible for all N persons at any time t in particular in crowded scenes. For this
reason markers are used to improve the robustness of the automatic extraction
wherever applicable.

For the same reason of exactness all automatic results are inspected by humans,
who are able to correct the trajectories directly within our software. Under labo-
ratory conditions almost no error occurs, but in real facilities like stairways in a
stadium the number of incorrect detections increases. Problems faced include the
varying lighting conditions and the distance of up to 13 m to the head of the persons.
The manual visual inspection of the automatically extracted trajectories is one
reason for the off-line detection from video recordings. The more important reason
for the downstream extraction from recordings is the possible later visual analysis
of effects evaluated from the trajectory data. For these advantages we acknowledge
the problems of huge recording space requirements and privacy protection.

Before extracting metric information the video has to be calibrated. For the
correction of the lens distortion a model of a pinhole camera with distortion
is adopted (considering radial and tangential distortion up to fourth order). The
perpendicular view and cameras with quadratic pixel allow an easy specification
of a pixel to meter ratio considering the perspective view. For more information we
refer to [42].

4.2.2.1 Detection with Markers

For the description of the detection process we restrict to one experiment performed
in the project Hermes [41]. Details of the artificial setup of this experiment, a
merging flow through a T-junction with a corridor width of 2.4 m and 303 test
persons, can be found in Sect. 4.3.3.

The experiments have been recorded with two synchronized stereo cameras of
type Bumblebee XB3 (manufactured by Point Grey). For the T-junction experiment
they were mounted a = 784 cm above the floor with the viewing direction perpen-
dicular to the floor.

The overlapping field of view of the stereo system is α = 64◦ at the average
head distance of about 6 m from the cameras. Thus all pedestrians with the
discovered height range can be seen without occlusion at any time. The cameras
have a resolution of 1,280× 960 pixels and a frame rate of 16 frames per second,
Δ t = 1/16.

The marker has a simple structure to detect it from distances up to 13 m. All
pedestrians wear a white bandana with a centered black dot of 4 cm diameter
(Fig. 4.1).
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Fig. 4.1 (Color online) Left: Rectified image of one stereo camera of a T-junction experiment.
Right: Color coded disparity map restricted to the distance of the upper body part (570–735 cm).
The background is greyed out

The recognition of the marker is done by detecting directed isolines of the same
brightness and subsequent analysis of the size, shape, arrangement and orientation
of approximating ellipses.

Perspective Depth Field

For the detection with markers the perspective depth field, which can be obtained
from a stereo camera, is only used for background subtraction and the measurement
of the head distance to the camera.

This depth field h contains the distance to every pixel of the camera and is
inversely proportional to the disparity map, d ∝ 1/h, which describes the pixel offset
of both camera views of the stereo camera for every pixel. The disparity map is
calculated with the semi-global block matching algorithm [43] implemented in the
computer vision library OpenCV [44]. The mask size for the matched blocks has
been set to 11 to get a smooth depth field. The drawback of this is a blurry depth field
where the shape of objects is less sharp. Figure 4.1 shows on the right an overlay of
the disparity map on the left picture. The disparity map is restricted to the distance
of the upper body part color coded from red to blue according to the distance of
570–735 cm to the camera. The greyed out part indicates the background, which
determination is described below.
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Background Subtraction

A prior background subtraction reduces the number of false positive detections. For
the background subtraction the camera distance h is used directly without generating
a rectified depth field. No laborious plan-view statistics is needed because of the
perpendicular view of the stereo recordings. Pixels with the coordinate u=(ux,uy)∈
R

2 at frame f are part of the background and thus are ignored in the detection
process, if

hbg(u)−h(u, f )< 40cm. (4.1)

The perspective depth field of the background hbg is captured once with the scene
deserted or is set to a cautiously adapted maximum distance during all frames

hbg(u)≈ max
f
(h(u, f )). (4.2)

The distance threshold of 40 cm cannot be increased for robustness, since people
near walls would be eliminated because of the omitted plan-view statistic. This
effect can already be seen in Fig. 4.1 at the walls forming the junction. Small regions
of missing values inside hbg are interpolated linearly within the row. Small regions
inside the segmented foreground are added to the background to erase noise and
regions that cannot be occupied by a person.

3D Position

To calculate the position in 3D real world a coordinate transformation from pixel
positions to real positions and an inverse perspective transformation have to be
performed. Therefor the distance to the camera is needed. For planar experiments,
where we used monocular cameras, the color of a part of the marker corresponds
to a height range [42]. But because we also made experiments at stairs within the
Hermes project this approach cannot be used anymore. The distance or the height
of the pedestrian for planar experiments, h′(ui) = a−h(ui), respectively is now set
according to the disparity of the center pixel of the black dot, ui ∈ R

2, i ∈ [1,N].
Only with the pedestrians’ height the correct position on the plane ground can
be calculated. Because of the perspective distortion the maximum error without
considering the height would be [42]

maxi(h′(ui))−mini(h′(ui))

2
tan
α◦

2
≈ 16cm. (4.3)

The height is oscillating according to the step frequency. The height is minimal at
the position where body shifting moves from one to the other leg [45].
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The distribution of the maximum height of each pedestrian matches exactly the
distribution of the height obtained by the evaluation of questionnaires handed out to
them.

4.2.2.2 Detection Without Markers

We are also developing a markerless detection, which facilitates field studies and
the easier realization of moderated experiments in real environments. Studying the
influence of group structures (e.g. football fan or visitor of a classical concert, sober
or drunken persons) realistically can only be accomplished there. With moderated
experiments in real environments, where we use independent gatherings which
happen anyway (e.g. works meetings) we can increase the amount of trajectory data
with less time and effort. Besides this, the markerless detection can further improve
the robustness of the marker based detection described below.

Related Work

Techniques for the detection without markers for single pedestrians in crowds
using monocular cameras are not as robust as techniques using stereo cameras.
Publications like [46–51] all report a false detection rate of more than 10 %.
Typically the decrease of the false detection rate induces the increase of false
positive detections. For our purpose this means a lot of manual work, because we
need nearly no error to get reliable data for further analysis.

Detection techniques, such as [52] or [53] for stereo cameras, depend on accurate
segmentation of foreground objects from the background. For dense crowds such as
in our experiments these methods would not be applicable or would only detect
groups of people. Other techniques use motion patterns of human beings [54, 55]
like periodic leg movement or additionally take skin colour [56] into account or use
a face detector [57], which is only applicable from side view because of visibility.
The side view is also needed by Hou and Pang [58], because they assign a region
to one person, if the region has the same distance to the camera. In our experiments
the video recordings were done overhead to avoid occlusions, because we want to
know the detailed position of every person at any time also in crowded scenes, so
that often no extremity or skin is visible. This perpendicular view also disengages
us from a decelerating plan-view statistic like in [59].

Algorithms using motion like [60] cannot be adopted, because in our experiments
dense situations and thus stagnant flow often occur.

In [61] a method for people tracking in dense situations with multiple cameras
is suggested. The combined data from several views is used to calculate the height
and thus the position of peoples’ head.

A robust detection and tracking algorithm also for crowded scenes is described in
[62]. The detection process is based on a clustering procedure using bio-metrically
inspired constraints.
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In [63] the detection is done by searching for clusters inside the point cloud of
a depth map, which are arranged in a sphere that is proportional in size to human
heads. For people walking close together van Oosterhout et al. obtain a precision of
0.97 taking tracking into account, which is nearly as high as our precision.

Detection Process

For the following example we use the same recordings as for the detection with
markers, but ignore the markers.

To detect markerless pedestrians in dense crowds we utilize the depth field
described in Sect. 4.2.2.1. The identification of the people is done only using the
shape of the top part of their body especially the head and shoulders. If we want to
identify people only by their shape, the background subtraction has to be performed
previously as described before, because of the possible occurrence of similar formed
objects.

Directed Isolines and Approximating Ellipses

To extract features identifying pedestrians inside the depth field, directed isolines of
the same distance to the camera are used. The step size of the iso-value scanning
the depth field is 5 cm. Beforehand the depth field is adapted by replacing values
covered by the background mask with the furthest value which belongs to the
foreground.

In Fig. 4.2 red isolines surround regions further away. They can be ignored. Green
isolines encircle regions which are nearer to the camera. To improve the visibility
of the isolines the color coding of the disparity map is replaced by a grey scale one.

The remaining isolines enclosing a minimum and maximum of pixels and with
a small ratio between the length of the isoline and the enclosed area (to eliminate
isolines with big dents) are approximated by ellipses. The ellipses allow an easier
access to the global shape. Small ellipses with a large eccentricity are discarded.
Large ellipses can have a bigger eccentricity to enclose multiple people. The used
values for the selection of isolines and ellipses have been chosen heuristically
considering the number of pixel covered by one person.

Ellipses Pyramid

By scanning the depth field downwards in steps of 5 cm a pyramid of ellipses for
every person is build up (Fig. 4.3). Thus for every new depth level an ellipse is
assigned to that pyramid, whose center is inside the new ellipse. If no pyramid fits,
the new ellipse starts a new pyramid. For multiple ellipses on the same level covering
the identical pyramid that one is chosen, whose center is the closest to the nearest
pyramid center. New ellipses can cover multiple pyramids, if the pyramids have
already a substantial number of ellipses from previous depth levels. Otherwise the
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Fig. 4.2 (Color online) Left: Isolines of the same distance to the camera at intervals of 5 cm
(colored according to the orientation) drawn on the grey scaled perspective depth field. Right:
Pyramidal grouped ellipses identifying pedestrians. Green ellipses correspond to the isoline nearest
to the camera, following by red and blue

Fig. 4.3 Zoomed view of a part of Figs. 4.1 and 4.2: disparity, isolines and pyramid of approxi-
mating ellipses

small pyramids are rejected or, if there are only small ones, the pyramid with the
closest center is chosen.

At the end we neglect pyramids with a

• Small number of ellipses,
• Large second ellipse (corresponding to the head),
• Small third ellipse (to reject e.g. lifted arms),
• Small last ellipse (corresponding to the body).

We prefer a strict deletion to avoid false detections since it is not necessary to detect
a person every frame for tracking. The values again are chosen heuristically taking
peoples’ shape into account. The first ellipse is not analyzed, because the location
varies too much, especially because of the different depth the heads are detected the
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Fig. 4.4 Left: Tracked people by markers and their smooth path during the last second. Right:
Tracked people without markers and their more unsettled path during the last second

first time. This is also the reason why the center of the second ellipse represents
a pedestrian and thus is tracked. The resulting pyramids are shown on the right
of Fig. 4.2. The ellipses are colored according to their level in the pyramid. The
topmost ellipse has a green, the second a red and the third a blue color. The latter
ellipses can cover more than one person.

After analyzing the complete video recording trajectories are rejected, which do
not cross the whole test area, or have only few frames where the supposed pedestrian
is identified. The right of Fig. 4.4 shows the tracked people and their unsettled path
during the last second in comparison to the left picture showing the path of the
people detected by marker.

4.2.2.3 Tracking

For tracking of detected pedestrians the robust pyramidal iterative Lucas Kanade
feature tracker [64] is used. This tracker extends the Lucas Kanade method
for calculating the optical flow by introducing successive Gaussian pyramids of
successive images B and propagating tracking results from a low resolution level
to the next higher level as an initial guess.

The tracker searches with sub-pixel accuracy in regions of same size in recursive
Gaussian pyramids

BL(ux,uy) =
1

∑
i=−1

1

∑
j=−1

2−(2+|i|+| j|)BL−1(2ux − i,2uy − j) (4.4)

with B0 = B and uL = 2−Lu, starting in BL−1 with uL−1 = 2uL.
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The size of the tracked region is adapted to the head size, which can be deduced
from the persons’ height or the distance to the camera. The number of pyramidal
level L is set to four. The size of the last level BL−1 is 50 % bigger than the head
length of around 21 cm, so that the region of the first level B0 has the size m of the
marker used: m = 1.5 ·21cm/23 ≈ 4cm.

If the result of a tracked head is not feasible we extrapolate the next position
and for the detection with marker adjust the position to the center of the marker
considering the pixel brightness.

Merging Trajectories

The precision of the trajectories considering markers is sufficiently high, so that
overlapping camera views allow a combination of trajectory sets. Since we use
stereo recordings we also synchronize all cameras. Thus we do not need a temporal
adjustment and have only to minimize the distance of the pedestrians’ positions for
every frame. By using the method of least squares we find the associated trajectory
pairs for each overlapping view and minimize the average distance error between
the two point clouds by adapting the extrinsic parameter set for one view. The
method for finding the least square solution and searching for the optimal translation
vector and rotation matrix is based on the single value decomposition [65]. After
applying the transformation the average error describing the distance between a
corresponding trajectory pair is 1± 0.4 cm and the maximum error 5± 2.6 cm for
all planar experiments measured in 2D. For experiments in 3D space, we get an
average error of 3 ± 0.5 cm and a maximum error of 8 ± 2.6 cm. The maximum
error appears towards the boundary of the camera’s view. To reduce the influence
of this error we interpolate linearly between two matching trajectories, so that the
trajectory to the respective boundary has less influence on the resulting behavior of
the combined trajectory. All trajectories in the Sect. 4.3 are combined results of two
camera views.

4.2.3 Results of Trajectory Extraction

Quantitative results of the detection with and without markers are shown in
Table 4.1. The one misleading match of the detection using markers traces back to
an area similar to the easy structured marker. The strict heuristic of the markerless
detection deletes three correct trajectories.

The combination of both methods has no false detection. It uses the detection
with markers and accepts the detection only, if the center of the dot is inside the
second highest ellipse of the pyramid of that pedestrian.

Figure 4.4 shows the way of each detected pedestrian during the last second
(left for the detection with and right without using markers). Even if the detection
result is good for both methods, the quality of the method using markers results
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Table 4.1 Comparative
results of the detection
methods

False False avg. acc.
Method Detected positive negative [m/s2]

With markers 304 1 0 1.2±0.7
Markerless 300 0 3 6.5±6.8
Combination 303 0 0 1.2±0.7
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Fig. 4.5 Side view of mean pyramids binning by the angle to the optical axis. The horizontal lines
representing the ellipses are surrounded by two lines at the major and minor radius. The middle
vertical lines show the pyramid axis concatenating the center of the ellipses stack

in smoother trajectories. The smoothness is important for the analysis, e.g. for
the microscopic velocity calculation. To quantify the smoothness the average
microscopic acceleration can be used (see Table 4.1). For successive detected points,
Xj, along a trajectory, pi, the microscopic acceleration at position Xj is

||(Xj+1 −Xj)− (Xj −Xj−1)||/(Δ t)2. (4.5)

Figure 4.5 shows six bins of all pyramids detected during the experiment
according to their angle to the optical axis from side view. The lowest ellipses are
neglected, if they cover more than one person. All pyramids have been adjusted to
one camera distance before a mean pyramid for each bin was calculated. The middle
lines concatenate the center of the ellipses of successive height level and depict the
pyramid axes. The outer two lines surround the ellipses stack at the major and minor
radius. One can see that the center line of the mean pyramids is tilted according to
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the angle, but less than one would expect from the perspective view, because the
based isolines of the latter ellipses have to cover the higher ones due to the not
performed plan view statistic. The radii increase slightly for larger angle. The size
of the radii can be read from the top diagram axis.

4.3 Experimental Setup of the Studied Experiments

Four pedestrian experiments will be introduced in this section. Experiments of
uni-, bidirectional and merging flow were performed in hall 2 of the fairground
Düsseldorf (Germany) in 2009 with up to 400 students (age: 25± 5.7 years old,
height: 1.76± 0.09m, free velocity: 1.55± 0.18m/s), whereas the experiment of
bottleneck flow were performed in 2006 in the wardroom of the “Bergische Kaserne
Düsseldorf” with a test group that was comprised of soldiers. For the Hermes
project an announcement was put in universities to recruit the people who would
like to participate in the experiments with 50 Euro per day. Consequently, most of
the participants were students. No selection of participants was undertaken. During
experiments, they were asked to move normally and purposely but without pushing.
They were free to speak and the sound was also recorded.

4.3.1 Unidirectional Flow

Figure 4.6 shows the sketch and a snapshot of the experiment to study unidirectional
flow in a straight corridor with open boundaries. Three corridor widths (1.8, 2.4 and
3.0 m) were chosen and 28 runs were carried out in all. To regulate the pedestrian
density in the corridor, the widths of the entrance bentrance and the exit bexit were
changed in each run. Figure 4.7 shows the trajectories extracted from two runs of
the experiment. For more details of the setup and data capturing we refer to [42,66].

4.3.2 Bidirectional Flow

Figure 4.8 shows the sketch and a snapshot of the experimental setup to study
bidirectional flow in a straight corridor. 22 runs were performed with corridor width
of 3.0 m and 3.6 m respectively. The width of the left entrance bl and the right
entrance br were changed in each run to regulate the density inside the corridor and
the ratio of the opposing streams. To vary the degree of disorder, the participants get
different instructions on which exit to choose. Three different types of setting were
adopted among these experiments:

bl = br, choose exits freely: In this type of experiment, the widths of entrance bl

and br were set as the same. The test persons were not given any instruction about
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Fig. 4.6 Setup and snapshot of unidirectional flow experiment. Note that the gray area in the
sketch shows the location of the measurement area in the analysis
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Fig. 4.7 Trajectories of pedestrians in two runs of unidirectional flow experiment. The distances
between the edge of trajectories and the boundary are not the same in various density situations

exit chosen and they can choose the exit freely. Five runs of experiment were carried
out with this conditions in a corridor with width of 3.6 m.

bl = br, specify exits in advance: Again the same width bl and br were chosen
in the experiments. But the instruction to the test persons at the beginning of the
experiments were changed. The participants were asked to choose an exit at the end
of the corridor according to a number given to them in advance. The persons with
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Fig. 4.8 Setup and snapshot of bidirectional flow experiment. Note that the gray area in the sketch
shows the locations of the measurement areas in the analysis. Lane formation can be observed from
the snapshot

odd numbers should choose the left exit in the end, while ones with even numbers
were asked to choose the exit in the right side.

bl �= br, specify exits in advance: In this case the widths of entrances bl and br

were different and the participants were instructed to choose an exit at the end of
the corridor according to a number as the last experiment.

Figure 4.9 shows the pedestrian paths for two runs of the experiment with and
without instruction. More details of the experiment setup can be found in [17].

4.3.3 Merging Flow

Figure 4.10 shows the sketch of the experiment to study merging flow in a T-junction
and a snapshot. Two pedestrian streams from the opposite sides of T-shaped corridor
join together and form a single stream. In these experiments, all three parts of the
corridor were set to the same width bcor. 12 runs were carried out with bcor of 2.4
and 3.0 m respectively. To regulate the pedestrian density, the width of the entrance
was changed in each run. The left and right entrances were always set as the same
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Fig. 4.9 Trajectories of pedestrians in two runs of bidirectional flow experiment. Different types
of lane formation, stable separated lanes and dynamical multi-lanes, can be observed

width bentrance. In this way, we guarantee the symmetry of the two branches of the
stream. The number of pedestrians in the left and right branch of the T-junction was
approximately equal. The number was set to a value that the overall duration of all
experiments is similar and is long enough to assure a stationary state. Figure 4.11
shows the paths of the pedestrians in T-junction at low and high density conditions.

4.3.4 Bottleneck Flow

Figure 4.12 shows a still and a sketch of the setup. The experimental setup allows
to analyze the influence of the bottleneck width and length (Fig. 4.13). In one
experiment the width b was varied (from 0.9 to 2.5 m) at fixed corridor length. In
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Fig. 4.10 Setup and a snapshot of merging flow experiment in a T-junction. Note that the gray
areas in the sketch shows the locations of the measurement areas in the analysis
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Fig. 4.11 Trajectories of pedestrians in two runs of merging flow experiment in a T-junction. The
utilizations of the space near the merging area are different under various densities
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Fig. 4.12 Setup and snapshot of bottleneck flow experiment. For this experiment the length l and
width b of the bottleneck were changed in each run to analyze the flow through it

Fig. 4.13 Trajectories of pedestrians in two runs of bottleneck flow experiment. The influence of
bottleneck length and width on pedestrian movement as well as lane formation can be observed

the other experiment the corridor length l was changed (0.06, 2.0, 4.0 m) while the
width was fixed at b = 1.2 m. For more details of the experimental setup and data
capturing we refer to [40, 67].

4.4 Measurement Methods

The trajectories gained by the methods described in Sect. 4.2.2 are the basis to
measure the fundamental diagram J(ρ) or v(ρ). In this section, we study how the
way of analyzing the trajectories influence the relation between v, ρ and J. To
determine these variables one can choose time-averaged density, velocity or flow.
However, various definition of methods may arouse different measurement errors.
Here we use four different definitions including macroscopic and microscopic
methods to measure observable like flow, velocity and density.
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Fig. 4.14 Illustration of different measurement methods. Method A is a kind of local measurement
at cross-section with position x averaged over a time interval Δ t, while Methods B–D measure at a
certain time and average the results over space Δx. Note that for Method D, the Voronoi diagrams
are generated according to the spatial distributions of pedestrians at a certain time

• Method A
For MethodA, a reference location x in the corridor is taken (as shown in

Fig. 4.14) and mean values of flow and velocity are calculated over time Δ t. We
refer to this average by 〈〉Δ t . The time ti and the velocity vi of each pedestrian
passing x can be determined directly. Thus, the flow over time 〈J〉Δ t and the time
mean velocity 〈v〉Δ t can be calculated as

〈J〉Δ t =
NΔ t

tNΔ t − t1Δ t

and 〈v〉Δ t =
1

NΔ t

NΔ t

∑
i=1

vi(t) (4.6)

where NΔ t is the number of persons passing the location x during the time interval
Δ t. t1Δ t and tNΔ t are the times when the first and last pedestrians pass the location
in Δ t. They could be different from Δ t. The time mean velocity 〈v〉Δ t is defined as
the mean value of the instantaneous velocities vi(t) of the NΔ t persons according
to equation (4.7). We calculate vi(t) by use of the displacement of pedestrian i in
a small time interval Δ t ′ (Note that Δ t 
 Δ t ′)around t:

vi(t) =
‖xi(t +Δ t ′/2)−xi(t −Δ t ′/2)‖

Δ t ′
(4.7)

• Method B
The second method measures the mean value of velocity and density over

space and time. The spatial mean velocity and density are calculated by taking
a segment with length Δx in the corridor as the measurement area. The velocity
〈v〉i of each person is defined as the length Δx of the measurement area divided
by the time he or she needs to cross the area (see Eq. (4.8)),

〈v〉i =
Δx

ti,out − ti,in
(4.8)
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where ti,in and ti,out are the times a person i enters and exits the measurement area,
respectively. The density ρi for each person is calculated with equation (4.9):

〈ρ〉i =
1

ti,out − ti,in
·
∫ ti,out

ti,in

N′(t)
Δx ·Δy

dt (4.9)

bcor is the width of the measurement area while N′(t) is the number of person in
this area at a time t.

• Method C
With the third measurement method, let’s call it classical method, the density

〈ρ〉Δx is defined as the number of pedestrians divided by the area of the
measurement section:

〈ρ〉Δx =
N

Δx ·Δy
(4.10)

The spatial mean velocity is the average of the instantaneous velocities vi(t) for
all pedestrians in the measurement area at time t:

〈v〉Δx =
1
N

N

∑
i=1

vi(t) (4.11)

• Method D
This method is based on Voronoi diagrams [68] which are a special kind of

decomposition of a metric space determined by distances to a specified set of
objects in the space. To each such object one associates a corresponding Voronoi
cell. The distance from the set of all points in the Voronoi cell to the given object
is not greater than their distance to the other objects. At any time the positions
of the pedestrians can be represented as a set of objects, from which the Voronoi
diagrams (see Fig. 4.14) are generated. The cell area, Ai, can be thought as the
personal space belonging to each pedestrian i. Then, the density and velocity
distribution of the space ρxy and vxy are defined as

ρxy = 1/Ai and vxy = vi(t) if (x,y) ∈ Ai (4.12)

where vi(t) is the instantaneous velocity of each person, see Eq. (4.7). The
Voronoi density and velocity for the measurement area is then defined as [69]

〈ρ〉v =

∫∫
ρxydxdy

Δx ·Δy
(4.13)

〈v〉v =

∫∫
vxydxdy

Δx ·Δy
(4.14)
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4.5 Results of Analysis

4.5.1 Effects of Measurement Methods

To analyze the effect of measurement methods, we calculate the fundamental
diagram from unidirectional experiments with corridor width bcor = 1.8 m. For
Method A we choose the time interval Δ t = 10 s, Δ t ′ = 0.625 s (corresponding to
ten frames) and the measurement position at x = 0 (see Fig. 4.7). For the other three
methods a rectangle with a length of 2 m from x = −2 m to x = 0 and a width
of the corridor is chosen as the measurement area. We calculate the densities and
velocities each frame with a frame rate of 16 fps. All data presented below are
obtained from some set of trajectories. To determine the fundamental diagram only
data at the stationary state, which were selected manually by analyzing the time
series of density (see Fig. 4.15), were considered. For Method D we use one frame
per second to decrease the number of data points and to represent the data more
clearly.

Figure 4.16 shows the relationship between the density and flow obtained from
different methods. Using Method A the flow and mean velocity can be obtained
directly. To get the relationship between density and flow, the equation

ρ = 〈J〉Δ t/(〈v〉Δ t ·bcor) (4.15)

was adopted to calculate the density. For the Method B, C and D the mean density
and velocity can be obtained directly since they are mean values over space. There
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Fig. 4.16 The relationships between density and flow measured at the same set of trajectories but
with different methods. The density in (a) is calculated indirectly using ρ = J/(b ·Δx), while the
flows in (b), (c) and (d) are obtained by adopting the equation J = ρvb. The legends in (b), (c) and
(d) are the same as in (a)

exists a similar trend of the fundamental diagram obtained using the different
methods. The pedestrian flow shows small fluctuations at low densities and high
fluctuations at high densities. The fluctuations for Method A and D are smaller than
that for other methods. However, there is a major difference between the results.
The fundamental diagrams obtained using Method A and C are smooth, while that
obtained with Method B and D show a clear discontinuity at a density of about
2m−2. The average over a time interval of Method A and the large scatter of Method
C blur this discontinuity. Method D can reduce the density and velocity scatter [69].
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The reduced fluctuation of Method D is combined with a good resolution in time
and space, which reveal a phenomenon that is not observable with Method A and C.
Consequently, we mainly use the Voronoi method to analyze these experiments in
the following part.

4.5.2 Comparison of Fundamental Diagrams for Various
Flows

Figure 4.17 shows the relationship between density specific flow obtained from
Voronoi method. The fundamental diagrams of unidirectional pedestrian flow in the
same type of corridor but with three different widths are compared. It can be seen
that they agree well with each other. The specific flow in the corridors is independent
on the corridor width. At about ρ = 2.0m−2, the specific flow reaches the maximum
value which is named the capacity of a facility. This result is in conformance with
Hankin’s findings [70]. He found that above a certain minimum of about 4 ft (about
1.22 m) the maximum flow in subways is directly proportional to the width of the
corridor. In the range of densities reached in the experiment, our results seem to
support the specific flow concept that the specific flow Js = J/b is independent on
the width of the facility.

Further, we compare the fundamental diagram of uni- and bidirectional flows
in Fig. 4.18. At densities of ρ < 1.0m−2, no significant difference exists. For ρ >
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Fig. 4.18 Comparison of the fundamental diagrams of unidirectional flow and bidirectional flow

1.0m−2, however, the difference between the uni- and bidirectional flow becomes
more pronounced and a qualitative difference can be observed. In the bidirectional
case a plateau is formed starting at a density ρ ≈ 1.0m−2 where the flow becomes
almost independent of the density. Such plateaus are typical for systems which
contain ‘defects’ which limit the flow and have been observed e.g. on bidirectional
ant trails [71] where they are a consequence of the interaction of the ants. In our
experiments the defects are conflicts of persons moving in the opposite direction.
These conflicts only happen between two persons but the reduction of the velocity
influences the following people. One of the remarkable things is that the data of the
unidirectional flow for ρ > 2.0m−2 are obtained by slide change of the experiment
setup. To reach densities ρ > 2.0m−2 for unidirectional experiment, a bottleneck at
the end of the corridor is builded. This may limit the comparability of fundamental
diagrams for ρ > 2.0m−2.

With the Voronoi method the measurement area could be chosen smaller than the
pedestrians. We calculate the Voronoi density, velocity and specific flow over small
regions (Δx×Δy= 10×10cm) for each frame and average them over the stationary
state separately. Then the profile of density, velocity and specific flow over the
experimental area are obtained (see Fig. 4.19). These profiles provide new insights
into the spatial characteristics and sensitivity of the quantities to other potential
factors. The density profile shows conspicuous high densities at the corner of the
T-junction, indicating critical spots under crowded conditions. The region with the
highest density is located at a small triangle area, where the left and right branches
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a b

c

Fig. 4.19 The profiles of density, velocity and flow in T-junction for one run of the experiments.
(a) Density profile. (b) Velocity profile. (c) Specific flow profile

merge. Moreover the density profile shows obvious boundary effects. Except for
the merging area at the corner, the densities in the middle of the corridors are
significantly higher than near the boundaries. The spatial variation of the velocity
is different. Boundary effect does not occur for the velocity and the profile is
independent from the corridor width especially in the exit corridor. But the velocity
becomes larger after the merging of the streams and increases persistently along the
movement direction. The specific flow profile shows that the highest flow occurs at
the center of the exit corridor. The region of highest flow protrudes from the exit
corridor into the area where the two branches start to merge. This indicates that
the merging process in front of the exit corridor leads to a flow restriction. Causes
for the restriction of the flow must be located outside the region of highest flow.
These profiles demonstrate that density and velocity measurements are sensitive to
the size and location of the measurement area. For the comparison of measurements
(e.g. for model validation or calibration) it is necessary to specify precisely the size
and position of the measurement area.

In Fig. 4.20, we compare the fundamental diagrams of merging flow in T-junction
with corridor width bcor = 2.4 m. The data assigned with ‘T-left’ and ‘T-right’ are
measured in the areas where the streams prepare to merge, while the data assigned
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with ‘T-front’ are measured in the region where the streams have already merged.
The locations of the measurement areas are illustrated in Fig. 4.10. For ease of
comparison, we choose these measurement areas with the same size (4.8m−2).
One finds that the fundamental diagrams of the left and right branches match
well. That means, the right or left turning of the stream dose not have influence
on the fundamental diagram. However, for densities ρ > 0.5m−2 the velocities
in the ‘right’ and ‘left’ part of the T-junction (T-left and T-right) are significantly
lower than the velocities measured after the merging of the streams (T-front). This
discrepancy becomes more distinct in the relation between density and specific
flow. In the main stream (T-front), the specific flow increases with the density ρ till
2.5m−2. While in the branches, the specific flow nearly remains constant for density
ρ between 1.5 and 3.5m−2. Thus, there seems no unique fundamental diagram
which describes the relation between velocity and density for the complete system.
For this difference, we can only offer assumptions regarding the causes. One is
based on behavior of pedestrians. Congestion occurs at the end of the branches,
where the region of maximum density appears. Pedestrians stand in a jam in front
of the merging and could not perceive where the congestion disperse or whether the
jam lasts after the merging. In such situation, it is questionable whether an urge or
a push will lead to a benefit. Thus an optimal usage of the available space becomes
unimportant. Otherwise, the situation totally changes if the location of dissolution
becomes apparent. Then a certain urge or an optimal usage of the available space



4 Analysis of Crowd Dynamics with Laboratory Experiments 93

 2

 2.5

 3

 3.5

 4

0 1 2 3 4

J 
[1

/s
]

l [m]

0 to 150

Seyfried

Kretz

Daamen et. al.
Mueller bg=3.2m

Mueller bg=2.6m

J(l).

0

1

2

3

4

5

6a b

0 0.5 1 1.5 2 2.5

J 
[1

/s
]

b [m]

0 to 150

Seyfried

Kretz
Mueller bg=3.2m

Mueller bg=2.6m

1.9 b

J(b)

Fig. 4.21 (a) Variation of the flow J with bottleneck length l and (b) variation of the flow J with
bottleneck width b

makes sense and could lead to a benefit. They will move in a relatively active way.
That’s maybe the reason why the velocities after merging are higher than that in
front of merging at the same density. Whether this explanation is plausible could be
answered by a comparison of these data with experimental data at a corner without
the merging.

In Fig. 4.21, the flow from bottleneck experiment is compared with previous
measurements using Method A. The black line in Fig. 4.21b represents a constant
specific flow of 1.9 (ms)−1. The difference between the flow at l = 0.06 and
l = 2.0,4.0 m is ΔJ � 0.5 s−1. The data points of Müller’s experiments [72] lie
significantly above the black line. The Müller experimental setup features a large
initial density of around 6 m−2 and an extremely short corridor. The discrepancy
between the Müller data and the empirical J = 1.9b line is roughly ΔJ � 0.5 s−1.
This difference can be accounted to the short corridor length, but may also be due
to the higher initial density in the Müller experiment.

4.6 Conclusion

We have performed a large series of experiments to selectively analyze parameters
independent of undesired influences.

Different strategies with and without markers for collecting precise trajectories
out of overhead video recordings of these experiments and for future field studies
have been discussed. Using the perspective depth field directly from stereo record-
ings is a fast method for the perpendicular view. The automatic extraction of all
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trajectories which we need especially to verify microscopic models and to analyze
the movement microscopically has small error.

To obtain smoother trajectories without markers a subsequent smoothing could
be performed or the axes of the pyramidal ellipses stack could be taken into account
to get more stable points along the pedestrians’ routes.

Experiments of uni- and bidirectional flow in a straight corridor, merging flow in
a T-junction and pedestrian flow through bottlenecks have been presented in more
detail. Four different measurement methods for obtaining quantities from pedestrian
trajectories are adopted and their influences on the fundamental diagram have been
investigated. It is found that the results obtained from different methods agree well
in the density ranges observed in the experiment. The main differences are the
range of the fluctuations and the resolution in time and space. However, the Voronoi
method permits the deepest and most precise insight into the temporal progress and
spatial distribution of the velocity, density and flow.

Some selected analysis results are presented. It is shown that fundamental
diagrams for the same type of facility but different corridor widths agree well and
can be unified in one diagram for the specific flow. From the comparison of the
fundamental diagrams between straight corridor and T-junction, it is indicated that
the fundamental diagrams for different facilities are not comparable. Besides, the
measurement of density and velocity strongly depends on the size and location of the
measurement area, which can be observed form the profiles of the density, velocity
and specific flow measured with the Voronoi method. The influence of the length
and width of a bottleneck on the flow is shown and compared with previous studies.
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Chapter 5
Modeling a Crowd of Groups: Multidisciplinary
and Methodological Challenges

Stefania Bandini and Giuseppe Vizzari

Abstract The main aim of the chapter is to introduce a recent and current trend
of research in the modeling, simulation and visual analysis of crowds: the study
of the impact of groups on the overall crowd dynamics, and its implications of the
aforementioned research activities as well as their outcomes. In most situations,
in fact, a crowd of pedestrians is more than a simple set of individuals, each
interpreting the presence of the others in a uniform way, trying to preserve a
certain distance from the nearest person. A crowd is rather a composite assembly of
individuals, some of which are bound by different types of ties, not only representing
the presence of other pedestrians as a repulsive force, influencing their attitude
towards the movement in the environment. Current models for the simulation of
crowds of pedestrians have just started to analyze this phenomenon, and we still lack
a complete understanding of the implications of not considering it, either in a real
simulation project supporting decision making activities of designers or planners,
or in the analysis and automatic extraction of information, for instance from video
footage of events or crowded environments.

5.1 Introduction

The modeling and simulation of pedestrians and crowds is a consolidated and
successful application of research results in the more general area of computer
simulation of complex systems. Results of different approaches from researchers in
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different disciplines, from physics and applied mathematics, to computer science,
often influenced by (and sometimes in collaboration with) anthropological, psy-
chological, sociological studies and the humanities in general, can be found in the
literature. The level of maturity of these approaches was in some cases sufficient to
lead to the design and development of commercial software packages, often offering
interesting and advanced functionalities for the end user (e.g. CAD integration,
CAD-like functionalities, advanced visualization and analysis tools) in addition to
a simulation engine.1 Nonetheless, as testified by a recent survey of the field [46]
and by a report commissioned by the Cabinet Office [11], there is still room for
innovations in models improving their performances both in terms of effectiveness
in modeling pedestrians and crowd phenomena, in terms of expressiveness of the
models (i.e. simplifying the modeling activity or introducing the possibility of
representing phenomena that were still not modelled by existing approaches), in
terms of efficiency of the simulation tools.

The unit of analysis of most the above mentioned approaches is represented by
the single pedestrian, and this is also testified by the fact that most approaches
claim to be agent–based (even though the different approaches do not necessar-
ily employ agent models and/or technologies [4]): most pedestrians and crowd
simulation approaches can be legitimately and safely classified in the category
of micro-simulation. The analyses on simulation results are generally focused on
aggregated data and emerging macro phenomena, such as average total travel
times for specific classes of pedestrians, average or peak pedestrian densities in
various points of the simulated environment. Generally, models do not include any
meso-level [15] concept besides the aforementioned idea of class of pedestrians,
i.e. a set of agents sharing behavioral rules and goals but otherwise completely
unrelated.

The main aim of the chapter is to highlight a recent and current trend of research
in modeling, simulation and visual analysis of crowds: the study of the impact of
groups on the overall crowd dynamics, and its implications of the aforementioned
research activities as well as their outcomes. In most situations, in fact, a crowd of
pedestrians is more than a simple set of individuals, each interpreting the presence
of the others in a uniform way, that is, trying to preserve a certain distance from
the nearest person. A crowd is rather a composite assembly of individuals, some
of which are bound by different types of ties, not only representing the presence
of other pedestrians as a repulsive force, influencing their attitude towards the
movement in the environment. Current models for the simulation of crowds of
pedestrians have just started to analyze this phenomenon, and we still lack a
complete understanding of the implications of not considering it, either in a real
simulation project supporting decision making activities of designers or planners,
or in the analysis and automatic extraction of information, for instance from video
footage of events or crowded environments. The chapter, in addition to describing

1See http://www.evacmod.net/?q=node/5 for a large although not necessarily complete list of
pedestrian simulation models and tools.

http://www.evacmod.net/?q=node/5
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the current state of the art on this topic and discussing some recent results and
open challenges, will also attempt to clarify that this research enterprize requires
a coordinated and multidisciplinary effort along both the lines, that is, the synthesis
and the analysis of crowds comprising groups of pedestrians. The chapter aims first
of all at suggesting a relevant selection of literature in area of cultural studies and
anthropology that represents a useful framework suggesting approaches both the
modeling and to the analysis of the relevant phenomena. In particular, the work
on proxemics by Edward T. Hall encompasses both a justification of the tendency
of individuals to keep a certain distance from the others, unless they belong to a
specific set of special persons (e.g. friends, relatives, loved ones).

The chapter then provides a thorough review of the current landscape in models
for the simulation of crowd pedestrians that, to a different extent and in a more or
less comprehensive way, extend the basic pedestrian models to provide an account
for this sort of meso-level concept that is the notion of group.

A detailed example of one of these models, explicitly considering groups as first
class abstractions and modelled entities that, on one hand, influence individuals in
their decisions and, on the other, can represent an observed entity per se whose
status depends on the individuals it is composed of. The model will be described
in its principles and mechanisms, and it will be exemplified in an experimental
situation and in a real world scenario. Some traditional approaches will be employed
to evaluate, measure and describe the results of the simulated pedestrians’ behaviors
and some hypotheses will be done on the possibility to observe, characterize and
possibly validate phenomena that are specifically related to groups and therefore
not yet considered in the previous researches: new observations and metrics, in
fact, must be defined and analyzed to root the results of the new models on
actual data.

Finally, and as a consequence of this last consideration, this chapter presents
a reflection on the current landscape in the area of crowd analysis, proposing a
multidisciplinary research direction in which the efforts on crowd analysis and
synthesis can benefit from the mutual challenges, methods and results.

5.2 Influential Contributions on Pedestrians and Crowd
Modeling

In this section of the chapter we want to briefly introduce some selected con-
tributions from disciplines in the humanities, and especially anthropology and
sociology, that to a certain extent influenced previous pedestrian and crowd
modeling approaches or that represented a useful resource in the development of
innovative models considering groups as a first class abstraction influencing the
overall system dynamics. In addition, we also report here some works describing
reports on relevant observations that represent useful evidences and potentially also
data to support innovative modeling and simulation efforts.
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5.2.1 Proxemics

The term proxemics was first introduced by Edward T. Hall with respect to the study
of a set of measurable distances between people as they interact [23]. In his studies,
Hall carried out analysis of different situations in order to recognize behavioral
patterns. These patterns are based on people’s culture as they appear at different
levels of awareness. In [22] Hall proposed a system for the notation of proxemic
behavior in order to collect data and information on people sharing a common space.
Hall defined proxemic behavior and four types of perceived distances: intimate
distance for embracing, touching or whispering; personal distance for interactions
among good friends or family members; social distance for interactions among
acquaintances; public distance used for public speaking. Perceived distances depend
on some additional elements which characterize relationships and interactions
between people: posture and sex identifiers, sociofugal-sociopetal (SFP) axis,
kinesthetic factor, touching code, visual code, thermal code, olfactory code and
voice loudness.

Proxemic behavior includes different aspects which could be useful and inter-
esting to integrate in crowd and pedestrian dynamics simulation. In particular, the
most significant of these aspects being the existence of two kinds of distance:
physical distance and perceived distance. While the first depends on physical
position associated to each person, the latter depends on proxemic behavior based
on culture and social rules.

It must be noted that some recent research effort was aimed at evaluating the
impact of proxemics and cultural differences on the fundamental diagram [12],
a typical way of evaluating both real crowding situations and simulation results.
Moreover, first attempts to explicitly include proxemic considerations not only as
a background element in the motivations a behavioral model is based upon, but
rather as a concrete element of the model itself are present in the most recent
literature [33, 51].

5.2.2 Groups: Contributions from Anthropology

The term group appears in very different and varied contexts of the anthropological
literature, both ethnographic and theoretical [16]. The term, per se, is not endowed
with specific characteristics and it is generally accompanied by additional speci-
fications such as “domestic group,” “ethnic group,” and so on. With reference to
the term in general and common sense usage, anthropology borrows sociological
considerations, defining a group as a set of individuals related by a common project,
a common identity, that can be perceived by the members of the group and by
external observers.

The common element between the different strains of research related to groups
is the topic of social cohesion that, to a certain extent, pervades the works of
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researchers since the end of the Nineteenth century. The existence of a group
considered as a set of (at least two) individuals does not necessarily imply the
presence of a formal organization, even though this characteristic could represent
a group classification criterion; other classification criteria are related to the degree
of homogeneity/heterogeneity in the group, the mechanisms of recruitment of
new members, the presence or absence of common interests towards goods (e.g.,
territory, domestic herds) or ritual knowledge. Generally groups are aimed at the
execution of a plan for the achievement of some final goal. Therefore, groups exist
since they carry out specific ‘functions’; the latter can be classified into three types:
executive, control and expressive functions. The executive aspect deals with the
need of a group to successfully adapt to the natural and social environment in
which it is set in order to achieve the goals of the group (e.g., the management
of resources, the performance of some ritual). The control aspect deals with the
enactment of mechanisms (e.g., behavioral norms, recruitment practices, rituals) for
the preservation of group characteristics, namely structure and goals. The expressive
aspect consists in the ability of the group to gratify on a psychological and emotional
level of its own members.

5.2.3 Canetti’s Crowd Theory

Elias Canetti’s work [10] proposes a classification and an ontological description of
the crowd phenomenon; this description represents the result of 40 years of empir-
ical observations and studies from psychological and anthropological viewpoints.
Elias Canetti can be considered as belonging to the tradition of social studies that
consider the crowd as an entity dominated by uniform moods and feelings. This
uniformity, the loss of individuality, however, are not the normal state of a set of
pedestrians in an environment, although maybe densely populated.

The normal pedestrian behavior, according to Canetti, is based upon what can be
called the fear to be touched principle:

There is nothing man fears more than the touch of the unknown. He wants to see what is
reaching towards him, and to be able to recognize or at least classify it.

All the distance which men place around themselves are dictated by this fear.

The normal situation can however be interrupted by a discharge, a particular
event, a situation, a specific context in which this principle is not valid anymore,
since pedestrians are willing to accept being very close, within touch distance.
Canetti provided an extensive categorization of the conditions, situations in which
this happens and he also described the features of these situations and of the
resulting types of crowds. Finally, Canetti also provides the concept of crowd
crystal, a particular set of pedestrians that are part of a group willing to preserve its
unity, despite crowd dynamics. Canetti’s theory (and precisely the fear to be touched
principle) is apparently compatible with Hall’s proxemics, but it also provides
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additional concepts that are useful to describe phenomena that take place in several
relevant crowding phenomena, especially from the Hajj perspective.

Recent developments aimed at formalizing, embedding and employing Canetti’s
crowd theory into computer systems (for instance, supporting crowd profiling
and modeling) can be found in the literature [2, 3] and they represent a useful
contribution to the present work.

5.2.4 Direct Observations

Direct observations, when carried out in a systematic way, represent a fundamental
instrument aimed at, on one hand, at highlighting phenomena to be modelled,
behavioral tendencies to be included in model mechanisms and, on the other, they
also represent a way to acquire quantitative information on some pedestrian and
crowd related phenomenon. Data and information deriving from the observation can
directly support some specific form of decision by an expert designer or planner, or
they can represent a useful element for the calibration of a simulation model.

Two relevant examples of direct observations that report relevant information
from the perspective of a modeler trying to capture elements of the behavior of
groups of pedestrians are represented by two video-based observational studies [48,
52]: the first paper, presents an analysis of three mixed-use (residential/retail)
uncluttered urban environments close to the city centers of Edinburgh and York
(essentially in free flow conditions), while the second analyzes an area between
the check-in facilities and the security control at the Dresden International Airport.
Both studies analyze the effect of the presence of groups, as well as other variables
like gender, age and even travel purpose (only for the second observation). Both
the observations conclude that members of groups tend to assume a lower speed
than individuals, very likely due to the tendency of each group member of adapting
his/her own movement to stay close to the other members. Similar considerations are
also discussed in [17], where a situation in which authors were expecting groups to
be less frequently identified and relevant, that is, an admission test to a programmed
number university course. Another recent study in the vein of Hall’s proxemics [13]
supports the above interpretation and also adds an analysis of the spatial patterns
and formations assumed by the group members.

While these works are extremely important in pointing out the fact that the
presence of groups can have a noticeable influence on walking behavior of pedestri-
ans, and therefore not considering this aspect can present a problem when making
predictions on pedestrians’ behaviors, they are not sufficient to actually characterize
this impact in general, since they essentially analyze situations in which pedestrians
have an almost unconstrained possibility to choose their walking direction and speed
due to the low level of density. Moreover, the analyzed groups are in most cases of
relatively small size: the analysis carried out in the context of the airport terminal
considered that larger groups split into smaller ones and focused on the latter, not
considering the potential influence of the larger group on the smaller ones. The real
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world scenario that will be analyzed in Sect. 5.6 will instead consider the presence
of potentially large groups (i.e. 250 members), although it does not consider the
presence of comprised smaller groups.

5.3 Pedestrians and Crowd Modeling Approaches

The aim of this section is to provide a compact but as comprehensive as possible
overview of the different approaches to the representation and simulation of crowd
dynamics: entire workshops and conferences attracting researchers from different
disciplines are focused on this topic (see, e.g., the proceedings of the first edition
of the International Conference on Pedestrian and Evacuation Dynamics [47] and
consider that this event will reach the sixth edition in 2012), therefore we are not
pretending to even mention the most significant approaches and model. We will
try, instead, to present broad classes identified according to the way pedestrians are
represented and managed, and in particular: (i) pedestrians as particles subject to
forces of attraction/repulsion, (ii) pedestrians as particular states of cells in a CA,
(iii) pedestrians as autonomous agents, situated in an environment.

5.3.1 Particle-Based Approach

A significant number of models and experiences of simulation of pedestrian dynam-
ics are based on an analytical approach, considering pedestrian as particles subject
to forces, and representing in this was the various forms of interaction between
pedestrian and the environment (and also among pedestrians themselves, in the case
of active walker models [26]). Forces of attraction lead the pedestrians/particles
towards their destinations, whereas forces of repulsion are used to represent the
tendency to stay at a distance from other points of the environment. This kind
of effect was introduced by a relevant and successful example of this modeling
approach, the social force model [25]; this approach introduces the notion of social
force, representing the tendency of pedestrians to stay at a certain distance one
from another; other relevant approaches take inspiration from fluid-dynamic [24]
and magnetic forces [39] for the representation of mechanisms governing flows of
pedestrians.

While this approach is based on a precise methodology and has provided relevant
results, it represents pedestrian as mere particles, whose goals, characteristics and
interactions must be represented by means of equations, and it is not simple thus
to incorporate heterogeneity and complex pedestrian behaviors in this kind of
model. Nonetheless, recent extensions of the basic social force model introduce a
contribution to the general laws of motion representing a form of cohesion between
members of a group [34,53]: the authors of these works focus on small unstructured
groups and they analyze the impact of this modification to the starting model in low
to moderate density scenarios.
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5.3.2 Cellular Automata Approach

A different approach to crowd modeling is characterized by the adoption of Cellular
Automata (CA), with a discrete spatial representation and discrete time-steps, to
represent the simulated environment and the entities it comprises. The cellular
space includes thus both a representation of the environment and an indication of
its state, in terms of occupancy of the sites it is divided into, by static obstacles
as well as human beings. Transition rules must be defined in order to specify the
evolution of every cell’s state; they are based on the concept of neighborhood of a
cell, a specific set of cells whose state will be considered in the computation of its
transition rule. The transition rule, in this kind of model, generates the illusion of
movement, that is mapped to a coordinated change of cells state. To make a simple
example, an atomic step of a pedestrian is realized through the change of state of two
cells, the first characterized by an “occupied” state that becomes “vacant”, and an
adjacent one that was previously “vacant” and that becomes “occupied”. This kind
of application of CA-based models is essentially based on previous works adopting
the same approach for traffic simulation [36].

Local cell interactions are thus the uniform (and only) way to represent the
motion of an individual in the space (and the choice of the destination of every
movement step). The sequential application of this rule to the whole cell space may
bring to emergent effects and collective behaviors. Relevant examples of crowd
collective behaviors that were modelled through CAs are the formation of lanes
in bidirectional pedestrian flows [7], the resolution of conflicts in multidirectional
crossing pedestrian flows [8]. In this kind of example, different states of the cells
represent pedestrians moving towards different exits; this particular state activates
a particular branch of the transition rule causing the transition of the related
pedestrian to the direction associated to that particular state. Additional branches
of the transition rule manage conflicts in the movement of pedestrians, for instance
through changes of lanes in case of pedestrians that would occupy the same cell
coming from opposite directions.

It must be noted, however, that the potential need to represent goal driven
behaviors (i.e. the desire to reach a certain position in space) has often led to extend
the basic CA model to include features and mechanisms breaking the strictly locality
principle. A relevant example of this kind of development is represented by a CA
based approach to pedestrian dynamics in evacuation configurations [45]. In this
case, the cellular structure of the environment is also characterized by a predefined
desirability level, associated to each cell, that, combined with more dynamic
effects generated by the passage of other pedestrians, guide the transition of states
associated to pedestrians. Recent developments of this approach introduce even
more sophisticated behavioral elements for pedestrians, considering the anticipation
of the movements of other pedestrians, especially in counter flows scenarios [38].

As for the particle–based approaches, also in CA pedestrians and crowd models
the impact of the presence of groups has been recently investigated [44]: once again,
group members have a tendency to stay close to each others, but this model also
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includes the possibility to represent leader and followers roles. The paper, however,
does not present a validation against real data or an application in a real–world
scenario.

5.3.3 Autonomous Agents Approach

Recent developments in this line of research (e.g. [14, 27]), introduce modifications
to the basic CA approach that are so deep that the resulting models can be considered
much more similar to agent–based and Multi Agent Systems (MAS) models
exploiting a cellular space representing spatial aspects of agents’ environment.
A MAS is a system made up of a set of autonomous components which interact, for
instance according to collaboration or competition schemes, in order to contribute
in realizing an overall behavior that could not be generated by single entities
by themselves. As previously introduced, MAS models have been successfully
applied to the modeling and simulation of several situations characterized by
the presence of autonomous entities whose action and interaction determines the
evolution of the system, and they are growingly adopted also to model crowds of
pedestrians [1, 6, 20, 50]. All these approaches are characterized by the fact that
the agents encapsulate some form of behavior inspired by the above described
approaches, that is, forms of attractions/repulsion generated by points of interest
or reference in the environment but also by other pedestrians.

Some of the agent based approaches to the modeling of pedestrians and crowds
were developed with the primary goal of providing a realistic 3D visualization of
the simulated dynamics: in this case, the notion of realism includes elements that are
considered irrelevant by some of the previous approaches, and it does not necessarily
require the models to be validated against data observed in real or experimental
situations. The approach described in [35] and in [49] is characterized by a very
composite model of pedestrian behavior, including basic reactive behaviors as
well as a cognitive control layer; moreover, actions available to agents are not
strictly related to their movement, but they also allow forms of direct interaction
among pedestrians and interaction with objects situated in the environment. Other
approaches in this area (see, e.g., [40]) also define layered architectures including
cognitive models for the coordination of composite actions for the manipulation of
objects present in the environment. Another relevant agent–based effort described
in [41], although adopting the social force model for some internal mechanisms (i.e.
local collision avoidance), employs guidance fields to achieve a goal directed agent
movement.

A recent effort [42] represents instead an attempt to define a model able
to reproduce composite forms of groups related dynamics: this modeling effort,
although it represents an interesting investigation of how expressive an agent–based
approach to the modeling of pedestrian groups can be, was not validated in a real
world scenario.
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5.4 GA-PED Model

We will now briefly introduce a model based on simple reactive situated agents
based on some fundamental features of CA approaches to pedestrian and crowd
modeling and simulation, with specific reference to the representation and man-
agement of the simulated environment and pedestrians; in particular, the adopted
approach is discrete both in space and in time. The present description of the model
is simplified and reduced for sake of space, reporting only a basic description of the
elements required to understand its basic mechanisms; an extended version of the
model description can be found in [5].

5.4.1 Environment

The environment in which the simulation takes place is a lattice of cells, each
representing a portion of the simulated environment and comprising information
about its current state, both in terms of physical occupation by an obstacle or by
a pedestrian, and in terms of additional information, for instance describing its
distance from a reference point or point of interest in the environment and/or its
desirability for pedestrians following a certain path in the environment.

The scale of discretization is determined according to the principle of achieving
cells in which at most one pedestrian can be present; traditionally the side of a cell
is fixed at 40 or 50 cm, respectively determining a maximum density of 4 and 6.5
pedestrian per square meter. The choice of the scale of discretization also influences
the length of the simulation turn: the average speed of a pedestrian can be set at
about 1.5 m/s (see, e.g., [52]) therefore, assuming that a pedestrian can perform a
single movement between a cell and an adjacent one (according to the Von Neumann
neighborhood), the duration of a simulation turn is about 0.33 s in case of a 50 cm
discretization and 0.27 in case of a finer 40 cm discretization.

Each cell can be either vacant, occupied by an obstacle or by a specific
pedestrian. In order to support pedestrian navigation in the environment, each cell
is also provided with specific floor fields [45]. In particular, each relevant final or
intermediate target for a pedestrian is associated to a floor field, representing a sort of
gradient indicating the most direct way towards the associated point of interest (e.g.,
see Fig. 5.1 in which a simple scenario and the relative floor field representation are
shown). The GA-Ped (Group Aware Pedestrian model) model only comprises static
floor fields, specifying the shortest path to destinations and targets. Interactions
between pedestrians, that in other models are described by the use of dynamic floor
fields, in this modeling approach are managed by the agent interpretation of the
perceived situation.
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Fig. 5.1 Schematic representation of a simple scenario: a 2.5 by 10 m corridor, with exits on the
short ends and 2 sets of 25 pedestrians. The discretization of 50 cm and the floor field directing
towards the right end is shown on the right

5.4.2 Pedestrians

Pedestrians in the GA-PED model have a limited form of autonomy, meaning that
they can choose were to move according to their perception of the environment
and their goal, but their action is actually triggered by the simulation engine
and they are not thus provided with a thread of control of their own. More
precisely, the simulation turn activates every pedestrian once in every turn, adopting
a random order in the agent selection: this agent activation strategy, also called
shuffled sequential updating [30], is characterized by the fact that conflicts between
pedestrians are prevented.

Each pedestrian is provided with a simple set of attributes: pedestrian = 〈pedID,
groupID〉 with pedID being an identifier for each pedestrian and groupID (possibly
null, in case of individuals) the group the pedestrian belongs to. For the applications
presented in this paper, the agents have a single goal in the experimental scenario,
but in more complex ones the environment could be endowed with multiple floor
fields and the agent could be also characterized by a schedule, in terms of a sequence
of floor fields and therefore intermediate destinations to be reached.

The behavior of a pedestrian is represented as a flow made up of three stages:
sleep, movement evaluation, movement. When a new iteration starts each pedestrian
is in a sleeping state. The system wakes up each pedestrian once per iteration and,
then, the pedestrian passes to a new state of movement evaluation. In this stage,
the pedestrian collects all the information necessary to obtain spatial awareness. In
particular, every pedestrian has the capability to observe the environment around
him, looking for other pedestrians (that could be part of his/her group), walls and
other obstacles, according to the Von Neumann neighborhood. The choice of the
actual movement destination between the set of potential movements (i.e. non empty
cells are not considered) is based on the elaboration of an utility value, called
likability, representing the desirability of moving into that position given the state
of the pedestrian.

Formally, given a pedestrian belonging to a group g and reaching a goal t, the
likability of a cell c is defined as:
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li(c,g, t) = wt ·goal(t,c)+wg ·group(g,c)−wo ·obs(c)−ws ·others(g,c)+ ε

where the functions obst counts the number of obstacles in the Von Neumann
neighborhood of a given cell, goal returns the value of the floor field associated
to the target t in a give cell, group and other respectively count the number of
members and non-members of the group g, ε represents a random value. Group
cohesion and floor field are positive components because the pedestrians wish to
reach their destinations quickly, while staying close to other group members. On
the contrary, the presence of obstacles and other pedestrians have a negative impact
as a pedestrian usually tends to avoid them. A random factor is also added to the
overall evaluation of the desirability of every cell.

In the usual floor field models, after a deterministic elaboration of the utility
of each cell, not comprising thus any random factor, the utilities are translated
into the probabilities that the related cell is selected as movement destination. This
means that for a pedestrian generally there is a higher probability of moving towards
his/her destination and according to proxemic considerations, but there is also the
probability, for instance, to move away from his/her goal or to move far from his/her
group. In this work, we decided to include a small random factor to the utility of each
cell and to choose directly the movement that maximizes the agent utility. A more
thorough comparison of the implications of this choice compared to the basic floor
field approach is out of the scope of this chapter and it is object of future works.

5.5 Experimental Scenario

The GA-Ped model was adopted to realize a set of simulations in different starting
conditions (mainly changing density of pedestrians in the environment, but also
different configurations of groups present in the simulated pedestrian population) in
a situation in which experiments focused at evaluating the impact of the presence of
groups of different size was being investigated.

5.5.1 Experiments

The environment in which the experiments took place is represented in Fig. 5.1: a 2.5
by 10 m corridor, with exits on the short ends. The experiments were characterized
by the presence of 2 sets of 25 pedestrians, respectively starting at the 2 ends of
the corridor (in 2 by 2.5 m areas), moving towards the other end. Various cameras
were positioned on the side of the corridor and the time required for the two sets
of pedestrians to complete their movement was also measured (manually from the
video footage).

Several experiments were conducted, some of which also considered the presence
of groups of pedestrians, that were instructed on the fact that they had to behave as



5 Modeling a Crowd of Groups: Multidisciplinary and Methodological Challenges 111

friends or relatives while moving during the experiment. In particular, the following
scenarios have been investigated: (i) single pedestrians (three experiments); (ii) three
couples of pedestrians for each direction (two experiments); (iii) two triples of
pedestrians for each direction (three experiments); (iv) a group of six pedestrians
for each direction (four experiments).

One of the observed phenomena was that the first experiment actually required
more time for the pedestrians to complete the movement; the pedestrians actually
learned how to move and how to perform the experiment very quickly, since the
first experiment took them about 18 s while the average completion time over 12
experiments is about 15 s.

The number of performed experiments is probably too low to draw some defini-
tive conclusions, but the total travel times of configurations including individuals
and pairs were consistently lower than those not including groups. Qualitative
analysis of the videos showed that pairs can easily form a line, and this reduces the
friction with the facing group. Similar considerations can be done for large groups;
on the other end, groups of three pedestrians sometimes had difficulties in forming
a lane, retaining a triangular shape similar to the ‘V’ shaped observed and modeled
in [34], and this caused a total travel times that were higher than average in two of
the three experiments involving this type of group.

5.5.2 Simulation Results

We applied the model described in Sect. 5.4 to the previous scenario by means of
an agent-based platform based on GA-Ped approach. A description of the platform
can be found in [9]. We employed the gathered data and additional data available
in the literature to perform a calibration of the parameters, essentially determining
the relative importance of (a) the goal oriented, (b) general proxemics and (c) group
proxemic components of the movement choice. In particular, we first identified a
set of plausible values for the wt and wo parameters employing experimental data
regarding a one-directional flow. Then we employed data from bidirectional flow
situations to further tune these parameters as well as the value of the wg parameter:
the latter was set in order to achieve a balance between effectiveness in preserving
group cohesion and preserving aggregated measures on the overall pedestrian flow
(an excessive group cohesion value reduces the overall pedestrian flow and produces
unrealistic behavior).

We investigated the capability of our model to fit the fundamental diagram
proposed in the literature for characterising pedestrian simulations [46] and other
traffic related phenomena. This kind of diagram shows how the average velocity of
pedestrians varies according to the density of the simulated environment. Moreover,
we wanted to distinguish the different performance of different agent types, and
essentially individuals, members of pairs, groups of three and five pedestrians
over a relatively wide spectrum of densities. To do so, we performed continuous
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Fig. 5.2 Fundamental diagram for different pedestrian densities in the corridor scenario

simulations of the bidirectional pedestrian flows in the corridor with a changing
number of pedestrians, to alter their density. For each density value displayed in the
graph shown in Fig. 5.2 is related to at least 1 h of simulated time.

The achieved fundamental diagram represents in qualitatively correct way the
nature of pedestrian dynamics: the flow of pedestrians increases with the growing
of the density of the corridor unit a critical value is reached. If the system density is
increased beyond that value, the flow begins to decrease significantly as the friction
between pedestrians make movements more difficult.

The simulation results are in tune with the experimental data coming from
observations: in particular, the flow of pairs of pedestrians is consistently above
the curve of individuals. This means that the average speed of members of pairs is
actually higher than the average speed of individuals. This is due to the fact that they
easily tend to form a line, in which the first pedestrian has the same probability to be
stuck as an individual, but the follower has a generally higher probability to move
forward, following the path “opened” by the first member of the pair, as exemplified
in Fig. 5.3b. The same does not happen for larger groups, since for them it is more
difficult to form a line and therefore they offer a larger profile to the counter flow, as
shown in Fig. 5.3a: the curves related to groups of three and five members are below
the curve of individuals for most of the spectrum of densities, precisely until very
high density values are reached. In this case, the advantage of followers overcomes
the disadvantage of offering a larger profile to the counter flow and the combined
average velocity is higher than that of individuals.
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Fig. 5.3 In the left figure, the black pedestrians have not formed a line and they offer a larger
profile to the counter flow. In the right figure, they formed a line and the follower has a lower
probability to find an opposing pedestrian due to the presence of a sort of “emergent” leader

5.6 Real World Scenario

5.6.1 Environment and observations

The model was also adopted to elaborate different what-if scenarios in a real world
case study. In particular, the simulated scenario is characterized by the presence of a
station of the Mashaer line, a newly constructed rail line in the area of Makkah. The
goal of this infrastructure is to reduce the congestion caused by the presence of other
collective means of pilgrim transportation (i.e. buses) during the Hajj: the yearly
pilgrimage to Mecca that involves over two millions of people coming from over 150
countries and some of its phase often result in congestions of massive proportions.
In this work, we are focusing on a specific point of one of the newly constructed
stations, Arafat I. One of the most demanding situations that the infrastructure of
the Mashaer Rail line must be able to sustain is the one that takes place after the
sunset of the second day of the pilgrimage, which involves the transport of pilgrims
from Arafat to Muzdalifah. The pilgrims that employ the train to proceed to the next
phase of the process must be able to move from the tents or other accommodation
to the station in an organised flow that should be consistent with the movement of
trains from Arafat to Muzdalifah stations. Since pilgrims must leave the Arafat area
before midnight, the trains must continuously load pilgrims at Arafat, carry them to
Muzdalifah, and come back empty to transport other pilgrims.

The size of the platforms was determined to allow hosting in a safe and
comfortable way a number of pilgrims also exceeding the potential number of
passengers of a whole train. Each train is made up of 12 wagons, each able to
carry 250 passengers for a total of approximately 3,000 persons. In order to achieve
an organized and manageable flow of people from outside the station area to the
platforms, the departure process was structured around the idea of waiting–boxes:
pilgrims are subdivided into groups of about 250 persons that are led by specific
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Fig. 5.4 Photos and a schematic representation of the real world scenario and the related
phenomena: groups of pilgrims move from the tents area according to a precise schedule and flow
into the waiting boxes, fenced queuing areas located in immediately outside the station, between
the access ramps. The groups wait in these areas for an authorization by the station agents to move
towards the ramps or elevators

leaders (generally carrying a pole with signs supporting group identification). The
groups start from the tents area and flow into these fenced queuing areas located
in immediately outside the station, between the access ramps. Groups of pilgrims
wait in these areas, called waiting boxes, for an authorization by the station agents
to move towards the ramps or elevators. In this way, it is possible to stop the flow
of pilgrims whenever the number of persons on the platforms (or on their way to
reach it using the ramps or elevators) is equal to the train capacity, supporting thus
a smooth boarding operation.

Three photos and a schematic representation of the real world scenario and
the related phenomena are shown in Fig. 5.4: the bottom right photo shows a
situation in which the waiting-box principle, preventing the possibility of two flows
simultaneously converging to a ramp, was not respected, causing a higher than
average congestion around the ramp. This anomaly was plausibly due to the fact
that it was the first time the station was actually used, therefore also the management
personnel was not experienced in the crowd management procedures.
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5.6.2 Simulation Results

Three different scenarios were realized adopting the previously defined model and
using the parameters that were employed in the previous case study: (i) the flow
of a group of pilgrims from one waiting box to the ramp; (ii) the simultaneous
flow of two groups from two different waiting boxes to the same ramp; (iii) the
simultaneous flow of three groups of pilgrims, two as in the previous situation, one
coming directly from the tents area. Every group included 250 pilgrims. The goal of
the analysis was to understand if the model is able to qualitatively reflect the increase
in the waiting times and the space utilization when the waiting box principle was
not respected.

The environment was discretized adopting 50 cm sided cells and the cell space
was endowed with a floor field leading towards the platform, by means of the
ramp. The floor field was generated according to well known techniques (essentially
employing the Manhattan Distance [29] corrected introducing a minor effect of
repulsion generated by obstacles, as in [37]). The different speed of pedestrians
in the ramp was not considered: this scenario should be therefore considered as a
best case situation, since pilgrims actually flow through the ramp more slowly than
in our simulation. Consequently, we will not discuss here the changing of the travel
time between the waiting boxes and the platform (that however increased with the
growth of the number of pilgrims in the simulated scenario), but rather different
metrics of space utilization. This kind of metric is tightly related to the so called
level of service [18], a measure of the effectiveness of elements of a transportation
infrastructure; it is also naturally related to proxemics, since a low level of service
is related to a unpleasant perceived situation due to the invasion of the personal (or
even intimate) space.

The diagrams shown in Fig. 5.5 report three metrics describing three different
phenomena in the same area, including a ramp (on the left) and three waiting boxes
(on the right). The three phenomena are related to (i) a situation in which an agent in
a cell of the environment was willing to move but it was unable to perform the action
due to the excessive space occupation; (ii) a situation in which an agent actually
moved from a cell of the environment; (iii) the “set sum” of the previous situations,
in other words, the situations in which a cell was occupied by agent, that either
moved out of the cell or remained stuck in there. More precisely, diagrams show
the relative frequency of the above events on the whole simulation time. The three
metrics are depicted graphically following the same approach: the background color
of the environment is black and obstacles are red (gray in a B&W rendering); each
point associated to a walkable area (i.e. a cell of the model) is painted in a different
shade of gray according to the value of the metric in that specific point. The black
color is therefore associated to point if the environment in which the related metric is
0; the white color is associated to the point in which the metric assumes the highest
value in the scenario (also shown in the legend). For instance, in all diagrams in
the third row the points of space close to the ramp entrance are white or light gray,
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Fig. 5.5 Space utilization diagrams related to the three alternative simulated scenarios in the same
area, including a ramp (on the left) and three waiting boxes (on the right). The different columns
depict three space utilization metrics (described in the text) respectively in case of (i) a single
group entering the station from one waiting box, (ii) two groups simultaneously approaching the
ramp from two waiting boxes and (iii) two groups moving towards the station from waiting boxes
and another one directly from the tents area. (a) One waiting box – block situations. (b) Two
waiting boxes – blocks situations. (c) Two waiting boxes and external flow – block situation.
(d) One waiting box – Flow from cell situation. (e) Two waiting boxes – flows from cell situation.
(f) two waiting boxes and external flow – flow from cell situations. (g) One waiting box – total
space utilization. (h) Two waiting boxes – total space utilization. (i) Two waiting boxes and external
flow – total space utilization
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while the space of the waiting area from which the second group starts is black in
the first column, since the group is not present in the related situation and therefore
that portion of space is not actually utilized.

The different columns depict three space utilization metrics respectively in case
of (i) a single group entering the station from one waiting box, (ii) two groups
simultaneously approaching the ramp from two waiting boxes and (iii) two groups
moving towards the station from waiting boxes and another one directly from the
tents area. The difference between the first and second scenario is not apparent
in terms of different values for the maximum space utilization metrics (they are
actually slightly lower in the second scenario), but the area characterized by a
medium-high space utilization is actually wider in the second case. The third
scenario is instead characterized by a noticeably worse performance not only from
the perspective of the size of the area characterized by a medium-high space
utilization, but also from the perspective of the highest value of space utilization.
In particular, in the most utilized cell of the third scenario, an agent was stuck about
66% of the simulated time, compared to the 46 and 44% of the first and second
scenarios.

This analysis therefore confirms that increasing the number of pilgrims that are
simultaneously allowed to move towards the ramp highly increases the number
of cases in which their movement is blocked because of overcrowding. Also the
utilization of space increases significantly and, in the third situation, the whole
side of the ramp becomes essentially a queue of pilgrims waiting to move towards
the ramp. Another phenomenon that was not highlighted by the above diagrams
is the fact that groups face a high pressure to mix when reaching the entrance of
the ramp, which is a negative factor since crowd management procedures adopted
in the scenario are based on the principle of preserving group cohesion and keeping
different groups separated. According to these results, the management of the
movement of group of pilgrims from the tents area to the ramps should try to avoid
exceptions to the waiting box principle as much as possible.

5.7 Opportunities and Challenges for Crowd Analysis
Methods

A comprehensive framework trying to put together different aspects and aims of
pedestrians and crowd dynamics research has been defined in [28]. The central
element of this schema is the mutually influencing (and possibly motivating)
relationship between the above mentioned efforts aimed at synthesizing crowd
behavior and other approaches that are instead aimed at analyzing field data about
pedestrians and crowds in order to characterize it different ways. It must be noted,
in fact, that some approaches have the goal of producing aggregate level quantities
(e.g. people counting, density estimation), while others are aimed at producing
finer-grained results (i.e. tracking people in scenes) and other ones are instead
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aimed at identifying some specific behavior in the scene (e.g. main directions,
velocities, unusual events). The different approaches adopt different techniques,
some performing a pixel–level analysis, others considering larger patches of the
image, i.e. texture–level analysis; other techniques require instead the detection of
proper objects in the scene, a real object–level analysis.

From the perspective of the requirements for the synthesis of quantitatively
realistic pedestrian and crowd behavior, it must be stressed that both aggregate
level quantities and granular data are of general interest: a very important way
to characterize a simulated scenario is represented by the previously mentioned
fundamental diagram [46], that is, the relationship in a given scenario between
the flow of pedestrians in a section and their density. Qualitatively, a good model
should be able to reproduce an empirically observed phenomenon characterized
by the growth of the flow until a certain density value (also said critical density)
is reached; then the flow should decrease. However, every specific situation is
characterized by a different shape of this curve, the position of critical density
point and the maximum flow level; therefore even relatively “basic” counting and
density estimation techniques can provide useful information in case of observations
in real world scenarios. Density estimation approaches can also help in evaluating
qualitatively the patterns of space utilization generated by simulation models against
real data. Tracking techniques instead can be adopted to support the estimation of
travelling times (and length of the followed path) by pedestrians. Crowd behavior
understanding techniques can help in determining main directions and the related
velocities. In this perspective, some relevant and fruitful experiences can already
be mentioned: in [41] the authors are able to essentially derive guidance fields, that
is, significant elements of the modeling approach managing goal driven tendencies
of pedestrian agents directly from video footage. In [19] an anticipative system
integrating computer vision techniques and pedestrian simulation is used to suggest
crowd management solutions (e.g. guidance signals) to avoid congestion situations
in evacuation processes. In [31] a pedestrian model is instead exploited to improve
the performance of a multiple–people tracker in semi–crowded conditions. Finally,
in [43] the authors propose to employ the social force model to support the detection
of abnormal crowd behavior in video sequences.

It is important to emphasize that anthropological considerations about human
behavior [23] are growingly considered as crucial both in the computerized
analysis of crowds [28] and in the synthesis of believable pedestrian and crowd
behavior [32, 51]. They can also represent a useful source of considerations on the
analyzed phenomenon and they can guide some relevant modeling choices.

One of the currently least investigated pathways in this articulated research
context is characterized by new requirements coming from novel research questions
that were defined in the area of synthesis of pedestrians and crowd behavior.
In particular, we think that the first results in the modeling of the implications
of groups of pedestrians in larger crowds, supported by empirical observations
possibly deriving from the manual analysis of video footages of ad hoc experiments,
can lead to the identification of patterns, particular shapes and morphologies,
recurrent situations, that can represent a form of contextual information from
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which automated computer vision techniques can benefit [21]. The automatic
identification, tracking and characterization of groups (e.g. shapes, estimation of the
number of members) by means of computer vision techniques could lead, in turn,
to a substantial improvement of the possibility to effectively calibrate and validate
pedestrian models considering groups in challenging innovative scenarios.

5.8 Conclusions and Future Work

The chapter has introduced a recent and current trend of research in the modeling,
simulation and visual analysis of pedestrians and crowds, that is, the study of
the impact of groups on the overall crowd dynamics, and its implications of
the aforementioned research activities as well as their outcomes. The chapter
has described some relevant influential contributions from anthropological and
sociological disciplines, and it has presented a brief state of the art of pedestrians
and crowd modeling and simulation. An effort aimed at modeling crowds in terms of
groups has been introduced and its results in an experimental and a real-world sce-
nario have been discussed. Finally, the opportunities arising from a more systematic
interaction between the efforts aimed at synthesizing and analyzing pedestrians and
crowd behaviors have been discussed. Future works in this framework are naturally
aimed at extending the modeling approach to allow the representation of more
composite forms of groups and extending the range of analyzed scenarios with a
validation against empirical data.
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Chapter 6
Scalable Solutions for Simulating, Animating,
and Rendering Real-Time Crowds of Diverse
Virtual Humans

Daniel Thalmann, Helena Grillon, Jonathan Maïm,
and Barbara Yersin

Abstract In this chapter, we describe how we can model crowds in real-time
using dynamic meshes, static meshes and impostors.Techniques to introduce variety
in crowds including colors, shapes, textures, individual animation, individualized
path-planning, simple and complex accessories are explained. We also present a
hybrid architecture to handle the path planning of thousands of pedestrians in real
time, while ensuring dynamic collision avoidance. Several behavioral aspects are
presented as gaze control, group behavior, as well as the specific technique of crowd
patches. Several case-studies are shown in cultural heritage and social phobia.

6.1 Introduction

To simulate large crowds at high frame rates, it is necessary to use several levels of
detail (LOD). Characters close to the camera are accurately rendered and animated
with costly methods, while those farther away are represented with less detailed,
faster representations. In this chapter, we describe how we can model crowds in real-
time using dynamic meshes, static meshes and impostors. Techniques to introduce
variety in crowds including individual animation, individualized path-planning,
simple and complex accessories are explained.
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We also present a hybrid architecture to handle the path planning of thousands of
pedestrians in real time, while ensuring dynamic collision avoidance. The scalability
of our approach allows to interactively create and distribute regions of varied
interest, where motion planning is ruled by different algorithms. Practically, regions
of high interest are governed by a long-term potential field-based approach, while
other zones exploit a graph of the environment and short-term avoidance techniques.
Our method also ensures pedestrian motion continuity when switching between
motion planning algorithms. Tests and comparisons show that our architecture is
able to realistically plan motion for many groups of characters, for a total of several
thousands of people in real time, and in varied environments. We finally introduce a
method for populating large-scale interactive virtual environments with walking and
idle humans, as well as animated and static objects. The key idea of our solution is
to build environments from a set of blocks, the crowd patches, that describe periodic
motion for a small local population, as well as other environment details. Periodicity
in time allows endless replay.

Several case-studies are shown in cultural heritage, emergency situations, and
social phobia.

The rest of this chapter is organized into sections. Section 6.2 explains the
principles of multiple levels of detail and how they are processed during the
rendering of large crowd simulation. Section 6.3 is dedicated to the variety aspects.
We explain how to create various shapes, colors, textures, animation styles. We
also emphasize the concept of accessories like bags, glasses, mobile phones, hats.
In Sect. 6.4, we introduce path planning with three approaches: navigation graphs,
continuum crowds, and into more details an hybrid method. Section 6.5 describes
two aspects related to behavior: gaze control and group behavior. The notion of
crowd patches is also presented in this section. Finally, Sect. 6.6 briefly discusses a
few applications like simulation of ancient cities or treatment of agoraphobia.

Since 1997, when Thalmann and Musse [1] started their pioneering work on
crowds of Virtual Humans, a lot of researchers have investigated into this field.
Today, there is almost no graphics or animation conference without papers on crowd
simulation. We cannot easily introduce a state of the art in this chapter, but a few
selected works will be cited along the chapter. The reader can find an exhaustive
state of the art in the second edition of the book “Crowd Simulation” [2].

6.2 Representing Virtual Humans Using Multiple
Levels of Detail

Animation and rendering of virtual humans relies on a set of geometric, kinematic
and appearance models. When dealing with crowds made of thousands of virtual
humans (see Fig. 6.1), it is not possible to dispose of a unique model for each
of them; this would result in huge memory consumption and computation times.
A key solution is to use templates defining each type of virtual human, which can
be continuously derived in order to generate an infinite variety of instances of virtual
humans.
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Fig. 6.1 Large crowd of diverse virtual humans

The first step is to create a sufficient combination of templates with different
genders and ages, i.e., adults, elderly, children, males and females. In a second step,
creating different textures for each template allows additional variation in age and
appearance. Finally, the colors of skin, hair, and clothes are varied per texture, as
described in [3]. To further vary appearance for virtual humans in the vicinity of
the camera, it is possible to add fine details like make-up, freckles and beard. Also,
by controlling shading parameters per body part, as proposed in [4], allows to vary
the materials used for the clothes, as for example to model shiny clothes. Thus,
with a small number of templates, it is possible to synthesize a large number of
virtual human instances that seem unique. Under some conditions recently studied
in [5], it is possible to make the use of templates practically undetectable for a
spectator. Further varying the shape of instantiated virtual humans can be achieved
using accessories, i.e., simple items like hats or more complex accessories like cell
phones or shopping bags that require upper body variations only.

The goal of the real-time crowd visualizer is to render a large number of entities
according to the current simulation state, which provides the position, orientation,
and velocity for each individual. System constraints include believability, real-
time updates (25 frames per second) and the number of digital actors ranging
in the tens of thousands. We make the population believable by varying the
appearance (textures and colors) and animation of the individuals. Their graphical
representation is derived from a template, which holds all the possible variations.



126 D. Thalmann et al.

Thus, with only a limited set of such templates, we can achieve a varied crowd,
leading to considerable time savings for designers.

A template is defined as:

• A set of three meshes with decreasing complexity (LODs),
• A set of textures in gray scale (except for the skin) identifying color modulation

areas (pants, shirt, hair etc.),
• A skeleton (kinematic structure),
• A corresponding animation database as skeletal orientations (here 1,000 dif-

ferent walk cycles are generated using a motion blending-based loco-motion
engine [6, 7]).

Each human in the visualization system is called an instance and is derived from
a template. Individualization comes from assigning a specific gray scale texture and
a color combination for each identifiable region. Instances have individualized walk
velocities and are animated by blending the available walk animations.

The rendering pipeline advances consecutively in four steps. The first one
consists of culling, that is, determining visibility, and choosing the rendering fidelity
for each simulated human. By re-using the information stored in the navigation
graph of the simulation system, this task is not done for each individual but at the
vertex level, thereby determining fidelities for a whole subset of characters at once.

During this phase, humans are distributed in three different groups according
to their fidelity level, which ensures efficient batched rendering. The next step of
the pipeline is the rendering of dynamic meshes. This is the most detailed fidelity
where the animation is obtained by interpolation of skeletal postures. According to
the current instance state (linear and angular walk velocities and time), animations
are retrieved from the database and interpolated, yielding a smooth animation,
with continuous variations of velocities, and no foot-sliding. The resulting skeletal
posture is sent to a hardware vertex shader and fragment shader deforming and
rendering the human on the graphics card.

Static meshes (also called baked or predeformed) constitute the second rendering
fidelity, which keeps a pre-transformed set of animations using the lowest resolution
mesh of the deformed mesh in the previous step. Pre-computing deformations allows
substantial gains in speed, but constrains the animation variety and smoothness.

The final rendering fidelity is the billboard model which, compared to previous
approaches, uses a simplified scheme of sampling and lighting. World-aligned
billboards are used, with the assumption that the camera will never hover directly
above the crowd. Thus, only sampled images around the waist level of the character
are needed. In our case, the templates are sampled at 20 different angles, for each
of the 25 key frames composing a walk animation. When constructing the resulting
texture, the bounding box of each sampled frame is detected to pack them tightly
together. When rendering bill-boarded pedestrians, a specificity of our technique
is to apply cylindrical lighting instead of using normal maps: each vertex normal
is set to point in the positive Z direction, plus a small offset on the X axis, so that
it points slightly outside the frame. We then interpolate the light intensity for each
pixel in the fragment shader. Figure 6.2 shows an example of the distribution of the
three fidelities.
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Fig. 6.2 The three different rendering levels of detail: deformed meshes in front, rigid meshes in
the middle, and billboards behind

6.3 Adding Variety in Appearance and Animation
of Virtual Humans

6.3.1 Introduction

Our main interest is focused on real-time applications where the visual uniqueness
of the characters composing a crowd is paramount. On the one hand, it is required
to display several thousands of virtual humans at high frame rates, using levels of
detail. On the other hand, each character has to be different from all others, and
its visual quality highly detailed. Instantiating many characters from a limited set
of human templates lead to the presence of multiple similar characters everywhere
in the scene. However, the creation of an individual mesh for each character is not
feasible, for it would have too high requirements in terms of design and memory.
Thus, methods have to be introduced to modify each instance, so that it is visually
different from all the others. Such methods also need to be scalable for all LOD
used in crowd simulations to avoid inconsistencies in the individual appearances.
Our main contribution is the introduction of techniques to improve the variety of
crowds in three domains: visual appearance, shape, and animation. More details
may be found in [11].
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6.3.2 Appearance Variety

6.3.2.1 Color Variety

Previous work on color variety is based on the idea of dividing a human template
into several body parts, identified by specific intensities in the alpha channel of the
template texture. At runtime, each body part of each character is assigned a color
in order to modulate the texture. Tecchia et al. [8] used several passes to render
each impostor body part. Dobbyn et al. [3] extended the method to 3D meshes
and avoided multi-pass rendering with programmable graphics hardware. Although
these methods offer nice results from a reasonable distance, they produce sharp
transitions between body parts. Based on the same idea, Gosselin et al. [9] showed
how to vary characters with the same texture by changing their tinting. They also
presented a method to selectively add decals to the characters’ uniforms. However,
their approach is only applied to armies of similar characters, and the introduced
differences are not sufficient when working with crowds of civilians.

Using a single alpha layer to segment body parts has several drawbacks. No
bi-linear filtering can be used on the texture, because incorrect interpolated values
would be fetched in the alpha channel at body part borders. Moreover, for individu-
als close to the camera, the method tends to produce too sharp transitions between
body parts, e.g., between skin and hair, due to the impossibility of associating a
texel to several body parts at the same time. Also, character close-ups bring the
need for a new method capable of handling detailed color variety. Subtle make-
up, or detailed patterns on clothes greatly increase the variety of a single human
template. Furthermore, changing illumination parameters of materials, e.g., their
specularity, provides more realistic results. Previous methods would require costly
fragment shader branching to achieve such effects. We apply a versatile solution
based on segmentation maps to overcome previous method drawbacks.

For each texture of a human template, we create a series of segmentation maps.
Each of them is an RGBA image, delimiting four body parts, i.e., one per channel,
and sharing the same parameterization as the human template texture. This method
allows for each texel to partially belong to several body parts at the same time
through its channel intensities. As a result, it is possible to design much smoother
transitions between body parts than in previous approaches. Figure 6.3 shows the
principles of color variety.

6.3.2.2 Height and Shape Variety

Magnenat-Thalmann et al. [10] classified the methodologies for modeling virtual
people into three major categories: creative, reconstructive, and interpolated. Geo-
metric models created by artists such as anatomically based models fall into the
former approach. The second major category built 3D virtual human’s geometry
by capturing existing shape from 3D scanners, images and even video sequences.
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Fig. 6.3 Principles of color variety using segmentation maps

The interpolated modeling uses sets of example models with an interpolation
scheme to reconstruct new geometric models. For crowds, the first approach is
too expensive in terms of manual work. The second way is also prohibitive for
large crowds and also presents a lack of flexibility. The last approach is the most
convenient. For large crowds, another approach consists of modifying separately
the height of the human body and its shape.
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Fig. 6.4 Variation of height

We can modify the height of a human template, by scaling its skeleton. To help
the designer in this task, we provide additional functionalities to the design tool
presented above: for a given human template skeleton, the global space of height
scaling can be defined. Fine-grained local tuning for each joint can also be specified,
i.e., minimal and maximal scale parameters on the x, y, and z world axes. These data
allow several different skeletons to be generated from a single template, which we
call the meta-skeleton. Figure 6.4 shows an example. For each new skeleton, a global
scale factor is randomly chosen within the given range. Then, the associated new
scale for each of its bones is deduced. Short/tall skeletons mixed with broad/narrow
shoulders are thus created. The skin of the various skeletons also needs adaptation.
Each vertex of the original template is displaced by each joint that influences it. For
the shape, the human mesh is modified using three steps:

1. Using a commercial 3D package like 3DSMax, it is possible for a designer to
paint a FatMap for a given template, as seen in Fig. 6.5. The FatMap is an extra
gray-scale UV texture that is used to emphasize body areas that store fat. Darker
areas represent regions where the skin will be most deformed, e.g., on the belly,
and lighter areas are much less deformed, like the head. When the creation of the
FatMap is complete, the gray scale values at each texel are used to automatically
infer one value for each vertex of the template’s mesh. Each of these values,
called a fatWeight, is attached to the vertex as an additional attribute.
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Fig. 6.5 FatMaps designed
in 3DSMax. Dark areas
represent regions more
influenced by fat or muscles
modification, while lighter
parts are less affected

2. The next step is to compute in which direction the vertices are moved when
scaled. For this, we compute the scaling direction of each vertex as the weighted
normal of the bones influencing it.

3. Once the direction of the body scaling is computed for each vertex, the actual
scaling can take place. The extent to which we scale the body is defined by a
fatScale, randomly chosen within a pre-defined range.

Figure 6.6 shows the same character with various heights and shapes.

6.3.2.3 Accessories

Accessorizing crowds [21] offers a simple and efficient alternative to costly human
template modeling. Accessories are small meshes representing elements that can
easily be added to the human template original mesh. Their range is considerable,
from subtle details, like watches, jewelry, or glasses, to larger items, such as hats,
wigs, or backpacks, as illustrated in Fig. 6.7. Distributing accessories to a large
crowd of a few human templates varies the shape of each instance, and thus makes
it unique. Similar to deformable meshes, accessories are attached to a skeleton and
follow its animation when moving.
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Fig. 6.6 Various body shapes and heights

Fig. 6.7 Population with accessories: bags, hats, glasses

The first group of accessories does not necessitate any particular modification
of the animation clips played. They simply need to be correctly placed on a virtual
human. Each accessory can be represented as a simple mesh, independent from any
virtual human. First, let us outline the problem for a single character. The issue is
to render the accessory at the correct position and orientation, accordingly to the
movement of the character. To achieve this, we can attach the accessory to a specific
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joint of the virtual human. Let us take a real example to illustrate our idea: imagine
a walking person wearing a hat. Suppose that the hat has the correct size and does
not slide, it basically has the same movement as the head of the person as he walks.

The second group of accessories we have identified is the one that requires
slight modifications to the played animation sequences, e.g., the hand close to the
ear to make a phone call, or a hindered arm sway due to carrying a heavy bag.
Concerning the rendering of the accessory, we still keep the idea of attaching it to
a specific joint of the virtual human. The additional difficulty is the modification
of the animation clips to make the action realistic. We only focus on locomotion
animation sequences. There are two options to modify an animation related to an
accessory:

• If we want a virtual human to carry a bag for instance, the animation modifi-
cations are limited to the arm sway, and maybe a slight bend of the spine to
counterweight the bag. The motion is restricted, in this case, we clamp the joints
defining the limits of the joint angle (minimum angle, maximum angle).

• If it is a cell phone accessory that we want to add, we need to keep the hand of
the character close to its ear and avoid any collision over the whole locomotion
cycle. The motion is blocked and the angle is freezed to a certain value (Freezing
Angle).

At runtime, the animation is updated as usual, the frozen joints are overwritten,
and we use exponential maps to clamp joints.

6.3.2.4 How to Vary the Animation of Characters?

Animation is an another important factor that determines crowd heterogeneity. If
they all perform the same animation, the results are not realistic enough [3]. We have
implemented three techniques to vary the animation of characters, while remaining
in the domain of navigating crowds, i.e., working with locomotion animations:

We introduce variety in the animation by generating a large amount of locomo-
tion cycles (walking and running), and idle cycles (like standing, talking, sitting,
etc.), that we morphologically adapt for each template. We take care to make
these animations cyclic, and categorize them in the database, according to their
type: sitting or standing, talking or listening, etc. For locomotion clips, walk and
run cycles are generated from a locomotion engine based on motion capture data
(see Sect. 6.3.2.5). We compute such locomotion clips for a set of speeds. Thus,
during real-time animation, it is possible to directly obtain an adequate animation
for a virtual human, given its current locomotion velocity, and its morphological
parameters. Then, we designed the concept of motion kit, a data structure, that
efficiently handles animations at all levels of detail (LOD).

We use a second technique of animation variety, i.e., how pre-computed anima-
tion cycles can be augmented with upper-body variations, like having a hand on the
hip, or in a pocket.
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Fig. 6.8 Locomotion generated using PCAs

Finally, we introduced procedural modifications applied at runtime on locomo-
tion animations to allow crowds to wear complex accessories as mentioned in the
previous section.

6.3.2.5 Locomotion Animation Clips

To generate our original set of walk and run cycles, we use the locomotion engine
developed by Glardon et al. [6]; it is an integrated walking and running engine
able to extrapolate data beyond the space described by the PCA basis. In this
approach, the Principal Component Analysis (PCA) method is used to represent
the motion capture data in a new, smaller space. As the first Principal Components
contain the most variance of the data, an original methodology is used to extract
essential parameters of a motion. This method decomposes the PCA in a hierarchical
structure of sub-PCA spaces. At each level of the hierarchy, an important parameter
of a motion is extracted and a related function is elaborated, allowing not only
motion interpolation but also extrapolation. Figure 6.8 shows an example.

There are mainly three high-level parameters which allow to modulate these
motions:

• Personification weights: several people, different in height and gait have been
captured while walking and running. This variable allows the user to choose how
he wishes to parametrize these different styles.
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• Speed: the subjects have been captured at many different speeds. This parameter
allows to choose at which velocity the walk/run cycle should be generated.

• Locomotion weights: this parameter defines whether the cycle is a walk or a
run animation. Thus, the engine is able to generate a whole range of varied
locomotion cycles for a given character. Each human template is also assigned
a particular personification weight so that it has its own gait. With such a high
number of animations, we are already able to per-ceive a sense of variety in
the way the crowd is moving. Virtual humans walking together with different
locomotion styles and speeds add to the realism of the simulation.

6.4 Motion Planning for Large-Scale Crowds

6.4.1 Introduction

Realistic real-time motion planning for crowds has become a fundamental research
field in the Computer Graphics community. The simulation of urban scenes, epic
battles, or other environments that show thousands of people in real time require
fast and realistic crowd motion. Domains of application are vast: video games,
psychological studies, and Architecture to name a few. In this section, we first
focus on the Navigation Graph approach. A Navigation Graph is a simple structure
that represents an environment topology by distinguishing navigable are-as from
impassable obstacles. We then briefly discuss the continuum crowd concept. We
finally present our motion planning architecture, offering a hybrid and scalable
solution for real-time motion planning of thousands of characters in complex
environments.

6.4.2 Navigation Graphs

Real-time crowd motion planning requires fast, realistic methods for path planning
as well as obstacle avoidance. The difficulty to find a satisfying trade-off between
efficiency and believability is particularly challenging, and prior techniques tend to
focus on a single approach [12, 13]. We have presented [14, 15] a novel approach to
automatically extract a topology from a scene geometry and handle path planning
using a navigation graph. Figure 6.9 shows a crowd moving using navigation graphs.
The main advantage of this technique is that it handles uneven and multi-layered
terrains. Nevertheless, it does not treat inter-pedestrian collision avoidance. Given
an environment geometry, a navigation graph can be computed [14,21]: the vertices
of the graph represent circular zones where a pedestrian can walk freely without the
risk of colliding with any static object in the environment. Graph edges represent
connections between vertices. In the environment, they are viewed as intersections
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Fig. 6.9 Crowd moving

(or gates) between two circular zones (vertices). From a navigation graph, path
requests can be issued from one vertex to another. Using an algorithm based on
Dijkstra’s, we are able to devise many different paths that join one point of the
environment to another one. It is possible to provide the navigation graph with a
second model of the environment, which usually has a much more simple geometry,
annotated with information. This second model is automatically analyzed, its meta-
information retrieved, and associated to the corresponding vertices. Figure 6.9
shows an example.

6.4.3 Scalable Motion Planning

More recently, Treuille et al. [16] proposed efficient motion planning for crowds.
Their method produces a potential field that provides, for each pedestrian, the next
suitable position in space (a waypoint) to avoid all obstacles. Compared to agent-
based approaches, these techniques allow simulating thousands of pedestrians in
real time, and are also able to show emergent behaviors. However, they produced
less believable results, because they require assumptions that prevent treating each
pedestrian with individual characteristics. For instance, only a limited number
of goals can be defined and assigned to groups of pedestrians. The resulting
performance depends on the size of the grid cells and the number of groups.
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6.4.4 An Hybrid Architecture Based on Regions
Of Interest (ROI)

We proposed a hybrid architecture [17] to handle the path planning of thousands of
pedestrians in real time, while ensuring dynamic collision avoidance. The scalability
of our approach allows to interactively create and distribute regions of varied
interest, where motion planning is ruled by different algorithms. Practically, regions
of high interest are governed by a long-term potential field-based approach, while
other zones exploit a graph of the environment and short-term avoidance techniques.
Our method also ensures pedestrian motion continuity when switching between
motion planning algorithms. Tests and comparisons show that our architecture is
able to realistically plan motion for many groups of characters, for a total of several
thousands of people in real time, and in varied environments.

The goal of our architecture is to handle thousands of pedestrians in real time. We
exploit the vertex structure described in Sect. 6.4.1 to divide the environment into
regions ruled by different motion planning techniques. Regions of interest (ROI)
can be defined in any number and anywhere in the walkable space with high-level
parameters, modifiable at runtime.

By defining three different ROI, we obtain a simple and flexible architecture for
realistic results: ROI 0 is composed of vertices of high interest, ROI 1 regroups
vertices of low interest, and ROI 2 contains all other vertices, of no interest. For
regions of no interest (ROI 2), path planning is ruled by the navigation graph.
Pedestrians are linearly steered to the list of waypoints on their path edges. To
use the minimal computation resources, obstacle avoidance is not handled. Path
planning in regions of low interest (ROI 1) is also ruled by the navigation graph.
To steer pedestrians to their waypoints, an approach similar to Reynolds’ [18] is
used, and obstacles are avoided with an agent-based short-term algorithm. Although
agent-based, this algorithm works at low level, and thus stays simple and efficient. In
the regions of high interest (ROI 0), path planning and obstacle avoidance are both
ruled by a potential field-based algorithm, similar to Treuille et al. [16]. Figure 6.10
shows a crowd moving using the hybrid path planning algorithm.

6.5 Controlling Individual and Group Behavior in Crowds

6.5.1 Introduction

To make believable a crowd simulation is not just to generate many various
individual characters. Modelling the behavior of the individuals, the groups, and
even the crowd itself is very important. An important aspect is to give the feeling
that people are aware of the environment and the other people. For this objective, the
role of gaze control is essential. Group behavior is also a key issue. For example, in
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Fig. 6.10 Crowd using hybrid path planning

real cities, many pedestrians are part of a group, whether they are sitting, standing,
or walking toward their shared goal. They behave differently than if they were
alone: they adapt their pace to the other members, wait for each other, may get
separated in crowded places to avoid collisions, but regroup afterwards. Finally, we
explain in this section a method to generate unlimited cities or streets sing crowd
patches.

6.5.2 Gaze Control

We can improve the realism of a crowd simulation by allowing its pedestrians to be
aware of their environment and of the other characters present in this environment.
They can even seem to be aware of a user interacting with this environment.
We introduced [19] the various setups which allow for crowd characters to gaze
at environment objects, other characters or even a user. Finally, we developed a
method to add these attention behaviors in order for crowd characters to seem more
individual.

The first step is to define the interest points, i.e. the points in space which we
consider interesting and which therefore attract the characters’ attention. We use
several different methods to do this depending on the result we want to obtain:
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Fig. 6.11 An example depicting the types of possible gaze behaviors

• The interest points can be defined as regions in space which have been described
as interesting. In this case, they will be static.

• They can be defined as characters evolving in space. All characters may then
potentially attract the attention of other characters as long as they are in their
field of view. In this case, we have dynamic constraints, since the characters
move around.

• They can be defined as a user if we track a user interacting with the system.
A coupled head- and eye-tracking setup allows us to define the position of the
user in the 3D space. Characters may then look at the user.

The second step to obtain the desired attention behaviors consists of computing
the displacement map which allows for the current character posture to achieve the
gaze posture, i.e. to satisfy the gaze constraints. Once the displacement map has
been computed, it is dispatched to the various joints composing the eyes, head, and
spine in order for each to contribute to the final posture. Finally, this displacement is
propagated in time in order for the looking or looking away motions to be smooth,
natural, and human-like. Figure 6.11 shows virtual humans with gaze.

6.5.3 Group Behavior

The behavior of people in a crowd is a fascinating subject: crowds can be very
calm but also rise to frenzy, they can lead to joy but also to sorrow. It is quite
a common idea that people not only behave differently in crowd situations, but
that they undergo some temporary personality change when they form part of
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a crowd. Most writers in the field of mass- or crowd-psychology agree that the
most discriminating property of crowd situations is that normal cultural rules, norms
and organization forms cease to be applicable For instance in a panic situation the
normal rule of waiting for your turn, and the concomitant organization form of the
queue, are violated and thus become obsolete.

In Musse et al. [20], the model presents a simple method for describing the
crowd behavior through the group inter-relationships. Virtual actors only react
in the presence of others, e.g., they meet another virtual human, evaluate their
own emotional parameters with those of the other one and, if they are similar,
they may walk together. The group parameters are specified by defining the goals
(specific positions which each group must reach), number of autonomous virtual
humans in the group and the level of dominance of each group. This is followed
by the creation of virtual humans based on the groups’ behavior information.
The individual parameters are: a list of goals and individual interests for these
goals (originated from the group goals), an emotional status (random number),
the level of relationship with the other group members (based on the emotional
status of the agents from a same group) and the level of dominance (which
follows the group trend). With these rules, we can model the following sociological
effects:

• Grouping of individuals depending on their inter-relationships and the domina-
tion effect;

• Polarization and the sharing effects as the influence of the emotional status and
domination parameters; and finally,

• Adding in the relationship between autonomous virtual humans and groups.

The group behavior is formed by two behaviors: seek goal, that is the ability of
each group to follow the direction of motion specified in its goals, e.g. in the case of a
visit to a museum, the agents walk in the sense of its goals; and the flocking (ability
to walk together), has been considered as a consequence of the group movement
based on the specific goals during a specific time.

Generally, the available computational resources to trigger intelligent behaviors
are very limited in crowds, because their navigation, animation, and rendering
are already very expensive tasks that are absolutely paramount. Our approach
to this problem is to find a trade-off that simulates intelligent behaviors, while
remaining computationally cheap. In [10], we describe the various experiments
performed to improve pedestrians behaviors. To make crowd movements more
realistic, a first important step is to identify the main places where many people
tend to go, i.e., places where there is a lot of pedestrian traffic. It can be a
shopping mall, a park, a circus, etc. Adding meta-information to key places in an
environment has been achieved in many different ways. Our approach is to use
the navigation graph of an environment to hold this meta-information, which is
a very advantageous solution: instead of tagging the meshes of an environment,
or creating a new dedicated informational structure, we directly work on the
structure that is already present, and which is used for path planning and pedestrian
steering.
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Fig. 6.12 Left: A procedurally computed pedestrian street, where patches are generated at run-
time. Right: The same image revealing the patch borders and their trajectories. (a) Density profile.
(b) Velocity profile

6.5.4 Crowd Patches

We break classical crowd simulation limitations on the environment dimensions:
instead of pre-computing a global simulation dedicated to the whole environ-
ment, we independently pre-compute the simulation of small areas, called crowd
patches [21]. To create virtual populations, the crowd patches are interconnected to
infinity from the spectator’s point of view. We also break limitations on the usual
durations of pre-computed motions: by adapting our local simulation technique, we
provide periodic trajectories that can be replayed seamlessly and endlessly in loops
over time.

Our technique is based on a set of patch templates, having specific constraints on
the patch content, e.g., the type of obstacles in the patch, the human trajectories
there, etc. A large variety of different patches can be generated out of a same
template, and then be assembled according to designers’ directives.

Patches can be pre-computed to populate the empty areas of an existing virtual
environment, or generated online with the scene model. In the latter case, some of
the patches also contain large obstacles such as the buildings of a virtual city.

Patches are geometric areas with convex polygonal shapes. They may contain
static and dynamic objects. Static objects are simple obstacles with its geometry is
fully contained inside the patch. Figure 6.12 shows an example.

Larger obstacles, such as buildings, are handled differently. Dynamic objects are
animated: they are moving in time according to a trajectory τ(t). In this context,
we want all dynamic objects to have a periodic motion (of period π) in order to be
seamlessly repeated in time.

Two categories of dynamic objects may be distinguished: endogenous and exoge-
nous objects. The trajectory of endogenous objects remains inside the geometrical
limits of the patch for the whole period. The point’s trajectory is fully contained in
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the patch and respects the periodicity condition (1). If the animation is looped with a
period π , the point appears to be moving endlessly inside the patch. Note that static
objects can be considered as endogenous objects, with no animation.

Exogenous objects have a trajectory τ(t) that goes out of the patch borders at
some time, and thus, does not meet the periodicity condition (1). In order to en-force
this condition, we impose the presence of another instance of the same exogenous
object whose trajectory is τ ′(t). As the two objects are of the same type, i.e., they
have an identical kinematics model, their trajectories can be directly compared.
Different cases are then to be distinguished and are discussed in [17].

We build environments and their population by assembling patches. Thus, two
adjacent patches have at least one common face. They also share identical limit
conditions for exogenous objects’ trajectories. Indeed, when an exogenous object
goes from one patch to an adjacent one, it first follows the trajectory contained by
the first patch, and then switches to the one described by the second patch. These two
trajectories have to be at least continuous C0 to ensure a seamless transition from the
first patch to the second one. The patterns between the two adjacent patches allow
to share these limit conditions.

6.6 Applications

We can conclude this chapter with a few applications and the challenges associated
to them.

6.6.1 Virtual Heritage

Based on archaeological data, we have presented the different steps of our work
to generate the ancient city of Pompeii and populate it with virtual romans [22]
(see Fig. 6.13). Thanks to the semantic data labeled in the geometry, crowds are
able to exhibit particular behaviors relative to their location in the city. Our results
and show that we are able to simulate several thousands of virtual characters in the
reconstructed city in real-time. The use of a procedural technique for the creation of
city models has proven to be very flexible and allows for quick variations and tests
not possible with manual editing techniques.

One possible challenging work would be to make the Virtual Romans interact
with the model, e.g., opening doors. This would allow creating more intelligent and
varied behaviors for crowds.
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Fig. 6.13 Roman crowd in Pompeii

6.6.2 Agoraphobia Treatment

We developed an application allowing for characters to perform gazing motions in a
real-time virtual crowd in a CAVE environment [23]. Moreover, it allows for users
to interact with those crowd characters. It is an adaptation of the model of visual
attention described in [16] in order to integrate it in a crowd engine and al-low
for the method to function online (in real-time). Certain aspects of the automatic
interest point detection have been greatly simplified. The existing architecture has
been also modified in order to abide with the limitations induced by the real-time
implementation.

The final application consists in a city scene, projected in a CAVE setup, in
which a crowd of characters walks around (see Fig. 6.14). The application uses a
Phase-space optical motion capture device to evaluate where a user is looking and
more specifically, which character he/she is looking at. Finally, we further enhance
this setup with an RK-726PCI pupil/corneal reflection tracking device in order to
evaluate more precisely where a user is looking. The system then allows for the
crowd characters to react to user gaze. For example, since we can determine the
user’s position and orientation in the virtual world, the characters can look at the
user.

6.6.3 Transportation and Urbanism

Virtual crowds are used for simulation of new train stations and airports. A challenge
would be to introduce natural motivations to simulate more complex and realistic
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Fig. 6.14 Agoraphobia
treatment

situations. For example, in an airport, people should not just check in, go to
the security then the gate, as in most simulations. They should be able to go
to restaurants, cafes, shops, toilets, according to their internal motivations. Such
models exist, but the problem is that it will be extremely CPU intensive to introduce
them.
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the first author.
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Chapter 7
Authoring Multi-actor Behaviors in Crowds
with Diverse Personalities

Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar,
and Norman I. Badler

Abstract Multi-actor simulation is critical to cinematic content creation, disaster
and security simulation, and interactive entertainment. A key challenge is providing
an appropriate interface for authoring high-fidelity virtual actors with feature-rich
control mechanisms capable of complex interactions with the environment and other
actors. In this chapter, we present work that addresses the problem of behavior
authoring at three levels: Individual and group interactions are conducted in an
event-centric manner using parameterized behavior trees, social crowd dynamics are
captured using the OCEAN personality model, and a centralized automated planner
is used to enforce global narrative constraints on the scale of the entire simulation.
We demonstrate the benefits and limitations of each of these approaches and propose
the need for a single unifying construct capable of authoring functional, purposeful,
autonomous actors which conform to a global narrative in an interactive simulation.

7.1 Introduction

Multi-actor simulation is a critical component of cinematic content creation,
disaster and security simulation, and interactive entertainment. Depending on the
application, a simulation may involve two or three actors interacting in complex
ways, a group of actors participating in an event, or a large crowd with hundreds and
thousands of actors. For example, a user may want to author huge armies in movies,
the repercussions of a car accident in a busy city street, the reactions of a crowd to
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a disturbance, a virtual marketplace with buyers and vendors haggling for prices,
and thieves that are on the lookout for stealing opportunities. The existing baseline
for multi-actor simulations consists of numerous relatively independent walking
pedestrians. While their visual appearances may be quite varied, their behavioral
repertoire is not, and their interactions are generally limited to attention control and
collision avoidance. The next generation of interactive virtual world applications
require functional, purposeful, heterogeneous actors with individual personalities
and desires, while exhibiting complex group interactions, and conforming to global
narrative constraints.

Readily authoring such complex multi-actor situations is an open problem.
Existing techniques are often a bottleneck in the production process, requiring the
author to either manually script every detail in an inflexible way or to provide a
higher level description that lacks appropriate control to ensure correct or interesting
behavior. The challenge is to provide a method of authoring that is intuitive, simple,
automatic, yet has enough expressive power to control details at the appropriate
level of abstraction. In this chapter, we present work that addresses the problem of
behavior authoring at three levels. Our goal is to explain these levels and construct
feasible and authorable computational models of when and how they interact.

First, we present a method to capture social crowd dynamics by mapping low-
level simulation parameters to the OCEAN personality model. Each personality
trait is associated with nominal behaviors – facilitating a plausible mapping of
personality traits to existing behavior types. We validate our mapping by conducting
a user study which assesses the perception of personality traits in a variety of crowd
simulations demonstrating these behaviors [1].

Second, we describe a framework for authoring background characters using an
event-centric control model, which shifts behavior authoring from writing complex
reactive agents to defining particular activities. Interactions between groups of
actors are defined using parameterized behavior trees, and a centralized Group
Coordinator dispatches events to agents based on their situational and locational
context, while satisfying a global distribution of events that is user specified [2–4].

Third, we present a multi-actor planning framework for generating complicated
behaviors between interacting actors in a user-authored scenario. Users define the
state and action space of actors and specialize existing actor definitions to add
variety and purpose to their simulation. Actors with dependent goals are grouped
together into a set of independent composite domains. For each of these domains, a
multi-actor planner generates a trajectory of actions for all actors to meet the desired
behavior. We author and demonstrate a simulation of more than 100 pedestrians and
vehicles in a busy city street and inject heterogeneity and drama into our simulation
using specializations [5].

The rest of this document is articulated as follows. Section 7.2 reviews prior work
in behavior authoring for interactive virtual characters. Section 7.3 describes the use
of the OCEAN personality model to capture social crowd dynamics. Section 7.4
presents an event-centric paradigm for authoring multi-actor interactions, and
Section 7.5 proposes the use of domain-independent planning for behavior gener-
ation. Finally, Section 7.6 discusses the comparative benefits and limitations of each
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of these approaches, and proposes the need for a single unifying construct capable
of authoring functional, purposeful, autonomous actors which conform to a global
narrative in an interactive simulation.

7.2 Related Work

Behavioral animation in crowds has been studied extensively from many different
perspectives [6,7] which can be broadly classified into three overlapping categories:
(1) steering based approaches, (2) cognitively based approaches and, (3) narrative
driven approaches. Many implementations blend aspects of these three categories –
steering-based models in particular are often used in concert with one of the two
other approaches. However, since each model has a very different approach to agent
control and motivation it is difficult to evenly incorporate all three.

Steering based approaches. These techniques focus on agent movement with a
focus on collision avoidance and trajectory planning. Centralized techniques [8–11]
focus on the system as a whole, modeling flow characteristics rather than individual
pedestrians. Particle based approaches [12, 13] simulate agents using particle
dynamics. Social force based approaches [14–17] simulates physical as well as
psychological forces between steering agents. Cellular Automata models [18–20]
simulate agents defined as mathematical idealizations for physical systems in
which space and time are discretized. Rule-based approaches [21–23] use carefully
designed conditions and heuristics to define agent behavior. Data-driven meth-
ods [24, 25] use real world data to derive steering choices. The works of [26–28]
use predictions in the space-time domain to perform steering in environments
populated with dynamic threats. Local field methods [29, 30] uses egocentric
fields to model agent affordances. The work in [31, 32] uses space-time planning
in different problem domains to produce collision-free trajectories, and recent
work [33] demonstrates a synthetic vision-based approach for steering.

Cognitively-based Approaches. These techniques populate virtual worlds with
rich individual agents which sense the environment and other agents, and act based
on personalized desires, motivations, and other attributes such as mood and emo-
tions. Agent decision-making is simulated using a wide variety of cognitively based
models such as decision networks [34], neural networks [35], partially-observable
Markov decision problems [36], fuzzy logic [37], hierarchical state machines [38],
scripts [39–41], and planners [42]. These models capture domain specific knowl-
edge, effectual actions, and personal agent goals to simulate functional, purposeful
autonomous agents [43]. Several studies represent individual differences through
psychological states [17, 44]. The OCEAN personality model [45] and the OCC
emotion model [46] are commonly used in the simulation of autonomous agents.
Such models aid to improve believability of embodied conversational characters [47,
48] as well as agents in a crowd [49].
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Narrative Driven Approaches. These systems orchestrate the behavior of actors
in a scene from a global scope, dictating actions to participants based on the
needs of the scenario constraints rather than the individual agents’ motivations.
Drama Managers [50] are used weave a story around the actions of a player
and the principal actors in the environment. Director-based systems such as
Facade [51], Thespian [52], Mimesis [53], and others act upon a small number
of high-dimensional agents representing principal characters in the simulation.
These systems can be controlled by a planning approach [54], using actions
and preconditions as a dynamic script for the intended plot. Smart Events [55]
externalize behavior logic to authored events that occur in the environment. Unlike
cognitively-driven simulations, virtual actors respond to impulses sent by a central
controller responsible for enforcing the constraints of a global narrative system.

7.3 The Impact of the OCEAN Personality Model
on the Perception of Crowds

Personality is the sum of a person’s behavioral, temperamental, emotional, and men-
tal traits. A popular model that describes personality is the Five Factor, or OCEAN
(openness, conscientiousness, extroversion, agreeableness, and neuroticism) model.
The personality space is composed of these five orthogonal dimensions.

• Openness describes a dimension of personality that portrays the imaginative and
creative aspect of human character. Appreciation of art, inclination towards going
through new experiences and curiosity are characteristics of an open individual.

• Conscientiousness determines the extent to which an individual is organized, tidy
and careful.

• Extroversion is related to the social aspect of human character.
• Agreeableness is a measure of friendliness, generosity and the tendency to get

along with other people.
• Neuroticism refers to emotional instability and the tendency to experience

negative emotions. Neurotic people tend to be too sensitive and they are prone to
mood swings.

Each factor is bipolar and composed of several traits, which are essentially the
adjectives that are used to describe people [56]. Some of the relevant adjectives
describing each of the personality factors for each pole are given in Table 7.1.

We have mapped these trait terms to the low-level behavior parameters in the
HiDAC (High-Density Autonomous Crowds) crowd simulation system. HiDAC
models individual differences by assigning each person different psychological
and physiological traits. Users normally set these parameters to model the non-
uniformity and diversity of a crowd. Our approach frees users of the tedious task of
low-level parameter tuning by combining all these behaviors in distinct personality
factors.
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Table 7.1 Trait-descriptive
adjectives

O+ Curious, alert, informed, perceptive

O−Simple, narrow, ignorant
C+ Persistent, orderly, predictable, dependable, prompt
C−Messy, careless, rude, changeable
E+ Social, active, assertive, dominant, energetic
E−Distant, unsocial, lethargic, vigorless, shy
A+ Cooperative, tolerant, patient, kind
A−Bossy, negative, contrary, stubborn, harsh
N+ Oversensitive, fearful, dependent, submissive, unconfident
N−Calm, independent, confident

By incorporating a standard personality model to a high-density crowd simu-
lation, our approach creates plausible variations in the crowd and enables novice
users to dictate these variations. A crowd consists of subgroups with different
personalities. Variations in the characteristics of subgroups influence emergent
crowd behavior. The user can add any number of groups with shared personality
traits and can edit these characteristics during the course of an animation.

In order to verify the plausibility of our mapping we have conducted tests that
evaluate users’ perception of the personality traits in the generated animations. We
created several animations to examine how modifying the personality parameters
of subgroups affects global crowd behavior. The animations exhibit the emergent
behaviors of agents in scenarios in which the settings assigned according to
the OCEAN model drive crowds behavior. In order to validate our system, we
determined the correspondence between our mapping and the users’ perception of
these trait terms in the videos. The results indicate a high correlation between our
parameters and the participants perception of them.

7.3.1 Personality-to-Behavior Mapping

A crowd is composed of subgroups with different personalities. Variations in
the characteristics of the subgroups influence emergent crowd behavior. The user
can add any number of groups with shared personality traits and can edit these
characteristics during the course of an animation. An agent’s personality π is a five-
dimensional vector, where each dimension is represented by a personality factor, ψi.
The distribution of the personality factors in a group of individuals is modeled by a
Gaussian distribution function N with mean μi and standard deviation σi:

π = < ψO,ψC,ψE ,ψA,ψN > (7.1)

ψi = N(μi,σ2
i ), f or i ∈ {O,C,E,A,N}, (7.2)

where μ ∈ [0,1] and σ ∈ [−0.1,0.1].
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Table 7.2 Low-level parameters vs. trait-descriptive adjectives

Leadership

Dominant, assertive, bossy, dependable, confi-
dent, unconfident, submissive, dependent, social,
unsocial E, A−, C+, N

Trained/not trained Informed, ignorant O
Communication Social, unsocial E
Panic Oversensitive, fearful, calm, orderly, predictable N, C+
Impatience Rude, assertive, patient, stubborn, tolerant, orderly E+, C, A
Pushing Rude, kind, harsh, assertive, shy A, E
Right preference Cooperative, predictable, negative, contrary, A, C

changeable
Avoidance/personal space Social, distant E
Waiting radius Tolerant, patient, negative A
Waiting timer Kind, patient, negative A
Exploring environment Curious, narrow O
Walking speed Energetic, lethargic, vigorless E
Gesturing Social, unsocial, shy, energetic, lethargic E

An individual’s overall behavior β is a combination of different behaviors. Each
behavior is a function of personality as:

β = (β1,β2, . . . ,βn) (7.3)

β j = f (n), f or j = 1, . . . ,n (7.4)

Since each factor is bipolar, ψ can take both positive and negative values. For
instance, a value of 1 for extroversion means that the individual has extroverted
character; whereas a value of −1 means that the individual is highly introverted.

By analyzing the meaning and usage of each low-level parameter and built-in
behavior in the HiDAC model, we characterize these by the adjectives that are used
to describe personalities. Thus, we devise a mapping between the agents’ personality
factors (adjectives) and the HiDAC parameters, as shown in Table 7.2. A positive
factor takes values in the range [0.5,1], whereas a negative factor takes values in the
range [0,0.5). A factor given without any sign indicates that both poles apply to that
behavior. For instance E+ for a behavior means that only extroversion is related to
that behavior; introversion is not applicable. As indicated in Table 7.2, a behavior
can be defined by more than one personality dimension. The more adjectives of a
certain factor defined for a behavior, the stronger is the impact of that factor on that
behavior. We assign a weight to the factor’s impact on a specific behavior. The sum
of the weights for a specific type of behavior is 1. In order to understand how the
mapping from a personality dimension to a specific type of behavior is performed,
we explain four representative mappings. The remaining ones are mathematically
similar.
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Right preference. When the crowd is dispersed, individuals tend to look for
avoidance from far away and they prefer to move towards the right hand side of
the obstacle they are about to face. This behavior shows the individual’s level of
conformity to the rules A disagreeable or non-conscientious agent makes a right
or left preference with equal probability, while the probability of choosing the
right side increases with increase in values of agreeableness and conscientiousness.
Given Pi(Right)αA,C and βRight

i ∈ {0,1}, right preference Pi(Right) is computed as
follows

Pi(Right) =

{
0.5 if ψA

i < 0 or ψC
i < 0

ωARψA
i +ωCRψC

i otherwise
(7.5)

βRight
i =

{
1 if Pi(Right)≥ 0.5

0 otherwise
(7.6)

Personal space. Personal space determines the territory in which an individual
feels comfortable. Agents try to preserve their personal space when they approach
other agents and when other agents approach from behind. However, these two
values are not the same. According to the research on Western cultures, the average
personal space of an individual is found to be 0.7 m in front and 0.4 m behind [57].
Given βPersonalSpace

i α−1E and βPersonalSpace
i ∈ {0.5,0.7,0.8}, the personal space of

an agent i with respect to an agent j is computed as follows

βPersonalSpace
i, j =

⎧⎪⎪⎨
⎪⎪⎩

0.8 f (i, j) if ψE
i ∈ [0, 1

3 )

0.7 f (i, j) if ψE
i ∈ [ 1

3 ,
2
3 ]

0.5 f (i, j) if ψE
i ∈ ( 2

3 ,1]

(7.7)

f (i, j) =

{
1 if i is behind j

0.4
0.7 otherwise

(7.8)

Waiting radius. In an organized situation, individuals tend to wait for space avail-
able before moving. This waiting space is called the waiting radius and it depends on
the kindness and consideration of an individual, i.e., the agreeableness dimension.
Given βWaitingRadius

i αA and βWaitingRadius
i ∈ {0.25,0.45,0.65}, the waiting radius is

computed as follows

βWaitingRadius
i, j =

⎧⎪⎨
⎪⎩

0.25 if ψA
i ∈ [0, 1

3 )

0.45 if ψA
i ∈ [ 1

3 ,
2
3 ]

0.65 if ψA
i ∈ ( 2

3 ,1]

(7.9)

Walking speed. The maximum walking speed is determined by an individ-
ual’s energy level. As extroverts tend to be more energetic while introverts
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are more lethargic, this parameter is controlled by the extroversion trait. Given
βWalkingSpeed

i αE and βWalkingSpeed
i ∈ [1,2], the walking speed is computed as follows

βWalkingSpeed
i = ψE

i +1. (7.10)

7.3.2 User Studies on Personality

In order to evaluate if the suggested mappings are correctly perceived, we conducted
user studies. We created several animations to see how global crowd behavior
is affected by modifying the personality parameters of subgroups. Some of these
animations can be found at http://cg.cis.upenn.edu/hms/research/Ocean/.

7.3.2.1 Experiment Design

We created 15 videos presenting the emergent behaviors of people in various
scenarios where the crowds’ behavior is driven by the settings assigned through the
OCEAN model. We performed the mapping from HiDAC parameters to OCEAN
factors by using trait-descriptive adjectives. We determined the correspondence
between our mapping and the users’ perception of these trait terms in the videos
in order to validate our system. Seventy subjects (21 female, 49 male, ages 18–30)
participated in the experiment. We showed the videos to the participants through
a projected display and asked them to fill out a questionnaire consisting of 123
questions– about 8 questions per video. The videos were shown one by one; after
each video, participants were given some time to answer the questions related to
the video. The participants did not have any prior knowledge about the experiment.
Questions assessed how much a person agreed with statements such as “I think the
people in this video are kind.” or “I think the people with black suits are calm.”
We asked questions that included the adjectives describing each OCEAN factor
instead of asking directly about the factors because we assumed that the general
public might be unfamiliar with the OCEAN model. Participants chose answers
on a scale from 0 to 10, where 0 = totally disagree, 5 = neither agree nor disagree,
and 10 = totally agree. We omitted the antonyms from the list of adjectives for the
sake of conciseness. The remaining adjectives were assertive,calm, changeable,
contrary, cooperative, curious, distant, energetic, harsh, ignorant, kind, orderly,
patient, predictable, rude, shy, social, stubborn, and tolerant.

7.3.2.2 Sample Scenarios

A sample scenario testing the impact of openness took place in a museum setting as
one of the key factors determining openness is the belief in the importance of art.

http://cg.cis.upenn.edu/hms/research/Ocean/
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Fig. 7.1 Snapshots of a crowd simulation authored using our framework: (a) Openness tested in a
museum. The most open people stay the longest, whereas the least open people leave the earliest.
(b) People with low conscientiousness and agreeableness values cause congestion. (c) Ring
formation where extroverts are inside and introverts are outside. (d) Neurotic, non-conscientious
and disagreeable agents show panic behavior

Figure 7.1a shows a screen-shot from the sample animation. We tested the adjectives
curiosity and ignorance with this scenario. There were three groups of people, with
openness values of 0, 0.5, and 1. We mapped the number of tasks that each agent
must perform to openness, with each task requiring looking at a painting. The least
open agents (with blue hair) left the museum first, followed by the agents with
openness values of 0.5 (with black hair). The most open agents (with red hair) stayed
the longest.

In order to test whether the personalities of people creating congestion are
distinguished, we showed the participants two videos of same duration and asked
them to compare the characteristics of the agents in each video. Each video consisted
of two groups of people moving through each other. The first video showed people
with high agreeableness and conscientiousness values (μ = 0.9 and σ = 0.1 for
both traits), whereas the second video showed people with low agreeableness
and conscientiousness values (μ = 0.1 and σ = 0.1 for both traits). In the first
video, groups managed to cross each other while in the second video congestion
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occurred after a fixed period of time. Such behaviors emerged since agreeable and
conscientious individuals are more patient; they do not push each other and are
always predictable, as they prefer to move on the right side. Figure 7.1b shows how
congestion occurred due to low conscientiousness and agreeableness. People were
stuck at the center and refused to let other people move. They were also stubborn,
negative, and not cooperative.

Another video assessed how extroverts and introverts were perceived according
to their distribution around a point of attraction. Figure 7.1c shows a screen-shot
from the video in which the agents in blue suits are extroverted (μ = 0.9 and σ =
0.1) and those in grey suits are introverted (μ = 0.1 and σ = 0.1). At the end of
the animation, introverts were left out of the ring structure around the object of
attraction. Because extroverts are faster, they approached the attraction point in less
time. In addition, when other agents blocked their way, they tended to push them to
reach their goal. The figure also shows the difference between the personal spaces
of extroverts and introverts. This animation tested the adjectives, social, distant,
assertive, energetic, and shy.

Figure 7.1d shows a screen-shot from the animation demonstrating the effect of
neuroticism, non-conscientiousness and disagreeableness on panic behavior. Five
of the 13 agents had neuroticism values of μ = 0.9 and σ = 0.1, conscientiousness
values of μ = 0.1 and σ = 0.1 and agreeableness values of μ = 0.1 and σ = 0.1.
The other agents, which are psychologically stable, have neuroticism values of
μ = 0.1 and σ = 0.1, conscientiousness values of μ = 0.9 and σ = 0.1 and
agreeableness values of μ = 0.9 and σ = 0.1. The agents in black suits are neurotic,
less conscientious, and disagreeable. The figure shows that they tend to panic more,
push other agents, force their way through the crowd, and rush to the door. They
are not predictable, cooperative, patient, or calm but they are rude, changeable,
negative, and stubborn.

7.3.2.3 Analysis

After collecting the participants’ answers for all the videos, we first organized the
data for the adjectives. Each adjective is classified by its question number, the actual
simulation parameter and the participants’ answers for the corresponding question.
We calculated the Pearson correlation (r) between the simulation parameters and the
average of the subjects’ answers for each question.

We grouped the relevant adjectives for each OCEAN factor to assess the
perception of personality traits. The evaluation process is similar to the evaluation of
adjectives; this time considering the questions for all the adjectives corresponding
to an OCEAN factor. For instance, as openness is related to curiosity and ignorance,
we took into account the adjectives curious and ignorant. Again, we averaged
the subjects’ answers for each question. Then, we computed the correlation with
the parameters and the mean throughout all the questions inquiring curious and
ignorant.
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Fig. 7.2 (a) The correlation coefficients between the parameters and the subjects answers for the
descriptive adjectives, and the significance values for the corresponding correlation coefficients.
Significance is low (<0.95) for changeable, orderly, ignorant, predictable, social, and cooperative.
(b) The correlation coefficients between actual parameters and subjects answers for the OCEAN
factors, and the two-tailed probability values for the corresponding correlation coefficients. All the
coefficients have high significance

We computed the significance of the correlation coefficients as 1− p, where p
is the two-tailed probability that is calculated considering the sample size and the
correlation value. Higher correlation and significance values suggest more accurate
user perception.

7.3.2.4 Results

Figure 7.2a depicts the correlation coefficients and significance values for the adjec-
tives. Significance is low (<0.95) for changeable, orderly, ignorant, predictable,
social and cooperative. Low significance is caused by low correlation values for
changeable and orderly. However, although the correlation coefficients are found
to be high for predictable, ignorant, social and cooperative, low significance
can be explained due to small sample size. From the participants’ comments,
we determined that changeable is especially confusing because the participants
identified non-conscientious agents as rude but perceived them as persistent in their
rudeness.

Orderly is another weakly correlated adjective. Analyzing the results for each
video, we found that agents in the evacuation drill scenario were perceived to be
orderly although they displayed panic behavior. In these videos, even if the agents
pushed each other and moved fast, some kind of order could be observed. This was
due to the smooth flow of the crowd during building evacuation. Although people
were impatient and rude, the overall crowd behavior appeared orderly. On the other
hand, in a scenario showing queuing behavior in front of a water dispenser, the
participants could easily distinguish orderly agents from disorderly ones. Orderly
agents waited at the end of the queue, whereas disorderly agents rushed to the front.
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In this scenario, although the main goal was the same for all the agents (drinking
water), there were two distinguishable groups that acted differently.

Figure 7.2b shows the correlation coefficients and their significance for the
OCEAN parameters. These values are computed by taking into account all the
relevant adjectives for each OCEAN factor. All the coefficients have high signif-
icance, with a probability of less than 0.5% of occurring by chance (p < 0.005).
The significance is high because all the adjectives describing a personality factor
are taken into account, achieving sufficiently large sample size.

The correlation coefficient for conscientiousness is comparatively low, showing
that the participants correctly perceived only approximately 44% of the traits
(r2 ≈ 0.44). Low correlation values for orderly and changeable reduce the overall
correlation. If we consider only rude and predictable for conscientiousness, correla-
tion increases by 18.6%. The results suggest that people can observe the politeness
aspect in short-term crowd behavior settings more easily than the organizational
aspects. This observation also explains why the perception of agreeableness is
highly correlated with the actual parameters.

Figure 7.2 also shows that the participants perceived neuroticism the best. In this
study, we have only considered the calmness aspect of neuroticism, which is tested
in emergency settings and building evacuation scenarios.

7.4 Coordinating Agent Interactions with Behavior Events

When two actors interact in a virtual world, they must coordinate tasks and exchange
information. Managing this complexity is difficult when designing the behavior
of each actor in isolation. For sophisticated cooperative or competitive behavior,
an actor must constantly communicate and perform actions dependent on both its
own and other actors’ current state. This call-and-response type of interchange is
traditionally authored in pieces across multiple actors, with certain steps anticipating
the behavior of another actor involved in the interaction. If a cooperative or com-
petitive behavior involves actors taking on certain roles (such as “leader/follower”),
participating actors must negotiate the nature of their participation in the interaction,
which further complicates the behavior authoring process.

Consider two agents participating in a transaction involving bargaining over a
piece of merchandize. In a localized agent-centric model, the interaction begins
when the buyer, B, has a desire for an item that is sold by the seller, S. B approaches
S’s market stall and displays a greeting animation. S is notified that B played a
greeting animation and has to recognizes that B wants to buy something that he (S)
has for sale in order to begin the bargaining process. Throughout the interaction, the
agents transmit notifications to one another about which animations were played
and the current price negotiated. They must regularly receive these notifications
and interpret the mode and mood of the interaction, maintaining the state of the
conversation and the currently negotiated price, as well as the item in question
when deciding on an appropriate response. For a simple sequence of animations, this
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exhibits a high level of complexity that must be duplicated and maintained in both
agents’ state. In contrast, suppose a centralized data structure could coordinate these
agents instead. The centralized structure selects B and S out of a pool of available
agents, instructs B to approach S, dispatches the appropriate animations to each in
sequence, and maintains centralized information such as the current mood of the
conversation, the item being haggled over, and the current offers from both parties.
Moreover, this centralized structure can be invoked immediately to involve the two
agents in this kind of interaction, rather than waiting for the whim of actor B to
decide that he suddenly wants to purchase an item from S.

This centralized data structure simplifies the process of designing interactions
between actors, using a behavior paradigm we call event-centric authoring. Rather
than requiring multiple actors to handle the responsibilities of message passing and
stimuli response, a behavior event consists as a body of centralized control logic
with its own state and unrestricted access to the actor(s) involved in the event.
Participating actors temporarily suspend their own autonomy and are controlled
entirely by the event structure, which treats them as limbs of a central entity for
the duration of its execution. A conversation could be conducted with a central
event instructing the two actors to approach one another and then take turns playing
the requisite sounds and gesture animations. When the event is completed, or fails,
the involved actors resume their own autonomy until co-opted to participate in
another event. Events also define roles for their participants that must be filled
on instantiation by a particular actor type. For example, an event for a transaction
between two actors could may stipulate that the seller be of type “Merchant Actor”.
Events exist in a system to augment the richness of available behavior, and need not
detract from an actor’s own individuality. Actors can still retain rich autonomous
behaviors and only occasionally be involved in higher-order events.

7.4.1 Parameterized Behavior Trees

Though they could be designed with any suitable method, we create events using
Parameterized Behavior Trees (PBTs) [4], an expansion on standard behavior tree
models [58, 59] with a specialized data flow architecture to handle multiple agents
and shared state data. PBTs, and behavior trees in general, represent a flexible
graphical programming language with explicit goal direction that is easy to visualize
for complex behavior structures. They contain an inherent hierarchical structure that
makes them easy to visualize and conceptualize at a macroscopic level. In general,
a subtree represents a goal at its root, and the means by which that goal can be
achieved with its leaves. This allows for implicit documentation within the tree
structure, so that certain branches of the tree can be understood by the goals they
attempt to accomplish, without the need to necessarily expose any of their children.

The core mechanic of behavior trees in general is the success or failure of each
node in the tree. Each node attempts to execute an action and reports success or
failure to its parent node. The parent can use that information for selecting the
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Assert:
door.IsOpen() actor.Open(door)

actor.Enter(room)

(Selector)

(Sequence)

actor : Human
door : Door

Enter

(Action)

Fig. 7.3 An encapsulated behavior for entering a room through a door

next node to execute. Sequence nodes execute each child in order. If one child of a
sequence node fails, that sequence reports failure to its parent and ceases execution.
Sequence nodes succeed when all of their children succeed. Conversely, selector
nodes cease execution and report success if any one of their children succeeds.
A selector node reports failure only if all of its children fail. Figure 7.3 represents
a simple behavior tree for opening a door and entering a room. If the assertion
succeeds, the selector will propagate success and skip over the door opening action.
Otherwise, if the assertion fails, the selector will attempt to perform its next child,
which consists of an action opening a door. Assuming one of the two actions is
successful, the selector will report success to the root sequence node, which will
then execute its next action directing the actor to enter the opened room.

Unlike traditional behavior trees, PBTs are designed with data fields that take
on values at runtime and propagate information through the structure of the
tree, eventually moving through the tree’s action or assertion leaf nodes to the
underlying functions those leaves invoke. These data can be targets for low-level
character controller, or flags that affect branching decisions within the tree itself.
With parameterization, subtrees can be encapsulated for reuse with parameters by
multiple PBTs, not unlike a subroutine in a traditional programming language. The
right side of Fig. 7.3 shows how the simple door behavior tree can be encapsulated
into a generic PBT with the typed parameters “actor” and “door” that take on
values at runtime. The single node created by this encapsulation can be accessed
by means of a lookup node, which acts as a placeholder for the entire subtree and
fills the parameter fields with object references at runtime. Encapsulated subtrees
can also act polymorphically, so that different actor types can “implement” a given
subtree signature in multiple different ways. When an event invokes an actor’s
capabilities, or tells an actor to execute a specific subtree with certain parameters, the
actual implementation of those actions can still be personalized to the actor or that
actor’s type.

Parameterized subtrees that take multiple actors as parameters define the logic for
behavior events. Figure 7.4 displays an event for two actors playing a game of catch
at different levels of the hierarchy. First we define a simple sub-event taking two
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actor1.goto(site) actor2.goto(site)

(Parallel Seq.)
(Loop)

catcher.Catch(ball)thrower.Throw(ball)

thrower : Human
catcher : Human

ball : Ball

Toss

actor1: Human
actor2 : Human

ball : Ball
site : Location

PlayCatch

actor1, actor2, ball

Toss

actor2, actor1, ball

Toss

Fig. 7.4 Composing an event for two actors to play catch

actors and animating one tossing a ball to another. This sub-event is encapsulated as
a “Toss” tree, with two actor parameters and an object parameter. Next, we define the
actual “PlayCatch” event. This event directs the two actors to approach a location
(given as a parameter when this tree is instantiated), and loops the actors playing
the “Toss” sub-event. Observe that the event reverses the actor roles in the “Toss”
subtree so that the ball passes back and forth between actors.

The “PlayCatch” subtree is also encapsulated with parameters, so the “Play-
Catch” tree can be instantiated at runtime using entities in the environment for
its actor or object roles. At any point during the simulation, a virtual director can
select two actors and a location, provide those actors with a ball, and instantiate this
event using those objects as parameters. The event will then completely manage
the actors’ behavior in a centralized manner as they perform the complicated
interactions needed for playing a game of catch. This authoring approach avoids
issues such as shared ownership of the ball item, since all state information for the
event is maintained in the event’s own state space, rather than in the state space of
one of the actors. Note that the event does not own the ball or the actors involved, but
does acquire control over them for the duration of the event. The ball, or any prop,
may persist in the world or may be destroyed depending on the virtual director’s
decision.

In general, we use events for all complex interactive behavior, but actors are also
independently controlled by separate PBTs for their autonomous actions. When an
actor is not involved in an event, it executes its own internal behavior tree that locally
invokes that actor’s capabilities and modifies that actor’s traits. When an actor is
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selected to participate in an event, that actor’s internal tree is halted, and the actor’s
traits and capabilities are exposed to be modified and invoked by the PBT contained
in the event. In general, events are designed to terminate after the implicit goal of
the event is accomplished or fails, while actors’ internal trees never terminate.

7.4.2 Selecting Actors for Events

Since events contain centralized behavior for interactions between actors, we expect
scenario authors to design a library of events for a variety of interactions between
actors of different types within an environment. Events accept parameters for the
actors involved and any other modifiers that may affect the progression of the
interaction between those actors, including the location in which it takes place.
Since events work only on actor types, they are not designed for any one specific
actor within the world. Instead, events are designed to operate generically on any
selection of actors matching the interfaces expected by the event. At runtime, over
the course of the simulation, we use a global director construct to determine which
events should be performed in the world, and what actors should perform them.

When the global director decides that a specific event should be performed at
a location in the world (a process we will discuss later), that director must select
the actors to participate in that interaction. There are several details that factor into
this decision. The first filter is the type of the actor. The structure of the event itself
specifies that each of its roles can only be filled by an actor of a given hierarchical
type, so the director can only select actors of that type when filling that role. Other
filters for actor candidates may be more detailed. The director may select an actor
for a role based on its traits, its relationships with other characters, or the history
of events in which it has participated. These qualities of an actor may be fixed at
initialization, or modifiable at runtime.

If a scenario has many events that select actors based on the actions they have
performed during that simulation, then the simulation’s actors exhibit a quality
we call progressive differentiation. That is, actors begin as largely homogeneous
characters in the world and are slowly differentiated by one another based on the
actions they perform at the behest of the director [3]. This kind of differentiation
is important because it matches the perception of a human user in the environment.
To a user observing the simulation, actors are already undifferentiated because the
user has just encountered them for the first time. The user only learns to distinguish
actors’ personalities based on the actions they perform and the manner in which they
are performed. Much in the same way, the director personifies actors at runtime
based on the actions it selects for them, and maintains that history to inform
selection of actors for further events. An actor selected to tell a joke to a crowd may
have that history recorded, making the director more likely to select that actor again
for another “joke” event, and progressively characterize that actor as a “comedian”
character. Because this differentiation experience happens simultaneously for the
director and a human user, selective differentiation accomplishes a key goal
of facilitating the user’s internal narrative for rationalizing the chain of events
presented in the scenario.
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City Park

40% Conversing 7% Playing Catch

14% Reading

Fig. 7.5 Assigning regions in a virtual space, each with a desired actor activity distribution

7.4.3 Selecting Events to Perform

After the behavior authors for a given scenario create a library of potential events
that can be performed in the environment, the centralized director needs a method
to pick which events to execute, when, and where in the virtual world. There are
many ways a director could be designed to do this, including planning approaches
to capture causality in narrative, but we present a simple statistical model suitable for
maintaining a variety of actions in the background of a scene. This mostly applies
to undifferentiated characters acting as “extras” to add atmosphere to a location [2].

Areas in the environment are annotated as regions, which keep track of the
actors currently present and the events in which they are involved. The scenario
designer specifies a distribution of event classes that should be enforced within that
given region for the actors present. Event classes may be broad categories such as
“conversation”, or “playing a game”, and members of these classes may be more
specific, such as “arguing over politics”, or “playing catch with a ball”. A desired
event distribution specifies what percentage of the actors in that environment should
be involved in events of a certain class. For instance, in a park, the author may
designate that 15% of all actors in the park should be playing games with one
another, while another 25% should be conversing. Figure 7.5 illustrates the process
of assigning regions over a virtual space and specifying the event distribution
for each.

We use a specialized director called a Group Coordinator to enforce these
distributions. At a given point in time, the Group Coordinator inspects a region and
determines the distribution density of the events being performed in that region at
that instant. If the instantaneous calculated distribution differs significantly from the
expected distribution specified by the scenario author, then the Group Coordinator
must correct the error. The director accomplishes this by identifying the most
under-represented event category, finding an event from the event library in that
category, and invoking that new event on some suitable actors in or near that region.
So long as there are suitable actors available to perform events in or near that
region, the Group Coordinator will ensure that the actual distribution of events
being performed will match the ideal distribution specified by the author within
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Fig. 7.6 The Group Coordinator’s decision process for maintaining the distribution of events in a
region

some threshold. This decision process is illustrated in Fig. 7.6. The desired event
distribution for a region can also be changed over time, reflecting a gradual shift
caused by some phenomenon such as a day/night cycle.

To achieve the greatest event variety, events in this framework should not be
causally linked. This technique is suitable for ambient activities performed by
characters on which the user won’t focus, but prominent actors in the environment
must account for causality. If the user does begin to focus on one of these
background characters, then that character can be promoted to a principal character
and managed by an event dispatch algorithm that does account for causality and
differentiation. The goal of this algorithm is a simple interface to greatly affect
the perceived variety of the activities being performed in a virtual space. Different
regions also allow for different types of activity, where events suitable for a city park
would not be appropriate in a movie theater.

We use the behavior trees from this Group Coordinator control process to imple-
ment a virtual middle eastern marketplace, as displayed in Fig. 7.7. To accurately
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Fig. 7.7 A virtual Middle Eastern marketplace for demonstrating multi-actor interactions simu-
lated using the ADAPT platform [60]

implement this setting, actors must be capable of interacting with one another
in situations such as haggling, negotiating, and conversation. By default, actors
maintain an individual “shopping list” of items they wish to procure from the stalls
in the market. An actor’s own tree directs that actor to move between stalls looking
for items. When a stall has an item that an actor desires, the buyer and seller are
placed in a negotiation event that directs them through gestures and movements
representing two individuals haggling over an item. After the negotiation event ends,
the buyer has either acquired the item or failed, and moves to the next stall on its
shopping list. Periodically, actors are also selected by the Group Coordinator to stop
and converse with one another, which suspends whatever else they were doing at the
time (unless they were involved in a negotiation). This simple system captures the
ambience of characters moving in the background and maintaining a baseline of
activity in what should be a busy scene. We leverage the ADAPT platform [60] for
generating the simulations described here, which provides the tools for navigation,
full-body character animation, and multi-actor behavior using PBTs.

7.5 Authoring Complex Multi-actor Interactions
using Domain Independent Planning

This section presents a multi-actor planning framework [5, 61] for generating
complicated behaviors between interacting actors in a user-authored scenario. Users
define the state and action space of actors and specialize existing actor definitions
to add variety and purpose to their simulation. Actors with dependent goals are
grouped together into a set of independent composite domains. For each of these
domains, a multi-actor planner generates a trajectory of actions for all actors to
meet the desired behavior. We author and demonstrate a simulation of more than
100 actors (pedestrians and vehicles) in a busy city street and inject heterogeneity
and drama into our simulation using specializations.

Figure 7.8 presents an overview of our framework. First, a domain expert defines
the problem domain of the actors in the scenario (domain specification). Next, a
director specializes the actors using modifiers, constraints, and behaviors (domain



166 M. Kapadia et al.

Fig. 7.8 An overview of the framework

specialization). Actors with dependent goals or constraints enforcing their interac-
tion are grouped into a composite domain, forming a set of independent domains.
For each domain, a multi-actor planner generates a trajectory of actions that satisfies
the composite goal while optimizing each actors objective. Each searchs results
become part of a global plan, which generates the resulting simulation.

7.5.1 Behavior Specification

Domain Specification. Domain specification is the lowest abstraction level for
authoring behaviors. It involves defining the state space and action space for all
actors in a scenario. Each actor has a state and can affect the state of itself or others
through actions. Different actors in the same scenario might have different domain
specifications. For example, we can define a traditional actor to simulate a pedestrian
and define the environment as an actor that can be used to trigger global events, such
as natural disasters (Fig. 7.9).

1. The state space. We represent an actors state space using metrics - physical
or abstract properties that are affected by actions. Users can extend metrics by
applying operators to existing metrics to provide an intuitive understanding of
the simulations properties. We denote the space of metrics for all actors in the
scenario as mi.

2. The action space. The action space is a set of actions an actor can perform to
modify its state and the state of other actors. An action has three properties:
preconditions that determine whether the action is possible in a given state, the
actions effect on the state of the actor and target actors, and the cost of executing
the action.

3. Costs. Costs are a numerical measure of executing an action. Different actions
can affect different cost metrics by different amounts. Examples of cost metrics
include distance and energy. We denote the space of costs as ci.
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Fig. 7.9 Domain
Specification and
Specialization. Actions,
modifiers, constraints and,
behaviors defined using our
framework

Domain Specialization. Users can reuse actor definitions across different sce-
narios by specializing actors in a state-dependent manner without modifying the
original definition. This allows authors to specify and generate vastly different,
purposeful simulations intuitively, with minimal specification. We provide three
ways to specialize actors: effect modifiers, cost modifiers, and constraints.

1. Modifiers. Modifiers specialize the effects and costs of actions in a state-
dependent manner. For example, users can place an effect modifier on elderly
actors to reduce their normal speed of movement. Cost modifiers indicate what
actions are in an actors best interest at a particular state. For example, users can
author a cautious actor by increasing the cost of actions that might place the actor
in danger (for example, entering a burning building). Here, the notion of danger
would be a user-specified metric in the actors state space.

2. Constraints. Constraints enforce strict requirements on actors; they can prune
the choices of an actor in a particular state. For example, constraints can prevent
pedestrians from walking on the road or from disobeying traffic signals. Users
can also place constraints on the simulations trajectory to author specific events
(for example, two cars must collide), generate complex interactions between
actors, and direct high-level stories.

Behavior State Machine Specification. A behavior state defines an actors current
goal and objective function. The goal is a desired state the actor must reach; the
objective function is a weighted sum of costs the actor must optimize. Users can
define multiple behaviors for an actor that depend on its current state.
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7.5.2 Behavior Generation

The entire problem domain is decomposed into a set of independent composite
domains where actors with dependent goals or constraints enforcing their interaction
are part of one composite domain. The composite state space is the cartesian product
of the states of each actor and the composite action space is the union of the actions
of each actor in the composite domain. The composite domain is denoted by Σ .

We define a particular problem instance P = (Σ ,s0,g,{oi}) by determining the
initial state s0, composite goal g, and objectives {oi} of each actor in the composite
domain. A composite goal can be single or multiple objectives for an actor, common
or conflicting objectives between actors, as well as global constraints specified for
the entire scene. The composite goal, g, is the logical combination of the goals for all
actors in the composite domain. We combine common goals using the ∧ operator,
indicating that all actors must satisfy these goals. We combine contradicting goals
using the ∨ operator, indicating that any actor must satisfy its goal. The problem
definition P= (Σ ,s0,g,{oi}) becomes the input for the planner.

7.5.2.1 Multiactor Action-Time Planner

During planning, the heuristic search generates a trajectory of actions for all actors
in the composite space that satisfies g while optimizing {oi}. This facilitates the
generation of complicated interactions between actors, without needing centralized
planning across all actors in the scenario. Even though an actors actions affect only
the state space of its composite domain, the planner determines an actions possibility
by considering the global state space of all actors in the scenario. This ensures
collision-free trajectories between two independent plans. So, we can overlay the
action trajectories for actors in different groups to generate a complete simulation.

Our planner builds on traditional planning approaches in three ways. First, it
works in the composite space of multiple actors with competitive or collaborative
goals. Second, it explicitly takes into account that different actions take various
amounts of time and that actors actions overlap. Finally, it uses an automatically
derived heuristic estimate to speed up the search.

Overview. For the current state, our heuristic planner generates a set of possible
transitions. Each transition represents the forward simulation of the actions by one
time step in the composite space in which actors are simultaneously executing
actions. The planner chooses a transition by minimizing the sum of the transitions
total cost and the heuristic estimate of reaching the composite goal. It computes a
transitions cost such that an action optimizes its own objective function. When the
planner reaches a state that satisfies g, it returns the generated plan.

Transitions. A transition represents the simultaneous execution of actions chosen
by all actors in the composite domain by one time step. A transition is valid and
ready to simulate if all actors have a valid action theyre executing or ready to
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execute. An action is possible if three conditions are met: (1) the actor is currently
not executing an action, (2) the preconditions of the action are satisfied and, (3) no
constraints prohibit the action.

For a valid transition, all actions are simulated for one time step in a random
order. The explicit modeling of time in the action definition results in overlapping
actions, partially executed actions (action failure), and actors performing new
actions while other actors are still performing their current action. After a transition,
an actor might be in one of three states: (1) Success. The actor successfully
completed the action. (2) Executing. The actor partially executed the action at that
time step. (3) Failure. Other actors actions negated the actions preconditions. For
both the success and failure states, the actor must choose a new action in the next
time step.

Cost and Heuristic Function. The cost of simulating a transition {ai}, at state
s, in the time interval (t, t + 1) where ai is the action chosen by actor i in the
composite domain is ∑i oi({c j}). The heuristic function is used to provide a cost
estimate from the current state to the goal state. Our design of a heuristic function is
straightforward and efficient. We first relax the preconditions on the actions (all
actions are deemed possible at any given instant of time) and do a fast greedy
search for a trajectory of actions that takes the planner from the current state to
the goal. The sum of the cost of all actions is the heuristic, h for that particular
state, s.

7.5.2.2 The Animation and Simulation Engine

Once we’ve generated trajectories for the actors, we use a simple steering algorithm
to simulate coin-shaped agents to accurately follow paths. Then, the animation
system animates models of virtual humans and vehicles along the simulated paths. It
animates characters by transitioning between walk, run, and stop animations on the
basis of the movement speed. It also employs animations to visualize actors current
actions, such as a thief stealing a hot dog.

7.5.2.3 Behavior Generation Algorithm

The algorithm used to generate multi-actor behaviors is described below:

1. Define Actors, Aci = 〈Si,Ai,Ci,Bi〉, where Si is the state space, Ai is the action
space, Ci is the set of constraints and modifiers, and Bi is the set of behaviors
defined for actor i.

2. Determine Composite Domains, CD j = 〈Sc
j,A

c
j,C

c
j ,B

c
j〉, where Sc

j = {S1 × S2 ×
. . . Sn} is the composite state space, Ac

j =
⋃n

i=1{Ai} is the composite action space,
Cc

i = {Ci} is the set of specializations, and Bc
j = {Bi} is the set of behaviors

defined for all actors i = 1 to n in the composite domain CD j.
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3. For each Composite Domain, CD j

a. Define Search Domain, Σ = (Sc,Ac,Cc).
b. Determine initial state in the composite space of all agents, s0 =

⋃n
i=1 s0

i
c. Determine active behaviors, bi for each actor, i in composite domain, CD j.

The active behavior for each actor determines the goal, gi and the objective
function oi.

d. The composite goal, g is the logical combination of the goals, {gi} for
all actors in the composite domain. Common goals are combined using an
∧ operator, indicating that all actors must satisfy their goal. Contradicting
goals are combined using an ∨ operator, indicating that any one of the actors
must satisfy their goal.

e. If no behavior is active for actors, Return.
f. Solve for sequence of actions π by performing a search, π = Search(Σ ,s0,g,

{oi}), where Σ is the search domain, s0 is the composite start state, g is the
composite goal, and {oi} are the objective functions for each actor.

4. Combine plans for all domains, Π = π1 ∪π2 ∪ . . .πn.
5. Execute Global Plan, Π .
6. Determine new states of all actors.
7. Repeat Steps 2–6.

7.5.3 City Simulation

We demonstrate the effectiveness of our framework by authoring a car accident in
a busy city street and observing the repercussions of the event on other actors that
are part of the simulation, such as the old man and his son, whose behaviors are
automatically generated using our framework.

Actor Specification. We first define the state space and action space of three actors
in the scenario: (1) a generic pedestrian, (2) a vehicle and, (3) a traffic signal.

1. Pedestrian: The state of a pedestrian comprises its position, orientation, speed
of movement, mass, and, a collision radius. In addition, pedestrians have the
following abstract metrics: hunger, safety, amount of money. These metrics are
variables whose values are modified by actions. The Move action (Fig. 7.10a)
kinematically translates an actor and has an associated distance and energy
cost. The routine CheckCollisions(..) returns false if Move causes the
pedestrian to enter a state of collision. Additional actions (e.g. Eat) can be
associated with different metrics (e.g. hunger). A pedestrian is given a simple
behavior to move towards a specified goal position (Fig. 7.10b) while minimizing
distance and energy cost. The goal positions are randomly generated to produce
a realistic city simulation with wandering pedestrians. Additionally, the pedes-
trians monitor the state of a traffic signal which coordinates the movement of
pedestrians and vehicles at an intersection (Fig. 7.10c).
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Fig. 7.10 A generic pedestrian with a simple Move action (a), a behavior to go to a specified goal
position (b), and a constraint to follow the traffic signals (c)

2. Vehicles: The state and action space of vehicles is defined similarly to simulate
their movement. In addition, they have a metric damage which increases if a
vehicle collides with another vehicle. Vehicles are constrained to stay on the
roads, give right of way to pedestrians, and obey the traffic lights.

3. Traffic Signals: A traffic signal represents an environment actor that models the
simulation of the traffic signals at the intersection. It has a single metric signal
state which is the current state that the traffic signals at the intersection are
in. An action, ChangeTrafficSignal (Table 7.3(a)) determines the state of
the traffic signal based upon the current simulation time. The pedestrian and the
vehicles query the signal state in order to follow the traffic signals.
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Table 7.3 Scripts used to author the city simulation

Action ChangeTrafficSignal {
Precondition:
true;
Effect:
timeMod = currentTime % 100;
if (timeMode <= 35)
self.signalState = 0;
else if (timeMode <= 70)
self.signalState = 1;
else self.signalState = 2;
}
(a)

CostModifier DaringCM {
Precondition:
∃ a: a.danger > 0 ;
Cost Effect:
self.safetyCost =
MAX_COST - max(a.danger);
}

(b)

EffectModifier DaringEM {
Precondition:
true;
Effect:
a = argmax(a.danger) ;
self.goalPosition =
a.position;
}

(c)

Behavior FireFighterB {
Precondition:
∃ a ∈ Actors: a.fire > 0;
Goal:
∀ a ∈ Actors a.fire = 0;
Objective Function:
min(0.3·self.safetyCost
+ self.distanceCost
+ self.energyCost);
}

(d)

Constraint AccidentC {
Precondition:
true;
Constraint:
// Two vehicles must collide
// at some point in time
∃ a1,a2 :
IsAVehicle(a1) ∧
IsAVehicle(a2) ∧
Distance(a1,a2) < 5.0;
}

(e)

EffectModifier RecklessVehicleEM {
Precondition:
true;
Effect:
self.collisionRadius = MIN;
self.followSignals = FALSE;
}

(f)

CostModifier RecklessVehicleCM {
Precondition:
true;
Effect:
// low cost for traveling
// at MAX_SPEED
self.speedCost
= MAX_SPEED-self.speed;
}

(g)

Behavior CooperativeVendorB {
Precondition:
true;
Goal:
self.money >= 100 ∧
otherVendor.money >= 100;
Objective Function:
min(self.stolenCost
+ otherVendor.stolenCost);
}

(h)

Behavior ThiefB {
Precondition:
true;
Goal:
self.money >= 100
Objective Function:
min(self.distanceCost
+ self.energyCost);
}

(i)

Action Steal(Actor a, Amount: m){
Precondition:
m <= a.money ∧
DistanceBetween(self,a) < 1.0;
Effect:
a.money = a.money - m
self.money = self.money + m
Cost:
self.stealCost = m;
a.stolenCost = m;
}
(j)
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Actor Specialization We can easily and intuitively specialize actors using our
framework. Fire-fighter actors are specialized pedestrians with lower weights to
the safety cost metric and with a common goal to extinguish fires. A grandfather
pedestrian is specialized by reducing the walking speed and specializing them to
follow their grandson. The objective of the grandson is to escort his grandson at
all times and to keep him away from danger (e.g. car accidents, oncoming traffic
and other pedestrians) which is achieved by incorporating the safety cost of the
grandfather in the grandsons objective function.

Cautious and daring actors are authored by affecting the cost of actions that place
them in danger (Table 7.3(b)). A street vendor is given the behavior of manning his
hot dog stand and ensuring that his money is not stolen. A thief is authored with a
goal to steal money using a Steal action (Table 7.3 (i),(j)) while minimizing the risk
of getting caught (Table 7.3(j)). A cost modifier assigns a high cost to stealing in the
presence of other actors. A reckless vehicle is modeled by introducing a high cost to
moving at slower speeds and relaxing the constraints of obeying traffic signals and
collisions with other vehicles (Table 7.3 (f),(g)).

7.5.4 Results

We populate a city block with pedestrians and vehicles using our framework. Actor
specializations provide an easy and intuitive way to add variety and purpose to
the virtual world. We observe pedestrians walking along the sidewalks in the city
in a goal-oriented manner (satisfying hunger by getting a hot dog, going to the
park to meet a friend, stopping to take a look at objects of interest) while obeying
constraints and modifications (obey traffic lights, avoid collisions, stay off the streets
etc.). A video demonstrating the results can be found at http://cg.cis.upenn.edu/hms/
research/MultiActorPlanning/.

The accident scenario. To add drama to the simulation, we introduce constraints
on the trajectory of the entire simulation. First, we introduce a constraint, AccidentC
(Table 7.3(e)), that an accident must happen (i.e. two vehicles must collide).
A simulation is generated where two reckless vehicles collide with one another,
resulting in a fire that stops the traffic at the intersection (Fig. 7.11d). Cautious
pedestrians who are near the accident run away to a safe distance in panic or walk
away calmly (depending on their specialization) while daring actors approach the
scene of the accident. The car accident triggers the activation of the behaviors in the
fire-fighters who run to the location of the fires. They work together collaboratively
to extinguish both fires (a result of the planner working in the composite domain).
Upon noticing the accident, the vendor runs to a place of safety (high cost modifier
on safety). As soon as the thief notices that the vendor has left his stand, he slowly
approaches the stand, steals the money and runs to a place of safety.

http://cg.cis.upenn.edu/hms/research/MultiActorPlanning/
http://cg.cis.upenn.edu/hms/research/MultiActorPlanning/
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Fig. 7.11 Snapshots of a city simulation authored using our framework: (a) Actors queue up at a
hot dog stand while the vendors talk to one another. In the meantime, a thief lies in the shadows
waiting for an opportunity to steal the money from the stand. (b) Cars giving right of way to
pedestrians. (c) Cautious actors run to a place of safety in the event of an accident. (d) Fire-fighters
extinguish the fire while daring actors look on

Fig. 7.12 Interaction between thief and the vendors: (a) The thief steals money from the hot dog
stand when the vendors walk away (because of the accident). (b)–(d) The vendors collaboratively
work together to surround the thief in the alley and manage to catch him

Varying the simulation. We vary the simulation result by introducing other
specializations or modifying existing ones. In a first take, we define the objectives
of the two vendors to minimize safety cost as well as the cost of being robbed as
individuals. When the accident happens, they run to a place of safety while keeping
the stand in eyesight. As soon as they see the thief stealing the money, they both
chase after him. However, the thief has a head-start and runs away. This is because
the planner generates solutions that tries to achieve the objective of each vendor
independently. Hence, we observe that in the composite domain of the thief and
two vendors, the thief succeeds. In a second take, we modify the objectives of the
vendors to minimize the cost of both being robbed (Table 7.3(h)). The common goal
of the vendors implies that the planner searches for a solution that optimizes their
combined objectives. As a result, the two vendors cooperate to corner the thief in an
alley (Fig. 7.12a–d).

Performance and Implementation Details. We demonstrate 106 actors in the city
simulation, with 15 cars and 91 pedestrians. Based on constraints, goal definitions
and spatial locality, the following composite domains are defined: (1) 15 cars and
4 fire-fighters, (2) old man and son and, (3) generic pedestrians grouped together
based on spatial locality. Dividing the problem domain into smaller composite
domains reduces the branching factor of the search by two orders of magnitude,
reducing the search problem to smaller, more feasible searches. The plans for each
of these domains is then overlayed to form the complete solution. The performance
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Number of actors 106
Number of composite domains 12

Max # of actors in a composite domain 19
Total generation time 219 sec

Max generation time for one domain 76 sec
Min generation time for one domain 8 sec

Generation time per actor 2.06 sec
Length of output simulation 95 sec

Amortized time per actor per second 0.02 sec

Fig. 7.13 Performance
Results

results are provided in Fig. 7.13. The amortized performance of our behavior
generation framework for the results shown in the video is 0.02 s per actor per
second of simulation generated.

7.6 Discussion

A key challenge in multi-actor simulations is to provide an appropriate interface for
authoring high-fidelity virtual actors with feature-rich control mechanisms capable
of complex interactions, while satisfying global scenario constraints. This chapter
presents work that addresses the problem of behavior authoring at three levels.

Modeling Agent Personality. The OCEAN personality model defines five orthog-
onal axes to intuitively describe the personality of an agent. We describe a mapping
of these personality traits to low-level simulation parameters, facilitating the control
of agent and group personality in order to observe the emergence of different crowd
behaviors. We validate our mapping by conducting a user study which assesses
the perception of personality traits in a variety of crowd simulations demonstrating
these behaviors. The personality traits provide an intuitive and flexible interface for
authors to control social crowd dynamics.

Event Centric Authoring of Multi-actor Interactions. We describe an event-
centric behavior authoring paradigm where a user-authored centralized controller,
defined using parameterized behavior trees (PBTs) [4] is used to coordinate
behaviors between multiple interacting actors. Actors participating in an event
temporarily suspend autonomy and are controlled by the event structure which treats
them as limbs of a central entity for the duration of the event. PBTs provide a
flexible, graphical programming language for authoring behaviors, and event-centric
authoring alleviates the burden or coordinating the interactions between virtual
actors. However, there is greater burden on the author to define events, and to stitch
together event sequences to create more complex narratives.

Automated Planning for Simulating Multi-actor Interactions. The use of
domain independent planners automates the behavior generation process where
users only need to specify goals and objectives for actors. In order to inject
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Fig. 7.14 A Protest event that takes into account the personality and mood of actors participating
in the event

heterogeneity into the simulation, generic actor definitions can be specialized by
modifying the cost and effect of actions. Furthermore, the use of composite domains
where actors with common or conflicting objectives are part of a single planning
domain, facilitates the generation of complex interactions between actors. However,
this method has the following limitations:

• The behaviors generated by our framework are heavily dependent on the manner
in which actors are grouped together and the weights of the objectives.

• One of the major design choices of this framework was the use of a multi-actor
planner which prohibits its use in interactive applications such as games.

• It is non-intuitive to define interactions between multiple actors which is
accomplished indirectly by specifying common objectives and global constraints.

Towards A Unified Framework for Authoring Diversity in Personality and
Behavior Multi-actor Simulations. The traits of an actor that define personality,
mood, and emotion provide an intuitive and high-level interface for specializing
individual actors as well as groups of actors. Incorporating these traits into the
behavior authoring process, especially at the event-centric level, facilitates the
emergence of different actor interactions as a parametrization of these traits. For
example, a behavior to describe a Protest event would differ based on the personality
and mood of actors participating in the protest. A hostile and extroverted actor is
more likely be an active participant while an anxious and nervous actor is more
likely to steer away from the scene of the protest. Figure 7.14 illustrates the use of
personality and mood traits in an authored event.

Authoring complex multi-actor interactions becomes prohibitive when designing
the behavior of each agent in isolation. In order to cooperate or compete, actors
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must constantly communicate information and account for the current state of
neighboring actors while performing an action. Planning based approaches provide
flexibility of automation at higher performance, while event-centric authoring
mitigates the need for treating every actor as an individual at greater burden to
the author. A promising direction of exploration is to develop a planning based
framework that automatically triggers sequences of user-authored events that satisfy
global narrative constraints, while conforming to the roles of individual actors in the
scenario. A planner can also be used at the discretion of the centralized controller to
act alongside the event level as another tool for coordinating small narrative-driven
actor interactions.

Events provide the facility to pre-author and tune actor interactions, while
planners allow the generation of more dynamic activities in an automatic fashion.
Using events, we can build a library of pre-authored collaborative action sequences
of narrative and interactive significance. After preparing these actor interactions, we
can apply a multi-actor planner to influence more local behaviors among groups
of actors related by activity or domain in addition to selecting and applying the
events we have designed. The planner may even be invoked at the discretion of the
centralized controller, allowing various degrees of autonomy and control as needed
by computational load, actor characteristics, or interactive user actions.
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Chapter 8
Virtual Tawaf: A Velocity-Space-Based Solution
for Simulating Heterogeneous Behavior in Dense
Crowds

Sean Curtis, Stephen J. Guy, Basim Zafar, and Dinesh Manocha

Abstract We present a system to simulate the movement of individual agents in
large-scale crowds performing the Tawaf. The Tawaf serves as a unique test case;
the large crowd consists of a heterogeneous set of pilgrims, varying in both physical
capacity and activity. Furthermore, the density of the crowd reaches extremely high
levels (up to 8 people/m2). This extreme density can place impractical constraints
on simulation parameters. We use a velocity-space-based pedestrian model which
exhibits consistent results even under extreme density: reciprocal velocity obstacles
(RVO). Furthermore, we extend RVO to include priority and right of way—agents
respond to potential collisions asymmetrically depending on context; one agent
may yield, to varying degrees, to another. Our system uses a finite state machine
to specify the behavior of the agents at each time step, to model the varied
behaviors seen during the Tawaf. The finite-state machine, used in conjunction with
RVO, generates collision-free trajectories for tens of thousands of agents in the
performance of the Tawaf. The overall system can model agents with varying age,
gender and behaviors, supporting the heterogeneity observed in the performance of
the Tawaf, even at high densities.

8.1 Introduction

The Tawaf is one of the Islamic rituals of pilgrimage performed by Muslims
when they visit Al-Masjid al Harām. Located in Makkah, Saudi Arabia, Al-Masjid
al Harām surrounds the Kaaba, the site Muslims around the world turn towards
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while performing daily prayers. Al-Masjid al Harām is the largest mosque in the
world and is regarded as Islam’s holiest place. During the Tawaf, Muslim pilgrims
circumambulate the Kaaba seven times in a counterclockwise direction, while in
supplication to God.

The Tawaf is performed both during the Umrah and the Hajj. Performing the
Hajj is one of the five pillars of Islam and every Muslim aspires to visit Makkah
at least once in his or her life. Annually, more than two million Muslims perform
the Hajj. While the Hajj has several stages and takes place over several days, all
pilgrims move through the various stages of the Hajj on the same days which creates
limitations in both time and space resulting in very high crowd densities during the
Tawaf, especially on the Mataf, the marble floor of the mosque, in the center of
which stands the Kaaba. During the Hajj season, or the last few days of the month of
Ramadan, as many as 35,000 pilgrims perform Tawaf at the same time in the Mataf
area in Al-Masjid al Harām. Given the large scale of the gathering, it is important to
understand and model the behavior and movement of the crowd to provide insight
which may improve crowd management techniques and help ensure the safety of
the pilgrims.

The Tawaf has several properties which make simulating it particularly
challenging:

Heterogeneous Population: The population of pilgrims varies significantly,
spanning gender, a wide range of ages and physical capacity, and representing
different cultures from all over the world.

High Density: The crowd density throughout the Mataf often varies considerably.
It can become as high as eight pilgrims per square meter near the Kaaba [32]. The
extremely high density greatly restricts the movement of the pilgrims.

Varying Velocities: The velocity of the pilgrims in Mataf can vary depending
on many factors such as their distance from the Kaaba and the proximity of
structures on the floor or congestion caused by other agents due to the capacity
saturation and geometry of the mosque; the irregular shape of the Mataf is not
well suited to the inherently elliptical movement around the Kaaba.

Complex Motion Flows: Different types of crowd flows have been observed
during the Tawaf. These flows arise out of the sometimes contradictory intentions
of the many pilgrims; at any given time, pilgrims will be simultaneously trying
to stand still to kiss the Black Stone at the corner of the Kaaba, circumambulate
the Kaaba, or attempt to move orthogonally to the circular flow, inwards, toward
the Kaaba, or outwards, towards the exit, preventing purely circular flow.

Simulating the Tawaf will afford those who administer Al-Masjid al Harām the
ability to evaluate alternative crowd flow control systems or architectural changes
to improve the comfort and safety of the pilgrims and increase the capacity of the
Mataf. But creating a practical simulator for such a complex scenario is challenging.
The crowd simulator must account for the heterogeneous population, allowing for
large variance in the capabilities and actions of the agents. Furthermore, to capture
the acts of the ritual, the simulator must provide a mechanism in which the activities
and strategies of each agent change with respect to time. These features must be
embedded in a computationally efficient simulator. It should scale well with respect
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to both the number of virtual pilgrims and increasing density. The greater the
computation time, the less flexibility the simulator provides in evaluating scenario
variations or producing stochastic studies in which multiple runs with randomly
perturbed initial conditions are analyzed in aggregate. Satisfying these challenges
and producing an accurate simulation of complex and dynamic interactions between
pedestrians of this sort remains an open problem.

Main Results In this chapter, we describe a system to model the movement of
individual agents in a large-scale crowd performing the Tawaf. To address the above
challenges, we present an agent-based model which combines a velocity-based
pedestrian model to control local interactions between the agents with a finite state
machine (FSM) to model the intentions of each pilgrim. We extend the pedestrian
model with a parameter called priority which governs how the agents divide the
effort to avoid collision between them. In some cases, agents act cooperatively to
avoid collision. In other cases greater priority gives one agent right of way over
another agent, causing the agent with less priority to yield. This enables us to model
the asymmetric relationships observed between pilgrims in the Tawaf such as when
pilgrims stop to kiss the Black Stone while others move around them. To model
the changing goals of agents, each state in the FSM encodes a particular behavior
which defines both strategy and tactics for navigating the shared space. The state
provides a function which defines time-dependent values for a sub-space of the agent
configuration space, including, but not limited to, such agent properties as preferred
velocity and priority. The pedestrian model computes a collision-free trajectory by
computing a new velocity based on the agent’s time-dependent state. We use several
criteria to transition between the states based on spatial, agent-property, temporal
and stochastic conditions.

The resulting system allows us to simulate crowds of heterogenous individuals,
including variations in age and gender, performing the Tawaf. Each agent is
associated with a unique instance of the pilgrim FSM. The FSM defines the general
form of the Tawaf ritual, but each individual instance can allow for individual
variance in the particular performance. For example, some pilgrims may possess
a strong desire to approach the Kaaba, while others avoid the dense region near the
Kaaba and maintain a greater distance.

From these simulations, we measure aggregate behavior such as density and
velocity. We also measure Tawaf-specific metrics, such as the time to complete
the Tawaf, and the overall throughput, in terms of the number of pilgrims that can
complete the Tawaf per hour and show correlation with empirical observations.

Chapter Organization: The rest of the chapter is organized as follows. In
Sect. 8.2, we survey related work on crowd simulation, behavior modeling, and
simulation of the Tawaf. We discuss the full simulation pipeline in Sect. 8.3, paying
particular attention to the formulation of the high-level behavioral finite state
machine. In Sect. 8.4 we present four models for pedestrian simulation and discuss
their particular suitability for modeling the Tawaf. In addition, we discuss the details
of priority and right of way and illustrate its effect on pedestrian relationships.
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Section 8.5 contains specific details on the actual performance of the Tawaf by living
pilgrims and the mapping to a particular finite state machine. Finally, in Sect. 8.6 we
provide the results of our system.

8.2 Related Work

In this section, we discuss related work in crowd simulation and behavior modeling
for crowds. We also highlight some prior crowd simulation systems designed for
simulating the Tawaf.

8.2.1 Crowd Simulation

There is extensive literature on crowd simulation and many techniques have been
proposed.

Cellular automata (CA) are some of the oldest approaches for crowd simulation.
In CA the workspace of agents is divided into discrete grid cells which can be
occupied by zero or one agent. Agents then follow simple rules to move towards
their goals through adjacent grid cells [25].

Continuum methods such as [26] and [19] treat the crowd as a whole and model
the motion and interactions of agents based on equations that represent aggregate
flow.

Agent-based approaches model each individual in the crowd and the interactions
between them. Different techniques have been proposed to model these interactions.
Reynolds [23] proposed Boids, which is a simple method based on rules for avoiding
collisions while preserving flock cohesion. The rules are often implemented as
forces. Other well known force-based methods including the social force model [11]
(and its many variations), generalized centrifugal force model [4] and HiDAC [22].
These approaches use more complex forces between agents to model a larger
domain of local interactions. Ondřej et al. [20] proposed a vision-based model
in which agents respond to nearby obstacles based on the angle to the obstacle
and the estimated “time to interaction”. Recently, velocity-space methods have
been proposed to model human pedestrians. These geometric formulations are
often based on velocity obstacles [8, 10, 28] and have been shown to exhibit many
emergent crowd phenomena.

8.2.2 Behavior Modeling

Many researchers have proposed approaches to simulate various aspects of human
and crowd behaviors. Funge et al. [9] proposed using a cognitive model to allow
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agents to plan and perform high-level tasks. Yu and Terzopoulos [31] introduced
a decision network framework that is capable of simulating interactions between
multiple agents. Ulincy and Thalmann [27] used a modular behavioral architecture
to allow a mixture of automated and scripted behavior in multi-agent simulations.
Durupinar et al. [7] modeled the effects personality factors have on local behavior.
Yersin et al. [30] used spatial patches to direct motion and behavior of agents.
Bandini et al. [3] applied a state machine to an underlying CA model to create
scenarios with more complex behaviors. Yeh et al. [29] employed a physical
collision avoidance mechanism to model abstract factors in pedestrian interactions
such as aggression, priority and authority.

Data-driven approaches have also been used to capture crowd behaviors, often by
training models of agent motion based on video data. Lee et al. [15] used data-driven
methods to create group behavior such as queueing and clustering. Ju et al. [13]
proposed a data-driven method which attempts to match the style of simulated
crowds to those in a reference video. Patil et al. [21] proposed a method of directing
crowd simulations with flow fields extracted from video or specified by a user. Video
data has also been used to analyze and interpret real-world crowd behavior. Mehran
et al. [16] proposed a method to detect abnormal crowd behavior from video using
the social-force model. Johansson et al. [12] used video to study crowd behavior
during portions of the Hajj.

8.2.3 Tawaf Simulation

There is some prior work on simulating crowd movement during the Tawaf and
other Hajj related rituals. Algadhi and Mahmassani [2] simulated crowd flows in
the Jamarat area of the Hajj using continuum models. Mulyana and Gunawam [18]
performed agent based simulations of various rituals of the Hajj including a
500-agent simulation of the Tawaf. Zainuddin et al. [33] used the commercial
software SimWalk to perform a social force-based simulation of up to 1,000 agents
performing the Tawaf ritual. Sarmady et al. [24] performed a large crowd simulation
of the Tawaf using CA techniques combined with a discrete-event simulator.

A few studies have also been performed on crowd flow in the Mataf area in
the Al-Masjid al Harām. Al-Haboubi and Selim [1] proposed a potential spiral
movement path to increase safety and throughput of pilgrims during the Tawaf.
Koshak and Fouda [14] collected trajectories of actual pilgrims performing the
Tawaf during the Hajj using GPS devices. The Crystals project currently studies
how to incorporate cultural differences into simulations of Hajj pilgrims [5].

8.3 Modeling Crowd Behaviors

In this section, we give an overview of our method for modeling the crowd behaviors
during the Tawaf. Human behavior arises from the confluence of many factors,
including culture, psychology, environment and physiology. Generally, human
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Fig. 8.1 We simulate crowd behaviors appropriate to the Tawaf by coupling a high-level finite-
state machine (FSM) with a low-level pedestrian model. The FSM computes behavior-state and
property-set values for each agent. The pedestrian model, in turn, updates the agent’s physical
state

behavior spans a wide range of activity. When discussing crowd behavior we limit
our discussion to those human behaviors which affect how humans share space.
For example, two people standing and discussing current events are functionally
equivalent to those same people negotiating a business deal; the topic is unimportant,
but the fact that they are stationary at a fixed distance away from each other is
the behavioral detail which most influences crowd simulation. We characterize
behaviors which affect the crowd with two concepts: where does an individual wish
to be and how do they interact with those around them in reaching their goal? The
first deals with the agent’s intention—the general strategy, such as what path to
take through an environment. The latter addresses the immediate tactics applied to
execute the strategy under the dynamic constraints of a populated environment.

8.3.1 Agent-based Simulations

To simulate the Tawaf, with its heterogeneous population and widely varying
activities, we need an approach which can accommodate a high-level of per-agent
variability. To that end, we model the crowd with individual agents. Each agent
is characterized by its physical state (position, velocity, size, etc.), its behavior
state (preferred velocity, priority, its FSM, etc.), and its property set (a collection
of associated data appropriate to the scenario). For example, a simulated pilgrim’s
property set includes a counter indicating how many circles the pilgrim has already
completed around the Kaaba. The counter doesn’t directly affect the computation of
an agent’s preferred velocity or how it interacts with other agents, but it is used in
the behavior mechanism to know when the Tawaf is complete.

We model the behaviors of agents by coupling together a high-level finite-state
machine (FSM) with a pedestrian model. The FSM evaluates the agent’s physical
state and defines the agent’s behavior state and, optionally, changes values in
the agent’s property set. The behavior state is used by the pedestrian model, in
conjunction with an agent’s physical state, to compute a new velocity and update
the agent’s physical state. Figure 8.1 illustrates the two components of our system
and how they interact.
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8.3.2 The Behavior Finite State Machine

A finite state machine (FSM) defines the behavior of an agent at every time step.
Each state in the FSM defines the behavior state, and, optionally, the property set
for the agent. By providing unique definitions, each state can impart a distinct,
observable behavior on the agent. We do not require any particular method for a
state to use to compute the behavior state for an agent. The choice is arbitrary. All
that matters is that the values for the agent’s behavior state produce the desired
behavior. For example, one element of the behavior state is the preferred velocity.
It may be computed in any number of ways: by a simple rule, or as the result of a
complex algorithm using techniques as varied as guidance fields or roadmaps. We
give specific examples of this in Sect. 8.5.3

We have classified the FSM’s transitions into four categories based on the
types of conditions which cause the transition to become active: spatial, property,
temporal, and stochastic. A spatial transition will cause the agent’s current state to
change when the agent’s position achieves some pre-defined spatial configuration,
such as entering an area, leaving an area, etc. For example, this transition will signal
the start or end of a circumambulation. The property transition moves the FSM from
the current state to a new state if some element of the agent’s property set conforms
to a particular condition. In the Tawaf, this transition causes an agent to exit when
it has completed seven circles. The temporal transition acts as a timer for the state.
The transition is activated when the agent has been in the current state for some
pre-defined amount of time. For example, some agents in the Tawaf will stop and
pray for a few seconds when completing a circumambulation. Finally, the stochastic
transition becomes active according to a user-defined probability distribution. In
the Tawaf, we expect that only a fraction of the participants stop to pray. We use the
stochastic transition to model this distribution. Finally, we prioritize the transitions
such that if two transitions conditions are both true, the transition with the higher
priority is taken.

8.4 Pedestrian Modeling

With a mechanism in place to alter agent behavior over time, we need to select
a pedestrian model to execute the high-level strategy. In this section, we discuss
various types of pedestrian simulation algorithms and their suitability for a scenario
such as the Tawaf. Finally, we present the reciprocal velocity obstacle pedestrian
model and describe priority and right of way—an extension which increases the
space of interactions between virtual agents.
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8.4.1 Models of Pedestrian Simulation

There are numerous algorithms for simulating pedestrians. Each has its own unique
set of advantages and disadvantages. It has yet to be shown that any single algorithm
perfectly models pedestrian dynamics in arbitrary scenarios. For our purposes, we
are most interested in those algorithms well suited to a specific scenario: the Tawaf.
We are interested in simulators which will provide a mechanism to model the
physical and behavioral heterogeneity observed in the Tawaf. Furthermore, to be
useful, we require the simulator to be efficient (a hypothetical “perfect” algorithm
which took hours to simulate seconds of data would be impractical).

We divide pedestrian simulators into two categories: macroscopic and micro-
scopic. Macroscopic approaches model a crowd of pedestrians as an aggregate
phenomenon (e.g. [19, 26]). Microscopic simulators deal with individual agents,
trusting that the aggregate behavior will naturally arise from basic principles (e.g.
[4, 8, 11, 20, 23, 28]).

Macroscopic models typically assume a relatively high density; they operate on
the principle that the choices of an individual pedestrian are strongly constrained by
its local conditions. In dense crowds this is a reasonable assumption. As the crowd
becomes sparser, the effect of one pedestrian on its distant neighbors is significantly
reduced. In some cases, these approaches can be quite efficient. Narain et al. [19]
were able to simulate 100K agents at 450 ms per simulation step. These approaches
usually treat the crowd as a continuous, homogenous medium. Assuming continuity
and homogeneity precludes the variation in physical attributes and behaviors
observed in the performance of the Tawaf. For example, such approaches would
be unable to create a dense simulation in which some agents remain stationary
while other agents move next to them. For these reasons, we consider macroscopic
simulation algorithms to be inappropriate for simulating the Tawaf.

Microscopic models provide greater potential to realize the kind of per-agent
heterogeneity we require. Each agent is individually simulated and, as such, can
be assigned arbitrary properties to model varying physical capacity. Furthermore,
their behaviors can be individually specified; one agent’s motion is not explicitly
constrained by its neighbors. It can try to pursue a goal that stands in direct
opposition to its neighbors (its success is dependent on the pedestrian model). We
consider three major categories of microscopic models: cellular automata (CA),
social forces (SF) and velocity obstacles (VO).

As previously indicated, CA approaches decompose the simulation domain into
a uniform grid. Each agent occupies a single cell and a single cell can contain
at most one agent. Probabilities are applied to neighboring cells based on a
movement protocol and each agent’s position is updated according to the probability
distribution and a set of rules for resolving conflict. CA approaches are typically
simple to implement. A CA approach has even been applied to simulating the Tawaf
before [24]. However, the authors indicate that while CA can generate emergent
phenomena (such as lane formation, etc.), the individual microscopic trajectories
are “unrealistic” [24]. Furthermore, the grid decomposition imparts a homogeneity
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on the agents as well. Agents can only move an integer number of cells in a
single time step. Finally, the authors indicate that CA has limitations with respect
to density. The maximum possible density is simply a function of the size of the
cells. This maximum is only theoretical. In practice, that density is impossible
to achieve because if all cells are filled, agents cannot resolve conflicts and the
simulation reaches a deadlock. We feel that, despite its simplicity, the cost of the
spatial discretization leads to too many undesirable artifacts to simulate the Tawaf
effectively.

SF-based and VO-based approaches both operate in continuous space, obviating
the artifacts observed in CA. SF-based models treat pedestrians as mass-particles.
Various forces applied to a particle draw the particle towards a goal position and
prevent collisions with obstacles and other agents. The many variations of SF-based
models generally differ in how the forces are formulated.

VO-based approaches consider the relative velocities and positions of agents
to select a feasible velocity—a velocity which will remain collision free for a
specified window of time. For each neighboring agent, it computes a set of infeasible
velocities—velocities which will lead to collision within a specified time window.
The selected feasible velocity is the velocity which lies outside the union of all
infeasible velocity regions but which minimizes some cost function. There are
multiple variations on VO-based algorithms, which may differ in how they model
the space of inadmissible velocities, define the cost function, and how they solve the
optimization problem.

Generally, both SF- and VO-based algorithms appear to be viable candidates for
simulating the Tawaf to the level of fidelity we seek. More detailed investigation is
required to differentiate their suitability. We provide summaries of a recent SF-based
model [4] and a recent VO-based model [28]. For simplicity, we limit the summary
to agent-agent interactions and refer the reader to the original papers for details on
agent-obstacle interactions.

Generalized Centrifugal Force: The Generalized Centrifugal Force (GCF) model
is a SF-based model which formulates inter-agent repulsive forces in terms of the
agents’ positions and velocities.1 The agent is modeled with the state vector: [m p
v v0]T ∈ R

7, where m ∈ R
1 is the agent’s mass, p,v,v0 ∈ R

2 are the agent’s current
position, current velocity, and preferred velocity, respectively. Preferred speed v0 =
‖v0‖ is simply the magnitude of preferred velocity.

At each time step, agent i’s acceleration is computed as:

ai =
Fi

mi
=

Fdrv
i +∑Frep

i j

mi
, (8.1)

1The velocity term is the inspiration for the name. The original SF model considered only agent
positions [11].
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where Fdrv
i is a “driving” force and Frep

i j is the repulsive force applied to agent i by
agent j. Given this acceleration, the agent’s velocity and position are updated by
integrating with respect to time using an explicit integrator.2

The driving force is what causes the agent to move toward its goal. These systems
assume that for each time step, a “preferred velocity” (v0) is computed. How this
velocity is defined is arbitrary, but we assume it represents the velocity the agent
would “prefer” to take in the absence of dynamic constraints. The driving force
is defined such that it imparts an acceleration on the agent sufficient to reach its
preferred velocity in τ seconds:

Fdrv
i = mi

v0
i −vi

τ
. (8.2)

The presence of other agents may prevent an agent from following its preferred
velocity. This interference is modeled by repulsive forces. Each nearby agent j
applies a repulsive force to the agent i of the form:

Frep
i j = −miki j

(ηv0
i + vi j)

2

di j
êi j, (8.3)

vi j = max(0,(vi −v j) · êi j), (8.4)

ki j = max

(
0,

vi · êi j

vi

)
(8.5)

where di j = ‖p j − p j‖ is the distance between agents i and j, êi j =
p j−p j

di j
is the

normalized direction vector from agent i to agent j, vi j is the amount of agent i’s
and j’s relative velocity that lies in the direction of êi j, clamped to the range [0,∞],
η is a simulation variable used to tune the behavior of the simulation, and ki j is a
field-of-view weight—the strongest response is to agents in the direction of travel
with decreasing weight as the angle increases to 90◦ on either side of that direction.

According to the authors, the formulation of the repulsive force has several
desirable properties:

1. Repulsion is a local effect because the magnitude of the force is dependent on
inverse distance. effect.

2. The vi j term accounts for relative velocity so that a slow moving agent will not
be affected by a fast moving agent in front of it.

3. The ki j term gives the agent an active field of view. Agents will not be repulsed
by agents behind them.

According to (8.3), the repulsive force between agents has infinite support; no
matter how far the distance between two agents, some small contribution to one

2While the formula doesn’t preclude using an implicit integration scheme, the common practice
has been to use a low-order explicit integrator such as forward Euler.



8 Virtual Tawaf 191

Fig. 8.2 (Color online) The inverse distance function. At small distances, a small perturbation in
distance leads to a large change in the function value (red circles). The same sized perturbation at
large distances leads to a correspondingly small change in function value (blue diamonds)

agent’s acceleration will be due to an unreasonably distant agent. Conversely, when
the agents overlap, their distance converges to zero and the repulsive force can
grow infinitely large. The authors combat both of these undesirable artifacts by
approximating (8.3) with a spline which bounds the growth at small distances and
limits the functions domain to a user-defined maximum distance.

Unfortunately, this formulation still exhibits some undesirable properties as well.
The combination of how the forces are defined and the integration scheme can
lead to very “jittery” agent behavior, especially under high densities; an agent’s
trajectory may exhibit high-frequency oscillations because of numerical integration
error which can only be addressed through taking extraordinarily small simulation
time steps.

The full analysis of this behavior is beyond the scope of this work. However, we
feel a brief intuitive discussion of the causes will illustrate why we deem a social-
force-based model impractical for simulating the Tawaf. We leave the full, formal
analysis for future work. We focus on two particular properties of the formulation as
the cause of the undesirable oscillatory behavior: the explicit integration of a “stiff”
physical system and the out-of-phase nature of driving and repulsive forces.

The inter-agent repulsive force (8.3) is essentially a function of the inverse
distance between the agents (see Fig. 8.2). The function has relatively compact
support; the force is greatest at near distances when collision is most imminent. As
distance increases, the magnitude quickly decreases. When simulating a relatively
sparse environment, where distance between agents is high, the magnitude of the
repulsive force is quite small. A small perturbation in distances between agents
produces forces with only slightly different magnitude. But when agents are close,
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small changes in distance lead to very large changes in forces—in other words, the
slope of the force function is quite steep. This is a classic characteristic of a stiff
system. When performing explicit integration, the common practice for SF-based
pedestrian models, small time steps must be taken to prevent oscillatory behavior
and unbounded error in the undamped system.

Furthermore, the driving force (8.2) and repulsive forces (8.3) are solved out
of phase with each other. Imagine two agents moving towards each other at their
preferred velocity. Because they are moving at their preferred velocity, their driving
force is zero. They continue on their trajectories until they are close enough for
the repulsive forces to be non-zero. At that time step when the repulsive forces
are first non-zero, the driving force is still zero. Thus, the repulsive forces are the
sole influence on the agent and the current velocity is accelerated accordingly. At
the next time step, the repulsive force will be significantly reduced (because the
relatively velocity has been reduced), but the driving force now increases due to the
deviation between preferred and current velocities. This alternating dominance can
eventually converge to a steady-state where they will be in balance, but it requires a
small time step.

We seek to simulate the Tawaf during its peak performance, when tens of thou-
sands of pilgrims pack into a small area reaching densities as high as 8 people/m2.
There is an unavoidable computational cost in increasing the size of the simulation
to a 35,000 agents. If we also had to significantly reduce the simulation time step
to an extremely small time step, the simulation would no longer be tractable in
reasonable time frames. For this reason, we consider SF-based models impractical
for simulating the Tawaf.

Reciprocal Velocity Obstacle: The Reciprocal Velocity Obstacle (RVO) updates
an agent’s velocity by performing geometric calculations in velocity space. Agents
in RVO are modeled with a state vector similar to that of GCF: [p v v0]T ∈ R

6,
where p, v, and v0 are defined as before.

The velocity obstacle lies at the core of these approaches. As the name implies,
it is an obstacle, but rather than lying in workspace or configuration space, it lies in
velocity space. For agents i and j, agent j induces a velocity obstacle on i, VO ji, and
i induces a symmetric velocity obstacle on j, VOi j. The velocity obstacle is a cone,
originating at pi, which tightly bounds the Minkowski sum of agent i’s geometry
with j’s. Figure 8.3a illustrates VO ji for two agents with circular geometry. If the
relative velocity between agents i and j remains within this cone, there will be an
inevitable collision. In practice, we are only concerned with collisions that can occur
within the next τ seconds. Including this term truncates the cone (as illustrated in
Fig. 8.3b).

This obstacle is the space of relative velocities that lead to collision. A single
agent cannot exert unilateral control over the relative velocity. If agent i assumes that
j will not change velocity, i must take full responsibility for avoiding the collision.
This is accomplished by translating VO ji by j’s velocity, as shown in Fig. 8.3c. This
is the original velocity obstacle formulation, in which each agent assumes that every
other agent is a non-responsive, dynamic obstacle [8].
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Fig. 8.3 Velocity obstacles. (a) The velocity obstacle formed by agent j on i. (b) The truncated
velocity obstacle for time window τ formed by j on i. (c) Agent i assumes the full burden to avoid
collision, assuming j’s velocity will be unchanged; VO ji is displaced by j’s velocity

However, this model is a poor representation of people because agents do, in fact,
react to each other. This leads to two significant issues. First, the velocity obstacle is
only valid based on the assumption that the other agent maintains a constant velocity.
It is possible for both agents to pick a velocity outside of their respective velocity
obstacles but the resulting relative velocity may place them on a collision course.
Secondly, both agents overreact to their neighbors (because they falsely assume that
the other will make no effort to avoid collision). This can easily lead to oscillatory
motion as the agents overreact in successive steps.

Van den Berg et al. proposed an alternate formulation to VO which addresses
these issues: Optimal Reciprocal Collision Avoidance (ORCA) [28]. The truncated
cone, VOi j, is replaced with a half plane, ORCAi j. This solves the first issue by
defining the half planes of ORCAi j and ORCA ji to contain “mutually reciprocal”
sets of velocities. That means there is no pair of velocities, selected from each agents
admissible region, which will lead to a collision within τ seconds. Furthermore, the
planes are defined such that the amount of change to the relative velocity required
to avoid collision is evenly distributed between the two agents, removing the danger
of overcompensation and oscillation.

Finally, ORCA provides an additional advantage. When an agent has multiple
neighbors, the inadmissible velocities is the union of all velocity obstacles. For
truncated cones, computing this region, and finding the best admissible velocity
outside is complex and expensive. With half planes, the admissible velocities form
a convex polygon. For a convex cost function, the optimal velocity can be computed
in O(n) time, for n ORCA half planes.

The ORCA half-plane can be constructed geometrically in the following manner.
Assume agents i and j adopt velocities vopt

i and vopt
j , respectively, and that these

velocities place them on a collision course (i.e. vopt
i − vopt

j ∈ VO ji). Let u be the

vector from vopt
i −vopt

j to the closest point on the boundary of the velocity obstacle
(see Fig. 8.4). More formally,

u = (argmin
v∈δVO ji

‖v− (vopt
i −vopt

j )‖)− (vopt
i −vopt

j ) (8.6)
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Fig. 8.4 The formulation of
the ORCA half-plane. The
various components of the
definition are illustrated. The
minimum change in relative
velocity, u, the direction of
minimum change, n̂, and the
resultant ORCA velocity
obstacles, ORCA ji and the
symmetric half plane ORCAi j

is the minimum change in relative velocity between i and j necessary to guarantee
no collision within τ seconds. To model the reciprocity, half of the minimum change
is applied to each agent. So, we can define the ORCA velocity obstacle induced by
agent j on agent i as:

ORCA ji =

{
v|
(

v−
(

vopt
i +

1
2

u
))

· n̂ < 0

}
, (8.7)

where n̂ is the normalized direction of u. Proof of the guarantees can be seen in the
original paper [28]. Henceforth, we will refer to this model as RVO.

RVO is less prone to jitter oscillations than GCF. Whereas GCF computes a
new velocity by integrating a stiff physical system with explicit integration, RVO
computes a new velocity directly in velocity space. Unlike GCF, for a given agent
state, RVO will produce the same feasible velocity, regardless of time step size.
Like GCF, agent position is still integrated using explicit integration and has limits
on the size of the time step. Theoretically, the time step must be strictly larger than
the time window τ . In practice, RVO has been shown to be stable for time steps as
large as 0.2 s [6].

8.4.2 Priority and Right of Way

One of the appealing properties of RVO for pedestrian simulation is its reciprocal
nature. The idea that moving pedestrians will each make an effort to avoid collisions
with others is consistent with anecdotal evidence. However, the model’s exactitude
in defining the reciprocity to be precisely half implies a precision that does not exist
in nature. While, generally, the equal division of effort is a reasonable model of the
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most generic behavior, there are scenarios in which effort is not shared equally and
the model becomes highly dissatisfying.

On a subway platform, pedestrians enter the platform, find a location to await the
train and then stop. In navigating the platform, moving pedestrians typically move
around those already waiting. After they’ve stopped in their chosen position, those
following behind, must move likewise around them. At that moment, the pedestrian
shifts paradigms from an expectation of full responsibility for avoiding collisions,
to the expectation that other moving pedestrians will assume the responsibility to
avoid collision with them.

In a more subtle vein, even when all pedestrians are moving, the burden isn’t
necessarily shared equally. It may be that some pedestrians are more conservative
and more willing to give way to others. Some pedestrians may seem more aggressive
or determined. Subtle social and psychological clues affect how people react to each
other and shifts the distribution of responsibility for avoiding collision.

The ability to model asymmetry plays an important role in the simulation of the
Tawaf as well. There are several instances in which asymmetrical responses are vital
to reproduce observed behaviors. When pilgrims queue up to kiss the Black Stone,
their relationship with other pilgrims in the queue is different than with those still
circling; they should not yield position to those still circling, but must cooperate,
to some degree, with those in the queue. When actually kissing the Black stone, a
pilgrim must ignore all other pilgrims, holding their position in front of the stone.
Finally, when exiting the Mataf, the agents must work outwards when the rest of
the agents are moving tangentially or even spiraling inwards. At any given moment,
the exiting pilgrims are in the minority. The ability of the minority to move counter
to the flow of the majority is predicated on their ability to enforce their will on the
majority.

In the study of traffic, there is a concept that perfectly captures this phenomenon:
right of way. Right of way is the set of rules which define when one entity must yield
to another entity. When moving pedestrians walk around standing commuters on a
train platform, the stationary people have right of way. When an aggressive person
moves through a crowd and those around him part to let him through, it is because
he implicitly has right of way.

Unlike with vehicles, where right of way has a very discrete, exclusionary
interpretation (i.e. between two cars, right of way belongs entirely to one vehicle),
between pedestrians it can be considered a continuous quantity. Right of way can be
absolute, when one pedestrian completely yields to another or it can be shared such
that each pedestrian partially yields, albeit to different degrees, to avoid collision.

RVO’s formulation provides a simple mechanism by which we can model
continuous right of way. We introduce a new agent state parameter, p, called
priority—a non-negative, real number. An agent with higher priority has right of
way. We define the right of way of agent i over agent j as:

Ri j =

{
max(1, pi − p j) if pi ≥ p j

0 otherwise
. (8.8)
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As implied by (8.8), the value of Ri j lies in the range [0, 1], regardless of what the
relative priorities of the two agents are. Furthermore, Ri j > 0 implies R ji = 0. Right
of way can only be held by a single agent and an agent cannot have more than 100%
right of way. Another implication of this formulation is that agents can be assigned
tiered priorities—an aggressive agent may acquire full right of way over a passive
agent, but it may still be required to yield right of way to a stationary agent. This
is easily achieved by assigning priority values to the shy, aggressive and stationary
agents of 0, 1, and 2, respectively (or any sequence of monotonically increasing
values such that each value is at least one greater than the previous value).

In the formulation of RVO, the velocity obstacle is defined with respect to an
abstract relative velocity between agents i and j. The definition uses vopt to compute
the relative velocity. Van den Berg et al. refer to this as the “optimization” velocity
and suggest that this is typically the agent’s current velocity because it minimizes
the amount of change to the current agent state required to avoid collision, but it
need not necessarily be the current velocity [28].

We redefine vopt in terms of right of way. This new definition will affect the
definition of ORCA ji (8.7) in the following manner:

ORCA ji = {v|(v− (vopt
i j +αi jui j) · n̂ < 0}, (8.9)

vopt
i j = (1−Ri j)vi +Ri jv0

i , (8.10)

αi j =

⎧⎪⎨
⎪⎩

0.5 if Ri j = R ji = 0
1−Ri j

2 if Ri j > 0
1+R ji

2 if R ji > 0

. (8.11)

The effect of right of way is as follows. If both agents have the same priority,
no agent has right of way and the new formulation or RVO is equivalent to the
old; both agents optimize with respect to their current velocities and share an equal
burden in avoiding collision. As one agent’s priority increases, its right of way also
increases. The increased right of way affects the computation in two ways. First, the
higher-priority agent’s optimization velocity becomes a linear interpolation between
its current and its preferred velocity. Second, the higher-priority agent’s share of the
burden linearly decreases. When an agent has full right of way, its optimization
velocity is its preferred velocity and it bears no responsibility for avoiding collision.

We illustrate the impact of priority and right of way in four experiments (see
Fig. 8.5). We apply the following methodology for each experiment. We construct
a group of grey agents consisting of eight rows with 28 agents on each row. The
rows are vertically offset to increase the average density. The priority of the grey
agents always remains zero. We vary the priority of the white subject agent over the
range [0, 1]. For each priority value, we run 20 iterations with a small random noise
applied to the initial positions of the grey agents. In addition, for experiments 1, 2,
and 3, we repeat the set of iterations while changing the average density of the grey
agents over the values: 2, 3, 4, and 5 agents/m2. Experiment 4 has a single density,
8 agents/m2 (the maximum possible density when all agents converge in the center
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a b c d

Fig. 8.5 Four experiments for evaluating right of way. In each experiment, the subject agent’s
(white circle) progress is measured. (a) Experiment 1: A single agent moves through a stationary
group of agents. (b) Experiment 2: A single agent holds position against a moving group of
agents. (c) Experiment 3: A single agent moves perpendicularly to a moving group of agents.
(d) Experiment 4: A circle of 100 agents, each trying to move to its antipodal position

of the circle). For experiments 1, 3, and 4, the subject agent travels from an initial
position to a goal position. For these experiments, we measure the impact of priority
by examining the travel time to its goal. More particularly, given its preferred speed
(v0) and the straight-line distance (d) to its goal, we compute the baseline travel time
(tb = d/v0) and report the travel time as a multiple of the baseline. In experiment
2, the agent tries to maintain its position, so we examine the impact of priority by
measuring the total distance it travels in the course of the simulation.3 The results
of these experiments can be seen in Figs. 8.6 and 8.7.

There are several salient points to be made about the results of these experiments.
First, in experiments 1, 2, and 3, as the subject agent’s priority and the corresponding
right of way increases, the subject agent’s performance quickly converges to the
baseline. This can be seen in Fig. 8.6a–c. The performance curves, at all densities,
converge to the baseline value (bottom of the figure) at a priority value ranging
between 0.4 and 0.6. This phenomenon becomes clearer when we observe the
trajectory of the subject agent as shown in Fig. 8.7. The subject agent starts at
the right in each figure and seeks to move in a straight line to its mirrored position
on the left. The baseline trajectory would be a straight, horizontal line. With low
priority, the agent is forced to deviate from the straight line. But for all priority
levels, when the agent reaches the mid-point, it is able to travel directly toward its
goal position.

We conjecture this quick convergence is due to two reasons. First, it has been
shown that, like other pedestrian simulators, RVO exhibits emergent phenomena
such as lane formation [10]. We conjecture that experiments 1, 2, and 3 benefit from
this property. The experiments are orderly scenarios featuring simple bi-direction
flows—an ideal circumstance for lane formation. The subject agent moves contrary
to the large contingent of grey agents and as its priority increases, those agents
nearest it begin to move out of its way. The following grey agents implicitly follow
the divergent paths of the lead agents, forming lanes around the subject. Once those

3If the agent were perfectly capable of maintaining its position, it would travel no distance at all.
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a b

c d

Fig. 8.6 The impact of priority on the experiment scenarios. (a), (c), and (d) report a multiple of
the baseline travel time based on right-of-way value and density. (b) Shows the absolute distance
traveled

a b

Fig. 8.7 The trajectory of the subject agent at varying priority levels. (a) Experiment 1. (b)
Experiment 3
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lanes have formed, the path for the subject agent remains clear. Second, the agents
are arranged in a hexagonal lattice. Moving diagonally through the lattice is the
clearest path possible. So, as the agent is pushed off of the horizontal, baseline
trajectory, the most direct path to its goal eventually becomes a diagonal path
which can exploit the greater clearance in the hexagonal lattice. So, for such orderly
scenarios, a right-of-way value as little as 0.5 is sufficient for the subject agent to
achieve baseline performance.

In comparison, experiment 4 represents a far more chaotic scenario. Agents
moving to their antipodal positions do not share a preferred velocity with any of
their neighbors. This significantly reduces the formation of lanes. The subject agent
must contest with every agent in its path to achieve its goal. The experimental results
support this idea. Figure 8.6d shows increasing priority values contribute to the
subject agent’s performance over the entire range of possible right-of-way values.

In addition, the impact of priority and right of way are dependent on the
density around the subject agent. This is as expected. When the region around the
subject agent is densely populated, taking any trajectory counter to its neighbors is
significantly more difficult. The cause is two-fold. First, because the neighbors are
near, the amount they interfere with the subject agent’s intentions is much higher;
the subject is in danger of colliding with its neighbors in a very small time frame.
Also, nearby agents have very little flexibility in responding to the subject agent.
So, the agent with right of way needs more priority to successfully influence its
neighbors. But in a sparsely populated areas, neighboring agents are more distant,
interfering less with the subject agent, and have a great deal more space to respond
to the higher priority agent which leads to fast convergence to the baseline value.
For the sake of visual clarity, we have vertically clipped the data shown in Fig. 8.6;
the performance of the subject agent without right of way in high density scenarios
was extraordinarily bad. Including those complete curves would have rendered the
lower-density curves undifferentiable. At a density of 5 agents/m2, the subject agent
required 4.1× as much time for experiment 1, traveled 71.6 m in experiment 2, and
took 7.9× as much time for experiment 3.

It is worth underscoring, that we are not modeling specific psychological factors
nor advocating specific values which map human personality traits to priority values.
That is a question for sociologists and psychologists to address. We simply provide
a mathematical model which reproduces the phenomenon of asymmetric responses
between pedestrians. Whence this asymmetry springs is an open question and we
would hope that fellow scientists, better qualified to study these issues, will provide
for us suitable characterizations for when such asymmetric responses occur and to
what degree.

8.5 Simulating The Tawaf

In this section we give specific details on how the observed behaviors for performing
the Tawaf are modeled.
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Fig. 8.8 The layout of the
Mataf area in the Al-Masjid
al Harām. Pilgrims walk
seven counter-clockwise
circles around the Kaaba and
Hateem. Each circle starts in
front of the black stone
(indicated as the start region)

Figure 8.8 shows the layout of the Mataf area, the location where the Tawaf
takes place including the Kaaba, Hateem and Maqam Ibrahim. The Hateem is a
semi-circular structure which was originally part of the Kaaba when the Kaaba was
rebuilt in A.D. 692. The Maqam Ibrahim is a structure of religious significance, to
the northeast of the Kaaba.

8.5.1 The Rite

The Tawaf is performed in the following manner:

1. Pilgrims enter the Mataf area and proceed towards the Black Stone. The Black
Stone is located at the Kaaba’s eastern corner. This landmark serves as the start
and finish point of each circumambulation.

2. After reaching the region in front of the black stone, pilgrims perform Istilam,
which can consist of kissing the Black Stone, touching the Black Stone with
hands, or raising hands towards the Black Stone, all while saying Tekbir, “God
is Great”. On crowded days, only a small number of pilgrims will attempt to
approach the Black Stone to kiss it. Those desirous to kiss the Black Stone will
queue up near the southeast wall of the Kaaba. A pilgrim typically will only seek
to kiss the Black Stone once, if at all.

3. The pilgrims walk, in a counter-clockwise direction, around the Kaaba and
Hateem.

4. At the completion of each circumambulation, the pilgrims perform Istilam again.
5. At the end of the seventh circle, the pilgrims perform a short prayer outside

the Mataf area, preferably in front of the Maqam Ibrahim or any convenient
location in the mosque. A small number approach to kiss the Black Stone upon
completion of the Tawaf.
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0.24 m

0.15 m 0.19 m

Area = 0.11 m2

Fig. 8.9 A circle of radius 0.19 m has the same area as an ellipse with major and minor axes of
0.24 and 0.15 m, respectively

6. Pilgrims exit the Mataf area. A recent study [32] has shown that 61% of the
pilgrims exit the Mataf through the Safa exit in preparation for the next ritual.

8.5.2 Population Characteristics

One of the parameters of our simulation is the composition of the population. To
that end we specify agent characteristics using population classes. Each population
class defines a numerical distribution of values for a set of agent parameters. These
values represent the physical capacity of the virtual pilgrims. The classes we use in
simulating the Tawaf include the following parameters:

1. Preferred speed: a normal distribution.
2. Maximum speed: a normal distribution.

Properties not enumerated in a class (such as agent radius) are the same for all
agents. We defined four agent classes to model both genders in two age categories
(“old” and “young”). Agents are assigned a population class based on a user-defined
distribution. The initial position of the agents is uniformly distributed in a circular
area around the Kaaba. To achieve “steady-state” as quickly as possible, we set the
agents randomly to have already completed some number of circumambulations (a
uniformly distributed integer in the range [0, 7]). Finally, we force the flow into the
Mataf to be equal to the flow out of the Tawaf by reintroducing each exiting agent
into the system at a random entrance.

The space occupied by the human body can reasonably be bound with an ellipse
with major and minor radii of 0.24 and 0.15 m, respectively, with an area of 0.11 m2.
RVO uses circles to represent agents. A circle with a 0.19-m radius has the same
total area as the ellipse (as shown in Fig. 8.9). We use this circle to model the
pilgrims. Circles of this size can be optimally packed to yield a maximum density
of 8 agents/m2.
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Fig. 8.10 The finite state machine for performing the Tawaf. Pilgrims start in the CIRCLE state.
At the end of each circle, they either attempt to move to the black stone or perform Istilam and
then perform another circle. After seven circles, they begin movement towards an exit

8.5.3 The Tawaf FSM

We have mapped the above behavior description to an FSM as shown in Fig. 8.10.
Here we will enumerate the states and their transitions.

CIRCLE: The circle state is the main circumambulation state. It contains two
velocity components represented as guidance fields (a 2D vector field defined over
the simulation domain specifying velocity directions). The first is a radial guidance
field with directions pointing towards the center of the Kaaba and the second is a
tangential guidance field representing the direction of travel around the Kaaba. The
tangential field causes the pilgrims to circle around the Kaaba and the radial field
draws them toward it. Although it is desirable to approach and kiss the Black Stone,
on crowded days it can prove too difficult and many pilgrims choose not to attempt
it. We model a variable degree of desire to approach the Kaaba and Black Stone
by normally varying the weight of the radial velocity component. Agents with a
large radial weight model those pilgrims with a greater desire to approach and put
themselves in a better position to kiss the Black Stone.

There are two transitions out of this state. The first transition determines if an
agent will queue up to kiss the Black Stone. The transition is a combination of
spatial and property transitions. If the agent has not yet kissed the Black Stone and
enters into a region near the southern corner of the Kaaba, the condition of the
transition is met and the agent enters the MOVE TO BLACK STONE state.

The second transition is a spatial transition. If the agent reaches the start region
in front of the Black Stone, the agent enters the START REGION REACHED state.
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START REGION REACHED: This state is a decision point. It contains no
velocity components. When an agent reaches this state, the state’s transitions are
evaluated and the agent immediately advances to the corresponding state.

This state contains two transitions. The first transition is a stochastic transition.
This is the likelihood that a given agent will attempt to perform Istilam by stopping
while turning to face the Kaaba. Anecdotal evidence suggests that this probability
is about 15%. We generate a uniformly distributed random value in the range [0, 1].
If the value is in the range [0, p], where p is the probability of stopping for Istilam,
then the transition is active, moving the FSM to the ISTILAM state.

If the transition to ISTILAM is not taken, then the second transition is taken. This
transition is, by definition, active. It moves the FSM to the CIRCLE DONE state.

CIRCLE DONE: This state is another decision point. Like START REGION
REACHED, it contains no velocity components. At this state, we determine whether
the agent has completed the Tawaf or not.

This state contains two transitions. The first transition is a property transition.
If the agent has completed seven circles around the Kaaba, the FSM transitions to
the EXIT state. Otherwise, the FSM transitions back to the circle state for the next
circle.

MOVE TO BLACK STONE: This state controls the queue for those agents
waiting to kiss the Black Stone. Upon entering this state, the agent is marked as
having kissed the black stone. Subsequently, the transition from CIRCLE to MOVE
TO BLACK STONE cannot be active for this agent. The velocity is computed as
follows: the direction of the preferred velocity is towards the Black Stone. If there
is another agent in the queue between the agent and the Black Stone, the speed
is the lesser of two speeds: the agent’s preferred speed and the speed that will
guarantee the agent reaches the other agent’s position in 1 s. If the space in front of
the agent is clear, the preferred velocity’s magnitude is simply the agent’s preferred
speed.

This state has a single spatial transition. It activates when the agent reaches the
stone and moves the FSM to the KISS BLACK STONE state.

KISS BLACK STONE: This state contains a single velocity component and a
single transition. Upon reaching the area directly in front of the Black Stone, the
velocity is computed to hold the agent in that position. To aid in this purpose, the
agent’s determination property is set to one. The single transition is a temporal
transition. After a randomly determined duration the agent enters the CIRCLE
DONE stage.

ISTILAM: This state, like the KISS BLACK STONE state, has a single velocity
component and transition. It likewise computes a velocity to keep the agent fixed
in the position at which the agent was when entering this state. However, this is
a softer constraint and the determination is set to zero. The single transition is a
temporal transition. After a randomly determined duration (1–2 s), the agent enters
the CIRCLE DONE stage.
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EXIT As pilgrims complete the Tawaf and exit the Mataf floor, they do so in a
cooperative manner, continuing to circle the Kaaba and working their way towards
the outside until they are in sufficient free space to head to their selected exit area.
Each agent is randomly assigned an exit according to the probability distribution
found in [32].

We have areas defined in the simulation domain for each of the five exits. Once
the exit has been randomly selected, we then select a random point in the exit region
to serve as the agent’s goal point.

To model the cooperative exit behavior exhibited by the pilgrims in the Tawaf,
we generate the agent’s velocity with a weighted combination of three velocities: a
vector from current position towards the exit goal position, a tangential component
like that in the CIRCLE state, and an anti-parallel radial component (the opposite of
the radial component of the CIRCLE state). The tangential and anti-parallel radial
components cause the agent to continue circling the Kaaba while working its way
away from the Kaaba.

We blend the exit goal velocity and the circular velocity based on the agent’s local
density. When the crowd is very dense, the agent continues around the Kaaba. As
the local density reduces, the weight between goal and circular velocities changes
linearly until an acceptable minimum density is achieved and the agent can move
directly towards its end goal.

8.6 Results

We’ve run several simulations with our system. Our first goal is to achieve a result
consistent with observed crowd movement during the Tawaf. To that end, we created
a population of 35,000 agents with the following composition: 25% each of young
male and female and 25% each of old male and female. Young males had a mean
preferred speed of 1.0 m/s and a standard deviation of 0.2 m/s. Similarly old males
had a mean preferred speed of 0.85 m/s with a standard deviation of 0.2 m/s. Young
and old females had mean preferred speeds of 0.95 and 0.8 m/s, respectively. Both
had a standard deviation of 0.15 m/s.

Our approach exploits the efficiency of the underlying pedestrian model. Our
simulation used a time step of 0.1 s and was able to generate frames at 26 Hz on
an Intel i7 running at 2.67 GHz. The evaluation of the FSM and pedestrian model
were parallelized over the set of agents through the use of OpenMP. In essence, our
simulator runs faster than real-time. For 35,000 agents, it produces 2.6 s of simulated
results for each second of computation.

Figures 8.11 and 8.12 show a single moment from our simulation results. In
this image, approximately 25,900 agents are actively circling the Kaaba. The other
9,100 agents are entering, exiting or queueing to touch the Black Stone. The
average walking speed of the circumambulating agents is approximately 0.73 m/s.
The average completion time for the full Tawaf is 28.1 min. If we assume that the
25,900 circumambulating agents are representative of the portion of the population
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Fig. 8.11 The density of the
crowd of pilgrims performing
the Tawaf in our simulation.
The dark region in the center
is the Kaaba. Our simulation
reaches a maximum density
of 7.3 agents/m2. The density
field is computed as in [12]

Fig. 8.12 The speed of the
individual agents performing
the Tawaf in our simulation

of 35,000 agents that are circling the Kaaba at any time, then this simulation implies
a capacity of 55,300 participants per hour.

In 2008, Koshak and Fouda [14] tracked subjects performing the Tawaf with GPS
devices. They partitioned the Mataf area into regions and computed the average
speed for each region. The results of this analysis are shown in Fig. 8.13. We
computed average speed for similar regions in our simulation. The simulated results
can be seen in Fig. 8.14. The analysis shows that the simulation compares well with
the real data in some ways and diverges in others.

1. Similarities

(a) Region 1, the region immediately preceding the start area, is the slowest region.
(b) Regions 5–7 exhibit higher speeds than regions 1–4.
(c) The top speed of the simulated crowd matches the top speed of the measured

crowd.

2. Differences

(a) Simulated data exhibits a much narrower range of speeds.

The disparity observed in the range of speeds can be attributed to two causes.
First, when Koshak and Fouda performed their experiments, there was a line on
the Mataf floor indicating the starting point. The line has since been removed.
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Fig. 8.13 The observed speeds of real pilgrims traversing each region during the Tawaf [14]
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Fig. 8.14 The average speed of simulated agents traversing each region during the Tawaf

At the time, experts felt that as pilgrims approached the line, they would come to
a stop while searching for the line. This is considered to be the dominant cause of
the extreme slow down in the corresponding region. Our simulation models current
behaviors reflecting the removal of the line. Thus, our agents don’t come to a stop
and the aggregate result is a higher speed through this region.

Secondly, the narrow range of simulated speeds may arise from properties in
the pedestrian model. It may be that, as a pedestrian model, RVO is insensitive
to density-related effects, such as the fundamental diagram. Further research is
required to confirm and correct, if necessary.

Heterogeneity: To explore the impact of the heterogeneous population, we ran
two alternative simulations. One consisted of nothing but young males (the fastest
pilgrim class). The second simulation consisted solely of old females (the slowest
pilgrim class). The simulation consisting only of young males exhibited an average
walking speed of 0.82 m/s for 24,900 circumambulating pilgrims and a correspond-
ing Tawaf completion time of 25.5 min. In contrast, the simulation of old females
obtained an average walking speed of 0.67 m/s for 26,500 circumambulating



8 Virtual Tawaf 207

pilgrims with a Tawaf completion time of 30.2 min. The implied capacity is 58,600
pilgrims per hour for the young males and 52,700 pilgrims per hour for the old
females.

The capacity indicated by the heterogeneous crowd is close to the average
capacity of the two homogeneous crowds (although the heterogeneous crowd’s
capacity is slightly lower). The full impact of heterogeneity is still unclear. It may
be that populating the entire crowd with instances of a single, statistically average
pedestrian may prove to be sufficient. This requires more study and requires better
data concerning the demographics of the pilgrims performing the Tawaf and more
flow data of the actual performance.

8.6.1 Limitations

While the results are promising, there are still aspects of the Tawaf it does not
capture. In addition to the unknown impact of heterogeneity, these simulations
haven’t modeled groups. We currently treat the agents as individuals. To more fully
capture the dynamics of the Tawaf, we would require a group model such as in [17].
There is, in particular, one instance of group behavior that has often been noted by
observers. At times, a group of participants will force their way orthogonally across
the crowd flow to get closer to the Kaaba. This behavior, its rate of incidence, and
its characteristics are not well understood and, as such, is not included in our model.

More generally, the simulated speeds need to be validated. Although the max-
imum speed matches that observed by Koshak and Fouda [14], it may prove that
at many of the densities observed, the speed of the pedestrians should be lower.
Furthermore, since the time of Koshak’s and Fouda’s experiments, the Mataf area
has been changed to improve the flow. We need to validate against more current data
collected from coordinated GPS devices and cameras.

8.6.2 Conclusion

The unique nature of the Tawaf exhibits behaviors which are not well modeled
by many existing crowd simulation systems. We have presented a framework for
simulating many of the complex behaviors and relationships exhibited by pilgrims
performing the Tawaf. By coupling a high-level finite-state machine with a low-
level pedestrian model, we have been able to model a range of behaviors such
as: circumambulating the Kaaba, queuing to touch the Black Stone, entering and
exiting the Mataf floor, and pausing to perform Istilam. We’ve shown how to
extend a velocity-obstacle-based pedestrian model to capture asymmetric inter-
agent responses and have shown that the model is well behaved even at the extreme
densities observed in our simulation. In many important respects, the results of the
simulation match those observed in real people performing the Tawaf.
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There are still multiple avenues to pursue for future work. The first is to confirm
the validity of the pedestrian model with respect to density-dependent effects. In
addition, we plan to extend the current set of behaviors to capture the important
behaviors currently missing from our simulation, with particular focus on the impact
of exiting pilgrims and groups. In addition, we intend to investigate the possibility
of using video of the Tawaf to refine the behavior system, both the parameters and
structure of the FSM as well as the local collision avoidance parameters.
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Part II
Visual Analysis of Crowds



Chapter 9
Crowd Flow Segmentation Using Lagrangian
Particle Dynamics

Saad Ali and Mubarak Shah

Abstract A crowd of people is composed of groupings that arise due to
interdependence among its members. Advanced visual surveillance and monitoring
capabilities for crowded scenes can make use of this inherent group-based
composition of human crowds to understand its global motion dynamics and to
compartmentalize it into sub-parts for detailed analysis. In this chapter we propose
an algorithm that uses motion information to locate such distinct crowd groupings
in terms of flow segments in videos of large dense crowds. The flow segments
are located using a particle-based representation of the motion in the video. This
representation enables detection of boundaries between dynamically distinct crowd
groupings.

9.1 Introduction

A crowd of people is composed of groupings that arise due to interdependence
among its members [2, 14]. This interdependence could be a result of a social
relationship (e.g. members of the same family or close circle of friends), a common
purpose (e.g. to walking towards the same exit door) or an act of participating in a
collective activity (e.g. running in a marathon). Advanced visual surveillance and
monitoring capabilities for crowded scenes can make use of this inherent group-
based composition of human crowds to understand its global motion dynamics
and to compartmentalize it into sub-parts for detailed analysis. In this chapter we
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Fig. 9.1 Left: A frame depicting groups of people walking in multiple directions. Right: The crowd
groupings (segments) located by the proposed algorithm

propose an algorithm that uses motion information to locate (or segment) such
distinct crowd groupings in terms of flow segments in videos of large dense crowds.
Figure 9.1 show an instance of a crowded scene where the proposed algorithm dis-
covered various flow segments that belong to distinct crowd groupings in the scene.

Flow segment-based, and in turn group-based, visual analysis of crowded scenes
provides multiple benefits: (i) enables a more elaborate and clutter free visualization
of various moving groups of people in the scene; (ii) overcomes shortcomings of
traditional ‘detection and tracking’ surveillance approaches that rely on accurate
detection of each individual in the scene; (iii) mitigates influence of number of pixels
on an individual person and is able to provide reasonable insight into motion of large
crowds even at low resolutions.

Lagrangian Particle-based Representation: For segmenting crowd flows, the
key idea developed in this chapter is a particle-based representation of the motion
in the video. This representation enables detection of boundaries between various
dynamically distinct crowd groupings. These boundaries, which are otherwise
invisible or imperceivable to human eye, naturally emerge when people walk in
different directions or at different speeds.

The proposed particle-based representation consists of particle trajectories that
are obtained by examining a cloud of particles (usually in the form of a regular grid)
as it mixes and gets transported over time under the action of optical flow generated
by the crowd motion. The process of particle propagation using optical field (or
motion field in general) is called ‘advection’. If we assume that this optical flow
field is generated by a certain underlying dynamical system (whose exact form and
description is unknown) then one can use these trajectories to reveal representative
characteristics of the phase space of this dynamical system where phase space is
defined as a space of variables using which all possible states of a dynamical system
are represented. The characteristics can include locations of the barriers, mixing
properties, location of sources, and sinks in the phase space. Under our assumption
the phase space is directly related to the flow field of the crowd, these characteristics
can be mapped directly to physical properties of the crowded scene. For example,
a barrier in the phase space maps either to a physical obstacle in the scene or to a
boundary between crowd groups moving in different directions.
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Formally if we assume that the underlying dynamical system is a non-
autonomous dynamical system then the barriers are the invariant manifolds of the
phase space and are often called Coherent Structures (CS) [4]. Generally speaking,
Coherent Structures (CS) are separatrices/material lines (i.e. a boundary having
two different types of flows on opposite sides) that influence the kinematics of
the particle cloud over finite time intervals, and they divide the flow, and in turn
the phase space, into dynamically distinct regions where all the particles within the
same region have a similar fate or, in other words, coherent behavior. Intuitively
speaking, coherent structure is to optical flow data what “edge” is to image data.
Note that when coherent structures are studied in terms of quantities derived from
particle trajectories, they are named as Lagrangian Coherent Structures (LCS).

Note that there are two approaches by which the field of motion can be described:
(i) Lagrangian, and (ii) Eulerian. In the Lagrangian approach, properties of the flow
are gathered along the path taken by a particle, while in the Eulerian approach
properties of the flow are observed at a fixed spatial location. Since in our case
particles are allowed to move under the influence of the optical flow, we call our
representation a ‘Lagrangian particle-based representation’.

LCS Detection: In order to develop an algorithm for detection of LCS (or
boundaries between distinct crowd groupings) we make use of several advances
in the areas of nonlinear dynamical systems [5, 12], fluid dynamics, [4, 6, 17] and
turbulence theory [7,11]. In these disciplines several approaches have been proposed
to compute LCS based on whether the underlying dynamical system is periodic [15],
aperiodic [3], or quasi-periodic. The crowd movements are generally aperiodic (i.e.
time dependent) in a generic setting as there are no or little prior constraints on
its speed and direction over longer durations of time. In this chapter we employ
the Lyapunov Exponent (LE) approach to locate LCS of the phase space. The LE
measures the exponential rate of convergence or divergence between two particle
trajectories. For a given crowd video, we use a grid that covers the optical flow field
of the video and compute the finite-time estimate of Lyapunov Exponents (LEs)
for trajectories starting at each point of the grid. This process returns a finite-time
scalar Lyapunov Exponent (FTLE) field over the phase space. We use the result by
Haller [4] that show coherent structures appearing as ridges in the FTLE field. In
turn these ridges can be used as the boundary between various dynamically distinct
crowd groupings for segmentation purposes.

We compute two types of LCS: (1) attracting LCS and (2) repelling LCS. The
attracting LCS, represented by a forward FTLE field, are computed by advecting the
particle grid forward in time, while the repelling LCS, represented by a backward
FTLE field, are computed by advecting the particle cloud grid in time. The two
FTLE fields are combined to generate a single scalar field that is segmented using
an image segmentation algorithm (e.g., a watershed segmentation algorithm in this
case). The steps involved crowd flow segmentation are summarized in the block
diagram in Fig. 9.3.

Assumptions: Motion of crowds can exhibit a wide range of behaviors and can
be captured using a variety of camera setups (e.g. pole mounted or a ground-based
camera). Therefore, it is pertinent to layout the assumptions and constraints on the
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type of motion and scenes that an processed using the proposed algorithm. Some of
these are listed next:

• Crowded scene is viewed from a distance by a camera installed over a tall
structure. This constraint results from the abstraction of crowd (or people) as
particles. If a scene is viewed from a closer distance, then the algorithm requires
a top-down view where only heads of individuals are visible, thereby minimizing
artifacts resulting from in-dependent movement of other body parts. Side views
of the scene are least preferable within the particle based framework.

• The density of the crowd varies from 3 person per meter square to 7 meter per
second square.

• The crowd is formally structured and focused on some collective activity. This
constraint results from the fact that LCS detection algorithm exploits in some
sense the ‘common fate’ principle (i.e. trajectories belonging to the same group
have the same destination) to localize boundaries between trajectories moving
in different directions. If the crowd motion is random or haphazard this may no
longer be true.

• Each spatial location in the scene supports one dominant motion. That is, for a
any fixed spatial location the distribution of direction and speed of optical flow
vectors cannot be multi-modal. This is necessary as algorithm assumes analysis
is done only at one time scale and during that time only one type of dominant
motion is expected at a location.

• It should be noted that crowd behavior is dynamic in nature and can change
drastically. Therefore, in order to perform any video based analysis of crowd
motion a sliding window based approach should be adopted. The temporal extent
of the window can be kept constant or can be dynamically adopted based on
level of activity in the scene. Approaches summarized in this chapter adhere
to this principal and performs flow segmentation within of a sliding temporal
window.

Chapter Organization The remaining portion of the chapter is organized as
follows: Sect. 9.2 provides a overview of the background material and formal
definition of various concepts. Section 9.3 discusses the crowd segmentation
algorithms and walks the reader through various intermediate steps. Section 9.4
describes experimental setup and presents qualitative results.

9.2 Background, Definitions and Notations

Key background concepts, mathematical notations, and formal definitions are
provided in this section. The nomenclature of Shadden et al. [18] is used for this
purpose.

Let a compact set D ⊂ R
2 be the domain of the phase space under study. This

domain corresponds to the 2D-spatial extent of the video depicting crowd motion.
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Next, define a time-dependent optical flow field v(x,t) on D that satisfies C0 and C2

continuity in time and space, respectively. The C0 and C2 assumptions are required
to keep the optical flow field smooth. Here, t corresponds to the t-th frame of the
video. Then a particle trajectory x(t : t0,x0), starting at point x0 at time t0 can be
defined as a solution of

ẋ(t; t0,x0) = v(x(t; t0,x0), t), (9.1)

x(t0; t0,x0) = x0, (9.2)

where ẋ is the time derivative. It can also be observed that a trajectory, x(t : t0,x0),
of a particle depends on the initial position x0 and the initial time t0. From the above
mentioned continuity constraints of optical flow, v(x,t), it follows that the particle
trajectory, x(t : t0,x0), will be C1 in time and C3 in space.

As the goal is to analyze the transport properties (using particle trajectories) of
the phase space and, in turn, the underlying crowd, the solution of Eq. (9.1) can be
viewed as a transport device or map that takes particles from their initial position
x0 at time t0 to their position at time t. Formally, this solution is referred as a “flow
map,” denoted by φ t

t0 , and that satisfies:

φ t
t0 : D → D : x0 �→ φ t

t0(x0) = x(t; t0,x0). (9.3)

In addition, the flow map φ t
t0 satisfies the following properties:

φ t0
t0 (x) = x, (9.4)

φ t+s
t0 (x) = φ t+s

s (φ s
t0(x)) = φ

t+s
t (φ t

t0(x)). (9.5)

These properties follow directly from the existence and uniqueness theorem that
allows one to conclude that there exists only one solution to a first-order differential
equation that satisfies the given initial condition. Next we describes the key concept
of FTLE field and discuss the steps involved in its computation from the flow
map φ .

9.2.1 Finite Time Lyapunov Exponent Field

As mentioned earlier crowd segments/groupings are located using LCS, and the
localization of LCS in turn requires computation of the FTLE field. The Lyapunov
exponent is an asymptotic quantity that measures the extent to which an infinitely-
close pair of particles separate in an infinite amount of time. In the theory of
dynamical systems, it is used as a tool for measuring the chaoticity of the system
under consideration by measuring the rate of exponential divergence between
the neighboring trajectories in the state/phase space. Traditionally, for any given
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dynamical system, ẋ = f (x), the maximum Lyapunov characteristic exponent is
defined as γ = limt→∞χ(t), with

χ(t) =
1
t

ln
| ξ (t) |
| ξ (0) | , (9.6)

where ξ (t) is the current state of the system, while ξ (0) is the initial state of the
given system. These states are usually obtained by solving the differential equation
controlling the evolution of the system.

When the Lyapunov exponent analysis is performed over a grid of particles over
finite times, it generates a FTLE field. In our formulation, the state of the system is
defined as the maximum possible separation between a particle and its neighbors.
Essentially, this means that the Lyapunov exponent now can be defined as a ratio of
the initial separation to the maximum possible separation between the particle and
its neighbors. Using this definition of the Lyapunov exponent, FTLE field σT (x0, t0)
can be computed using the flow map φ t0+T

t0 , which contains the final locations of
the particles at the end of particle advection. The flow map, as mentioned earlier,
quantifies the transport properties of the phase space by taking a particle from the
initial position, x0, at time t0 to its later position at time t0 +T .

One important point to note is that the FTLE does not capture the instantaneous
separation rate, but rather measures the average, or integrated, separation rate
between trajectories. This distinction is important because, in time-dependent
complex crowd flows, the instantaneous optical flow is not very informative.
However, by accounting for the integrated effect of the crowd-flow using particle
trajectories in the FTLE field, we hope to extract information that is more indicative
of the actual transport behavior.

The formal derivation of the expression of FTLE proceeds as follows [7, 18].
Consider a particle x ∈ D at initial time t0 (Fig. 9.2). Following advection, the
position of the particle after a time interval T is x �→ φ t0+T

T (x). Now, when advected
through the flow, any arbitrary particle that is infinitesimally close to x at time t0
will behave in a manner similar to x locally in time. However, as the advection time
increases the distance between these neighboring particles will change. Now, if we
represent the neighboring particle by y = x+ δx(0) (Fig. 9.2), where δx(0) is an
arbitrarily-oriented unit vector, then after a time interval T , the distance between
them becomes:

δx(t0 +T ) = φ t0+T
t0 (y)−φ t0+T

t0 (x) (9.7)

=
dφ t0+T

t0 (x)

dx
δx(0)+O(‖δx(0)‖2). (9.8)

Since the distance δx(0) is infinitesimally small, we can drop the higher order terms
in the Taylor series expansion of the flow map around the location x. The magnitude,
‖ δx(t0 +T ) ‖, of the final separation can be computed by taking the standard L2

norm
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Fig. 9.2 Computation of FTLE. The initial separation between particle x and y = x+ δx(0) is
δx(0). In order to compute the FTLE between them, we need to find out the magnitude of the final
separation after a time interval T

‖δx(t0 +T )‖2 =

∥∥∥∥∥
dφ t0+T

t0 (x)

dx
δx(0)

∥∥∥∥∥
2

. (9.9)

We are interested in finding out the maximum possible separation between the
particle, x, and all its neighbors, which, in other words, means that we seek to
maximize ‖ δx(t0 +T ) ‖2 over all possible choices of δx(0):

‖ δx(t0 +T ) ‖2= max
|δx(0)|=1

∥∥∥∥∥
dφ t0+T

t0 (x)

dx
δx(0)

∥∥∥∥∥
2

. (9.10)

Using the operator norm, the above equation can be written as:

‖ δx(t0 +T ) ‖2 = max
|δx(0)|=1

∥∥∥∥∥
dφ t0+T

t0 (x)

dx
δx(0)

∥∥∥∥∥
2

=

∥∥∥∥∥
dφ t0+T

t0 (x)

dx

∥∥∥∥∥
2

.

(9.11)

The right-hand side of the above equation is the matrix L2 norm that can be
computed simply by using the standard property that states that, for any matrix A,
the matrix L2 norm is the square root of the maximum eigenvalue of the positive

definite symmetric matrix AT A. If we consider A =
dφ t0+T

t0
(x)

dx , then AT A is
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Δ = AT A =
dφ t0+T

t0 (x)

dx

∗
.
dφ t0+T

t0 (x)

dx
, (9.12)

where superscript ‘*’ refers to the transpose operator. It is interesting to note that
Δ is also known as the finite time version of the Cauchy-Green deformation tensor.

The quantity
dφ t0+T

t0
(x)

dx is the spatial gradient tensor of the flow map. The maximum
eigenvalue of Δ is represented by λmax(Δ).

Now, knowing the magnitude of the maximum possible separation, λmax(Δ), and
the initial separation, δx(0), between the particle and its neighbors, we can compute
the FTLE field, σ , with a finite integration time T corresponding to point x ∈ D at
time t0 as:

σT
t0 =

1
T

ln
√
λmax(Δ). (9.13)

Since, δx(0) is a unit vector, we eliminated it from the above equation. The above
quantity is computed for each x ∈ D to obtain the entire FTLE field at time t0.

9.2.2 Lagrangian Coherent Structures

The LCS corresponds to the boundaries between the crowd flows of distinct
dynamics. They appear as ridges in the FTLE field of the video. The relationship
between ridges in the FTLE field and the LCS can be explained in the following
way. If two regions of a phase space have qualitatively different dynamics, then
we expect a coherent motion of particles within each region, and, therefore, the
eigenvalues of Δ will be close to 1, an indication that the fate of nearby particles
is similar inside the region. At the boundary of the two regions, particles will move
in incoherent fashion, and, therefore, will create much higher eigenvalues. These
higher values will make the ridge prominent in the FTLE field and point to the
locations of the LCS.

We compute two types of LCS, namely “Attracting Lagrangian Coherent Struc-
tures” (ALCS) and “Repelling Lagrangian Coherent Structures” (RLCS). The
former will emphasize those boundaries between the crowds from which, in a
given time interval (forward in time), all nearby particle trajectories separate; the
later will emphasize those boundaries between the crowds from which in a given
time interval (backward in time), all nearby particle trajectories separate. For the
computation of ALCS, the particle grid is initialized at the first optical flow field
and advected forward in time, followed by the computation of forward FTLE field.
For the computation of RLCS, the particle grid is initialized at the last optical flow
field and advected backward in time, followed by the computation of backward
FTLE field.
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9.3 Crowd Segmentation: The Algorithm

In this section, we bring together all the concepts explained so far and describe
the algorithmic steps that involved in carrying out the segmentation of crowd into
dynamically distinct groupings. A block diagram in Fig. 9.3 provides a higher-level
view of the algorithmic steps.

9.3.1 Optical Flow Computation

Given a video sequence, the first task is to compute the optical flow between the
consecutive frames of the video. We employ two different schemes for this purpose.
The first scheme consists of a block-based correlation in the Fourier domain. The
process starts by selecting a square patch centered at the same pixel location of
two consecutive frames F1 and F2, of the given video. The pixel values in both
blocks are mean normalized, and a correlation surface is constructed by performing
cross correlation in the frequency domain. The peaks are located in the correlation

Fig. 9.3 Block diagram of the crowd-flow segmentation algorithm. (1) The input is a video of
a crowded scene. (2) Computation of optical flow from the frames of the video. (3) Forward
and backward advection of particle grid resulting in forward and backward particle flow maps.
(4) Computation of respective FTLE fields from the forward and backward particle flow maps.
(5) Fusion of forward and backward FTLE fields and label assignment using the watershed
segmentation algorithm. (6) Detection of abnormal events (or crowd-flow instabilities)
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Fig. 9.4 (Color online) Examples of optical flow fields computed by using the algorithm of [1].
Top Row: Frames of the video. Bottom Row: Color-coded optical flow for the corresponding frames

Fig. 9.5 (Color online) Examples of optical flow fields computed by using the algorithm of [1].
Top Row: Frames of the video. Bottom Row: Color-coded optical flow for the corresponding frames

surface and are used to calculate the displacement. Note that all the pixels inside
a block are assigned the same displacement value. The process is repeated for all
possible blocks in the given frame. Local outliers in the displacement vectors are
replaced in a post-processing step, by using adaptive local median filtering. The
removed vectors are filled by interpolation of the neighboring velocity vectors.
A typical size of the block employed in our experiments is 16 × 16 pixels. The
second scheme that we used is proposed in [1] where grey value constancy, gradient
constancy, smoothness, and multi-scale constraints were used to estimate a high-
accuracy optical flow.

To analyze the crowd-flow in a given interval of T frames, we pool the optical
flow fields, v(1),v(2), . . . ,v(T ), to generate a 3D volume of optical flows. To
simplify the notation, we have removed the dependence of v on location x. This
3D volume of optical flow is used to advect the particles, where parameter T is
used as the integration time. we use the symbol Bt+T

t to represent a the 3D volume
of optical flow fields v(t),v(t + 1), . . . ,v(t +T ). Figures 9.4–9.7 show color-coded
optical flows computed from different sequences in our data set.
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Fig. 9.6 (Color online) Examples of optical flow fields computed by using the block-based
correlation algorithm. Top Row: Frames of the video. Bottom Row: Color-coded optical flow for
the corresponding frames

Fig. 9.7 (Color online) Examples of optical flow fields computed by using the block-based
correlation algorithm. Top Row: Frames of the video. Bottom Row: Color-coded optical flow for
the corresponding frames

9.3.2 Particle Advection

The next step is to advect a grid of particles through the 3D volume of flow fields,
Bt+T

t , that corresponds to the time interval t to t +T . we start by launching a grid
of particles over the first optical flow field, v(t), in Bt+T

t . Ideally, the resolution of
the grid should be the same as the number of pixels in each frame of the video. An
example of this Cartesian mesh of particles placed over the flow field of a crowd
video and the trajectories of particles are provided in Fig. 9.8.

Next, the Lagrangian trajectory [x(t +T ; t,x0,y0),y(t +T ; t,x0,y0)] correspond-
ing to a particle at grid location (x0,y0) is computed by solving the ordinary
differential equations numerically:
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Fig. 9.8 The particle advection process. (a) Frames from the input video. (b) A grid of particles
is overlaid on the flow field of the input sequence. (c) Trajectories of the particles are obtained by
advecting them through the flow field

dx
dt

= u(x,y, t),
dy
dt

= v(x,y, t), (9.14)

subject to the initial conditions [x(0),y(0)] = (x0,y0). t + T represents the time
up-till which we want to compute the trajectory. we use the fourth order Runge-
Kutta-Fehlberg algorithm along with cubic interpolation [13] of the velocity field
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Fig. 9.9 (a) The Lagrangian trajectories obtained by forward integration. (b) The Lagrangian
trajectories obtained by backward integration

to solve this system. The backward particle advection is carried out by initializing
the grid of particles over the last optical flow field v(t + T ) in the 3D volume of
optical flow fields Bt+T

t . The direction of the optical flow vectors is reversed for the
backward integration. Figure 9.9a provides a visualization of the Lagrangian tra-
jectories obtained by forward integration, while Fig. 9.9b provides the visualization
of the Lagrangian trajectories obtained by the backward integration. The length of
integration, T = 50, was used for this purpose.

Note that, in our case the domain D is not closed and trajectories can leave the
domain. The particles that leave the domain are not advected anymore, and their
last available positions are kept in the flow map. That is, we do not perform any
re-seeding of the particles if they leave the domain.

9.3.3 Particle Flow Maps and FTLE Field

During forward and backward integration, a separate pair of flow maps, namely φx

and φy, is maintained for the grid of particles. These flow maps are used to relate
the initial position of each particle to its later position obtained after the advection
process. This way, the particle flow maps integrate the motion over longer durations
of time, which is lacking in the instantaneous optical flow. Here, the first map, φx,
keeps track of how the x coordinate of particles is changing, and, similarly, φy keeps

track of the y coordinate of particles. we use notation φ f
x and φ f

y to refer explicitly to
forward flow maps, and φ b

x and φ b
y to refer explicitly to backward flow maps. When

the explicit references are not important, we omit the superscripts.
At the start, these maps are populated with the initial positions of the particles,

which are the pixel locations at which the particle is placed. The particles are then
advected under the influence of Bt+T

t using the method described in Sect. 9.3.2. The
positions of the particles are updated until the end of the integration time length T .

The computation of the FTLE field from the particle flow maps requires
computation of the spatial gradients of the particle flow maps, i.e., dφx

dx , dφx
dy , dφy

dx ,

and dφy
dy . This step is accomplished by using a finite differencing approach for taking
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Fig. 9.10 The spatial gradients of the particle flow maps for the sequence shown in Fig. 9.4
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Fig. 9.11 The spatial gradients of the particle flow maps for the sequence shown in Fig. 9.5

derivatives. Figures 9.10 and 9.11 show spatial gradients of particle flow maps for
two different sequences in the data set. It can be observed that a high gradient is
present where the neighboring particles are behaving differently over the length of
the integration. The Cauchy-Green deformation tensor is computed by substituting
the spatial gradients of the particle flow maps in Eq. (9.12). Finally, the FTLE field
is computed by finding the maximum eigenvalue of the Cauchy-Green deformation
tensor and plugging it in Eq. (9.13). Figures 9.12–9.15 show a number of FTLE
fields corresponding to different crowd sequences in our data set. In these examples,
the combined FTLE field is obtained by adding the forward and backward FTLE
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Fig. 9.12 FTLE field for the sequence shown at the top. The sequence has multiple groups
of people intermingling with each other. The ridges are prominent at the locations where the
neighboring crowd groups have dynamically distinct behavior. (a) The forward FTLE field
obtained by the forward integration of particles. (b) The backward FTLE field obtained by the
backward integration of particles. (c) The combined FTLE field

fields. It can be observed that ridges in these fields (Figs. 9.12–9.15), which point
to the location of LCS, are very prominent, and, therefore, can be used to separate
regions of the crowd-flow that are dynamically distinct from each other.

The utility of computing forward and backward FTLE fields becomes obvious
from the analysis of the FTLE fields shown in Fig. 9.13. In this video sequence
traffic from the ramp is merging onto the main highway. When the particles are
advected forward in time, no LCS appear at the intersection of the ramp and
the main highway (Fig. 9.13a). The reason is that the particles at the intersection
move forward coherently in time as the destinations of the underlying traffic flow
on the ramp and the main highway are the same. But when these particles are
advected backward in time, the LCS appear at the intersection (Fig. 9.13b) since
the particles at the intersection do not have the same destination backward in time
because the underlying traffic is originating from different locations. In other words,
by backward integration, we am able to take into account the origin of the flow
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Fig. 9.13 FTLE field for the sequence shown at the top. The sequence has multiple lanes of traffic,
and the traffic from the ramp is merging onto the main highway. (a) The forward FTLE field
obtained by the forward integration of particles. Note that no LCS are present at the intersection
of the ramp and the highway. (b) The backward FTLE field obtained by the backward integration
of particles. Note that LCS have now appeared at the intersection of the ramp and the highway. (c)
The combined FTLE field

Fig. 9.14 The combined FTLE fields for the sequences shown at the top
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Fig. 9.15 The combined FTLE fields for the sequences shown at the top

in addition to its destination. This capability is important to completely resolve
different crowd-flow segments present in the scene. This point will become clearer
when we present the segmentation results in a later section.

9.3.4 FTLE Field Segmentation

The LCS in the FTLE field can be treated as the watershed lines dividing individual
catchment basins. Each catchment basin represents the distinct crowd grouping that
is present in the scene. The catchment basins are homogeneous in the sense that
all the particles belonging to the same catchment basin have the same origin and
destination. To generate a distinct labeling for each catchment basin, we employ
the watershed segmentation algorithm [16]. The final segmentation map is created
by removing those segments where the magnitude of the flow is zero. we call such
segments “vacuum segments.” Note that, due to the unique strength of the FTLE
field based representation, we do not have to pre-specify the number of crowd-flow
segments. This way, we are able to overcome the problem of specifying the number
of segments or clusters which is common in most of the clustering and segmentation
algorithms [19].

9.4 Experiments and Discussion

This section discusses the experimental setup and the data sets used in the
experiments. It also presents the segmentation results along with a discussion of
the interpretation of the results.
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Fig. 9.16 Example of sequences used in our experiments

9.4.1 Datasets and Experimental Setup

We have tested our approach on videos taken from the stock footage web sites
(Getty-Images [9], Photo-Search), and Video Google [10] which are now part of
UCF Crowd data set [8]. Two types of crowded scenarios are covered in these
videos: the first scenario consists of scenes involving the high-density crowds, while
the second scenario consists of high-density traffic scenes. Traffic scenes can be
treated as a close approximation of the motion of crowds of people and, therefore,
provides us with useful data for testing the performance of the proposed algorithm.
Another set of videos were taken from the National Geographic documentary,
entitled “Inside Mecca,” which covers the yearly ritual of Hajj performed by close
to two million people. Therefore, this event provides a unique opportunity for
capturing data about the behavior of large gatherings of people in a realistic setting.
Figure 9.16 shows key frames from some of these sequences.

For each video, the optical flow is computed by using the algorithms previously
described in Sect. 9.3.1. The computation of the optical flow is performed at a
coarser resolution than the resolution of the image to reduce the computational
cost. Next, a grid of particles is placed over the flow field. The resolution of the
grid is kept the same as the number of pixels on which the flow field is computed.
The forward and backward particle flow maps are generated using the advection
algorithm described in Sect. 9.3.2. The corresponding FTLE fields are computed
from the spatial gradient tensor of the flow maps using Eq. (9.13). The backward
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Fig. 9.17 The flow segmentation result on a video taken from the National Geographic documen-
tary “Inside Mecca.” Left: A frame from the video. Right: The crowd-flow segmentation mask
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Fig. 9.18 The flow segmentation result on a video from “Video Google.” Left: A frame from the
video. Right: The crowd-flow segmentation mask

and forward FTLE fields are fused to generate a combined FTLE field. The fusion
is carried out by adding the values of both fields. Finally, the segmentation is
performed using the watershed segmentation algorithm.

9.4.2 Segmentation Results

This section presents qualitative analysis of the results obtained on different video
sequences. Figures 9.17–9.25 show the segmentation results on all the sequences in
the data set.

The first sequence, shown in Fig. 9.17, are extracted from the National Geo-
graphic documentary entitled “Inside Mecca”. The sequence depicts thousands of
people circling the Kabba in a counter-clockwise direction. In this case, the group of
people circling in the center is part of the same flow segment because of its common
dynamics and desirable goal. The optical flow field of the crowd motion offers a
unique challenge as one can observe from the color-coded optical flow shown in
Fig. 9.4. The different colors emphasize that the flow vectors along the circular path
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Fig. 9.19 The flow segmentation result on a video taken from the stock footage web site “Getty
Images.” Left: A frame from the video. Right: The crowd-flow segmentation mask
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Fig. 9.20 The flow segmentation result on a video taken from the National Geographic documen-
tary “Inside Mecca.” Left: A frame from the video. Right: The crowd-flow segmentation mask

have different directions and magnitudes. This means that a simple clustering of
these vectors will not allow us to assign these vectors to the same cluster when,
in fact, they all belong to one cluster. The result is shown in Fig. 9.26a, where
mean-shift clustering was used to cluster the optical flow vectors extracted from
the instantaneous optical flow field. The clustering results are shown for different
choices of the band-width parameter. But even with different values of bandwidth,
the mean-shift is not able to correctly localize the circular segment. However, using
our method where we integrate the motion information over longer durations of
time, we are able to correctly segment the complex crowd motions (Fig. 9.17). The
LCS structures previously shown in Fig. 9.14a, show that the dynamic behavior of
the crowd moving in a circle is preserved by emphasizing the boundaries of the
coherent flow regions. Another result of a similar type of motion is presented in
Fig. 9.21. In this case, there is an additional group of people that is walking on top of
the roof. Our method is able to localize this additional crowd-flow segment as well.

The next result that we would like to discuss is shown in Fig. 9.20. This sequence
contains complex motion dynamics as there are several groups of people that are
intermingling with each other and moving in various directions. The challenges
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Fig. 9.21 The flow segmentation result on a video from “Video Google.” Left: A frame from the
video. Right: The crowd-flow segmentation mask
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Fig. 9.22 The result of the flow segmentation on a high-density traffic scene. This segmentation
was obtained by using both the forward and backward FTLE fields. Left: A frame from the video.
Right: The crowd-flow segmentation mask
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Fig. 9.23 Result of the flow segmentation on a high-density traffic scene. The segments corre-
spond to group of cars that are behaving dynamically different from each other

posed by this sequence are different in that the mixing barriers between various
crowd groupings must be correctly located. The segmentation result shown in
Fig. 9.20 demonstrate that we am able to localize most of the distinct crowd
groupings that were present in the scene. The discovered barriers between the crowd
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Fig. 9.24 The result of the flow segmentation on a high-density traffic scene. This segmentation
was obtained by using only the forward FTLE field. Left: A frame from the video. Right: The
crowd-flow segmentation mask
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Fig. 9.25 The result of the crowd-flow segmentation on a marathon sequence. Left: A frame from
the video. Right: The crowd-flow segmentation mask

Fig. 9.26 A comparison with respect to the mean shift segmentation. (a) The segmentation
obtained for the sequence shown in Fig. 9.17. (b) The segmentation obtained for the sequence
shown in Fig. 9.20

groupings can be observed in the combined FTLE field shown in Fig. 9.12c. The bar-
riers which appear in the form of ridges in the FTLE field, encapsulate each crowd
group. A comparison is again performed with the mean-shift clustering approach
(Fig. 9.26b), but, again, the mean shift is not able to localize all the crowd-flow
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segments. This again points to the utility of integrating motion information over
longer periods of time, which helps to get a better picture of the crowd motion.
Some other example results on sequences involving groups of people are presented
in Figs. 9.18, 9.19, and 9.25.

Next, we discuss segmentation results on a high-density traffic sequence
(Fig. 9.23). The results on this sequence highlight the utility of using both forward
and backward integration of particles through the 3D volume of optical flows. In
this sequence, vehicles are moving in two opposite directions on the main highway,
while a flow of traffic is merging onto the main highway from the ramp. The
challenge in this sequence is to find the right membership of the flow generated
by the traffic on the ramp by resolving its origin and destination. If we only use
the forward integration, it is obvious that all the particles initialized over the ramp
will have the same fate as the particles on the main highway. This means that the
traffic on the ramp will become part of the flow generated by the lane on the right-
hand side of the highway. Another way to look at the forward integration is from
the viewpoint of flow continuity, where out-going flux on the ramp is equal to the
additional flux received by the highway at this location. The segmentation result
shown in Fig. 9.23 validates the above observation where same labeling is being
assigned to the ramp and to the right lane of the main highway. This ambiguity can
be resolved by the addition of the backward integration of particles. Since they are
considered backwards in time, the particles on the two sections of the road do not
share the same origin or, in other words, the outgoing flux is not equal to the flux
received by the two sections of the road. The segmentation result shown in Fig. 9.24
demonstrates that by using both forward and backward integration of particles, a
flow segmentation that is more refined is obtained. The result on another traffic
sequence is shown in Fig. 9.22.

9.5 Summary

This chapter has developed an algorithm for segmenting scenes of crowds of people
into ‘crowd groupings’ that are dynamically distinct. For this purpose, the spatial
extent of the video is treated as a phase space of a non-autonomous dynamical
system in which transport from one region of the phase space to the other is
controlled by the optical flow. Next, a grid of particles is advected forward and
backward in time through this phase space and the amount by which the neighboring
particles diverged is quantified by using a Cauchy-Green deformation tensor. The
maximum eigenvalue of this tensor is used to construct a Finite-Time Lyapunov
Exponent (FTLE) field, which revealed the time-dependent invariant manifolds of
the phase space called Lagrangian Coherent Structures (LCS). The LCS in turn
divided the crowd-flow into regions of different dynamics.

The strength of this approach lies in the fact that it bypasses the need for low-level
detection of individual objects altogether, which will be impossible in a high-density
crowded scene, and generates a concise representation of the complex mechanics of
human crowds using only the global analysis.
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Chapter 10
Modeling Crowd Flow for Video Analysis
of Crowded Scenes

Ko Nishino and Louis Kratz

Abstract In this chapter, we describe a comprehensive framework for modeling
and exploiting the crowd flow to analyze videos of densely crowded scenes. Our key
insight is to model the characteristic patterns of motion that arise within local space-
time regions of the video and then to identify and encode the statistical and temporal
variation of those motion patterns to characterize the latent, collective movements of
the people in the scene. We show that this statistical crowd flow model can be used to
achieve critical analysis tasks for surveillance videos of extremely crowded scenes
such as unusual event detection and pedestrian tracking. These results demonstrate
the effectiveness of crowd flow modeling in video analysis and point to its use
in related fields including simulation and behavioral analysis of people in dense
crowds.

10.1 Introduction

Computer vision research, in the past few decades, has made significant strides
toward efficient and reliable processing of the ever increasing video data. These
advances have mainly been driven by the need for automatic video surveillance that
persistently monitors security critical areas from fixed viewpoints. Many methods
have been introduced that successfully demonstrate the extraction of meaningful
information regarding the scene contents and their dynamics including detecting
people, tracking objects and pedestrians, recognizing specific actions by people and
scene-wide events, and interactions among people and other scene contents.
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Automated visual analysis of crowded scenes, however, remains a challenging
task. As the number of people in a scene increases, nuisances that play against
conventional video analysis methods surge. This is particularly true for methods
that fundamentally rely on the ability to extract and track individuals. In videos
of crowded scenes, the whole body of each person would be hardly visible to the
camera, people will occlude each other and other contents in the scene, the notion
of foreground and background will start to meld together, and most important the
behavior of people will change to accommodate the tightness and clutter in the
scene. These are nuisances not only to the computer algorithms for automated
analysis but also to human operators that will have to squint through the clutter for
hours and days to find a single adverse activity. As such, paradoxically, automated
video analysis is most needed where it is actually hardest to do.

The large number of people in a crowd, however, does in turn give rise to
invaluable visual cues regarding the scene dynamics. The sheer number of people
and their appearance adds texture to the collective movements of the people which
we refer to as the crowd flow in this chapter. The crowd flow embodies the latent,
coherent motions of individuals which also dynamically varies across the scene and
changes as time passes by. If we can model the crowd flow while faithfully encoding
its variability both in space and time, we may use it to extract critical contextual
information from the dynamic, cluttered scene.

In this chapter, we describe a comprehensive framework for modeling and
exploiting crowd flow to analyze videos of densely crowded scenes. Each individual
in a crowded scene is not a mere autonomous agent dictated by a set of simple rules,
but is an intelligent being that makes judgments on its own movement based on
local sensory input with a global perspective in mind. The movements of individuals
result in the intricate yet coherent motion that organically evolves in the scene. We
will model them as a structured motion field that dynamically changes its form
both in space and time. In other words, our approach argues for a scene-centric
representation of crowd flow modeling. This is a large departure from conventional
object- or people-centric approaches that capture crowd flow as a collection of
individuals and their paths.

Our key insight is to exploit the dense local motion patterns created by the large
number of people and model their spatio-temporal relationships, representing the
underlying intrinsic structure they form in the video. In other words, we model the
variations of local spatio-temporal motion patterns to describe common behavior
within the scene, and then identify the spatial and temporal relationships between
motion patterns to characterize the behavior of the crowd as a whole in the specific
scene of interest. We show that modeling the crowd flow can benefit solving critical
video analysis tasks that are otherwise challenging to achieve on crowded scenes.
Most important, we show that a scene-centric representation of the crowd flow can
augment object-centric individual models to track each individual in a highly dense
crowd.

We demonstrate the effectiveness of modeling and using the crowd flow for
video analysis in two fundamental surveillance tasks: unusual event detection and
pedestrian tracking. The experimental results show that exploiting the aggregated
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movements of people enables robust detection of anomalous behaviors and accurate
tracking of individuals. We believe these results have direct implications for human
behavior analysis as it enables accurate tracking of individuals in dense crowds,
which is essential of longitudinal “in-situ” observations of people in real-world
scenes. These results also point to a novel approach of crowd simulation in which
the collective movements of people are driven by statistical models learned from
observations.

10.2 Related Work

Past work on video analysis has mostly relied on the assumption that the scene
content to be analyzed can be reliably extracted in each frame. This is usually
achieved by maintaining a background model, subtracting the background from
the video frames to extract foreground objects (e.g., pedestrians), and then tracking
each of the moving foreground objects. Subsequent analysis then relies on the paths
or locations of the tracked foreground objects. Although this paradigm has been
largely successful in many video analysis applications, it naturally is limited to
videos of relatively sparse scenes where people and other scene contents including
static background can be clearly discerned from each other.

Video analysis of crowded scenes has recently attracted interest in the computer
vision community, especially to reach beyond such simple scenes and to achieve
automated surveillance in more complex, cluttered scenes. Here we review some of
the representative approaches to modeling such crowded scenes.

Ali and Shah [1, 2] model the crowd motion by averaging the observed optical
flow. Their approach assumes that the crowd does not change over time, and uses the
same video clips for learning and applications. Similar work by Mehran et al. [20]
use “streaklines,” a concept from hydrodynamics, to segment videos of crowds
and track pedestrians. Though streaklines encode more temporal information than
the average optical flow, they do not encode the temporal relationship between
consecutive observations. In contrast, we model the temporal dynamics over local
areas, and use our learned crowd model to analyze videos of the same scene recorded
at a different time.

Often, the term “motion pattern” is used to describe motion within the scene that
are part of the same physical process [11]. Hu and Shah [12] identify motion patterns
in crowded scenes by clustering optical flow vectors in similar spatial regions. Such
work is applicable to scenes where the motion of the crowd has large, stable patches
of heterogeneous flow. In near-view crowded scenes, however, a single physical
process (such as the crowd) may be heterogeneous and dynamically varying. Even
a single pedestrian may exhibit flow vectors in multiple directions due to their
articulated motion. In contrast, we represent the motion in small, space-time areas
with a local motion pattern, and capture the dynamically varying heterogeneous
crowd with a collection of HMMs.
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Andrade et al. [3, 4] also use a collection of hidden Markov models. The
observations to the HMM are vectors of pixel locations and optical flow estimates.
While these may be viewed as a form of local motion patterns, they do not directly
encode the variability in motion that can occur due to poor texture or aperture
problems. In contrast, our representation of local motion pattern are directional
distributions of optical flow that directly encode the uncertainty in the optical flow
estimate as we later demonstrate. In addition, the dimension of their representation
increases in dimension with the resolution of the video. Though they scale the
frame size, such a lengthy representation still requires more training data to properly
capture the covariance of the observations. In contrast, our directional distributions
are parameterized by a single 3D flow vector and a concentration parameter, as will
show, which reduces the dimensionality of the representation while retaining the
variance in the flow.

Other work view frequently occurring motion patterns as an annoyance. Yang
et al. [27] argue that high-entropy words, i.e., motions that occur frequently, are
not useful for activity recognition since they represent noisy optical flow or areas
without motion. Though noise and areas without motion are a factor, they are not
the only motion patterns that can occur frequently. In extremely crowded scenes, it
is exactly the high frequency local motion patterns that define the characteristic
movement of pedestrians within the crowd. In addition, the minor differences
between the instances of frequently occurring motion patterns are typically ignored.
Hospedales et al. [10], for example, quantize optical flow vectors into one of four
primary directions. This disregards the valuable variations of motion patterns that
may be used to robustly represent different movements of pedestrians.

Other work that describe the motion in local, space-time volumes assume each
cuboid contains motion in a single direction [14,24]. Often, the optical flow vectors
are quantized into a number of discrete directions [10, 25]. These representations
disregard the valuable variations of motion patterns that may be used to robustly
represent different movements of pedestrians.

Histograms of oriented gradients (HoG) features have been used to describe
space-time volumes for human detection [8] and action recognition [16]. The HoG
feature is computed on the spatial gradients (the temporal gradient is not used),
though they have been extended to the 3D space-time gradient [15]. The orientation
of spatial gradients encodes the structure of the pedestrian’s appearance, and thus is
not suitable when only motion is necessary. Rather than modeling a distribution
of the gradients’ orientations, we use the relationship between spatio-temporal
gradients and optical flow to estimate a directional distribution of optical flow
vectors that represent the possible motion within the cuboid.

10.3 Crowd Flow as a Collection of Local Motion Patterns

The key idea underlying our approach is to view the crowd flow as a collection of
local spatio-temporal motion patterns in the scene and to model their variation in
space and time with a collection of statistical models. In other words, we model the
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Fig. 10.1 An overview of our crowd flow model. We learn a statistical crowd flow model that
encodes the variation of local motion patterns that arise in small space-time volumes (cuboids).
The temporal variations of these local motion patterns at each local scene region are encoded with
a hidden Markov model learned from a training video. The resulting set of HMMs collectively
embody the crowd flow in the scene which is then used to detect local unusual events as statistical
deviations and track pedestrians by predicting local motion patterns that are used as a prior on each
person’s movement. (a) Training video. (b) Local motion pattern. (c) Collection of HMMs

crowd flow as a dynamically evolving structure of local motions in the scene and
time. This enables us to encode the global and local characteristics of the aggregate
movements of people in a scene with a concise analytical expression. Such a model
becomes crucial in achieving higher level analysis of the scene contents based on
the stationary behavior of the whole.

Figure 10.1 shows an overview of our model. First, as shown in Fig. 10.1a, we
divide a training video into spatio-temporal sub-volumes, or “cuboids,” defined by
a regular grid. Second, as shown in Fig. 10.1b, we model the motion of pedestrians
through each cuboid (i.e., the local motion pattern) with a 3D directional distribution
of optical flow. Next, as shown in Fig. 10.1c, we train a hidden Markov model
(HMM) over the local motion patterns at each grid location. This implies that we
assume that the crowd will generate motion patterns that conform to first-order
Markov processes at local space-time regions, which may not necessarily be true.
Nevertheless, we found that the temporal variation of local crowd motion can be
captured well with hidden Markov models which also enables efficient inference of
its parameter values. The hidden states of the HMMs encode the multiple possible
motions that can occur at each spatial location. The transition probabilities of the
HMMs encode the time-varying dynamics of the crowd motion. We represent the
crowd motion by the collection of HMMs, encoding the spatially and temporally
varying motions of pedestrians that comprise the entire crowd flow.

Our model has three unique characteristics that distinguish it from other methods.
First, our model encodes the variability of the crowd flow both in space and time.
The collection of HMMs captures the variations of the motion of pedestrians
throughout the entire video volume, making it more robust and dynamically
adjustable to different crowd behaviors. Second, we model the crowd flow by
starting with local motion patterns. This enables the model to scale with the modality
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of different crowd behaviors, rather than the number of pedestrians. Finally, since
our model is a set of statistical models, it may be learned from an example video
of the scene and be used to analyze videos of the same scene recorded at a
different time.

10.3.1 Modeling Local Motion Patterns

In our method, the video is viewed as a spatio-temporal volume which is subdivided
into small volumes that typically span 30 pixels in horizontal and vertical spatial
domain as well as 30 frames in the temporal domain. We refer to these small
spatio-temporal volumes that collectively form the video as cuboids. We first seek
to represent the motion in each cuboid in the video volume, i.e., the local motion
pattern. The optical flow can be reliably estimated when the cuboid contains motion
in a single direction with constant velocity and good texture. The motion in cuboids
from real-world crowded scenes, however, may be difficult to estimate reliably. A
cuboid may contain complex motion, i.e., motion exhibited by multiple objects
moving in multiple directions or a single object that changes direction or speed.
In addition, cuboids may contain little or no texture and have indeterminable
motion. To handle these different cases, we model each local motion pattern with a
distribution of potential optical flow vectors whose variance encodes the uncertainty
in the optical flow estimate. These potential optical flow vectors can be directly
computed from the 3D spatio-temporal gradients observed in the cuboid.

Let ∇I(x,y, f ) be a 3×1 vector representing the 3D spatio-temporal gradient,
i.e., gradient of the image intensities computed in the horizontal, vertical, and
temporal directions, respectively, at 2D pixel location (x,y) at frame f . The constant
brightness constraint [9] dictates the relationship between this 3D spatio-temporal
gradient and the 3D optical flow vector q

∇I(x,y, f )T q = 0 , (10.1)

where q has two degrees of freedom due to the ambiguity of global scaling and is
estimated as a unit vector.

Estimating the optical flow vector q from a single gradient estimate is ill-posed.
For this reason, it is usually assumed that the flow is constant in the space-time area
around (x,y, f ), and surrounding gradients are used to estimate the optical flow q.
Let {∇Ii|i = 1 . . .N} be a set of N spatio-temporal gradients (we have dropped x,y, f
for notational convenience) computed at the different pixel locations of the cuboid.
From the collection of the spatio-temporal gradients in a cuboid, one can estimate
the optical flow vector from its Gram matrix (or the structure tensor [26])

Gq =
N

∑
i
∇Ii∇IT

i q =

⎡
⎣

0
0
0

⎤
⎦ . (10.2)
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Fig. 10.2 We represent the local motion pattern of a cuboid as a collection of potential optical
flow vectors that arise from the spatio-temporal gradients. These potential optical flow vectors are
computed from the dominant optical flow and each spatio-temporal gradient and encoded with a
directional statistics distribution model. Please see text for details

The optical flow vector q can easily be computed as the eigenvector of G with the
smallest eigenvalue. Note that this optical flow vector is a unit 3D vector which
encodes both the direction and speed.

The single optical flow vector computed from all the spatio-temporal gradients,
however, is not a faithful representation of the motion within the cuboid. It
represents the dominant motion within the cuboid but assumes that all movements
align with that single direction and speed. In reality, the cuboid will contain various
motions in different directions and speeds that may be roughly aligned with that
single dominant vector but with significant variability. Encoding this variation of
motion within each cuboid is critical in arriving at an accurate analytical model of
the crowd flow. To capture this variability, we consider the potential optical flow
vectors that would have arisen from the spatio-temporal gradient vector computed
at each pixel in the cuboid.

As illustrated in Fig. 10.2, we consider each spatio-temporal gradient ∇Ii which
is not necessarily on the plane defined by the 3D optical flow vector q. Such a point
suggests that the actual motion within the cuboid may be in another direction

vi =
∇Ii ×q×∇Ii

|∇Ii ×q×∇Ii| , (10.3)

where × is the cross-product. We call this the potential optical flow vector
corresponding to that spatio-temporal gradient. Note that vi is orthogonal to ∇Ii,
and thus satisfies the optical flow constraint in Eq. (10.1) for ∇Ii.

As shown in Fig. 10.2b, the potential 3D optical flow vectors for each cuboid
form a distribution {vi | i = 1, . . . ,N} on the unit sphere. We can view this as a
probability density function on the unit sphere, which is known as a directional
statistics distribution [19]. We choose to model each of these distributions of
potential optical flow vectors with the von Mises-Fisher distribution [19]

p(x) =
1

c(κ)
exp
{
κμT x

}
, (10.4)
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a b c
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Fig. 10.3 The variance of the potential optical flow distribution encoded by the concentration
parameter of the von Mises-Fisher distribution model faithfully characterizes the type of local
motion pattern of the corresponding cuboid. (a) Uniform motion. (b) Complex motion. (c) No
motion

where μ is the mean direction, c(κ) is a normalization constant, and κ is the
concentration parameter. We fit a von Mises-Fisher distribution to the potential
optical flow vectors {vi | i=1, . . . ,N}. Mardia and Jupp [19] show that the sufficient
statistic for estimating μ and κ is

r =
1
N

N

∑
i

vi , (10.5)

and thus

μ =
1
|r|r . (10.6)

They also show that

κ =

⎧⎨
⎩

1
(1−|r|) if |r| ≥ 0.9

A−1
3 (|r|) otherwise ,

(10.7)

where

A3(|r|) = coth(|r|)− 1
|r| . (10.8)

In our implementation, we use the tabulated data from Mardia and Jupp [19] to
compute A−1

3 (|r|).
As illustrated in Fig. 10.3, the concentration parameter κ characterizes the

uncertainty in the optical flow estimate within the cuboid. Cuboids containing
motion in a single direction have a high concentration parameter, yielding a narrow
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distribution. Cuboids with complex motion have a wide distribution, indicating
motion may occur in different directions. Cuboids with little or no texture have
distributions across the entire sphere, indicating that motion may be occurring in
any direction. Each local spatio-temporal motion pattern O is defined by a mean 3D
optical flow vector μ and a concentration parameter κ that encodes the uncertainty
of the estimate.

10.3.2 Modeling the Dynamics of Local Motion Patterns

Now that we have a representation of the local motion patterns, we model their
variation in space and time with collection of hidden Markov models (HMMs) to
encode the crowd flow in the video.

Let us first briefly review hidden Markov models. Readers are referred to, for
instance, [22] for a more detailed account. The latent variables {st |t = 1, . . . ,T} of
an HMM are assumed to follow the Markov property: each latent variable depends
upon the previous. We only consider a first degree model, where each latent state
is dependent upon the single previous one. Given the latent variables, the observed
variables {Ot |t = 1, . . . ,T} are conditionally independent. The latent variables are
discrete, taking on one of J values. Each HMM is defined by a J×1 initial state
probability vector π , a J×J state transition matrix A, and the emissions densities
{p(Ot |st = j) | j=1, . . . ,J}. The likelihood of starting in a specific state j is encoded
by the initial probability vector

π( j) = p(s1= j) . (10.9)

The likelihood of transiting from state i to state j is represented by the state
transition matrix

A(i, j) = p(st+1= j|st = i) . (10.10)

A key problem in learning an HMM from data is to compute the likelihood of
an observation sequence {O1, . . . ,OT}. This is achieved efficiently using dynamic
programming by the Forwards-Backwards algorithm [22]. We review the forwards
step here, as we use it extensively in this work. Let bt be a J×1 vector of likelihoods
where

bt( j) = p(Ot |st = j) . (10.11)

In the forwards step, dynamic programming is used to compute the message

α t( j) = p(st = j,O1, . . . ,Ot) , (10.12)



246 K. Nishino and L. Kratz

where O1, . . . ,Ot are the observations up to time t. After the first observation, the
message is initialized

α1( j) = b1( j)π( j) . (10.13)

Subsequent messages are computed by the update

α t( j) = bt( j)
J

∑
i
α t−1(i)A(i, j) . (10.14)

Often α t is scaled by it’s magnitude after each update to avoid numerical problems.
This yields the posterior

α̂ t( j) =
α t( j)
|α t | = p(st = j|O1, . . . ,Ot) . (10.15)

After the backwards step of the Forwards-Backwards algorithm, we may compute
the full posterior

γ t( j) = p(st = j|O1, . . . ,OT ) (10.16)

which is used during training to update the parameters of the HMM.
An important aspect of the forwards step is that it may be computed online. When

each new observation Ot becomes available, the new posterior α̂ t may be computed
efficiently by Eq. (10.14). We use this characteristic of HMMs in our applications to
achieve online operation.

Next, we turn our attention to the form of the emission density of an HMM
{p(Ot |st = j) | j=1, . . . ,J}. Each observation Ot = {μ t ,κt} is a local motion pattern,
defined by the 3D mean optical flow vector μ t and the concentration parameter κt .
Often complex observations are quantized using a codebook, making the emission
densities discrete. This can decrease the training time, but reduces the amount of
information represented by each emission density.

Rather than quantizing our local motion patterns, we analytically model the
emission densities by imposing priors over μ t and κt . To achieve this, we assume
that the mean vector μ t and concentration parameter κt are statistically independent

p(Ot |st = j) = p(μ t |st = j)p(κt |st = j) . (10.17)

We model p(κt |st = j) as a Gamma distribution defined by a shape parameter a j and
scale parameter θ j. We model p(μ t |st = j) as a von-Mises Fisher distribution (i.e.,
the conjugate prior on μ t [18]) defined by a mean direction μ j

0 and a concentration

parameter κ j
0 .

A hidden Markov model can be trained using the Baum-Welch [22] algorithm.
During training, the posteriors γ t from Eq. (10.16) are used to update the emission
density parameters {μ j

0,κ
j

0 ,a
j,θ j}. The mean direction



10 Modeling Crowd Flow for Video Analysis of Crowded Scenes 247

r j
0 =

T

∑
t
γ t( j)μ t

T

∑
t
γ t( j)

(10.18)

is used to compute

μ j
0 =

1

|r j
0|

r j
0 (10.19)

and

κ j
0 =

⎧⎪⎪⎨
⎪⎪⎩

1

(1−|r j
0|)

if |r j
0| ≥ 0.9

A−1
3 (|r j

0|) otherwise .

(10.20)

There is no closed-form solution to estimating a j, and thus we use the numerical
technique from Choi and Wette [7]. Given an estimate of a j maximum likelihood is
used to estimate the scale

θ j =

T

∑
t
γ t( j)κt

a j
T

∑
t
γ t( j)

. (10.21)

10.4 Using the Crowd Flow Model

The collection of hidden Markov models now encode the spatial and temporal
variation of the local motion patterns and capture their dynamics both locally and
globally. The crowd flow is encoded in these collection of HMMs as the spatially
and temporally stationary behaviors of the local motion patterns. Now we are
in a position to exploit this statistical crowd flow model to achieve challenging
tasks in highly cluttered scenes. We will demonstrate the power of the model in
two important video analysis applications, namely unusual event detection and
pedestrian tracking.
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10.4.1 Detecting Unusual Local Events

Unusual event detection is a key application in automatic surveillance systems.
The sheer number of surveillance cameras deployed produces an abundance of
video that is often only viewed after an incident occurs. By automatically detecting
disturbances within the scene, the automatic surveillance system can alert security
personnel as soon as an incident occurs.

Large-scale unusual events, such as stampedes, incidents of violence, and crowd
panic, are rare, even though they are a primary motivation for automatic video
surveillance. While these large crowd disturbances are an area of interest, they are
not the only disturbance that may need to be detected in crowded scenes. Since
crowded scenes may contain any number of moving objects, a key application is
the detection of activities by one or few of the scene’s constituents that happen in
local areas. Detecting such local anomalies is of great interest, especially in very
crowded scenes since they can easily go unnoticed or disguised due to the heavy
clutter within the scene.

To detect local unusual events, we identify local motion patterns in a query video
of the same scene that statistically deviate from the learned model. Specifically,
we detect local motion patterns that have low likelihood given the spatio-temporal
dynamics of the crowd. We demonstrate with real-world data that the method
enables the detection of subtle yet important anomalous activities in high-density
crowds, such as individuals moving against the usual flow of traffic or stop in
otherwise high motion areas. Such unusual activity may only have a subtle effect on
the entire crowd, but still be a disturbance that requires intervention from security
personnel.

10.4.1.1 Finding Deviations from the Crowd Flow

The collection of HMMs represent the underlying steady-state motion of the crowd
by the spatial and temporal variations of local motion patterns. We seek to identify if
a specific local motion pattern contains unusual pedestrian activity. For the purpose
of this work, we consider a local motion pattern unusual if it occurs infrequently
or is absent from the training video. We derive a probability measure of how much
a specific local motion pattern deviates from the crowd motion in order to identify
unusual events.

Deviations from the HMM are caused by either an unlikely transition between
sequential local motion patterns or a local motion pattern with low emission prob-
abilities. We identify unusual local motion patterns by thresholding the conditional
likelihood

Tt = p(Ot |O1, . . . ,OT ) , (10.22)

where T is the last local motion pattern in the video clip. Exploiting the statistical
independence properties of the HMM yields
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Tt =
J

∑
j

p(Ot |st = j)γ t( j) , (10.23)

where γ t is the posterior p(st = j|O1, . . . ,OT ) computed from the forwards-
backwards algorithm (see Eq. (10.16)). The posterior γ t encodes the expected latent
state given the temporal statistics of the crowd, and decreases Tt when there is an
unlikely transition. The emission likelihoods p(Ot |st = j) are low for all values of j
when Ot was absent from the training data.

Computing Tt requires the entire video clip to be available. In a real-world
system, unusual events need to be detected as they occur. To achieve this, we use
the predictive distribution to compute an alternative measure

T̃t =
J

∑
j

p(Ot |st = j)α̂ t( j) , (10.24)

where α̂ t is the posterior p(st= j|O1, . . . ,Ot) computed during the forwards phase of
the Forwards-Backwards algorithm (see Eq. (10.15)). The estimate T̃t only requires
the local motion patterns up to time t to be available, but does not consider the
transition out of the observation at time t. As such, some cuboids are incorrectly
classified but anomaly detection can be performed online.

Often, the crowd can display different modalities at different spatial locations of
the scene. For example, some areas may regularly contain no motion, while others
contain motion in multiple directions. As a result, the ideal threshold value may
change with the spatial location. We account for this by dividing our likelihood
measure T̃t by the average likelihood of the training data.

10.4.1.2 Experimental Results

After training the crowd flow models on videos of normal activities of target scenes,
we detect unusual movements of pedestrian in query videos of the same scene
recorded at a different time. For this chapter, we detect anomalies in a concourse
and a ticket gate area of a station. The length of training videos varied for each
example between 540 and 3,000 frames, depending on the specific example. We
use cuboids of size 30× 30× 20 for the ticket gate scene and 40× 40× 20 for the
concourse scene.

Figure 10.4 shows successful detection of unusual movements of pedestrians in
local areas. Figure 10.4a, from the ticket gate scene, shows detection of pedestrians
reversing directions in the turnstiles. Figure 10.4b shows successful detection of
pedestrians in the concourse scene moving from left to right against the regular
crowd traffic. The training video used for the examples consists of pedestrians
moving in many different directions, but not from the left side of the scene to the
right. These examples illustrate the unique ability of our approach to detect irregular
local motion patterns within a crowded scene comprised of diverse movements of
pedestrians.
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Fig. 10.4 (Color online) Our crowd flow model enables the detection of local unusual activities
such as pedestrians moving against the crowd by examining the deviation of observed local motion
patterns from the learned crowd flow model. Blue: true positive, Magenta: false positive, and Red:
false negative

Fig. 10.5 (Color online) Observing no motion in otherwise high motion areas are also successfully
detected as unusual events. Blue: true positive, Magenta: false positive, and Red: false negative

The type of detected events depends entirely on the training data. Figure 10.5
shows detection of pedestrians loitering in otherwise high-traffic areas. Since the
training video contains typical crowd motion, the lack of pedestrians (e.g., the empty
turnstiles in the ticket gate scene) deviate from the model. This dependency on the
training data is not only expected, it is desirable. It allows users of our approach
to decide which particular local movements of pedestrian they consider usual by
including it in the training video.

It is unreasonable to expect that all possible typical local motion patterns will be
contained in the training video. Inevitably some typical local motion patterns will
not be captured by the training data, and result in incorrect classifications such as the
false positives. These are exasperated by the fact that the events being detected are
subtle, local movements of pedestrian. Events that are dramatically different from
the training sequence, such as global crowd disturbances, will result in fewer false
positives. As shown in Fig. 10.5, the few false negatives in both scenes always occur
adjacent to true positives, which suggests they are harmless in practical scenarios.
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Fig. 10.6 We evaluate the local unusual event detection accuracy on 11 videos (C1 to C11) using
manually labeled ground truth data. The receiver operating characteristic curves show the overall
accuracy and effectiveness of using the crowd flow model

Figure 10.6 shows the receiver operating characteristic (ROC) curves (generated
by varying the likelihood threshold) for all of the clips. Our approach performs with
significant accuracy on each of the example videos. In video C5, the upper bodies of
the loitering pedestrians move left and right and exhibit motion patterns similar to
that of the crowd. This failure indicates that our approach associates similar motion
patterns that may be caused by dissimilar movement, a side effect caused by the
robustness of the prototypical distributions.

Figure 10.7 shows the detection accuracy using the online likelihood measure
(computed from α) compared with the full likelihood measure γ . The online method
achieves comparable accuracy to the offline computation.

Figure 10.8 shows the effects of increasing the training data size for video C1.
As expected, the performance increases with longer training data, and achieves
good performance with 100 observations, or 2,000 frames of video. Using only 50
observations the model achieves significant accuracy with a false positive rate (ratio
of false positives to total negatives) of 0.17 and a true positive rate (ratio of true
positives to total positives) of 0.88. This strong performance with few observations
directly results from the crowd’s high density. Since the scene contains a large
number of pedestrians, significant variations in local motion patterns occur even
in short video clips.
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is provided to faithfully encode the underlying crowd flow



10 Modeling Crowd Flow for Video Analysis of Crowded Scenes 253

10.4.2 Using the Crowd to Track Individuals

Tracking objects or people is a crucial step in video analysis with a wide range of
applications including behavior modeling and surveillance. Conventional tracking
methods typically assume a static background or easily discernible moving objects,
and as a result are limited to scenes with relatively few constituents. Videos of
crowded scenes present significant challenges to tracking due to the large number
of pedestrians and the frequent partial occlusions that they produce.

We can leverage the learned crowd flow model to track individual pedestrians
in videos of crowded scenes. Specifically, we leverage the crowd flow as a prior in
a Bayesian tracking framework. We use the crowd motion to predict local motion
patterns in videos containing the pedestrian that we wish to track. Next, we use
the predicted local motion pattern as a prior on the state-transition distribution in a
particle filter framework to track individuals. We use these predictions as a prior on
a particle filter to track individuals. We show that our approach accurately predicts
the motion that a target will exhibit during tracking and leads to accurate tracking
of individuals which is otherwise extremely challenging.

10.4.2.1 Predicting Motion Patterns

We train the crowd flow model on a video of a crowded scene containing typical
crowd behavior. Next, we use it to predict the local motion patterns at each location
of a different video of the same scene. Note that, since we create a scene-centric
model based on the changing motion in local regions, the prediction is independent
of which individual is being tracked. In fact, we predict the local motion pattern at
all locations of video volume given only the previous frames of the video.

Given a trained HMM at a specific spatial location and a sequence of observed
local motion patterns O1, . . . ,Ot−1 from the query video, we seek to predict the next
local motion pattern Õt = {μ̃ t , κ̃t} that will occur. We achieve this by computing the
expected value of the predictive distribution

Õt = E [p(Ot |O1, . . . ,Ot−1)] , (10.25)

by marginalizing the predictive distribution

p(Ot |O1, . . . ,Ot−1) =
J

∑
j

p(Ot |st = j)
J

∑
i

p(st = j|st−1= i)p(st−1= i|O1, . . . ,Ot−1) .

(10.26)

Note that p(st−1= i|O1, . . . ,Ot−1) is the posterior α̂ t−1 computed during the
forwards-backwards algorithm [6] (see Eq. (10.15)), and p(st = j|st−1= i) is defined
by the HMM’s state transition matrix A. As such, the second summation in
Eq. (10.26) may be represented by
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ω t( j) =
J

∑
i

A(i, j)α̂ t−1(i) (10.27)

and

Õt =
J

∑
j
E [p(Ot |st = j)]ω t( j) . (10.28)

Thus Õt is a weighted sum of the expected local motion patterns defined by each
emission density.

Recall that each emission density p(Ot |st = j) is defined by four parameters{
μ j

0,κ
j

0 ,a
j,θ j
}

. Using the means of the Gamma and von Mises-Fisher distributions

E [p(Ot |st = j)] =
{
μ j

0,a
jθ j
}
, (10.29)

i.e., a local motion pattern with mean direction μ j
0 and concentration parameter

a jθ j. Thus the predicted local motion pattern Õt is defined by mean direction

μ̃ t =
1∣∣∣∣∣

J

∑
j
ω t( j)μ j

0

∣∣∣∣∣

J

∑
j
ω t( j)μ j

0 (10.30)

and concentration parameter

κ̃t =
J

∑
j
ω t( j)a jθ j . (10.31)

During tracking, we use the previous frames of the video to predict the local
motion pattern that spans the next M frames (where M is the number of frames in a
cuboid). Since the predictive distribution is a function of the HMM’s transition prob-
abilities and the hidden states’ posteriors, the prediction may be computed on-line
and efficiently during the forward phase of the Forwards-Backwards algorithm [22].

10.4.2.2 Crowd Flow Bayesian Tracking

We now use the predicted local motion pattern to track individuals in a Bayesian
framework. Specifically, we use the predicted local motion pattern as a prior on the
parameters of a particle filter. Our crowd flow model enables these priors to vary in
the space-time and dynamically adapt to the changing motions within the crowd.

Tracking can be formulated in a Bayesian framework [13] by maximizing the
posterior distribution of the state x f of the target at time f given past and current
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frame f−1

Previous Local
Motion Patterns Predicted Local

Motion Pattern
(x,y)

w

h

Fig. 10.9 We use the
predicted local motion pattern
to impose a prior on the
motion of the pedestrian
through the space-time
volume

measurements z1: f = {zi|i = 1 . . . f}. Note that the index of each frame f is different
from the temporal index t of the local motion patterns (since the cuboids span many
frames). We define state x f as a four-dimensional vector [x,y,w,h]T containing
the tracked target’s 2D location (in image space), width, and height, respectively.
Tracking is performed by maximizing the posterior distribution

p
(
x f |z1: f

)
∝p
(
z f |x f

)∫
p
(
x f |x f−1

)
p
(
x f−1|z1: f−1

)
dx f−1 , (10.32)

where z f is the frame at time f , p
(
x f |x f−1

)
is the transition distribution, p

(
z f |x f

)
is the likelihood, and p

(
x f−1|z1: f−1

)
is the posterior from the previous tracked

frame. The transition distribution p
(
x f |x f−1

)
models the motion of the target

between frames f−1 and f , and the likelihood distribution p
(
z f |x f

)
represents how

well the observed image z f matches the state x f . Often, the distributions are non-
Gaussian, and the posterior distribution is estimated using a Markov chain Monte
Carlo method such as a particle filter [13] (please refer to [5] for an introduction to
particle filters).

As shown in Fig. 10.9, we impose priors on the transition p
(
x f |x f−1

)
distribution

using the predicted local motion pattern at the space-time location defined by x f−1.
For computational efficiency, we use the cuboid at the center of the tracked target to
define the priors, although the target may span several cuboids across the frame.

Transition Distribution

We use the predicted local motion pattern to hypothesize the motion of the tracked
target between frames f −1 and f , i.e., the transition distribution p

(
x f |x f−1

)
. Let

the state vector x f =
[
kT

f ,d
T
f

]T
where k f = [x,y] is the target’s location (in image

coordinates) and d f = [w,h] is the size (width and height) of a bounding box around
the target. We focus on the target’s movement between frames and use a second-
degree auto-regressive model [21] for the transition distribution of the size d f of the
bounding box.
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The transition distribution of the target’s location p
(
k f |k f−1

)
reflects the 2D

motion of the target between frames f−1 and f . We model this using the von Mises-
Fisher distribution defined by the predicted local motion pattern Õt = {μ̃ t , κ̃t} at
space-time location k f−1. In the particle filter, a set of N sample locations (i.e.,
particles) {ki

f−1|i = 1, . . . ,N} are drawn from the prior p
(
x f−1|z1: f−1

)
. For each

sample ki
f−1, we draw a 3D flow vector vi = [vi

x,v
i
t ,v

i
t ] from the predicted local

motion pattern at space-time location ki
f−1. We use these 3D flow vectors to update

each particle

ki
f = ki

f−1 +

[
vi

x/vi
t

vi
y/vi

t

]
. (10.33)

Note that κ̃t plays a key role in this step: distributions with a large variance
will spread the particles over the frame, while those with a small variance (i.e.,
determinable flow) will keep the particles close together.

Likelihood Distribution

Typical models of the likelihood distribution maintain a template T that represents
the target’s characteristic appearance in the form of a color histogram [21] or an
image [2]. A template T and the region R (the bounding box defined by state x f ) of
the observed image z f are used to model the likelihood distribution

p
(
z f |x f

)
=

1
Z

exp

[
−d (R,T )2

2σ2

]
, (10.34)

where σ is the variance selected empirically, d(·) is a distance measure, and Z is a
normalization constant.

Rather than using color histograms or intensity as the defining characteristic of
an individual’s appearance, we model the template T as an image of the individ-
ual’s spatio-temporal gradients. This representation is more robust to appearance
variations caused by noise or illumination changes. We use a weighted sum of the
angles between the spatio-temporal gradient vectors in the observed region and the
template to define the distance measure

d (R,T ) =
M

∑
i
ρ f

i arccos(ti · ri) , (10.35)

where M is the number of pixels in the template, ti is the normalized spatio-temporal
gradient vector in the template, ri is the normalized spatio-temporal gradient vector
in the region R of the observed image at frame f , and ρ f

i is the weight of the pixel
at location i and frame f ,
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We model changes in the target’s appearance by estimating the weights {ρ f
i |i =

1, . . . ,M} in Eq. (10.35) during tracking. Specifically, pixels that change drastically
(due to the pedestrian’s body movement or partial occlusions) exhibit a large error
between the template and the observed region. We estimate this error E f

i during
tracking to account for a pedestrian’s changing appearance. The error at frame f
and pixel i is

E f
i = α arccos(ti · ri)+(1−α)E f−1

i , (10.36)

where α is the update rate (set to 0.05) and ti and ri are again the gradients
of the template and observed region, respectively. To reduce the contributions of
frequently changing pixels to the distance measure, the weight at frame f and pixel
i is inversely proportional to the error

ρ f
i =

1
Z

(
π−E f−1

i

)
, (10.37)

where Z is a normalization constant such that ∑iρ
f

i = 1. To account for changes in
appearance, the template is updated each frame by a weighted average.

10.4.2.3 Experimental Results

We evaluated our method on videos of four scenes: the concourse and ticket gate
scenes, and the sidewalk and intersection scenes from the UCF dataset [1]. We use
a sampling importance re-sampling particle filter as in [13] with 100–800 particles
(depending on the subject) to estimate the posterior in Eq. (10.32). We learn a crowd
flow model on a video of each scene, and use it to track pedestrians in videos of the
same scene recorded at a different time. The training videos for each scene have 300,
350, 300, and 120 frames, respectively. The training videos for the concourse, ticket
gate, and sidewalk scenes have a large number of pedestrians moving in a variety of
directions. The video for the intersection scene has fewer frames due to the limited
length of video available. In addition, the training video of the intersection scene
contains only a few motion samples in specific locations, as many of the pedestrians
have moved to other areas of the scene in that point in time. Such sparse samples,
however, still result in a useful model since most of the pedestrians are only moving
in one of two directions (either from the lower left to the upper right, or from the
upper right to the lower left).

Due to the perspective projection of many of the scenes, which is a common
occurrence in surveillance, the sizes of pedestrians varies immensely. As such, the
initial location and size of the targets are selected manually. Many methods exist for
automatically detecting pedestrians and their sizes [8] even in crowded scenes [17]
and may be used to initialize the tracker.
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Fig. 10.10 The angular error between the predicted optical flow vector and the observed optical
flow vector for all scenes. (a) Concourse. (b) Ticket gate. (c) Sidewalk. (d) Intersection

The motion represented by the local motion pattern depends directly on the size
of the cuboid. Ideally, we would like to use a cuboid size that best represents
the characteristic movements of a single pedestrian. Cuboids the size of a single
pedestrian would faithfully represent the pedestrian’s local motion and therefore
enable the most accurate prediction and tracking. The selection of the cuboid size,
however, is entirely scene-dependent, since the relative size of pedestrians within the
frame depends on the camera and physical construction of the scene. In addition,
a particular view may capture pedestrians of different sizes due to perspective
projection. We use a cuboid of size 10×10×10 on all scenes so that a majority of
the cuboids are smaller than the space-time region occupied by a moving pedestrian.
By doing so, the cuboids represent the motion of a single pedestrian but still contain
enough pixels to accurately estimate a distribution of optical flow vectors. Note that,
since the cameras recording the scenes are static, the sizes must be determined only
once for each scene prior to training. Therefore, the cuboid sizes may be determined
by a semi-supervised approach that approximates the perspective projection of the
scene.

We measure the accuracy of the predicted local motion patterns by the angle
between the predicted flow μ̃t and the observed optical flow. Figure 10.10 shows
the angular error averaged over the entire video for each spatial location in all four
scenes. Noisy areas with little motion, such as the concourse’s ceiling, result in
higher error due to the lack of reliable gradient information. High motion areas,
however, have a lower error that indicates a successful prediction of the local
motion patterns. The sidewalk scene contains errors in scattered locations due to the
occasional visible background in the videos and close-view of pedestrians. There
is a larger amount of error in high-motion areas of the intersection scene since a
relatively short video was used for training.

Figure 10.11 shows the predicted optical flow, colored by key in the lower left,
for four frames from the sidewalk scene. Pedestrians moving from left to right are
colored red, those moving right to left are colored green, and those moving from the
bottom of the screen to the top are colored blue. As time progresses, our space-time
model dynamically adapts to the changing motions of pedestrians within the scene
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Fig. 10.11 The crowd flow enables accurate prediction of the optical flow that changes over space
and time

Fig. 10.12 The optical flow predicted from the crowd flow model accurately identifies the most
likely movement of objects in the specific space time location

as shown by the changing cuboid colors over the frames. Poor predictions appear as
noise, and occur in areas of little texture such as the visible areas of the sidewalks
or pedestrians with little texture.

Figure 10.12 shows a specific example of the changing predicted optical flow
on six frames from the sidewalk scene. In the first two frames the predicted flow is
from the left to the right, correctly corresponding to the motion of the pedestrian.
In later frames the flow adjusts to the motion of the pedestrian at that point in time.
Only by exploiting the temporal structure within the crowd motion are such dynamic
predictions possible.

Figure 10.13 shows a visualization of our tracking results on videos from each of
the different scenes. Each row shows four frames of our method tracking different
targets whose trajectories are shown up to the current frame by the colored curves.
The different trajectories in the same spatial locations of the frame demonstrate the
ability of our approach to capture the temporal motion variations of the crowd. For
example, the green target in row 1 is moving in a completely different direction
than the red and pink targets, although they share the spatial location where their
trajectories intersect. Similarly, the pink, blue, red, and green targets in row 2 all
move in different directions in the center part of the frame, yet our method is
able to track each of these individuals. Such dynamic variations that we model
using an HMM cannot be captured by a single motion model. Spatial variations
are also handled by our approach, as illustrated by the targets concurrently moving
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Fig. 10.13 The crowd flow model enables accurate tracking of individual pedestrians even in
extremely crowded scenes
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Fig. 10.14 Example of a tracking failure due to severe (near full) occlusion

Fig. 10.15 Tracking of pedestrians moving against the crowd

in completely different directions in rows 5 and 6. In addition, our method is robust
to partial occlusions as illustrated by the pink target in row 1, and the red targets in
rows 3, 5, and 6.

Figure 10.14 shows a failure case due to a severe occlusion. In these instances
our method begins tracking the individual that caused the occlusion. This behavior,
though not desired, shows the ability of our model to capture multiple motion
patterns since the occluding individual is moving in a different direction. Other
tracking failures occur due to poor texture. In the sidewalk scene, for example,
the occasional viewable background and lack of texture on the pedestrians cause
poorly-predicted local motion patterns. On such occasions, a local motion pattern
that describes a relatively static structure, such as black clothing or the street, is
predicted for a moving target. This produces non-smooth trajectories, such as the
pink and red targets in row 5, or the red target in row 6 of Fig. 10.13.

Occasionally, an individual may move in a direction not captured by the training
data. For instance, the pedestrian shown on the left of Fig. 10.15 is moving from
left to right, a motion not present in the training data. Such cases are difficult to
track since the crowd flow model can not predict the pedestrian’s motion. On such
occasions, the posteriors (given in Eq. (10.27)) are near identical (since the emission
probabilities are all close to 0), and thus the predicted optical flow is unreliable. This
does not mean the targets can not be tracked, as shown by the correct trajectories in
Fig. 10.15, but the tracking depends entirely on the appearance model.
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Fig. 10.16 (Color online) Tracking error using our approach compared with a second-degree auto-
regressive model and using only our transition distribution with a color-based likelihood

We hand-labeled ground truth tracking results for 40 targets, 10 from each scene,
to quantitatively evaluate our approach. Each target is tracked for at least 120
frames. The ground truth includes the target’s position and the width and height
of a bounding box. The concourse and ticket gate scenes contain many pedestrians
whose lower bodies are not visible at all over the duration of the video. On such
occasions, the ground truth boxes are set around the visible torso and head of the
pedestrian. Given the ground truth state vector kt , we measure the error of the
tracking result k̂t as ||kt − k̂t ||2.

Figure 10.16 shows the error of our method for each labeled target, averaged over
all of the frames in the video, compared to a particle filter using a color-histogram
likelihood and second-degree auto-regressive model [21] (labeled as Perez). In
addition, we show the results using our predicted state-transition distribution with a
color-histogram likelihood (labeled as Transition Only). On many of the targets our
state transition distribution is superior to the second-degree autoregressive model,
though nine targets have a higher error. Our full approach improves the tracking
results dramatically and consistently achieves a lower error than that of Pérez
et al. [21].

Figure 10.17 compares our approach with the “floor fields” method by Ali
and Shah [2] and the topical model from Rodriguez et al. [23]. Since the other
methods do not change the target’s template size, we only measured the error in
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the x,y location of the target. Our approach more accurately tracks the pedestrian’s
locations in all but a few of the targets. The single motion model by Ali and Shah
completely loses many targets that move in directions not represented by their
single motion model. The method of Rodriguez et al. [23] models multiple possible
movements, but is still limited since it does not include temporal information.
Our temporally varying model allows us to track pedestrians in scenes that exhibit
dramatic variations in the crowd motion.

Figure 10.18 shows the tracking error over time, averaged over all of the targets,
using our approach, that of Ali and Shah [2], and that of Rodriguez et al. [23].
The consistently lower error achieved by our approach indicates that we may track
subjects more reliably over a larger number of frames. Our temporally varying
model accounts for a larger amount of directional variation exhibited by the targets,
and enables accurate tracking over a longer period of time.

10.5 Summary

In this chapter, we introduced a novel, space-time statistical model of the crowd
flow in the image space and demonstrated its use in important video analysis
applications of crowded scenes. The experimental results show that the model is
able to accurately encode the inherent structural patterns of local motions that
constitute the crowd flow in concise analytical forms that can then be used to
evaluate conformity and predict the motion of local space-time regions in target
videos. The results also showed that these information can be successfully used
to identify local unusual events and track individuals in videos of high density
crowds. We believe the idea of modeling crowd flow from observation has strong
implications in applications beyond the two we have demonstrated. In particular,
we are hopeful that it will pave the way to finding realistic yet concise models of
individual behaviors in crowded scenes that can directly be used in simulating large
crowds and validating or even discovering new insights in behavioral studies.
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Chapter 11
Pedestrian Interaction in Tracking: The Social
Force Model and Global Optimization Methods

Laura Leal-Taixé and Bodo Rosenhahn

Abstract Multiple people tracking consists in detecting the subjects at each
frame and matching these detections to obtain full trajectories. In semi-crowded
environments, pedestrians often occlude each other, making tracking a challenging
task. Tracking methods mostly work with the assumption that each pedestrian moves
independently unaware of the objects or the other pedestrians around it. In the real
world though, it is clear that when walking in a crowd, pedestrians try to avoid
collisions, keep a close distance to a group of friends or avoid static obstacles in the
scene. In this chapter, we present an overview of methods that include pedestrian
interaction in a tracking framework. This interaction can be expressed in two ways:
first, including social and grouping behavior as a physical model within the tracking
system, and second, using a global optimization scheme which takes into account
all trajectories and all frames to solve the data association problem.

11.1 Introduction

Multiple people tracking is a key problem for many computer vision tasks, such as
surveillance, animation or activity recognition. In crowded environments occlusions
and false detections are common, and although there have been substantial advances
in the last years, tracking is still a challenging task. Tracking is often divided in two
steps: detection, finding the objects of interest on every frame, and data association,
matching the detections to form complete trajectories in time. Researchers have
presented improvements on the object detector [9, 13, 34, 36] as well as on the
optimization techniques [18, 23] and even specific algorithms have been developed
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Fig. 11.1 Terms of the social force model. (a) Constant velocity assumption. (b) Avoidance
forces. (c) Group attraction forces

for tracking in crowded scenes [2,32]. Though each object can be tracked separately,
recent works have proven that tracking objects jointly and taking into consideration
their interaction can give much better results in complex scenes. Current research
is mainly focused on two aspects to exploit the interaction between pedestrians: the
use of a global optimization strategy [7, 21, 40] and a social motion model [30, 38].
The focus of this chapter is to give a detailed overview of multiple people trackers
which include either a global optimization method or social behavior information
to improve tracking results in crowded scenarios. Finally, the chapter discusses
an approach to marry both concepts and include the social behaviors in a global
optimization tracking system (Fig. 11.1).

11.1.1 Related Work

Current research is mainly focused on two aspects to exploit the interaction between
pedestrians: the use of a global optimization strategy and a social motion model. In
this section, we discuss both research trends.

Global Optimization: The optimization strategy deals with the data association
problem, which is usually solved on a frame-by-frame basis or one track at a
time. Several methods can be used such as Markov Chain Monte Carlo (MCMC)
[19], multi-level Hungarian [20], inference in Bayesian networks [27] or the
Nash Equilibrium of game theory [39]. In [6] an efficient approximative Dynamic
Programming (DP) scheme is presented, in which trajectories are estimated one
after the other. This means that if a trajectory is formed using a certain detection,
the other trajectories which are computed later will not be able to use that detection
anymore. This obviously does not guarantee a global optimum for all trajectories.
Recent works show that global optimization can be more reliable in crowded scenes
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as it solves the matching problem jointly for all tracks. The multiple object tracking
problem is defined as a linear constrained optimization flow problem and Linear
Programming (LP) is commonly used to find the global optimum. The idea was first
used for people tracking in [16], although this method needs to know a priori the
number of targets to track, which limits its application in real tracking situations.
In [7], the scene is divided into identical cells, each represented by a node in the
constructed graph. Using the information of the Probability Occupancy Map, the
problem is formulated either as a max-flow and solved with Simplex, or as a min-
cost and solved using k-shortest paths, which is a more efficient solution. Both
methods show a far superior performance when compared to the same approach
with DP [6]. The authors of [3] also define the problem as a maximum flow on an
hexagonal grid, but instead of using matching individual detections, they make use
of tracklets. This has the advantage that they can precompute the social forces for
each of these tracklets, nonetheless, the fact that the tracklets are chosen locally,
means the overall matching is not truly global, and if errors occur during the
creation of the tracklets, these cannot be overcome by the global optimization.
In [40] the tracking problem is formulated as a Maximum A-Posteriori (MAP)
problem, which is mapped to a minimum-cost network flow and then efficiently
solved using LP. In this case, each node represents a detection, which means the
graph is much smaller compared to [3, 7]. Finally, [37] propose to combine global
and local methods to match trajectories across cameras and across time, while a
unique global formulation for the multi-view multi-object is presented in [22].

Social Behavior for Tracking: Most tracking systems work with the assumption
that the motion model for each target is independent. This simplifying assumption
is especially problematic in crowded scenes: imagine the chaos if every pedestrian
followed his or her chosen path and completely ignored the other pedestrians in
the scene. In order to avoid collisions and reach the chosen destination at the same
time, a pedestrian follows a series of social rules or social forces. These have been
defined in what is called the Social Force Model (SFM) [15], which has been used
for abnormal crowd behavior detection [26], crowd simulation [28] and has only
recently been applied to multiple people tracking: in [33], an energy minimization
approach is used to predict the future position of each pedestrian considering all the
terms of the social force model. In [30] and [24], the social forces are included in
the motion model of the Kalman or Extended Kalman filter, while the authors in [4]
discuss the type of energy needed to include information about the dynamic model,
repulsion, etc. and how to optimize it using the standard conjugate gradient method.
In [14] a method is presented to detect small groups of people in a crowd, but it is
only recently that grouping behavior has been included in a tracking framework [10,
29,38]. In [29] groups are included in a graphical model which contains cycles and,
therefore, Dual Decomposition [8] is needed to find the solution, which obviously is
computationally much more expensive than using Linear Programming. Moreover,
the results presented in [29] are only for short time windows. On the other hand, the
formulations of [10, 38] are predictive by nature and therefore too local and unable
to deal with trajectory changes (e.g. when people meet and stop to talk).
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Recently, a new approach [21] includes social and grouping models into a
global optimization framework, allowing for a better estimate of the true maximum
a-posteriori probability of the trajectories and therefore further improving tracking
results, especially in crowded scenes.

11.2 Multiple People Tracking

Tracking is commonly divided in two steps: object detection and data association.
First, the objects are detected in each frame of the sequence and second, the
detections are matched to form complete trajectories. In this section we define the
data association problem and describe how to convert it to a minimum-cost network
flow problem, which can be efficiently solved using Linear Programming.

The idea is to build a graph in which the nodes represent the pedestrian
detections. These nodes are fully connected to past and future observations by edges,
which determine the relation between two observations with a cost. Thereby, the
matching problem is equivalent to a minimum-cost network flow problem: finding
the optimal set of trajectories is equivalent to sending flow through the graph so as
to minimize the cost. This can be efficiently computed using the Simplex algorithm
or k-shortest paths [11].

11.2.1 Problem Statement

Let O = {okt} be a set of object detections with ot
k = (pk, t), where pk = (x,y,z) is

the 3D position and t is the time stamp. A trajectory is defined as a list of ordered
object detections Tk = {o1

k ,o
2
k , · · · ,oN

k }, and the goal of multiple object tracking is
to find the set of trajectories T ∗= {Tk} that best explains the detections.

This is equivalent to maximizing the a-posteriori probability of T given the
set of detections O , which is known as maximum posterior or MAP problem.

T ∗= argmax
T

P(T |O) (11.1)

Further assuming that detections are conditionally independent, the objective
function is expressed as:

T ∗= argmax
T

P(O|T )P(T ) = argmax
T

∏
k

P(ok|T )P(T ) (11.2)
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P(ok|T ) is the likelihood of the detection. Optimizing Eq. (11.2) directly is
intractable since the space of T is huge, nonetheless we make the assumption that
the trajectories cannot overlap (i.e., a detection cannot belong to two trajectories) to
obtain:

T ∗= argmax
T
∏

k

P(ok|T ) ∏
Tk∈T

P(Tk) (11.3)

where the trajectories are represented by a Markov chain:

P(T ) = ∏
Tk∈T

Pin(o1
k)P(o

2
k |o1

k) . . .P(o
t
k|ot−1

k ) . . .P(oN
k |oN−1

k )Pout(oN
k ) (11.4)

where Pin(ot
k) is the probability that a trajectory is initiated with detection ot

k,
Pout(ot

k) the probability that the trajectory is terminated at ot
k and P(ot

k|ot−1
k ) is the

probability that ot−1
k is followed by ot

k in the trajectory.

11.2.2 Tracking with Linear Programming

In this section, we explain how to convert the MAP problem into a Linear Program,
which is a particularly interesting since it can be efficiently solved in polynomial
time using any of the available techniques from the optimization community [1].

A linear programming problem consists in minimizing or maximizing a linear
function in the presence of linear constraints, which can be both equalities and
inequalities.

Minimize c1 f1 + c2 f2 + . . .+ cn fn (11.5)

Subject to a11 f1 +a12 f2 + . . .+a1n fn ≥ b1 (11.6)

a21 f1 +a22 f2 + . . .+a2n fn ≥ b2

...
...

...

am1 f1 +am2 f2 + . . .+amn fn ≥ bm

where Eq. (11.5) is the objective function and Eq. (11.6) are the constraints.

(continued)
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(continued)
c1,c2, . . . ,cn denote the known cost coefficients and f1, f2, . . . , fn are the
decision variables to be determined.

To convert our problem into a linear program, we linearize the objective function
by defining a set of flow flags fi, j = {0,1} which indicate if an edge (i, j) is in the
path of a trajectory or not.

In a minimum cost network flow problem, the objective is to find the values of
the variables that minimize the total cost of the flows over the network. Defining
the costs as negative log-likelihoods, and combining Eqs. (11.3) and (11.4), the
following objective function is obtained:

T ∗= argmin
T

∑
Tk∈T

− logP(Tk)−∑
k

logP(ok|T )

= argmin
T
∑

i
Cin,i fin,i +∑

i, j
Ci, j fi, j +∑

i
Ci fi +∑

i
Ci,out fi,out (11.7)

subject to the following constraints:

• Edge capacities: assuming each detection can only correspond to one trajectory,
the edge capacities have an upper bound of ui j ≤ 1 and:

fin,i + fi ≤ 1 fi,out + fi ≤ 1 (11.8)

• Flow conservation at the nodes:

fin,i + fi = ∑
j

fi, j ∑
j

f j,i = fi,out + fi (11.9)

• Exclusion property:

fi, j = {0,1} (11.10)

The condition in Eq. (11.10) requires us to solve an integer program, which is
known to be NP-complete. Nonetheless, we can relax the condition to have the
following linear equation:

0 ≤ fi, j ≤ 1. (11.11)

Now the problem is defined and can be solved as a linear program. If certain
conditions are fulfilled, the solution T ∗ will still be integer, and therefore will also
be the optimal solution to the initial integer program. We discuss the integrality of
the solution in more detail in Sect. 11.4.

To map this formulation into a cost-flow network, we define G = (N,E) to be
a directed network with a cost Ci, j and a capacity ui j associated with every edge
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Fig. 11.2 Example of a graph with the special source s and sink t nodes, six detections which are
represented by two nodes each: the beginning bi and the end ei

(i, j) ∈ E. An example of such a network is shown in Fig. 11.2; it contains two
special nodes, the source s and the sink t; all flow that goes through the graph starts
at the s node and ends at the t node. Thereby, each flow represents a trajectory Tk

and the path that each flow follows indicates which observations belong to each of
the trajectories. Each observation oi is represented with two nodes, the beginning
node bi ∈ N and the end node ei ∈ N (see Fig. 11.2). A detection edge connects bi

and ei.
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Below we detail the three types of edges present in the graphical model and the
cost for each type:

Link Edges: The edges (ei,b j) connect the end nodes ei with the beginning nodes
b j in following frames, with cost Ci, j and flow fi, j, defined as:

fi, j =

{
1, oi and o j belong to Tk and Δ f ≤ Fmax

0, otherwise
(11.12)

where Δ f is the frame number difference between nodes j and i and Fmax is the
maximum allowed frame gap.

The costs of the link edges represent the spatial relation between different
subjects. Assuming that a subject cannot move a lot from one frame to the next,
we define the costs to be a decreasing function of the distance between detections in
successive frames. The time gap between observations is also taken into account
in order to be able to work at any frame rate, therefore velocity measures are
used instead of distances. The velocities are mapped to probabilities with a Gauss
error function as shown in Eq. (11.13), assuming the pedestrians cannot exceed a
maximum velocity Vmax. The effect of parameter Vmax is detailed in Sect. 11.5.1.

E(Vt ,Vmax) =
1
2
+

1
2

erf

(
−Vt +

Vmax
2

Vmax
4

)
(11.13)

As we can see in Fig. 11.3, the advantage of using Eq. (11.13) over a linear
function is that the probability of lower velocities decreases more slowly, while
the probability for higher velocities decreases more rapidly. This is consistent with
the probability distribution of speed learned from training data.

Therefore, the cost of a link edge is defined as:

Ci, j =− log(P(o j|oi))+C(Δ f ) (11.14)

=− logE
( ‖p j−pi)‖

Δ t ,Vmax

)
+C(Δ f )

where C(Δ f ) = − log
(

BΔ f−1
j

)
is the cost depending on the frame difference

between detections.

Detection Edges: The edges (bi,ei) connect the beginning node bi and end node
ei, with cost Ci and flow fi, defined as:

fi =

{
1, oi belongs to Tk

0, otherwise
(11.15)
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Fig. 11.3 (Color online) Blue = normalized histogram of speeds learned from training data. Red
= probability distribution if cost depends linearly on the velocity. Green = probability distribution
if the relation of cost and velocities is expressed by Eq. (11.13). An Vmax = 7m/s is used in the
experiments

If all the costs of the edges are positive, the solution to the minimum-cost
problem is the trivial null flow. Consequently, we represent each observation with
two nodes and a detection edge with negative cost:

Ci = log(1−Pdet(oi))+ log

(
BBmin

‖pBB −pi)‖
)
. (11.16)

The higher the likelihood of a detection Pdet(oi) the more negative the cost of
the detection edge, hence, confident detections are likely to be in the path of the
flow in order to minimize the total cost. If a map of the scene is available, we can
also include this information in the detection cost. If a detection is far away from a
possible entry/exit point, we add an extra negative cost to the detection edge, in order
to favor that observation to be matched. The added cost depends on the distance to
the closest entry/exit point pBB, and is only computed for distances higher than
BBmin = 1.5m. This is a probabilistic simple way of including other information
present in the scene, such as obstacles or attraction points (shops, doors, etc.).

Entrance and Exit Edges: The edges (s,ei) connect the source s with all the end
nodes ei, with cost Cin,i and flow fin,i. Similarly, (bi, t) connects the end node bi with
sink t, with cost Ci,out and flow fi,out. The flows are defined as:

fin,i (or fi,out) =

{
1, Tk starts (or ends) at oi

0, otherwise
(11.17)
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Fig. 11.4 (a) Graph structure as used in [40], which requires the computation of Pin and Pout in
an Expectation-Maximization step during optimization. (b) Graph structure as used in [21] which
does not require the computation of these two parameters; the trajectories are found only with the
information of the link and detection edges

This connection, as shown in Fig. 11.4b, was proposed in [21] so that when a
track starts (or ends) it does not benefit from the negative cost of the detection edge.
Setting Cin = Cout = 0 and taking into account the flow constraints of Eqs. (11.8)
and (11.9), the trajectories are only created with the information of the link edges.

In contrast, the authors in [40] propose to create the opposite edges (s,bi) and
(ei, t), which means tracks entering and leaving the scene go through the detection
node and therefore benefiting from its negative cost (see Fig. 11.4a). If the costs Cin

and Cout are then set to zero, a track will be started at each detection of each frame,
because it will be cheaper to use the entrance and exit edges than the link edges. On
the other hand, if Cin and Cout are very high, it will be hard for the graph to create
any trajectory. Therefore, the choice of these two costs is extremely important. In
[40], the costs are set according to the entrance and exit probabilities Pin and Pout,
which are data dependent terms that need to be calculated during optimization.

11.3 Modeling Social Behavior

If a pedestrian does not encounter any obstacles, the natural path to follow is a
straight line. But what happens when the space gets more and more crowded and
the pedestrian can no longer follow the straight path? Social interaction between
pedestrians is especially important when the environment is crowded. In this section
we consider how to include the social behavior [15], which we divide into the Social
Force Model (SFM) and the Group behavior (GR), into the minimum-cost network
flow problem.
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11.3.1 New MAP and Linear Programming Formulation

The original social force model [15] describes a physical system that predicts
the position of a pedestrian in a continuous way, which has been successfully
used for crowd simulation [28]. Nonetheless, we use the social information within
another paradigm: in our Linear Programming system, we have a set of hypothetical
pedestrian positions (in the form of nodes) and we apply the social forces to find
out the probability of a certain match (i.e. a certain trajectory being followed by a
pedestrian).

When including social and grouping information in the Linear Programming for-
mulation, we can no longer assume that the motion of each subject is independent,
which means we have to deal with a much larger search space of T .

We extend this space by including the following dependencies for each
trajectory Tk:

• Constant velocity assumption: the observation ot
k ∈ Tk depends on past

observations [ot−1
k ,ot−2

k ]
• Grouping behavior: If Tk belongs to a group, the set of members of the

group Tk,GR has an influence on Tk

• Avoidance term: Tk is affected by the set of trajectories Tk,SFM which are
close to Tk at some point in time and do not belong to the same group as Tk

The first and third dependencies are grouped into the SFM term. The sets Tk,SFM

and Tk,GR are disjoint, i.e., for a certain pedestrian k, the set of pedestrians that have
an attractive effect (the group to which pedestrian k belongs to), is different from the
pedestrians that have a repulsive effect on k. Therefore, we can assume that these
two terms are independent and decompose P(T ) as:

P(T ) = ∏
Tk∈T

P(Tk ∩Tk,SFM ∩Tk,GR) (11.18)

= ∏
Tk∈T

P(Tk,SFM|Tk)P(Tk,GR|Tk)P(Tk)

Let us assume that we are analyzing observation ot
k. In Fig. 11.5 we summarize

which observations influence the matching of ot
k. Typical approaches [40] only take

into account distance (DIST) information, that is, the observation in the previous
frame ot−1

k . We introduce the social dependencies (SFM) given by the constant
velocity assumption (green nodes) and the avoidance term (yellow nodes). In this
case, two observations, ot

q and ot
r that do not belong to the same group as ot

k, will be
considered to create a repulsion effect on ot

k. On the other hand, the orange nodes
which depict the grouping term (GR), are two other observations ot

m and ot
n which
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Fig. 11.5 Diagram of the
dependencies for each
observation ot

k

do belong to the same group as ot
k and therefore have an attraction effect on ot

k. Note
that all these dependencies can only be modeled by high order terms, which means
that either we use complex solvers [29] to find a solution in graphs with cycles, or
we keep the linearity of the problem by using an iterative approach as we explain
later on.

The objective function is accordingly updated:

T ∗= argmin
T

∑
Tk∈T

− logP(Tk)− logP(TSFM|Tk) (11.19)

− logP(TGR|Tk)+∑
k

− logP(ok|T )

= argmin
T
∑

i
Cin,i fin,i +∑

i
Ci,out fi,out

+∑
i, j
(Ci, j +CSFM,i, j +CGR,i, j) fi, j +∑

i
Ci fi

11.3.2 Social Force Model

The social force model states that the motion of a pedestrian can be described as
if they were subject to “social forces”. There are three main terms that need to be
considered: the desire of a pedestrian to maintain a certain speed, the desire to keep
a comfortable distance from other pedestrians and the desire to reach a destination.
Since we cannot know a priori the destination of the pedestrian in a real tracking
system, we focus on the first two terms.
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Constant Velocity Assumption: The pedestrian tries to keep a certain speed and
direction, therefore we assume that in t +Δ t we have the same speed as in t and
predict the pedestrian’s position in t +Δ t accordingly.

p̃t+Δ t
i = pt

i +vt
iΔ t

Avoidance Term: The pedestrian also tries to avoid collisions and keep a comfort-
able distance from other pedestrians. This term is modeled as a repulsion field with
an exponential distance-decay function with value α learned from training data.

at+Δ t
i = ∑

gm �=gi

exp

(
−‖p̃t+Δ t

i − p̃t+Δ t
m ‖

αΔ t

)
(11.20)

To compute the cost of edge (i, j), the constant velocity assumption is used to
predict the position of oi and o j as well as the rest of pedestrians p̃t+Δ t

m , and the
repulsion acceleration each pedestrian has on i is also taken into account. The only
pedestrians that have this repulsion effect on subject i are the ones which do not
belong to the same group as i and ‖p̃t+Δ t

i − p̃t+Δ t
m ‖ ≤ 1m. The different avoidance

terms are combined linearly.
Now the prediction of the pedestrian’s next position is also influenced by the

avoidance term (acceleration) from all pedestrians:

p̃t+Δ t
i = pt

i +(vt
i +at+Δ t

i Δ t)Δ t (11.21)

The distance between prediction and real measurements is used to compute the
cost:

CSFM,i, j =− logE

(
‖p̃t+Δ t

i −pt+Δ t
j ‖

Δ t
,Vmax

)
(11.22)

where the function E is detailed in Eq. (11.13).
In Fig. 11.6 we plot the probability distribution computed using different terms.

Note, this is just for visualization purposes, since we do not compute the probability
for each point on the scene, but only for the positions where the detector has fired.
There are four pedestrians in the scene, the purple one and three green ones walking
in a group. As shown in Fig. 11.6b, if we only use the predicted positions (yellow
heads) given the previous speeds, there is a collision between the purple pedestrian
and the green marked with a 1 collide. The avoidance term shifts the probability
mode to a more plausible position.

11.3.3 Group Model

The social behavior [15] also includes an attraction force which occurs when a
pedestrian is attracted to a friend, shop, etc. In this section, we show how to model
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Fig. 11.6 (Color online) Three green pedestrians walk in a group, the predicted positions in the
next frame are marked by yellow heads. The purple pedestrian’s linearly predicted position (yellow
head) clearly interferes with the trajectory of the group. Representation of the probability (blue
is 0 red is 1) distribution for the purple’s next position using: (a) only distances, (b) only SFM
(constant velocity assumption and avoidance term), (c) only GR (considering the purple pedestrian
belongs to the group), (d) distances+SFM and (e) distances+SFM+GR

the attraction between members of a group. Before modeling group behavior we
need to determine which tracks form each group and at which frame the group
begins and ends (to deal with splitting and formation of groups). The idea is that if
two pedestrians are close to each other over a reasonable period of time, they are
likely to belong to the same group. From the training sequence in [30], the distance
and speed probability distributions of the members of a group Pg vs. individual
pedestrians Pi is learned. If m and n are two trajectories which appear on the scene
at t = [0,N], we compute the flag Gm,n that indicates if m and n belong to the same
group.

Gm,n =

⎧⎨
⎩

1,
N
∑

t=0
Pg(m,n)>

N
∑

t=0
Pi(m,n)

0, otherwise
(11.23)

For every observation oi, we define a group label gi which indicates to which
group the observation belongs to, if any. If several pedestrians form a group, they
tend to keep a similar speed, therefore, if i belongs to a group, we can use the mean
speed of all the other members of the group to predict the next position for i:

p̃t+Δ t
i = pt

i + ∑
gm=gi

vt
mΔ t (11.24)

The distance between this predicted position and the real measurements is used
in (11.13) to obtain the cost for the grouping term.

An example is shown in Fig. 11.6c, where we can see that the maximum
probability provided by the group term keeps the group configuration. In Fig. 11.6d
we show the combined probability of the distance and SFM information, which
narrows the space of probable positions. Finally, Fig. 11.6e represents the combined
probability of DIST, SFM and GR. As we can see, the space of possible locations
for the purple pedestrian is considerably reduced as we add the social and grouping
behaviors, which means we have less ambiguities for data association. This is
specially useful to decrease identity switches as we present in Sect. 11.5.
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11.4 Optimization

To compute the SFM and grouping costs, we need to have information about
the velocities of the pedestrians, which can only be obtained if we already have
the trajectories. This chicken-and-egg problem is solved iteratively as shown in
Algorithm 3; on the first iteration, the trajectories are estimated only with the
information defined in Sect. 11.2.2, for the rest of iterations, the SFM and GR is also
used. The algorithm stops when the trajectories do not change or when a maximum
number of iterations Mi is reached.

Algorithm 1 Iterative optimization
while Ti �= Ti−1 and i ≤ Mi do

if i == 1 then

1.1. Create the graph using only DIST information

else

1.2. Create the graph using DIST, SFM and GR information

end if

2. Solve the graph to find Ti

3. Compute velocities and groups given Ti

end while

11.4.1 Linear Programming Solvers

The minimum cost solution is found using the Simplex algorithm [11], with
the implementation given in [25]. Though Simplex has an exponential worst-
case complexity, most sequences can be tracked in just a few seconds; this is
because each node represents one detection, and therefore the dimension of the
graph is quite small. For larger graphs [7] or more crowded environments, we
can use the k-shortest paths solver [7, 31] which has a worst case complexity of
O(k(m+ n · log(n))). For more details on network flows and Simplex we refer the
reader to [1], and to [35] for more information on the k-shortest path algorithm.

11.4.2 Integrality of the Solution

When defining the program to be solved, we saw that Eq. (11.10) defined an
integer program, which is known to be NP-complete. The condition is relaxed into
Eq. (11.11) in order to use efficient Linear Programming solvers to find the optimum
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solution to our problem. If the solution to the relaxed version of the program is
integer, then we know it is an optimal solution of the original problem [1]. The
question is, can we guarantee that the solution will be always integer?

Let us assume the conditions of the Linear Program are expressed as: Ax = b. If
all entries of A and b are integer, as it is our case, we can determine that Ax = b has
an integer solution by Cramer’s rule:

Ax = b ⇔ x = A−1b ⇔ ∀i : xi =
det(Ai)

det(A)
(11.25)

where Ai is equal to A except on the i-th column where it is equal to b. From here,
we can determine that x will be integer when det(A) is equal to +1 or −1. A matrix
A ∈ Zm×n is totally unimodular if the determinant of all the subsquare matrices of A
is either 0, +1 or −1.

Theorem 11.1. If A is totally unimodular, every vertex solution of Ax ≤ b is integer.

A well-known case of totally unimodular matrices are the node arc incidence
matrices N of a directed network. Therefore, our defined constraint matrix is totally
unimodular, and the solutions we will obtain will always be integer.

11.4.3 Computationally Reduction

To reduce the computational cost, the graph can be pruned using the physical
constraints represented by the edge costs. If any of the costs Ci j, CSFM,i, j or CGR,i, j

is infinite, the two detections i and j are either two far away to belong to the same
trajectory or they do not match according to social and grouping rules, therefore the
edge (i, j) is erased from the graphical model. For long sequences, the video can be
divided into several batches and optimize for each batch. For temporal consistency,
the batches have an overlap of Fmax = 10 frames. The runtime of [21] for a sequence
of 800 frames (114 s), 4,837 detections, batches of 100 frames and 6 iterations is 30 s
on a 3 GHz machine.

11.5 Experimental Results

In this section we show the tracking results of several state-of-the-art methods on
three publicly available datasets and compare them using the CLEAR metrics [17],
which split the measuring scores into accuracy and precision:

• Detection Accuracy (DA): measures how many detections where correctly found
and therefore is based on the count of missed detections mt and false alarms ft
for each frame t.
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DA = 1− ∑
Nf
t=1 mt + ft

∑
Nf
t=1 Nt

G

where Nf is the number of frames of the sequence and Nt
G is the number of

ground truth detections in frame t. A detection is considered to be correct when
it is found within 50 pixels from the ground truth and the bounding boxes of both
ground truth and detection have some overlap.

• Tracking Accuracy (TA): similar to DA but also including the identity switches
it . In this case, the measure does not penalize identity switches as much as a
missing detection or a false alarm as we use a log10 weight.

DA = 1− ∑
Nf
t=1 mt + ft + log10(1+ it)

∑
Nf
t=1 Nt

G

• Detection Precision (DP): precision measurements represent how well the bound-
ing box detections match the ground truth. For this, an overlap measure between
bounding boxes is used:

Ovt =

Nt
mapped

∑
i=1

|Gt
i ∩Dt

i|∣∣Gt
i ∪Dt

i

∣∣

where Nt
mapped is the number of mapped objects in frame t, i.e., the number of

detections that are matched to some ground truth object. Gt
i is the ith ground truth

object of frame t and Dt
i the detected object matched to Gt

i . The DP measure is
then expressed as:

DP =

Nf

∑
t=1

Ovt

Nt
mapped

Nf

• Tracking Precision (TP): measures the spatiotemporal overlap between ground
truth trajectories and detected ones, taking into account also split and merged
trajectories.

T P =

Nt
mapped

∑
i=1

Nf

∑
t=1

|Gt
i∩Dt

i|
|Gt

i∪Dt
i|

Nf

∑
t=1

Nt
mapped



284 L. Leal-Taixé and B. Rosenhahn

11.5.1 Analysis of the Effect of the Parameters

All parameters defined in previous sections are learned from training data using one
sequence of the publicly available dataset [30]. In this section we study the effect of
the few parameters needed in [21], and show the method works well for a wide range
of these parameters and therefore no parameter tuning is needed to obtain a good
performance. The analysis is done on two publicly available datasets: a crowded
town center [5] and the well-known PETS2009 dataset [12], to see the different
effects of each parameters on each dataset.

11.5.2 Number of Iterations

The first parameter we analyze is the number of iterations Mi allowed. This deter-
mines how many times the loop between computing social forces and computing
trajectories is performed as explained in Algorithm 1. Looking at the results on the
PETS 2009 dataset in Fig. 11.7b, we can see that after just two iterations the results
remain very stable. Actually, the algorithm reports no changes in the trajectories
after three iterations, and therefore stops even though the maximum number of
iterations allowed is higher. The result with one and two iterations is also not
very different, which means the social and grouping behavior do not significantly
improve the results for this particular dataset. This is due to the fact that this
dataset is very challenging from a social behavior point of view, with subjects often
changing direction and groups forming and splitting frequently. More details and
comments on these results can be found in Sect. 11.5.6.2. On the other hand, we
observe a different effect on the TownCenter dataset, shown in Fig. 11.7a. In this
case, there is a clear improvement when using social and grouping behavior (i.e. the
result improves when we use more than one iteration. We also observe a pattern on
how the Tracking Accuracy of the dataset evolves: there is a cycle of three iterations
for which the accuracy increases and decreases in a similar pattern. This means that
the algorithm is jumping between two solutions and will not converge to neither one
of them. This happens when pedestrians are close together for a long period of time
but are not forming a group, which means that even with social forces, it is hard to
say which paths they will follow.

11.5.3 Maximum Speed

This is the parameter that determines the maximum speed of the pedestrians that we
are observing. In this case, we can see in Fig. 11.7c, d a clear trend in which the
results are very bad when we force the pedestrians to walk more slowly that they
actually do, since we are artificially splitting trajectories. The results converge when
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Fig. 11.7 (Color online) Tracking accuracy (black) and precision (magenta) obtained for the Town
Center dataset (left column) and the PETS 2009 dataset (right column) given varying parameter
values. (a) TownCenter: iterations Mi. (b) PETS2009: iterations Mi. (c) TownCenter: maximum
speed Vmax. (d) PETS2009: maximum speed Vmax. (e) TownCenter: B j Vmax. (f) PETS2009: B j
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the maximum speed allowed is around 3–5 m/s, which is the reported mean speed of
pedestrians in a normal situation. More interestingly, we observe that the results are
kept constant when using higher maximum speed values. This is a positive effect
of the global optimization framework, since we can use a much higher speed limit
and this will still give us good results and will allow us to track a person running
through the scene, a case of panic when people start running, etc.

11.5.4 Cost for the Frame Difference

The last parameter, B j, appears in Eq. (11.15) and represents the penalization term
that we apply when the frame difference between two detections that we want to
match is larger than 1. This term is used in order to give preference to matches that
are close in time. Here we can again see different effects on the two datasets. In
Fig. 11.7e, we see that the results are stable until a value of 0.4. The lower the value,
the higher is the penalization cost for the frame difference, which means it is more
difficult to match those detections which are more than 1 frame apart. When the
value of B j is higher than 0.4, there are more ambiguities in the data association
process because it is easier to match detections which are many frames apart. In
the TownCenter dataset, there is no occluding object in the scene, which means
missing detections are sporadic within a given trajectory. In this scenario, a lower
value for B j is better, since small gaps can be filled and there are less ambiguities.
Nonetheless, we see different results in the PETS 2009 dataset in Fig. 11.7f, since
here there is a clear occluding object in the middle of the scene (see Fig. 11.8) which
occludes the pedestrians for longer periods of time. In this case, a higher value of B j

allows to overcome these large gaps of missing data, and that is why the best value
for this dataset is around 0.6.

11.5.5 Evaluation with Missing Data, Noise and Outliers

We evaluate the impact of every component of the approach in [21] with one of the
sequences of the dataset [30], which contains images from a crowded public place,
with several groups as well as walking and standing pedestrians. The sequence is
11,601 frames long and contains more than 300 trajectories. First of all, the group
detection method is evaluated on the whole sequence with ground truth detections:
61% are correctly detected, 26% are only partially detected, 13% are not found and
an extra 7% groups are detected wrongly. All experiments are performed with 6
iterations, a batch of 100 frames, Vmax = 7m/s, Fmax = 10, α = 0.5 and B j = 0.3.



11 Pedestrian Interaction in Tracking 287

Fig. 11.8 Four frames of the PETS2009 sequence (separation of nine frames), showing several
occlusions, both created by the obstacle on the scene and between pedestrians. All the occlusions
can be recovered with the proposed method

Using the ground truth (GT) pedestrian positions as the baseline for our
experiments, we perform three types of tests, missing data, outliers and noise, and
compare the results obtained with:

• DIST: proposed network model with distances
• SFM: adding the Social Force Model (Sect. 11.3.2)
• SFM+GR: adding SFM and grouping behavior (Sect. 11.3.3)

Missing Data: This experiment shows the robustness of our approach given missed
detections. This is evaluated by randomly erasing a certain percentage of detections
from the GT set. The percentages evaluated are [0,4,8,12,16,20] from the total
number of detections over the whole sequence. As we can see in Fig. 11.9, both
SFM and SFM+GR increase the tracking accuracy when compared to DIST.

Outliers: With an initial set of detections of GT with 2% missing data, tests
are performed with [0,10,20,30,40,50] percentage of outliers added in random
positions over the ground plane. In Fig. 11.9, the results show that the SFM is
especially important when the tracker is dealing with outliers. With 50% of outliers,
the identity switches with SFM+GR are reduced 70% w.r.t the DIST results.

Noise: This test is used to determine the performance of our approach given
noisy detections, which are very common mainly due to small errors in the 2D-3D
mapping. From the GT set with 2% missing data, random noise is added to every
detection. The variances of the noise tested are [0,0.002,0.004,0.006,0.008,0.01]
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Fig. 11.9 (Color online) Experiments are repeated 50 times and average result, maximum and
minimum are plotted. Blue star = results with DIST, Green diamond = results with SFM, Red
square = results with SFM+GR. From left to right: Experiment with simulated missing data, with
outliers, and with random noise

of the size of the scene observed. As expected, group information is the most robust
to noise; if the position of pedestrian A is not correctly estimated, other pedestrians
in the group will contribute to the estimation of the true trajectory of A.

These results corroborate that having good behavioral models becomes more
important as the observations deteriorate. In Fig. 11.10 we plot the tracking results of
a sequence with 12% simulated missing data. Only using distance information can
see identity switches as shown in Fig. 11.10a. In Fig. 11.10b we can see how missing
data affects the matching results. The matches are shifted, this chain reaction is
due to the global optimization. In both cases, the use of SFM allows the tracker
to interpolate the necessary detections and find the correct trajectories. Finally,
in Fig. 11.10c we plot the wrong result which occurs because track 3 has two
consecutive missing detections. Even with SFM, track 2 is switched for 3, since
the switch does not create extreme changes in velocity. In this case, the grouping
information is key to obtaining good tracking results. More results are shown in
Fig. 11.13, first row.

11.5.6 Tracking Results

In this section, we compare results of several state-of-the-art methods on two pub-
licly available datasets: a crowded town center [5] and the well-known PETS2009
dataset [12]. We compare results obtained with:

• Benfold et al. [5]: using the results provided by the authors for full pedestrian
detections. The HOG detections are also given by the authors and used as input
for all experiments.

• Zhan et al. [40]: globally optimum tracking based on network flow linear
programming.

• Pellegrini et al. [30]: tracker based on Kalman Filter which includes social
behavior.
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Fig. 11.10 (Color online) Top row: Tracking results with only DIST. Bottom row: Tracking results
with SFM+GR. Green = correct trajectories, Blue = observation missing from the set, Red = wrong
match. (a) Wrong match with DIST, corrected with SFM. (b) Missing detections cause the matches
to shift due the global optimization; correct result with SFM. (c) Missed detection for subject 3
on two consecutive frames. With SFM, subject 2 in the first frame (yellow arrow) is matched to
subject 3 in the last frame (yellow arrow), creating an identity switch; correct result with grouping
information

• Yamaguchi et al. [38]: tracker based on Kalman Filter which includes social and
grouping behavior.

• Leal-Taixé et al. [21]: globally optimum tracking based on network flow linear
programming and including social and grouping behavior.

For a fair comparison, we do not use appearance information for any method.
The methods [5,30,38] are online, while [21,40] processes the video in batches. For
these last two methods, all experiments are performed with six iterations, a batch of
100 frames, Vmax = 7m/s, Fmax = 10, α = 0.5 and B j = 0.3.

11.5.6.1 Town Center Dataset

We perform tracking experiments on a video of a crowded town center [5], using one
of every ten frames (simulating 2.5 fps). We show detection accuracy (DA), tracking
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Table 11.1 Town Center sequence

DA TA DP TP IDsw
HOG detections 63.1 – 71.9 – –

Benfold et al. [5] 64.9 64.8 80.5 80.4 259
Zhang et al. [40] 66.1 65.7 71.5 71.5 114
Pellegrini et al. [30] 64.1 63.4 70.8 70.7 183
Yamaguchi et al. [38] 64.0 63.3 71.1 70.9 196
Leal-Taixé et al. [21] 67.6 67.3 71.6 71.5 86

Fig. 11.11 Predictive approaches [30, 38] (first row) vs. Proposed method (second row)

accuracy (TA), detection precision (DP) and tracking precision (TP) measures as
well as the number of identity switches (IDsw).

Note, the precision reported in [5] is about 9% higher than the input detections
precision; this is because the authors use the motion estimation obtained with a
KLT feature tracker to improve the exact position of the detections, while we use
the raw detections. Still, our algorithm reports 64% less ID switches. As shown
in Table 11.1, [21] algorithm outperforms [30, 38], both of which include social
behavior information, by almost 4% in accuracy and with 50% less ID switches. In
Fig. 11.11 we can see an example where [30, 38] fail. The errors are created in the
greedy phase of predictive approaches, where people fight for detections. The red
false detection in the first frame takes the detection in the second frame that should
belong to the green trajectory (which ends in the first frame). In the third frame,
the red trajectory overtakes the yellow trajectory and a new blue trajectory starts
where the green should have been. None of the resulting trajectories violate the SFM
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Fig. 11.12 Results of the proposed method on the PETS2009 dataset views 1. (a) Detection
accuracy, DA. (b) Detection precision, DP. (c) Tracking accuracy, TA. (d) Tracking precision, TP

and GR conditions. On the other hand, a global optimization framework takes full
advantage of the SFM and GR information and correctly recovers all the trajectories.
More results of the proposed algorithm can be seen in Fig. 11.13, last row.

11.5.6.2 Results on the PETS2009 Dataset

In addition, we present results of monocular tracking on the PETS2009 sequence
L1, View 1 with the detections obtained using the Mixture of Gaussians (MOG)
background subtraction method. We compare the results with the previously
described methods plus the monocular result of View 1 presented in [7], where
the detections are obtained using the Probabilistic Occupancy Map (POM) and the
tracking is done using k-shortest paths (Fig. 11.12).

The first observation that we make is that the linear programming methods (LP
and LP+SFM+GR) clearly outperform predictive approaches in accuracy. This
is because this dataset is very challenging from a social behavior point of view,
because the subjects often change direction and groups form and split frequently.
Approaches based on a probabilistic framework [21, 40] are better suited for
unexpected behavior changes (like destination changes), where other predictive
approaches fail [30,38]. We can also see that the LP+SFM+GR method has a higher
accuracy than the LP method, which does not take into account social and grouping
behavior. The grouping term is specially useful to avoid identity switches between
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Fig. 11.13 First row: Results on the BIWI dataset (Sect. 11.5.5). The scene is heavily crowded,
social and grouping behavior are key to obtaining good tracking results. Second and third rows:
Results on the PETS2009 dataset (Sect. 11.5.6.2). Last two rows: Results on the Town Center
dataset (Sect. 11.5.6.1)

member of a group (see an example in Fig. 11.13, third row, the cyan and green
pedestrian who walk together). Precision is similar for all methods since the same
detections have been used for all the experiments and we do not apply smoothing or
correction of the bounding boxes.

11.6 Conclusions

In this chapter, we presented an overview of methods that integrate pedestrian
interaction into a tracking framework in two ways: using a globally optimum solver
or improving the dynamic model with social forces. Furthermore, we presented how
to combine the strength of both approaches by finding the MAP estimate of the
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trajectories total posterior including social and grouping models using a minimum-
cost network flow with an improved novel graph structure that outperforms existing
approaches. People interaction is persistent rather than transient, hence the prob-
abilistic formulation fully exploits the power of behavioral models as opposed to
standard predictive and recursive approaches such as Kalman filtering. Experiments
on three public datasets reveal the importance of using social interaction models
for tracking in difficult conditions such as in crowded scenes with the presence of
missed detections, false alarms and noise.

Acknowledgements This work was partially funded by the German Research Foundation, DFG
projects RO 2497/7-1 and RO 2524/2-1.
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Chapter 12
Surveillance of Crowded Environments:
Modeling the Crowd by Its Global Properties

Antoni B. Chan and Nuno Vasconcelos

Abstract In this chapter, we consider aspects of the crowd that can be modeled
holistically, by analyzing global properties. We first discuss the dynamic texture
model for representing holistic motion flow, which treats the video as a sample from
a linear dynamical system. By defining appropriate distances and kernels between
dynamic textures, crowd motion can be recognized with standard classification
algorithms. Besides motion flow, crowd size, i.e., the number of objects within a
crowd can also be modeled holistically. From a suitable set of low-level features,
crowd counts can be estimated with a regression function that directly maps features
into the number of objects within the crowd. In both cases, the surveillance task is
solvable by analyzing global scene properties, and there is no need to detect or track
individual objects. In result, the solutions tend to be robust even when the crowd
is large, there are substantial occlusions, complex object interactions, or the objects
are small.

12.1 Introduction

There is currently a great interest in vision technology for monitoring all types of
environments. This could have many goals, e.g., security, resource management, or
advertising. From the technological standpoint, computer vision solutions typically
focus on detecting, tracking, and analyzing individuals in the scene. However,
there are many problems in environment monitoring that can be solved without
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explicit tracking of individuals (e.g., people, cars, etc.). These are problems where
all the information required to perform the task can be gathered by analyzing the
environment globally: e.g., monitoring of traffic flows, detection of disturbances
in public spaces, detection of speeding on highways, or estimation of the size of
moving crowds. By definition, these tasks are based on either properties of (1) the
“crowd” as a whole, or (2) an individual’s “deviation” from the crowd. In both cases,
to accomplish the task it should suffice to build good models for the patterns of
crowd behavior. Events could then be detected as variations in these patterns, and
abnormal individual actions could be detected as outliers with respect to the crowd
behavior.

One property of the crowd (or, in general, groups of similar objects) that
can be modeled holistically is the motion that it induces. Traditional motion
representations, based on optical flow, are inherently local and have significant
difficulties when faced with aperture problems and noise. The classical solution to
this problem is to regularize the optical flow field [4, 42, 43, 56], but this introduces
undesirable smoothing across motion edges or regions where the motion is, by
definition, not smooth (e.g., vegetation in outdoors scenes). Recently, there has been
more success in modeling complex scenes as dynamic textures or, more precisely,
samples from stochastic processes defined over space and time [34]. This work
has demonstrated that the dynamic texture has a surprising ability to abstract a
wide variety of complex global patterns of motion and appearance into a simple
spatio-temporal model. Since most of the information required for the classification
of crowd events is contained in the interaction between the many motions that it
contains, the dynamic texture can be used to capture the variability of the global
motion, through a holistic representation of the video pixels, without the need for
segmenting or tracking individual components. By defining an appropriate distance
or kernel function between dynamic textures, crowd motion or events can be
recognized using standard classification algorithms, such as nearest neighbors [73],
support vector machines [11, 83], or boosting [80].

In addition to motion, a crowd property of interest for surveillance is the crowd
size, e.g., the number of people it contains. Traditional computer vision solutions
typically focus on detecting and tracking individuals in the crowd [52]. However, it
is also possible to accurately count crowds from global low-level features, without
the need for detection and tracking individual objects. One possibility [18] is to
segment the crowd into regions of interest (e.g., groups of people moving in
different directions), extract features (e.g., area, edge, and texture features) from
each segment, and map them into estimates of the crowd count per segment. The
mapping can be implemented with sophisticated statistical inference methods, e.g.,
Gaussian process regression, that directly map features into counts. This work
has shown that accurate crowd counts are possible without people detection, even
when the crowd is sizable and inhomogeneous. Since these solutions avoid the
detection of individual objects, they tend to be robust even when the crowd is
large, there are complex occlusions or object interactions, or the objects are small.
The remainder of the chapter is organized as follows. In Sect. 12.2, we present the
dynamic texture model used to represent global motion in video. In Sect. 12.3, we
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discuss distance functions between dynamic textures and present a framework for
motion classification using the dynamic texture representation. Finally, in Sect. 12.4,
we discuss methods for crowd counting using non-linear regression and global low-
level features.

12.2 Modeling Global Motion Flow with Dynamic Textures

Figure 12.1 presents a sample from a large collection of visual processes that have
proven remarkably challenging for traditional motion representations, based on
modeling of the individual trajectory of pixels [43, 56], particles [46], or objects
in a scene. Since most of the information required for the perception of these
processes is contained in the interaction between the many motions that compose
them, a holistic representation of the associated motion field should be capable of
capturing its variability without the need for segmentation or tracking of individual
components. In this regard, one promising holistic representation is to model the
motion field as a collection of layers [84]. Another promising representation, which
is the focus of this chapter, is to model these processes as dynamic textures, i.e.,
realizations of an auto-regressive stochastic process with both a spatial and temporal
component [34, 77]. Like many other recent advances in vision, the success of
these methods derives from the adoption of representations based on generative
probabilistic models that can be learned from collections of training examples.

Various representations of a video sequence as a spatio-temporal texture have
been proposed in the vision literature over the last decade. Earlier efforts were aimed
at the extraction of features that capture both the spatial appearance of a texture and
the associated motion flow field. For example, [67] represents temporal textures by
the first and second order statistics of the normal flow of the video. Subsequently,
various authors proposed to model a temporal texture as a generative process,
resulting in representations that can be used for both synthesis and recognition.

Fig. 12.1 Examples of visual processes that are challenging for traditional spatio-temporal
representations: fire, smoke, the flow of a river stream, or the motion of an ensemble of objects,
e.g., a flock of birds, a bee colony, a school of fish, the traffic on a highway, or the flow of a crowd
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For example, [3] uses a multi-resolution analysis tree method, which represents
a temporal texture as the hierarchical multi-scale transform associated with a 3D
wavelet, while in [77], a spatio-temporal autoregressive (STAR) representation
models the interaction of pixels within a local neighborhood over both space and
time. By relying on spatio-temporally localized image features these representations
are incapable of abstracting the video into a pair of holistic appearance and motion
components.

This problem is addressed by the dynamic texture (DT) model of [34], an auto-
regressive random process (specifically, a linear dynamical system (LDS)) that
includes a hidden state variable that captures the motion flow, and an observation
variable that determines the appearance component, conditioned on the state
variable. Both the hidden state vector and the observation vector are representative
of the entire image, enabling a holistic characterization of the motion for the entire
sequence.

12.2.1 Dynamic Texture Model

A dynamic texture [34] (DT) is a generative model for both the appearance and
the dynamics of video sequences. It can be thought of as an extension of the
hidden Markov models commonly used in speech recognition, and is the model
that underlies the Kalman filter frequently employed in control systems. The model
consists of a random process containing an observation variable yt , which encodes
the appearance component (vectorized video frame at time t), and a hidden state
variable xt , which encodes the dynamics (evolution of the video over time). The
appearance component is drawn at each time instant, conditionally on the current
hidden state. The state and observation variables are related through the linear
dynamical system (LDS) defined by

xt = Axt−1 + vt , (12.1)

yt =Cxt +wt + ȳ, (12.2)

where xt ∈ R
n and yt ∈ R

m are real vectors (typically n 
 m). The matrix A ∈
R

n×n is a state transition matrix, which encodes the dynamics or evolution of the
hidden state variable (i.e., the motion of the video), and the matrix C ∈ R

m×n

is an observation matrix, which encodes the appearance component of the video
sequence. The vector ȳ∈R

m is the mean of the dynamic texture (i.e., the mean video
frame). vt is a driving noise process, which injects randomness into the hidden state,
and is distributed as an n-dimensional multivariate Gaussian with zero mean and
covariance matrix Q ∈R

n×n, i.e., vt ∼N (0,Q). wt is the observation noise, which
models the noise in the pixel observations, and is distributed as an m-dimensional
multivariate Gaussian with zero mean and covariance R ∈ R

m×m. Typically, it is
assumed the observation noise is independent and identically distributed (i.i.d.)
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Fig. 12.2 Example of the dynamic texture model: (bottom) the video frames from a traffic
sequence; (left) the first three principal components; (top) the hidden-state space trajectory of the
corresponding coefficients. (middle) The graphical model of the DT. xt and yt are the hidden state
and observed video frame at time t

between the pixels, and hence R = rIm is a scaled identity matrix. Finally, the initial
condition is specified as x1 ∼ N (x0,Q), where x0 ∈ R

n is a fixed vector.1 The
dynamic texture is specified by the parameters Θ = {A,Q,C,R,x0, ȳ}, and can be
represented by the graphical model of Fig. 12.2.

When C is orthonormal, the columns of C can be interpreted as the principal
components of the sequence of video frames. In this case, the video frame at time
t, yt , is a linear combination of these principal components, and the corresponding
weights (i.e., the PCA coefficients) are given by the hidden state vector xt . These
PCA coefficients evolve according to a linear Gauss-Markov process, given by
(12.1). Hence, the dynamic texture can be interpreted as a time-varying PCA
representation of video. Figure 12.2 shows an example of a traffic sequence, its
first three principal components, and the corresponding hidden-state coefficients.

1Here we focus on the case where the initial state x0 is fixed. More generally, the initial state could
be distributed as a Gaussian, x1 ∼ N (μ,S)
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An alternative interpretation considers a single pixel as it evolves over time.
Each dimension of the state vector xt defines a one-dimensional temporal trajectory
over time, as shown in Fig. 12.2 (top). The evolution of a pixel over time is then
a weighted sum of these trajectories, according to the weighting coefficients in the
corresponding row of C. This is analogous to the discrete Fourier transform, where a
1-D signal is represented as a weighted sum of complex exponentials but, for the DT,
the trajectories are not necessarily orthogonal (and in fact random processes). This
interpretation illustrates the ability of the DT to model a given motion at different
intensity levels (e.g., cars moving from shade into sunlight) by simply scaling the
rows of C.

12.2.2 Inference

Since the noise processes are Gaussians and the states and observations are
linearly related, the probability distribution of the hidden-state sequence x1:τ =
(x1, . . . ,xτ) and the observation sequence (vectorized video) y1:τ = (y1, . . . ,yτ)
are also multivariate Gaussian [47]. Hence, by the conditional Gaussian theorem
[47], any marginal, e.g., p(xt), or conditional distributions, e.g., p(xt |y1:τ), are
Gaussian. The conditional distributions can be computed efficiently with recourse
to the Kalman and Kalman smoothing filters. The Kalman filter [39, 47] estimates
the mean and covariance of the state xt of an LDS, conditioned on only the past
observations,

x̂t|t−1 = E(xt |y1:t−1), V̂t|t−1 = cov(xt |y1:t−1), (12.3)

x̂t|t = E(xt |y1:t), V̂t|t = cov(xt |y1:t), (12.4)

where (12.3) is the one-step-ahead prediction using only previous observations
y1:t−1, and (12.4) the corrected estimate after inclusion of the current observation yt .
This calculation is implemented with a set of forward recursive equations. Likewise,
the Kalman smoothing filter [39,75] estimates the state xt , conditioned on the entire
observation sequence y1:τ ,

x̂t|τ = E(xt |y1:τ), V̂t|τ = cov(xt |y1:τ), V̂t,t−1|τ = cov(xt ,xt−1|y1:τ), (12.5)

using a set of forward-backward recursive equations. This results in a refinement of
the state estimates of the Kalman filter, using all the observed data.

Finally, the data log-likelihood can be computed efficiently from the Kalman
filter using the “innovations” form [39, 47, 75],

log p(y1:τ) =
τ

∑
t=1

log p(yt |y1:t−1) =
τ

∑
t=1

logN (yt |Cx̂t|t−1 + ȳ,R+CV̂t|t−1CT )

(12.6)
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where N (x|μ ,Σ) is a multivariate Gaussian density function with mean μ and
covariance Σ , and x̂t|t−1 and V̂t|t−1 are calculated with the Kalman filter, as in (12.3).

12.2.3 Parameter Estimation

A number of methods are available to learn the parameters of the dynamic texture
from a training video sequence y1:τ = (y1, . . . ,yτ), including maximum-likelihood
methods (e.g., expectation-maximization [75]), non-iterative subspace methods
(e.g., N4SID [65], CCA [5, 50]) or a suboptimal, but computationally efficient,
“greedy” least-squares procedure [34].

The expectation-maximization (EM) algorithm [31] is an iterative algorithm to
determine maximum-likelihood parameter estimates [47],

Θ ∗ = argmax
Θ

log p(y1:τ ;Θ), (12.7)

when the model contains hidden-state variables. Each EM iteration alternates
between estimating the hidden-states from the current parameters (E-step) and
updating the parameters given the estimate of the hidden-states (M-step),

E−Step : Q(Θ ;Θ̂) = Ex1:τ |y1:τ ;Θ̂ [log p(x1:τ ,y1:τ ;Θ)] (12.8)

M−Step : Θ̂ ∗ = argmax
Θ

Q(Θ ;Θ̂), (12.9)

where Θ̂ is the current set of parameter estimates. For a DT, the EM algorithm
has the following form [75]: the E-step computes the statistics of the hidden-state
variables, conditioned on the training video, using the Kalman smoothing filter; the
M-step then updates the parameters from these aggregated statistics.

Subspace methods, such as N4SID [65] and CCA [5,50], attempt to first recover
the hidden states (or its state space) directly, by regressing between windows of
past and future observation sequences. Under some conditions,2 the non-iterative
CCA subspace method is also a maximum-likelihood estimator [5]. However,
this (and several other) sub-space methods require computing the singular value
decomposition (SVD) of a (dm)× (dm) matrix, where d is the length of the
sequence window. The large dimensionality of the video frame frequently makes
this operation infeasible for DT models learned from video. For CCA, typically
8 ≤ d ≤ 15, and the SVD is infeasible for large m.

2One of these conditions is that the parameter n must be set to the true state-space dimension!
Another condition is that the state noise and observation noise are realized from the same white
noise process.
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Algorithm 2 Greedy least-squares for dynamic textures [34]
Input: observed sequence y1:τ .
Compute sample mean: ȳ = 1

τ ∑
τ
t=1 yt .

Subtract mean: ỹt = yt − ȳ,∀t, Ỹ1:τ = [ỹ1 · · · ỹτ ].
Compute SVD: Ỹ1:τ =USV T .
Estimate observation matrix: C = [u1 · · ·un].
Estimate state-space variables: X̂1:τ = [x̂1 · · · x̂τ ] =CTỸ1:τ .
Estimate remaining parameters:

A = X̂2:τ (X̂1:τ−1)
†, x0 = x̂1,

V̂1:τ−1 = X̂2:τ −AX̂1:τ−1, Q = 1
τ−1V̂1:τ−1(V̂1:τ−1)

T ,

Ŵ1:τ = Ỹ1:τ −CX̂1:τ , R = 1
τ Ŵ1:τŴ T

1:τ , r = 1
m tr(R).

(12.10)

Output:Θ = {A,Q,C,R,x0, ȳ}.

One popular alternative to the EM or sub-space methods is the computationally-
efficient method proposed in [34], which is summarized in Algorithm 2. This
method learns the spatial and temporal parameters of the model separately, by
exploiting the interpretation of C as a principal component matrix. Given a mean-
subtracted sequence Ỹ1:τ = [ỹ1 · · · ỹτ ] (in matrix form), principal component analysis
(PCA) is performed by applying the SVD to Ỹ . The columns of C are then estimated
as the first n principal components, and the hidden-states X̂ by the corresponding
PCA coefficients. The transition matrix A is calculated via least-squares regression
between neighboring states, and the noise parameters Q and R are calculated from
the residual and reconstruction errors. In summary, the procedure uses several least-
squares steps successively (e.g. PCA and pseudo-inverse) to greedily obtain the
parameter estimates.

Although suboptimal in both the maximum-likelihood and least-squares sense,
this greedy least-squares procedure has been shown to produce good estimates
of DT parameters in various applications, including video synthesis [34] and
recognition [11, 73]. It was shown in [21] that this procedure can be viewed as
a single-iteration approximation of the EM algorithm, where C is approximated by
the PCA basis of the observations, and the conditional expectations of the E-step are
approximated by the PCA coefficients. In practice, the greedy least-squares estimate
serves as a good initialization for the EM algorithm, which then typically converges
in a few iterations.

12.2.4 Model Extensions and Applications

The original DT model has been extended in various ways in the literature. Some
of these extensions aim to improve the video synthesis capabilities of the model,
e.g., by modifying the learning algorithm [76], adding a closed-loop to the model
[89], using higher-order SVD [27], or adopting a multi-scale auto-regressive process
[36]. Other extensions aim to increase the representational power of the DT model,
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e.g., by introducing non-linear observation functions [12, 55], or phase-based non-
parametric models [40]. Doretto and Soatto [33] proposes a dynamic shape and
appearance model for image sequences, which is a generalization of the DT. Another
line of research aims to model multiple dynamic textures simultaneously, either as
a dynamic texture mixture [13], for modeling collections of video samples, or as a
layered dynamic texture [15, 16], for modeling a single video as a composition of
several distinct DT regions. Finally, [20,71] propose methods for grouping DTs into
similar clusters.

The DT and its extensions have a variety of computer vision applications,
including video texture synthesis [34,40,89], video clustering [13], image and video
registration [38, 70], motion segmentation [13, 15, 26, 35, 41, 79, 81], lip synthesis
and classification [8], human activity and gait recognition [6, 22], background
subtraction [21, 64, 91], motion saliency [57], anomaly detection [58], and motion
classification [11, 12, 20, 40, 71, 73, 80, 83, 86]. The wide variety of applications
highlight both the modeling capabilities of the DT, and the robustness of the
underlying probabilistic framework.

An alternative holistic representation of motion is based on high-level models of
optical flow. One line of work is inspired by fluid dynamics, simulating particles
as moving according to the mean optical flow field (average flow over all video
frames). Ali and Shah [1] discovers coherent structures in the flow field, using
Lagrangian particle dynamics to examine how particle clouds mix and move.
Similarly, [62] records the social force between particles to form a force flow image.
Local regions in the force flow are then quantized into a bag-of-forces and the
descriptor is used for anomaly detection. Finally, [63] proposes “streaklines” that
represent all particle trajectories which pass through a particular point. Another line
of research is based on direct examination of optical flow patterns. Hu et al.[44] finds
clusters in the mean motion flow field using a mean-shift like algorithm, whereas
[45] employs hierarchical agglomerative clustering with two distance functions that
measure spatial proximity or flow similarity. Yang et al. [88] quantizes the motion
flow field in both space and direction, to obtain a bag-of-words representation,
where each subword corresponds to the quantized flow in a video patch. Noisy or
outlier subwords are removed based on their conditional entropy, and patterns of
motion are learned via a diffusion map embedding. Finally, [74] estimates Gaussian
mixture models (GMMs) from the optical flow vectors, and motion patterns are
found by grouping the GMMs based on thresholding the KL divergence between
them.

12.3 Motion Classification with Dynamic Textures

In this section, we present a framework for video and motion classification using
the DT representation, which is summarized in Fig. 12.3. After preprocessing, the
parameters of a DT model are learned for each video clip. Next, the similarities
between DT models are computed with a suitable measure of distance between DTs.
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Fig. 12.3 DT classification: video is preprocessed, a DT learned, and classified using a suitable
distance function and standard classification techniques

Finally, the distance matrix is used in conjunction with standard classification algo-
rithms (e.g., support vector machines, nearest neighbors, or boosting) to perform
motion classification and event detection. The key idea is that, by representing each
video by a DT, the high-dimensional video clip is reduced to a compact parametric
model, which leads to increased classifier robustness. Several distance functions
have been proposed in the literature, including those based on observable subspaces,
output trajectories, and probability distributions of the DT, which we present next.

12.3.1 Distances and Kernels Between DT

Because the DT is a generative probabilistic model with hidden-states, various
distance functions can be defined by comparing different properties of the model.
One family of distances [73] is based on the observable subspace of the DT, i.e., the
space of all possible output sequences when ignoring the noise terms. Another
distance function [83] focuses on the initial condition, by comparing trajectories
of DT outputs. Finally, a probabilistic kernel function [11] can be defined between
the probability distributions of the output sequence or the hidden-state sequence
of the DT. In the remainder of this section, we present several distance func-
tions between two DT, Θ1 and Θ2, with parameters {A1,C1,Q1,R1,x01, ȳ1} and
{A2,C2,Q2,R2,x02, ȳ2}, respectively.

12.3.1.1 Principal Angle-Based Distances

One method of calculating the distance between two DTs is to use the subspace
of all possible noiseless observations. Consider a single DT of parameters Θ =
{A,C,Q,R,x0, ȳ}. Ignoring the noise terms vt and wt , the (vectorized) video
sequence generated by the DT is
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Hence, in the noiseless case, the output of the DT belongs to the subspace spanned
by the n columns of O . In other words, O , which is known as the extended
observability matrix, characterizes all possible noiseless output sequences of the
DT (or all possible mean output sequences of the DT in the noisy case). Hence, two
DTs, Θ1 and Θ2, can be compared using the distance between their observability
subspaces, O1 and O2. Several distances between subspaces are based on principal
angles, which are a greedy selection of principal directions, O1xi and O2yi, that
minimize the angle between subspaces, while being orthogonal to the previous
selected principal directions,

cos(θi) = max
xi,yi∈R

n
,

O1xi⊥O1x j , O2yi⊥O2y j ,
j∈{1,··· ,i−1}

|xT
i OT

1 O2yi|
‖O1xi‖‖O2yi‖ , i = 1, · · · ,n. (12.12)

The principal angles can be efficiently computed by solving a generalized eigen-
value problem involving 2n×2n matrices [24].

Several distances between DTs can be defined from the principal angles,
including the Martin distance [61, 73],

dM(Θ1,Θ2)
2 =− log

n

∏
i=1

cos2 θi, (12.13)

the Finsler distance [8],

dF(Θ1,Θ2) = max
i∈{1,··· ,n}

θi, (12.14)

and the Frobenius distance [24],

d f (Θ1,Θ2) = 2
n

∑
i=1

sin2 θi. (12.15)

Note that principal-angle-based distances only consider the A and C parameters of
the DTs. Hence, these distances do not exploit the stochastic nature or the initial
condition of the DT model. This may hinder the effectiveness of the distances
when the stochastic variations of the DT are discriminant, or the initial conditions
important.
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12.3.1.2 Binet-Cauchy Kernel

Another possibility for comparing DTs is through their output sequences. Vish-
wanathan et al. [83] proposes a family of Binet-Cauchy kernel functions, based on
the expectation of the weighted inner product between two DT outputs,

kBC(Θ1,Θ2) = Ev,w

[
∞

∑
t=0

e−λ t yT
t Wy′t

]
(12.16)

where W is a user-defined weight matrix, λ ≥ 0 a discounting factor, and yt ,y′t the
observation variables of Θ1,Θ2, respectively. Several kernels can be derived from
(12.16) using different noise assumptions. Under the assumption that the two DTs
evolve with the same noise realization, the kernel is

kBC(Θ1,Θ2) = xT
01Mx02 +

1

1− e−λ
tr[QM+WR], (12.17)

where M satisfies the Sylvester equation M = e−λAT
1 MA2 +CT

1 WC2. When the two
DTs evolve with independent noise realizations, this kernel simplifies to

kBC(Θ1,Θ2) = xT
01Mx02. (12.18)

Finally, the kernel can be made independent of the initial conditions by taking the
expectation over x01 and x02. This leads to

kBC(Θ1,Θ2) = tr[ΣM]+
1

1− e−λ
tr[QM+WR] (12.19)

where Σ = Ex01,x′02
[x01xT

02] is the correlation matrix between the two initial condi-
tions (or covariance matrix when x01 and x02 are zero mean). It is interesting to
contrast the Martin distance and the Binet-Cauchy kernel. On the one hand, the
Martin distance compares the subspace of all possible noiseless outputs of the two
DT. On the other, the Binet-Cauchy kernel focuses on specific realizations of the
output when given particular initial conditions, or distributions thereof.

12.3.1.3 Kullback-Leibler Kernel

Neither the Martin distance nor the Binet-Cauchy kernel utilize the full probabilistic
description provided by the DT model. The Martin distance ignores the noise
terms altogether, the Binet-Cauchy kernel assumes that the two DTs share the
same noise processes. Since the DT is a generative probabilistic model, two DT
can also be compared as probability distributions. Chan and Vasconcelos [11]
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proposes a probabilistic kernel function between DTs based on the Kullback-Leibler
(KL) divergence [28] between the associated distributions. The KL divergence rate
between two distributions of a time-series y1:τ , p(y1:τ) and q(y1:τ), is

D(p(y1:τ)‖q(y1:τ) ) =
1
τ

∫
p(y1:τ) log

p(y1:τ)

q(y1:τ)
dy1:τ . (12.20)

The DT model provides two probability distributions, based on either the image
observation variables or the hidden-state variables. This allows the derivation of two
probabilistic kernels, which can discriminate either the appearance or the motion
flow of the dynamic texture.

The KL divergence between image distributions p(y1:τ) and q(y1:τ) of DTs Θ1

andΘ2 can be rewritten as a sum of conditional KL divergence terms

DY (Θ1‖Θ2) =
1
τ

τ

∑
t=1

DY (p(yt |y1:t−1)‖q(yt |y1:t−1)), (12.21)

where

DY (p(yt |y1:t−1)‖q(yt |y1:t−1))=
∫

p(y1:t−1)
∫

p(yt |y1:t−1) log
p(yt |y1:t−1)

q(yt |y1:t−1)
dytdy1:t−1.

(12.22)

In (12.22), p(yt |y1:t−1) and q(yt |y1:t−1) are both conditional Gaussians, as in
(12.6). Hence, the inner integral yields the standard formula for the KL divergence
between Gaussians, whereas the outer integral takes the expectation over y1:t−1.
This expectation can be computed efficiently via sensitivity analysis of the Kalman
filter (see [9] for more details). Since it is based on distributions of image pixels,
the KL divergence in image space tends to favor iconic pixel matches. It has best
performance when the goal is to differentiate between DTs of different visual
appearance (e.g., a flock of birds from a school of fish in Fig. 12.1). Under this
measure, two sequences of distinct textures subject to similar motion are identified
as distinct.

The KL divergence can also be computed between the distributions of the hidden-
state sequences. However, since each DT uses a different hidden-state space (defined
by C1 and C2), the state KL divergence cannot be computed directly from the
state distributions. One solution is to project one state space onto the other by
applying a sequence of two transformations: (1) from the original state space into
image space, and (2) from image space into the target state space, yielding the new
parameters,

Â1 = FA1F−1, Q̂1 = FQ1FT , x̂01 = Fx01, Ŝ1 = FS1FT , (12.23)

where F = CT
2 C1 (or F = (CT

2 C2)
−1CT

2 C1 if C2 is not orthogonal). The KL diver-
gence between state spaces can now be computed with the transformed parameters
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where Ā = Â1 −A2, and Pt = EΘ1 [xtxT
t ] is the second-moment of the state variable

xt for DTΘ1. The state KL divergence is useful in discriminating motion flow when
the appearances are similar, e.g., differentiating levels of traffic on a highway, or
detecting outliers and unusual events (e.g., cars speeding or committing other traffic
violations). Finally, given the image or state-space KL divergences, the KL kernel
is defined as a radial basis function of the symmetric KL divergence,

kKL(Θp,Θq) = e−γ(D(Θp‖Θq)+D(Θq‖Θp)), (12.25)

where γ is the RBF bandwidth parameter. Kernels derived from image and state-
space can then be combined with standard multiple kernel learning techniques
[2, 49].

12.3.2 Dynamic Textures Classification

Given an appropriate distance function, DTs can be classified by adopting any of
the standard classification algorithms. One example is the simple nearest neighbor
classifier with the Martin distance, as originally proposed in [73]. DT kernel
functions can also be combined with support vector machines (SVM) [78] to
obtain a large-margin discriminative classifier [11, 83]. In these cases, the “kernel
trick” embeds the DT parameters into a high-dimensional non-linear feature-space,
which is more suitable for comparing DTs than just computing the Euclidean
distance between the parameters. When using a probabilistic kernel function [11],
the DT classification framework inherits the advantages of both the probabilistic
representation (e.g., support for complex statistical inference and regularization)
and the discriminative learning framework (e.g., good generalization guarantees of
large-margin classifiers). Finally, another type of large-margin classifier, AdaBoost,
can be applied to dynamic textures by defining a suitable weak classifier for
DT. Vidal and Favaro [80] proposes a DT weak classifier of the form, h(Θ) =
sign(∑∞t=0λ thT

t yt − φ), where yt is the observation variable of DT Θ , ht is the
prototype output for the weak classifier, and λ is a discounting factor. The prototype
ht takes the form of a noiseless DT output, ht = C̃Ãt x̃0+ ỹ, which results in a closed-
form solution to the infinite sum similar to [83].
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Fig. 12.4 Frames from a highway traffic video (Courtesy of Washington State Department of
Transportation)

12.3.3 Examples: Traffic Classification and Crowd Event
Detection

We first apply DT classification to the task of highway traffic monitoring in scenes
such as those of Fig. 12.4. The holistic motion representation of the DT captures the
variability of the entire motion field, without the need for segmenting or tracking
the individual cars. Since only the motion is modeled, the framework is inherently
invariant to lighting changes. In addition, because the model does not rely on a dense
motion field derived from pixel similarities (e.g., correlation or optical flow), it is
robust to occlusion, blurring, image resolution, and other image transformations.

The dataset contains videos of light, medium, and heavy traffic, taken from a
stationary traffic camera overlooking a highway in Seattle [85] during daytime. A
variety of traffic patterns and weather conditions (e.g., overcast, raining, sunny, rain
drops on the camera lens) are present. An example video is shown in Fig. 12.4.
Each video clip (50 frames at 10 fps) was converted to grayscale, and reduced and
clipped to a 48×48 pixel window. In order to reduce the impact of different lighting
conditions, each video clip was normalized to have zero image mean and overall
pixel variance of one. Finally, a DT was learned for each video clip by estimating
the parameters using the sub-optimal least-squares method [34] with n = 15.

Because the video was obtained from a fixed camera facing the same stretch
of road, the motion is always in the same direction and confined to the same
area. Hence, the state KL divergence is an appropriate distance to discriminate
between flow patterns. To illustrate the effectiveness of this distance, we retrieved
the most similar videos to a query clip, according to the state KL divergence
(τ = 250). Figure 12.5a–c shows the retrieval results for several queries involving
light, medium, and heavy traffic. Note that the retrieval operation is robust to
variable lighting conditions due to overcast or sunny periods. Nighttime sequences
outside of the original database were also used as queries, with the retrieval results
presented in Fig. 12.5d–f. Even in this extreme scenario for lighting variation, the
retrieved traffic scenes have similar motion. In addition, the framework is robust to
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Fig. 12.5 Video retrieval results for (a) light traffic, (b) medium traffic, and (c) heavy traffic during
the day. Retrieval using a night sequence outside the original database for (d) light, (e) medium,
and (f) heavy traffic shows robustness to lighting conditions

occlusion and blurring due to raindrops on the camera lens, as seen in the third and
fifth results of Fig. 12.5e.

An SVM classifier based on the KL kernel was then trained to label video as
containing light, medium, or heavy traffic. Figure 12.6 shows several classification
examples under different lighting conditions: (a) sunny lighting, including strong
shadows; and (b) overcast lighting, including raindrops on the camera lens. The
overall classification accuracy was 94.5 % for daytime video. Several night time
videos, outside the original database, were also classified. Even though the classifier
was trained with video taken during the day, it is still able to correctly label the
nighttime sequences, including the event of a traffic jam (heavy traffic) at night.
This is particularly interesting because, at night, cars appear as a combination of
headlights and a pair of tail lights. These results provide evidence that the DT model
is indeed extracting relevant motion information, and that the proposed classification
framework is capable of very robust discrimination between classes of motion.

A final experiment was conducted to characterize the variation of highway traffic
patterns during the day. The SVM classifier was trained from 61 sequences spanning
4 h of the first day, and tested on 193 sequences spanning 15 h of the following day.
The ground truth classification and the outputs of the state-KL SVM are shown in
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Fig. 12.6 Classification of traffic congestion under variable lighting conditions: (a) sunny, (b)
overcast, and (c) nighttime
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Fig. 12.7 Classification of traffic congestion in sequences spanning 15 h: (top to bottom) ground
truth; classification using state KL SVM. Errors are highlighted with circles

Fig. 12.7. The increased traffic due to the rush hour can be seen between 2:30 PM
and 6:30 PM. Further details on these traffic classification experiments can be found
in [9, 11].

Next we consider the classification of crowd events from the PETS 2009 dataset.
The dataset consists of videos of six classes of crowd behavior (walking, running,
merging, splitting, evacuation, and dispersion), taken simultaneously from four
viewpoints. DT classifiers based on NN and Martin distance and state KL divergence
were learned for each behavior and viewpoint. A probability score for classification
was obtained by combining the decisions of the Martin distance and state KL
divergence NN classifiers (over the four views) using a voting scheme. Figure 12.8
shows several examples of event detection on video 14-33. In the beginning of
the video, people walk towards the center of the frame, and the “walking” and
“merging” events are detected. Next, the people form a group in the center of the
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Fig. 12.8 (Color online) Examples of event recognition on PETS-2009 (video 14-33). Light gray
text (green in color version) indicates that the class was detected. Detection probabilities are given
in parenthesis

frame, and no events are detected since the people are not moving. Finally, when
the people run away from the center, the “running”, “evacuation”, and “dispersion”
events are detected. More details on these experiments can be found in [19].

12.4 Crowd Counting from Global Properties

In this section, we present a formulation of the pedestrian counting problem based
on the analysis of global scene properties. Pedestrian counting is a canonical exam-
ple of problems that vision technology addresses with object-centric approaches.
The mainstream approach to this problem involves detecting the people in the scene
[51, 54, 82, 87, 90], tracking them over time [7, 52, 68], and counting the number
of tracks. However, it is also possible to accurately estimate the size of a crowd
from global low-level features, without the need for object detection and tracking.
Feature-based methods were first applied to subway platform monitoring, through
a combination of: (1) background subtraction; (2) extraction of various features
of foreground pixels, such as total area [23, 30, 66], edge count [23, 30, 72], or
texture [59]; and (3) estimation of crowd density or size with a regression function,
e.g., linear [30, 66], piece-wise linear [72], or neural networks [23, 59]. In recent
years, feature-based regression has also been applied to outdoor scenes. For exam-
ple, [48] applies neural networks to the histograms of foreground segment areas and
edge orientations, while [32] estimates the number of people in each foreground
segment by matching its shape to a database containing the silhouettes of possible
people configurations. The approach of [18] first segments the crowd into sub-
regions of interest (e.g., groups of people moving in different directions), and then
maps features extracted from each segment into a count, using Gaussian process
(GP) regression. These works have shown that accurate crowd counts are possible
without people detection, even when the crowd is sizable and inhomogeneous,
e.g., has sub-components with different dynamics, as illustrated in Fig. 12.9. In
the remainder of the section we discuss this crowd counting framework in more
detail.
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Fig. 12.9 Examples of a low-resolution scene containing a sizable crowd with inhomogeneous
dynamics, due to pedestrian motion in different directions
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Fig. 12.10 Correspondence between crowd size and two simple features: (left) segmentation area,
and (right) the number of edge pixels in the segmented region. The GP regression function is also
plotted with two standard deviations error bars (gray area)

12.4.1 Crowd Counting Framework

Figure 12.9 shows examples of a crowded scene on a pedestrian walkway. The goal
is to estimate the number of people moving in each direction. Given a segmentation
into the two motion sub-components, the key insight is that it is possible to estimate
crowd size from low-level features extracted per crowd segment. For example, as
shown in Fig. 12.10, features such as the segment area or the number of edge
pixels within the segmented region are approximately linear in crowd size, assuming
proper normalization for scene perspective. An outline of the crowd counting archi-
tecture is given in Fig. 12.11. The video is segmented into crowd regions moving
in different directions. For each segment, various features are extracted, under a
perspective map that weighs each image location by its approximate size in the real
scene. Finally, GP regression is used to estimate the number of people per segment.
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Fig. 12.11 Overview of the crowd counting architecture: the scene is segmented into sub-regions
of crowds moving in different directions. Features, normalized to account for perspective, are
extracted from each segment. The number of people is finally estimated with a regression function

12.4.1.1 Crowd Segmentation

The first step is to segment the video regions containing the crowd. This can be
achieved with either background subtraction, if the goal is to estimate the size
of the whole crowd irrespective of direction, or motion segmentation, if the goal
is to count how many people move in different directions. In the latter case, a
robust motion segmentation algorithm is the mixture of dynamic textures [15], which
segments motion by clustering spatio-temporal video cubes. This procedure tends
to work well, and was used to segment a full hour of video in [13]. The resulting
segmentations are illustrated in Fig. 12.14.

12.4.1.2 Perspective Normalization and Feature Extraction

Before extracting features from the video segments, it is important to consider
the effects of perspective. Because objects closer to the camera appear larger, any
feature extracted from a foreground object will account for a smaller portion of
the object than one extracted from an object farther away. This makes it important
to normalize the features for perspective. One possibility is to weight each pixel
according to a perspective normalization map. The pixel weight is based on the
expected depth of the object which generated the pixel, with larger weights given
to far objects [18,48]. Using this weighting counteracts the foreshortening problem,
allowing for more consistent features across scene depth.

Ideally, features such as segmentation area or number of edges should vary
linearly with the number of people in the scene [30, 66], given proper perspective
normalization. Figure 12.10 plots the segmentation area versus the crowd size.
While the overall trend is indeed linear, there exist local non-linearities that arise
from a variety of factors, including occlusion, segmentation errors, and pedestrian
configuration (e.g., spacing within a segment). To model these non-linearities,
additional features are extracted from each segment. These features can be divided
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into three categories: segment features (e.g., area [30, 66], perimeter length [18],
perimeter edge orientation histogram [18], perimeter-area ratio [18], the number of
connected components [17]); internal edge features (e.g., total edge length [30,66],
edge orientation histogram [48], Minkowski dimension [60]); and texture features
(e.g., entropy, homogeneity, and energy of the gray-level co-occurrence matrix
[59]). More details on the various features are available in the references given
above.

12.4.1.3 Count Regression

Crowd size estimates are obtained directly from the feature space using a counting
regression function. There are many possible choices of regression functions,
e.g., linear regression [30,66], piece-wise linear regression [72], or neural networks
[23, 59]. The GP regression [69] of [18] has two advantages. First, because the GP
is a Bayesian regression model, the learned mappings are robust to the number of
training examples, due to the inherent marginalization over all possible parameters.
This reduces the number of hand-annotated training examples needed to learn
the counting function. Second, GP regression can implement non-linear counting
functions by specification of a non-linear kernel. Non-linear regression becomes
increasingly more important as the size and density of the crowd increase, due to
more frequent partial occlusions between objects.

The GP defines a distribution over functions, which is “pinned down” at the
training points. The classes of functions that the GP can model is dependent on the
kernel function used. For example, Bayesian linear regression uses a linear kernel,

k(xp,xq) = α1(x
T
p xq +1)+α2δ (xp,xq), (12.26)

where α = {α1,α2} are hyperparameters that weight the linear term (first term)
and the observation noise (second term), and δ (a,b) is the delta function (1 when
a = b, and 0 otherwise). In the context of pedestrian counting, we have noted that
the dominant trend of many of the features (e.g., segment area) is linear, as shown
in Fig. 12.10. This is complemented by some local non-linearities due to occlusions
and segmentation errors. To capture both the dominant trend and the local non-
linearities, we combine a linear and an RBF kernel, i.e.,

k(xp,xq) = α1(x
T
p xq +1)+α2

2 e
−‖xp−xq‖2

2α2
3 +α2

4δ (xp,xq) (12.27)

with hyperparameters α = {α1,α2,α3,α4}. The (first) linear term models the
overall trend and the (second) RBF term the local non-linearities (with a small length
scale α3), while the third term models observation noise. The kernel hyperparame-
ters α can be learned from the training data by maximizing the marginal likelihood
of the model [69]. Figure 12.10 shows an example of GP regression for the segment
area feature. Note that the regression function captures both the dominant trend and
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Fig. 12.12 (Color online)
Ground-truth pedestrian
annotations: dark gray and
light gray tracks (red and
green in color version) are
people moving away from,
and towards the camera. The
ROI used in the experiments
is highlighted

the local non-linearities. Finally, while the same feature set is used throughout the
crowd counting architecture, a different regressor is learned per direction of crowd
motion. This is necessary because appearance changes with traveling direction.

12.4.2 Example Counting Results

The counting system was applied to video of a pedestrian walkway at UCSD. The
video contains 2,000 frames (200 s) and is annotated with ground-truth counts for
two motion classes, “away” from or “towards” the camera. An example annotation
is shown in Fig. 12.12.

The counting architecture was trained with 800 frames of the annotated data,
using a set of 29 features (area, segment, and texture features) and GP regression
with the linear-RBF kernel in (12.27). Crowd size was estimated on the remaining
video, by rounding the GP prediction to the nearest integer. Figure 12.13 shows the
crowd size estimates as a function of time, for the two crowd directions. Figure 12.14
shows the original image, segmentation, and crowd estimates for several frames in
the test set. The estimates track the ground-truth well in most of the test frames.
The overestimate of the size of the “away” crowd in frames 180–300 is caused by
two bicyclists traveling quickly through the scene, as shown in the second image
of Fig. 12.14. The average per-frame absolute error on the test set was 1.621/0.869
for the away/towards classes, when using all the features. For comparison, the error
was 2.037/1.307 when using only the area features, 1.894/1.172 when using just
segment features, and 1.767/1.122 when using segment and edge features. This
demonstrates the complementary nature of the different feature subsets: the segment
features provide a coarse linear estimate, which is refined by the edge and texture
features that account for various non-linearities.

We next compare this global feature regression approach to an implementation
of counting with two state-of-the-art people detection algorithms: (1) SVM and
histogram-of-gradients [29], which we denote “HOG”; and (2) a deformable parts
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Fig. 12.13 Crowd counting results over both the training and test sets for: (a) people moving away
and (b) people moving towards the camera. The gray bars show the two standard-deviations error
bars of the GP

Fig. 12.14 (Color online) Crowd counting results: The dark gray and light gray segments (red and
green in the color version) are the “away” and “towards” crowds. The estimated crowd count for
each segment is in the top-left, with the (rounded standard-deviation of the GP) and the (ground-
truth). The ROI is also highlighted

model [37], denoted as “DPM”. The detectors were provided by the respective
authors, and were run on each full-size video frame. A filter was applied to remove
detections outside the region of interest or inconsistent with the geometry of the
scene. Finally, detection results were filtered by confidence level thresholding.
The threshold was selected to minimize the counting error on the training set.
Figure 12.15 presents plots of counts for each detection algorithm, as well as the GP
regression, when counting all people in the scene (regardless of direction). On the
test frames, DPM had a lower average absolute error than HOG (4.02 versus 5.71).
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Fig. 12.15 (Color online) Counting results on the whole crowd: (a) low-level features and GP;
and (b) people detection algorithms, HOG [29] and DPM [37]

However, both detectors performed significantly worse than GP regression with low-
level features, which had an absolute error rate of 1.95. These results highlight
the benefits of regression-based counting for crowded scenes, where significant
amounts of occlusion can be quite probematic for people detectors.

Finally, the counting system was tested on the PETS2009 dataset. Figure 12.16
presents results on three regions of interest (R0, R1, and R2) of two videos, 13-57
and 13-59. The average absolute error on video 13-57was 2.308/1.697/1.072 (for
regions R0/R1/R2), and 1.647/0.685/1.282 in video 13-59. Again, the estimated
counts track the ground-truth, even when the crowd is large, dense, and contains
significant occlusions. More details on the counting architecture and experiments
can be found in [17–19].

12.4.3 Extensions

The basic counting via regression framework has been extended in several ways.
One extension aims to improve the regression algorithm. While the GP regression
has real-valued outputs, the actual counts are restricted to non-negative integers.
Chan and Vasconcelos [14] addresses this issue, by developing a Bayesian version
of Poisson regression. This yields a GP-like method for regressing to integer counts.
Chan and Dong [10] further extends this idea by incorporating a more flexible data
likelihood, a Conway-Maxwell Poisson distribution.

Other extensions extract different types of counts from the video. Cong et al.
[25] counts the number of people crossing a line-of-interest. After background
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Fig. 12.16 Count results on PETS2009 videos (a) 13-57 and (b) 13-59. The total count is
predicted on three regions R0 (large box), R1 (medium box), and R2 (small box). The first
row shows the plots of counts over time. The second row presents several example frames with
segmentation and count estimates

subtraction, a “flow-mosaic” is generated by adaptively sampling a slice of the
video, where the slice thickness is proportional to the flow along the line. Features
are extracted from each crowd blob of the mosaic, and the count of each blob
crossing the line is estimated with regression. Lempitsky and Zisserman [53]
proposes a supervised learning framework for generating a count density image,
whose integral over a region-of-interest yields its count. In this framework, the
linear mapping from local feature vector to the count density of a pixel is learned by
minimizing an upper bound on the counting error over all rectangular sub-regions.

12.5 Conclusions and Future Directions

In this chapter, we presented two holistic representations of crowd video. The first
representation is based on holistic modeling of motion flow. The video is modeled
with dynamic textures, and motion classification is performed by defining appropri-
ate distances and kernels between these models. The effectiveness of this approach
to motion classification was demonstrated on a traffic surveillance problem. When
compared to previous solutions, motion analysis with these models has several
advantages: (1) it does not require segmentation or tracking of objects; (2) it does
not require estimation of a dense motion vector field; and (3) it is robust to lighting
variation, blurring, occlusion, and low image resolution. The second representation
was based on global low-level features and regression models. It does not depend on
object detection or feature tracking and was successfully used to estimate the size of
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inhomogeneous crowds, composed of pedestrians traveling in different directions.
Regression-based counting was shown more robust than counting based on people
detection, which can be hindered by the complex occlusions and object interactions
that occur within large crowds, lighting variations, or low image resolution.

Dynamic texture classification was shown successful for scenes that are texture-
like (e.g., moving cars, moving crowds, or video textures). One interesting direction
of future research is to apply the DT to problems where the observations are not
video textures, but times-series of feature vectors. In this case, a kernelized repre-
sentation of the DT [12] can be adopted to model non-linear feature trajectories.
For example, [22] applies this idea to human action recognition, by extracting
histogram-of-optical-flow (HOOF) feature trajectories and learning a kernel DT,
based on a histogram kernel. A similar technique could be applied to motion flow.
In the area of crowd counting, future research directions include the development
of view-invariant features that scale to larger and denser crowds, and better training
procedures supporting multiple viewpoints and knowledge transfer. Finally, there is
a need for the deployment of crowd counting systems in real world environments,
for extended periods of time, from different viewpoints, and analyzing crowd
trends over long periods of time. Longer-term modeling of crowds has important
applications in outlier event detection and resource management.
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Chapter 13
Inferring Leadership from Group Dynamics
Using Markov Chain Monte Carlo Methods
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Abstract This chapter presents a novel framework for identifying and tracking
dominant agents in groups. The proposed approach relies on a causality detection
scheme that is capable of ranking agents with respect to their contribution in rec-
ognizing the system’s collective behavior based exclusively on the agents’ observed
trajectories. Further, the reasoning paradigm is made robust to multiple emissions
and clutter by employing a class of recently introduced Markov chain Monte
Carlo-based group tracking methods. Examples are provided that demonstrate the
strong potential of the proposed scheme in identifying actual leaders in swarms of
interacting agents and moving crowds.
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13.1 Introduction

Tracking interacting objects moving in a coordinated fashion and making inference
about the patterns of their behavior has been subject of an increased interest in
the last decade. Such problems occur in many areas, especially video surveillance,
cell tracking in biomedicine, pollutant clouds monitoring and people rescuing. The
common pattern of the whole group is of main interest, not the individual trajectories
on their own. In most of the multi-object tracking methods, as opposed to groups
tracking methods, tracking of individual objects is the common approach. This is
an especially challenging problem when the groups are composed of hundreds or
thousands elements and the inference needs to be done quickly, in real time, based
on heterogeneous multi-sensor data.

Groups can be considered as structured objects, a term which reflects the
interrelationships between their components. These endogenous forces give rise
to group hierarchies and are instrumental in producing emergent phenomena.
Fortunately, these are exactly the factors essential for maintaining coordination
within and between groups, a premise which to some extent allows us to treat them
as united entities in a high level tracking paradigm. Any knowledge of existence of
such interrelations facilitates sophisticated agent-based behavioral modeling which,
in practice, comprises of a set of local interaction rules or mutually interacting
processes (e.g., Boids system [31], causality models [17, 30]) – an approach
which by itself provides insightful justifications of characteristic behaviors in the
fundamental subsystem level and likewise of group hierarchies and emergent social
patterns (see [30]).

13.1.1 Reasoning About Behavioral Traits

Being the underlying driving mechanism for evoking emergent phenomena, hier-
archies and principal behavior patterns, the ingrained interactions between agents
are possibly the most pivotal factors that should be scrutinized in high level scene
understanding. Such interrelations can take the form of a causal chain in which
an agent’s decisions and behavior are affected by its neighbors and likewise have
either direct or indirect influence on other agents. The ability to fully represent
these interrelations based exclusively on passive observations such as velocity and
position, lays the ground for the development of sophisticated reasoning schemes
that can potentially be used in applications such as activity detection, intentionality
prediction, and artificial awareness.

In this work we demonstrate this concept by developing a causality reasoning
framework for ranking agents with respect to their cumulative contribution in
shaping the collective behavior of the system. In particular, our framework is able to
distinguish leaders and followers based exclusively on their observed trajectories.
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13.1.2 Novelties and Contributions

The contribution of this work is twofold. Firstly, a novel causality reasoning scheme
is derived for ranking agents with respect to their decision-making capabilities
(dominance) as substantiated by the observed emergent behavior. Dominant agents
in that sense are considered to have a prominent influence on the collective behavior
and are experimentally shown to coincide with actual leaders in groups. Secondly,
the causality scheme is consolidated with a recently introduced Markov chain
Monte Carlo (MCMC)-based particle method [9, 28] for tracking agents and group
hierarchies in potentially cluttered environments.

The subsequent Sects. 13.1.3–13.2 provide an overview of existing group track-
ing schemes with an emphasis on the underlying MCMC-based particle methods.

The remaining part of this chapter is organized in the following way. Section 13.3
develops the causality-driven agent ranking approach. Section 13.4 demonstrates the
performance of the causality identification scheme using a few illustrative examples.
Finally, concluding remarks and some open issues are discussed in Sect. 13.5.

13.1.3 Multiple Group Tracking

Over the past decade various methods have been developed for group track-
ing. These can be divided into two broad classes, depending on the underlying
complexities: (1) methods for a relatively small number of groups, with a small
number of group components [15, 24, 28], and (2) methods for groups comprised
of hundreds or thousands of objects (normally referred to as cluster/crowd tracking
techniques) [2, 9]. In the second case the whole group is usually considered as an
extended object (an ellipse or a circle) which center position is estimated, together
with the parameters of the extent.

Different models of groups of objects have been proposed in the literature,
such as particle models for flocks of birds [19], and leader-follower models [26].
However, estimating the dynamic evolution of the group structure has not been
widely studied in the literature, although there are similarities with methods used
in evolving network models [1, 11].

Typically tracking many objects (hundreds or thousands) can be solved by
clustering techniques or other methods where the aggregated motion is estimated, as
it is in the case of vehicular traffic flow prediction/estimation, with fluid dynamics
type of models combined with particle filtering techniques [27]. For thousands
of objects forming a group, the only possible solution is to consider them as an
extended object. The extended object tracking problem reduces then to joint state
and parameter estimation.

Estimation of parameters in general nonlinear non-Gaussian state-space models
is a long-standing problem. Since particle filters (PFs) are known with the challenges
they face for parameter estimation and for joint state and parameter estimation [4],
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most solutions in the literature split the problems into two parts: (i) state estimation,
followed by (ii) parameter estimation (see e.g., [3]). In [3] an extended object
tracking problem is solved when the static parameters are estimated using Monte
Carlo methods (data augmentation and particle filtering), whereas the states are
estimated with a Mixture Kalman filter or with an interacting multiple model
filter.

13.1.3.1 PFs for Tracking in Variable State Dimensions

An extension of the PF technique to a varying number of objects is introduced
in [28, 34] and [24]. In [34] a PF implementation of the probability hypothesis
density (PHD) filter is derived. This algorithm maintains a representation of
the filtering belief mass function using random set realizations (i.e., particles
of varying dimensions). The samples are propagated and updated based on a
Bayesian recursion consisting of set integrals. Both works of [28] and [24] develop
a MCMC PF scheme for tracking varying numbers of interacting objects. The
MCMC approach outperforms the conventional PF due to its efficient sampling
mechanism. Nevertheless, in its traditional non-sequential form it is inadequate for
sequential estimation. The techniques used by Pang et al. [28] and Khan et al. [24]
amend the MCMC for sequential filtering (see also [5]). The work in [24] copes
with inconsistencies in state dimension by utilizing the reversible jump MCMC
method introduced in [18]. In [28], on the other hand the computation of the
marginal filtering distribution is avoided as in [5]. The algorithm operates on a fixed
dimension state space through indicator variables for labeling of active object states
(the two approaches are essentially equivalent).

13.2 Models and Algorithms for Group Tracking

This section briefly reviews the fundamental concepts underlying the MCMC-based
group tracking approaches in [28] and [9].

13.2.1 Virtual Leader Model

The idea of group modeling is to adopt a behavioral model in which each member
of a group interacts with the other members of the group, typically making its
velocity and position more similar to that of others in the same group. In [28], this
idea has been conveniently formulated in continuous time through a multivariate
stochastic differential equation (SDE) and then derived in discrete time without
approximation errors, owing to the assumed linear and Gaussian form of the model.
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Fig. 13.1 Group model with virtual leader – illustration of the restoring forces (a) and of a single
realization showing a group of four objects that splits into two groups of two objects (b)

In particular, two different models have been proposed. In the first, the basic group
model, the group parameter is modeled as a deterministic function of the objects.
In the second, the group model with a virtual leader, an additional state variable is
introduced in order to model the bulk or group parameter. This second approach is
closer in spirit to the bulk velocity model and virtual leader-follower model [26].
Such model provides a more flexible behavior since the virtual leader is no longer a
deterministic function of the individual object states. Figure 13.1 gives a graphical
illustration of the restoring forces towards the virtual leader for a group of five
objects.

The spatio-temporal structure for the ith object in a group, as defined in [28], is
given by:

d�̇x
t,i =

{−α[μx
t,i − vx

t ]− γ1μ̇x
t,i −β [μ̇x

t,i − v̇x
t ]+ ri

}
dt +σxdW x

t,i (13.1)

dv̇x
t = −γ2v̇x

t dt +σgdGx
t (13.2)

Here μx
t,i is the Cartesian position in the X direction of the ith object in the group

at time t, with μ̇x
t,i the corresponding velocity. vx

t and v̇x
t represent respectively the

Cartesian position and the velocity both in the X direction of the unobserved virtual
leader of the group. W x

t,i and Gx
t are two independent standard Brownian motions.

W x
t,i is assumed to be independently generated for each object i in the group, whereas

Gx
t is a noise component common to all members of a group. The parameters α and
β are positive, and reflect the strength of the pull towards the group bulk. The “mean
reversion” terms γ1μ̇x

t,i and γ2v̇x
t simply prevent the velocities of the object and the

virtual leader drifting up to very large values with time. Finally, in order to reduce
or eliminate behavior in which objects become colocated or collide spatially, which
are clearly infeasible or highly unlikely in practice, an additional repulsive force ri

is introduced in (13.1) when objects become too close.
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13.2.2 Modeling Groups of Extended Objects

In practice, objects may produce more than a single emission, and in some cases
they may indeed consist of many individual entities moving in a coordinated fashion
(i.e., clusters). Such scenarios normally involve additional extent parameters that
embody the potentially dynamic physical boundary of an object. In this respect,
the fairly simple idea adopted in [9] represents a dynamically evolving group
of extended objects, which are otherwise referred to as clusters, by means of a
time-varying Gaussian mixture model (i.e., each mixture component corresponds
to an individual object). In what follows, we briefly review the essentials of this
approach.

Assume that at time k there are lk clusters, or targets at unknown locations.
Each cluster may produce more than one observation yielding the measurement
set realization zk = {yk(i)}mk

i=1, where typically mk >> lk. At this point we assume
that the observation concentrations (clusters) can be adequately represented by a
parametric statistical model.

Letting z0:k = {z0, . . . ,zk} be the measurement history up to time tk, the cluster
tracking problem may be defined as follows. We are concerned with estimating
the posterior distribution of the random set of unknown parameters, i.e. p(xk |
z0:k), from which point estimates for xk and posterior confidence intervals can be
extracted.

For reasons of convenience we consider an equivalent formulation of the
posterior that is based on existence variables. Thus, following the approach adopted
in [9] the random set xk is replaced by a fixed dimension vector coupled to a set
of indicator variables ek = {e j

k}n
j=1 showing the activity status of elements (i.e.,

e j
k = 1, j ∈ [1,n] indicates the existence of the jth element where n stands for

the total number of elements). To avoid possible confusion, in what follows we
maintain the same notation for the descriptive parameter set xk which is now of
fixed dimension.

In [9], each cluster is modeled via a Gaussian pdf. Following this only the
first two moments, namely the mean and covariance, need to be specified for
each cluster (under these restrictions, the cluster tracking problem is equivalent to
that of tracking an evolving Gaussian mixture model with a variable number of
components). It is worth mentioning, that the approach itself does not rely on the
Gaussian assumption and other parameterized density functions could equally be
adopted in this framework. Thus,

x j
k = {�

j
k, μ̇

j
k,Σ

j
k ,w

j
k,ρ

j
k}, xk = {x j

k}n
j=1, (13.3)

where μ j
k, μ̇ j

k, Σ j
k and w j

k denote the jth cluster’s mean, velocity, covariance and
associated unnormalized mixture weight at time k, respectively. The additional
parameter ρ j

k denotes the local turning radius of the jth cluster’s mean at time k.
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13.2.3 Sequential Inference Using MCMC-Based PF

The group tracking problems discussed above can be efficiently solved via the
MCMC-based particle method initially proposed for solution of group tracking
problems in [28]. This method aims at sequentially approximating the following
joint posterior distribution

p(xk,xk−1|z0:k) ∝ p(zk|xk)p(xk|xk−1)p(xk−1|z0:k−1) (13.4)

where the state vector xk comprises of the objects’ instantaneous position, velocity
and extent parameters at time tk. In what follows we would refer to the (discrete)
time tk as simply k.

Since the closed form expression of the distribution p(xk−1|z0:k−1) is generally
unknown, the proposed scheme approximates it by using a set of unweighted
particles

p(xk−1|z0:k−1)≈ 1
N

N

∑
j=1
δ (xk−1 −x( j)

k−1) (13.5)

where N is the number of particles, δ (·) is the Dirac delta, and ( j) is the
particle index. Then, by plugging this particle approximation into (13.4), an
appropriate MCMC scheme can be used to draw from the joint posterior distribution
p(xk,xk−1|z0:k). The converged MCMC outputs are then extracted to give an
empirical approximation of the posterior distribution of interest at time k, thus
seeding the next step of the filtering at time k+1.

At the mth MCMC iteration, the following procedure is performed to obtain
samples from p(xk,xk−1|z0:k):

1. Make a joint draw for {xk,xk−1} using a Metropolis Hastings step,
2. Update successively some elements in xk by using a series of Metropolis

Hastings-within-Gibbs.

13.2.3.1 Metropolis Hastings Step for the Cluster Tracking Problem

The Metropolis Hastings (MH) algorithm generates samples from an aperiodic and
irreducible Markov chain with a predetermined (possibly unnormalized) stationary
distribution. This is a constructive method which specifies the Markov transition
kernel by means of acceptance probabilities based on the preceding time outcome.
As part of this, a proposal density is used for drawing new samples. In our case,
setting the stationary density as the joint filtering pdf of the object states xk,xk−1

and the corresponding indicator variables ek,ek−1, i.e., p(xk,ek,xk−1,ek−1 | z0:k)
(of which the marginal is the desired filtering pdf), a new set of samples from
this distribution can be obtained after the MH burn-in period. This procedure is
described next.



332 A.Y. Carmi et al.

Algorithm 3 MCMC particle filtering algorithm

1. Given previous time samples {x(i)k−1,e
(i)
k−1}N

i=1 perform the following steps
2. for i = 1, . . . ,N +NBurn−in

3. for j = 1, . . . ,n
4. Cluster evolution: Simulate

(μ̇ j,(i)
k−1 ,μ

j,(i)
k−1 ,Σ

j,(i)
k−1 ,w

j,(i)
k−1 ,ρ

j,(i)
k−1 )−→ (μ̇ j,(i)

k ,μ j,(i)
k ,Σ j,(i)

k ,w j,(i)
k ,ρ j,(i)

k )

5. end for
6. Perform MCMC move (Algorithm 4).

7. Draw a new set of indicators e j,(i)
k , j = 1, . . . ,n for the accepted move.

8. Perform Gibbs refinement (Algorithm 5).
9. end for

First, we simulate a sample from the joint propagated pdf p(xk,ek,xk−1,ek−1 |
z0:k−1) by drawing

(x′k,e
′
k)∼ p(xk,ek | x′k−1,e

′
k−1) (13.6)

where (x′k−1,e
′
k−1) is uniformly drawn from the empirical approximation

p̂(xk−1,ek−1 | z0:k−1) = N−1
N

∑
i=1
δ (x(i)k−1 −xk−1)δ (e

(i)
k−1 − ek−1) (13.7)

This sample is then accepted or rejected using the following Metropolis rule.

Let (x(i)k ,e(i)k ,x(i)k−1,e
(i)
k−1) be a sample from the realized chain of which the

stationary distribution is the joint filtering pdf. Then the MH algorithm accepts
the new candidate (x′k,e

′
k,x

′
k−1,e

′
k−1) as the next realization from the chain with

probability

γ = min

{
1,

p(zk | x′k,e
′
k,mk)

p(zk | x(i)k ,e(i)k ,mk)

}
(13.8)

where p(zk | x′k,e
′
k,mk) is the likelihood function. The converged output of this

scheme simulates the joint density p(xk,ek,xk−1,ek−1 | z0:k) of which the marginal
is the desired filtering pdf.

It has already been noted that the above sampling scheme may be inefficient
in exploring the sample space as the underlying proposal density of a well
behaved system (i.e., of which the process noise is of low intensity) introduces
relatively small moves. This drawback is alleviated here by using a secondary Gibbs
refinement stage [9].

A single cycle of the basic MCMC cluster tracking algorithm of [9] is summa-
rized in Algorithms 3, 4, and 5.
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Algorithm 4 MCMC move
1. Compute the MH acceptance probability γ of the new move using (13.8).
2. Draw u ∼U [0,1]
3. if u < γ
4. Accept s(i) = (x(i)k ,e(i)k ,x(i)k−1,e

(i)
k−1) as the next sample of the realized chain.

5. else
6. Retain s(i) = s(i−1).
7. end if

Algorithm 5 Particles refinement (Metropolis within Gibbs)
1. for j = 1, . . . ,n

2. if e j,(i)
k = 1

3. for l = 1, . . . ,NMH Steps

4. Propose a move μ̄ j
k.

5. Compute the MH acceptance probability γ̄ of the new move.
6. Draw u ∼U [0,1]
7. if u < γ̄
8. Accept the new move by setting μ j,(i)

k = μ̄ j
k.

9. else
10. Retain previous μ j,(i)

k .
11. end if
12. end for
13. end if
14. end for

13.2.3.2 Multiple Chain and Evolutionary MCMC

The theory of multiple chain MCMC grasps that a mixing mechanism for syn-
thesizing samples across chain realizations is necessary for improving robustness
to the well known practical problem of quasi-ergodicity otherwise known as poor
mixing. Existing multiple chain approaches, such as parallel tempering [13, 14],
evolving population particle filters [6–8,21,22,29] and population MCMC [23,25],
utilize exchange mechanisms to expedite convergence. The evolutionary MCMC
approach, on the other hand, incorporates an additional structure for generating
possibly improved candidates based on convergent chain realizations. This method
has been proved successful in high dimensional settings. An evolutionary extension
of the basic MCMC filtering scheme is provided in the Appendix part of this work.

13.3 Causality-Driven Agent Ranking

The so-called probabilistic approach to causality, which has reached maturity over
the past two decades (see for example Pearl [30], Geffner [12], and Shoam [32]
for an extensive overview), establishes a convenient framework for reasoning and
inference of causal relations in complex structural models.
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Fig. 13.2 From left to right: depiction of the causal hierarchies (based on out degrees) (X ,Y,Z),
(Y,X ,Z), and (Z,Y,X). The most influential agents in the causal diagrams from left to right are X ,
Y and Z, respectively

Many notions in probabilistic causality rely extensively on structural models
and in particular on causal Bayesian networks which are normally referred to as
simply causal networks (CN’s). A CN is a directed acyclic graph compatible with a
probability distribution that admits a Markovian factorization and certain structural
restrictions [30].

13.3.1 Causal Hierarchies

In this work the term causal hierarchies refers to ranking of agents with respect to
their cumulative effect on the actions of the remaining constituents in the system.
The word “causal” here reflects the fact that our measure of distinction embodies
the intensity of the causal relations between the agent under inspection and its
counterparts. Adopting the information-theoretic standpoint, in which the links of a
CN are regarded as information channels [10], one could readily deduce that the
total effect of an agent is directly related to the local information flow entailed
by its corresponding in and out degrees. To be more precise, the total effect of an
agent is computed by summing up the associated path coefficients (obtained by any
standard Bayesian network learning approach) of either inward or outward links.
This concept is further illustrated in Fig. 13.2.

13.3.2 Inferring Causal Hierarchies via PCA

To some extent, causal hierarchies can be inferred using the class of principal
component analysis (PCA)-based methods. Probably the most promising one in
the context of our problem is the multi-channel singular spectrum analysis (M-
SSA), which is otherwise known as extended empirical orthogonal function (EEOF)
analysis [16]. The novel approach we suggest has some relations with M-SSA.
The relevant details, however, are beyond the scope of this work. A performance
evaluation of both our method and M-SSA is provided in the numerical study part
in the following sections.
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13.3.3 Structural Dynamic Modeling Approach

Structural equation modeling is commonly used for representing the underlying
links of a CN [30]. In our case, this formulation assumes a rather dynamic form (i.e.,
comprising of multiple time series of the agents’ observed traits such as velocity and
position)

xi
k =∑

j �=i

p

∑
m=1
α j→i(m)x j

k−m + ε i
k, i = 1, ..,n (13.9)

where {xi
k}∞k=0 and {ε i

k}∞k=0 denote the ith random process and a corresponding
white noise driving sequence, respectively. The coefficients {α j→i(m)}p

m=1 quantify
the causal influence of the jth process on the ith process. Notice that the Markovian
model (13.9) has a finite-time horizon of the order p (also referred to as the wake
parameter). In the standard multivariate formulation, the coefficients α j→i(m) are
square matrices of an appropriate dimension. For maintaining a reasonable level
of coherency we assume that these coefficients are scalars irrespectively of the
dimension of xi

k. Nevertheless, our arguments throughout this Section can be readily
extended to the standard multivariate case.

The methodology underlying the so-called Granger causality [17] considers an F-
test of the null hypothesis α j→i(m) = 0, m = 1, . . . , p for determining whether the
jth process G-causes the ith process. The key idea here follows the simple intuitive
wisdom that the more significant these coefficients are, the more likely they are
to reflect a causal influence. In the framework of CNs the causal coefficients are
related to the conditional dependencies within the probabilistic network, which in
turn implies that their values can be learned based on the realizations of the time
series {xi

k}∞k=0, i = 1, . . . ,n. In what follows, we demonstrate how the knowledge
of these coefficients allows us to infer the fundamental role of individual agents
within the system. Before proceeding, however, we shall define the following key
quantity.

Definition 13.1 (Causation Matrix). The causal influence of the process x j on the
process xi can be quantified by

Ai j =∑
m

[
α j→i(m)

]2 ≥ 0. (13.10)

In the above definition, Ai j denotes the coefficient relating the two processes
x j and xi so as to suggest an overall matrix structure that would provide a
comprehensive picture of the causal influences among the underlying processes.
The matrix A = [Ai j] ∈R

n×n, termed the causation matrix, essentially quantifies the
intensity of all possible causal influences within the system (note that according to
the definition of a CN, the diagonal entries in A vanish). It can be easily recognized
that a single row in this matrix exclusively represents the causal interactions
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affecting each individual process. Similarly, a specific column in A is comprised
of the causal influences of a single corresponding process on the entire system. This
premise motivates us to introduce the notion of total causal influence.

Definition 13.2 (Total Causal Influence Measure). The total causal influence
(TCI) Tj of the process x j

k is obtained as the l1-norm of the jth column in the
causation matrix A, that is

Tj =
n

∑
i=1

|Ai j|=
n

∑
i=1

Ai j (13.11)

Having formulated the above concepts we are now ready to elucidate the primary
contributions of this work, both of which rely on the TCI measure defined above.

13.3.4 Dominance and Similarity

A rather intuitive, but nonetheless striking, observation about the TCI is that it
essentially reflects the dominance of each individual process in producing the
underlying emergent behavior. This allows us to decompose any complex act into
its prominent behavioral building blocks (processes) using a hierarchical ordering
of the form

Least dominant Tj1 ≤ Tj2 ≤ . . .≤ Tjn Most dominant (13.12)

Equation (13.12) is given an interesting interpretation in the application part of
this work, where the underlying processes {x j

k}n
j=1 correspond to the motion of

individual agents within a group. In the context of this example, the dominance of
an agent is directly related to its leadership capabilities. By using the TCI measure
it is therefore possible to distinguish between leaders and followers.

Another interesting implication of the TCI is exemplified in the following
argument. Consider the two extreme processes in (13.12), one of which is the most
dominant, x jn

k , while the other is the least dominant, x j1
k . Now, suppose we are given

a new process xi
k, i �= j1, jn and are asked to assess its dominance based exclusively

on the two extremals, with respect to the entire system. Then, a common intuition
would suggest to categorize xi

k as a dominant process in the system whenever it

resembles x jn
k more than x j1

k in the sense of |Tjn − Ti| < |Tj1 − Ti| and vice versa.
This idea is summarized below.

Definition 13.3 (Causal Similarity). A process x j
k is said to resemble xi

k more than
xl

k if and only if |Tj −Ti|< |Tj −Tl |.
In the context of the previously–mentioned example, we expect that dominant agents
with high leadership capabilities would possess similar TCIs that would distinguish
them from the remaining agents, the followers.
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13.3.5 Bayesian MCMC Estimation of α j→i

In typical applications the coefficients α j→i(m), m = 1, . . . , p in (13.9) may be
unknown. Providing that the realizations of the underlying processes are available
it is fairly simple to estimate these coefficients by treating them as regressors.
Such an approach by no means guarantees an adequate recovery of the underlying
causal structure (see the discussion about the identifiability of path coefficients and
a related assertion concerning non-parametric functional modeling in [30] pp. 156–
157, both have a clear connotation to the “fundamental problem of causal inference”
[20]). Nevertheless, it provides a computationally efficient framework for making
inference in systems with exceptionally large number of components. This premise
is evident by noting from (13.9) that while fixing i the coefficients α j→i(m), ∀ j �= i,
m = 1, . . . , p are statistically independent of α j→l(m), ∀l �= i.

In a Bayesian framework we confine the latent causal structure by imposing a
prior on the coefficients α j→i(m). Let pi

α and p j→i
α be the priors of {α j→i(m),∀ j �=

i}, and α j→i(m), respectively. Let also pi
ε be some prescribed (not necessarily

Gaussian) probability density of the white noise in (13.9). Then,

p({α j→i(m),∀ j �= i} | x1:n
0:k) ∝

pi
α

k

∏
t=p

p(xi
t | {α j→i(m),x j

t−p:t−1,∀ j �= i})

= pi
α

k

∏
t=p

pi
ε(x

i
t −∑

j �=i

p

∑
m=1
α j→i(m)x j

t−m), i = 1, . . . ,n (13.13)

where x1:n
0:k = {x1

0, . . . ,x
n
0, . . . ,x

1
k , . . . ,x

n
k}, and x j

t−p:t−1 = {x j
t−p, . . . ,x

j
t−1}. A viable

estimation scheme for α j→i(m) which works well in most generalized settings is a
Metropolis-within-Gibbs sampler that operates either sequentially or concurrently
on the conditionals

p(α j→i(m) | x1:n
0:k ,{α l→i,∀l �= j, i}) ∝

p j→i
α

k

∏
t=p

p(xi
t | {α l→i(m),xl

t−p:t−1,∀l �= i}) (13.14)

The obtained estimates at time k are then taken as the average of the converged chain
(i.e., subsequent to the end of some prescribed burn-in period).

13.3.6 Causal Reasoning in Cluttered Environments

In many practical applications the constituent underlying traits, which are repre-
sented here by the processes {x j

k}n
j=1, may not be perfectly known (in the context
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of our work these could be the object position and velocity, μ j
k, μ̇ j

k). Hence instead
of the actual traits one would be forced to use approximations that might not be
consistent estimates of the original quantities (e.g., μ̂ j

k, ˆ̇μ j
k). As a consequence,

the previously suggested structure might cease being an adequate representation
of the latent causal mechanism. A plausible approach for alleviating this problem is
to introduce a compensated causal structure that takes into account the exogenous
disturbances induced by the possibly inconsistent estimates. Such a model can be
readily formulated as a modified version of (13.9), that is

μ̂ i
k =∑

j �=i

p

∑
m=1
α j→i(m)μ̂ j

k−m + ε i
k +ζ

i
k, i = 1, ..,n, (13.15)

where the additional factor ζ i
k denotes an exogenous bias. Hence, one can use

(13.15) to predict the effects of interventions in ζ i
k directly from passive observa-

tions (which are taken as an output of a tracking algorithm, e.g., μ̂ j
k or ˆ̇μ j

k) without
adjusting for confounding factors. See [30] (p. 166) for further elaborations on the
subject.

13.4 Illustrative Examples

We demonstrate the performance of our suggested reasoning methodology and some
of the previously mentioned concepts using both synthetic and realistic examples.
All the scenarios considered here involve a group of dynamic agents, some of which
are leaders that behave independently of all others. The leaders themselves may
exhibit a highly nonlinear and non-predictive motion pattern which in turn affects
the group’s emergent behavior. We use a standard CN (13.9) with a predetermined
time horizon p for disambiguating leaders from followers based exclusively on
their instantaneous TCIs. In all cases the processes xi

k, i = 1, . . . ,n are taken as
either the increment μ̇ i

k or position μ i
k of each individual agent in the group. In

addition, the unified tracking and reasoning paradigm is demonstrated by replacing
the actual position and increment with the corresponding outputs of the MCMC
cluster tracking algorithm, ˆ̇μ i

k and μ̂ i
k.

The performance of the causality inference scheme is directly related to its
ability to classify leaders based on their TCI values. As leaders are, by definition,
more dominant than followers in some measure space, essentially shaping the
overall group behavior, we expect that their TCI values would reflect this fact.
Furthermore, the hierarchy (13.12) should allow us to disambiguate them from the
remaining agents according to the notion of causal similarity which was introduced
in Sect. 13.3.4. Following this argument we define a rather distinctive performance
measure which allows us to assess the aforementioned qualities.

Let G be a set containing the leaders indices, i.e.,

G = { j | x j
k is a leader’s instantaneous position or velocity}.
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Let also v be a vector containing the agents’ ordered indices according to the
instantaneous hierarchy at time k

Tj1 ≤ ·· · ≤ Tjn , (13.16)

i.e., v = [ jn, . . . , j1]T . Having stated this we can now define the following perfor-
mance index

e = max{i ∈ [1,n] | vi ∈ G} (13.17)

The above quantity indicates the worst TCI ranking of a leader. As an example,
consider a case with, say, five leaders. Then the best performance index we could
expect would be five, implying that all leaders have been identified and were
properly ranked according to their TCIs. If the performance index yields a value
greater than 5, say 10, it implies that all leaders are ranked among the top 10 agents
according to their TCIs. The performance index cannot go below the total number
of leaders and cannot exceed the total number of agents.

13.4.1 Swarming of Multiple Interacting Agents (Boids)

Our first example pertains to identification of leaders and followers in a dynamical
system of multiple interacting agents, collectively performing in a manner usually
referred to as swarming or flocking.

In the current example, Reynolds-inspired flocking [31] is used to create a
complex motion pattern of multiple agents. Among these agents, there are leaders,
who independently determine their own position and velocity, and followers, who
interact among themselves and follow the leader agents.

The inference scheme performance over 100 Monte Carlo runs, in which the
agents initial state and velocity were randomly picked, is provided in Fig. 13.3. The
synthetic scenario considered consists of 30 agents, 4 of which are actual leaders.
The performance index cumulative distribution function (CDF) for this scenario,
which is illustrated via the 50, 70 and 90 percentile lines, is shown over the entire
time interval in the left panel in this figure. The percentiles indicate how many
runs out of 100 yielded a performance index below a certain value. Thus, 50 %
of the runs yielded a performance index below the 50 percentile, 70 % of the runs
attained values below the 70 percentile, and so on. Following this, it can be readily
recognized that from around k = 150 the inference scheme is able to accurately
identify the actual leaders in 50 % of the runs. A further examination of this figure
reveals that the 4 actual leaders are ranked among the top 6 from around k = 180 in
90 % of the runs.

A comparison of leaders ranking capabilities of the proposed approach with
that of the M-SSA method is provided in the right panel in Fig. 13.3. The
instantaneous CDFs of both techniques are shown when using either position or
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either velocity or position data) based on 100 Monte Carlo runs. (a) Causal ranking. (b) Causal
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velocity time series data. This figure clearly demonstrates the superiority of the
proposed approach with respect to the M-SSA.

13.4.2 Identifying Extended Leaders in Clutter

In the following example the actual agent tracks are replaced by the output of an
MCMC-based tracking approach that was initially derived in [9, 28] and is briefly
described in Sect. 13.2. The scenario consists of four agents out of which two are
leaders. As before we use the Boids system for simulating the entire system. This
time, however, the produced trajectories are contaminated with clutter and additional
points representing multiple emissions from possibly the same agent (i.e., agents are
assumed to be extended objects). These observations are then used by the MCMC
tracking algorithm of which the output is fed to the causality detection scheme, in a
fashion similar to the one described in Sect. 13.3.6.

The tracking performance of the MCMC algorithm is demonstrated both in
Fig. 13.4 and in the left panel in Fig. 13.5. In Fig. 13.4, the estimated tracks and
the cluttered observations are shown for a typical run. The averaged tracking
performance of the MCMC approach is further illustrated based on 20 Monte Carlo
runs using the Hausdorff distance [9] in Fig. 13.5. From this Figure it can be seen
that the mean tracking errors become smaller than 1 after approximately 50 time
steps in either cases of cluttered and non-cluttered observations.

The averaged leaders ranking performance in this example is illustrated for three
different scenarios in the right panel in Fig. 13.5. Hence, it can be readily recognized
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that the two leaders are accurately identified after approximately 10 time steps
when the agent positions are perfectly known. As expected, this performance is
deteriorated in the presence of clutter and multiple emissions, essentially attaining
an averaged ranking metric of nearly 2.5 after 60 time steps.

13.4.3 Identifying Group Leaders from Video Data

Our third, more practical example, deals with the following application. Consider
a group of people, among which there are subgroups of leaders and followers.
The followers coordinate their paths and motion with the leader. Using video
observations only of the group, determine who the group leaders are. To that end,
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one must first develop a procedure for estimating the trajectories of n people from
a given video sequence. The input to the described procedure is a movie with n
moving people, where n is known. The objective is to track each person along the
frame sequence, and then feed this information into the CN mechanism for inferring
the leaders and followers.

As we are dealing with a rather noiseless and non-cluttered scenario, a simple
k-means clustering was used to recover individual person tracks from SIFT (scale-
invariant feature transform) features. This approach was applied to two different
video sequences in which there were five followers and one leader. Snapshots are
shown in the upper panel in Fig. 13.6. In these videos, the actual leader (designated
by a red shirt) performs a random trajectory, and the followers loosely follow its
motion pattern. The clustering procedure described above is used to estimate the
trajectories of the objects (the trajectories were filtered using a simple moving-
average procedure to reduce the amount of noise contributed by the k-means
clustering method). These trajectories were fed into the causality inference scheme.

The results of this procedure are shown in the bottom panel in Fig. 13.6, which
depicts the causality performance index for two values of the finite-time horizon
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(wake parameter), p. It is clearly seen that from a certain time point the algorithm
identifies the actual leader in both videos irrespective to the value of p.

13.5 Concluding Remarks

A novel causal reasoning framework has been proposed for ranking agents with
respect to their contribution in shaping the collective behavior of the system. The
proposed scheme copes with clutter and multiple emissions from extended agents
by employing a Markov chain Monte Carlo group tracking method. This approach
has been successfully applied for identifying leaders in groups in both synthetic and
realistic scenarios.

Appendix

Evolutionary MCMC Implementation

The basic MH scheme can be used to produce several chain realizations each starting
from a different (random) state. In that case, the entire population of the converged
MH outputs (i.e., subsequent to the burn-in period) approximates the stationary
distribution. Using a population of chains enjoys several benefits compared to a
single-chain scheme. The multiple-chain approach can dramatically improve the
diversity of the produced samples as different chains explore various regions that
may not be reached in a reasonable time when using a single chain realization
[23, 25]. Furthermore, having a population of chains facilitates the implementation
of interaction operators that manipulate information from different realizations for
improving the next generation of samples.

Following the approach of [33], the evolutionary MCMC cluster tracking
algorithm uses genetic operators to generate new samples. The decoding scheme
used here simply transforms the samples into their binary representations.

Let Gl = {x(i)k ,e(i)k ,x(i)k−1,e
(i)
k−1}N

i=1 be the lth realization of the converged chain at
time k. Define by

G := {G1, . . . ,GL} (13.18)

the entire population set consisting of L chain realizations. In order to produce
an improved generation of N samples from the joint filtering pdf, members of the
population G undergo two successive genetic operations: crossover and mutation.
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Chromosomes and Sub-chromosomes

Any genetic manipulation act on a unique data structure known as a chromosome
which usually takes the form of a string. Here, a chromosome refers to a binary

representation of a particle (x(i)k ,e(i)k ). Since every particle consists of several

clusters endowed with their own individual properties, μ j,(i)
k , μ̇ j,(i)

k ,Σ j,(i)
k ,w j,(i)

k and

ρ j,(i)
k , in practice a chromosome consists of several concatenated binary strings each

corresponding to a distinct property of a certain cluster. In this work, we term sub-
chromosomes, the strings pertaining to individual properties. Assuming there are no
more than n clusters for which there are exactly 5 properties yields a chromosome
that is built up of 5n sub-chromosomes. The active sub-chromosomes within a

chromosome are those that belong to active clusters, i.e., clusters for which e j,(i)
k = 1,

j = 1, . . . ,n.

The Crossover Operator

The crossover works by switching genetic material between two parent samples
taken from two different chain realizations for producing an offspring. The two
parents, (xk,ek)1 and (xk,ek)2 are independently drawn from p̂(xk,ek | z0:k), i.e., they
are picked uniformly at random from the population G . The sub-chromosomes A
and B corresponding to the same property in the chosen parents are then manipulated
as follows. For every r ∈ [1,rs], where rs denotes the string length of either A
or B, the bits Ar and Br are swapped with some predetermined probability β .
The resulting offspring sub-chromosomes are then encoded to produce two new
candidates (x′k,e

′
k)1 and (x′k,e

′
k)2. At this point an additional MH step is performed

for deciding whether the new offspring will be a part of the improved population.
This step is crucial for maintaining an adequate approximation of the target
distribution. In order to ensure that the resulting chain is reversible, on acceptance
both new candidates should replace their parents, otherwise both parents should be
retained [33].

Following the above argument, it can be easily verified that the acceptance
probability of both offspring is [33]

min

{
1,

(
1−β
β

)a p̂((x′k,e
′
k)1 | z0:k) p̂((x′k,e

′
k)2 | z0:k)

p̂((xk,ek)1 | z0:k) p̂((xk,ek)2 | z0:k)

}
(13.19)

where a denotes the total number of swapped bits.

The Mutation Operator

The mutation operator flips the rth bit within a given chromosome with probability
βm. Let (xk,ek) be a sample drawn from p̂(xk,ek | z0:k) (i.e., picked uniformly
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Algorithm 6 Evolutionary MCMC cluster tracking
1. Execute Algorithm 3 for L chains in parallel.
2. Subsequent to the end of the burn in period proceed as follows for every chain sample.
3. Interaction: Perform genetic operations to obtain an improved offspring

a. Picking uniformly at random two distinct chain realizations perform crossover between their
latest accepted samples.

b. Compute the acceptance probability of the two offspring using (13.19).
c. Accept the new offspring accordingly or retain both parent samples.
d. Mutate the accepted samples of either chains and compute the associated acceptance

probability (13.20).
e. Accept the mutated sample accordingly.

at random from the population G ). Then, it can be verified that the acceptance
probability of a mutated candidate (x′k,e

′
k) is [33]

min

{
1,

(
1−βm

βm

)a p̂(x′k,e
′
k | z0:k)

p̂(x,ek | z0:k)

}
(13.20)

where a denotes the total number of bits changed.
A single cycle of the evolutionary MCMC filtering scheme is summarized in

Algorithm 6.
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Chapter 14
Crowd Counting and Profiling: Methodology
and Evaluation

Chen Change Loy, Ke Chen, Shaogang Gong, and Tao Xiang

Abstract Video imagery based crowd analysis for population profiling and density
estimation in public spaces can be a highly effective tool for establishing global sit-
uational awareness. Different strategies such as counting by detection and counting
by clustering have been proposed, and more recently counting by regression has
also gained considerable interest due to its feasibility in handling relatively more
crowded environments. However, the scenarios studied by existing regression-based
techniques are rather diverse in terms of both evaluation data and experimental
settings. It can be difficult to compare them in order to draw general conclusions
on their effectiveness. In addition, contributions of individual components in
the processing pipeline such as feature extraction and perspective normalization
remain unclear and less well studied. This study describes and compares the
state-of-the-art methods for video imagery based crowd counting, and provides
a systematic evaluation of different methods using the same protocol. Moreover,
we evaluate critically each processing component to identify potential bottlenecks
encountered by existing techniques. Extensive evaluation is conducted on three
public scene datasets, including a new shopping center environment with labelled
ground truth for validation. Our study reveals new insights into solving the problem
of crowd analysis for population profiling and density estimation, and considers
open questions for future studies.
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14.1 Introduction

The analysis of crowd dynamics and behaviors is a topic of great interest in
sociology, psychology, safety, and computer vision. In the context of computer
vision, many interesting analyses can be achieved [91], e.g., to learn the crowd flow
evolvement and floor fields [3], to track an individual in a crowd [65], to segment a
crowd into semantic regions [51, 93], to detect salient regions in a crowd [53], or to
recognize anomalous crowd patterns [41,60]. A fundamental task in crowd analysis
that enjoys wide spectrum of applications is to automatically count the number of
people in crowd and profile their behaviors over time in a given region.

One of the key application areas of crowd counting is public safety and security.
Tragedies involving large crowds often occur, especially during religious, political,
and musical events [35]. For instance, a crowd crush at the 2010 Love Parade
music festival in Germany, caused a death of 21 people and many more injured (see
Fig. 14.1). And more recently a stampede happened near the Sabarimala Temple,
India with death toll crosses 100. These tragedies could be avoided, if a safer
site design took place and a more effective crowd control was enforced. Video
imagery based crowd counting can be a highly beneficial tool for early detection
of over-crowded situations to facilitate more effective crowd control. It also helps
in profiling the population movement over time and across spaces for establishing
global situational awareness, developing long-term crowd management strategies,
and designing evacuation routes of public spaces.

In retail sectors, crowd counting can be an intelligence gathering tool [76] to
provide valuable indication about the interest of customers through quantifying the
number of individuals browsing a product, the queue lengths, or the percentage of
store’s visitors at different times of the day. The information gathered can then be
used to optimize the staffing need, floor plan, and product display.

Video imagery based crowd counting for population profiling remains a non-
trivial problem in crowded scenes. Specifically, frequent occlusion between pedes-
trians and background clutter render a direct implementation of standard object
segmentation and tracking infeasible. The problem is further compounded by
visual ambiguities caused by varying individual appearances and body articulations,

Fig. 14.1 Example of surveillance footage frames captured during the Love Parade music festival
in Germany, 2010, before the fatalities occurred (Images from www.dokumentation-loveparade.
com/)

www.dokumentation-loveparade.com/
www.dokumentation-loveparade.com/
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and group dynamics. External factors such as camera viewing angle, illumination
changes, and distance from the region of interest also pose great challenges to the
counting problem.

Various approaches for crowd counting have been proposed. A popular method is
counting by detection [24], which detects instances of pedestrian through scanning
the image space using a detector trained with local image features. An alternative
approach is counting by clustering [7, 63], which assumes a crowd to be composed
of individual entities, each of which has unique yet coherent motion patterns that can
be clustered to approximate the number of people. Another method is inspired by the
capability of human beings, in determining density at a glance without numerating
the number of pedestrians in it. This approach is known as counting by regression
[12,22], which counts people in crowd by learning a direct mapping from low-level
imagery features to crowd density.

In this study, we provide a comprehensive review, comparative evaluation, and
critical analysis on computer vision techniques for crowd counting, also known as
crowd density estimation, and discuss crowd counting as a tool for population profil-
ing. We first present a structured critical overview of different approaches to crowd
counting reported in the literature, including pedestrian detection, coherent motion
clustering, and regression-based learning. In particular, we focus on the regression-
based techniques that have gain considerable interest lately due to their effectiveness
in handling more crowded scenes. We then provide analysis of different regression-
based approaches to crowd counting by systematic comparative evaluation, which
gives new insights into contributions of key constituent components and potential
bottlenecks in algorithm design. To facilitate our experiments, we also introduce
a new shopping mall dataset of over 60,000 pedestrians labelled in 2000 video
frames, i.e., the largest dataset to date in terms of the number of pedestrian instances
captured in realistic crowded public space scenario for crowd counting and profiling
research.

14.2 Survey of the State of the Art

The taxonomy of crowd counting algorithms can be generally grouped into three
paradigms, namely counting by detection, clustering, and regression. In this section,
we provide an overview on each of the paradigms, with a particular focus on the
counting by regression strategy that has shown to be effective on more crowded
environments.

14.2.1 Counting by Detection

The following is a concise account of pedestrian detection with emphasize on
counting application. A more detailed treatment on this topic can be found in [24].
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Fig. 14.2 Pedestrian detection results obtained using (a) monolithic detection, (b) part-based
detection, and (c) shape matching (Images from [43, 46, 92])

Monolithic Detection: The most intuitive and direct approach to numerate the
number of people in a scene is through detection. A typical pedestrian detection
approach is based on monolithic detection [21,43,78], which trains a classifier using
the full-body appearance of a set of pedestrian training images (see Fig. 14.2a).
Common features to represent the full-body appearance include Haar wavelets [80],
gradient-based features such as histogram of oriented gradient (HOG) feature [21],
edgelet [85], and shapelets [68]. The choice of classifier imposes significant impact
on the speed and quality of detection, often requiring a trade-off between these
two. Non-linear classifiers such as RBF Support Vector Machines (SVMs) offer
good quality but suffer from low detection speed. Consequently, linear classifiers
such as boosting [81], linear SVMs, or Random/Hough Forests [28] are more
commonly used. A trained classifier is then applied in a sliding window fashion
across the whole image space to detect pedestrian candidates. Less confident
candidates are normally discarded using non-maximum suppression, which leads to
final detections that suggest the total number of people in a given scene. Whole body
monolithic detector can generates reasonable detections in sparse scenes. However,
it suffers in crowded scenes where occlusion and scene clutter are inevitable [24].

Part-based Detection: A plausible way to get around the partial occlusion problem
to some extent is by adopting a part-based detection method [26, 48, 86]. For
instance, one can construct boosted classifiers for specific body parts such as
the head and shoulder to estimate the people counts in a monitored area [46]
(see Fig. 14.2b). It is found that head region alone is not sufficient for reliable
detection due to its shape and appearance variations. Including the shoulder region
to form an omega-like shape pattern tends to give better performance in real-world
scenarios [46]. The detection performance can be further improved by tracking
validation, i.e., associating detections over time and rejecting spurious detections
that exhibit coherent motion with the head candidates [62]. In comparison to
monolithic detection, part-based detection relaxes the stringent assumption about
the visibility of the whole body, it is thus more robust in crowded scenes.

Shape Matching: Zhao et al. [92] define a set of parameterized body shapes
composed of ellipses, and employ a stochastic process to estimate the number and
shape configuration that best explains a given foreground mask in a scene. Ge and
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Collins [29] extend the idea by allowing more flexible and realistic shape prototypes
than just simple geometric shapes proposed in [92]. In particular, they learn a
mixture model of Bernoulli shapes from a set of training images, which is then
employed to search for maximum a posteriori shape configuration of foreground
objects, revealing not only the count and location, but also the pose of each person
in a scene.

Multi-Sensor Detection: If multiple cameras are available, one can further incor-
porate multi-view information to resolve visual ambiguities caused by inter-object
occlusion. For example, Yang et al. [88] extracted the foreground human silhouettes
from a network of cameras to establish bounds on the number and possible
locations of people. In the same vein, Ge and Collins [30] estimate the number of
people and their spatial locations by leveraging multi-view geometric constraints.
The aforementioned methods [30, 88] are restricted since a multi-camera setup
with overlapping views is not always available in many cases. Apart from detec-
tion accuracy improvement, the speed of detection can benefit from the use of
multi-sensors, e.g., the exploitation of geometric context extracted from stereo
images [5].

Transfer Learning: Applying a generic pedestrian detector to a new scene
cannot guarantee satisfactory cross-dataset generalization [24], whilst training a
scene-specific detector for counting is often laborious. Recent studies have been
exploring the transfer of generic pedestrian detectors to a new scene without human
supervision. The key challenges include the variations of viewpoints, resolutions,
illuminations, and backgrounds in the new environment. A solution to the problem
is proposed in [82, 83] to exploit multiple cues such as scene structures, spatio-
temporal occurrences, and object sizes to select confident positive and negative
examples from the target scene to adapt a generic detector iteratively.

14.2.2 Counting by Clustering

The counting by clustering approach relies on the assumption that individual motion
field or visual features are relatively uniform, hence coherent feature trajectories can
be grouped together to represent independently moving entities. Studies that follow
this paradigm include [63], which uses a Kanade-Lucas-Tomasi (KLT) tracker to
obtain a rich set of low-level tracked features, and clusters the trajectory to infer the
number of people in the scene (see Fig. 14.3a); and [7], which tracks local features
and groups them into clusters using Bayesian clustering (see Fig. 14.3b). Another
closely related method is [77], which incorporates the idea of feature constancy
into a counting by detection framework. The method first generates a set of person
hypotheses of a crowd based on head detections. The hypotheses are then refined
iteratively by assigning small patches of the crowd to the hypotheses based on the
constancy of motion fields and intra-garment color (see Fig. 14.3c).
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Fig. 14.3 (Color online) (a) and (b) show the results of clustering coherent motions using
methods proposed in [63] and [7] respectively. (c) Shows the pairwise affinity of patches (strong
affinity=magenta, weak affinity=blue) in terms of motion and color constancy; the affinity is used
to determine the assignment of patches to person hypotheses [77] (Images from [7, 63, 77])

The aforementioned methods [7, 63] avoid supervised learning or explicit mod-
elling of appearance features as in the counting by detection paradigm. Nevertheless,
the paradigm assumes motion coherency, hence false estimation may arise when
people remaining static in a scene, exhibiting sustained articulations, or two objects
sharing common feature trajectories over time. Note that counting by clustering
only works with continuous image frames, not static images whilst the counting by
detection and regression do not have this restriction.

14.2.3 Counting by Regression

Despite the substantial progress being made in object detection [24] and tracking
[90] in recent years, performing either in isolation or both reliably in a crowded
environment remains a non-trivial problem. Counting by regression deliberately
avoids actual segregation of individual or tracking of features but estimate the crowd
density based on holistic and collective description of crowd patterns. Since neither
explicit segmentation nor tracking of individual are involved, counting by regression
becomes a feasible method for crowded environments where detection and tracking
are severely limited intrinsically.

One of the earliest attempts in exploring the use of regression method for crowd
density estimation is by Davies et al. [22]. They first extract low-level features
such as foreground pixels and edge features from each video frame. Holistic
properties such as foreground area and total edge count are then derived from the
raw features. Consequently, a linear regression model is used to establish a direct
mapping between the holistic patterns and the actual people counts. Specifically, a
function is used to model how the input variable (i.e., the crowd density) changes
when the target variables (i.e., holistic patterns) are varied. Given an unseen
video frame, conditional expectation of the crowd density can then be predicted
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Fig. 14.4 A typical pipeline of counting by regression: first defining the region of interest and
finding the perspective normalization map of a scene, then extracting holistic features and training
a regressor using the perspective normalized features

given the extracted features from that particular frame. Since the work of Davies
et al. [22], various methods have been proposed following the same idea with
improved feature sets or more sophisticated regression models, but still sharing a
similar processing pipeline as in [22] (see Fig. 14.4). A summary of some of the
notable methods is given in Table 14.1. In the following subsections, we are going
to have detailed discussion on the main components that constitute the counting
by regression pipeline, namely feature representation, geometric correction, and
regression modelling.

14.2.3.1 Feature Representation

The question of crowd representation or abstraction must be addressed before
a regression function can be established. Feature representation concerns the
extraction, selection, and transformation of low-level visual properties in an image
or video to construct intermediate input to a regression model. A popular approach
is to combine several features with complementary nature to form a large bank of
features [13].

Foreground Segment Features: The most common or arguably the most descrip-
tive representation for crowd density estimation is foreground segment, which can
be obtained through background subtraction, such as mixture of Gaussians-based
technique [73] or mixture of dynamic textures-based method [10]. Various holistic
features can be derived from the extracted foreground segment, for example:

• Area – total number of pixels in the segment.
• Perimeter – total number of pixels on the segment perimeter.
• Perimeter-area ratio – ratio between the segment perimeter and area, which

measures the complexity of the segment shape.
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Table 14.1 A table summarizing existing counting by regression methods. Note that only
publicly available datasets are listed in the datasets column

Year Features Learning Datasets
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Regression method Level

Davies et al. [22] 1995 � � – – – – – – Linear regression Global –
Marana et al. [57] 1997 – – � – – – – – Self-organising map

neural network
Global –

Cho et al. [16] 1997 � � – – – – – – Feedforward neural
network

Global –

Kong et al. [38, 39] 2005
2006

� � – – – – – – Feedforward neural
network

Global –

Dong et al. [25] 2007 – – – � – – – – Shape
matching + locally-
weighted regression

Segment USC campus plaza

Chan et al. [12–14] 2008
2009

� � � – – – – – Gaussian processes Global UCSD pedestrian,
PETS 2009

Chan et al. [11] 2009 � � � – – – – – Bayesian poisson
regression

Global UCSD pedestrian

Ryan et al. [67] 2009 � � – – – – – – Feedforward neural
network

Segment UCSD pedestrian

Cong et al. [18] 2009 � � – – – – – – Polynomial regres-
sion

Segment –

Lempitsky 2010 � – – – � � – – Density function
minimisation based
on maximum excess
over subarrays
distance

Pixel UCSD pedestrian

Conte et al. [19] 2010 – – – – – – – Number
of SURF
points

Support vector
regression

Segment PETS 2009

Benabbas et al. [4] 2010 � – – – – – � – Linear regression Segment PETS 2009
Li et al. [47] 2011 � � – – – – – – Pedestrian

detector + Linear
regression

Segment CASIA
pedestrian [45]

Lin et al. [49] 2011 � � – – – � – – Gaussian processes Segment UCSD pedestrian,
PETS 2009

Ke et al. [15] 2012 � � � – – – – – Kernel ridge regres-
sion

Segment UCSD pedestrian,
PETS 2009, mall

• Perimeter edge orientation – orientation histogram of the segment perimeter.
• Blob count – the number of connected components with area larger than a

predefined threshold, e.g., 20 pixels in size.

Various studies [13, 22, 54] have demonstrated encouraging results using the
segment-based features despite its simplicity. Several considerations, however, has
to be taken into account during the implementation. Firstly, to reduce spurious fore-
ground segments from other regions, one can confine the analysis within a region
of interest (ROI), which can be determined manually or following a foreground
accumulation approach [54]. Secondly, different scenarios may demand different
background extraction strategies. Specifically, dynamic background subtraction [73]
can cope with gradual illumination change but have difficulty in isolating people that
are stagnant for a long period of time; static background subtraction [51, 66] is able
to segment static objects from the background but is susceptible to lighting change.
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Finally, poor estimation is expected if one employs only foreground area due to
inter-object occlusion, as it is possible to insert another person into the mixture
and end up with the same foreground area. Enriching the representation with other
descriptors may solve this problem to certain extent.

Edge Features: While foreground features capture the global properties of the
segment, edge features inside the segment carries complementary information about
the local and internal patterns [13, 22, 38]. Intuitively, low-density crowds tend to
present coarse edges, while segments with dense crowds tend to present complex
edges. Edges can be detected using an edge detector such as the Canny edge detector
[8]. Note that an edge image is often masked using the foreground segment to
discard irrelevant edges. Some common edge-based features are listed as follows

• Total edge pixels – total number of edge pixels.
• Edge orientation – histogram of the edge orientations in the segment.
• Minkowski dimension – the Minkowski fractal dimension or box-counting

dimension of the edges [59], which counts how many pre-defined structuring
elements are required to fill the edges.

Texture and Gradient Features: Crowd texture and gradient patterns carry strong
cues about the number of people in a scene. In particular, high-density crowd
region tends to exhibit stronger texture response [54] with distinctive local structure
in comparison to low-density region; whilst local intensity gradient map could
reveal local object appearance and shape such as human shoulder and head, which
are informative for density estimation. Example of texture and gradient features
employed for crowd counting include gray-level co-occurrence matrix (GLCM)
[34], local binary pattern (LBP) [61], HOG feature [56], and gradient orientation co-
occurrence matrix (GOCM) [56]. A comparative studies among the aforementioned
texture and gradient features can be found in [56]. Here we provide a brief
description on GLCM and LBP, which are used in our evaluation.

Gray-level co-occurrence matrix (GLCM) [34] (See Fig. 14.5) is widely used in
various crowd counting studies [13,56,58,87]. For instance, Marana et al. [58] uses
GLCM to distinguish five different density levels (very low, low, moderate, high,
and very high), and Chan and Vasconcelos [12] employ it as holistic property for
Bayesian density regression. To obtain GLCM, a typical process is to first quantize
the image into eight gray-levels and masked by the foreground segment. The joint
probability or co-occurrence of neighboring pixel values, p(i, j | θ) is then estimated
for four orientations, θ ∈ {0◦,45◦,90◦,135◦}. After extracting the co-occurrence
matrix, a set of features such as homogeneity, energy, and entropy can be derived for
each θ

• Homogeneity – texture smoothness, gθ = ∑i, j
p(i, j | θ)
1+|i− j|

• Energy – total sum-squared energy, eθ = ∑i, j p(i, j | θ)2

• Entropy – texture randomness, hθ = ∑i, j p(i, j | θ) log p(i, j | θ)
An alternative texture descriptor for crowd density estimation [55] is the local

binary pattern (LBP) [61]. Local binary pattern has been widely adopted in various
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Fig. 14.5 Gray-level co-occurrence matrix, with θ = 0◦ of a 4-by-6 image. Element (7, 2) in the
GLCM contains the value 1 because there is only one instance in the image where two, horizontally
adjacent pixels have the values 7 and 2. Element (4, 5) in the GLCM contains the value 2 because
there are two instances in the image where two, horizontally adjacent pixels have the values 4 and
5. The value of θ specifies the angle between the pixel of interest and its neighbor

applications such as face recognition [2] and expression analysis [70], due to its
high discriminative power, invariance to monotonic gray-level changes, and its
computational efficiency.

An illustration of a basic LBP operator is depicted in Fig. 14.6. The LBP
operation is governed by a definition of local neighborhood, i.e., the number of
sampling point and radius centering the pixel of interest. An example of a circular
(8, 1) neighborhood is shown in Fig. 14.6. Following the definition of neighborhood,
we sample 8 points at a distance of radius 1 from the pixel of interest and threshold
them using the value of the centering pixel. The results are concatenated to form a
binary code as the label of the pixel of interest. These steps are repeated over the
whole image space and a histogram of labels is constructed as a texture descriptor.

In this study, we employed an extension of the original LBP operator known as
uniform patterns [61], which frequently correspond to primitive micro-features such
as edges and corners. A uniform LBP pattern is binary code with at most two bitwise
transitions, e.g., 11110000 (1 transition) and 11100111 (2 transitions) are uniform,
whilst 11001001 (4 transitions) is not. In the construction of LBP histogram, we
assign a separate bin for every uniform pattern and keep all nonuniform patterns in
a single bin, so we have a 58 + 1-dimension texture descriptor.

14.2.3.2 Geometric Correction

A problem commonly encountered in counting by regression framework is perspec-
tive distortion, in which far objects appear smaller than those closer to the camera
view. As a consequence, features (e.g., segment area) extracted from the same object
at different depths of the scene would have huge difference in values. The influence
is less critical if one divides the image space into different cells, each of which
modelled by a regression function; erroneous results are expected if one only uses a
single regression function for the whole image space.

To address this problem geometric correction or perspective normalization is
performed to bring perceived size of objects at different depths to the same scale.
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Fig. 14.6 A basic local binary pattern operator [61] and a circular (8, 1) neighborhood

Ma et al. [54] investigate the influence of perspective distortion to people counting
and propose a principled way to integrate geometric correction in pixel counting,
i.e., to scale each pixel by a weight, with larger weights given to further objects.

A simple and widely adopted perspective normalization method [44, 49, 67] is
described in [13]. The method first determines four points in a scene to form a
quadrilateral that corresponds to a rectangle (see Fig. 14.7). The lengths of the
two horizontal lines of the quadrilateral, ab and cd, are measured as w1 and w2

respectively. When a reference pedestrian passes the two extremes, i.e., its bounding
box’s center touches the ab and cd, its heights are recorded as h1 and h2. The
weights at ab and cd are then assigned as 1 and h1w1

h2w2
respectively. To determine

the remaining weights of the scene, linear interpolation is first performed on the
width of the rectangle, and the height of the reference person. A weight at arbitrary
image coordinate can then be calculated as h1w1

h′w′ , where h′ and w′ representing the
interpolants. Here we make an assumption that the horizontal vanishing line to be
parallel to the image horizontal scan lines.

When applying the weights to features, it is assumed that the size of foreground
segment changes quadratically, whilst the total edge pixels changes linearly with
respect to the perspective. Consequently, each foreground segment pixel is weighted
using the original weight and the edge features are weighted by square-roots of the
weights. Features based on the GLCM are normalized by weighting the occurrence
of each pixel pair when accumulating the co-occurrence matrix shown in Fig. 14.5.
To obtain perspective-normalized LBP-based features, we multiply the weights to
the occurrence of individual LBP labels in the image space prior to the construction
of the LBP label histogram.

The aforementioned method [13] requires manual measurement which could
be error-prone. There exist approaches to compute camera calibration parameters
based on accumulative visual evidence in a scene. For example, a method is
proposed in [40] to find the camera parameters by exploiting foot and head location
measurements of people trajectories over time. Another more recent method [50]
relaxes the requirement of accurate detection and tracking. This method takes
noisy foreground segments as input to obtain the calibration data by leveraging the
prior knowledge of the height distribution. With a calibrated 3D model, one can
also obtain the perspective map as in [14], which moves a virtual person within
the 3D world and measures the number of pixels projected onto the 2D image
space.
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Fig. 14.7 (a) and (b) show a reference person at two extremes of a predefined quadrilateral; (c) a
perspective map to scale pixels by their relative size in the three-dimensional scene

14.2.3.3 Regression Models

After feature extraction and perspective normalization, a regression model is trained
to predict the count given the normalized features. A regression model may have a
broad class of functional forms. In this section we discuss a few popular regression
models for crowd density estimation.

Linear Regression: Given a training data comprising N observations {xn}, where
n = 1, . . . ,N together with corresponding continuous target values {yn}, the goal of
regression is to predict the value of y given a new value of x [6]. The simplest
approach is to form of linear regression function f (x,w) that involves a linear
combination of the input variables, i.e.,

f (x,w) = w0 +w1x1 + · · ·+wDxD, (14.1)

where D is the dimension of features, x = (x1, . . . ,xD)
T, and w = (w0, . . . ,wD)

T are
the parameters of the model. This model is often known as linear regression (LR),
which is a linear function of the parameters w. In addition it is also linear with
respect to the input variables x.

In a sparse scene where smaller crowd size and fewer inter-object occlusions
are observed, the aforementioned linear regressor [4, 22, 47] may suffice since the
mapping between the observations and people count typically presents a linear
relationship. Nevertheless, given a more crowded environment with severe inter-
object occlusion, one may have to employ a nonlinear regressor to adequately
capture the nonlinear trend in the feature space [9].

To relax the linearity assumption, one can take a linear combination of a fixed set
of nonlinear functions of the input variables, also known as basis functions φ(x), to
obtain a more expressive class of function. It has the form of

f (x,w) =
M−1

∑
j=0

w jφ j(x) = wTφ(x), (14.2)
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where M is the total number of parameters in this model, w = (w0, . . . ,wM−1)
T, and

φ = (φ0, . . . ,φM−1)
T. The functional form in (14.2) is still known as linear model

since it is linear in w, despite the function f (x,w) is nonlinear with respect to input
vector x. A polynomial regression function considered in [18] (see Table 14.1) is a
specific example of this model, with the basis functions taking a form of powers of
x, that is φ j(x) = x j. Gaussian basis function and sigmoidal basis function are other
possible choices of basis functions.

Parameters in the aforementioned linear model is typically obtained by minimiz-
ing the sum of squared errors

E(w) =
1
2

N

∑
n=1

{
yn −wTφ(xn)

}2
. (14.3)

One of the key limitation of linear model is that the model can get unneces-
sarily complex give high-dimensional observed data x. Particularly in counting by
regression, it is a common practice to exploit high-dimensional features [13]. Some
of the elements are not useful for predicting the count. In addition, some of them
may be highly co-linear, unstable estimate of parameters may occurs [6], leading to
very large magnitude in the parameters and therefore a clear danger of severe over-
fitting.

Partial Least Squares Regression: A way of addressing the multicollinearity
problem is by partial least squares regression (PLSR) [31], which projects both
input X = {xn} and target variables Y = {yn} to a latent space, with a constraint
such that the lower-dimensional latent variables explain as much as possible the
covariance between X and Y. Formally, the PLSR decomposes the input and target
variables as

X = TPT + εx (14.4)

Y = UQT + εy, (14.5)

where T and U are known as score matrices, with the column of T being the latent
variables; P and Q are known as loading matrices [1]; and ε are the error terms. The
decomposition are made so to maximize the covariance of T and U. There are two
typical ways in estimating the score matrices and loading matrices, namely NIPALS
and SIMPLS algorithms [1, 89].

Kernel Ridge Regression: Another method of mitigating the multicollinearity
problem is through adding a regularization term to the error function in Eq. (14.3).
A simple regularization term is given by the sum-of-squares of the parameter vector
elements, 1

2 wTw. The error function becomes

ER(w) =
1
2

N

∑
n=1

{
yn −wTφ(xn)

}2
+
λ
2

w Tw, (14.6)
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with λ to control the trade-off between the penalty and the fit. A common way of
determining λ is via cross-validation. Using this particular choice of regularization
term with φ(xn) = xn, we will have error function of ridge regression [36].

A non-linear version of the ridge regression, known as kernel ridge regression
(KRR) [69], can be achieved via kernel trick [71], whereby a linear ridge regression
model is constructed in higher dimensional feature space induced by a kernel
function defining the inner product

k(x,x′) = φ(x)Tφ(x′). (14.7)

For the kernel function, one has typical choices of linear, polynomial, and radial
basis function (RBF) kernels. The regression function of KRR is given by

f (x,α) =
N

∑
n=1
αnk(x,xn), (14.8)

where α = {α1, . . . ,αn}T are Lagrange multipliers. This solution is not sparse in the
variables α , that is αn �= 0, ∀n ∈ {1, . . .N}.

Support Vector Regression: Support vector regression (SVR) [42, 72] has been
used for crowd counting in [87]. In contrast to KRR, the SVR achieves sparseness in
α (see Eq. (14.8)) by using the concept of support vectors to determine the solution,
which can result in faster testing speed than KRR that sums over the entire training-
set [84]. Specifically, the regression function of SVR can be written as

f (x,α) = ∑
SVs

(αn −α∗
n )k(x,xn)+b, (14.9)

where αn and α∗
n represents the Lagrange multipliers, k(x,xn) denotes the kernel,

and b ∈ R. A popular error function for SVR training is ε-insensitive error function
[79], which assigns zero error if the absolute difference between the prediction
f (x,α) and the target y is less than ε > 0. Least-squares support vector regression
(LSSVR) [74] is least squares version of SVR. In LSSVR one finds the solution by
solving a set of linear equations instead of a convex quadratic error function as in
conventional SVR.

Gaussian Processes Regression: One of the most popular nonlinear methods for
crowd counting is Gaussian processes regression (GPR) [64]. It has a number of
pivotal properties – it allows possibly infinite number of basis functions driven by
the data complexity, and it models uncertainty in regression problems elegantly.1

Formally, we write the regression function as

1One can also estimate the predictive interval in other kernel methods such as KRR [23].
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f (x)∼ GP(m(x),k(x,x′)), (14.10)

where Gaussian processes, GP(m(x),k(x,x′)) is specified by its mean function m(x)
and covariance function or kernel k(x,x′)

m(x) = E[ f (x)], (14.11)

k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))], (14.12)

where E denotes the expectation value.
Apart from the conventional GPR, various extensions of it have been proposed.

For instance, Chan and Dong [9] propose a generalised Gaussian process model,
which allows different parameterisation of the likelihood function, including a
Poisson distribution for predicting discrete counting numbers [11]. Lin et al. [49]
employ two GPR in their framework, one for learning the observation-to-count
mapping, and another one for reasoning the mismatch between predicted count and
actual count due to occlusion. The key weakness of GPR is its poor tractability
to large training sets. Various approximation paradigms have been developed to
improve its scalability [64].

It is worth pointing out that one of the attractive properties of kernel methods
such as KRR, SVR, and GPR is the flexibility of encoding different assumptions
about the function we wish to learn. For instance, by combining different covariance
functions k(x,x′), such as linear, Matérn, rational quadratic, and neural network, one
has the flexibility to encode different assumptions on the continuity and smoothness
of the GP function f (x). This property is exploited in [13], in which linear and a
squared-exponential (RBF) covariance functions are combined to capture both the
linear trend and local non-linearities in the crowd feature space.

Random Forest Regression: Scalable nonlinear regression modelling can be
achieved using random forest regression (RFR). A random forest comprises of a
collection of randomly trained regression trees, which can achieve better general-
isation than a single over-trained tree [20]. Each tree in a forest splits a complex
nonlinear regression problem into a set of subproblems, which can be more easily
handled by weak learners such as a linear model.2 To train a forest, one optimizes an
energy over a given training set and associated values of target variable. Specifically,
parameters θ j of the weak learner at each split node j are optimized via

θ ∗j = argmax
θ j∈T j

I j, (14.13)

2There are other weak learners that define the split functions, such as general oriented hyperplane
or quadratic function. A more complex splitting function would lead to higher computational
complexity.
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where T j ⊂ T is a subset of parameters made available to the j-th node, and I is
an objective function that often takes the form of information gain. Given a new
observation x, the predictive function is computed by averaging individual posterior
distributions of all the trees, i.e.,

f (x) =
1
T ∑ pt(y|x), (14.14)

where T is the total number of trees in the forest, pt(y|x) is the posterior of t-th tree.
The hallmark of random forest is its good performance comparable to state-

of-the-art kernel methods (e.g., GPR) but with the advantage of being scalable to
large dataset and less sensitive to parameters. In addition, it has the ability of gen-
erating variable importance and information about outliers automatically. It is also
reported in [20] that forest can yield a more realistic uncertainty in the ambiguous
feature region, in comparison to GPR that tends to return largely over-confident
prediction.

The weakness of RFR is that it is poor in extrapolating points beyond the value
range of target variable within the training data, as we shall explain in more detail
in Sect. 14.4.1.

14.2.3.4 Additional Considerations

We have discussed various linear and nonlinear functions for performing crowd
density regression. Note that the functional form becomes more critical when
one does not have sufficient training set that encompasses all the anticipated
densities in a scene. If that is the case, extrapolation outside the training range
has to be performed, with increasing room of failure when the extrapolation goes
further beyond the existing data range, due to the mismatch between the regression
assumption and the actual feature to count mapping.

A closely related consideration is at what level the learning should be performed.
Most existing methods (see the ‘level’ column in Table 14.1) take a global approach
by applying a single regression function over the whole image space with input
variables being the holistic features of a frame (e.g., total area of foreground
segment), and target variable being the total people count in that frame. An obvious
limitation of this global approach is that it applies a global regression function over
the whole image space, ignoring specific crowd structure in different regions. This
can be resolved by dividing the image space up into regions and fitting separate
function in each region [56, 87]. The regions can be cells having regular size,
or having different resolutions driven by the scene perspective to compensate the
distortion [56].

One can also approximate the people count at blob-level [47], i.e., estimates the
number of people in each foreground blob and obtains the total people count by
summing the blob-level counts. Lempitsky and Zisserman [44] go one step further
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Fig. 14.8 (a) UCSD pedestrian dataset (ucsd), (b) PETS 2009 benchmark dataset (pets)

to model the density at each pixel, casting the problem as that of estimating an image
density whose integral over any image region gives the count of objects within
that region. The aforementioned segment-and-model strategies facilitate counting
at arbitrary locations, which is impossible using a holistic approach. In addition, a
potential gain in estimation accuracy may be obtained [44]. This however comes
at a price of increased annotation effort. For example, requiring a large amount of
dotted annotations on head or pedestrian positions in all training images [44].

14.3 Evaluation Settings

Previous work [12, 44, 54, 56] have independently performed analyses on different
components in the crowd counting pipeline such as feature extraction, perspective
normalization, and regression modelling. The scenarios studied, however, are rather
diverse in terms of both evaluation data and experimental settings. It can be hard
to compare them in order to draw general conclusions on their effectiveness. In
this study we aim to provide a more exhaustive comparative evaluation to factor
out the contributions of different components and identify potential bottlenecks in
algorithm design for crowd counting and profile analysis.

14.3.1 Datasets

Two benchmark datasets were used for comparative algorithm evaluation, namely
UCSD pedestrian dataset (ucsd) and PETS 2009 dataset (pets). Example frames
are shown in Fig. 14.8. Apart from the two established benchmark datasets, a new
and more realistic shopping mall dataset is also introduced in this study. This mall
dataset was collected from a publicly accessible webcam in the course of 2 months
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Fig. 14.9 The new shopping mall dataset. The top-left figure shows an example of annotated frame

from Feb 2011 to Apr 2011. A portion of 2,000 frames recorded during peak hours
were selected for the comparative algorithm evaluation. As can be seen from the
sample images in Fig. 14.9, this new dataset is challenging in that it covers crowd
densities from sparse to crowded, as well as diverse activity patterns (static and
moving crowds), under large range of illumination conditions at different time of
the day. Also note that the perspective distortion is more severe than the ucsd and
pets datasets, thus individual objects may experience larger change in size and
appearance at different depths of the scene. The details of the three datasets are
given in Table 14.2.

For evaluation purpose, we resized the images from the pets dataset to 384×288,
and the images from the mall dataset to 320×240. All color images were converted
to grayscale images prior to feature extraction. We annotated the data exhaustively
by labelling the head position of every pedestrian in all frames. An example of
annotated frame is shown in Fig. 14.9. The ground truth, together with the raw
video sequence, extracted features, and the train/test partitions can be downloaded
at http://personal.ie.cuhk.edu.hk/~ccloy/.

http://personal.ie.cuhk.edu.hk/~ccloy/
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Table 14.2 Dataset properties: Nf =number of frames, R =resolution,
FPS =frame per second, D =density (minimum and maximum number
of people in the ROI), and T p = total number of pedestrian instances

Data Nf R FPS D Tp

UCSD [13] 2,000 238×158 10 11–46 49,885
Pets [27] 1,076 384×288 7 0–43 18,289
Mall 2,000 320×240 <2 13–53 62,325

14.3.2 Features and Regression Models

We selected features and regression methods that are both representative and
promising in terms of originally reported performance. While we could not evaluate
all the available features or methods exhaustively due to unavailability of original
codes and practical time and space constraints, we consider that these evaluations
giving an accurate portrait of the state-of-the-art.

We extracted segment, edge, GLCM, and LBP features following the methods
described in Sect. 14.2.3.1. For both UCSD and pets datasets, scene lighting were
stable so we employed a static background subtraction method based on minimum
cuts [17]3 to extract the foreground segments. For the mall dataset, gradual
illumination change was observed, we therefore adopted a dynamic background
modelling method [95].

All features were perspective normalized (see Sect. 14.2.3.2) and a feature vector
was formed by concatenating the features, into x ∈R

D, which was used as the input
for the regression models. Prior to feeding the features into the regression models,
all features were scaled to the [0 1] interval. A list of the regression models and their
associated settings is given below

• Linear regression (LR)
• Partial least-squares regression (PLSR) – ten latent components
• Kernel ridge regression (KRR) – linear kernel with four-fold cross-validation for

parameter optimization
• Least-squares support vector regression (LSSVR) – linear kernel with four-fold

cross-validation for parameter optimization
• Gaussian processes regression (GPR) – linear kernel + RBF kernel as in [13].4

The parameters are first initialized to random values and optimized using
conjugate gradient optimizer.

• Random forest regression (RFR) – 500 trees, the number of parameters made
available for node splitting was fixed to square-root of the feature dimension,
and the minimum size of terminal nodes was set to 5.

3Codes available at http://personal.ie.cuhk.edu.hk/~ccloy/.
4An interesting aspect not examined in our study is the effect of different kernels and their relations
with different kernel methods for crowd regression.

http://personal.ie.cuhk.edu.hk/~ccloy/
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14.3.3 Evaluation Metrics

We employed three metrics in performance evaluation. Two of the metrics are
widely used as performance indicators for crowd counting, namely mean absolute
error and mean squared error. Mean absolute error is defined as

εabs =
1
N

N

∑
n=1

|yn − ŷn|. (14.15)

Mean squared error is given as

εsqr =
1
N

N

∑
n=1

(yn − ŷn)
2, (14.16)

where N is the total number of test frames, yn is the actual count, and ŷn is the
estimated count of nth frame. Note that as a result of the squaring of each difference,
εsqr effectively penalizes large errors more heavily than small ones. The above two
metrics are indicative in quantifying the error of estimation of the crowd count.
However, as pointed out by Conte et al. [19], these metrics contain no information
about the crowdedness of the region of interest. To that end, [19] proposed another
performance metric to take the crowdedness into account – we name it as mean
deviation error, which is essentially a normalized εabs

xεdev =
1
N

N

∑
n=1

|yn − ŷn|
yn

. (14.17)

14.4 Performance Comparison

In the following we report comparative evaluation results on three aspects, i.e.,
model choices, feature robustness, and model sensitivity to perspective.

14.4.1 Model Choices

The goals of this experiment are to (1) compare the performance of different
regression models under different crowdedness levels, and (2) evaluate their general-
ization capability to unseen density. These two aspects are somewhat less explicitly
studied in existing work. However, they are essential since a regressor may behave
differently under different crowdedness levels, and often, it needs to extrapolate
outside the anticipated density range in real-world scenarios.

We employed the same segment + edge + LBP features across all regression
models. To simulate different crowdedness levels, we divided a dataset into two
partitions: one for sparse scenario and another one for crowded scenario, of which
the details are provided in Table 14.3.
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Table 14.3 Number of frames allocated for the sparse and crowded scenarios.
Information inside the brackets contain the definition of crowdedness, together
with the training and test set proportions

Data Sparse scenario (no. frames) Crowded scenario (no. frames)

ucsd 1,058 (≤23 people, train = 400, test = 658) 942 (>23 people, train = 400, test = 542)
Pets 800 (≤10 people, train = 400, test = 400) 276 (>10 train = 100, test = 176)
Mall 972 (≤30 people, train = 400, test = 572) 1,028 (>30 people, train = 400, test = 628)
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Fig. 14.10 Comparison of mean deviation error (lower is better) between regression models in
sparse and crowd scenarios

Model performance under different crowdedness levels: To evaluate a regressor
under the sparse scenario, we trained and tested the model using the sparse partition
of a dataset. Similar procedures were applied using the crowded partition of a dataset
to test a model under crowded scenario. Figure 14.10 shows the performance of the
six regression models under the sparse and crowded scenarios. Note that we only
presented the mean deviation error since other metrics exhibited similar trends in
this experiment.

It is evident that models which can effectively deal with multicollinearity issue,
such as LSSVR, PLSR, and KRR, consistently performed better than other models
in both the sparse and crowded partitions, as shown in Fig. 14.10. Specifically,
over-fitting were less an issue to the aforementioned models, which either add a
regularization term5 into the error function or by projecting the input variables onto
a lower-dimensional space.

5Rasmussen and Williams [64] provide detailed discussion on the regularization approach with the
Gaussian process viewpoint.
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Fig. 14.11 Labelled ground truth vs. estimated count by Gaussian processes regression on sparse
and crowded scenarios of UCSD dataset. The estimated count is accompanied by ± two standard
deviations corresponding to a 95 % confidence interval

In contrast, LR was ill-conditioned due to highly-correlated features, thus yield-
ing poorer performance as compared to LSSVR, PLSR, and KRR. The performance
of GPR was mixed. The error rate of RFR was extremely high in the pets crowded
partition as the forest structure was too complex given the limited amount of
training data. As a result, its generalization capability was compromised due to the
over-fitting. In other datasets, RFR showed comparable results to other regression
methods.

We found that existing performance metrics including the mean deviation error
[19], which is normalized by the actual count (see Sect. 14.3.3), are not appropriate
for comparing scenarios with enormous difference in densities. Specifically, our
findings were rather counter intuitive in that all regressors performed better in the
crowded scenario than the sparse scenario. We note that the lower mean deviation
errors in a crowded scene are largely biased by the much larger actual count serving
as the denominator in Eq. (14.17). To vindicate our observation, we plotted the
performance of GPR on the UCSD dataset in Fig. 14.11 and found that the regressor
performance did not differ much across sparse and crowded scenarios.

Generalization to unseen density: To evaluate the generalization capability of
a regression model to unseen density, we tested it against two scenarios: (1)
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generalizing from crowded to sparse environment, and (2) generalizing from sparse
to crowded environment. In the first scenario, we trained a regressor with the
crowded partition and tested it on the sparse partition. We switched the crowded
and sparse partitions in the second scenario. The same data partitions in Table 14.3
were used.

Regression models that worked well within known crowd density may not
perform as good given unseen density. In particular, as shown in Table 14.4,
simple linear regression models such as LR and PLSR returned surprisingly
good performance in both the UCSD and mall datasets, outperforming their non-
linear counterparts. The results suggest that the regression assumption of linear
regression models, though simple, could be less susceptible to unseen density
and matched closer with the feature-to-density trend in the considered scenarios.
The performance of RFR was poorest among the regression models. The results
agree with our expectation about its weakness in generalization as discussed in
Sect. 14.2.3.3.

It was observed that the generalization performance reported in Table 14.4,
were much poorer than those obtained when we trained and tested a regressor
using the same density range. In particular, the regressors tend to overestimate or
underestimate depending on the extrapolation direction, as shown in Fig. 14.12. In
addition, the further the extrapolation goes outside the training range, the larger
the error in the estimation due to difference between the learned model and the
actual feature-to-density trend. Note that there was no concrete evidence to show
that generalizing from crowded to sparse environment was easier than generalizing
from sparse to crowded scene.

14.4.2 Feature Robustness

The objective of this experiment is to compare the performance on using different
types of features, e.g., segment-based features, edge-based features, texture-based
features (in particular GLCM and LBP), as well as their combination, given different
crowdedness levels in a scene. As in Sect. 14.4.1, we conducted the evaluation using
sparse and crowded partitions. The results are depicted in Figs. 14.13 and 14.14.

Robustness of individual features: It is observed that different features can be
more important given different crowdedness levels. In general, the averaged perfor-
mance suggests that the segment-based features were superior to other features. This
is not surprising since the foreground segment carries useful information about the
area occupied by objects of interest and it thus intrinsically correlate to the number
of pedestrians in a scene. However in the UCSD and mall datasets, a decrease
in performance gap was observed between the edge or texture-based features and
the segment-based features when we switched from sparse partition to crowded
partition. This observation is intuitive since given a more crowded environment with
frequent inter-object occlusion, segment-based features would suffer, whilst edge
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Fig. 14.12 Generalization to unseen density: labelled ground truth vs. estimated count by
Gaussian processes regression on mall dataset. (a) Training on crowded partition and testing on
sparse partition results in over-estimation, and (b) doing the other way round results in under-
estimation. The estimated count is accompanied by ± two standard deviations corresponding to a
95 % confidence interval

and texture that inherently encoded the inter-object boundary and internal patterns
would carry more discriminative visual cues for density mapping.

Does combining features help?: From the averaged performance, it is observed
that combining different features together could lead to a better performance in
general. For instance, when the LBP-based features were used in combination with
the segment and edge-based features, the mean deviation error was reduced by 2–
14 %. This finding supports the practice of employing a combination of features (see
Table 14.1).

Nevertheless, when we examined the performance of individual regression
models, it was found that combining all the features did not necessarily produce
better performance. For example, using the segment-based features alone in the
crowded mall partition one would get higher performance; or using the edge features
alone with RFR gained more accurate counts in the sparse UCSD partition. The
results suggests the need for feature selection to discover the suitable set of features
given different crowd densities and different regression models.
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Fig. 14.13 Sparse partition: the mean deviation error (lower is better) vs. different features

14.4.3 Geometric Correction

Geometry correction is critical in crowd counting since objects at different depths
of the scene would lead to huge variation in the extracted features. To minimize
the influence of perspective distortion, correction is often conducted in existing
studies but often without explicit analysis on how its sensitivity would affect the
final counting performance. In this experiment, we investigated the sensitivity of
crowd counting performance to a widely adopted perspective normalization method
described in [13] (see Sect. 14.2.3.2). Evaluation was carried out on the UCSD
dataset, with 800 frames for training and the remaining 1,200 frames held out for
testing following the partitioning scheme suggested in [13].
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Fig. 14.14 Crowded partition: the mean deviation error (lower is better) vs. different features

Effectiveness of geometric correction: It is evident from Table 14.5 that per-
spective correction is essential in achieving accurate crowd density estimation.
Specifically, depending on different regression models, an improvement of around
20 % was gained in the mean absolute error by applying perspective correction.

Sensitivity to errors in geometric correction: It is interesting to examine how a
minor error introduced by manual measurement will propagate through the counting
by regression pipeline. We manually measure the heights, denoted as h1 and h2, of
a reference pedestrian at two extremes of the ground plane rectangle of the UCSD
dataset (see Fig. 14.15). We varied h2, the height at the further extreme at +/− 5
pixels with a step size of 1 pixel. Given a frame with resolution of 238× 158, this
is a reasonable error range that is likely to occur during the manual measurement.
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Table 14.5 Comparison of mean absolute error (lower is better) on UCSD dataset when crowd
density was estimated with and without perspective correction

With perspective normalisation Without perspective normalisation

Mean
Abs.error

Mean
Sq.error

Mean
Dev.error

Mean
Abs.error

Mean
Sq.error

Mean
Dev.error

LR 2.1608 7.1608 0.1020 2.6308 10.2558 0.1288
PLSR 2.0267 6.6717 0.1007 2.5792 10.0025 0.1271
KRR 2.3433 8.4800 0.1166 2.9167 11.6133 0.1392
LSSVR 2.1100 6.6383 0.1014 2.5825 9.6925 0.1262
GPR 2.1425 7.1358 0.1055 2.7833 10.5200 0.1328
RFR 2.3392 7.9708 0.1129 2.8492 10.8492 0.1332

Average 2.1871 7.3429 0.1065 2.7236 10.4889 0.1312
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Fig. 14.15 (Color online) (Top) Perspective normalization map of UCSD dataset. (Bottom) Each
line in the chart corresponds to a weight vector along the y-axis (e.g., the dotted blue line) of each
perspective map produced as a result of varying measurement errors in h2, ranging from −5 pixels
to +5 pixels with a step size of 1 pixel

Perspective maps within this pixel deviation range were generated, and the crowd
counting performances of different models were subsequently recorded.

A minor measurement error in h2 could result in a great change in perspective
map, as shown in Fig. 14.15. Specifically, when h2 had a smaller value, e.g.,
h2 − 5 pixels, a steeper slope in the perspective normalization weight vector was
observed. On the contrary, given h2 + 5 pixels, the object size at cd was larger so
the perspective normalization weight vector had a lower slope. Using these different
perspective maps we evaluated performances of different regression models.

It is clear from the results depicted in Fig. 14.16 that different perspective maps
will lead to drastic difference in estimation performance, e.g., as much as 10 %
of difference from that obtained using initial measurement. The results suggest
that the initial measurement h2 may not be accurate, since more accurate counts
were obtained at h2 −5 pixels. A subsequent validation through averaging multiple
measurements confirmed that the initial measurement indeed deviated from the
accurate value. Hence one should not rely on a single round of measurement, but
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Fig. 14.16 Mean absolute error on UCSD dataset as a result of varying measurement errors in h2:
most regression methods experienced drastic performance change as much as over 10 % given just
a minor deviation in the manual measurement

to seek for more reliable perspective statistics by averaging measurements obtained
across multiple attempts. Note that deviation from the ‘exact’ perspective map may
not necessarily lead to a bad consequence sometimes as the steeper weight slope
will counteract the problems of poor segmentation and inter-object occlusion at the
back of the scene.

14.5 Crowd Profiling

One of the ultimate goals of crowd counting is to profile the crowd behaviors
and density patterns spatially and temporally, e.g., how many people in a region
of interest at what time and predicting the trend. The profiling statistic can serve
as useful hints for controlling crowd movements, designing evacuation routes,
and improving product display strategy to attract more crowds to a shop. An
example of such a crowd profiling application is depicted in Fig. 14.17, of which the
local density map was generated through learning cell-level counts using separate
regressors. A more scalable way based on a single regression model with multiple
outputs can also be employed [15].

The top row of Fig. 14.17 shows the footage frames of a shopping mall view
overlaid with heat maps, of which the color codes representing the crowd density,
with larger crowd represented by red squares and smaller crowd with blue squares.
An interesting usage of the crowd density map is to study the crowd movement
profile in front of a shop, e.g., the two selected regions (blue and red) in Fig. 14.17.
The number of people appear in these areas over time can be profiled as shown in the
two plots at the bottom of Fig. 14.17. In addition, activity correlation between these
two regions can be computed to examine their crowd flow dependency, as shown in
the last plot. Analyzing these local crowd patterns over time and their correlations
globally can reveal useful information about the shop visitors, such as their interests
towards the product display, walking pace, and intention of buying, without the need
for registering individual’s identities therefore minimizing privacy violation.
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Fig. 14.17 One of the goals of crowd counting is to profile the crowd behaviors and density
patterns spatially and temporally, e.g., how many people in a region of interest at what time (see
text for details)

The crowd counting application can benefit from extensions such as functional
learning of regions [75] (e.g., sitting area, entrance of shops) to better reflect the
activity modes at different regions; or combination with cooperative multi-camera
network surveillance [33, 52] to model the density and activity correlation in the
camera network [94].

14.6 Findings and Analysis

We shall summarize our main findings as follows:

Regression model choices: Our evaluation reveals that regression models that are
capable of dealing with multicollinearity among features, e.g., KRR, PLSR, LSSVR
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generally give better performance than other regression models such as LR and
RFR. The aforementioned models, i.e., KRR, PLSR, and LSSVR have not been
significantly explored in existing counting by regression literature.

In general, linear model is expected to give poorer performance as its linear
property imposes a limitation on the model in capturing only the linear relation-
ship between the people count and low-level features [4, 22, 47]. In most cases
especially in crowded environments, the visual observations and people count
will not be linearly related. Nonlinear methods in principle allow one to model
arbitrary nonlinearities between the mapping from input variables to target people
count. In addition, employing a nonlinear method would help in remedying the
dimensionality problem since observations typically exhibit strong correlation in
a nonlinear manifold, whose intrinsic dimensionality is smaller than the input
space [6].

However, our study suggests that the actual performance of a regression model
can be quite different from what one may anticipate, subject to the nature of data,
especially when it is applied to unseen density. Despite all the evaluated regression
techniques suffer poor extrapolation beyond the training data range, simple linear
regression models such as LR, is found to be more resistant towards the introduction
of unseen density. Its performance can be better than other nonlinear models such
as GPR and LSSVR.

We have emphasized that it is impractical to assume the access to all full density
range during the training stage, thus the capability of generalizing to unseen density
is critical. An unexplored approach of resolving the problem is to transfer the
knowledge from other well-annotated datasets that cover wider range of crowd
density. This is an open and challenging problem in crowd counting task given
different environmental factors of source and target scenes, e.g., variations in
lighting conditions and camera orientations.

Features selection: Our results suggest that different features can be more useful
given different crowd configurations and densities. In sparse scenes, foreground
segment-based features alone can provide sufficient information required for crowd
density estimation. However, when a scene becomes crowded with frequent inter-
object occlusions, the role of edge-based features and texture-based features
becomes increasingly critical. We also found that combining all features do not
always help, depending on the dataset and regression model of choice. These
findings suggest the importance of feature selection, i.e., selecting optimal feature
combinations given different crowd structures and densities, through discarding
redundant and irrelevant features. The feature selection problem has been largely
ignored in existing crowd counting research.

Perspective correction: The performance of counting by regression can be
severely influenced by the accuracy of perspective weight estimation. Perspective
map generation based on manual measurement is simple but could be error-prone.
We suggest that multiple measurements are necessary to ensure conciseness of the
estimation normalization weights. Robust auto-calibration methods such as [40,50]
are also recommended as an alternative to the manual approach.
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14.7 Further Reading

Interested readers are referred to the following further readings:

• Gong et al. [33] for a general discussion on applications and advances in
automated analysis of human activities for security and surveillance

• Gong and Xiang [32] for a comprehensive treatment of visual analysis of
behavior from algorithm-design perspectives

• Jacques et al. [37] for a survey on crowd analysis
• Chan and Vasconcelos [12] for a detailed discussion on using Bayesian tech-

niques for regression-based counting
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Chapter 15
Anomaly Detection in Crowded Scenes: A Novel
Framework Based on Swarm Optimization
and Social Force Modeling

R. Raghavendra, M. Cristani, A. Del Bue, E. Sangineto, and V. Murino

Abstract This chapter presents a novel scheme for analyzing the crowd behavior
from visual crowded scenes. The proposed method starts from the assumption that
the interaction force, as estimated by the Social Force Model (SFM), is a significant
feature to analyze crowd behavior. We step forward this hypothesis by optimizing
this force using Particle Swarm Optimization (PSO) to perform the advection of
a particle population spread randomly over the image frames. The population of
particles is drifted towards the areas of the main image motion, driven by the PSO
fitness function aimed at minimizing the interaction force, so as to model the most
diffused, normal behavior of the crowd. We then use this proposed particle advection
scheme to detect both global and local anomaly events in the crowded scene. A large
set of experiments are carried out on public available datasets and results show the
consistent higher performances of the proposed method as compared to other state-
of-the-art algorithms.

15.1 Introduction

Recently, major research efforts are underway in the computer vision community
to develop robust algorithms for understanding the behavior of crowds in video
surveillance contexts. Anomaly detection in crowded scenes is an important social
problem far from being reliably solved. This is because conventional methods
designed for surveillance applications fail drastically for the following reasons:
(1) severe overlapping between individual subjects; (2) random variations in the
density of people over time; (3) low resolution videos with temporal variations of

R. Raghavendra • M. Cristani • A. Del Bue • E. Sangineto • V. Murino (�)
Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia,
via Morego 30, 16163 Genova, Italy
e-mail: vittorio.murino@iit.it

S. Ali et al. (eds.), Modeling, Simulation and Visual Analysis of Crowds, The International
Series in Video Computing 11, DOI 10.1007/978-1-4614-8483-7__15,
© Springer Science+Business Media New York 2013

383

mailto:vittorio.murino@iit.it


384 R. Raghavendra et al.

the scene background. Nowadays, crowds are viewed as the very outliers of the
social sciences [27]. Such an attitude is reflected by the remarkable paucity of
psychological research on crowd processes [27].

The main objective of crowd behavior analysis involves not only modeling of
people mass dynamics but also detecting or even predicting possible abnormal or
anomalous behaviors in the scene. In particular for surveillance scenarios, this task
is of paramount importance since early detection, or even prediction, may reduce
the possible dangerous consequences of a threatening event, or may alert a human
operator for inspecting more carefully the ongoing situation.

Anomaly detection in crowded scenes can be classified into two types: (1) local
abnormal event, indicating that a behavior in a specific local image (or frame) area
is different from that of its neighbors in spatio-temporal terms; (2) global abnormal
event, indicating that the whole frame is abnormal irrespective of the local regions.
In other words, a global abnormal event detection aims at classifying each frame
as either abnormal or normal, while in local detection we also want to localize the
parts of the given frame which likely contain the abnormal activity.

In this article we present both global [26] and local [25] anomaly detection
techniques which have been tested on different real-time scenarios. We developed
these techniques based on the assumption that people in the crowd behave in
ways like birds (also known as particles) in a swarm. Thus, we try to address
crowd behavior analysis by considering the crowd as mutually interacting birds in a
swarm.

In general, a crowd can be considered as a collection of mutually interacting
people, where random individuals’ motion, due to the influence of neighbors, spatial
physical structure of the scene, etc., will dominate the dynamics and the flow of
the crowd. With this primary idea, we make an attempt to reflect a visual crowd
behavior using the concept of Swarm Optimization. Typically, the idea of Swarm
Optimization derived from the flight control (defined by a fitness function) of
randomly dispersed birds (also referred to as particles) in a given space. In this
framework, both local and social behavior among the birds or particles in the swarm
is considered. Similarly, we represent people in a crowd as interacting particles
following an evolutionary dynamic. These dynamics are driven by a fitness function
and they are influenced by the interaction forces among the swarm particles. With
this motivation, we propose a novel framework for particle advection using PSO
[15] and Social Force Model (SFM) [13]. The proposed method belongs to the class
of particle advection schemes and it is based on the assumption that the evolving
interaction forces estimated using SFM is a significant feature for analyzing the
crowd behavior. Our scheme starts by initializing particles randomly on the initial
video frame, which are then optimized and drifted to the main regions of the motion
according to a fitness function suitably defined. The aim of the fitness function
is to minimize the interaction forces, so as to model the most diffused, normal
behavior of the crowd as suggested by behavioral studies. Hence, the anomalies are
identified by the particles whose force significantly deviates from the typical force
magnitude.
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We put forward this framework to detect two different kinds of anomalies
namely: global and local anomalies. In order to detect global anomalies, we process
the interaction force obtained using the PSO-SFM method by detecting the change
in its magnitude. On the other hand, local anomaly detection is carried out by
checking if some particles (i.e., their interaction forces) do not fit the estimated
“typical” distribution, and this is done using a RANSAC-like method followed by a
segmentation algorithm to finely localize the abnormal areas.

There are several characteristics which differentiate our approach with respect
to other related works. First, particles are spread randomly over the image and can
move in a continuous way according to an optimization criterion, differently from
other approaches which constrain the particles in a priori fixed grid. Second, we use
PSO for particle advection which considers not only the individual particles motion,
but also the global motion of the particles as a whole, i.e., social interactions.

Extensive experiments are carried out on different types of public available video
datasets to prove the effectiveness of the proposed scheme. In order to evaluate
the global anomaly scheme, we considered four different public available datasets,
namely: UMN, PETS 2009, UCF and also a challenging dataset that reflects the
prison riots, download by YouTube. In order to evaluate the proposed scheme for
local anomaly detection, we consider two different public datasets, namely UCSD
and MALL datasets.

The rest of this chapter is organized as follows: Sect. 15.2 shows the state-of-
the-art techniques for crowd behavior analysis from the computer vision point of
view. Section 15.3 describes the proposed particle advection approach based on
the PSO-SFM model and also discusses the global and local anomaly detection
schemes. Section 15.4 presents the experimental results. Finally, Sect. 15.5 draws
the conclusions.

15.2 Related Work

Several techniques have been proposed for the anomaly detection in visually
crowded scenes. State of the art methods can be coarsely classified into two different
types: model-based and particle advection-based approaches. Among these two
methods, the particle advection based approaches will more naturally represent the
holistic view of a crowd and they do not require the segmentation or detection of
individuals. On the contrary, the outcome of these algorithms may eventually result
in the detection of individuals when they are detected as an anomaly. Here, we first
review the literature on model based approaches which is then followed by particle
advection schemes.
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15.2.1 Model Based Approaches

In [29], a novel unsupervised framework is presented to model the pedestrian
activities and interactions in crowded scenes. Here, low level visual features are
computed by carrying out the intensity difference between successive frames of
a given video. Then, these low level features are labeled using their location and
motion direction to form a basic feature set. The features are then quantized into
visual words to construct a dictionary. Finally, the activities are classified using two
well know classifiers namely: Latent Dirichlet Allocation (LDA) mixture model and
Hierarchical Dirichlet Process (HDP) mixture model.

In [20], a dynamic texture model is employed to jointly model the appearance
and dynamics of the crowded scene. This method explicitly addresses the detection
of both temporal and spatial anomalies. Further, a new dataset of crowded scenes
with videos of the walkway of a college campus and crowd with naturally varying
densities are made available for the vision community. In [17], steady state motion
of the crowd behavior is exploited by analyzing the underlying structure formed by
the spatial and temporal variations in the motion. Then, a Hidden Markov Model
(HMM) is trained on the motion patterns at each spatial location of the video
to predict the motion pattern that is exhibited by the subjects as they transverse
through the video. Finally, anomalous activities are detected as low likelihood
motion patterns.

In [16], anomaly detection in the crowded scene is carried out using a space-time
Markov Random Field (MRF) model. Given a video, a MRF graph is constructed
by dividing each frame into a grid of spatio-temporal local regions. Each region
corresponds to a single node and neighboring nodes are connected with links.
Then, each node is associated with an optical flow observation to learn the atomic
motion patterns using a mixture of probabilistic principal component analysis.
Finally, inference on the graph is carried out to decide whether each node is
normal or abnormal. In [1], a histogram is used to measure the optical flow
probability in local patterns of the image and then an ambiguity based threshold
is selected to monitor and detect the anomalies in the input videos. Further, a
new video dataset with different anomaly scenarios is made available to the vision
community. In [3], a new technique based on video parsing is proposed for accurate
abnormality detection in the visual crowded scene. Each video frame is parsed
by establishing a set of hypotheses that jointly provide information on the entire
foreground. Finally, a probabilistic model is employed to localize the abnormality
using statistical inference. In [18], dense optical flow fields are computed between
two successive frames to obtain the low level motion information in terms of
direction and magnitude for each pixel. Then, 2D histograms of motion direction
and magnitude for all flow vectors are computed. A symmetry measure is computed
by summing the absolute difference between the 2D histogram and a flipped version
of itself to determine the anomaly in the scene. Extensive experiments are carried
out on the LoveParade 2010 dataset to prove the reliability of the method. In [9],
a sparse reconstruction cost is proposed to detect the presence of anomalies in



15 Crowd Scene Analysis with Swarm Optimization and Social Force Modeling 387

crowded scenes. Here local spatio-temporal patches are used to construct the normal
dictionary. Further, to reduce the size of the dictionary, a new selection method is
proposed based on sparsity consistency constraints.

15.2.2 Particle Advection Based Approaches

In case of particle advection schemes, a grid of particles is usually considered in
each frame which are then advected using the underlying motion data [2,21,22,30].
The assumption here is that each particle is considered as an atomic entity in
the mass of people, and the trajectories generated from the particles’ advection
may portray significant information concerning representative properties of the
scene in terms of both characteristics of the physical area and the crowd behavior.
The first work using particle advection schemes for crowd behavior analysis was
introduced in [2]. Here, the particle flow is computed by moving a grid of particles
using the fourth-order Runge-Kutta-Fehlberg algorithm [19] along with the bilinear
interpolation of the optical flow field. This method is further extended in [30] using
chaotic invariants capable of analyzing both coherent and incoherent scenes. In [22],
streaklines are introduced and integrated with a particle advection scheme capable
of incorporating the spatial change in the particle flow.

In [21] the social force model (SFM) [13] is exploited to detect abnormal events.
After the superposition of a fixed grid of particles on each frame, the SFM is used
to estimate the interaction force. In turn, the interaction force is used to describe
(abnormal) crowd behavior. So, after estimating the so-called force flow, a bag of
words method [4] and a Latent Dirichlet Allocation (LDA) [5] are employed to
discriminate between normal and abnormal frames. Possible abnormal areas are
localized selecting those regions with the highest force magnitude. In [23] the
authors provide an excellent analysis of the above mentioned particle advection
schemes in which crowd is dealt with using hydrodynamics principles.

15.2.3 Discussion

In Fig. 15.1a we show the result obtained applying the state-of-the-art people
detector of Dalal and Triggs [11] to a crowd image. Only 5 out of 23 persons
are correctly detected. Moreover, two false positives (the big rectangles) are also
included in the outcome. The situation is even worse in the densely crowded image
shown in Fig. 15.1b, where the automatic people detection phase clearly fails in
localizing the huge number of persons here represented. These two examples show
why approaches based on detection or segmentation of individuals are barely robust
when applied to the analysis of non-sparsely crowded scenes.

Conversely, particle advection methods do not rely on people segmentation and
assume that a crowd can be represented by a set of particles influenced by the
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Fig. 15.1 Examples of common people detector errors on a low-crowded (a) and a high-crowded
(b) scenario. The large number of false positives and false negatives makes the use of people
detector-based techniques highly unreliably for crowd analysis

people’s movements. The particles’ flow is then analyzed trying to detect possible
anomalies. In Sect. 15.3.5 we will show that our anomaly detection approach is able
to localize an anomaly in the frame shown in Fig. 15.1a (i.e., a man on a bicycle
with a velocity higher than the surrounding pedestrians). In fact, we can detect the
person(s) in the scene with an anomaly behavior by back-projecting the particle
positions corresponding to the localized anomaly into the image.

Before concluding this section, we refer the reader interested in crowd behavior
analysis details to recent review papers. In [31], a survey on available techniques
for crowd modeling from both the computer vision and the crowd simulation
point of view are presented. Emphasis is drawn on discussing the techniques
available for crowd modeling using agent based models, nature based models and
physical models. In [14] a discussion on the available computer vision techniques
for crowd behavior analysis for video surveillance applications is presented. This
survey also reports a few computer vision schemes able to address problems like
crowd dynamics, crowd analysis and crowd synthesis. In [10] a summary of crowd
behavior techniques from a social signal perspective applied to video surveillance is
presented.

15.3 Proposed Particle Advection Using PSO-SFM

This section describes our proposed particle advection method using PSO-SFM. In
earlier attempts [2,21], the particle advection is carried out by placing a rectangular
grid of particles over each video frames. Then, the velocity for each particle
is calculated using fourth-order Runge-Kutta-Fehlberg algorithm [19] along with
the bilinear interpolation of the optical flow field. In general, a drawback of this
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approach is that it assumes that a crowd follows a fluid-dynamical model which is
too restrictive when modeling masses of people. The elements of the crowd may
also move with unpredictable trajectories that will result in an unstructured flow.
Moreover, the use of a rectangular grid for particles is a coarse approximation
with respect to the continuous evolution of the social force. To overcome these
drawbacks, we propose a novel particle advection scheme using PSO aiming at
modeling the crowd behavior. Before presenting the detailed description of our
proposed scheme, we first provide a brief introduction on PSO and SFM in the
following subsections.

15.3.1 Particle Swarm Optimization

Particle Swarm Optimization is a stochastic, iterative, population-based optimiza-
tion technique aimed at finding a solution to an optimization problem in a search
space [15]. The main objective of PSO is to optimize a given criterion function
called fitness function f . PSO is initialized with a population, namely a swarm, of
N-dimensional particles distributed randomly over the search space (of dimension
N too): each particle is so considered as a point in this N-dimensional space and
the optimization process manages to move the particles according to the evaluation
of the fitness function in an iterative way. More specifically, at each iteration, each
particle is updated according to two “best” values, respectively called pbesti, which
depends on the i-th particle, and gbest which is independent from the specific
particle. pbesti is the position corresponding to the best (e.g., minimum) fitness
value of particle i obtained so far (i.e. taking into account the positions computed
from the first iteration to the current one). On the other hand, gbest is the best
position achieved by the whole swarm:

gbest = argmin
i

f (pbesti), (15.1)

The position change (called “velocity”) vi for the i-th particle is updated
according to the following equations [15]:

vnew
i = IA · vold

i +C1 · rand1 · (pbesti − xold
i )

+C2 · rand2 · (gbest − xold
i ); (15.2)

xnew
i = xold

i + vnew
i , (15.3)

where IA is the inertia weight, whose value should be tuned to provide a good
balance between global and local explorations, and it may result in fewer iterations
on average for finding near optimal results. The scalar values C1 and C2 are
acceleration parameters used to drive each particle towards pbesti and gbest. Low
values of C1 and C2 allow the particles to roam far from target regions, while high
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values result in abrupt movements towards the target regions. rand1 and rand2

are random numbers between 0 and 1. Finally, xold
i and xnew

i are the current and
updated particle positions, respectively, and the same applies for the deviation vold

i
and vnew

i .

15.3.2 Social Force Model

The SFM [13] provides a mathematical formalization to describe the movement of
each individual in a crowd on the basis of its interaction with the environment and
other obstacles. The SFM can be written as:

mi
dWi

dt
= mi

(
W p

i −Wi

τi

)
+Fint , (15.4)

where mi denotes the mass of the individual, Wi indicates its actual velocity which
varies given the presence of obstacles in the scene and τi is a relaxing parameter.
Fint indicates the interaction force experienced by the individual which is defined as
the sum of attraction and repulsive forces. Finally, W p

i is the desired velocity of the
individual.

Assuming mi = 1 and τi = 1, from Eq. (15.4) we obtain:

Fint =Wi −W p
i +

dWi

dt
. (15.5)

Equation (15.5) shows that the higher the difference between the actual and
the desired velocities of a particle, the stronger its interaction force. The intuitive
idea behind this is that an obstacle (e.g., a person or a group of persons) can
make a particle (representing an individual of the analyzed crowd) to deviate from
its desired path. The higher this deviation, the stronger the underlying interaction
force. Thus, estimating the interaction force of the particle swarm will give us an
instrument to assess the total amount of person-to-person interactions in a given
frame. Anomalies will be detected as outliers in the interaction force distribution.

In the next section we will see how the optical flow can be used for an operational
definition of the velocities involved in Eq. (15.5) and the how the PSO process can
be used to simulate the movement of a set of individuals who aim at minimizing
their respective interaction forces.

15.3.3 The Proposed Minimization Scheme

The PSO begins with a random initialization of the particles in the first frame.
From such initial stage, we obtain a first guess of pbesti, for each particle i, and the
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global gbest. The particles are defined by their 2-D positions corresponding to the
pixel coordinates in the frames. At each iteration, the pbesti value is updated only
if the present position of the particle is better than the previous position according
to fitness function evaluated on the model interaction force. Finally, the gbest is
updated with the position obtained from the best pbesti after reaching the maximum
number of iterations or if the desired fitness value is achieved. We then use the
final particle positions as the initial guess in the next frame and the same iterative
process is repeated until the end of the video sequence. Therefore, the movement of
the particles is updated according to the fitness function which drives the particles
toward the areas of minimum interaction force using SFM.

15.3.3.1 Computing the Fitness Function

The fitness function aims at capturing the interaction force exhibited by each
movement in the crowded scene. Each particle is evaluated according to its
interaction force calculated using SFM and optical flow [6]. In fact, the Optical
Flow (OF) is a good candidate to substitute the pedestrian velocities in the SFM
model.

Using OF, we define the actual velocity of particle i as:

Wi = Oavg(x
new
i ), (15.6)

where Oavg(xnew
i ) indicates the average OF at the particle coordinates xnew

i , which in
turn is estimated using Eq. (15.2). The average is computed over L previous frames.
The desired velocity of the particle is defined as:

W p
i = O(xnew

i ), (15.7)

where O(xnew
i ) represents the OF intensity (in the current frame) of the particle i.

Both O() and Oavg() are computed using interpolation in a small spatial neighbor-
hood to avoid numerical instabilities of the OF. Finally, we calculate the interaction
force Fint using Eq. (15.5):

Fint(x
new
i ) =

dWi

dt
− (W p

i −Wi
)
, (15.8)

where the velocity derivative is approximated as the difference of the OF at
the current frame t and t − 1, that is dWi

dt = [O(xnew
i )|t − O(xnew

i )|t−1]. As above
mentioned, the interaction force (Eq. (15.5)) allows an individual to change its
movement from the desired path to the actual one. This process is in some way
mimicked by the particles which are driven by the OF toward the image areas of
larger motion. In this way, the more regular the pedestrians’ motion, the less the
interaction force, since the people motion flow varies smoothly. So, in a normal
crowded scenario the interaction force is expected to stabilize at a certain (low) value
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Fig. 15.2 Block diagram of the proposed framework for global anomaly detection

complying with the typical motion flow of the mass of people. It is then reasonable
to define a fitness function aimed at minimizing the interaction force and moving
particles toward these sinks of small interaction force, thereby allowing particles to
simulate a “normal” situation of the crowd.

Hence, we define our fitness function as:

f (xi) = Fint(xi), (15.9)

where xi denotes the i-th particle’s position. With the above definitions we can use
the PSO framework presented in Sect. 15.3.1 to minimize f ().

15.3.4 Global Anomaly Detection Scheme Using PSO-SFM

In Fig. 15.2 we show the stages of our global anomaly detection system, whose aim
is to classify every frame of a given video sequence as either “normal” or “abnor-
mal”. In the first stage we estimate the interaction force on each frame using the
PSO-SFM scheme described in Sect. 15.3.3. The interaction force associated with
each particle is then processed further to identify the global anomaly in the frame.

As an example, Fig. 15.3a–d show the computed interaction force with the
proposed particle advection using PSO-SFM for both normal (Fig. 15.3a, b) and
anomaly video frames (Fig. 15.3c, d). In these figures, we plotted on the image
the magnitude of the interaction forces assigned to every particle. As observed
in Fig. 15.3, the presence of the high magnitude interaction force over time can
provide useful information about the existence of an anomaly. This allow us to
formulate the detection of global anomalies as the detection of the changes in
the interaction force magnitude. This process is valid with the proposed particle
advection scheme since the presence of global abnormality can be recognized by
the presence of high magnitude of the interaction force associated with the particles
(see Fig. 15.3). Since all the available test videos contains a certain amount of frames
in which normal behavior is assumed, we take advantage of this information in
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Fig. 15.3 An illustration of the proposed scheme. (a) Input normal frame. (b) Interaction force
corresponding to (a). (c) Input anomaly frame. (d) Interaction force corresponding to (c)

the comparison process, like all the other previous algorithms [21]. In practice, we
carry out the following steps to decide whether a given frame contains an anomaly
or not:

1. First, compute the sum of the interaction forces of a reference frame Fr.
This reference frame(s) represents a normal behavior scene in the given video
sequence. Actually, all the public datasets considered have an initial (variable,
but at least one frame) set of frames representing a normal behavior which can
be used as a reference. If k is the number of particles (currently, k = 15,000), we
obtain Fr as follows:

Fr =
k

∑
i=1

Fint(x
new
i )|r (15.10)
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Fig. 15.4 Profile (a) before smoothing (b) after smoothing

2. Compute the sum of the interaction forces corresponding to all the particles in
the current frame Ft as:

Ft =
k

∑
i=1

Fint(x
new
i )|t (15.11)

3. Compute the change in the magnitude force at each frame t as:

Ct = |Ft −Fr| (15.12)

4. Repeat steps 2–3 for all the frames to obtain the profile (values of Ct for all the
video frames) corresponding to the change of the force magnitude.

As an example, Fig. 15.4a shows the profile obtained from a sequence of the
UMN dataset after following the above mentioned steps 1–4.

5. Finally, we use the moving average filter to smooth out the short term fluctuations
that are present in the obtained profile at the previous step, so to get a smoothed
profile Cs

t (see Fig. 15.4b). The moving average is obtained by the simple mean
of a few temporally adjacent frames. Once Cs

t is computed, each frame is then
classified as either normal or abnormal according to a threshold as follows:

Lt =

{
Abnormal if Cs

t > th
Normal otherwise

where Cs
t represents the smoothed profile, th is a threshold value, and Lt holds

the final detection result of the given video sequence.

15.3.5 Local Anomaly Detection Scheme Using PSO-SFM

While in the previous section we showed how a frame is classified as either normal
or abnormal, the aim of this section is to show how a finer localization of the



15 Crowd Scene Analysis with Swarm Optimization and Social Force Modeling 395

Particle Advection 
Using PSO-SFM

Video
Particle

Advection --
PSO

SFM

Anomaly
Localization

Outlier
Detection

Mean Shift
Clustering

Anomaly
Localization

Fig. 15.5 Block diagram of the proposed scheme for anomaly detection and localization

Fig. 15.6 (a) Input frame. (b) Interaction force

anomaly inside the frame is possible. Figure 15.5 summarizes the proposed scheme
for accurate localization of the anomaly in a crowd. The first step is the same
interaction force optimization approach presented in Sect. 15.3.3 and used for the
global case (see Fig. 15.2).

Figure 15.6a–b show the input frame and the corresponding interaction force,
respectively. It is interesting to observe that the highest magnitudes of the force
are located in the image regions that move differently from the overall image flow
(e.g., the man on the bicycle close to the street lamp). Although patterns of high
magnitude of the interaction force over a certain period of time can provide useful
information about the presence of an anomaly, not necessarily large magnitudes of
the force is a direct consequence of the presence of an anomaly. This is due to the
fact that particles are not associated to a whole person, but only to person’s parts,
so, for instance, legs motion can lead to a high interaction force which is obviously
not an anomaly. This motivates us to propose a scheme that can capture the high
magnitude patterns over a certain period of time and thereby localize the presence of
anomalies in the scene. In order to detect structured interaction forces over time, we
use an outlier detection scheme to eliminate isolated fluctuations of the social force
at each time instant. These “outliers” effects are in general due to the approximation
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Fig. 15.7 Results of the RANSAC-like algorithm. (a) Obtained inliers. (b) Corresponding outliers

of the pedestrians velocities with a dense OF computation. For instance, as above
observed, we noted that the leg swinging of a walking pedestrian is a cause for
false positive (anomaly) detections. This occurs because the local optical flow in
this small areas is noisy and may cause some disturbances in the anomaly detection.

The outliers detection process is performed using a custom implementation of the
well-known RANdom SAmple Consensus (RANSAC) algorithm [12]. RANSAC is
an iterative method used to estimate the parameters of a mathematical model from
observed data containing outliers. This algorithm basically assumes that most of the
available data consists of inliers whose distribution can be explained by a known
parametric model. However, inliers are mixed with outliers which make the direct
model parameter estimation inaccurate. Our empirical observations showed that
the statistics of the interaction forces associated to a crowd situation in the video
datasets can be reasonably well approximated by a Gaussian distribution. Thus,
given the interaction force magnitude of the particles at each frame we perform
the following steps:

1. Randomly select 5,000 particles (out of 15,000 particles) and their corresponding
interaction force magnitude.

2. Estimate the Gaussian distribution using the interaction force magnitude asso-
ciated with only the selected particles. Let the estimated mean and standard
deviation be μ̂ and σ̂ .

3. Consider the remaining particles and evaluate those that are inliers and outliers.
Inliers are detected by checking if the particle’s force is within the typical 3σ̂ of
the estimated model, particles whose force is outside this interval are considered
outliers.

4. Repeat the steps 1–3 for R number of iterations, R = 1,000 iterations in our case.
5. Finally, choose the Gaussian model with the highest number of inliers.

Figure 15.7a–b show the inliers and outliers obtained using the RANSAC-like
algorithm. It is interesting to observe that all high magnitude interaction forces
are detected as outliers. In order to achieve a better localization, we perform
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Fig. 15.8 Results of mean-shift clustering. (a) Clusters. (b) Force magnitude of the largest
cluster’s particles

Fig. 15.9 An anomaly
moving person localized
using the positions of the
particles in the largest outlier
cluster

a spatial clustering of the detected outliers using mean-shift [7, 8] as it works
independently on the assumptions regarding the shape of the distribution and the
number of modes/clusters. In the end, we finally select the clusters with a number
of members larger than a certain threshold, discarding clusters having a small
number of particles. This threshold is fixed and kept constant in all the performed
experiments; further, assuming that the geometry of the scene is roughly known, this
threshold can be set to define the minimal (abnormal) event to be detected.

Figure 15.8a–b show the results of mean-shift clustering and the final anomaly
localization obtained after selecting the largest cluster. The positions of the particles
of this cluster are plotted on the original input frame in Fig. 15.9. These particles
correspond to a moving person on a bicycle, who has been correctly detected as
an anomaly because his/her movement does not conform with the movement of the
surrounding pedestrians.
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15.4 Experiments

In this section we present and discuss the experimental results obtained using
the proposed schemes for global and local anomaly detection. We first discuss the
results using the global approach and then the experiments performed using the local
anomaly scheme.

15.4.1 Experimental Results and Discussion on the Global
Anomaly Scheme

To validate the performance of the proposed approach for global anomaly detection,
we conducted an extensive set of experiments on four different datasets: UMN [28],
PETS 2009 [24], UCF [21], and prison riot dataset (collected by us from the web).
In the following experiments, all the video frames are resized to a fixed resolution
of 200× 200 pixels. For the particle advection scheme, the particle density (i.e.,
the number of particles) is kept constant at 25 % of number of pixels, and the
number of iterations is fixed to 100. To detect the changes of the interaction force
magnitude, we use the first frame as the reference frame. This is because in all
the datasets the initial (roughly) 40 % of the video frames represents the normal
behavior which is then followed by the abnormal behavioral frames. Finally, the
performance is validated by plotting the ROC curves obtained over all possible
values of the threshold th.

15.4.1.1 UMN Dataset

The UMN dataset consists of 11 video sequences acquired in three different crowded
scenarios including both indoor and outdoor scenes. All these sequences exhibit
an escape panic scenario: they start with the normal behavior frames followed
by the abnormal activity. Figure 15.10 illustrates the results of the proposed
scheme obtained on the UMN dataset. Figure 15.10a shows two examples of
normal and abnormal crowd behavior frames, respectively, and Fig. 15.10b indicates
the corresponding interaction force obtained using the proposed PSO-SFM based
particle advection approach. From this figure, it can be observed that the presence of
high magnitude of the majority of the particles’ interaction force is an evidence that
an abnormal frame has occurred. Figure 15.10c shows the detection results of the
normal and abnormal frames using step 5 of the global anomaly detection algorithm
presented in Sect. 15.3.4. Figure 15.11 shows the detection results obtained on two
different sequences of the same UMN dataset. Abnormal frames always correspond
to a higher interaction force of the particles.

Figures 15.12 and 15.13 show the performance of the proposed scheme on three
different scenes of UMN and on the whole dataset, respectively. The quantitative
results in Table 15.1 indicate that the proposed scheme obtained the best perfor-
mance over different available state-of-the-art methods.
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Fig. 15.10 Results on the UMN dataset. (a) Input frame. (b) Force field. (c) Detection (N indicates
normal and A indicates abnormal frame)

15.4.1.2 Prison Riot Dataset

In order to evaluate the proposed method on real applications, we collected a set of
real videos from websites such as YouTube and ThoughtEquity.com. The collected
video dataset is composed of seven sequences representing riots in prisons that are
captured with different angles, resolutions, background and includes abnormality
like fighting with each other, clashing, etc. All the collected sequences start with
the normal behavior which is then followed by a sequence of abnormal behavior
frames. Figure 15.14 shows the interaction force obtained on some of the frames
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Fig. 15.11 Results of the proposed scheme on other sequences of the UMN dataset. (a) Normal
behavior in scene 2 with its corresponding interaction force and detection. (b) Abnormal behavior
in scene 2 with its corresponding interaction force and detection. (c) Normal behavior in scene 3
with its corresponding interaction force and detection. (d) Abnormal behavior in scene 3 with its
corresponding interaction force and detection

of this dataset. Figure 15.15 illustrates the performance of the proposed method
on some frames taken from different sequences in this datasets. The ROC curves
in Fig. 15.16 demonstrate that the proposed method outperforms the optical flow-
based method in distinguishing the abnormal sequences from the normal ones. The
quantitative results of this comparison are reported in Table 15.2.

15.4.2 Results on PETS 2009 Dataset

This section describes the results obtained on PETS 2009 ‘S3’ dataset. This dataset
is different from the other datasets used in this chapter, in the sense that abnormality
begins smoothly and this makes the detection more challenging because of the
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Fig. 15.12 ROC curves of abnormal behavior detection on different scenes in UMN dataset

Fig. 15.13 ROC performance on UMN dataset

gradual transaction from normal to abnormal activity. Figure 15.17 shows the
interaction force estimated using the proposed scheme on PETS 2009 and Fig. 15.18
shows the corresponding ROC curve. Table 15.3 shows the quantitative results of
the comparison, illustrating that the proposed scheme outperforms the optical flow
method also with this benchmark.

15.4.2.1 UCF Dataset

Finally, the effectiveness of the proposed algorithm is also evaluated on the UCF
dataset [21] composed of 12 video sequences representing normal and abnormal
scenes collected from the web. Also in this case, Fig. 15.19 demonstrates that
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Table 15.1 Performance of
the proposed scheme on the
UMN dataset

Method Area under ROC

Optical flow [21] 0.84
Social force [21] 0.96
Chaotic invariants [30] 0.99
NN [9] 0.93
Sparse reconstruction (scene 1) [9] 0.995
Sparse reconstruction (scene 2) [9] 0.975
Sparse reconstruction (scene 3) [9] 0.964
Sparse reconstruction (full dataset) [9] 0.978
Proposed scheme (scene 1) 0.9961
Proposed scheme (scene 2) 0.9932
Proposed scheme (scene 3) 0.9991
Proposed scheme (full dataset) 0.9961

the proposed scheme outperforms the optical flow procedure, and this is further
corroborated by the quantitative results reported in Table 15.4 and the qualitative
results reported in Fig. 15.20.

The experiments illustrated so far show that the proposed global anomaly
detection strategy outperforms the available state-of-the-art methods on realistic
datasets like UCF and Prison Riots, other than UMN and PETS 2009 benchmark
datasets. The next section is dedicated to testing the local strategy proposed in
Sect. 15.3.5.

15.4.3 Experimental Results and Discussion on the Local
Anomaly Scheme

To evaluate the performances of the local anomaly detection scheme and compare
it with state-of-the-art approaches, we consider two standard datasets used for
abnormal activities detection: UCSD [20] and MALL [1] datasets.

15.4.3.1 UCSD Dataset

The UCSD dataset contains two different sets of surveillance videos called PED1
and PED2. The dataset has a reasonable density of people and anomalies including
bikes, skaters, motor vehicles crossing the scenes. The PED1 has 34 training and
36 testing image sequence and PED2 has 16 training and 12 test image sequences.
These video sequences have two evaluation protocols as presented in [20], namely:
(1) frame-level anomaly detection, and (2) pixel-level anomaly detection. At frame-
level, we verify if the current frame contains a labeled abnormal pixel. In such a
case, the frame is considered containing an abnormal event and compared with
the annotated ground truth status (either normal or abnormal). At pixel-level, the
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Fig. 15.14 Results of the proposed scheme on the prison dataset. (a) A normal behavior frame
and its corresponding interaction force and detection result on video sequence 1. (b) An abnormal
behavior frame and its corresponding interaction force and detection result on sequence 1. (c) A
normal behavior frame and its corresponding interaction force and detection result on sequence 2.
(d) An abnormal behavior frame and its corresponding interaction force and detection result on
sequence 2

detection of abnormality is compared against the ground truth on a subset of 10 test
sequences. If at least 40 % of the detected abnormal pixels match the ground truth
pixels, it is presumed that anomaly has been localized otherwise it is treated as a
false positive.

Figure 15.21 shows the ROC curve of our method for the frame-level anomaly
detection criteria for PED1 and PED2 datasets. We then compare the performance
against the state-of-the-art approaches such as the SFM based method [21], MPPCA
[16], Adam et al. [1] and Mixture of dynamic textures (MDT) [20]. Table 15.5
shows the quantitative results of the proposed method on frame-level anomaly
detection on PED1 and PED2 datasets and Table 15.6 shows the results on anomaly
localization. The Equal Error Rate (EER) in Tables 15.5 and 15.6 is defined as
the point where false positive rate is equal to false negative rate. Remarkably, the
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Fig. 15.15 ROC curve of abnormal behavior detection in the different sequences of the prison
dataset

Fig. 15.16 ROC curves showing the comparison of the proposed scheme over the optical flow
method on the prison dataset

Table 15.2 Performance
of the proposed scheme on
the prison dataset

Method Area under ROC

Optical flow 0.5801
Proposed scheme (full dataset) 0.8903

proposed method outperforms all the previous approaches on both frame-level and
pixel-level detection, reaching the best performances in the frame-level anomaly
detection on the PED2 dataset.

Figure 15.22 shows a few frame samples with anomaly detection and localization
for the PED1 and PED2 datasets. It can be observed that the proposed method is
capable of detecting anomalies even in the far end of the scene (see Fig. 15.22a, last
two frames).
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Fig. 15.17 Sample frames from the PETS 2009 dataset (left column: input frames, middle column:
the corresponding interaction force, right column: the classification result). (a)–(b) Sample frames
from S3 (14–16). (c)–(d) sample frames from S3 (14–33)

15.4.3.2 Mall Dataset

The Mall dataset [1] consists of a set of video sequences recorded using three
cameras placed in different locations of a shopping mall during working days.
The annotated anomalies in such dataset are individuals running erratically in the
scene. The evaluation protocol uses only the frame-level anomaly detection criteria.
Figure 15.23 shows some frame samples from this dataset in which the anomaly is
detected using the proposed method. Table 15.7 shows that the proposed method
is extremely accurate in detecting all the frames with an anomaly. Moreover, our
approach outperforms the state-of-the-art schemes with respect to the best Rate of
Detection (RD) and fewer False Alarm (FA).
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Fig. 15.18 The ROC curves of abnormal behavior detection in the PETS 2009 database

Table 15.3 Performance
of the proposed scheme on
PETS 2009 dataset

Method Area under ROC

Optical flow scene 1 0.8834
Proposed scheme scene 1 0.9414
Optical flow scene 2 0.9801
Proposed scheme scene 2 0.9914

Fig. 15.19 The ROC curves of abnormal behavior detection in the UCF dataset

15.5 Conclusion

We proposed a new particle advection scheme for both global and local anomaly
detection in crowded scenes. The main contribution of this work lies in introducing
the optimization of the evolving interaction force and performing particle advection
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Table 15.4 Performance
of the proposed scheme on
UCF dataset

Method Area under ROC

Optical flow 0.884
Proposed scheme (full dataset) 0.986

Table 15.5 Equal error rates for frame level anomaly detection on PED1 and PED2
datasets

SF [21] MPPCA [16] Adam et al. [1] MDT [20] Proposed
Approach (%) (%) (%) (%) method (%)

PED1 31 40 38 25 21
PED2 42 30 42 25 14
Average 37 35 40 25 17

Table 15.6 Anomaly localization: detection rate at the EER

SF [21] MPPCA [16] Adam et al. [1] MDT [20] Proposed
Method (%) (%) (%) (%) method (%)

Localization 21 18 24 45 52

Table 15.7 Performances
on the Mall dataset Dataset Methods RD FA

Mall Cam 1 Adam et al. [1] 95% (19/20) 1
Proposed method 100% (20/20) 2

Mall Cam 2 Adam et al. [1] 100% (17/17) 6
Proposed method 100% (17/17) 4

Mall Cam 3 Adam et al. [1] 95% (20/21) 4
Proposed method 100% (21/21) 3

to capture the optimized interaction force according to the underlying optical
flow. The main advantage of the proposed scheme is that the whole anomaly
detection/localization process is carried out without any learning phase. This further
justifies the applicability of our proposed scheme for real world applications.
Finally, empirical results have also indicated that our method is robust and highly
performing in detecting abnormal activities on very different types of crowded
scenes.

Acknowledgements This article summarizes and incorporates two earlier publications concern-
ing global [26] and local [25] anomaly detection in crowded scenarios.
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