

Modern	Authentication	with	Azure	Active
Directory	for	Web	Applications

Vittorio	Bertocci

PUBLISHED	BY
Microsoft	Press
A	Division	of	Microsoft	Corporation
One	Microsoft	Way
Redmond,	Washington	98052-6399

Copyright	©	2016	by	Vittorio	Bertocci.	All	rights	reserved.

No	part	of	the	contents	of	this	book	may	be	reproduced	or	transmitted	in	any	form	or	by
any	means	without	the	written	permission	of	the	publisher.

Library	of	Congress	Control	Number:	2014954517
ISBN:	978-0-7356-9694-5

Printed	and	bound	in	the	United	States	of	America.

First	Printing

Microsoft	Press	books	are	available	through	booksellers	and	distributors	worldwide.	If
you	need	support	related	to	this	book,	email	Microsoft	Press	Support	at
mspinput@microsoft.com.	Please	tell	us	what	you	think	of	this	book	at
http://aka.ms/tellpress.

This	book	is	provided	“as-is”	and	expresses	the	author’s	views	and	opinions.	The	views,
opinions	and	information	expressed	in	this	book,	including	URL	and	other	Internet
website	references,	may	change	without	notice.

Some	examples	depicted	herein	are	provided	for	illustration	only	and	are	fctitious.	No	real
association	or	connection	is	intended	or	should	be	inferred.

Microsoft	and	the	trademarks	listed	at	www.microsoft.com	on	the	“Trademarks”	webpage
are	trademarks	of	the	Microsoft	group	of	companies.	All	other	marks	are	property	of	their
respective	owners.

Acquisitions	and	Developmental	Editor:	Devon	Musgrave
Project	Editor:	John	Pierce
Editorial	Production:	Rob	Nance,	John	Pierce,	and	Carrie	Wicks
Copyeditor:	John	Pierce
Indexer:	Christina	Yeager,	Emerald	Editorial	Services
Cover:	Twist	Creative	•	Seattle	and	Joel	Panchot

mailto:mspinput@microsoft.com
http://aka.ms/tellpress
http://www.microsoft.com

Ai	miei	carissimi	fratelli	e	sorelle:	Mauro,	Franco,	Marino,	
Cristina,	Ulderico,	Maria,	Laura,	Guido	e	Mira—per	avermi	
fatto	vedere	il	mondo	attraverso	altre	nove	paia	d’occhi.

Contents

Foreword

Introduction

Chapter	1	Your	first	Active	Directory	app

The	sample	application

Prerequisites

Microsoft	Azure	subscription

Visual	Studio	2015

Creating	the	application

Running	the	application

ClaimsPrincipal:	How	.NET	represents	the	caller

Summary

Chapter	2	Identity	protocols	and	application	types

Pre-claims	authentication	techniques

Passwords,	profile	stores,	and	individual	applications

Domains,	integrated	authentication,	and	applications	on	an	intranet

Claims-based	identity

Identity	providers:	DCs	for	the	Internet

Tokens

Trust	and	claims

Claims-oriented	protocols

Round-trip	web	apps,	first-generation	protocols

The	problem	of	cross-domain	single	sign-on

SAML

WS-Federation

Modern	apps,	modern	protocols

The	rise	of	the	programmable	web	and	the	problem	of	access	delegation

OAuth2	and	web	applications

Layering	web	sign-in	on	OAuth

OpenID	Connect

More	API	consumption	scenarios

Single-page	applications

Leveraging	web	investments	in	native	clients

Summary

Chapter	3	Introducing	Azure	Active	Directory	and	Active	Directory	Federation
Services

Active	Directory	Federation	Services

ADFS	and	development

Getting	ADFS

Protocols	support

Azure	Active	Directory:	Identity	as	a	service

Azure	AD	and	development

Getting	Azure	Active	Directory

Azure	AD	for	developers:	Components

Notable	nondeveloper	features

Summary

Chapter	4	Introducing	the	identity	developer	libraries

Token	requestors	and	resource	protectors

Token	requestors

Resource	protectors

Hybrids

The	Azure	AD	libraries	landscape

Token	requestors

Resource	protectors

Hybrids

Visual	Studio	integration

AD	integration	features	in	Visual	Studio	2013

AD	integration	features	in	Visual	Studio	2015

Summary

Chapter	5	Getting	started	with	web	sign-on	and	Active	Directory

The	web	app	you	build	in	this	chapter

Prerequisites

Steps

The	starting	project

NuGet	packages	references

Registering	the	app	in	Azure	AD

OpenID	Connect	initialization	code

Host	the	OWIN	pipeline

Initialize	the	cookie	and	OpenID	Connect	middlewares

[Authorize],	claims,	and	first	run

Adding	a	trigger	for	authentication

Showing	some	claims

Running	the	app

Quick	recap

Sign-in	and	sign-out

Sign-in	logic

Sign-out	logic

The	sign-in	and	sign-out	UI

Running	the	app

Using	ADFS	as	an	identity	provider

Summary

Chapter	6	OpenID	Connect	and	Azure	AD	web	sign-on

The	protocol	and	its	specifications

OpenID	Connect	Core	1.0

OpenID	Connect	Discovery

OAuth	2.0	Multiple	Response	Type,	OAuth2	Form	Post	Response	Mode

OpenID	Connection	Session	Management

Other	OpenID	Connect	specifications

Supporting	specifications

OpenID	Connect	exchanges	signing	in	with	Azure	AD

Capturing	a	trace

Authentication	request

Discovery

Authentication

Response

Sign-in	sequence	diagram

The	ID	token	and	the	JWT	format

OpenID	Connect	exchanges	for	signing	out	from	the	app	and	Azure	AD

Summary

Chapter	7	The	OWIN	OpenID	Connect	middleware

OWIN	and	Katana

What	is	OWIN?

Katana

OpenID	Connect	middleware

OpenIdConnectAuthenticationOptions

Notifications

TokenValidationParameters

Valid	values

Validation	flags

Validators

Miscellany

More	on	sessions

Summary

Chapter	8	Azure	Active	Directory	application	model

The	building	blocks:	Application	and	ServicePrincipal

The	Application

The	ServicePrincipal	object

Consent	and	delegated	permissions

Application	created	by	a	nonadmin	user

Interlude:	Delegated	permissions	to	access	the	directory

Application	requesting	admin-level	permissions

Admin	consent

Application	created	by	an	admin	user

Multitenancy

App	user	assignment,	app	permissions,	and	app	roles

App	user	assignment

App	roles

Application	permissions

Groups

Summary

Chapter	9	Consuming	and	exposing	a	web	API	protected	by	Azure	Active
Directory

Consuming	a	web	API	from	a	web	application

Redeeming	an	authorization	code	in	the	OpenID	Connect	hybrid	flow

Using	the	access	token	for	invoking	a	web	API

Other	ways	of	getting	access	tokens

Exposing	a	protected	web	API

Setting	up	a	web	API	project

Handling	web	API	calls

Exposing	both	a	web	UX	and	a	web	API	from	the	same	Visual	Studio
project

A	web	API	calling	another	API:	Flowing	the	identity	of	the	caller	and	using
“on	behalf	of”

Protecting	a	web	API	with	ADFS	“3”

Summary

Chapter	10	Active	Directory	Federation	Services	in	Windows	Server	2016	Technical
Preview	3

Setup	(for	developers)

The	new	management	UX

Web	sign-on	with	OpenID	Connect	and	ADFS

OpenID	Connect	middleware	and	ADFS

Setting	up	a	web	app	in	ADFS

Testing	the	web	sign-on	feature

Protecting	a	web	API	with	ADFS	and	invoking	it	from	a	web	app

Setting	up	a	web	API	in	ADFS

Code	for	obtaining	an	access	token	from	ADFS	and	invoking	a	web	API

Testing	the	web	API	invocation	feature

Additional	settings

Summary

Appendix:	Further	reading

Index

What	do	you	think	of	this	book?	We	want	to	hear	from	you!
Microsoft	is	interested	in	hearing	your	feedback	so	we	can	continually	improve	our
books	and	learning	resources	for	you.	To	participate	in	a	brief	online	survey,	please	visit:

microsoft.com/learning/booksurvey

http://microsoft.com/learning/booksurvey

Foreword

The	purpose	of	an	application	is	to	take	input	from	users	or	other	applications	and	produce
output	that	will	be	consumed	by	those	same	users	or	applications	or	by	other	ones.	That’s
true	of	a	website	that	gains	input	from	a	click	on	a	link	and	sends	back	the	content	of	the
requested	page	as	output;	a	middle	tier	that	processes	database	requests	queued	from	a
front	end,	executing	them	by	sending	input	to	a	database;	or	a	cloud	service	that	gets	input
from	a	mobile	application	to	look	up	nearby	friends.	Given	this,	a	fundamental	question
faced	in	the	design	of	every	application	is,	Who	is	sending	the	input	and	should	the
application	process	it	to	produce	the	resulting	output?	Put	another	way:	every	application
must	decide	on	an	identity	system	that	represents	users	and	other	applications,	a	means	by
which	to	validate	an	application’s	or	user’s	claimed	identity,	and	a	way	to	determine	what
outputs	the	user	or	application	is	allowed	to	produce.

These	decisions	will	determine	how	easily	users	and	applications	can	interact	with	an
application,	what	functionality	they	can	take	advantage	of	to	secure	and	manage	their
identities	and	credentials,	and	how	much	work	the	application	developer	must	do	to	enable
these	capabilities,	which	are	known	as	authentication	and	authorization.	The	ideal	answers
make	it	possible	for	users	and	applications	to	use	their	preferred	identities,	whether	from
Facebook,	Gmail,	or	their	enterprise;	for	the	application	to	easily	configure	the	access
rights	for	authorized	users;	and	for	the	application	to	rely	on	other	services	as	much	as
possible	to	do	the	heavy	lifting.	Identity	and	access	control,	while	key	to	an	application’s
utility,	are	not	the	core	value	an	application	delivers,	so	developers	shouldn’t	spend	any
more	time	on	this	area	than	they	have	to.	Why	create	a	database	of	users	and	worry	about
which	algorithm	to	use	to	encrypt	the	users’	passwords	if	you	can	take	advantage	of	a
service	that’s	built	for	doing	just	that,	with	industry-leading	security	and	management?

Microsoft	Azure	Active	Directory	(Azure	AD)	is	arguably	the	heart	of	Microsoft’s
cloud	platform.	All	Microsoft	cloud	services,	including	Microsoft	Azure,	Microsoft	Xbox
Live,	and	Microsoft	Office	365,	use	Azure	AD	as	their	identity	provider.	And	because
Azure	AD	is	a	public	cloud	service,	application	developers	can	also	take	advantage	of	its
capabilities.	If	an	application	relies	on	Azure	AD	as	its	identity	provider,	it	can	rely	on
Azure	AD	APIs	to	provision	users,	rely	on	Azure	AD	to	manage	their	passwords,	and
even	give	users	the	ability	to	use	multifactor	authentication	(MFA)	to	securely	authenticate
to	the	application.	For	application	developers	wanting	to	integrate	with	businesses,
including	the	many	that	are	already	using	Azure	AD,	Azure	AD	has	the	most	flexible	and
comprehensive	support	of	any	service	for	integrating	Active	Directory	and	LDAP
identities.	Fueled	by	enterprise	adoption	of	Office	365,	Azure	AD	is	already	a	connection
point	for	hundreds	of	millions	of	business	and	organizational	identities,	and	it’s	growing
fast.

Using	Azure	AD	for	the	most	common	scenarios	is	easy,	thanks	to	the	open	source
developer	libraries,	tooling,	and	guidance	available	on	Microsoft	Azure’s	GitHub
organization.	Going	beyond	the	basics,	however,	requires	a	good	understanding	of	modern
authentication	flows—specifically	OAuth2	and	OpenID	Connect—and	concepts	such	as	a
relying	party	and	tokens,	federation,	role-based	access	control,	a	provisioned	application,
and	service	principles.	If	you’re	new	to	these	protocols	and	terms,	the	learning	curve	can

seem	daunting.	Even	if	you’re	not,	knowing	the	most	efficient	way	to	use	Azure	AD	and
its	unique	capabilities	is	important,	and	it’s	worthwhile	understanding	what’s	available	to
you.

There’s	no	better	book	than	Modern	Authentication	with	Azure	Active	Directory	for	Web
Applications	to	help	you	make	your	application	take	full	advantage	of	Azure	AD.	I’ve
known	Vittorio	Bertocci	since	I	started	in	Azure	five	years	ago,	and	I’ve	watched	his
always	popular	and	highly	rated	Microsoft	TechEd,	Build,	and	Microsoft	Ignite
conference	presentations	to	catch	up	with	the	latest	developments	in	Azure	AD.	He’s	a
master	educator	and	one	of	Microsoft’s	foremost	experts	on	identity	and	access	control.

This	book	will	guide	you	through	the	essentials	of	authentication	protocols,	decipher	the
disparate	terminology	applied	to	the	subject,	tell	you	how	to	get	started	with	Azure	AD,
and	then	present	concrete	examples	of	applications	that	use	Azure	AD	for	their
authentication	and	authorization,	including	how	they	work	in	hybrid	scenarios	with	Active
Directory	Federation	Services	(ADFS).	With	the	information	and	insights	Vittorio	shares,
you’ll	be	able	to	efficiently	create	modern	cloud	applications	that	give	users	and
administrators	the	flexibility	and	security	of	Microsoft’s	cloud	and	the	convenience	of
using	their	preferred	identities.

Mark	Russinovich
Chief	Technology	Officer,	Microsoft	Azure

Introduction

It’s	never	a	good	idea	to	use	the	word	“modern”	in	the	title	of	a	book.

Growing	up,	one	of	the	centerpieces	of	my	family’s	bookshelf	was	a	15-tomes-strong
encyclopedia	titled	Nuovissima	Enciclopedia	(Very	new	encyclopedia),	and	I	always	had	a
hard	time	reconciling	the	title	with	the	fact	that	it	was	10	years	older	than	me.

I	guarantee	that	the	content	in	this	book	will	get	old	faster	than	those	old	volumes—
cloud	and	development	technologies	evolve	at	a	crazy	pace—and	yet	I	could	not	resist
referring	to	the	main	subject	of	the	book	as	“modern	authentication.”

The	practices	and	technologies	used	to	take	care	of	authentication	in	business	solutions
have	changed	radically	nearly	overnight,	by	a	perfect	storm	of	companies	moving	their
assets	to	the	cloud,	software	vendors	starting	to	sell	their	products	via	subscriptions,	the
explosive	growth	of	social	networks	with	the	nascent	awareness	of	consumers	of	their	own
digital	identity,	ubiquitous	APIs	offering	programmatic	access	to	everything,	and	the
astonishing	adoption	rate	of	Internet-connected	smartphones.

“Modern	authentication”	is	a	catch-all	term	meant	to	capture	how	today’s	practices
address	challenges	differently	from	their	recent	ancestors:	JSON	instead	of	XML,	REST
instead	of	SOAP,	user	consent	and	individual	freedom	alongside	traditional	admin-only
processes,	an	emphasis	on	APIs	and	delegated	access,	explicit	representation	of	clients,
and	so	on.	And	if	it	is	true	that	those	practices	will	eventually	stop	appearing	to	be	new—
they	are	already	mainstream	at	this	point—the	break	with	traditional	approaches	is	so
significant	that	I	feel	it’s	important	to	signal	it	with	a	strong	title,	even	if	your	kids	make
fun	of	it	a	few	years	from	now.

As	the	landscape	evolves,	Active	Directory	evolves	with	it.	When	Microsoft	itself
introduced	one	of	the	most	important	SaaS	products	on	the	planet,	Office	365,	it	felt
firsthand	how	cloud-based	workloads	call	for	new	ways	of	managing	user	access	and
application	portfolios.	To	confront	that	challenge	Microsoft	developed	Azure	Active
Directory	(Azure	AD),	a	reimagined	Active	Directory	that	takes	advantage	of	all	the	new
protocols,	artifacts,	and	practices	that	I’ve	grouped	under	the	modern	authentication
umbrella.	Once	it	was	clear	that	Azure	AD	was	a	Good	Thing,	it	went	on	to	become	the
main	authentication	service	for	all	of	Microsoft’s	cloud	services,	including	Intune,	Power
BI,	and	Azure	itself.	But	the	real	raison	d’etre	of	this	book	is	that	Microsoft	opened	Azure
AD	to	every	developer	and	organization	so	that	it	could	be	used	for	obtaining	tokens	to
invoke	Microsoft	APIs	and	to	handle	authentication	for	your	own	web	applications	and
web	APIs.

Modern	Authentication	with	Azure	Active	Directory	for	Web	Applications	is	an	in-depth
exploration	of	modern	authentication	protocols	and	techniques	used	to	implement	sign-on
for	web	applications	and	to	protect	web	API	calls.	Although	the	protocols	and	pattern
descriptions	are	applicable	to	any	platform,	my	focus	is	on	how	Azure	AD,	the	latest
version	of	Active	Directory	Federation	Services	(ADFS),	and	the	OpenID	Connect	and
OAuth2	components	in	ASP.NET	implement	those	approaches	to	handle	authentication	in
real	applications.

The	text	is	meant	to	help	you	achieve	expert-level	understanding	of	the	protocols	and
technologies	involved	in	implementing	modern	authentication	for	a	web	app.	Substantial
space	is	reserved	for	architectural	pattern	descriptions,	protocol	considerations,	and	other
abstract	concerns	that	are	necessary	for	correctly	contextualizing	the	more	hands-on
advice	that	follows.

Most	of	the	practical	content	in	this	book	is	about	cloud	and	hybrid	scenarios	addressed
via	Azure	AD.	At	the	time	of	writing,	the	version	of	ADFS	supporting	modern
authentication	for	web	apps	is	still	in	technical	preview;	however,	on-premises-only
scenarios	are	covered	whenever	the	relevant	features	are	already	available	in	the	preview.

Who	should	read	this	book
I	wrote	this	book	to	fill	a	void	of	expert-level	content	for	modern	authentication,	Azure
AD,	and	ADFS.	Microsoft	offers	great	online	quick	starts,	samples,	and	reference
documentation—check	out	http://aka.ms/aaddev—that	are	perfect	for	helping	you	fulfil
the	most	common	tasks	as	easily	as	possible.	That	content	covers	many	scenarios	and
addresses	the	needs	of	the	vast	majority	of	developers,	who	can	be	extremely	successful
with	their	apps	without	ever	knowing	what	actually	goes	on	the	wire,	or	why.	I	like	to
think	of	that	level	of	operation	as	the	automatic	mode	for	handheld	and	smartphone
cameras—their	defaults	work	great	for	nearly	everybody,	nearly	all	the	time.	But	what
happens	if	you	want	to	take	a	picture	of	a	lunar	eclipse	or	any	other	challenging	subject?
That’s	when	the	point-and-click	facade	is	no	longer	sufficient	and	knowing	about	aperture
and	exposure	times	becomes	important.	You	can	think	of	this	book	as	a	handbook	for
when	you	want	to	switch	from	automatic	to	manual	settings.	Doing	so	is	useful	for
developers	who	work	on	solutions	for	which	authentication	requirements	depart	from	the
norm	and	for	the	devops	who	run	such	solutions.

Developers	who	worked	with	Windows	Identity	Foundation	will	find	the	text	useful	for
transferring	their	skills	to	the	new	platform,	and	they’ll	pick	up	some	new	tricks	along	the
way.	The	coverage	of	how	the	OWIN	middleware	works	is	deeper	than	anything	I’ve
found	on	the	Internet	at	this	time:	if	you	are	interested	in	an	in-depth	case	study	of
ASP.NET’s	Katana	libraries,	you’ll	find	one	here.

This	book	also	comes	in	handy	for	security	experts	coming	from	a	classic	background
and	looking	to	understand	modern	protocols	and	approaches	to	authentication—the
principles	and	protocols	I	describe	can	be	applied	well	beyond	Active	Directory	and
ASP.NET.	Security	architects	considering	Azure	AD	for	their	solutions	can	use	this	book
to	understand	how	Azure	AD	operates.	Protocol	experts	who	want	to	understand	how
Azure	AD	and	ADFS	use	OpenID	Connect	and	OAuth2	will	find	plenty	to	mull	over	as
well.

http://aka.ms/aaddev

Assumptions
This	book	is	for	senior	professionals	well	versed	in	development,	distributed	architectures,
and	web-based	solutions.	You	need	to	be	familiar	with	HTTP	trappings	and	have	at	least	a
basic	understanding	of	networking	concepts.	All	sample	code	is	presented	in	C#,	and	all
walk-throughs	are	based	on	Visual	Studio.	Azure	AD	and	ADFS	can	be	made	use	of	from
any	programming	stack	and	operating	system;	however,	if	you	don’t	understand	C#	syntax
and	basic	constructs	(LINQ,	etc.),	it	will	be	difficult	for	you	to	apply	the	coding	advice	in
this	book	to	your	platform	of	choice.	For	good	background,	I’d	recommend	John	Sharp’s
Microsoft	Visual	C#	Step	by	Step,	Eighth	Edition	(Microsoft	Press,	2015).

Above	all,	this	book	assumes	that	you	are	strongly	motivated	to	become	an	expert	in
modern	authentication	techniques	and	Azure	AD	development.	The	text	does	not	take	any
shortcuts:	you	should	not	expect	a	light	read;	most	chapters	require	significant	focus	and
time	investment.

This	book	might	not	be	for	you	if…
This	book	might	not	be	for	you	if	you	just	want	to	learn	how	to	use	Azure	AD	or	ADFS
for	common	development	tasks.	You	don’t	have	to	buy	a	book	for	that:	the	documentation
and	the	samples	available	at	http://aka.ms/aaddev	will	get	you	up	and	running	in	no	time,
thanks	to	crisp	step-by-step	instructions.	If	there	are	tasks	you’d	like	to	see	covered	by	the
Azure	AD	docs,	please	use	the	feedback	tools	provided	at	that	address:	the	Azure	AD
team	is	always	looking	for	feedback	for	improving	its	documentation.

This	book	is	also	not	especially	good	as	a	lookup	reference.	The	text	covers	a	lot	of
ground,	including	information	that	isn’t	included	in	the	documentation	at	this	time,	but	the
information	is	unveiled	progressively,	building	on	the	reader’s	growing	understanding	of
the	topic.	The	book	is	optimized	as	a	long	lesson,	not	for	looking	things	up.

Finally,	this	book	won’t	be	of	much	help	if	you	are	developing	mobile,	native,	and	rich-
client	applications.	I	originally	intended	to	cover	those	types	of	applications,	too,	but	the
size	of	the	book	would	have	nearly	doubled,	so	I	had	to	cut	them	from	this	edition.

Organization	of	this	book
This	book	is	meant	to	be	read	cover	to	cover.	That’s	not	what	most	people	like	to	do,	I
know:	bite-size	and	independent	modules	is	the	way	to	go	today.	I	believe	there	are	media
more	conducive	to	that	approach,	like	video	courses	or	the	online	documentation	at
http://aka.ms/aaddev.	I	chose	to	write	a	book	because	to	achieve	my	goal—helping	you
understand	modern	authentication	principles	and	how	to	take	advantage	of	them	with
Azure	AD—I	cannot	feed	you	only	factlets	and	recipes.	I	have	to	present	you	with	a
significant	amount	of	information,	highlight	relationships	and	implications	for	you,	and
then	often	ask	you	to	tuck	that	knowledge	away	for	a	chapter	or	two	before	you	actually
end	up	using	it.	That’s	where	I	believe	a	book	can	still	deliver	value:	by	giving	me	the
chance	to	hold	your	attention	for	a	significant	amount	of	time,	I	can	afford	a	depth	and
breadth	that	I	cannot	achieve	in	a	blog	post.	(By	the	way,	did	I	mention	that	I	do	blog	a	lot
as	well?	See	www.cloudidentity.com	and	www.twitter.com/vibronet.)

If	this	book	has	a	natural	fault	line	in	its	organization,	it	lies	between	the	first	four

http://aka.ms/aaddev
http://aka.ms/aaddev
http://www.cloudidentity.com
http://www.twitter.com/vibronet

chapters	and	the	last	six.	The	first	group	provides	context,	and	the	later	chapters	dive
deeply	into	the	protocols,	code,	libraries,	and	features	of	Active	Directory.	Here’s	a	quick
description	of	each	chapter’s	focus:

	Chapter	1,	“Your	first	Active	Directory	app,”	is	a	soft	introduction	to	the	topic,
giving	you	a	brief	glimpse	of	what	you	can	achieve	with	Azure	AD.	It	mostly
provides	instructions	on	how	to	use	Visual	Studio	tools	to	create	a	web	app	that’s
integrated	with	Azure	AD.	Instant	gratification.

	Chapter	2,	“Identity	protocols	and	application	types,”	is	a	detailed	history	of	identity
protocols.	It	introduces	terminology,	topologies,	and	relationships	between	standards
and	helps	you	understand	how	modern	authentication	came	to	be	and	why	identity	is
managed	the	way	it	is	today.

	Chapter	3,	“Introducing	Azure	Active	Directory	and	Active	Directory	Federation
Services,”	presents	basic	concepts,	terminology,	and	a	list	of	developer-relevant
features	for	Azure	AD	and	ADFS.	The	hands-on	chapters	(Chapters	6-10)	provide
detailed	descriptions	of	the	features	of	both	services	that	come	into	play	in	the
scenarios	of	interest	for	the	book.

	Chapter	4,	“Introducing	the	identity	developer	libraries,”	covers	basic	concepts,
terminology,	and	the	features	of	the	Active	Directory	Authentication	Library
(ADAL)	and	ASP.NET	OWIN	middleware.

	Chapter	5,	“Getting	started	with	web	sign-on	and	Active	Directory,”	provides	a
walk-through	of	how	to	create	from	scratch	a	web	app	that	can	sign	in	with	Azure
AD.	Starting	with	the	vanilla	MVC	templates,	you	learn	about	the	NuGets	packages
you	need	to	add,	what	app	provisioning	steps	you	need	to	follow	in	the	Azure	portal,
and	what	code	you	need	to	write	to	perform	key	authentication	tasks.

	Chapter	6,	“OpenID	Connect	and	Azure	AD	web	sign-on,”	provides	a	very	detailed
description	of	OpenID	Connect	and	related	standards,	grounded	on	network	traces	of
the	actual	traffic	generated	by	the	sample	app.	This	is	a	very	practical	way	of
understanding	the	underlying	protocol	and	why	it	operates	the	way	it	does.	The
descriptions	of	the	constellation	of	ancillary	specifications	for	OpenID	Connect	and
OAuth2	will	help	you	to	navigate	this	rather	crowded	space,	even	if	you	are	not
planning	to	use	Azure	AD	at	the	moment.

	Chapter	7,	“The	OWIN	OpenID	Connect	middleware,”	is	a	detailed	analysis	of	how
the	authentication	pipeline	in	ASP.NET	works—with	an	emphasis	on	the	OpenID
Connect	middleware,	its	extensibility	points,	and	what	scenarios	these	are	meant	to
address.

	Chapter	8,	“Azure	Active	Directory	application	model,”	is	a	deep	dive	into	the
Azure	AD	application	model:	how	Azure	AD	represents	apps	and	handles	consent,
and	how	it	deals	with	app	provisioning,	multitenancy,	app	roles,	groups,	app
permissions,	and	the	like.

	Chapter	9,	“Consuming	and	exposing	a	web	API	protected	by	Azure	Active
Directory,”	does	for	web	APIs	what	Chapters	6	and	7	do	for	web	apps—it	explains
the	protocol	flows	used	by	web	apps	for	gaining	access	to	a	protected	API	and

describes	how	to	use	ADAL	and	the	OAuth2	middleware	for	securely	invoking	and
protecting	a	web	API.	This	chapter	also	briefly	introduces	the	Directory	Graph	API
and	discusses	advanced	scenarios	such	as	exposing	and	securing	both	the	user
experience	and	an	API	from	the	same	web	project.

	Chapter	10,	“Active	Directory	Federation	Services	in	Windows	Server	2016
Technical	Preview	3,”	discusses	the	new	modern	authentication	features	in	ADFS,
showing	how	to	adapt	web	sign-on,	web	API	invocation,	and	code	protection
covered	in	the	earlier	chapters	to	on-premises-only	scenarios.

	The	appendix,	“Further	reading,”	provides	you	with	pointers	to	online	content
describing	ancillary	topics	and	offerings	that	are	still	too	new	to	be	fully	fleshed	out
in	the	book	but	are	interesting	and	relevant	to	the	subject	of	modern	authentication.

Finding	your	best	starting	point	in	this	book
As	I	mentioned,	every	chapter	in	this	book	builds	on	the	knowledge	you	acquire	in	the
preceding	ones.	That	makes	choosing	an	arbitrary	starting	point	a	tricky	exercise.	I
recommend	that	you	look	over	the	description	of	the	book’s	chapters	in	the	previous
section	and	decide	whether	you	feel	comfortable	enough	on	the	matter	to	choose	a	specific
starting	point.

System	requirements
You	will	need	the	following	software	if	you	want	to	follow	the	code	walk-throughs	in	this
book:

	Any	Windows	version	that	can	run	Visual	Studio	2015	or	later.

	Visual	Studio	2015,	any	edition	(technically,	apart	from	Chapter	1,	Visual	Studio
2015	isn’t	a	hard	requirement;	Visual	Studio	2013	will	work	with	just	a	few
adjustments).

	A	Microsoft	Azure	subscription	and	access	to	the	Azure	portal.

	Telerik	Fiddler	v4	(http://www.telerik.com/fiddler).

	Internet	connection	to	reach	Azure	AD	during	authentication	operations	and
provisioning	tasks.

In	addition,	Chapter	10	requires	you	to	have	access	to	an	ADFS	instance	using
Windows	Server	2016	Technical	Preview	3.	Its	system	requirements	can	be	found	at
https://technet.microsoft.com/en-us/library/mt126134.aspx.	For	the	book,	I	hosted	my	own
instance	in	a	Hyper-V	virtual	machine,	running	on	a	laptop	with	Windows	10.

http://www.telerik.com/fiddler
https://technet.microsoft.com/en-us/library/mt126134.aspx

Downloads:	Code	samples
This	book	contains	a	lot	of	code,	and	I	present	some	of	it	in	the	form	of	guided	walk-
throughs.	The	goal	is	always	to	unveil	the	concepts	you	need	to	understand	in	manageable
chunks,	as	opposed	to	the	classic	recipes	you	get	in	traditional	labs	or	exercises.	Also,	I
often	discuss	alternatives	in	the	text,	but	the	code	can’t	always	reflect	all	possible	options.
Expect	the	code	to	demonstrate	the	mainline	approach;	where	possible	and	appropriate,
alternatives	are	provided	in	code	comments.

You	can	find	the	code	I	use	in	the	book	on	my	GitHub,	at	the	following	address:

http://aka.ms/modauth/files

You	will	notice	a	number	of	repositories	with	the	form	<ModAuthBook_ChapterN>,
where	N	represents	the	chapter	number	in	which	the	repository	code	is	described	and
demonstrated.	(Not	every	book	chapter	contains	code;	only	the	chapters	that	do	have	a
corresponding	repository	on	GitHub.)	If	you	are	not	familiar	with	GitHub,	just	click	the
repository	name	for	the	chapter	you	are	interested	in;	somewhere	on	the	page	(at	this	time,
at	the	bottom-right	corner	of	the	layout),	you’ll	find	the	Download	ZIP	button,	which	you
can	use	to	save	a	local	copy	of	the	code.

Using	the	code	samples
Every	repository	contains	a	Visual	Studio	solution	and	a	readme	file.	The	readme	provides
a	quick	indication	about	the	topic	covered	by	the	corresponding	chapter,	prerequisites,	and
basic	instructions	on	how	to	provision	the	sample	in	your	own	Azure	AD	tenant.	I’ll	do
my	best	to	keep	the	setup	instructions	up	to	date.

Once	again,	don’t	expect	too	much	handholding:	the	code	is	provided	mostly	for
reference.	(Microsoft’s	fficial	step-by-step	samples	and	quick	starts	are	provided	at
http://aka.ms/aaddev.)	If	a	sample	requires	extra	steps	to	fully	demonstrate	a	scenario	(for
example,	the	presence	in	your	tenant	of	an	admin	and	at	least	a	nonadmin	user),	I’ve
assumed	that	you’ll	get	that	information	by	reading	the	book	and	don’t	repeat	it	in	the
sample’s	readme.	The	code	provided	at	http://aka.ms/modauth/files	is	meant	to	support
and	complement	the	reading	of	the	book	rather	than	as	a	standalone	asset.

http://aka.ms/modauth/files
http://aka.ms/aaddev
http://aka.ms/modauth/files

Acknowledgments

We	have	to	go	deeper.

—Cobb	in	Inception,	a	film	by	Christopher	Nolan,	2010

This	book	has	been	a	labor	of	love,	written	during	nights,	weekends,	and	occasional	time
off.	I	have	willingly	put	that	yolk	on	myself,	but	my	wife,	Iwona	Bialynicka-Birula,	did
not	…	she	endured	nearly	one	year	of	missed	hikes,	social	jet	lag,	and	a	silence	curfew
“because	I	have	to	write.”	Thank	you	for	your	patience,	darling—as	I	promised	in	the
acknowledgments	for	Programming	Windows	Identity	Foundation	back	in	2011:	No	more
books	for	a	few	years!

This	book	would	not	have	happened	at	all	if	Devon	Musgrave,	my	acquisitions	editor,
would	not	have	relentlessly	pursued	it,	granting	me	a	level	of	trust	and	freedom	I	am	not
sure	I	fully	deserve.	Thank	you,	Devon!

John	Pierce	has	been	an	absolutely	incredible	project	editor,	driving	everything	from
editing	to	project	management	to	illustrations.	He	has	this	magic	ability	of	turning	my
broken	English	into	correct	sentences	while	preserving	my	original	intent.	I	wish	every
technical	writer	would	have	the	good	fortune	of	working	with	somebody	as	gifted	as	John.
Rob	Nance	and	Carrie	Wicks	also	made	significant	contributions	to	producing	this	book.

I	will	be	forever	grateful	to	Mark	Russinovich	for	the	fantastic	foreword	he	wrote	for
the	book	and	for	the	kind	words	he	offered	about	me.	I	am	truly	humbled	to	have	my	book
begin	with	the	words	of	a	legend	in	software	engineering.

Big	thanks	to	my	management	chain	for	supporting	this	side	project.	Alex	Simons,	Eric
Doerr,	Stuart	Kwan—thank	you!	I	never	quite	managed	to	write	on	Fridays,	but	it	was	a
great	attempt.

I	need	to	call	out	Stuart	for	a	special	thanks—from	welcoming	me	to	the	product	team
to	mentoring	me	through	the	transition	from	evangelism	to	product	management.	A	large
part	of	whatever	success	I	have	achieved	is	thanks	to	our	work	together.	Thank	you!

Rich	Randall,	the	development	lead	on	the	Azure	AD	developer	experience	team,	is
my	partner	in	crime	and	recipient	of	my	utmost	respect	and	admiration.	Without	his
amazing	work,	none	of	the	libraries	described	in	this	book	would	be	around.	And	without
the	contribution	of	Afshin	Sephetri,	Kanishk	Panwar,	Brent	Schmaltz,	Tushar	Gupta,
Wei	Jia,	Sasha	Tokarev,	Ryan	Pangrle,	Chris	Chartier,	and	Omer	Cansizoglu—
developers	on	Rich’s	team—those	libraries	would	not	be	nearly	as	usable	and	powerful	as
they	are.

Danny	Strockis	has	been	on	the	PM	team	for	a	relatively	short	time,	but	his
contributions	are	already	monumental.	Ariel	Gordon,	responsible	for	designing	many	of
the	experiences	that	the	Azure	AD	users	go	through	every	day,	is	a	source	of	never-ending
insights.	Dushyant	Gill	drove	the	authorization	features	in	Azure	AD,	and	he	patiently
explained	those	to	me	every	single	time	I	barged	into	his	office.

Igor	Sakhnov,	developer	manager	for	Azure	AD	authentication,	and	his	then-PM
counterpart	David	Howell	have	my	gratitude	for	trusting	us	on	the	decision	to	move	the

web	authentication	stack	to	OWIN.	It	worked	out	pretty	well!

Speaking	of	OWIN.	Chris	Ross,	Tushar	Gupta,	Brent	Schmaltz,	Daniel	Roth,	Louis
Dejardin,	Eilon	Lipton,	and	Barry	Dorrans	all	did	a	fantastic	job,	both	in	developing
and	driving	the	libraries	and	in	handling	my	mercurial	outbursts.	Dan,	I	told	you	we’d	get
there!	Special	thanks	to	Chris	Ross	and	Tushar	Gupta	for	reviewing	Chapter	7	in	record
time.

I	started	working	with	Scott	Hunter	on	ASP.NET	tooling	and	templates	back	in	2012
and	loved	every	second.	The	man	cares	deeply	about	customers,	understands	the
importance	of	identity,	and	is	a	force	to	reckon	with.	It	is	thanks	to	him	and	to	my	good
friends	Pranav	Rastogi,	Brady	Gaster,	and	Dan	Roth	that	web	apps	in	Visual	Studio	can
be	enabled	for	Azure	AD	in	just	a	few	clicks.

In	my	opinion,	Visual	Studio	2015	has	the	most	sophisticated	identity	management
features	in	all	of	Microsoft’s	rich	clients,	and	that’s	largely	thanks	to	the	relentless	work
that	Anthony	Cangialosi,	Ji	Eun	Kwon,	and	all	the	Visual	Studio	and	Visual	Studio
Online	gang	poured	into	it.	That	made	it	possible	for	many	other	teams	to	build	on	that
core	and	deliver	first-class	identity	support	in	Visual	Studio	for	Azure,	Office	365,	and
more.	Among	others,	we	have	Chakkaradeep	(Chaks)	Chinnakonda	Chandran,	Dan
Seefeldt,	Steve	Harter,	Xiaoying	Guo,	Yuval	Mazor,	Sean	Laberee,	and	Paul
Yuknewicz	to	thank	for	that.

The	Azure	AD	authentication	service	is	for	developers	and	maintained	by	some	of	the
finest	developers	I	know—Shiung	Yong,	Ravi	Sharma,	Matt	Rimer,	and	Maxim	Yaryn
are	the	ones	patiently	fielding	my	questions	and	listening	to	my	crazy	scenarios.	The
architects	behind	the	service,	Yordan	Rouskov	and	Murli	Satagopan,	are	an
inexhaustible	source	of	insight.

The	guys	working	on	the	directory	data	model,	portal,	and	Graph	API	are	also	amazing
in	all	sorts	of	ways:	Dan	Kershaw,	Edward	Wu,	Yi	Li,	Dmitry	Pugachev,	Vijay
Srirangam,	Jeff	Staiman,	and	Shane	Oatman	are	always	there	to	help.	Special	mention
to	Yi	Li	who	reviewed	Chapter	8	and	deals	with	my	questions	nearly	every	day.

Besides	doing	a	fantastic	job	with	ADFS	in	Windows	Server	2016,	Samuel
Devasahayam,	Mahesh	Unnikrishnan,	Jen	Field,	Jim	Uphaus,	and	Saket	Kataruka
from	the	ADFS	team	were	of	great	help	for	Chapter	10.

The	people	on	the	partner	teams	are	the	ones	who	keep	things	real:	they	won’t	be
satisfied	until	the	services	and	libraries	address	their	scenarios,	and	in	so	doing	they	push
the	services	to	excellence.	Mat	Velloso	from	Evangelism;	Rob	Howard,	Matthias
Leibmann,	Yina	Arenas,	and	Tim	McConnell	from	Office	365;	Shriram	Natarajan
(Shri)	and	Pavel	Tsurbeleu	from	Azure	Stack;	Dave	Brankin,	David	Messner,	Yugang
Wang,	and	George	Moore	from	Azure;	and	Hadeel	Elbitar	from	Power	BI	are	all	people
who	keep	asking	the	right	questions	and	offer	priceless	insights.	Thank	you	guys!

The	contribution	from	people	in	the	development	community	is	of	paramount
importance,	especially	now	that	our	libraries	are	open	source.	Dominick	Baier	and	Brock
Allen	are	the	most	prominent	sources	of	insight	I	can	think	of	and	are	a	beacon	in	the
world	of	claims-based	identity	and	modern	authentication.

The	identirati	community	plays	a	key	role	in	moving	modern	authentication	forward,
divining	what	the	industry	wants	and	translating	it	into	the	form	of	RFC	stone	tablets.	I	am
super	grateful	to	John	Bradley	for	our	beer-fueled	chats	every	time	we	meet	at	the	Cloud
Identity	Summit	and	to	the	excellent	Brian	Campbell	and,	well,	Canadian	Paul	Madsen
for	the	friendly	banter;	to	Bob	Blakley	and	Ian	Glazer	for	never	failing	to	inspire;	and	to
our	own	Mike	Jones	and	Anthony	Nadalin	for	being	dependable,	in-house	protocol
oracles.	Although	I	cannot	stop	myself	from	reminding	Tony	that	it	is	imperative	that	he
work	on	his	focus—he’ll	know	what	that	means.

Last	but	not	least,	I	want	to	thank	the	readers	of	my	blog,	my	Twitter	followers,	the
people	I	engage	with	on	StackOverflow,	and	the	people	I	meet	at	conferences	during	my
sessions	and	afterward.	It	is	your	passion,	your	desire	to	know	more	and	be	more	effective,
and,	yes,	your	affection,that	made	me	decide	to	invest	time	in	writing	this	book.	Thank
you	for	your	incredible	energy.	This	book	is	for	you.

Errata,	updates,	&	book	support
We’ve	made	every	effort	to	ensure	the	accuracy	of	this	book	and	its	companion	content.
You	can	access	updates	to	this	book—in	the	form	of	a	list	of	submitted	errata	and	their
related	corrections—at:

http://aka.ms/modauth

If	you	discover	an	error	that	is	not	already	listed,	please	submit	it	to	us	at	the	same	page.

If	you	need	additional	support,	email	Microsoft	Press	Book	Support	at
mspinput@microsoft.com.

Please	note	that	product	support	for	Microsoft	software	and	hardware	is	not	offered
through	the	previous	addresses.	For	help	with	Microsoft	software	or	hardware,	go	to
http://support.microsoft.com.

Free	ebooks	from	Microsoft	Press
From	technical	overviews	to	in-depth	information	on	special	topics,	the	free	ebooks	from
Microsoft	Press	cover	a	wide	range	of	topics.	These	ebooks	are	available	in	PDF,	EPUB,
and	Mobi	for	Kindle	formats,	ready	for	you	to	download	at:

http://aka.ms/mspressfree

Check	back	often	to	see	what	is	new!

We	want	to	hear	from	you
At	Microsoft	Press,	your	satisfaction	is	our	top	priority,	and	your	feedback	our	most
valuable	asset.	Please	tell	us	what	you	think	of	this	book	at:

http://aka.ms/tellpress

We	know	you’re	busy,	so	we’ve	kept	it	short	with	just	a	few	questions.	Your	answers	go
directly	to	the	editors	at	Microsoft	Press.	(No	personal	information	will	be	requested.)
Thanks	in	advance	for	your	input!

http://aka.ms/modauth
mailto:mspinput@microsoft.com
http://support.microsoft.com
http://aka.ms/mspressfree
http://aka.ms/tellpress

Stay	in	touch
Let’s	keep	the	conversation	going!	We’re	on	Twitter:

http://twitter.com/MicrosoftPress

http://twitter.com/MicrosoftPress

Chapter	1.	Your	first	Active	Directory	app

To	give	you	a	good	sense	of	how	modern	identity	works,	this	book	takes	you	on	a	roller-
coaster	ride,	swinging	from	the	heights	of	highly	abstract	architectural	diagrams	down	to
nitty-gritty	details	of	implementation	and	protocols.	There	will	be	time	for	all	that	later,
though.	In	this	chapter,	I	provide	some	immediate	gratification	by	walking	you	through
the	simple	task	of	using	Active	Directory	to	protect	a	web	application—without	worrying
at	all	about	the	underlying	principles	at	play	or	the	code	necessary	to	implement	them.
Later	chapters	will	give	you	more	insights	about	what’s	really	going	on:	you’ll	be	able	to
come	back	to	this	example,	reinterpret	what	you	see	in	light	of	your	new	knowledge,	and
tweak	things	to	your	specific	needs.	For	now,	we’ll	just	have	some	uncomplicated	fun.

The	sample	application
Here’s	what	I’m	going	for.	I	want	to	create	an	ASP.NET	application	that	can	be	accessed
only	by	users	from	a	given	organization.	Furthermore,	I	want	the	application	to	be	able	to
retrieve	data	about	users	and	the	organization	itself	at	any	time	during	a	user’s	session.

I’ve	assumed	that	the	organization	I’m	targeting	has	an	instance	of	Azure	Active
Directory	(Azure	AD).	The	organization	could	have	obtained	that	instance	in	a	number	of
ways:	for	example,	having	a	Microsoft	Azure	or	an	Office	365	subscription	automatically
provides	one.	I	could	just	as	well	have	picked	an	on-premises	instance	of	Active	Directory
and	the	example	would	have	worked	the	same,	but	the	setup	would	have	been	more
laborious.

The	application	scenario	I’ve	described	can	be	achieved	by	relying	on	Azure	AD	for
authenticating	users	to	the	app	and	by	querying	the	directory	tenant	for	whatever	extra
information	might	be	required.

Prerequisites
The	use	of	cloud	services	and	of	highly	integrated	tooling	such	as	Microsoft	Visual	Studio
allows	me	to	keep	the	list	of	requirements	very	short.

Microsoft	Azure	subscription
The	scenario	requires	a	Microsoft	Azure	subscription	to	host	the	Azure	AD	tenant	and
allow	development	against	it.	In	fact,	to	try	the	code	samples	for	yourself,	you’ll	use	your
Azure	AD	tenant	over	and	over	again	throughout	this	book.

Developing	against	Azure	AD	is	free	as	long	as	you	stay	below	500,000	objects.	You
can	get	a	Microsoft	Azure	free	trial	and,	assuming	that	you	don’t	use	any	other	paid
services,	you	can	try	everything	you’ll	find	in	this	book	without	spending	a	dime—
excluding	electricity	and	Internet	connectivity	bills,	of	course.

At	the	time	of	writing	this	chapter,	you	can	set	up	a	Microsoft	Azure	trial	by	visiting
http://azure.microsoft.com/en-us/pricing/free-trial/.	I	won’t	provide	detailed	setup
instructions	here	because	the	process	has	likely	changed	since	the	book	went	to	press.
However,	setup	should	be	pretty	simple.	Please	note	that	you	must	successfully	complete

http://azure.microsoft.com/en-us/pricing/free-trial/

the	process	and	have	a	valid	subscription	to	follow	along	with	the	samples.	All	the	other
setup	steps	depend	on	you	having	a	subscription	available,	so	you	need	to	take	care	of	this
right	away.

Of	course,	if	you	already	have	a	Microsoft	Azure	subscription,	you	are	most	welcome
to	use	it	here:	there’s	no	need	to	set	up	a	new	one.

Visual	Studio	2015
You	can	choose	to	develop	your	app	with	pretty	much	any	tool	you	like.	To	save	time,	I’ll
use	Visual	Studio	2015,	which	contains	wizards	and	templates	that	greatly	speed	up	the
creation	of	an	Azure	AD–protected	application.

You	can	download	Visual	Studio	2015	from
https://www.visualstudio.com/downloads/download-visual-studio-vs.	Go	ahead	and	install
it	on	your	development	machine.

Once	you	are	done	with	the	setup,	you	need	to	tie	the	user	account	associated	with	your
Azure	subscription	to	your	Visual	Studio	instance.	This	allows	Visual	Studio	to	gain
access	to	your	Azure	assets,	including	your	Azure	AD	tenant,	enabling	various	tools	and
wizards	in	Visual	Studio	to	take	care	of	many	configuration	steps	for	you.	Later	in	the
book,	I	walk	you	through	in	painstaking	detail	what	happens	behind	the	scenes,	but	for	the
time	being,	abstracting	away	all	those	details	makes	it	possible	for	you	to	protect
applications	with	Azure	AD	without	having	to	be	a	domain	expert.

Launch	Visual	Studio.	At	the	top-right	corner	of	the	screen	is	a	Sign	In	link.	Click	on	it:
you’ll	be	presented	with	a	dialog	prompting	you	for	your	credentials.

If	you	associated	your	Azure	subscription	with	a	Microsoft	account,	enter	the	associated
credentials	here.	Once	you	successfully	sign	in,	you	are	done	with	your	setup.

https://www.visualstudio.com/downloads/download-visual-studio-vs

What	if	your	instance	of	Visual	Studio	is	already	tied	to	a	different
identity?

If	you	are	already	using	Visual	Studio	2015,	chances	are	that	you	have
entered	an	account	in	it.	If	that	account	is	associated	with	an	Azure
subscription,	you	are	all	set.	If	instead	you	created	a	different	account	during
your	Azure	sign-up	process,	or	if	your	company	manages	your	Azure
subscription	under	your	work	account,	you	can	simply	add	that	account	to
Visual	Studio	as	well.	Open	the	drop-down	list	at	the	top-right	corner	and
choose	Account	Settings.	You’re	presented	with	the	dialog	shown	in	Figure	1-
1.	Click	Add	An	Account,	and	simply	enter	your	credentials	to	associate	the
new	account	with	Visual	Studio.

Figure	1-1	The	account	management	dialog	in	Visual	Studio	2015.

Creating	the	application
Let’s	get	started!

1.	Open	Visual	Studio	2015	(if	you	do	not	have	an	instance	already	running).

2.	Go	to	the	File	menu.	Choose	New,	Project.

3.	In	the	list	of	templates	on	the	left,	choose	Web.	From	the	list	of	project	types	in	the
main	area,	select	ASP.NET	Application.

4.	Enter	a	project	name	of	your	choice.	(I	used	FirstADWebApp.)	Click	OK.

5.	In	the	dialog	that	follows,	select	MVC	(which	should	be	the	default).	Click	the
Change	Authentication	button	on	the	right	side	of	the	dialog.

6.	In	the	next	dialog,	select	the	Work	And	School	Accounts	option.	You	should	see	a
screen	similar	to	this:

7.	Leave	the	top	drop-down	with	its	default	value:	Cloud—Single	Organization.	The
Domain	drop-down	will	show	a	list	of	all	the	domains	available	to	all	the	Azure	AD
tenants	associated	with	the	users	signed	in	via	Visual	Studio.	You	can	leave	the
default	here	as	well.	Leave	Read	Directory	Data	cleared.

8.	Click	OK	through	all	the	dialogs	to	get	back	to	Visual	Studio.

9.	You’re	done.	After	you	click	OK	in	the	last	dialog,	Visual	Studio	reaches	out	to
Azure	AD,	creates	a	new	entry	describing	your	application,	and	generates	a	new
project	that	is	already	configured	to	handle	authentication	to	your	Azure	AD	tenant.

Running	the	application
Visual	Studio	creates	the	application	already	configured	to	enforce	authentication	on	every
request.	That	means	that	as	soon	as	you	try	to	access	it,	you	are	prompted	to	authenticate.

	Note

This	is	a	common	setup	for	line-of-business	(LOB)	applications,	where	users
normally	access	the	application	from	their	workplace.	Chances	are	that	such
users	are	already	signed	in	to	their	directory,	in	which	case	the	application
authenticates	them	transparently,	without	showing	any	prompt.

Go	back	to	Visual	Studio	and	press	F5.	The	first	thing	you’ll	see	in	the	browser	is	an
Azure	AD	sign-in	page	prompting	you	for	your	Azure	AD	credentials,	as	shown	in	Figure
1-2.

Figure	1-2	The	Azure	AD	credentials	prompt.

Enter	any	valid	credentials	from	your	Azure	AD	tenant,	and	then	click	Sign	In.	You	are
presented	with	the	consent	prompt	shown	in	Figure	1-3.	Because	you	are	running	this
application	for	the	first	time,	Azure	AD	informs	you	about	the	privileges	the	application
needs	to	acquire	in	your	directory	to	perform	its	function.	In	this	case	it	is	requesting	the
bare	minimum—the	abilities	to	sign	in	the	user	and	gather	basic	information.

Figure	1-3	The	Azure	AD	consent	page	for	the	test	application.

Click	OK.	That	frees	Azure	AD	to	conclude	the	authentication	flow	and	return	the
results	to	the	application,	which	will	sign	in	the	user.	In	Figure	1-4	you	can	observe	the
results.

Figure	1-4	The	application	home	page	after	authentication.

This	is	all	very	straightforward.	When	it	works	well,	identity	is	quite	boring	and
uneventful!

This	walk-through	demonstrates	that	you	don’t	need	to	read	an	abstruse	book	cover	to
cover	to	take	care	of	the	most	fundamental	authentication	scenario.	As	things	become
more	complicated	later	on,	don’t	forget	that	digging	deeper	is	a	choice,	not	a	requirement!

ClaimsPrincipal:	How	.NET	represents	the	caller
The	process	followed	in	the	preceding	section	injected	some	authentication	code	and
configuration	settings	into	the	application.	That	logic	ensures	that	unauthenticated	requests
are	redirected	to	the	intended	Azure	AD	tenant	and	challenged	to	authenticate;	after	that,
the	same	logic	ensures	that	only	users	from	the	Azure	AD	tenant	you	specified	can	gain
access	to	the	application.

Unless	you	want	to	tweak	how	the	default	authentication	process	unfolds,	you	can
happily	work	on	developing	your	application	without	ever	looking	at	the	code	that	makes
authentication	happen.

That	said,	you	will	often	need	to	work	with	at	least	one	aspect	of	the	authentication
operation:	the	authenticated	user—or	more	precisely,	the	set	of	attributes	that	defines	the
user	(whether	a	him,	her,	or	it)	in	the	context	of	your	application.	You	might	want	to

display	a	welcome	message	including	the	name	of	the	user,	or	you	might	want	to	authorize
an	operation	only	if	the	caller	belongs	to	a	specific	role:	in	both	cases,	your	code	needs	to
gain	access	to	the	caller’s	attributes.	For	reasons	that	will	become	clear	in	Chapter	2,
“Identity	protocols	and	application	types,”	in	this	context,	user	attributes	are	called	claims.

The	.NET	Framework	features	a	specific	class	meant	to	represent	the	identity	of	the
authenticated	caller:	ClaimsPrincipal,	from	the	System.Security.Claims
namespace.	Introduced	in	the	Windows	Identity	Foundation	package	in	2009,	from
version	4.5	ClaimsPrincipal	migrated	to	mscorlib	(the	very	core	of	.NET),	and	all
other	principal	classes	have	been	rebased	to	derive	from	ClaimsPrincipal.	Unless
you	do	some	heavy	customization,	you	can	be	sure	that	if	your	application	is	accessed	by
an	authenticated	user,	you	will	find	the	user	represented	in	a	ClaimsPrincipal.

As	you’ll	discover	later	in	the	book,	an	application	can	implement	authentication	in
many	ways:	different	protocols,	different	token	formats,	different	providers,	different
consumption	models,	different	development	stacks.	Every	combination	comes	with	its
advantages	and	its	quirks,	and	especially	with	its	own	unique	implementation	details.	By
representing	only	the	outcome	of	the	authentication	operation,	ClaimsPrincipal
decouples	your	code	from	all	the	details	of	present	and	future	authentication	mechanisms:
the	code	you	write	for	inspecting	the	attributes	of	the	caller	remains	the	same	regardless	of
how	that	information	is	dispatched	to	the	app	and	validated.

Gaining	access	to	ClaimsPrincipal	is	easy.	Retrieving	individual	claims	is	even
easier;	it’s	just	a	matter	of	querying	ClaimsPrincipal’s	IEnumerable<Claim>
Claims	collection.	Let’s	take	a	quick	look	at	a	common	task,	such	as	how	to	retrieve	the
first	and	last	name	of	the	caller.

Go	back	to	Visual	Studio,	open	the	project	created	in	the	previous	sections,	and	open
HomeController.cs	from	the	Controllers	folder.	Locate	the	Index	action	and	type	the
following	code:
Click	here	to	view	code	image

public	ActionResult	Index()
{
				ClaimsPrincipal	cp	=	ClaimsPrincipal.Current;
				string	welcome	=	string.Format(“Welcome,	{0}	{1}!”,	
																																				cp.FindFirst(ClaimTypes.GivenName).Value,
																																				cp.FindFirst(ClaimTypes.Surname).Value);
				return	View();
			}

Place	a	breakpoint	on	the	last	line,	and	run	the	application.	You’ll	see	that	you	end	up
with	the	expected	values	in	your	welcome	string.

	Note

The	first	name/last	name	sequence	won’t	work	for	every	culture.	That	does
not	change	the	value	of	the	code	snippet	as	a	demonstration	of	the
programming	model,	but	I	wanted	to	be	sure	to	point	this	out.

Here	are	a	couple	of	important	things	to	observe	in	that	snippet	of	code:

	The	current	ClaimsPrincipal	can	be	extracted	from	the	context
ClaimsPrincipal	contains	a	static	property,	named	Current,	that	can	be	used
to	gain	access	to	the	current	instance	of	ClaimsPrincipal.

	Note

Where	do	the	bits	of	the	current	ClaimsPrincipal	actually	live?	There
are	two	places	from	which	the	current	ClaimsPrincipal	is	typically
sourced:	Thread.CurrentPrincipal	or
HttpContext.Current.User.	ClaimsPrincipal	also	offers	a
delegate,	ClaimsPrincipalSelector,	that	developers	of
authentication	components	can	use	to	change	where	the	current
ClaimsPrincipal	is	sourced	from	in	case	their	scenario	calls	for	a
different	location.

	The	ClaimTypes	enumeration	can	be	used	to	inspect	ClaimsPrincipal	for
commonly	used	attributes	Claims	are	represented	by	a	type,	indicating	the	specific
attribute	being	described,	and	the	attribute’s	value.	In	the	case	of	the	first-name
claim	received	in	our	sample	application,	the	type	identifier	is
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname.	Not	the	easiest
string	to	remember!	The	first-name	claim	type	is	hardly	alone	in	its	verbosity.	Many
claim	types	come	from	identity	protocol	specifications	such	as	Security	Assertion
Markup	Language	(SAML)	and	WS-Federation,	which	define	how	to	represent
attributes	on	the	wire.	The	top	concerns	in	these	definitions	were	uniqueness	and
consistency	rather	than	ease	of	coding.	In	the	XML-crazy	world	that	they	emerged
from,	the	size	overhead	that	resulted	from	having	a	long	namespace	included	in
definitions	was	only	a	minor	concern.

The	ClaimTypes	class	was	introduced	to	ease	the	burden	of	knowing	and	entering
the	exact	claim	types,	and	it	collects	all	the	most	common	types	of	the	era.	You	can
still	query	the	Claims	collection	by	using	an	explicit	string	type,	and	in	fact	you
have	no	choice	but	to	do	this	for	custom	types,	but	when	applicable,	ClaimTypes
makes	things	easier.

Today,	the	pendulum	has	swung	decisively	in	the	other	direction.	Modern	identity
protocols	go	out	of	their	way	to	be	concise.	For	example,	in	OpenID	Connect,	the
first-name	claim	type	is	simply	given_name.	That’s	a	good	name	for	saving
bandwidth	and	keystrokes,	but	one	possible	consequence	is	that	it	could	invalidate
the	principle	that	ClaimsPrincipal	is	independent	from	whatever
authentication	mechanism	is	used.	If	in	my	claims	collection,	first	name	is
represented	by	a	claim	of	type	“given_name”,	as	might	be	the	case	if	I	use	OpenID
Connect	as	opposed	to	SAML	or	WS-Federation,	a	query	based	on
ClaimTypes.GivenName	(which	is	equivalent	to	entering	the	type

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname,	used	by	SAML
and	WS-Federation)	won’t	work.

As	you’ll	discover	in	later	chapters,	our	validation	components	do	their	best	to
normalize	differences	such	as	these.	Whenever	a	modern	claim	type	can	be	represented	by
a	semantically	equivalent	member	of	ClaimTypes,	the	validation	pipeline	automatically
performs	the	mapping.	That	allows	you	to	keep	using	ClaimTypes.GivenName	for
accessing	the	first	name	of	the	caller,	no	matter	what	protocol	is	used.

	Note

That	mapping	is	not	always	available;	you	can	expect	to	occasionally	see	a
mix	of	long	and	short	claims	in	your	ClaimsPrincipal	and	to	have	to
use	explicit	strings	to	reach	the	latter	of	these.

Before	I	close	the	chapter,	there	are	a	couple	of	other	things	about	user	attributes	that	I
want	to	tell	you.

The	first	is	that	you	should	be	prepared	for	every	provider	to	send	a	different	set	of
claims.	If	you	list	the	entire	content	of	the	claims	collection	you	received	in	the	sample
application,	you	will	have	an	idea	of	the	attributes	that	Azure	Active	Directory	includes	in
the	context	of	an	authentication	operation.	Every	Azure	AD	tenant	will	consistently	issue
the	same	set	of	claims,	but	that	is	not	true	if	you	are	authenticating	users	directly	against
their	on-premises	directory,	via	Active	Directory	Federation	Services	(ADFS)	or	any	other
identity	product.	The	set	of	claims	issued	by	ADFS	during	an	authentication	operation	is
determined	by	what	the	directory	administrator	has	decided	to	share	with	your	application.
Although	it	is	plausible	to	expect	that	some	claims	will	be	present	most	of	the	time	(UPN,
names,	and	so	on),	the	reality	is	that	what	claims	are	available	is	a	completely	arbitrary
decision	by	the	administrator,	with	no	defaults	you	can	rely	on.

	Note

This	is	much	to	the	chagrin	of	my	friends	on	the	ASP.NET	team,	who	would
very	much	like	to	have	some	claims	that	are	guaranteed	to	be	present	at	all
times,	to	be	used	in	the	likes	of	cross-site	forgery-request	prevention.
Unfortunately,	there’s	no	such	thing.

Getting	back	to	Azure	AD.	I	cover	this	in	depth	later	in	the	book,	but	I	want	to	give	you
a	heads-up	at	this	point:	ClaimsPrincipal	is	not	the	only	way	of	accessing	user	info
in	Azure	AD.	The	claims	your	app	receives	contextually	to	an	authentication	operation	are
not	everything	that	Azure	AD	knows	about	the	current	user.	The	directory	records	a	far
richer	set	of	user	information;	however,	including	all	of	it	at	authentication	time	would	be
impractical	and	would	waste	a	lot	of	bandwidth.	Azure	AD	provides	a	specialized	API,
commonly	referred	to	as	the	Directory	Graph	API,	for	gaining	access	to	extra	information
after	authentication	takes	place.	You’ll	learn	more	about	this	as	you	go	along.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname

There	is	more	to	be	said	about	ClaimsPrincipal,	in	particular	about	its	structure
and	usage.	For	the	time	being,	the	preceding	discussion	should	be	enough	to	get	you	going
for	the	most	common	scenarios.

Summary
This	lightweight	chapter	started	our	journey	into	the	world	of	modern	authentication.	You
acquired	two	of	the	key	assets	you’ll	need	through	the	book,	an	Azure	AD	tenant	and
Visual	Studio	2015,	and	you	had	a	taste	of	what	you	can	achieve	with	them.	The	simple
web	application	protected	by	Azure	AD	you	created	in	this	chapter	will	be	the	backbone
of	many	future	explanations.

Finally,	you	learned	the	conventional	ways	in	which	.NET	makes	available	to	you	the
user	identity	information	acquired	during	the	authentication	phase.

The	next	couple	of	chapters	will	be	decidedly	more	abstract.	Hang	in	there.	Code-level
considerations	will	return—with	a	vengeance—in	just	a	couple	of	chapters.

Chapter	2.	Identity	protocols	and	application	types

If	experience	serves	me	well,	this	chapter	and	the	next	will	likely	cost	me	one	star	on
Amazon.	That’s	because	I’ll	write	quite	a	bit	without	showing	any	code,	a	mortal	sin	in	a
book	for	developers.	Still,	I	believe	that	this	chapter	is	the	fulcrum	around	which	the	entire
book	turns,	especially	for	readers	without	a	background	in	identity.	I	like	great	reviews,
but	I	like	my	readers	more;	hence,	I’ll	go	ahead	and	write	this	chapter	anyway.

	Note

If	you	are	an	industry	veteran	and	already	fully	acquainted	with	the	modern
identity	landscape	and	the	road	that	led	to	it,	feel	free	to	skip	this	chapter.	I
assume	you	are	reading	this	book	because	you	want	to	learn	how	Azure
Active	Directory	does	things.	You’ll	find	plenty	of	that	from	Chapter	3
onward.

Today’s	identity	landscape	is	the	result	of	a	couple	of	decades	of	market-driven
selection,	during	which	time	numerous	protocols	and	technologies	evolved	to	address	the
needs	of	the	application	architectures	du	jour.	Interestingly,	as	new	protocols	and
technologies	emerged,	they	didn’t	always	supplant	the	old	ones.	Rather,	they	often	built	on
their	predecessors	to	reach	further	and	address	new	scenarios.	To	offer	an	analogy:
Animals	on	the	earth	evolved	through	a	variety	of	forms,	from	fish	to	amphibians,	to
terrestrial	animals	and	birds.	However,	the	emergence	of	a	new	body	plan	did	not
necessarily	mean	the	demise	of	the	ones	that	preceded	it,	especially	when	the	new	form
enabled	the	colonization	of	yet	unexploited	environments.	Today,	the	skies	are	full	of
birds,	but	there’s	still	plenty	of	fish	in	the	sea.	You	can	think	of	identity	protocols	in
similar	terms.

To	the	newcomer,	the	world	of	authentication	is	a	veritable	bestiary:	seemingly	ancient
tecnologies,	such	as	passwords	and	integrated	authentication,	still	play	a	key	role	in
enabling	modern	scenarios	such	as	single	sign-on	from	a	tablet	application,	accessing	an
OAuth2-protected	web	API	via	fine-grained	delegation,	and	many	others.	That	makes	it
hard	to	understand	what’s	still	relevant,	what’s	outdated,	and	what	has	changed	its	role	to
adapt	to	a	new	environment.

The	best	way	I’ve	found	for	helping	people	make	sense	of	today’s	landscape	(and
maintain	my	own	sanity	as	I	navigate	through	this	industry’s	nuances	every	day)	is	to	go
through	the	sequence	in	which	technologies	evolved,	describing	the	problems	they	solved
and	how	and	what	shortcomings	led	to	the	emergence	of	each	new	generation.	That	also
happens	to	be	a	very	natural	way	to	introduce	you	to	the	terminology	and	general	concepts
I’ll	use	throughout	this	book,	disentangling	that	from	specific	development	tasks.

You	can	expect	the	narration	to	start	light	and	then	dive	more	deeply	into	the	details	as
we	go	along.	The	first	sections	will	mostly	set	context.	As	I	get	to	modern	territory,	I’ll
build	the	scaffolding	on	which	I’ll	later	position	Active	Directory	features	and
development	guidance.	That	will	preempt	an	untold	number	of	questions	you	would

eventually	have—I	assure	you—if	you	did	not	build	a	solid	base	from	the	very	start.

Another	of	the	goals	of	this	chapter	is	to	clarify	what	this	book	will	not	be	about.	Many
of	the	protocols	and	standards	I	mention	here	are	still	widely	adopted	in	the	market,	hence
it	is	useful	for	you	to	know	what	they	are	and	what	they	are	for.	However,	they	do	not
qualify	as	modern	protocols	in	the	year	2015.	As	such,	they	will	be	briefly	described	here
but	rarely	mentioned	again	through	the	book.

Pre-claims	authentication	techniques
Let’s	start	by	discussing	the	very	basics	of	authentication.	I’ll	describe	a	couple	of	brute-
force	approaches	to	the	problem:	password-based	authentication	and	integrated
authentication.	This	section	might	challenge	some	of	the	implicit	assumptions	you	have	on
the	topic—a	healthy	thing	to	do	from	time	to	time.

Passwords,	profile	stores,	and	individual	applications
For	an	application,	a	user	is	really	a	collection	of	attributes	that	are	relevant	for	the
functionality	the	application	provides.	Shipping	address,	name,	affiliation	with	a	specific
employer,	native	tongue,	spending	limit,	power	of	attorney,	and	birth	date	are	all	good
examples	of	attributes.

These	attributes,	which	constitute	the	identity	of	the	user,	drive	the	application’s
behavior:	fetch	a	specific	record,	show	or	hide	a	certain	piece	of	user	interface,	pick	a
certain	locale	for	a	string,	allow	or	deny	the	request	to	perform	a	given	task.	Different
applications	care	about	different	attributes.

Building	on	that	idea,	here’s	an	attempt	at	an	operational	definition	of	authentication:

Authenticating	a	user	is	the	act	of	recognizing	that	a	certain	set	of	attributes
should	be	used	in	the	context	of	the	current	transaction.

For	one	application,	the	brute-force	approach	to	representing	a	user’s	identity	in	those
terms	is	to	maintain	its	own	user-profile	store	listing	the	attributes	of	each	user.	After	you
have	a	profile	store,	the	problem	is	reduced	to	how	to	correlate	the	current	request	to	the
correct	user	profile.

Passwords	are	the	crudest	mechanism	the	industry	has	devised	for	dealing	with	this
scenario.	At	some	initial	stage,	the	application	and	the	user	(this	time,	intended	as	a
person)	agree	on	a	secret	string,	entering	a	contract	that	establishes	that	neither	will	ever
reveal	that	secret	to	anybody	(or	anything)	else.

	Note

I	mention	strings	because	that’s	the	most	common	mechanism,	but	in	the	end,
any	type	of	credentials	negotiated	between	users	and	apps	(certificates,
temporary	codes,	etc.)	are	architecturally	equivalent	for	the	purposes	of	this
chapter—in	the	sense	that	they	still	require	the	app	to	keep	track	of	user
profiles.	The	characteristics	of	different	credential	types	do	vary	greatly	in
terms	of	security	assurances	and	infrastructure	costs,	of	course.

The	application	associates	that	secret	to	the	set	of	attributes	defining	the	user	for	its
purposes.	If	during	a	future	transaction	the	user	presents	that	very	same	secret,	the	app
knows	that	the	identity	that	should	be	selected	is	the	one	previously	associated	with	that
secret—and	voilà,	that’s	authentication	for	you.

	Note

Although,	technically,	the	scenario	described—in	which	only	the	password	is
sent—could	work,	in	a	real	system	it	would	be	impractical	to	use	only	the
secret	to	identify	the	user.	As	you	know,	all	password-based	systems	usually
also	rely	on	an	identifier	of	some	sort	(nickname,	username,	email	address,
etc.)	that	is	effectively	a	way	of	passing	an	identity	by	reference.	That
decouples	the	handle	for	the	identity	from	the	password	itself	so	that	you	can
change	passwords	without	breaking	any	reference	to	any	specific	user.

If	you	exclude	authentication	schemes	based	on	physically	accessing	resources	(for
example,	sharing	time	on	a	mainframe	that	can	be	used	only	by	entering	the	building	and
the	room	where	it	is	installed),	applications	implementing	their	own	username-password-
profile	schemes	represent	the	earliest	authentication	strategy	that	went	mainstream.

Today	we	know	that	many	issues	are	associated	with	the	use	of	passwords:	they	can	be
cracked,	leaked,	or	lost,	and	we	need	to	memorize	far	too	many	of	them.	However,	most
of	those	problems	are	felt	in	large	part	because	of	sheer	scale	and	ubiquitous	connectivity
considerations.	If	you	go	back	a	couple	of	decades	or	more,	before	the	advent	of	local
networks,	those	elements	didn’t	carry	the	same	weight	as	they	do	today.	Passwords
worked	great	for	securing	the	sparse	set	of	independent,	disconnected	apps	that
characterized	the	early	waves	of	personal	computing,	as	shown	in	Figure	2-1.

Figure	2-1	Applications	authenticating	users	directly	via	a	username	and	password	act
as	independent	entities,	each	solving	credential	management	and	user	representation	in

its	own	terms.

For	many	application	developers,	username-and-password	user-store	systems	remain
attractive	today.	That’s	thanks	to	their	relative	simplicity,	and	in	no	small	part	thanks	to	the
complete	control	they	grant	to	the	relationship	with	the	user.	The	many	technologies
created	to	support	the	scenario	(such	as	the	ASP.NET	membership	provider,	whose	recent
redesign	shows	that	this	approach	still	has	a	lot	of	fight	in	it)	alleviate	the	most	obvious
development	chores	and	make	it	(often	deceptively)	easy	to	go	that	route.

If	your	solution	shares	traits	with	those	ancient	app	topologies,	especially	in	terms	of
isolation	and	independence	from	other	systems,	implementing	a	username-and-password
profile	store	as	an	application	feature	might	still	make	sense.	Both	in	business	and
consumer	contexts,	however,	those	traits	are	increasingly	rare.	If	you	can’t	afford	to
reinvent	the	wheel,	if	your	users	aren’t	willing	to	create	yet	another	account	and	enter	their
profile	data	in	yet	another	application,	or	if	you	need	to	integrate	with	preexisting
resources,	you	might	want	to	read	on.

Domains,	integrated	authentication,	and	applications	on	an	intranet
One	of	the	strongest	influences	on	today’s	world	of	authentication	can	be	traced	back	to
the	early	1990s,	when	businesses	started	to	corral	their	computers	within	local	networks.
An	increasing	desire	to	model	business	processes	with	the	help	of	nascent	IT	departments
soon	exposed	the	limitations	of	a	model	in	which	every	application	implemented
authentication	independently.	That	was	simply	not	an	accurate	representation	of	the	life
cycle	of	real-life	employees.

The	life	cycle	of	a	user	in	a	work	environment	is	inherently	tied	to	the	user’s
organization:	an	account	comes	into	existence	as	the	employee	is	hired,	attribute	values
are	initialized	and	continuously	updated	according	to	job	functions	for	the	duration	of	his
or	her	tenure	with	the	company,	and	the	account	is	decommissioned	when	the	relationship
ends.	Projecting	that	business	process	in	one	unified	IT	system	is	nearly	impossible	if
authentication	is	a	cacophony	of	multiple	apps	maintaining	their	own	view	of	the	user	and
their	own	credentials-verification	mechanism.

With	the	advent	of	Active	Directory	and	analogous	offerings,	the	user-profile	storage
and	credential-verification	functions	migrated	from	each	individual	app	to	a	central
position—the	fabric	of	the	network	itself.	In	the	new	approach,	users	are	authenticated	as
soon	as	they	first	touch	the	IT	system	when	they	sit	at	their	workstation.	I	am	sure	you	are
familiar	with	what	that	feels	like:	you	sit	at	your	computer	in	your	company’s	network,
you	enter	your	credentials,	and	bam!	All	(or	at	least	some)	applications	on	the	intranet	act
like	they	know	who	you	are	and	handle	access	accordingly.	In	fact,	employees	aren’t	the
only	ones	that	need	to	authenticate	with	the	system:	to	even	exist	as	an	entity	on	the
network,	computers	themselves	are	required	to	authenticate	at	some	level	(which	is
basically	what	you	are	enabling	when	you	join	a	machine	to	a	domain).	That’s	why	every
intranet	app	acts	as	though	it	already	knows	you.

This	new	approach	was	made	possible,	among	other	ways,	by	the	introduction	of	a	new
artifact:	the	domain	controller	(DC),	a	server	machine	that	plays	a	special	role.	The	DC
knows	about	everything	and	everybody	on	the	local	network;	hence,	it	can	transparently
broker	secure	communications	between	any	two	entities.

The	value	this	approach	unlocked	was	nothing	short	of	amazing,	and	it	is	still	going
strong	today.	(Active	Directory	was	in	use	in	95	percent	of	Fortune	500	companies	as	of
March	2014.)1	Administrators	finally	had	a	common	repository	for	modeling	their
processes	and	enforcing	their	policies,	while	applications	were	free	to	focus	on	their
intended	function	without	worrying	about	authentication	or	user	life-cycle	management.
And,	of	course,	users	enjoyed	a	much	improved	and	consistent	experience.

1.	Brad	Anderson,	“Success	with	Hybrid	Cloud:	Getting	Deep—Azure	Active	Directory,”	March	11,	2014,
http://blogs.technet.com/b/in_the_cloud/archive/2014/03/11/success-with-hybrid-cloud-getting-deep-azure-active-
directory.aspx.

Describing	in	detail	how	Active	Directory	works	from	the	infrastructural	standpoint	is
well	beyond	the	goals	of	this	book	(and,	frankly,	my	own	knowledge).	When	I	get
questions	about	domains,	forests,	and	the	like,	I	typically	feign	ignorance	of	all	things
related	to	IT	administration	and	introduce	people	to	my	good	friends	Dean	Wells	and
Samuel	Devasahayam	from	the	Active	Directory	fabric	team.	The	details	of	how	Kerberos
and	Windows	Integrated	Authentication	work	would	also	not	be	very	useful	here,	mostly
because	they	serve	no	purpose	for	the	apps	you’ll	write	throughout	this	book.

What	I	do	want	to	be	sure	I	discuss	is	the	value	that	traditional	on-premises	Active
Directory	has	for	developers—and,	along	with	that,	the	tradeoffs	it	carries.

If	your	application	is	going	to	run	on	a	domain-joined	machine,	accessed	by	a	domain
user	through	the	user’s	home	network,	authentication	is	simply	a	nonissue.	The	identity	of
a	user	is	established	well	before	your	application	is	even	accessed,	and	(in	the	general	case

http://blogs.technet.com/b/in_the_cloud/archive/2014/03/11/success-with-hybrid-cloud-getting-deep-azure-active-directory.aspx

—forget	delegation	for	a	moment)	it	is	simply	available	from	the	environment,	just	like
the	IP	address	of	the	machine	or	the	file	system.	The	only	task	left	to	you	is	to	reach	out
and	cherry-pick	the	user	attributes	that	are	useful	to	your	application.	The	user	changes	job
role,	department,	surname?	Forgets	his	or	her	password?	Leaves	the	company?	Not	your
problem	anymore!	Of	course,	this	delivers	a	great	experience	for	your	users,	too:	from
their	first	logon	to	the	workstation	in	the	morning,	they	have	access	to	every	application
without	any	further	prompts,	interruptions,	or	passwords	to	remember.	The	topology	of	the
solution	is	presented	in	Figure	2-2.

Figure	2-2	In	a	canonical	on-premises	Active	Directory	(AD)	setup,	applications	can
rely	on	the	infrastructure	to	provide	centralized	authentication	and	identity	life-cycle

management	functionalities.

The	price	to	pay	for	this	awesome	convenience	is	that	the	magic	works	only	within	your
own	infrastructure.	Joining	a	computer	to	a	domain	is	an	important	commitment,	which
makes	total	sense	if	that	is	the	reason	for	which	you	got	the	machine	(real	or	virtual)	to
begin	with.	Not	every	machine	can	be	joined	to	a	domain:	it	might	belong	to	your	partner,
it	might	be	located	in	a	place	where	the	necessary	network	infrastructure	is	not	available,
it	might	be	shared	by	different	organizations,	and—as	is	often	the	case	with	modern
devices—its	OS	might	simply	lack	the	capability	to	do	so.

AD	on-premises	is	still	fantastically	popular	today.	It	remains	very	well	suited	for
addressing	the	intranet	case.	However,	it	is	also	constantly	adding	features	for	supporting

new	scenarios:	some	of	those	features	entail	venturing	outside	the	boundaries	of	the	local
network	and	complementing	the	traditional	authentication	approaches	with	something	that
is	not	bound	by	the	same	infrastructural	constraints.

Claims-based	identity
No	company	is	an	island,	as	the	old	adage	goes.	The	need	for	cross-company	collaboration
solutions	was	the	natural	follow-up	to	the	local	network	era,	but	the	local	authentication
solutions	that	worked	so	well	within	the	boundaries	of	one	organization	were	not	as
effective	in	addressing	the	new	scenario.	Company	A	and	company	B	could	both	have
well-managed	intranets,	but	company	A’s	domain	controller	didn’t	help	one	bit	when	one
of	company	A’s	users	wanted	to	access	an	app	exposed	by	company	B.

Moreover,	the	increasing	appeal	of	software	as	a	service	(SaaS)	apps	or	hosting	one’s
own	applications	off-premises—hosts	at	first,	cloud	providers	later	on—further	exposed
the	limits	of	an	approach	based	entirely	on	network	locality.	Consider	this:	if	your
employees	log	in	to	their	domain-joined	workstation,	but	the	apps	they	access	live	on
other	networks	or	the	public	Internet,	all	the	user	identity	info	known	by	the	DC	cannot	be
used	as	is.	Nonetheless,	business	apps	still	need	the	identity	of	the	user,	and	without	a	way
of	making	it	available	via	infrastructure,	it’s	back	to	a	cottage	industry	in	which	every	app
reimplements	identity	management.

The	industry	did	not	tolerate	for	long	the	inefficiencies	of	having	to	reinvent	the	wheel
at	every	new	partnership	or	purchase	of	an	SaaS	app.	Although	different	people	place	its
inception	at	different	historical	moments,	I	think	it	is	safe	to	say	that	claims-based	identity
was	born	to	address	these	issues.	Claims-based	identity	is	not	an	actual	protocol.	Rather,	it
is	a	set	of	concepts	that	is	common	to	many	of	the	identity	protocols	that	emerged	in	the
last	decade.	In	this	section	I’ll	sketch	its	main	traits,	the	ones	that—if	you	squint	hard
enough—you	can	find	in	all	modern	protocols.	The	following	sections	will	show	how	the
principles	of	claims-based	identity	find	application	in	actual	protocols.

Identity	providers:	DCs	for	the	Internet
That	DC	idea	worked	so	well	on-premises!	Couldn’t	it	work	outside	the	boundaries	of	the
local	network?	As	it	turns	out,	it	could,	albeit	with	some	important	revisions.

	Note

Reusing	Kerberos	“as	is”	for	cross-collaboration	scenarios	has	been
attempted.	Ever	heard	of	Kerberos	federation?	The	idea	wasn’t	terribly
successful.

The	key	point	is	to	let	go	of	the	idea	that	you	can	have	a	single,	omniscient	authority
that	knows	every	possible	actor	and	can	broker	all	transactions	on	all	possible	networks.
Such	an	authority	can	exist	in	the	limited	scope	of	a	local	network,	but	it	is	simply
unfeasible	on	the	Internet.	More	realistically,	we	should	acknowledge	that	there	are
constellations	of	multiple	authorities	run	by	independent	business	entities,	the	competence

of	each	scoped	to	a	specific	user	population.	All	the	Active	Directory	instances	out	there
are	good	examples	of	that:	Contoso’s	AD	instance	can	tell	you	whether	Mario	is	a	Contoso
employee,	his	job	title,	and	so	on,	but	it	can’t	really	say	much	about	whether	someone
works	for	Fabrikam.	There	are	other	user	populations	that	naturally	aggregate	through
different	criteria,	with	different	degrees	of	presence	on	the	Internet:	customers	of	a	given
company,	students	of	a	school,	members	of	a	club,	citizens	of	a	country,	and	so	on.

In	the	literature	you’ll	often	find	that	such	authorities	are	referred	to	as	identity
providers,	or	IPs	(or	IdPs).	At	the	level	of	detail	I’m	providing	at	this	point	in	the	story,
IdP	is	a	fine	moniker.	However,	later	in	the	book,	things	become	more	nuanced,	and	the
notion	of	identity	provider	will	not	be	general	enough	for	our	goals.	At	that	point	I	will
switch	to	the	broader	term	authority.	(Be	prepared	for	other	terms	in	this	chapter	to	be
renamed	or	redefined	later	on,	when	you’ll	have	more	context	to	build	on.)

We	say	that	an	application	trusts	a	given	IdP	if	the	application	believes	what	the	IdP	has
to	say	about	the	users	the	app	wants	to	work	with.	(An	application	that	trusts	an	IdP	is
often	referred	to	as	a	relying	party,	or	RP.	I	will	keep	using	“application”	here,	though,
given	that	I	feel	it	is	easier	to	understand	in	this	context,	but	I	wanted	to	be	sure	you	are
aware	of	the	term.)

A	trivial	case	exemplifying	the	above	is	the	home	network	of	a	domain.	Each	and	every
application	on	the	intranet	that	uses	integrated	authentication	trusts	the	domain	controller.
If	you	took	one	of	those	applications	and	lifted	it	to	the	public	cloud,	conceptually	it
would	still	trust	the	domain	controller:	the	business	requirements	have	not	changed,	and
the	domain’s	users	remain	its	intended	audience.	In	its	new	environment,	however,	the	app
can	no	longer	rely	on	the	network	infrastructure	to	find	the	DC	and	request	its	services.
The	trust	is	still	there,	but	the	infrastructure	described	so	far	is	no	longer	enough	to
express	it.

After	postulating	the	existence	of	the	role	of	the	identity	provider,	the	next	problem	to
solve	is	how	to	ensure	that	one	IdP’s	authority	is	acknowledged	by	the	interested	parties	in
a	transaction—without	the	luxury	of	operating	within	a	closed	network.

Tokens
The	details	are	different	for	every	protocol,	but	the	essence	of	the	solution	to	the	problem
of	extending	one	authority’s	scope	beyond	infrastructural	boundaries	is	the	same	across
the	board:

	Be	sure	that	the	IdP	can	be	easily	identified	by	every	application.	That	boils	down	to
describing	the	IdP	through	formal	means	and	making	that	description	available	for
any	entity	that	wants	to	work	with	that	IdP.	Unique	string	identifiers,	specific
endpoints,	and	cryptographic	public-private	key	pairs	are	the	standard	arsenal	to	do
that.	The	set	of	coordinates	formally	identifying	an	IdP	are	commonly	known	as
metadata.

	Represent	the	outcome	of	an	authentication	operation	with	some	artifact	that	can	be
unambiguously	tied	to	the	IdP	that	performed	the	authentication,	without	relying	on
any	special	network	infrastructure.	The	information	in	the	formal	IdP	description
mentioned	just	above	is	used	to	identify	such	an	artifact	as	coming	from	that	IdP,

through	mechanisms	that	I	will	mention	in	a	moment.

To	be	more	concrete,	say	that	you	want	to	use	Contoso	as	an	IdP.	You	assign	to
Contoso’s	DC	an	X.509	certificate	and	a	unique	identifier,	something	like
http://contoso.com—both	technologies	that	do	not	require	any	special	network	settings	to
function.	When	Mario,	a	Contoso	employee,	authenticates	for	accessing	an	app	running	in
the	public	cloud,	the	DC	produces	a	string	along	the	lines	of	“I,	http://contoso.com,	certify
that	Mario	is	an	employee	and	that	at	9:05	a.m.	he	successfully	authenticated	for	accessing
application	A.”	The	DC	uses	the	private	key	associated	with	the	X.509	certificate	to
digitally	sign	the	string.	The	application	receives	the	string,	verifies	the	digital	signature,
and	confirms	it	has	been	performed	with	Contoso’s	key.	If	everything	works	as	expected,
the	application	believes	the	assertions	it	finds	in	the	string	and	lets	Mario	in.

How	did	the	application	know	about	Contoso’s	key	and	identifier?	It	learned	about
those	values	previously	in	one	offline	step,	from	Contoso’s	metadata.	I’ll	dig	into	this
scenario	soon.

Digital	signatures

Oversimplifying	a	bit,	a	digital	signature	is	an	operation	that	combines	a
document	with	a	certain	string	(called	a	key)	to	generate	a	third	string,	called
a	signature.	If	somebody	who	knows	the	key	receives	the	document	and	its
signature,	she	can	repeat	the	signature	operation	and	verify	that	the	resulting
string	is	exactly	the	same	as	the	signature.	That	guarantees	that	the	document
was	not	modified	after	the	original	signature	was	computed.

Signatures	are	a	pretty	great	technology	that	makes	a	lot	of	today’s	secure
communications	possible.	However,	in	the	form	I’ve	described	(where	the
keys	are	known	as	symmetric),	they	have	an	important	shortcoming:	given
that	both	the	signer	and	the	signature	verifier	know	the	signing	key,	we	can’t
use	the	knowledge	of	the	key	as	a	way	of	distinguishing	one	from	the	other.

X.509	certificates	enable	what	is	known	as	public	key	cryptography,	which
uses	two	keys.	Signatures	are	applied	with	a	private	key,	known	only	by	the
signer.	Such	signatures	are	special,	as	they	are	meant	to	be	verified	by	using	a
different	key:	that	key	is	called	public	because	everybody	can	know	it	without
compromising	the	security	of	the	system.	I	will	use	public	key	cryptography
all	the	time	throughout	the	book,	but	I	will	rarely	point	that	out.	It	is	mostly
an	implementation	detail,	not	actionable	for	you.

Now,	everybody	(and	in	particular	app	A)	who	has	access	to	Contoso’s	DC	description
(and	in	particular	its	unique	identifier	and	public	key)	can	verify	the	signature	on	that
string.	A	successful	verification	confirms	two	important	facts:

	The	string	could	have	been	produced	only	by	Contoso’s	DC	and	nothing	else,	given
the	assumption	that	only	Contoso’s	DC	has	access	to	the	private	key	that	performed
the	signature.

	The	content	of	the	string	has	not	been	altered	from	the	moment	it	was	signed
onward;	hence,	what	is	in	there	truly	represents	Contoso’s	DC’s	original	statement

about	the	user.

In	identity	parlance,	such	a	string	is	universally	known	as	a	token.

	Note

Tokens	come	in	many	formats	and	variants,	almost	as	many	as	the	protocols
that	use	them	in	some	capacity:	SAML	and	JWT	(JSON	Web	Token)	are	two
examples	of	token	formats	you	might	already	have	read	about.	At	this	point	in
the	story,	we	don’t	need	to	pick	a	specific	format.

Set	aside	for	a	moment	the	mechanics	of	how	a	requestor	can	get	a	token	from	an	IdP.	A
token	as	I’ve	described	it	is	a	satisfying	representation	of	the	successful	outcome	of	an
authentication	operation,	which	can	be	verified	simply	by	knowing	the	IdP’s	coordinates
(identifier,	signature-verification	key)	without	requiring	any	special	network	sauce.	In	fact,
a	token	can	do	much	more	than	that.

Trust	and	claims
In	the	first	section	of	this	chapter,	I	defined	a	user’s	identity	as	the	collection	of	attributes
that	are	relevant	for	the	application’s	context.	Just	a	couple	of	pages	ago,	I	also	said	that	an
application	trusts	a	given	IdP	if	it	believes	what	the	IdP	has	to	say	about	the	users	the	app
wants	to	work	with.

A	signed	token	is	a	perfect	vessel	with	which	an	IdP	can	communicate	just	in	time	the
relevant	user	attributes	to	the	application—contextually,	to	an	authentication	operation.
Given	that	the	token	is	signed,	whatever	the	IdP	claims	about	the	user	at	the	time	the	token
is	issued	cannot	be	tampered	with	without	breaking	the	signature.	Once	again,	applications
no	longer	need	to	maintain	a	profile	store:	they	can	receive	all	the	user	information	they
need	via	a	token,	right	at	authentication	time,	while	being	assured	that	the	token	originates
from	a	reputable	source.

	Note

This	is	an	oversimplification	that	serves	us	well	here	but	won’t	hold	forever.
Later	in	the	book	I’ll	go	into	details,	but	I	wanted	to	give	you	a	heads-up:
applications	will	occasionally	want	to	remember	things	about	the	user	that	the
IdP	can’t	or	won’t	track.

Think	of	a	hardware	vendor	that	partners	with	Contoso:	that	vendor’s	app	can
expect	to	learn	from	Contoso	the	name	and	the	shipping	address	of	each	user,
but	if	it	needs	to	track	the	last	10	items	a	given	user	bought,	the	vendor	is
better	served	by	saving	that	info	in	its	own	app.

After	an	attribute	is	serialized	into	a	signed	token,	it	becomes	a	claim.	At	rest,	a	string
in	a	database	containing	the	last	name	of	a	user	is	just	an	attribute.	Once	the	very	same

string	is	serialized	in	a	token	and	signed	with	the	IdP’s	private	key,	however,	it	is
augmented	by	the	IdP’s	credibility.	It	is	the	IdP	itself	that	is	claiming	that	the	last	name	of
Mario	is	“Rossi.”	For	every	application	trusting	the	IdP,	that	becomes	the	Truth.

The	concept	of	claims	is	so	pivotal	to	nearly	everything	in	modern	(and	less	modern)
identity	scenarios	that	it	provides	the	name	to	the	entire	approach.

Claims-oriented	protocols
Let	me	summarize	the	story	so	far.

An	identity	solution	was	needed	that	would	allow	applications	to	run	anywhere,	without
completely	giving	up	on	the	investment	made	in	DCs	and	local	domains.	We	recognized
that	DCs	are	just	concrete	instances	of	a	more	abstract	role,	the	IdP,	which	represents	an
authority	that	knows	about	users	(attributes	and	credentials).	We	devised	a	mechanism	for
identifying	IdPs	via	identifiers	and	keys	(metadata),	breaking	free	of	the	network
restrictions	of	DCs.	We	invented	a	new	artifact,	the	token,	to	make	the	outcome	of	an
authentication	operation	verifiable	(via	signature	validation)	by	any	app	knowing	the	IdP’s
coordinates.	Finally,	I	explained	what	trust	between	an	app	and	an	IdP	means,	and	how
this	allows	claims	(attributes	traveling	in	a	signed	token)	to	provide	to	the	application	just-
in-time	user-identity	information	right	at	authentication	time.

The	main	concept	left	to	define	is	how	these	entities	interact	with	each	other—what
messages	should	be	exchanged	and	in	what	order—to	take	advantage	of	all	the	good
properties	we	identified	and	that	make	authentication	happen.

As	I	anticipated	a	few	pages	ago,	claims-based	identity	refers	to	a	bunch	of	different
protocols	sharing	a	common	undercurrent—they	make	authentication	happen	through
boundaries.	Those	protocols	differ	from	one	another	in	various	aspects:	for	example,	in	the
token	formats	that	they	mandate	or	prefer,	the	exact	message	shape	and	sequence,
metadata	formats,	names	they	assign	to	the	roles	that	identity-transaction	participants	can
play,	and	more.	Every	protocol	has	its	zealots	who	swear	their	approach	is	the	best	and
insist	on	renaming	common	concepts	using	their	own	terminology—a	handbook	case	of
Freud’s	narcissism	of	small	differences.	For	now	I	am	going	to	ignore	all	that	and	paint	in
very	broad	strokes	the	main	legs	that	nearly	all	claims-oriented	protocols	must	specify.

Say	that	you	have	Mario,	an	employee	at	Contoso,	and	he	wants	access	to	an	expense
note	application	from	Fabrikam.	Fabrikam	is	a	software	vendor	offering	SaaS	solutions
running	in	the	cloud.	Here’s	how	claim-based	identity	would	go.	The	steps	are
summarized	in	Figure	2-3.

Figure	2-3	Entities,	roles,	and	messages	come	into	play	in	claims-based	identity.

1.	The	application	reads	an	IdP’s	metadata	Typically,	this	step	happens	out	of	band,
although	there	are	exceptions.	Fabrikam	decides	that	its	expense	note	application
should	trust	Contoso	(as	a	consequence	of	Contoso	buying	a	few	licenses,	for
example).	In	concrete	terms,	this	means	that	the	application	must	access	Contoso’s
IdP	metadata	and	be	sure	that	its	content	will	be	available	later,	at	authentication
time.	That	will	provide	to	the	application	the	information	it	needs	to	verify	whether
the	incoming	token	is	truly	from	Contoso.

2.	The	user	authenticates	and	obtains	a	token	This	step	will	be	different	depending
on	the	type	of	application.	Good	portions	of	this	book	will	be	dedicated	to	filling	in
details	about	how	some	key	protocols	perform	this	task.

a.	Web	applications	In	classic	browser-based	apps,	Mario	would	type	the	address
of	the	expense	note	app	and	navigate	there.	The	app	would	detect	an	access
attempt	from	an	unauthenticated	requestor.	The	canonical	reaction	to	that	would
be	to	look	up	its	own	configuration,	find	Contoso’s	metadata,	and	use	it	to	craft	a
sign-in	message	according	to	the	message	syntax	defined	by	the	protocol	of
choice.	The	browser’s	session	would	then	be	transferred	to	Contoso,	which	would
take	the	necessary	steps	to	authenticate	Mario:	showing	a	credentials-gathering
page	is	a	common	way	of	implementing	that.	Upon	successful	authentication,
Contoso	issues	a	token	for	Mario	in	the	format	that	the	protocol	of	choice	dictates.

b.	Native	clients	and	web	APIs	Native	clients	typically	pursue	a	different	strategy.
Redirects	don’t	really	work	when	calling	an	API	(usually,	there	is	no	browser	to
execute	the	redirect);	hence,	even	before	attempting	to	access	the	API,	the	client

will	use	a	different	protocol	for	asking	Contoso	for	a	token	for	Mario.	The
sequence	is	slightly	different,	and	the	exchanged	messages	also	differ,	but	a
successful	authentication	still	results	in	a	token	issuance.

3.	Client	sends	the	token	to	the	application,	and	the	app	validates	the	token	The
token	so	obtained	is	sent	to	the	application	according	to	the	protocol	of	choice.	The
application	(or,	more	likely,	the	developer	libraries	it	uses	to	implement
authentication)	retrieves	the	token	and	verifies	whether	it	is	a	valid	Contoso	token.	If
that’s	the	case,	it	will	extract	the	claims	describing	Mario’s	persona	and	pass	them	to
the	app	so	that	it	can	do	whatever	the	app	needs	to	do	with	them:	welcome
messages,	authorization	operations,	priming	of	a	shopping	cart	with	a	shipping
address,	whatever.

4.	Optional:	Application	establishes	a	session	For	applications	such	as	websites,
where	the	user	interaction	consists	of	round	trips,	going	through	the	token-
acquisition	dance	at	every	request	would	be	fantastically	expensive.	That	is	why
various	web	protocols	very	commonly	react	to	the	first	successful	token	validation
with	the	creation	of	some	kind	of	session—represented	by	a	cookie	or	similar
mechanism—that	can	be	included	in	every	subsequent	request.	Such	a	session
reminds	the	application	at	every	round	trip	that	a	successful	token	validation	already
took	place	and	provides	a	natural	place	for	holding	the	claim	values	of	the	current
user,	keeping	them	available	to	the	app	through	the	lifetime	of	the	session.

Recall	that	the	goal	of	a	claims-oriented	protocol	is	to	enable	identity	transactions	to
span	boundaries,	both	organizational	(Contoso	to	Fabrikam)	and	infrastructural	(intranet	to
public	Internet).	As	such,	all	the	messages	I	enumerated	cannot	depend	on	any	special
network	requirement.	Rather,	they	rely	on	the	minimum	common	denominator	of	all
networks,	the	public	Internet:	every	claims-oriented	protocol	with	meaningful	adoption	is
built	on	top	of	HTTP.	In	the	next	sections,	you’ll	see	this	in	more	detail.

DCs	are	just	an	example	of	an	IdP

The	roles	I	described—IdPs	and	applications/RPs—reflect	the	function	that
each	entity	performs	in	the	context	of	an	identity	transaction,	but	they	don’t
really	say	anything	about	their	internal	structure	or	the	technology	used	to
implement	them.	I	have	been	using	the	DC	as	a	practical	example	to	ground
the	concept	of	an	IdP,	but	I	want	to	be	extra	clear	that	any	entity	that	is
capable	of	keeping	track	of	user	attributes	and	can	authenticate	and	emit	and
process	protocol	messages	qualifies.	Claims-oriented	protocols	go	to	great
lengths	to	define	contracts	and	interfaces	that	abstract	away	the	details	of
every	provider,	exposing	only	the	functionality	of	the	role	they	take.	Fair
warning:	later	in	the	book,	I	will	routinely	go	beyond	what’s	specified	by	the
contract	to	take	advantage	of	AD-specific	features.

The	pattern	described	here	is	very	expressive	and	exceptionally	malleable.	It	can	be
used	to	describe	almost	all	the	protocols	I	mention	from	now	on,	with	only	minor
variations.	As	you	read	through	the	next	section,	I	recommend	that	you	keep	an	eye	on
how	the	details	of	every	specific	protocol	ultimately	map	to	this	structure.

Round-trip	web	apps,	first-generation	protocols
The	first	protocols	that	can	be	classified	as	claims	oriented	appeared	in	the	early	2000s.
Two	of	them,	SAML	and	WS-Federation,	are	still	widely	used	to	this	day	and	supported	in
both	Windows	Server	AD	and	Azure	AD.	Both	emerged	as	solutions	to	cross-domain
single	sign-on	(SSO),	a	scenario	that	the	authentication	systems	popular	at	that	time	didn’t
handle	well.

The	problem	of	cross-domain	single	sign-on
The	main	interaction	pattern	in	traditional	web	applications	is	very	straightforward.	I’ve
shown	it	in	action	in	the	previous	section,	the	last	two	legs	of	the	diagram	in	Figure	2-3
being	an	example.	The	user	points	his	or	her	browser	to	the	URL	of	a	resource,	the	web
server	receives	the	request	and	runs	whatever	business	logic	it	deems	necessary,	and	then
the	server	proceeds	to	return	HTML	describing	the	experience	it	intends	to	present	back	to
the	user.	The	browser	simply	renders	the	experience,	as	described	by	the	HTML	it
receives.	The	user	interacts	with	the	experience,	maybe	clicking	a	link	or	perhaps	pressing
a	button	or	triggering	a	form	post.	That	causes	new	info	to	be	sent	to	the	web	server,	and
the	cycle	begins	anew.

Per	the	definition	of	authentication	given	earlier	in	the	chapter,	at	every	round	trip	to	the
web	server,	authenticated	web	applications	need	to	know	which	user	should	be	considered
the	current	caller.	The	most	classic,	pre-claims	way	to	achieve	this	in	apps	that	use	round
trips	can	be	broken	down	into	three	steps:

1.	The	application	serves	to	the	user	some	credential-gathering	experience.	The
username	and	password	form	is	the	most	recognizable	example.

2.	After	the	credentials	travel	back	to	the	server,	the	application	validates	them.	If	the
verification	is	successful,	the	application	emits	a	session	cookie,	which	represents
the	successful	outcome	of	the	authentication	operation.	Such	a	cookie	will	typically
contain	some	reference	to	session	data,	often	the	identifier	of	the	current	user,	and
will	normally	be	protected	in	some	way	(for	instance,	it	might	be	signed	and
encrypted	so	that	only	the	app	can	read	and	modify	it).

3.	From	that	moment	on,	every	request	to	the	application’s	domain	will	carry	the
session	cookie.	The	application	will	be	able	to	retrieve	the	cookie	from	the	request
and	verify	it.	The	presence	of	the	valid	cookie	obviates	the	need	to	present	the
username	and	password	every	time,	allowing	the	app	to	maintain	the	current	user	in
scope	for	the	duration	of	the	session.	Cookies	will	typically	have	a	limited	validity
window	to	minimize	abuse.

This	validate-and-drop-a-cookie	approach	is	an	exceptionally	common	pattern,	a
fundamental	primitive	you	need	to	understand	as	thoroughly	as	possible.	Even	if	it’s	very
simple,	I’ve	gone	so	far	as	to	put	together	a	diagram	for	it	in	Figure	2-4.

Figure	2-4	The	credentials	validation	and	session	cookie	authentication	pattern.

Session	cookies	work	pretty	well:	browsers	save	cookies	per	domain	and	automatically
include	them	whenever	a	request	to	the	corresponding	domain	is	made.	If	cookie	A	has
been	saved	under	www.myapp.com,	every	subsequent	request	to	a	URL	starting	with
www.myapp.com	will	include	cookie	A.	No	explicit	work	by	the	developer	is	required.
The	browser	is	even	going	to	handle	the	life	cycle	automatically,	omitting	expired	cookies
from	requests.

Things	start	to	get	less	rad	when	your	solution	includes	applications	hosted	on	different
domains.

	Note

For	simplicity’s	sake,	whenever	possible	I	am	going	to	borrow	sample
scenarios	from	the	original	protocol	specifications.	I	hope	this	will	help	you
to	navigate	the	specification	documents,	should	you	decide	to	dig	deeper.

Consider	the	following	scenario.	You	developed	an	application	for	an	airline,	hosted	at
airline.example.com.	Say	that	the	application	is	meant	to	be	used	by	frequent	flyers,	who
can	book	flights	and	manage	their	benefits	with	it.	The	application	maintains	its	own
credential-verification	system	and	user-profile	store	following	the	session	pattern
described	earlier.

Say	that	the	airline	enters	into	a	partnership	with	a	car	rental	company,	which
guarantees	steep	discounts	to	frequent	flyers	who	achieve	the	gold	level.	The	car	rental
company	runs	its	booking	site	from	cars.example.co.uk.

Wouldn’t	it	be	awesome	if	Mario,	a	gold	user	who	is	already	signed	in	to
airline.example.com,	could	simply	follow	a	link	to	cars.example.co.uk	and	find	himself
authenticated,	his	status	acknowledged,	and	his	discounts	unlocked?

The	session-cookie	approach	is	clearly	not	going	to	help	here.	When	Mario
authenticated	to	airline.example.com,	he	obtained	a	cookie	scoped	to	airline.example.com,
which	is	useless	for	requests	to	cars.example.co.uk.	What	to	do?

SAML
The	Security	Assertion	Markup	Language,	SAML	for	short,	appeared	on	the	scene	mostly
for	handling	this	very	problem.	Its	origin	dates	back	to	the	early	2000s	as	a	concerted
effort	of	various	industry	players	that	wanted	to	establish	an	interoperable	solution	to	the
SSO	problem.	SAML	2.0	is	the	most	widely	adopted	version,	with	some	systems
(especially	those	in	academia)	still	on	1.1.	Although	SAML	touches	on	how	to	secure	web
services	and	lots	of	other	scenarios,	its	most	widely	adopted	use	case	is	web	browser–
based	SSO,	and	that’s	what	I’m	going	to	focus	on.

	Note

Although	both	Azure	Active	Directory	and	Active	Directory	Federation
Service	(ADFS)	(from	version	2	onward)	support	SAML,	the	.NET
Framework	does	not	offer	any	classes	out	of	the	box	for	building	applications
that	understand	the	protocol.	Developing	with	the	.NET	Framework	is	the
main	focus	of	this	book,	so	even	if	I	provided	a	detailed	description	of	how
SAML	works,	it	would	not	be	very	actionable	for	you.	However,	the
importance	of	SAML	as	a	framing	reference	for	identity	problems	cannot	be
overstated.	Moreover,	a	good	chunk	of	the	jargon	you’ll	encounter	comes
straight	from	SAML.	Learning	the	basics	is	a	good	investment	for	any
beginner	in	this	space.

In	a	nutshell,	SAML	sidesteps	the	shortcomings	of	domain-bound	cookies	by,	you
guessed	it,	adding	an	extra	abstraction	layer.	Instead	of	relying	on	browser	automatisms,
SAML	introduces	a	sequence	of	application-level	messages	that	enable	an	application	to
send	authentication	requests	and	obtain	tokens	that	can	be	sent	across	domains.	Once
those	tokens	successfully	cross	domain	boundaries,	they	can	be	validated	by	the	target	app
and	used	to	initialize	a	session	with	the	new	domain.	I’ll	unpack	the	scenario	as	soon	as	I
define	more	terminology	to	work	with.

SAML	follows	precisely	the	blueprint	introduced	in	the	claims-based	identity	section.
Let’s	draw	some	correspondences	between	the	abstract	entities	defined	in	the	general	meta
protocol	and	concrete	artifacts	from	SAML.

Roles

I	am	sure	you	noticed	that	the	sample	scenario	I	introduced	earlier	contained	one	entity
playing	the	role	of	the	IdP	(that	was	airline.example.com	and	its	profile	store).	The	good
news	is	that	in	SAML,	IdPs	are	called	…	IdPs.

In	the	terminology	of	claims-based	identity,	the	cars.example.com.uk	application	is
called	an	RP.	In	SAML,	it	is	known	as	a	service	provider,	or	SP.	Another	important	role	is
the	subject,	the	entity	that	is	meant	to	be	authenticated.	In	the	vast	majority	of	cases,	that’s
simply	the	user.	SAML	also	describes	other	roles,	but	the	ones	I’ve	enumerated	suffice	for
the	purposes	of	this	book.

Artifacts

SAML	is	guilty	of	having	introduced	not	one	but	two	widely	successful	technologies:	the
protocol	it	defines	and	the	specific	token	format	that	the	protocol’s	messages	exchange.	I
say	“guilty”	facetiously:	people	commonly	refer	to	both	technologies	with	the	same	term,
“SAML,”	which	has	caused	confusion	for	the	past	decade	or	so.	When	somebody	states,
“My	app	supports	SAML,”	you	always	have	to	ask	for	clarification:	“The	protocol	or	the
token	format?”

In	SAML	parlance,	tokens	are	called	assertions.	They	follow	the	exact	token	semantic
described	in	the	preceding	section:	they	are	a	vessel	for	the	IdP’s	assertions	about	the	user
(excuse	me),	the	subject.	And	they	are	signed.

The	SAML	acronym,	together	with	the	epoch	in	which	it	was	conceived,	probably
already	gave	away	that	SAML	assertions	are	based	on	XML.	In	fact,	the	entire
specification	defines	everything	in	terms	of	XML.	That	leads	to	a	very	expressive,
powerful	format	that	can	represent	pretty	much	anything.	However,	all	that	expressivity
comes	with	various	drawbacks.	The	main	one	is	that	XML	is	very	verbose,	which	leads	to
big	tokens.	Furthermore,	in	XML,	the	same	document	can	be	expressed	in	multiple
equivalent	representations,	and	that	flexibility	becomes	a	problem	when	you	need	to
perform	signatures,	where	two	elements	listed	in	a	different	order	can	break	a	signature
verification.	Those	are	the	main	reasons	that	you	won’t	encounter	SAML	assertions	in
modern	protocols	later	in	the	book,	apart	from	cases	in	which	they	are	used	to	bridge
existing	solutions	to	new	ones.

	Note

It	is	tempting	for	me	to	use	the	SAML	token	structure	to	start	entering	into
the	mechanics	of	how	claims	are	defined,	tokens	are	scoped,	and	signatures
are	applied,	but,	as	I	said,	SAML	is	not	at	the	core	of	the	modern	protocols
that	are	the	main	focus	of	this	book.	Those	explanations	will	have	to	wait
until	a	bit	later.

Another	important	artifact	defined	by	SAML	is	the	format	of	its	metadata	documents.
You	already	encountered	the	idea	of	IdP	metadata	in	the	section	on	claims-based	identity.
SAML	goes	well	beyond	that:	it	defines	an	XML-based	format	that	can	be	used	for
describing	endpoints,	identifiers,	and	keys	for	IdPs,	SPs,	and	many	other	entities.

Messages

SAML	defines	lots	of	different	messages	that	support	various	sign-in	flows,	from	the	one
triggered	by	an	unauthenticated	request	to	an	SP	(similar	to	what’s	described	in	the	claims-
identity	section),	to	one	in	which	the	IdP	itself	initiates	a	sign-on	with	a	given	SP.	One
interesting	fact	is	that	besides	signing	its	assertions,	SAML	often	mandates	that	messages
themselves	need	to	be	signed	as	well.

The	other	interesting	category	of	SAML	messages,	Single	Logout,	focuses	on	providing
a	mechanism	to	propagate	a	sign-out	operation	to	all	the	applications	participating	in	an

SSO	session.	SAML	defines	many	other	messages	for	various	other	operations,	which	I
won’t	mention	here.

Status

SAML	has	had	an	impressive	ride	from	its	first	versions	in	the	early	2000s.	It’s	still	going
strong	in	many	of	today’s	SSO	deployments	in	enterprises,	government,	and	education.
SAML	is	widely	supported	in	SSO	products,	developer	libraries	(across	platforms	and
languages),	and	cloud	services.	For	many	of	those	products,	the	SAML	functionality	is	the
centerpiece	of	their	offering.	As	I	mentioned,	Active	Directory	itself	(both	ADFS	from
version	2	onward	and	Azure	AD)	supports	it.	On	the	software	vendor	side,	many
applications	in	active	development	today	use	SAML,	including	software	as	a	service
(SaaS)	apps.	The	protocol	is	alive	and	well.

That	said,	if	you	are	starting	to	develop	a	new	solution,	SAML	might	not	be	your	best
choice.	Although	really	well	suited	for	solving	the	cross-SSO	domain	problem	and
bringing	lots	of	good	features	to	the	table,	SAML	does	not	offer	the	flexibility	for
addressing	the	challenges	of	the	modern	topologies	I	will	introduce	later	in	this	chapter.
Furthermore,	its	own	richness	translates	into	expensive	requirements	in	term	of
cryptography	and	bandwidth	that	are	not	proportionate	to	the	actual	needs	of	modern
applications.	I	won’t	go	so	far	as	to	say	that	SAML	is	dead,	as	was	fashionable	to	say	in
identity	circles	a	couple	of	years	ago,	but	it	is	certainly	no	longer	the	recipient	of
innovation.	I	believe	it	will	be	around	for	a	long	time	still,	but	mostly	as	a	bridge	to
existing	systems.

WS-Federation
Web	applications	weren’t	the	only	type	of	application	that	suffered	from	cross-boundary
integration	problems	back	in	the	early	2000s.	Nonbrowser	flows	between	remote
components,	such	as	server-to-server	requests	and	calls	from	rich-client	applications	to
back-end	resources,	also	had	to	come	to	terms	with	the	facts	that	any	two	entities	could	be
separated	by	organizational	and	network	boundaries,	based	on	different	development
stacks,	and	hosted	on	different	platforms.

That	prompted	a	number	of	companies	to	set	aside	their	competitive	differences	and
work	together	to	create	a	set	of	protocols,	languages,	and	frameworks	that	defined	how	to
ensure	interoperable,	reliable,	and	secure	communications	between	software	components
regardless	of	their	location,	development	stack,	hosting	platform,	and	similar	factors.

This	effort	led	to	the	creation	of	a	long	list	of	specifications,	collectively	known	as	WS-
*	(pronounced	“WS	star,”	where	WS	stands	for	“web	services”	and	the	asterisk	is	a
wildcard	character).	You	might	have	heard	the	names	of	some	of	the	most	important
specifications:	WS-ReliableMessaging,	WS-Trust,	WS-Security,	and	many	others.	The
idea	was	to	provide	different	specifications	for	every	aspect	of	communications	so	that
implementers	could	pick	and	choose	only	the	capabilities	their	system	needed.	That	was	in
contrast	with	some	earlier	efforts,	such	as	CORBA,	that	were	delivered	as	monolithic,
monumental	uber-specifications.

What	Happened	to	WS-*?

Today,	you	don’t	hear	much	about	WS-*	anymore.

Companies	poured	significant	effort	into	implementing	those	specifications
in	their	products.	Microsoft	led	the	pack,	building	its	remote	API	stack	on	it
from	.NET	3.0	on	(Windows	Communication	Foundation,	WCF,	is	largely
based	on	WS-*)	and	exposing	its	server	products	through	those	protocols
(ADFS	2.0	supports	WS-Trust).	Other	companies,	notably	IBM	and	Sun,
released	products	and	development	stacks	based	on	WS-*.	Many	of	those
applications	are	still	around,	and,	in	fact,	lots	of	customers	still	use	WCF	for
brand-new	applications.

However,	WS-*	lost	traction,	and	nowadays	all	of	our	new	work	relies	on
more	modern,	REST-based	protocols.	One	can	endlessly	speculate	on	the
reasons	that	led	to	the	demise	of	WS-*.	My	read	is	that	WS-*	provided	very
sophisticated	features,	but	the	price	that	this	complexity	carried	was	not
justified	for	the	kinds	of	apps	most	developers	wanted	to	build.	For	example,
WS-*	went	to	great	lengths	to	enable	messages	to	be	exchanged	securely	over
insecure	channels	and	maintain	integrity	also	after	having	exited	the	channel.
Using	the	feature	required	rich	development	stacks	on	both	ends	of	the
channel	and	elaborate	setups,	which	could	be	justified	only	in	specific	high-
value	scenarios.	Most	web	apps	could	live	without	those	high	assurances.	As
a	result,	the	lightweight	REST	model	gained	ground,	eventually	making
inroads	in	the	business	scenarios	and	supplanting	the	old	models.

WS-Federation	is	one	of	the	specifications	that	was	produced	as	part	of	the	WS-*	effort.
Its	specific	role	was	to	define	how	to	make	it	possible	for	a	user	in	a	given	organization	to
access	resources	managed	by	another	organization—another	form	of	the	same	problem
covered	previously.	Unlike	the	rest	of	the	WS-*	specifications,	which	focused	on	web
services,	WS-Federation	also	covered	how	to	achieve	its	goals	through	browser-based
applications.	Ironically,	that	relatively	minor	section	of	the	specification	is	what	most
people	identify	with	WS-Federation	today	because	it	is	the	part	still	widely	in	use.

WS-Federation	addresses	many	of	the	same	scenarios	I	described	earlier	for	SAML.
However,	it	does	so	with	a	significantly	simpler	set	of	messages,	which	are	themselves
more	straightforward	to	produce	and	process	than	their	SAML	counterparts	(no
signatures).

In	fact,	having	the	WS-	prefix	causes	WS-Federation	to	give	the	wrong	impression	to
the	casual	observer.	Unlike	most	of	the	other	WS-*	specifications,	the	web	browser	flows
described	in	WS-Federation	are	very	simple.

Let’s	take	a	quick	look	at	how	the	elements	of	WS-Federation	map	to	the	generic
claims-based	protocol	template.

Roles

In	WS-Federation,	the	IdP	role	is	indicated	by	the	same	term,	identity	provider.	However,
it	is	abbreviated	as	IP.

IP	and	STS

The	WS-Federation	specification	also	refers	to	a	Security	Token	Service,	or
STS,	which	represents	the	concrete	software	artifact	that	actually	processes
authentication	requests	and	issues	tokens.	In	the	literature,	you	will	often	hear
people	use	IP	and	STS	interchangeably,	but	that’s	a	slight	misnomer:	whereas
IP	indicates	a	functional	role	(the	job	performed	by	that	entity),	the	STS	is	a
concrete	component	that	is	used	to	express	that	role	(the	tool	that	entity	needs
to	perform	its	job).	Given	that	every	IP	must	have	an	STS,	one	can	often
confuse	the	two	in	a	conversation	without	serious	consequences.	However,
you’ll	see	that	there	are	times	when	you	need	to	issue	tokens	without	being	an
IP,	in	which	case	you	need	an	STS	that	is	not	used	to	implement	an	IP.

The	other	important	role	defined	in	WS-Federation	is	the	relying	party	(RP),	which	you
already	encountered.	It	is	defined,	quoting	the	specification,	as	a	“web	application	that
consumes	[…]	tokens	issued	by	a	Security	Token	Service.”	(See	the	preceding	sidebar	on
IP	and	STS	terminology	gotchas.)

Artifacts

In	line	with	WS-*	tenets,	WS-Federation	does	not	mandate	a	specific	type	of	token.	There
are	some	exceptions	in	the	market	today,	but	for	all	intents	and	purposes,	you	can	safely
assume	that	every	WS-Federation	deployment	uses	SAML	as	its	token	type	of	choice.

WS-Federation	also	defines	its	own	metadata	document	format,	which	can	describe
both	web	apps	and	web	services,	plus	lots	of	other	concerns	(attributes,	scopes)	of	no
consequence	for	our	discussion.	It	serves	the	same	function	already	described	for	SAML
metadata.

Messages

WS-Federation	defines	messages	supporting	standard	sign-in	and	distributed	sign-out
operations.	Those	messages	are	simpler	than	their	SAML	counterparts.	For	starters,	they
do	not	require	any	cryptographic	operation	at	the	message	level—the	only	signed	(and
possibly	encrypted)	element	is	the	token	itself	(for	the	flows	that	contain	one).

All	messages	exchanged	between	the	RP	and	IP	rely	on	a	combination	of	302	redirects
and	autoposting	forms.	You	won’t	ever	use	WS-Federation	directly	while	developing	the
apps	described	in	this	book.	However,	WS-Federation	is	still	very	much	in	use	as	an
integration	protocol,	so	you	will	often	see	it	in	action	in	network	traces.	For	that	reason,
it’s	good	to	have	at	least	an	idea	of	what	it	looks	like.	Here’s	the	simplest	sign-in	flow	you
can	enact	in	WS-Federation,	which	is	illustrated	in	Figure	2-5.

Figure	2-5	An	example	of	the	basic	sign-in	flow	with	WS-Federation.

1.	The	user	navigates	to	the	RP	application,	performing	an	HTTP	GET	of	one	of	its
protected	pages.

2.	The	RP	(or	more	likely	the	development	library	that	sits	in	front	of	it	and	enforces
the	use	of	WS-Federation)	detects	that	the	request	is	from	an	unauthenticated	user.
Instead	of	returning	the	requested	resource,	it	returns	a	302	code	that	redirects	the
browser	to	the	IP.	The	query	string	of	the	redirect	contains	various	parameters
supplying	the	IP	with	context	about	the	request:	an	indication	that	this	is	a	sign-in
request,	the	identifier	with	which	the	RP	is	known	to	the	IP,	and	so	on.

The	IP	does	whatever	it	deems	necessary	to	authenticate	the	user.	In	the	case
depicted	in	Figure	2-5,	the	user	is	accessing	the	IP	within	the	boundaries	of	the	local
network;	hence,	the	request	is	automatically	authenticated	via	integrated
authentication.

3.	Upon	successful	user	authentication,	the	IP	sends	back	a	signed	token	with	claims
describing	the	user.	The	token	travels	in	an	HTML	form.	The	response	also	contains
JavaScript	code	that	will	automatically	post	the	token	back	to	the	RP.

4.	The	RP	receives	the	IP	response;	as	it	renders,	it	triggers	the	POST	of	the	token
back	to	the	RP.

5.	The	RP	receives	the	token	and	validates	it.	If	the	verification	succeeds,	it	creates	a
session	cookie	to	establish	a	session.	From	this	moment	onward,	every	request
coming	from	the	user’s	browser	will	carry	the	session	cookie	and	will	be	considered
authenticated	by	the	RP.	The	session	will	terminate	once	the	user	explicitly	signs	out
(another	WS-Federation	flow)	or	once	the	session	expiration	time	elapses.

Not	especially	complicated,	right?	This	simple	sample	provides	two	important

confirmations:

	The	claims-based	identity	approach	does	successfully	cross	boundaries.	Here,	the
user	of	a	local	network	gains	authenticated	access	to	one	RP	located	outside	his	or
her	domain.

	WS-Federation,	and	claims-based	identity	in	general,	work	well	in	collaboration
with	older	protocols.	In	this	case,	the	user	does	not	experience	any	explicit
authentication	prompt	in	step	2	thanks	to	the	existing	local	network	infrastructure.
There	is	no	visible	sign	that	all	this	dancing	is	taking	place.	The	user	types	the
address	of	the	RP,	and	the	next	thing	he	or	she	sees	in	the	browser	is	what	gets
rendered	after	step	5—the	authenticated	experience	of	the	RP	application.

Status

Microsoft	bet	on	WS-Federation	as	a	web	sign-on	protocol	early	on,	from	the	very	first
version	of	ADFS	back	in	2005.

That	initial	choice	created	ripples	through	all	its	offerings.	ADFS	kept	supporting	WS-
Federation	through	all	subsequent	Windows	Server	versions,	including	the	latest	one
(Windows	Server	2016).	WS-Federation	was	the	protocol	of	choice	in	the	first	developer
libraries	for	identity	(Windows	Identity	Foundation	1.0,	in	2009),	it	was	the	protocol
integrated	in	the	.NET	Framework	from	version	4.5	onward,	and	it	is	still	supported	today
in	the	latest	ASP.NET	OWIN	middleware	components	that	I’ll	cover	later	in	this	book.
Tools	for	adding	WS-Federation	support	were	included	in	Visual	Studio	2010,	2012,	and
2013.	In	turn,	that	determined	the	protocol	of	choice	of	a	generation	of	servers	and	cloud
services,	from	SharePoint	2013	on.	Office	365	and	Azure	AD	itself	use	WS-Federation	as
the	backbone	of	their	on-premises	/	cloud	integration	flows.	Every	day	there	are	new
installations	appearing,	all	using	WS-Federation	under	the	hood.

With	its	widespread	presence,	you	can	imagine	that	the	protocol	will	keep	being
supported	for	a	long	time.	On	the	other	hand,	the	same	considerations	I	offered	for	SAML
apply	here	as	well.	WS-Federation	does	a	great	job	of	allowing	tokens	(hence	claims)	to
flow	outside	the	boundaries	of	a	local	network,	and	does	solve	the	cross-domain	SSO
federation	problem.	However,	WS-Federation	is	incapable	of	modeling	many	of	the
topologies	and	relationships	that	are	required	for	addressing	the	challenges	of	modern
application	architectures.	As	a	result,	you	can	consider	WS-Federation	“done”:	it	is	a
mature	protocol,	safe	to	be	used	in	production,	but	is	no	longer	a	recipient	of	innovation.
In	the	next	sections,	I	will	finally	breach	the	modern	era,	introducing	the	protocols	that	are
best	suited	for	new	apps.

Modern	apps,	modern	protocols
This	section	ushers	us	to	the	modern	era.	As	in	the	earlier	sections,	I	will	first	present	the
forces	that	have	created	the	ideal	conditions	for	a	protocol	or	a	topology	to	arise.	Then	I
will	give	you	a	brief	introduction	to	the	protocol	itself.	I	won’t	go	very	deep,	given	that
each	and	every	one	of	these	flows	will	be	explained	in	depth	in	the	application
development	chapters	later	in	the	book.

The	rise	of	the	programmable	web	and	the	problem	of	access	delegation
So	far	I	have	focused	on	the	business	world	and	how	its	authentication	requirements
evolved.	Let’s	step	out	for	a	moment	and	consider	what	happened	in	the	public	web	and
the	world	of	consumer-oriented	applications.

From	its	research	and	business	beginnings,	the	Internet	today	is	a	daily	fixture	for	a
large	percentage	of	the	world	population.	As	I	am	typing	this	sentence,	it	is	estimated	that
more	than	40	percent	of	the	world’s	population	uses	the	Internet.	In	the	United	States,	that
number	is	87	percent,	and	Norway,	Netherlands,	and	Iceland	exceed	96	percent.2	People
devote	a	growing	portion	of	their	lives	to	online	activities—from	how	they	get	their	news
to	how	they	learn,	from	how	they	do	their	jobs	to	how	they	pay	their	bills	and	taxes,	from
how	they	organize	their	holidays	to	how	they	congregate	in	communities	and	stay	in	touch
with	friends.	Until	a	few	years	ago,	my	sisters	would	not	have	touched	a	PC	in	their	free
time	with	a	10-foot	pole,	but	now	they	are	more	active	on	Facebook	than	I	am,	an	Internet
user	since	the	early	1990s.

2.	See	Internet	Live	Stats,	http://www.internetlivestats.com/internet-users/	(accessed	April	23,	2015).

Facebook	is	a	perfect	example	of	why	this	increased	online	activity	is	relevant	to	our
identity	discussion.	As	people	spend	more	and	more	time	online,	it	becomes	natural	to	try
to	compose	and	combine	the	many	different	services	people	use	on	a	daily	basis	in	more
complex	or	efficient	work	streams.	Say	that	you	have	a	Facebook	and	Twitter	account:
you	will	occasionally	want	to	publish	the	same	status	update	on	both,	without	having	to	do
a	lot	of	copying	and	pasting.	Say	that	you	are	a	longtime	user	of	Gmail,	where	you
accumulated	a	large	number	of	contacts.	Wouldn’t	it	be	nice	if	when	you	sign	up	for	a	new
service,	for	example	LinkedIn,	you	could	automatically	send	invitations	to	connect	to	all
your	Gmail	contacts,	instead	of	having	to	type	them	in	LinkedIn	all	over	again?

In	the	mid-2000s,	those	new	integration	flows	were	all	the	rage,	with	web	apps
frantically	trying	to	grow	their	user	base	as	fast	as	possible.	The	way	in	which	the	flow
was	initially	implemented,	however,	went	ahead	to	become	one	of	the	most	infamous
antipatterns	in	recent	history,	shown	in	Figure	2-6.	The	idea	was	very	simple.	Say	that	web
app	A	wanted	to	access	the	resources	that	one	of	its	users	keeps	in	web	app	B.	Web	app	A
simply	asked	its	user	to	reveal	to	app	A	his	or	her	credentials	for	web	app	B.	App	A	would
then	use	those	credentials	to	access	B	and	somehow	retrieve	the	desired	resources,	often
via	brute-force	screen	scraping.

http://www.internetlivestats.com/internet-users/

Figure	2-6	The	password-sharing	antipattern:	(1)	The	user	navigates	through	A,
landing	on	a	page	that	needs	access	to	the	user’s	resources	in	B;	(2)	A	prompts	the	user

to	disclose	his	or	her	username	and	password	for	B;	(3)	A	uses	the	credentials	to
establish	a	session	with	B	as	the	user	and	access	the	targeted	resources;	and	(4)	thinking

it	is	dealing	with	the	user	directly,	B	complies	and	returns	the	requested	resources.

	Note

This	approach	unfortunately	survives	to	this	day,	although	it	is	much	less
common.	As	I	am	writing	this,	I	visited	LinkedIn’s	section	“See	what	you
already	know	on	LinkedIn,”	and	I	am	given	the	choice	of	entering	my
credentials	for	Outlook,	Comcast,	AT&T,	and	many	other	providers	for	the
purpose	of	importing	the	address	book.

That	is,	of	course,	all	kinds	of	wrong.	Where	should	I	start?	Forsaking	your	credentials
gives	the	recipient	too	much	power.	What	if	instead	of	simply	accessing	the	resources	the
recipient	declared	it	wants,	it	accesses	everything	else?	Changes	things?	Does	bad	things
on	your	behalf?	And,	of	course,	there	is	the	matter	of	the	increased	risk.	Nothing	prevents
the	recipient	from	storing	your	credentials	with	insufficient	care,	exposing	you	to	the
possibility	of	leaks	and	various	other	disasters.	And	just	to	close,	even	if	most	apps	are
honest	and	perfectly	secure,	this	approach	teaches	users	bad	habits,	training	them	to
disclose	their	credentials	in	multiple	contexts,	with	great	risk.

The	need	for	granting	access	to	resources	across	applications	was	not	going	to	go	away,
but	the	brute-force	solution	simply	could	not	cut	it.

OAuth2	and	web	applications
Those	were	the	requirements	that	eventually	led	to	the	creation	of	OAuth,	an	authorization
framework	designed	to	enable	those	very	scenarios	while	eliminating	the	need	for	sharing
credentials.

OAuth	and	OAuth2:	A	bit	of	history

OAuth	went	through	a	somewhat	tormented	history.	OAuth	1.0	emerged	from
an	early	collaboration	of	individuals	coming	from	Twitter,	Ma.gnolia,
Google,	and	Yahoo,	beginning	around	2006	and	leading	to	an	RFC	in	2010.
The	initial	formulation	owes	a	lot	to	the	Flickr	and	the	Google	authentication
API	of	that	time.

OAuth	1.0	solved	the	delegated-access	scenario	between	web	apps	but	had
many	shortcomings.	For	example,	it	imposed	strong	cryptographic
requirements	on	clients,	it	did	not	support	revocation	all	that	well,	and	its
model	had	important	architectural	limitations	that	made	it	unsuitable	for
being	used	outside	the	web-app-to-web-app-server	communications	case,
which	made	it	hard	to	generalize	the	authorization	functions	outside	specific
applications.	Among	other	things,	those	limitations	made	it	hard	for	OAuth	to
be	applied	in	many	business	scenarios.

For	that	reason,	a	group	of	companies	(Google,	Yahoo,	Microsoft)	got
together	and	created	an	alternative	OAuth	profile,	called	OAuth	WRAP	(Web
Resource	Authorization	Profile),	which	was	aimed	at	eliminating	those
shortcomings.

The	OAuth	working	group	considered	the	new	profile	and	decided	to	build
the	new	version	of	OAuth	(OAuth	2)	on	top	of	it.	OAuth2	is	not	compatible
with	either	OAuth	1	or	OAuth	WRAP,	although	it	contains	elements	of	both.
Its	scope	ballooned	to	encompass	way	more	scenarios	than	the	web-app-to-
web-app	case	described	in	this	section.

This	context	is	important.	You	can	still	find	products	and	services	in	the
market	that	support	those	old	versions,	but	they’re	definitely	on	their	way	out,
and	spending	time	digging	any	further	into	those	versions	would	not	be	a
good	investment.	From	now	on,	OAuth	always	refers	to	OAuth2	unless	I
specify	otherwise.

The	purpose	of	OAuth	can	be	described	in	slightly	different	terms,	depending	on	the
role	you	play	in	the	scenario.

	Say	that	your	web	app	contains	resources	that	you	want	to	make	available
programmatically	to	third	parties.	OAuth	describes	an	architecture	and	a	protocol	to
use	in	your	solution	that	allow	such	third	parties	to	request	and	obtain	access	to	your
resources,	involving	your	users	in	the	process	so	that	they	can	grant	or	deny	consent
for	the	operation.	In	short,	OAuth	teaches	you	how	to	expose	your	resources	for
delegated	access.

	Say	that	your	web	app	contains	workloads	that	require	access	to	resources	managed
by	a	different	web	application.	OAuth	teaches	you	how	you	can	engage	with	that
web	application	so	that	the	user	(the	resource	owner)	has	the	opportunity	of	granting
or	denying	the	request—and	in	case	of	success,	OAuth	provides	you	with	the	means
of	securely	accessing	that	resource.	In	short,	OAuth	teaches	you	how	to	be	a	client.

Here’s	a	quick,	high-level	description	of	the	most	canonical	OAuth2	flow	used	between
web	applications	to	achieve	delegated	access.	The	sequence	is	portrayed	in	Figure	2-7.

Figure	2-7	Simplified	OAuth2	authorization	and	delegated	access	flow	between	web
applications.

	Important

For	the	sake	of	clarity,	I	am	going	to	tweak	things	a	little	and	describe	the
flow	on	the	basis	of	a	scenario	that	is	more	restrictive	than	the	protocol’s	real
scope.	I	will	also	avoid	some	of	the	protocol-specific	terminology	for	now.	I
will	describe	the	true	flow	in	later	parts	of	the	book,	when	I	have	more	of	a
foundation	to	build	on.

Our	scenario	includes	the	following:

	Web	application	A

	Web	application	B

	A	user	(U)	that	has	accounts	with	both	applications	A	and	B.

	An	artifact	that	I	call	Authorization	Server	(AS);	in	this	diagram,	AS	is	affiliated
with	application	B.

Here	how	the	action	unfolds:

1.	U	navigates	to	one	area	of	app	A	that	requires	access	to	resources	that	U	maintains

in	app	B.

2.	App	A	triggers	a	redirect	to	one	endpoint	on	AS,	named	the	authorization	endpoint.
App	A	includes	in	the	redirect	information	about	the	resources	it	needs	access	to	and
its	identity	(“This	request	is	coming	from	A,	and	it	entails	access	to	resource	R”).
AS	responds	to	the	request	by	presenting	a	user	experience	that	authenticates	U	with
his	or	her	account	for	app	B.	Once	U	is	successfully	authenticated,	the	AS	presents
to	U	some	user	experience	asking	for	consent	(“Do	you	want	to	allow	A	to	access
R?”).	Upon	granting	consent,	the	AS	returns	an	authorization	code—a	string	whose
content	is	opaque	to	everybody	but	the	AS.

3.	The	browser	delivers	the	code	back	to	app	A.

4.	App	A	connects	to	a	different	AS	endpoint,	the	token	endpoint,	sending	the	code	it
just	received	together	with	some	proof	of	its	own	application	identity	(“I	am	A;	here,
there’s	a	password	to	prove	that,	and	here,	there’s	an	authorization	code	you	just
issued	to	one	of	my	users”).

5.	AS	validates	the	request	from	A.	If	everything	is	in	order,	it	returns	an	access	token
that	reflects	(directly	or	indirectly)	the	delegated	permissions	granted	by	the	user.	In
this	leg	of	the	sequence,	the	AS	returns	lots	of	other	things,	including	an	instance	of
OAuth’s	famous	refresh	token,	which	we	will	ignore	for	the	time	being.

6.	A	uses	the	access	token	to	request	R	from	B.	B	verifies	(directly	or	indirectly)	the
token,	and	if	everything	is	in	order,	it	grants	access	in	the	terms	in	which	it	has	been
authorized.

7.	A	delivers	to	U	the	experience	that	required	access	to	R	(not	shown).

Ta-da!	Application	A	gained	access	to	U’s	resource	in	B	without	ever	seeing	U’s
credentials	for	B.	The	only	time	U’s	credentials	for	B	came	into	play	were	in	step	2,	with
the	AS.	In	the	description	of	the	sequence,	I	specified	that	AS	is	affiliated	with	B.	In
everyday	reality	on	the	consumer	web,	AS	and	B	are	in	fact	the	very	same	entity.	That	is
the	case	for	Facebook	and	the	Facebook	Graph,	for	example.	Ergo,	with	this	flow,	only	B
gets	to	see	B’s	credentials.	QED.

	Note

The	sections	on	modern	protocols	in	this	chapter	will	not	include	the
subsections	on	roles,	artifacts,	and	messages.	The	context	for	describing
those,	in	great	detail,	will	present	itself	later,	when	I	demonstrate	how	to	use
those	protocols	to	develop	applications	and	solutions.

This	is	profoundly	different	from	what	we’ve	been	studying	so	far.	Whereas	integrated
authentication,	SAML,	WS-Federation,	and	passwords	(in	the	ways	I	presented	them)
were	all	aimed	at	establishing	the	identity	of	the	user,	OAuth’s	chief	concern	is	on
determining	whether	the	caller	is	authorized	to	perform	the	operation	or	access	the
resource	that	he,	she,	or	it	is	requesting.	If	identity	comes	into	play,	it	is	only	as	a	factor	to
help	make	that	decision.

The	differences	don’t	stop	there.	All	the	other	protocols	included	one	user	performing
an	authentication	to	access	a	resource	directly.	OAuth	operates	at	multiple	levels:	there	is	a
phase	in	which	the	user	is	involved	to	allow	for	the	delegation	consent	to	take	place,	and
another	in	which	web	applications	talk	to	one	another	through	server-to-server	channels,
where	the	user	is	no	longer	directly	involved.

OAuth2	and	claims

What	can	I	say	about	OAuth2	and	its	relationship	with	the	general	claims-based	identity
pattern	without	going	too	much	into	details?	Apart	from	the	fact	that	access	to	resources	is
validated	by	examining	a	token,	rather	than	raw	credentials,	not	much.

Whereas	in	claims-oriented	protocols,	the	token	was	used	as	a	vessel	for
communicating	identity	information	about	the	user	across	boundaries,	here	the	token
might	not	be	crossing	a	boundary	at	all.	Take	the	sequence	in	Figure	2-7	and	apply	it	to	the
case	in	which	B	is	Facebook	and	A	is	a	web	app	trying	to	write	on	your	Wall.	In	that	case,
the	AS	you	need	to	get	tokens	from	is	run	by	Facebook	itself.	That	means	that	the	AS
might	record	the	user’s	consent	in	a	database	and	return	as	an	access	token	a	reference	to
that	database	row.	Once	A	sends	the	token	back	to	access	the	Facebook	Graph	API	for
writing	on	your	Wall	(R	in	our	diagram),	all	the	Graph	needs	to	do	is	look	up	the	right	row
in	the	database	and	determine	whether	the	caller	is	authorized.	Note	that	I	am	not	saying
that	this	is	how	Facebook	implements	this	flow.	I	am	saying	that	the	topology	of	the
solution	makes	it	possible,	whereas	in	the	claims-based	scenario,	a	shared	database
between	an	IP	and	an	RP	goes	against	the	premise	that	the	two	are	separate	entities.

The	OAuth2	specification	does	not	mandate	that	the	AS	and	the	application	managing
the	resources	must	be	collocated	or	owned	by	the	same	entity.	On	the	other	hand,	it	does
not	provide	enough	information	for	specifying	how	things	would	work	in	case	they	do	not.
To	help	regulate	communications	across	boundaries,	claims-oriented	protocols	provide
artifacts	such	as	metadata	documents	indicating	which	token	formats	to	use	and	how	to
perform	validations.	OAuth2	does	not	regulate	those	aspects,	leaving	it	to	you	to	decide
how	to	fill	in	the	blanks	if	your	resource	and	your	AS	do	not	live	under	the	same	roof.

Without	a	specification,	every	vendor	filled	those	blanks	in	a	different	way.	The	end
result	is	that	interoperability	in	OAuth2	is	difficult	to	achieve.	You	can	observe	the
structure	of	the	most	popular	OAuth2	developer	libraries	to	get	a	feeling	of	the	situation:
they’ll	typically	have	a	long	collection	of	modules,	one	for	each	provider	they	work	with,
each	meant	to	connect	with	the	specific	OAuth2	implementation	of	that	provider.	Compare
that	with	SAML	libraries,	which	implement	the	protocol	logic	and	expect	every	provider
and	resource	to	comply	with	it.

Active	Directory,	like	every	other	authority	wanting	to	expose	its	functionality	via
OAuth2,	did	have	to	fill	those	blanks,	and	it	chose	to	do	so	by	introducing	many	claims
artifacts,	as	you’ll	discover	in	the	later	parts	of	the	book.

Status

OAuth2	is	now	completely	mainstream,	with	widespread	support	from	vendors	large	and
small,	ubiquitous	presence	in	cloud	and	server	products,	and	support	in	practically	every
relevant	web	programming	stack.	At	this	point	the	protocol	is	stable	enough	to	be
confidently	used	in	all	kinds	of	applications,	while	at	the	same	time	it	is	still	evolving	for
supporting	new	scenarios.	The	subtleties	about	interoperability	I	mentioned	earlier	are
often	a	source	of	confusion	and	inflated	expectations	on	what	it	means	for	an	app	to
support	OAuth2—“I	know	that	A	and	B	both	speak	OAuth2.	That	means	that	I	can	get	any
OAuth2	library	and	use	it	for	making	A	and	B	communicate	right	out	of	the	box,	right?”
Not	right	out	of	the	box,	pal,	but	close.

All	of	the	developer	libraries,	tools,	services,	and	server	products	you’ll	learn	to	use	in
this	book	make	use	of	OAuth2	in	one	way	or	another.

Layering	web	sign-in	on	OAuth
The	emergence	of	OAuth	offered	a	great	solution	for	authorizing	server-to-server	access	to
resources,	but	that	wasn’t	the	only	identity-related	issue	waiting	to	be	solved:	the
consumer	web	was	not	immune	to	the	cross-domain	single	sign-on	problem.

As	web	apps	proliferated,	the	desire	to	reuse	the	same	account	for	sign-in	purposes
across	multiple	apps	grew	with	it.	The	web	community	rallied	around	OpenID,	an	effort	to
devise	a	general	protocol	to	be	used	across	vendors	and	apps.	Despite	initial	support	from
multiple	important	vendors,	and	peaks	of	remarkable	adoption	numbers,	the	original
OpenID	formulation	and	its	successor,	OpenID	2.0,	never	managed	to	tip	the	scale	and
become	the	de	facto	standard.	OpenID	was	never	especially	easy	to	use	(it	required	users
to	identify	themselves	with	a	URL).	Moreover,	it	was	conceived	to	put	every	provider	on
equal	footing,	regardless	of	size.	That	approach	proved	less	and	less	appealing	to	users	as
the	rise	of	social	networks	clustered	users	around	a	few	big	providers	that	became	natural
gateways	for	identity	on	the	web.

There	are	other	reasons	that	OpenID	2.0	didn’t	make	it,	but	those	that	I’ve	mentioned
should	be	enough	to	give	you	an	idea.	Most	of	the	big	vendors	who	did	offer	OpenID	2.0
implementations	are	deprecating	them	and	shutting	them	down.	Nowadays,	the	OpenID
foundation	backs	OpenID	Connect,	a	new	protocol	that	is	as	backward	incompatible	with
OpenID	2.0	as	OAuth2	is	incompatible	with	OAuth1.	You	won’t	read	anything	about
OpenID	2.0	in	this	book	from	now	on.	Conversely,	I’ll	describe	OpenID	Connect	in	great
detail	later	because	it	fuels	lots	of	authentication	flows	in	Active	Directory.

As	committee-driven	efforts	floundered,	the	resourceful	web	community	devised	ways
to	go	around	them.	People	observed	that	the	providers	that	were	the	most	attractive
identity	sources—the	major	social	networks—already	offered	an	API	via	delegated	access,
and	in	particular	OAuth,	and	they	figured	out	a	schema	to	leverage	those	for	a	kind	of
poor-man’s	sign-in	protocol.	There	are	many	individual	variations,	but	in	broad	strokes	the
schema	worked	as	a	variant	of	the	canonical	OAuth2	flow	shown	earlier	in	Figure	2-7.
Say	that	web	application	A	does	not	want	to	maintain	its	own	authentication	schema;
rather,	it	wants	to	allow	its	users	to	sign	in	using	the	account	they	have	with	another
application,	app	B.	The	flow	goes	something	like	this:

	Note

I	will	keep	using	A	and	B	so	that	my	descriptions	remain	as	generic	as
possible,	but	whenever	you	lose	track,	I	encourage	you	to	pick	your	own
concrete	example	of	an	app,	provider,	or	resource	and	make	a	mental
substitution	early	on.	To	make	things	more	concrete,	when	I	read	through
these	sequences	in	my	mind,	I	substitute	Facebook	for	B.

1.	When	the	user	tries	to	sign	in	to	A,	A	triggers	an	authorization	flow	toward	B	(steps
1	to	5	in	Figure	2-7).

2.	After	A	obtains	the	access	token,	it	uses	it	to	call	B’s	API	(step	6).	In	the	ideal	case,
A	will	choose	to	call	one	of	B’s	APIs	that	can	provide	some	information	about	the
identity	of	the	user,	but	that	is	not	strictly	necessary.

3.	If	A	successfully	calls	the	API,	it	deduces	that	the	user	is	indeed	capable	of
obtaining	a	valid	token	from	B,	indirectly	proving	that	the	user	is	a	user	of	B.	If	the
call	carries	identity	information,	all	the	better.	At	this	point	A	can	create	a	session
(by	dropping	a	cookie	or	something	similar)	and	declare	the	user	signed	in.

Ingenious,	right?	This	is	a	clever	hack,	which	allows	applications	to	do	some	form	of
single	sign-on	even	when	the	provider	does	not	expose	a	path	specifically	meant	to	enable
that.	But,	alas,	a	hack	it	is.	Just	think	of	how	provider	dependent	the	entire	thing	is.	The
API	for	B	that	A	needs	to	call	to	test	whether	the	access	token	works	is	an	API	that	B
chooses	to	expose	for	its	own	reasons.	Facebook	exposes	its	entities	via	the	Graph,
23andMe	exposes	genome-related	APIs,	and	Eventbrite	offers	event-organization	APIs.
That	means	that	the	“sign-in”	code	you	write	for	Facebook	cannot	work	with	23andMe,
Eventbrite,	or	pretty	much	any	other	provider.

In	turn,	this	makes	it	impossible	to	enshrine	an	approach	in	a	developer	library	that
works	with	every	provider.	Many	libraries	are	in	fact	thin	shells	over	a	vast	enumeration
of	ad	hoc	adapters	that	implement	each	provider’s	specific	flow,	vulnerable	to	changes	in
APIs	that	are	not	bound	by	any	commonly	accepted	specification.

Although	developers	targeting	consumers	and	the	public	web	have	a	higher	tolerance
for	maintaining	glue	code	to	integrate	things	not	originally	meant	to	be	used	together,	in
the	business	world,	repeatability	and	predictability	are	assets	that	are	difficult	to	renounce.
That’s	why,	in	hindsight,	the	next	step	in	this	journey	was	truly	the	obvious	thing	to	do.

OpenID	Connect
The	previous	section	highlighted	the	misadventures	that	the	original	OpenID	and	OpenID
2.0	went	through,	just	at	the	same	time	that	OAuth	was	experiencing	its	meteoric	rise.
Oversimplifying	things	again:	the	people	on	the	OpenID	working	group	(which,	by	the
way,	were	in	part	the	same	people	who	were	working	on	OAuth2)	decided	to	formalize	the
pseudo	sign-in	pattern	in	the	third	generation	of	the	OpenID	standard,	which	they	named
OpenID	Connect.

You’ll	see	all	this	in	much	greater	detail	later	in	the	book,	but	in	a	nutshell,	OpenID
Connect	positions	itself	as	an	extension	to	OAuth2,	formally	adding	sign-in	capabilities
and	providing	prescriptive	guidance	on	functional	areas	that	the	original	spec	left	as
exercises	for	the	reader.	For	what	concerns	sign-in,	OpenID	Connect	augmented	the	bare
bones	OAuth2	specs	with	various	key	extensions:

	OpenID	Connect	explicitly	defines	an	authentication-request	message	type,	layered
on	top	of	OAuth2’s	authorization	requests.	It	includes	lots	of	new	parameters	meant
to	allow	developers	to	control	important	aspects	of	the	authentication	experience.

	OpenID	Connect	extended	OAuth2	with	a	new	token,	named	the	ID	token,	which	is
meant	to	communicate	to	the	client	information	about	the	authentication	operation
that	took	place	in	the	context	of	an	OAuth2	grant	flow.	OpenID	Connect	is
normative	about	the	ID	token	content,	defining	a	set	of	claim	types	that	must	be
present,	their	semantics,	and	how	to	use	them	for	validation.	Note	that	the	ID	token
is	often	also	used	to	carry	information	about	the	user	that	authenticated	and	gave
consent.

	OpenID	Connect	defined	a	formulaic	API	whose	explicit	purpose	is	to	obtain
information	about	a	subject	after	the	token-acquisition	operation	takes	place.	This
API	is	exposed	via	an	endpoint	named	UserInfo.

	Whereas	SAML	and	WS-Federation	emphasized	the	advertisement	of	authority
coordinates	in	metadata	documents	to	help	apps	consume	their	services,	OAuth2
didn’t	offer	direct	counterparts.	OpenID	Connect	defines	a	document	format	for
publishing	endpoints,	key	material,	identifiers,	and	various	other	information	that
provides	to	apps	the	means	to	automate	trust	establishment,	automatically	keep	track
of	endpoint	changes	and	key	rolling,	and	many	of	the	functions	you’d	expect	from	a
modern	sign-in	solution.

OpenID	Connect	provides	alternative	paths	for	authenticating	users.	Let’s	take	a	look	at
two	of	them.

	Note

OpenID	Connect	specifies	lots	of	other	things.	Here	I	am	focusing	on	just	two
flows	to	highlight	the	role	the	protocol	plays	in	the	evolutionary	path	I’ve
been	describing.	You’ll	have	opportunities	to	explore	the	other	aspects	soon
enough.

Hybrid	flow

As	you’ve	seen,	OAuth2	teaches	apps	how	to	be	clients—to	obtain	tokens	meant	to	be
consumed	by	the	resources	the	app	wants	to	access—but	the	information	in	those	tokens
cannot	be	directly	accessed	from	the	app	itself.	Conversely,	sign-in	protocols	such	as
SAML	or	WS-Federation	produce	tokens	meant	to	be	consumed	by	the	app	itself	so	that	it
can	verify	that	successful	authentication	took	place	and	extract	user	information.

In	the	so-called	hybrid	flow,	OpenID	Connect	combines	these	two	approaches.	It

augments	the	classic	OAuth2	flow	described	in	Figure	2-7	by	injecting	in	legs	2	and	3	an
extra	token	(the	ID	token)	specifically	meant	to	deliver	to	the	application	verifiable
information	about	the	authentication	operation	that	just	took	place.	This	allows	you	to
both	sign	in	a	user	and	obtain	delegated	access	to	a	resource,	all	within	the	same
transaction.	Pretty	neat.

To	make	the	new	flow	viable,	OpenID	Connect	had	to	become	prescriptive	about	the	ID
token:	what	format	it	should	be	encoded	in,	the	exact	information	it	should	carry,	what
checks	should	be	performed	to	establish	validity,	and	so	on.

SAML	tokens,	the	default	currency	for	the	older	sign-in	protocols,	was	off	the	table
here.	Their	size	and	complex	validation	rules	did	not	fit	the	requirements	for	simplicity
and	compactness	imposed	by	the	OAuth2	portion	of	the	flow.	Luckily,	there	was	another,
better-fitting	token	format	circulating	in	the	wild:	the	JSON	Web	Token,	abbreviated	JWT
(and	pronounced	“jot”).	As	you	work	through	the	hands-on	chapters	of	this	book,	you	will
become	intimately	familiar	with	this	format.	For	the	time	being,	it	should	suffice	to	say
that	JWT	provides	SAML-like	expressive	power	(it’s	a	great	vessel	for	transporting
claims;	standard	signature	and	encryption	algorithms;	the	usual	mechanisms	for	specifying
audience,	issuer,	and	intended	validity	period;	and	so	on)	at	a	fraction	of	the	size.	Just	as
important,	JWT	does	not	require	very	sophisticated	cryptographic	capabilities	from	its
producers	and	consumers.

From	SWT	to	JWT:	A	brief	history	of	lightweight	token	formats

Remember	OAuth	WRAP,	the	“missing	link”	protocol	that	bridged	the
evolution	of	OAuth1	through	OAuth2,	described	in	the	sidebar	“OAuth	and
OAuth2:	A	bit	of	history”?

Whereas	OAuth1	was	largely	meant	to	help	companies	expose	their	own
APIs—hence	coalescing	the	authorization	server	and	resource	roles	in	a
single	entity—OAuth	WRAP	was	conceived	by	companies	that	acted	as
custodians	of	other	company’s	resources.	To	take	a	practical	example	from
the	modern	world,	Azure	Active	Directory	can	be	used	to	protect	calls	to	the
Office	365	API	(in	which	case,	the	authorization	server	and	resource	belong
to	the	same	business	owner),	but	it	can	also	be	used	to	protect	your	own
custom	web	API.	(Microsoft	provides	the	authorization	server,	but	the
resource	is	your	own.)	This	is	simply	another	facet	of	the	phenomenon
described	in	the	section	“OAuth2	and	claims.”

In	their	attempt	to	address	this	situation	and	counter	the	vagueness	of	the
original	OAuth,	the	author	of	OAuth	WRAP	introduced	an	explicit	token
format	as	part	of	the	core	specification:	the	Simple	Web	Token,	or	SWT.	The
SWT	was	indeed	exceptionally	simple,	just	a	set	of	HTML	form-encoded
name/value	pairs	signed	by	one	simple	algorithm.

I	use	the	past	tense	because	today	SWT	is	all	but	dead.	When	the	OAuth
working	group	decided	to	take	OAuth2	WRAP	as	the	foundation	of	OAuth2,
its	members	decided	that	imposing	a	token	format	was	not	in	line	with	the
spirit	of	OAuth	(teaching	apps	how	to	be	clients—and	for	clients,	access
tokens	are	opaque),	and	SWT	missed	its	opportunity.	You	can	still	observe
pockets	of	usage	of	SWT	in	the	real	world	(Azure	Access	Control	Service,
ACS,	uses	it	for	all	its	management	API	and	REST	workflows),	but	those	are
all	remnants	of	early	implementations,	still	around	for	honoring	support	terms
but	all	unequivocally	fading	into	the	sunset.

Naturally,	SWT	did	not	make	the	real-world	requirement	for	a	lightweight
token	format	go	away.	Evolution	took	its	course,	and	at	least	two	new
formats,	both	based	on	the	lightweight	but	expressive	JSON,	independently
emerged	around	2010.	One	was	the	JSON	Tokens,	from	Google’s	Dirk
Balfanz.	The	other	was	JWT,	from	Microsoft’s	Mike	Jones	and	Yaron
Goland.	The	various	parties	agreed	to	unify	the	efforts,	and	JWT	was	picked
up	by	the	working	group,	where	it	went	through	multiple	drafts	and	authors
from	multiple	companies	(Microsoft,	Google,	Ping	Identity,	NRI,	Facebook,
and	many	others).

When	OpenID	Connect	needed	to	specify	a	token	format	for	its	ID	token
construct,	JWT	was	the	obvious	choice.

The	hybrid	flow	is	represented	in	Figure	2-8.	The	sequence	is	the	same	as	described	in
the	earlier	section,	with	some	extra	operations.

Figure	2-8	OpenID	Connect	hybrid	flow.

When	the	application	receives	the	code	and	the	ID	token	(leg	3),	it	can	now	proceed	to
validate	the	incoming	token—just	like	a	SAML	or	WS-Federation	app	did	upon	receiving
a	SAML	token.	And	just	as	SAML	or	WS-Federation	did	not	specify	how	an	app	should
represent	its	own	session,	OpenID	Connect	does	not	tell	you	what	to	do	once	you	are
satisfied	that	the	ID	token	represents	a	successful	authentication—but	in	practice	today
that	almost	always	means	that	you’ll	drop	a	session	cookie.	That	is	represented	in	Figure
2-8	by	leg	4a.

The	operations	in	leg	4a	can	take	place	at	the	same	time	as	leg	4,	before,	or	after.	For
example,	you’ll	do	it	before	if	you	think	that	receiving	a	valid	ID	token	means	you	have	a
valid	session	in	all	cases,	even	when	the	authorization	code	redemption	(which	in	this	case
would	happen	after	you	already	created	your	session)	fails	for	some	reason.	This
discussion	brings	us	into	philosophical	territory,	which	I’d	rather	avoid	if	I	can.	But	I’ll
add	that,	in	fact,	if	you	care	only	about	the	sign-in	capabilities	of	the	protocol,	you	can	opt
out	from	receiving	a	code,	telling	the	authorization	server	at	sign-in	time	that	you	only
need	the	ID	token.	That	brings	us	full	circle,	back	to	the	claims-based	identity	protocols
described	earlier	in	the	chapter.

To	be	strict,	the	specification	suggests	that	the	ID	token	should	relay	information	about
the	authentication	operation	rather	than	the	subject	itself,	with	the	user	information	being
obtained	afterward	via	the	UserInfo	endpoint.	The	UserInfo	endpoint	is	meant	to	formalize
the	functionality	that	concrete	OAuth2	implementations	obtained	by	hitting	a	provider-
specific	API,	like	in	the	Facebook	Graph	example	I	discussed	in	“Layering	web	sign-in	on
OAuth.”	In	reality,	people	aren’t	always	crazy	about	having	to	shoot	multiple	outgoing
HTTP	connections	from	their	web	servers.	A	large	portion	of	the	value	proposition	of
claims	was	precisely	to	receive	everything	in	a	nice	package	with	no	need	for	follow-ups.
That’s	why	in	practice	the	ID	token	does	contain	user	information	as	well	in	most	cases.
There	are	cases	in	which	the	amount	of	user	information	required	makes	it	impractical	to
put	it	all	in	a	token,	which	would	become	too	big	to	be	handled	efficiently,	and	in	these
cases	the	UserInfo	endpoint	comes	back	in	the	picture.	Note	that	all	this	occurs	in	the
context	of	the	authentication	phase.	Of	course,	the	UserInfo	is	super	useful	afterward	for

obtaining	incremental	info	about	the	user.

Authorization	code	flow

The	authorization	code	flow	is	another	variation	of	the	base	OAuth2	flow	described	in
Figure	2-7.	The	difference	is	that	this	time	the	ID	token	is	returned	in	leg	6,	together	with
the	access	token.	You’ve	got	the	hang	of	how	it	works	at	this	point,	so	I	won’t	add	yet
another	variation	of	Figure	2-7	here.

The	fact	that	the	app	receives	the	ID	token	from	a	server-to-server	call	makes	it	possible
to	dramatically	simplify	the	ID	token	validation	logic.	Think	about	it.	In	the	hybrid	flow,
the	app	receives	the	ID	token	from	a	browser.	Anybody	in	the	winding	road	from	the
authorization	server	to	the	app	could	have	tampered	with	the	token	or	even	forged	it	in	its
entirety.	The	application	must	protect	itself	from	those	occurrences,	and	the	way	to	do	so
is	by	verifying	that	the	signature	on	the	token	was	actually	performed	by	the	trusted
authority	and	not	compromised.

But	when	you	receive	a	token	directly	from	a	server,	you	can	rely	on	the	security	of	the
channel	to	guarantee	that	none	of	those	attacks	could	take	place.	As	long	as	you	are
getting	a	token	from	a	trusted	TLS	channel	(a	channel	secured	by	a	certificate	issued	by	a
trusted	certificate	authority,	the	subject	of	the	certificate	matching	the	hostname	of	the
authorization	server	you	trust,	etc.),	you	know	that	the	token	is	coming	from	the	intended
authority	through	a	direct	channel,	with	no	intermediaries.	You	still	need	to	verify	the
information	inside	the	token	(for	example,	the	audience	of	the	token	must	indicate	that	the
token	was	issued	for	your	app),	but	you	are	no	longer	obligated	to	verify	the	signature.	In
turn,	this	means	that	setting	up	an	application	that	supports	this	OpenID	Connect	flow
requires	extremely	simple	code.

Status

OpenID	Connect	is	the	area	where	most	of	the	innovation	is	taking	place	these	days,	no
matter	what	vendor	or	platform	you	pick.	Its	ability	to	support	both	sign-in	and	API-
invocation	scenarios	in	the	same	application	makes	it	well	suited	for	addressing	the
requirements	of	today’s	solutions.	It	is	the	protocol	underlying	most	Active	Directory
flows,	and	it’s	going	to	be	the	protocol	that	fuels	all	the	scenarios	I’ll	walk	you	through	in
this	book.

I	can	almost	hear	you	protesting.	“Didn’t	you	just	say	the	same	about	OAuth2?”	The
fact	that	OpenID	Connect	is	basically	OAuth2	with	just	a	bunch	of	extra	details	makes
things	a	bit	confusing.	In	the	literature	you’ll	often	find	that	people	refer	to	OpenID
Connect	when	they	talk	about	web	scenarios	and	stick	with	OAuth2	when	referring	to
server-to-server	flows	or	native	applications.	In	fact,	even	in	the	latter	scenarios	you’ll
often	find	that	it’s	almost	never	classic	OAuth2—OpenID	Connect	fills	in	the	details	of	so
many	important	functional	areas	left	unaddressed	by	the	original	OAuth2	that	you’ll
almost	always	end	up	using	at	least	one	or	two	of	its	extra	parameters.

More	API	consumption	scenarios
Let’s	take	a	small	detour	from	our	history	of	user-authentication	techniques	and	consider
for	a	moment	a	couple	of	resource-consumption	patterns	that	are	very	common	in
enterprise	scenarios.

Impersonation	and	acting	on	behalf	of	a	caller

Chances	are	that	you’ve	heard	the	term	impersonation	before.	Imagine	that	you	are
working	on	an	on-premises	solution,	perhaps	using	Kerberos	as	your	authentication
technology.	Say	that	you	have	a	web	app	that	needs	to	access	some	resources	and	that
access	to	those	resources	is	allowed	only	to	specific	users	or	groups.	(Think	specific
network	shares	or	rows	in	a	database.)	When	Mario	navigates	to	your	app	and	requests	a
page	that	retrieves	files	from	a	share	he	owns,	he	correctly	expects	to	be	authorized	to
perform	the	operation.	However,	Mario	is	not	accessing	the	share	directly:	he	is	accessing
the	app,	which	is	presumably	running	on	a	different	box,	and	in	turn	the	app	is	accessing
the	share.	At	the	network	layer,	the	app	is	not	Mario:	it	is	its	own	process,	whose	identity
(for	what	Kerberos	is	concerned	about)	is	determined	by	the	web	server	settings.	Kerberos
provides	a	mechanism,	called	constrained	delegation,	which	allows	a	web	application	at
deployment	time	to	impersonate	its	caller;	thus,	inherit	its	access	rights.

That’s	pretty	neat,	but	as	is	common	for	many	of	these	tricks,	this	flow	is	made	possible
by	the	nature	of	the	domain	controller	and	its	special	network	requirements—to	which
everything	within	a	domain	network	must	abide.

On	the	other	hand,	this	pattern	is	clearly	useful	outside	a	local	network,	too.	If	you
squint	a	little,	this	is	something	that	the	authorization	code	flow	in	OAuth2	could	enable.
The	main	requirement	would	be	that	the	end	user	give	his	or	her	consent	to	one	specific
access	right,	full	impersonation.	(The	authorization	code	flow	allows	for	far	finer-grained
delegation.	For	example,	the	app	might	ask	for	read-only	access	for	only	a	specific	subset
of	resources.)	The	identity	experts	would	be	quick	to	say	that	this	would	not	be	full-blown
impersonation—the	identity	of	the	app	would	never	disappear	here—but	as	long	as	it
grants	the	access	level	requested,	who	cares	about	those	subtleties?

Another	hard	requirement	would	come	from	the	need	of	the	code	grant	to	display	a
consent	prompt,	which	can	happen	only	if	the	app	has	a	user	interface.	But	what	happens
if	the	app	does	not	have	a	user	interface?	Think	of	a	web	API	meant	to	be	consumed
programmatically:	the	client	would	simply	not	know	what	to	do	with	the	HTTP	302
response	redirecting	to	the	consent	pages.	What	to	do?

Luckily,	OAuth2	has	one	specific	flow,	described	in	the	OAuth2	Token	Exchange
extension,	that	describes	how	to	request	a	token	on	behalf	of	a	caller	without	showing	any
further	prompts.	The	flow	is	commonly	referred	to	as	the	“on-behalf-of”	security	token
request.	You	can	find	a	simplified	diagram	in	Figure	2-9.	The	on-behalf-of	flow	plays	an
important	role	in	many	Active	Directory	solutions,	and	I’ll	cover	it	in	depth	later	in	the
book.

Figure	2-9	Simplified	diagram	of	an	on-behalf-of	token	request.	A	and	B	are	web	APIs.
(1)	A	is	accessed	via	a	user	token	U;	(2)	A	requests	a	token	for	B	from	the	AS.	A
presents	U	and	some	means	for	AS	to	know	that	the	call	comes	from	A,	such	as	a
shared	secret;	(3)	AS	issues	a	new	token	T	that	allows	A	to	access	B	with	the	same

rights	as	the	user	who	originally	sent	U;	(4)	A	accesses	B	with	T.

No	user	in	sight:	Accessing	a	resource	as	the	application	itself

Another	common	pattern	you’ll	encounter	fairly	often	is	one	in	which	an	application	needs
to	access	one	resource	independently	from	whoever	is	signed	in	to	the	application	itself.	In
fact,	there	are	cases	in	which	there	is	literally	nobody	signed	in,	and	the	application	acts	in
complete	independence.	Here,	you	can	think	of	daemon	apps	or	Windows	services	that
start	as	soon	as	a	server	boots,	with	no	need	for	anybody	to	log	on	to	the	machine	or
access	a	web	app	running	on	that	server.

OAuth2	has	a	special	grant	for	this	very	scenario,	called	the	client	credentials	grant.
This	is	probably	the	simplest	grant	of	all,	so	I	won’t	illustrate	it.	The	client	sends	whatever
credential	or	authentication	type	the	authorization	server	deems	appropriate	(more	often
than	not,	a	classic	shared	secret	in	a	string	or	a	signed	token	demonstrating	ownership	of	a
private	key),	and	if	the	authorization	server	considers	the	credentials	valid,	it	will	issue	a
token	to	the	client.	The	claims	in	the	token	will	describe	the	client	application	itself.

Single-page	applications
Let’s	resume	the	narrative	arc	that	brought	us	through	the	ever-escalating	conflict	between
evolving	authentication	requirements	and	the	protocols	that	emerged	to	satisfy	them.

Although	we	saw	application	topologies	change	a	lot	from	one	generation	to	another,
one	thing	remained	the	same:	the	round-trip-based	request-response	pattern	underlying
every	web	application	with	a	user	interface.	We	take	that	idea	for	granted,	so	you	might
not	think	about	it	too	often,	but	it’s	worth	spending	a	moment	teasing	it	apart.

Web	applications	run	entirely	on	the	server.	Their	code	is	expected	to	implement	both
the	presentation-generation	logic	and	whatever	computation	(old-fashion	professionals
like	me	would	be	tempted	to	call	this	“business	logic”)	is	required	for	performing	the
function	the	apps	are	meant	to	offer.	In	practice,	the	web	app	you	use	for	your	tax-filling
duties	spends	CPU	cycles	both	for	sending	down	the	HTML	rendering	the	forms	you	use

to	fill	in	your	hard-earned	numbers	and	for	crunching	the	same	number	according	to	the
tax	scheme	in	fashion	for	the	year.

This	mechanism	is	what	made	cookie-based	sessions	so	handy	for	web	sign-on.	Given
that	every	interaction	with	the	app	is	actually	a	full	round	trip,	having	a	cookie	along	for
the	ride	is	a	handy	way	of	reminding	the	server	that	it’s	still	you,	the	authenticated	user,	at
the	other	hand	of	the	cable.

This	pattern	does	have	significant	downsides.	I	am	ready	to	bet	that	you	are	no	stranger
to	Facebook,	Gmail,	or	Outlook.com.	All	those	apps	have	high-density	interfaces,
crowded	with	lots	and	lots	of	semi-independent	pieces	of	information.	Whenever	you
interact	with	one	element,	like	expanding	a	comment	thread	or	selecting	one	email
message,	you	trigger	changes	at	the	local	level.	The	comment	thread	expands,	moving	the
rest	of	the	content	down;	the	email	body	appears	in	the	main	area,	while	the	email	entry
shows	a	“selected”	indicator.	A	large	portion	of	the	screen	remains	the	same.

Think	of	how	wasteful	it	would	be	to	implement	this	functionality	via	a	classic	round
trip.	As	soon	as	you	click,	the	browser	would	have	to	tear	down	a	complex	user	interface
and	send	a	request	for	the	new	information	and	enough	data	to	reconstruct	the	current
state.	Once	the	server	is	done	processing	your	request,	it	has	to	send	back	all	the	code	the
browser	needs	to	reconstruct	the	entire	scene:	the	parts	that	changed,	but	also	the	parts	that
did	not.	The	performance	of	such	an	app	would	be	pitiful,	and	the	waste	of	resources
criminal.

The	last	few	years	have	seen	the	rise	of	a	new	approach	to	web	development	that
provides	an	elegant	and	efficient	solution	for	architecting	these	kinds	of	applications.	The
idea	is	simple:	instead	of	expecting	the	server	to	handle	both	presentation	and	back-end
logic,	the	architecture	separates	the	two	and	distributes	the	work	between	the	browser
itself	and	the	server.

Modern	browsers	are	far	more	than	glorified	markup	renderers.	From	simple	origins,
the	JavaScript	language	has	evolved	into	a	powerful	programming	platform	that	can
implement	very	sophisticated	logic	entirely	on	the	client.	A	developer	can	now	code	the
presentation	layer	of	one	app	entirely	in	JavaScript:	logic-layout	management,	data
binding,	dynamic	updates,	state	changes,	and	more	can	now	be	bundled	with	one	initial
HTML	page	(or	a	few	more)	and	sent	down	at	the	very	first	request	to	the	application.
From	that	moment	on,	all	the	UI	behavior	can	be	handled	without	having	to	flush	the
entire	browser	state	and	perform	a	round	trip.	That’s	why	this	app	architecture	is	often
referred	to	as	single-page	application,	or	SPA.	In	theory,	your	whole	app	can	live	in	one
single	page,	the	first	one,	and	all	the	JavaScript	files	it	references.

That	sounds	fantastic,	but	clearly	something	is	missing.	Thank	you,	JavaScript,	for
having	rendered	all	those	tax	forms,	the	experience	was	amazingly	fluid.	But	now	that	I
have	filed	my	numbers,	how	am	I	going	to	deliver	them	to	the	tax-crunching	logic	on	the
server	side?

Simple.	JavaScript	also	allows	you	to	perform	programmatic	HTTP	requests	to	the	back
end.	If	the	back	end	exposes	a	web	API,	the	front	end	can	invoke	it	via	JavaScript,	read
back	the	results,	and	use	them	to	selectively	update	the	UI.	In	the	Facebook	example,
clicking	a	comment	thread	can	trigger	JavaScript	logic	to	perform	a	request	to	the	server

for	the	text	for	all	those	comments,	parse	them	back,	and	display	them	on	the	page,
without	having	to	touch	the	UI	elements	around	it.	In	the	tax-return	example,	clicking
Submit	sends	all	your	numbers	to	the	server,	which	crunches	them	and	sends	back	to	the
client	a	“total	due”	number,	which	the	same	JavaScript	logic	can	display	in	a	new	text	box,
once	again	without	having	to	do	anything	with	the	rest	of	the	UI.

This	is	a	very	neat	architecture.	How	do	we	secure	it?	Sticking	with	cookies	is	tempting.
The	browser	will	automatically	attach	cookies	to	every	request	heading	to	the	domain	a
cookie	is	associated	with,	and	that	holds	for	JavaScript-generated	requests	as	well.	That
might	work	for	testing	or	quick	and	dirty	prototyping,	but	as	soon	as	you	get	serious	about
your	app,	the	limitations	of	this	approach	become	evident:

	Cookies	go	only	to	the	domain	from	where	they	originated;	but	technically,	your
JavaScript	code	might	call	any	API,	including	APIs	hosted	on	other	domains.

	Cookie-based	sessions	are	really	children	of	round-trip	applications.	What	happens
when	a	cookie	expires	when	working	with	a	web	app	protected	by	WS-Federation	or
SAML?	The	app	deems	the	caller	unauthenticated,	so	it	reacts	with	an	HTTP	302
request	and	a	sign-in	message.	In	a	round-trip	app,	that	302	will	be	immediately
executed	by	the	browser,	prompting	the	user	to	authenticate.	In	an	SPA,	however,
that	won’t	happen:	a	302	return	code	is	really	not	actionable	for	a	JavaScript	web
API	call.	Sure,	you	could	write	more	logic	that	makes	the	redirection	happen,	but	in
the	process	you’d	flush	whatever	client-side	state	the	app	built	up	to	that	point.	You
could	prevent	that	as	well	by	saving	everything,	but	doing	so	can	get	messy.

The	solution	is	surprisingly	simple.	You	secure	web	API	calls	just	as	I	described	for
other	topologies—with	tokens.	The	missing	link	here	is	how	do	you	enable	JavaScript	to
obtain	and	use	tokens?	OAuth2	introduced,	and	OpenID	Connect	refined,	a	special	grant
precisely	for	this	scenario:	it’s	called	the	implicit	grant.

In	the	implicit	grant,	an	application	can	request	an	access	token	directly	to	the
authorization	endpoint	without	any	interaction	with	the	token	endpoint.	The	token	itself	is
returned	in	a	URI	fragment,	which	is	fancy	HTTP	jargon	to	indicate	a	string	in	a	URI	after
the	#	symbol.	Such	a	string	is	meant	to	be	visible	only	to	the	browser	itself	(and
everything	that	runs	within	it,	like	your	JavaScript	code)	and	won’t	be	sent	to	the	server.
The	JavaScript	can	retrieve	the	token	bits	and	squirrel	them	away,	typically	by	saving
them	in	some	HTML	construct	(sessionStorage	and	localStorage	being	common
favorites).	Once	the	token	bits	have	been	obtained,	more	JavaScript	logic	can	attach	them
to	the	requests	whenever	there’s	the	need	to	contact	a	back-end	web	API.	That	is	a	little
more	work	than	letting	the	browser	automatically	attach	cookies,	but	it	grants	far	more
control	to	the	developer.	Moreover,	nowadays	nobody	builds	a	single-page	application
from	scratch:	there	are	multiple	excellent	JavaScript	frameworks	(the	one	in	fashion	today
is	AngularJS),	and	the	logic	to	attach	tokens	can	be	easily	buried	there.	No	action	is
required	for	the	application	developer.

Azure	AD	supports	the	implicit	flow,	and	Microsoft	in	general	exposes	many	APIs	to	be
consumed	from	JavaScript	clients.

Leveraging	web	investments	in	native	clients
This	book	focuses	on	web	applications,	so	mobile	clients	and	rich	applications	aren’t	in
scope.	However,	I’d	do	you	a	disservice	if	I	did	not	cap	my	story	and	say	a	little	about	the
latest	step	in	the	evolution	of	modern	authentication	methods,	one	in	which	the
authentication	logic	leaves	the	browser	to	support	native	apps	and	then	kind	of	gets	cold
feet	and	brings	the	browser	back,	albeit	in	a	different	guise.

Throughout	this	chapter	I’ve	focused	on	web	applications	because	they	constitute	the
vast	majority	of	the	apps	requiring	the	identity	of	the	user	to	cross	a	boundary	of	some
kind.	However,	the	reality	is	that	native	applications	have	been	with	us	every	step	of	the
way,	although	their	number	and	widespread	adoption	didn’t	reach	today’s	oceanic
proportions	until	the	advent	of	application	stores.	What	is	a	native	application?	It	is	one
application	that’s	meant	to	be	run	on	a	specific	platform,	intended	as	an	OS	or	a	set	of
APIs	(Windows	desktop	or	iOS;	.NET	4.5	or	Java),	and	built	with	the	building	blocks	that
such	platforms	offer:	runtimes,	visual	components,	packaging	and	deployment
technologies,	and	so	on.	Microsoft	Word,	Visual	Studio,	Adobe	Reader,	Corel	Painter,
TurboTax,	Flappy	Bird,	the	Facebook	and	Twitter	apps	on	iOS	and	Android,	and	the
Kindle	reader	app	are	just	a	few	examples	of	native	applications	from	the	devices
currently	scattered	on	my	desk.

Native	applications	running	within	the	boundaries	of	an	enterprise	have	always	been
able	to	benefit	from	the	Kerberos	infrastructure,	just	like	their	web	app	counterparts	in	the
intranet.	In	the	early	2000s,	the	WS-*	movement	introduced	new	protocols	to	obtain	the
same	expressive	power	and	cryptographic	guarantees	across	organizational	and	network
boundaries.	You	know	how	it	went:	the	people	that	could	cope	with	the	complexity
adopted	them,	but	in	the	wild	web	the	WS-*	specs	remained	underutilized.	All	this
happened	at	the	same	time	as	the	rise	of	the	programmable	web,	when	web	apps	were
gearing	up	to	expose	(or	obtain)	delegated	access	to	one	another’s	resources	via	OAuth2.

In	2008	Apple	introduced	its	App	Store	on	iOS,	making	it	extra	easy	for	end	users	to
acquire	native	applications	on	its	devices.	That	marked	a	turning	point	in	the	ease	with
which	a	native	app	could	make	its	way	to	a	device,	and	in	the	appeal	that	the	native	app
format	exercised	on	developers.	Suddenly,	every	website	needed	to	have	an	app
counterpart,	and	such	apps	had	to	offer	comparable	functionality	to	their	web	counterpart.
This	meant	that	they	needed	to	have	access	to	the	same	protected	resources—before
displaying	your	pictures,	Facebook	needs	to	ascertain	that	it’s	really	you	on	the	other	part
of	the	wire,	regardless	of	whether	you’re	using	a	browser	or	an	application.

All	those	applications	had	just	made	massive	investments	in	getting	their	identity	story
straight:	supporting	the	nascent	OAuth,	providing	authentication	experiences,	and
managing	consent-gathering	experiences	and	lots	of	other	tasks	tailored	to	be	performed
within	a	browser.	Duplicating	all	that	work	solely	to	support	a	new	client	type	wasn’t
something	anybody	looked	forward	to.

I	am	not	sure	who	first	came	out	with	the	following	idea,	but	whoever	he	or	she	was,	it
was	a	stroke	of	genius.	It	goes	as	follows:

What	if	we	pretend	that	native	apps	are	just	a	special	kind	of	web	app?	One	that
cannot	have	its	own	credentials,	given	that	we	cannot	trust	a	device	to	keep	a

secret,	but	a	web	app	of	some	sort	nonetheless.	When	the	app	needs	a	token	for
requesting	a	remote	resource,	we	can	use	the	native	UI	elements	to	display	a
browser	surface	and	host	in	there	the	usual	OAuth2	code	grant	dance.	That	way
we	can	reuse	all	our	existing	authentication	and	consent	logic.	We	just	need	to
be	sure	the	layout	of	the	page	looks	good	in	the	form	factor	of	the	device.	After
we	get	back	a	code,	we	hide	the	browser,	redeem	the	code,	and	retrieve	the
access	token	we	need.	QED.

Perhaps	this	is	a	bit	oversimplified,	but	it’s	pretty	much	what	happened.	Today,	when
you	launch	an	app	from	your	device,	it	is	very	common	to	be	taken	to	a	hosted	web
experience	when	you	perform	tasks	that	require	authentication	and	authorization.	Hosting
the	prompting	logic	in	a	browser	is	exceptionally	flexible.	It	allows	you	to	change	the
logic	at	any	time—for	example,	by	inserting	an	additional	step	for	multifactor
authentication—without	having	to	deliver	updates	to	your	client	code.	Throughout	this
book,	you	will	often	use	ADAL,	Microsoft’s	library	for	requesting	tokens.	When	used
within	a	native	app,	ADAL	has	built	in	the	ability	to	display	that	browser	surface,	using
the	primitives	that	make	sense	in	each	of	the	platforms	(modal	dialog	in	Windows	desktop
apps,	full-screen	browser	experiences	on	mobile	devices,	and	so	on).

Today	we	are	witnessing	the	emergence	of	the	next	step	in	this	evolution:	the	hero	app,
or	broker.	When	a	native	application	needs	a	token,	instead	of	contacting	the	authorization
server	directly,	it	passes	the	request	on	to	another	app	installed	on	the	device	that	is
designed	specifically	to	maintain	contact	with	the	provider	of	choice.	That	app	plays	the
role	of	the	broker.	It	knows	how	to	talk	to	a	specific	authority,	it	can	maintain	a	cache	of
tokens	to	share	among	apps	(which	are	normally	unable	to	share	any	context	given	that
every	mobile	platform	sandboxes	them),	and	it	can	even	perform	advanced	functionality
such	as	proving	the	identity	of	the	device	itself.

The	world	of	modern	authentication	in	native	apps	is	wondrous	and	extensive,	worthy
of	a	book	of	its	own.	For	this	book,	the	foregoing	should	give	you	enough	background	to
put	things	in	perspective.

Summary
This	chapter	led	you	through	a	whirlwind	tour,	examining	how	authentication
requirements	and	technologies	changed	and	adapted	through	two	decades	of	IT	history.

I	began	with	a	definition	of	some	foundational	concepts,	such	as	identity	and
authentication.	You	had	the	opportunity	to	see	those	concepts	in	action	right	away,
observing	how	the	simplest	authentication	schemes	implemented	them.

You	witnessed	the	advent	of	local	networks	and	their	influence	on	authentication
artifacts	and	techniques:	the	emergence	of	the	domain	controller,	the	advantages	and
limitations	of	Kerberos,	and	so	on.	I	also	invested	some	time	introducing	claims-based
identity	as	a	framework	for	understanding	the	intent	and	scope	of	modern	authentication
protocols,	without	getting	sidetracked	by	individual	differences	in	syntax	and	terminology.

You	applied	what	you	learned	by	examining	SAML	and	WS-Federation	under	the
claims-identity	lenses,	acquiring	basic	terminology	and	an	understanding	of	how	these
protocols	provided	solutions	to	the	main	authentication	need	of	that	time,	cross-domain

single	sign-on.

I	also	presented	the	life-altering	changes	brought	by	the	programmable	web	and
explained	how	its	widespread	adoption	created	the	ideal	conditions	for	the	emergence	of
OAuth2,	a	delegated	authorization	protocol.	You	saw	how	that	seeded	spontaneous
extensions	that	repurposed	OAuth2	to	achieve	single	sign-on	and	how	those	initiatives
were	soon	appropriated	by	standard	bodies	and	turned	into	a	du	jour	protocol
specification,	OpenID	Connect.

Finally,	you	had	a	taste	of	how	authentication	is	evolving	beyond	its	traditional	browser
round-trip	origins	by	leveraging	the	advanced	JavaScript	capabilities	of	modern	browsers
—or	leaving	the	browser	altogether	to	enable	authentication	for	native	applications.

I	realize	that	this	is	a	lot	to	take	in.	I	don’t	expect	you	to	retain	all	the	content	you	read
in	this	chapter	right	away.	Some	of	it	will	be	repeated	later	on,	when	you	write	apps	using
the	protocols	described	here.	Other	content	will	be	there	for	you	as	a	reference	so	that	if
you	get	lost	you	can	always	find	refuge	back	here	and	refresh	your	understanding	of	why
things	are	the	way	they	are	today.

You	are	now	equipped	with	a	specific	mindset	you	can	use	for	approaching
authentication	problems:	by	knowing	what	the	problem	is	you’re	trying	to	solve,	you’ll
know	what	to	look	for	in	a	solution.

Next,	you’ll	become	acquainted	with	the	entity	that	will	play	the	role	of	the	IdP,	IP,	and
AS	throughout	the	book:	Active	Directory.

Chapter	3.	Introducing	Azure	Active	Directory	and	Active
Directory	Federation	Services

In	this	chapter	you	make	first	contact	with	Azure	Active	Directory	(Azure	AD)	and	Active
Directory	Federation	Services	(ADFS),	the	two	authority	types	that	Active	Directory
offers	for	protecting	your	applications.

My	goals	for	this	chapter	are	to	inform	you	about	what	those	services	are,	how	they	are
structured,	and	what	they	can	do	for	you.	I’ll	focus	mostly	on	terminology,	components,
and	functional	aspects	that	you	encounter	while	using	those	authorities	for	development-
related	tasks.	You	won’t	find	fine	details	or	instructions	here—those	will	be	provided	in
the	later	chapters	of	the	book,	in	the	context	of	the	scenarios	I’ll	describe	there.

I	purposely	ignore	tasks	and	features	that	are	prevalently	administrative	in	nature,	not
because	they	are	not	important	or	handy—they	are—but	because	this	is	a	book	for
developers,	and	if	I	don’t	draw	the	line	somewhere,	the	size	of	the	book	will	get	out	of
control.

A	warning	about	content	freshness

Azure	Active	Directory	is	a	cloud	service.	As	such,	it	evolves	at	an
exceptionally	quick	pace.	New	features	are	added	every	few	weeks,	and
existing	ones	are	refined	and	improved	all	the	time.	This	is	a	very	poor	match
with	the	typical	time	frames	of	the	printed	publishing	trade.	No	matter	how
fast	I	write,	or	how	promptly	the	production	team	sifts	through	the	manuscript
and	fixes	my	broken	English,	you	will	read	those	words	months	from	the
moment	I	typed	them.	To	minimize	the	aging	of	the	text,	I	avoid	as	much	as	I
can	presenting	content	that	has	a	high	rate	of	obsolescence,	such	as
screenshots	and	preview	features.	Instead,	I	focus	on	topics	that	are	slower	to
change:	intended	usage,	supported	scenarios,	architectural	principles.	Those
measures	notwithstanding,	some	of	my	descriptions	will	inevitably	no	longer
be	the	latest	and	greatest	at	publication	time.	I’ll	try	to	minimize	impact	by
publishing	new	info	online.	If	you	read	something	that	does	not	seem	to
perfectly	match	what	you	see	or	experience	when	using	the	products,	please
make	sure	to	check	out	http://www.cloudidentity.com/blog/books/book-
updates/.

Active	Directory	Federation	Services
In	Chapter	2,	“Identity	protocols	and	application	types,”	I	introduced	the	concepts	of	a
domain	controller	(DC)	and	Kerberos,	and	I	explored	how	every	aspect	of	the	local
network	can	benefit	from	their	presence	and	functionality.	As	I	ventured	beyond	local
network	scenarios	and	acquainted	you	with	claims-based	identity,	you	learned	about
protocols	such	as	SAML	and	WS-Federation,	which	are	capable	of	handling
authentication	and	web	single	sign-on	outside	the	boundaries	of	a	local	network.

As	out-of-network	scenarios	became	more	common,	the	use	of	a	DC	speaking	exclusively

http://www.cloudidentity.com/blog/books/book-updates/

Kerberos	was	not	going	to	cut	it.	Administrators	and	developers	wanted	to	use	their
investment	in	Active	Directory	also	for	exposing	or	accessing	partners’	and	customers’
applications.	Microsoft	addressed	that	requirement	by	introducing	a	new	Windows	Server
role,	called	Active	Directory	Federation	Services,	or	ADFS	for	short.	For	all	intents	and
purposes,	this	new	role	augmented	the	network	capabilities	with	the	following:

	Network	endpoints	supporting	various	claims-based	identity	protocols,	which
includes	metadata	endpoints	for	the	protocols	that	admit	them.

	A	configuration	database	for	keeping	track	of	applications	configured	to	operate
through	those	protocols	(RPs).	This	database	can	be	sourced	from	Windows	Internal
Database	(WID)	or	from	a	full-flown	instance	of	SQL	Server.

	Management	tools	for	turning	endpoints	on	and	off	and	for	provisioning	and
removing	RPs.	These	are	mostly	a	Microsoft	Management	Console	snap-in	and	a	set
of	Windows	PowerShell	cmdlets.

	A	proxy	role	for	extending	the	reach	of	ADFS	authentication	capabilities	to	clients
operating	outside	the	local	network.

	Claim	values	that	are	sourced	from	the	local	Active	Directory	and	LDAP	attributes.
These	can	also	be	sourced	by	custom	attributes	stores.

	A	claims	rules	engine	(and	associated	claims-transformation	language)	designed	to
provide	maximum	flexibility	in	the	issuance	of	claims	in	ADFS-produced	tokens.

That	is	not	an	exhaustive	list,	but	it	captures	the	general	intended	use	of	the	new
service.	Figure	3-1	shows	the	key	functional	components	of	ADFS.

Figure	3-1	Main	ADFS	functional	components.

Although	the	service	has	evolved	significantly	from	its	early	days,	these	components
remain	the	pillars	of	its	functionality.	IT	administrators	are	typically	in	charge	of	local
ADFS	instances:	they	are	the	ultimate	arbiters	of	which	applications	can	be	provisioned,
what	protocols	they	should	use,	and	what	user	attributes	(in	the	form	of	claims)	they
should	receive.	If	you	consider	that	an	app	that	is	not	provisioned	in	ADFS	cannot	receive
any	tokens,	you	can	see	how	ADFS	administrators	hold	tremendous	power	over	us
developers.	This	power	dynamic	changed	when	Azure	AD	emerged—and	you’ll	see	that
soon	enough.

ADFS	and	development
Let’s	get	the	basics	out	of	the	way.	Say	that	you	have	an	application	hosted	outside	your
intranet	and	want	to	make	it	available	to	users	from	your	local	AD.	Say	that	your	company
does	have	ADFS	up	and	running.	How	does	ADFS	enter	your	life?

	You	need	to	find	out	which	version	of	ADFS	you	have,	and	select	a	protocol	that	it
supports	for	protecting	your	app.

	You	need	to	add	code	and	libraries	to	your	app	to	support	that	protocol	(which,	by
the	way,	is	the	reason	you	are	holding	this	book).	Note	that	you’ll	need	to	configure
the	libraries	to	use	the	protocol	coordinates	of	your	ADFS	instance,	which	means
that	you’ll	need	to	find	out	what	those	coordinates	are.

	You	need	to	contact	the	ADFS	admin	to	provision	your	application.	If	you	work	in	a
small	shop	or	in	a	test	environment,	that	admin	is	probably	you.	You’ll	see	the
details	later,	but	in	a	nutshell	this	means	using	the	MMC	or	PowerShell	cmdlets	to
add	an	entry	for	the	app	in	ADFS,	supplying	information	such	as	the	app’s	URL	and
identifier,	deciding	what	claims	should	be	sent	at	authentication	time,	and	the	like.

	Important

This	step	cannot	be	skipped.	If	an	app	is	not	provisioned,	ADFS	will	not
issue	a	token	for	it.

That’s	pretty	much	it.	After	all	of	this	work	is	in	place,	navigating	to	your	app	will
bounce	the	user	to	authenticate	against	the	local	ADFS	pages.	Upon	successful
authentication,	a	token	will	be	issued	and	forwarded	to	your	app,	which	in	turn	will
validate	it	and	sign	in	the	user.	All	as	expected.

Getting	ADFS
ADFS	is	a	Windows	Server	role,	its	life	cycle	tied	to	releases	of	Windows	Server.	That
means	that	every	Windows	Server	release	from	2003	R2	onward	has	had	its	own	ADFS
version,	with	its	own	features.	It	also	means	that	ADFS	versions	aren’t	backported.	If	you
want	a	certain	shiny	feature	available	in	a	certain	ADFS	version,	you’ve	got	to	upgrade
the	entire	server	OS	to	the	version	of	Windows	that	carries	that	ADFS	version	with	it.
After	that’s	done,	you	can	find	and	turn	on	the	Active	Directory	Federation	Services	role
in	the	Server	Roles	screen	or	through	any	other	management	tool	you	like.	And	once	that
role	is	turned	on,	you	need	to	configure	it.	The	good	news	is	that	configuration	is	pretty
straightforward;	there’s	a	wizard	for	it,	and	(if	you’re	okay	with	the	default	settings)	the
biggest	task	required	is	that	you	create	and	assign	a	self-signed	certificate.

I	am	not	going	to	give	you	detailed	instructions	because	those	change	from	version	to
version.	I	just	want	to	give	you	a	feeling	for	what	setting	up	one	ADFS	instance	entails.

There’s	more.	ADFS	requires	you	to	have	an	AD	deployment,	even	if	you	plan	to	use
functions	that	in	themselves	would	not	seem	to	require	AD.	You	don’t	need	to	turn	on
ADFS	on	a	domain	controller	(though	lots	of	demo	environments	do	that	for	economic

reasons),	but	you	do	need	to	use	a	domain-joined	server.

Once	ADFS	is	up,	managing	it	largely	boils	down	to	the	following:

	Deciding	which	protocols	and	credential	types	endpoints	should	be	active.

	Provisioning	applications	that	should	be	allowed	to	receive	a	token,	and	specifying
what	claims	such	a	token	should	carry.

	Keeping	certificates	fresh,	and	performing	other	administrivia.

I	am	sure	that	administrators	would	add	tons	of	tasks	to	this	meager	list,	but	for
developers,	I’d	say	that’s	as	far	as	most	of	us	would	want	to	go.

Protocols	support
ADFS	did	have	a	v1,	introduced	with	Windows	Server	2003	R2,	and	a	v1.1	shortly	after—
but	they	aren’t	talked	about	nowadays.	From	a	developer’s	perspective,	ADFS	started	to
get	interesting	from	version	2.0	onward.

Every	version	of	ADFS	has	interesting	features,	besides	which	protocols	it	supports,	but
from	the	perspective	of	how	you	can	hook	up	apps	to	it,	the	protocol	support	truly	is	the
higher-order	bit.

ADFS	v2

ADFS	v2	came	out	in	the	first	half	of	2010,	as	an	out-of-band	download	for	Windows
Server	2008	R2.

As	I	write	this,	ADFS	v2	is	probably	the	most	commonly	deployed	ADFS	version.	It
supports	the	following	protocols:

	SAML2

	WS-Federation

	WS-Trust

From	the	perspective	of	.NET	development,	the	most	interesting	of	the	supported
protocols	is	WS-Federation.	That’s	mainly	determined	by	exclusion:	as	mentioned	earlier,
the	SAML	protocol	is	not	directly	supported	by	.NET	libraries,	and	WS-Trust	is	on	the
sunset	path	together	with	all	its	other	WS-*	friends.	ADFS	v2	uses	SAML	tokens	in	all	its
protocols.

ADFS	“v3”

Some	ADFS	team	members	get	irked	when	someone	refers	to	the	version	of	ADFS
shipping	in	Windows	Server	2012	R2	as	“ADFS	v3.”	These	team	members	would	prefer
that	everyone	say	“the	ADFS	version	that	ships	in	Windows	Server	2012	R2,”	but	they
kind	of	brought	this	situation	on	themselves	by	calling	the	former	versions	1.0,	1.1,	2.0
and	2.1.	Also,	who	has	time	for	that?

ADFS	“v3”	is	a	superset	of	ADFS	v2.	In	particular,	it	adds	the	OAuth2	authorization-
code	grant	for	public	clients.	In	practice,	this	means	that	from	this	version	onward	you	can
write	native	applications	that	obtain	tokens	from	ADFS	and	web	APIs	that	validate	tokens

from	ADFS.	That	flavor	of	OAuth2	is	not	suitable	for	web	applications,	however,	so	no
code-behind	token-acquisition	scenarios	are	possible	with	that	release.

Apart	from	the	addition	of	the	OAuth2	endpoint,	ADFS	had	to	add	a	couple	of	other
features	to	support	the	new	flow:

	The	ability	for	issuing	and	processing	JSON	Web	Tokens	(JWTs).

	An	extended	model	for	representing	applications,	augmented	by	the	definition	of	a
client	app,	which	was	absent	in	the	protocols	supported	in	v2.	ADFS	“v3”	did	not
add	this	to	its	management	UI,	though,	and	only	offers	PowerShell	cmdlets	for
managing	this	new	type	of	app.

ADFS	“v3”	also	has	some	other	protocol-related	capabilities.	In	particular,	it	has	its
own	ceremony	for	determining	whether	a	device	is	“workplace	joined”—an	operation
morally	similar	to	joining	a	domain	but	with	far	fewer	requirements	on	the	OS	and	the
capabilities	of	the	machine	and	far	less	administrative	power.	ADFS	uses	that	knowledge
to	decide	whether	a	token	should	be	issued	or	refused	in	accordance	to	it.	I	am	not	going
to	detail	this	flow	any	further.	There	are	more	modern	approaches	to	this	scenario,	and	I
am	bringing	it	up	mostly	so	that	you	know	that	it	exists	and	you	have	one	possible	culprit
when	you	troubleshoot	why	you	are	failing	to	get	a	token	from	an	ADFS	instance:	“Don’t
tell	me	it	has	the	workplace	join	on…	.	Let’s	check.”

ADFS	in	Windows	Server	2016

Now	we	venture	into	highly	unstable	territory.	I	pledged	to	minimize	the	coverage	of
preview	features,	but	the	improvements	introduced	by	ADFS	in	Windows	2016	are	simply
too	significant	and	relevant	to	this	book	for	me	to	ignore.

At	the	time	of	writing,	Windows	Server	2016	is	in	preview,	and	so	is	its	implementation
of	ADFS.	There	is	no	guarantee	that	some	features	won’t	get	cut,	or	at	least	change,	before
this	book	finds	its	way	to	your	shelf.	Here	are	the	protocols	currently	supported:

	OAuth2	authorization-code	grant	for	protected	clients

	OAuth2	client	credentials

	OAuth2	on	behalf	of

	OAuth2	resource	owner	grant

	OAuth2	implicit	grant

	OpenID	Connect	(various	grants	and	response	types)

I	haven’t	introduced	some	of	the	protocols	in	this	list	yet,	so	don’t	worry	if	you	don’t
recognize	them.	I’ll	cover	all	of	them	in	detail	in	the	hands-on	chapters	of	this	book.

Nowadays,	software	products	are	released	at	faster	and	faster	rates,	and	ADFS	is	no
exception.	However,	no	matter	how	much	agility	you	pour	into	the	process,	innovation
will	always	be	slower	in	a	product	meant	to	be	distributed	and	installed	on	customers’
machines	than	in	a	service	run	in	the	cloud.	That’s	why	the	features	in	ADFS	will	likely
always	trail	a	bit	behind	its	big	cloud-based	sibling,	Azure	Active	Directory.	This	is	also
one	of	the	reasons	that	most	of	the	hands-on	chapters	will	mainly	use	Azure	AD	as	the

reference	authority.

Azure	Active	Directory:	Identity	as	a	service
Azure	Active	Directory	is	a	cloud-based	service	that	is	aimed	at	providing	you	with	all	the
features	you	need	to	handle	authentication	in	your	cloud-based	workloads.	It	is	designed
to	do	for	cloud-based	applications	what	on-premises	Active	Directory	does	for	traditional
intranet	applications.	Azure	AD	achieves	this	by	reimagining	key	aspects	of	Active
Directory,	shedding	the	features	that	make	sense	on-premises	but	don’t	cut	it	in	the	cloud,
and	adding	brand-new	features	to	offer	functionality	in	a	platform	as	a	service	(PaaS)
style.

In	the	previous	section,	you	learned	how	ADFS,	by	teaching	the	DC	how	to	converse	in
SAML	and	WS-Federation,	enabled	directory	users	to	access	apps	hosted	outside	the
corporate	network.	That	was	a	huge	step	forward	toward	a	true	claims-based	apps-and-
providers	ecosystem,	but,	as	usual,	it	didn’t	solve	every	possible	problem	associated	with
cross-boundary	authentication.	Two	issues	proved	to	be	particularly	thorny	for	cloud
applications:

	Application	provisioning	Consider	a	developer	who	is	selling	to	organizations
access	to	his	application.	Although	WS-Federation	and	SAML	establish	the	roles
that	each	party	should	play,	and	define	the	trust-establishment	ceremony	(via
metadata)	as	well	as	the	subsequent	message	exchanges,	the	process	is	far	from
being	automatic.

Think	of	this	as	getting	married.	Your	local	government	establishes	a	process	that
should	be	followed	to	make	marriage	happen	in	valid	legal	terms,	as	opposed	to	the
engaged	couple	just	coming	up	with	a	private	agreement	with	no	rules	or	guarantees.
The	existence	of	that	process	makes	getting	married	possible,	but	it	still	takes	quite	a
lot	of	paperwork.

There	are	multiple	elements	that	conspire	to	make	direct	trust	establishment	an
operation	that’s	difficult	to	generalize.	For	one,	administrators	are	normally	the	only
entity	that	can	modify	ADFS	(or	any	equivalent	product)	to	add	an	entry	for	a	new
application,	establish	what	claims	should	be	sent,	and	so	on.	There	is	no
programmatic	way	out	of	the	box	of	provisioning	an	app	on	the	fly.	Also,	individual
users	must	always	depend	on	administrators	if	they	want	to	start	using	a	new
application.	Another	issue	arises	in	connection	with	the	wide	variety	of	deployment
types	you’ll	encounter.	Every	administrator	decides	what	attributes	define	his	or	her
users,	groups,	and	infrastructure,	which	in	turn	determines	the	pool	of	possible
claims	that	applications	can	expect	to	receive.	That	entails	some	investigation	on	the
app	developer’s	part,	possibly	followed	by	the	creation	of	ad	hoc	code	for	handling
any	impedance	mismatch.	If	your	app	expects	a	“street	address”	claim,	but	the	IP
sends	you	that	information	in	a	claim	called	 ,	you	might	need	to	work
something	out	before	your	app	can	correctly	serve	that	customer.

	Directory	queries	Claims-based	identity	provides	just-in-time	identity	information
about	the	currently	signed-in	user,	which	in	turn	unlocks	all	the	goodness	we’ve
discussed	so	far,	and—by	this	property	alone—it	addresses	a	very	large	portion	of

authentication	scenarios.	However,	that	doesn’t	help	when	your	app	needs
information	held	in	the	directory	that	is	not	a	direct	attribute	of	the	currently	signed-
in	user.	Imagine	that	you	are	writing	a	classic	expense	notes	application.	Your	users
can	submit	expense	notes	and,	when	they	receive	reports	from	others,	approve	them.
The	application	needs	to	know	for	every	user	who	her	manager	is	and	which	reports,
if	any,	are	his.	That	information	does	not	typically	travel	in	the	form	of	claims—
including	a	list	of	reports	can	rapidly	lead	to	untenable	token	sizes.	Even	if	such
information	could	go	with	a	claim,	where	do	you	draw	the	line?	Say	that	you	need
the	street	address	of	all	users	to	mail	invoices,	or	that	you	need	to	traverse	multiple
management	layers	to	reach	somebody	with	a	purchase	limit	great	enough	to
approve	a	particularly	large	expense	note.	All	that	information	is	stored	in	the
directory.	If	your	app	runs	within	the	boundaries	of	the	local	network,	it	can	simply
reach	out	and	examine	the	directory.	Not	so	if	the	app	runs	in	the	cloud,	because
there’s	a	firewall	between	the	app	and	that	information.	And	even	if	the	app	could
manage	to	pierce	that	firewall,	that	would	mean	forsaking	operating	at	cloud	scale
because	it	would	introduce	in	the	app’s	critical	path	a	dependency	on	the
performance	of	individual	IdPs.

Microsoft	itself	felt	that	pain	early	on,	and	very	close	to	home.	Its	Office	365	services
faced	the	exact	problems	I	just	described,	with	the	raging	intensity	you	should	expect
when	you’re	chartered	to	deliver	a	service	at	mind-boggling	scale.

To	support	Office	365	workloads,	Microsoft	reimagined	Active	Directory	functionality,
creating	a	brand-new	service—Azure	Active	Directory,	as	you	guessed.	Almost
immediately,	the	service	was	made	available	for	securing	a	customer’s	own	applications
besides	Office	365	and	others	from	Microsoft.

The	differences	between	the	on-premises	approach	and	the	cloud	approach	are
numerous	and	substantial,	but	to	summarize:

	For	organizations	already	operating	an	AD	instance,	Azure	AD	offers	the	possibility
of	creating	a	projection	of	AD	in	the	cloud.	I’ll	unpack	what	this	means	in	practice	a
bit	later,	but	for	the	time	being,	this	capability	allows	organizations	to	continue	to
manage	users	and	assets	in	their	regular	AD,	while	at	the	same	time	gain	the	ability
to	perform	the	cloud-based	app	workloads	I’ll	describe	later.

For	organizations	that	do	not	have	an	on-premises	AD	deployment,	or	that	want	to
keep	it	isolated	from	their	cloud	workloads,	Azure	AD	offers	the	opportunity	of
hosting	a	new	directory	entirely	in	the	cloud,	with	no	local	footprint	whatsoever.
Among	other	advantages,	this	finally	makes	it	possible	for	small	organizations	(or
development	shops)	to	make	use	of	sophisticated	directory-grade	features	for	a	small
or	at	no	cost.

	Whereas	Active	Directory	is	traditionally	a	singleton	service	within	its	own
organization,	Azure	AD	is	a	multitenant	system.	It	is	designed	to	provide
authentication	and	directory	functionality	to	multiple	organizations,	partitioning	the
service	in	such	a	way	that	every	tenant	has	complete	control	over	its	data,	with	the
illusion	of	being	Azure	AD’s	only	beneficiary.	However,	the	fact	that	every	directory
tenant	shares	the	same	pipes	unlocks	scenarios	that	would	otherwise	be	impossible,

such	as	just-in-time	provisioning	of	new	apps	without	any	explicit	work	from
administrators	or	extra	integration	code	necessary	on	the	app	side.

	Because	Azure	AD	is	a	native	cloud	offering,	the	authentication	mechanisms	that	it
offers	cover	the	full	range	of	protocols	that	have	no	infrastructural	constraints—from
the	classic	SAML	and	WS-Federation	to	all	the	known	variations	of	OAuth2	and
OpenID	Connect.

	The	tokens	issued	by	Azure	AD	contain	claims	populated	with	user	attributes
maintained	in	a	cloud	store.	Those	values	can	be	cloud-only	or	a	synchronized	copy
of	the	corresponding	attributes	on-premises.

	Traditional	on-premises	directories	offer	well-supported	querying	protocols,	such	as
LDAP.	Repurposing	such	protocols	for	cloud	workloads	proved	to	be	difficult	given
their	reliance	on	complex	development	stacks	(as	opposed	to	the	RESTful	nature	of
most	decentralized	cloud	systems	nowadays)	and	their	inflexibility	in	matters	of
access	control.	To	expand	on	the	last	point,	granting	access	to	your	directory	to	a
third-party	expense	note	app	is	far	riskier	than	allowing	one	of	your	own	users	to
access	the	same	data,	because	the	potential	for	abuse	is	far	higher	for	the	former.
Protocols	such	as	LDAP	do	not	provide	the	flexibility	of	modulating	access	levels
very	easily.

Azure	AD	features	a	new	API,	called	the	Directory	Graph	API,	that	allows
developers	to	query	and	manipulate	directory	entities	by	using	simple	REST
operations.	The	access	control	for	these	operations	is	implemented	through	Azure
AD’s	own	OAuth2	features,	making	it	possible	for	application	developers	and
administrators	alike	to	request	and	grant	fine-grained	permissions,	to	everybody’s
satisfaction.

	Given	that	Azure	AD	focuses	on	enabling	cloud-based	workloads,	in	its	current
form	it	sheds	much	of	the	functionality	that	was	instead	a	staple	of	its	on-premises
origins.	You	will	not	use	Azure	AD	for	finding	the	printers	available	on	your	office
floor,	and	(at	least	for	now)	you	will	not	join	a	machine	to	an	Azure	AD	domain.
Those	functionalities	are	not	entirely	outside	the	scope	of	Azure	AD,	but	they	are
not	as	relevant	to	cloud	workloads,	so	they’ll	come	in	later	(if	ever).

Apart	from	those	changes,	Azure	AD	contains	pretty	much	what	you’d	expect	from	a
directory:	a	store	for	users	with	their	own	schema,	groups,	ways	of	representing
applications,	and	so	on.

Figure	3-2	schematizes	Azure	AD’s	main	functional	components.	Please	note	that	some
of	these	components	will	be	described	later	in	this	chapter.	Also,	all	the	components	below
the	cloud/on-premises	interface	are	optional.	Later	in	the	chapter,	I’ll	describe	the
difference	between	managed	and	federated	tenants.

Figure	3-2	The	main	components	of	an	Azure	AD	tenant.

Azure	AD	and	development
How	does	Azure	AD	enter	into	your	daily	development	chores?	Say	that	you	have	an	app
that	you	want	to	protect	with	Azure	AD.	Also	assume	that	you	already	have	access	to	one
Azure	AD	tenant.	There	are	many	different	ways	in	which	you	can	get	to	the	same	result:
an	app	protected	by	Azure	AD.	The	least	sophisticated	way	goes	as	follows:

	Navigate	to	the	Microsoft	Azure	portal,	and	go	to	the	Azure	AD	section.	Select	the
tenant	you	want	to	use,	and	then	go	to	the	Applications	section.	Click	Add
Application.	That	will	help	you	add	an	entry	for	the	app	in	Azure	AD.	Like	the
corresponding	step	in	the	case	of	ADFS,	this	step	is	not	optional.	Those	instructions
might	change	as	the	service	evolves,	but	the	intent	remains	the	same.

	Add	to	the	app	support	for	your	protocol	of	choice	(among	the	ones	Azure	AD
supports),	and	configure	the	app	with	the	protocol	coordinates	indicating	your	Azure

AD	tenant	and	your	app	entry	in	it.

I	say	this	is	the	“least	sophisticated”	way	because	it	forces	you	to	do	all	the	steps	by
hand.	There	are	speedier	ways,	the	Visual	Studio	wizard	you	encountered	in	Chapter	1
being	one	of	them.	However,	it’s	useful	to	remember	that	behind	the	scenes,	this	is	what
always	has	to	happen	for	every	application.

Azure	AD	tokens	are	Microsoft	cloud	services’	currency

Accessing	custom	applications	is	not	the	only	reason	for	requesting	Azure
AD	tokens.	Services	such	as	the	Azure	management	API,	Office	365	API,
and	Intune	API	all	trust	Azure	AD:	if	you	want	to	invoke	any	of	those	APIs,
you	have	to	obtain	an	Azure	AD	token	first.

Getting	Azure	Active	Directory
Getting	an	Azure	Active	Directory	tenant	is	very	easy.	Chances	are	that	you	already	have
one	and	you	don’t	even	know	yet!

At	the	time	of	writing,	there	are	three	main	ways	of	obtaining	an	Azure	Active
Directory	tenant.

	Important

Below	I	state	that	Azure	AD	“developer	features”	are	free	to	use.	That’s	a
pretty	broad	definition	written	at	a	specific	point	in	time.	To	know	for	sure
what	is	and	isn’t	covered	by	the	free	offering,	please	check	out	the	latest
pricing	documentation	at	http://azure.microsoft.com/en-us/services/active-
directory/.

	Buy	a	Microsoft	cloud	service	When	you	acquire	a	Microsoft	cloud	service	such	as
Office	365,	Microsoft	Azure,	or	Intune,	you	get	an	Azure	AD	tenant	in	the	so-called
Azure	AD	Free	tier	as	part	of	the	deal.	Such	services	need	an	underlying	directory	to
deliver	the	functionality	they	are	meant	to	perform,	hence	there’s	not	a	lot	of	choice
in	the	matter.	Whether	you	use	that	directory	exclusively	as	a	piece	of	infrastructure
for	the	services	you	purchased,	or	if	you	also	make	use	of	it	for	protecting
applications	you	develop,	is	of	course	completely	up	to	you.	Again,	as	is	the	case
today,	all	development	features	offered	by	Azure	AD	are	free	to	use.	There	are	some
(very	generous)	usage	thresholds,	and	there’s	no	enforced	service-level	agreement,
but	in	practice	you’ll	find	that	the	reliability	and	performance	you	get	is	far	superior
to	many	(most?)	on-premises	systems.

And	here’s	a	small	note:	when	you	already	have	an	Azure	AD	tenant,	you	can
subscribe	to	new	services	that	leverage	that	tenant.	The	act	of	activating	a	service
subscription	does	not	necessarily	mean	creating	a	new	tenant;	it	just	requires	the
existence	of	one	tenant,	and	if	one	is	already	available,	that’s	great	as	well.

	Create	new	directory	tenants	as	part	of	your	Microsoft	Azure	subscription

http://azure.microsoft.com/en-us/services/active-directory/

Creating	a	new	Azure	AD	Free	tier	tenant	is	as	easy	as	opening	the	Azure	portal,
navigating	to	the	Directory	section,	and	clicking	a	button	that	says	Add.	In	mere
seconds,	you’ll	get	a	full-featured	directory	that	you	can	use	for	whatever	purpose
you	decide:	managing	user	populations,	as	a	development	or	staging	environment,
and	so	on.	Considering	that	you	can	get	a	free	trial	of	Microsoft	Azure	and	that
Azure	AD	development	features	are	free,	that	is	a	pretty	sweet	deal.

	Buy	an	Azure	AD	edition	through	an	Enterprise	Agreement	This	is	one	way	in
which	large	companies	get	Microsoft	software.	You	can	also	get	one	via	a	reseller.

In	this	book	I	almost	always	use	the	Azure	AD	Free	tier,	given	that	practically	all
authentication	features	used	in	development	are	available	with	it.	Azure	AD	comes	in	two
other	editions:	Azure	AD	Basic	and	Azure	AD	Premium,	which	offer	SLAs,	superior
administrative	features	(such	as	multifactor	authentication	and	reporting),	and	much	more.
Those	are	offerings	you	pay	for,	so	they	are	available	through	the	last	two	channels	I
mentioned.

Directories,	tenants,	domains.	What	should	I	call	this	thing?

Blogs,	articles,	and	even	official	documentation	can’t	seem	to	agree	on	a	definitive
term	for	indicating	what	one	should	call	“the	thing	that	you	get	when	you	subscribe
to	Azure	AD.”	The	challenge	here	is	that	all	the	candidates	are	already	overloaded
terms	and	often	have	a	firm	meaning	in	the	on-premises	world	that	only	partially
holds	in	the	cloud	case.	I	am	personally	a	fan	of	“tenant,”	not	because	it	is
especially	apt,	but	thanks	to	the	fact	that	it	carries	less	baggage.

Saying	“directory”	is	odd	for	concordance	reasons:	the	name	of	the	service	itself
is	Azure	Active	Directory,	hence	calling	a	part	of	it	a	directory	is	weird—even
ignoring	the	potential	for	confusion	with	on-premises	directories	that	might	be
involved	in	the	federated	case.

Saying	“domain”	is	also	problematic:	every	tenant	must	have	at	least	one
domain,	which	is	why	it	is	assigned	one	at	creation	time	(the	famous
something.onmicrosoft.com).	Seeing	two	phenomena	always	occurring	at	the	same
time	might	lead	you	to	believe	that	they	are	one	and	the	same.	But	correlation	is	not
causation!	After	creation,	you	can	register	in	your	tenant	any	extra	domains	you
own.	Cases	in	which	a	tenant	has	hundreds	of	domains	are	not	unheard	of.

But	“tenant”	is	not	perfect.	For	example,	if	you	are	writing	a	multitenant
application,	“tenant”	is	polysemic.	Sometimes	it	means	your	customer,	a	tenant	of
your	application,	and	sometimes	it	means	your	own	tenant	in	Azure	AD,	the	artifact
in	which	you	developed	and	published	your	Azure	AD	app	entry.	But	the
multitenant	case	is	somewhat	advanced	and	comes	into	play	when	you	are	already
partially	familiar	with	Azure	AD	basics.	Thus,	it	is	more	likely	that	you’ll	be	able	to
deal	with	those	subtleties	at	that	point—or	at	least	that’s	what	I	am	counting	on.

Azure	AD	for	developers:	Components
In	this	section	I’ll	enumerate	the	main	functional	components	of	Azure	AD	that	you,	as	a
developer,	will	have	to	touch	or	otherwise	leverage	while	building	and	running	your	apps.
At	the	cost	of	being	pedantic,	I’ll	stress	that	at	this	level	I	am	only	introducing	those
artifacts	and	associated	terminology.	The	features	mentioned	in	this	section	are	the	ones
you’ll	need	hands-on	experience	with—experience	that	you	will	gain	in	the	later	chapters
of	the	book.

Protocol	endpoints

The	most	tangible	manifestation	of	your	Azure	AD	tenant	from	an	app’s	standpoint	is	the
endpoints	it	exposes.	Every	Azure	AD	tenant	comes	into	existence	with	a	comprehensive
collection	of	tenant-specific	endpoints.	Those	are	the	network-addressable	endpoints	that
apps	trusting	your	tenant	need	to	engage	with	to	complete	the	protocol	dance	of	choice.

As	discussed	earlier,	when	you	get	a	new	tenant,	you	are	assigned	a	default	domain,
commonly	of	the	form	of	tenantname.onmicrosoft.com.	The	tenant	also	receives	a	unique,
immutable,	nonreassignable	identifier,	called	tenantID,	in	the	form	of	a	GUID.	The	default
domain,	any	domains	you	add	afterward,	and	the	tenantID	itself	are	used	to	generate
protocol	URLs	that	are	specific	to	your	tenant.	Using	<tenant>	to	indicate	any	of	those
identifiers,	a	protocol	URL	template	looks	like	the	following:
Click	here	to	view	code	image

https://<instance>/<tenant>/<protocol-specific-path>

To	make	a	practical	example:	here	are	three	equivalent	ways	of	indicating	the	OAuth2
authorization	endpoint	of	one	of	my	tenants:
Click	here	to	view	code	image

https://login.microsoftonline.com/9fc82e9f-7e34-4522-9146-
cb065e1d0046/oauth2/authorize

https://login.microsoftonline.com/vittoriobertocci.onmicrosoft.com/oauth2/authorize

https://login.microsoftonline.com/cloudidentity.net/oauth2/authorize

These	are	all	equivalent	because	even	though	they	use	different	identifiers,	they	all	refer
to	the	same	tenant.	There	are	tradeoffs.	The	domain-based	identifiers	are	easier	to
remember	but	aren’t	set	in	stone:	I	might	not	renew	my	custom	domain	cloudidentity.net,
and	eventually	somebody	else	might	reclaim	it	for	their	own	tenant.	The	URL	based	on	the
tenantID	is	the	most	reliable,	but	it	is	not	the	easiest	to	type	from	memory	or	to	recognize
while	you	scan	the	config	files	of	an	old	project.

The	“login.microsoftonline.com”	portion	of	the	URL	goes	under	the	name	of
“instance.”	That	represents	the	Azure	AD	service	deployment	in	which	your	tenant	is
provisioned.	If	you	are	working	in	a	Western	country,	in	the	large	majority	of	cases	you
will	see	“login.microsoftonline.com”	(or	its	predecessor,	“login.windows.net”),	which
represents	the	public	cloud	instance	of	Azure	AD.	There	are	other	deployments:	for
example,	in	China,	the	Azure	AD	instance	is	indicated	by
“login.partner.microsoftonline.cn”.	Azure	AD	instances	are	isolated	from	each	other	and
operate	in	complete	independence.

http://login.microsoftonline.com
http://login.windows.net

You’ll	get	to	know	the	OAuth2	(hence	OpenID	Connect)	endpoints	very	well.	The	other
ones	(SAML	sign-on	and	sign-out,	WS-Federation,	and	metadata	for	both)	won’t	be
covered	in	any	details	because	those	protocols	aren’t	the	focus	of	this	book.	However,	you
should	have	no	difficulty	leveraging	them:	they	are	just	standard	implementations.

Azure	portal

Today,	the	main	user	experience	for	getting	settings	into	and	out	of	your	Azure	AD	tenant
is	the	Azure	management	portal	(https://manage.windowsazure.com/).	This	might,	and
likely	will,	change	in	the	future,	but	wherever	the	component	itself	is	hosted,	the	function
it	performs	will	remain	available.

Today’s	Azure	AD	portal	extension	offers	features	for	both	developers	and
administrators.	From	a	developer’s	perspective,	the	main	reason	you	use	the	portal	is	to
provision	new	apps,	tweak	the	settings	of	apps	in	development,	and	manage	apps	that	are
further	along	in	their	life	cycle.

Admin	operations	you	might	catch	yourself	performing	have	to	do	with	creating	test
users	and	groups,	creating	brand-new	tenants	for	development	and	staging,	assigning	users
and	groups	to	app	roles,	and	so	on.

Application	model

Azure	Active	Directory	represents	applications	following	a	specific	model	designed	to
fulfill	two	main	functions:

	Identify	the	application	in	terms	of	the	authentication	protocols	it	supports	In
practice,	this	means	enumerating	all	the	identifiers,	URLs,	secrets,	and	similar
information	that	play	a	role	at	authentication	time.	In	this,	Azure	AD	is	quite	similar
to	ADFS—at	least	in	terms	of	intent.

	Handle	user	consent	at	token-request	time,	and	facilitate	the	dynamic
provisioning	of	applications	across	tenants	In	practice,	when	a	user	requests	a
token	for	a	given	application	and	no	one	has	told	Azure	AD	yet	that	it	is	okay	to
issue	a	token	in	that	context,	Azure	AD	will	ask	the	user	to	consent	to	the	operation.
If	the	consent	is	successful,	the	decision	will	be	recorded	so	that	the	next	time	the
token	will	be	issued	right	away.	There’s	more!	If	the	application	was	originally
defined	in	a	different	tenant,	perhaps	by	an	ISV,	Azure	AD	takes	care	of	creating	one
entry	for	the	app	in	the	user’s	tenant,	automating	a	provisioning	operation	that	on
other	systems	(think	of	ADFS)	would	have	required	administrative	involvement	and
action.

These	two	functions	shape	the	way	in	which	Azure	AD	models	applications	and	the
relationships	tying	them	to	one	another.	The	application	model	does	more	than	that,	but	I
don’t	want	to	go	too	much	into	the	details	before	you	are	in	the	position	of	actually	using
those	features	in	practice.	Chapter	8	will	describe	the	Azure	AD	application	model	in	great
detail.

https://manage.windowsazure.com/

Directory	Graph	API

The	previously	mentioned	Graph	API	is	the	programmatic	interface	of	Azure	AD.	This	is
an	OData3-compliant	set	of	entities	that	you	can	use	to	manipulate	nearly	all	aspects	of
your	Azure	AD	tenant:	users,	groups,	and	applications	are	the	ones	you	will	most	often
deal	with.	Like	all	the	other	endpoints	discussed	so	far,	the	Graph	API	is	exposed	through
a	tenant-specific	endpoint	of	the	form	https://<instance>.	You	can	access	the	API	by	using
good	old	REST,	or	you	can	use	the	client	libraries	that	Microsoft	provides.	In	both	cases,
calls	are	authorized	through	OAuth2	bearer	tokens	issued	by	the	same	Azure	AD	tenant.
Chapter	9,	“Consuming	and	exposing	a	web	API	protected	by	Azure	Active	Directory,”
will	provide	some	practical	examples	demonstrating	how	to	invoke	the	Graph	API.

Notable	nondeveloper	features
Just	like	AD,	Azure	AD	is,	first	of	all,	a	directory.	As	such,	most	of	its	surface	is	really
meant	to	be	used	by	administrators:	developers	are	mostly	along	for	the	ride.

Here	I	review	a	selection	of	interesting	features	that	aren’t	directly	actionable	for	you
but	can	influence	in	one	way	or	another	the	behavior	of	your	apps	or	create	expectations
about	what	your	apps	can	or	can’t	do.

Directory	sync

Earlier	I	mentioned	that	an	Azure	AD	tenant	can	be	either	standalone	and	cloud-only	or	be
a	projection	of	an	on-premises	AD	deployment.	How	does	such	projection	work?

Simple.	On	a	local	machine,	the	administrator	installs	a	tool	that	takes	care	of
synchronizing	users	and	groups	to	the	Azure	AD	tenant	in	the	cloud.	As	I	write	this,	the
recommended	tool	for	performing	this	function	is	Azure	Active	Directory	Connect.	Before
Azure	Active	Directory	Connect,	a	progression	of	different	tools	was	used	to	perform	that
function:	the	Azure	Active	Directory	Synchronization	Tool	(DirSync),	the	Azure	Active
Directory	Synchronization	Services	(Azure	AD	Sync),	and	even	the	familiar	Forefront
Identity	Manager	2010	R2	(FIM).	I	mention	them	all	here	in	case	you	stumble	onto	them
in	the	literature.	Azure	Active	Directory	Connect	supersedes	them	all.

Now,	how	that	synchronization	takes	place	is	a	fascinating	subject.	Administrators	can
elect	to	synchronize	from	single	or	multiple	forests,	consider	or	ignore	custom	attributes,
filter	depending	on	specific	values,	and	so	on.	Beyond	the	Free	tier	feature	set,	other
editions	add	advanced	features	such	as	the	ability	to	write	back	into	the	on-premises
directory	changes	that	occurred	on	the	cloud	data	set.	I	personally	try	to	stay	away	from
admins	when	they	set	these	things	up,	coming	back	into	the	picture	when	things	are	ready
to	consume	my	apps.

The	most	important	aspect	of	a	sync	deployment	that	a	developer	should	know	is
whether	it	includes	the	users’	credentials	or	relies	on	federation.	An	administrator	can	elect
to	sync	users	but	keep	all	credentials-verification	operations	on-premises.	This	is	achieved
by	federating	the	Azure	AD	endpoints	of	a	given	tenant	with	an	ADFS	deployment	on	the
corresponding	on-premises	AD.	Applications	trusting	a	tenant	configured	that	way	will
send	sign-in	requests	to	Azure	AD	endpoints	as	usual,	but	Azure	AD	will	bounce	those
requests	to	the	local	ADFS.	A	successful	authentication	will	yield	an	ADFS-issued	token,

which	will	be	forwarded	to	Azure	AD	and	exchanged	for	the	usual	Azure	AD	token.	This
arrangement	decouples	the	app	from	the	tenant	settings—it’s	always	an	Azure	AD	token
no	matter	who	checks	credentials—which	leaves	admins	free	to	pursue	whatever	policy
they	prefer.

Tenants	configured	as	I’ve	just	described	are	often	referred	to	as	federated	tenants
(tenants	configured	to	operate	exclusively	in	the	cloud	are	known	as	managed	tenants).
Federated	tenants	have	the	advantage	of	immediately	reflecting	in	the	system	on-premises
changes:	if	a	user	is	deprovisioned	on-premises,	he	won’t	be	able	to	sign	in	anymore	right
away.	This	won’t	rely	on	a	timely	sync.	Moreover,	federated	tenants	preserve	in	the
authentication	process	whatever	customization	an	ADFS	deployment	might	have.	This
topology	does	have	some	disadvantages:	it	requires	an	ADFS	deployment,	which	not
everybody	has,	and	its	SLA	is	tied	to	the	SLA	of	the	same	ADFS,	so	if	ADFS	is	down,	no
one	can	access	apps	even	if	Azure	AD	and	the	apps	themselves	are	up.

For	that	reason,	admins	can	decide	to	also	sync	credentials	to	the	cloud.	In	that	case,
users	can	get	an	Azure	AD	token	by	entering	their	credentials	directly	in	the	pages	served
by	cloud	endpoints,	guaranteeing	service	continuity	even	in	the	case	of	downtime	of	the
on-premises	systems.

Application	access	enhancements

This	feature	is	often	confused	with	the	Azure	AD	developer	capabilities	you’ve	learned
about	so	far.

Azure	AD	maintains	a	list	of	popular	SaaS	and	consumer	web	apps	that	are	integrated
with	the	directory	out	of	the	box.	This	means	that	one	administrator	can	offer	to	his	or	her
users	the	chance	to	access	those	applications	directly	through	their	Azure	AD	accounts—
without	needing	to	memorize	extra	credentials	or	worry	about	application	provisioning.	At
the	same	time,	this	allows	the	administrator	to	exercise	control	over	what	applications	can
be	accessed,	in	what	terms,	and	by	whom.	It	even	allows	provisioning	of	users	in	the	app
so	that	the	app’s	life	cycle	can	be	tied	to	the	user	account	in	the	directory—and
automatically	deprovisioned	when	the	user	leaves	the	company,	along	with	his	main
account.	Admins	can	set	all	this	up	by	using	the	Azure	portal.	Users	have	a	dedicated
landing	page	(myapps.microsoft.com)	where	they	can	discover	and	reach	all	the	apps	they
have	been	granted	access	to.

Note	that	Azure	AD–app	integration	is	not	necessarily	(in	fact,	it	usually	isn’t)	based	on
federation	protocols	such	as	the	ones	you	encountered	in	Chapter	2.	In	this	scenario,
Azure	AD	works	behind	the	scenes	doing	whatever	it	takes	to	talk	to	those	applications	in
their	own	terms.	For	example,	in	many	cases	Azure	AD	uses	a	browser	plug-in	to	perform
just-in-time	injection	of	credentials	as	soon	as	the	app’s	login	form	appears.	Some	apps
will	indeed	use	federation	for	integrating	with	Azure	AD—Salesforce	being	a	good
example	of	that—in	which	case	the	admin	setup	experience	for	the	app	will	be	different.
The	user	is	none	the	wiser,	of	course:	the	experience	is	“I	browse	to	the	app	I	want,	and
then	I	am	signed	in.”	How	that	happens	doesn’t	really	matter.

This	is	a	pretty	awesome	administrative	feature,	but	it	is	not	very	actionable	for
developers.	The	code	to	perform	that	magic	is	part	of	Azure	AD	itself	rather	than	an
extensibility	point	one	can	latch	on	to.

Beyond	the	Free	tier

Azure	AD	Basic	and	Azure	AD	Premium	add	lots	of	advanced	admin	features:	advanced
reporting,	more	sophisticated	synchronization	options,	many	more	self-service	features	for
users,	and	so	on.	Some	of	those	features	will	have	an	impact	on	the	apps	you	write.	For
example,	in	those	tiers	an	admin	will	be	able	to	customize	the	pages	used	for	gathering
credentials	and	consent	to	reflect	a	specific	corporate	look	and	feel	or	specific	policies.
Those	pages	are	the	ones	that	are	used	in	your	apps,	too.	Another	good	example	is	the
suite	of	multifactor	authentication	features:	those	don’t	really	change	the	way	in	which
you	write	your	apps—that’s	one	of	the	advantages	of	claims-based	identity,	in	fact—but
they	do	change	the	experience	of	your	app’s	users.

Another	notable	feature	in	those	tiers	is	the	Application	Proxy.	In	a	nutshell,	this	feature
allows	admins	to	expose	intranet	apps	to	be	consumed	by	clients	running	outside	the
network—all	protected	by	Azure	AD.	Application	Proxy	is	notable	because	it	offers	an
infrastructural	alternative	to	using	claims-based	identity	to	cross	a	boundary,	and	this
comes	in	handy	when	you	are	working	with	legacy	apps	whose	source	has	been	lost	or	is
as	brittle	as	a	reliquary.	The	use	of	the	Application	Proxy	solves	the	issue	without	having
to	touch	the	code.

I	should	again	warn	you	that	Azure	AD	adds	features	at	a	crazy	pace,	so	now	that	you
have	this	book	in	your	hands,	I	am	sure	this	list	will	already	be	incomplete.	But	I	hope	this
will	be	enough	to	give	you	at	least	an	idea	of	the	kinds	of	features	you	should	keep	an	eye
out	for	so	that	you	don’t	risk	diving	headfirst	into	implementing	custom	features	at	the	app
level	if	they	are	already	present	out	of	the	box.

Summary
In	this	chapter	I	introduced	the	sources	of	user	identities	that	we’ll	be	working	with,
ADFS	and	Azure	AD.	For	the	most	part,	both	authority	types	share	the	same	goals,	but	the
way	in	which	they	pursue	those	goals	varies	according	to	the	workloads	they	were
designed	to	support:	on-premises	direct	federation	for	ADFS,	multiorganization	identity	as
a	service	for	Azure	AD.

This	chapter	touched	on	many	features	you’ll	never	see	mentioned	again	in	this	book,
notably	all	the	admin	features	that	can	influence	the	behavior	of	your	apps	but	that	are
usually	managed	by	an	administrator.	All	the	other	features	introduced	here	are	instead
meant	to	be	directly	exercised	during	the	app	development	life	cycle.	Later	chapters	will
revisit	them,	complementing	the	information	you	learned	here	with	hands-on	examples.

Chapter	4.	Introducing	the	identity	developer	libraries

In	this	chapter	you'll	become	acquainted	with	the	collection	of	developer	libraries
maintained	by	the	Azure	Active	Directory	team.	These	libraries	are	meant	to	help	you	take
advantage	of	claims-based	identity,	and	specifically	Active	Directory,	in	your	applications.

I’ll	begin	by	identifying	the	tasks	that,	if	you	coded	them	from	scratch,	would	require	a
great	deal	of	in-depth	knowledge	of	authentication	protocols.	Those	tasks	are	the	best
candidates	to	be	packaged	in	reusable	libraries.

I	will	proceed	from	there	to	enumerate	the	developer	libraries	that	the	AD	team	offers
as	of	spring	2015,	outlining	their	intended	use.	The	list	includes	libraries	that	you’ll	use
throughout	the	book	and	ones	that	you	won’t	touch	again.

Finally,	I’ll	describe	some	Visual	Studio	features	meant	to	enable	identity	workloads	in
your	apps	that	under	the	hood	take	advantage	of	the	same	libraries.

Token	requestors	and	resource	protectors
If	you	think	back	to	the	discussion	of	protocols	in	Chapter	2,	“Identity	protocols	and
application	types,”	you	might	realize	that	in	terms	of	identity	tasks,	all	apps	can	be
classified	by	using	two	coarse	roles:	applications	that	need	to	securely	access	resources,
and	applications	that	play	the	role	of	the	resource	itself.

Those	two	categories	don’t	really	have	official	names.	The	need	for	a	taxonomy	arises
somewhat	artificially	by	the	fact	that	I	am	writing	a	chapter	about	libraries	meant	to	help
applications	fulfill	such	roles,	and	highlighting	that	fact	makes	it	easier	for	me	to	talk
about	the	big	picture.	Normally,	you	just	use	those	libraries	to	accomplish	the	task	at	hand
without	thinking	all	that	much	about	whether	the	library	as	a	whole	fits	a	specific	role.	But
for	the	sake	of	classification,	I’ll	use	the	monikers	token	requestors	and	resource
protectors.	I	do	not	foresee	using	those	terms	much	outside	this	chapter.

Token	requestors
The	token-requestor	category	includes	all	the	applications	that	act	as	the	client	for	some
remote	resource—think	of	Outlook	consuming	an	Exchange	API,	a	web	application
querying	the	directory	for	a	listing	of	all	the	reports	of	the	currently	signed-in	user,	a
Twitter	native	client	sending	a	new	tweet	to	be	published,	and	so	on.

All	those	client-resource	interactions	have	to	be	secured	with	a	token,	which	must	be
acquired,	used,	and	presumably	stored.	More	specifically,	what	logic	do	you	have	to	add
to	your	application	to	have	it	act	as	a	client	when	it’s	accessing	an	Active	Directory–
protected	resource?	The	following	list	summarizes	the	logic	you	need,	and	Figure	4-1
illustrates	the	concepts.

Figure	4-1	The	key	responsibilities	of	a	library	enabling	an	app	to	play	the	token-
requestor	role.	From	the	top,	in	counterclockwise	order:	acquire	tokens,	store	them	and

manage	session-related	tasks,	and	attach	them	to	requests.

	Token	acquisition	Your	app	needs	to	request	a	token	from	AD.	That	entails	crafting
a	request	in	the	correct	format	for	the	chosen	protocol	and	specifying	all	the	entities
involved:	the	client	application,	the	target	resource,	which	directory	should	be	used,
and	so	on.	If	the	authentication	process	for	your	kind	of	client	app	requires	the
display	of	user	experience	(UX)	elements,	you	need	to	take	care	of	that	aspect	as
well.	And,	of	course,	you	need	to	find	the	token	within	a	response	or	handle	and
interpret	errors	that	might	have	prevented	a	successful	issuance	operation.

	Token	inclusion	in	requests	whenever	the	client	accesses	a	resource	Inclusion
has	to	take	place	in	accordance	with	whatever	protocol	the	resource	supports,	which
might	or	might	not	be	the	same	as	the	protocol	used	for	acquiring	the	token.	Note
that	this	entails	selecting	the	right	token	for	the	resource	if	the	client	uses	more	than
one.

	Session	management	and	token	caching	Acquiring	a	token	anew	every	time	the
app	needs	to	access	a	resource	would	be	unfeasible	for	performance	and	usability
reasons.	You	would	not	want	to	prompt	the	user	for	his	or	her	credentials	multiple
times.	This	means	that	you	need	logic	for	storing	tokens	and	for	retrieving	them
when	you	need	them.	In	fact,	this	task	is	even	more	complicated.	As	you	will	see	in
detail	later,	protocols	such	as	OAuth2	include	special	mechanisms	for	renewing
access	tokens	without	prompting	the	user	again,	and	such	mechanisms	require
explicit	implementation	of	renewal	operations,	which	go	beyond	the	simple	act	of
storing	away	access	tokens	for	later	use.

Why	libraries?

Technically,	it	is	perfectly	possible	to	code	all	of	these	token-requestor	tasks
directly	in	your	application.	That	is	the	case	especially	for	OAuth2	and
OpenID	Connect	because	their	cryptographic	and	message-exchange
requirements	are	relatively	easy.	However,	unless	some	special	circumstances
exist	(for	example,	you	need	to	write	an	app	on	a	development	stack	that	does
not	offer	any	library	for	the	protocol	of	choice),	you	will	rarely	want	to	do
that.

	All	of	the	token-requestor	tasks,	and	the	ones	listed	in	the	next	section,
remain	largely	unchanged	across	applications.	Rewriting	the	same	logic
from	scratch	every	time	does	not	make	sense,	and	using	a	library	is	a	great
way	to	avoid	that.

	Writing	custom	security	code	is	dangerous.	It	requires	you	to	have	deep
knowledge	of	the	protocols	involved	and	to	operate	at	a	low	level.
Knowing	how	the	protocol	solves	your	specific	scenario	is	not	enough;	you
also	need	to	be	cognizant	of	the	many	possible	threats	the	protocol	can
suffer	from	and	include	appropriate	mitigations	in	your	code.	Given	that
authentication	is	on	the	critical	path	to	accessing	precious	resources,	a	bug
can	be	very	costly.	Libraries	aren’t	perfect,	but	they	are	usually	written	by
domain	experts,	and	they	offer	you	a	programming	model	that’s	much
simpler	than	tackling	things	at	the	protocol	level.	Their	large	circulation
ensures	that	lots	of	bugs	are	identified	and	weeded	out	quickly.

	Writing	custom	security	code	is	not	fun.	It	takes	a	very	special	mindset	to
enjoy	menial	and	repetitive	tasks,	obscure	cryptographic	references,
absurdly	fine-grained	nitpicking,	and	outlandish	what-if	attack	scenarios—
all	part	of	the	daily	diet	of	the	people	writing	identity	libraries.

In	a	nutshell,	that’s	why	the	AD	team	pours	so	much	effort	into	offering
identity	libraries	for	development,	and	on	as	many	platforms	as	it	can.	Doing
so	just	makes	a	lot	of	sense.	All	these	tasks	are	fully	dependent	on	the	specific
protocols	used	to	acquire	and	use	tokens:	those	determine	message	formats,
sequences,	the	artifacts	used	to	shuffle	things	around,	and	the	like.	Of	course,
they	are	also	largely	dependent	on	the	development	stack	that’s	used.	Every
platform	will	have	its	own	calling	pattern,	its	own	storage	model	for
persisting	data,	its	own	ways	of	performing	HTTP	requests.

I	want	to	give	you	a	heads-up	here.	The	identity	libraries	for	token	requestors	offered
for	Active	Directory	help	you	with	the	first	and	third	tasks	(token	acquisition	and	session
management)	but	not	the	second	(token	inclusion	in	requests).	The	main	reason	is	that
resources	often	offer	client	libraries	of	their	own,	and	if	AD	offered	an	identity	library	for
consuming	resources,	you’d	be	confronted	with	a	difficult	choice:	use	the	AD	classes	or
the	client	libraries	of	your	target	resource.	In	the	time	frame	of	the	Windows
Communication	Foundation,	Microsoft	chose	to	offer	specialized	channels	and	learned	a
painful	lesson.	In	this	generation	of	its	libraries,	the	AD	team	helps	you	acquire	and

maintain	tokens,	but	it	stays	out	of	the	way	of	any	operation	using	tokens.

	Note

The	only	exception	at	this	time	is	ADAL	JS.	In	that	case,	the	AD	team	knows
how	resources	are	going	to	be	consumed,	hence	that	library	can	efficiently
inject	tokens	in	the	process.

Access	tokens	are	opaque	for	token	requestors

The	relationship	that	a	token	requestor	has	to	an	access	token	is	a	frequent
source	of	serious	issues,	so	I	feel	it’s	wise	to	point	your	attention	to	the
problem	early	on.	When	a	client	requests	a	token	for	a	target	resource,	it	does
so	for	the	purpose	of	accessing	that	resource.	What	goes	into	the	token	and
the	format	in	which	it	is	encoded	is	a	contract	between	the	resource	itself	and
the	IdP:	the	client	is	not	part	of	that	contract	and	is	not	supposed	to	attempt
parsing	the	access	token.

Between	two	requests	that	look	exactly	alike	from	a	client’s	standpoint,	the
IdP	might	decide	to	start	sending	different	data	or	to	change	the	token	format.
If	your	client	code	has	a	dependency	on	the	content	of	the	access	token,	those
changes	will	likely	break	it,	forcing	you	to	discover	why,	fix	the	issue,	and
worst	of	all,	redistribute	updated	bits	to	all	clients.	Note	that	some	of	those
changes	might	actually	make	it	impossible	for	your	client	to	peek	into	the
access	token.	If	the	IdP	starts	encrypting	tokens,	for	example,	only	the
resources	will	be	able	to	open	them.	An	architecture	that	relies	on	the	client
being	able	to	read	such	tokens	would	be	irredeemably	broken	by	such	a
change.	Bottom	line:	resist	the	temptation	of	peeking	inside	access	tokens	on
the	client.

	Note

Client	is,	unfortunately,	an	overloaded	term.	In	the	context	of	identity	matters,
a	client	is	usually	a	token-requestor	application.	But	in	general	IT	parlance,	a
client	is	a	workstation—or,	in	general,	a	device	meant	to	be	directly	operated
by	a	user.	That	is	the	antonym	of	a	server,	a	machine	meant	to	serve	content
back	to	remote	consumers.

When	the	discussion	is	about	a	client	app	running	on	a	client	machine,	there
is	little	chance	for	confusion.	Common	cases	are	a	rich	client	app	running	on
a	desktop	and	a	native	app	running	on	a	tablet	or	a	phone.	The	discussion
becomes	trickier	when	you	have	a	client	application	running	on	a	server
computer,	like	the	middle	tier	of	one	distributed	app	accessing	a	remote
resource,	hence	playing	the	role	of	the	token	requestor.

No	matter	what	magic	terminology	guidance	I	come	up	with,	I	guarantee	that
the	conversation	will	eventually	lead	to	the	use	of	the	word	“client”	to
indicate	both	the	app’s	role	and	the	machine.	It	will	be	up	to	you	to	always	be
sure	that	you	understand	each	time	which	meaning	the	term	client	refers	to.

Resource	protectors
Think	of	any	piece	of	software	that	can	be	consumed	by	a	remote	client:	web	applications
serving	UX	elements	to	a	browser,	a	web	API	consumed	by	mobile	apps	or	server
processes,	and	so	on.	If	you	want	to	restrict	access	to	those	resources,	you	need	some
component	that	enforces	the	necessary	checks	whenever	a	request	is	made.

To	learn	what	tasks	are	necessary	for	protecting	a	resource,	all	you	need	to	do	is	leaf
back	a	few	pages	to	the	section	“Claims-oriented	protocols”	in	Chapter	2.	There	you	will
find	a	list	of	the	steps	that	need	to	happen	for	an	app	to	authenticate	an	incoming	request.
You	can	read	the	complete	description	there:	for	convenience,	I’ll	repeat	the	highlights
here:

	The	resource	app	reads	an	IdP’s	metadata	to	configure	itself.

	In	web	apps,	in	the	event	of	an	unauthenticated	request,	the	app	must	generate	a
sign-in	message	and	send	it	to	the	IdP	of	choice.

In	a	web	API,	the	resource	does	not	(usually)	actively	involve	itself	in	the	token-
acquisition	process;	rather,	it	relies	on	the	client	to	act	as	a	token	requestor	before
attempting	access	to	the	resource.

	The	client	sends	the	token	to	the	resource	app.	The	resource	finds	the	token	in	the
incoming	message,	extracts	it,	and	attempts	validation.

	In	web	apps,	the	resource	app	marks	a	successful	token	validation	with	the	creation
of	a	session—for	example,	by	issuing	a	cookie.

	Every	request	carrying	the	session	cookie	must	also	be	validated.	If	the	cookie

represents	a	valid	session,	the	request	is	considered	authenticated.

These	tasks	are	illustrated	in	Figure	4-2.	The	library	is	represented	as	middleware	in	the
diagram—a	rectangle	that	intercepts	and	filters	requests	to	the	relying	party	(RP),	which	is
represented	by	the	circle.	The	tasks	performed	by	the	library	are,	from	top	to	bottom:
interception	of	requests	and	enforcement	of	the	protocol	implemented	(for	example,
intercepting	unauthenticated	requests	and	responding	with	a	sign-in	message	to	the	IdP	of
choice);	validation	of	tokens;	emission	of	session	artifacts	(such	as	cookies);	and	session
validation.	Figure	4-2	also	shows	a	store	for	holding	the	protocol	coordinates	defining	the
desired	behavior—for	example,	the	trusted	identity	provider,	the	application	IDs,	and	so
on.

Figure	4-2	The	responsibilities	of	a	library	providing	resource-protector	functionality.

That’s	quite	a	few	tasks.	Moreover,	some	of	these	tasks	are	quite	complicated:	token
validation	requires	cryptographic	logic,	sign-in	request	generation	requires	the	use	of
techniques	that	prevent	numerous	attacks—techniques	that	can	become	quite	intricate	at
times.	The	reasons	for	using	a	library	instead	of	coding	all	of	these	tasks	into	your	apps
from	scratch	are	generally	the	same	as	the	ones	listed	in	the	previous	section.

Whereas	you	might	be	required	to	use	token-requestor	logic	at	almost	any	point	during
your	app’s	activities,	the	instant	in	which	you	need	to	apply	resource-protection	logic	is

very	well	defined:	it	has	to	happen	at	resource	access	time,	of	course.	That	marks	an
important	difference	between	the	two	libraries’	roles.	Although	a	library	implementing
token-requestor	tasks	will	offer	you	primitives	that	you	can	access	from	your	code	at	any
time,	resource	protectors	will	tend	to	be	packaged	as	interceptors—software	that	sits
between	the	requestor	and	the	resource	the	protectors	are	meant	to	protect	(hence	the	use
of	the	term	middleware)	and	triggers	automatically	when	a	request	arrives.	That	has
advantages:	your	code	does	not	have	to	change	as	much,	you	usually	just	need	to	opt	in	for
the	portions	of	the	resource	you	want	to	protect,	and	the	protection	will	happen
automatically.	It	also	carries	its	own	challenges,	however:	the	need	for	the	middleware	to
latch	on	to	an	existing	request-processing	pipeline	makes	it	heavily	dependent	on	the
development	stack	of	choice.

Hybrids
Very	commonly,	a	web	application	plays	both	the	role	of	the	protected	resource	and	of	the
token	requestor.	The	classic	example	of	this	I	can	think	of	is	Twitter.	Twitter	has	protected
resources	of	its	own,	like	the	web	API	you	use	for	publishing	new	tweets.	On	the	other
hand,	if	you	associate	your	Facebook	account	with	Twitter,	any	new	tweet	will	also	appear
as	a	status	update	on	your	Facebook	timeline.	That	means	that	the	body	of	the	Twitter	web
API	that	publishes	tweets	must	also	contain	token-requestor	code,	which	is	used	to	gain
access	to	Facebook’s	API.

Most	of	the	time,	this	dual	behavior	is	achieved	simply	by	composing	different	library
types	within	the	same	application.	There	are	occasions	in	which	those	combinations	are
frequent	enough	to	warrant	a	higher	degree	of	integration	between	scenarios	at	the	library
level.	At	those	times,	the	line	between	token-requestor	and	resource-protector	libraries
becomes	blurred.

The	Azure	AD	libraries	landscape
The	Active	Directory	team	wants	to	make	it	as	easy	as	possible	for	you	to	take	advantage
of	AD	from	your	applications.	One	of	the	ways	the	team	tries	to	do	that	is	by	offering	you
a	comprehensive	set	of	developer	libraries	that	can	help	you	with	your	token-requestor	and
resource-protection	tasks,	on	as	many	platforms	and	development	stacks	as	it	can.

Given	the	number	of	development	stacks	you	can	target	nowadays,	the	complete
offering	is	an	intimidating	sprawl	of	libraries,	packages,	and	versions,	as	shown	in	Figure
4-3.

Figure	4-3	Most	of	the	development	libraries	offered	by	the	AD	team	as	of	spring
2015.

A	slanted	line	partitions	the	diagram	into	two	main	areas,	gathering	together	the
libraries	that	fulfill	the	roles	of	resource	protectors	and	token	requestors.	The	backdrop	of
the	diagram	represents	the	various	operating	systems	and	development	platforms	targeted
by	the	libraries.	Finally,	each	box	in	the	foreground	stands	for	a	particular	version	of	a
library,	targeting	all	the	platforms	it	overlaps.

The	next	section	introduces	each	library	from	a	functional	perspective:	you’ll	learn
what	libraries	are	for.	In	Chapter	5	on,	you	will	finally	start	using	them.	Many	of	the
libraries	discussed	here	are	meant	to	be	used	in	native	applications.	Given	that	in	this	book
I	focus	on	web	applications,	such	libraries	won’t	be	discussed	further	after	this	chapter.
The	same	can	be	said	for	libraries	that	are	now	superseded	by	newer	technologies.	I
mention	these	libraries	here	so	that	you	can	correctly	position	them	if	you	encounter	them
in	web	searches,	conversations,	and	specifications.

All	modern	AD	developer	libraries	are	open	source

Back	in	2013,	the	AD	team	decided	that	all	the	developer	libraries	it
published	should	be	open	source	and	that	its	development	should	happen	in
the	open.	At	any	time,	you	can	navigate	to	https://github.com/AzureAD	and
see	what	the	team	is	working	on.	It	releases	binaries	whenever	it	makes	sense
for	the	target	platform.	For	example,	the	.NET	libraries	are	regularly	released
in	the	form	of	fully	supported	NuGet	packages.	The	availability	of	the	source
code	and	the	opportunity	to	contribute	to	it	extends	the	traditional	approach	to
releases;	it	is	not	a	substitute	for	it.	The	approach	has	several	advantages,	but
the	one	I	am	most	fond	of	is	that	it	allows	a	level	of	collaboration	with
developers	that	was	unthinkable	before	opening	up	the	libraries.	If	you	spent
money	to	get	this	book,	you	clearly	have	a	deep	interest	in	identity	and
development:	I	warmly	encourage	you	to	join	the	party	and	have	fun	with	the
AD	team—these	are	your	libraries	and	can	greatly	benefit	from	your
contribution!

Token	requestors
Currently,	the	token-requestor	category	is	composed	in	its	entirety	by	instances	of	the
ADAL	(Active	Directory	Authentication	Library)	franchise.	In	some	philosophical	sense,
there	is	only	one	ADAL,	manifesting	itself	in	different	ways	according	to	the
characteristics	of	each	of	the	targeted	platforms.	However,	philosophy	is	rarely	useful	in
practice,	so	I	am	going	to	present	each	different	package	and	platform	as	a	standalone
deliverable.

The	ADAL	vision

As	its	name	implies,	ADAL	is	meant	to	help	your	apps	act	as	token	requestors	against
Active	Directory,	either	in	its	on-premises	or	Azure	flavor.	The	library	is	not	designed	to
get	tokens	from	any	other	authority	type.	You	cannot	point	ADAL	to	Salesforce	or	Ping
and	get	a	token	from	them.

The	reason	for	this	is	not	immediately	intuitive,	but	it	becomes	obvious	if	you	think
about	it	for	a	moment.	The	main	protocol	that	teaches	apps	how	to	act	as	clients	is
OAuth2.	OAuth2	leaves	large	areas	of	functionality	unspecified.	A	library	implementing
only	the	common	denominator	between	all	existing	OAuth2	providers	would	not	be	able
to	take	care	of	a	lot	of	functionality,	leaving	to	you	the	burden	of	supplying	extra	logic	in
your	apps.	That	logic	would	be	necessary	to	bridge	the	gap	between	the	theoretical
OAuth2	and	the	reality	of	a	provider	choosing	its	own	token	formats,	credential	types,
addresses,	parameters,	and	refresh	token	strategies.	I	won’t	name	names,	but	there	are
various	libraries	like	that	in	the	market.	The	only	other	alternative	is	to	embed	in	a	library
an	enumeration	of	provider-specific	modules	implementing	the	quirks	and	peculiarities	of
every	provider.	In	a	sense,	that’s	what	ADAL	is	doing,	but	just	for	Azure	AD	and	Active
Directory	Federation	Services	(ADFS).

The	goal	with	ADAL	is	to	make	it	as	easy	as	possible	for	you	to	obtain	and	use	tokens
from	AD.	As	the	library	was	being	designed,	the	AD	team	realized	that	it	would	be	better

https://github.com/AzureAD

able	to	achieve	that	goal	by	letting	go	of	the	idea	of	a	protocol	library.	A	traditional
protocol	library	is	a	library	that	provides	artifacts	representing	protocol	constructs	in	the
programming	language	of	choice,	forcing	you	to	be	an	expert	in	the	use	of	said	protocol.

The	AD	team	decided	to	go	for	the	polar	opposite.	ADAL	is	not	a	protocol	library.
ADAL	provides	you	with	primitives	that	are	designed	to	help	you	perform	the	token-
requestor	tasks	I	listed	earlier	in	the	chapter,	without	exposing	to	you	which	protocol	is
actually	used	to	make	things	happen.	Sure,	as	of	today,	that	protocol	is	largely	OAuth2,
and	the	AD	team	is	not	immune	from	the	occasional	abstraction	leak,	but	the	point	is	that
you	don’t	need	to	know	what	protocols	the	library	uses	to	successfully	take	advantage	of
ADAL.

In	fact,	if	you	squint	hard	enough,	every	token	acquisition	in	ADAL	can	be	modeled	by
the	first	leg	of	the	diagram	in	Figure	4-4.

Figure	4-4	The	main	ADAL	token-acquisition	pattern.

The	actors	are	all	well	known.	There’s	the	application	that	needs	access,	the	target
resource,	and	the	authority	that	takes	care	of	handling	token	requests.	ADAL	provides	a
primitive	that	implements	the	first	leg	of	the	diagram—a	function	call	that	accepts	as	input
everything	you	know	about	your	scenario	(authority,	application	identifier,	resource
identifier,	and	more)	and	returns	to	you	a	token	satisfying	those	constraints.	Once	you	get
it,	you	can	use	that	token	to	access	the	targeted	resource.

This	simple	pattern	can	be	applied	in	a	staggering	number	of	variants.	Applications
might	be	native	clients	or	web	apps.	The	token	might	be	requested	acting	as	a	user	or	as	an
application.	The	targeted	authority	might	support	or	require	different	protocols.	The
credential	types	coming	into	play	can	vary.	The	token	requested	might	be	already	cached,
or	it	might	be	obtainable	without	prompting	the	user	again.	And,	of	course,	there	are	lots
of	platforms	you	might	want	to	target,	all	with	their	peculiarities	and	limitations.	The	need

to	support	such	a	wide	range	of	combinations	translates	into	quite	a	lot	of	complexity
that’s	bottled	right	beneath	the	library’s	surface:	support	for	different	protocol	variants,
cryptography,	validations,	smart	caching,	and	much	more.	The	libraries	can’t	always
isolate	you	completely	from	complexity.	For	example,	if	your	subscenario	requires	a
certain	key	to	function,	your	app	does	need	to	somehow	pass	those	key	bits	in,	but	this
approach	does	simplify	things	quite	a	lot.

ADAL	.NET

ADAL	.NET	was	the	first	library	in	the	franchise	to	be	released.	It	created	the	blueprint
for	all	the	others,	and	as	of	today	it	remains	the	one	that	supports	the	widest	range	of
scenarios.	That’s	mainly	for	two	reasons.

First,	applications	written	in	.NET	can	be	both	desktop	apps	(think	of	Outlook,	Excel,	or
Visual	Studio	itself)	and	web	apps	(ASP.NET,	Web	Forms,	etc.).	In	terms	of	OAuth2,
those	are	public	clients	and	protected	clients,	respectively.	Both	support	their	own	set	of
scenarios,	and	both	sets	are	supported	in	ADAL	.NET.	Neither	are	sandboxed	in	app	stores
of	any	kind.

Second,	applications	written	in	.NET	historically	run	on	Windows,	which	means	that
apps	can	take	advantage	of	special	infrastructure	features	(such	as	integrated
authentication)	and	need	special	logic	to	do	so	(for	example,	current	machine	domain-join
detection).

You	can	find	the	ADAL	.NET	source	in	the	GitHub	repo
https://github.com/AzureAD/azure-activedirectory-library-for-dotnet.	The	library	itself	is
distributed	as	a	NuGet	package.	You	can	find	its	entry	at
https://www.nuget.org/packages/Microsoft.IdentityModel.Clients.ActiveDirectory/.

As	I	write	this	chapter,	the	AD	team	has	worked	through	three	major	versions	of	ADAL
.NET.

ADAL	.NET	version	1.x		The	first	version	of	ADAL	.NET	was	released	in	September
2013,	in	the	form	of	a	NuGet	package.	That	version	is	based	on	.NET	4.0,	and	it	supports
obtaining	tokens	from	Azure	AD,	ADFS	in	Windows	Server	2012	R2,	and	the	Access
Control	Service	2	(ACS).

https://github.com/AzureAD/azure-activedirectory-library-for-dotnet
https://www.nuget.org/packages/Microsoft.IdentityModel.Clients.ActiveDirectory/

What	is	(was)	the	Access	Control	Service	(ACS)?

The	Access	Control	Service,	ACS	for	short,	is	(was)	the	first	Azure	offering
in	the	identity	space.	In	a	nutshell,	ACS	is	a	Security	Token	Service	(STS)
designed	to	sit	between	your	applications	(mostly	web)	and	the	IdPs	you	want
to	work	with:	ADFS,	Google,	Facebook,	and	Yahoo!	were	among	the	choices.
ACS	decouples	your	app	from	the	different	protocol	requirements	that	each
IdP	has:	your	app	only	accepts	tokens	from	ACS,	hence	it	only	needs	to	work
with	the	protocol	that	ACS	supports	(mostly	WS-Federation).	As	part	of	the
process	of	issuing	such	tokens,	ACS	takes	care	of	authenticating	the	user
against	the	IdPs	you	want	to	work	with,	without	exposing	any	of	those	details
to	your	apps.

ACS	was	a	breakthrough	product	when	it	first	came	out,	and	its	features
are	still	super	useful	today.	However,	it	was	kind	of	a	local	maxima,	with
some	intrinsic	limitations	(no	georeplication,	no	disaster	recovery)	that	did
not	fit	well	when	Azure	AD	came	to	be.	As	a	result,	ACS	as	a	service	is	being
discontinued,	but	(most)	of	its	features	will	resurface	as	part	of	Azure	AD.
Given	the	current	estimates,	I	don’t	believe	that	those	new	features	will
emerge	fast	enough	for	me	to	be	able	to	describe	them	in	this	book.	But	I
wanted	to	at	least	give	you	a	heads-up	about	this,	as	I	guarantee	that	sooner	or
later	ACS	will	come	up	in	your	conversations.

ADAL	.NET	version	1	was	a	release	meant	mostly	to	enable	the	development	of	.NET
native	clients	on	Windows	desktop.	It	offers	mechanisms	for	acquiring	tokens	by
displaying	a	browser	dialog	for	the	authentication	and	consent	experience.	It	has	a
customizable	token	cache	that	automates	session	management	and	greatly	reduces	the
number	of	times	it	is	necessary	to	prompt	users	for	credentials.

ADAL	.NET	v1	also	helps	with	some	flows	more	typically	found	on	the	server	side,
such	as	the	client-credential	and	the	confidential-client	authorization-code	grant.	Those
flows	are	somewhat	limited	in	the	version	1	release,	as	they	don’t	use	the	cache	(which	is
not	designed	to	operate	at	web	scale	in	version	1),	and	they	work	only	against	Azure	AD
authorities.

The	main	reasons	you	might	consider	using	ADAL	v1	these	days	are	platform
constraints	(your	app	cannot	be	moved	to	.NET	4.5.x)	or	if	you	are	still	using	ACS.

ADAL	.NET	version	2.x		ADAL	.NET	v2	was	released	in	September	2014.	Currently,
version	2.x	is	the	latest	stable,	production-ready	release.

The	new	version	brought	a	very	significant	expansion	in	scope.	The	changes	can	be
summarized	as	follows:

	Multitargeting	NuGet.	ADAL	.NET	v2	goes	beyond	.NET,	supporting	multiple
platforms:

•	Any	.NET	4.5+	project,	desktop	or	web

•	Windows	Store	projects	for	tablets/PCs	in	any	Windows	Store	language,	from
Windows	8	onward

•	Windows	Store	projects	for	Windows	Phone	8.1

•	Windows	Silverlight	projects	for	Windows	Phone	8.1

	Out-of-the-box	persistent	cache	for	all	project	types	targeting	a	sandboxed	app’s
platform	(Windows	Store,	Windows	Phone)

	Moving	from	.NET	4.0	to	.NET	4.5.x,	and	the	introduction	of	async	primitives

	Discontinuation	of	the	ACS	2	support	in	ADAL

	New	authentication	flows

•	Direct	use	of	username-password	credentials	for	.NET	native	clients

•	Windows	Integrated	Authentication	(WIA)	for	federated	tenants	and	.NET	native
clients

•	On	behalf	of—a	new	flow	allowing	the	user	identity	to	flow	through	tiers	(for
example,	user1	calling	service1,	which	in	turn	calls	service2	on	behalf	of	user1)

	Better	support	for	middle-tier	workloads.	ADAL	.NET	v2	is	more	server-side
friendly.	A	newly	redesigned	cache	makes	it	easier	to	meet	the	demands	of	web-
scale	scenarios,	and	all	the	primitives	are	aimed	at	grants	more	typically	used	on	the
server	side.

All	the	Windows	Store	libraries	for	Windows	and	Windows	Store	in	ADAL	2.x	are
compiled	as	Windows	Runtime	Components	(extension	.winmd).	This	allows	you	to	write
apps	using	any	of	the	languages	Windows	Store	supports—C#,	JavaScript,	and	C++.	In
fact,	all	the	samples	the	AD	team	provides	are	in	C#,	so	targeting	the	other	platforms
might	not	be	as	easy,	but	it	is	definitely	possible.

ADAL	.NET	2.x	ships	in	a	large	number	of	Microsoft	products	and	is	used	in	almost	all
Azure	services	that	need	tokens	for	accessing	Azure	AD–protected	resources.

ADAL	.NET	version	3.x		Currently,	the	AD	team	is	working	on	the	third	refresh	of	the
preview	of	ADAL	.NET	v3.	ADAL	.NET	v3	expands	its	reach	further	by	adding	support
for	more	platforms.	From	this	version	on	you	can	use	ADAL	for	writing	multitarget
applications	with	Xamarin:	namely,	you	can	write	C#	apps	and	deploy	them	on	iOS	and
Android	devices.	Furthermore,	ADAL	.NET	v3	adds	support	for	the	brand-new	.NET
core.

ADAL	.NET	v3	drops	support	for	Windows	Phone	Silverlight	and	discontinues	the	use
of	winMD	files.	As	a	result,	you	no	longer	can	use	ADAL	.NET	in	JavaScript	apps.	You
can,	however,	use	the	ADAL	JavaScript	versions	described	later	in	the	chapter.

ADAL	.NET	and	this	book		This	book	focuses	on	the	development	of	web	applications,
in	particular	on	the	.NET	platform.	Whenever	the	scenarios	described	require	the	app	to
act	as	a	client,	I	will	use	ADAL	.NET	to	implement	the	tasks	that	role	entails.

The	ADAL	features	used	for	requesting	and	handling	access	tokens	from	the	server
portion	of	a	web	application	are	a	small	subset	of	all	the	things	that	ADAL	.NET	can	do.
For	more	details	on	ADAL	and	native	clients,	please	refer	to	the	product	documentation.
Moreover,	I	blog	about	this	topic	quite	often	at	www.cloudidentity.com.	I	hope	to

http://www.cloudidentity.com

eventually	follow	up	this	book	with	a	second	on	native	clients,	but	the	documentation	and
samples	should	be	more	than	enough	to	get	you	going.

ADAL	libraries	targeting	native	apps–only	platforms

Many	of	the	most	interesting	development	platforms	can	run	only	native	applications.
Examples	include	all	mobile	operating	systems:	iOS,	Android,	and	Windows	Phone.	That
holds	for	both	native	development	stacks	(Objective-C	and	Java	apps	for	iOS	and
Android,	respectively)	and	multitarget	stacks	(such	as	Cordova).	The	AD	team	maintains	a
number	of	ADAL	libraries	that	target	such	platforms.	I	won’t	discuss	any	of	these	libraries
in	detail,	but	I	want	to	be	sure	you	are	aware	of	them.

ADAL	iOS	and	OS	X		ADAL	iOS	is	an	Objective-C	library	designed	to	help	you	enhance
your	iOS	and	OS	X	apps	with	token-requestor	capabilities.	You	can	find	it	in	the	repo
https://github.com/AzureAD/azure-activedirectory-library-for-objc.

ADAL	iOS	follows	the	general	ADAL	franchise	tenet	that	requires	all	platform-specific
libraries	to	be	good	citizens	of	the	stack	they	target.	In	this	case	that	means	that	ADAL
iOS,	although	featuring	all	the	ADAL	primitives	for	native	clients	common	to	all	ADAL
flavors,	strictly	follows	the	Objective-	C	naming	and	calling	conventions	you	would
expect	in	a	native	Objective-C	library.	Furthermore,	it	takes	advantage	of	the	platform-
specific	features	offered	by	iOS.	For	example,	all	method	names	end	with	the	suffix
“with<FirstParameter>”,	tokens	are	persisted	on	the	device’s	keychain,	and	so	on.

ADAL	Android		ADAL	Android	is	a	Java	library	designed	to	help	you	enhance	your
Android	apps	with	token-requestor	capabilities.	You	can	find	it	in	the	repo
https://github.com/AzureAD/azure-activedirectory-library-for-android.

Pretty	much	everything	I	mentioned	about	ADAL	iOS	applies	here,	translated	for	the
target	platform:	same	primitives	as	all	other	ADALs,	but	coding	conventions	and
affordances	that	are	100	percent	native	to	Android.

ADAL	Cordova		ADAL	Cordova	is	a	framework	meant	to	enable	you	to	write	one
application	in	JavaScript	and	execute	it	as	a	native	app	on	multiple	platforms.	That’s	the
old	idea	of	“write	once,	run	everywhere”—historically,	that	did	not	work	too	well,	but	the
conditions	have	never	been	better	for	making	that	motto	a	reality.	You	can	find	ADAL
Cordova	in	the	repo	https://github.com/AzureAD/azure-activedirectory-library-for-
cordova.

ADAL	Cordova	is	a	Cordova	plug-in	that	wraps	the	ADAL	native	libraries	on	iOS,
Android,	Windows	Store,	and	Windows	Phone	and	exposes	the	main	token-acquisition
primitives	through	a	JavaScript	layer.	The	advantage	of	using	the	native	libraries	on	each
target	platform—instead	of	implementing	the	token-acquisition	code	in	JavaScript—is	that
this	allows	you	to	pierce	the	sandbox	that	typically	isolates	web	apps	from	the	client
environment,	and	thus	take	advantage	of	device-specific	features.	For	example,	on	iOS,
that	would	give	you	access	to	the	tokens	stored	in	the	keychain.

ADAL	libraries	targeting	mostly	midtier	clients

Some	platforms	are	traditionally	used	for	developing	software	running	on	a	server.	You
can	put	in	that	category	most	web	frameworks:	PHP,	Java	Server	Pages	(JSP),	and	the	like.

https://github.com/AzureAD/azure-activedirectory-library-for-objc
https://github.com/AzureAD/azure-activedirectory-library-for-android
https://github.com/AzureAD/azure-activedirectory-library-for-cordova

To	this	point,	the	AD	team	has	released	two	ADAL	libraries	targeting	such	platforms:
one	for	Java	(ADAL4J)	and	one	for	Node.JS.	They	both	cover	the	basics	well,	though
currently	they	don’t	offer	the	same	exhaustive	list	of	features	you	can	find	on	the
confidential	client	portions	of	ADAL	.NET.

You	can	find	ADAL4J	on	GitHub	at	https://github.com/AzureAD/azure-activedirectory-
library-for-java,	and	ADAL	for	Node.JS	at	https://github.com/AzureAD/azure-
activedirectory-library-for-nodejs.

Resource	protectors
Microsoft	has	been	in	the	business	of	offering	development	libraries	for	resource
protectors	much	longer	than	it	has	for	token	requestors.	That	is	the	natural	consequence	of
two	main	factors.	The	first	lies	in	how	natural	it	is	to	provide	a	resource	protector—which
can	simply	be	a	piece	of	middleware	that	intercepts	requests	without	really	disturbing	the
logic	it	is	trying	to	protect—and	the	mission-critical	nature	of	enforcing	access	restrictions
to	resources.	The	second	is	that	the	claims-based	protocols	were	initially	used	mostly	on
web	applications,	where	there’s	not	much	to	be	developed	on	the	client	(or	at	least	that
was	the	case	before	Web	2.0	and	JavaScript).

For	the	sake	of	brevity,	I	won’t	dig	too	deeply	into	the	history	of	resource-protector
libraries,	leaving	ancient	artifacts	like	the	Web	Services	Enhancements	(WSE)	library	and
Windows	Communication	Foundation	(WCF)	to	rest	in	peace.	Rather,	I’ll	cover	the
mainstream	libraries	in	use	today.

Windows	Identity	Foundation

Windows	Identity	Foundation	(WIF)	was	the	first	developer	library	entirely	devoted	to
identity	tasks.	WIF	is	a	collection	of	classes	meant	to	provide	common	language	runtime
(CLR)	representations	of	protocol	artifacts	(WS-Federation	messages,	SAML	tokens,
session	cookies,	and	so	on)	and	HTTP	modules	meant	to	easily	weave	claims-based
identity	support	to	ASP.NET	applications.	For	the	first	time,	a	developer	could	take
advantage	of	those	new	protocols	without	having	to	code	everything	from	scratch,	paving
the	way	for	claims-based	identity	to	reach	the	mainstream	status	it	enjoys	today.
Moreover,	WIF	offered	a	rich	extensibility	model,	which	the	community	used	to	handle
scenarios	that	were	far	from	the	basic	ones,	including	entirely	new	products,	such	as
custom	STSs.

The	first	WIF	version	was	an	out-of-band	release	based	on	.NET	3.5.	That	release	has
special	sentimental	value	to	me,	because	at	that	time	I	was	the	identity	developer
evangelist	at	Microsoft	and	I	finally	had	a	toy	to	play	with.	Between	2008	and	2012,	I
spent	a	lot	of	time	producing	lots	of	samples,	videos,	hands-on	labs,	training	events,	even
a	book	(Programming	Windows	Identity	Foundation,	Microsoft	Press)	to	kick-start	the
claims-based	identity	development	movement.

In	2012,	clams-based	identity	(and	the	cloud	scenarios	it	enabled)	reached	such	an
importance	that	Microsoft	decided	to	take	all	the	identity	classes	from	WIF	and	embed
them	in	the	next	version	of	the	.NET	Framework,	4.5.	That	was	also	the	time	at	which	I
decided	to	join	the	engineering	team,	to	contribute	all	the	feedback	I	had	gathered	in	years
of	evangelizing	identity	to	developers.	The	process	was	already	in	flight,	hence	there

https://github.com/AzureAD/azure-activedirectory-library-for-java
https://github.com/AzureAD/azure-activedirectory-library-for-nodejs

wasn’t	much	latitude	for	big	changes.	Those	came	later,	with	the	OWIN	wave	that	I’ll
introduce	in	the	next	section.

The	.NET	Framework	4.5	was	reengineered	to	root	all	identity	representations	to	a	base
class,	ClaimsPrincipal,	centered	on	the	idea	of	claims.	That	class	went	all	the	way	to
mscorlib.dll,	the	core	assembly	of	.NET.	All	other	classes	were	scattered	through	various
.NET	namespaces.	Visual	Studio	2012	was	extended	with	specific	tools	to	facilitate	the
use	of	WIF	in	.NET	applications.

Both	versions	of	WIF	share	a	common	feature	set	and	only	differ	in	the	degree	of
integration	they	offer	with	the	.NET	Framework	versions	they	target.	The	most	common
reason	for	which	WIF	is	used	is	to	secure	an	ASP.NET	app	with	WS-Federation.	That	is
achieved	by	adding	in	the	ASP.NET	pipeline	a	series	of	HttpModules	and	adding	to	the
app’s	config	file	a	special	section	capturing	the	protocol	coordinates	of	both	the
application	and	the	STS	it	wants	to	trust.	The	developer	does	not	need	to	understand	any
of	the	intricacies	of	the	protocols	and	token	formats,	and	the	config	file	is	generated
automatically	via	tools.	However,	customizations	and	troubleshooting	quickly	raise	the
level	of	proficiency	required	to	operate	the	library.

The	WIF	classes	in	the	.NET	Framework	are	still	supported	today,	in	the	same	way	in
which	the	framework	itself	is	supported,	and	they	are	used	in	Visual	Studio	2013	tools	to
this	day.	However,	WIF	is	no	longer	the	recipient	of	innovation,	and	all	efforts	and	new
features	are	concentrated	on	a	new	generation	of	libraries	(described	in	the	next	section).
Although	WIF	proved	to	be	an	excellent	product—ferrying	an	entire	generation	to	the
claims-based	identity	era	is	no	small	feat—its	extensibility	model	and	configuration
mechanisms	were	too	rooted	to	its	XML	legacy.	Proper	modern	protocols	support	required
some	backtracking	and	a	fresh	start.

OWIN	middleware	for	.NET	4.5.x,	or	“Katana”	3.x

If	WIF’s	approach	is	not	fully	suitable	for	implementing	modern	protocols,	what	should	be
used?	The	answer	the	AD	team	gave	to	that	question	is	“OWIN.”

OWIN	stands	for	Open	Web	Interface	for	.NET.	It	is	a	community-driven	specification
meant	to	encourage	the	creation	of	highly	portable	HTTP	processing	components	that	can
be	used	and	reused	on	any	web	server,	hosting	process,	or	even	OS—as	long	as	.NET	is
available	on	the	target	platform	in	some	capacity.	This	is	openly	in	contrast	with	the
approach	that	was	popular	when	WIF	was	first	conceived:	the	main	HTTP	processing
primitive	was	the	HttpModule,	a	construct	tied	to	ASP.NET	and	Internet	Information
Services	(IIS).	OWIN	sheds	many	other	aspects	of	old-guard	ASP.NET	programming	that
WIF	depended	on.	One	glaring	example	is	the	web.config	file—a	mandatory	artifact	in	the
old	ASP.NET	approach	rendered	clunky	and	inadequate	by	the	new	cloud	deployment
technologies—which	is	completely	optional	in	OWIN.

In	ASP.NET	4.6	the	Web	tools	team	rewrote	most	of	ASP.NET	request	processing	in
OWIN	style.	The	AD	development	experience	team	decided	to	latch	on	to	that	initiative
and	package	all	of	its	resource-protector	components	as	OWIN	middlewares.	I	will	cover
all	those	components	very	thoroughly	in	the	hands-on	parts	of	the	book.	Here	I	just	want
to	introduce	terminology	and	provide	a	basic	orientation.

The	OWIN	components	offered	by	the	AD	team	continue	the	tradition	introduced	by
WIF	to	isolate	you	and	your	application	from	the	details	of	the	protocol	being	used.	In
fact,	in	OWIN	even	the	identity	extracted	by	incoming	tokens	is	represented	by	a
ClaimsPrincipal—you	can	keep	your	business	logic	completely	unchanged,	change
protocol,	or	even	switch	WIF	to	OWIN	and	things	should	keep	working	as	usual.	What
did	change	is	the	development	surface	exposed	by	the	libraries.	Whereas	WIF	was
designed	for	a	cast	of	administrators-developers	who	were	rather	well	versed	in	protocol
configuration,	the	OWIN	middlewares	for	claims-based	identity	require	an	absolutely
minimal	amount	of	input	to	do	their	job—while	gracefully	increasing	the	sophistication
that’s	needed	as	you	choose	to	work	with	more	advanced	features.

The	source	code	for	all	ASP.NET	OWIN	components	is	available	under
http://katanaproject.codeplex.com/.	“Katana”	is	the	original	code	name	of	the	project.	It
should	have	been	superseded	by	the	official	name,	ASP.NET	OWIN	Components,	but	you
can	see	how	Katana	wins	hands	down	against	that	any	day	of	the	week.

The	AD	team	contributed	three	assemblies	to	the	project,	available	as	NuGet	packages:

	Microsoft.Owin.Security.OpenIdConnect	Contains	middleware	for	protecting
web	apps	with	OpenID	Connect.

	Microsoft.Owin.Security.WsFederation	Contains	middleware	for	protecting	web
apps	with	WS-Federation.

	Microsoft.Owin.Security.ActiveDirectory	Contains	middleware	for	protecting
web	APIs	as	prescribed	in	the	OAuth2	bearer	token	usage	specification.

These	assemblies	contain	the	OWIN-specific	logic	that	is	necessary	for	implementing
the	protocols	mentioned.	There	is	a	number	of	lower-level	components	not	tied	to	OWIN
that	model	protocol-specific	artifacts	such	as	messages	or	token	formats.	Those	are	mostly
packaged	in	two	assemblies	also	available	on	NuGet—
Microsoft.IdentityModel.Protocol.Extensions	and	System.IdentityModel.Tokens.Jwt.	We
keep	the	source	for	both	assemblies	in	https://github.com/AzureAD/azure-activedirectory-
identitymodel-extensions-for-dotnet.

	Important

At	the	time	of	writing,	Katana	3.x	is	the	recommended	library	for	modeling
protected	resources	in	.NET.	Unless	you	are	dealing	with	special	constraints,
you	should	always	consider	Katana	3.x	as	your	first	choice	for	securing	your
web	apps	and	web	API	on	.NET	with	claims-based	identity.

One	level	below:	The	JSON	Web	Token	(JWT)	handler

Katana	3.x	depends	on	an	assembly	that	predates	it,	what	is	commonly	known	as	the	.NET
JWT	handler	(the	NuGet	package	is	at
https://www.nuget.org/packages/System.IdentityModel.Tokens.Jwt/,	and	the	source	is	at
https://github.com/AzureAD/azure-activedirectory-identitymodel-extensions-for-dotnet).

http://katanaproject.codeplex.com/
https://github.com/AzureAD/azure-activedirectory-identitymodel-extensions-for-dotnet
https://www.nuget.org/packages/System.IdentityModel.Tokens.Jwt/
https://github.com/AzureAD/azure-activedirectory-identitymodel-extensions-for-dotnet

As	its	name	implies,	the	JWT	handler	offers	classes	designed	to	work	with	JWT	tokens:
it	offers	primitives	to	parse,	validate,	and	manufacture	them.	This	class	has	been	widely
used	by	developers	who	for	one	reason	or	another	did	not	use	higher-level	constructs	such
as	OWIN	middlewares.	If	you	decide	to	handle	protocol	messages	yourself,	you	can
identify	a	JWT	token	in	a	request	and	feed	it	to	the	JWT	handler,	and	with	the	proper
configuration,	it	will	be	able	to	validate	it	for	you.

That	came	in	very	handy	in	the	past,	before	OWIN	middleware	was	even	available.	In
fact,	versions	1.x	to	3.x	of	the	JWT	handler	also	work	within	the	WIF	request	pipeline.

OWIN	middleware	for	.NET	core,	or	“Katana”	vNext

The	year	2015	brought	unprecedented	changes	in	the	.NET	Framework.	The	introduction
of	.NET	core,	a	version	of	the	.NET	Framework	that	allows	deployment	scoped	to
individual	apps,	counting	only	the	assemblies	that	are	needed	for	the	task	at	hand,	marks	a
turning	point	in	what	it	means	to	develop	for	.NET.

The	ability	to	obtain	tokens	and	validate	incoming	requests	is,	if	possible,	even	more	on
the	critical	path	for	those	new	scenarios.	The	OWIN	components	mentioned	earlier	are
being	ported	to	the	new	framework,	including	the	OpenID	Connect	and	the	OAuth2
middlewares.

	Note

WS-Federation	support	requires	advanced	XML	cryptography	capabilities,
which	are	not	part	of	the	first	wave	of	.NET	core	assemblies.	For	that	reason,
WS-Federation	is	lagging	a	bit	behind	the	other	protocols.

Currently,	as	I	write	this	chapter,	.NET	core	(and	the	stacks	that	rely	on	it,	such	as
ASP.NET	5)	is	in	developer	preview.	I	expect	some	important	news	to	be	added	to	the	new
middlewares,	so	I	will	cover	some	aspects	of	Katana	vNext	in	the	pages	ahead.

Hybrids
Applications	are	often	not	easily	classified	as	pure	resources	or	pure	token	requestors.	You
have	seen	that	in	many	occasions	they	play	a	bit	of	both	roles.	This	is	normally	addressed
by	using	more	than	one	library	in	the	same	app:	an	ASP.NET	web	application	can	be
protected	by	OpenID	Connect	middleware	and	use	ADAL	to	acquire	the	access	tokens	it
needs	to	use	external	APIs.	However,	there	are	some	hybrid	situations	where	the	library
itself	can	be	seen	as	enabling	both	approaches.	As	of	today,	the	collection	of	ADAL
libraries	counts	only	one	such	artifact,	ADAL	JS.

ADAL	JS

In	Chapter	2,	I	described	single-page	applications	(SPA),	a	web	application	development
pattern	that	distributes	app	functionality	between	a	JavaScript	front	end	and	a	web	API
back	end.	From	a	purely	mechanical	perspective,	the	front	end	in	an	SPA	acts	as	a	token
requestor.	But	that	said,	the	front	end	also	works	in	a	way	with	resources—it	is	natural	for
the	developer	to	treat	as	resources	the	routes	and	views	accessed	by	the	end	user,	although
the	actual	resource	to	protect	is	the	web	API	that	such	routes	need	to	access.

ADAL	JS	is	a	JavaScript	library	meant	to	help	SPA	developers	add	logic	to	their	front
ends	that	acquires,	stores,	and	uses	tokens	for	accessing	web	APIs,	both	those	in	its	own
back	end	and	any	other	web	API	that	can	be	called	from	JavaScript	(via	CORS	or	an
equivalent	mechanism).	That	falls	squarely	in	the	token-requestor	camp.

The	library	also	includes	primitives	for	indicating	that	a	certain	route	requires	the	use
(hence	the	presence)	of	a	token,	making	it	also	a	sort	of	resource	protector.	Note	that	this
is	mostly	a	convenient	model	for	the	front-end	developer:	ultimately,	somebody	must
validate	the	token	after	acquisition,	and	today	that’s	done	on	the	service	side.	That	means
that	a	complete	SPA	solution	would	include	ADAL	JS	on	the	front	end	and	perhaps	the
OWIN	middleware	for	OAuth2	on	the	web	API	back	end.

ADAL	JS	is	also	open	source,	of	course.	Source	and	instructions	are	available	at
https://github.com/AzureAD/azure-activedirectory-library-for-js.	The	library	proper	is	split
into	two	files—a	core	JS	file	containing	all	the	low-level	primitives,	and	an	AngularJS
module	that	makes	it	extra	easy	to	hook	up	identity	features	without	disturbing	the	usual
Angular	application	structure.

Visual	Studio	integration
Visual	Studio	has	a	rich	tradition	of	identity-integration	features,	dating	back	to	the	first
WIF	SDK	in	Visual	Studio	2010.	In	this	last	section	I	will	list	the	identity	features	you	are
most	likely	to	encounter	while	using	Visual	Studio	to	develop	apps	that	leverage	AD.	I
won’t	go	back	further	than	Visual	Studio	2013.

It’s	worth	stressing	that	none	of	the	tools	I	discuss	here	are	strictly	necessary	to
successfully	add	AD	authentication	to	your	apps.	Nowadays,	cloning	a	sample	from
GitHub	and	doing	some	cutting	and	pasting	takes	you	a	long	way.	The	value	of	Visual
Studio	integration	lies	in	its	ability	to	automate	menial	tasks	such	as	app	provisioning	in
Azure	AD,	the	inclusion	of	identity	libraries’	NuGet	packages,	injection	of	boilerplate
code,	and	various	other	activities	that	are	not	rocket	science	per	se	but	can	occupy	your
time	and	focus.

https://github.com/AzureAD/azure-activedirectory-library-for-js

AD	integration	features	in	Visual	Studio	2013
In	the	Visual	Studio	2013	time	frame,	the	collaboration	between	the	AD	and	the	ASP.NET
teams	marked	an	important	milestone.	Visual	Studio	2013	shipped	with	a	new	unified
ASP.NET	project	templates	dialog,	which	included	a	section	dedicated	to	creating	new
ASP.NET	projects	(Web	Forms	and	MVC	projects)	already	configured	to	outsource
authentication	to	AD	from	the	get-go.	The	project	template	instantiation	includes	a	wizard
that	gathers	basic	info	about	your	authentication	requirements	(which	Azure	AD	tenant
you	want	to	work	with,	for	example)	and	also	does	the	following:

	Automatically	provisions	one	entry	in	Azure	AD	for	your	app,	customized	for	your
project:	the	name	derives	from	the	project	name,	the	URL	is	the	one	assigned	by	IIS
express,	and	so	on.

	Adds	references	to	the	necessary	assemblies	and	injects	config	elements	that	point
to	the	target	tenant	and	the	newly	created	app	entry.

In	Visual	Studio	2013,	the	identity	library	used	in	the	templates	is	WIF,	specifically	the
WIF	classes	from	.NET	4.5.x.	The	only	exception	to	this	is	the	Web	API	templates,	which
use	an	early	version	of	the	OWIN	middleware	for	OAuth2	bearer	token	authorization.

The	templates	allow	for	few	application	variants,	the	main	one	being	Web	API	(as	in
web	apps	meant	to	be	accessed	programmatically)	versus	Web	UX	(as	in	apps	with	a	user
interface	served	via	a	browser)	and	the	choice	of	Azure	AD	and	ADFS.

AD	integration	features	in	Visual	Studio	2015
In	the	development	of	Visual	Studio	2015,	the	level	of	collaboration	between	teams	has
reached	a	new	level.	Every	Thursday	morning	since	the	summer	of	2014,	I	have	run	a	v-
team	meeting	with	participants	from	Visual	Studio	IDE,	Visual	Studio	Online,	ASP.NET,
and	Visual	Studio	tools	for	connected	services	(Azure	and	Office	365).	Our	goals	are	to
ensure	that	Visual	Studio	2015	minimizes	the	number	of	authentication	prompts	and	that
every	feature	offers	a	consistent	identity	experience	by	augmenting	every	other	feature’s
functionalities	instead	of	stepping	on	one	another’s	metaphorical	toes.

Here’s	a	summary	of	the	most	recognizable	features	you’ll	encounter.

Visual	Studio	2015	keychain

In	Visual	Studio	2015	you	can	associate	directly	to	the	IDE	users	from	all	your	tenants—
or,	more	precisely,	the	IDE	will	save	the	users’	tokens	in	a	persistent	cache	and	make	them
available	to	all	the	other	Visual	Studio	features	when	they	need	them.	That	greatly	reduces
the	need	for	prompts	and	improves	discoverability—you	always	know	which	directories
you	can	work	with.

ASP.NET	templates	and	Azure	Web	Sites	publishing

The	ASP.NET	templates	in	Visual	Studio	2015	are	entirely	based	on	OWIN.	The	wizard
experience	has	been	designed	to	take	advantage	of	the	keychain	and	make	it	easy	to	select
which	Azure	AD	tenant	should	be	used.	The	generated	project	templates	follow	a	structure
that	was	agreed	upon	across	all	identity	features	in	Visual	Studio	so	that	every	tool
working	on	the	same	project	can	successfully	modify	it.	Another	improvement	in	Visual
Studio	2015	is	that	any	user	can	create	applications	in	Azure	AD,	including	users	with	a
Microsoft	account;	in	Visual	Studio	2013,	the	identity	templates	are	restricted	to	admin
directory	users.

Azure	AD	connected	services

Visual	Studio	2015	introduces	a	feature	that	allows	you	to	configure	Azure	AD
authentication	for	a	project	after	creation	time.	The	experience	is	very	similar	to	the
ASP.NET	New	Project	wizard,	with	provisions	made	for	a	reentrant	experience.

Office	365	tools

Visual	Studio	2013	already	features	tools	for	adding	to	a	Web	application	the	ability	to
invoke	the	Office	365	API.	However,	the	tool	isn’t	very	sophisticated.	It	creates	the	entries
in	Azure	AD	for	you,	but	it	doesn’t	emit	the	code	necessary	to	leverage	it,	leaving	many
developers	stranded.	The	version	in	Visual	Studio	2015	is	vastly	superior,	building	on	the
Visual	Studio	keychain	and	emitting	project	code	along	the	same	lines	as	the	ASP.NET
and	connected	services	features.

Summary
This	chapter	unfolded	before	you	the	full	range	of	the	developer	libraries	maintained	by
the	AD	team.	Above	all,	it	introduced	the	idea	of	token-requestor	and	resource-protector
libraries,	highlighting	differences	and	the	combined	effect	of	the	two.

Many	of	the	libraries	I’ve	mentioned	in	this	chapter	are	covered	just	for	exhaustiveness
and	for	preempting	questions	you	might	have	about	their	relevance	to	Web	application
scenarios.	The	libraries	that	do	not	play	a	role	in	Web	app	development	scenarios	will	not
be	mentioned	again	in	this	book.

Well,	that’s	it	for	the	pure	theory.	The	remaining	chapters	in	this	book	will	keep	telling
you	what	goes	on	under	the	hood,	but	I’ll	always	do	so	in	the	context	of	trying	to
accomplish	something	in	code.	Now	the	fun	begins!

Chapter	5.	Getting	started	with	web	sign-on	and	Active
Directory

This	chapter	opens	the	hands-on	portion	of	this	book,	where	all	the	theory	you’ve	been
absorbing	until	now	will	help	you	to	be	a	more	effective	developer	for	identity-related
tasks.

The	first	task	I’ll	cover	is	the	most	common	you	will	ever	encounter:	you	will	learn	how
to	use	Active	Directory	to	sign	in	users	to	a	web	application.	I	will	focus	on	the	libraries
required,	the	structure	you	need	to	use	to	organize	your	project,	and	the	(largely
boilerplate)	code	you	need	to	add.	I	will	show	you	how	to	set	an	entry	for	your	application
in	Azure	AD	by	using	the	technologies	available	today.	Finally,	I’ll	walk	you	through	a
test	run	of	the	project	to	ensure	that	you’ve	achieved	the	results	you	aimed	for.

Literally	all	of	these	steps	can	be	easily	automated	by	using	the	web	project	templates	in
Visual	Studio	2015.	I	am	describing	how	to	do	everything	by	hand	because	that	gives	you
great	insights	about	the	moving	parts	and	project	structure—insights	that	you’ll	need	when
you	find	yourself	troubleshooting	more	complex	scenarios.

After	the	binge	of	theory	in	the	first	four	chapters,	I’ll	let	your	brain	take	a	break	…	and
avoid	discussing	protocol	details,	object	model	elements	beyond	the	ones	necessary	for	the
task	at	hand,	and	the	Active	Directory	application	model.	There	will	be	time	for	that	in	the
subsequent	chapters.

The	web	app	you	build	in	this	chapter
The	app	I	want	you	to	build	in	this	chapter	is	pretty	much	the	same	app	that	you	created	in
Chapter	1,	“Your	first	Active	Directory	app.”	It’s	a	minimal	ASP.NET	4.6	web
application,	which	makes	use	of	Azure	AD	for	authenticating	users	from	an	Azure	AD
tenant	of	choice.	The	app	will	also	reprise	details	from	Chapter	1	about	how	to	access	user
attributes	from	the	claims	in	the	incoming	token.	Finally,	you	will	learn	how	to	implement
basic	sign-out	functionality.

In	Chapter	1,	Visual	Studio	did	all	the	heavy	lifting	for	you,	but	here	you	will	manually
add	all	the	identity	logic.	Furthermore,	you’ll	explicitly	provision	the	app	in	Azure	AD	via
the	Microsoft	Azure	portal.	In	this	section,	I	outline	the	prerequisites	and	break	down	into
functional	steps	the	task	of	adding	authentication	logic	to	the	app.

Prerequisites
The	prerequisites	here	are	even	more	relaxed	than	the	ones	you	encountered	in	the
“Prerequisites”	section	in	Chapter	1.

You	still	need	a	Microsoft	Azure	subscription:	please	refer	to	the	aforementioned
section	in	Chapter	1	for	details.

Here	you	can	use	any	version	of	Visual	Studio	you	like,	from	Visual	Studio	2013	on.
You	don’t	need	any	special	tooling	or	automation.	I’m	using	Visual	Studio	Enterprise
2015,	but	as	long	as	you	account	for	small	differences	in	the	user	interface,	you	can	easily

apply	the	same	instructions	in	whichever	version	you	have.

ASP.NET	4.6	vs.	ASP.NET	5

I	am	purposely	choosing	to	focus	on	ASP.NET	4.6	for	all	the	code	samples	in
the	book.	ASP.NET	5	has	some	awesome	features,	and	giving	them	up	here	is
not	an	easy	choice.	However,	what	you	can	do	in	terms	of	identity	does	not
change	much,	hence	what	you’ll	learn	here	will	be	applicable	to	ASP.NET	5
with	just	some	small	adjustments	in	syntax	and	NuGet	versions.	Furthermore,
ASP.NET	4.6	is	mature,	stable,	and	enjoys	widespread	adoption—and	while	I
write	this	chapter,	the	ASP.NET	5	bits	are	still	a	moving	target.

Steps
Here’s	the	sequence	of	steps	I’ll	walk	you	through:

1.	Create	a	basic	project	as	a	starting	point.

2.	Add	references	to	the	NuGet	packages	you	need.

3.	Create	the	app’s	entry	in	the	Azure	AD	tenant	of	choice.

4.	Write	the	code	that	initializes	the	OWIN	pipeline	and	the	OpenID	Connect
middleware.

5.	Add	logic	for	triggering	authentication	and	access	claims	and	initiating	sign-out

That	should	all	be	very	straightforward.

The	starting	project
Your	starting	point	is	one	of	the	simplest	ASP.NET	project	templates,	the	MVC	project
type	with	no	authentication.	The	template	bits	are	largely	unchanged	from	Visual	Studio
2013.

Start	Visual	Studio,	and	open	the	New	Project	dialog	via	the	File	menu.	(I	like	the
keyboard	shortcut	Ctrl+Shift+N.)

Under	Templates	>	Visual	C#	>	Web,	select	ASP.NET	Web	Application.	I	named	my
project	WebAppChapter5.	Click	OK.

Among	the	ASP.NET	4.6	templates,	choose	MVC.	That	done,	click	the	Change
Authentication	button.	In	the	dialog	that	appears,	select	No	Authentication.	Click	OK	here
and	again	in	the	first	dialog.	Visual	Studio	mulls	over	what	you	asked	for	and	then	opens
your	newly	created	project.

The	first	time	I	use	a	new	installation,	I	normally	hit	F5	at	this	point	to	verify	that
nothing	is	wrong	with	the	Visual	Studio	setup.	If	you	do	this,	you	should	see	a	rendering
of	the	usual	ASP.NET	Bootstrap-based	template—a	basic	home	page	with	tabs	for	Home,
About,	and	Contact,	all	corresponding	to	basic	actions	and	views	in	the	project.

Before	going	any	further,	you	should	set	up	the	project	to	operate	on	HTTPS	instead	of
the	default	HTTP.	From	the	earlier	chapters	you	know	that	the	security	in	OpenID	Connect

is	predicated	on	the	ability	to	use	opaque	channels.	Furthermore,	you	might	encounter
providers	(such	as	Active	Directory	Federation	Services)	that	will	simply	refuse	to	have
anything	to	do	with	your	app	if	they	do	not	sit	at	one	end	of	a	secure	HTTPS	pipe.

Visual	Studio	and	IIS	Express	make	it	super	easy	to	set	that	up.	In	Solution	Explorer,
select	your	project.	On	the	Properties	page,	you	will	find	a	property	dubbed	SSL	Enabled,
with	a	default	value	of	False.	Flip	it	to	True.

Notice	that	the	property	SSL	URL,	previously	empty,	now	has	a	local-host-based	value
(along	the	lines	of	https://localhost:44300/),	indicating	the	HTTPS	URL	on	which	your
app	will	listen.	Select	that	value,	and	copy	it	to	the	Clipboard.

In	Solution	Explorer,	right-click	the	project	and	choose	Properties.	Select	the	Web	tab.
In	the	Servers	section,	find	the	Project	URL	field.	You’ll	see	that	it	contains	the	old	HTTP
URL	for	the	project.	Replace	this	with	the	HTTPS	URL	you	copied,	save	your	work	(press
Shift+Ctrl+S),	and	then	close	the	Properties	page.

Press	F5	again	to	verify	that	everything	went	as	expected	and	that	the	project	does
indeed	start	on	HTTPS.	If	this	is	the	first	time	you've	used	HTTPS	with	IIS	Express,	you
might	be	prompted	to	trust	the	development	certificate.	Doing	so	will	make	development
tasks	much	easier,	especially	when	it	comes	to	web	API	development.

	Important

This	is	also	a	great	place	to	remind	you	that	development	should	be	done	on
machines	that	do	not	run	production	code	or	perform	any	critical	tasks	for
your	business.	Development	often	calls	for	relaxing	security	constraints	that
would	not	be	advisable	to	weaken	on	production	iron	or	boxes	hosting	critical
resources.

At	this	point	your	starting	project	is	ready	to	be	enhanced	with	Azure	AD	authentication
capabilities.

NuGet	packages	references
The	first	step	toward	enabling	Azure	AD	authentication	is	to	add	references	to	the	libraries
that	will	take	care	of	implementing	the	resource	protector	functionality.	As	explained	in
Chapter	4,	“Introducing	the	identity	developer	libraries,”	in	the	section	“Resource
protectors,”	you	can	choose	from	a	number	of	OWIN	middleware	packages.	There	isn’t
really	a	fixed	order	to	follow	when	adding	packages:	I’ll	follow	a	sequence	that	makes
functional	sense	according	to	the	features	each	package	provides.

Open	the	Package	Manager	Console	by	clicking	Tools	>	NuGet	Package	Manager	>
Package	Manager	Console.	That	done,	enter	the	following	command:
Click	here	to	view	code	image

install-package	Microsoft.Owin.Host.SystemWeb

We	aren’t	in	Identity	Land	yet.	The	SystemWeb	package	pulls	down	the	assemblies
required	to	host	an	OWIN	middlewares	pipeline	in	an	ASP.NET	application.	At	this	time,

the	version	you	get	is	3.0.1:	the	version	might	be	higher	in	the	future,	and	this	holds	for	all
the	OWIN	packages	covered	in	this	chapter.
The	command	also	pulls	down	as	a	dependency	Microsoft.Owin,	the	package

containing	all	the	OWIN	base	classes	and	primitives.

Percolating	up	through	functionality	layers,	you’ll	add	the	cookie	middleware	next.
Enter	the	following	command:
Click	here	to	view	code	image

install-package	Microsoft.Owin.Security.Cookies

Recall	from	Chapter	3,	“Introducing	Azure	Active	Directory	and	Active	Directory
Federation	Services,”	that	most	redirect-based	web	apps	request	a	token	only	for	the	initial
authentication	and	rely	on	a	cookie-based	session	for	all	subsequent	interactions.	The	job
of	the	cookie	middleware	is	to	generate	and	track	such	a	session.	Note	that	the	package
brings	down	Microsoft.Owin.Security	as	a	dependency—this	is	a	repository	of	classes	and
primitives	that	constitute	the	building	blocks	of	security-related	middlewares.

Finally,	it’s	time	to	add	the	package	implementing	OpenID	Connect	web	sign-on.	Enter
the	following:
Click	here	to	view	code	image

install-package	Microsoft.Owin.Security.OpenIdConnect

This	package	contains	the	OpenID	Connect	middleware	proper.	It	pulls	down	as
dependencies	the	JWT	handler	(System.IdentityModel.Tokens.Jwt,	which	you	already
encountered	in	Chapter	4)	and	Microsoft.IdentityModel.Protocol.Extensions,	a	package	of
classes	representing	OpenID	Connect	constructs	(messages,	constants,	etc.).	These	two
packages	are	purposely	separate	and	distinct	from	the	OWIN	packages	because	they
implement	concepts	and	protocol	artifacts	that	can	come	in	handy	even	if	you	decide	to
build	a	stack	that	has	no	dependency	on	OWIN	itself.

That’s	it.	All	the	packages	you	need	are	onboard.

Registering	the	app	in	Azure	AD
Before	you	do	more	work	on	the	project,	this	is	a	good	time	to	step	out	of	Visual	Studio
and	use	the	Microsoft	Azure	portal	for	provisioning	the	application	in	Azure	AD.

Like	creating	the	package	references	described	in	the	previous	section,	this	is	a	task	that
in	Chapter	1	was	performed	automatically	by	Visual	Studio,	via	an	API.	That	is	not	meant
to	hide	complexity	(as	you	will	see,	the	registration	steps	are	trivial);	the	convenience
offered	by	the	tools	lies	in	sparing	you	yet	another	menial	task.

	Warning

Given	how	frequently	the	portal	experience	goes	through	iterative
improvements,	providing	screenshots	here	would	be	a	sure	way	of	confusing
you	if	things	change	after	the	book	is	printed.	The	same	level	of	volatility
should	be	expected	for	any	detailed	instructions	based	on	today’s	experiences.
I	invite	you	to	keep	an	open	mind	as	you	try	to	reproduce	the	steps	I	describe
here.	The	high-level	goals	remain	the	same;	hence,	if	you	grasp	the	intent,
you	should	be	able	to	adapt	in	case	any	UI	elements	move	around	and	no
longer	match	the	instructions	here.

As	articulated	in	the	prerequisites,	you	need	to	have	an	active	Microsoft	Azure
subscription.	Open	a	browser,	navigate	to	https://manage.windowsazure.com/,	and	sign	in
with	the	account	(organizational	or	Microsoft	account)	associated	with	that	Azure
subscription.

Once	in,	scroll	through	the	leftmost	list	of	services	until	you	find	the	entry	for	Active
Directory,	and	then	click	it.

The	main	area	will	list	all	the	Azure	AD	tenants	you	can	work	on	with	your
subscription.	There	are	a	couple	of	common	cases:

	If	you	have	an	individual	subscription	rooted	to	a	Microsoft	account,	you	will	likely
find	a	single	entry—this	is	the	directory	tenant	automatically	generated	for	you	by
Azure.	Your	current	user	is	a	global	administrator	in	that	directory.	This	will	be	the
case	also	if	you	signed	up	for	Azure	on	your	own	and	chose	the	organizational	path.

	If	your	Azure	subscription	is	associated	with	your	company,	here	you	will	likely	see
your	company’s	directory	tenant.	Unless	you	work	in	the	IT	department	or	your
company	isn’t	big	enough	to	justify	a	strong	separation	of	roles,	chances	are	that
your	current	user	is	not	an	administrator	in	that	directory.	Don’t	worry!	By	default,
any	user	can	provision	one	app	by	using	the	steps	described	in	this	section.

It	is	also	possible	to	find	more	than	one	directory	tenant	listed	here.	That’s	the	case	if
you	created	test	tenants	or	if	your	user	is	a	guest	administrator	in	multiple	tenants.

Choose	the	Azure	AD	tenant	that	gathers	the	users	you	want	to	be	able	to	authenticate
from	your	app,	and	then	click	its	entry.	In	the	tabs	list	on	the	top	row,	choose	Applications.
You	will	be	presented	with	the	list	of	all	the	apps	that	are	being	developed	within	that
tenant.

At	the	bottom	of	the	screen,	you’ll	find	the	Add	button.	Click	it	to	start	the	provisioning
of	your	new	application.

At	the	time	of	writing,	the	first	dialog	you	encounter	asks	whether	you	are	adding	an
application	you	are	developing	or	choosing	a	preconfigured	app	from	the	gallery.	You’ll
want	to	select	the	first	option.

The	next	screen	prompts	you	to	name	your	application.	I	tend	to	use	the	same	name	I

https://manage.windowsazure.com/

have	in	the	Visual	Studio	project,	so	in	this	case	I	would	enter	WebAppChapter5.

The	same	screen	asks	you	to	specify	whether	your	app	is	a	web	app	or	a	native	client.
That	is	an	important	decision,	which	will	determine	what	your	application	can	and	cannot
do	in	terms	of	authentication	flows.	A	web	application	can	be	the	recipient	of	tokens
issued	via	redirect-based	protocols	like	SAML	and	OpenID	Connect,	but	a	native	client
cannot	do	that;	a	web	app	can	be	assigned	a	secret,	whereas	a	native	client	cannot	be
trusted	to	protect	it;	and	so	on.	As	you	already	guessed,	we	want	to	provision	a	web
application	here,	so	choose	the	corresponding	option	and	click	Next.

On	the	next	screen	you	are	asked	to	provide	the	URL	of	your	application.	Azure	AD
will	not	send	tokens	to	URLs	that	aren’t	registered.	Remember	the	URL	you	obtained
earlier,	in	the	section	“The	starting	project,”	when	you	enabled	SSL,	along	the	lines	of
https://localhost:44300/?	Retrieve	that	from	Visual	Studio,	and	paste	it	in	the	Sign-On
URL	field.

The	next	field,	App	ID	URI,	requests	that	you	provide	a	unique	resource	identifier.	That
identifier	is	used	for	protocols	like	SAML,	WS-Federation	for	web	sign-on,	and	OAuth2
for	a	web	API.	You	don’t	need	this	identifier	for	the	app	you’re	developing	(given	that	we
plan	to	use	OpenID	Connect	for	web	sign-on),	but	you	need	to	provide	a	value
nonetheless.	I	won’t	go	into	the	details	of	how	to	choose	that	value	here:	for	your	purposes
it	should	be	enough	to	say	that	you	need	to	choose	a	valid	URI	that	is	unique	within	the
tenant.	A	common	choice	is	the	app	URL	concatenated	to	the	project	name,	as	in
https://localhost:44300/WebProjectChapter5.

Click	the	button	that	indicates	the	conclusion	of	the	wizard.	The	portal	immediately
provisions	a	new	entry	for	your	app	and	selects	that	entry.	From	the	top	tabs	row,	choose
Configure.

On	this	page	you	can	see	all	of	the	app	entry’s	settings,	and	you	have	the	chance	to
modify	them.	For	the	time	being,	you	can	ignore	everything	else	and	focus	on	a	single
field,	client	ID.	Client	ID	is	an	identifier	generated	by	Azure	AD	at	application-
provisioning	time.	It	is	used	to	identify	this	app	to	Azure	AD	in	the	context	of	an	OpenID
Connect	authentication	transaction	so	that	the	authentication	flow	can	unfold	as
configured.	For	example,	tokens	issued	for	the	app	with	this	client	ID	will	be	delivered	to
the	sign-on	URL	specified	at	the	time	the	app	was	provisioned.

You	need	to	plug	the	client	ID	value	into	the	configuration	of	the	OpenID	Connect
middleware	in	your	app	so	that	it	can	be	used	at	the	appropriate	time	when	the	middleware
generates	and	processes	protocol	messages.	Keep	the	browser	open	on	this	page	because
you	will	need	it	for	the	steps	in	the	next	section.

OpenID	Connect	initialization	code
Let’s	get	back	to	the	app’s	code.	To	enable	the	app	to	make	use	of	OpenID	Connect,	you
need	to	perform	two	small	tasks:

	Add	an	OWIN	pipeline	in	front	of	the	app.

	Add	and	initialize	the	appropriate	middlewares	in	the	pipeline.

As	you	know	by	now,	this	is	normally	done	for	you	by	Visual	Studio.	I	am	walking	you

through	a	manual	process	so	that	you	can	understand	what	makes	the	scenario	tick.

Host	the	OWIN	pipeline
Like	many	other	things	in	the	ASP.NET	world,	OWIN	pipeline	initialization	relies	on
naming	conventions.	You	will	add	the	initialization	logic	in	a	.cs	file,	called	Startup.cs,	at
the	root	of	the	project.

In	Project	Explorer,	right-click	the	project,	choose	Add	New	Item,	select	the	Web	node
in	the	list	at	the	left,	and	scroll	through	the	various	item	types	until	you	find	the	entry	for
OWIN	Startup	class.	Select	it,	be	sure	you	change	the	proposed	file	name	to	Startup.cs,
and	then	click	Add.

Visual	Studio	opens	the	new	file	for	you.	Edit	the	class	declaration	to	include	a
partial	keyword,	as	you	have	to	complement	it	soon.	The	resulting	file	should	look
like	the	following:
Click	here	to	view	code	image

using	System;
using	System.Threading.Tasks;
using	Microsoft.Owin;
using	Owin;
[assembly:	OwinStartup(typeof(WebAppChapter5.Startup))]
namespace	WebAppChapter5
{
				public	partial	class	Startup
				{
								public	void	Configuration(IAppBuilder	app)
								{
												//	For	more	information	on	how	to	configure	your	application,
visit	http://go.microsoft.com/fwlink/?LinkID=316888
								}
				}
}

In	Chapter	7,	“The	OWIN	OpenID	Connect	middleware,”	you’ll	learn	how	the	OWIN
pipeline	works	in	detail.	Here	it	suffices	to	say	that	the	OwinStartup	attribute	causes
the	Configuration	method	to	be	invoked	at	assembly	load	time—that	is	to	say,	when
the	app	first	wakes	up.	That	means	that	you	can	use	that	method	to	run	all	the	initialization
code	you	need.

Technically,	you	could	just	add	the	code	for	initializing	the	identity	protocols
middleware	in	line	here,	in	Configuration.	However,	it’s	traditional	in	ASP.NET	4.6
to	include	the	initialization	code	for	each	functional	area	in	a	separate	file	and	to	invoke	it
from	the	OWIN	Startup	class.

Initialize	the	cookie	and	OpenID	Connect	middlewares
Let’s	add	the	identity	pipeline	init	code	in	its	own	file.	In	Solution	Explorer,	right-click	the
App_Start	folder	and	choose	Add	New	Item	>	Class.	Name	the	file	Startup.Auth.cs.

Replace	all	the	using	directives	with	the	following:
Click	here	to	view	code	image

using	Owin;

using	Microsoft.Owin.Security;
using	Microsoft.Owin.Security.Cookies;
using	Microsoft.Owin.Security.OpenIdConnect;

Get	rid	of	the	trailing	.Startup	from	the	namespace:
namespace	WebAppChapter5

Change	the	class	declaration	to	public	and	partial:
public	partial	class	Startup

Finally,	you	get	to	the	identity-initialization	code.	Add	to	the	Startup	class	the
method	shown	here:
Click	here	to	view	code	image

public	void	ConfigureAuth(IAppBuilder	app)
{
				app.SetDefaultSignInAsAuthenticationType(CookieAuthenticationDefaults.AuthenticationType);
				app.UseCookieAuthentication(new	CookieAuthenticationOptions());
				app.UseOpenIdConnectAuthentication(
								new	OpenIdConnectAuthenticationOptions
								{
												ClientId	=	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”,
												Authority	=
“https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com”
								}
);
}

Those	10	lines	of	code	(barely)	are	enough	to	initialize	the	entire	OpenID	Connect
pipeline.	The	best	part	is	that	they	are	almost	pure	boilerplate.

As	I	mentioned,	Chapter	7	will	delve	into	the	details	of	the	OWIN	mechanics.	Here	I’ll
just	say	that	the	UseXXX	extension	methods	push	middleware	elements	onto	a	stack,
passing	initialization	data	when	necessary.	UseCookieAuthentication	adds	an
instance	of	the	cookie	middleware	in	the	pipeline.
UseOpenIdConnectAuthentication	does	the	same	with	the	OpenID	Connect
middleware.

	Note

The	order	is	important!	The	first	middleware	you	add	will	be	the	first	to	be
invoked	when	a	suitable	request	is	invoked.	The	response	will	travel	through
the	middleware	pipeline	in	the	opposite	order;	the	last	middleware	you	add
will	be	the	first	to	have	a	chance	to	work	on	the	response.

The	OpenID	Connect	middleware	allows	you	to	control	nearly	every	aspect	of	how	the
authentication	flow	takes	place,	by	accepting	as	the	initialization	parameter	an
OpenIdConnectAuthenticationOptions	instance.

If	you	are	okay	with	the	default	settings,	however,	you	need	only	to	provide	a	couple	of
values:

	Authority	This	is	the	complete	URL	of	the	Azure	AD	tenant	you	want	your	app

to	accept	users	from.	If	you	are	following	along,	you	should	substitute	the	value	here
with	the	URL	of	the	tenant	in	which	you	provisioned	your	app.
	ClientId	This	is	the	already-mentioned	identifier	that	Azure	AD	assigned	to	your
app	at	provisioning	time.	Retrieve	that	value	from	the	Azure	portal,	and	paste	it	in
here.	You	can	refer	to	the	earlier	section,	“Registering	the	app	in	Azure	AD,”	if
you’ve	forgotten	where	to	find	it	exactly.

You	are	almost	done!	This	is	all	the	init	code	that’s	required.	All	that’s	left	to	do	is	to
ensure	that	the	code	is	called	at	load	time.	Back	in	Startup.cs,	add	a	call	to
ConfigureAuth	from	the	Configuration	method:
Click	here	to	view	code	image

public	void	Configuration(IAppBuilder	app)
{
				ConfigureAuth(app);
}

Your	app	is	now	configured	to	use	OpenID	Connect	against	your	Azure	AD	tenant	of
choice	whenever	authentication	is	necessary.	What	does	that	mean,	exactly?

[Authorize],	claims,	and	first	run
The	section	you	just	read	showed	you	how	to	set	up	OpenID	Connect	support	in	your
application.	However,	the	sheer	presence	of	the	appropriate	middlewares	in	the	pipeline
does	not	automatically	determine	when	the	protocol	enforcement	should	kick	in.	The
authentication	performed	via	OWIN	middlewares	is	activated	just	like	any	other
authentication	technology	in	ASP.NET—by	introducing	authentication	and	authorization
requirements	on	the	app,	on	individual	resources	served	by	the	application,	or	on	both.

Adding	a	trigger	for	authentication
The	project	template	you	used	as	a	starting	point	is	devoid	of	any	authentication	elements,
hence	the	app	and	all	its	resources	are	accessible	anonymously	by	default.	Say	that	you
want	to	maintain	anonymous	access	to	the	entire	app	apart	from	one	specific	action.	For
example,	working	with	the	resources	already	present	in	the	project	template,	let’s	imagine
that	you	want	to	restrict	access	to	the	Contact	action	from	the	HomeController	so
that	only	authenticated	users	can	access	it.	You	can	do	so	with	the	same	technique	you’ve
been	using	for	more	than	half	a	decade:	simply	decorate	the	action	with	the
[Authorize]	attribute.

[Authorize]
public	ActionResult	Contact()
{
				//…

That	attribute	will	ensure	that	the	resource	is	returned	only	to	authenticated	users	and
will	trigger	a	401	upon	receiving	unauthenticated	requests.	Here’s	the	important	point:	by
default,	the	OpenID	Connect	middleware	is	configured	to	react	to	outgoing	401s	by
intercepting	and	transforming	them	in	authentication	requests.	In	this	specific	case,	this
means	generating	an	OpenID	Connect	authorization	request	message	and	sending	it	back
to	Azure	AD	in	the	form	of	an	HTTP	302,	which	the	requesting	browser	will	receive	and

promptly	bounce	toward	Azure	AD’s	authorization	endpoint.	As	I	mentioned	previously,
you’ll	find	out	in	detail	how	this	all	unfolds	in	Chapter	7.
In	this	example,	I	am	instructing	you	to	protect	just	one	action,	but	in	fact	you	can

extend	the	mechanism	to	whatever	scope	best	fits	the	business	goals	of	your	app.	If	you
want	to	protect	all	the	actions	in	the	controller,	place	[Authorize]	at	the	class	level;	if
you	prefer	to	work	with	the	web.config	file,	feel	free	to	use	the	good	old
<authorization>	element.	In	general,	anything	that	will	generate	a	401	will	be	a
trigger	for	authentication.

Showing	some	claims
At	this	point	you	might	be	ready	to	give	the	app	a	first	run,	but	before	you	do,	I’d	like	to
add	a	bit	of	code	that	shows	in	the	app’s	UI	some	tangible	sign	that	a	successful
authentication	operation	took	place.	Modify	the	Contact	method	as	follows:
Click	here	to	view	code	image

[Authorize]
public	ActionResult	Contact()
{
				string	userfirstname	=
ClaimsPrincipal.Current.FindFirst(ClaimTypes.GivenName).Value;
				ViewBag.Message	=	String.Format(“Welcome,	{0}!”,	userfirstname);

				return	View();
}

	Note

As	you	type	this	code,	Visual	Studio	shows	wiggly	red	lines	under
ClaimsPrincipal	and	ClaimTypes.	That’s	because	you	are	missing
the	necessary	using	directives,	hence	the	types	are	not	available	in	the
current	scope.	From	now	on	I	will	no	longer	explicitly	instruct	you	to	add
using	directives	unless	it	serves	to	clarify	a	concept.	I	will	assume	that
every	time	you	encounter	those	wiggly	lines,	you	will	just	position	the	cursor
on	the	offending	term,	press	CTRL+.	(a	period),	and	pick	the	appropriate
using	directive	that	Visual	Studio	helpfully	offers	in	a	context	menu.

The	effect	of	this	code	should	already	be	clear	to	you.	I	already	covered	how	claims	are
handled	in	.NET	in	Chapter	1,	in	the	section	“ClaimsPrincipal:	How	.NET	represents	the
caller.”	If	you	find	that	you	need	a	refresher,	I	recommend	leafing	back	to	that	section	to
bring	this	to	mind.

Running	the	app
Time	to	give	the	app	a	spin!

Press	F5.	The	app	should	open	just	like	it	did	earlier.	But	the	story	should	change	when
you	click	Contact.	The	browser	should	redirect	to	the	Azure	AD	authentication	pages,	and

upon	successful	authentication	redirect	back	to	the	Contact	view—where	your	“Welcome,
<firstname>!”	message	should	demonstrate	that	the	user	was	correctly	authenticated.
Voilà.	You	have	a	web	app	that	can	authenticate	users	from	an	Azure	AD	tenant.

Quick	recap
Let’s	take	a	moment	to	summarize	what	we	have	done	so	far:

Starting	from	a	simple	project,	with	no	authentication	logic	whatsoever,	you

	Added	three	NuGet	references.

	Stepped	through	a	brief	wizard	on	the	Azure	portal	to	provision	the	app.

	Enabled	the	OWIN	pipeline	in	your	app	with	less	than	10	lines	of	boilerplate	code.

	Configured	the	OpenID	Connect	middleware	by	adding	another	10	lines	(more	or
less)	of	boilerplate	code,	customizing	the	values	of	a	couple	of	strings:	Authority
and	ClientId.

	Added	an	[Authorize]	attribute	on	the	action	you	wanted	to	protect.

And	that’s	all	that’s	required	for	setting	up	a	quick	web	app	for	users	in	one
organization,	without	taking	advantage	of	any	of	the	tools	that	Visual	Studio	offers	for
automating	all	this.

Sure,	there’s	more	to	do	to	have	a	full-featured	system—I	will	add	a	few	extra	details	in
the	following	sections—but	I	wanted	to	be	sure	to	highlight	the	minimal	set	of	actions.	If
you	have	been	working	with	enterprise-grade	authentication	for	web	apps	in	the	past,	I	am
sure	you	appreciate	how	much	simpler	things	have	become.

Sign-in	and	sign-out
Although	triggering	authentication	by	protecting	individual	assets	is	a	fine	mechanism,
you	will	at	times	want	to	offer	to	the	user	an	explicit	sign-in	link.	And,	of	course,	most
apps	need	an	affordance	for	signing	out.

	Note

The	only	common	exception	to	the	sign-out	requirement	is	the	class	of	apps
that	are	designed	to	run	exclusively	on	an	intranet,	where	an	authenticated
user	is	always	present	and	signing	out	cannot	really	take	place	until	the	user
logs	out	of	his	or	her	workstation.

The	OWIN	infrastructure	itself	offers	two	methods,	Challenge	and	SignOut,	that
can	be	used	to	message	the	middlewares	in	the	pipeline	to	trigger	a	sign-in	and	a	sign-out
flow,	respectively.	What	that	means	in	practice	will	be	determined	by	each	middleware.
For	the	OpenID	Connect	middleware,	signing	out	means	sending	a	message	to	Azure	AD
to	cancel	a	session;	for	the	cookie	middleware,	it	means	dropping	its	session	tracking
cookie;	and	so	on.

The	ASP.NET	Visual	Studio	templates	already	come	with	sign-in	and	sign-out	logic
wired	in,	but	just	for	kicks	let’s	add	that	functionality	manually	to	our	web	app.

In	Project	Explorer,	right-click	the	Controllers	folder,	choose	Add	New	Item,	pick
Controller,	select	MVC	5	Controller—Empty,	click	Add,	and	then	name	the	controller
AccountController.

Sign-in	logic
Let’s	start	by	adding	the	sign-in	functionality.	Delete	the	Index	method	from	the
controller,	and	add	the	following:
Click	here	to	view	code	image

public	void	SignIn()
{
				//	Send	an	OpenID	Connect	sign-in	request.
				if	(!Request.IsAuthenticated)
				{
								HttpContext.GetOwinContext().Authentication.Challenge(new
AuthenticationProperties	{	RedirectUri	=	“/”	},
												OpenIdConnectAuthenticationDefaults.AuthenticationType);
			}
}

HttpContext.GetOwinContext().Authentication	exposes	the
authentication	functions	of	the	OWIN	pipeline.	The	Challenge	method	accepts	input
references	to	the	middlewares	that	should	be	involved	in	generating	the	sign-in	action.

AuthenticationProperties	is	a	general-purpose	group	of	settings	that	are
independent	from	the	specific	protocol	implemented	by	the	middlewares	in	the	pipeline.
For	example,	RedirectUri	here	represents	the	local	address	in	the	application	to	which
the	browser	should	ultimately	be	redirected	once	the	authentication	operations	conclude.
In	this	case,	it’s	the	root	of	the	app:	that’s	because	I	plan	to	place	the	sign-in	link	on	the
home	page,	so	I	expect	the	user	to	be	brought	back	there	once	the	authentication	dance	is
done.	You	have	already	seen	in	the	previous	section	that	a	similar	behavior	occurred
automatically	when	the	authentication	was	triggered	by	clicking	a	specific	action:	clicking
Contacts	triggered	the	authentication	flow,	and	you	ended	up	back	on	the	Contact	view.

	Note

It	is	an	unfortunate	coincidence	that	the	RedirectUri	property	just
described	happens	to	be	named	exactly	the	same	as	an	OAuth2/OpenID
Connect	protocol	parameter.	The	value	passed	in	Challenge	is	not	sent	to
Azure	AD	and	used	as	part	of	the	protocol	dance:	it	is	a	local	value	that	is
used	after	the	authentication	dance	takes	place.	All	redirect	URIs	used	by
Azure	AD	must	be	explicitly	registered	for	security	reasons,	and	it	is	clearly
not	feasible	to	register	all	possible	controller	actions	as	return	URIs.	That’s
why	Azure	AD	normally	associates	only	a	few	return	URIs	with	each	app
(typically	one	for	every	deployment	root)	and	the	middleware	itself	takes	care
of	performing	local	redirects	without	involving	the	IdP	to	ensure	that	requests
land	on	the	correct	resource.	Clear	as	mud?	Don’t	worry.	I	will	expand	on	this
in	Chapter	7.

That’s	it	for	the	sign-in	feature.

Sign-out	logic
Implementing	sign-out	requires	a	similar	method.	Add	the	following	code	to
HomeController:
Click	here	to	view	code	image

public	void	SignOut()
{
				HttpContext.GetOwinContext().Authentication.SignOut(
																				OpenIdConnectAuthenticationDefaults.AuthenticationType,
																				CookieAuthenticationDefaults.AuthenticationType);
}

In	this	case,	you	are	telling	OWIN	that	you	want	both	the	OpenID	Connect	and	the
cookie	middlewares	to	act	on	the	sign-out	request.	As	mentioned	earlier,	that	will	cause
the	OpenID	Connect	middleware	to	emit	a	sign-out	message	to	Azure	AD	and	the	cookie
middleware	to	drop	the	local	app’s	session	cookies.

	Important

As	I	write	this,	the	OpenID	Connect	middleware	for	ASP.NET	4.6	(that	is	to
say,	the	one	with	package	version	3.x.x)	does	not	support	distributed	sign-out.
Say	that	you	have	a	user	signed	in	to	both	apps	A	and	B	with	an	account	from
the	same	Azure	AD	tenant.	Now	you	trigger	a	sign-out	from	A.	As	a	result,
the	user	will	no	longer	be	signed	in	either	in	A	or	the	Azure	AD	tenant;
however,	the	user	will	still	be	signed	in	to	B.	That	is	not	the	case,	for
example,	if	A	and	B	implement	WS-Federation	using	Windows	Identity
Foundation	(WIF):	in	that	case,	B	would	automatically	sign	the	user	out	as	a
consequence	of	the	sign-out	triggered	by	A.	You’ll	learn	more	about	this	in
Chapter	6,	“OpenID	Connect	and	Azure	AD	web	sign-on,”	but	for	the	time
being—long	story	short—OpenID	Connect	handles	sessions	via	a
combination	of	iframes	and	JavaScript	client-side	logic,	making	it	pretty	hard
to	package	automatic	support	for	it	in	a	general-purpose	development	library.
The	AD	team	is	looking	to	improve	things	for	ASP.NET	5.

If	you	leave	things	as	they	are	right	now,	you	will	implement	sign-out,	but	the
experience	won’t	be	great.	After	performing	the	sign-out,	the	browser	will	remain	stuck	on
a	nondescript	page	served	by	Azure	AD.	A	quick	fix	to	that	would	be	to	specify	in	the
OpenID	Connect	middleware	initialization	an	app	resource	you	want	to	land	on	after	a
successful	sign-out.	(It	is	usually	a	good	idea	to	pick	a	resource	that	does	not	trigger	an
automatic	redirect	to	the	authentication	pages,	or	your	user	might	be	up	for	a	confusing
experience.)

It’s	easy	to	do	that.	Go	back	to	Startup.Auth.cs,	and	modify	the
OpenIdConnectAuthenticationOptions	init	logic	so	that	it	looks	like	the
following:
Click	here	to	view	code	image

new	OpenIdConnectAuthenticationOptions
{
				ClientId	=	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”,
				Authority	=
“https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com”,
				PostLogoutRedirectUri	=	“https://localhost:44300/”
}

Here	I	am	hardcoding	the	root	of	my	app,	but	I	am	sure	that	in	your	apps	you	will	be	far
more	elegant.	It’s	important	to	note	that	the	PostLogoutRedirectUri	property	is
sent	to	Azure	AD	as	part	of	the	sign-out	request	and	must	correspond	to	one	of	the	app
URLs	you	registered.	If	for	some	reason	you	need	to	pick	a	more	precise	app	URL	as	a
landing	point,	you	can	pass	it	via	AuthenticationProperties	in	the	call	to
SignOut.

At	this	point	the	app	has	its	sign-out	logic,	too.	Now	you	just	need	to	add	some	controls
on	the	app’s	surface	to	activate	the	two	new	features.

The	sign-in	and	sign-out	UI
You	need	to	expose	some	controls	so	that	the	user	can	sign	in	and	sign	out	with	your
brand-new	methods.

	Note

Some	of	the	development	tasks	I	need	to	walk	you	through	have	nothing	to	do
with	the	API	surface	of	the	AD	identity	libraries,	and	this	section	falls	under
that	category.	I	do	need	to	write	something	so	that	you	are	able	to	see	the
identity	features	in	action,	but	I	want	to	be	sure	you	realize	that	if	you	want	to
write	different	code	for	that,	you	absolutely	can.	There	is	no	hard	requirement
to	do	things	the	way	I	suggest	in	this	section.

I’ll	do	that	by	adding	in	line	some	basic	UI	elements	in	the	default	view.	In	Project
Explorer,	navigate	to	the	folder	View/Shared	and	open	_Layout.cshtml.

Locate	the	<div>	element	containing	all	the	links	to	the	HomeController	actions;
it’s	the	one	with	the	style	navbar-collapse	collapse.	Right	below	the	
closing	tag	of	that	list,	paste	the	following	code:
Click	here	to	view	code	image

@if	(Request.IsAuthenticated)
{
				<text>
								<ul	class=“nav	navbar-nav	navbar-right”>
												<li	class=“navbar-text”>
																Hello,	@User.Identity.Name!
												
												
																@Html.ActionLink(“Sign	out”,	“SignOut”,	“Account”)
												
								
				</text>
}
else
{
				<ul	class=“nav	navbar-nav	navbar-right”>
								@Html.ActionLink(“Sign	in”,	“SignIn”,	“Account”,	routeValues:
null,	htmlAttributes:	new	{	id	=	“loginLink”	})
				
}

The	code	is	straightforward.	If	there	is	no	authenticated	user,	it	displays	a	Sign	In
ActionLink	that	triggers	the	corresponding	action	on	the	AccountController.

If	there	is	a	signed-in	user,	the	code	displays	a	greeting	(note	that	it	accesses	claims
values	through	another	property,	which	shows	that	the	preclaims	ASP.NET	identity	code	is
compatible	with	the	new	protocols)	and	a	link	bound	to	the	SignOut	method	of	the
AccountController.

Running	the	app
To	double-check	that	everything	works	as	expected,	press	F5.	Depending	on	the	browser
you	are	using	or	whether	you	closed	the	browser	after	the	last	run	or	not,	you	might	or
might	not	still	be	signed	in	with	the	account	you	used	earlier.	If	you	are,	you	will	see	in	the
top-right	corner	a	greeting	and	the	sign-out	link.	If	you	aren’t,	you	will	see	the	sign-in
link:	click	it,	and	you’ll	have	the	same	experience	as	in	the	earlier	run.

Once	you’ve	done	that,	click	the	sign-out	link	and	verify	that	you	do	get	signed	out	of
the	app	and	brought	back	to	its	home	page.

Using	ADFS	as	an	identity	provider
In	an	ideal	world,	in	this	section	I	would	tell	you	that	if	you	want	to	authenticate	users
coming	directly	from	your	on-premises	Active	Directory,	all	you	need	to	do	is	change	the
Authority	value	in	Startup.Auth.cs	to	point	to	your	local	ADFS	instance,	provision
your	app	there,	and	you’ll	be	good	to	go.	But,	alas,	this	is	not	an	ideal	world.

ADFS	in	Windows	Server	2016	is	the	first	version	of	ADFS	that	supports	OpenID
Connect.	As	I	write	this,	the	functionality	is	still	in	technical	preview	and	very	rough
around	the	edges.	Setting	up	ADFS	in	Windows	Server	2016	to	handle	OpenID	Connect
would	require	me	to	take	a	long	detour	to	describe	how	the	new	system	works,	and	I	don't
want	to	do	that	here.	All	of	Chapter	10,	“Active	Directory	Federation	Services	in
Windows	Server	2016	Technical	Preview	3,”	will	focus	on	taking	advantage	of	ADFS	in
the	Windows	Server	2016	preview	to	handle	modern	authentication	in	web	applications.

I	won’t	leave	you	without	anything	at	all	on	the	topic,	though.	ADFS	has	supported
WS-Federation	since	version	2.0.	It	just	so	happens	that	the	ASP.NET	4.6	collection	of
OWIN	middlewares	includes	one	that	implements	WS-Federation,	and	its	usage	is
remarkably	similar	to	the	one	for	OpenID	Connect.	In	fact,	if	you	were	to	modify	your	app
to	connect	to	an	ADFS	instance,	you	would	have	just	a	couple	of	places	to	touch.

You	would	touch	up	Startup.Auth.cs	as	follows:
Click	here	to	view	code	image

app.UseCookieAuthentication(new	CookieAuthenticationOptions());
				app.UseWsFederationAuthentication(
								new	WsFederationAuthenticationOptions
								{
												Wtrealm	=	“http://myapp/whatever”,
												MetadataAddress	=	
														“https://sts.contoso.com/federationmetadata/2007-
06/federationmetadata.xml”
								}

In	this	specific	case,	Wtrealm	is	the	moral	equivalent	of	ClientID—the	identifier
you	would	assign	to	your	app	when	provisioning	it	in	ADFS.

MetadataAddress	would	point	to	the	metadata	document	of	the	ADFS	instance	you
want	to	target,	performing	a	function	similar	to	Authority.

You	would,	of	course,	have	to	change	the	sign-in	and	sign-out	logic	in
AccountController,	but	just	for	retargeting	which	protocol	middleware	is	involved:

Click	here	to	view	code	image
public	void	SignIn()
{
				//	Send	an	OpenID	Connect	sign-in	request.
				if	(!Request.IsAuthenticated)
				{
								HttpContext.GetOwinContext().Authentication.Challenge(new
AuthenticationProperties	{	RedirectUri	=	“/”	},
												WsFederationAuthenticationDefaults.AuthenticationType);
				}
}
public	void	SignOut()
{
				HttpContext.GetOwinContext().Authentication.SignOut(
																				WsFederationAuthenticationDefaults.AuthenticationType,
																				CookieAuthenticationDefaults.AuthenticationType);
}

For	what	concerns	the	code,	that’s	pretty	much	it!

You	would	also	need	to	provision	your	app	in	ADFS	before	being	able	to	run	this	code.
I	won’t	include	the	instructions	here	because	supporting	WS-Federation	is	not	much	in
line	with	the	“modern”	moniker	in	the	book’s	title,	but	this	has	been	a	common	task	for
the	last	half	decade,	and	you	can	easily	find	a	lot	of	content	online	that	will	walk	you
through	the	process.

Once	again,	if	you	are	interested	in	using	OpenID	Connect	and	OAuth2	with	ADFS	in
Windows	Server	2016	preview,	please	be	sure	to	check	out	Chapter	10.	However,	I	would
recommend	doing	so	only	after	you	go	through	the	other	chapters	to	gain	in-depth
understanding	of	how	the	protocol	and	OWIN	middleware	work,	as	Chapter	10	heavily
relies	on	you	being	familiar	with	those	concepts.

Summary
In	this	chapter	you	discovered	what	it	takes	to	add	web	sign-on	capabilities	to	an
ASP.NET	app	from	scratch,	without	any	assistance	from	tools	and	wizards.

You	wrote	your	first	identity	code,	familiarizing	yourself	with	the	libraries	required,	the
absolutely	essential	set	of	parameters	required	to	configure	meaningful	support	for	web
sign-in	via	OpenID	Connect,	and	the	rudiments	of	using	OWIN	for	handling	session
management.

You	also	took	your	first	steps	with	app	provisioning	in	Azure	AD	via	the	Microsoft
Azure	management	portal.

At	this	point,	you	know	enough	to	understand	the	code	that	Visual	Studio	and	the
ASP.NET	project	templates	generate	automatically	when	you	use	the	organizational
identity	features,	which	puts	you	already	one	step	above	a	general	developer	who	just
needs	to	add	authentication	to	an	app	and	is	happy	with	the	defaults.

The	next	proficiency	level	entails	being	able	to	manipulate	how	the	protocol
middleware	operates	by	changing	its	defaults	and	injecting	your	own	custom	logic.	But
before	you	can	get	there,	you	must	first	learn	in	more	detail	how	the	OpenID	Connect
protocol	operates	for	making	web	sign-on	happen	and	what	parameters	you	can	use	to
influence	its	course.	That’s	the	subject	of	the	next	chapter.

Chapter	6.	OpenID	Connect	and	Azure	AD	web	sign-on

In	this	chapter	you’ll	take	a	closer	look	at	OpenID	Connect.	Specifically,	I’ll	describe	how
Azure	Active	Directory	and	its	libraries	use	the	protocol	to	power	the	sign-in	flow	you
implemented	in	Chapter	5,	“Getting	started	with	web	sign-on	and	Active	Directory.”

I	pick	up	again	on	some	of	the	ideas	that	were	introduced	in	Chapter	2,	“Identity
protocols	and	application	types,”	going	into	greater	detail	on	terminology,	message
exchanges,	concepts,	and	artifacts	that	come	into	play	when	you	use	OpenID	Connect.
Understanding	how	the	basic	building	blocks	are	used	in	the	default	case	will	help	you	to
troubleshoot	when	something	goes	wrong.	It	also	equips	you	with	the	knowledge	you	need
for	customizing	the	default	behavior	to	fit	the	requirements	of	your	specific	scenarios.

My	goal	is	not	to	write	an	annotated	version	of	the	entire	specification;	the	specs
themselves	are	readable	enough.	Rather,	I	focus	on	the	aspects	that	are	directly	involved	in
the	default	flow	that	Azure	AD	and	associated	libraries	implement	for	achieving	web	sign-
on.	This	is	not	to	say	that	the	rest	of	the	specification	is	not	useful,	or	that	Azure	AD
supports	only	the	flows	described	here.	My	focus	is	mostly	to	keep	the	size	of	the	book
(and	the	time	it	takes	to	write	it)	under	control.	If	you	want	to	dig	deeper	into	other
aspects,	you	will	find	plenty	of	material	online	that	expands	beyond	the	basics.

The	protocol	and	its	specifications
In	Chapter	2	I	introduced	OpenID	Connect’s	role	in	the	sequence	of	protocols	that	led
authentication	into	the	modern	era.	In	the	same	chapter	I	also	described	the	exchanges	that
define	two	of	its	main	authentication	flows,	the	hybrid	flow	and	the	authorization-code
flow.	In	this	chapter	I	assume	that	you	have	read	and	internalized	that	description.	If	your
recollection	of	it	is	less	than	perfect,	I	recommend	that	you	go	back	a	few	pages	and
reread	that	section	before	going	any	further.

Figure	6-1	shows	the	specifications	that	are	relevant	for	the	flow	you’ll	study	in	this
chapter.	I’ll	describe	them	briefly	here,	and	in	the	next	section,	“OpenID	Connect
exchanges	signing	in	with	Azure	AD,”	I’ll	go	into	the	details.	For	now,	this	will	provide
you	with	a	map	should	you	choose	to	match	what	you	read	about	here	to	the	formal
specifications.

Figure	6-1	The	specifications	mentioned	in	this	chapter	and	their	dependency
relationships.

OpenID	Connect	Core	1.0
By	default,	the	OpenID	Connect	OWIN	middleware	uses	the	hybrid	flow	to	implement
sign-on.	That	flow	is	described	in	the	OpenID	Connect	Core	specification,	which	at	the
time	of	writing	is	in	its	1.0	version.	You	can	find	it	at	http://openid.net/specs/openid-
connect-core-1_0.html.

The	OpenID	Connect	Core	specification	prescribes	in	detail	the	format	of	authentication
request	and	response	messages	for	the	hybrid,	authorization-code,	and	implicit	flows	(also
described	in	Chapter	2,	in	the	context	of	single-page	applications).	It	also	describes	in
detail	the	format	of	the	id_token,	the	criteria	that	should	be	applied	for	validating	it	in
different	contexts,	and	a	list	of	canonical	claim	types	that	OpenID	Connect	providers	and
clients	can	use	to	transmit	common	attributes.

The	Core	spec	describes	lots	of	other	things,	such	as	the	UserInfo	endpoint,	but	those
don’t	come	into	play	in	this	chapter.

http://openid.net/specs/openid-connect-core-1_0.html

OpenID	Connect	Discovery
Throughout	Chapter	2	I	discussed	how	claims-identity	protocols	describe	ways	for	identity
providers	(IdPs)	to	advertise	their	metadata—endpoints,	identifiers,	signing	keys,	and	the
like—so	that	relying	parties	(RPs)	can	acquire	the	information	they	need	to	generate
authentication	requests	and	validate	responses	according	to	the	protocol	of	choice.

OpenID	Connect	provides	such	a	mechanism,	too.	You	can	find	all	the	details	in	the
OpenID	Connect	Discovery	1.0	specification,	available	at	http://openid.net/specs/openid-
connect-discovery-1_0.html.

Azure	AD	advertises	its	OpenID	Connect	endpoints	in	accordance	with	the	Discovery
specs.	The	OpenID	Connect	OWIN	middleware	leverages	that	mechanism	to	minimize	the
configuration	burden	on	the	developer	and	to	ensure	that	the	validation	info	stays	as	fresh
as	possible.

OAuth	2.0	Multiple	Response	Type,	OAuth2	Form	Post	Response	Mode
The	Multiple	Response	Type	and	Post	Response	Mode	specs	(available	at
http://openid.net/specs/oauth-v2-multiple-response-types-1_0.html	and
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html)	provide	normative
guidance	on	how	to	control	which	tokens	should	be	returned	in	response	to	an
authentication	request	and	the	HTTP	mechanism	that	should	be	used	to	carry	them.

In	particular,	the	OpenID	Connect	middleware	asks	by	default	for	tokens	to	be	returned
to	the	RP	via	form	POST,	making	it	easy	to	work	with	the	big	token	sizes	that	are	common
in	business	scenarios.

OpenID	Connection	Session	Management
This	specification,	available	at	http://openid.net/specs/openid-connect-session-1_0.html,
describes	how	an	RP	can	inquire	about	the	sign-in	status	of	a	user	with	the	IdP	and	how	to
manipulate	sessions—most	notably,	how	to	handle	distributed	sign-out.

Azure	AD	supports	this	specification,	which	works	great	for	JavaScript	apps.	However,
I	am	personally	not	very	fond	of	this	spec	in	the	context	of	server-based	web	applications,
given	that	it	relies	on	a	hidden	iframe	and	splits	functionality	between	JavaScript	and
server-side	logic,	which	makes	it	really	complicated	to	package	this	functionality	in	a
easy-to-use	server-side	authentication	library.

Another	draft	spec,	available	at	http://openid.net/specs/openid-connect-logout-1_0.html,
implements	sign-out	through	a	more	traditional	mechanism,	one	that’s	far	easier	to
package	in	a	library.	It	shows	great	promise,	but	it’s	still	a	draft	at	this	point,	so	I’ll	ignore
it.

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/openid-connect-session-1_0.html
http://openid.net/specs/openid-connect-logout-1_0.html

Other	OpenID	Connect	specifications
The	family	of	OpenID	Connect	specifications	has	lots	of	other	members,	but	they	describe
aspects	of	the	protocol	that	don’t	come	into	play	in	this	book.	For	example,	there	is	a	spec
that	describes	how	to	dynamically	register	clients	with	IdPs	(available	at
http://openid.net/specs/openid-connect-registration-1_0.html),	which	is	not	a	great	match
for	the	scenarios	that	Azure	AD	supports	today.

Supporting	specifications
OpenID	Connect	as	a	whole	is	a	high-level	specification	that	relies	on	lower-level	building
blocks	for	essential	functionality	such	as	token	formats,	cryptographic	operations,	and	the
like.

As	you	know	from	Chapter	2,	OpenID	Connect	extends	OAuth2	to	add	support	for
authentication.	The	fundamental	OAuth2	specifications	are	the	core	OAuth2
Authorization	Framework	(available	at	https://tools.ietf.org/html/rfc6749)	and	the	OAuth2
Bearer	Token	Usage	(you	can	find	it	at	https://tools.ietf.org/html/rfc6750).

Besides	those	two	essential	specifications,	you	will	encounter	JSON	Web	Token	(JWT,
https://tools.ietf.org/html/rfc7519),	JSON	Web	Signature	(JWS,
https://tools.ietf.org/html/rfc7515),	and	JSON	Web	Algorithms	(JWA,
https://tools.ietf.org/html/rfc7518).	If	you	dig	deep	enough,	you	can	reach	all	the	way	to
RSA	cryptography	and	encoding	specifications.

I	will	mention	the	relevant	tidbits	from	each	of	these	whenever	the	need	arises.	You
don’t	need	to	go	into	any	of	these	in	any	level	of	detail,	but	it	is	useful	to	know	where	a
given	concept	comes	from	so	that	in	case	an	issue	or	ambiguity	arises,	you	can	zero	in	on
it	instead	of	playing	the	whack-a-mole	game	specs	sometimes	like	to	trick	you	into.

OpenID	Connect	exchanges	signing	in	with	Azure	AD
I	want	to	tell	you	more	about	the	protocol,	but	I	also	want	to	keep	things	concrete.	Here	is
what	we	will	do.	We	will	capture	a	network	trace	of	the	traffic	generated	as	you	sign	in
and	sign	out	from	the	vanilla	app	you	developed	in	Chapter	5.	After	we	have	that	trace,	I’ll
walk	you	through	it,	highlighting	the	crucial	protocol	exchanges.

Capturing	a	trace
Let’s	start	by	capturing	a	network	trace	of	the	flows	we	want	to	examine.

You	have	numerous	options	for	capturing	a	trace.	However,	they	boil	down	to	two
alternatives:

	You	can	use	a	proxy,	which	intercepts	and	saves	traffic.	The	canonical	example	of
this	approach	on	Windows	is	Fiddler,	a	free	web-debugging	proxy	utility.

	You	can	use	the	network	tracing	features	in	the	development	tools	of	your	web
browser	of	choice	(the	classic	F12	option).	Alternatively,	you	can	use	a	plug-in	such
as	HttpWatch.	The	advantage	here	is	that	the	plug-in	operates	at	the	end	of	the
HTTPS	tunnel,	hence	you	don’t	need	to	make	any	special	provisions	to	decrypt

http://openid.net/specs/openid-connect-registration-1_0.html
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7518

traffic.

I	will	use	Fiddler	in	this	example,	mostly	because	I	am	used	to	it	(it	was	around	well
before	browsers	had	decent	dev	tools)	and	allows	me	to	give	consistent	instructions	no
matter	which	browser	you’re	using.	That	said,	during	development	I	normally	use
Chrome.	If	you	use	another	browser	and	something	does	not	look	right	even	when	you
follow	the	instructions	to	the	letter,	I	recommend	that	you	try	it	with	Chrome	before
despairing.

Setting	up	Fiddler

You	can	download	Fiddler	from	http://www.telerik.com/download/fiddler.	I	highly
recommend	that	you	choose	the	option	Fiddler	for	.NET4.

Launch	the	setup.	Once	that’s	done,	run	Fiddler.	When	it	first	runs,	the	app	appears	as
shown	in	Figure	6-2.

Figure	6-2	The	main	Fiddler	screen.

As	soon	as	Fiddler	opens,	it	starts	to	capture	traffic.	The	left	pane	contains	the	list	of
captured	frames,	requests,	and	responses.	The	right	pane	shows	details	of	the	selected
frame	or	more	general	options.

The	first	thing	you	need	to	do	is	turn	on	HTTPS	decryption,	given	that	all	the	flows
we’ll	use	will	be	on	HTTPS.	Do	this	by	going	to	the	Tools,	Fiddler	Options	menu	and
selecting	the	HTTPS	tab.	As	soon	as	you	check	the	Decrypt	HTTPS	traffic	check	box,
you’re	prompted	to	trust	a	certificate	that	Fiddler	generates	for	its	own	HTTPS	tunnel.
Assuming	that	you	are	working	on	a	development	machine	that	does	not	run	any	critical
services	for	your	business,	click	through	the	many	confirmation	dialogs	to	set	up	the
certificate	as	trusted.

http://www.telerik.com/download/fiddler

Finally,	Visual	Studio	2015	can	be	quite	chatty	with	its	debug-related	messages,	so	it’s
easy	for	the	messages	you	care	about	to	be	drowned	in	a	sea	of	unrelated	frames.	Luckily,
Fiddler	provides	a	superhandy	filtering	feature	that	can	clean	up	the	list.	Select	the	Filters
tab	in	the	right	pane,	check	the	Use	Filter	check	box,	check	Hide	If	URL	Contains,	and
enter	the	following	in	the	corresponding	text	box:	SignalR	browserLink	google
visualstudio.com.	By	the	time	this	book	goes	to	press,	there	might	be	additional	sessions
you	will	want	to	hide.	Just	apply	the	same	trick	on	the	appropriate	search	term.

The	trace

Now	we	are	ready	to	capture	the	trace	of	a	sign-in	and	sign-out	to	our	application.	Open
Visual	Studio	2015	and	load	the	project	you	worked	on	in	Chapter	5.	Start	Fiddler	if	it’s
not	already	running,	and	ensure	that	the	leftmost	slot	in	the	bottom	status	bar	has	the	label
Capturing	On.	If	it	doesn’t,	click	that	empty	space,	and	you’ll	see	the	label	appear.

Go	back	to	Visual	Studio	and	press	F5.	When	the	application	appears	in	the	browser,
click	the	Sign	In	link.	Sign	in	with	your	test	user	account,	and	observe	that	the	app
correctly	shows	the	user	principal	name	(UPN)	of	the	user	in	its	top-right	corner.	Hit	the
Sign	Out	link	and	confirm	that	you	successfully	sign	out.

Switch	back	to	Fiddler	and	switch	off	the	Capturing	label.	If	you	want	to	read	this
chapter	in	multiple	takes,	you	can	save	the	current	capture	by	selecting	File,	Save,	All
Sessions.	That	way,	you	will	always	be	able	to	reload	the	same	session	and	keep	following
the	discussion	without	having	to	capture	the	trace	every	time	you	pick	up	the	book.

Examining	individual	frames	is	easy,	as	demonstrated	in	Figure	6-3.	Just	select	the
frame	you	want	in	the	left	pane.	In	the	right	pane,	choose	the	Inspectors	tab.	You	will	be
presented	with	a	split	view	representing	the	request	and	the	response	messages.	You	can
choose	different	views	that	highlight	different	aspects	of	the	message.	My	default	choice
for	both	request	and	response	is	the	Raw	view,	which	shows	what	you	would	see	on	the
wire.

Figure	6-3	The	trace	of	the	sign-in	and	sign-out	flows.	One	frame	is	selected	on	the
left;	the	details	of	the	request	and	response	are	shown	in	the	inspector	views	on	the

right.

Now	that	we	have	the	trace,	let’s	dive	in.

Authentication	request
Scan	the	list	of	frames	from	top	to	bottom.	Search	for	requests	that	aim	for	your	app:
given	that	it	is	running	on	IIS	Express,	you	can	expect	the	host	to	be	something	like
localhost:44300.

The	first	one	you’ll	encounter	is	the	request	to	your	home	page—that	is	to	say,	to	the
URL	/.	Just	to	warm	up,	select	that	frame.	You	will	see	on	the	right	side	the	bits	of	the
request,	a	simple	GET,	and	the	HTML	constituting	the	response.

If	you	followed	the	proposed	sequence,	the	next	frame	aimed	at	your	app	should	be	a
GET	to	/Account/SignIn,	triggered	by	clicking	the	Sign	In	link.	You	know	that	the
Account/SignIn	route	activates	the	code	that	generates	an	authentication	request.	In
fact,	if	you	deselect	the	frame	and	examine	its	response,	you	will	find	a	302	redirect
toward	Azure	AD,	carrying	the	OpenID	Connect	authentication	request	message.	It	looks
like	the	following:
Click	here	to	view	code	image

HTTP/1.1	302	Found
Cache-Control:	private
Location:	https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-
a80c4e36fe5e/oauth2/authorize?client_id=c3d5b1ad-ae77-49ac-8a86-
dd39a2f91081&response_mode=form_post&response_type=code+id_token&scope=openid+profile&state=OpenIdConnect.AuthenticationProperties%3dMw7NzZk2Eu7Jtt0TRIcYEs-

O81rWJcYNRXUeoA0AO4eu2v7W8KIfE-zf7fabTD-NVnmGNKb5F4jN1-
F1GYmTj6MfpMexQnrMuc8s1pU5qzU&nonce=635699258270224980.MGFhMDg1OGQtOGY2Yy00OGJlLThmOGEtODFhMmNhZDJhOWZjYTQxNTlmNDMtYjU3MC00MTQzLTkzYjMtMDdmNzRlZWY1NWY4
Server:	Microsoft-IIS/10.0
X-AspNetMvc-Version:	5.2
X-AspNet-Version:	4.0.30319
Set-Cookie:	
OpenIdConnect.nonce.NtAEBISzI9Su4nompbFjAZLP30DDfgV09WcjUtrNdqM%3D=RkhuWmpsYlREMFJodm1zQkxIcFZ5X
25MWGNfZ1lWOWlBTUF3eTdBdklZMzl1cjU1REtiTGJiZEhmeFNDbDY3MFp4aV9KRXVyNm9hWUVDMjAtXy14a0wwdncteEV5N
UpJSGsxMk9YdmZBQjE5Z0Q5cDkyN0E4VmgyZzJxTGhjWDBBV3RUUjY4d1JUZTZVTWdBQ2JXZE5Na3RGdlp4Q3RwUVVBLVR5c
W4xUUZGRkQ0V0w1dUt6Tks3LUZJbm5Bd2FraUJCUnhPcUpwT3dtTE1zLS1rcks3Q3VqN19aR1JkWGFINEk3Y3hyUDZOaw%3D
%3D;	path=/;	secure;	HttpOnly
X-SourceFiles:	=?UTF-
8?B?QzpcQm9va1xXZWJBcHBDaGFwdGVyNVxXZWJBcHBDaGFwdGVyNVxBY2NvdW50XFNpZ25Jbg==?
=
X-Powered-By:	ASP.NET
Date:	Mon,	15	Jun	2015	00:43:47	GMT
Content-Length:	0

	Note

Because	this	is	the	first	frame	I	present	in	the	text,	I	have	preserved	all	its
parts,	including	those	that	are	not	directly	relevant	to	OpenID	Connect.	From
now	on	I	will	edit	down	the	information	to	highlight	only	that	which	plays	a
direct	role	in	the	use	of	the	protocol.

The	Location	header	is	the	most	important	piece,	as	it	contains	the	sign-in	message	that
the	browser	will	send	to	Azure	AD	as	soon	as	it	executes	the	302.	The	default	behavior	of
the	OpenID	Connect	OWIN	middleware	is	to	initiate	a	hybrid	flow,	though	here	I	will
ignore	the	authorization	code	redemption	part	and	focus	only	on	sign-in	functionality	and
authorization	endpoint	traffic.	Let’s	break	the	message	down	to	its	fundamental
components	and	examine	how	the	protocol	is	being	used.

Authorization	endpoint

Each	Azure	AD	tenant	exposes	endpoints	for	the	protocols	it	supports.	The	message	here
is	sent	to	the	authorization	endpoint	of	the	tenant	in	which	we	configured	the	app:
Click	here	to	view	code	image

https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-
a80c4e36fe5e/oauth2/authorize

The	authority	part	of	the	URL	indicates	the	Azure	AD	instance,	in	this	case	the	public
cloud.	The	GUID	following	that	represents	the	tenant	identifier	of	the	directory	tenant	of
choice.

That	GUID	could	be	replaced	by	one	of	the	domains	associated	with	the	tenant,	such	as
developertenant.onmicrosoft.com,	to	the	same	effect.	But	using	the	tenant
identifier	is	preferable	because	it	can’t	be	reassigned,	whereas	a	domain	could	be
decommissioned	and	acquired	by	a	different	organization	later.

The	last	portion	of	the	path	simply	tells	Azure	AD	which	protocol	should	be	used.	If
you	were	using	SAML,	for	example,	the	authority	and	tenant	part	of	the	URL	would	be
the	same,	but	the	last	portion	of	the	path	would	be	/saml2.

client_id

The	first	parameter	you	encounter	in	the	message	is	client_id.	This	is	the	same	value
you	encountered	while	configuring	the	OpenID	Connect	middleware.	It’s	the	ID	that
allows	Azure	AD	to	correlate	the	request	to	the	app’s	entry	in	the	tenant.

response_mode,	response_type

The	next	two	parameters	are	especially	interesting.

The	response_type	parameter	indicates	which	artifacts	your	app	wants	as	the
outcome	of	this	authentication	operation.	The	value	you	observe	here	is	the	default
because	the	sample	from	Chapter	5	did	not	specify	any	custom	value	for	this	parameter.
The	default	response_type	for	the	OWIN	OpenID	Connect	middleware	is
code+id_token.	In	fact,	in	this	particular	scenario	we	ignore	code.	It	would	be	useful
if	we	had	invoked	a	web	API	from	our	app,	but	given	that	we’re	interested	just	in	sign-on,
we	end	up	consuming	just	the	id_token.	(That	means	that	if	we	had	sent	a	value	of
id_token,	we	would	have	achieved	the	goals	of	this	scenario	just	as	well.)

The	response_mode	parameter	indicates	the	way	in	which	we	want	the
authorization	server	(that	is,	Azure	AD)	to	return	the	requested	artifacts	to	the	application.
In	this	case	the	trace	reports	a	value	of	form_post,	which	means	that	Azure	AD	is
supposed	to	return	the	id_token	in	a	POST.	Once	again,	that’s	the	middleware’s	default
behavior.	This	is	just	like	how	WS-Federation	and	SAML	return	their	tokens—by	sending
back	to	the	browser	some	simple	JavaScript	that	autoposts	the	token	to	the	application.
The	main	advantage	of	this	approach	lies	in	the	fact	that	big	tokens	can	be	handled	easily,
whereas	other	methods	(such	as	those	embedding	tokens	in	a	URL)	suffer	from	stringent
size	limitations.	Another	advantage	is	that	token	validation	can	take	place	entirely	on	the
server.

	Important

The	response	parameters	discussed	here	are	all	meant	to	be	sent	to	a	specific
URL	that	Azure	AD	knows	is	assigned	to	the	app	identified	by	the
client_id	you	are	sending.	However,	note	that	the	request	does	not
include	the	redirect_uri	parameter,	which	the	OpenID	Connect
specification	indicates	as	the	parameter	that's	used	to	communicate	which
URI	should	be	used	for	that	purpose.	You	can	definitely	specify	such	a	value
via	the	OWIN	middleware,	and	Azure	AD	will	understand	that:	in	fact,	you
must	do	so	when	your	apps	have	multiple	registered	URLs.	If	you	don’t
specify	it,	as	is	the	case	in	this	trace,	Azure	AD	automatically	uses	the	URL
you	provided	at	registration	time.

More	response_mode,	response_type	values		OpenID	Connect	relies	on	(and	Azure	AD
supports)	various	other	response_type	values.	You	can	find	the	complete	list	in	the
previously	mentioned	“OAuth	2.0	Multiple	Response	Type	Encoding	Practices”
specification,	which	extends	the	canonical	OAuth2	code	and	token	with	id_token

and	combinations.

The	same	spec	defines	two	response_mode	values:

	fragment,	which	establishes	that	the	response	parameters	should	be	returned	in	a
URL	fragment.	A	fragment	is	the	portion	of	a	URL	following	the	#	symbol.	Its
defining	characteristic	is	that	it	is	not	sent	to	the	server	when	used	in	HTTP	verbs.
An	authorization	server	uses	a	fragment	when	it	wants	to	return	values	to	JavaScript
code	running	in	a	browser	and	ensure	that	the	same	values	aren’t	seen	by	the	server
side	of	that	app.

	query,	which	returns	the	response	parameters	in	the	query	string.	query	is	the
Cinderella	of	response_mode	values.	It	is	used	only	when	returning	a	code,
which	is	supposed	to	be	mostly	single	use	anyway,	but	its	use	is	discouraged	for
pretty	much	all	other	cases.	That’s	mostly	because	of	its	nasty	habit	of	remaining
available	in	the	browser	history	and	for	other	possible	attacks.

What	about	form_post?	That’s	actually	defined	in	an	extra	specification,	the
previously	mentioned	“OAuth	2.0	Form	Post	Response	Mode.”

Each	response_type	value	has	a	default	response_mode,	which	kicks	in	in	case
no	overriding	value	is	specified.	Table	6-1	shows	the	complete	list	of	values	at	the	time	of
writing.	The	table	is	mostly	self-explanatory	if	you	remember	that	token	stands	for	access
token	and	none	is	just	an	artifact	for	triggering	consent	without	returning	anything.	Also
note	that	some	response_type	values	explicitly	disallow	the	use	of	query.	The	table
reports	on	that,	too.

Table	6-1	response_type	and	corresponding	default	response_mode

scope

Just	like	in	OAuth2.0,	the	scope	parameter	indicates	which	things	(resources	and
permissions/actions)	an	app	is	requesting	access	to.

If	my	mention	of	access	control	and	authorization	at	this	point	confuses	you,	remember
what	you	read	in	Chapter	2:	OpenID	Connect	layers	sign-in	on	top	of	OAuth2,	which
remains	fundamentally	a	means	for	obtaining	authorization.	In	OAuth2	the	scope	applies

only	to	the	access	token,	whereas	in	OpenID	Connect	it	also	affects	the	id_token,	the
main	artifact	making	the	sign-in	portion	of	the	flow	possible.

In	our	example,	scope	has	two	values,	openid	and	profile.

	openid	is	a	conventional	scope	value,	used	to	indicate	to	the	authorization	server
(Azure	AD,	that	is)	that	the	client	intends	to	use	OpenID	Connect	as	opposed	to
vanilla	OAuth2.	Let	me	stress	this:	a	request	that	does	not	include	a	scope
parameter	that	includes	the	value	openid	is	not	an	OpenID	Connect	request.

	profile	is	one	of	four	special	scope	values	(profile,	email,	address,
phone)	that	OpenID	Connect	defines	as	a	mechanism	for	requesting	access	to	a
specific	set	of	predefined	claims.	That	access	is	expressed	in	different	ways
depending	on	the	artifact	requested	via	response_type.	An	access	token	will
carry	permission	to	access	that	particular	claim	set,	and	id_token	might	include
such	claim	values	directly.	You	will	see	in	this	case	that	the	id_token	you	get
back	will	indeed	contain	some	claims	from	the	profile	set	(name,
given_name,	family_name).

state

The	client	uses	the	state	parameter	for	preserving	state	throughout	the	authentication
flow.	Whatever	information	the	app	needs	to	remember	after	the	user	comes	back	with	the
requested	token	(and/or	code)	can	be	squirreled	away	here:	the	authority	(Azure	AD)	has
the	responsibility	of	reattaching	the	state	parameter,	unchanged,	to	its	eventual
response.

From	the	trace,	you	can	see	that	this	parameter	can	be	rather	beefy.	The	canonical
function	of	the	state	parameter	as	envisioned	by	the	specification’s	authors	is	to	supply
a	mechanism	for	averting	forgery	attacks	from	cross-site	requests.	The	OpenID	Connect
OWIN	middleware	goes	a	bit	further	and	uses	state	to	remember	important	information,
such	as	whether	the	authentication	request	was	triggered	by	a	specific	route	(as	happened
in	Chapter	5	when	you	clicked	the	Contact	action).	If	that’s	the	case,	after	the
authentication	exchange	concludes	later	on,	the	middleware	can	unpack	from	the	state	the
original	path	and	perform	an	internal	redirect	to	dispatch	the	browser	to	the	requested
resource.

nonce

The	nonce	parameter	is	a	hard-to-guess	value	that	OpenID	Connect	introduced	for
mitigating	token	replay	attacks.	Here's	how	it	works.

The	client	generates	a	nonce	value	and	includes	it	in	the	request.	Furthermore,	it	saves
that	value	somewhere—in	the	case	of	Azure	AD,	it’s	saved	in	a	cookie	with	a	unique
name—so	that	the	original	nonce	value	will	be	available	later,	during	the	last	leg	of	the
authentication	flow.	If	you	examine	the	request	trace,	you	will	find	the	set-cookie
directive	for	the
OpenIdConnect.nonce.NtAEBISzI9Su4nompbFjAZLP30DDfgV09WcjUtrNdqM%3D
cookie.	That	cookie	is	protected	by	server-driven	cryptography	and	cannot	be	forged	or

tampered	with	by	a	client.

When	the	app	eventually	receives	an	id_token,	it	searches	among	its	claims	for	a
nonce	claim	and	verifies	that	it	contains	the	original	nonce	value	communicated	in	the
request.	For	the	middleware,	that’s	an	easy	task,	given	that	the	same	value	is	available	in
the	aforementioned	cookie.	An	attacker	who	somehow	stole	an	id_token	would	not	be
able	to	pass	this	test,	given	that	he	or	she	would	not	be	able	to	craft	the	corresponding
cookie.

This	is	a	nice	and	necessary	security	measure.	However,	be	warned	that	it	will
occasionally	give	you	pain.	Any	scenario	in	which	cookies	are	somehow	deleted	or
otherwise	altered	in	the	time	between	the	sign-in	request	and	the	response	will	cause	the
authentication	to	fail,	given	that	the	nonce	check	relies	on	them.	There	are	various
solutions	to	this,	up	to	and	including	saving	the	nonce	reference	values	on	the	server	side.
I	will	get	back	to	that	later	in	the	book	when	I	focus	on	libraries	and	the	object	model.

Parameters	omitted	in	the	default	request

The	parameters	described	so	far	are	the	ones	in	use	in	the	request	generated	in	the	default
configuration	of	the	OWIN	OpenID	Connect	middleware.	Besides	the	previously
mentioned	redirect_uri,	OpenID	Connect	includes	many	other	very	useful
parameters	that	can	help	you	to	influence	the	way	in	which	a	request	is	handled.	Here’s	a
quick	list	of	the	most	notable	ones.	They’ll	come	in	handy	when	I	cover	middleware
customizations	in	later	chapters.

	login_hint	This	parameter	is	used	for	prepopulating	the	username	text	box	in
the	credential-gathering	experience	with	the	identifier	of	a	particular	user.	For	Azure
AD,	the	identifier	must	be	the	UPN	of	the	desired	user.

	prompt	This	is	my	favorite	parameter!

Say	that	you	want	to	guarantee	that	the	end	user	is	prompted	for	credentials,
regardless	of	whether	the	user	is	already	signed	in	with	Azure	AD.	Send
prompt=login	along	with	your	request,	and	that	will	do	the	trick.

Now	say	that	you	want	the	exact	opposite.	Maybe	you	want	to	renew	the	user
session	without	affecting	the	user	experience,	hence	you	want	to	drive	an
authentication	request	via	a	hidden	iframe.	Sending	prompt=none	with	your
request	guarantees	that	Azure	AD	will	do	whatever	it	can	to	authenticate	the	user
without	showing	any	UI.	If	that	isn’t	possible,	Azure	AD	will	send	a	failure	message
right	away.

Another	interesting	option	is	sending	prompt=select_account.	If	the	user	is
signed	in	to	Azure	AD	with	multiple	accounts	at	the	same	time,	this	parameter
ensures	that	the	user	has	the	opportunity	to	choose	which	account	he	or	she	wants	to
use	for	signing	in	to	the	application.

	domain_hint	This	parameter	is	not	part	of	the	OpenID	Connect	standard.	Azure
AD	introduced	it	to	allow	you	to	specify	which	IdP	you	want	users	to	authenticate
with.	Say	that	your	app	trusts	a	federated	Azure	AD	tenant.	With	the	default	request,

users	would	first	see	the	Azure	AD	authentication	pages	and	be	redirected	to	the
federated	ADFS	only	after	they	type	their	username	in	the	text	box.	If	you	send	the
domain_hint	parameter	set	to	the	federated	domain,	the	Azure	AD	page	is
skipped,	and	the	request	goes	straight	to	the	ADFS	associated	with	the	tenant.	If	the
user	is	accessing	your	app	from	an	intranet,	and	is	thus	already	authenticated	with
ADFS,	this	can	actually	enable	a	seamless	single	sign-on	experience.

	resource	The	resource	parameter	is	another	Azure	AD–specific	parameter,
which	is	used	even	in	vanilla	OAuth2	flows.	Explaining	what	this	parameter	does
requires	a	bit	of	a	detour,	which	ties	in	to	the	limitations	of	OAuth2	that	I	described
in	the	section	“OAuth2	and	claims”	in	Chapter	2.

In	a	nutshell,	the	resource	parameter	tells	Azure	AD	which	resource	you	want	an
access	token	for	(or	a	code	that	is	eventually	redeemed	for	an	access	token).	The
resource	can	be	a	Microsoft	API	(Office	365,	Azure	management,	etc.),	a	third-party
web	API,	or	your	own	web	API	registered	as	an	app	in	Azure	AD.	Concretely,	this
means	that	the	access	token	you	get	back	will	contain	a	claim	stating	that	its
intended	audience	is	the	resource	it	has	been	issued	for.	This	provides	resources	with
a	mechanism	to	verify	whether	the	incoming	token	is	truly	meant	for	them,	as
opposed	to	a	token	being	stolen	or	reused	from	a	different	resource	transaction.

In	canonical	OAuth2,	you	indicate	the	target	you	are	requesting	access	to	via	the
scope	parameter.	However,	that	usually	refers	to	portions	of	an	implied	resource	or
to	specific	actions	one	can	perform.	When	you	are	getting	a	token	from	Facebook,
the	only	resource	you	can	spend	it	on	is	the	Facebook	Graph.	The	same	holds	for	all
other	big	OAuth2	providers:	they	issue	tokens	for	themselves,	so	there’s	never	a
need	to	specify	a	resource.	On	the	other	hand,	Azure	AD	is	a	generic	authority	that
can	issue	tokens	for	different	resources,	owned	by	multiple	tenants—with	strong
business	reasons	to	maintain	independence	and	isolation.	That	calls	for	a	token-
validation	strategy	that	can	be	applied	by	third	parties	as	described	in	Chapter	2.	The
use	of	the	resource	parameter	is	part	of	that.

At	this	point,	I’ll	summarize	what	you’ve	learned	about	the	request	message.	It’s	a	302
redirect	toward	an	Azure	AD	tenant	endpoint,	and	specifically	the	authorization	endpoint.
It	contains	the	client_id	of	the	requestor,	it	specifies	which	kind	of	tokens	you	are
requesting	(via	response_type)	and	how	you	want	to	receive	them	(via
response_mode).	It	uses	scope	to	indicate	that	you	want	to	talk	OpenID	Connect	(as
opposed	to	vanilla	OAuth2)	and	what	resources	you	want	to	access.	Finally,	it	uses	some
tricks	for	protecting	the	request	(state,	nonce).

The	browser	will	receive	the	302	and	honor	it,	sending	the	request	to	Azure	AD.	Before
getting	to	that	point,	though,	there’s	more	interesting	traffic	we	need	to	examine.

Discovery
The	OpenID	Connect	OWIN	middleware	can	automatically	consult	the	metadata
published	by	Azure	AD	to	acquire	up-to-date	information	on	how	to	validate	incoming
tokens.	(Please	refer	to	Chapter	2	for	an	introduction	to	metadata	consumption	and	token
validation.)	Given	that	in	this	specific	flow	we	are	using	OpenID	Connect,	the	metadata
document	being	consulted	is	the	so-called	discovery	document—described	in	the
homonymous	specification	mentioned	earlier	in	this	chapter.

If	you	scan	the	trace	shown	earlier,	you	will	eventually	find	a	request	to
login.microsoftonline.com	that	looks	like	the	following:
Click	here	to	view	code	image

GET	https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com/.well-
known/openid-configuration	HTTP/1.1
Host:	login.microsoftonline.com
Connection:	Keep-Alive

The	URL	path	being	requested	is	actually	normative—OpenID	Connect	mandates	that
if	you	want	to	support	discovery	from	your	issuer,	you	better	publish	the	corresponding
document	under	/.well-known/openid-configuration.	And,	of	course,	this	exchange	must
take	place	over	a	trusted	HTTPS	connection.	Here’s	the	discovery	document,	taken	from
the	body	of	the	response	to	the	previous	request:
Click	here	to	view	code	image

{
			“authorization_endpoint”	:	“https://login.microsoftonline.com/6c3d51dd-
f0e5-4959-b4ea-a80c4e36fe5e/oauth2/authorize”,
			“check_session_iframe”	:	“https://login.microsoftonline.com/6c3d51dd-f0e5-
4959-b4ea-a80c4e36fe5e/oauth2/checksession”,
			“claims_supported”	:	[
						“sub”,
						“iss”,
						“aud”,
						“exp”,
						“iat”,
						“auth_time”,
						“acr”,
						“amr”,
						“nonce”,
						“email”,
						“given_name”,
						“family_name”,
						“nickname”
],
			“end_session_endpoint”	:	“https://login.microsoftonline.com/6c3d51dd-f0e5-
4959-b4ea-a80c4e36fe5e/oauth2/logout”,
			“id_token_signing_alg_values_supported”	:	[“RS256”],
			“issuer”	:	“https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-
a80c4e36fe5e/”,
			“jwks_uri”	:	“https://login.microsoftonline.com/common/discovery/keys”,
			“microsoft_multi_refresh_token”	:	true,
			“response_modes_supported”	:	[“query”,	“fragment”,	“form_post”],
			“response_types_supported”	:	[“code”,	“id_token”,	“code	id_token”,	“token
id_token”,	“token”],
			“scopes_supported”	:	[“openid”],
			“subject_types_supported”	:	[“pairwise”],
			“token_endpoint”	:	“https://login.microsoftonline.com/6c3d51dd-f0e5-4959-

b4ea-a80c4e36fe5e/oauth2/token”,
			“token_endpoint_auth_methods_supported”	:	[“client_secret_post”,
“private_key_jwt”],
			“userinfo_endpoint”	:	“https://login.microsoftonline.com/6c3d51dd-f0e5-
4959-b4ea-a80c4e36fe5e/openid/userinfo”
}

Now,	aren’t	you	glad	this	document	is	not	really	meant	for	human	consumption	and	is
mostly	read	by	software?

But,	in	fact,	if	you	give	it	a	second	glance,	it’s	not	that	bad.	The	document	provides	all
the	information	that	a	client	needs	to	know	to	consume	Azure	AD	(and	more	specifically,
this	tenant	of	Azure	AD)	as	an	OpenID	provider.	It	lists	all	the	relevant	endpoints
(authorization,	token,	UserInfo,	and	session-related	endpoints,	including
end_session_endpoint,	which	I	have	not	covered	yet),	specific	claim	types	it
supports,	values	of	response_type	and	response_mode	that	it	accepts,	and	so	on.

The	reason	that	the	OWIN	middleware	reaches	out	to	this	document,	however,	is	to
discover	what	criteria	to	use	for	validating	incoming	tokens.	To	that	end,	there	are	two
crucial	pieces	of	information:

	The	issuer	value,	which	in	this	case	is:
Click	here	to	view	code	image
https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/.

This	is	the	value	that	applications	should	expect	to	find	in	the	iss	claim	of	all
tokens	issued	by	this	particular	Azure	AD	tenant.	The	OpenID	Connect	middleware
will	automatically	enforce	that	the	incoming	token	complies	with	this	condition	and
refuse	all	others,	ensuring	that	only	users	from	the	target	tenant	are	granted	access.

	The	keys	to	use	for	validating	token	signatures,	provided	by	reference	by
jwks_uri.	The	way	keys	are	handled	warrants	more	discussion,	which	I	provide	in
the	next	section.

You	might	have	noticed	that	the	issuer	value	contains	a	GUID,	which	happens	to	be
the	same	GUID	value	that	appears	in	all	endpoints.	That	value	is	the	identifier	that	Azure
AD	assigned	to	the	tenant.

Signing	keys

The	discovery	document	does	not	supply	raw	key	values.	Rather,	it	points	to	a	different
document—
https://login.microsoftonline.com/common/discovery/keys—
indicated	by	the	value	of	jwks_uri,	which	the	middleware	must	retrieve	as	well.	Sure
enough,	in	the	neighborhood	of	the	frame	retrieving	the	discovery	document,	you	will	find
another	request	of	the	following	form:
Click	here	to	view	code	image

GET	https://login.microsoftonline.com/common/discovery/keys	HTTP/1.1

I	will	discuss	at	length	the	strange	properties	of	/common	later	in	the	book,	but	for	the
time	being	it’s	enough	to	observe	that	its	appearance	here	breaks	the	pattern	of	using	the

tenant	ID	GUID	in	endpoint	paths.	Despite	the	fact	that	we	are	inquiring	about	the
metadata	of	one	specific	tenant,	the	keys	are	kept	at	a	URL	that	is	not	tied	to	any	tenant.

This	has	a	very	important	implication:	all	Azure	AD	tenants	issue	tokens	signed	by	the
same	keys.

A	corollary	is	that	the	only	way	of	determining	whether	a	token	comes	from	a	given
tenant	is	to	check	its	iss	value.	I	found	this	to	be	counterintuitive	for	people	familiar	with
“traditional”	federation,	where	every	Security	Token	Service	(STS)	has	its	own	keys,
which	is	why	I	am	emphasizing	this	here.

Back	to	the	keys.	Let’s	take	a	look	at	the	body	of	the	response:

	Important

For	the	sake	of	readability,	I	will	abbreviate	long	encoded	values.	I’ve	used
[…SNIP…]	in	the	text	as	a	placeholder	for	content	I	edited	out.	I	will	use	the
same	approach	in	later	chapters	as	well.

Click	here	to	view	code	image
{
			“keys”	:	[
						{
									“e”	:	“AQAB”,
									“kid”	:	“kriMPdmBvx68skT8-mPAB3BseeA”,
									“kty”	:	“RSA”,
									“n”	:	“kSCW[…SNIP…]enufuw”,
									“use”	:	“sig”,
									“x5c”	:	[
												“MIID[…SNIP…]LAIarZ”
],
									“x5t”	:	“kriMPdmBvx68skT8-mPAB3BseeA”
						},
						{
									“e”	:	“AQAB”,
									“kid”	:	“MnC_VZcATfM5pOYiJHMba9goEKY”,
									“kty”	:	“RSA”,
									“n”	:	“vIqz-4-[…SNIP…]gelixLUQ”,
									“use”	:	“sig”,
									“x5c”	:	[
												“MIIC4j[…SNIP…]KvJQ==”
],
									“x5t”	:	“MnC_VZcATfM5pOYiJHMba9goEKY”
						}
]
}

I	don’t	think	it	would	be	terribly	useful	if	I	were	to	go	into	the	details	of	all	the
parameters	you	see	here.	You	can	find	a	detailed	reference	in	the	JSON	Web	Key
specification	at	https://tools.ietf.org/html/rfc7517.

But	at	a	high	level,	what	you	have	here	is	a	set	of	two	keys,	which	happen	to	be	RSA
(suited	for	asymmetric	cryptography)	and,	specifically,	packaged	in	X.509	certificates.
Those	keys	are	used	by	Azure	AD	for	signing	tokens.	I	can	tell	this	by	the	mix	of
identifiers	and	cryptographic	parameters	in	the	key	declarations.	The	middleware	will

https://tools.ietf.org/html/rfc7517

parse	this	response	and	keep	the	keys	handy,	using	them	to	verify	signatures	whenever	a
token	arrives.
Why	two	keys?	This	is	part	of	Azure	AD’s	key-rolling	strategy.	At	any	given	time,	the

metadata	contains	both	the	key	currently	in	use	and	the	one	that	will	take	over	once	the
first	is	rolled.	As	a	result,	planned	key	rolls	can	take	place	without	affecting	the	business
continuity	of	the	apps	that	rely	on	those	values	for	verifying	token	signatures.

Authentication
As	you	keep	scanning	down	the	frames	list,	you	will	soon	encounter	the	GET	that	honors
the	302	with	the	authentication	request.	That	triggers	the	authentication	experience	for	the
user.

The	details	of	how	that	takes	place	depend	on	many	factors.	Here	are	few	common
cases:

	Users	who	are	already	authenticated	will	have	a	session	cookie,	which	is	sent	along
with	the	first	request.	This	tells	Azure	AD	that	the	user	is	already	authenticated.
Hence,	if	the	requested	token	does	not	require	any	consent,	the	request	will	be
granted	without	displaying	any	user	experience.

	If	user	interaction	is	required	for	authenticating	the	request,	you	can	observe	several
subcases:

•	Managed	tenants	will	handle	the	full	credential-gathering	experience	directly.

•	Federated	tenants	will	redirect	the	browser	to	the	on-premises	IdP,	typically
ADFS,	which	will	then	have	full	control	over	the	credential-gathering	experience
and	any	customizations	that	might	have	been	applied.

•	Guest	Microsoft	account	(MSA)	users	will	be	redirected	to	the	Microsoft	account
pages	for	authentication.

•	In	all	cases,	the	authentication	process	can	be	affected	by	extra	elements	such	as	a
requirement	for	multiple	authentication	factors	(MFAs)	or	the	presence	of
Windows	Integrated	Auth,	and	so	on.

To	make	things	even	more	interesting,	different	releases	of	the	service	might	handle	the
details	of	authentication	differently.	For	example,	about	one	year	ago	a	trace	of	the
authentication	phase	of	the	OpenID	Connect	flow	would	have	shown	some	extra	redirects
to	an	internal	STS	endpoint	based	on	WS-Federation.	Today,	such	extra	redirects	are	no
longer	in	place.	Tomorrow	others	might	be	introduced.	The	bottom	line	is	that	how
authentication	takes	place	is	up	to	the	authority	you	are	working	with,	in	this	case	Azure
AD.	The	OpenID	Connect	protocol	does	not	specify	what	should	be	done	to	authenticate
the	user;	it	only	regulates	how	to	format	requests	and	responses	without	worrying	too
much	about	what	happens	between	the	two.

That	doesn’t	mean	that	you	can	afford	to	ignore	the	authentication	phase,	though.	Very
often,	issues	in	the	authentication	flows	take	place	in	this	phase—misconfigured	ADFS,
network	restrictions,	and	DNS	errors	are	all	examples	of	such	potential	issues.	It	is	useful
to	know	that	the	solution	to	those	issues	is	usually	independent	from	how	OpenID

Connect	is	set	up	for	the	application.

For	the	sake	of	simplicity,	I	assume	here	that	you	are	in	a	situation	in	which	you	are
working	with	a	managed	tenant,	your	user	does	not	have	an	existing	session,	and	you	do
not	have	any	MFA	setup	in	place.

	Important

I	also	assume	that	Azure	AD	will	be	using	the	same	logic	for	handling
credential	gathering,	which	might	not	be	the	case	by	the	time	you	read	this.
Don’t	take	any	of	this	too	literally,	and	keep	your	eyes	open	for	functional
equivalents.

Search	the	trace	for	the	first	POST	after	the	discovery	frames	that	targets
https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-
a80c4e36fe5e/login,	where	the	GUID	is	the	ID	of	your	tenant.	The	body	of	that
POST	will	contain,	among	lots	of	other	things,	your	username	and	password.	(This	is	a
good	opportunity	for	me	to	remind	you	to	be	very	careful	with	your	traces,	especially	if
you	save	them,	as	they	can	contain	very	sensitive	information,	such	as	passwords.)

The	response	to	that	POST	is	the	OpenID	Connect	response	we	were	waiting	for.

Response
Let’s	examine	the	bits	of	the	Azure	AD	response.	Here’s	a	dump	of	it,	edited	for	clarity:
Click	here	to	view	code	image

HTTP/1.1	200	OK
[…SNIP…]
Set-Cookie:	ESTSAUTHPERSISTENT=AAA[…SNIP…]LIcgiAA;	expires=Sat,	12-Dec-2015
00:43:56	GMT;	path=/;	secure;	HttpOnly
Set-Cookie:	ESTSAUTH=QUFBQ[…SNIP…]kNBQQ==;	domain=.login.microsoftonline.com;
path=/;	secure;	HttpOnly
Set-Cookie:	ESTSAUTHLIGHT=+93dba92a-90d2-4f97-801b-a64a3b320f28;	path=/;
secure
Set-Cookie:	PPAuth=AW4[…SNIP…]HSvk;	domain=login.microsoftonline.com;	path=/;
secure;	HttpOnly
Set-Cookie:	ESTSSC=01;	path=/;	secure;	HttpOnly
Set-Cookie:	SignInStateCookie=QUFB[…SNIP…]ySUFB;	path=/;	secure;	HttpOnly
[…SNIP…]

<html>
		<head>
				<title>Working…</title>
		</head>
		<body>
				<form	method=“POST”	name=“hiddenform”	action=“https://localhost:44300/”>
						<input	type=“hidden”	name=“code”	value=“AAA[…SNIP…]jyAA”	/>
						<input	type=“hidden”	name=“id_token”	value=“eyJ0[…SNIP…]zLUWB1Q”	/>
						<input	type=“hidden”	name=“state”
value=“OpenIdConnect.AuthenticationProperties=[SNIP]”	/>
						<input	type=“hidden”	name=“session_state”	value=“93dba92a-90d2-4f97-
801b-a64a3b320f28”	/>
						<noscript>
								<p>Script	is	disabled.	Click	Submit	to	continue.</p>

								<input	type=“submit”	value=“Submit”	/>
						</noscript>
				</form>
				<script
language=“javascript”>window.setTimeout(‘document.forms[0].submit()’,	0);

				</script>
		</body>
</html>

	Note

In	this	chapter,	the	term	response	is	a	bit	overloaded.	There	are	the	HTTP
requests	and	responses	you	find	in	each	frame	of	the	trace	we	are	examining,
and	there	are	the	requests	and	responses	intended	as	OpenID	Connect
messages	(which	are	implemented	as	HTTP	request	and	responses	as	well).
There	isn’t	much	risk	of	confusion,	but	I	wanted	to	stress	this	just	in	case	you
were	wondering.

This	response	might	look	intimidating	at	first	glance,	but	in	fact	the	message	follows	a
very	simple	structure.	The	first	thing	to	notice	is	that	Azure	AD	saves	a	number	of	cookies
on	the	user’s	browser	at	this	point.	Some	of	them	are	persistent;	others	are	session	bound.
These	cookies	keep	track	of	the	fact	that	the	user	now	has	an	authenticated	session	with
Azure	AD.	Subsequent	requests	for	tokens	will	carry	these	cookies,	influencing	the
experience	in	a	variety	of	ways.	For	example,	an	already-authenticated	user	who	requests
a	token	that	does	not	require	any	other	interaction	(such	as	consent)	gets	back	the
requested	token	without	seeing	any	user	experience.	Another	example	is	that	requests
carrying	prompt=select_account	will	now	list	the	currently	signed-in	account	as
one	of	the	options,	as	recorded	in	one	of	these	cookies.

Knowing	the	details	of	what	each	cookie	does	won’t	be	of	much	help	to	you.	The	lineup
of	cookies	is	not	part	of	the	contract	of	Azure	AD	and	the	application;	hence,	Azure	AD
can	change	these	cookies	or	the	function	they	perform	at	any	time,	without	notice.	They
truly	are	an	implementation	detail,	and	as	such,	creating	a	dependency	on	their	behavior
leads	to	brittle	solutions	that	can	break	at	any	time,	possibly	with	no	recourse.	It’s	best	to
stick	with	the	knowledge	that	Azure	AD	sessions	are	represented	via	cookies,	without
going	into	the	details	of	which	individual	cookies	are	used.

The	body	of	the	response	is	the	interesting	part.	Remember	how	the	request	included	a
response_mode=form_post?	Azure	AD	is	complying	with	the	request,	returning	the
requested	response_type	in	a	hidden	form:	it	contains	an	id_token,	a	code,	and
even	the	state	parameter,	with	the	exact	value	provided	in	the	request.

The	HTML	that’s	returned	also	contains	a	line	of	JavaScript	that	is	meant	to
automatically	submit	the	form	(POSTing	it	to	the	app,	as	codified	by	the	form	method
and	action	attributes)	as	soon	as	the	browser	loads	that	HTML.

You	should	be	able	to	locate	the	subsequent	POST	request	to	the	app	a	bit	later	in	the
list	of	frames.	Here	an	edited	dump	of	it:

Click	here	to	view	code	image
POST	https://localhost:44300/	HTTP/1.1
[…SNIP…]
Cookie:	OpenIdConnect.nonce.NtAE[…SNIP…]yUDZOaw%3D%3D
code=AA[…SNIP…]AA&id_token=eyJ[…SNIP…]B1Q&state=OpenIdConnect[…
SNIP…]&session_state=93d[…SNIP…]28

The	content	of	the	body	should	not	be	surprising.	It’s	just	the	execution	of	the
form_post	we	just	examined.	The	only	thing	I	want	to	highlight	is	that	the	request
includes	the	cookie	tracking	the	nonce	value,	just	as	intended	when	it	was	generated
together	with	the	request.	If	something	between	the	request	and	the	response	messes	with
that	cookie—say,	an	antivirus	or	a	global	cookie-cleanse	operation—the	authentication
will	fail.

Here’s	the	response	to	that	POST:
Click	here	to	view	code	image

HTTP/1.1	302	Found
[…SNIP…]
Set-Cookie:
OpenIdConnect.nonce.NtAEBISzI9Su4nompbFjAZLP30DDfgV09WcjUtrNdqM%3D=;	path=/;
expires=Thu,	01-Jan-1970	00:00:00	GMT
Set-Cookie:	.AspNet.Cookies=UhJY[…SNIP…]ZlhlA;	path=/;	secure;	HttpOnly
[…SNIP…]

The	first	Set-Cookie	invalidates	the	nonce	value	tracker,	which	at	this	point	has
performed	its	function	and	is	no	longer	useful.

The	second	Set-Cookie	establishes	a	local	session,	in	line	with	the	description	of
redirect-based	sign-on	protocols	from	Chapter	2.

What	might	surprise	you	is	that	the	response	to	that	request	is	a	302.	There	are	two
main	reasons	why	it’s	not	a	200.	One	reason	is	to	enforce	logical	separation	between	the
management	of	normal	authenticated	traffic	and	the	establishment	of	a	session.	The	other
lies	in	the	fact	that	the	requested	resource	might	live	at	a	route	that	is	different	from	the
redirect_uri	registered	with	Azure	AD.	Just	a	few	pages	ago	I	described	the
mechanism	of	saving	in	the	state	parameter	the	local	URL	of	the	requested	resource:
this	302	is	where	that	mechanism	comes	into	play.	Note	that	in	this	example	the	requested
resource	is	/,	which	happens	to	correspond	to	the	exact	value	of	redirect_uri,	hence
the	302	ends	up	taking	place	against	the	app’s	landing	page	itself.

The	subsequent	GET	shows	the	blueprint	of	all	authenticated	resource	requests	from
now	until	the	session	expires:
Click	here	to	view	code	image

GET	https://localhost:44300/	HTTP/1.1
Host:	localhost:44300
Connection:	keep-alive
Cache-Control:	max-age=0
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
User-Agent:	Mozilla/5.0	(Windows	NT	6.3;	WOW64)	AppleWebKit/537.36	(KHTML,
like	Gecko)	Chrome/43.0.2357.124	Safari/537.36
Referer:	https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-
a80c4e36fe5e/login
Accept-Encoding:	gzip,	deflate,	sdch

Accept-Language:	en-US,en;q=0.8
Cookie:	.AspNet.Cookies=Uh	[…SNIP…]	lhlA

Every	request	includes	the	session	cookie,	which	is	validated	by	the	OWIN	cookie
middleware.

And	just	like	that,	you	have	followed	a	full	web	sign-on	journey	down	to	the	HTTP
messages	level!	This	already	makes	you	far	more	of	an	expert	than	the	vast	majority	of
developers.	There’s	just	a	couple	of	other	aspects	I	want	to	cover	to	complete	the	journey:
the	content	of	the	id_token	and	the	simplest	form	of	sign-out.	But	first,	take	a	moment
to	step	back	from	the	nitty-gritty	details	and	look	at	the	sign-in	flow	sequence	as	a	whole.

Sign-in	sequence	diagram
Figure	6-4	summarizes	the	sequence	of	messages	you’ve	observed	as	the	sign-in	operation
unfolded.

Figure	6-4	The	web	sign-in	component	of	the	OpenID	Connect	hybrid	flow.

It	took	20	pages	to	describe	that	flow,	but	only	because	I	used	it	as	an	excuse	to
illustrate	OpenID	Connect	in	detail.	When	stripped	of	all	its	syntactic	sugar,	the	sequence
of	messages	becomes	truly	trivial.	There’s	a	request	phase,	where	the	app	sends	an
authentication	request	to	Azure	AD’s	authorization	endpoint.	Azure	AD	then	walks	the
user	through	the	authentication	and	consent	experience	and	returns	the	requested	token
following	the	method	demanded	by	the	app	at	request	time.

The	first	request	also	includes	a	discovery	step,	where	the	app	(in	our	case,	through	the
OpenID	Connect	OWIN	middleware)	acquires	the	information	required	to	validate	tokens
issued	by	the	Azure	AD	tenant	of	choice.

The	response	is	straightforward.	The	last	302	is	left	out	of	the	bracket	because	it’s	not
really	OpenID	Connect;	it’s	more	a	service	offered	to	developers	by	the	libraries	for
handling	local	redirects	and	sessions.

Now	that	you’ve	gained	a	bit	of	perspective	on	the	process	as	a	whole,	let’s	dive	back	to
the	level	of	the	protocol	and	specs	one	last	time	to	learn	about	the	all-important	JSON
Web	Token	(JWT)	format	and	its	role	in	OpenID	Connect.

The	ID	token	and	the	JWT	format
The	presence	of	the	id_token	is	one	of	the	key	differentiators	that	makes	OpenID
Connect	a	viable	sign-on	protocol.	It	is	worth	spending	some	time	exploring	its	structure,
content,	and	function.

I’ll	start	by	extracting	the	token	bits	from	the	response	and	decoding	them.	There	are
various	tools	you	can	use	to	help	you	with	this	task.	For	example,	you	can	find	a	Fiddler
inspector	at	https://github.com/vibronet/OInspector/tree/dev	that	will	do	this	for	you.
However,	the	goal	of	this	chapter	is	to	help	you	understand	the	low-level	details	of	the
protocol	and	messages.	Hence,	I	will	go	about	it	in	organic	fashion,	without	any	tools
other	than	vanilla	Fiddler.

Go	back	to	the	POST	we	examined	earlier	in	the	“Response”	section.	Locate	the
id_token="[…SNIP…]"	part,	and	copy	the	string	within	the	quotation	marks.	You	will
notice	that	the	actual	trace	is	not	as	neatly	formatted	as	the	dump	I’ve	pasted	here,	making
the	task	of	selecting	the	correct	string	a	bit	of	a	challenge.	Feel	free	to	click	the	View	In
Notepad	button	in	Fiddler	and	select	the	string	directly	from	the	Notepad	window.

The	string	should	look	like	the	following:
Click	here	to	view	code	image

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Ik1uQ19WWmNBVGZNNXBPWWlKSE1iYTlnb0VLWSIsImtpZCI6Ik1u
Q19WWmNBVGZNNXBPWWlKSE1iYTlnb0VLWSJ9.eyJhdWQiOiJjM2Q1YjFhZC1hZTc3LTQ5YWMtOGE4Ni1kZDM5YTJmOTEwODE
iLCJpc3MiOiJodHRwczovL3N0cy53aW5kb3dzLm5ldC82YzNkNTFkZC1mMGU1LTQ5NTktYjRlYS1hODBjNGUzNmZlNWUvIiw
iaWF0IjoxNDM0MzI4NzM2LCJuYmYiOjE0MzQzMjg3MzYsImV4cCI6MTQzNDMzMjYzNiwidmVyIjoiMS4wIiwidGlkIjoiNmM
zZDUxZGQtZjBlNS00OTU5LWI0ZWEtYTgwYzRlMzZmZTVlIiwib2lkIjoiMTNkMzEwNGEtNjg5MS00NWQyLWE0YmUtODI1ODF
hOGU0NjViIiwidXBuIjoibWFyaW9AZGV2ZWxvcGVydGVuYW50Lm9ubWljcm9zb2Z0LmNvbSIsInN1YiI6Im9DeXF0M0tIalB
ELVZiaVNhUnBhQUhQU2k5V2EyZVhmLVdhV0Y2WEozQTgiLCJnaXZlbl9uYW1lIjoiTWFyaW8iLCJmYW1pbHlfbmFtZSI6IlJ
vc3NpIiwibmFtZSI6Ik1hcmlvIFJvc3NpIiwiYW1yIjpbInB3ZCJdLCJ1bmlxdWVfbmFtZSI6Im1hcmlvQGRldmVsb3BlcnR
lbmFudC5vbm1pY3Jvc29mdC5jb20iLCJub25jZSI6IjYzNTY5OTI1ODI3MDIyNDk4MC5NR0ZoTURnMU9HUXRPR1kyWXkwME9
HSmxMVGhtT0dFdE9ERmhNbU5oWkRKaE9XWmpZVFF4TlRsbU5ETXRZalUzTUMwME1UUXpMVGt6WWpNdE1EZG1OelJsWldZMU5
XWTQiLCJjX2hhc2giOiJ3cTdZbVU1QVBmZjhMZWMtazEtdVRnIiwicHdkX2V4cCI6IjMxMzcwMjkiLCJwd2RfdXJsIjoiaHR
0cHM6Ly9wb3J0YWwubWljcm9zb2Z0b25saW5lLmNvbS9DaGFuZ2VQYXNzd29yZC5hc3B4In0.TXo27OOWw6qD72MH9P23IfU
FRcqNOLmZy18D494pROE9em8QHrRStLvJJ6JjwFfaRBwYWPSBDrjqDrk2FtjOxLWzoAEcujdGQxwkPg03OH-
YLsaIygDXAPJg_Khn19SwVP-wdiG-XYKQcIdfMnmrXK8nfajC4R7uP63agy1F2gK38Jgw3-JC_o-
9IUoOP-
7YYFM8Kq0fwdHqLpqqxB5lT_CWs9pq2uyk0WLeOfbh7GzGdDUebAc7JnVgUH9lG1xWJGH_8mljJ7qzfA6o3DHk7GAHzdFXfC
PxQ8bKQp_18fl-IlWd_KXcKgBFx0P47jq24CTFXAePdvqtp8DzLUWB1Q

You	are	almost	certain	not	to	notice	this	at	first	glance,	but	if	you	observe	the	string
carefully,	you	will	see	that	it	is	partitioned	in	three	segments,	each	separated	by	a	dot	(.)
character.	Each	segment	is	a	Base64	encoded	string.	To	reveal	the	actual	content	of	the
string,	you	need	to	decode	it.	There	are	plenty	of	decoders	online,	but	Fiddler	includes	one
out	of	the	box.	Search	for	TextWizard	on	the	main	menu,	and	click	it.	Paste	the	string	into
the	top	pane.	Select	From	Base64	from	the	Transform	drop-down	list.	Figure	6-5	gives

https://github.com/vibronet/OInspector/tree/dev

you	an	idea	of	the	result.

Figure	6-5	Using	Fiddler’s	TextWizard	to	decode	the	id_token.

Here’s	the	decoded	id_token,	formatted	for	ease	of	reference.
Click	here	to	view	code	image

{
			“alg”	:	“RS256”,
			“kid”	:	“MnC_VZcATfM5pOYiJHMba9goEKY”,
			“typ”	:	“JWT”,
			“x5t”	:	“MnC_VZcATfM5pOYiJHMba9goEKY”
}
{
			“amr”	:	[“pwd”],
			“aud”	:	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”,
			“c_hash”	:	“wq7YmU5APff8Lec-k1-uTg”,
			“exp”	:	1434332636,
			“family_name”	:	“Rossi”,
			“given_name”	:	“Mario”,
			“iat”	:	1434328736,
			“iss”	:	“https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/”,
			“name”	:	“Mario	Rossi”,
			“nbf”	:	1434328736,
			“nonce”	:
“635699258270224980.MGFhMDg1OGQtOGY2Yy00OGJlLThmOGEtODFhMmNhZDJhOWZjYTQxNTlmNDMtYjU
3MC00MTQzLTkzYjMtMDdmNzRlZWY1NWY4”,
			“oid”	:	“13d3104a-6891-45d2-a4be-82581a8e465b”,
			“pwd_exp”	:	“3137029”,
			“pwd_url”	:	“https://portal.microsoftonline.com/ChangePassword.aspx”,
			“sub”	:	“oCyqt3KHjPD-VbiSaRpaAHPSi9Wa2eXf-WaWF6XJ3A8”,
			“tid”	:	“6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e”,
			“unique_name”	:	“mario@developertenant.onmicrosoft.com”,
			“upn”	:	“mario@developertenant.onmicrosoft.com”,
			“ver”	:	“1.0”
}
Mz6 ê c […SNIP…]

As	you	know	by	now,	the	id_token	is	in	JWT	format—the	lightweight	JSON	format
for	tokens	that	I	introduced	in	Chapter	2.	That	alone	would	be	enough	to	make	JWT	a	very
important	artifact	for	you	to	grok,	but	there’s	more:	in	Azure	AD,	every	access	token	is
also	a	JWT.	As	such,	it’s	worth	investing	some	time	to	understand	the	format	in	detail.

The	JWT	format

You	read	about	the	history	of	JWT	in	Chapter	2,	in	the	sidebar	“From	SWT	to	JWT:	A
brief	history	of	lightweight	token	formats.”	Standardized	by	the	Internet	Engineering	Task
Force	(IETF)	in	May	2015	(the	spec	is	available	at	https://tools.ietf.org/html/rfc7519),	the
JSON	Web	Token	specification	defines	a	compact	token	format	capable	of	transporting
claims	in	HTTP	headers	and	URI	query	parameters.	JWT	relies	on	a	lower-level	spec,	the
JSON	Web	Signature	(JWS;	see	https://tools.ietf.org/html/rfc7515	for	the	spec),	which
describes	ways	of	digitally	signing	a	JSON	payload	and	attaching	to	it	all	the	info	that	is
necessary	for	validating	such	a	signature.

	Note

JWT	also	relies	on	JSON	Web	encryption	(JWE,	spec	at
https://tools.ietf.org/html/rfc7516)	for	defining	how	to	encrypt	tokens,	but
Azure	AD	does	not	support	JWE	at	this	time	(so	I	won’t	explore	it	further	in
this	edition	of	the	book).

The	specs	are	very	comprehensive—and	surprisingly	readable.	I	invite	you	to	check
them	out	if	you	want	to	learn	about	the	true	extent	of	the	format’s	expressive	power.	Here,
I	just	want	to	give	you	enough	terminology	and	understanding	of	the	features	used	in	the
context	of	Azure	AD	to	allow	you	to	competently	troubleshoot	and	customize	solutions.

The	three	parts	we	identified	in	the	token	we	captured	correspond	to	three	canonical
components	of	a	JSON	payload	and	an	accompanying	signature,	as	defined	by	JWS:

	JWS	Protected	Header	This	part	contains	information	about	the	other	parts:	the
token	format	(for	our	scenarios,	it’s	JWT),	what	algorithm	was	used	to	compute	the
digital	signatures,	and	various	ways	of	referring	to	the	key	that	should	be	used	for
verifying	such	a	signature.	The	header	must	be	a	UTF8	string.	As	you	have	seen
from	the	trace,	it	is	Base64	encoded—in	fact,	to	be	super	precise,	it	is	Base64url
encoded—that	is	to	say,	encoded	with	a	URL	and	a	filename-safe	alphabet	as
defined	in	https://tools.ietf.org/html/rfc4648#section-5.	A	good	trick	to	recognize	it
at	a	glance?	There	is	no	trailing	equal	sign	(=)	in	Base64url	encoding.

	JWS	Payload	This	is	the	actual	content	we	want	to	transmit.	For	JWS,	the	payload
can	be	pretty	much	whatever,	but	for	JWT,	it	is	the	set	of	claims	we	want	to
transport.	As	such,	in	JWT	this	portion	is	the	JWT	claim	set.	This	portion	also
travels	in	Base64url	encoded	format.

	JWS	Signature	This	part	carries	the	bits	of	the	signature	proper,	performed	on	the
concatenation	of	the	encoded	JWS	Protected	Header	plus	the	dot	(.)	character,	plus
the	encoded	JWT	Payload.	The	signature	is	calculated	with	the	algorithm	and	key

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc4648#section-5

specified	in	the	header,	is	Base64url	encoded,	and	concatenated	(via	the	usual	“.”)	to
the	other	parts.	As	you	might	have	noticed	from	the	funny	characters	in	the	decoded
output	in	Figure	6-5,	this	portion	is	actually	binary.

The	JWT	structure	is	summarized	in	Figure	6-6.

Figure	6-6	Functional	components	of	a	JWT.

In	a	nutshell,	a	resource	receiving	a	JWT	will	parse	the	header	to	confirm	that	it’s	a
JWT,	resolve	the	key	references	to	retrieve	the	actual	key	bits	(and	take	issue	if	the	key
cannot	be	retrieved),	and	learn	which	algorithm	should	be	used	to	check	the	signature.	It
will	calculate	the	signature	of	the	combined	header	and	payload	bits,	comparing	the	value
with	the	one	traveling	in	the	JWT	Signature	portion.	A	successful	match	will	indicate	that
the	content	has	not	been	tampered	with.

	Important

One	subtlety	that	is	not	immediately	evident	to	everybody	is	that	a	successful
signature	check	is	only	the	beginning	of	the	validation	process.	It	just	means
that	the	token	has	not	been	modified	in	transit,	but	per	se	it	does	not	say
whether	the	key	that	was	used	for	signing	is	one	of	the	keys	of	the	IdP	you
trust.	Remember	in	the	“Discovery”	section,	where	the	middleware	acquired
the	keys	of	our	target	Azure	AD	tenant?	Not	only	must	the	key	indicated	by
the	JWT	header	successfully	compute	the	signature,	it	also	needs	to	be	one	of
the	keys	we	discovered.

Please	remember	that	developers	will	rarely,	if	ever,	operate	at	this	level.	Libraries	and
middleware	are	the	natural	consumers	of	this	information,	taking	care	of	all	the
cryptography	and	distilling	data	away	in	more	abstract	form	for	the	application	layer.	As
usual,	knowing	what’s	going	on	below	the	surface	is	useful	mostly	for	troubleshooting	and
customization	purposes.	The	JWS/JWT	parts	that	hold	some	actionable	value	for	you	are
the	header	and	the	JWT	claim	set,	the	latter	more	than	the	former.

JWS	Header		For	convenience,	here	again	are	the	JWT	header	bits	of	the	decoded
id_token	from	the	trace:
Click	here	to	view	code	image

{
			“alg”	:	“RS256”,
			“kid”	:	“MnC_VZcATfM5pOYiJHMba9goEKY”,
			“typ”	:	“JWT”,
			“x5t”	:	“MnC_VZcATfM5pOYiJHMba9goEKY”
}

The	JWS	spec	lists	a	number	of	registered	header	parameter	names	and	details	the
possible	values	they	can	assume.	In	so	doing	it	relies	on	yet	another	specification,	JSON
Web	Algorithms	(JWA,	see	https://tools.ietf.org/html/rfc7518),	which	provides	a	registry
of	well-known	values	and	a	central	place	for	future	extensions.	If	you	are	wondering	how
deep	this	specifications	rabbit	hole	runs,	don’t	worry:	it	does	go	deeper,	but	this	level	is	as
deep	as	I	will	go	in	the	context	of	this	book.

The	easiest	header	parameter	to	describe	is	typ,	indicating	the	media	type	of	the	bits
being	signed.	For	us,	this	will	always	be	JWT,	but	JWT	can	be	used	for	signing	pretty
much	anything	you’ll	find	listed	at	http://www.iana.org/assignments/media-types/media-
types.xhtml.

The	alg	header	gets	funnier.	A	signature	operation	can	be	performed	through	multiple
algorithms.	The	aforementioned	JWA	spec	lists	a	bunch	of	well-known	ones,	with	detailed
guidance	on	what	identifier	to	use	and	how	to	apply	the	operation	on	the	bits.

The	value	we	have	here,	RS256,	indicates	a	signature	performed	with	an	RSA	key
using	the	SHA-256	hashing	function.	I	might	point	you	to	the	RFC	3447	specification	to
expand	on	what	that	exactly	means,	but	I	promised	I	wouldn’t	go	any	further.	Suffice	to
say	that	RS256	uses	public	key	cryptography	and,	in	the	case	of	Azure	AD,	the	keys	are

https://tools.ietf.org/html/rfc7518
http://www.iana.org/assignments/media-types/media-types.xhtml

handled	via	X.509	certificates.

You	should	not	be	surprised	that	the	id_token	we	received	from	Azure	AD	was
signed	using	RS256.	If	you	turn	back	to	the	“Discovery”	section	and	take	a	look	at	the
.well-known/OpenId-Configuration	document,	you	will	notice	that	it	contains
"id_token_signing_alg_values_supported"	:	["RS256"].	Now	you
know	what	that	means.

The	kid	header	carries	an	identifier	for	the	key	used	for	performing	the	signature.	If
you	go	back	to	the	“Signing	keys”	section	and	take	a	look	at	the	keys-definition	document,
you	will	notice	that	the	value	of	the	kid	header	here	matches	exactly	the	one	for	the
second	key	on	file.	That	means	that	the	key	used	actually	belongs	to	Azure	AD,	as
expected.

The	x5t	header	can	be	used	in	case	the	key	is	stored	as	a	X.509	certificate—it
represents	the	certificate’s	thumbprint.	It	is	still	an	identifier,	but	given	that	it	is	computed
from	the	certificate	bits	themselves,	it	carries	cryptographic	strength.	You	might	have
noticed	that	in	this	case	its	value	is	the	same	as	for	kid.

There	are	various	other	header	types,	but	you’ll	encounter	them	more	rarely	in	Azure
AD.	(Look	them	up	in	the	specification	if	you	need	to.)

JWT	Claim	Set		JWT	defines	a	number	of	registered	claim	names	that	represent	common
ground	for	all	implementers.	These	are	mostly	claims	that	are	useful	for	validating	the
incoming	token.	Here’s	a	list	of	the	intersection	between	the	claims	registered	by	the	JWT
specification	and	the	ones	actually	present	in	the	id_token	from	the	trace	you	captured.

	iss	This	claim	represents	the	identity	of	the	issuer	of	the	token.	In	this	case	that’s
the	Azure	AD	tenant	where	you	provisioned	the	application.

If	you	examine	the	value	of	the	iss	claim	in	the	captured	token	(in	my	case	it’s
https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-
a80c4e36fe5e/)	and	compare	it	with	the	issuer	value	in	the	discovery
method,	you	will	see	that	they	are	the	same.

The	OpenID	Connect	OWIN	middleware	validates	the	issuer	by	default,	comparing
what	it	finds	in	iss	with	what	it	read	in	issuer	from	the	discovery	document—
and	refusing	any	token	that	does	not	comply.	You	will	see	later	in	the	book	that	you
will	want	to	relax	this	behavior	at	times,	especially	when	your	app	needs	to	accept
tokens	from	multiple	Azure	AD	tenants,	each	with	its	unique	issuer	value.

	sub	The	sub	is	an	identifier	of	the	subject	that	went	through	the	authentication
process—in	this	case,	the	user.	Azure	AD	guarantees	that	the	value	of	sub	is	unique
and	not	reassignable.

	aud	This	claim	indicates	the	audience	of	the	token;	that	is	to	say,	its	intended
recipient.	The	captured	token	bits	will	show	that	in	this	case	the	value	of	aud	is
exactly	the	client_id	that	was	assigned	by	Azure	AD	to	your	application.	You
can	think	of	the	audience	claim	as	what’s	written	for	“pay	to	the	order	of”	on	a	bank
check.	If	somebody	tries	to	pay	you	with	a	check,	but	that	check	indicates	someone

else	as	the	payee,	you	are	not	going	to	accept	the	check	no	matter	how	legitimate	it
appears.	The	same	goes	with	tokens.	If	your	application	receives	a	token	with	an
aud	that	is	different	from	the	app’s	identifier,	that	token	does	not	prove	that	the
caller	successfully	obtained	a	token	for	your	app	from	Azure	AD.	The	caller	might
have	stolen	that	token	from	a	transaction	with	a	different	app,	for	example.

The	OpenID	Connect	OWIN	middleware	validates	the	audience	by	default,
comparing	what	it	finds	in	aud	with	the	client_id	value	you	provide	in	the
middleware	initialization.

	exp	This	claim	indicates	the	expiration	time	of	the	token.	If	the	token	is	received	an
instant	later	than	this	value,	it	must	be	refused.	Typically,	the	request-issuance-
validation	chain	introduces	small	clock	discrepancies,	which	our	libraries	try	to
account	for	by	introducing	some	tolerance,	so	don’t	expect	checks	to	be	too	strict
here.

	nbf	nbf	(“not	before”)	is	the	partner	of	exp.	Tokens	received	at	a	time	that
predates	nbf	must	be	refused.

	iat	This	claim	represents	the	instant	at	which	the	JWT	was	issued.	This	can	come
in	handy	in	case	you	want	to	know	how	old	the	token	really	is.

id_token	validation

OpenID	Connect	establishes	that	the	id_token	is	in	JWT	format	and	then	proceeds	to
describe	in	detail	how	to	validate	it.	That	mostly	boils	down	to	mandating	the	presence	of
specific	claims	and	describing	what	criteria	they	must	meet	for	each	of	the	flows	it	defines
—hybrid,	authorization	code,	and	implicit.

The	hybrid	flow,	chosen	by	default	by	the	OpenID	Connect	OWIN	middleware,	is	the
flow	with	the	most	requirements.	I	won’t	repeat	them	verbatim	here.	The	protocol’s	spec	is
very	clear	and	easy	to	consult	for	this	information.	I	just	want	to	point	out	the	validations
that	are	most	likely	to	provoke	failures	on	real	solutions	so	that	you	have	a	starting	point.

	The	signature	must	be	validated.

	The	iss,	sub,	aud,	exp,	and	iat	claims	from	the	canonical	claims	list	in	the
JWT	spec	must	all	be	present	and	validated	as	I	described	in	their	definitions,
including	all	the	ties	to	the	discovery	constraints	(for	example,	the	iss	value	must
match	the	identifier	in	issuer	from	the	discovery	document).

	The	id_token	must	contain	a	nonce	claim,	whose	content	must	match	the
content	provided	in	the	request	(in	our	case,	saved	in	a	cookie).

	This	does	not	really	come	into	play	in	this	chapter,	given	that	in	this	scenario	we
ignore	the	authorization	code	returned	alongside	the	id_token,	but	per	the
specification,	the	id_token	must	contain	a	claim	c_hash	that	is	derived	from	the
value	of	the	authorization	code.	In	practice,	if	an	attacker	would	substitute	the	code
in	the	response	message,	the	c_hash	claim	would	no	longer	correspond	to	the	code
value	and	would	make	the	validation	fail.

Other	claims	in	Azure	AD’s	id_token

As	I	write,	Azure	AD’s	id_tokens	come	with	a	number	of	other	claims	that	aren’t
strictly	used	for	validation,	but	they	come	in	handy	in	describing	the	subject	and
piggyback	extra	functionality	on	top	of	the	authentication	flow.	(Again,	there	is	no
guarantee	that	this	list	will	be	the	same	by	the	time	you	have	this	book	in	your	hands,	but
it	probably	won’t	be	completely	different.)

	auth_time	This	claim	captures	the	time	at	which	the	user	was	authenticated.

	acr	This	claim,	short	for	authentication	context	class	reference,	expresses	the	level
of	assurance	associated	with	the	authentication	method	that	was	used	for	issuing	the
token.

	amr	amr	represents	the	authentication	method	(or	methods)	that	was	used	to
authenticate	the	user.	The	captured	token	actually	includes	this	claim,	with	the	value
["pwd"]—that	is	to	say,	an	array	with	one	single	element,	indicating	that	the
user	authenticated	via	a	password.

	email	The	email	address	of	the	user.	The	temptation	to	use	this	claim	as	an
identifier	is	strong,	but	it	would	be	a	mistake	because	an	email	address	is	not
guaranteed	to	be	unique.

	given_name,	family_name,	name,	nickname	These	are	all	mnemonic
identifiers.	They	mean	what	you	think	they	mean,	but	if	you	want	to	be	certain	…
check	the	OpenID	Connect	Core	specification.

	oid	Short	for	Object	ID,	this	claim	contains	the	unique,	nonreassignable	identifier
that	Azure	AD	uses	for	identifying	the	caller	within	the	tenant.	Management
operations	on	the	caller	(creation,	update,	modification)	can	all	use	this	identifier	to
indicate	which	entity	should	be	modified.

	pwd_exp	This	claim	indicates	the	moment	at	which	the	password	for	the	current
user	will	expire.

	pwd_url	Traveling	in	tandem	with	pwd_exp,	pwd_url	indicates	the	URL	to
which	the	user	can	navigate	to	access	pages	providing	password-change
functionality.

	tid	tid	stands	for	tenant	identifier.	If	you	compare	its	value	in	the	captured	token
with	the	GUID	in	all	the	endpoints	and	the	issuer	value	advertised	in	the
discovery	document,	you’ll	find	that	they	are	the	same.

	upn	This	is	the	usual	user	principal	name.	It’s	a	bit	better	than	email	as	an	identifier
but	still	not	perfect,	given	that	it	can	be	reassigned.	Also,	not	every	authentication
flow	leads	to	a	UPN.

	unique_name	This	is	a	(somewhat)	human-readable	identifier	that	is	guaranteed
to	be	present	for	users,	even	when	upn	is	not.	In	cases	in	which	upn	is	present,
unique_name	has	the	same	value.

	groups,	roles	These	multivalue	claim	types	are	used	to	transmit	role	and	group

membership	information	about	the	user.	Groups	are	represented	as	the	object	IDs	of
the	groups	in	the	directory.	I	will	have	more	to	say	about	these	claims	when	I	discuss
the	Azure	AD	application	model	in	later	chapters.

OpenID	Connect	exchanges	for	signing	out	from	the	app	and	Azure	AD
You	have	learned	how	to	establish	a	session,	so	it	seems	only	fair	to	conclude	by	studying
how	to	end	one	as	well.

Assuming	that	you	captured	the	trace	according	to	the	instructions,	scroll	down	the
frames	list	to	find	a	GET	of	Account/SignOut.	This	is	the	action	you	implemented	in
Chapter	5	that	triggers	the
HttpContext.GetOwinContext().Authentication.SignOut	code	against
the	OpenID	Connect	and	cookie	middlewares.	Select	the	frame	and	inspect	the	response.	It
should	look	like	the	following:
Click	here	to	view	code	image

HTTP/1.1	302	Found
[…SNIP…]
Location:	https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-
a80c4e36fe5e/oauth2/logout?
post_logout_redirect_uri=https%3a%2f%2flocalhost%3a44300%2f
[…SNIP…]
Set-Cookie:	.AspNet.Cookies=;	path=/;	expires=Thu,	01-Jan-1970	00:00:00	GMT
[…SNIP…]

The	Set-Cookie	operation	gets	rid	of	the	app’s	own	session	cookie.	That	alone
would	not	be	much	of	a	sign-out	because	at	this	point	the	user	is	still	signed	in	with	Azure
AD.	That	is,	there	is	still	a	cookie	tied	to	the	Azure	AD	domain,	which	would	allow	the
user	to	get	a	new	token	for	the	app	without	any	prompt—signing	right	back	in.

Cleaning	the	session	with	Azure	AD	is	the	purpose	of	that	302	message	returned	in	the
Location	header.	The	sign-out	request	syntax	is	described	in	the	OpenID	Connect	Session
Management	specification	(available	at	http://openid.net/specs/openid-connect-session-
1_0.html—at	this	time	it	is	still	an	implementers’	draft).	Here	are	a	few	observations:

	The	target	endpoint,
https://login.microsoftonline.com/6c3d51dd-f0e5-4959-
b4ea-a80c4e36fe5e/oauth2/logout,	was	advertised	by	the	discovery
document	under	the	property	end_session_endpoint.

	The	parameter	post_logout_redirect_uri	instructs	Azure	AD	to	redirect
the	browser	to	the	indicated	URI	once	the	sign-out	operation	concludes.

	Although	the	default	logout	logic	does	not	use	it,	you	can	use	the	state	parameter
to	preserve	state	between	the	request	and	response,	just	as	you’ve	seen	for	the	sign-
in	flow.

	It	is	possible	for	one	user	to	be	signed	in	to	Azure	AD	with	more	than	one	account
simultaneously.	What	should	Azure	AD	do	upon	receiving	a	sign-out	request?	The
protocol	helps	to	solve	the	ambiguity	by	providing	a	parameter,	id_token_hint,
which	can	be	used	for	indicating	which	account	should	be	signed	out.	In	this	case,

http://openid.net/specs/openid-connect-session-1_0.html

you	would	simply	provide	the	id_token	you	received	at	authentication	time.

The	frames	that	follow	show	how	Azure	AD	reacts	to	the	request.	I	won’t	include	the
detailed	traces	here.	The	implementation	details	(endpoints,	cookies,	messages)	aren’t	part
of	the	contract	and	are	likely	to	change.	However,	the	gist	of	it	is	that	Azure	AD	updates
its	tracking	cookies	(like	the	one	listing	the	currently	signed-in	accounts)	and	cleans	up	the
ones	containing	details	of	the	account	session.

That	done,	Azure	AD	redirects	back	to	the	address	specified	by
post_logout_redirect_uri,	which	in	our	case	is	the	app’s	root.	The	user	is	now
signed	out:	access	to	the	protected	portions	of	the	app	will	require	a	new	sign-in	operation.

Figure	6-7	summarizes	the	flow.

Figure	6-7	The	sign-out	flow	sequence.

Summary
This	chapter	offered	you	an	in-depth	look	at	how	Azure	AD	uses	OpenID	Connect	to
implement	web	sign-on.	I	did	not	leave	any	stone	unturned,	examining	the	meaning	of
every	parameter	on	the	wire	and	even	mentioning	values	that	the	specs	define	and	that
could	have	been	used	to	customize	the	sign-in	flow.	Although	the	content	of	the	chapter
was	undoubtedly	biased	toward	Azure	AD	and	its	defaults,	most	of	what	you	learned
about	OpenID	Connect	and	JWT	applies	to	any	service	using	those	specs.

Now	that	you	are	aware	of	what	goes	on	at	the	wire	level,	you	are	ready	to	go	beyond
the	basics	and	customize	default	request	generation,	response	processing,	and	validation	to
fit	your	scenarios.	The	next	chapter	examines	the	OpenID	Connect	OWIN	middleware	and
supporting	classes	(such	as	those	handling	the	JWT	format),	showing	you	what	settings
and	extensibility	points	you	can	use	to	leverage	your	newfound	protocol	knowledge.

Chapter	7.	The	OWIN	OpenID	Connect	middleware

In	this	chapter	I	focus	on	the	OpenID	Connect	middleware	and	supporting	classes.	These
are	the	cornerstones	of	ASP.NET’s	support	for	web	sign-on.

As	you	saw	in	Chapter	5,	“Getting	started	with	web	sign-on	and	Active	Directory,”	in
the	most	common	case,	the	OpenID	Connect	middleware	requires	very	few	parameters	to
enable	web	sign-on.	Beneath	that	simple	surface,	however,	are	knobs	for	practically
anything	you	want	to	control:	protocol	parameters,	initialization	strategies,	token
validation,	message	processing,	and	so	on.	This	chapter	will	reveal	the	various	layers	of
the	object	model	for	you,	showing	how	you	can	fine-tune	the	authentication	process	to
meet	your	needs.

OWIN	and	Katana
When	I	wrote	Programming	Windows	Identity	Foundation	(Microsoft	Press)	in	2009,	I
didn’t	have	to	spend	much	time	explaining	HttpModule,	the	well-established	ASP.NET
extensibility	technology	on	which	WIF	was	built.	This	time	around,	however,	I	cannot
afford	the	luxury	of	assuming	that	you	are	already	familiar	with	OWIN	and	its
implementation	in	ASP.NET—this	is	the	foundational	technology	of	the	new	generation	of
authentication	libraries.

OWIN	is	a	stable	standard	at	this	point,	but	its	implementations	are	still	relatively	new
technologies.	You	can	find	plenty	of	information	online,	but	the	details	are	rapidly
changing	(as	I	write,	ASP.NET	vNext	is	in	the	process	of	renaming	lots	of	classes	and
properties),	and	you	need	to	have	a	solid	understanding	of	the	pipeline	and	model
underlying	the	identity	functionality.

In	this	section	I	provide	a	quick	tour	of	OWIN	(as	implemented	in	Katana	3.0.1)	and	the
features	that	are	especially	relevant	for	the	scenarios	I’ve	described	throughout	the	book.
For	more	details,	you	can	refer	to	the	online	documentation	from	the	ASP.NET	team.

What	is	OWIN?
OWIN	stands	for	Open	Web	Interface	for	.NET.	It	is	a	community-driven	specification:
Microsoft	is	just	a	contributor,	albeit	a	very	important	one.	Here’s	the	official	definition,
straight	from	the	specifications’	home	page	at	http://owin.org/.

OWIN	defines	a	standard	interface	between	.NET	web	servers	and	web
applications.	The	goal	of	the	OWIN	interface	is	to	decouple	server	and
application,	encourage	the	development	of	simple	modules	for	.NET	web
development,	and,	by	being	an	open	standard,	stimulate	the	open	source
ecosystem	of	.NET	web	development	tools.

In	essence,	OWIN	suggests	a	way	of	building	software	modules	(called	middlewares)
that	can	process	HTTP	requests	and	responses.	It	also	describes	a	way	in	which	those
modules	can	be	concatenated	in	a	processing	pipeline	and	defines	how	that	pipeline	can	be
hosted	without	relying	on	any	specific	web	server	or	host	or	the	features	of	a	particular
development	stack.

http://owin.org/

The	core	idea	is	that,	at	every	instant,	the	state	of	an	HTTP	transaction	and	the	server-
side	processing	of	it	is	represented	by	a	dictionary	of	the	following	form:

IDictionary<string,	object>

This	is	commonly	known	as	the	environment	dictionary.	You	can	expect	to	find	in	it	the
usual	request	and	response	data	(host,	headers,	query	string,	URI	scheme,	and	so	on)
alongside	any	data	that	might	be	required	for	whatever	processing	an	app	needs	to
perform.	Where	does	the	data	come	from?	Some	of	it,	like	the	request	details,	must
eventually	come	from	the	web	server.	The	rest	is	the	result	of	the	work	of	the	middleware
in	the	pipeline.

Oversimplifying,	a	middleware	is	a	module	that	implements	the	following	interface:
Click	here	to	view	code	image

Func<IDictionary<string,	object>,	Task>;

I	am	sure	you	have	already	guessed	how	things	might	work.	The	middleware	receives
the	environment	dictionary	as	input,	acts	on	it	to	perform	the	middleware’s	function,	and
then	hands	it	over	to	the	next	middleware	in	the	pipeline.	For	example,	logging
middleware	might	read	the	dictionary	and	pass	it	along	unmodified,	but	an	authentication
middleware	might	find	a	401	code	in	the	dictionary	and	decide	to	transform	it	into	a	302,
modifying	the	response	to	include	an	authentication	request.	By	using	the	dictionary	as	the
way	of	communicating	and	sharing	context,	as	opposed	to	calling	each	other	directly,
middlewares	achieve	a	level	of	decoupling	that	was	not	possible	in	older	approaches.

How	do	you	bootstrap	all	this?	At	startup,	the	middleware	pipeline	needs	to	be
constructed	and	initialized:	you	need	to	decide	what	middlewares	should	be	included	and
in	which	order	and	ensure	that	requests	and	responses	will	be	routed	through	the	pipeline
accordingly.	The	OWIN	specification	has	a	section	that	defines	a	generic	mechanism	for
this,	but	given	that	you	will	be	working	mostly	with	the	ASP.NET-specific
implementation,	I	won’t	go	into	much	detail	on	that.

I	skipped	an	awful	lot	of	what	the	formulaic	descriptions	of	OWIN	normally	include
(like	the	formal	definitions	of	application,	middleware,	server,	and	host),	but	I	believe	that
this	brief	description	should	provide	you	enough	scaffolding	for	understanding	Katana,
ASP.NET’s	implementation	of	OWIN.

Katana
Katana	is	the	code	name	for	a	set	of	Microsoft’s	.NET	4.5–based	components	that	utilize
the	OWIN	specification	to	implement	various	functionalities	in	ASP.NET	4.6.	It’s	what
you	used	in	Chapter	1	and	Chapter	5	and	includes	base	middleware	classes,	a	framework
for	initializing	the	pipeline,	pipeline	hosts	for	ASP.NET,	and	a	large	collection	of
middlewares	for	all	sorts	of	tasks.

Katana	!=	OWIN

OWIN	is	an	abstract	specification.	Katana	is	a	set	of	concrete	classes	that
implement	that	spec,	but	it	also	introduces	its	own	implementation	choices	for
tasks	that	aren’t	fully	specified	or	in	scope	for	the	OWIN	spec.	In	giving
technical	guidance,	it’s	easy	to	say	something	to	the	effect	“in	OWIN,	you	do
X,”	but	it	is	often	more	proper	to	say	“in	Katana,	you	do	X.”	I	am	sure	I	will
be	guilty	of	this	multiple	times:	please	accept	my	blanket	apologies	in
advance.

In	Chapter	5	you	encountered	most	of	the	Katana	NuGet	packages	and	assemblies	that
appear	in	common	scenarios.	You	also	successfully	used	them	by	entering	the	code	I
suggested.	Here	I’ll	reexamine	all	that,	explaining	what	really	happens.

Startup	and	IAppBuilder

In	Chapter	5,	in	the	section	“Host	the	OWIN	pipeline,”	you	created	a	Startup	class	and
decorated	its	source	file	with	the	assembly:OwinStartup	attribute.	The	function	of
Startup	is	to	initialize	the	OWIN	pipeline	by	having	its	Configure	method
automatically	invoked	at	initialization.	To	follow	current	practices,	I	instructed	you	to
make	Startup	partial	and	to	put	the	actual	pipeline-building	code	in	another	file—but
you	could	have	just	as	well	added	the	code	in	line	in	Startup.

Using	the	attribute	is	only	one	of	several	ways	of	telling	Katana	which	class	should	act
as	Startup.	You	can	also	do	the	following:

	Have	one	class	named	Startup	in	the	assembly	or	the	global	namespace.

	Use	the	OwinStartup	attribute.	The	attribute	wins	against	the	naming	convention
(using	Startup):	if	both	techniques	are	used,	the	attribute	will	be	the	one	driving
the	behavior.

	Add	an	entry	under	<appSettings>	in	the	app	config	file,	of	the	form
Click	here	to	view	code	image
<add	key=“owin:appStartup”	value=”	WebAppChapter5.Startup”	/>.

This	entry	wins	over	both	the	naming	convention	and	the	attribute.

Fun	times!	I’ve	listed	these	alternatives	so	that	you	know	where	to	look	if	your	app
appears	to	magically	pick	up	code	without	an	obvious	reason.	I	used	to	feel	like	that	all	the
time	when	I	first	started	with	Katana.

Let’s	now	turn	our	attention	to	Startup.Configure.	Observe	the	method’s
signature:
Click	here	to	view	code	image

public	void	Configure(IAppBuilder	app)

IAppBuilder	is	an	interface	designed	to	support	the	initialization	of	the	application.
It	looks	like	this:

Click	here	to	view	code	image
public	interface	IAppBuilder
{
				IDictionary<string,	object>	Properties	{	get;	}

				object	Build(Type	returnType);
				IAppBuilder	New();
				IAppBuilder	Use(object	middleware,	params	object[]	args);
}

The	Properties	dictionary	is	used	in	turn	by	the	server	and	host	to	record	their
capabilities	and	initialize	data,	making	it	available	to	the	application’s	initialization	code
—that	is	to	say,	whatever	you	put	in	Configure.	In	the	case	of	our	sample	app,	the
server	is	IIS	Express	and	the	host	is	the	SystemWeb	host	we	referenced	when	adding	the
NuGet	package	with	the	same	name.

	Note

That	host	is	actually	an	HttpModule	designed	to	host	the	OWIN	pipeline.
That’s	the	trick	Katana	uses	to	integrate	with	the	traditional	System.Web
pipeline.

The	Build	method	is	rarely	called	in	your	own	code,	so	I’ll	ignore	it	here.	The	Use
method	enables	you	to	add	middleware	to	the	pipeline,	and	I’ll	get	to	that	in	a	moment.

To	prove	to	you	that	the	host	does	indeed	populate	app	at	startup,	let’s	take	a	peek	at
the	app	parameter	when	Configure	is	first	invoked.	Open	Visual	Studio,	open	the
solution	from	Chapter	5,	place	a	breakpoint	on	the	first	line	of	Configure,	and	hit	F5.
Once	the	breakpoint	is	reached,	navigate	to	the	Locals	tab	and	look	at	the	content	of	app.
You	should	see	something	similar	to	Figure	7-1.

Figure	7-1	The	content	of	the	app	parameter	at	Configure	time.

Wow,	we	didn’t	even	start,	and	look	at	how	much	stuff	is	there	already!

Katana	provides	a	concrete	type	for	IAppBuilder,	named	AppBuilder.	As
expected,	the	Properties	dictionary	arrives	already	populated	with	server,	host,	and
environment	properties.	Feel	free	to	ignore	the	actual	values	at	this	point.	Just	as	an
example,	in	Figure	7-1	I	highlighted	the	host.AppName	property	holding	the	IIS
metabase	path	for	the	app.

The	nonpublic	members	hold	a	very	interesting	entry:	_middleware.	If	you	keep	an
eye	on	that	entry	as	you	go	through	the	pipeline-initialization	code	in	the	next	section,	you
will	see	the	value	of	Count	grow	at	every	invocation	of	Use*.

Middlewares,	pipeline,	and	context

Stop	the	debugger	and	head	to	Startup.Auth.cs,	where	you	will	find	the	implementation	of
ConfigureAuth.	This	is	where	you	actually	add	middleware	to	the	pipeline,	through
the	calls	to	UseCookieAuthentication	and
UseOpenIdConnectAuthentication.	Those	are	convenience	extension	methods.
UseCookieAuthentication	is	equivalent	to	this:
Click	here	to	view	code	image

app.Use(typeof(CookieAuthenticationMiddleware),	app,	options);

The	effect	of	Use	is	to	add	the	corresponding	middleware	to	the	pipeline	in
AppBuilder—as	you	can	observe	by	watching	the	aforementioned	_middleware.
Although	technically	a	middleware	might	simply	satisfy	the	Func	interface	mentioned	at
the	beginning,	Katana	offers	patterns	that	are	a	bit	more	structured.	One	easy	example	can
be	found	by	examining	OwinMiddleware,	a	base	class	for	middlewares.	It’s	super
simple:
Click	here	to	view	code	image

public	abstract	class	OwinMiddleware
{
				protected	OwinMiddleware(OwinMiddleware	next)
				{
								Next	=	next;
				}
				protected	OwinMiddleware	Next	{	get;	set;	}	
				public	abstract	Task	Invoke(IOwinContext	context);
}

Every	middleware	provides	an	Invoke	method,	accepting	an	IOwinContext,	which
is	a	convenience	wrapper	of	the	environment	dictionary	from	the	OWIN	specs.	In
addition,	every	middleware	can	hold	a	pointer	to	the	next	entry	in	the	pipeline.	The	idea	is
that	when	you	call	a	middleware’s	Invoke	method,	the	middleware	can	do	its	work	on
the	context	(typically,	the	request	part	of	it),	await	the	Invoke	call	of	the	next
middleware	in	the	pipeline,	and	do	more	work	(this	time	on	the	response)	once	the
Invoke	method	of	the	next	middleware	returns.	As	mentioned	earlier,	middlewares
communicate	via	shared	context:	each	middleware	can	examine	the	IOwinContext
instance	to	find	out	what	the	preceding	middleware	did.	You	can	see	a	diagram	of	this
flow	in	Figure	7-2.	The	diagram	is	specific	to	the	sample	application	scenario—hence	IIS
and	the	System.Web	model—to	make	things	as	concrete	as	possible.	However,	I	want	to
stress	that	the	middleware	activation	sequence	would	remain	the	same	even	if	it	were
hosted	elsewhere.

Figure	7-2	The	OWIN	pipeline	as	implemented	by	Katana	in	the	sample	application
scenario:	an	HttpModule,	hosting	a	cascade	of	middlewares.

Note	that	one	middleware	can	always	decide	that	no	further	processing	should	happen.
In	that	case	the	middleware	will	not	call	the	Invoke	method	of	the	next	middleware	in
the	sequence,	effectively	short-circuiting	the	pipeline.

	Note

OwinMiddleware	is	great	for	explaining	the	base	functionality	of	the
middleware,	but	in	practice	it	raises	interop	issues.	If	you	plan	to	build	your
own	middleware	(which	is	far	outside	the	scope	of	this	book),	you	should
consider	achieving	the	same	behaviors	without	using	it.

There’s	a	neat	trick	you	can	use	for	observing	firsthand	how	the	middleware	pipeline
unfolds.	You	can	interleave	the	Use*	sequence	with	your	own	debug	middlewares,	and
then	place	strategic	breakpoints	or	debug	messages.	Here’s	the	pattern	for	a	minimal
middleware-like	debug	implementation:
Click	here	to	view	code	image

app.Use(async	(Context,	next)	=>
{
				//	request	processing	-	do	something	here																
				await	next.Invoke();
				//	response	processing	-	do	something	here
});

That’s	pretty	easy.	Here’s	the	sequence	from	the	sample	app,	modified	accordingly:
Click	here	to	view	code	image

app.SetDefaultSignInAsAuthenticationType(CookieAuthenticationDefaults.AuthenticationType);
app.Use(async	(Context,	next)	=>
{
				Debug.WriteLine(“1	==>request,	before	cookie	auth”);																

				await	next.Invoke();
				Debug.WriteLine(“6	<==response,	after	cookie	auth”);
});

app.UseCookieAuthentication(new	CookieAuthenticationOptions());

app.Use(async	(Context,	next)	=>
{
				Debug.WriteLine(“2	==>after	cookie,	before	OIDC”);
				await	next.Invoke();
				Debug.WriteLine(“5	<==after	OIDC”);
});

app.UseOpenIdConnectAuthentication(
				new	OpenIdConnectAuthenticationOptions
				{
								ClientId	=	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”,
								Authority	=
“https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com”,
								PostLogoutRedirectUri	=	https://localhost:44300/
				}
);

app.Use(async	(Context,	next)	=>
{
				Debug.WriteLine(“3	==>after	OIDC,	before	leaving	the	pipeline”);
				await	next.Invoke();
				Debug.WriteLine(“4	<==after	entering	the	pipeline,	before	OIDC”);
});

The	numbers	in	front	of	every	debug	message	express	the	sequence	you	should	see
when	all	the	middlewares	have	a	chance	to	fire.	Any	discontinuity	in	the	sequence	will	tell
you	that	some	middleware	decided	to	short-circuit	the	pipeline	by	not	invoking	its	next
middleware	buddy.

Run	the	sample	app	and	see	whether	everything	works	as	expected.	But	before	you	do,
you	need	to	disable	one	Visual	Studio	feature	that	interferes	with	our	experiment:	it’s	the
Browser	Link.	The	Browser	Link	helps	Visual	Studio	communicate	with	the	browser
running	the	app	that’s	being	debugged	and	allows	it	to	respond	to	events.	The	unfortunate
side	effect	for	our	scenario	is	that	Browser	Link	produces	extra	traffic.	In	Chapter	6,
“OpenID	Connect	and	Azure	AD	web	sign-on,”	we	solved	the	issue	by	hiding	the	extra
requests	via	Fiddler	filters,	but	that’s	not	an	option	here.	Luckily,	it’s	easy	to	opt	out	of	the
feature.	Just	add	the	following	line	to	the	<appSettings>	section	in	the	web.config	file
for	the	app:
Click	here	to	view	code	image

<add	key=“vs:EnableBrowserLink”	value=“false”></add>

That	done,	hit	F5.	As	the	home	page	loads,	the	output	window	will	show	something	like
the	following:
Click	here	to	view	code	image

1	==>request,	before	cookie	auth
2	==>after	cookie,	before	OIDC
3	==>after	OIDC,	before	leaving	the	pipeline
‘iisexpress.exe’	(CLR	v4.0.30319:	/LM/W3SVC/2/ROOT-1-130799278910142565):
Loaded
‘C:\windows\assembly\GAC_MSIL\Microsoft.VisualStudio.Debugger.Runtime\14.0.0.0__b03f5f7f11d50a3a\Microsoft.VisualStudio.Debugger.Runtime.dll’.

Skipped	loading	symbols.	Module	is	optimized	and	the	debugger	option	‘Just	My
Code’	is	enabled.
4	<==after	entering	the	pipeline,	before	OIDC
5	<==after	OIDC
6	<==response,	after	cookie	auth

You	can	see	that	all	the	middlewares	executed,	and	all	in	the	order	that	was	predicted
when	you	assigned	sequence	numbers.	Never	mind	that	this	doesn’t	appear	to	do
anything!	You’ll	find	out	more	about	that	in	the	next	section.

Click	Contact	or	Sign	In	on	the	home	page.	Assuming	that	you	are	not	already	signed
in,	you	should	see	pretty	much	the	same	sequence	you’ve	seen	earlier	(so	I	won’t	repeat
the	output	window	content	here),	but	at	the	end	of	it	your	browser	will	redirect	to	Azure
AD	for	authentication.	Authenticate,	and	then	take	a	look	at	the	output	window	to	see
what	happens	as	the	browser	returns	to	the	app.	You	should	see	something	like	this:
Click	here	to	view	code	image

1	==>request,	before	cookie	auth
2	==>after	cookie,	before	OIDC
5	<==after	OIDC
6	<==response,	after	cookie	auth
1	==>request,	before	cookie	auth
2	==>after	cookie,	before	OIDC
3	==>after	OIDC,	before	leaving	the	pipeline
4	<==after	entering	the	pipeline,	before	OIDC
5	<==after	OIDC
6	<==response,	after	cookie	auth

This	time	you	see	a	gap.	As	the	request	comes	back	with	the	token,	notice	that	the	first
part	of	the	sequence	stops	at	the	OpenID	Connect	middleware—the	jump	from	2	to	5
indicates	that	the	last	debug	middleware	was	not	executed,	and	presumably	the	same	can
be	said	for	the	rest	of	the	following	stages.

What	happened?	Recall	what	you	studied	in	the	section	“Response”	in	Chapter	6:	when
the	OpenID	Connect	middleware	first	receives	the	token,	it	does	not	grant	access	to	the
app	right	away.	Rather,	it	sends	back	a	302	for	honoring	any	internal	redirect	and	performs
a	set-cookie	operation	for	placing	the	session	cookie	in	the	browser.	That’s	exactly	what
happens	in	the	steps	1,	2,	5,	and	6:	the	OpenID	Connect	middleware	decides	that	no
further	processing	should	take	place	and	initiates	the	response	sequence.	The	full	1–6
sequence	that	follows	is	what	happens	when	the	browser	executes	the	302	and	comes	back
with	a	session	cookie.

That’s	it.	At	this	point,	you	should	have	a	good	sense	of	how	middlewares	come
together	to	form	a	single,	coherent	pipeline.	The	last	generic	building	block	you	need	to
examine	is	the	context	that	all	middlewares	use	to	communicate.

Sign	out	of	the	app	and	stop	the	debugger	so	that	the	next	exploration	will	start	from	a
clean	slate.

IIS	integrated	pipeline	events	and	middleware	execution

By	now	you	know	that	Katana	runs	its	middleware	pipeline	in	an
HttpModule,	which	participates	in	the	usual	IIS	integrated	pipeline.	If	you
are	familiar	with	that,	you	also	know	that	HttpModules	can	subscribe	to
multiple	predefined	events,	such	as	AuthenticateRequest,
AuthorizeRequest,	and	PreExecuteRequestHandler.

By	default,	Katana	middleware	executes	during
PreExecuteRequestHandler,	although	there	are	exceptions.	There	is	a
mechanism	you	can	use	for	requesting	execution	of	given	segments	of	the
middleware	pipeline	at	a	specific	event	in	the	IIS	integrated	pipeline,	and
that’s	by	using	the	extension	method	UseStageMarker.

Adding
app.UseStageMarker(PipelineStage.Authenticate)	tells
Katana	to	execute	in	the	AuthenticateRequest	IIS	event	all	the
middlewares	registered	so	far,	or	as	far	as	the	first	preceding
UseStageMarker	directive.

This	is	not	the	whole	story:	for	example,	it’s	possible	to	use	stage	markers
for	requesting	sequences	that	are	incompatible	with	the	natural	sequencing	of
events	in	the	IIS	pipeline.	There	are	a	number	of	rules	that	determine
Katana’s	behavior	in	those	cases.	Please	refer	to	the	ASP.NET	documentation
for	details.

Context		Before	getting	to	the	specifics	of	authentication,	let’s	invest	a	few	moments	to
get	to	know	the	OWIN	context	better.

Place	a	breakpoint	in	the	first	diagnostic	middleware,	on	the	line	that	writes	the	message
marked	with	1.	Hit	F5,	and	once	the	execution	reaches	your	breakpoint,	head	to	the	Locals
tab	and	take	a	look	at	the	content	of	the	Context	parameter.	You	should	see	what’s
depicted	in	Figure	7-3.

Figure	7-3	The	structure	of	the	Katana	context.

Let’s	cover	each	of	the	entries	here.

	Authentication	The	Authentication	property	is	used	for	exposing

authentication	capabilities	of	the	current	pipeline.	You	saw	this	in	action	when	you
implemented	the	sign-in	and	sign-out	features	in	Chapter	5,	via	the	Challenge
and	SignOut	methods,	respectively.

Authentication	is	also	used	by	authentication	middlewares	for	communicating
with	one	another,	as	you	will	see	in	the	next	section.	As	Figure	7-4	shows,	when	the
request	first	enters	the	pipeline,	Authentication	is	empty.	You	will	learn	about
this	property	in	detail	when	we	focus	on	the	authentication	middleware.

Figure	7-4	The	Context.Authentication	property	content	upon	receiving	the
first	unauthenticated	request.

	Environment	As	the	OWIN	specification	states,	the	core	status	of	an	OWIN	pipeline
is	captured	by	the	environment	dictionary.	Figure	7-5	shows	how	the	Katana
implementation	features	all	the	values	prescribed	by	the	OWIN	specification,	plus	a
few	more.

Figure	7-5	The	content	of	the	OWIN	environment	dictionary	on	first	request.

	Request	and	Response	If	you	are	familiar	with	HTTP	request	and	response
manipulation	in	traditional	ASP.NET,	you	should	be	quite	comfortable	with	their
similarly	named	Context	properties	in	Katana.	Figure	7-6	shows	an	example.

Figure	7-6	The	first	request,	represented	by	the	Context.Request	property.

	TraceOutput	This	property	is	mainly	a	clever	way	of	exposing	a	standard	trace	at	the
OWIN	level,	regardless	of	the	specific	host	used	to	run	the	pipeline.

Add	more	breakpoints	for	the	other	debug	middlewares	and	see	how	Context	changes
as	the	execution	sweeps	through	the	pipeline.	After	you	have	experimented	with	this,	head
to	the	next	section,	where	I	review	the	authentication	flow	through	the	OWIN	pipeline	in
detail.

Authentication	middleware

The	authentication	functionality	emerges	from	the	collaboration	of	a	protocol	middleware
(like	those	for	OpenID	Connect	or	WS-Federation)	and	the	cookie	middleware.	The
protocol	middleware	reacts	to	requests	and	responses	by	generating	and	processing
protocol	messages,	with	all	that	entails	(token	validation	and	so	on).	The	cookie
middleware	persists	sessions	in	the	form	of	cookies	at	sign-in	and	enforces	the	presence
and	validity	of	such	cookies	from	the	instant	of	authentication	onward.	All	communication
between	the	two	middlewares	takes	place	via	the	AuthenticationManager	instance
in	the	Context.	Let’s	break	down	the	sign-in	flow	we	captured	earlier	into	three	phases:
generation	of	the	sign-in	challenge,	response	processing	and	session	generation,	and
access	in	the	context	of	a	session.

Sign-in	redirect	message		Assume	that	you	triggered	the	sign-in	flow	by	clicking

Contact.	As	you	observed,	this	action	results	in	all	the	middlewares	firing	in	the	expected
order,	and	it	concludes	with	the	redirection	of	the	browser	toward	Azure	AD	with	an
authorization	request	message.

If	you	go	through	the	flow	while	keeping	an	eye	on	Context.Response,	you	will
notice	that	after	the	request	leaves	the	OWIN	pipeline	(after	the	debug	message	marked	3),
something	changes	the	Response’s	StatusCode	to	401.	In	this	case,	that	was	the
good	old	[Authorize],	which	does	its	job	to	enforce	authenticated	access	regardless	of
the	presence	of	the	OWIN	pipeline.

If	you	go	beyond	the	breakpoint	on	debug	message	4	and	let	the	OpenID	Connect
middleware	execute,	you	will	observe	that	Response.StatusCode	changes	again,
this	time	to	302.	If	you	dig	into	the	Response.Headers	collection,	you	will	notice	a
new	entry,	Location,	containing	the	OpenID	Connect	authorization	request.	Moreover,	you
will	find	a	new	Set-Cookie	entry	for	saving	the	OpenID	Connect	nonce.

Walking	through	the	rest	of	the	breakpoint,	you	will	see	the	response	message	go
unmodified	through	the	remainder	of	the	pipeline	and	back	to	the	browser.

In	Katana	parlance,	the	OpenID	Connect	middleware	is	Active	by	default.	That	means
that	its	options	class’s	AuthenticationMode	property	is	set	to	Active,	which	makes
it	react	to	401	responses	by	generating	its	sign-in	challenge	message.	That	is	not	always
what	you	want:	for	example,	if	you	have	multiple	protocol	middlewares	configured	to	talk
to	different	IdPs,	you	will	want	explicit	control	(via	calls	to
Authentication.Challenge)	over	what	middleware	should	be	in	charge	to
generate	the	sign-in	message	at	a	given	moment.

Figure	7-7	displays	the	steps	in	the	sequence	of	the	sign-in	message	generation	phase.

Figure	7-7	The	sequence	through	which	an	unauthenticated	request	elicits	the
generation	of	a	sign-in	message.

Token	validation	and	establishment	of	a	session		The	sequence	that	processes	the	Azure
AD	response	carrying	the	token	(characterized	by	the	debug	sequence	1,	2,	5,	6	earlier)	is
the	one	requiring	the	most	sophisticated	logic.

The	request	goes	through	the	cookie	middleware	(breakpoints	on	messages	1	and	2)
unmodified.	However,	as	soon	as	you	step	over	the	Invoke	call	in	the	diagnostic
middleware	that	calls	the	OpenID	Connect	middleware,	you’ll	observe	that	the	execution
goes	straight	to	the	breakpoint	on	debug	message	5,	skipping	the	rest	of	the	pipeline	and
the	app	itself	and	initiating	the	response.

Once	again,	the	Response	object	carries	a	302.	If	you	recall	the	explanations	in	the
earlier	section,	you	know	that	this	302	means	that	the	middleware	successfully	validated
the	token	received	and	is	now	using	a	redirect	operation	to	perform	any	local	redirect	and
persist	the	session	cookie	in	the	client	browser.	If	you	take	a	look	at	the
Response.Header	collection,	you	will	find	a	Location	entry	redirecting	to
“https://localhost:44300/Home/Contact”,	which	is	the	route	originally	requested.	You	will
also	find	a	Set-Cookie	entry	meant	to	delete	the	nonce,	which	is	no	longer	necessary	at
this	point.	However,	you	will	not	find	any	Set-Cookie	for	the	session	cookie.	Where	is	it?

Saving	the	session	is	the	job	of	the	cookie	middleware,	which	at	this	point	has	not	yet
had	a	chance	to	process	the	response.	In	fact,	saving	a	session	might	be	a	far	more
complicated	matter	than	simply	sending	back	a	Set-Cookie	header.	For	example,	you
might	want	to	save	the	bulk	of	the	session	on	a	server-side	store:	the	cookie	middleware
provides	that	ability	as	a	service	so	that	any	protocol	middleware	can	leverage	it	without
having	to	reinvent	the	process	every	time.

The	OpenID	Connect	middleware	uses	Context.Authentication	to

communicate	to	the	cookie	middleware	the	content	of	the	validated	token	to	be	persisted
as	well	as	other	session-related	details,	such	as	duration.	Right	after	the	OpenID	Connect
middleware	processes	the	request,	you’ll	see	the	Authentication	properties
AuthenticationResponseGrant,	SignInEntry,	and	User	populated.

The	cookie	middleware	is	mostly	interested	in	AuthenticationReponseGrant.
When	its	turn	comes	to	process	the	response,	the	cookie	middleware	will	find	the
AuthenticationReponseGrant	and	use	its	content	to	generate	a	session.	In	Figure
7-8	you	can	see	an	example	of	AuthenticationResponseGrant	content.

Figure	7-8	The	AuthenticationResponseGrant	content	right	after	the	OpenID
Connect	middleware	successfully	validates	a	sign-in	response	from	Azure	AD.

Properties	refers	to	generic	session	properties,	such	as	the	validity	window
(derived	from	the	validity	window	of	the	token	itself,	as	declared	by	Azure	AD).
Identity,	as	you	guessed,	is	the	ClaimsIdentity	representing	the	authenticated
user.	The	most	important	thing	to	notice	at	this	point	is	the	AuthenticationType
value	that’s	shown:	that’s	a	hint	left	by	the	OpenID	Connect	middleware	for	the	cookie
middleware,	indicating	that	the	ClaimsIdentity	instance	should	be	persisted	in	the
session.	Recall	that	when	the	pipeline	is	initialized	in	Startup.Auth.cs,	you	started	the
method	with	the	following	line:
Click	here	to	view	code	image

app.SetDefaultSignInAsAuthenticationType(CookieAuthenticationDefaults.AuthenticationType);

That	told	the	protocol	middlewares	in	the	pipeline	that	in	the	absence	of	local	overrides,
the	identifier	to	use	for	electing	an	identity	to	be	persisted	in	a	session	is
CookieAuthenticationDefaults.AuthenticationType,	which	happens	to

be	the	string	“Cookies”.	When	the	OpenID	Connect	middleware	validates	the	incoming
token	and	generates	the	corresponding	ClaimsPrincipal	and	nested
ClaimsIdentity,	it	uses	that	value	for	the	AuthenticationType	property.	When
the	cookie	middleware	starts	processing	the	response	and	finds	that	ClaimsIdentity,
it	verifies	that	the	AuthenticationType	it	finds	there	corresponds	to	the
AuthenticationType	value	it	has	in	its	options.	Given	that	here	we	used	the	defaults
everywhere,	it’s	a	match;	hence,	the	cookie	middleware	proceeds	to	save	the
corresponding	ClaimsPrincipal	in	the	session.

If	you	examine	the	Response.Headers	collection	after	the	cookie	middleware	has	a
chance	to	execute,	you	will	see	that	the	Set-Cookie	value	now	includes	a	new	entry	for	an
.Asp.Net.Cookies,	which	contains	the	ClaimsPrincipal	information.	Figure	7-9
summarizes	the	sequence.

Figure	7-9	The	token-validation	and	session-creation	sequence.	The	OpenID	Connect
middleware	processes	the	incoming	token,	passing	the	user	identity	information	it

carries	to	the	cookie	middleware.	In	turn,	the	cookie	middleware	saves	the	user	identity
information	in	a	session	cookie.

Authenticated	access	as	part	of	a	session		Once	the	session	has	been	established,	all
requests	within	its	validity	window	are	handled	in	the	same	way:	as	soon	as	the	request	is
processed	by	the	cookie	middleware	(between	debug	messages	marked	with	1	and	2),	the
incoming	cookie	is	retrieved,	validated,	and	parsed.	The	ClaimsPrincipal	it	carries	is
rehydrated,	as	shown	by	the	value	of	Authentication.User	being	populated	with	a
ClaimsPrincipal;	the	rest	of	the	pipeline	just	lets	the	message	through	without

further	processing.

Figure	7-10	shows	how	this	all	plays	out	through	the	middleware	pipeline.

Figure	7-10	During	a	session,	every	request	carries	the	session	token,	which	is
validated,	decrypted,	and	parsed	by	the	cookie	middleware.	The	user	claims	are	made

available	to	the	application.

Explicit	use	of	Challenge	and	SignOut		The	explicit	sign-in	and	sign-out	operations	you
implemented	in	the	AccountController	of	the	sample	app	also	use	the
Authentication	property	of	Context	to	communicate	with	the	middleware	in	the
pipeline.

If	you	want	to	see	how	Challenge	works,	repeat	the	sign-in	flow	as	described	earlier,
but	this	time	trigger	it	by	clicking	Sign	In.	Stop	at	the	breakpoint	on	debug	message	4.
You	will	see	that	the	response	code	is	a	401,	just	like	the	case	we	examined	earlier.
However,	here	you	will	also	see	populated	entries	in	Authentication,	in	particular
AuthenticationResponseChallenge.	If	you	peek	into	it,	you’ll	see	that
AuthenticationResponseChallenge	holds	the	AuthenticationType	of	the
middleware	you	want	to	use	for	signing	in	(“OpenIdConnect”)	and	the	local	redirect	you
want	to	perform	after	sign-in	(in	this	case,	the	root	of	the	app).	If	the	OpenID	Connect
middleware	is	set	to	Passive	for	AuthenticationMode,	the	presence	of	the	401
response	code	alone	is	not	enough	to	provoke	the	sign-in	message	generation,	but	the
presence	of	AuthenticationResponseChallenge	guarantees	that	it	will	kick	in.
Other	than	that,	the	rest	of	the	flow	goes	precisely	as	described.

The	sign-out	flow	is	very	similar.	Hit	the	Sign	Out	link.	Stopping	at	the	usual
breakpoint	4,	you’ll	observe	that	Authentication	now	holds	a	populated
AuthenticationResponseRevoke	property,	which	in	turn	contains	a	collection	of

AuthenticationTypes,	including	“OpenIdConnect”	and	“Cookies”.	When	it’s	their
turn	to	process	the	response,	the	middlewares	in	the	pipeline	check	whether	there	is	a
nonnull	AuthenticationResponseRevoke	entry	containing	their
AuthenticationTypes.	If	they	find	one,	they	have	to	execute	their	sign-out	logic.
As	you	advance	through	the	breakpoints	in	the	response	flow,	you	can	see	that	behavior
unfolding.	The	OpenID	Connect	middleware	reacts	by	changing	the	return	code	to	302
and	placing	the	sign-out	message	for	Azure	AD	in	the	Location	header.	The	cookie
middleware	simply	adds	a	Set-Cookie	entry	that	sets	the	session	cookie	expiration	date	to
January	1,	1970,	invalidating	the	session.	Figure	7-11	provides	a	visual	summary	of	the
operation.

Figure	7-11	The	contributions	to	the	sign-out	sequence	from	each	middleware	in	the
pipeline.

Diagnostic	middleware

When	something	goes	wrong	in	the	OWIN	pipeline,	finding	the	culprit	is	often	tricky.
Adding	breakpoints	to	an	“in	line”	middleware,	as	I	have	done	in	this	chapter	to	highlight
how	the	pipeline	works,	is	definitely	an	option.	Alternatively,	Katana	offers	a	specialized
diagnostic	middleware	that	can	render	useful	debugging	information	directly	in	the
browser	when	an	unhandled	exception	occurs	in	the	pipeline.	Setting	it	up	is	super	easy.

Add	a	reference	to	the	NuGet	package	Microsoft.Owin.Diagnostics.	In	your

Startup.Auth.cs,	add	the	associated	using	directive.	Right	on	top	of	your	main
configuration	routine	(in	our	sample,	ConfigureAuth),	add	something	along	the	lines
of	the	following:
Click	here	to	view	code	image

app.UseErrorPage(new	ErrorPageOptions()
{
				ShowCookies	=	true,
				ShowEnvironment	=	true,
				ShowQuery	=	true,
				ShowExceptionDetails	=	true,
				ShowHeaders	=	true,
				ShowSourceCode	=	true,
				SourceCodeLineCount	=	10
});

The	extension	method	UseErrorPage	injects	into	the	pipeline	some	logic	for
dumping	diagnostic	information	on	the	current	page	in	case	an	exception	is	raised	in	the
pipeline.	For	that	reason,	it’s	important	to	place	this	method	at	the	beginning	of	the
pipeline	(otherwise,	any	exceptions	occurring	before	it	has	a	chance	to	fire	would	not	be
captured).	All	the	options	you	see	in	the	call	control	what	diagnostic	information	you	want
to	display;	the	property	names	are	self-explanatory.

If	you	want	to	test	the	contraption,	you	can	artificially	raise	an	exception	in	any	of	our
debugging	middlewares,	and	then	hit	F5	to	see	what	happens.	Figure	7-12	shows	a	typical
diagnostic	page.

Figure	7-12	The	page	displayed	by	the	diagnostic	middleware	from
Microsoft.Owin.Diagnostics.

	Important

You	should	never	use	this	middleware	in	production	applications,	as	it	might
reveal	information	you	don’t	want	an	attacker	to	obtain.	Please	use	this	only
for	debugging.	Moreover,	this	middleware	will	not	help	in	the	case	of
exceptions	raised	in	the	application	itself.	It	is	really	specialized	for	handling
issues	occurring	in	the	OWIN	pipeline.

OpenID	Connect	middleware
With	the	exception	of	the	cookie	tracking	the	nonce,	all	the	considerations	so	far	apply	to
the	OpenID	Connect	middleware	as	well	as	the	WS-Federation	middleware.	In	this	section
I	dive	deeper	into	the	features	and	options	of	the	OpenID	Connect	middleware.

OpenIdConnectAuthenticationOptions
The	options	you	pass	in	at	initialization	are	the	main	way	that	you	control	the	OpenID
Connect	middleware.	The	Azure	AD	and	ASP.NET	teams	have	taken	a	lot	of	care	to
ensure	that	only	the	absolute	minimum	amount	of	information	is	required	for	the	scenario
you	want	to	support.	The	sample	app	you	have	studied	so	far	shows	the	essential	set	of
options:	the	ClientId	(which	identifies	your	app	in	your	requests	to	the	authority)	and
the	Authority	(which	identifies	the	trusted	source	of	identities	and,	indirectly,	all	the
information	necessary	to	validate	the	tokens	it	issues).	If	you	want	to	exercise	more	fine-
grained	control,	you	can	use	the	middleware	initialization	options	class	to	provide	the
following:

	More	protocol	parameters	that	define	your	app	and	the	provider	you	want	to	trust.

	What	kind	of	token	requests	you	want	the	app	to	put	forth.

	What	logic	you	want	to	execute	during	authentication,	choosing	from	settings
offered	out	of	the	box	and	from	custom	logic	you	want	to	inject.

	The	usual	array	of	choices	controlling	all	Katana	middleware	mechanics.

In	this	section	I	describe	the	most	notable	categories.	Two	special	properties,
Notifications	and	TokenValidationParameters,	are	so	important	that	I’ve
dedicated	sections	to	them.

For	your	reference,	Figure	7-13	shows	the	default	values	in
OpenIdConnectAuthenticationOptions	for	our	app,	right	after	initialization.

Figure	7-13	The	values	in	OpenIdConnectAuthenticationOptions	after	a
typical	initialization	sequence.

Application	coordinates	and	request	options

Besides	the	already-mentioned	ClientId,	you	can	supply	the	following	application
details.

	Note

Parameters	in	the	options	class	corresponding	to	OpenID	Connect	protocol
parameters	have	the	same	name,	with	the	notation	adjusted	to	match	.NET
naming	conventions.	In	early	iterations,	the	Active	Directory	team	tried	to	use
the	protocol	names	verbatim—lowercase,	underscore,	and	all—but	the
community	staged	an	uprising,	and	the	team	quickly	settled	on	the	format	you
see	today.

	RedirectUri	This	controls	the	value	of	redirect_uri	included	in	the
request,	corresponding	to	the	route	in	your	app	through	which	you	want	Azure	AD
to	return	the	requested	token.	As	I	noted	in	Chapter	6,	if	you	don’t	specify	any	value,
the	parameter	will	be	omitted	and	Azure	AD	will	pick	the	one	registered	at
registration	time.	That’s	handy,	but	you	should	watch	out	for	two	possible	issues.
First,	you	might	register	multiple	redirect_uri	values	for	your	app,	in	which
case	Azure	AD	will	choose	which	one	to	use	in	a	semirandom	fashion	(it	always

looks	like	it	chooses	the	first	one	you	registered,	but	you	cannot	count	on	that).
Second,	if	you	are	connecting	to	providers	other	than	Azure	AD,	they	might	require
the	request	to	comply	with	their	spec	and	include	a	redirect_uri.

This	setting	is	ingested	at	the	time	the	app	is	initialized	and	won’t	change	later	on.	In
the	section	about	notifications,	you	will	learn	ways	of	overriding	this	and	other
parameters	on	the	fly	in	the	context	of	specific	requests	and	responses.

	PostLogoutRedirectUri	You	have	seen	this	in	use	in	Chapter	5.	It	determines
where	to	redirect	the	browser	in	your	app	once	the	authority	concludes	its	sign-out
operations.

	ClientSecret	This	represents	the	client_secret,	which	is	required	when
redeeming	an	authorization	code.	I	covered	this	at	a	high	level	in	Chapter	2,	in	the
context	of	OAuth2,	but	did	not	look	at	it	at	the	trace	and	code	level.	I’ll	do	so	later	in
the	book.

Here	are	a	few	other	parameters	that	control	what’s	going	to	be	sent	in	the	request.

	ResponseType	Maps	to	the	OpenID	Connect	parameter	of	the	same	name.
Although	you	can	assign	to	it	any	of	the	values	discussed	in	Chapter	6,	only
“id_token”	and	“code	id_token”	(the	default)	lead	to	the	automatic	handling	of	user
sign-in.	If	you	want	to	support	other	response	types,	such	as	“code”,	you	need	to
inject	custom	code	in	the	notifications	described	later	in	this	chapter.

	Resource	In	case	you	are	using	“code	id_token”,	you	can	use	this	parameter	to
specify	what	resource	you	want	an	authorization	code	for.	If	you	don’t	specify
anything,	the	code	you	get	back	from	Azure	AD	will	be	redeemable	for	an	access
token	for	the	Graph	API.	As	mentioned	in	Chapter	6,	resource	is	a	parameter
specific	to	Azure	AD.

	Scope	Maps	to	the	OAuth2/OpenID	Connect	scope	parameter.

Barring	any	custom	code	that	modifies	outgoing	messages	on	the	fly,	the	settings
described	here	are	the	ones	used	in	every	request	and	response.

Authority	coordinates	and	validation

The	functional	area	of	validation	is	one	of	the	toughest	to	explain.	It	was	one	of	the	main
pain	points	of	working	with	WIF,	where	the	object	model	expected	all	validation
coordinates	to	be	passed	by	value.	Although	Microsoft	provided	tools	that	generated	those
settings	automatically	from	metadata,	the	obscurity	and	sheer	sprawl	of	the	resulting
configuration	settings	came	across	as	a	bogeyman	that	kept	the	noninitiated	at	bay.

In	the	new	middlewares,	the	default	behavior	is	to	obtain	(most	of)	the	validation
coordinates	by	reference.	You	provide	the	authority	from	which	you	want	to	receive
tokens,	and	the	middleware	takes	care	of	retrieving	the	token	validation	coordinates	it
needs	from	the	authority’s	metadata.

In	Chapter	6	you	saw	how	that	retrieval	operation	takes	place	when	you	pass	an	Azure
AD	authority.	If	you	want	to	customize	that	behavior,	there	is	a	hierarchy	of	options	you
can	use.	From	accommodating	providers	that	expose	metadata	differently	from	how	Azure

AD	does,	to	supplying	each	and	every	setting	for	providers	that	don’t	expose	metadata	at
all,	these	options	cover	the	full	spectrum.

Here’s	how	it	works.

The	ConfigurationManager	class	is	tasked	to	retrieve,	cache,	and	refresh	the
validation	settings	published	by	the	discovery	documents.	That	class	is	fed	whatever
options	you	provide	at	initialization.	There	is	a	cascade	of	options	it	looks	for:

	If	the	options	include	an	Authority	value,	it	will	be	used	as	you	saw	in	Chapter
6.

	If	you	are	working	with	a	provider	other	than	Azure	AD,	with	a	different	URL
structure,	or	if	you	prefer	to	specify	a	reference	to	the	actual	discovery	document
endpoint,	you	can	do	so	by	using	the	Metadata	property.

	If	your	provider	requires	special	handling	of	the	channel	validation,	like	picking	a
well-known	certificate	instead	of	the	usual	certification	authority	and	subject
matching	checks,	you	can	override	the	default	logic	via	the	properties
BackchannelCertificateValidator,	BackchannelHttpHandler,
and	BackchannelTimeout.

	If	you	acquire	the	token-issuance	information—such	as	the	authorization	endpoint,
the	issuer	value,	the	signing	keys,	and	the	like—out	of	band,	you	can	use	it	to
populate	a	new	instance	of	OpenIdConfiguration	and	assign	it	to	the
Configuration	property.

	Finally,	if	you	need	to	run	dynamic	logic	for	populating	the	Configuration
values,	you	can	completely	take	over	by	implementing	your	own
IConfigurationManager	and	assigning	it	to	the	ConfigurationManager
property	in	the	options.

The	issuer	coordinates	are	only	part	of	the	validation	story.	Following	is	a	miscellany	of
options	that	affect	the	validation	behavior,	and	there	will	be	more	to	say	about	validation
in	the	section	about	TokenValidationParameters.

	SecurityTokenHandlers	This	property	holds	a	collection	of
TokenHandlers,	classes	that	are	capable	of	handling	token	formats.	By	default,
the	collection	includes	a	handler	capable	of	dealing	with	the	JSON	Web	Token
(JWT).	You	can	take	control	of	the	collection	and	substitute	your	own
implementation	if	you	so	choose.

	RefreshOnIssuerKeyNotFound	The	practice	of	publishing	in	metadata
documents	both	the	currently	valid	and	next	signing	key	should	guarantee	business
continuity	in	normal	times.	In	case	of	emergency	key	rolls,	however,	the	keys	you
have	acquired	in	your	Configuration	and	the	ones	used	by	the	provider	might
end	up	out	of	sync.	This	flag	tells	the	middleware	to	react	to	a	token	signed	with	an
unknown	key	by	triggering	a	new	metadata	acquisition	operation	so	that	if	the
mismatch	is	the	result	of	stale	keys,	it	is	fixed	automatically.

	CallbackPath	If	for	some	reason	(typically	performance)	you	decide	that	you

want	to	receive	tokens	only	at	one	specific	application	URL,	you	can	assign	that
URL	to	this	property.	That	will	cause	the	middleware	to	expect	tokens	only	in
requests	to	that	specific	URL	and	ignore	all	others.	Use	this	with	care	because
embedding	paths	in	your	code	often	results	in	surprise	401s	when	you	forget	about
them	and	deploy	to	the	cloud	without	changing	the	value	accordingly.

	ProtocolValidator	By	default,	this	property	contains	an	instance	of
OpenIdConnectProtocolValidator,	a	class	that	performs	various	static
verifications	on	the	incoming	message	to	ensure	that	it	complies	with	the	current
OpenID	Connect	specification.	Besides	those	validations,	the	class	gives	you	the
option	of	adding	extra	constraints,	like	mandating	the	presence	of	certain	claim
types.

Middleware	mechanics

Finally,	here’s	a	list	of	options	that	are	used	for	driving	the	general	behavior	of	the
middleware	in	the	context	of	the	Katana	pipeline:

	SignInAsAuthenticationType	This	value	determines	the	value	of	the
AuthenticationType	property	of	the
ClaimsPrincipal/ClaimsIdentity	generated	from	the	incoming	token.	If
left	unspecified,	it	defaults	to	the	value	passed	to
SetDefaultSignInAsAuthenticationType.	As	you	have	seen	earlier	in
the	section	about	authentication	middleware,	if	the	cookie	middleware	finds	this	in
an	AuthenticationResponseGrant,	that’s	what	the	cookie	middleware	uses
to	determine	whether	such	ClaimsPrincipal/	ClaimsIdentity	should	be
used	for	creating	a	session.

	AuthenticationType	This	property	identifies	this	middleware	in	the	pipeline
and	is	used	to	refer	to	it	for	authentication	operations—think	of	the	Challenge
and	SignOut	calls	you	have	seen	in	action	earlier	in	this	chapter.

	AuthenticationMode	As	discussed	earlier,	when	this	parameter	is	set	to
Active,	it	tells	the	middleware	to	listen	to	outgoing	401s	and	transform	them	into
sign-in	requests.	That’s	the	default	behavior:	if	you	want	to	change	it,	you	can	turn	it
off	by	setting	AuthenticationMode	to	Passive.

	UseTokenLifetime	This	property	is	often	overlooked,	but	it’s	tremendously
important.	Defaulting	to	true,	UseTokenLifetime	tells	the	cookie	middleware
that	the	session	it	creates	should	have	the	same	duration	and	validity	window	as	the
id_token	received	from	the	authority.	If	you	want	to	decouple	the	session	validity
window	from	the	token	(which,	by	the	way,	Azure	AD	sets	to	one	hour),	you	must
set	this	property	to	false.	Failing	that,	all	the	session-duration	settings	on	the
CookieMiddleware	will	be	ignored.

	Caption	This	property	has	purely	cosmetic	value.	Say	that	your	app	generates
sign-in	buttons	for	all	your	authentication	middlewares.	This	property	provides	the
label	you	can	use	to	identify	for	the	user	the	button	triggering	the	sign-in
implemented	by	this	middleware.

Notifications
Just	like	WIF	before	them,	the	Katana	middlewares	implementing	claims	protocols	offer
you	hooks	designed	for	injecting	your	own	custom	code	to	be	executed	during	key	phases
of	the	authentication	pipeline.	Through	the	years,	I	have	seen	this	extensibility	point	used
for	achieving	all	sorts	of	customizations,	from	optimized	sign-in	flows,	where	extra
information	in	the	request	is	used	to	save	the	end	user	a	few	clicks,	to	full-blown
extensions	that	support	entirely	new	protocol	flavors.

Whereas	in	old-school	WIF	those	hooks	were	offered	in	the	form	of	events,	in	Katana
they	are	implemented	as	a	collection	of	delegates	gathered	in	the	class
OpenIdConnectNotifications.	The
OpenIdConnectAuthenticationOptions	class	includes	a	property	of	that	type,
Notifications.

OpenIdConnectNotifications	can	be	split	into	two	main	categories:
notifications	firing	at	sign-in/sign-out	message	generation,	and	notifications	firing	at
token/sign-in	message	validation.	The	former	category	counts	only	one	member,
RedirectToIdentityProvider;	all	the	other	notifications	are	included	in	the	latter.

Here	is	some	code	that	lists	all	the	notifications.	You	can	add	it	to	the	initialization	of
the	OpenID	Connect	middleware	in	the	sample	application.
Click	here	to	view	code	image

app.UseOpenIdConnectAuthentication(
				new	OpenIdConnectAuthenticationOptions
				{
								ClientId	=	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”,
								Authority	=
“https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com”
								PostLogoutRedirectUri	=	“https://localhost:44300/”,
								Notifications	=	new	OpenIdConnectAuthenticationNotifications()
								{
												RedirectToIdentityProvider	=	(context)	=>
												{																												
																Debug.WriteLine(“***	RedirectToIdentityProvider”);
																return	Task.FromResult(0);
												},
												MessageReceived	=	(context)	=>
												{
																Debug.WriteLine(“***	MessageReceived”);
																return	Task.FromResult(0);
												},
												SecurityTokenReceived	=	(context)	=>
												{
																Debug.WriteLine(“***	SecurityTokenReceived”);
																return	Task.FromResult(0);
												},
												SecurityTokenValidated	=	(context)	=>
												{
																Debug.WriteLine(“***	SecurityTokenValidated”);
																return	Task.FromResult(0);
												},
												AuthorizationCodeReceived	=	(context)	=>
												{																												
																Debug.WriteLine(“***	AuthorizationCodeReceived”);
																return	Task.FromResult(0);

												},
												AuthenticationFailed	=	(context)	=>
												{
																Debug.WriteLine(“***	AuthenticationFailed”);
																return	Task.FromResult(0);
												},
								},
				}
);

I’ll	discuss	each	notification	individually	in	a	moment,	but	before	I	do,	give	the	app	a
spin	so	that	you	can	see	in	which	order	the	notifications	fire.	When	you	click	the	Sign	In
link,	you	can	expect	to	see	something	like	this	in	the	output	window:
Click	here	to	view	code	image

1	==>request,	before	cookie	auth
2	==>after	cookie,	before	OIDC
3	==>after	OIDC,	before	leaving	the	pipeline
4	<==after	entering	the	pipeline,	before	OIDC
***	RedirectToIdentityProvider
5	<==after	OIDC
6	<==response,	after	cookie	auth

This	shows	that	RedirectToIdentityProvider	runs	in	the	context	of	the
OpenID	Connect	middleware,	as	expected.

Once	you	sign	in	with	Azure	AD	and	are	redirected	to	the	app,	you	can	expect	to	see	the
following	sequence:
Click	here	to	view	code	image

1	==>request,	before	cookie	auth
2	==>after	cookie,	before	OIDC
***	MessageReceived
***	SecurityTokenReceived
***	SecurityTokenValidated
***	AuthorizationCodeReceived
5	<==after	OIDC
6	<==response,	after	cookie	auth
1	==>request,	before	cookie	auth
2	==>after	cookie,	before	OIDC
3	==>after	OIDC,	before	leaving	the	pipeline
4	<==after	entering	the	pipeline,	before	OIDC
5	<==after	OIDC
6	<==response,	after	cookie	auth

This	is	the	same	token-processing	and	cookie-setting	sequence	you	encountered	earlier
in	this	chapter.	This	time,	you	can	see	the	other	notifications	fire	and	the	order	in	which
they	execute.	Figure	7-14	summarizes	the	sequence	in	which	the	notifications	fire.

Figure	7-14	The	notifications	sequence.

If	you	trigger	a	sign-out,	you	will	see	the	usual	sequence,	but	look	between	messages	4
and	5,	and	you	will	find	that	RedirectToIdentityProvider	fires	on	sign-out	as
well.

Keep	in	mind	also	that	notifications	derive	from	a	BaseNotification	class	from
which	they	inherit	a	couple	of	methods	exposing	two	fundamental	capabilities.	The	first,
HandleResponse,	signals	to	the	middleware	pipeline	that	whatever	logic	has	been
executed	in	the	notification	concludes	the	processing	of	the	current	request,	hence	no	other
middleware	should	be	executed.	A	notification	calling	this	method	has	the	responsibility
of	having	everything	in	the	context	tidied	up,	including	writing	the	full	response.	The
second,	SkipToNextMiddleware,	signals	to	the	middleware	pipeline	that	whatever
logic	has	been	executed	in	the	notification	concludes	the	work	that	the	current	middleware
should	do	on	the	request.	Hence,	any	other	request-processing	code	in	the	current
middleware	should	not	be	executed,	and	the	baton	should	be	passed	to	the	next
middleware	in	the	pipeline	as	soon	as	the	notification	concludes	its	work.

Now	let’s	look	at	each	notification	in	more	detail.

RedirectToIdentityProvider

This	is	likely	the	notification	you’ll	work	with	most	often.	It	is	executed	right	after	the
OpenID	Connect	middleware	creates	a	protocol	message,	and	it	gives	you	the	opportunity
to	override	the	option	values	the	middleware	uses	to	build	the	message,	augment	them
with	extra	parameters,	and	so	on.	If	you	place	a	breakpoint	in	the	notification	and	take	a
look	at	the	context	parameter,	you’ll	see	something	like	what’s	shown	in	Figure	7-15.

Figure	7-15	The	content	of	the	context	parameter	on	a	typical
RedirectToIdentityProvider	notification	execution.

I	expanded	the	ProtocolMessage	in	Figure	7-15	so	that	you	can	see	that	it	already
contains	all	the	default	parameters	you	have	seen	in	the	request	on	the	traces	in	Chapter	6.
There	are	a	number	of	fun	and	useful	things	you	can	do	here,	so	let’s	examine	a	couple	of

examples.

Say	that	my	app	is	registered	to	run	both	on	my	local	dev	box	(hence,	on	a	localhost
address)	and	on	an	Azure	website	(hence,	on	something	like	myapp.azurewebsites.net).
That	means	that	depending	on	where	my	app	is	running	at	the	moment,	I	have	to
remember	to	set	the	correct	RedirectUri	and	PostLogoutRedirectUri
properties	in	the	options	right	before	deploying.	Or	do	I?	Consider	the	following	code:
Click	here	to	view	code	image

RedirectToIdentityProvider	=	(context)	=>	
{	
			string	appBaseUrl	=	context.Request.Scheme	+	“://”	
							+	context.Request.Host	+	context.Request.PathBase;	
				context.ProtocolMessage.RedirectUri	=	appBaseUrl	+	“/”;	
				context.ProtocolMessage.PostLogoutRedirectUri	=	appBaseUrl;	
				return	Task.FromResult(0);	
},

Here	I	simply	read	from	the	Request	the	URL	being	requested,	indicating	at	which
address	my	app	is	running	at	the	moment	and	using	it	to	inject	the	correct	values	of
RedirectUri	and	PostLogoutRedirectUri	in	the	message.	Neat!

Or	consider	a	case	in	which	I	want	to	guarantee	that	when	an	authentication	request	is
sent,	the	user	is	always	forced	to	enter	credentials	no	matter	what	session	cookies	might
already	be	in	place.	In	Chapter	6	you	learned	that	OpenID	Connect	will	behave	that	way
upon	receiving	a	prompt=login	parameter	in	the	request,	but	how	do	you	do	it?	Check
out	this	code:
Click	here	to	view	code	image

RedirectToIdentityProvider	=	(context)	=>
{
				context.ProtocolMessage.Prompt	=	“login”;									
				return	Task.FromResult(0);
},

That’s	it.	From	this	moment	on,	every	sign-in	request	will	prompt	the	user	for
credentials.	Easy.	Now	is	the	time	to	reap	the	benefits	of	having	gone	through	all	those
nitty-gritty	protocol	details	in	Chapter	6;	you	can	use	this	notification	to	control	every
aspect	of	the	message	to	your	heart’s	content.	Of	course,	this	applies	to	sign-out	flows,
too.

But	before	moving	on	to	the	next	notification,	I	want	to	highlight	that	you	don’t	have	to
put	the	code	for	your	notifications	in	line.	If	you	have	notification-handling	logic	you	want
to	reuse	across	multiple	applications,	you	can	put	it	in	a	function,	package	it	in	a	class,	and
reuse	it	as	you	see	fit.	Explicitly	creating	a	function	is	also	indicated	when	the	amount	of
code	is	substantial,	or	when	you	want	to	enhance	readability.	As	a	quick	demonstration	of
this	approach,	let’s	rewrite	the	latest	sample	in	an	explicit	function	at	the	level	of	the
Startup	class:
Click	here	to	view	code	image

public	static	Task
RedirectToIdentityProvider(RedirectToIdentityProviderNotification<OpenIdConnectMessage,
OpenIdConnectAuthenticationOptions>	notification)
{
				notification.ProtocolMessage.Prompt	=	“login”;

				return	Task.FromResult(0);
}

Assigning	it	back	in	the	Notifications	is	straightforward:
Click	here	to	view	code	image

//…
Notifications	=	new	OpenIdConnectAuthenticationNotifications()
{
				RedirectToIdentityProvider	=	Startup.RedirectToIdentityProvider,
//	…

I	also	like	the	aspect	of	this	approach	that	makes	more	visible	which	parameters	are
being	passed	to	the	notification,	which	in	turns	makes	it	easier	to	understand	what	the
notification	is	suitable	for.	The	OpenIdConnectMessage	passed	to
RedirectToIdentityProvider	is	an	excellent	example	of	that.

MessageReceived

This	notification	is	triggered	when	the	middleware	detects	that	the	incoming	message
happens	to	be	a	known	OpenID	Connect	message.	You	can	use	it	for	a	variety	of	purposes;
for	example,	for	resources	you	want	to	allocate	just	in	time	(such	as	database
connections),	stuff	you	want	to	cache	in	memory	before	the	message	is	processed	further,
and	so	on.	Alternatively,	you	might	use	this	notification	for	logging	purposes.	However,
the	main	use	I	have	seen	for	MessageReceived	occurs	when	you	want	to	completely
take	over	the	handling	of	the	entire	request	(that’s	where	HandleResponse	comes	into
play,	by	the	way).	For	example,	you	might	use	MessageReceived	for	handling
response_types	that	the	middleware	currently	does	not	automatically	process,	like	a
sign-in	flow	based	on	authorization	code.	That’s	not	an	easy	endeavor,	and	as	such	not
very	common,	but	some	advanced	scenarios	will	sometimes	require	it,	and	this
extensibility	model	makes	doing	so	possible.

SecurityTokenReceived

SecurityTokenReceived	triggers	when	the	middleware	finds	an	id_token	in	the
request.	Similar	considerations	as	for	MessageReceived	apply,	with	finer	granularity.
Here,	the	entity	being	processed	is	the	token,	as	opposed	to	the	entire	message.

SecurityTokenValidated

At	the	stage	in	which	SecurityTokenValidated	fires,	the	incoming	id_token	has
been	parsed,	validated,	and	used	to	populate	context.AuthenticationTicket
with	a	ClaimsIdentity	whose	claims	come	from	the	incoming	token.

This	is	the	right	place	for	adding	any	user-driven	logic	you	want	to	execute	before
reaching	the	application	itself.	Common	scenarios	include	user-driven	access	control	and
claims	augmentation.	Here	are	examples	for	each	case.

Say	that	I	run	a	courseware	website	where	users	can	buy	individual	subscriptions	for
gaining	access	to	training	videos.	I	integrate	with	Azure	AD,	given	that	business	users	are
very	important	to	me,	but	my	business	model	imposes	on	me	the	need	to	verify	access	at
the	user	level.	That	means	that	the	token	validations	you	have	studied	so	far	aren’t	in

themselves	sufficient	to	decide	whether	a	caller	can	gain	access.	Consider	the	following
implementation	of	SecurityTokenValidated:
Click	here	to	view	code	image

SecurityTokenValidated	=	(context)	=>
{
				string	userID	=
context.AuthenticationTicket.Identity.FindFirst(ClaimTypes.NameIdentifier).Value;
				if	(db.Users.FirstOrDefault(b	=>	(b.UserID	==	userID))	==	null)
								throw	new
System.IdentityModel.Tokens.SecurityTokenValidationException();
				return	Task.FromResult(0);
},

The	notification	body	retrieves	a	user	identifier	from	the	claims	of	the	freshly	created
AuthenticationTicket.	That	done,	it	verifies	whether	that	identifier	is	listed	in	a
database	of	subscribers	(whose	existence	I	am	postulating	for	the	sake	of	the	scenario).	If
the	user	does	have	an	entry,	everything	goes	on	as	business	as	usual.	But	if	the	user	is	not
listed,	the	app	throws	an	exception	that	creates	conditions	equivalent	to	the	ones	you
would	experience	on	receiving	an	invalid	token.	Simple!

Consider	this	other	scenario.	Say	that	your	application	maintains	a	database	of	attributes
for	its	users—attributes	that	are	not	supplied	in	the	incoming	token	by	the	identity
provider.	You	can	use	SecurityTokenValidated	to	augment	the	set	of	incoming
user	claims	with	any	arbitrary	value	you	keep	in	your	local	database.	The	application	code
will	be	able	to	access	those	values	just	like	any	other	IdP-issued	claims,	the	only
difference	being	the	issuer	value.	Here’s	an	example.
Click	here	to	view	code	image

SecurityTokenValidated	=	(context)	=>
{
				string	userID	=
context.AuthenticationTicket.Identity.FindFirst(ClaimTypes.NameIdentifier).Value;
				Claim	userHair	=	new	Claim(“http://mycustomclaims/hairlength”,
RetrieveHairLength(userID),	ClaimValueTypes.Double,	“LocalAuthority”);
				context.AuthenticationTicket.Identity.AddClaim(userHair);
				return	Task.FromResult(0);
},

Here	I	assume	that	you	have	a	method	that,	given	the	identifier	of	the	current	user,
queries	your	database	to	retrieve	an	attribute	(in	this	case,	hair	length).	Once	you	get	the
value	back,	you	can	use	it	to	create	a	new	claim	(I	invented	a	new	claim	type	on	the	spot
to	show	you	that	you	can	choose	pretty	much	anything	that	works	for	you)	and	add	that
claim	to	the	AuthenticationTicket’s	ClaimsIdentity.	I	passed
“’LocalAuthority”	as	the	issuer	identifier	to	ensure	that	the	locally	generated	claims	are
distinguishable	from	the	ones	received	from	the	IdP:	the	two	usually	carry	a	different	trust
level.

Now	that	the	new	claim	is	part	of	the	ticket,	it’s	going	to	follow	the	same	journey	we
have	studied	so	far	for	normal,	nonaugmented	identity	information.	Making	use	of	it	from
the	app	requires	the	same	code	you	already	saw	in	action	for	out-of-the-box	claim	types.
Click	here	to	view	code	image

public	ActionResult	Index()
{

				var	userHair	=
ClaimsPrincipal.Current.FindFirst(“http://mycustomclaims/hairlength”);
				return	View();
}

This	is	a	very	powerful	mechanism,	but	it	does	have	its	costs.	Besides	the	performance
hit	of	doing	I/O	while	processing	a	request,	you	have	to	keep	in	mind	that	whatever	you
add	to	the	AuthenticationTicket	will	end	up	in	the	session	cookie.	In	turn,	that
will	add	a	tax	for	every	subsequent	request,	and	at	times	it	might	even	blow	past	browser
limits.	For	example,	Safari	is	famous	for	allowing	only	4	KB	of	cookies/headers	in
requests	for	a	given	domain.	Exceed	that	limit	and	cookies	will	be	clipped,	signature
checks	will	fail,	nonces	will	be	dropped,	and	all	sorts	of	other	hard-to-diagnose	issues	will
arise.

AuthorizationCodeReceived

This	notification	fires	only	in	the	case	in	which	the	middleware	emits	a	request	for	a
hybrid	flow,	where	the	id_token	is	accompanied	by	an	authorization	code.	I’ll	go	into
more	details	in	a	later	chapter,	after	fleshing	out	the	scenario	and	introducing	other
artifacts	that	come	in	handy	for	dealing	with	that	case.

AuthenticationFailed

This	notification	gives	you	a	way	to	catch	issues	occurring	in	the	notifications	pipeline
and	react	to	them	with	your	own	logic.	Here’s	a	simple	example:
Click	here	to	view	code	image

AuthenticationFailed	=	(context)	=>
{
				context.OwinContext.Response.Redirect(“/Home/Error”);
				context.HandleResponse();	
				return	Task.FromResult(0);
},

In	this	code	I	simply	redirect	the	flow	to	an	error	route.	Chances	are	you	will	want	to	do
something	more	sophisticated,	like	retrieving	the	culprit	exception	(available	in	the
context)	and	then	log	it	or	pass	it	to	the	page.	The	interesting	thing	to	notice	here	is	the	use
of	HandleResponse.	There’s	nothing	else	that	can	make	meaningful	work	in	the
pipeline	after	this,	hence	we	short-circuit	the	request	processing	and	send	the	response
back	right	away.

TokenValidationParameters
You	think	we’ve	gone	deep	enough	to	this	point?	Not	quite,	my	dear	reader.	The	rabbit
hole	has	one	extra	level,	which	grants	you	even	more	control	over	your	token-validation
strategy.

OpenIdConnectAuthenticationOptions	has	a	property	named
TokenValidationParameters,	of	type	TokenValidationParameters.

The	TokenValidationParameters	type	predates	the	RTM	of	Katana.	It	was
introduced	when	the	Azure	AD	team	released	the	very	first	version	of	the	JWT	handler	(a
.NET	class	for	processing	the	JWT	format)	as	a	general-purpose	mechanism	for	storing

information	required	for	validating	a	token,	regardless	of	the	protocol	used	for	requesting
and	delivering	it	and	the	development	stack	used	for	supporting	such	protocol.	That	was	a
clean	break	with	the	past:	up	to	that	moment,	the	same	function	was	performed	by	special
XML	elements	in	the	web.config	file,	which	assumed	the	use	of	WIF	and	IIS.	It	was	soon
generalized	to	support	the	SAML	token	format,	too.
The	OpenID	Connect	middleware	itself	still	uses	the	JWT	handler	when	it	comes	to

validating	incoming	tokens,	and	to	do	so	it	has	to	feed	it	a
TokenValidationParameters	instance	with	the	desired	validation	settings.	All	the
metadata	inspection	mechanisms	you	have	been	studying	so	far	ultimately	feed	specific
values—the	issuer	values	to	accept	and	the	signing	keys	to	use	for	validating	incoming
tokens’	signatures—in	a	TokenValidationParameters	instance.	If	you	did	not
provide	any	values	in	the	TokenValidationParameters	property	(I	know,	it’s
confusing)	in	the	options,	the	values	from	the	metadata	will	be	the	only	ones	used.
However,	if	you	do	provide	values	directly	in	TokenValidationParameters,	the
actual	values	used	will	be	a	merger	of	the	TokenValidationParameters	and	what
is	retrieved	from	the	metadata	(using	all	the	options	you	learned	about	in	the	“Authority
coordinates	and	validation”	section).

The	preceding	mechanisms	hold	for	the	validation	of	the	parameters	defining	the	token
issuer,	but	as	you	know	by	now,	there	are	lots	of	other	things	to	validate	in	a	token,	and
even	more	things	that	are	best	performed	during	validation.	If	you	don’t	specify	anything,
as	is	the	case	the	vast	majority	of	the	time,	the	middleware	fills	in	the	blanks	with
reasonable	defaults.	But	if	you	choose	to,	you	can	control	an	insane	number	of	details.
Figure	7-16	shows	the	content	of	TokenValidationParameters	in	OpenID
Connect	middleware	at	the	initialization	time	for	our	sample	application.	I	am	not	going	to
unearth	all	the	things	that	TokenValidationParameters	allows	you	to	control	(that
would	take	far	too	long),	but	I	do	want	to	make	sure	you	are	aware	of	the	most	commonly
used	knobs	you	can	turn.

Figure	7-16	The	TokenValidationParameters	instance	in
OpenIdConnectAuthenticationOptions,	as	initialized	by	the	sample

application.

Valid	values
As	you’ve	learned,	the	main	values	used	to	validate	incoming	tokens	are	the	issuer,	the
audience,	the	key	used	for	signing,	and	the	validity	interval.	With	the	exception	of	the	last
of	these	(which	does	not	require	reference	values	because	it	is	compared	against	the
current	clock	values),	TokenValidationParameters	exposes	a	property	for	holding
the	corresponding	value:	ValidIssuer,	ValidAudience,	and
IssuerSigningKey.

What	is	less	known	is	that	TokenValidationParameters	also	has	an
IEnumerable	for	each	of	these—ValidIssuers,	ValidAudiences,	and
IssuerSigningKeys—which	are	meant	to	make	it	easy	for	you	to	manage	scenarios
in	which	you	need	to	handle	a	small	number	of	alternative	values.	For	example,	your	app
might	accept	tokens	from	two	different	issuers	simultaneously.	Or	you	might	use	a
different	audience	for	your	development	and	staging	deployments	but	have	a	single
codebase	that	automatically	works	in	both.

Validation	flags
One	large	category	of	TokenValidationParameters	properties	allows	you	to	turn
on	and	off	specific	validation	checks.	These	Boolean	flags	are	self-explanatory:
ValidateAudience	turns	on	and	off	the	comparison	of	the	audience	in	the	incoming
claim	with	the	declared	audience	(in	the	OpenID	Connect	case,	the	clientId	value);
ValidateIssuer	controls	whether	your	app	cares	about	the	identity	of	the	issuer;
ValidateIssuerSigningKey	determines	whether	you	need	the	key	used	to	sign	the
incoming	token	to	be	part	of	a	list	of	trusted	keys;	ValidateLifetime	determines
whether	you	will	enforce	the	validity	interval	declared	in	the	token	or	ignore	it.

At	first	glance,	each	of	these	checks	sounds	like	something	you’d	never	want	to	turn
off,	but	there	are	various	occasions	in	which	you’d	want	to.	Think	of	the	subscription
sample	I	described	for	SecurityTokenValidated:	in	that	case,	the	actual	check	is
the	one	against	the	user	and	the	subscription	database,	so	the	issuer	check	does	not	matter
and	can	be	turned	off.	There	are	more	exotic	cases:	in	the	Netherlands	last	year,	a
gentleman	asked	me	how	his	intranet	app	could	accept	expired	tokens	in	case	his	client
briefly	lost	connectivity	with	the	Internet	and	was	temporarily	unable	to	contact	Azure	AD
for	getting	new	tokens.

There	is	another	category	of	flags	controlling	constraints	rather	than	validation	flags.
The	first	is	RequireExpirationTime,	which	determines	whether	your	app	will
accept	tokens	that	do	not	declare	an	expiration	time	(the	specification	allows	for	this).	The
other,	RequireSignedTokens,	specifies	whether	your	app	will	accept	tokens	without
a	signature.	To	me,	a	token	without	a	signature	is	an	oxymoron,	but	I	did	encounter
situations	(especially	during	development)	where	this	flag	came	in	handy	for	running
some	tests.

Validators
Validation	flags	allow	you	to	turn	on	and	off	validation	checks.	Validator	delegates	allow
you	to	substitute	the	default	validation	logic	with	your	own	custom	code.

Say	that	you	wrote	a	SaaS	application	that	you	plan	to	sell	to	organizations	instead	of	to
individuals.	As	opposed	to	the	user-based	validation	you	studied	earlier,	now	you	want	to
allow	access	to	any	user	who	comes	from	one	of	the	organizations	(one	of	the	issuers)	who
bought	a	subscription	to	your	app.	You	could	use	the	ValidIssuers	property	to	hold
that	list,	but	if	you	plan	to	have	a	substantial	number	of	customers,	doing	that	would	be
inconvenient	for	various	reasons:	a	flat	lookup	on	a	list	might	not	work	too	well	if	you	are
handling	millions	of	entries,	dynamically	extending	that	list	without	recycling	the	app
would	be	difficult,	and	so	on.	The	solution	is	to	take	full	control	of	the	issuer	validation
operation.	For	example,	consider	the	following	code:
Click	here	to	view	code	image

TokenValidationParameters	=	new	TokenValidationParameters
{
				IssuerValidator	=	(issuer,token,tvp)	=>
				{
								if(db.Issuers.FirstOrDefault(b	=>	(b.Issuer	==	issuer))	==	null)
												return	issuer;

								else

												throw	new	SecurityTokenInvalidIssuerException(“Invalid	issuer”);
				}
}

The	delegate	accepts	as	input	the	issuer	value	as	extracted	from	the	token,	the	token
itself,	and	the	validation	parameters.	In	this	case	I	do	a	flat	lookup	on	a	database	to	see
whether	the	incoming	issuer	is	valid,	but	of	course	you	can	imagine	many	other	clever
validation	schemes.	The	validator	returns	the	issuer	value	for	a	less-than-intuitive	reason:
that	string	will	be	used	for	populating	the	Issuer	value	of	the	claims	that	will	ultimately
end	up	in	the	user’s	ClaimsPrincipal.

All	the	other	main	validators	(AudienceValidator,	LifetimeValidator)
return	Booleans,	with	the	exception	of	IssuerSigningKeyValidator	and
CertificateValidator.

Miscellany
Of	the	plethora	of	remaining	properties,	I	want	to	point	your	attention	to	two	common
ones.

SaveSignInToken	is	used	to	indicate	whether	you	want	to	save	in	the
ClaimsPrincipal	(hence,	the	session	cookie)	the	actual	bits	of	the	original	token.
There	are	topologies	in	which	the	actual	token	bits	are	required,	signature	and	everything
else	intact:	typically,	the	app	trades	that	token	(along	with	its	credentials)	for	a	new	token,
meant	to	allow	the	app	to	gain	access	to	a	web	API	acting	on	behalf	of	the	user.	This
property	defaults	to	false,	as	this	is	a	sizable	tax.

The	TokenReplayCache	property	allows	you	to	define	a	token	replay	cache,	a	store
that	can	be	used	for	saving	tokens	for	the	purpose	of	verifying	that	no	token	can	be	used
more	than	once.	This	is	a	measure	against	a	common	attack,	the	aptly	called	token	replay
attack:	an	attacker	intercepting	the	token	sent	at	sign-in	might	try	to	send	it	to	the	app
again	(“replay”	it)	for	establishing	a	new	session.	The	presence	of	the	nonce	in	OpenID
Connect	can	limit	but	not	fully	eliminate	the	circumstances	in	which	the	attack	can	be
successfully	enacted.	To	protect	your	app,	you	can	provide	an	implementation	of
ITokenReplayCache	and	assign	an	instance	to	TokenReplayCache.	It’s	a	very
simple	interface:
Click	here	to	view	code	image

public	interface	ITokenReplayCache
{
				bool	TryAdd(string	securityToken,	DateTime	expiresOn);
				bool	TryFind(string	securityToken);
}

In	a	nutshell,	you	provide	the	methods	for	saving	new	tokens	(determining	for	how	long
they	need	to	be	kept	around)	and	bringing	a	token	up	from	whatever	storage	technology
you	decide	to	use.	The	cache	will	be	automatically	used	at	every	validation—take	that	into
account	when	you	pit	latency	and	storage	requirements	against	the	likelihood	of	your	app

being	targeted	by	replay	attacks.

More	on	sessions
Before	I	close	this	long	chapter,	I	need	to	spend	a	minute	on	session	management.	You
already	know	that	by	default,	session	validity	will	be	tied	to	the	validity	specified	by	the
token	itself,	unless	you	decouple	it	by	setting	the	option	UseTokenLifetime	to	false.
When	you	do	so,	the	CookieAuthenticationOptions	are	now	in	charge	of	session
duration:	ExpireTimeSpan	and	SlidingExpiration	are	the	properties	you	want
to	keep	an	eye	on.

You	also	know	that	the	cookie	middleware	will	craft	sessions	that	contain	the	full
ClaimsPrincipal	produced	from	the	incoming	token,	but	as	mentioned	in	discussing
the	use	of	SaveSignInToken,	the	resulting	cookie	size	can	become	a	problem.	This
issue	can	be	addressed	by	saving	the	bulk	of	the	session	server-side	and	using	the	cookie
just	to	keep	track	of	a	reference	to	the	session	data	on	the	server.	The	cookie	middleware
allows	you	to	plug	in	an	implementation	of	the	IAuthenticationSessionStore
interface,	which	can	be	used	for	customizing	how	an	AuthenticationTicket	is
preserved	across	calls.	If	you	want	to	provide	an	alternative	store	for	your	authentication
tickets,	all	you	need	to	do	is	implement	that	interface	and	pass	an	instance	to	the	cookie
middleware	at	initialization.	Here’s	the	interface:
Click	here	to	view	code	image

public	interface	IAuthenticationSessionStore
{
				Task<string>	StoreAsync(AuthenticationTicket	ticket);
				Task	RenewAsync(string	key,	AuthenticationTicket	ticket);
				Task<AuthenticationTicket>	RetrieveAsync(string	key);
				Task	RemoveAsync(string	key);
}

That’s	pretty	much	a	CRUD	interface	for	an	AuthenticationTicket	store,	which
you	can	use	for	any	persistence	technology	you	like.	Add	some	logic	for	cleaning	up	old
entries	and	keeping	the	store	size	under	control,	and	you	have	your	custom	session	store.

Considerations	about	I/O	and	latency	are	critical	here,	given	that	this	guy	will	trigger
every	single	time	you	receive	an	authenticated	request.	A	two-level	cache,	where	most
accesses	are	in-memory	and	the	persistence	layer	is	looked	up	only	when	necessary,	is	one
of	the	solutions	you	might	want	to	consider.

Summary
This	chapter	explored	in	depth	what	happens	when	the	OpenID	Connect	middleware	and
its	underlying	technologies	process	requests	and	emit	responses.	You	learned	about	the
main	functional	components	of	the	request-processing	pipeline,	how	they	communicate
with	one	another,	and	what	options	you	have	to	change	their	behavior.

The	complexity	you	have	confronted	here	is	something	that	the	vast	majority	of	web
developers	will	never	have	to	face—or	even	be	aware	of.	Even	in	advanced	cases,	chances
are	that	you	will	always	use	a	subset	of	what	you	have	read	here.	Don’t	worry	if	you	don’t
remember	everything;	you	don’t	have	to.	After	the	first	read,	this	chapter	is	meant	to	be	a

reference	you	can	return	to	whenever	you	are	trying	to	achieve	a	specific	customization	or
are	troubleshooting	a	specific	issue.	Now	that	you’ve	had	an	opportunity	to	deconstruct
the	pipeline,	you’ll	know	where	to	look.
The	next	chapter	will	be	significantly	lighter.	You’ll	learn	more	about	how	Azure	AD

represents	applications.

Chapter	8.	Azure	Active	Directory	application	model

It’s	time	to	take	a	closer	look	at	how	Azure	AD	represents	applications	and	their
relationships	to	other	apps,	users,	and	organizations.

You	got	a	brief	taste	of	the	Azure	AD	application	model	in	Chapter	3,	“Introducing
Azure	Active	Directory	and	Active	Directory	Federation	Services.”	Later	on	you
experienced	firsthand	a	couple	of	ways	to	provision	apps	and	use	their	protocol
coordinates	in	authentication	flows.	Here	I	will	go	much	deeper	into	the	constructs	used
by	Azure	AD	to	represent	apps,	the	mechanisms	used	to	provision	apps	beyond	one’s	own
organization,	and	the	consent	framework,	which	is	the	backbone	of	pretty	much	all	of	this.
I’ll	also	touch	on	roles,	groups,	and	other	features	that	Azure	AD	offers	to	grant	fine-
grained	access	control	to	your	application.

The	application	model	in	Azure	AD	is	designed	to	sustain	many	different	functions:

	It	holds	all	the	data	required	to	support	authentication	at	run	time.

	It	holds	all	the	data	for	deciding	what	other	resources	an	application	might	need	to
access	and	whether	a	given	request	should	be	fulfilled	and	under	what
circumstances.

	It	provides	the	infrastructure	for	implementing	application	provisioning,	both	within
the	app	developer’s	tenant	and	to	any	other	Azure	AD	tenant.

	It	enables	end	users	and	administrators	to	dynamically	grant	or	deny	consent	for	the
app	to	access	resources	on	their	behalf.

	It	enables	administrators	to	be	the	ultimate	arbiters	of	what	apps	are	allowed	to	do
and	which	users	can	use	specific	apps,	and	in	general	to	be	stewards	of	how	the
directory	resources	are	accessed.

That	is	A	LOT	more	than	setting	up	a	trust	relationship,	the	basic	provisioning	step	you
perform	with	traditional	on-premises	authorities	like	ADFS.	Remember	how	I	often
bragged	about	how	much	easier	it	is	to	provision	apps	in	Azure	AD?	What	makes	that	feat
possible	is	the	highly	sophisticated	application	model	in	Azure	AD,	which	goes	to	great
lengths	to	make	life	easy	for	administrators	and	end	users.	Unfortunately,	the	total
complexity	of	the	system	remains	roughly	constant,	so	somebody	must	work	harder	to
compensate	for	that	simplification,	and	this	time	that	somebody	is	the	developer.	I	could
work	around	that	complexity	and	simply	give	you	a	list	of	recipes	to	follow	to	the	letter
for	the	most	common	tasks,	but	by	now	you	know	that	this	book	doesn’t	work	that	way.
Instead,	we’ll	dig	deep	to	understand	the	building	blocks	and	true	motivation	of	each
moving	part—and	once	we	emerge,	everything	will	make	sense.	Don’t	worry,	the	model	is
very	manageable	and,	once	you	get	the	hang	of	it,	even	easy,	but	some	investment	is
required	to	understand	it.	This	chapter	is	here	to	help	you	do	just	that.

The	building	blocks:	Application	and	ServicePrincipal
Since	Azure	AD	first	appeared	on	the	market,	a	lot	of	content	has	been	published	about	its
application	model.	A	large	part	of	that	content	was	produced	while	the	application	model
had	not	yet	solidified	in	its	current	form.	To	avoid	any	confusion,	I	am	going	to	open	this
section	with	a	bit	of	history:	by	understanding	how	we	got	to	where	we	are	today,	you
won’t	risk	getting	confused	if	you	happen	to	stumble	on	documentation	and	samples	from
another	epoch.

In	traditional	Active	Directory,	every	entity	that	can	be	authenticated	is	represented	by	a
principal.	That’s	true	for	users,	and	that’s	true	for	applications—in	the	latter	case,	we
speak	of	service	principals.	In	traditional	Kerberos,	service	principals	are	used	to	ensure
that	a	client	is	speaking	to	the	intended	service	and	that	a	ticket	is	actually	intended	for	a
given	service.	In	other	words,	they	are	used	for	any	activity	that	requires	establishing	the
identity	of	the	service	application	itself.

Although	Azure	AD	has	been	designed	from	the	ground	up	to	address	modern
workloads,	it	remains	a	directory.	As	such,	it	retains	many	of	the	concepts	and	constructs
that	power	its	on-premises	ancestor,	and	service	principals	are	among	those.	If	you	use	the
Internet	time	machine	and	fish	out	content	from	summer	2012,	describing	the	very	first
preview	of	Azure	AD	development	features,	you’ll	see	that	at	that	time,	provisioning	an
application	in	Azure	AD	was	done	by	using	special	Windows	PowerShell	cmdlets,	which
created	a	new	service	principal	for	the	app	in	the	directory.	Even	the	format	of	the	service
principal	name	was	a	reminder	of	its	Kerberos	legacy,	following	a	fixed	schema	based	on
the	app’s	execution	environment.	Disregarding	the	protocols	it	enabled,	that	service
principal	already	had	all	the	things	we	know	are	needed	for	supporting	authentication
transactions:	application	identifiers,	a	redirect	URI,	and	so	on.

Service	principals	are	a	great	way	of	representing	an	application’s	instance,	but	they
aren’t	very	good	at	supporting	the	development	of	the	application	itself.	Their	limitations
stem	from	two	key	considerations:

	Applications	are	usually	an	abstract	entity,	made	of	code	and	resources:	the	service
principal	represents	a	concrete	instance	of	that	abstract	entity	in	a	specific	directory.
You	will	want	that	abstract	entity	to	have	many	concrete	instances,	especially	if	you
build	and	sell	software	for	a	living:	one	or	more	instances	for	each	of	your
customers’	organizations.	Even	if	you	are	building	applications	for	your	own
organization,	to	be	used	by	your	colleagues,	chances	are	that	you’ll	want	to	work
with	multiple	instances—for	example,	development,	staging,	and	production.	If	the
only	building	block	at	your	disposal	were	app	instances,	development	and
deployments	would	be	unnatural,	denormalized,	and	repetitive.	For	one	thing,	every
time	you	changed	something,	you’d	have	to	go	chase	all	your	app	instances	and
make	the	same	change	everywhere.

	Although	so	far	we	have	seen	applications	mostly	as	resources	one	user	gains	access
to,	a	directory	sees	applications	as	clients,	which	need	to	access	resources	under	the
control	of	the	directory.	Even	the	act	of	a	user	requesting	a	token	for	accessing	an
application	is	seen	by	the	directory	as	the	application	itself	gaining	access	to	the
user’s	identity	information.	Through	this	optic,	you	can	see	how	some	applications

can	be	pretty	powerful	clients,	performing	functions	that	range	from	reading	users'
personally	identifiable	information	(PII)	to	modifying	the	directory	itself:	deleting
users,	creating	groups,	changing	passwords—the	works.	Application	instances	are
normally	put	in	operation	by	administrators,	who	enjoy	those	powers	themselves.
Hence,	they	have	the	faculty	to	imbue	applications	with	such	capabilities.	If	your
company	is	big	enough	for	employees	not	to	have	to	juggle	multiple	hats,	however,
developers	are	traditionally	not	administrators.	If	service	principals	were	the	only
way	to	create	an	application,	very	few	employees	in	a	company	would	have	the
power	to	develop	apps.	It	gets	worse:	in	today’s	software	as	a	service	(SaaS)	push,	it
is	in	the	developer’s	best	interest	that	end	users	be	empowered	to	elect	to	start	using
applications,	but	most	users	aren’t	administrators	either.	Even	more	than	in	the
development	case,	this	exposes	the	limits	of	perpetrating	the	service	principal	model
“as	is”	in	the	cloud.

Given	this,	and	for	various	other	reasons,	Azure	AD	defines	a	new	entity,	the
Application,	which	is	meant	to	describe	an	application	as	an	abstract	entity:	a
template,	if	you	will.	As	a	developer,	you	work	with	Applications.	At	deployment
time	a	given	Application	object	can	be	used	as	a	blueprint	to	create	a
ServicePrincipal	representing	a	concrete	instance	of	an	application	in	a	directory.
It’s	that	ServicePrincipal	that	is	used	to	define	what	the	app	can	actually	do	in	that
specific	target	directory,	who	can	use	it,	what	resources	it	has	access	to,	and	so	on.

Bear	with	me	just	a	little	longer,	the	abstract	part	is	almost	over.	The	main	way	through
which	Azure	AD	creates	a	ServicePrincipal	from	an	Application	is	consent.
Here’s	a	simplified	description	of	the	flow:	Say	that	you	create	an	Application	object
in	directory	A,	supplying	all	the	protocol	coordinates	we’ve	discussed	so	far	in	earlier
chapters.	Say	that	a	user	from	tenant	B	navigates	to	the	app’s	pages	and	triggers	an
authentication	flow.	Azure	AD	authenticates	the	user	from	B	against	its	home	directory,	B.
In	so	doing,	it	sees	that	there	is	no	ServicePrincipal	for	the	app	in	B;	hence,	it
prompts	the	user	about	whether	he	or	she	wants	to	consent	for	that	app	to	have	access	to
the	directory	B	(you’ll	see	later	in	what	capacity).	If	the	user	grants	consent,	Azure	AD
uses	the	Application	object	in	A	as	a	blueprint	for	creating	a	ServicePrincipal
in	B.	Along	with	that,	B	records	that	the	current	user	consented	to	the	use	of	this
application	(expect	lots	of	details	on	this	later	on).	Once	that’s	done,	the	user	receives	a
token	for	accessing	the	app	…	and	provisioning	magically	happens.	No	lengthy
negotiations	between	administrators	required.	Isn’t	Azure	AD	awesome?	Figure	8-1
summarizes	the	process.

Figure	8-1	Simplified	provisioning	flow	driven	by	consent:	1)	a	user	from	B	attempts
to	sign	in	with	the	app;	2)	the	user	credentials	are	acquired	and	verified;	3)	the	user	is
prompted	to	consent	for	the	app	to	gain	access	to	tenant	B;	the	user	consents;	4)	Azure

AD	uses	the	Application	object	in	A	as	a	blueprint	for	creating	a
ServicePrincipal	in	B;	5)	the	user	receives	the	requested	token.

You	can	iterate	the	process	shown	in	Figure	8-1	as	many	times	as	you	want,	for
directory	C,	D,	E,	and	so	on.	Directory	A	retains	the	blueprint	of	the	app,	in	the	form	of	its
Application	object.	The	users	and	admins	of	all	the	directories	where	the	app	is	given
consent	retain	control	over	what	the	application	is	allowed	to	do	(and	a	lot	more)	through
the	corresponding	ServicePrincipal	object	in	each	tenant.

A	special	case:	App	creation	via	the	Azure	portal	and	Visual	Studio

As	I	write,	both	of	the	application	provisioning	techniques	you’ve
experienced	so	far	(using	the	Azure	portal	and	using	Visual	Studio)	assume
that	you	want	to	run	your	application	in	the	same	tenant	in	which	you	are
creating	it.	Hence,	these	techniques	create	both	the	Application	and	the
ServicePrincipal	objects.	The	presence	of	a	ServicePrincipal
right	after	creation	time	in	the	home	tenant	will	cause	differences	in	behavior
in	respect	to	what	happens	when	the	application	is	consumed	through
different	tenants.	That	is	especially	true	for	native	applications,	which	are	out
of	scope	for	this	book,	but	in	general	this	is	something	you	need	to	be	aware
of.	Note	that	the	current	behavior	is	not	set	in	stone	and	not	part	of	any
explicit	contract.	I	cannot	guarantee	that	it	will	not	change	after	this	book
goes	to	the	printer.

In	the	next	two	subsections,	you’ll	take	a	look	at	the	content	of	the	Application	and
ServicePrincipal	objects.	This	will	give	me	an	opportunity	to	introduce	lots	of	new
directory	artifacts,	which	in	turn	will	refine	your	understanding	of	what	an	application	is
for	Azure	AD	and	what	it	can	do	for	you.

	Note

Your	hands-on	experience	so	far	has	been	limited	to	implementing	web	sign-
on	to	applications	with	a	web	interface,	rendering	their	own	user	experience
(UX)	in	a	browser.	The	Application	and	ServicePrincipal	objects
are	also	used	to	model	web	APIs,	which	follow	a	different	set	of	protocols.	I
am	going	to	show	you	how	to	write	web	API	projects	in	the	next	chapter,	but
I	cannot	wait	until	then	to	describe	those	concepts—they	play	such	a	central
role	in	the	Azure	AD	application	model,	in	consent,	and	in	provisioning	that
everything	would	sound	weird	without	them.	This	is	just	to	ensure	that	you
know	what’s	coming	and	don’t	get	confused	when	I	suddenly	start	to	talk
about	OAuth	and	exposing	scopes.

The	Application
The	Application	object	in	Azure	AD	is	meant	to	describe	three	distinct	aspects	of	an
application:

	The	identifiers,	protocol	coordinates,	and	authentication	options	that	come	into	play
when	a	token	is	requested	for	accessing	the	application.

	The	resources	that	the	application	itself	might	need	to	access,	and	the	actions	it
might	need	to	take,	in	order	to	perform	its	functions.	For	example,	an	application
might	need	to	write	back	to	the	directory,	or	it	might	need	to	send	email	via
Exchange	as	the	authenticated	user.	You’ll	have	to	wait	until	the	next	chapter	to

learn	how	to	actually	perform	these	actions	in	code,	but	it’s	important	to	understand
in	this	context	the	provisioning	and	consent	mechanisms	underpinning	this	aspect.

	The	actions	that	the	application	itself	offers.	For	example,	an	application
representing	a	facade	for	a	data	store	might	allow	for	read	and	write	operations—and
make	it	possible	for	the	directory	to	decide	whether	to	grant	a	client	permission	to	do
only	read	operations,	or	both	read	and	write,	depending	on	the	identity	of	the	client.
This	feature	is	used	when	the	application	is	a	web	API,	but	it	rarely	comes	into	play
when	doing	web	sign-on,	so	I	won’t	spend	much	time	on	it	in	this	chapter.

So	far	you’ve	acted	directly	only	on	the	first	aspect.	You	indirectly	took	advantage	of
the	defaults	in	the	second	point—every	web	app	is	configured	to	ask	for	permissions	to
sign	in	and	access	the	user’s	profile.	You	have	not	interacted	with	the	third	aspect	yet,	but
you	will	in	Chapter	9,	“Consuming	and	exposing	a	web	API	protected	by	Azure	Active
Directory.”

Mercifully,	neither	the	Azure	portal	or	the	Visual	Studio	ASP.NET	project	templates
wizards	ask	you	to	provide	values	for	all	the	properties	that	constitute	an	Application
object.	The	vast	majority	of	those	properties	are	assigned	default	values	that	work	great
for	most	of	the	populace,	who	can	get	their	web	sign-on	functionality	by	providing	just	a
handful	of	strings	(as	you	have	seen,	mainly	name	and	redirect_uri)	without	ever	being
aware	that	there	are	customizations	available.

That	said,	if	you	do	want	to	know	what’s	available	in	the	Application	object,	how
would	you	go	about	it?	You	have	three	strategies	to	choose	from:

	Head	to	the	Azure	portal	(https://manage.windowsazure.com),	go	to	the	Azure	AD
section,	select	the	Applications	tab,	search	for	your	app,	select	it,	then	click
Configuration.	You’ll	see	far	more	info	there	than	you	provided	at	creation	time.
One	example	you	are	already	familiar	with	is	the	client_id,	which	is	assigned	by
Azure	AD	to	your	app	when	it’s	created.

The	information	shown	there	is	what	you	would	probably	customize	to	meet	the
requirements	of	the	most	common	scenarios.	However,	not	all	the	application
features	are	exposed	there.

	Still	in	the	Azure	portal,	with	your	app	selected,	you	can	use	a	link	at	the	bottom	of
the	page,	Manage	Manifest,	to	download	a	JSON	file	that	contains	the	verbatim
dump	of	the	corresponding	Application	entity	in	the	directory.	You	can	edit	this
file	to	change	whatever	you	want	to	control,	then	upload	it	again	(through	the	same
portal	commands)	to	reflect	your	new	options	in	the	directory.

	Finally,	you	can	use	the	Directory	Graph	API	(mentioned	in	Chapter	3)	to	query	the
directory	and	GET	the	Application	object,	once	again	in	JSON	format.

The	first	method	goes	against	the	policy	I	am	adopting	in	the	book—the	portal	UX	can
change	far	too	easily	after	the	book	is	in	print,	so	including	screenshots	of	it	would	be	a
bad	idea.	Also,	it	does	not	go	nearly	deep	enough	for	my	purposes	here.

The	second	method,	the	manifest,	would	work	out	well—and	is	the	method	I	advise	you
to	use	when	you	work	with	your	applications.	However,	there	is	something	that	makes	it

https://manage.windowsazure.com

less	suitable	for	explaining	the	anatomy	of	the	Application	object	for	the	first	time:
the	manifest	is	a	true	object	dump	from	the	directory,	and	for	pure	inheritance	reasons	it
includes	lots	of	properties	that	aren’t	useful	or	relevant	for	the	Application	itself.

To	keep	the	signal-to-noise	ratio	as	crisp	as	possible,	the	JSON	snippets	I’ll	show	you
here	will	all	be	obtained	through	the	third	method,	direct	queries	through	the	Graph.	I	am
using	a	very	handy	sample	web	app	(which	you	can	find	at
https://graphexplorer.cloudapp.net),	which	provides	an	easy	UI	for	querying	the	graph.	I
cannot	guarantee	that	the	app	will	still	be	available	when	you	read	this	book,	but
performing	those	queries	through	code,	or	with	curl	or	via	Fiddler,	is	extremely	easy.	In
the	next	chapter	you’ll	learn	how.

Following	is	a	dump	of	the	Application	object	that	corresponds	to	the	sample	app
we’ve	been	working	with	so	far.	The	query	I	used	for	obtaining	it	is	as	follows:
Click	here	to	view	code	image

https://graph.windows.net/developertenant.onmicrosoft.com/applications?
$filter=appId+eq+‘e8040965-f52a-4494-96ab-0ef07b591e3f’&api-version=1.5

You’ll	likely	recognize	the	typical	OData	‘$’	syntax.	The	GUID	you	see	there	is	the
client_id	of	the	application.	Here’s	the	complete	JSON	from	the	result:
Click	here	to	view	code	image

{
		“odata.metadata”:
“https://graph.windows.net/developertenant.onmicrosoft.com/$metadata#directoryObjects/Microsoft.DirectoryServices.Application”,
		“value”:	[
				{
						“odata.type”:	“Microsoft.DirectoryServices.Application”,
						“objectType”:	“Application”,
						“objectId”:	“c806648a-f27d-43fd-9f18-999f7708fcfc”,
						“deletionTimestamp”:	null,
						“appId”:	“e8040965-f52a-4494-96ab-0ef07b591e3f”,
						“appRoles”:	[],
						“availableToOtherTenants”:	false,
						“displayName”:	“WebAppChapter5”,
						“errorUrl”:	null,
						“groupMembershipClaims”:	null,
						“homepage”:	“https://localhost:44300/”,
						“identifierUris”:	[
								“https://localhost:44300/WebProjectChapter5”
],
						“keyCredentials”:	[],
						“knownClientApplications”:	[],
						“logoutUrl”:	null,
						“oauth2AllowImplicitFlow”:	false,
						“oauth2AllowUrlPathMatching”:	false,
						“oauth2Permissions”:	[
								{
										“adminConsentDescription”:	“Allow	the	application	to	access
WebAppChapter5	on	behalf	of	the	signed-in	user.”,
										“adminConsentDisplayName”:	“Access	WebAppChapter5”,
										“id”:	“00431d04-5334-4da6-8396-0e6f54631f10”,
										“isEnabled”:	true,
										“type”:	“User”,
										“userConsentDescription”:	“Allow	the	application	to	access
WebAppChapter5	on	your	behalf.”,
										“userConsentDisplayName”:	“Access	WebAppChapter5”,

https://graphexplorer.cloudapp.net

										“value”:	“user_impersonation”
								}
],
						“oauth2RequirePostResponse”:	false,
						“passwordCredentials”:	[],
						“publicClient”:	null,
						“replyUrls”:	[
								“https://localhost:44300/”
],
						“requiredResourceAccess”:	[
								{
										“resourceAppId”:	“00000002-0000-0000-c000-000000000000”,
										“resourceAccess”:	[
												{
														“id”:	“311a71cc-e848-46a1-bdf8-97ff7156d8e6”,
														“type”:	“Scope”
												}
]
								}
],
						“samlMetadataUrl”:	null
				}
]
}

Feel	free	to	ignore	anything	that	starts	with	“odata”	here.	Also,	some	properties	listed
are	for	internal	use	only	or	are	about	to	be	deprecated,	so	I	won’t	talk	about	those.

The	most	“meta”	properties	here	are	objectId	and	deletionTimestamp.

	objectId	is	the	unique	identifier	for	this	Application	entry	in	the	directory.
Note,	this	is	not	the	identifier	used	to	identify	the	app	in	any	protocol	transaction—
you	can	think	of	it	as	the	ID	of	the	row	where	the	Application	object	is	saved	in
the	directory	store.	It	is	used	for	referencing	the	object	in	most	directory	queries	and
in	cross-entity	references.

	deletionTimestamp	is	always	null,	unless	you	delete	the	Application,
which	in	that	case	it	records	the	instant	in	which	you	do	so.	Azure	AD	implements
most	eliminations	as	soft	deletes	so	that	you	can	repent	and	restore	the	object
without	too	much	pain	should	you	realize	the	deletion	was	a	mistake.

Properties	used	for	authentication

The	bulk	of	the	properties	of	the	Application	object	control	aspects	of	the
authentication,	specifying	parameters	that	define	the	app	from	the	protocol’s	perspective,
turning	options	on	and	off,	and	providing	experience	customizations.

Property	naming	galore

One	important	thing	to	keep	in	mind:	Although	in	this	book	I	am	focusing	on
OAuth2	and	OpenID	Connect,	the	Application	object	must	support	all
the	protocols	that	Azure	AD	implements.	As	you	have	seen	in	previous
chapters,	all	claims-oriented	protocols	share	some	common	concepts—issuer,
audience,	URLs	to	receive	returned	tokens,	and	so	on.	That	helps	to	keep	the
list	of	properties	short,	given	that	you	need	to	specify	the	URL	where	you
want	to	get	the	tokens	back	only	once	and	use	it	with	all	protocols.	However,
it	also	creates	a	problem:	If	WS-Federation	calls	that	URL	wsreply,	and
OAuth2	calls	it	redirect_uri,	what	should	the	corresponding	property	in	the
Application	object	be	called?	You’ll	see	that	the	question	has	been
answered	in	many	different	ways	through	the	object	model,	largely	driven	by
historical	circumstances	(for	example,	which	protocols	were	implemented
first).	That	has	led	to	some	confusion,	which	prompted	remediation	attempts
by	surfacing	those	properties	in	the	Azure	portal	UX	under	different	labels	…
which	led	to	further	confusion.	This	is	just	a	heads-up	to	highlight	the
importance	of	being	very	precise	when	you	reason	about	Applications	and
protocol	literature.

Here’s	the	complete	list:

	appId	This	corresponds	to	the	client_id	of	the	application.

	replyUrls	This	multivalue	property	holds	the	list	of	registered	redirect_uri
values	that	Azure	AD	will	accept	as	destinations	when	returning	tokens.	No	other
URI	will	be	accepted.	This	property	is	the	source	of	some	of	the	most	common
errors:	even	the	smallest	mismatch	(trailing	slash	missing,	different	casing)	will
cause	the	token-issuance	operation	to	fail.

Although	at	creation	time	the	only	URL	in	the	collection	is	the	one	you	specified,	as
is	the	case	with	the	localhost-based	URL	in	the	sample	here,	you’ll	often	find
yourself	adding	more	URLs	as	your	app	moves	past	the	development	stage	and	gets
deployed	to	staging	and	production.	If	you	want	to	achieve	complete	isolation
between	application	deployments,	you	can	always	create	an	entirely	new
Application	for	every	environment,	each	with	its	own	client_id.

	identifierUris	This	multivalue	property	holds	a	collection	of	developer-
assigned	application	identifiers,	as	opposed	to	the	directory-assigned	client_id.

These	values	are	used	to	represent	the	application	as	a	resource	in	protocols	such	as
SAML	and	WS-Federation,	where	they	map	to	the	concept	of	realm.	The	URIs	are
also	used	as	audience	in	access	tokens	issued	for	the	app	via	OAuth2,	when	the	app
is	consumed	as	a	web	API	(as	opposed	to	a	web	app	with	an	HTML	UX).	This	often
generates	confusion,	given	that	this	scenario	can	also	be	implemented	by	using	the
app’s	client_id	instead	of	one	identifier	URI.	More	about	this	in	Chapter	9.

	publicClient	In	the	current	Azure	AD	model,	applications	can	be	either
confidential	clients	(apps	that	can	have	their	own	credentials,	usually	run	on	servers,

etc.)	or	public	clients	(mobile	and	native	apps	running	on	devices,	with	no
credentials,	hence	no	strong	identity	of	their	own).	The	security	characteristics	of	the
two	app	types	are	very	different,	and	so	is	the	set	of	protocols	that	the	two	types
support.	For	example,	a	native	client	cannot	obtain	a	token	purely	with	its	app
identity	because	it	has	no	identity	of	its	own;	and	a	confidential	client	cannot	request
tokens	with	user-only	flows,	where	the	identity	of	the	app	would	not	play	a	role.

This	book	focuses	on	web	apps;	hence,	confidential	clients.	That	means	that	the	apps
discussed	here	will	always	have	the	publicClient	property	set	to	null.

	passwordCredentials,	keyCredentials	These	properties	hold	references
to	application-assigned	credentials,	string-based	shared	secrets	and	X.509
certificates,	respectively.	Only	confidential	clients	can	have	nonempty	values	here.
Those	credentials	come	into	play	when	requesting	access	tokens—in	other	words,
when	the	app	is	acting	as	a	client	rather	than	as	a	resource	itself.	You’ll	see	more	of
that	in	the	next	chapter.

	displayName	This	property	determines	how	the	application	is	called	in
interactions	with	end	users,	such	as	consent	prompts.	It’s	also	the	mnemonic
moniker	used	to	indicate	the	application	for	the	developer	in	the	Azure	management
portal.	Given	that	the	display	name	has	no	uniqueness	requirements,	it’s	not	always	a
way	to	conclusively	identify	one	app	in	a	long	list.

	Homepage	The	URL	saved	here	is	used	to	point	to	the	application	from	its	entry	in
application	portals	such	as	the	Office	365	application	store.	It	does	not	play	any	role
in	the	protocol	behavior	of	the	app;	it’s	just	whatever	landing	page	you	want	visitors,
prospective	buyers,	and	corporate	users	(who	might	get	there	through	the	list	of
applications	their	company	uses)	to	use	as	an	entry	point.	At	creation	time,	the
Homepage	value	is	copied	from	the	replyUrls	property.	A	common	bit	of
advice	to	software	developers	from	Office	is	to	ensure	that	the	URL	in	Homepage
corresponds	to	a	protected	page/route	in	your	application	so	that	if	visitors	are
already	authenticated	when	they	click	the	link,	they’ll	find	themselves	authenticated
with	the	same	identity	in	your	app	as	well.

	samlMetadataUrl	In	case	you	are	implementing	SAML	in	your	app,	this
property	allows	you	to	specify	where	your	app	publishes	its	own	SAML	metadata
document.

	oauth2AllowImplicitFlow	This	flag,	defaulting	to	false,	determines	whether
your	app	allows	requests	for	tokens	for	the	app	via	implicit	flow.

	oauth2AllowUrlPathMatching	By	default,	Azure	AD	requires	all
redirect_uris	in	a	request	to	be	a	perfect	match	of	any	of	the	entries	in	replyURLs.
This	is	a	very	good	policy,	designed	to	mitigate	the	open	redirector	attack—an	attack
in	which	appending	extra	parameters	to	one	redirect_uri	might	lead	to	the	resulting
token	being	forwarded	to	a	malicious	party.	However,	there	are	situations	in	which
your	app	might	need	to	have	more	flexibility	and	use	return_uris	that	do	have	a	tail
of	extra	characters	that	aren’t	part	of	the	registered	values.	Setting	this	property	to
true	tells	Azure	AD	that	you	want	to	relax	the	perfect	match	constraint,	and	allows

you	to	use	URLs	that	are	a	superset	of	the	ones	you	registered.	Before	changing	this
value,	make	sure	you	truly	need	it	and	that	you	have	mitigations	in	place.

	oauth2RequirePostResponse	Azure	AD	expects	all	requests	to	be	carried
through	a	GET	operation.	Setting	this	property	to	true	relaxes	that	constraint.

	groupMembershipClaims	If	you	want	to	receive	group	membership
information	as	claims	in	the	tokens	issued	for	your	user,	you	can	use	this	property	to
express	that	requirement.	Setting	groupMembershipClaims	to
SecurityGroup	results	in	a	token	containing	all	the	security	group	memberships
of	the	user.	Setting	it	to	All	results	in	a	token	containing	both	security	group	and
distribution	list	memberships.	The	default,	null,	results	in	no	group	information	in
the	token.	Note	that	the	group	claims	do	not	include	the	group	name;	rather,	they
carry	a	GUID	that	uniquely	identifies	the	group	within	the	tenant.	I’ll	spend	more
time	on	this	topic	later	in	the	chapter.

	appRoles	This	property	is	used	for	declaring	roles	associated	with	the	application.
I	provide	a	complete	explanation	of	this	property	in	later	sections	of	this	chapter.

	availableToOtherTenants	This	property	deviates	from	the	strictly	protocol-
related	functionalities:	it’s	more	about	controlling	the	provisioning	aspect.	Every
confidential	client	application	starts	its	existence	as	an	app	that	can	be	accessed	only
by	accounts	from	the	same	directory	tenant	in	which	the	application	was	created.
That’s	the	typical	line-of-business	application	scenario,	where	the	IT	department	of
one	company	develops	an	app	to	be	used	by	their	fellow	employees.	Any	attempt	to
get	tokens	for	the	app	from	a	different	tenant	will	not	work	(excluding	guest
scenarios,	which	will	be	mentioned	later).

However,	that	clearly	does	not	work	if	your	intent	is	to	make	the	application
available	across	organizations:	that	is	the	case	for	SaaS	scenarios,	naturally.	If	you
are	in	that	situation,	you	can	flip	availableToOtherTenants	to	true.	That	will
make	Azure	AD	allow	requests	from	other	tenants	to	trigger	the	consent	flow	I
described	briefly	earlier	instead	of	carrying	out	the	default	behavior,	in	which	the
request	would	be	rejected	right	away.

Applications	available	across	tenants	(what	we	commonly	call	“multitenant	apps”)
have	extra	constraints.	For	example,	whereas	identifierURIs	can	normally	be
any	URI	with	no	restrictions,	for	multitenant	apps	those	URIs	must	be	proper	URLs
and	their	hostname	must	match	a	domain	that	is	registered	with	the	tenant.	Also,
only	tenant	administrators	can	promote	an	app	to	be	multitenant.	The	consent	for	a
multitenant	app	clearly	identifies	the	tenant	as	the	publisher	of	the	app	to	potentially
every	other	organization	using	Azure	AD—with	important	repercussions	on
reputation	should	something	go	south.

	Note

Flipping	this	switch	only	tells	Azure	AD	that	you	want	your	app	to	behave	as
a	multitenant	app.	Actually	promoting	one	application	from	line	of	business
to	multitenant	requires	some	coding	changes,	which	I’ll	discuss	later	on.

	knownClientApplications	The	last	property	listed	here	is	also	about
provisioning.	You	have	seen	how	consenting	for	one	application	to	have	access	to
your	own	directory	results	in	the	creation	of	a	ServicePrincipal	for	the	app	in
the	target	directory.	To	anticipate	a	bit	the	upcoming	discussion	on	permissions,	the
idea	is	that	the	ServicePrincipal	will	also	need	to	record	the	list	of	resources
and	actions	on	those	resources	that	the	user	consented	to.	This	is	possible	only	if	the
requested	resources	are	already	present	with	their	own	ServicePrincipal
entries	in	the	target	directory.	That	is	usually	the	case	for	first-party	resources:	if
your	app	needs	access	to	the	Directory	Graph	or	Exchange	online,	you	can	expect
those	to	already	have	an	entry	in	the	directory.	It	will	occasionally	happen	that	your
solution	includes	both	a	client	application	and	one	custom	web	API	application.
You’ll	want	your	prospective	customers	to	have	to	consent	only	once,	when	they
first	try	to	get	a	token	for	the	client	application.	If	consent	can	happen	only	when	all
the	requested	resources	are	present	as	a	ServicePrincipal	in	the	target
directory,	and	one	of	the	resources	you	need	is	your	own	API,	you	have	a	problem.	It
looks	like	you	have	to	ask	your	user	to	first	consent	to	the	web	API	so	that	it	can
create	its	ServicePrincipal	in	the	target	directory,	and	only	after	that	ask	the
user	to	go	back	and	consent	to	the	client	application.

Well,	this	property	exists	to	save	you	from	having	to	do	all	that	work.	Say	that	the
application	you	are	working	on	is	the	web	API	project.	If	you	save	in
knownClientApplications	the	client_id	(the	appId,	that	is)	of	the	client
application	you	want	to	use	for	accessing	your	API,	Azure	AD	will	know	that
consenting	to	the	client	means	implicitly	consenting	to	the	web	API,	too,	and	will
automatically	provision	ServicePrincipals	for	both	the	client	and	web	API	at
the	same	time,	with	a	single	consent.	Handy!

The	main	catch	in	all	this	is	that	both	the	client	and	the	web	API	application	must	be
defined	within	the	same	tenant.	You	cannot	list	in	knownClientApplications
the	client_id	of	a	client	defined	in	a	different	tenant.

oauth2Permissions:	What	actions	does	the	app	expose?

The	oauth2Permissions	collection	publishes	the	list	of	things	that	client	applications
can	do	with	your	app—the	scopes	the	app	admits,	mostly,	but	that	comes	into	play	only	in
case	your	app	is	a	web	API.	If	your	app	is	a	web	application	with	a	UX,	the	expectation	is
that	browsers	will	request	tokens	for	your	app	with	the	goal	of	signing	in.	That	does	not
require	any	entry	for	web	sign-on,	the	scenario	considered	in	this	chapter,	so	I	thought	of
deferring	coverage	of	this	property	until	I	get	to	exposing	your	own	web	API,	but	some	of
the	concepts	will	come	in	handy	sooner	than	that,	so	I’ll	give	you	a	bit	of	background	now.
Let’s	take	a	closer	look	at	the	only	entry	in	the	oauth2Permissions	collection	for	the
sample	application:
Click	here	to	view	code	image

{
				“adminConsentDescription”:	“Allow	the	application	to	access
WebAppChapter5	on	behalf	of	the	signed-in	user.”,
				“adminConsentDisplayName”:	“Access	WebAppChapter5”,
				“id”:	“00431d04-5334-4da6-8396-0e6f54631f10”,
				“isEnabled”:	true,
				“type”:	“User”,
				“userConsentDescription”:	“Allow	the	application	to	access	WebAppChapter5
on	your	behalf.”,
				“userConsentDisplayName”:	“Access	WebAppChapter5”,
				“value”:	“user_impersonation”
}

Where	does	the	default	oauth2Permissions	entry	come	from?

Answering	this	question	requires	a	bit	of	history.	For	the	way	in	which	Azure
AD	is	organized,	a	token	obtained	by	a	client	for	accessing	a	web	API	must
contain	at	least	a	scope—which	is,	as	you	have	seen,	an	action	that	the	client
obtains	permissions	to	perform.	An	application	representing	a	web	API	but
not	defining	any	scopes	would	be	impossible	to	access	because	any	token
request	would	not	have	any	scope	to	prompt	consent	for.	That	wasn’t	always
the	case!	This	constraint	was	added	a	few	months	after	Azure	AD	was
released,	creating	a	lot	of	confusion	for	developers	who	were	now	expected	to
manually	add	at	least	one	oauth2Permission	entry	before	being	able	to
use	their	API.	This	also	influenced	all	the	walk-through	and	sample	readme
files	at	the	time,	making	it	necessary	to	add	instructions	on	how	to	add	that
entry.	I	am	happy	to	report	that	such	manual	steps	are	no	longer	necessary.
Every	Application	is	created	with	one	default	permission,
user_impersonation,	so	that	if	you	want	to	implement	your	app	as	a	web	API
you	don’t	need	any	extra	configuration	step,	and	you	can	begin	development
right	away.	I	am	telling	you	all	this	because	some	of	the	walk-throughs	from
that	phase	are	still	around.	Now	you	know	that	you	don’t	need	to	follow	them
to	the	letter	on	this.

The	schema	is	pretty	straightforward:

The	ID	uniquely	identifies	the	permission	within	this	resource.

Each	property	ending	in	“description”	or	“name”	indicates	how	to	identify	and	describe
this	permission	in	the	context	of	interactive	operations,	such	as	consent	prompts	or
Application	configuration	at	development	time.

The	type	property	indicates	whether	this	permission	can	be	granted	by	any	user	in	the
directory	(in	which	case	it	is	populated	with	the	value	User)	or	is	a	high-value	capability
that	can	be	granted	only	by	an	administrator	(in	which	case,	the	value	is	Admin).

The	value	property	represents	the	value	in	the	scope	claim	that	a	token	will	carry	to
signal	the	fact	that	the	caller	was	granted	this	permission	by	the	directory.	That	is	what	the
app	should	look	for	in	the	incoming	token	to	decide	whether	the	caller	should	be	allowed
to	exercise	the	function	gated	by	this	permission.

I’ll	come	back	to	this	collection	in	Chapter	9.

requiredResourceAccess:	What	resources	the	app	needs

This	is	one	of	the	most	powerful	entries	in	the	Application	object,	which	can	lead	to
utter	despair	when	things	go	wrong:
Click	here	to	view	code	image

“requiredResourceAccess”:	[
								{
										“resourceAppId”:	“00000002-0000-0000-c000-000000000000”,
										“resourceAccess”:	[
												{
														“id”:	“311a71cc-e848-46a1-bdf8-97ff7156d8e6”,
														“type”:	“Scope”
												}
]
								}

You	can	think	of	requiredResourceAccess	as	the	client-side	partner	of
oauth2Permissions.	The	requiredResourceAccess	entry	lists	all	the
resources	and	permissions	the	application	needs	access	to,	referring	to	the	entries	each	of
those	resources	expose	through	their	own	oauth2Permissions	entries.	For	each
resource,	requiredResourceAccess	specifies:

	The	appId	of	the	requested	resource,	via	the	resourceAppId	property

	Which	specific	permissions	it	is	after,	via	the	resourceAccess	collection,	which
contains

•	The	permission	ID—the	same	ID	the	resource	declared	(in	its	own
Application	object)	for	the	permission	in	its	own	corresponding
oauth2Permission	entry

•	The	type	of	access	it	intends	to	perform:	possible	values	are	Scope	and	Role.

In	our	sample,	the	resource	we	need	access	to	is	the	directory	itself,	in	the	form	of	the
Graph	API—	the	identifier	00000002-0000-0000-c000-000000000000	is	reserved	for	the
Graph	in	all	tenants.	The	permission	we	are	requesting,	of	ID	311a71cc-e848-46a1-bdf8-
97ff7156d8e6,	corresponds	to	“sign	in	and	access	the	user’s	profile.”	I	know	it	doesn’t
sound	that	easy	to	remember	…	but	it	is	not	supposed	to	be.	The	Azure	portal	or	the

Visual	Studio	project	wizards	normally	take	care	of	putting	those	values	there	for	you
when	you	select	the	human-readable	counterparts	in	their	UIs.
The	type	of	access	Scope	determines	that	the	app	request	the	permission	in	delegated

fashion;	that	is	to	say,	as	the	identity	of	the	user	who’s	doing	the	request.	Whether	an
admin	user	is	required	for	successfully	obtaining	this	permission	at	run	time,	or	a	normal
user	can	suffice,	is	determined	by	the	Type	declared	in	the	corresponding
oauth2Permission	entry—found	in	the	Application	object	of	the	resource
exposing	the	permission.	As	you	have	seen	in	the	preceding	section,	the	possible	values
are	User	and	Admin.	If	the	permission	declares	the	latter,	only	an	administrator	can
consent	to	it.

A	requiredResourceAccess	entry	with	a	Type	of	value	Role	indicates	that	the
application	requires	that	permission	with	its	own	application	identity,	regardless	of	which
user	identity	is	used	to	obtain	the	token	(if	any—there	are	ways	for	an	app	to	get	tokens
with	no	users	involved,	and	I’ll	talk	about	that	in	the	“Application	permissions”	section
toward	the	end	of	this	chapter).	This	option	does	require	consent	from	an	administrator.

Now	here	is	a	super	important	concept;	put	everything	else	down	and	read	very
carefully.	In	the	current	Azure	AD	model,	one	application	must	declare	in	advance	all
resources	it	needs	access	to,	and	all	the	associated	permissions	it	requires.	At	the	first
request	for	a	token	for	that	app,	that	list	will	be	presented	to	the	user	in	its	entirety,
regardless	of	what	resources	are	actually	needed	for	that	specific	request.	Once	the	user
successfully	grants	consent,	a	ServicePrincipal	will	be	provisioned,	and	that
consent	will	be	recorded	in	the	target	directory	(you’ll	see	later	how	that	happens	in
practice)	for	all	the	requested	resources.	This	makes	it	possible	to	prompt	the	user	for
consent	only	once.

The	side	effect	of	this	approach	is	that	the	list	of	consented	permissions	is	static.	If	you
decide	to	add	a	new	permission	request	to	your	application	after	a	customer	of	yours
already	consented	to	it	in	its	own	directory,	your	customer	will	not	be	able	to	obtain	the
new	permission	for	your	app	in	the	customer’s	own	tenant	until	he	or	she	revokes	consent
in	its	entirety	and	then	grants	it	again.	This	can	sometimes	be	painful.	In	version	2	of
Azure	AD,	we	are	working	hard	to	eliminate	this	constraint,	but	in	version	1,	that	is	the
way	it	is	today.

Figure	8-2	summarizes	the	main	functional	groups	the	Application	object’s
properties	fall	into.	Sure,	there	are	a	lot	of	details	to	keep	in	mind,	but	at	the	end	of	the
day,	more	often	than	not,	this	simple	subdivision	will	help	you	to	ignore	the	noise	and	zero
in	on	the	properties	you	need	for	your	scenario.

Figure	8-2	A	functional	grouping	of	the	properties	of	the	Application	object	in
Azure	AD.

The	ServicePrincipal	object
In	later	sections	you	will	study	in	detail	how	an	app	goes	from	one	Application	object
in	one	tenant	to	one	or	more	ServicePrincipals	in	one	or	more	tenants.	In	this
section,	I’ve	assumed	that	such	provisioning	has	already	happened	and	will	focus	on	the
properties	of	the	resulting	ServicePrincipal:	what	properties	are	copied	as	is	from
the	Application,	what	doesn’t	make	it	through,	and	what’s	added	that	is	unique.

Following	is	the	ServicePrincipal	for	our	sample	app.	It	is	deployed	on	the	same
tenant	as	the	Application,	but	for	our	analysis	that	doesn’t	matter.	At	first	glance,	it
does	look	a	lot	like	the	Application	itself,	but	it	is	in	fact	quite	different.
Click	here	to	view	code	image

{
						“odata.type”:	“Microsoft.DirectoryServices.ServicePrincipal”,
						“objectType”:	“ServicePrincipal”,
						“objectId”:	“29f565fd-0889-43ff-aa7f-3e7c37fd95b4”,
						“deletionTimestamp”:	null,
						“accountEnabled”:	true,
						“appDisplayName”:	“WebAppChapter5”,
						“appId”:	“e8040965-f52a-4494-96ab-0ef07b591e3f”,
						“appOwnerTenantId”:	“6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e”,
						“appRoleAssignmentRequired”:	false,
						“appRoles”:	[],
						“displayName”:	“WebAppChapter5”,
						“errorUrl”:	null,
						“homepage”:	“https://localhost:44300/”,
						“keyCredentials”:	[],
						“logoutUrl”:	null,
						“oauth2Permissions”:	[
								{
										“adminConsentDescription”:	“Allow	the	application	to	access
WebAppChapter5	on	behalf	of	the	signed-in	user.”,
										“adminConsentDisplayName”:	“Access	WebAppChapter5”,
										“id”:	“00431d04-5334-4da6-8396-0e6f54631f10”,
										“isEnabled”:	true,
										“type”:	“User”,
										“userConsentDescription”:	“Allow	the	application	to	access
WebAppChapter5	on	your	behalf.”,

										“userConsentDisplayName”:	“Access	WebAppChapter5”,
										“value”:	“user_impersonation”
								}
],
						“passwordCredentials”:	[],
						“preferredTokenSigningKeyThumbprint”:	null,
						“publisherName”:	“Developer	Tenant”,
						“replyUrls”:	[],
						“samlMetadataUrl”:	null,
						“servicePrincipalNames”:	[
								“https://localhost:44300/WebProjectChapter5”,
								“e8040965-f52a-4494-96ab-0ef07b591e3f”
],
						“tags”:	[
								“WindowsAzureActiveDirectoryIntegratedApp”
]
				}

I	am	sure	you	are	not	surprised	to	find	objectId	and	deletionTimestamp	here,
too.

Notably	missing	are	all	the	flags	determining	protocol	behaviors	at	run	time:
availableToOtherTenants,	groupMembershipClaims,
oauth2AllowImplicitFlow,	oauth2AllowUrlPathMatching,	oauth2-
RequirePostResponse,	and	publicClient.	Other	properties	that	don’t	directly
make	it	in	the	form	of	properties	in	ServicePrincipal	are
knownClientApplications	and	requiredResourceAccess,	both	of	which
are	properties	that	influence	the	consent	process	and	the	very	creation	of	this
ServicePrincipal.	As	you	will	see	later	on,	requiredResourceAccess	gets
recorded	in	a	different	form—one	that	makes	it	easier	for	the	directory	to	track	down	who
in	the	tenant	has	actually	been	granted	the	necessary	permissions	to	use	the	app.

Properties	that	do	transfer	as	is	from	the	Application	to	its	corresponding
ServicePrincipal	are	the	appId	(containing	the	all-important	client_id),	various
optional	URLs	(errorUrl,	logoutUrl,	samlMetadata-Url),	the	settings	used
when	listing	the	app	in	some	UX	(displayName,	homepage),	the	exposed	appRoles
and	oauth2Permissions,	and	finally	the	credentials	keyCredentials	and
passwordCredentials.	The	presence	of	the	credentials	in	the
ServicePrincipal	has	important	implications:	it	means	that	your	code	can	use	the
same	credentials	defined	in	the	Application	and	those	will	work	on	every
ServicePrincipal	in	every	tenant.

Here’s	a	list	of	the	brand-new	properties:

	appOwnerTenantId	This	property	carries	the	tenantId	of	the	tenant	where	you’ll
find	the	Application	object	that	was	used	as	a	blueprint	for	creating	this
ServicePrincipal—in	this	case,	developertenant.onmicrosoft.com.	If	you
search	Chapter	6	for	the	GUID	value	shown	in	our	example’s
ServicePrincipal,	you’ll	find	it	everywhere.

	publisherName	Another	property	meant	to	be	used	for	describing	the	app	in	user
interactions,	publisherName	stores	the	display	name	of	the	tenant	where	the

original	Application	was	defined.	This	represents	the	organization	that
published	the	app.

	servicePrincipalNames	This	property	holds	all	the	identifiers	that	can	be
used	for	referring	to	this	application	in	protocol	flows:	as	you	might	have	noticed	in
the	sample,	it	contains	the	union	of	the	values	in	the	identifierUris	collection
and	the	appId	value	from	the	Application	object.	The	former	is	used	for
OAuth2	and	OpenID	Connect	flows,	the	latter	for	WS-Federation,	SAML,	or
OAuth2	bearer	token	resource	access	requests.

	appRoleAssignmentRequired	Administrators	can	decide	to	explicitly	name
the	user	accounts	that	they	want	to	enable	for	the	user	of	the	app	and	gate	the	token
issuance	on	this	condition.	If	appRoleAssignmentRequired	is	set	to	true,
only	the	token	requests	coming	from	explicitly	assigned	users	will	be	fulfilled.	I’ll
talk	more	about	this	later	in	the	chapter.

	tags	This	property	is	used	mostly	by	the	Azure	portal	to	determine	the	type	of
application	and	how	to	present	it	in	the	administrative	interface.	Without	going	into
fine	detail,	an	empty	tag	collection	results	in	the	corresponding
ServicePrincipal	not	being	shown	as	one	of	the	resources	that	can	be
requested	by	other	applications.

Consent	and	delegated	permissions
Now	that	you	know	what	application	aspects	are	defined	in	the	Application	and
ServicePrincipal	objects,	it’s	time	to	understand	how	these	two	entities	are	used	in
the	application	provisioning	and	consent	flows.

You	have	learned	that	all	it	takes	for	provisioning	an	app	in	a	tenant	(creating	a
ServicePrincipal	for	that	app	in	the	tenant)	is	one	user	requesting	a	token	by	using
the	app	coordinates	defined	in	the	Application	object,	successfully	authenticating,	and
granting	to	the	app	consent	to	the	permissions	it	requires.	To	get	to	the	next	level	of	detail,
you	must	take	into	account	what	kind	of	user	created	the	application	in	the	first	place,
what	permissions	the	applications	requires,	and	what	kind	of	user	actually	grants	consent
to	the	app	and	in	what	terms.	There	is	an	underlying	rule	governing	the	entire	process,	but
that’s	pretty	complicated.	Instead	of	enunciating	it	here	and	letting	you	wrestle	with	it,	I
am	going	to	walk	you	through	various	common	scenarios	and	explain	what	happens.	Little
by	little,	we’ll	figure	out	how	things	work.

Initially,	I’ll	scope	things	down	to	the	case	in	which	you	are	creating	line-of-business
apps—applications	meant	to	be	consumed	by	users	from	the	same	directory	in	which	they
were	created.	If	your	company	has	an	IT	department	that	creates	apps	for	your	company’s
employees,	you	know	what	kind	of	apps	I	am	referring	to.	Once	you	have	a	solid
understanding	of	how	consent	works	within	a	single	directory,	I’ll	venture	to	the
multitenant	case,	where	you’ll	see	more	of	the	provisioning	aspect.	I’ll	stick	to	delegated
permissions,	but	there	are	other	kinds	of	permissions,	like	the	things	that	an	app	can	do
independently	of	which	user	is	signed	in	at	the	moment,	but	I’ll	defer	coverage	of	those
and	describe	the	basics	here.

Application	created	by	a	nonadmin	user
In	Chapter	5	you	followed	instructions	to	create	an	application	in	Azure	AD	via	the	Azure
portal.	Did	you	create	it	while	being	signed	in	with	a	user	who	is	a	global	administrator	in
your	tenant?	If	not,	that’s	perfect—the	app	you	have	is	already	in	the	state	I’ll	describe	in
this	section.	If	you	did,	you	can	choose	to	believe	that	my	description	is	accurate—or	you
can	create	a	new	app,	following	the	same	instructions	(very	important!)	but	using	a
nonadmin	user.	Note:	to	be	able	to	sign	in	with	that	account	in	the	Azure	portal,	you	might
need	to	promote	that	user	to	coadmin	of	your	Azure	subscription.

As	you	have	seen	in	the	preceding	section,	creating	one	app	via	the	Azure	portal	has	the
effect	of	creating	both	the	Application	object	and	the	corresponding
ServicePrincipal.	What	you	haven’t	seen	yet	is	how	the	directory	remembers	what
permissions	have	been	granted	to	the	ServicePrincipal	and	to	which	user.	The
Application	object	enumerates	the	permissions	it	needs	in	the
requiredResourceAccess	collection,	but	those	aren’t	present	in	the
ServicePrincipal.	Where	are	they?

Azure	AD	maintains	another	collection	of	entities,	named
oauth2PermissionGrants,	which	records	which	clients	have	access	to	which
resources	and	with	what	permissions.	Critically,	oauth2PermissionGrants	also
records	which	users	that	consent	is	valid	for.

For	example,	when	you	created	the	sample	app	in	the	Azure	portal,	Azure	AD
automatically	granted	consent	for	that	app	on	behalf	of	your	user.	Alongside	the
Application	and	ServicePrincipal,	the	process	also	created	the	following
oauth2PermissionGrants	entry:
Click	here	to	view	code	image

{
		“odata.metadata”:
“https://graph.windows.net/developertenant.onmicrosoft.com/$metadata#oauth2PermissionGrants”,
		“value”:	[
				{
						“clientId”:	“29f565fd-0889-43ff-aa7f-3e7c37fd95b4”,
						“consentType”:	“Principal”,
						“expiryTime”:	“2015-11-21T23:31:32.6645924”,
						“objectId”:	“_WX1KYkI_0Oqfz58N_2VtEnIMYJNhOpOkFrsIuF86Y8”,
						“principalId”:	“13d3104a-6891-45d2-a4be-82581a8e465b”,
						“resourceId”:	“8231c849-844d-4eea-905a-ec22e17ce98f”,
						“scope”:	“UserProfile.Read”,
						“startTime”:	“0001-01-01T00:00:00”
				}
]
}

	Note

The	query	I	used	for	retrieving	this	result	was
https://graph.windows.net/developertenant.onmicrosoft.com/oauth2PermissionGrants?
$filter=clientId+eq+'29f565fd-0889-43ff-aa7f-
3e7c37fd95b4'.

Let’s	translate	that	snippet	into	English.	It	says	that	the	User	with	identifier	13d3104a-
6891-45d2-a4be-82581a8e465b	(the	PrincipalId)	consented	for	the	client	29f565fd-
0889-43ff-aa7f-3e7c37fd95b4	(the	clientId)	to	access	the	resource	8231c849-844d-
4eea-905a-ec22e17ce98f	(the	resourceId)	with	permission	UserProfile.Read
(the	scope).	Resolving	references	further,	the	client	is	our	sample	app,	and	the	resource
is	the	directory	itself—more	precisely,	the	Directory	Graph	API.	Figure	8-3	shows	how
the	consent	for	the	first	application	user	is	recorded	in	the	directory;	Figure	8-4	shows	how
the	oauth2PermissionGrants	table	grows	as	more	users	give	their	consent.

Figure	8-3	The	oauth2PermissionGrant	recording	in	the	directory	that	user	1
consented	for	the	app	represented	by	ServicePrincipal	1	to	access

ServicePrincipal	N	with	the	permission	stored	in	the	property	scope,	in	itself
picked	from	one	of	the	permissions	exposed	by	the	original	Application	N

oauth2Permissions	section.

Figure	8-4	Subsequent	consent	operations	create	more	oauth2PermissionGrant
entries	in	the	directory,	one	for	each	new	user	consenting	for	the	application.

	Important

All	the	identifiers	here	refer	to	the	objectId	property	of	the	respective
entity	they	refer	to.	Given	that	clientId	and	resourceId	ultimately
refer	to	ServicePrincipals,	it’s	easy	to	get	confused	and	expect	those
values	to	represent	the	appId.	But	nope,	it’s	the	objectId.	The
principalId	is	the	objectId	property	of	the	User	object	representing
the	user	account	used	for	consenting.

When	Azure	AD	receives	a	request	for	a	token	to	be	issued	to	the	application	defined
here,	it	looks	in	the	oauth2PermissionGrants	collection	for	entries	whose
clientId	matches	the	app.	If	the	authenticated	user	has	a	corresponding	entry,	she	or	he
will	get	back	a	token	right	away.	If	there’s	no	entry,	the	user	will	see	the	consent	prompt
listing	all	the	requiredResourceAccess	permissions	from	the	Application
object.	Upon	successful	consent,	a	new	oauth2PermissionGrant	entry	for	the
current	user	will	be	created	to	record	the	consent.	And	so	on	and	so	forth.

If	you	want	to	try,	go	ahead	and	launch	the	sample	app	again,	but	sign	in	as	another
user.	This	time,	you	will	be	presented	with	the	consent	page.	Consent	and	then	sign	out.
Sign	in	again	with	the	new	user:	you	will	not	be	prompted	for	consent	again.	If	you
queried	the	directory	(in	the	next	chapter	you’ll	learn	how)	to	find	all	the
oauth2PermissionGrants	whose	clientId	matches	the	sample	app,	you’d	see
that	there	are	now	two	entries,	looking	very	much	alike	apart	from	the	principalId,
which	would	point	to	different	users.	Note	that	it	doesn’t	matter	whether	your	second	user
is	an	administrator	or	a	low-privilege	user;	the	resulting	oauth2PermissionGrant
will	look	just	like	the	one	described	earlier	when	following	this	flow.

Interlude:	Delegated	permissions	to	access	the	directory
One	of	the	things	you	have	learned	in	this	chapter	is	that	applications	can	declare	the
permissions	that	a	client	can	request	of	them,	via	oauth2Permissions,	as	a	way	of
partitioning	the	possible	actions	a	user	can	perform	over	the	resource	represented	by	the
app	and	to	provide	fine-grained	access	control	over	who	can	do	what.	As	I’ve	mentioned,
in	the	next	chapter	you	will	learn	how	clients	can	actually	take	advantage	of	gaining	such
permissions;	here,	you’re	just	studying	how	requesting	and	granting	such	permissions
takes	place.

Each	and	every	resource	protected	by	Azure	AD	works	by	exposing	permissions—the
Office	365	API,	Azure	management	API,	and	any	custom	API	all	work	that	way.	Covering
all	those	would	be	a	pretty	hard	task.	Even	ignoring	the	enormous	surface	I’d	have	to
cover,	chances	are	that	the	details	would	change	multiple	times	from	the	time	I’m	writing
and	when	you	have	this	book	in	your	hands.	That	said,	I	am	going	to	describe	in	detail	at
least	one	resource:	the	directory	itself.	Like	any	other	resource,	Azure	AD	exposes	a
number	of	delegated	permissions,	which	determine	what	actions	your	application	is
allowed	to	perform	against	the	data	stored	in	the	directory.	Such	actions	take	the	form	of
requests	to	embed	information	in	issued	tokens	(what	we	have	been	working	with	until
now)	and	reading	or	modifying	directory	data	via	API	calls	to	the	Graph	API	(what	you’ll
see	in	the	next	chapter).	You	will	likely	have	to	deal	with	directory	permissions	in
practically	every	app	you	write;	hence,	they’re	a	great	candidate	for	showing	you	how	to
deal	with	permissions	in	depth—well,	except	for	the	fact	that	they	feature	lots	of
exceptions,	but	you	need	to	be	aware	of	these	anyway.

As	of	today,	the	directory	itself	is	represented	by	a	ServicePrincipal	in	your
tenant.	You	already	know	both	the	AppId	and	the	ObjectId	of	that	principal,	given	that
our	sample	app	had	to	request	at	least	the	permission	UserProfile.Read	in	order	to
sign	users	in.	The	AppId,	00000002-0000-0000-c000-000000000000,	comes	from	the
requiredResourceAccess	in	the	Application	object	representing	our	sample.
The	ObjectID	of	the	ServicePrincipal,	8231c849-844d-4eea-905a-
ec22e17ce98f,	comes	from	the	oauth2PermissionGrant	tracking	the	consent	to	our
sample.	The	objectId	is	enough	for	crafting	the	resource	URL	referring	to	the	Graph
API	ServicePrincipal:	it’s
https://graph.windows.net/developertenant.onmicrosoft.com/servicePrincipals/8231c849-
844d-4eea-905a-ec22e17ce98f.

https://graph.windows.net/developertenant.onmicrosoft.com/servicePrincipals/8231c849-844d-4eea-905a-ec22e17ce98f

I	won’t	show	the	entire	JSON	for	the	ServicePrincipal	here,	as	it	contains	a	lot
of	stuff	I	want	to	cover	later.	But	take	a	look	at	the	oauth2Permissions,	the
collection	of	delegated	permissions	one	client	can	request	for	interacting	with	the
directory:
Click	here	to	view	code	image

“oauth2Permissions”:	[
				{
						“adminConsentDescription”:	“Allows	the	app	to	create	groups	on	behalf
of	the	signed-in	user	and	read	all	group	properties	and	memberships.
Additionally,	this	allows	the	app	to	update	group	properties	and	memberships
for	the	groups	the	signed-in	user	owns.”,
						“adminConsentDisplayName”:	“Read	and	write	all	groups”,
						“id”:	“970d6fa6-214a-4a9b-8513-08fad511e2fd”,
						“isEnabled”:	true,
						“type”:	“User”,
						“userConsentDescription”:	“Allows	the	app	to	create	groups	on	your
behalf	and	read	all	group	properties	and	memberships.	Additionally,	this
allows	the	app	to	update	group	properties	and	memberships	for	groups	you
own.”,
						”userConsentDisplayName”:	“Read	and	write	all	groups”,
						“value”:	“Group.ReadWrite.All”				},
				{
						“adminConsentDescription”:	“Allows	the	app	to	read	basic	group
properties	and	memberships	on	behalf	of	the	signed-in	user.”,
						“adminConsentDisplayName”:	“Read	all	groups”,
						“id”:	“6234d376-f627-4f0f-90e0-dff25c5211a3”
						“isEnabled”:	true,
						“type”:	“User”,
						“userConsentDescription”:	“Allows	the	app	to	read	all	group	properties
and	memberships	on	your	behalf.”,
						“userConsentDisplayName”:	“Read	all	groups”,
						“value”:	“Group.Read.All”
				},
				{
						“adminConsentDescription”:	“Allows	the	app	to	read	and	write	data	in
your	company	or	school	directory,	such	as	users	and	groups.	Does	not	allow
user	or	group	deletion.”,
						“adminConsentDisplayName”:	“Read	and	write	directory	data”,
						“id”:	“78c8a3c8-a07e-4b9e-af1b-b5ccab50a175”,
						“isEnabled”:	true,
						“type”:	“Admin”,
						“userConsentDescription”:	“Allows	the	app	to	read	and	write	data	in
your	company	or	school	directory,	such	as	other	users,	groups.	Does	not	allow
user	or	group	deletion	on	your	behalf.”,
						“userConsentDisplayName”:	“Read	and	write	directory	data”,
						“value”:	“Directory.Write”
				},
				{
						“adminConsentDescription”:	“Allows	the	app	to	have	the	same	access	to
information	in	the	directory	as	the	signed-in	user.”,
						“adminConsentDisplayName”:	“Access	the	directory	as	the	signed-in
user”,
						“id”:	“a42657d6-7f20-40e3-b6f0-cee03008a62a”,
						“isEnabled”:	true,
						“type”:	“User”,
						“userConsentDescription”:	“Allows	the	app	to	have	the	same	access	to
information	in	your	work	or	school	directory	as	you	do.”,
						“userConsentDisplayName”:	“Access	the	directory	as	you”,
						“value”:	“user_impersonation”

				},
				{
						“adminConsentDescription”:	“Allows	the	app	to	read	data	in	your	company
or	school	directory,	such	as	users,	groups,	and	apps.”,
						“adminConsentDisplayName”:	“Read	directory	data”,
						“id”:	“5778995a-e1bf-45b8-affa-663a9f3f4d04”,
						“isEnabled”:	true,
						“type”:	“Admin”,
						“userConsentDescription”:	“Allows	the	app	to	read	data	in	your	company
or	school	directory,	such	as	other	users,	groups,	and	apps.”,
						“userConsentDisplayName”:	“Read	directory	data”,
						“value”:	“Directory.Read”
				},
				{
						“adminConsentDescription”:	“Allows	the	app	to	read	the	full	set	of
profile	properties	of	all	users	in	your	company	or	school,	on	behalf	of	the
signed-in	user.	Additionally,	this	allows	the	app	to	read	the	profiles	of	the
signed-in	user’s	reports	and	manager.”,
						“adminConsentDisplayName”:	“Read	all	users’	full	profiles”,
						“id”:	“c582532d-9d9e-43bd-a97c-2667a28ce295”,
						“isEnabled”:	true,
						“type”:	“Admin”,
						“userConsentDescription”:	“Allows	the	app	to	read	the	full	set	of
profile	properties	of	all	users	in	your	company	or	school	on	your
behalf.		Additionally,	this	allows	the	app	to	read	the	profiles	of	your
reports	and	manager.”,
						“userConsentDisplayName”:	“Read	all	users’	full	profiles”,
						“value”:	“User.Read.All”
				},
				{
						“adminConsentDescription”:	“Allows	the	app	to	read	a	basic	set	of
profile	properties	of	all	users	in	your	company	or	school	on	behalf	of	the
signed-in	user.	Includes	display	name,	first	and	last	name,	photo,	and	email
address.	Additionally,	this	allows	the	app	to	read	basic	info	about	the
signed-in	user’s	reports	and	manager.”,
						“adminConsentDisplayName”:	“Read	all	users’	basic	profiles”,
						“id”:	“cba73afc-7f69-4d86-8450-4978e04ecd1a”,
						“isEnabled”:	true,
						“type”:	“User”,
						“userConsentDescription”:	“Allows	the	app	to	read	a	basic	set	of
profile	properties	of	other	users	in	your	company	or	school	on	your	behalf.
Includes	display	name,	first	and	last	name,	photo,	and	email	address.
Additionally,	this	allows	the	app	to	read	basic	info	about	your	reports	and
manager.”,
						“userConsentDisplayName”:	“Read	all	user’s	basic	profiles”,
						“value”:	“User.ReadBasic.All”
				},
				{
						“adminConsentDescription”:	“Allows	users	to	sign	in	to	the	app,	and
allows	the	app	to	read	the	profile	of	signed-in	users.	It	also	allows	the	app
to	read	basic	company	information	of	signed-in	users.”,
						“adminConsentDisplayName”:	“Sign	in	and	read	user	profile”,
						“id”:	“311a71cc-e848-46a1-bdf8-97ff7156d8e6”,
						“isEnabled”:	true,
						“type”:	“User”,
						“userConsentDescription”:	“Allows	you	to	sign	in	to	the	app	with	your
work	account	and	let	the	app	read	your	profile.	It	also	allows	the	app	to
read	basic	company	information.”,	
						“userConsentDisplayName”:	“Sign	you	in	and	read	your	profile”,
						“value”:	“User.Read”
				}
],

Here’s	a	quick	description	of	each	delegated	permission	listed,	per	their	Value
property.	Please	note	that	this	list	does	change	over	time.	Funny	story:	it	changed	a	couple
of	weeks	after	I	finished	writing	this	chapter—I	had	to	come	back	and	revise	much	of
what	follows.	In	fact,	the	change	is	not	fully	complete,	as	the	ServicePrincipal
object	shown	above	still	shows	some	old	values.	The	first	four	permissions	described	in
what	follows	are	the	ones	that	Azure	AD	has	offered	since	it	started	supporting	consent	as
described	in	this	book;	the	last	four	are	brand-new	and	likely	to	be	less	stable.	Wherever
appropriate,	I	will	hint	at	the	old	values	so	that	if	you	encounter	code	based	on	older
strings,	you	can	map	it	back	to	the	new	permissions.	Chances	are	the	list	will	change
again:	please	keep	an	eye	on	the	permissions	documentation,	currently	available	at
https://msdn.microsoft.com/Library/Azure/Ad/Graph/howto/azure-ad-graph-api-
permission-scopes.

User.Read	(was	UserProfile.Read)

This	is	the	permission	that	each	app	needs	to	authenticate	users.	Applications	created	in
the	Azure	portal	and	Visual	Studio	are	configured	to	automatically	request	this	permission,
which	is	why	you	don’t	see	it	mentioned	in	the	UI	you	use	for	creating	apps	in	either	tool.

Besides	the	ability	to	request	a	token	containing	claims	about	the	incoming	user,	this
permission	grants	to	the	app	the	ability	to	query	the	Graph	API	for	information	about	the
currently	signed-in	user.

As	you’ve	experienced,	this	permission	can	be	granted	by	nonadmin	users.	That	is
confirmed	by	the	type	property	of	value	User	in	the	permissions	declaration.

Directory.Read.All	(was	Directory.Read)

As	the	name	implies,	obtaining	this	permission	allows	one	application	to	read	via	the
Graph	API	(I’ll	stop	saying	that;	just	assume	that’s	what	you	use	to	interact	with	the
directory)	the	content	of	the	directory	tenant	of	the	user	that	is	currently	signed	in.

Here’s	the	first	exception.	In	the	general	case,	Directory.Read	is	an	admin-only
permission:	only	an	admin	user	can	consent	to	it.	However,	if	the	application	is	a	web	app
(as	opposed	to	a	native	client)	defined	in	tenant	A,	and	the	user	being	prompted	for
consent	is	also	from	A,	Directory.Read	behaves	like	a	User-type	permission,
which	is	to	say	that	even	a	nonadmin	user	can	consent	to	it.	For	the	scenario	we	have	been
considering	until	now—app	developer	and	app	users	are	from	the	same	tenant—this	is
effectively	a	User-type	permission.	When	we	consider	the	case	in	which	the	app	is
available	to	other	tenants,	you’ll	see	that	an	app	created	in	A	that	is	requesting
Directory.Read	and	being	accessed	by	a	user	from	B	will	be	provisioned	in	B	only	if
that	user	happens	to	be	an	administrator.

Directory.ReadWrite.All	(was	Directory.Write)

Once	again,	the	name	is	self-explanatory:	this	permission	grants	to	the	app	the	ability	to
read,	modify,	and	create	directory	data.	No	exceptions	this	time;	only	administrator	users
can	consent	to	Directory.Write.

https://msdn.microsoft.com/Library/Azure/Ad/Graph/howto/azure-ad-graph-api-permission-scopes

Directory.AccessAsUser.All	(was	user_impersonation)

This	permission,	which	today	is	surfaced	in	the	Azure	portal	under	the	label	“Access	the
directory	as	the	signed-in	user,”	allows	the	application	to	impersonate	the	caller	when
accessing	the	directory,	inheriting	his	or	her	permissions.	That	is	a	pretty	powerful	thing	to
do,	which	is	why	for	web	applications	this	permission	can	be	granted	only	by	an	admin
user.

As	a	side	note,	for	native	applications,	this	permission	behaves	like	a	User	permission
instead.	A	native	app	does	not	have	an	identity	per	se,	and	it	is	already	doing	the	direct
user’s	bidding	anyway.	It	stands	to	reason	that	the	app	should	be	able	to	do	what	the	user
is	able	to	do,	just	as	happens	on-premises	when	a	classic	native	client	(say	Word	or	Excel)
can	or	cannot	open	a	document	from	a	network	share	depending	on	whether	the	user	has
the	correct	permissions	on	that	folder.

User.ReadBasic.All

You	can	think	of	this	permission	as	the	minimum	requirement	allowing	an	app	to
enumerate	all	users	from	a	tenant.	Namely,	User.ReadBasic.All	will	give	access	to
the	user	attributes	displayName,	givenName,	surname,	mail	and	thumbnailPhoto.
Anything	beyond	that	requires	higher	permissions.

User.Read.All

This	is	an	extension	of	User.ReadBasic.All.	This	permission	allows	an	app	to
access	all	the	attributes	of	User,	the	navigation	properties	manager,	and
directReports.	User.Read.All	can	be	exercised	only	by	admin	users.

Group.Read.All,	Group.ReadWrite.All

These	new	permissions	are	still	in	preview	at	this	point,	so	I	hesitate	to	give	too	detailed	a
description	here.	The	idea	is	that	groups	and	group	membership	are	important	information
and	deserve	their	own	permissions	so	that	access	can	be	requested	and	granted	explicitly.
Group.Read.All	allows	an	app	to	read	the	basic	profile	attributes	of	groups	and	the
groups	they	are	a	member	of.	Group.ReadWrite.All	allows	an	app	to	access	the	full
profile	of	groups	and	to	change	the	hierarchy	by	creating	new	groups	and	updating
existing	ones.	Both	permissions	alone	won’t	grant	access	to	the	users	in	the	groups—to
obtain	that,	the	app	also	needs	to	request	some	User.Read*	permission.

As	usual,	it’s	important	to	remember	that	scopes	don’t	really	add	to	what	a	user	can	do:
an	application	obtaining	Group.ReadWrite.All	will	only	be	able	to	manipulate	the
groups	owned	by	the	user	granting	the	delegation	to	the	app.

Table	8-1	summarizes	how	the	out-of-the-box	Azure	AD	permissions	work.	I’ve	added
a	column	for	the	permission	identifier,	which	I	find	handy	so	that	when	I	look	at	the
Application	object,	which	uses	only	opaque	IDs,	I	know	what	permission	the	app	is
actually	requesting.	Let	me	stress	that	there’s	no	guarantee	these	won’t	change	in	the
future,	so	please	use	them	advisedly.

Table	8-1	A	summary	of	the	Azure	AD	permissions	for	accessing	the	directory.

Now	that	you	have	some	permissions	to	play	with,	let’s	get	back	to	the	exploration	of
how	consent	operates.

Application	requesting	admin-level	permissions
Let’s	say	that	your	application	needs	the	ability	to	modify	data	in	the	directory.	You	might
be	surprised	to	learn	that	you	can	create	such	an	application	even	with	a	nonadmin	user:
you’ll	simply	not	be	able	to	use	it	at	run	time.

	Note

If	you	are	keeping	track	of	the	identifiers	in	the	JSON,	technically	I	could
modify	the	app	we’ve	been	working	on	so	far,	but	for	the	sake	of	clarity	I’ll
create	a	new	one.

Go	back	to	the	Azure	portal,	sign	in	as	a	nonadmin	user,	and	go	through	the	usual
application	creation	flow.	Once	the	app	is	created,	head	to	the	Configure	tab	and	scroll	all
the	way	to	the	bottom	of	the	page.	As	of	today,	you’ll	find	a	section	labeled	Permissions
To	Other	Applications,	already	containing	one	entry	for	Azure	Active	Directory—
specifically,	the	default	delegated	permission	Sign	In	And	Read	User	Profile.	Figure	8-5
shows	you	the	UI	at	the	time	of	writing,	but	as	usual	you	can	be	sure	there	will	be
something	different	(but	I	hope	functionally	equivalent)	by	the	time	you	pick	up	the	book.

Figure	8-5	The	application	permission	selection	UI	in	the	Azure	portal	(fall	2015).

You’ll	also	see	an	ominous	warning:	“You	are	authorized	to	select	only	delegated
permissions	which	have	personal	scope.”	Today	that	isn’t	actually	the	case.	Select	Read
And	Write	Directory	Data,	and	then	click	Save.

You’ll	receive	a	warning	that	the	portal	was	unable	to	update	the	configuration	for	the
app,	but	that’s	only	partially	true.	If	you	go	take	a	look	at	the	Application,	you’ll	see
that	it	was	correctly	updated.	Here	is	its	requiredResourceAccess	section:
Click	here	to	view	code	image

“requiredResourceAccess”:	[
{
		“resourceAppId”:	“00000002-0000-0000-c000-000000000000”,
		“resourceAccess”:	[
				{
						“id”:	“78c8a3c8-a07e-4b9e-af1b-b5ccab50a175”,
						“type”:	“Scope”
				},
				{
						“id”:	“311a71cc-e848-46a1-bdf8-97ff7156d8e6”,
						“type”:	“Scope”
				}
]
}

Thanks	to	our	magical	Table	8-1,	we	know	those	to	be	the	correct	permissions.

The	part	that	the	portal	was	not	able	to	add	was	the	oauth2PermissionGrant	that
would	allow	the	current	(nonadmin)	user	to	have	write	access	to	the	directory.	If	you	list
the	oauth2PermissionGrants	of	the	ServicePrincipal,	you’ll	find	only	the
original	entry	for	User.Read.

That	entry	is	the	reason	why,	if	you	try	to	sign	in	to	the	app	as	the	user	who	created	it,
you	will	succeed:	the	directory	sees	that	entry,	and	that’s	enough	to	not	show	the	consent
prompt	and	issue	the	requested	token.	However,	if	after	you	sign	in,	your	app	attempts	to
get	a	token	for	calling	the	Graph,	the	operation	would	fail.

If	you	launch	the	application	again	and	try	to	sign	in	as	any	other	nonadmin	user,
instead	of	the	consent	prompt	you’ll	receive	an	error	along	the	lines	of	“AADSTS90093:
Calling	principal	cannot	consent	due	to	lack	of	permissions,”	which	is	exactly	what	you

should	expect.

Finally,	launch	the	app	again	and	try	to	sign	in	as	an	administrator.	You	will	be
presented	with	the	consent	page	as	in	Figure	8-6,	just	as	expected.

Figure	8-6	The	consent	prompt	presented	to	an	admin	user.

Grant	the	consent—you’ll	find	yourself	signed	in	to	the	application.	That	done,	take	a
look	at	what	changed	in	oauth2PermissionGrants:
Click	here	to	view	code	image

{
		“odata.metadata”:
“https://graph.windows.net/developertenant.onmicrosoft.com/$metadata#oauth2PermissionGrants”,
		“value”:	[
				{
						“clientId”:	“725a2d9a-6707-4127-8131-4f9106d771de”,
						“consentType”:	“Principal”,
						“expiryTime”:	“2016-02-26T18:17:06.8442687”,
						“objectId”:	“mi1acgdnJ0GBMU-
RBtdx3knIMYJNhOpOkFrsIuF86Y_VUmVPfKg_R6aK4EVKgQSW”,
						“principalId”:	“4f6552d5-a87c-473f-a68a-e0454a810496”,
						“resourceId”:	“8231c849-844d-4eea-905a-ec22e17ce98f”,
						“scope”:	“Directory.Write	UserProfile.Read”,
						“startTime”:	“0001-01-01T00:00:00”
				},

				{
						“clientId”:	“725a2d9a-6707-4127-8131-4f9106d771de”,
						“consentType”:	“Principal”,
						“expiryTime”:	“2016-02-26T00:50:43.3860871”,
						“objectId”:	“mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y9KENMTkWjSRaS-
glgajkZb”,
						“principalId”:	“13d3104a-6891-45d2-a4be-82581a8e465b”,
						“resourceId”:	“8231c849-844d-4eea-905a-ec22e17ce98f”,
						“scope”:	“UserProfile.Read”,
						“startTime”:	“0001-01-01T00:00:00”
				}
]
}

There’s	a	new	entry	now,	representing	the	fact	that	the	admin	user	consented	for	the	app
to	have	UserProfile.Read	and	Directory.Write	permissions.	As	discussed
earlier,	by	the	time	you	read	this,	those	scopes	will	likely	have	their	new	values
—User.Read	and	Directory.ReadWrite.All—but	it	is	really	exactly	the	same
semantic.

Note	that	this	did	not	change	the	access	level	for	anybody	but	this	particular	admin	user.
If	you	try	to	sign	in	as	a	nonadmin	user	(other	than	the	app's	creator),	you’ll	still	get	error
AADSTS90093.

Admin	consent
If	the	consent	styles	you’ve	encountered	so	far	were	the	only	ones	available,	you’d	have	a
couple	of	serious	issues:

	Each	and	every	user,	apart	from	the	application	developer,	would	need	to	consent
upon	their	first	use	of	the	app.

	Only	admin-level	users	would	be	able	to	consent	for	applications	requiring	more
advanced	access	to	the	directory,	even	when	a	user	did	not	plan	to	exercise	those
higher	privileged	capabilities.

Both	issues	would	limit	the	usefulness	of	Azure	AD.	Luckily,	there’s	a	way	of
consenting	to	applications	that	results	in	a	blanket	grant	to	all	users	of	a	tenant,	all	at	once,
and	regardless	of	the	access	level	requested.	That	mechanism	is	known	as	admin	consent,
as	opposed	to	user	consent,	which	you’ve	been	studying	so	far.	Achieving	admin	consent
is	just	a	matter	of	appending	to	the	request	to	the	authorization	endpoint	the	parameter
prompt=admin_consent.

Scopes	can’t	grant	to	the	app	more	power	than	their	user	has!

I	want	to	make	sure	you	don’t	fall	for	a	common	misconception	here.	Scopes
are	a	way	of	delegating	to	the	app	some	of	the	capabilities	of	their	current
user.	In	the	most	extreme	case,	this	means	that	an	app	can	be	as	powerful	as
its	current	user	(full	user	impersonation).	What	can	never	happen	via
delegated	permissions	is	that	an	app	can	do	more	than	what	its	user	can.	If	a
user	cannot	write	to	the	directory,	the	fact	that	the	app	obtains
Directory.ReadWrite.All	does	not	mean	that	such	user	can	now	use
the	app	for	writing	to	the	directory!	What	that	scope	really	means	is	that	if	the
current	user	of	the	app	has	that	capability,	the	app	has	that	capability,	too.	If
the	user	does	not	have	that	capability,	he	or	she	cannot	delegate	it	to	the
application.	As	you	will	see	later,	applications	can	have	their	own
permissions	(as	opposed	to	delegated	permissions)	that	are	independent	from
their	current	user	and	that	can	be	used	when	the	app	needs	to	perform	things
that	would	not	normally	be	within	the	possibilities	of	its	users.

Let’s	give	it	a	try	and	see	what	happens.	From	Chapter	7,	you	now	know	how	to	modify
authentication	requests	by	adding	the	change	you	want	to	the
RedirectToIdentityProvider	notification.	In	a	real	app,	you	would	add	some
conditional	logic	to	weave	this	parameter	in	only	at	the	time	of	first	access,	but	for	this	test
you	can	go	with	the	brute-force	solution	in	which	you	add	it	every	time.

	Important

Here	I	am	adding	Prompt=admin_consent	in	the	sign-in	request	for	the
sake	of	simplicity,	but	you	would	never	do	that	in	a	production	application
without	at	least	some	conditional	logic.	In	fact,	more	often	than	not,	you
would	not	include	it	in	the	sign-in	action	but	wire	it	up	to	a	dedicated	sign-up
action	instead.	Including	Prompt=admin_consent	in	a	request	will	result
in	the	consent	being	shown	to	the	user,	regardless	of	the	past	consent	history.
You	want	to	show	this	only	when	needed,	and	that’s	only	the	first	time.	Wire
it	up	to	some	specific	action	in	your	app,	like	sign-up,	onboarding,	or	any
other	label	that	makes	sense	for	your	application.

Here’s	the	code:
Click	here	to	view	code	image

public	static	Task
RedirectToIdentityProvider(RedirectToIdentityProviderNotification<OpenIdConnectMessage,
				OpenIdConnectAuthenticationOptions>	notification)
{
				notification.ProtocolMessage.Prompt	=	“admin_consent”;
				return	Task.FromResult(0);
}

After	you’ve	added	that	code,	hit	F5	and	try	signing	in.	You	will	be	prompted	by	a
dialog	similar	to	the	one	shown	in	Figure	8-7.

Figure	8-7	The	admin	consent	dialog.

Superficially,	the	dialog	in	Figure	8-7	looks	a	lot	like	the	one	shown	in	Figure	8-6,	but
there	is	a	very	important	difference!	The	dialog	shown	when	admin	consent	is	triggered
has	new	text,	which	articulates	the	implications	of	granting	consent	in	the	admin	consent
case:	“If	you	agree,	this	app	will	have	access	to	the	specified	resources	for	all	users	in
your	organization.	No	one	else	will	be	prompted.”

Click	OK—you’ll	end	up	signing	in	as	usual.	The	app	will	look	the	same,	but	its	entries
in	the	directory	underwent	a	significant	change.	Once	again,	take	a	look	at	the
ServicePrincipal’s	oauth2PermissionGrants:
Click	here	to	view	code	image

{
		“odata.metadata”:
“https://graph.windows.net/developertenant.onmicrosoft.com/$metadata#oauth2PermissionGrants”,
		“value”:	[
				{
						“clientId”:	“725a2d9a-6707-4127-8131-4f9106d771de”,
						“consentType”:	“AllPrincipals”,
						“expiryTime”:	“2016-02-27T00:38:03.4045842”,
						“objectId”:	“mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y8”,
						“principalId”:	null,
						“resourceId”:	“8231c849-844d-4eea-905a-ec22e17ce98f”,
						“scope”:	“Directory.Write	UserProfile.Read”,

						“startTime”:	“0001-01-01T00:00:00”
				},
				{
						“clientId”:	“725a2d9a-6707-4127-8131-4f9106d771de”,
						“consentType”:	“Principal”,
						“expiryTime”:	“2016-02-26T18:17:06.8442687”,
						“objectId”:	“mi1acgdnJ0GBMU-
RBtdx3knIMYJNhOpOkFrsIuF86Y_VUmVPfKg_R6aK4EVKgQSW”,
						“principalId”:	“4f6552d5-a87c-473f-a68a-e0454a810496”,
						“resourceId”:	“8231c849-844d-4eea-905a-ec22e17ce98f”,
						“scope”:	“Directory.Write	UserProfile.Read”,
						“startTime”:	“0001-01-01T00:00:00”
				},
				{
						“clientId”:	“725a2d9a-6707-4127-8131-4f9106d771de”,
						“consentType”:	“Principal”,
						“expiryTime”:	“2016-02-26T00:50:43.3860871”,
						“objectId”:	“mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y9KENMTkWjSRaS-
glgajkZb”,
						“principalId”:	“13d3104a-6891-45d2-a4be-82581a8e465b”,
						“resourceId”:	“8231c849-844d-4eea-905a-ec22e17ce98f”,
						“scope”:	“UserProfile.Read”,
						“startTime”:	“0001-01-01T00:00:00”
				}
]
}

	Note

As	I	mentioned	earlier	in	this	chapter,	Directory.Write	and
UserProfile.Read	will	change	to	Directory.ReadWrite.All	and
User.Read.

I	highlighted	the	new	entry	for	you:	it	has	a	consentType	of	AllPrincipals,	as
opposed	to	the	usual	Principal.	Furthermore,	its	principalId	property	does	not
point	to	any	user	in	particular;	it	just	says	null.	This	tells	Azure	AD	that	the	application
has	been	granted	a	blanket	consent	for	any	user	coming	from	the	current	tenant.	To	prove
that	this	is	really	the	case,	sign	out	from	the	app,	stop	it	in	Visual	Studio,	comment	out	the
code	you	added	for	triggering	admin	consent,	and	start	the	app	again.	Sign	in	as	a	third
user	from	the	same	tenant,	one	that	you	have	never	used	before	with	this	app.	Figure	8-8
shows	a	visual	summary	of	this	oauth2PermissionGrant	configuration.

Figure	8-8	An	oauth2PermissionGrant	recording	admin	consent	enables	the	app
to	operate	with	the	requested	scope	with	all	users	of	a	tenant	at	once.

After	the	credential	gathering,	you’ll	find	yourself	signed	in	right	away,	with	no	consent
prompt	of	any	form.

Application	created	by	an	admin	user
What	happens	when	you	sign	in	to	the	Azure	portal	as	an	admin	user	and	you	create	an
app	in	Azure	AD?	The	portal	creates	the	same	list	of	entities:	an	Application,	its
ServicePrincipal,	and	an	oauth2PermissionGrant.	The	difference	from	the
nonadmin	case	is	that	the	oauth2PermissionGrant	for	an	app	created	by	an	admin
looks	exactly	like	the	one	you	observed	as	an	outcome	of	the	admin	consent	flow:	it
includes	consentType	allPrincipals,	which	means	that	every	user	in	the	tenant
can	instantly	get	access	to	the	application.

	Note

The	creation	of	the	ServicePrincipal	and	the	associated	grant	is	at	the
origin	of	the	peculiar	behavior	of	native	apps	created	via	the	Azure	portal	by
an	admin.	That	is	the	only	case	in	which	a	native	app	does	not	trigger	consent
for	all	users	in	a	tenant.	In	all	other	cases,	Azure	AD	today	does	not	record
consent	for	native	apps	in	the	directory,	storing	it	in	the	refresh	token	instead
—which	means	that	each	new	native	app	instance	running	on	a	different
device	will	prompt	its	user	for	consent	regardless	of	its	past	consent	history.
This	is	really	out	of	scope	for	this	book,	but	given	that	you	have	the	concept
fresh	in	your	mind,	I	thought	I’d	share	this	tidbit.

Multitenancy
How	to	develop	apps	that	can	be	consumed	by	multiple	organizations	is	such	a	large	topic
that	for	some	time	I	wondered	whether	I	should	devote	an	entire	chapter	to	it.	I	ultimately
decided	against	that.	Even	if	this	is	going	to	be	a	very	large	section,	it	still	is	a	logical
extension	of	what	you	have	been	studying	so	far	in	this	chapter.

The	first	part	of	this	section	will	discuss	how	Azure	AD	enables	authentication	flows
across	multiple	tenants,	and	how	you	can	generalize	what	you	have	learned	about
configuring	the	Katana	middleware	to	the	case	in	which	users	are	sourced	from	multiple
organizations.

The	second	part	will	go	back	to	the	application	model	proper,	showing	you	what
happens	to	the	directory	data	model	when	your	app	triggers	consent	flows	across	tenants.

Azure	AD	as	a	parametric	STS:	The	common	endpoint

Ironically,	if	you	are	a	veteran	of	federation	protocols,	you	are	at	the	highest	risk	of
misunderstanding	how	Azure	AD	handles	multitenancy.	The	approach	taken	here	is	very
different	from	the	classic	solutions	that	preceded	it,	and	I	have	to	admit	that	I	myself
needed	some	time	to	fully	grok	it.

In	traditional	claims-based	protocols	such	as	SAML	and	WS-Federation,	the	problem	of
enabling	access	to	one	application	from	multiple	IdPs	has	a	canonical	solution.	It	entails
introducing	one	intermediary	STS	(often	referred	to	as	resource	STS,	R-STS	or	RP-STS)
as	the	authority	that	the	application	trusts.	In	turn,	the	intermediate	STS	trusts	all	the	IdPs
that	the	application	needs	to	work	with—assuming	the	full	burden	of	establishing	and
maintaining	trust,	implementing	whatever	protocol	quirks	each	IdP	demands.	This	is	a
very	sensible	approach,	which	isolates	the	application	itself	from	the	complexities	of
maintaining	relationships	with	multiple	authorities.	It	is	also	likely	the	best	approach	when
you	don’t	know	anything	about	the	IdPs	you	want	to	connect	to,	apart	from	the	protocol
they	implement	and	the	STS	metadata	they	publish.	ADFS,	Azure	Access	Control
Services	(ACS),	and	pretty	much	any	STS	implementation	supports	this	approach.

If	you	restrict	the	pool	of	possible	IdPs	to	only	the	ones	represented	by	a	tenant	in

Azure	AD,	however,	you	have	far	more	information	than	that,	and	as	you’ll	see	in	the
following,	this	removes	the	need	to	have	an	intermediary	in	the	picture.	Although	each
administrator	retains	full	control	over	her	or	his	own	tenant,	all	tenants	share	the	same
infrastructure—same	protocols,	same	data	model,	same	provisioning	pipes.	Focusing	on
endpoints	in	particular	(recall	their	description	from	Chapter	3),	rather	than	a	collection	of
STSs	for	each	of	its	tenants,	Azure	AD	can	be	thought	of	like	a	giant	parametric	STS,
where	each	tenant	is	expressed	by	instantiating	its	ID	in	the	right	segment	of	the	issuance
endpoint.	Figure	8-9	compares	the	R-STS	approach	with	the	multitenant	pattern	used	by
Azure	AD.

Figure	8-9	The	R-STS	brokered	trust	pattern	and	the	parametric	STS	pattern.	Besides
allowing	for	directory	queries	that	would	be	impossible	via	federation	alone,	the	latter

makes	it	possible	to	automate	application	provisioning	and	trust	establishment.

In	the	hands-on	chapters,	you've	experienced	directly	how	the	endpoint	pattern
https://<instance>/<tenant>/<protocol-specific-path>	can	be	modulated	to	indicate	tenant-
specific	token-issuance	endpoints,	sign-out	endpoints,	metadata	document	endpoints,	and
so	on.	You	have	also	seen	how	the	Katana	middleware	leverages	those	endpoints	for	tying
one	application	to	one	specific	tenant.	For	example,	in	Chapter	6	you	saw	how	the
metadata	document	published	at

https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com/.well-known/openid-
configuration	(which,	by	the	way,	is	equivalent	to
https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/.well-
known/openid-configuration,	where	the	GUID	is	the	corresponding	tenantID)	asserts	that
tokens	issued	by	that	tenant	will	carry	an	iss(uer)	claim	value	of
https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/.	In	Chapter	7,	you	saw
how	that	information	is	used	by	the	Katana	middleware	to	ensure	that	only	tokens	coming
from	that	tenant	(that	is,	carrying	that	iss	value)	will	be	accepted.	That’s	all	well	and
good,	and	exactly	what	you	want	for	line-of-business	applications	and	single-tenant	apps
in	general.

You	can	repeat	the	same	reasoning	for	all	tenants:	all	you	need	to	do	is	instantiate	the
right	domain	(or	tenantID)	in	the	endpoints	paths.

Azure	AD	makes	it	possible	to	deal	with	multitenant	scenarios	by	exposing	a	particular
endpoint,	where	the	tenant	parameter	is	not	instantiated	up	front.	There	is	a	particular
value,	common,	that	can	be	instantiated	in	endpoints	in	lieu	of	a	domain	or	tenantID.	By
convention,	that	value	tells	Azure	AD	that	the	requestor	is	not	mandating	any	particular
tenant—any	Azure	AD	tenant	will	do.

	Very	important:	Common	is	not	a	tenant.

It	is	just	an	artifact	used	for	constructing	Azure	AD	endpoints	when	the
tenant	to	be	used	is	not	known	yet.	This	is	a	crucial	point	to	keep	in	mind	at
all	times	when	working	with	multitenant	solutions,	or	you’ll	end	up	baking
assumptions	into	your	app	that	will	inevitably	turn	out	to	be	false	and	create
all	sorts	of	issues	that	are	hard	to	debug.

When	the	endpoint	being	constructed	is	one	that	would	serve	authentication	UI,	as	is	the
case	for	the	OAuth2	authorization	endpoints,	the	user	is	presented	with	a	generic	Azure
AD	credentials-gathering	experience.	As	the	user	enters	his	or	her	credentials,	the	account
he	or	she	chooses	will	indirectly	determine	a	specific	tenant—the	one	the	account	belongs
to.	That	will	resolve	the	ambiguity	about	which	tenant	should	be	used	for	the	present
transaction,	concluding	the	role	of	common	in	the	flow.	The	resulting	code	or	token	will
look	exactly	as	it	would	have	had	it	been	obtained	by	specifying	the	actual	tenant	instead
of	common	to	begin	with.	In	other	words,	whether	you	start	the	authentication	flow	using
https://login.microsoftonline.com/common/oauth2/authorize	or
https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-
a80c4e36fe5e/oauth2/authorize	for	an	OpenID	Connect	sign-in	flow,	if	at	run	time	you
sign	in	with	a	user	from	the	tenant	with	ID	6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e,	the
resulting	token	will	look	the	same,	with	no	memory	of	what	endpoint	path	led	to	its
issuance.	That	should	make	it	even	clearer	that	common	is	not	a	real	tenant:	it’s	just	an
endpoint	sleight	of	hand	for	late	binding	a	tenant,	if	you	will.

Now	comes	the	fun	part.	Upon	learning	about	the	common	endpoint,	the	typical	(and
healthy)	developer	reaction	is	“Awesome!	Let	me	just	change	the	OpenID	Connect
middleware	options	as	shown	here,	and	I’ll	be	all	set!”

https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com/.well-known/openid-configuration
https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/.well-known/openid-configuration
https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/
https://login.microsoftonline.com/common/oauth2/authorize
https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/oauth2/authorize

Click	here	to	view	code	image
app.UseOpenIdConnectAuthentication(
				new	OpenIdConnectAuthenticationOptions
				{
								ClientId	=	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”,
								Authority	=	“https://login.microsoftonline.com/common“,

Let’s	say	that	you	do	just	that,	and	then	you	hit	F5	and,	just	for	testing	purposes,	use	the
same	account	you	used	successfully	earlier—the	one	from	the	same	tenant	where	the	app
was	defined	in	the	first	place.	Well,	if	you	do	that—surprise!	The	app	won’t	work.	Sure,
upon	sign-in	you	will	be	presented	with	your	credential-gathering	and	consent	experience,
but	the	app	won’t	accept	the	issued	token.	If	you	dig	in	a	bit,	as	you	learned	in	Chapter	7,
you’ll	discover	that	the	token	failed	the	issuer	validation	test.

Recall	the	id_token	validation	logic	from	Chapter	7,	and	the	comment	about	how	the
discovery	document	of	each	tenant	establishes	what	iss	value	an	app	should	expect.	If
your	app	is	initialized	with	a	tenant-specific	endpoint,	it	will	read	from	the	metadata	the
tenant-specific	issuer	value	to	expect;	but	if	it	is	initialized	with	common,	what	issuer
value	is	it	going	to	get?	I’ll	save	you	the	hassle	of	visiting
https://login.microsoftonline.com/common/.well-known/openid-configuration	yourself:
the	discovery	doc	says	“issuer”:	“https://sts.windows.net/{tenantid}/”.	No	real	tenant	will
ever	issue	a	token	with	that	value,	given	that	it’s	just	a	placeholder,	but	the	middleware
does	not	know	that.	That’s	the	value	that	the	metadata	asserts	is	going	to	be	in	the	iss
claim,	and	the	default	logic	will	refuse	anything	carrying	a	different	value.

	Note

What	about	all	the	other	values	in	the	discovery	doc?	Issuer	is	the	only
problematic	one,	everything	else	(including	keys,	as	you	have	seen	in	Chapter
6)	is	shared	by	all	tenants.

This	simply	means	that	the	default	validation	logic	cannot	work	in	case	of	multitenancy.
What	should	you	do	instead?	You	already	saw	the	main	strategies	for	dealing	with	this	in
Chapter	7,	although	at	the	time	I	could	not	fully	discuss	the	multitenant	case.	I	recommend
that	you	leaf	back	a	few	pages	to	get	all	the	details,	but	just	to	summarize	the	key	points
here:

	If	you	have	your	own	list	of	tenants	that	your	application	should	accept,	you	have
two	main	approaches.	If	the	list	is	short	and	fairly	static,	you	can	pass	it	in	at
initialization	time	via	TokenValidationParameters.ValidIssuers.	If
the	list	is	long	and	dynamic,	you	can	provide	an	implementation	for
TokenValidationParameters.IssuerValidator	where	you
accommodate	for	whatever	logic	is	appropriate	for	your	case.

	If	the	decision	about	whether	the	caller	should	be	allowed	to	get	through	is	not
strictly	tied	to	the	tenant	the	caller	comes	from,	you	can	turn	off	issuer	validation
altogether	by	setting	TokenValidationParameters.ValidateIssuer	to
false.	You	should	be	sure	that	you	do	add	your	own	validation	logic;	for	example,	in

https://login.microsoftonline.com/common/.well-known/openid-configuration

the	SecurityTokenValidated	notifications	or	even	in	the	app	(custom
authorization	filters,	etc.).	Otherwise,	your	app	will	be	completely	open	to	access	by
anybody	with	a	user	in	Azure	AD.	There	are	scenarios	where	this	might	be	what	you
want,	but	in	general,	if	you	are	protecting	your	app	with	authentication,	that	means
that	you	have	something	valuable	to	gate	access	to.	In	turn,	that	might	call	for	you	to
verify	whether	the	requestor	did	pay	his	monthly	subscription	or	whatever	other
monetization	strategy	you	are	using—and	usually	that	verification	boils	down	to
checking	the	issuer	or	the	user	against	your	own	subscription	list.

Now	that	you	know	how	Azure	AD	multitenancy	affects	the	application’s	code,	I’ll	go
back	to	how	consent,	provisioning,	and	the	data	model	are	influenced.

Consenting	to	an	app	across	tenants

The	section	about	the	Application	object	earlier	in	this	chapter,	and	specifically	the
explanation	of	the	availableToOtherTenants	property,	already	anticipated	most	of
what	you	need	to	know	about	creating	multitenant	applications.	All	apps	are	created	for
being	used	exclusively	within	their	own	tenant,	and	only	a	tenant	admin	can	promote	an
app	to	be	available	across	organizations.	Today,	this	is	done	by	flipping	a	switch	labeled
“Application	is	multi-tenant”	on	the	Configuration	page	of	the	application	on	the	Azure
portal,	and	this	has	the	effect	of	setting	the	availableToOtherTenants	app
property	to	true.	Also,	an	app	is	required	to	have	an	App	ID	Uri	(one	of	the	elements	in	the
identifierUris	collection	in	the	Application	object)	whose	host	portion
corresponds	to	a	domain	registered	for	the	tenant.	In	the	sample	I	have	been	using	through
the	last	couple	of	chapters,	that	means	that	you’d	need	to	set	the	App	ID	Uri	to	something
like	https://developertenant.onmicrosoft.com/MarioApp1.

Let’s	say	that	you	signed	in	to	the	Azure	portal	and	modified	your	app	entry	to	be
multitenant.	Let’s	also	say	that	you	modified	your	app	code	to	correctly	handle	the
validation	for	tokens	coming	from	multiple	organizations.	Let’s	give	the	app	a	spin	by
hitting	F5.

	Note

If	you	promote	the	app	you	have	been	using	in	this	chapter	until	now,	be	sure
to	comment	out	the	logic	that	triggers	the	admin	consent	(for	now).
Consequently,	make	sure	also	that	the	app	does	not	request	any	admin-only
permissions.

https://developertenant.onmicrosoft.com/MarioApp1

In	case	you	did	not	code	your	validation	logic	yet

If	you	are	just	experimenting	and	didn’t	set	up	your	multitenant	validation
code	yet,	here’s	the	code	you	can	use	for	turning	off	issuer	validation	while
you	play	with	the	walk-through	in	this	chapter:

Click	here	to	view	code	image
app.UseOpenIdConnectAuthentication(

				new	OpenIdConnectAuthenticationOptions
				{
					ClientId	=	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”,
					Authority	=	“https://login.microsoftonline.com/common”,
					TokenValidationParameters	=	new
System.IdentityModel.Tokens.TokenValidationParameters
					{
							ValidateIssuer	=	false,
						},

I	cannot	stress	this	enough:	you	should	not	go	into	production	with	the
issuer	validation	logic	disabled	unless	you	have	also	added	your	own
validation.

Once	the	app	is	running,	click	the	Sign	In	link,	but	this	time	sign	in	with	a	user	from	a
different	Azure	AD	tenant.	As	explained	in	Chapter	3,	in	the	section	“Getting	Azure
Active	Directory,”	any	Azure	subscriber	can	create	a	number	of	Azure	AD	tenants,	create
users	and	apps	in	them,	and	so	on.	If	you	belong	to	a	big-ish	organization,	you	likely
already	did	this	in	creating	your	development	tenant,	as	that’s	the	best	way	of
experimenting	with	admin-only	features.	If	you	already	have	a	second	tenant	and	an
account	in	it,	great!	If	you	don’t,	create	one	tenant,	create	a	user	in	it,	then	come	back	and
pick	up	the	flow	from	here.

Upon	successful	sign-in,	you’ll	be	presented	with	the	consent	page.	As	you	can	see	in
Figure	8-10,	the	consent	page	presents	some	important	differences	from	the	single-tenant
case.	For	one,	the	tenant	where	the	Application	object	was	originally	created	is
prominently	displayed	as	the	publisher.	Moreover,	there’s	now	text	telling	you	to	consider
whether	you	trust	the	publisher	of	the	application.	This	is	serious	stuff—if	you	give
consent	to	the	wrong	application	for	the	wrong	permissions,	the	damage	to	your	own
organization	could	be	severe.	That’s	why	only	admins	can	publish	apps	for	multiple
organizations,	and	that’s	why	even	the	simple	Directory.Read	permission	requires
admin	consent	when	it’s	requested	by	a	multitenant	app.

Figure	8-10	The	consent	prompt	for	a	multitenant	page.

At	the	beginning	of	this	chapter,	you	encountered	a	description	of	what	happens	in	the
tenants	for	this	exact	consent	scenario:	the	Application	object	in	the	original
development	tenant	is	used	as	a	blueprint	for	creating	a	ServicePrincipal	in	the
target	tenant.	In	fact,	if	you	query	the	Applications	collection	in	the	target	tenant
(you’ll	learn	how	to	do	this	in	the	next	chapter),	you’ll	find	no	entries	with	the	ClientId	of
your	application—but	you	will	find	a	ServicePrincipal	with	that	ClientId.	From
what	you	have	learned	a	few	pages	ago,	you	know	that	if	you	look	into	the	collection	of
oauth2PermissionGrants	for	that	ServicePrincipal,	you	will	find	an	entry
recording	the	consent	of	that	particular	user	for	this	app	and	the	permissions	it	requires.
The	principles	of	admin	consent	apply	here	as	well:	if	you	want	the	admin	of	your
prospective	customer	tenants	to	be	able	to	grant	a	blanket	consent	for	all	of	his	or	her
users,	provide	a	way	for	your	app	to	trigger	an	admin	consent	request.

Changing	consent	settings

I	touched	on	this	earlier,	but	it’s	worth	stressing	that	the	list	of	permissions	an	app	requires
isn’t	very	dynamic.	More	concretely,	say	that	your	application	initially	declares	a	certain
list	of	permissions	in	its	requiredResourceAccess,	and	some	users	in	a	few	tenants
consent	to	it.	Say	that	after	some	time	you	decide	to	add	a	new	permission.	That	change	in
the	Application	object	in	your	development	tenant	will	not	affect	the	existing
oauth2PermissionGrants	attached	to	the	ServicePrincipals	that	have	been
created	at	consent	time.	With	this	version	of	Azure	AD,	the	only	way	of	reflecting	the	new
permission	set	for	a	given	app	in	a	tenant	is	to	revoke	the	existing	consent	(typically	done
by	the	user	visiting	myapps.microsoft.com,	the	Office	365	portal,	or	any	other	means	that
might	be	available	when	you	read	this	book)	and	ask	for	consent	again.

This	is	less	than	ideal,	especially	if	you	consider	that	Azure	AD	offers	you	no	way	of
warning	your	users	that	something	changed—you	have	to	handle	that	in	your	own	app	or
subscription	logic.	The	good	news	is	that	the	next	version	of	the	Azure	AD	application
model	will	allow	for	dynamic	consent,	solving	this	issue	once	and	for	all.

The	last	section	discussed	at	length	the	consent	framework	used	for	driving	delegated
permissions	assignment	to	applications.	That	is	a	super	important	aspect	of	managing
application	capabilities,	but	it	is	far	from	the	only	one.	The	next	section	will	continue	to
explore	how	Azure	AD	helps	you	to	control	how	users	and	applications	have	access	to	the
directory	itself,	and	to	each	other.

App	user	assignment,	app	permissions,	and	app	roles
This	section	describes	a	set	of	Azure	AD	features	that	seem	unrelated	but	are	in	fact	all
implemented	through	the	same	primitive:	the	role.	Here’s	the	list	of	features	I’ll	cover.

	App	user	assignment	The	ability	to	explicitly	define	which	users	should	be	allowed
to	get	a	token	for	a	certain	application,	at	the	exclusion	of	everybody	else.

	App-level	permissions	The	ability	to	expose	(and	request)	permissions	that	can	be
assigned	to	applications	themselves,	as	opposed	to	the	users	of	the	apps.

	App	roles	The	ability	for	developers	to	define	application-specific	roles,	which	can
be	used	by	administrators	to	establish	in	which	capacity	users	can	access	an
application.

All	these	features	give	you	even	more	control	over	who	can	access	your	application	and
how.

App	user	assignment
By	default,	every	user	in	a	tenant	can	request	a	token	from	any	app.	Whether	the	requested
token	will	actually	be	issued	depends	on	the	outcome	of	user	authentication,	consent,	and
considerations	of	user	versus	admin	permissions,	as	I’ve	discussed	in	the	preceding
sections.

Azure	AD	offers	the	possibility	for	an	administrator	to	restrict	access	to	one	application
to	a	specific	set	of	handpicked	accounts.	In	terms	of	today’s	experience,	an	administrator

http://myapps.microsoft.com

can	navigate	to	the	Azure	management	portal	at	https://manage.windowsazure.com,	select
the	target	tenant,	navigate	to	the	appropriate	app	entry,	select	the	Configure	tab,	and	flip
the	setting	for	“User	assignment	required	to	access	app”	to	On.

Given	that	this	feature	is	related	to	specific	instances	of	the	app	in	specific	tenants,	the
knobs	used	to	control	it	are	not	in	the	Application	object	but	in	the
ServicePrincipal	and	associated	entities	in	the	target	tenant.	You	already
encountered	the	ServicePrincipal	property	appRoleAssignmentRequired:
flipping	the	switch	in	the	portal	has	the	effect	of	setting	this	property	to	true.

The	Users	tab	in	the	application	entry	in	the	Azure	portal	lists	all	the	users	that	are
assigned	to	the	application.	From	now	on,	no	user	not	on	that	list	can	successfully	request
a	token	for	the	application.	If	you	flip	the	switch	for	one	of	the	apps	you’ve	been	playing
with	in	the	preceding	section,	you’ll	see	that	all	the	users	that	already	gave	consent	for	the
app	are	present	in	the	list.	Every	time	a	user	gives	consent	to	the	app,	Azure	AD	adds	an
entry	to	a	list	of	AppRoleAssignment,	an	entity	I	haven’t	yet	discussed.	Here’s	how
one	typical	entry	looks:
Click	here	to	view	code	image

{
						“odata.type”:	“Microsoft.DirectoryServices.AppRoleAssignment”,
						“objectType”:	“AppRoleAssignment”,
						“objectId”:	“Bkp-sDgT4kq5a-YB4HMf2q2NyOTf4hpKhVKXXQHxMhA”,
						“deletionTimestamp”:	null,
						“creationTimestamp”:	“2015-09-06T08:53:30.1974755Z”,
						“id”:	“00000000-0000-0000-0000-000000000000”,
						“principalDisplayName”:	“Vittorio	Bertocci”,
						“principalId”:	“b07e4a06-1338-4ae2-b96b-e601e0731fda”,
						“principalType”:	“User”,
						“resourceDisplayName”:	“MarioApp1”,
						“resourceId”:	“725a2d9a-6707-4127-8131-4f9106d771de”
				}

That	entry	declares	that	the	user	Vittorio	Bertocci	(identified	by	its	objectId
b07e4a06-1338-4ae2-b96b-e601e0731fda)	can	have	access	to	the	app	MarioApp1	(object
ID	of	the	app’s	ServicePrincipal	being	725a2d9a-6707-4127-8131-4f9106d771de)
in	the	capacity	of	role	00000000-0000-0000-0000-000000000000.

This	is	where	the	role	of	Role	(pun	intended)	comes	into	play.	As	you	will	see	later,
Azure	AD	allows	developers	to	define	application-specific	roles.	The
AppRoleAssignment	entity	is	meant	to	track	that	a	certain	app	role	has	been	assigned
to	one	user	for	a	certain	app.	What	you	are	discovering	here	is	that	Azure	AD	uses
AppRoleAssignment	also	for	tracking	app	user	assignments—but	in	this	case,	Azure
AD	automatically	sets	in	the	AppRoleAssignment	a	default	role,	00000000-0000-
0000-0000-000000000000.	It’s	as	simple	as	that.

One	notable	property	of	AppRoleAssignment	is	principalType.	The	sample
entry	here	has	the	value	User,	indicating	that	the	entity	being	assigned	the	role	is	a	user
account.	Other	possible	values	are	Group	(in	which	case,	all	the	members	of	the	group
are	assigned	the	role)	or	ServicePrincipal	(in	which	case,	the	role	is	being	assigned
to	another	client	application).

https://manage.windowsazure.com

If	you	use	the	Azure	portal	to	assign	more	users	to	the	app,	you’ll	see	corresponding
new	AppRoleAssignment	entries	appearing	in	the	application.	By	the	way,	the	query	I
used	for	getting	the	list	of	AppRoleAssignments	for	my	app	is:
Click	here	to	view	code	image

https://graph.windows.net/developertenant.onmicrosoft.com/servicePrincipals/725a2d9a-
6707-4127-8131-4f9106d771de/appRoleAssignedTo.

Just	for	kicks,	try	to	access	your	application	with	a	user	that	has	not	been	assigned.
Instead	of	the	usual	consent	dialog,	you’ll	get	back	a	lovely	error	along	the	lines	of:

“error=access_denied&error_description=AADSTS50105:	The	signed	in	user
‘fabio@developertenant.onmicrosoft.com’	is	not	assigned	to	a	role	for	the
application	‘developertenant.onmicrosoft.com’.”

The	behavior	described	in	this	section	is	what	you	would	observe	if	your	application
didn’t	define	any	app	roles.	In	the	next	section,	I’ll	explore	app	roles	in	more	depth.

App	roles
Azure	AD	allows	developers	to	define	roles	associated	with	an	application.	Traditionally,
roles	are	handy	ways	of	assigning	collections	of	permissions	to	a	bunch	of	users	all	at
once:	for	example,	people	in	a	hypothetical	Approver	role	might	have	read/write	access	to
a	certain	set	of	resources,	while	people	in	the	Reviewer	role	might	have	only	read	access
to	the	same	resources.	Roles	are	handy	because	assigning	a	user	to	a	role	saves	you	the
hassle	of	adding	all	the	permissions	a	role	entails	one	by	one.	Moreover,	when	a	new
resource	is	added	to	the	milieu,	access	to	that	resource	can	be	added	to	the	role	to	enable
access	to	it	for	all	the	users	already	assigned	to	the	role,	replacing	the	need	to	assign
access	individually,	account	by	account.	That	said,	roles	in	Azure	AD	do	not	necessarily
need	to	represent	permissions	grouping:	Azure	AD	does	not	offer	you	anything	for
representing	such	permissions	anyway;	it	is	your	app’s	job	to	interpret	each	role.	You	can
use	application	roles	to	represent	any	user	category	that	makes	sense	for	your	application,
like	what	is	the	primary	spoken	language	of	a	user.	True,	there	are	many	other	ways	of
tracking	the	same	info,	but	one	big	advantage	of	app	roles	over	any	other	method	is	that
Azure	AD	will	send	them	in	the	form	of	claims	in	the	token,	making	it	extra	easy	for	the
app	to	consume	the	info	they	carry.

After	you	declare	application	roles,	such	roles	are	available	to	be	assigned	to	users	by
the	administrators	of	the	tenants	using	your	app.	Let’s	take	a	look	at	how	that	cycle	plays
out.

The	Application	entity	has	one	collection,	appRoles,	which	is	used	for	declaring
the	roles	you	want	to	associate	with	your	application.	As	of	today,	the	way	in	which	you
populate	that	property	is	by	downloading	the	app	manifest	as	described	in	“The
Application”	section	at	the	beginning	of	this	chapter,	adding	the	appropriate	entries	in
appRoles,	and	uploading	it	back	via	the	portal.	Here	is	what	one	appRoles	collection
looks	like:
Click	here	to	view	code	image

“appRoles”:	[
								{

												“allowedMemberTypes”:	[
																“User”
],
												“description”:	“Approvers	can	mark	documents	as	approved”,
												“displayName”:	“Approver”,
												“id”:	“8F29F99B-5C77-4FBA-A310-4A5C0574E8FF”,
												“isEnabled”:	“true”,
												“value”:	“approver”
								},
								{
												“allowedMemberTypes”:	[
																“User”
],
												“description”:	“Reviewers	can	read	documents”,
												“displayName”:	“Reviewer”,
												“id”:	“0866623F-2159-4F90-A575-2D1D4D3F7391”,
												“isEnabled”:	“true”,
												“value”:	“reviewer”
								}
],

The	properties	of	each	entry	are	mostly	self-explanatory,	but	there	are	a	couple	of
nontrivial	points.

The	displayName	and	description	strings	are	used	in	any	experience	in	which
the	role	is	presented,	such	as	the	one	in	which	an	administrator	can	assign	roles	to	users.

The	value	property	represents	the	value	that	the	role	claim	will	carry	in	tokens	issued
for	users	belonging	to	this	role.	This	is	the	value	that	your	application	should	be	prepared
to	receive	and	interpret	at	access	time.

The	id	is	the	actual	identifier	of	the	role	entry.	It	must	be	unique	within	the	context	of
this	Application.

The	allowedMemberTypes	property	is	the	interesting	one.	Roles	can	be	assigned	to
users,	groups,	and	applications.	An	allowedMemberTypes	collection	including	the
entry	“User”	indicates	a	role	that	can	be	assigned	to	both	users	and	groups.	(In	the	next
section,	I’ll	cover	roles	assignable	to	applications.)

Once	you	have	added	the	roles	in	the	manifest	file,	don’t	forget	to	upload	it	back	via	the
portal.

	Note

Sometimes	the	upload	will	fail,	unfortunately	without	a	lot	of	information	to
help	you	troubleshoot:	watch	out	for	silly	errors—for	example,	nonmatching
parentheses.	I	recommend	using	a	syntax-aware	JSON	editor,	which	should
take	care	of	most	issues	up	front.

If	you	head	back	to	the	Users	tab	and	try	to	assign	a	new	user	to	the	app	like	you	did	in
the	preceding	section,	you’ll	see	that	you	are	no	longer	able	to	simply	declare	that	you
want	to	assign	a	user	to	the	app:	now	you	are	presented	with	a	choice	between	the	various
roles	you	declared	in	the	manifest.	Assign	one	of	the	roles	to	a	random	user,	and	then

launch	the	app	and	try	to	sign	in	with	that	user.

	Note

Subscribers	to	Azure	AD	Premium	will	also	see	an	experience	allowing	the
assignment	of	groups.

If	you	go	back	to	the	appRoleAssignedTo	property	of	the	ServicePrincipal
and	inspect	the	role	assignments	there,	you’ll	find	the	same	user	assignments	from	the
preceding	section,	plus	a	new	entry	for	the	user	you	just	assigned	to	a	role.	It	should	look
something	like	this:
Click	here	to	view	code	image

{
						“odata.type”:	“Microsoft.DirectoryServices.AppRoleAssignment”,
						“objectType”:	“AppRoleAssignment”,
						“objectId”:	“9pcRosZaC0a10yoa5r0IwZrIr_JYzUxFtCmlWBYn6w0”,
						“deletionTimestamp”:	null,
						“creationTimestamp”:	null,
						“id”:	“8f29f99b-5c77-4fba-a310-4a5c0574e8ff”,
						“principalDisplayName”:	“Fabio	Bianchi”,
						“principalId”:	“a21197f6-5ac6-460b-b5d3-2a1ae6bd08c1”,
						“principalType”:	“User”,
						“resourceDisplayName”:	“MarioApp1”,
						“resourceId”:	“725a2d9a-6707-4127-8131-4f9106d771de”
				},

As	expected,	the	id	property	points	to	one	of	the	roles	just	defined,	as	opposed	to	the
default	00000000-0000-0000-0000-000000000000	used	during	user	assignment.

Launch	the	app	and	sign	in	as	the	user	you	just	assigned	to	the	role.	If	you	capture	the
traffic	via	Fiddler	(as	you	learned	about	in	Chapter	6)	and	peek	at	the	JWT	token	sent	in
the	id_token,	you’ll	notice	a	new	roles	claim:
Click	here	to	view	code	image

{
			“amr”	:	[“pwd”],
			“aud”	:	“1538b378-5829-46de-9294-6cfb4ad4bbaa”,
			“c_hash”	:	“EOuY-5M5XFxRyNCvRHe8Kg”,
			“exp”	:	1442740348,
			“family_name”	:	“Bianchi”,
			“given_name”	:	“Fabio”,
			“iat”	:	1442736448,
			“iss”	:	“https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/”,
			“name”	:	“Fabio	Bianchi”,
			“nbf”	:	1442736448,
			“nonce”	:
“635783335451569467.YzJiYmZjMGUtOWFkMS00NzI3LWJkYjMtMzhiMjE0YjVmNWE0ZDcwZTk3YmY
tNzQ4NC00YjkyLWFiY2YtYWViOWFhNjE0YjFj”,
			“oid”	:	“a21197f6-5ac6-460b-b5d3-2a1ae6bd08c1”,
			“roles”	:	[“approver”],
			“sub”	:	“OpcgG-Rxo_DSCJnuAf_7tdfXp7XaOzpW6pF3x7Ga8Y0”,
			“tid”	:	“6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e”,
			“unique_name”	:	“fabio@developertenant.onmicrosoft.com”,
			“upn”	:	“fabio@developertenant.onmicrosoft.com”,
			“ver”	:	“1.0”

}

From	your	own	application’s	code,	you	can	find	out	the	same	information	through	the
usual	ClaimsPrincipal.Current.FindFirst("roles")	or,	given	that	this	is
a	multivalue	claim,	FindAll.	Once	you	have	the	value,	you	can	do	whatever	the
semantic	you	assigned	to	the	role	suggests	that	your	code	should	do:	allow	or	deny	access
to	the	method	being	called,	change	environment	settings	to	match	the	preferences	of	the
caller,	and	so	on.

If	you	are	using	roles	for	authorization,	classic	ASP.NET	development	practices	would
suggest	using	[Authorize],	<Authorization>,	or	the	evergreen	IsInRole().
The	good	news	is	that	they	are	all	an	option.	The	only	thing	you	need	to	do	is	tell	the
identity	pipeline	that	you	want	to	use	the	claim	type	roles	as	the	source	for	the	role
information	used	by	those	artifacts.	That’s	done	via	one	property	of
TokenValidationParameters,	RoleClaimType.	For	example,	you	can	add	the
following	to	your	OpenID	Connect	middleware	initialization	options:
Click	here	to	view	code	image

TokenValidationParameters	=	new	TokenValidationParameters
{
				RoleClaimType	=	“roles”,
}

Azure	AD	roles	are	a	very	powerful	tool,	which	is	great	for	modeling	relationships
between	users	and	the	functionality	that	the	app	provides.	Although	the	concept	is	not
new,	Azure	AD	roles	operate	in	novel	ways.	For	example,	developers	are	fully	responsible
for	their	creation	and	maintenance,	while	the	administrators	of	the	various	tenants	where
the	app	is	provisioned	are	responsible	for	actually	assigning	people	to	them.	Also,	Azure
AD	roles	are	always	declared	as	part	of	one	app—it	is	not	possible	to	create	a	role	and
reuse	it	across	multiple	applications.	There	is	no	counterpart	for	this	on-premises.	The
closest	match	is	groups,	but	those	have	global	scope,	and	a	developer	has	no	control	over
them.	Before	the	end	of	the	chapter,	I	will	also	touch	on	groups	in	Azure	AD.

Application	permissions
All	the	features	you	encountered	in	this	chapter	are	meant	to	give	you	control	over	how
users	have	access	to	your	app	and	how	users	can	delegate	your	app	to	access	other
resources	for	them.

In	some	situations	you	want	to	be	able	to	confer	access	rights	to	the	application	itself,
regardless	of	what	user	account	is	using	the	app,	or	even	when	the	app	is	running	without
any	currently	signed-in	user.	For	example,	imagine	a	long-running	process	that	performs
continuous	integration—an	app	updating	a	dashboard	with	the	health	status	of	running
tests	against	a	solution	and	so	on.	Or	more	simply,	think	about	all	the	situations	in	which
an	app	must	be	able	to	perform	operations	that	a	low-privilege	user	would	not	normally	be
entitled	to	do—like	provisioning	users,	assigning	users	to	groups,	reading	full	user
profiles,	and	so	on.	Note	that,	once	again,	those	kinds	of	permissions	come	into	play	when
accessing	the	resource	as	a	web	API,	so	you	won’t	see	this	feature	really	play	out	until	the
next	chapter.	Here	I’ll	just	discuss	provisioning.

While	delegated	permissions	are	represented	in	Azure	AD	via	oauth2Permission

in	the	Application	object	and	the	oauth2PermissionsGrants	collection	in	the
ServicePrincipal	table,	Azure	AD	represents	application	permissions	via
Application.appRoles	and	ServicePrincipal.appRoleAssignedTo.

The	AppRole	entity	is	used	to	declare	application	permissions	just	as	you	have	seen
for	the	application	roles	case,	with	the	difference	that	allowedMemberTypes	must
include	an	entry	of	value	“Application”.	To	clarify	that	point,	let’s	once	again	turn	to
the	Directory	Graph	API	ServicePrincipal	and	examine	its	appRoles	collection:
Click	here	to	view	code	image

“appRoles”:	[
								{
										“allowedMemberTypes”:	[
												“Application”
],
										“description”:	“Allows	the	app	to	read	and	write	all	device
properties	without	a	signed-in	user.		Does	not	allow	device	creation,	device
deletion,	or	update	of	device	alternative	security	identifiers.”,
										“displayName”:	“Read	and	write	devices”,
										“id”:	“1138cb37-bd11-4084-a2b7-9f71582aeddb”,
										“isEnabled”:	true,
										“value”:	“Device.ReadWrite.All”
								},
								{
										“allowedMemberTypes”:	[
												“Application”
],
										“description”:	“Allows	the	app	to	read	and	write	data	in	your
organization’s	directory,	such	as	users	and	groups.		Does	not	allow	create,
update,	or	delete	of	applications,	service	principals,	or	devices.	Does	not
allow	user	or	group	deletion.”,
										“displayName”:	“Read	and	write	directory	data”,
										“id”:	“78c8a3c8-a07e-4b9e-af1b-b5ccab50a175”,
										“isEnabled”:	true,
										“value”:	“Directory.Write”
								},
								{
										“allowedMemberTypes”:	[
												“Application”
],
										“description”:	“Allows	the	app	to	read	data	in	your	organization's
directory,	such	as	users,	groups,	and	apps.”,
										“displayName”:	“Read	directory	data”,
										“id”:	“5778995a-e1bf-45b8-affa-663a9f3f4d04”,
										“isEnabled”:	true,
										“value”:	“Directory.Read”
								}
],

	Note

Directory.Write	and	Directory.Read	will	follow	the	same	update
path	as	their	delegated	homonyms	and	become
Directory.ReadWrite.All	and	Directory.Read.All,
respectively.

You	can	think	of	each	of	those	roles	as	permissions	that	can	be	requested	by
applications	invoking	the	Graph	API.	Although	in	the	case	of	user	and	group	roles,
administrators	can	perform	role	assignments	directly	in	the	Azure	management	portal,
granting	application	roles	works	very	much	like	delegated	permissions—via	consent	at	the
first	token	request.

A	client	application	needs	to	declare	in	advance	what	application	permissions	(that	is,
application	roles)	it	requires.	That	is	currently	done	via	the	Azure	portal,	in	the	Permission
To	Other	Application	section	of	the	Configure	tab.	In	Figure	8-5	earlier,	you	can	see	that
the	middle	column	of	the	screen	contains	a	drop-down	labeled	Application	Permissions,	in
that	case	specifying	the	options	available	for	the	Directory	Graph	API.	It	is	operated	much
as	you	learned	about	for	the	Delegated	Permissions	list,	but	the	entries	exposed	in
Application	Permissions	are	the	ones	in	the	target	resource	from	its	appRoles	collection,
and	specifically	the	ones	marked	as	Application	in	allowedMemberTypes.

What	happens	when	you	select	an	application	permission,	say	Read	Directory	Data,	for
the	Directory	Graph	API?	Something	pretty	similar	to	what	you	have	seen	in	the	case	of
delegated	permissions.	Take	a	look	at	what	changes	in	the	Application’s
requiredResourceAccess	collection:
Click	here	to	view	code	image

“requiredResourceAccess”:	[
{
		“resourceAppId”:	“00000002-0000-0000-c000-000000000000”,
		“resourceAccess”:	[
				{
						“id”:	“5778995a-e1bf-45b8-affa-663a9f3f4d04”,
						“type”:	“Role”
				},
				{
						“id”:	“78c8a3c8-a07e-4b9e-af1b-b5ccab50a175”,
						“type”:	“Scope”
				},
				{
						“id”:	“311a71cc-e848-46a1-bdf8-97ff7156d8e6”,
						“type”:	“Scope”
				}
]
}

The	resource	you	want	to	access	remains	the	same,	the	Directory	Graph	API—
represented	by	the	ID	00000002-0000-0000-c000-000000000000.	In	addition	to	the	old
delegated	permissions,	of	type	Scope,	you’ll	notice	a	new	one,	of	type	Role.	The	ID	of
this	one	corresponds	exactly	to	the	ID	declared	in	the	Directory	Graph	API’s
ServicePrincipal	appRoles	for	the	Read	Directory	Data	permission.

As	I	mentioned,	granting	application	permissions	takes	place	upon	successful	request	of
a	token	from	the	app	and	positive	consent	granted	by	the	user	at	authentication	time.	The
presence	of	an	entry	of	type	Role	in	a	RequiredResourceAccessCollection
introduces	a	key	constraint,	however:	only	admin	consent	requests	will	be	considered.
This	means	that	every	time	you	develop	an	app	requesting	application	permissions,	you
have	to	be	sure	that	the	first	time	you	request	a	token	from	it,	you	append	the
prompt=admin_consent	flag	to	your	request.

If	you	actually	launch	the	app	and	go	through	the	consent	dance,	you’ll	find	that	after
provisioning,	the	directory	has	added	one	new	AppRoleAssignment	entry	to	the
appRoleAssignedTo	property	of	the	app’s	ServicePrincipal	entry	in	the	target
tenant.	Or	better,	you	would	find	it	if	your	app	had	requested	permissions	for	any	resource
other	than	the	Directory	Graph	API.	As	I	am	writing	this	chapter,	the	Directory	Graph	API
is	the	only	resource	that	received	special	treatment	from	Azure	AD:	whereas	every	other
resource	has	its	consent	settings	recorded	in	the	entities	described	in	this	chapter,	as	of
today	clients	accessing	the	Graph	API	record	the	application	permissions	consent	for	it
elsewhere.	I	won’t	go	into	further	details	for	two	reasons.	One,	it	would	not	help	you
understand	how	application	permissions	work	in	general,	given	that	each	and	every	other
resource	does	use	appRoleAssignedTo.	Two,	there	is	talk	of	changing	the	Directory
Graph	API	behavior	so	that	it	will	start	acting	like	any	other	resource—it’s	entirely
possible	that	this	will	already	be	the	case	once	the	book	is	in	your	hands,	but	given	that	it’s
not	for	sure,	I	am	not	taking	any	chances.

With	their	permission/role	dual	nature,	application	permissions	can	be	confusing.
However,	they	are	an	extremely	powerful	construct,	and	the	possibilities	their	use	opens
up	are	well	worth	the	effort	of	mastering	them.

Groups
In	closing	this	chapter	about	how	Azure	AD	models	applications,	I	am	going	to	show	you
how	to	work	with	groups.	Groups	in	Azure	AD	can	be	cloud-only	sets	of	users,	created
and	populated	via	the	Azure	portal	or	the	Office	365	portal,	or	they	can	be	synched	from
on-premises	distribution	lists	and	security	groups.	Groups	have	been	a	staple	of	access
control	for	the	last	few	decades.	As	a	developer,	you	can	count	on	groups	to	work	across
applications	and	to	be	assigned	and	managed	by	administrators:	all	you	need	to	know	is
that	a	group	exists	and	what	its	semantic	is	and	then	use	that	information	to	drive	your
app’s	decisions	regarding	the	current	user	(access	control,	UI	customization,	and	so	on).

By	default,	tokens	issued	by	Azure	AD	do	not	carry	any	group	information:	if	your	app
is	interested	in	which	groups	the	current	user	belongs	to,	it	has	to	use	the	Directory	Graph
API	(cue	the	next	chapter).

Just	as	with	application	roles,	you	can	ask	Azure	AD	to	start	sending	group	information
in	issued	tokens	in	the	form	of	claims—simply	by	flipping	a	switch	property	in	the
Application	object.	If	you	download	your	app	manifest,	modify	the
groupMembershipClaims	property	as	follows,	and	then	upload	the	manifest	again,
you	will	get	group	information	in	the	incoming	tokens:

“groupMembershipClaims”:	“All”,

If	you	are	interested	in	receiving	just	the	security	groups,	enter	“SecurityGroup”	instead
of	“All”.

After	changing	the	manifest	as	described,	I	used	the	portal	to	create	in	my	test	tenant	a
new	group	called	“Hippies,”	and	assigned	to	it	the	test	user	Fabio.	That	done,	I	launched
the	app	and	signed	in	as	Fabio.	Here’s	the	token	I	got:
Click	here	to	view	code	image

{

			“amr”	:	[“pwd”],
			“aud”	:	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”,
			“c_hash”	:	“zit-F66pwRsDeJPtjpuzgA”,
			“exp”	:	1442822854,
			“family_name”	:	“Bianchi”,
			“given_name”	:	“Fabio”,
			“groups”	:	[“d6f48969-725d-4869-a7a0-97956001d24e”],
			“iat”	:	1442818954,
			“iss”	:	“https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/”,
			“name”	:	“Fabio	Bianchi”,
			“nbf”	:	1442818954,
			“nonce”	:
“635784160492173285.ZmIyMTM5NGYtZDEyNC00MThmLTgyN2YtNTZkNzViZjA1MDgxMzljZDA1OWMtNjV
hOC00ZWI1LThkNmQtZDE4NGJlOTU2ZGZj”,
			“oid”	:	“a21197f6-5ac6-460b-b5d3-2a1ae6bd08c1”,
			“sub”	:	“0vmQvSCoJqTYby1EE0XR94PgRuveuOWUbAHNkmf0xTk”,
			“tid”	:	“6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e”,
			“unique_name”	:	“fabio@developertenant.onmicrosoft.com”,
			“upn”	:	“fabio@developertenant.onmicrosoft.com”,
			“ver”	:	“1.0”
}

You	can	see	that	there	is	indeed	a	groups	claim,	but	what	happened	to	the	group
name?	Well,	the	short	version	of	the	story	is	that	because	Azure	AD	is	a	multitenant
system,	arbitrary	group	names	like	“People	in	building	44”	or	“Hippies”	have	no
guarantee	of	being	unique.	Hence,	if	you	wrote	code	relying	on	only	a	group	name,	your
code	would	often	be	broken	and	subject	to	misuse	(a	malicious	admin	might	create	a
group	matching	the	name	you	expect	in	a	fraudulent	tenant	and	abuse	your	access	control
logic).	As	a	result,	today	Azure	AD	sends	only	the	objectId	of	the	group.	You	can	use
that	ID	for	constructing	the	URI	of	the	group	itself	in	the	directory,	in	this	case	that’s:
Click	here	to	view	code	image

https://graph.windows.net/developertenant.onmicrosoft.com/groups/d6f48969-
725d-4869-a7a0-97956001d24e.

In	the	next	chapter,	you’ll	learn	how	to	use	the	Graph	API	to	use	that	URI	to	retrieve
the	actual	group	description,	which	in	my	case	looks	like	the	following:
Click	here	to	view	code	image

{
		“odata.metadata”:
“https://graph.windows.net/developertenant.onmicrosoft.com/$metadata#directoryObjects/Microsoft.DirectoryServices.Group/@Element”,
		“odata.type”:	“Microsoft.DirectoryServices.Group”,
		“objectType”:	“Group”,
		“objectId”:	“d6f48969-725d-4869-a7a0-97956001d24e”,
		“deletionTimestamp”:	null,
		“description”:	“Long	haired	employees”,
		“dirSyncEnabled”:	null,
		“displayName”:	“Hippies”,
		“lastDirSyncTime”:	null,
		“mail”:	null,
		“mailNickname”:	“363bdd6b-f73c-43a4-a3b4-a0bf8b528ee1”,
		“mailEnabled”:	false,
		“onPremisesSecurityIdentifier”:	null,
		“provisioningErrors”:	[],
		“proxyAddresses”:	[],
		“securityEnabled”:	true
}

Your	app	could	query	the	Graph	periodically	to	find	out	what	group	identifiers	to
expect,	or	you	could	perform	queries	on	the	fly	as	you	receive	the	group	information,
though	that	would	somewhat	defeat	the	purpose	of	getting	groups	in	the	form	of	claims.

Consuming	groups	entails	more	or	less	the	same	operations	described	for	roles	and
ClaimsPrincipal.	You	can	even	assign	groups	as	the	RoleClaimType	if	that’s	the
strategy	you	usually	enact	for	groups	(traditional	IsInRole	actually	works	against
Windows	groups	on-premises,	often	creating	a	lot	of	confusion).

One	last	thing	about	groups.	There	are	tenants	in	which	administrators	choose	to	use
groups	very	heavily,	resulting	in	each	user	belonging	to	very	large	numbers	of	groups.
Adding	many	groups	in	a	token	would	make	the	token	itself	too	large	to	fulfil	its	usual
functions	(such	as	authentication	and	so	on),	so	Azure	AD	caps	at	200	the	number	of
groups	that	can	be	sent	via	JWT	format.	If	the	user	belongs	to	more	than	200	groups,
Azure	AD	does	not	pass	any	group	claims;	rather,	it	sends	an	overage	claim	that	provides
the	app	with	the	URI	to	use	for	retrieving	the	user’s	groups	information	via	the	Graph
API.	Azure	AD	does	so	by	following	the	OpenID	Connect	core	specification	for
aggregated	and	distributed	claims:	in	a	nutshell,	a	mechanism	for	providing	claims	by
reference	instead	of	passing	the	values.	Say	that	Fabio	belonged	to	201	groups	in	our
sample	above.	Instead	of	the	groups	claims,	the	incoming	JWT	would	have	contained	the
following	claims:
Click	here	to	view	code	image

“_claim_names”:	{
					“groups”:	“src1”,					
			},
			“_claim_sources”:	{
					“src1”:	{“endpoint”:
“https://graph.windows.net/developertenant.onmicrosoft.com/users/a21197f6-
5ac6-460b-b5d3-2a1ae6bd08c1/getMemberObjects”}
			}

In	the	next	chapter,	you’ll	learn	how	to	use	that	endpoint	for	extracting	group
information	for	the	incoming	user.

Summary
The	Azure	AD	application	model	is	designed	to	support	a	large	number	of	important
functions:	to	hold	protocol	information	used	at	authentication	time,	provide	a	mechanism
for	provisioning	applications	within	one	tenant	and	across	multiple	tenants,	allow	end
users	and	administrators	to	grant	or	deny	consent	for	apps	to	access	resources	on	their
behalf,	and	supply	access	control	knobs	to	administrators	and	developers	to	fine-tune	user
and	application	access	control.

That’s	a	tall	order,	but	as	you	have	seen	throughout	this	chapter,	the	Azure	AD
application	model	supports	all	of	those	functions—though	in	so	doing,	it	often	needs	to
create	complex	castles	of	interlocking	entities.	Note	that	little	of	that	complexity	ever
emerges	all	the	way	to	the	end	user,	and	even	for	most	development	tasks,	you	don’t	need
to	dive	as	deep	as	we	did	in	this	chapter.	However,	as	a	reward	for	the	extra	effort,	you
now	have	a	holistic	understanding	of	how	applications	in	Azure	AD	are	represented,
provisioned,	and	granted	or	denied	access	to	resources.	You	will	find	that	this	skill	will

bring	your	proficiency	with	Azure	AD	to	a	new	level.

Chapter	9.	Consuming	and	exposing	a	web	API	protected	by
Azure	Active	Directory

The	emphasis	on	API-centric	scenarios	is	probably	the	characteristic	that	most	of	all	sets
modern	authentication	apart	from	classic	federation	approaches	that	focus	on	single	sign-
on.

The	first	part	of	this	chapter	explores	what	it	takes	for	one	app	to	gain	access	to	a	web
API	protected	by	Azure	AD.	I	will	explore	the	phases	of	the	OpenID	Connect	hybrid	flow
that	come	after	the	authentication	phase,	picking	up	the	discussion	about	OAuth2	where	I
left	it	back	in	Chapter	2,	“Identity	protocols	and	application	types,”	and	filling	in	the
remaining	details.	In	the	code	samples,	you’ll	learn	how	to	use	ASP.NET	OWIN
middleware	and	the	Active	Directory	Authentication	Library	(ADAL)	to	implement	those
flows.	In	the	process	you’ll	also	get	a	quick	introduction	to	the	Directory	Graph	API.	As
usual,	the	discussion	will	be	peppered	by	architectural	considerations	and	gotchas.

The	second	part	of	this	chapter	will	discuss	how	to	use	Azure	AD	for	protecting	your
own	API.	You’ll	find	out	that	if	you	squint,	the	implementation	details	aren’t	too	different
from	those	used	to	secure	a	web	app,	but	the	lack	of	a	user	experience	(UX)	and	the	need
to	address	nonbrowser	clients	introduce	important	differences	you	need	to	be	aware	of.

Consuming	a	web	API	from	a	web	application
Nearly	every	Microsoft	cloud	service	API	today	requires	a	client	to	present	an	Azure	AD
token	to	gain	access.	And	the	things	you	can	do	with	that	token!	You	can	read	a	user’s
calendar	to	integrate	scheduling	functions	into	your	app.	You	can	send	email	on	behalf	of
the	user,	or	you	can	crunch	through	the	user’s	inbox	for	insights.	You	can	deploy	an	app
automatically	to	Azure	websites.	You	can	start	and	stop	virtual	machines.	You	can	perform
queries	against	SQL	Server	instances	in	the	cloud,	or	you	can	play	with	Azure	Table
storage,	Redis	caches,	and	many	other	storage	types.	You	can	track	contacts	and
opportunities	in	a	CRM	system.	You	can	crawl	through	an	organizational	tree.	Although	it
sounds	clichéd,	the	possibilities	are	endless.

In	Chapter	2,	you	learned	about	a	number	of	different	ways	in	which	an	application	can
use	OAuth2	to	obtain	an	access	token	for	accessing	a	resource	(which	from	now	on	you
can	consider	equivalent	to	“invoking	a	web	API”).	In	this	section	I’ll	examine	in	detail	the
code-flow	portion	of	the	OpenID	Connect	hybrid	flow	as	the	main	method	for	obtaining
tokens	for	an	API.	Once	done	with	that,	I’ll	build	on	your	new	knowledge	of	the	protocol
and	libraries	to	present	the	other	methods.

Redeeming	an	authorization	code	in	the	OpenID	Connect	hybrid	flow
Say	that	you	want	to	enable	our	sample	web	app	to	query	the	Azure	Active	Directory
Graph	to	find	out	more	information	about	the	current	user.	How	would	you	go	about	it?

You	have	already	configured	the	sample	app	to	handle	sign-in	via	the	OpenID	Connect
hybrid	flow.	Although	you’ve	so	far	focused	only	on	the	authentication	aspects	of	the
hybrid	flow,	the	use	of	it	means	that	you	are	already	getting	an	authorization	code,	as

described	in	Chapter	2	and	shown	in	the	Fiddler	traces	of	the	authentication	response	in
Chapter	6,	“OpenID	Connect	and	Azure	AD	web	sign-on.”	Specifically,	look	back	at	legs
4	and	5	in	Figure	2-8	from	Chapter	2:	you	just	need	to	retrieve	that	code	from	the	response
and	redeem	it.

To	clarify	things	further,	let’s	pick	up	the	swim-lane	diagram	in	Figure	6-4	from
Chapter	6,	in	the	section	“Sign-in	sequence	diagram.”	That	diagram	focused	on	the	sign-in
legs	of	the	process	and	omitted	the	ones	pertaining	to	acquisition	and	redemption	of	the
authorization	code.	Figure	9-1	expands	the	response	phase	of	the	flow	originally	shown	in
Figure	6-4,	adding	the	calls	handling	the	authorization	code.

Figure	9-1	Swim-lane	diagram	of	the	response	phase	of	the	OpenID	Connect	hybrid
sign-in	flow,	showing	all	the	authorization-code	acquisition	and	redemption	legs.

Unlike	all	the	old	calls,	which	were	always	originating	from	the	browser,	the	call
performed	for	redeeming	the	authorization	code	is	a	server-to-server	call.	The	application
(in	our	case,	the	middleware)	POSTs	to	the	Azure	AD	tenant’s	token	endpoint	the	code
and	the	application’s	credentials.	In	return,	it	gets	the	desired	access	token	and	a	refresh
token.	In	the	case	of	Azure	AD,	it	also	gets	an	id_token,	which	will	be	used	for	caching
purposes.	The	rest	of	this	section	will	cover	those	two	legs	in	fine	detail.

That’s	what	you	should	observe	once	you	implement	the	authorization-code	redemption
flow.	Before	you	do	that,	however,	you	need	to	verify	whether	the	application	entry	in
Azure	AD	has	the	correct	permission	for	accessing	the	resource	you	are	targeting.

Permissions

As	you	learned	in	Chapter	8,	“Azure	Active	Directory	application	model,”	an	application
that	needs	access	to	an	Azure	AD–protected	resource	must	explicitly	ask	for	the	necessary
permissions	in	its	Application	object.	That	will	allow	the	directory	to	prompt	the	user
for	the	proper	permissions	at	authentication	time.	For	simplicity,	here	I	am	choosing	a	call
that	requires	a	permission	that	is	always	automatically	granted	as	part	of	authentication.	If
I	had	chosen	a	more	advanced	task,	like	reading	or	writing	directory	entities,	you	would
have	had	to	request	the	appropriate	permissions.	Conversely,	the	permission	used	for
authentication,	“Sign	in	and	access	the	user’s	profile,”	also	gives	the	app	the	right	to
request	an	access	token	for	the	Directory	Graph	(from	now	on	just	“the	Graph”),	which
allows	it	to	query	the	user’s	profile.	(That	means	that	even	if	you	are	still	digesting	the
information	in	Chapter	8,	you’ll	be	able	to	perform	the	tasks	described	in	this	chapter.)

Application	credentials

If	you	recall	the	description	of	the	OAuth2	authorization-code	grant	from	Chapter	2,	you
know	that	in	order	to	redeem	an	authorization	code,	your	application	must	perform	an
authenticated	request	against	the	token	endpoint.	Applications	authenticate	with	Azure	AD
by	using	application	credentials	that	are	assigned	directly	through	their	Application
object.	Those	credentials	are	stored	in	the	properties	passwordCredentials	and
keyCredentials,	which	you	encountered	in	Chapter	8.	A	more	precise	description
would	say	that	those	properties	provide	references	to	the	actual	credential	values:	for
security	reasons,	once	assigned,	those	values	can	never	be	retrieved	again.	If	you	lose
track	of	them,	your	only	recourse	is	to	create	and	assign	new	credentials.

How	do	you	assign	credentials	to	an	application?	One	very	easy	way	is	to	let	Visual
Studio	do	the	work	for	you.	If	you	created	the	app	using	the	ASP.NET	project	templates	in
Visual	Studio	2015,	selecting	the	Read	Directory	check	box	in	the	authentication
management	portion	of	the	project	wizard	will	generate	and	assign	credentials	for	your
app	automatically.	However,	for	existing	applications	and	for	all	the	cases	in	which	you
are	not	using	Visual	Studio,	the	most	common	way	is	to	assign	application	credentials	via
the	Azure	management	portal.	If	you	head	to	the	Configure	tab	of	the	application	entry	in
the	Azure	AD	area	of	the	portal,	you’ll	find	a	section	labeled	Keys.	Here	you	can	add	a
new	key	by	selecting	a	duration	(choices	vary	from	one	to	two	years	of	validity)	and
saving	the	application.	Immediately	after	saving,	the	portal	will	display	the	value	of	the
autogenerated	string	key.	As	I	mentioned,	this	is	the	only	time	you	have	to	save	it.	Your
application	will	need	to	access	it	later	on,	during	the	authorization-code	redemption	flow
and,	as	you	will	see	later	in	the	chapter,	for	any	flow	requiring	the	app	to	talk	to	the	Azure
AD	token	endpoint.

	Note

It	is	worth	stressing	that	those	instructions	refer	to	the	“old”	Azure
management	portal,	at	the	URL	https://manage.windowsazure.com/,	which
was	the	only	management	portal	available	for	Azure	AD	at	the	time	of
writing.	The	step-by-step	instructions	will	likely	change,	but	you	can	expect
any	new	management	portal	to	keep	offering	the	same	functionality.

As	counterintuitive	as	it	might	seem,	this	newly	minted	credential	does	not	end	up	in
the	keyCredentials	property	but	in	the	passwordCredentials	property	of	the
Application	object.	If	you	take	a	look	at	the	application	manifest	after	having	saved
the	app,	you’ll	find	the	new	element,	as	shown	here:
Click	here	to	view	code	image

“passwordCredentials”:	[
				{
						“customKeyIdentifier”:	null,
						“endDate”:	“2016-10-12T18:06:53.0931896Z”,
						“keyId”:	“91edc961-4689-4979-84bc-66badbe1b109”,
						“startDate”:	“2015-10-12T18:06:53.0931896Z”,
						“value”:	null
				}
],

This	naming	stems	from	the	way	in	which	this	credential	type	is	meant	to	be	used:	the
key	string	is	simply	included	in	the	request	in	the	client_secret	property	of	the
request,	kind	of	like	a	password.

The	keyCredentials	property,	conversely,	is	meant	to	work	with	the	private/public
key	pairs	from	X.509	certificates.	Azure	AD	stores	a	certificate	holding	the	public	portion
of	the	key	pair.	The	application	uses	the	corresponding	private	key	to	sign	a	JWT
assertion,	which	is	attached	to	the	request	to	the	token	endpoint.	Azure	AD	uses	the	public
key	to	verify	that	the	assertion	was	signed	by	the	private	key	owner,	and	if	everything
checks	out,	the	application	is	considered	authenticated.	From	a	security	standpoint,	this
method	has	clear	advantages	over	the	shared-secret	model.	Those	advantages	come	at	the
price	of	more	complexity	in	the	app	(the	certificate	must	be	stored	and	used	for	signing)
and	in	provisioning.	Although,	for	the	application	side	of	things,	the	Azure	AD	libraries
can	keep	things	simple	by	taking	care	of	handling	signatures	and	request	management
transparently,	as	of	today	provisioning	a	certificate	as	an	application	credential	in	Azure
AD	is	possible	only	via	Office	365	PowerShell	cmdlets.

For	the	sake	of	keeping	things	simpler,	in	this	chapter	I	will	work	with	key-string
credentials.	If	you	want	to	follow	along,	use	any	of	the	techniques	described	previously	to
get	a	key	string	assigned	to	your	application	and	be	sure	to	save	the	string’s	bits
somewhere—you’ll	need	them	in	the	code	soon	enough.

https://manage.windowsazure.com/

Handling	AuthorizationCodeReceived

Without	further	ado,	let’s	go	ahead	and	add	code	to	retrieve	and	redeem	the	authorization
code	(no	pun	intended).	In	Chapter	7,	“The	OWIN	OpenID	Connect	middleware,”	you
learned	about	the	existence	of	AuthorizationCodeReceived,	a	notification	in	the
OpenID	Connect	middleware	that	is	invoked	in	case	the	authorization	response	from	the
authority	includes	an	authorization	code.	That’s	where	we	are	going	to	place	our	code-
redemption	logic.

This	is	where	the	Active	Directory	Authentication	Library	(ADAL)	comes	into	play.	As
you	learned	in	Chapter	4,	“Introducing	the	identity	developer	libraries,”	the	ADAL	can
transparently	take	care	of	handling	communications	with	Azure	AD	and	cache	tokens.	You
are	about	to	see	that	in	action.

	Important

I	am	going	to	use	ADAL’s	default	cache	settings	for	a	good	portion	of	the
following	explanations.	However,	such	default	settings	are	not	suitable	for
web	applications.	In	the	section	“ADAL	cache	considerations	for	web
applications”	later	in	the	chapter,	I	will	share	guidance	on	how	to	use	the
ADAL	cache	properly	with	web	applications.

Start	by	adding	a	reference	to	the	ADAL	.NET	NuGet	package.	As	I	showed	in	Chapter
5,	“Getting	started	with	web	sign-on	and	Active	Directory,”	I	like	to	use	the	NuGet
package	management	console	because	it	ensures	that	I’ll	end	up	with	the	correct	version.
At	this	time	(fall	2015),	the	released	version	of	ADAL	is	v2.*.	Open	the	NuGet	package
management	console	and	enter	the	following	command:
Click	here	to	view	code	image

Install-Package	Microsoft.IdentityModel.Clients.ActiveDirectory	-Version
2.19.208020213

That	is	the	latest	package	at	the	time	of	writing.	However,	updates	and	bug	fixes	are
released	all	the	time,	so	be	sure	you	also	run	the	following	to	get	the	latest	2.*	release:
Click	here	to	view	code	image

Update-Package	Microsoft.IdentityModel.Clients.ActiveDirectory

Once	you’ve	done	that,	you	are	ready	to	add	the	implementation	of
AuthorizationCodeReceived:
Click	here	to	view	code	image

AuthorizationCodeReceived	=	(context)	=>
{
				Debug.WriteLine(“***	AuthorizationCodeReceived”);
				string	ClientId	=	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”;
				string	Authority	=
“https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com”;
				string	appKey	=	“a3fQREiyhqpYL10OO6hfCW+xke/TyP2oIQ6vgu68eoE=”;
				string	resourceId	=	“https://graph.windows.net”;
				var	code	=	context.Code;
				AuthenticationContext	authContext	=	new	AuthenticationContext(Authority);

				ClientCredential	credential	=	new	ClientCredential(ClientId,
appKey);																			
				AuthenticationResult	result	=
authContext.AcquireTokenByAuthorizationCode(code,	
								new
Uri(HttpContext.Current.Request.Url.GetLeftPart(UriPartial.Path)),	
								credential,	
								resourceId);
				return	Task.FromResult(0);
},

Remember,	the	goal	of	that	code	is	to	redeem	the	authorization	code	you	got	during	the
sign-in	via	the	OpenID	Connect	hybrid	flow.	To	understand	in	detail	how	that	is
accomplished,	you	need	to	brush	up	on	the	high-level	description	of	how	ADAL	works,
and	specifically	the	diagram	in	Figure	4-4	in	Chapter	4.	ADAL	is	a	token-requestor
library,	which	helps	you	to	obtain	tokens	from	Active	Directory	to	access	resources.	It
does	so	by	offering	you	primitives	that	model	the	main	actors	and	artifacts	involved	in
such	transactions.

Ignore	the	various	declarations	at	the	beginning	of	the	method	and	consider	the	line
initializing	AuthenticationContext.	AuthenticationContext	is	a	class
meant	to	represent	in	your	code	the	directory	tenant	you	want	to	work	with.	Here	it	is
initialized	with	“https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com”,
the	same	tenant	I’ve	been	using	for	initializing	the	OpenID	Connect	middleware.	From
now	on,	whenever	I	need	something	from	my	tenant,	I	know	I	can	use	authContext	to
access	the	tenant’s	authentication	capabilities.

The	main	primitive	offered	by	AuthenticationContext	is	the	method
AcquireToken	and	all	its	variants.	Its	function	is	simply	to	do	whatever	is	necessary	to
obtain	a	token	from	the	tenant	modeled	by	AuthenticationContext,	complying
with	the	requirements	represented	by	the	parameters	passed	to	AcquireToken.	There
are	as	many	AcquireToken	overloads	and	variants	as	there	are	supported	scenarios.	All
you	need	to	do	is	pass	everything	you	know	about	your	scenario	(for	example,	the
client_id	of	your	app,	the	resource	you	need	a	token	for,	and	so	on),	and	AcquireToken
will	do	its	best	to	retrieve	a	suitable	token,	while	minimizing	user	prompts	and	network
traffic.

In	this	specific	case,	we	know	that	we	want	to	get	a	token	by	redeeming	an
authorization	code,	we	know	that	redeeming	a	code	requires	application	credentials,	and
we	know	that	we	want	that	token	for	accessing	the	Graph	API.	In	that	light,	the	rest	of	the
code	is	easy	to	understand:

	The	ClientCredential	initialization	instantiates	a	class	meant	to	represent
application	credentials.	Note	that	it	takes	the	app’s	client_id	and	the	string	key	I
discussed	early	on.	In	actual	production	code	you	would	not	hardcode	the	key	but
retrieve	it	from	a	secure	place	(such	as	encrypted	storage	or	a	service	such	as	Azure
Key	Vault).

	The	intent	of	the	call	to	AcquireTokenByAuthorizationCode	is	self-
explanatory,	and	so	is	the	use	of	the	code	and	credential	parameters.	The
second	parameter	represents	the	redirect_uri	registered	for	the	client	(although	it

https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com

won’t	be	used	in	this	flow,	Azure	AD	expects	that	in	the	request).	The
resourceId	is	the	identifier	of	the	resource	we	want	a	token	for,	in	this	case	the
Graph	API.	This	can	be	the	value	you	find	in	the	App	ID	URI	field	in	the	application
entry	in	the	Azure	portal,	but	in	more	general	terms,	it	can	be	any	of	the	entries	in
the	servicePrincipalNames	property	of	the	ServicePrincipal
representing	the	resource,	or	the	union	of	the	identifierUris	list	and	appId
properties	of	the	corresponding	Application	object.

Note	that	the	call	can	result	in	one	exception,	so	you	should	plan	your	code	accordingly.

The	outcome	of	the	operation	is	recorded	in	one	instance	of
AuthenticationResult.	Figure	9-2	shows	what	it	looks	like.

Figure	9-2	A	typical	AuthenticationResult	instance.

Before	I	go	into	the	details	of	the	main	properties	of	AuthenticationResult,	I
want	to	highlight	a	key	point:	you	can	ignore	most	of	the	properties	shown	here.	As	you
will	see	in	a	few	pages,	ADAL	automatically	and	transparently	takes	care	of	storing
tokens	and	keeping	sessions	fresh	without	requiring	any	explicit	action	from	you.
Developers	who	are	used	to	operating	at	the	protocol	level	or	who	use	lower-level	libraries
expect	to	have	to	use	some	of	those	properties	to	write	logic	for	handling	token	expiration,
refreshes,	and	so	on,	but	that	is	not	necessary	when	you	use	ADAL.	ADAL	will	do	that	for
you,	and	given	that	Azure	AD	offers	some	special	tricks,	ADAL	will	do	it	better	than	you
possibly	could.	In	fact,	to	remove	all	temptation,	properties	such	as	RefreshToken	are
poised	to	disappear	from	AuthenticationResult	in	ADAL	v3!	That	clarified,	here’s
a	cursory	description	of	the	main	properties:

	AccessToken	is	really	the	main	result	you	are	after—it	is	the	token	referenced
in	AcquireToken*.	We’ll	use	it	for	securing	our	call	to	the	Graph	API	later	on.

	AccessTokenType	declares	the	type	of	token	usage	and	verification	meant	to	be
applied	to	the	returned	access	token.	Today	it	is	always	“Bearer”;	you’ll	see	in	a	few
pages	what	that	means.

	ExpiresOn	indicates	the	instant	at	which	the	access	token	will	no	longer	be	valid.
Today	all	Azure	AD–issued	access	tokens	last	one	hour	from	the	instant	of	issuance,
but	that	will	likely	become	configurable	in	the	future.

	IdToken	contains	information	about	the	authentication	that	had	to	take	place	to
lead	to	the	issuance	of	the	access	token.	In	this	particular	case,	the	user	signing	in	to
the	web	app	and	the	user	obtaining	the	access	token	happen	to	be	the	same,	but	in
generic	OAuth2	scenarios	that	is	not	the	case.	I’ll	explore	that	scenario	more	in
depth	later.

	IsMultipleRefreshToken	is	an	Azure	AD–specific	property	of	the	refresh
token,	which	signals	whether	the	current	refresh	token	can	be	used	for	obtaining
access	tokens	for	multiple	resources	in	the	same	tenant.	More	details	later.

	RefreshToken	holds	the	bits	of	the	actual	refresh	token,	whose	function	I	will
describe	shortly.	Don’t	get	too	attached	to	this	property.	As	I	mentioned,	ADAL
automatically	uses	it	behind	the	scenes,	and	in	ADAL	v3	it	will	no	longer	be
returned	here.

	TenantId	carries	the	identifier	of	the	Azure	AD	tenant	that	issued	the	requested
token.	In	Chapter	8	you	learned	about	the	existence	of	the	common	endpoint:	when
you	use	common	to	initialize	AuthenticationContext,
AuthenticationResult.TenantId	tells	you	which	tenant	the	end	user
ultimately	chose	to	authenticate	with.

	UserInfo	presents	some	of	the	information	from	the	IdToken	property	in	a
more	readily	consumable	format,	plus	some	occasional	extra	information	(such	as
the	imminent	expiration	of	the	user	account’s	password).	Note	that	the	name	of	this
property	is	a	bit	unfortunate,	given	that	it	is	a	namesake	for	the	corresponding
OpenID	Connect	endpoint;	however,	the	property	predates	the	spec,	so	short	of
breaking	compatibility,	it	could	not	really	be	fixed.	Remember	that	the	two	have
nothing	to	do	with	each	other.

That’s	it!	Before	using	the	resulting	access	token,	however,	let’s	take	a	look	at	the	traffic
our	code	generated.

Protocol	flow	of	the	authorization	code	redemption

Fire	up	Fiddler,	and	capture	the	traffic	generated	during	the	execution	of
AuthorizationCodeReceived.	The	request	should	look	similar	to	the	following
trace,	apart	from	the	newlines	I	added	to	make	the	trace	more	readable:
Click	here	to	view	code	image

POST
https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com/oauth2/token
HTTP/1.1
Content-Type:	application/x-www-form-urlencoded
client-request-id:	172e30f9-54f9-4770-b61b-3aadcbbb8892
return-client-request-id:	true
x-client-SKU:	.NET
x-client-Ver:	2.19.0.0
x-client-CPU:	x64
x-client-OS:	Microsoft	Windows	NT	10.0.10240.0
Host:	login.microsoftonline.com
Content-Length:	994
Expect:	100-continue

resource=https%3A%2F%2Fgraph.windows.net&
client_id=c3d5b1ad-ae77-49ac-8a86-dd39a2f91081&
client_secret=a3fQREiyhqpYL10OO6hfCW%2Bxke%2FTyP2oIQ6vgu68eoE%3D&
grant_type=authorization_code&
code=AAABAAAAiL9K	[..SNIP..]	PPf7ErO6oDyZSeiD_UgAA&
redirect_uri=https%3A%2F%2Flocalhost%3A44300%2F

In	the	POST,	you	can	identify	all	the	parameters	passed	in.	The	POST	recipient	is	the
token	endpoint	of	the	authority	passed	in	AuthenticationContext;	the	body
indicates	the	resource,	client_id,	client_secret,	code,	and
redirect_uri	as	passed	to	AcquireTokenByAuthorizationCode.

Just	for	kicks

What	would	this	trace	look	like	if	you	used	a	certificate	instead	of	a	string
key?	Instead	of	a	ClientCredential,	you	would	have	used	a
ClientAssertionCertificate.	And	the	body	of	the	request	would
have	looked	slightly	different:

Click	here	to	view	code	image
resource=https%3A%2F%2Fgraph.windows.net&
client_id=	c3d5b1ad-ae77-49ac-8a86-dd39a2f91081&
client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-
type%3Ajwt-bearer&
client_assertion=eyJhbGciOi[…SNIP…]-j5UBo1A&
grant_type=authorization_code&
code=AAABAAAAiL9K	[…SNIP…]	PPf7ErO6oDyZSeiD_UgAA&
redirect_uri=https%3A%2F%2Flocalhost%3A44300%2F

The	main	difference	lies	in	the	absence	of	client_secret,	replaced	by
client_assertion	(the	signed	JWT	described	earlier)	and
client_assertion_type.	If	you	want	more	details	on	this,	please	take
a	look	at	the	proposed	standard	“Assertion	Framework	for	OAuth	2.0	Client
Authentication	and	Authorization	Grants”	at
https://tools.ietf.org/html/rfc7521.

One	important	thing	to	notice	here	is	the	use	of	the	resource	parameter,	which	you
encountered	earlier	in	Chapter	6.	Other	providers	implementing	this	flow	would	likely	not
specify	anything,	given	that	the	resource	is	almost	always	colocated	with	the	authorization
server	itself,	or	they	would	specify	scopes.	Please	take	a	moment	to	go	back	to	Chapter	6,
to	the	section	“Parameters	omitted	in	the	default	request,”	and	refresh	your	memory	on
why	the	current	version	of	the	Azure	AD	model	uses	resources	instead	of	scopes.

The	response	from	the	token	endpoint	is	also	not	particularly	surprising,	especially	after
our	peek	into	AuthenticationResult.
Click	here	to	view	code	image

HTTP/1.1	200	OK
Cache-Control:	no-cache,	no-store
Pragma:	no-cache
Content-Type:	application/json;	charset=utf-8
Expires:	-1
Server:	Microsoft-IIS/8.5
x-ms-request-id:	e551a34e-a2a5-4989-b537-cdb828830269

https://tools.ietf.org/html/rfc7521

client-request-id:	172e30f9-54f9-4770-b61b-3aadcbbb8892
x-ms-gateway-service-instanceid:	ESTSFE_IN_153
X-Content-Type-Options:	nosniff
Strict-Transport-Security:	max-age=31536000;	includeSubDomains
P3P:	CP=“DSP	CUR	OTPi	IND	OTRi	ONL	FIN”
Set-Cookie:	flight-uxoptin=true;	path=/;	secure;	HttpOnly
Set-Cookie:	x-ms-gateway-slice=productionb;	path=/;	secure;	HttpOnly
Set-Cookie:	stsservicecookie=ests;	path=/;	secure;	HttpOnly
X-Powered-By:	ASP.NET
Date:	Mon,	12	Oct	2015	20:44:09	GMT
Content-Length:	3809

{
“token_type”:“Bearer”,
“expires_in”:“3599”,
“scope”:“User.Read”,
“expires_on”:“1444686250”,“not_before”:“1444682350”,
“resource”:“https://graph.windows.net”,
“pwd_exp”:“641813”,“pwd_url”:“https://portal.microsoftonline.com/ChangePassword.aspx”,
“access_token”:“eyJ0eX	[…SNIP…]HWE8aMjw”,
“refresh_token”:“AAABA	[…SNIP…]	OIuMXIAA”,
“id_token”:“eyJ0eXAi	[…SNIP…]	gZdORQ”
}

That’s	all	it	takes	to	get	a	token	for	calling	an	API	protected	by	Azure	AD	for	which
your	app	requested	permissions.	Next,	you’ll	see	what’s	required	to	actually	use	the	token
to	gain	access	to	a	protected	API.

Using	the	access	token	for	invoking	a	web	API
It’s	not	very	likely	that	you’ll	perform	your	API	calls	from	the	Startup	class,	but	I
know	you	are	eager	to	use	the	access	token	you	just	got	back,	so	I’ll	go	over	the	code	used
for	accessing	a	protected	API	right	away.	Later,	I’ll	come	back	to	key	considerations	such
as	where	to	perform	API	calls,	how	OAuth2	uses	refresh	tokens	for	establishing	a	session
of	sorts,	and	how	ADAL	helps	to	handle	token	life	cycle	and	sessions.	Those
considerations	are	super	important,	so	please	be	sure	that	you	read	this	section	in	its
entirety.

Invoking	an	API	according	to	OAuth2	bearer	token	usage

One	of	the	specifications	from	the	OAuth2	constellation,	“The	OAuth	2.0	Authorization
Framework:	Bearer	Token	Usage”	(available	at	https://www.rfc-editor.org/rfc/rfc6750.txt),
details	how	you	can	leverage	tokens	for	accessing	protected	resources—for	us,	that	means
a	web	API.

The	specification	presents	various	techniques,	but	the	most	popular	one	entails
including	the	token	in	the	request	by	embedding	it	in	the	Authorization	HTTP	header,
following	the	form	shown	here:
Click	here	to	view	code	image

GET	/resource	HTTP/1.1
Host:	server.example.com
Authorization:	Bearer	<token>

The	idea	is	that	the	resource	will	expect	the	token	in	such	a	header	and	validate	it	before
granting	access.	As	is	the	tradition	for	OAuth2,	no	details	are	given	in	the	spec	about	the

https://www.rfc-editor.org/rfc/rfc6750.txt

format	of	the	token.	As	a	result,	there	is	no	prescriptive	guidance	on	what	validation	looks
like.	Every	provider	and	protected	resource	will	privately	negotiate	the	details.	In	the
second	part	of	this	chapter,	you	will	learn	how	that	works	for	Azure	AD,	when	you	set	up
the	validation	logic	for	your	own	web	API.

A	client	should	NEVER	look	inside	an	access	token

I	made	this	point	in	Chapter	4	while	describing	token-requestor	libraries,	but
it	is	worth	stressing	it	here	again.	Clients	requesting	an	access	token	for
accessing	a	protected	resource	should	treat	that	token	as	an	opaque	blob.	It	is
extremely	tempting	to	peek	into	that	token	from	the	client	app’s	code,	given
that	it	often	contains	interesting	info,	but	that	is	truly	a	recipe	for	disaster.
From	the	client’s	perspective,	the	token’s	only	function	is	to	gain	access	to	a
protected	resource.	Details	such	as	token	format,	what	claims	it	contains,	and
so	on	are	a	contract	between	the	resource	and	the	token	issuer,	a	contract	in
which	the	client	plays	no	role.	If	you	write	client	code	that	takes	a
dependency	on	the	content	of	the	access	token,	as	soon	as	that	content
changes	(for	example,	if	the	issuer	starts	encrypting	the	token	so	that	only	the
target	API	can	access	its	content),	your	client	code	will	be	broken	with	no
recourse.	This	is	one	of	the	worst	antipatterns	I	have	seen	in	my	years
working	in	the	identity	space,	and	it	often	leads	to	the	unrecoverable	loss	of
functionality.	Don’t	give	in	to	the	temptation	to	parse	the	access	token	from
the	client.

The	term	“bearer”	here	hints	at	the	only	aspect	of	the	token-validation	logic	that	the
spec	does	provide.	To	use	a	bearer	token,	a	client	is	simply	required	to	attach	it	to	the
request.	This	is	a	bit	like	money:	to	use	a	banknote,	all	you	need	to	do	is	hand	it	over—the
recipient	does	not	need	to	do	any	verification	other	than	knowing	the	authenticity	of	the
banknote.	Incidentally,	that’s	why	you	need	to	be	very	careful	when	handling	money	and
bearer	tokens	alike,	because	if	somebody	else	gets	ahold	of	them,	they	can	use	them	with
no	limitations.	Think	about	it	the	next	time	you	are	tempted	to	forgo	setting	up	HTTPS	for
your	web	apps!

Let’s	add	some	simple	code	in	AuthorizationCodeReceived	to	call	the	Graph
API	just	after	the	call	to	AcquireTokenByAuthorizationCode:
Click	here	to	view	code	image

//…
string	callOutcome	=	string.Empty;
HttpClient	httpClient	=	new	HttpClient();
httpClient.DefaultRequestHeaders.Authorization	=
				new	AuthenticationHeaderValue(“Bearer”,	result.AccessToken);
HttpResponseMessage	response	=
				httpClient.GetAsync(“https://graph.windows.net/me?api-
version=1.6”).Result;

if	(response.IsSuccessStatusCode)
{
				callOutcome	=	response.Content.ReadAsStringAsync().Result;
}
//…

I’ll	ignore	the	Graph	API	calling	syntax	for	now.	At	a	high	level,	the	code	appears	to	be
doing	exactly	what	I	described	was	necessary	for	accessing	a	protected	resource	in
accordance	with	the	OAuth2	bearer	token	usage	spec.	You	add	the	access	token	in	the
Authorization	HTTP	header	right	after	the	Bearer	keyword,	and	then	you	perform	your
call	(in	this	case	a	simple	GET	of	the	profile	of	the	account	that	was	used	for	obtaining	the
token).

This	is	what	the	request	looks	like	on	the	wire:
Click	here	to	view	code	image

GET	https://graph.windows.net/me?api-version=1.6	HTTP/1.1
Authorization:	Bearer	eyJ0eXAiOiJKV1Q[..SNIP..]jWxB3LG4UtyQ
Host:	graph.windows.net

That’s	as	simple	as	it	gets.	The	response	looks	like	the	following:
Click	here	to	view	code	image

HTTP/1.1	200	OK
Cache-Control:	no-cache
Pragma:	no-cache
Content-Type:
application/json;odata=minimalmetadata;streaming=true;charset=utf-8
Expires:	-1
Server:	Microsoft-IIS/8.5
ocp-aad-diagnostics-server-name:	+u3G9g5PWpdX413WhNwPLKppymwjckPFR0XoeOQ7+kA=
request-id:	e260d0b6-b26a-4753-bf02-1f12df4eb85d
client-request-id:	c613119a-20b4-45d4-82e3-67b89772c1a4
x-ms-dirapi-data-contract-version:	1.6
x-ms-gateway-rewrite:	false
ocp-aad-session-key:	qBZHXeGGhx-
rPXPzvx5G98D9srmgVjZj5IIUGG5IbqpEH4mlKTgCEwi57NIrmxzeWHkpHMa2NPthk-
EtanVYysWnzBU2Dpp34zvBDbyk1TkuEl_59avaoX5TjW9xgqMN.s8OcJFO7Gg7AXspmlJ3OlXI4vbHaot1g4bUl5Zcka5U
X-Content-Type-Options:	nosniff
DataServiceVersion:	3.0;
Strict-Transport-Security:	max-age=31536000;	includeSubDomains
Access-Control-Allow-Origin:	*
X-AspNet-Version:	4.0.30319
X-Powered-By:	ASP.NET
Duration:	2036141
X-Powered-By:	ASP.NET
Date:	Tue,	13	Oct	2015	19:50:06	GMT
Content-Length:	2083

{“odata.metadata”:“https://graph.windows.net/myorganization/$metadata#directoryObjects/Microsoft.DirectoryServices.User/@Element”,“odata.type”:“Microsoft.DirectoryServices.User”,“objectType”:“User”,“objectId”:“13d3104a-
6891-45d2-a4be-
82581a8e465b”,“deletionTimestamp”:null,“accountEnabled”:true,“assignedLicenses”:
[{“disabledPlans”:[“bea4c11e-220a-4e6d-8eb8-8ea15d019f90”,“0feaeb32-d00e-
4d66-bd5a-43b5b83db82c”,“e95bec33-7c88-4a70-8e19-
b10bd9d0c014”],“skuId”:“6fd2c87f-b296-42f0-b197-
1e91e994b900”}],“assignedPlans”:[{“assignedTimestamp”:“2014-03-
24T06:36:17Z”,“capabilityStatus”:“Enabled”,“service”:“exchange”,“servicePlanId”:“efb87545-
963c-4e0d-99df-69c6916d9eb0”},{“assignedTimestamp”:“2014-03-
24T06:36:17Z”,“capabilityStatus”:“Enabled”,“service”:“SharePoint”,“servicePlanId”:“5dbe027f-
2339-4123-9542-606e4d348a72”},{“assignedTimestamp”:“2014-03-
24T06:36:17Z”,“capabilityStatus”:“Enabled”,“service”:“MicrosoftOffice”,“servicePlanId”:“43de0ff5-
c92c-492b-9116-
175376d08c38”}],“city”:null,“companyName”:null,“country”:null,“department”:null,“dirSyncEnabled”:null,“displayName”:“Mario
Rossi”,“facsimileTelephoneNumber”:null,“givenName”:“Mario”,“immutableId”:null,“jobTitle”:null,“lastDirSyncTime”:null,“mail”:“mario@developertenant.onmicrosoft.com”,“mailNickname”:“mario”,“mobile”:null,“onPremisesSecurityIdentifier”:null,“otherMails”:
[],“passwordPolicies”:null,“passwordProfile”:null,“physicalDeliveryOfficeName”:null,“postalCode”:null,“preferredLanguage”:“en-
US”,“provisionedPlans”:

[{“capabilityStatus”:“Enabled”,“provisioningStatus”:“Success”,“service”:“exchange”},
{“capabilityStatus”:“Enabled”,“provisioningStatus”:“Success”,“service”:“MicrosoftOffice”},
{“capabilityStatus”:“Enabled”,“provisioningStatus”:“Success”,“service”:“SharePoint”}],“provisioningErrors”:
[],“proxyAddresses”:
[“SMTP:mario@developertenant.onmicrosoft.com”],“sipProxyAddress”:null,“state”:null,“streetAddress”:null,“surname”:“Rossi”,“telephoneNumber”:null,“thumbnailPhoto@odata.mediaContentType”:“image/Jpeg”,“usageLocation”:“US”,“userPrincipalName”:“mario@developertenant.onmicrosoft.com”,“userType”:“Member”}

Promptly,	you	get	back	a	nice	JSON	representation	of	Mario’s	profile	in	the	directory.
Congratulations!	You	just	successfully	concluded	your	first	REST	API	call	protected	by
Azure	AD.

If	you	compare	this	trace	with	the	ones	you	studied	earlier	for	web	apps,	one	thing
should	jump	out:	here,	there’s	not	a	trace	of	cookies.	Each	and	every	call	is	expected	to
present	a	suitable	bearer	token,	which	the	client	obtained	before	performing	the	call.	For
the	fun	of	it,	comment	out	the	lines	adding	the	access	token	in	the	header	and	run	the	app
again.	Here’s	what	you’ll	get	as	a	response:
Click	here	to	view	code	image

HTTP/1.1	401	Unauthorized
Cache-Control:	private
Content-Type:	application/json;odata=minimalmetadata;charset=utf-8
Server:	Microsoft-IIS/8.5
ocp-aad-diagnostics-server-name:	JOcOImGbsHySgKlAQbtemgj5KuX+mrNNzouN4cLWfY8=
request-id:	8bb21bef-13bd-401a-87dd-b96b7cd6bfb0
client-request-id:	73eebaa6-e588-472a-98c5-215cba480c42
x-ms-dirapi-data-contract-version:	1.6
Strict-Transport-Security:	max-age=31536000;	includeSubDomains
Access-Control-Allow-Origin:	*
WWW-Authenticate:	Bearer	realm=“myorganization”,	error=“invalid_token”,
error_description=“Access	Token	missing	or	malformed.”,
authorization_uri=“https://login.microsoftonline.com/common/oauth2/authorize”,
client_id=“00000002-0000-0000-c000-000000000000”
X-AspNet-Version:	4.0.30319
X-Powered-By:	ASP.NET
Duration:	328488
X-Powered-By:	ASP.NET
Date:	Wed,	14	Oct	2015	18:14:52	GMT
Content-Length:	143

{“odata.error”:{“code”:“Authentication_MissingOrMalformed”,“message”:
{“lang”:“en”,“value”:“Access	Token	missing	or	malformed.”},“values”:null}}

Get	it?	Whereas	you	get	a	302	in	the	case	of	web	sign-on	against	a	redirect-based	web
app,	here	you	get	a	cold	401.	In	the	web	sign-on	case,	the	authentication	happens	in	the
context	of	the	browser,	hence	an	unauthenticated	request	can	be	handled	by	redirecting	the
user	to	the	place	where	he	or	she	can	authenticate.	However,	in	the	case	of	a	web	API,	the
client	is	responsible	for	obtaining	the	necessary	token	out	of	band:	furthermore,	the	client
isn’t	really	a	browser	(here	the	call	is	performed	from	the	app’s	code-behind	on	the
server),	so	the	302	cannot	be	used	to	prompt	some	kind	of	action.

Using	cookies	for	protecting	a	web	API	is	a	very	common	antipattern.	People	often	use
it	when	performing	AJAX	calls:	they	secure	the	entire	web	app	by	using	redirect-based
mechanisms	such	as	the	OpenID	Connect	or	WS-Federation	middlewares,	and	then	they
simply	make	AJAX	calls	that	leverage	the	fact	that	the	browser	automatically	attaches
cookies	to	requests	and	that	the	cookie	middleware	validates	them.	It	is	an	antipattern
because	it	does	not	work	very	well.	When	cookies	expire,	the	AJAX	calls	receive	302s,
but	those	can’t	be	exploited	directly.	As	soon	as	you	try	to	access	the	API	from	a	different

client	(a	back	end	or	a	mobile	app),	you	suddenly	discover	that	there	is	no	mechanism	to
obtain	suitable	cookies.	As	soon	as	you	need	to	call	the	API	from	different	domains,	you
find	out	that	you	don’t	have	suitable	cookies	for	those	domains,	no	mechanism	for
obtaining	them,	and	so	on.	I’ll	talk	more	about	this	in	the	sections	about	exposing	your
own	API.

The	Directory	Graph	API

Although	the	Azure	AD	Graph	API	is	not	strictly	an	authentication	feature,	it
plays	such	a	pivotal	role	in	all	things	related	to	Azure	AD	that	I	cannot	avoid
giving	you	at	least	a	quick	overview.	For	more	details,	I	recommend	that	you
refer	to	the	comprehensive	online	documentation	pages	at
https://msdn.microsoft.com/en-us/Library/Azure/Ad/Graph/api/api-catalog.

The	Graph	API	is	an	OData	API	that	offers	programmatic	access	to	the
entities	that	constitute	an	Azure	AD	tenant	and	all	that	it	contains.	By
“programmatic	access,”	I	mean	performing	HTTP	GET,	POST,	PUT,	PATCH,
and	DELETE	requests	against	directory	entities,	accompanied	by	a	suitable
access	token.	(Nearly)	every	resource	in	the	directory	can	be	represented	as	a
URL	by	using	the	Graph	API—as	long	as	you	structure	the	URL	according	to
the	base	template:

Click	here	to	view	code	image
https://graph.windows.net/<tenant>/<resource	path>?<api	version>
[odata	parameters]

Throughout	this	book,	and	especially	in	Chapter	8,	I	have	been	providing
paths	for	the	entities	I’ve	described.	All	those	paths	match	the	common	URL
template.	Here’s	a	quick	explanation	of	its	components:

	<tenant>	represents	the	tenant	you	want	to	query.	Just	as	with	Azure	AD
protocol	endpoints,	<tenant>	can	be	either	one	of	the	domains	associated
with	the	tenant	of	choice	or	the	GUID	representing	the	tenantId.

	<resource	path>	represents	the	entity	you	want	to	reach.	The	Graph
hosts	a	hierarchical	structure,	where	the	top-level	features	are	containers	for
all	the	basic	entities	you’d	expect	in	the	directory:	users,	groups,
applications,	service	principals,	and	so	on.	If	you	want	to	list	all	the	users	in
your	tenant	(ignoring	results	pagination),	users	is	the	value	you’d	use	in
<resource	path>.

Individual	entities	can	be	selected	directly	by	appending	one	of	their
identifying	properties	in	the	path.	The	exact	property	depends	on	the	entity
type;	for	example,	users	can	be	identified	by	their	user	principal	name,
whereas	objectId	works	across	the	board.

For	example,	if	I	wanted	to	get	the	directory	entry	for	Mario,	our	test	user,	I
could	use
“https://graph.windows.net/developertenant.onmicrosoft.com/users/mario@developertenant.onmicrosoft.com”
or
“https://graph.windows.net/developertenant.onmicrosoft.com/users/13d3104a-

https://msdn.microsoft.com/en-us/Library/Azure/Ad/Graph/api/api-catalog

6891-45d2-a4be-82581a8e465b”.

Resource	paths	can	get	deeper	still.	Alongside	the	classic	declared
properties,	entities	feature	so-called	navigation	properties—properties	that
refer	to	other	entities	to	which	the	target	entity	is	tied	through	some	kind	of
relationship.	If	I	wanted	to	know	who	Mario’s	manager	is,	I	could	simply
GET	the	corresponding	directory	entry	via
“https://graph.windows.net/developertenant.onmicrosoft.com/users/mario@developertenant.onmicrosoft.com/manager”.
As	another	example,	if	you	go	back	to	the	discussion	in	Chapter	8	about	app
user	assignment,	you’ll	see	that	I	used
“https://graph.windows.net/developertenant.onmicrosoft.com/servicePrincipals/725a2d9a-
6707-4127-8131-4f9106d771de/appRoleAssignedTo”	for	establishing
which	users	were	assigned	to	the	sample	app.	The	appRoleAssignedTo
property	is	an	example	of	a	navigation	property	(of	the
ServicePrincipal	entity)	that	can	yield	multiple	results.

	The	<api	version>	value	indicates	what	version	of	the	Graph	API	you
want	to	use.	It	is	mandatory	and	is	there	for	your	protection:	different
versions	will	introduce	new	behaviors,	and	you	should	be	able	to	opt	in
explicitly	by	changing	the	version	number	or	stick	with	the	version	you
coded	against.	For	reference,	the	current	value	is	api-version=1.6.

	The	odata	parameters	are	an	extremely	handy	way	of	refining	your
queries	so	that	the	work	takes	place	on	the	server	instead	of	having	your	app
download	large	amounts	of	data	and	filtering	it	on	the	client	side.	For
example,	say	that	I	want	to	get	the	entry	for	one	Application,	but	I	only
know	its	client_id—that	is	to	say,	its	declared	property	appId.	Unlike	with
objectId,	the	appId	property	is	not	indexed	as	an	identifier	that	I	can
use	in	the	path.	But	thanks	to	the	$filter	feature	of	OData,	I	can	still	craft	a
single	URL	that	will	yield	the	Application	entry	I	seek:
“https://graph.windows.net/developertenant.onmicrosoft.com/applications?
$filter=appId+eq+’e8040965-f52a-4494-96ab-0ef07b591e3f’”.

You	might	have	noticed	that	the	sample	code	you	write	for	accessing	the
Graph	did	not	really	match	the	URL	template.	Graph	API	features	two	special
aliases,	/me	and	/myorganization,	which	resolve	to	the	signed-in	user	and	his
or	her	tenant,	respectively.	Those	are	resolved	from	the	access	token	that
accompanies	the	request	to	the	Graph.	Those	aliases	are	superhandy	for
writing	more	reusable	queries	and	provide	very	useful	adaptive	functionality
because	they	resolve	contextually	and	result	in	very	readable	queries.

If	you	are	not	a	fan	of	REST	and	prefer	to	work	with	client	libraries,	you
are	in	luck:	the	Graph	API	team	offers	a	client	library	that	automates	most	of
these	operations	for	you,	wrapping	them	through	a	nice	proxy	interface.	It	is,
of	course,	available	via	NuGet:	the	package	ID	is
Microsoft.Azure.ActiveDirectory.GraphClient.

Chapter	8	dedicated	a	large	section	to	permissions	for	the	Graph	API,	so	I
won’t	repeat	that	here.	My	hope	is	that	you	now	better	understand	how	the

permissions	map	to	entities.	Once	again,	I	invite	you	to	check	out	the	online
documentation.	Now	that	you	have	learned	how	to	perform	a	REST	call
secured	by	Azure	AD,	it’s	time	to	retrace	our	steps	and	make	things	a	bit
more	realistic.

ADAL	session	management	and	refresh	tokens

Your	app	will	likely	need	to	sprinkle	API	calls	through	its	entire	codebase,	as	opposed	to
making	a	call	right	after	redeeming	the	authorization	code.	You	might	be	tempted	to	save
result.AccessToken	somewhere	in	your	code	and	retrieve	it	whenever	you	need	to
make	a	call,	but	that	would	not	take	you	very	far.	The	problem	is	that	access	tokens	are
short-lived:	once	the	token	expires	and	your	API	call	fails,	what	would	your	remediation
be?	OAuth2	defines	a	nice	mechanism	for	extending	the	time	in	which	you	can	access	a
protected	API	by	providing	an	artifact—the	already	mentioned	refresh	token—that	can	be
used	for	obtaining	fresh	access	tokens	without	requiring	more	user	prompts.	Refresh
tokens	last	significantly	longer	than	access	tokens,	which	makes	it	possible	to	maintain
long-running	sessions.	Azure	AD	builds	on	that	mechanism,	adding	Kerberos-like	features
to	it.	I’ll	give	you	details	about	both	of	those	aspects	in	just	a	minute,	but	the	key	point	I
want	to	make	is	the	following:	Implementing	those	OAuth2	features	in	your	own	code	is
hard.	Luckily,	you	don’t	have	to!	ADAL	maintains	a	cache	with	all	the	access	tokens	and
refresh	tokens	you	obtained	through	an	instance	of	AuthenticationContext.	When
you	call	one	of	the	flavors	of	AcquireToken*	to	obtain	an	access	token	that	happens	to
already	be	in	the	cache,	ADAL	will	return	the	cached	copy	without	hitting	the	network.	If
the	cached	token	is	expired,	about	to	expire,	or	absent,	but	the	cache	contains	a	suitable
refresh	token,	ADAL	will	automatically	use	that	refresh	token	to	obtain	a	new	access
token,	cache	it,	and	return	it	to	you.	That	process	is	exceptionally	handy	and	one	of	the
reasons	that	the	ADAL	has	been	so	well	received—token	life-cycle	management	is
historically	one	of	the	hardest	things	to	do.

To	take	advantage	of	this	feature,	you	have	to	make	sure	that	every	time	you	need	a
token,	you	always	use	ADAL	to	get	it.	Whereas	a	local	copy	of	an	access	token	could	hold
an	expired	token,	asking	ADAL	(that	is,	calling	AcquireToken*	passing	the
parameters	defining	the	token	you	want)	guarantees	that	the	caching	and	refresh	logic
have	a	chance	to	run	and	do	their	magic.

As	a	practical	example,	say	that	you	want	to	display	the	user’s	profile	from	the	About
action	of	the	home	controller	of	your	application	(remember,	we	are	using	the	default
ASP.NET	MVC	template	here).	Remove	the	API	invocation	code	from	the
AuthorizationCodeReceived	notification,	head	to	HomeController.cs,	and	modify
About()	as	shown	here:
Click	here	to	view	code	image

public	ActionResult	About()
{
				string	ClientId	=	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”;
				string	Authority	=
“https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com”;
				string	appKey	=	“a3fQREiyhqpYL10OO6hfCW+xke/TyP2oIQ6vgu68eoE=”;
				string	resourceId	=	“https://graph.windows.net”;

				
				ClientCredential	credential	=	new	ClientCredential(ClientId,	appKey);
				AuthenticationContext	authContext	=	new	AuthenticationContext(Authority);
				AuthenticationResult	result	=	authContext.AcquireTokenSilent(resourceId,
credential,	UserIdentifier.AnyUser);
				
				HttpClient	httpClient	=	new	HttpClient();
				httpClient.DefaultRequestHeaders.Authorization	=
								new	AuthenticationHeaderValue(“Bearer”,	result.AccessToken);
				HttpResponseMessage	response	=
								httpClient.GetAsync(“https://graph.windows.net/me?api-
version=1.6”).Result;

				if	(response.IsSuccessStatusCode)
				{
								ViewBag.Message	=	response.Content.ReadAsStringAsync().Result;
				}
				return	View();
}

The	code	is	nearly	the	same	as	what	you	wrote	earlier.	The	main	difference	is	that	you
invoke	AcquireTokenSilent	instead	of	obtaining	a	token	via	an	authorization	code.
AcquireTokenSilent	is	a	method	that	attempts	to	retrieve	the	requested	token	only
by	using	the	artifacts	already	present	in	the	ADAL	cache.	It	has	the	suffix	“silent”	because
the	method	is	guaranteed	not	to	throw	up	any	UI,	which	is	somewhat	moot	in	this
particular	scenario	because	no	flavor	of	AcquireToken*	shows	any	UI	on	the	server
side.	However,	ADAL	works	both	with	web	apps	on	the	server	and	native	clients	on
devices,	and	the	latter	can	interactively	prompt	the	user	when	requesting	a	token.

AcquireTokenSilent’s	parameters	can	be	thought	of	as	conditions	that	must	hold
true	for	the	requested	token.	It	has	to	be	scoped	for	the	resource	specified	(in	our	case,	the
Graph	API),	it	has	to	be	issued	for	the	specified	client_id	(passed	indirectly	through	the
ClientCredential	instance),	and	it	has	to	have	been	issued	for	the	specified	user
account	(in	our	case,	we	declare	that	any	user	is	fine,	via	the
UserIdentifier.AnyUser	constant).

By	default,	ADAL	uses	an	in-memory	cache.	When	the	code	in	About()	executes,
that	cache	has	already	been	primed	by	the	code	in	AuthorizationCodeReceived.
The	call	to	AcquireTokenByAuthorizationCode	has	the	effect	of	saving	in	the
cache	a	token	for	accessing	the	Graph.	Hence,	assuming	that	the	call	to	About()	takes
place	within	an	hour	from	initialization	and	that	the	process	does	not	recycle,	the	call	to
AcquireTokenSilent	will	find	a	matching	access	token	in	the	cache	and	return	it
right	away.	Go	ahead,	try	this	yourself.	Start	Fiddler,	and	then	start	the	app,	sign	in,	and
click	About.	You’ll	see	that	the	call	to	AcquireTokenSilent	correctly	returns	the
desired	token,	but	Fiddler	will	show	no	network	traffic	toward	Azure	AD	for	that	call.

This	functionality	is	pretty	handy,	but	the	serious	return	of	investment	from	using
ADAL	emerges	when	refresh	tokens	come	into	play.	Allow	me	to	spend	a	moment	to
describe	how	refresh	tokens	work	in	OAuth2	and	Azure	AD.	After	that,	I’ll	come	back	to
the	code	and	describe	how	it	all	fits	together.

Access	tokens	are	short-lived	for	security	reasons.	Say	that	you	issue	an	access	token
for	Mario,	who	can	now	use	it	to	access	your	company	resources.	Imagine	that	you

discover	that	Mario	is	stealing	and	you	decide	to	terminate	him.	Given	that	access	tokens
have	no	revocation	mechanism,	Mario	will	still	be	able	to	access	resources	with	that
access	token	until	it	expires;	clearly,	it	is	in	your	interest	to	issue	access	tokens	with	a
short	validity	period.	At	the	same	time,	forcing	Mario	to	go	through	the	credential-
gathering	dance	to	obtain	a	new	token	every	time	the	old	one	expires	leads	to	unacceptable
experiences,	or	to	antipatterns	such	as	clients	caching	user	credentials	(defeating	OAuth2’s
purpose).	How	do	you	reconcile	those	seemingly	contrasting	requirements?	Enter	the
refresh	token.

The	refresh	token	is	an	artifact	that	is	issued	alongside	the	access	token.	Whenever	an
access	token	expires,	the	client	can	use	the	refresh	token	to	go	back	to	the	authorization
server’s	token	endpoint	(without	requiring	any	user	interaction)	and	ask	for	a	new	access
token.	If	the	conditions	are	right	(the	user	still	exists	in	the	system,	consent	has	not	been
revoked,	and	so	on),	the	client	will	be	issued	a	new	access	token.	Problem	solved.	The
flow,	dubbed	a	“refresh	token	grant”	in	the	OAuth2	core	specs,	is	shown	in	Figure	9-3.

Figure	9-3	Swim-lane	diagram	of	the	refresh	token	grant	for	a	confidential	client.

That’s	all	that	OAuth2	has	to	say	on	the	matter.	That	is,	of	course,	not	enough	for	fully
specifying	how	a	refresh	token	behaves	in	a	real-life	solution.	In	the	following,	you	can
find	more	details	on	how	refresh	tokens	work	in	Azure	AD.	Please	note	that	this
information	describes	the	situation	at	the	time	of	writing.	Things	are	almost	guaranteed	to
change	in	the	coming	months,	as	Azure	AD	introduces	features	granting	you	finer	control
over	token	validity	times.

	At	issuance	time,	a	refresh	token	is	valid	for	14	days.

If	you	use	the	refresh	token	within	those	14	days,	together	with	the	new	access
token,	you	receive	a	new	refresh	token	with	a	new	validity	window	of	14	days,
starting	from	the	new	issuance	instant.	This	process	can	be	repeated	for	up	to	90
days	of	total	validity	from	the	very	first	issuance.	After	those	90	days,	the	user	has	to
reauthenticate.

	Refresh	tokens	issued	for	guest	Microsoft	accounts	last	only	12	hours.

	Refresh	tokens	can	be	invalidated	at	any	time	for	reasons	independent	of	your	app;
the	deprovisioning	of	the	user	is	an	extreme	example,	but	there	are	far	more
common	circumstances	that	have	that	effect,	too.	For	example,	as	of	today,	refresh
tokens	will	be	invalidated	whenever	a	user	changes	his	or	her	password.

You	should	not	take	a	dependency	in	your	code	on	the	expected	validity	times	of	refresh
tokens.	Your	logic	should	always	assume	that	the	refresh	token	can	fail	at	any	time.

I’ll	tackle	the	case	in	which	the	refresh	token	itself	has	expired	shortly,	but	for	the	time
being	let’s	pause	and	go	back	to	the	code.	Now	we	know	what	should	happen	in	case	the
cached	access	token	expires:	ADAL	should	automatically	use	the	cached	refresh	token	to
get	a	new	access	token	(and	a	new	refresh	token	with	updated	validity).	Here’s	a	little	trick
you	can	use	to	see	the	flow	in	action	if	you	don’t	want	to	wait	one	hour	(actually	55
minutes,	given	that	ADAL	will	trigger	renewal	within	5	minutes	from	the	projected	access
token	expiration	time).	Place	a	breakpoint	right	after	the	AuthenticationContext
creation	in	About(),	start	Fiddler	as	usual,	and	then	start	the	app.	Sign	in	and	click
About.	Once	you	hit	the	breakpoint,	go	to	the	Locals	window	in	Visual	Studio.	Open
authContext.TokenCache,	go	to	the	nonpublic	members,	and	expand
tokenCacheDictionary.	You’ll	see	that	it	has	one	entry.	Expand	the	value,	and	then
right-click	ExpiresOn	and	choose	Edit	Value.	Change	the	value	to	something	like
DateTime.Now.AddDays(-1).	Then	go	ahead	and	let	the	execution	go	past	the	breakpoint.
Fiddler	will	display	something	similar	to	the	following:
Click	here	to	view	code	image

POST
https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com/oauth2/token
HTTP/1.1
Content-Type:	application/x-www-form-urlencoded
client-request-id:	5bbaccbb-82d6-483a-b224-14301c9bfbd7
return-client-request-id:	true
x-client-SKU:	.NET
x-client-Ver:	2.19.0.0
x-client-CPU:	x64
x-client-OS:	Microsoft	Windows	NT	10.0.10240.0
x-client-last-request:	8ef2acec-c8a8-481e-a1f3-fdd43c0c0059
x-client-last-response-time:	424
x-client-last-endpoint:	token
Host:	login.microsoftonline.com
Content-Length:	971
Expect:	100-continue
Connection:	Keep-Alive

resource=https%3A%2F%2Fgraph.windows.net&
client_id=c3d5b1ad-ae77-49ac-8a86-
dd39a2f91081&client_secret=a3fQREiyhqpYL10OO6hfCW%2Bxke%2FTyP2oIQ6vgu68eoE%3D&
grant_type=refresh_token&
refresh_token=AAA[…SNIP…]MIAA

As	you	can	see	in	the	request,	the	application	must	authenticate	with	the	token	endpoint
by	presenting	its	credentials	alongside	the	refresh	token	bits.	That	explains	why
AcquireTokenSilent	required	a	ClientCredential	parameter.	Note	that
overloads	of	AcquireTokenSilent	that	do	not	require	application	credentials	exist,
but	they	are	meant	to	be	used	with	public	clients	(that	is	to	say,	native	and	mobile	apps).
Web	applications	are	modeled	as	confidential	clients	in	Azure	AD	and	can	act

autonomously;	hence,	they	are	required	to	authenticate.

The	response	is	equivalent	to	the	one	received	from	the	authorization-code	grant	flow,
although	here	we	don’t	get	an	id_token:
Click	here	to	view	code	image

HTTP/1.1	200	OK
Cache-Control:	no-cache,	no-store
Pragma:	no-cache
Content-Type:	application/json;	charset=utf-8
Expires:	-1
Server:	Microsoft-IIS/8.5
x-ms-request-id:	05af78be-c6fd-44aa-95b2-42ab4ee77b5d
client-request-id:	5bbaccbb-82d6-483a-b224-14301c9bfbd7
x-ms-gateway-service-instanceid:	ESTSFE_IN_226
X-Content-Type-Options:	nosniff
Strict-Transport-Security:	max-age=31536000;	includeSubDomains
P3P:	CP=“DSP	CUR	OTPi	IND	OTRi	ONL	FIN”
Set-Cookie:	flight-uxoptin=true;	path=/;	secure;	HttpOnly
Set-Cookie:	x-ms-gateway-slice=productionb;	path=/;	secure;	HttpOnly
Set-Cookie:	stsservicecookie=ests;	path=/;	secure;	HttpOnly
X-Powered-By:	ASP.NET
Date:	Wed,	14	Oct	2015	22:43:50	GMT
Content-Length:	2371

{“token_type”:“Bearer”,“expires_in”:“3599”,“scope”:“User.Read”,“expires_on”:“1444866230”,“not_before”:“1444862330”,“resource”:“https://graph.windows.net”,“pwd_exp”:“461833”,“pwd_url”:“https://portal.microsoftonline.com/ChangePassword.aspx”,“access_token”:“eyJ0e
[…SNIP…]XAoUPJPqYQ”,“refresh_token”:“AAAB[…SNIP…]MOIAA”}

The	nice	thing	about	this	exchange	is	that	it	all	happens	transparently	within	the	call	to
AcquireTokenSilent.	Technically,	as	long	as	you	use	ADAL,	you	don’t	even	need	to
know	that	refresh	tokens	exist—you	reap	the	benefits	of	long	sessions	without	having	to
deal	with	the	associated	complexity.

	Note

Like	the	access	token,	the	refresh	token	is	also	completely	opaque	to	the
client.	The	only	entity	meant	to	consume	it	is	Azure	AD	itself,	hence	there’s
no	point	for	anybody	else	to	peek	at	it.	And,	of	course,	the	refresh	token	is
protected	against	tampering.	The	only	thing	a	client	can	do	with	it	is	to	haul	it
back	and	forth	with	Azure	AD.

The	advantage	of	this	approach	becomes	even	more	evident	when	you	consider	another
special	property	of	Azure	AD	refresh	tokens—their	ability	to	be	used	to	get	access	tokens
for	multiple	resources.

Multiresource	refresh	tokens		As	you	have	learned	throughout	this	book,	and	in
particular	in	Chapter	8,	Azure	AD	models	very	precisely	the	relationships	between
applications	and	resources.	Requests	for	access	tokens	need	to	specify	the	resource	for
which	the	desired	token	is	meant,	and	the	resulting	access	token	is	scoped	down	so	that	it
can	be	used	only	against	the	resource	it	has	been	issued	for.	In	the	section	“Exposing	a
protected	web	API,”	you’ll	learn	in	detail	how	that	takes	place.

In	the	sample	app	we	are	calling	only	the	Graph	API.	But	what	if	you	want	to	also	call

Office	365	and	the	Azure	API?	You	already	know	how	you’d	handle	that	from	the
permissions-configuration	perspective—you’d	just	add	the	required	resources	and
permissions	in	the	client’s	Application.	In	turn,	that	would	cause	the	consent	prompt
to	ask	for	all	the	required	permissions	at	once.	But	here’s	the	important	part:	the	refresh
token	you	receive	from	Azure	AD	knows	about	all	the	resources	you	granted	consent	for.
As	a	result,	it	doesn’t	matter	what	resource	you	ask	for	on	your	first	AcquireToken*
call.	Once	ADAL	gets	the	refresh	token,	it	can	use	it	to	obtain	access	tokens	for	any	of	the
other	resources	your	client	is	configured	to	have	access	to.
In	practice	that	means	that	you	can	make	new	calls	to	AcquireTokenSilent,	each

time	passing	the	resourceId	of	any	of	the	other	resources	you	want.	ADAL	will
transparently	use	the	refresh	token	grant	to	obtain	and	cache	the	requested	access	token.
This	nice	property	earns	for	Azure	AD–issued	tokens	the	moniker	multiresource	refresh
tokens,	or	MRRTs.	In	a	sense,	you	can	think	of	MRRTs	as	the	OAuth2	equivalent	of	ticket
granting	tickets	(TGTs)	in	Kerberos:	they	are	artifacts	that	allow	a	user	to	obtain	tokens	to
access	the	resources	the	directory	decides	she	or	he	has	access	to.

Note	that	even	for	those	new	resources,	refresh	tokens	remain	tied	to	a	particular	client
ID	and	user:	refresh	tokens	can	only	be	used	together	with	the	client	ID	of	the	application
that	is	used	to	obtain	the	refresh	token	in	the	first	place,	and	the	user	will	always	be	the
one	that	granted	the	consent	recorded	or	referenced	by	the	refresh	token	itself.

Just	a	closing	note	on	the	topic:	Until	recently,	the	use	of	MRRTs	was	also	limited	to	the
tenant	that	originally	issued	the	first	refresh	token.	Thanks	to	a	recent	change	in	Azure
AD,	however,	now	you	can	use	MRRTs	to	ask	for	access	tokens	from	any	tenant	in	which
the	user	has	a	guest	account	and	has	already	granted	consent	for	the	client	app	originally
used	to	obtain	the	first	refresh	token.	In	practice,	say	that	I	have	an	Microsoft	account	user
who	is	an	administrator	for	an	Azure	subscription.	All	Azure	AD	tenants	created	under
that	subscription	will	have	a	guest	account	for	that	user.	Say	also	that	I	have	tenant	A	and
tenant	B	and	a	multitenant	web	app	that	needs	Graph	API	(or	any	other	API)	access	for
which	I	consented	with	the	same	Microsoft	account	user	in	both	tenants.	I	can	now	obtain
a	token	for	the	Graph	API	of	tenant	A	and	then	use	the	refresh	token	so	obtained	to	request
an	access	token	for	the	Graph	API	in	tenant	B.	All	I	need	to	do	is	repeat	the
AcquireTokenSilent	call,	but	against	an	instance	of	AuthenticationContext
initialized	for	tenant	B,	and	ensure	that	the	token	cache	in	the	new
AuthenticationContext	is	the	same	as	the	one	that	was	primed	with	tokens	from
tenant	A.	Clear	as	mud?	That’s	a	good	segue	to	the	next	section.

ADAL	cache	considerations	for	web	applications		ADAL	began	its	existence	as	a
library	for	native	applications,	apps	meant	to	be	run	on	devices	and	operated	by	a	user
engaged	in	an	interactive	session.	The	default	ADAL	cache	is	aligned	with	that	original
mission:	it	is	an	in-memory	cache	that	relies	on	a	static	store,	available	process-wide.	That
means	that	by	default,	each	and	every	AuthenticationContext	instance	you
initialize	within	a	process	will	read	and	write	against	the	same	token	cache.

However,	what	works	for	native	clients	doesn’t	work	too	well	for	applications	meant	to
be	executed	on	midtiers	and	back	ends.	Namely:

	These	applications	are	accessed	by	many	users	at	once.	Saving	all	access	tokens	in

the	same	store	creates	isolation	issues	and	presents	challenges	when	operating	at
scale:	many	users,	each	with	as	many	tokens	as	the	resources	the	app	accesses	on
their	behalf,	can	mean	huge	numbers	and	very	expensive	lookup	operations.

	These	applications	are	typically	deployed	on	distributed	topologies,	where	multiple
nodes	must	have	access	to	the	same	cache.

	Cached	tokens	must	survive	process	recycles	and	deactivations.	Think	of	the
scenario	I	already	mentioned	in	Chapter	2,	in	which	you	connect	your	Facebook
account	to	Twitter	so	that	every	time	you	tweet	your	Facebook	Wall	posts	the	same
update.	That	is	only	possible	if	Twitter	saves	in	persistent	storage	the	access	tokens
necessary	for	calling	the	Facebook	API—or	you’d	have	to	reauthenticate	to
Facebook	to	reacquire	the	delegated	token	every	time	you	sign	in	to	Twitter.

For	all	those	reasons,	when	you	are	implementing	web	apps,	it	is	a	good	idea	to
override	the	default	ADAL	token	cache	with	a	custom	implementation.	Unfortunately,	the
library’s	developers	cannot	predict	at	design	time	what	persistent	storage	you’ll	use	at	run
time,	hence	they	can’t	provide	a	default	cache	for	midtier	applications,	but	the	good	news
is	that	implementing	a	custom	cache	in	ADAL	is	surprisingly	easy.

ADAL’s	cache	extensibility	model	isolates	you	from	all	the	details	of	its	internal
structure,	which	is	always	maintained	in	memory:	its	primitives	are	meant	to	allow	you	to
persist	the	token	cache	on	an	arbitrary	store;	hence,	they	are	mostly	concerned	about
warning	you	when	a	read	or	write	operation	is	about	to	happen	or	just	concluded.	That
gives	you	an	opportunity	to	update	the	private	ADAL	in-memory	copy	of	the	cache	from
your	custom	storage	right	before	a	read,	or	to	reflect	in	persistent	storage	any	changes	that
just	occurred	in	the	in-memory	copy.	And,	of	course,	by	controlling	how	the	token	cache
is	instantiated,	you	can	also	control	its	scope:	for	example,	you	can	enforce	that	every	web
application	session	have	its	own	cache	instance	so	that	the	content	of	the	cache	is	limited
to	all	the	access	tokens	that	a	given	web	app	user	accumulated	for	calling	the	web	API.
This	breaks	down	individual	caches	into	manageable	chunks,	instead	of	having	to	save
potentially	millions	of	sessions	in	a	flat	store	as	the	default	cache	would.

For	completeness,	here’s	a	super	quick	explanation	of	how	the	main	cache	primitives
operate.	However,	I	would	recommend	that	you	study	the	custom-cache-classes	feature	in
the	.NET	samples	at	https://github.com/azure-samples?
utf8=%E2%9C%93&query=openidconnect.

You	create	a	custom	cache	by	deriving	from	TokenCache.	You	tell
AuthenticationContext	that	you	want	to	use	your	custom	cache	by	passing	an
instance	of	your	cache	class	at	construction	time,	as	shown	in	the	following.	Note	that	you
have	to	pass	the	same	cache	instance,	or	instances	designed	to	work	against	the	same
store,	to	all	the	AuthenticationContext	occurrences	that	you	want	to	share	the
cache.	In	our	current	sample,	that	means	passing	the	same	custom	cache	to	the
AuthenticationContext	constructor	calls	both	in	Startup	and	in	About().
Click	here	to	view	code	image

AuthenticationContext	authContext	=	new	AuthenticationContext(Authority,	new
CustomADALCache
(whateverInitDataINeed));

https://github.com/azure-samples?utf8=%E2%9C%93&query=openidconnect

TokenCache	features	three	notifications—BeforeAccess,	BeforeWrite,	and
AfterAccess—that	are	triggered	at	specific	moments	at	which	ADAL	works	against
the	cache.

Say	that	you	make	a	call	to	AcquireTokenSilent	asking	for	a	token	for	resource
1.	ADAL	needs	to	check	the	cache	to	see	whether	there	is	already	an	access	token	for
resource	1	or	if	there	is	a	valid	refresh	token	for	obtaining	such	an	access	token.	Right
before	it	reads	the	cache,	ADAL	calls	the	BeforeAccess	notification.	Here	you	have
the	opportunity	to	retrieve	your	persisted	cache	blob	from	your	persistent	store	and	pass	it
to	ADAL’s	in-memory	cache.	You	do	so	by	passing	that	blob	to	Deserialize.	Note
that	you	can	apply	all	kinds	of	heuristics	to	decide	whether	the	existing	in-memory	copy	is
still	okay	and	skip	the	deserialization	to	reduce	the	time	in	which	you	access	your
persistent	store.

Now	consider	a	case	in	which	you	are	invoking
AcquireTokenByAuthorizationCode.	Once	ADAL	obtains	a	new	token,	it	needs
to	save	it	in	the	cache.	But	right	before	that,	it	invokes	the	BeforeWrite	notification.
That	gives	you	the	opportunity	to	apply	whatever	concurrency	strategy	you	want	to	enact:
for	example,	you	might	decide	to	place	a	lock	on	your	blob	so	that	other	nodes	in	your
farm	that	are	possibly	attempting	a	write	at	the	same	time	would	avoid	producing
conflicting	updates.

After	ADAL	adds	the	new	token	to	its	in-memory	copy	of	the	cache,	it	calls	the
AfterAccess	notification.	That	notification	is	in	fact	called	every	time	ADAL	accesses
the	cache,	not	just	when	a	write	takes	place.	However,	you	can	always	tell	whether	the
current	operation	resulted	in	a	cache	change	because	in	that	case	the	property
HasStateChanged	will	be	set	to	true.	If	that	is	the	case,	you	will	typically	call
Serialize()	to	get	a	binary	blob	representing	the	latest	cache	content—and	save	it	in
your	storage.	After	that,	it	will	be	your	responsibility	to	clear	whatever	lock	you	might
have	set.	Please	note	that	ADAL	never	automatically	resets	HasStateChanged	to
false.	You	have	to	do	it	in	your	own	code	after	you	are	satisfied	that	you	handled	the	event
correctly.

Other	areas	you	might	want	to	modify	in	your	class	concern	the	basic	life	cycle.	You’ll
likely	want	to	populate	the	cache	from	your	store	at	construction	time,	you’ll	want	to
override	Clear	and	DeleteItem	to	ensure	that	you	reflect	cache	state	changes,	and	so
on.

To	make	things	a	bit	more	concrete,	here’s	a	naïve	implementation	of	a	custom	cache
that	persists	tokens	in	the	HTTP	session.	This	comes	straight	from	one	of	the	Azure	AD
samples	online:
Click	here	to	view	code	image

public	class	NaiveSessionCache:	TokenCache
{
				private	static	readonly	object	FileLock	=	new	object();
				string	UserObjectId	=	string.Empty;
				string	CacheId	=	string.Empty;
				public	NaiveSessionCache(string	userId)
				{

								UserObjectId	=	userId;
								CacheId	=	UserObjectId	+	“_TokenCache”;

								this.AfterAccess	=	AfterAccessNotification;
								this.BeforeAccess	=	BeforeAccessNotification;
								Load();
				}
				public	void	Load()
				{
								lock	(FileLock)
								{
												this.Deserialize((byte[])HttpContext.Current.Session[CacheId]);
								}
				}
				public	void	Persist()
				{
								lock	(FileLock)
								{
												//	reflect	changes	in	the	persistent	store
												HttpContext.Current.Session[CacheId]	=	this.Serialize();
												//	once	the	write	operation	took	place,	restore	the
HasStateChanged	bit	to	false
												this.HasStateChanged	=	false;
								}
				}
				//	Empties	the	persistent	store.
				public	override	void	Clear()
				{
								base.Clear();
								System.Web.HttpContext.Current.Session.Remove(CacheId);
				}
				public	override	void	DeleteItem(TokenCacheItem	item)
				{
								base.DeleteItem(item);
								Persist();	
				}
				//	Triggered	right	before	ADAL	needs	to	access	the	cache.
				//	Reload	the	cache	from	the	persistent	store	in	case	it	changed	since
the	last	access.
					void	BeforeAccessNotification(TokenCacheNotificationArgs	args)
				{
								Load();
				}
				//	Triggered	right	after	ADAL	accessed	the	cache.
				void	AfterAccessNotification(TokenCacheNotificationArgs	args)
				{
								//	if	the	access	operation	resulted	in	a	cache	update
								if	(this.HasStateChanged)
								{
												Persist();																		
								}
				}
}

The	main	thing	I’ll	point	out	about	this	implementation	is	that	the	store	is	initialized	per
user,	so	every	session	with	the	web	app	has	its	own	cache	instance.	If	you	want	to	see	a
more	complete	implementation,	based	on	the	Entity	Framework,	you	can	look	at	the	more
advanced	samples	(such	as	the	multitenant	ones).	Alternatively,	you	can	simply	create	a
new	project	in	Visual	Studio	2015	and	be	sure	to	select	the	Read	Directory	check	box	in
the	authentication	settings	wizard.	Visual	Studio	will	automatically	generate	a	custom

cache	class	for	you,	also	based	on	the	Entity	Framework.

What	to	do	when	a	refresh	token	expires		The	call	to	AcquireTokenSilent	can
fail,	and	your	code	needs	to	be	prepared	for	that.

Excluding	the	obvious	case	in	which	the	cache	is	empty,	there	are	two	main	reasons	that
AcquireTokenSilent	will	fail	for	the	scenario	we’ve	examined	so	far:

	There	are	multiple	cached	tokens	that	can	satisfy	the	requirements	imposed	by	the
parameters	of	the	call.

	Both	the	access	token	and	all	the	suitable	refresh	tokens	have	expired.

Let’s	get	the	first	case	out	of	the	way	because	it’s	the	simplest.	You	recognize	that	you
are	in	this	situation	from	the	fact	that	AcquireTokenSilent	fails	with	an
AdalException	warning	you	that	“multiple_matching_tokens_detected:	The	cache
contains	multiple	tokens	satisfying	the	requirements.	Call	AcquireToken	again	providing
more	requirements	(e.g.	UserId)”.	How	did	you	end	up	with	multiple	tokens	in	the	cache
for	the	same	client	ID,	meant	for	the	same	resource?	Sometimes	that’s	intentional:	our
scenario	so	far	expects	the	user	of	the	web	application	and	the	user	calling	the	web	API	to
be	the	same,	but	that’s	definitely	not	the	only	valid	scenario.	Think	of	an	app	showing	you
multiple	Exchange	Online	calendars:	an	administrative	assistant	might	sign	in	to	the	web
app	with	his	or	her	own	account	and	then	proceed	to	get	an	access	token	for	his	or	her	own
calendar	and	another	access	token	for	his	or	her	boss’s	calendar.	I’ll	examine	similar
scenarios	more	closely	later	on.

In	our	sample	app,	having	multiple	tokens	is	more	likely	the	result	of	a	mistake.	For
example,	if	you	did	not	override	the	default	cache	with	one	that	has	better	user	isolation,
this	is	your	punishment:	multiple	concurrent	users	access	your	app	and	all	get	an	access
token	for	themselves	via	the	call	to	AcquireTokenByAuthorizationCode	in
Startup.	Once	the	execution	reaches	the	AcquireTokenSilent	call	in	About(),
the	cache	will	contain	as	many	access	tokens	for	the	Graph	API	as	there	are	concurrent
users.	Given	that	in	our	call	we	don’t	specify	for	which	user	we	want	the	token	(we	pass
UserIdentifier.AnyUser),	ADAL	does	not	know	which	token	should	be	returned
and	errors	out.

For	this	specific	case	the	solution	is	to	use	a	better	cache,	but	in	general	you	deal	with
this	situation	first	by	inspecting	the	cache	to	see	whether	you	indeed	have	multiple	entries
for	multiple	users.	For	this	task	I	like	to	use	Visual	Studio’s	Immediate	window	and
perform	LINQ	queries	against	the	cache	to	see	how	many	tokens	matching	my
requirement	(same	client	ID	for	the	same	resource)	are	stored.	For	example:
Click	here	to	view	code	image

var	usrz	=	authContext.TokenCache.ReadItems().Where(p	=>	p.Resource	==
“https://graph.windows.net”	&&	p.ClientId	==	“c3d5b1ad-ae77-49ac-8a86-
dd39a2f91081”);

This	will	return	an	IEnumerable	of	entries—if	there’s	more	than	one,	the	error
message	is	accurate,	and	your	recourse	is	to	specify	in	AcquireToken*	which	user	you
want	a	token	for.	Before	looking	at	how	that’s	done,	let’s	take	a	look	at	one	of	those
entries.	If	you	type	usrz.First();	in	the	Immediate	window,	you’ll	get	something	like	the

following:
Click	here	to	view	code	image

{Microsoft.IdentityModel.Clients.ActiveDirectory.TokenCacheItem}
				AccessToken:	“eyJ0eX[…SNIP…]aohJ6LA”
				Authority:
“https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com/”
				ClientId:	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”
				DisplayableId:	“mario@developertenant.onmicrosoft.com”
				ExpiresOn:	{10/15/2015	8:47:54	PM	+00:00}
				FamilyName:	“Rossi”
				GivenName:	“Mario”
				IdToken:	“eyJ0eX[..SNIP..]oMQ”
				IdentityProvider:	“https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-
a80c4e36fe5e/”
				IsMultipleResourceRefreshToken:	true
				RefreshToken:	“AAA[..SNIP..]XIAA”
				Resource:	“https://graph.windows.net”
				TenantId:	“6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e”
				UniqueId:	“13d3104a-6891-45d2-a4be-82581a8e465b”

The	fields	DisplayableId	and	UniqueId	are	the	ones	that	you	can	use	for
indicating	to	AcquireToken*	which	user	you	want	a	token	for.	The	former	can	contain
the	user’s	UPN	or	email	address,	depending	on	what	Azure	AD	sends.	The	latter	can
contain	the	users’	ObjectId	in	the	directory	when	available,	or	the	NameIdentifier	in	case	it
is	not.	You	pass	one	of	those	values	to	a	new	instance	of	the	UserIdentifier	class,
and	then	you	pass	that	instance	in	AcquireToken*.	For	example:
Click	here	to	view	code	image

authContext.AcquireTokenSilent(resourceId,	credential,	new
UserIdentifier(“mario@developertenant.onmicrosoft.com”,UserIdentifierType.OptionalDisplayableId);)

If	you	want	to	use	the	UniqueId	value—a	great	idea	given	that	it	is	nonreassignable
—you’d	use	UserIdentifierType.UniqueId.	If,	as	I	am	doing	in	the	snippet,	you
want	to	use	the	DisplayableId,	you	can	use	either
UserIdentifierType.OptionalDisplayableId	or
UserIdentifierType.RequiredDisplayableId.

	Note

On	the	midtier,	UserIdentifierType.OptionalDisplayableId
and	UserIdentifierType.RequiredDisplayableId	are	fully
equivalent.	If	you	were	using	them	with	an	interactive	flavor	of
AcquireToken*	in	a	native	client,	that	call	might	trigger	a	dialog	box	in
which	the	user	can	enter	credentials.	RequiredDisplayableId	would
enforce	that	the	resulting	token	match	the	ID	that	was	passed	when	calling
AcquireToken*,	so	it	would	error	out	if	the	end	user	enters	different
credentials;	OptionalDisplayableId	would	instead	accept	the	outcome
of	entering	new	user	credentials,	as	the	UserIdentifier	instance	would
be	used	only	as	a	way	of	inspecting	the	cache	and	prepopulating	the	username
field.

The	case	of	the	refresh	token	expiration	is	more	complicated	and,	of	course,	far	more
frequent.

The	assumption	that	the	signed-in	user	in	the	web	app	and	the	user	who	obtains	the
tokens	for	calling	the	API	are	in	fact	the	same	user	makes	the	remediation	very	clear:	that
user	must	be	used	in	the	context	of	a	new	authorization	request	to	get	a	brand-new	refresh
token,	and	in	the	OpenID	Connect	hybrid	flow,	that	can	be	accomplished	by	triggering	the
sign-in	flow	again.

Before	I	jump	to	the	code,	however,	I’d	like	to	offer	a	few	words	on	what	that	means	for
the	experience.	A	refresh	token	might	expire	while	the	web	session	with	the	app	(that	is,
the	session	cookie	that	the	cookie	middleware	emitted	at	sign-in	time)	is	still	valid.	If	the
nature	of	your	application	is	such	that	the	user	can	still	do	something	useful	with	your
pages	even	if	she	or	he	is	not	able	to	perform	the	API	call	you	need	the	refresh	token	for,
then	you	should	be	careful	with	how	you	handle	reauthentication.	Triggering	a	blind
redirect	at	a	random	moment	in	your	app	will	disorient	your	user	and	disrupt	the
experience.	My	favorite	pattern	for	handling	this	situation	is	the	one	that	you	can	observe
when	using	the	Klout	(klout.com)	web	application.	Klout	integrates	with	many	web	APIs
to	aggregate	your	activity	over	social	networks.	Occasionally	the	tokens	for	invoking
those	APIs	expire.	Klout	does	not	kick	you	out	of	your	session,	however;	rather,	it	informs
you	that	there	are	features	you	don’t	have	access	to	until	you	go	through	the	authorization
flow	again—and	gives	you	an	opportunity	to	do	so	in	the	form	of	a	link.	You	can	see	an
example	in	the	top	banner	in	Figure	9-4.

http://klout.com

Figure	9-4	How	Klout	handles	the	reauthorization	experience	with	the	APIs	it
integrates	with.

Now	here’s	a	quick-and-dirty	way	of	modifying	the	About()	action	to	achieve	a
similar	effect.	Again,	the	“same	user”	assumption	is	of	huge	help	here.	I’ve	highlighted
the	new	and	interesting	bits:
Click	here	to	view	code	image

public	ActionResult	About(string	reauth)
{
				if	(reauth	==	null)
				{
								string	ClientId	=	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”;
								string	Authority	=
“https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com”;
								string	appKey	=	“a3fQREiyhqpYL10OO6hfCW+xke/TyP2oIQ6vgu68eoE=”;
								string	resourceId	=	“https://graph.windows.net”;
								try
								{

												ClientCredential	credential	=	new	ClientCredential(ClientId,
appKey);
												AuthenticationContext	authContext	=	new
AuthenticationContext(Authority);
												AuthenticationResult	result	=
authContext.AcquireTokenSilent(resourceId,	
																																																																									credential,
																																																																									UserIdentifier.
																																																																									AnyUser);
												HttpClient	httpClient	=	new	HttpClient();
												httpClient.DefaultRequestHeaders.Authorization	=
																new	AuthenticationHeaderValue(“Bearer”,	result.AccessToken);
												HttpResponseMessage	response	=
																httpClient.GetAsync(“https://graph.windows.net/me?api-
version=1.6”).Result;
												if	(response.IsSuccessStatusCode)
												{
																ViewBag.Message	=
response.Content.ReadAsStringAsync().Result;
												}
								}
								catch	(AdalException	ex)
								{
												if	(ex.ErrorCode	==	“failed_to_acquire_token_silently”)
												{
																Response.Write(“Your	tokens	are
expired.	Click	here	to	reauth”);
												}
												else
												{
																//	more	error	handling
												}
								}																
				}
				else
				{
								HttpContext.GetOwinContext().Authentication.Challenge(
												new	AuthenticationProperties	{	RedirectUri	=	“/Home/About”,	},	
												OpenIdConnectAuthenticationDefaults.AuthenticationType);
				}
				return	View();
}

The	token	acquisition	and	API	call	logic	is	wrapped	in	a	try-catch	block.	In	the	case	in
which	the	app	fails	because	AcquireTokenSilent	does	not	succeed	in	obtaining	a
token,	we	crudely	display	a	message	and	provide	a	link	to	the	same	action—but	with	an
extra	parameter	(of	nullable	type,	so	that	nothing	happens	when	the	action	is	invoked
without	parameters,	as	is	usually	the	case).	If	the	end	user	clicks	that	link,	we	know	that	he
or	she	intends	to	perform	the	reauthentication	flow,	hence	the	redirect	won’t	be	a	surprise
and	won’t	disrupt	the	experience.

At	the	beginning	of	the	method,	the	code	checks	for	the	presence	of	that	parameter.	If
we	find	it,	we	trigger	a	sign-in,	specifying	that	we	intend	to	come	back	to	the	original
action	once	we’re	done.	Assuming	that	the	sign-in	goes	well	and	that	the
AcquireTokenByAuthorizationCode	runs	successfully	to	seed	the	cache,	this
time	around	the	AcquireTokenSilent	call	will	succeed.	Back	to	business	as	usual.

You	can	experience	that	flow	in	action	by	signing	in,	placing	a	breakpoint	right	after	the

AuthenticationContext	construction,	and	then	using	the	Immediate	window	for
cleaning	up	the	cache	(via	authContext.TokenCache.Clear();).	That	will	also
show	you	that	if	there’s	still	a	valid	session	with	the	web	app,	token	acquisition	will	take
place	without	throwing	any	UI—the	user	will	only	experience	a	quick	flash	as	the	redirect
goes	through.

Let	me	stress	that	the	preceding	snippet	truly	is	quick	and	dirty—it’s	meant	to	make	the
flow	as	clear	as	possible,	with	the	expectation	that	once	you	understand	the	gist	of	it,
you’ll	write	the	proper	error-management	code,	break	down	functionality	across	multiple
actions	if	it	fits	your	app,	and	so	on.

Other	ways	of	getting	access	tokens
The	OpenID	Connect	hybrid	flow	is	the	one	that	gives	you	the	most	bang	for	the	buck,
thanks	to	its	sign-in	and	authorization-code	flow	integration.	That	said,	it	does	not	cover
all	the	possible	topologies	of	interest	for	a	web	application	that	needs	to	access	a	web	API.
Two	notable	examples	are	the	case	in	which	you	want	to	access	an	API	as	the	application
itself,	with	no	user	involvement,	and	the	case	in	which	you	want	to	access	the	API	as	a
user	other	than	the	one	with	which	you	are	signed	in.

Accessing	an	API	as	an	application:	Client	credentials

As	I	briefly	mentioned	in	Chapter	2,	the	OAuth2	core	spec	defines	a	grant	in	which	a
client	can	obtain	access	tokens	directly	by	presenting	its	credentials	to	the	token	endpoint.
The	flow	is	summarized	in	Figure	9-5.

Figure	9-5	Swim-lane	diagram	for	the	client-credentials	grant.	Azure	AD	requires	an
extra	parameter	in	the	request,	not	shown	in	the	figure:	it’s	the	identifier	of	the	resource

to	access.

In	Chapter	8	you	learned	about	the	existence	of	application	permissions.	Specifically,

you	learned	how	to	configure	your	client	app	to	request	them	(via	the	portal	or	by	adding
the	right	entry	in	RequiredResourcesAccess	in	the	Application
object/manifest)	and	how	to	handle	consent	for	obtaining	them
(prompt=admin_consent	is	required).	After	you	have	done	that,	requesting	a	token
via	client	credentials	with	ADAL	is	very	easy:
Click	here	to	view	code	image

result	=	authContext.AcquireToken(resourceId,	clientCredential);

The	credentials	are	passed	through	the	same	ClientCredential	class	you
encountered	while	studying	AcquireTokenByAuthorizationCode.	ADAL	will
cache	the	resulting	access	tokens	to	minimize	network	traffic.	The	flow	does	not	result	in
any	refresh	token	because	there’s	no	need	for	one:	when	you	want	a	new	access	token,	you
can	always	use	the	client	credentials	again.	Note	that	ADAL	does	that	automatically	when
necessary—that	is	to	say,	within	five	minutes	from	the	cached	access	token’s	expiration	or
if	there’s	no	cached	token	yet.

Accessing	an	API	as	an	arbitrary	user:	Raw	OAuth2	authorization	grant

The	vast	majority	of	the	OAuth2	flows	you	observe	in	the	wild	are	cross-provider,	as
making	that	integration	possible	is	OAuth2’s	main	raison	d’être.	You	sign	in	to	Twitter’s
web	app	with	your	Twitter	user,	and	the	Twitter	back	end	can	call	the	Facebook	and
LinkedIn	APIs	on	your	behalf.	You	sign	in	to	Tumblr	with	your	Tumblr	user,	and	the
Tumblr	back	end	can	call	the	Facebook	and	Twitter	APIs	on	your	behalf.	And	so	on.	One
has	to	assume	that	the	Twitter	web	app	can	access	the	Twitter	API	on	behalf	of	the	user
currently	signed	in,	of	course,	but	for	all	other	APIs,	the	identity	used	has	to	be	different.

In	Azure	AD	land,	different	providers	means	different	tenants.	Or	one	can	consider
scenarios	such	as	for	the	admin	and	boss,	where	a	single	web	session	needs	to	access	the
API	as	two	distinct	users	from	the	same	tenant.	Allowing	a	web	application	to	acquire	and
use	an	access	token	on	behalf	of	a	user	that	is	not	related	to	the	currently	signed-in	user
requires	you	to	implement	an	OAuth2	authorization	grant	flow.

I’ll	be	honest	with	you:	this	is	one	of	the	toughest	flows	to	implement	with	today’s
libraries.	But	you	are	not	totally	left	to	your	own	devices—far	from	it.	ADAL	caching	will
still	save	you	tons	of	lines	of	code,	and	most	of	the	protocol	traffic	is	generated
automatically	for	you.	However,	you	do	need	to	write	code	in	your	app	for	handling
identity-specific	details,	such	as	receiving	authorization	code	and	validating	messages.
Those	things	could	be	taken	care	of	by	a	library,	but	ADAL	is	simply	not	at	that	point	yet.

You	can	find	a	detailed	code	sample	demonstrating	this	scenario	at
https://github.com/Azure-Samples/active-directory-dotnet-webapp-webapi-oauth2-
useridentity,	so	I	won’t	give	complete	end-to-end	instructions,	but	I	want	to	be	sure	that
you	understand	what’s	going	on	in	this	topology.

At	a	high	level,	you	can	think	of	this	as	a	variant	of	the	logic	you	studied	in	the	hybrid
flow	for	handling	the	case	in	which	the	refresh	token	expires.	You	still	attempt	to	get	the
token	you	need	via	AcquireTokenSilent,	and	you	still	react	to	a	failure	to	do	so	by
providing	the	end	user	with	a	link	for	going	through	reauthorization.	However,	the
reauthorization	logic	is	no	longer	a	simple	trigger	to	sign	in:	this	time	it	entails

https://github.com/Azure-Samples/active-directory-dotnet-webapp-webapi-oauth2-useridentity

constructing	an	OAuth2	authorization-code	request,	tailored	to	the	specific	tenant	and	user
you	wish	to	engage.	There’s	more.	You	can	no	longer	rely	on	the	OpenID	Connect
middleware	notifications	for	redeeming	the	code,	which	means	you	need	to	provide
something	(such	as	a	controller)	that	waits	for	the	authorization	code	to	come	back,
validates	the	message,	redeems	the	code	for	a	token	via	ADAL	(so	that	it	ends	up	in	the
cache),	and	redirects	to	the	controller	from	where	this	all	originated.	It	sounds	worse	than
it	actually	is,	but	it	is	definitely	more	work	than	all	the	other	flows	we	have	discussed	so
far.

Exposing	a	protected	web	API
The	counterpart	of	consuming	APIs	is,	of	course,	offering	your	own	API	for	consumption
—from	your	own	clients	and	from	third	parties.

From	the	project	perspective,	this	is	even	simpler	than	setting	up	web	sign-on	for	a
redirect-based	application.	Whereas	web	sign-on	entails	orchestrating	a	dance	of	redirects
and	handling	sessions,	verifying	a	web	API	call	simply	requires	you	to	expect	a	bearer
token	in	the	request	and	to	validate	it	against	the	requirements	advertised	by	the	trusted
authority’s	metadata.	ASP.NET	offers	specialized	middleware	for	that,	which	I’ll	show
you	in	detail.

Web	APIs	are	provisioned	in	Azure	AD	through	the	same	application	type	used	for	web
apps	with	a	UX.	Whether	your	app	serves	pages	to	be	rendered	by	a	browser	or	JSON	to
be	parsed	by	a	client	process	is	a	private	matter	you	decide	in	your	own	code—after	you
add	a	web	app	entry,	Azure	AD	is	ready	to	support	both	scenarios	at	all	times.	Web	APIs
do	have	extra	configuration	requirements,	though.	As	you	learned	in	Chapter	8,	web	APIs
have	to	declare	what	delegated	and	application	permissions	a	client	can	request	at	consent
time.	At	request	time,	those	permissions	will	be	expressed	in	different	ways	in	the
incoming	token.	You’ll	see	how	you	can	tap	into	that	information	from	your	code	and
make	access	decisions.

The	following	section	will	walk	you	through	the	process	of	creating	a	web	API	project,
protecting	it	with	Azure	AD,	and	consuming	it	from	our	sample	application.	As	usual,	I
will	use	the	scaffolding	offered	by	that	process	to	contextualize	Azure	AD	and	developer
library	features,	protocol	considerations,	and	gotchas.

Setting	up	a	web	API	project
Let’s	start	by	creating	a	Visual	Studio	project	for	our	API.	Feel	free	to	add	a	new	project	to
your	existing	solution	or	to	start	a	new	instance.

Visual	Studio	offers	a	specialized	template	for	a	web	API	protected	by	Azure	AD,	just
like	the	one	you	used	in	Chapter	1	for	creating	your	very	first	Azure	AD	application.	You
gain	access	to	it	by	clicking	the	Change	Authentication	button	in	the	project	creation
wizard	and	selecting	the	Work	And	School	Account	section.	Notably,	the	web	API
templates	in	Visual	Studio	2013	and	Visual	Studio	2015	are	very	similar—the	middleware
for	handling	the	OAuth2	bearer	token	usage	specification	is	the	first	protocol-oriented
middleware	Microsoft	shipped.

Using	the	template	is	very	handy	because	it	automatically	provisions	the	app	in	Azure

AD,	adds	all	the	necessary	NuGet	references,	and	weaves	in	boilerplate	authentication
code.	In	Chapter	5	you	had	the	opportunity	to	become	familiar	with	all	the	moving	parts
the	template	adds,	so	there’s	not	much	educational	value	to	going	through	the	manual
route	again	here.	The	main	difference	from	the	process	shown	in	Chapter	5	is	the	protocol
middleware	being	added.	In	Chapter	5	you	added	the	OpenID	Connect	and	cookie
middlewares,	but	here	you’ll	add	middleware	that	takes	care	of	the	OAuth2	bearer	token
validation	(more	details	below).	Furthermore,	in	Chapter	8	you	studied	how	applications
can	declare	permissions	in	the	Application	object/manifest	file,	so	you	already	know
how	to	handle	that	part,	and	it’s	okay	at	this	point	to	let	Visual	Studio	do	the	work	for	you.

Go	ahead	and	create	a	new	ASP.NET	4.6	Web	API	project,	either	standalone	or	in	the
same	solution.	As	you	go	through	the	creation	wizard,	select	Change	Authentication,	and
then	Work	And	School	Account.	Very	important:	in	the	domain	drop-down,	be	sure	to
select	or	enter	the	same	Azure	AD	tenant	you	used	for	the	sample	web	app	you	want	to
use	for	consuming	the	new	API.	Cross-tenant	API	calls	are	possible,	but	they	require	some
extra	steps	I	will	introduce	a	little	later.

NuGets

Once	the	project	is	ready,	you	can	take	a	look	around.	First,	head	to	packages.config.	If
you	compare	the	list	of	NuGet	packages	with	the	list	from	the	web	app	project,	you’ll	see
that	whereas	the	latter	references	Microsoft.Owin.Security.Cookies	and
Microsoft.Owin.Security.OpenIdConnect,	the	protocol	middleware	components	used	for
web	API	are	these:

	Microsoft.Owin.Security.ActiveDirectory

	Microsoft.Owin.Security.Jwt

	Microsoft.Owin.Security.OAuth

As	of	today,	they	are	all	at	version	3.0.1.

At	first	you	might	find	it	strange	that	the	middleware	implementing	the	OAuth2	bearer
token	usage	lives	in	an	Active	Directory–specific	NuGet	package.	But	think	of	what	you
know	about	that	flow,	and	the	reason	will	become	immediately	obvious.	The	function	of	a
middleware	implementing	that	protocol	is	to	validate	access	tokens,	but	the	format	of	such
access	tokens	(hence	their	validation	logic)	is	left	as	an	exercise	to	the	reader.	When	you
connect	to	Azure	AD	(or	ADFS),	it	is	well	known	in	what	format	the	tokens	will	be	and
where	to	retrieve	the	metadata	containing	the	validation	coordinates.	Hence,	we	can
enshrine	such	knowledge	in	ready-to-use	components.	Validation	for	other	providers	will
follow	the	same	rough	functional	steps	(retrieve	the	token	from	the	message,	validate	it,
manufacture	a	ClaimsPrincipal	with	the	content)	but	will	have	to	differ	in	the	actual
validation	bits.

Let’s	see	what	this	all	means	in	concrete	terms.

Middleware	initialization	code	and	API	controllers

Head	to	the	Startup.Auth.cs.	Here's	the	interesting	bit:
Click	here	to	view	code	image

public	void	ConfigureAuth(IAppBuilder	app)
{
				app.UseWindowsAzureActiveDirectoryBearerAuthentication(
								new	WindowsAzureActiveDirectoryBearerAuthenticationOptions
								{
												Tenant	=	ConfigurationManager.AppSettings[“ida:Tenant”],
												TokenValidationParameters	=	new	TokenValidationParameters	{
																	ValidAudience	=
ConfigurationManager.AppSettings[“ida:Audience”]
												},
								});
}

The	middleware	pipeline	is	decisively	simpler	in	the	case	of	a	web	API.	You	add	only
one	middleware,	through	what	must	be	the	extension	method	with	the	longest	name	in
ASP.NET’s	history:
UseWindowsAzureActiveDirectoryBearerAuthentication.	(I	played	no
part	in	picking	the	name!	True	story,	when	that	name	was	picked	I	was	on	a	tiny	Fiji
island,	30	minutes	by	boat	from	where	they	shot	the	movie	Castaway.)

The	job	of	this	middleware	is	very	simple:	it	examines	incoming	calls,	and	if	it	finds	a
bearer	token	in	the	Authorization	header,	the	middleware	extracts	it,	validates	it,
manufactures	a	ClaimsPrincipal	out	of	it,	and	marks	the	current	user	as
authenticated.	That’s	it.	There	is	no	session	creation,	proactive	interception	of	401s	to	be
turned	into	302s,	or	anything	else.

Before	I	can	properly	explain	the	meaning	of	the	properties	used	to	initialize	the
middleware,	I	need	to	introduce	you	to	how	Active	Directory	chose	to	represent	access
tokens.	I	have	been	putting	off	this	explanation	as	long	as	possible	to	avoid	creating	the
temptation	to	examine	the	content	of	the	access	token	from	the	client.	But	at	this	point,
you	are	implementing	the	intended	recipient	of	the	access	token,	so	here	you	are	expected
to	look	into	it	to	validate	it	and	consume	its	content.

Both	Azure	AD	and	ADFS	represent	access	tokens	as	JWTs,	which	closely	resemble
the	ones	you	encountered	in	the	form	of	id_tokens.	The	rationale	for	choosing	an	actual
format,	one	that	anybody	with	the	correct	metadata	can	validate,	is	right	here	in	the
custom	web	API	scenario	we	are	studying.	If	AD	would	allow	you	to	call	only	Microsoft-
owned	APIs—as	Facebook	issues	tokens	only	for	its	own	Graph	API—then	the	format
would	be	irrelevant	to	you.	But	AD	can	also	be	used	for	securing	your	own	API,	so	you
need	a	mechanism	for	examining	incoming	tokens	and	deciding	whether	they	are	good	for
you	or	should	be	rejected.	Given	that	we	already	have	logic	for	validating	tokens	in	the
web	sign-on	case,	it	just	makes	sense	to	reuse	it	here—plus	some	extra	checks	the	scenario
calls	for.

You	validate	the	JWTs	used	as	access	tokens	by	using	the	same	metadata-driven	logic
you	saw	in	action	for	id_tokens	in	Chapters	6	and	7.	That	is	the	function	performed	by	the
Tenant	parameter	in	the
WindowsAzureActiveDirectoryBearerAuthenticationOptions
initialization:	it	contains	a	string	representing	a	domain	associated	with	the	tenant	you
want	tokens	from,	or	the	corresponding	tenantId,	which	the	middleware	uses	for
constructing	the	URL	of	the	metadata	document	from	which	the	validation	coordinates
should	be	retrieved.	In	our	sample,	the	value	in	Tenant	(saved	by	the	project	wizard	in

web.config)	is	“developertenant.onmicrosoft.com”.	The	tenant	is	automatically	considered
to	be	associated	with	the	Azure	AD	instance	https://login.microsoftonline.com.	If	you
need	to	connect	to	a	different	Azure	AD	instance,	you	can	omit	the	Tenant	property	in
the	options	and	directly	specify	the	metadata	document’s	URL	via	the	property
MetadataAddress.	The	twist	you	might	not	expect	is	that	for	this	middleware,	you
need	to	specify	Azure	AD’s	WS-Federation	metadata.	For	example,	in	our	case	the
equivalent	of	specifying	“developertenant.onmicrosoft.com”	in	the	Tenant	property
would	be	to	set	MetadataAddress	to
“https://login.microsoftonline.com/developertenant.onmicrosoft.com/federationmetadata/2007-
06/federationmetadata.xml”.

	Note

Why	the	WS-Federation	metadata	instead	of	the	OpenID	Connect	discovery
document?	Simple.	When	the	web	API	middleware	came	out,	Azure	AD	did
not	support	the	OpenID	Connect	discovery	document	yet.

Remember	how	in	the	OpenID	Connect	options	you	had	to	specify	the	ClientId	of
the	application?	The	OpenID	Connect	middleware	uses	the	ClientId	for	two	purposes
—to	identify	the	client	app	when	generating	the	sign-in	request	to	the	provider	and	to
validate	the	audience	claim	in	incoming	tokens—to	be	sure	that	the	caller	isn’t	simply
replaying	a	token	stolen	from	someone	else.	If	you	need	a	refresher,	head	to	Chapter	6	and
search	for	the	aud	claim	in	the	section	“The	JWT	format.”

Access	tokens	are	different.	Whereas	id_tokens	are	tokens	meant	to	be	consumed	by	the
requesting	app	itself—so	the	audience	of	the	token	is	the	requestor	itself—access	tokens
are	requested	by	a	client	that	is	(most	of	the	time)	distinct	from	the	resource	it	is
requesting	a	token	for.	You	already	saw	this	in	action,	albeit	indirectly,	in	the	calls	to
AcquireToken*	for	gaining	access	to	the	Graph	API.	You	had	to	pass	in	the	call	the
identifier	of	the	resource	you	wanted,	which	in	our	case	is	“https://graph.windows.net”.
What	you	have	not	seen	yet	is	that	the	same	resource	identifier	is	placed	by	Azure	AD	in
the	aud	claim	from	the	access	token	it	issues	back.	The	OAuth2	bearer	middleware	needs
to	check	that	incoming	tokens	carry	the	correct	audience,	which	is	why	you	are	required	to
set	that	value	in	the	ValidAudience	property	at	initialization.	The	value	you	want	to
put	in	there	has	to	be	one	of	the	identifiers	that	Azure	AD	uses	for	representing	your	web
API	app	as	a	resource—that	is	to	say,	as	a	potential	recipient	of	a	token.	In	most	of	the
developer	guidance,	the	value	put	there	is	the	App	ID	URI,	the	value	you	find	in	the	Azure
portal	on	the	Configure	tab	of	the	app	entry.	That	corresponds	to	one	of	the	values	from
the	identifierURIs	property	of	the	corresponding	Application	object.	In	our
case,	the	project	template	generated	a	unique	URI
(https://developertenant.onmicrosoft.com/SimpleWebAPI)	and	used	it	both	while	creating
the	app	and	for	initializing	the	corresponding	value	in	web.config.	Another	possible	value
is	the	ClientId	of	the	app	itself,	as	you	have	seen	in	the	OpenID	Connect	case,	or	the
appId	property	of	the	Application	object.	In	general,	all	the	acceptable	audience

https://login.microsoftonline.com
https://graph.windows.net

values	for	the	app	are	listed	in	the	servicePrincipalNames	property	of	the
ServicePrincipal,	which	normally	is	the	union	of	the	identifierURIs	and
appId	property.

	Important

Azure	AD	will	accept	in	the	token	request	any	of	the	valid	resource
identifiers,	and	will	reflect	that	in	the	audience.	This	means	that	the	client
must	request	the	exact	resource	ID	that	the	middleware	will	set	in	its
ValidAudience	property;	otherwise,	the	incoming	token	will	be	rejected!

From	the	code	generated	by	the	project	template	wizard	you	can	already	see	that
ValidAudience	is	a	property	of	TokenValidationParameters,	a	class	you
should	already	be	very	familiar	with	thanks	to	the	detailed	analysis	of	its	usage	in	Chapter
7.	The	things	you	learned	there	about	valid	values,	validation	flags,	and	validators	can	be
applied	here	as	well.	That	includes	what	you	learned	in	Chapter	8	about	how	to	use
TokenValidationParameters	for	manipulating	issuer	validation	in	the	case	of
multitenant	apps.

	Note

One	interesting	thing	is	that	you	don’t	really	need	to	initialize	an	entire
TokenValidationParameters	class	just	to	set	the	audience,	because
WindowsAzureActiveDirectoryBearerAuthenticationOptions
offers	an	equivalent	property	directly.	You	could	successfully	set	a	web	API
without	ever	knowing	that	TokenValidationParameters	even	exists.
Why	did	the	template	end	up	using	it	instead?	Long	story.	Ask	me	about	it	if
you	see	me	at	some	conference!

Here’s	one	last	thing	I	want	to	point	your	attention	to.	If	you	take	a	look	at	the	sample
API	controller	generated	by	the	template,	ValuesController,	you’ll	see	that	there’s	a
blanket	[Authorize]	on	the	entire	class.	That	means	that	any	caller	better	be	authenticated,
or	they	will	be	denied	access.	You’ll	see	in	a	few	pages	what	that	means	in	terms	of	bits	on
the	wire.

Directory	entries

The	Application	object	for	the	web	API	contains	a	default	entry	in
oauth2Permissions,	just	like	you	have	seen	for	portal-created	web	apps	in	Chapter
8.	It’s	worth	taking	another	quick	look	at	that	property	here:
Click	here	to	view	code	image

“oauth2Permissions”:	[
								{
										“adminConsentDescription”:	“Allow	the	application	to	access
SimpleWebAPI	on	behalf	of	the	signed-in	user.”,

										“adminConsentDisplayName”:	“Access	SimpleWebAPI”,
										“id”:	“f41d8346-0715-4728-83f2-6ee1d817167c”,
										“isEnabled”:	true,
										“type”:	“User”,
										“userConsentDescription”:	“Allow	the	application	to	access
SimpleWebAPI	on	your	behalf.”,
										“userConsentDisplayName”:	“Access	SimpleWebAPI”,
										“value”:	“user_impersonation”
								}
],

You’ve	already	seen	that	those	are	the	permissions	(in	this	case	permission,	singular)
that	a	client	can	ask	for	when	requesting	access	to	your	API.	Without	an	entry	in
oauth2Permissions,	your	app	could	not	operate	as	a	web	API,	which	is	why	Azure
AD	provides	a	default	one.	One	thing	I	have	not	yet	mentioned	is	that	if	you	want	your
app	and	permissions	to	show	up	in	the	drop-down	list	of	potential	clients,	your	application
must	already	have	a	ServicePrincipal	in	the	same	tenant.	This	is	why	the	web	API
template	provisions	one	ServicePrincipal	for	the	app	directly	at	creation	time.

The	value	property	of	an	oauth2Permissions	entry	is	especially	interesting
when	you’re	developing	a	web	API	because	it	holds	the	value	of	the	scope	that	a	token
will	carry	to	indicate	it	has	been	granted	the	corresponding	permission.	As	a	web	API
developer,	it	is	your	responsibility	to	verify	the	scope	values	in	incoming	tokens	and
decide	whether	they	grant	to	the	caller	the	right	to	do	with	your	API	what	they	are
attempting	to	do	at	the	moment.	Just	to	make	that	operation	a	bit	more	interesting,	I
downloaded	the	manifest	of	my	web	API	via	the	Azure	portal,	added	a	new	entry,	and	then
uploaded	it	again.	Now	it	looks	like	the	following:
Click	here	to	view	code	image

“oauth2Permissions”:	[
								{
										“adminConsentDescription”:	“Allow	the	application	to	use
SimpleWebAPI	in	write	mode.”,
										“adminConsentDisplayName”:	“Use	SimpleWebAPI	in	write	mode”,
										“id”:	“ae08ca44-4241-449a-abbf-a9a0e0ce2730”,
										“isEnabled”:	true,
										“type”:	“User”,
										“userConsentDescription”:	“Allow	the	application	to	use
SimpleWebAPI	in	write	mode.”,
										“userConsentDisplayName”:	“Use	SimpleWebAPI	in	write	mode”,
										“value”:	“SimpleWebAPI.Write”
								},
								{
										“adminConsentDescription”:	“Allow	the	application	to	access
SimpleWebAPI	on	behalf	of	the	signed-in	user.”,
										“adminConsentDisplayName”:	“Access	SimpleWebAPI”,
										“id”:	“f41d8346-0715-4728-83f2-6ee1d817167c”,
										“isEnabled”:	true,
										“type”:	“User”,
										“userConsentDescription”:	“Allow	the	application	to	access
SimpleWebAPI	on	your	behalf.”,
										“userConsentDisplayName”:	“Access	SimpleWebAPI”,
										“value”:	“user_impersonation”
								}
],

I	added	a	new	scope,	SimpleWebAPI.Write,	which	is	meant	to	represent	the

permission	one	client	needs	to	have	to	invoke	the	sample	API	controller	with	PUT,	POST,
and	DELETE	verbs.	You’ll	see	how	to	do	that	shortly.

Web	APIs	and	consent

If	you	are	writing	a	multitenant	app,	or	if	you	are	creating	apps	as	a	nonadmin
user,	you	will	have	to	deal	with	consent.	A	web	API	is	just	like	a	web	app;	in
fact	it	is	a	web	app	from	the	Azure	AD	standpoint,	but	without	the	benefit	of
a	UX.	And	without	a	UX,	there’s	no	real	opportunity	to	present	the	caller	with
a	consent	prompt.	Technically,	you	could	set	up	a	web	sign-in	flow	just	for
the	purpose	of	provisioning	the	ServicePrincipal	for	the	web	API	…
but	most	of	the	time	that’s	unnatural.	The	more	common	approach	is	to	have
the	user	consent	for	the	web	API	in	the	context	of	the	consent	prompt	they	are
already	engaging	for	provisioning	the	client	application	that	needs	to	call	the
API.	In	Chapter	8	you	encountered	the	Application	property
knownClientApplications.	If	you	want	the	consent	for	a	given	client
to	be	capable	of	prompting	for	consent	for	your	API	as	well,	be	sure	to	list
that	client	in	the	knownClientApplications	property	of	the
Application	object	of	your	API.

Handling	web	API	calls
If	you	want	to	see	our	web	API	in	action,	you	need	to	set	up	a	client	for	it	first.

Let’s	go	back	to	our	original	sample	web	application.	You	need	to	let	Azure	AD	know
that	you	want	the	web	app	to	access	our	web	API.	In	today’s	portal
(https://manage.windowsazure.com/)	that’s	easily	done	by	navigating	to	the	app	entry,
selecting	the	Configure	tab,	scrolling	to	the	section	Permissions	To	Other	Applications	and
clicking	the	Add	Application	button.

As	I	mentioned,	I	am	reluctant	to	include	screenshots	in	this	book	because	I	am	nearly
certain	that	screens	will	change.	In	today’s	experience,	clicking	that	button	brings	up	a
dialog	in	which	you	can	choose	whether	you	want	your	client	app	to	request	permissions
to	access	a	Microsoft	app	(Office	365,	Power	BI,	Azure	management,	Directory	Graph
API,	and	so	on)	or	all	apps	(any	web	app	with	a	ServicePrincipal	in	your	tenant
and	a	nonempty	oauth2Permissions	section).	Choose	the	latter,	and	locate	your	web
API	project.	Visual	Studio	names	the	app	entry	in	the	same	way	in	which	you	named	the
Visual	Studio	project,	plus	some	numeric	identifier	to	avoid	collisions:	in	my	case	the
entry	is	SimpleWebAPI.	Once	you	find	it,	select	the	entry	and	close	the	dialog.

The	Permissions	To	Other	Applications	section	now	includes	an	entry	for	your	web
API.	You	might	notice	that	it	is	displayed	in	purple	because	the	new	setting	hasn’t	been
saved	yet.	Open	the	corresponding	Delegated	Permissions	drop-down:	here	you’ll	find	all
the	permissions	defined	in	the	web	API	manifest.	Select	them	all,	and	click	Save.

Now	comes	the	fun	part.	I	want	the	web	app’s	permission	in	the	directory	to	reflect	the
new	requirements.	Chapter	8	taught	you	that	if	you	make	the	changes	while	you’re	signed
in	to	the	portal	as	a	directory	admin,	all	the	changes	are	automatically	applied	to	the

https://manage.windowsazure.com/

ServicePrincipal	as	well.	If	I	were	signed	in	as	a	standard	(nonadmin)	user,	we
might	need	to	revoke	consent	(by	visiting	myapps.microsoft.com	and	revoking	consent	for
the	web	app)	before	going	through	the	consent	experience	again.

For	simplicity,	let’s	assume	that	I	did	everything	as	an	admin	and	we	are	good	to	go.
The	way	to	be	sure	that	this	is	the	case	is	to	retrieve	the	list	of	grants	associated	with	the
app’s	ServicePrincipal	and	verify	that	the	right	entries	are	there.	The	entity	I	need
is
“https://graph.windows.net/developertenant.onmicrosoft.com/servicePrincipals/b128da6c-
5570-43fa-ab2e-6bc5abb8e6e1/oauth2PermissionGrants”,	where	b128da6c-5570-43fa-
ab2e-6bc5abb8e6e1	is	the	objectId	of	the	ServicePrincipal.	Here’s	what	I	have
in	there:
Click	here	to	view	code	image

{
		“odata.metadata”:
“https://graph.windows.net/developertenant.onmicrosoft.com/$metadata#oauth2PermissionGrants”,
		“value”:	[
				{
						“clientId”:	“b128da6c-5570-43fa-ab2e-6bc5abb8e6e1”,
						“consentType”:	“AllPrincipals”,
						“expiryTime”:	“2016-04-09T11:52:54.8020064”,
						“objectId”:	“bNoosXBV-kOrLmvFq7jm4UnIMYJNhOpOkFrsIuF86Y8”,
						“principalId”:	null,
						“resourceId”:	“8231c849-844d-4eea-905a-ec22e17ce98f”,
						“scope”:	“User.Read”,
						“startTime”:	“0001-01-01T00:00:00”
				},
				
{
						“clientId”:	“b128da6c-5570-43fa-ab2e-6bc5abb8e6e1”,
						“consentType”:	“AllPrincipals”,
						“expiryTime”:	“2016-04-14T23:56:39.9710775”,
						“objectId”:	“bNoosXBV-kOrLmvFq7jm4Ye5XNQ8LzhPkSsr0-GWByM”,
						“principalId”:	null,
						“resourceId”:	“d45cb987-2f3c-4f38-912b-2bd3e1960723”,
						“scope”:	“SimpleWebAPI.Write	user_impersonation”,
						“startTime”:	“0001-01-01T00:00:00”
				}
]
}

That’s	exactly	what	we	want.	The	first	entry	is	the	old	permission,	which	allows	every
user	on	the	tenant	to	get	a	token	for	signing	in	and	for	accessing	the	profile.	The	second	is
the	permission	establishing	that	every	tenant	user	will	also	be	able	to	access
SimpleWebAPI	through	the	web	app,	with	both	permissions	granted.

Let’s	add	a	bit	of	code	to	the	web	app	to	make	a	vanilla	call	to	our	web	API.	In	fact,	you
can	reuse	the	code	for	invoking	the	Graph	API;	you	just	need	to	change	a	couple	of	lines.
Here’s	the	relevant	fragment:
Click	here	to	view	code	image

{
				string	ClientId	=	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”;
				string	Authority	=
“https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com”;
				string	appKey	=	“a3fQREiyhqpYL10OO6hfCW+xke/TyP2oIQ6vgu68eoE=”;

https://graph.windows.net/developertenant.onmicrosoft.com/servicePrincipals/b128da6c-5570-43fa-ab2e-6bc5abb8e6e1/oauth2PermissionGrants

				//string	resourceId	=	“https://graph.windows.net”;
				string	resourceId	=
“https://developertenant.onmicrosoft.com/SimpleWebAPI”;
				try
				{
								ClientCredential	credential	=	new	ClientCredential(ClientId,	appKey);
								AuthenticationContext	authContext	=	new
AuthenticationContext(Authority);
								AuthenticationResult	result	=
authContext.AcquireTokenSilent(resourceId,	
																																																																					credential,
																																																																					UserIdentifier.AnyUser);
								HttpClient	httpClient	=	new	HttpClient();
								httpClient.DefaultRequestHeaders.Authorization	=
												new	AuthenticationHeaderValue(“Bearer”,	result.AccessToken);
								HttpResponseMessage	response	=
												//httpClient.GetAsync(“https://graph.windows.net/me?api-
version=1.6”).Result;
												httpClient.GetAsync(“https://localhost:44301/api/values”).Result;
								
								if	(response.IsSuccessStatusCode)
								{
									//..more	stuff

The	only	items	that	changed	are	the	resource	ID	of	the	token	we	are	requesting	and	the
URL	of	the	web	API	itself	(which	I	got	from	the	property	pages	of	the	project	in	Visual
Studio).	As	expected,	the	refresh	token	cached	from	the	Startup	invocation	of
AcquireTokenByAuthorizationCode	is	a	MRRT,	capable	of	obtaining	access
tokens	for	any	resource	the	app	has	been	configured	to	gain	access	to.	If	you	set	up	Fiddler
and	take	a	look	at	the	traffic,	you’ll	see	the	same	pattern	you	observed	with	the	calls	to	the
Graph.	The	only	thing	that	changes	is	the	recipient	of	the	REST	call.

	Note

By	default,	Fiddler	won’t	capture	traffic	generated	by	HttpClient,	especially
when	directed	to	localhost.	There’s	an	awesome	trick	you	can	use	to	fix	that:
when	you	initialize	your	request,	instead	of	passing	plain
https://localhost:44301/,	try	passing
https://localhost.fiddler:44301/.	Fiddler	will	now	trace	that
traffic,	too.	Don’t	forget	to	change	the	address	back,	or	your	API	calls	will
fail	when	Fiddler	isn’t	running.

Before	I	get	to	how	to	handle	scopes	on	the	web	API	side,	let’s	simulate	a	couple	of
error	situations	you	are	likely	to	encounter	while	working	with	a	web	API.

First,	comment	out	the	client	code	that	adds	the	Authorization	header	and	try	the	call
again.	The	API	call	is	going	to	come	back	with	a	401;	the	response	object	will	carry	a
StatusCode	401,	and	the	ReasonPhrase	will	be	the	dreaded	“Unauthorized.”	Just	as
expected,	the	middleware	won’t	let	through	any	calls	not	carrying	a	valid	token	from	the
intended	issuer.

Let’s	try	something	else.	Add	back	the	lines	that	include	the	token	in	the	request

headers,	and	then	go	to	the	web	API	project.	In	the	web.config	file,	locate	the	audience
value	in	AppSettings,	and	change	the	value	somehow	(for	example,	add	some	trailing
characters).	Now	go	through	the	call	flow	again.	You’ll	end	up	with	the	same	error.

That	gives	you	a	taste	of	a	hard	truth:	diagnosing	issues	with	a	web	API	on	the	client
side	is	hard.	When	the	bearer	token	middleware	encounters	issues,	it	doesn’t	usually	send
back	errors;	rather,	it	lets	the	call	proceed	without	adding	to	it	the	identity	of	the	caller.
The	error	message	is	generated	when	the	execution	reaches	the	controller	decorated	with
[Authorize],	and	at	that	point	the	reason	that	you	weren’t	able	to	get	a
ClaimsPrincipal	for	an	authenticated	user	is	lost.	All	you	know	is	that	the	caller	is
unauthorized,	and	the	message	returned	to	the	client	reflects	that.	This	means	that
troubleshooting	issues	with	a	web	API	is	best	done	statically	through	a	series	of	checks
that	in	my	experience	catch	the	vast	majority	of	the	issues:

	Does	the	aud	claim	in	the	incoming	token	match	exactly	(down	to	casing,	trailing
slashes,	HTTP	vs.	HTTPS)	the	value	used	to	initialize	ValidAudience	(or
Audience	in	the	options)	in	the	middleware	initialization?

	Does	the	iss	claim	in	the	incoming	token	match	exactly	the	issuer	indicated	in	the
metadata	referenced	by	Tenant	or	MetadataAddress	in	the	middleware
initialization	logic?	Special	attention	should	be	reserved	for	a	multitenant	case,	as
discussed	in	Chapter	8.

	Is	the	API	route	correctly	configured	for	using	the	OAuth2	bearer	middleware,	or	is
it	being	protected	by	some	other	middleware?	More	about	this	a	bit	later.

When	all	those	static	checks	fail,	it’s	time	to	turn	on	tracing	or	implement	some	of	the
validators	in	TokenValidationParameters	just	to	place	some	breakpoints.

Another	thing	that	you	already	know	but	is	worth	stressing	is	how	a	web	API	protected
via	OAuth2	bearer	tokens	doesn’t	do	much	to	help	you	get	a	token.	Whereas	a	failed
request	against	a	web	app	results	in	a	302	and	a	web	sign-on	request—in	other	words,	an
attempt	to	remediate	the	situation—here	you	get	a	cold	401,	an	invitation	to	get	your	act
together	in	your	own	client	logic.	It	is	up	to	your	code	to	decide	how	to	react	to	the	401,
and	if	the	reaction	entails	obtaining	a	new	token,	it’s	up	to	your	code	to	drive	all	the	token-
request	work.

	Note

The	OAuth2	bearer	token	usage	specification	provides	a	mechanism	for
sending	back	in	the	401	response	some	information	that	a	client	can	use	to
understand	what	the	authentication	and	authorization	requirements	of	the	web
API	are	and	attempt	to	comply.	The	information	is	sent	back	in	a	WWW-
Authenticate	header	and	mostly	pertains	to	what	scopes	the	API	requires	and
from	which	authority.	ADAL	has	some	features	meant	to	make	it	easier	for	a
client	to	make	sense	of	the	WWW-Authenticate	header,	but	it’s	still	up	to
your	code	to	work	with	it.	Also,	you	should	always	be	wary	of	entities
suggesting	an	authority	to	authenticate	against—phishing	and	token
forwarding	are	constant	threats.	For	more	details,	see
http://www.cloudidentity.com/blog/2013/11/04/call-a-web-api-without-
knowing-in-advance-its-resource-uri-or-what-authority-it-trusts/.

Processing	requests

Let’s	now	take	a	look	at	how	to	process	incoming	requests,	from	dealing	with	scope-
driven	authorization	to	performing	some	common	customizations.

Scopes	are,	as	you	might	imagine,	represented	as	claims.	If	you	fire	up	Fiddler	again
and	capture	an	access	token	(you	learned	in	Chapter	6	how	to	extract	JWTs	and	their
claims	content	from	traces),	you	should	see	something	such	as	the	following:
Click	here	to	view	code	image

{
			“acr”	:	“1”,
			“amr”	:	[“pwd”],
			“appid”	:	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”,
			“appidacr”	:	“1”,
			“aud”	:	“https://developertenant.onmicrosoft.com/SimpleWebAPI”,
			“exp”	:	1445208111,
			“family_name”	:	“Rossi”,
			“given_name”	:	“Mario”,
			“iat”	:	1445204211,
			“ipaddr”	:	“73.169.211.13”,
			“iss”	:	“https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/”,
			“name”	:	“Mario	Rossi”,
			“nbf”	:	1445204211,
			“oid”	:	“13d3104a-6891-45d2-a4be-82581a8e465b”,
			“scp”	:	“SimpleWebAPI.Write	user_impersonation”,
			“sub”	:	“wrFY8NpHyppkDsmTbQV0ZXRkkAtT2sIhnU1LoJYvYZU”,
			“tid”	:	“6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e”,
			“unique_name”	:	“mario@developertenant.onmicrosoft.com”,
			“upn”	:	“mario@developertenant.onmicrosoft.com”,
			“ver”	:	“1.0”
}

This	does	look	remarkably	similar	to	the	id_token	you	saw	in	Figure	6-3	in	Chapter	6.
The	differences	I’ve	already	mentioned	are	the	audience	value	(though	technically	you
could	use	the	client_id	of	the	web	API,	provided	that	you	use	it	consistently	in	the	token
request	on	the	client	and	in	the	audience	setting	on	the	API)	and	the	presence	of	a	scope

http://www.cloudidentity.com/blog/2013/11/04/call-a-web-api-without-knowing-in-advance-its-resource-uri-or-what-authority-it-trusts/

(scp)	claim.	The	id_token	also	has	some	extra	cryptography	tricks	used	for	validation
(nonce	and	c_hash),	but	the	middleware	takes	care	of	low-level	validations,	so	for	our
current	purposes	we	can	ignore	those.
The	bearer	middleware	validates	that	token	and	uses	it	to	create	a

ClaimsPrincipal.	However,	you	might	be	surprised	by	how	different	the	two	look.
To	see	that,	go	to	the	ValuesController	class	on	the	API,	find	the	parameterless
overload	of	Get,	and	add	the	following	line	to	it:
Click	here	to	view	code	image

ClaimsPrincipal	cp	=	ClaimsPrincipal.Current;

Now	place	a	breakpoint	on	that	line	and	run	the	solution	again.	Once	the	execution
reaches	the	breakpoint,	take	a	look	at	the	ClaimsPrincipal’s	Claims	list	as	shown	in
Figure	9-6.

Figure	9-6	The	list	of	claims	extracted	by	the	middleware	from	the	incoming	access
token.

The	claim	types	used	in	the	ClaimsPrincipal	are	much	longer	than	the	ones	found
in	the	actual	token.	In	Chapter	1	you	learned	that	this	normalization	is	performed	for	the
purpose	of	helping	you	write	code	that	queries	claims	without	worrying	about	which
protocol	or	token	format	was	used.

Checking	the	scopes	in	the	API	means	ensuring	that	for	each	of	the	methods	offered,	the
caller	possesses	the	necessary	scopes	representing	the	permissions	for	accessing	the
feature.	Here’s	a	brute-	force	example:
Click	here	to	view	code	image

public	IEnumerable<string>	Get()
{
				string	[]	scopes	=	ClaimsPrincipal.Current.FindFirst(
								“http://schemas.microsoft.com/identity/claims/scope”).Value.Split(‘

‘);
				if	(scopes.Contains(“user_impersonation”))
				{
								return	new	string[]	{	“value1”,	“value2”	};
				}
				else
				{
								throw	new	HttpResponseException(new	HttpResponseMessage	{
												StatusCode	=	HttpStatusCode.Unauthorized,
												ReasonPhrase	=	“The	Scope	claim	does	not	contain
‘user_impersonation’	or	scope	claim	not	found”
								});															
				}
}

//	…

//	POST	api/values
public	void	Post([FromBody]string	value)
{
				string[]	scopes	=	ClaimsPrincipal.Current.FindFirst(
								“http://schemas.microsoft.com/identity/claims/scope”).Value.Split(‘
‘);
				if	(scopes.Contains(“user_impersonation”)&&
scopes.Contains(“SimpleWebAPI.Write”))
				{
								//	do	stuff
				}
				else
				{
								throw	new	HttpResponseException(new	HttpResponseMessage
								{
												StatusCode	=	HttpStatusCode.Unauthorized,
												ReasonPhrase	=	“The	Scope	claim	does	not	contain
‘user_impersonation’	and	‘SimpleWebAPI.Write’	or	scope	claim	not	found”
								});
				}
}

In	this	case,	we	impose	a	rule	that	every	call	to	any	of	our	actions	be	performed	by
applications	that	have	full	faculty	for	impersonating	the	user,	as	confirmed	by	the	presence
of	the	user_impersonate	scope.	For	example,	this	means	that	calls	coming	from	a
web	app	that	acquired	tokens	through	a	client-credentials	flow	would	not	be	able	to	invoke
any	actions.	Moreover,	we	impose	a	rule	that	all	actions	that	can	alter	the	API’s	state	(here
represented	by	the	Post	method)	can	be	performed	only	by	a	caller	presenting	the	scope
SimpleWebAPI.Write	as	well.	If	you	want	to	test	this,	create	a	new	client	app	and	ask
only	for	the	user_impersonate	permission.	You’ll	see	that	users	going	through	the
new	client	app	will	not	be	able	to	perform	Post	calls.

Repeating	the	scope-verification	logic	in	each	and	every	method	might	not	be	the	most
efficient	way	of	handling	the	problem.	You	might	consider	adding	that	logic	in	an
AuthorizeAttribute.

Customizations		As	I	mentioned,	the	presence	of	TokenValidationParameters	in
the	bearer	middleware	means	that	you	can	apply	to	a	web	API	all	the	tricks	it	enables	for
web	apps.	That	includes	everything	described	in	the	“TokenValidationParameters”	section
in	Chapter	7	and	the	features	mentioned	through	Chapter	8	(such	as	the	use	of

RoleClaimType).

One	thing	that	the	bearer	middleware	lacks	is	the	rich	notifications	delegates	pipeline
you	encountered	studying	the	OpenID	Connect	middleware.	That’s	mostly	because	the
idea	wasn’t	fully	fleshed	out	when	the	bearer	token	middleware	came	out—and,	in	fact,	in
ASP.NET	5	the	new	bearer	middleware	sports	notifications	as	well.	However,	not
everything	is	lost	in	Katana	3:	there	is	a	mechanism	that	can	be	used	for	injecting	your
code	in	the	validation	flow,	and	that’s	by	specifying	a	Provider.	A	Provider	is	an	artifact
used	in	the	bearer	middleware	to	supply	a	rudimentary	counterpart	for	notifications.	I	am
reluctant	to	go	too	deeply	into	the	details,	given	that	this	has	already	changed	in	ASP.NET
5,	so	I	hope	you’ll	forgive	me	if	I	for	once	do	a	bit	of	cargo	cult	programming.	Suffice	to
say	that	specifying	a	Provider	as	shown	in	the	following	code	gives	you	an	opportunity	to
use	OnValidateIdentity	to	make	any	last-minute	changes	you	want	to	make	to	the
identity	about	to	be	passed	to	the	application.	For	example,	here	I	am	using	it	to	add	a
custom	claim—an	analogy	with	what	I	did	in	Chapter	7	in	the
SecurityTokenValidated	notification	of	the	OpenID	Connect	middleware:
Click	here	to	view	code	image

app.UseWindowsAzureActiveDirectoryBearerAuthentication(
				new	WindowsAzureActiveDirectoryBearerAuthenticationOptions
				{
								Tenant	=
ConfigurationManager.AppSettings[“ida:Tenant”],																				
								TokenValidationParameters	=	new	TokenValidationParameters	{
													ValidAudience	=
ConfigurationManager.AppSettings[“ida:Audience”],																									
								},
								Provider	=	new	OAuthBearerAuthenticationProvider()
								{
												OnValidateIdentity	=	async	context	=>
												{
																context.Ticket.Identity.AddClaim(
																			new	Claim(“http://myclaimtypes/hairlength”,	“pretty
awesome”));
												}
								}
				});

Exposing	both	a	web	UX	and	a	web	API	from	the	same	Visual	Studio
project
Imagine	that	you	have	a	web	application	that	is	meant	to	be	consumed	both	through	a	web
browser	and	by	active	clients	such	as	mobile	apps	or	the	code-behind	of	other	web	apps.

You	can	see	how	this	presents	an	interesting	challenge.	From	the	pure	REST
perspective,	all	resources	are	kind	of	the	same,	regardless	of	whether	the	representation
sent	back	from	a	given	route	is	meant	to	be	rendered	by	a	browser	or	parsed
programmatically.	If	you	consider	the	identity	angle,	however,	there	are	important
differences.	Consuming	a	resource	through	a	web	browser	entails	the	usual	dance	of	302s,
token	requests	and	responses	performed	by	jerking	the	browser	around,	and	session
cookies.	Conversely,	consuming	a	web	API	entails	sending	an	access	token	every	time,
obtaining	that	token	out	of	band,	and	dealing	with	401s	and	403s	when	the	API	isn’t
satisfied	with	the	token	it	receives.	Say	that	an	unauthenticated	user	requests	a	given	route.

Should	you	trigger	a	302	with	a	sign-in	request?	That	wouldn’t	make	sense	for	a
programmatic	client.	Should	you	send	back	a	401?	That	would	cut	the	navigation
experience	short.
Very	well.	Maybe	having	individual	routes	that	work	for	both	consumption	models	is

problematic;	however,	you	should	at	least	be	able	to	partition	your	app	into	routes	meant
to	serve	back	UX	and	routes	meant	to	expose	an	API.	This	is	the	moment	for	which	all	the
deep	study	of	the	Katana	pipeline	you	did	in	Chapter	7	pays	off!	Consider	the	following
middleware	initialization	pipeline:
Click	here	to	view	code	image

public	void	ConfigureAuth(IAppBuilder	app)
{
				app.SetDefaultSignInAsAuthenticationType(CookieAuthenticationDefaults.AuthenticationType);
				app.UseCookieAuthentication(new	CookieAuthenticationOptions());
				app.UseOpenIdConnectAuthentication(
								new	OpenIdConnectAuthenticationOptions
								{
												ClientId	=	“c3d5b1ad-ae77-49ac-8a86-dd39a2f91081”,
												Authority	=
“https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com”
								}
);
				app.UseWindowsAzureActiveDirectoryBearerAuthentication(
								new	WindowsAzureActiveDirectoryBearerAuthenticationOptions
								{
												Tenant	=	ConfigurationManager.AppSettings[“ida:Tenant”],
												TokenValidationParameters	=	new	TokenValidationParameters	{
																	ValidAudience	=
ConfigurationManager.AppSettings[“ida:Audience”]
												},	
												AuthenticationType	=	“OAuth2Bearer”,								
								});

This	pipeline	includes	the	cookie,	OpenID	Connect,	and	OAuth2	bearer	middlewares.
The	first	two	are	initialized	as	usual,	and	coupled	together	by	the	same
AuthenticationType.	The	highlighted	line	shows	that	you	change	the
AuthenticationType	of	the	bearer	middleware	to	a	unique	value,	OAuth2Bearer.
You	can	use	that	value	from	resources	to	elect	to	work	with	this	specific	middleware.	For	a
web	API,	this	is	done	through	the	HostAuthenticationFilter	attribute.

HostAuthenticationFilter	lives	in	the	Microsoft.AspNet.WebApi.Owin
NuGet	package.	You	can	use	it	for	decorating	the	actions	or	controllers	you	want	to	use	as
an	API.	Passing	to	it	a	specific	AuthenticationType	will	cause	the	user’s	principal
to	be	set	from	the	corresponding	middleware.	Assuming	that	your	app	has	a
ValueController	like	the	web	API	we’ve	been	playing	with	so	far,	you’ll	want	to
decorate	it	as	follows:
Click	here	to	view	code	image

[HostAuthentication(“OAuth2Bearer”)]
[Authorize]
public	class	ValuesController	:	ApiController
{
//…

All	the	other	routes	with	[Authorize]	alone	will	keep	working	with	a	browser	as	usual.

A	web	API	calling	another	API:	Flowing	the	identity	of	the	caller	and
using	“on	behalf	of”
It	is	exceedingly	common	for	an	API	to	have	to	call	another	API	as	part	of	implementing
its	functions.

The	client	credentials	grant	is	an	option,	although	it	has	the	shortcoming	of	creating	a
trusted	subsystem:	the	client	API	accesses	the	resource	API	always	with	the	same	rights
regardless	of	the	user	accessing	the	client	API—so	enforcing	what	that	user	can	or	cannot
do	is	left	to	the	client	API	instead	of	relying	on	the	directory.	Another	limitation	of	the
client	credentials	approach	is	that	granting	consent	for	application	permissions	always
requires	administrator	consent,	which	might	not	be	ideal	if	you	want	to	maximize	the
reach	of	your	solution.

The	section	“More	API	consumption	scenarios”	in	Chapter	2	introduced	another
approach	to	address	this	scenario,	the	on-behalf-of	flow	defined	by	the	OAuth2	Token
Exchange	extensions	(which	you	can	find	at	https://tools.ietf.org/html/draft-ietf-oauth-
token-exchange-02).	If	you	want	to	refresh	your	knowledge	of	the	approach,	turn	back	to
Chapter	2	and	refer	to	Figure	2-9.

Let’s	take	a	look	at	the	code	required	to	make	the	on-behalf-of	flow	work.	Ultimately,
the	client	API	needs	to	send	to	the	authority	the	access	token	it	receives	from	its	caller,
along	with	the	client	API’s	credentials	and	the	resourceId	of	the	API	it	wants	to	access.
The	authority	is	expected	to	examine	the	request	and	issue	a	new	access	token	scoped	for
the	new	API,	which	the	client	API	can	use	for	gaining	access.	The	operation	is
summarized	in	the	diagram	in	Figure	9-7.

Figure	9-7	Swim-lane	diagram	of	the	token	request	call	in	the	on-behalf-of	flow,	as
detailed	in	the	OAuth2	Token	Exchange	extensions	specification.

Let’s	modify	our	sample	API	to	perform	a	call	to	the	Graph	on	behalf	of	the	caller.	The

https://tools.ietf.org/html/draft-ietf-oauth-token-exchange-02

first	step	is	to	retrieve	the	bits	of	the	access	token	that	our	client	sent	to	our	API	so	that	our
API	can	use	the	original	access	token	to	request	a	new	access	token	for	accessing	the	next
layer.	We	already	know	that	the	content	of	the	incoming	access	token	is	deserialized	in
ClaimsPrincipal.Current,	but	that’s	not	good	enough:	we	need	the	original,
unmodified	token	bits	so	that	the	authority	can	examine	them	(and	possibly	recheck
signatures	and	so	on).	Since	.NET	4.5,	the	.NET	Framework	features	a	mechanism	for
preserving	the	bits	of	tokens	used	for	gaining	access	to	the	current	app:	it	is	simply	an
option	in	the	authentication	pipeline.	In	the	Katana	middleware,	that	option	is	driven	by
the	SaveSigninToken	property	of	TokenValidationParameters.	You	activate
it	by	setting	it	to	true,	as	shown	here:
Click	here	to	view	code	image

app.UseWindowsAzureActiveDirectoryBearerAuthentication(
				new	WindowsAzureActiveDirectoryBearerAuthenticationOptions
				{
								Tenant	=
ConfigurationManager.AppSettings[“ida:Tenant”],														
								TokenValidationParameters	=	new	TokenValidationParameters	{
													ValidAudience	=
ConfigurationManager.AppSettings[“ida:Audience”],
													SaveSigninToken	=	true,																									
								},

SaveSigninToken	is	false	by	default.	That	does	not	have	much	of	an	impact	on	web
API	scenarios,	but	for	web	sign-on	cases	(in	the	OpenID	Connect	hybrid	flow,	the	token	to
save	would	be	the	id_token),	the	token	bits	would	increase	the	session	cookie	size,	so	we
keep	ahold	on	the	original	token	only	when	needed.

Now	take	a	look	at	the	code	you	might	add	to	the	Get	action	of	our	sample	API	for
enabling	it	to	invoke	the	Graph	API	on	behalf	of	the	original	caller:
Click	here	to	view	code	image

public	IEnumerable<string>	Get()
{
				string	[]	scopes	=	ClaimsPrincipal.Current.FindFirst(
								“http://schemas.microsoft.com/identity/claims/scope”).Value.Split(‘
‘);
				if	(scopes.Contains(“user_impersonation”))
				{
								var	bootstrapContext	=
ClaimsPrincipal.Current.Identities.First().BootstrapContext	
																																	as
System.IdentityModel.Tokens.BootstrapContext;
								string	userName	=	ClaimsPrincipal.Current.FindFirst(ClaimTypes.Upn)
!=	null	?	
												ClaimsPrincipal.Current.FindFirst(ClaimTypes.Upn).Value	:	
												ClaimsPrincipal.Current.FindFirst(ClaimTypes.Email).Value;
								string	userAccessToken	=	bootstrapContext.Token;
								UserAssertion	userAssertion	=	new	UserAssertion(
																																											bootstrapContext.Token,	
																																											“urn:ietf:params:oauth:grant-
type:jwt-bearer”,	
																																											userName);
								ClientCredential	clientCred	=	new	ClientCredential(
																	ConfigurationManager.AppSettings[“ida:ClientID”],	
																	ConfigurationManager.AppSettings[“ida:Password”]);						
								AuthenticationContext	authContext	=	new	AuthenticationContext(

																						“https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com”);
								AuthenticationResult	result	=	
										authContext.AcquireToken(“https://graph.windows.net”,	clientCred,
userAssertion);

							//	…more	stuff

As	usual,	the	code	is	pretty	rough—for	example,	I	am	not	setting	up	a	persistent	cache
as	I	should,	given	that	we’re	on	the	server	side—but	it	should	clarify	how	to	deal	with	this
flow.

The	token	is	saved	in	the	BootstrapContext	property	of	ClaimsIdentity:	this
allows	your	code	to	gain	access	to	the	token	bits	in	a	fashion	that’s	independent	of
protocol	and	token	format,	instead	of	you	having	to	worrying	about	whether	you	should
search	for	the	token	in	a	header	or	in	the	body	of	a	POST.	That’s	what	the	statement
assigning	booststrapContext	is	about.

Once	you	have	the	original	token,	you	need	to	use	the	ADAL	object	model	to
manufacture	a	UserAssertion.	This	class	is	meant	to	wrap	the	bits	of	the	original
token	to	be	sent	to	the	authority,	augmenting	them	with	some	extra	information	such	as	the
token	type	and	the	user	to	which	the	token	was	issued	in	the	first	place.	The	information
about	the	user	is	important.	Given	that	ADAL	is	a	token-requestor	library,	it	does	not
know	anything	about	access	token	formats,	so	it	cannot	inspect	the	original	token	content
—however,	ADAL	needs	to	know	for	which	user	you	are	requesting	a	new	token	so	that	it
can	look	up	the	cache	in	case	a	suitable	token	that	fits	the	bill	already	exists.

The	request	to	the	authority	must	pair	the	UserAssertion	with	the	client	API’s	own
credentials:	if	that	was	not	required,	any	rogue	obtaining	one	access	token	would	be	able
to	mint	new	access	tokens	at	will.	The	credentials	are	represented	by	the	usual
ClientCredentials	class.

Finally,	the	call	for	retrieving	the	new	access	token	is	a	simple	overload	of	the
AcquireToken	method.	As	soon	as	you	get	the	result	back,	you	can	extract	the	access
token	from	it	and	use	it	as	shown	earlier	in	the	chapter.	Moreover,	the	cache	is	now	primed
with	both	the	new	access	token	and	a	new	refresh	token	for	the	client_id	of	the	client
API,	so	subsequent	calls	don’t	necessarily	need	to	hit	the	network	again.

Now	let’s	take	a	look	at	the	generated	traffic.	Fire	up	Fiddler	and	run	through	the
scenario.	As	soon	as	execution	hits	the	AcquireToken	call,	you’ll	capture	something
along	the	lines	of	the	following:
Click	here	to	view	code	image

POST
https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com/oauth2/token
HTTP/1.1
Content-Type:	application/x-www-form-urlencoded
client-request-id:	a97cd78d-f147-45d0-b64b-59ea4a99b916
return-client-request-id:	true
x-client-SKU:	.NET
x-client-Ver:	2.19.0.0
x-client-CPU:	x64
x-client-OS:	Microsoft	Windows	NT	10.0.10240.0
Host:	login.microsoftonline.com
Content-Length:	1626

Expect:	100-continue
Connection:	Keep-Alive

resource=https%3A%2F%2Fgraph.windows.net&
client_id=fdb34bf3-74e6-4da7-bf97-de4cb664e261&
client_secret=z5qE%2Bs2gnDkA8R8TGzisjh4EfSP1ZPjCw9EU7ZVtp7Y%3D&
grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer&
assertion=eyJ0eXA[…SNIP…]YBWg&
requested_token_use=on_behalf_of&
scope=openid

The	parameters	that	are	sent	are	pretty	much	what	you’d	expect:	client_id,
client_secret,	the	assertion	itself,	the	grant_type,	and
requested_token_use=on_behalf_of	as	dictated	by	the	OAuth2	Token
Exchange	spec.	The	scope	parameter	is	perhaps	the	only	surprise.	It	is	included	so	that
the	token	endpoint	will	also	send	back	an	id_token—an	id_token	containing	user
information	that	ADAL	uses	for	creating	the	correct	cache	entry	for	the	resulting	tokens.

And	now	look	at	what	you	find	in	the	response:
Click	here	to	view	code	image

HTTP/1.1	200	OK
Cache-Control:	no-cache,	no-store
Pragma:	no-cache
Content-Type:	application/json;	charset=utf-8
Expires:	-1
Server:	Microsoft-IIS/8.5
x-ms-request-id:	bbfbc87c-4dd0-43e6-a32f-d7c5f9c5e0e1
client-request-id:	a97cd78d-f147-45d0-b64b-59ea4a99b916
x-ms-gateway-service-instanceid:	ESTSFE_IN_228
X-Content-Type-Options:	nosniff
Strict-Transport-Security:	max-age=31536000;	includeSubDomains
P3P:	CP=“DSP	CUR	OTPi	IND	OTRi	ONL	FIN”
Set-Cookie:	flight-uxoptin=true;	path=/;	secure;	HttpOnly
Set-Cookie:	x-ms-gateway-slice=productiona;	path=/;	secure;	HttpOnly
Set-Cookie:	stsservicecookie=ests;	path=/;	secure;	HttpOnly
X-Powered-By:	ASP.NET
Date:	Mon,	19	Oct	2015	02:43:57	GMT
Content-Length:	3017

{“token_type”:“Bearer”,“expires_in”:“3898”,“scope”:“Directory.Read
User.Read”,“expires_on”:“1445226536”,“not_before”:“1445222337”,“resource”:“https://graph.windows.net”,“pwd_exp”:“101826”,“pwd_url”:“https://portal.microsoftonline.com/ChangePassword.aspx”,“access_token”:“eyJ0eXA[…
SNIP…]IvNq4w”,“refresh_token”:“AAABA[…SNIP…]wtyAA”,“id_token”:“eyJ0[…SNIP…]
CJ9.”}

As	predicted,	you	get	back	a	new	token	triplet.	But	how	do	you	know	that	the	token	you
get	back	is	actually	for	the	Graph?	Well,	using	it	successfully	would	be	a	pretty	good
indication,	but	just	to	be	on	the	safe	side,	let’s	decode	the	access	token	and	verify	that	it’s
what	we	expected:
Click	here	to	view	code	image

{
			“acr”	:	“1”,
			“amr”	:	[“pwd”],
			“appid”	:	“fdb34bf3-74e6-4da7-bf97-de4cb664e261”,
			“appidacr”	:	“1”,
			“aud”	:	“https://graph.windows.net”,
			“exp”	:	1445226536,
			“family_name”	:	“Rossi”,

			“given_name”	:	“Mario”,
			“iat”	:	1445222337,
			“ipaddr”	:	“73.169.211.13”,
			“iss”	:	“https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/”,
			“name”	:	“Mario	Rossi”,
			“nbf”	:	1445222337,
			“oid”	:	“13d3104a-6891-45d2-a4be-82581a8e465b”,
			“puid”	:	“10037FFE894016DA”,
			“scp”	:	“Directory.Read	User.Read”,
			“sub”	:	“VD3MBzqKX_DFcJjwq5K9xa1ODW5AXYNgnci589pLLb8”,
			“tid”	:	“6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e”,
			“unique_name”	:	“mario@developertenant.onmicrosoft.com”,
			“upn”	:	“mario@developertenant.onmicrosoft.com”,
			“ver”	:	“1.0”
}

The	token	does	carry	the	information	for	the	original	user,	the	one	who	invoked	the	web
app	that	invoked	our	web	API,	which	in	turn	is	about	to	invoke	the	Graph	as	the	same
user.	The	appid	corresponds	to	the	client_id	of	the	client	API,	so	we	are	good	there.	To
be	extra	certain	about	distinguishing	the	various	tokens,	I	changed	the	resources	and
permissions	requested	by	the	client	API	to	include	Directory.Read,	an	extra
permission	with	respect	to	the	other	project	in	the	solution.	Sure	enough,	the	extra	entry
appears	in	the	scope.

The	on-behalf-of	flow	is	an	extremely	powerful	one.	This	is	a	simple	sample,	probably
the	simplest	you	can	encounter.	I	encourage	you	to	experiment	with	different
combinations	of	APIs,	permissions,	client	types,	and	consent	models	to	explore	the
boundaries	of	what	can	be	accomplished	with	it.

Protecting	a	web	API	with	ADFS	“3”
As	you	learned	in	Chapter	3,	“Introducing	Azure	Active	Directory	and	Active	Directory
Federation	Services,”	ADFS	“3”	introduced	the	ability	for	native	clients	to	obtain	access
tokens	for	invoking	web	APIs.	ADFS	happens	to	be	using	JWT	as	the	format	for	its	access
tokens	too,	which	means	that	most	of	the	infrastructure	of	the	bearer	middleware	can	be
used	for	securing	tokens	coming	from	ADFS	as	well.

It	might	come	as	a	surprise	to	you	that,	in	fact,	despite	the	extension	method
UseWindows-AzureActiveDirectoryBearerAuthentication,	there	is	no
such	thing	as	a	specialized	Azure	AD	OAuth2	bearer	token	middleware.	That	extension
method	provides	Azure	AD–specific	ways	to	supply	the	authority	metadata,	but	the
validation	coordinates	are	fed	to	another	extension	method,
UseOAuthBearerAuthentication.	That	method	ultimately	instantiates	a	more
generic	OAuth2	middleware,	OAuthBearerAuthenticationMiddleware,	which
implements	a	generic	JWT-based	OAuth2	bearer	token	interceptor	and	validator.

Something	similar	applies	to	ADFS.	There	is	a	different	extension	method,
ActiveDirectoryFederationServicesBearerAuthentication,	which	is
typically	initialized	with	an	Audience	and	a	MetadataAddress,	the	latter	pointing	to
the	WS-Federation	metadata	document	of	the	ADFS	instance	you	work	with.	Something
like	the	following:
Click	here	to	view	code	image

app.UseActiveDirectoryFederationServicesBearerAuthentication(
				new	ActiveDirectoryFederationServicesBearerAuthenticationOptions
				{
								Audience	=	“https://myservices/myAPI”,
								MetadataEndpoint	=	“https://sts.contoso.com/federationmetadata/2007-
06/federationmetadata.xml”
				});

That’s	all	you	need	to	do	to	configure	the	OAuth2	bearer	middleware	to	validate	tokens
from	ADFS.	In	fact,	you	can	do	this	even	more	quickly—all	you	need	to	do	is	choose	the
on-premises	option	of	the	authentication	settings	when	using	the	web	API	project	template
in	Visual	Studio	2013	or	2015.	The	template	will	generate	this	code	for	you.

One	area	where	ADFS	is	stiffer	than	Azure	AD	is	how	applications	are	provisioned.
They	both	strictly	require	an	app	to	be	registered	before	any	token	can	be	issued	for	it,	but
whereas	Azure	AD	has	API	and	consent	flows	for	that	process,	ADFS	mandates	that	every
app	be	created	by	an	administrator.	That	can	be	done	through	the	management	console	or
with	PowerShell.	Just	to	give	you	an	example,	here’s	a	command	you	can	use	for
provisioning	a	web	API:
Click	here	to	view	code	image

Add-ADFSRelyingPartyTrust	-Name	MyWebAPI	-Identifier	https://myservices/myAPI
-IssuanceAuthorizationRules	‘=>	issue(Type	=
“http://schemas.microsoft.com/authorization/claims/permit”,	Value	=	“true”);’
-IssuanceTransformRules	‘c:[Type	==
“http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress”]	=>
issue(claim	=	c);’

In	plain	English,	this	command	creates	a	new	relying	party	trust,	which	is	to	say	it	tells
ADFS	about	one	new	app	to	issue	tokens	and	claims	for.	As	part	of	that,	it	also	establishes
that	tokens	for	that	app	should	contain	one	single	claim,
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress.

ADFS	“3”	OAuth2	support	is	limited	to	public	clients—native	and	mobile	apps	that	do
not	have	their	own	credentials.	As	such,	I	cannot	adapt	the	web	app	sample	we’ve	been
using	in	this	chapter	to	give	the	web	app	a	test	run—the	web	app	is	a	confidential	client
and	must	use	its	credentials	when	going	through	the	code	grant	flow,	but	ADFS	“3”	won’t
accept	it.	The	good	news	is	that	ADFS	in	Windows	Server	2016	will	work	with
confidential	clients,	too.

Summary
The	ability	to	invoke	an	API	is	a	feature	of	paramount	importance	for	modern	web
applications.	For	the	same	device,	making	your	resources	available	to	all	sorts	of	clients
via	the	REST	API,	while	maintaining	robust	and	flexible	authentication	capabilities,	is
table	stakes	in	today’s	mobile-first,	cloud-first	market.

This	chapter	walked	you	through	some	of	the	most	fundamental	topologies	involving
web	APIs	and	Azure	AD.	To	understand	how	things	unfold,	you	had	to	recall	many	of	the
topics	you’ve	studied	throughout	the	book:	how	protocols	work;	how	OWIN	middleware
extensibility	operates;	and	how	Azure	AD	represents	applications,	grants	and	denies
permissions,	and	exposes	its	own	capabilities	in	the	form	of	the	Graph	API.	I	hope	you’ve
started	to	reap	a	good	return	for	your	hard	work	so	far!

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress

Chapter	10.	Active	Directory	Federation	Services	in
Windows	Server	2016	Technical	Preview	3

In	the	summer	of	2015,	Microsoft	released	the	third	technical	preview	of	Windows	Server
2016.	That	version	comes	with	a	special	present—a	new	and	improved	ADFS,	which
offers	support	for	OpenID	Connect	and	the	full	gamut	of	the	OAuth2	grants	you’ve	been
learning	about	in	this	book.

In	this	chapter	I	am	going	to	give	you	a	quick	overview	of	the	new	ADFS,	focusing
mostly	on	the	modern	authentication	functionalities.	I	will	not	go	very	deep	into	anything,
given	that	Windows	Server	2016	is	still	a	preview	(so	prone	to	breaking	changes	before
reaching	general	availability).	However,	I	will	at	least	walk	you	through	one	concrete
scenario,	showing	you	how	to	implement	web	sign-on	with	ADFS	via	OpenID	Connect.
Not	surprisingly,	the	code	used	with	ADFS	is	nearly	identical	to	the	code	you	wrote
against	Azure	AD.

Setup	(for	developers)
From	Chapter	3,	“Introducing	Azure	Active	Directory	and	Active	Directory	Federation
Services,”	you	know	that	ADFS	is	a	Windows	Server	role,	which	augments	Active
Directory	with	higher-level	protocol	capabilities.	That	means	that	before	you	can	set	up
ADFS,	you	have	to	set	up	Active	Directory	itself.

Giving	detailed	Active	Directory	and	ADFS	deployment	guidance	goes	well	beyond	the
scope	of	a	book	for	developers,	but	I	don’t	think	it’s	a	good	idea	to	put	in	printed	form	the
cowboy	setup	process	I	go	through.	I	am	not	an	administrator:	I	somehow	stumble	through
the	Active	Directory	setup	and	end	up	with	something	that	works	well	enough	to	code
against,	but	I	am	sure	that	in	the	process	I	make	all	sorts	of	horrible	mistakes	that	would
be	unacceptable	on	a	production	system.	Add	the	fact	that	Windows	Server	2016	is	still	in
preview	and	things	are	likely	to	change.

I	could	always	point	you	to	the	official	deployment	documentation,	which	is	guaranteed
to	be	correct,	but	that	is	not	always	practical	for	nonadmins	such	as	myself,	and	possibly
you.	Here’s	a	compromise:	back	in	August	I	wrote	a	blog	post	that	contains	step-by-step
instructions	for	setting	up	a	Hyper-V	virtual	machine	with	Windows	Server	2016
Technical	Preview	3,	Active	Directory,	and	ADFS.

You	can	find	it	at	http://www.cloudidentity.com/blog/2015/08/21/openid-connect-web-
sign-on-with-adfs-in-windows-server-2016-tp3/.	I	still	advise	you	to	refer	to	the	official
documentation,	but	if	you	get	lost	and	want	something	simpler	for	nonproduction	systems,
take	a	look	at	my	blog.

The	new	management	UX
Traditionally,	ADFS	has	operated	with	two	primitives:	identity	provider	trust	(defining
which	identity	providers	can	send	tokens	to	the	ADFS	instance)	and	relying	party	trust
(defining	which	apps	can	be	a	recipient	of	tokens	issued	by	the	ADFS	instance).

ADFS	“3”	introduced	a	new	entity,	the	client.	A	client	was	defined	as	one	particular

http://www.cloudidentity.com/blog/2015/08/21/openid-connect-web-sign-on-with-adfs-in-windows-server-2016-tp3/

entity,	entitled	to	perform	a	single	operation:	engaging	with	ADFS	“3”’s	OAuth2
endpoints	to	obtain	an	access	token	for	an	application	provisioned	in	ADFS	as	a	relying
party	trust.	However,	the	new	primitive	didn’t	make	it	to	the	management	console,	which
remained	largely	the	same	as	the	one	in	ADFS	2.x	(besides	new	features	such	as	device
registration	and	access,	which	added	new	knobs	for	existing	protocol	flows).

ADFS	in	Windows	Server	2016	changes	all	that,	introducing	an	all-new	UX	section
dedicated	to	modern	authentication	topologies.	Figure	10-1	shows	the	new	UX.

Figure	10-1	The	first	screen	of	the	ADFS	management	console	in	Windows	Server
2016	Technical	Preview	3.

The	notable	new	entry	here	is	the	last	folder,	Application	Groups.	You	can	think	of
application	groups	as	templates,	representing	typical	application	topologies	used	in
modern	authentication.	To	see	the	groups	offered	by	ADFS	at	this	time,	click	Add
Application	Group	in	the	Actions	pane	on	the	right.	Figure	10-2	shows	the	available
options.

Figure	10-2	The	application	group	types	available	in	ADFS	in	Windows	Server	2016
Technical	Preview	3.

Perhaps	a	tad	démodé	in	its	terminology,	the	Client-Server	Applications	section
provides	you	with	a	way	to	create	in	a	single	swoop	one	entry	in	ADFS	for	a	token-
requestor	app	and	an	entry	for	a	resource	app.	ADFS	will	be	configured	out	of	the	box	to
allow	the	token-requestor	app	to	ask	for	tokens	for	the	resource	app	in	the	same
application	group.

The	two	available	templates	have	self-explanatory	names.	Native	Application	And	Web
API	creates	a	public	client	and	a	corresponding	API;	Server	Application	And	Web	API
creates	a	confidential	client	and	a	corresponding	API.	Given	that	this	book	is	about	web
applications,	you	might	expect	us	to	work	with	the	latter,	but,	in	fact,	we’ll	use	neither
here.	For	the	sake	of	clarity,	I	will	separate	my	description	of	setting	up	web	sign-on	from
a	discussion	about	enabling	a	web	app	to	invoke	a	web	API.

The	standalone	application	templates	help	you	to	create	single	nodes	of	solution
topologies.	I’ll	ignore	the	Native	Application	template	and	focus	on	the	other	two.	Server
Application	Or	Website	is	your	classic	confidential	client,	be	it	a	website	or	a	daemon
application.	You’ll	see	that	ADFS	introduces	a	special	flavor	of	this	that	makes	sense	only
on-premises.	The	Web	API	template	is	kind	of	an	incomplete	web	application—at	least	if
you	only	use	the	UX.	It	is	designed	to	be	a	recipient	of	requests	secured	via	OAuth2

bearer	token,	and	the	setup	constrains	the	settings	you	can	add	to	that	use	case.	I’ll	go	into
this	in	reasonable	detail.

It’s	important	to	note	that	the	applications	provisioned	via	old	relying	party	trust	are
separate	and	distinct	from	the	ones	created	via	application	groups.	In	the	preview	there	is
no	easy	way	of	having	a	client	from	an	application	group	invoke	a	web	API	provisioned
via	old	relying	party	trust.	It	is	perfectly	possible	that	such	behavior	will	be	maintained
once	Windows	Server	2016	ships.

I	could	keep	spelunking	through	the	UX	and	comment	on	entries,	but	my	bias	for	action
pushes	me	to	get	to	work	right	away.	Let’s	set	up	a	web	app	to	use	ADFS	for	web	sign-on
via	OpenID	Connect;	we’ll	encounter	the	most	interesting	UX	along	the	way.

Web	sign-on	with	OpenID	Connect	and	ADFS
As	usual,	setting	up	an	app	to	rely	on	an	external	provider	for	authentication	entails	two
steps:	working	on	the	app’s	code	and	provisioning	the	app	with	the	provider.

OpenID	Connect	middleware	and	ADFS
The	code	necessary	to	hook	up	a	web	app	to	ADFS	for	performing	OpenID	Connect–
based	web	sign-on	is	practically	the	same	as	you	have	already	internalized	for	working
with	Azure	AD.	The	main	differences	lie	in	from	where	you	obtain	the	values	you	pass	to
the	middleware	at	initialization	time.

Assuming	that	you	are	using	the	vanilla	OpenID	Connect	sign-on	sample	web	app	from
Chapter	5	as	a	starting	point,	here’s	what	you	need	to	do	in	the	code:

Head	to	App_Start/Startup.Auth.cs	and	work	on	the	first	few	basic	properties	initialized
in	OpenIdConnectAuthenticationOptions.

Delete	the	assignment	to	Authority,	given	that	here	our	authority	will	be	an	ADFS
instance	as	opposed	to	an	Azure	AD	tenant.

Next,	change	the	assignment	of	PostLogoutRedirectUri	to	an	assignment	for
RedirectUri,	using	the	same	value	(the	root	URL	of	the	application).	ADFS	does	not
support	sign-out	in	this	preview	release,	so	you	can	get	rid	of	that	part.	However,	you	do
need	to	specify	a	value	for	RedirectUri.	Although	Azure	AD	will	accept	requests
without	a	redirect	_uri	(and	use	one	that	was	preregistered	for	that	client_id),	ADFS
decided	to	go	the	other	way	and	always	mandate	the	presence	of	one	explicit	redirect_uri.
That	certainly	eliminates	ambiguity	(if	your	app	has	many	redirect_uri	values,	you	can
never	be	certain	of	which	one	Azure	AD	will	pick	up),	but	it	does	require	just	a	bit	more
work.

You	can	keep	the	current	ClientId	value	or	change	it,	it’s	up	to	you.	Whereas	Azure
AD	assigns	you	a	client_id	at	provisioning,	ADFS	allows	you	to	override	the	self-
generated	client_id	at	registration	time	with	your	custom	client_id	value.

That	takes	care	of	storing	the	application’s	coordinates;	now	it’s	time	to	provide
information	about	the	ADFS	instance	you	want	to	work	with.	ADFS	is	equipped	with	the
usual	arsenal	of	OAuth2	and	OpenID	Connect	endpoints.	You	can	find	the	complete	list

through	the	UX	by	using	the	left	side	navigation	pane	to	reach	the
ADFS/Service/Endpoints	folder.	If	you	scroll	all	the	way	to	the	bottom	of	the	endpoints
list,	you’ll	notice	the	OAuth2	endpoints	(or	endpoint)	at	the	end	of	the	token	issuance
section	and	the	OpenID	Connect	endpoints	under	the	section	with	that	name.	For	your
reference,	those	endpoints	normally	look	like	the	following:

https://<hostname>/adfs/oauth2/	(applies	to	both	token	and	authorization	endpoints)

https://<hostname>adfs/.well-known/openid-configuration

https://<hostname>/adfs/discovery/keys

https://<hostname>/adfs/userinfo

From	Chapter	7,	“The	OWIN	OpenID	Connect	middleware,”	you	know	that	you	can
initialize	the	OpenID	Connect	middleware	by	passing	the	address	of	the	discovery
endpoint;	here,	we	are	going	to	pick	from	the	preceding	list	the	URL	of	this	ADFS
instance’s	discovery	document	and	assign	it	to	the	MetadataAddress	property.

Your	initialization	code	should	look	like	the	following:
Click	here	to	view	code	image

app.UseOpenIdConnectAuthentication(
				new	OpenIdConnectAuthenticationOptions
				{
								ClientId	=	“98ff52e2-6deb-4029-99e4-6c15486d9c56”,
								RedirectUri	=	“https://localhost:44320/”,
								MetadataAddress	=	
											“https://ws2016tp3.vibrodomain.net/adfs/.well-known/openid-
configuration”,
//..more	stuff

It	is	worth	stressing	that	functionally	this	is	nearly	equivalent	to	what	you	did	for
connecting	Azure	AD.	Instead	of	using	Authority	for	communicating	data	about	the
trusted	issuer,	here	you	specify	the	discovery	document	location	directly	via
MetadataAddress.	You	don’t	include	a	sign-out	URL	because	it	isn’t	supported	yet.

Those	are	all	the	code	changes	you	need,	apart	from	disabling	all	the	gestures	for	sign-
out	or	adapting	them	to	use	only	the	cookie	middleware.

Setting	up	a	web	app	in	ADFS
Eventually,	we	want	to	have	a	web	app	that	handles	web	sign-on	and	invokes	an	API.	As
mentioned	earlier,	ADFS	provides	a	template	that	depicts	that	exact	topology—however,	I
don’t	want	you	to	have	to	do	too	many	things	before	seeing	the	app	work.	For	that	reason,
we’ll	start	with	a	standalone	application	group	representing	just	the	web	app.	We’ll	extend
it	appropriately	later	on.

Head	to	the	Application	Groups	section.	In	the	Actions	section	in	the	right	pane	you
should	see	the	Add	Application	Group	link.	Click	it,	and	then	choose	Server	Application
Or	Website	from	the	Standalone	Applications	section.	You’ll	notice	that	the	left	side	of	the
dialog	now	displays	a	list	of	steps,	and	the	dialog	buttons	become	wizard	controls.	Let’s
see	what	you	need	to	do	screen	by	screen.

	Note

In	this	chapter	I	have	relaxed	my	self-imposed	rule	against	screenshots.
Although	the	ADFS	version	I	am	describing	here	is	still	in	preview	and	the
screens	can	still	change,	I	felt	that	the	more	freeform	layout	of	the	ADFS	UX
would	have	been	too	awkward	to	describe	without	any	visual	aids.

On	the	welcome	page,	shown	in	Figure	10-3,	enter	one	application	name	that	you’ll
remember.	I	am	calling	my	app	“Simple	ADFS	web	app.”	Once	you’ve	done	that,	click
Next.

Figure	10-3	The	first	screen	of	the	web	application	creation	wizard	gathers	essential
protocol	coordinates	of	the	application.

The	Server	Application	screen	shown	in	Figure	10-3	gathers	all	the	information	about
your	app	that’s	required	to	perform	the	sign-in	protocol	dance.	The	Client	Identifier	field
holds	the	client_id,	discussed	earlier.	If	you	were	following	the	instructions,	here	you	have
to	paste	the	value	you	used	in	the	middleware	initialization	code.

The	Redirect	URI	field	holds	the	list	of	the	URLs	to	which	ADFS	is	allowed	to	return

tokens.	A	typical	rookie	mistake	here	is	to	paste	the	address	in	the	text	box	and	not	click
Add;	your	job	isn’t	finished	until	you	have	at	least	one	URL	in	this	list.	Once	you	are
done,	click	Next.	You’ll	see	the	Configure	Application	Credentials	screen,	shown	in
Figure	10-4.

Figure	10-4	The	application	credentials	screen	offers	you	various	options	to	provision
credentials	for	your	web	app.

The	Configure	Application	Credentials	screen	is	one	of	the	areas	where	the	difference
between	Azure	AD	and	ADFS	is	the	most	significant.	You	can	see	this	in	Figure	10-4.

You	don’t	need	to	assign	an	application	credential	for	supporting	web	sign-on,	but	you
will	need	it	later	on	for	calling	the	web	API.	But	because	we	are	already	here,	we	can	just
as	well	explore	the	options	now.

At	the	bottom	of	the	page	you	can	see	the	section	dedicated	to	the	generation	of	a
shared	secret.	This	is	the	near-perfect	analogy	to	the	corresponding	functionality	in	the
Azure	AD	portal.	The	approach	you	are	expected	to	follow	for	dealing	with	secrets	is	the
same,	too:	you	are	able	to	see	the	secret	bits	only	at	creation	time,	and	then	they’re
invisible	forever.	If	you	don’t	save	the	secret	or	if	you	lose	it,	your	only	recourse	is	to
create	a	new	secret.

In	the	middle	of	the	page	you	are	offered	the	option	to	define	a	type	of	application

credential	that	is	unique	to	ADFS,	Windows	Integrated	Authentication.	If	your	app’s
process	is	running	as	a	given	account—as	might	be	the	case	for	a	Windows	service,	for
example—you	can	use	that	fact	to	fulfill	the	credential	obligations	of	OAuth2	and	OpenID
Connect	flows	for	confidential	clients.	Very	neat.

Finally,	the	top	option	allows	you	to	specify	a	key	to	be	used	for	signing	an	assertion,
the	counterpart	of	the	certificate	credentials	in	Azure	AD.	Although	in	Azure	AD	using
this	credential	requires	you	to	use	PowerShell	cmdlets	and	X.509	certificates,	ADFS	offers
a	full	range	of	options	that	you	can	reach	by	clicking	the	Configure	button.	The	dialog	that
pops	up	offers	you	a	selection	of	certificate	files	from	the	file	system	or	the	option	to
periodically	download	key	information	from	a	JWKS	(JSON	Web	Keys	set)	feed	where
you	can	publish	and	roll	keys.	This	uses	the	same	technology	you	studied	in	the	discovery
sections	of	Chapter	6,	“OpenID	Connect	and	Azure	AD	web	sign-on,”	but	this	time	it	is
the	app	(as	opposed	to	the	authority)	that	advertises	the	keys	it	will	use	to	sign	tokens	to
prove	its	application	identity.	The	same	dialog	also	offers	fine-grained	control	on	how	to
perform	revocation	checks	on	certificates.

That’s	all	very	nice	and	sophisticated,	but	for	this	sample	we’ll	stick	with	what’s	simple.
The	shared	secret	is	the	credential	type	we’ll	use	in	the	next	section:	select	the
corresponding	check	box,	as	shown	in	Figure	10-4,	save	the	secret	string	somewhere,	and
click	Next.

We’re	done	with	the	wizard.	Keep	clicking	Next	until	you	reach	the	last	screen.

If	you	are	part	of	the	old	ADFS	guard,	you	might	be	wondering	about	claim	issuance
rules	at	this	point.	How	does	ADFS	know	which	claims	should	be	sent	to	the	application?
The	answer	is	that	the	token	sent	in	the	OpenID	connect	web	sign-on	flow	is	the	id_token,
which	has	a	fixed	structure.	Let’s	give	the	app	a	spin	and	see	what	that	looks	like.

Testing	the	web	sign-on	feature
Fire	up	Fiddler,	go	back	to	Visual	Studio,	and	hit	F5.	Click	the	Sign	In	link	as	usual.
You’ll	be	led	through	the	ADFS	credential-gathering	experience,	which	at	this	point	in
time	has	a	very	similar	look	and	feel	to	the	one	served	by	Azure	AD.	Enter	the	credentials
of	one	of	the	users	from	the	Active	Directory	instance	where	ADFS	is	set	up.	You’ll	see
that	the	sign-in	concludes	just	like	the	one	you	experienced	with	Azure	AD.

	Note

If	you	are	on	an	intranet	and	are	using	Internet	Explorer	or	Microsoft	Edge,
your	credential-gathering	experience	might	be	different	because	the	DNS	will
resolve	to	the	ADFS	authentication	endpoints	using	Kerberos.	An	easy	way
of	taking	that	aspect	out	of	the	equation	is	to	debug	by	using	Chrome	or
Firefox.

If	you	take	a	look	at	the	traffic	captured	in	Fiddler,	you’ll	see	the	usual	dance:
middleware	reaching	out	to	the	discovery	document,	retrieval	of	the	keys,	authorization
request	to	the	authorization	endpoint,	automatic	POST	to	the	app	with	the	id_token	and

code,	a	302	for	setting	the	session	cookies,	and	finally	a	200.	Business	as	usual.

If	you	peek	at	the	id_token,	however,	you’ll	find	it	significantly	skinnier	than	the
one	issued	by	Azure	AD:
Click	here	to	view	code	image

{
			“aud”	:	“98ff52e2-6deb-4029-99e4-6c15486d9c56”,
			“auth_time”	:	1445677071,
			“c_hash”	:	“5h5QGlrTWmSUxVH09sf5AQ”,
			“exp”	:	1445680671,
			“iat”	:	1445677071,
			“iss”	:	“https://WS2016TP3.vibrodomain.net/adfs”,
			“nonce”	:
“635812738685261506.MDczY2RkYzAtMzEyNy00YjRiLWJkZDUtZTdjNTMxNjZlZjkzNm
Y4ZDc3OTctN2
Q0MC00YzYxLWJlOGYtMzdhZGUwMmRlZjk2”,
			“sub”	:	“/P6RGnF6Q9FbVfyjFY6whvkQIbzQR4z2WurnPHfUSME=”,
			“unique_name”	:	“VIBRODOMAIN\mario”,
			“upn”	:	“mario@vibrodomain.net”
}

That	is	pretty	bare-bones,	but	it’s	all	it	takes	to	sign	on	with	the	web	application.	Very
easy!

Protecting	a	web	API	with	ADFS	and	invoking	it	from	a	web	app
Let’s	complete	our	topology	by	adding	a	web	API	to	our	solution.

Setting	up	a	web	API	in	ADFS
Head	back	to	the	ADFS	management	UX,	and	specifically	to	the	Application	Groups
section.

Double-click	the	entry	for	the	application	group	you	created	in	the	earlier	section.
ADFS	will	display	a	dialog	with	the	list	of	all	the	applications	in	the	group,	which	at	the
moment	includes	only	the	sample	web	application	we	worked	on.	At	the	bottom	of	the
dialog	you’ll	find	the	Add	Application	button.	Click	it,	and	you’ll	land	on	a	dialog	that
looks	just	like	the	first	screen	of	the	wizard	we	used	earlier	for	creating	the	web	app;	the
only	difference	is	that	the	list	of	templates	here	is	limited	to	the	standalone	app	types.
Select	Web	API,	and	then	click	Next.

The	first	screen,	shown	in	Figure	10-5,	gathers	the	essential	protocol	coordinates
describing	your	web	API.

Figure	10-5	The	first	screen	in	the	web	API	creation	wizard	gathers	the	web	API
identifiers	that	will	be	used	to	request	tokens	and	populate	the	audience	claim	in	tokens

issued	for	the	API.

The	only	setting	of	notice	here	is	the	Identifier	list.	That	holds	the	strings	that	ADFS
will	use	for	recognizing	that	a	token	request	is	meant	to	grant	access	to	this	particular	API.
That	is	also	the	string	that	will	end	up	in	the	audience	claim	of	the	issued	token,	that	the
actual	web	API	(or	better,	its	middleware)	will	have	to	validate.	Given	that	I	am
fundamentally	lazy,	I	plan	to	reuse	the	web	API	project	described	in	the	ADFS	section	of
Chapter	9,	“Consuming	and	exposing	a	web	API	protected	by	Azure	Active	Directory,”	so
here	I	need	to	specify	the	same	audience	value,	https://myservices/myAPI.

One	interesting	note	is	that	ADFS	does	not	ask	you	to	specify	a	URL	for	the	web	API.
It	is	true	that	such	a	URL	doesn’t	really	come	into	play	when	you	implement	the	OAuth2
bearer	token	usage	flow.	At	the	same	time,	in	Chapter	9	we	considered	the	possibility	of
web	apps	exposing	both	API	and	browser-ready	routes	serving	back	UX.	In	this	preview,
ADFS	does	not	allow	you	to	create	a	single	app	to	fulfill	both	the	web	API	and	web	app
roles,	as	the	latter	would	require	you	to	specify	a	URL	(and	a	client_id,	too).	There	is	an
easy	workaround:	you	can	simply	create	two	different	entries	in	ADFS,	one	for	the	API
and	the	other	for	the	UX.

Once	you	have	added	at	least	one	identifier,	click	Next.	You’ll	come	to	a	page	that

offers	you	the	chance	to	define	who	can	access	your	API	and	how.	Figure	10-6	has	the
scoop.

Figure	10-6	The	access	control	policy	regulates	which	users	can	request	a	token	for	the
API.

All	the	access	policies	offered	out	of	the	box	are	quite	self-explanatory.	Given	that	most
options	there	would	require	more	setup	work,	I	am	just	going	to	go	with	Permit	Everyone.
That	applies	only	to	the	token-issuance	operation,	of	course.	The	API	is	still	responsible
for	inspecting	incoming	tokens	for	validation	and	authorization	purposes.

After	you	select	Permit	Everyone,	click	Next.	You’ll	reach	the	application	permissions
section,	shown	in	Figure	10-7.

Figure	10-7	The	application	permissions	screen	lists	which	clients	are	allowed	to
request	tokens	for	the	API	and	the	possible	scope	values	the	clients	can	request.

This	screen	summarizes	which	client	apps	are	allowed	to	request	this	ADFS	instance	for
the	web	API	we	are	provisioning	and	what	scopes	clients	are	allowed	to	request.

I	will	defer	the	discussion	about	callers	to	the	end	of	the	chapter.	Here	it	should	be
enough	to	say	that	given	we	are	creating	this	API	in	the	same	application	group,	the
sample	web	API	is	automatically	listed	as	an	allowed	client.

The	Permitted	Scopes	section	lists	all	the	scopes	that	a	client	is	allowed	to	request.	Note
that	a	client	is	free	to	request	a	subset	of	these.	Here	I	am	picking	up	both	openid	and
user_impersonation.

If	your	web	API	has	its	own	scopes,	it	is	easy	to	add	them	as	custom	ones.	Click	New
Scope.	You	will	be	prompted	to	add	a	scope	through	the	dialog	shown	in	Figure	10-8.

Figure	10-8	The	dialog	used	for	creating	new	scopes.

Here	I	am	adding	a	fictitious	scope,	representing	the	ability	of	calling	the	API	with
HTTP	verbs	that	can	change	its	state.	This	is	the	same	approach	discussed	in	Chapter	9,
and	on	the	web	API	side	the	code	validating	the	presence	of	the	required	scopes	looks	just
like	the	code	you	used	against	Azure	AD.	Once	you	create	the	new	scope,	you’ll	find	it	in
the	Permitted	Scopes	list.

Click	Next	all	the	way	to	the	end	of	the	wizard.	As	you	exit,	you’ll	see	that	your
application	group	now	counts	a	new	member—your	web	API.

Code	for	obtaining	an	access	token	from	ADFS	and	invoking	a	web	API
The	code	for	requesting	an	access	token	for	our	web	API	from	ADFS	is	different	from	the
code	used	with	Azure	AD	in	a	couple	of	small	but	important	ways.

First,	ADFS	requires	that	you	have	already	provided	information	about	the	resource	you
want	to	access	at	the	time	of	the	web	sign-on	request,	the	one	against	the	authorization
endpoint.	Here’s	how	the	basic	initialization	code	changes:
Click	here	to	view	code	image

app.UseOpenIdConnectAuthentication(
				new	OpenIdConnectAuthenticationOptions
				{
								ClientId	=	“98ff52e2-6deb-4029-99e4-6c15486d9c56”,
								RedirectUri	=	“https://localhost:44320/”,
								MetadataAddress	=	
											“https://ws2016tp3.vibrodomain.net/adfs/.well-known/openid-
configuration”,
								Resource	=	“https://myservices/myAPI”,
								Scope	=	“openid	profile	user_impersonation	MyService.Write”,
//..more	stuff

In	a	nutshell,	you	need	to	specify	which	resource	you	want	an	access	token	for,	and	you
need	to	specify	which	scopes	your	client	app	needs.	Note	that	given	you	want	to	also	get
an	id_token	for	signing	the	user	in	to	the	web	app,	you	always	want	to	specify	the	openid
scope.	That	will	have	the	(not	always	fully	intentional)	effect	of	including	the	openid
connect	scope	in	the	access	token,	too.	The	need	to	specify	up	front	the	resource	you	want
a	token	for	might	concern	you,	especially	if	your	client	needs	to	call	multiple	APIs.	The
good	news	is	that	with	the	new	ADFS,	refresh	tokens	are	multiresource,	too.	That	means
that	as	soon	as	you	redeem	the	resulting	authorization	code,	you’ll	get	an	access	token	for
the	resource	you	specified	in	the	request	and	a	refresh	token	that	can	be	used	for	any	of	the
resources	your	client	is	configured	to	have	access	to.	Take	note	that	here	there’s	no
concept	of	consent:	if	the	administrator	wrote	in	the	ADFS	settings	that	a	certain	client	can
access	a	certain	API	with	a	certain	set	of	scopes,	that	just	happens	for	all	users—no
questions	asked.	It’s	like	the	use	of	admin_consent	described	in	Chapter	9,	but	it	is	in
effect	all	the	time	and	right	after	the	settings	have	been	saved	via	the	management	UX.

Next,	you	need	to	actually	redeem	the	authorization	code.	For	the	sake	of	simplicity	I
will	do	that	right	in	AuthorizationCodeReceived,	as	I	did	in	the	first	sample	in
Chapter	9;	all	the	considerations	and	techniques	about	how	to	move	that	code	to	actual
controllers	apply	here,	too.
Click	here	to	view	code	image

AuthorizationCodeReceived	=	context	=>
{
					string	code	=	context.Code;
					AuthenticationContext	ac	=	new	
								AuthenticationContext(“https://ws2016tp3.vibrodomain.net/adfs/”,
false);
					AuthenticationResult	ar	=	ac.AcquireTokenByAuthorizationCode(
																																			code,	
																																			new	Uri(“https://localhost:44320/”),	
																																			new	ClientCredential(clientId,	secret),
																																			“https://myservices/myAPI”);

					string	callOutcome	=	string.Empty;
					HttpClient	httpClient	=	new	HttpClient();
					httpClient.DefaultRequestHeaders.Authorization	=
									new	AuthenticationHeaderValue(“Bearer”,	ar.AccessToken);
					HttpResponseMessage	response	=
									httpClient.GetAsync(“https://localhost:44324/api/values”).Result;

					if	(response.IsSuccessStatusCode)
					{
									callOutcome	=	response.Content.ReadAsStringAsync().Result;
					}
					return	Task.FromResult(0);
}

I	highlighted	the	interesting	code	in	bold—everything	else	is	just	like	you’ve	seen.

ADAL’s	AuthenticationContext	is	initialized	passing	the	URL	of	the	ADFS
instance.	It	is	important	to	include	the	trailing	/adfs/	with	the	authority	as	that	tells	ADAL
that	this	is	an	ADFS	instance,	and	in	turn	that	determines	whether	it	is	necessary	to	tweak
how	the	requests	are	made.

The	other	interesting	thing	about	AuthenticationContext’s	initialization	is	that

the	authority	validation	is	set	to	false.	Normally,	AuthenticationContext	verifies
that	the	URL	passed	as	authority	complies	with	the	template	describing	valid	Azure	AD
tenants—as	advertised	by	a	discovery	document.	At	the	time	ADFS	came	out,	comparable
functionality	wasn’t	yet	available	in	ADFS,	so	authority	validation	with	ADFS	and	ADAL
2.x	is	impossible.	If	you	don’t	set	the	corresponding	flag	to	false,	requests	will	fail.	You
might	wonder	why	the	developer	experience	team	did	not	automatically	shut	down
validation	when	the	library	detects	that	it’s	ADFS.	The	team	working	on	the	library	did
think	about	that	long	and	hard,	but	it	concluded	that	a	decision	of	this	potential	impact
(with	a	malicious	authority,	people	can	trick	users	into	surrendering	their	credentials	to
evil	endpoints)	has	to	be	made	explicitly.
The	other	interesting	part	is	the	secret	used	for	manufacturing	the

ClientCredential.	That	has	to	come	from	the	secret	you	generated	when	you	were
provisioning	the	web	application	earlier	in	this	chapter.

Finally,	the	resource	identifier	passed	to	AcquireTokenByAuthorizationCode
is	the	same	as	you	added	to	the	web	API	entry	in	ADFS.

If	you	have	followed	the	steps	I’ve	described	so	far,	your	web	app	will	be	wired	to	call
the	web	API	from	the	project	discussed	in	the	last	section	of	Chapter	9—the	one	about
ADFS.	All	you	need	to	do	is	ensure	that	the	MetadataEndpoint	used	to	initialize	the
OAuth2	bearer	token	middleware	points	to	the	correct	URL	for	your	ADFS	instance.	In
my	case,	the	code	looks	like	the	following:
Click	here	to	view	code	image

app.UseActiveDirectoryFederationServicesBearerAuthentication(
				new	ActiveDirectoryFederationServicesBearerAuthenticationOptions
				{
								Audience	=	“https://myservices/myAPI”,
								MetadataEndpoint	=	
											“https://ws2016tp3.vibrodomain.net/FederationMetadata/2007-
06/FederationMetadata.xml”
				});

If	you	don’t	want	to	code	this	manually,	it	is	also	worth	stressing	that	you	can	ready	up
a	web	API	project	that’s	hooked	up	to	ADFS	in	less	than	30	seconds	if	you	use	the
ASP.NET	project	templates	in	either	Visual	Studio	2013	or	2015.	Just	create	a	new	web
API	project,	click	Change	Authentication,	choose	Organizational	Accounts	(if	using
Visual	Studio	2013)	or	Work	And	School	Accounts	(in	Visual	Studio	2015),	select	On-
Premises,	paste	in	the	ADFS	metadata	address	and	the	desired	audience	value,	and	you’re
done.	Figure	10-9	shows	you	the	Visual	Studio	2013	dialog	box;	the	one	in	Visual	Studio
2015	looks	nearly	the	same.

Figure	10-9	The	dialog	you	use	to	set	authentication	preferences	for	ASP.NET	projects
in	Visual	Studio	2013.	Visual	Studio	2015	projects	offer	a	similar	dialog	box.

Don’t	forget	that	ADFS	does	not	offer	any	API	for	automating	the	app	provisioning
from	Visual	Studio;	the	template	can	only	emit	the	right	configuration	code	and	add	the
right	NuGet	references	for	you,	but	you	still	need	to	have	access	to	the	ADFS
management	UX	and	provision	the	web	API	manually	before	being	able	to	call	it.

We’re	finally	ready	to	test	our	scenario	end	to	end.

Testing	the	web	API	invocation	feature
Let’s	start	by	firing	up	Fiddler.	To	test	this	scenario,	we	must	be	sure	that	both	the	web	app
and	the	web	API	are	running.	If	you	added	the	web	API	as	a	project	under	the	same	Visual
Studio	solution,	you	can	simply	go	to	the	Startup	Project	settings,	select	the	Multiple
Startup	Projects	option,	and	set	both	projects	to	perform	the	action	Start.	Alternatively,
you	can	launch	each	instance	separately	by	right-clicking	the	project	in	Solution	Explorer
and	starting	a	new	debug	instance.

Once	both	projects	have	started,	sign	in	as	usual.	Here’s	the	request	in	Fiddler:
Click	here	to	view	code	image

GET	https://ws2016tp3.vibrodomain.net/adfs/oauth2/authorize/?
client_id=98ff52e2-6deb-4029-99e4-6c15486d9c56&
redirect_uri=https%3a%2f%2flocalhost%3a44320%2f&
resource=https%3a%2f%2fmyservices%2fmyAPI&
response_mode=form_post&
response_type=code+id_token&
scope=openid+profile+user_impersonation+MyService.Write&
state=OpenIdConnect.AuthenticationProperties%3dF[…SNIP…]_rO_	&
nonce=.NGZ[…SNIP…]jh	iMzkxOTUy	HTTP/1.1

As	expected,	the	core	set	of	parameters	we	observed	in	the	web	sign-on	sample	are	now
extended	by	the	extra	settings	we	injected	for	telling	ADFS	about	the	resource	we	want	to
access	and	the	scopes	we	want	to	be	granted.

I	am	assuming	that	your	call	to	AcquireTokenByAuthorizationCode	succeeds
and	the	subsequent	web	API	call	fires	correctly.	If	you	extract	the	token	from	the	trace	of

the	web	API	call	and	decode	it,	you’ll	see	something	like	the	following:
Click	here	to	view	code	image

{
			“_sso_data”	:	“D3Qox[…SNIP…]gLpeeP1xAm	“,
			“appid”	:	“98ff52e2-6deb-4029-99e4-6c15486d9c56”,
			“apptype”	:	“Confidential”,
			“aud”	:	“https://myservices/myAPI”,
			“auth_time”	:	“2015-10-24T23:29:50.181Z”,
			“authmethod”	:
“urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport”,
			“exp”	:	1445733204,
			“iat”	:	1445729604,
			“iss”	:	“http://WS2016TP3.vibrodomain.net/adfs/services/trust”,
			“scp”	:	“MyService.Write	user_impersonation	openid”,
			“ver”	:	“1.0”
}

	Note

I	learned	from	the	development	team	that	the	_sso_data	claim	is	only
present	in	Technical	Preview	3	and	will	be	removed	in	upcoming	preview
refreshes.

Once	again,	the	token	issued	by	ADFS	is	quite	bare-bones,	but	it	contains	everything
required	for	authenticating	the	call.	Issuer,	audience,	scopes	…	it’s	all	there.	In	fact,	the
OAuth2	token	bearer	middleware	should	be	happy	with	it	and	allow	the	API	to	be
invoked.	You	can	apply	to	this	ADFS-based	scenario	the	same	considerations	about	scope
validation	and	middleware	customization	you	studied	in	the	Azure	AD	case,	with	the
obvious	differences	(for	example,	multitenancy	for	on-premises	AD	does	not	really
apply).

Additional	settings
I	hope	this	chapter	has	provided	you	with	guidance	for	solving	the	core	modern
authentication	scenarios	with	ADFS	and	given	you	a	solid	scaffolding	as	you	decide	to
leverage	new	ADFS	features.	ADFS	in	Windows	Server	2016	Technical	Preview	3	is
chockful	of	new	features,	but	many	of	them	are	still	very	fluid,	and	I	don’t	want	to	mislead
you	about	their	stability	by	describing	them	in	detail	here.	Instead,	I’ll	just	mention	a
couple	of	additional	features	that	are	especially	important	for	developers—adding
arbitrary	claims	to	access	tokens	and	exercising	finer	control	over	which	clients	can	call
the	API.

The	screens	in	the	application	creation	wizard	tend	to	ask	for	little	more	than	the
essential	settings	ADFS	needs	to	create	a	functional	entry	for	the	application.	The
management	UX	you	can	access	after	creation	gives	you	some	more	interesting	options
that	are	worth	exploring.

Open	the	application	group	of	your	solution,	and	double-click	the	entry	for	the	web
API.	You’ll	see	a	classic	multitabbed	properties	dialog	(visible	in	the	background	in
Figure	10-11).	Go	to	the	Issuance	Transform	Rules	tab.	This	screen	allows	you	to	specify

more	claims	for	ADFS	to	add	to	access	tokens	issued	for	this	API.	Click	Add	Rule,	and
you’ll	be	presented	with	the	dialog	in	Figure	10-10.

Figure	10-10	The	Add	Transform	Claim	Rule	Wizard	allows	you	to	define	more	claims
to	be	included	in	the	token	for	the	web	API.

Figure	10-11	The	web	API	property	dialog	allows	you	to	extend	the	list	of	clients	that
are	allowed	to	request	a	token	for	your	web	API.

If	you	have	used	ADFS	before,	you	are	probably	familiar	with	these	settings.	You	can
choose	from	where	to	source	the	claims	values	you	want	to	issue:	those	typically	range
from	Active	Directory	itself	to	custom	stores	you	hook	up	to	ADFS.	Once	you	have	done
that,	you	have	a	simple	tabular	interface	where	every	row	determines	the	attribute	you
want	to	retrieve	and	what	claim	types	you	want	to	use	for	representing	that	value	in	the
token.	In	Figure	10-10	you	can	see	that	I	chose	a	few	user	attributes,	just	to	show
something	new	in	the	token.	Be	sure	that	you	give	a	name	to	your	rule,	and	then	click
Finish.	You’ll	see	the	new	rule	listed	on	the	Issuance	Transform	Rules	tab.

Claims	or	attributes?

After	about	300	pages	of	subtleties	and	fine	points,	allow	me	to	bother	you
with	(seemingly)	philosophical	matters	one	last	time.	People	often	confuse
the	concept	of	attribute	with	the	concept	of	claim.	The	two	things	are	very
tightly	related,	but	they	are	not	the	same.	Whereas	an	attribute	is	a	free-
floating	piece	of	information,	a	claim	is	information	stated	by	a	verifiable
source	(as	in	it	travels	in	a	token	signed	by	the	source).	This	is	the	same
difference	that	applies	to	your	name	written	on	a	random	Post-it	note	and
your	name	printed	on	your	passport.	The	string	is	the	same,	but	the	uses	you
can	make	of	it	change	dramatically—the	latter	carries	all	the	strength	that	its
source’s	credibility	can	lend.	For	many	conversations,	the	two	terms	might	be
used	interchangeably	without	immediate	bad	consequences,	but	occasionally
the	difference	will	be	relevant,	and	misunderstandings	are	often	hard	to
troubleshoot.	I	always	try	to	use	the	correct	term.

I	know	you	are	itching	to	try	the	flow	that	will	issue	new	claims	in	the	token,	but	given
that	we	have	the	app	properties	dialog	open,	I	want	to	show	you	one	last	thing.	Go	to	the
Client	Permissions	tab:	you’ll	see	a	screen	similar	to	the	one	shown	in	Figure	10-11.

That	property	page	allows	you	to	edit	the	list	of	scopes	that	your	sample	web	client	can
request	for	this	API,	as	we	have	seen	at	creation	time.

More	interestingly,	this	page	allows	you	to	manage	the	list	of	known	clients	that	can
access	the	web	API.	By	default,	only	client	apps	within	the	same	application	group	can
access	the	API.	If	you	click	Add,	you	will	be	presented	with	a	list	of	potential	new	clients.
That	list	includes	clients	you	created	in	this	instance	under	different	application	groups
and	some	built-in	clients.	I	won’t	describe	the	built-in	clients	here,	as	they	mostly	come
with	heavy	infrastructural	considerations;	please	refer	to	the	ADFS	online	documentation
for	that.	The	main	built-in	setting	I	want	to	be	sure	you	are	aware	of	is	All	Clients,	which
allows	you	to	drop	the	restriction	for	specific	clients	and	opens	up	ADFS	to	issue	tokens
for	this	API	to	any	registered	requestor.	That’s	analogous	to	how	ADFS	“3”	operated.

Let’s	not	change	the	client	list	right	now.	Click	Cancel	to	get	back	to	the	main
properties	dialog.	Here,	click	OK.

Make	sure	that	Fiddler	is	still	running,	go	back	to	Visual	Studio,	and	hit	F5	again.

Looking	at	the	web	API	call	and	decoding	the	token,	you	should	see	something	like	the
following:
Click	here	to	view	code	image

{
			“_sso_data”	:	“D3QoxP[..SNIP..]W_o6VBCA”,
			“appid”	:	“98ff52e2-6deb-4029-99e4-6c15486d9c56”,
			“apptype”	:	“Confidential”,
			“aud”	:	“https://myservices/myAPI”,
			“auth_time”	:	“2015-10-24T23:29:50.181Z”,
			“authmethod”	:
“urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport”,
			“exp”	:	1445737813,
			“family_name”	:	“Rossi”,

			“given_name”	:	“Mario”,
			“iat”	:	1445734213,
			“iss”	:	“http://WS2016TP3.vibrodomain.net/adfs/services/trust”,
			“scp”	:	“MyService.Write	user_impersonation	openid”,
			“upn”	:	“mario@vibrodomain.net”,
			“ver”	:	“1.0”
}

As	shown	in	the	highlighted	lines,	ADFS	applies	our	rule	and	has	injected	the	claims
we	wanted	in	the	access	token,	ready	for	the	web	API	to	consume.

Summary
This	chapter	gave	you	a	quick	introduction	to	leveraging	ADFS	directly	for	implementing
modern	authentication	with	your	web	apps	and	web	APIs.	Although	there	are	some
differences	with	respect	to	the	code	you	write	when	you	work	with	Azure	AD,	those	are
largely	syntactic	sugar.	What	you	have	learned	through	the	book	applies	nearly	verbatim
to	ADFS,	which	is	what	made	it	possible	to	cover	so	much	functionality	in	a	relatively
short	chapter.

Please	remember	that	the	version	of	ADFS	discussed	here	is	a	preview,	and	it	is	very
likely	that	some	of	the	instructions	provided	here	will	no	longer	apply.	If	you	try
something	and	it	doesn’t	work	as	expected,	before	you	add	breakpoints	and	traces	take	a
quick	look	at	http://www.cloudidentity.com/blog/books/book-updates/	to	see	if	there	is	a
known	change.

http://www.cloudidentity.com/blog/books/book-updates/

Appendix:	Further	reading

The	chapters	in	this	book	went	deep	into	one	specific	scenario,	modern	authentication	for
web	applications	and	web	APIs.	All	the	code	samples	were	presented	in	C#	and	developed
in	Visual	Studio	(although	apart	from	the	Visual	Studio	wizards,	you	could	have	used	any
other	IDE).	Many	scenarios	and	technologies	are	just	as	important,	but	they	didn’t	make	it
into	the	book	for	various	reasons—sometimes	because	they	are	still	too	early	in	the
development	cycle,	but	more	often	because	of	a	lack	of	time.	This	appendix	is	meant	to
ensure	that	you	are	aware	of	these	important	topics	and	give	you	pointers	if	you	want	to
know	more.

If	you	follow	just	one	link,	be	sure	it’s	http://aka.ms/aaddev,	which	is	the	entry	point	for
the	online	developer	guide	for	Azure	AD	and	offers	the	most	comprehensive	set	of	links
you	can	find	on	identity	and	development	for	Active	Directory.	For	keeping	up	with
changes	affecting	what	the	book	covers,	please	refer	to
http://www.cloudidentity.com/blog/books/book-updates/.

	Other	platforms	The	Azure	AD	developer	experience	team	produces	development
libraries	for	an	ever-growing	list	of	popular	platforms.	You	have	explored	.NET	in
depth	in	this	book,	but	there	are	counterparts	in	the	pipeline	for	popular	server	stacks
such	as	Node.JS,	Java,	Ruby,	Python,	and	more.	All	the	libraries	are	open	source	and
can	be	found	at	https://github.com/azuread/.	Feel	free	to	explore	the	libraries
themselves	and	the	test	cases.	The	site	I	mentioned	earlier,	http://aka.ms/aaddev,	has
various	quick	starts	that	can	get	you	up	and	running.	Finally,
https://github.com/azure-samples?query=active-directory	has	a	very	comprehensive
list	of	samples.	The	convention	is	that	the	sample	repo	name	includes	the	platform
being	demonstrated—for	example,	active-directory-node-webapp-openidconnect
indicates	a	sample	showing	how	to	do	web	sign-on	via	OpenID	Connect	with
Node.JS.

	Single-page	applications	Single-page	applications,	or	SPAs,	are	a	very	popular
application	development	style	I	touched	on	in	Chapter	2,	“Identity	protocols	and
application	types.”	Azure	AD	offers	comprehensive	support	for	this	style	of
development,	from	the	protocol	features	necessary	to	implement	the	token	flow	to	a
handy	JavaScript	library	(ADAL	JS;	source	at	https://github.com/AzureAD/azure-
activedirectory-library-for-js)	and	accompanying	samples	(https://github.com/azure-
samples?utf8=%E2%9C%93&query=singlepage).	I	originally	considered	adding	a
chapter	on	SPAs,	but	as	I	started	writing,	it	became	clear	that	the	chapter	would	have
been	too	much	of	a	detour	from	the	main	flow	of	the	book.	You	can	find	more
information	on	this	scenario	on	my	blog
(http://www.cloudidentity.com/blog/tag/adaljs/)	and,	as	usual,	in	the	guide	at
http://aka.ms/aaddev.	Finally,	on	the	web	you	can	find	many	samples	and	labs
published	from	Office,	as	SPAs	are	a	very	popular	way	of	consuming	the	Office
API.

	Native	clients	Modern	authentication	for	native	clients,	as	mentioned	in	Chapter	2,
is	a	topic	that	deserves	an	entire	book	(or	two)	of	its	own.	The	Azure	AD	team

http://aka.ms/aaddev
http://www.cloudidentity.com/blog/books/book-updates/
https://github.com/azuread/
http://aka.ms/aaddev
https://github.com/azure-samples?query=active-directory
https://github.com/AzureAD/azure-activedirectory-library-for-js
https://github.com/azure-samples?utf8=%E2%9C%93&query=singlepage
http://www.cloudidentity.com/blog/tag/adaljs/
http://aka.ms/aaddev

supports	lots	of	platforms	through	dedicated	libraries:	you	can	find	.NET,	iOS,
Android,	Xamarin,	Cordova,	Windows	Store,	Universal	Windows	Platform,	and
others	at	https://github.com/AzureAD.	There	are	lots	of	samples	at
https://github.com/azure-samples	and	comprehensive	guidance	at
http://aka.ms/aaddev.

	Business	to	consumer	(B2C)	The	flavor	of	Azure	AD	I	discussed	in	this	book	is
meant	to	address	classic	business-organization	scenarios,	such	as	internal	app
portfolios,	cross-organization	collaboration,	or	software	developer	vendors	targeting
the	business	world.

As	I	write,	Azure	AD	has	announced	an	entirely	new	offer,	dubbed	B2C,	or	business
to	consumer,	which	is	meant	to	help	businesses	handle	authentication	for	their
customer-facing	applications	and	assets.	The	new	offer	makes	use	of	the	same
infrastructure	as	classic	Azure	AD	and	is	based	on	the	same	protocols	(OpenID
Connect,	OAuth2);	however,	it	tweaks	the	offer	to	support	the	features	that	B2C
scenarios	require.	Simple	sign-up,	fully	customizable	authentication	experiences,
social	identity	provider	integration,	and	profile	management	are	examples	of	new
features	B2C	offers.	At	this	point,	B2C	is	still	in	preview,	but	you	can	experiment
with	it	by	developing	web	apps	with	the	same	middleware	you	learned	about	in	this
book.	Head	to	http://aka.ms/b2c	for	more	details.

	Azure	AD	vNext	and	convergence	with	Microsoft	accounts	The	Azure	AD	team
is	hard	at	work	to	deliver	a	new	version	of	Azure	AD,	which	will	introduce	some
key	features	currently	missing.	In	the	new	system,	the	team	is	aiming	at	allowing
you	to	get	tokens	from	Azure	AD	or	from	Microsoft	accounts	by	using	the	same
protocol	and	developer	libraries.	Furthermore,	you	will	no	longer	be	strictly	bound
by	the	static	permissions	and	consent	rules	described	in	Chapter	9—you	will	be	able
to	ask	for	scopes	on	the	fly.	This	is	going	to	open	up	scenarios	that	are	impossible	or
really	hard	to	achieve	today,	and	members	of	the	identity	team	are	all	very	excited
about	it.	The	new	endpoints	and	libraries	are	in	preview:	you	can	read	about	them	at
http://aka.ms/aadconvergence.

https://github.com/AzureAD
https://github.com/azure-samples
http://aka.ms/aaddev
http://aka.ms/b2c
http://aka.ms/aadconvergence

Index

A
About()	action,	238–239,	241,	249–250

access	control

for	applications,	216–219

enforcing,	82

groups,	219–221

risk	levels,	59

for	web	APIs,	283

Access	Control	Service	(ACS),	78–79

access	delegation,	31–33

AccessToken	property,	229

access	tokens,	35,	256.	See	also	tokens

claims,	263,	289–290,	292

invoking	web	API	with,	232–251

JWT	format,	271

life	span,	238–239

opacity	to	token	requestors,	72,	233

refresh	tokens,	238–251.	See	also	refresh	tokens

renewing,	70–71

requests,	268–269

responses,	269–270

scope,	116.	See	also	scopes

AccountController	sign-in	and	sign-out	logic,	104

AcquireTokenByAuthorizationCode	method,	229,	244–245,	287–288

AcquireToken	method,	228,	269

AcquireToken*	methods,	238–239,	241,	247

AcquireTokenSilent	method,	239,	241,	243–244

failed	calls,	246

acr	claims,	133

Active	Directory	(AD)

access	token	representation,	255

introduction,	15

as	new	directory	in	the	cloud,	58

on-premises,	15–16

on-premises	vs.	cloud	approach,	58–59

projection	in	the	cloud,	58

setup	in	Windows	Server	2016,	273–274

token	requests,	70

Visual	Studio	integration,	85–87

Active	Directory	Authentication	Library	(ADAL),	76–78

accessing	APIs	as	application,	251–252

accessing	APIs	as	arbitrary	user,	252

cache,	243–247

handling	AuthorizationCodeReceived	notification,	227–230

JavaScript	versions,	80

midtier	client	libraries,	81

native	apps	libraries,	48,	80–81

.NET	NuGet	package,	referencing,	227–228

refresh	tokens,	238–251

session	management,	238–251

token-acquisition	pattern,	77

token	caches,	238–239

Active	Directory	Federation	Services	(ADFS),	9,	25,	52–56

access	control	policies	for	web	APIs,	283

access	token	representation,	255

access	tokens	for	web	APIs,	285–288

API	and	UX	entries,	282

application	groups,	274–275

application	permissions	for	web	APIs,	284

app	provisioning,	287

Client-Server	Applications	section	of	management	UX,	275

credentials	gathering,	280–281

endpoints,	276–277

federated	tenants,	65–66

JWT	format	for	access	tokens,	271

management	UX,	274–276

multiresource	refresh	tokens,	286

Native	Application	and	Web	API	template,	275

OAuth2	authorization	code	grants,	55

OpenID	Connect	support,	103

protocol	support,	55–56

Server	Application	and	Web	API	template,	275

setting	up,	54,	273–274

signing	keys,	280

tokens	issued	by,	289

web	API	identifiers,	282

web	API	invocation,	288–289

web	API	setup,	281–285

web	app	setup,	277–280

web	sign-on	with	OpenID	Connect,	276–281

Windows	Integrated	Authentication	credential,	279

in	Windows	Server	2016,	56,	103,	273–292

workplace-joined	device	detection,	56

Active	Directory	Federation	Services	(ADFS)	“3”

application	provisioning,	271

client	entity,	274

OAuth2	support,	272

web	APIs,	protecting,	271–272

ActiveDirectoryFederationServicesBearerAuthentication	method,	271

ADAL4J,	81

ADAL	Android,	81

ADAL	Cordova,	81

ADAL	iOS,	80

ADAL	JS,	72,	85,	294

ADAL	.NET,	78–80

Add	Transform	Claim	Rule	Wizard,	290

admin	consent,	173,	200–204.	See	also	consent

dialog	box	for,	202

requests,	210

administrators

ADFS	management,	53–54,	57

application	creation,	204

Azure	portal,	64,	66

claims	issued,	managing,	9,	57

consent	prompts,	199

control	over	trust	establishment,	57

directory	resource	access,	173

directory	sync,	65

global,	93

guest,	93

permissions,	59,	198–200

AJAX	calls,	235

allowedMemberTypes	collection,	214,	216–217

amr	claims,	133

AngularJS,	47

anonymous	access,	97

APIs.	See	web	APIs

<api	version>	component	in	URL	template,	237

AppBuilder	type,	141–142

appId	property,	180,	188

App	ID	Uri,	209,	256

Application.appRoles	object,	216–219

application	groups,	274–275,	281–282

application	identifiers,	181

application-level	authentication	messages,	25

application	model,	Azure	AD.	See	Azure	Active	Directory	application	model

Application	object,	175,	177–186

authentication	properties,	180–183

deletion	timestamp,	180

JSON	file,	178–180

object	ID,	180

properties	by	functional	group,	186

for	web	APIs,	257–258

Application	Proxy,	67

applications

access	directory	as	user	permission,	196

accessing	resources	as,	45

accessing	web	APIs,	252

access	through	Azure	Active	Directory,	66

actions,	177

adding	to	application	groups,	281–282

ADFS	code,	libraries,	protocol	support,	53,	55

admin	consent,	173,	200–204,	210

admin	creation,	204

admin-level	permissions,	198–200

app-level	permissions,	216–219

assigned	users,	188

authenticate	users	permission,	195–196

authentication	options,	177

availability	to	other	tenants,	182–183

client	role,	70–72.	See	also	clients

credentials,	226–227,	279

decoupling	from	web	servers,	138

delegated	permissions,	192–197

directory	read	and	write	permissions,	196

display	name,	181

enumerate	users	permissions,	196–197

group	read	and	write	permissions,	197

homepage,	181

identifiers,	177,	188

identifying	authentication	protocols	of,	64

IdP	metadata,	reading,	21

IdP	trust,	18

initialization,	140–141

isolated	and	independent,	14

iss	(issuer)	value,	120–121,	208

key	string	assignments,	226–227

multitenancy,	205–211

nonadmin	user	creation,	189–192

OAuth2	permissions,	183–185

partitioning	for	consumption	routes,	265–266

protecting	with	Azure	AD,	60–61

protocol	coordinates,	61,	177,	276,	278

provisioning,	53–54,	57,	189

public	vs.	confidential	clients,	181

relying	parties,	18.	See	also	relying	parties	(RPs)

resource	protectors,	69,	73–74

resources,	177,	185–187

roles,	182,	213–216

scopes,	201.	See	also	scopes

single-page,	45–47

as	token	requestors,	69–72,	74

token	validation,	22.	See	also	token	validation

user	assignment,	211–213

app	manifest	files,	214,	219

appOwnerTenantId	property,	188

app	parameter,	140–141

app	permissions,	216–219

AppRoleAssigment	entity,	212

appRoleAssignedTo	property,	215

appRoleAssignmentRequired	property,	188,	212

AppRole	entity,	216–217

appRoles	property,	182,	188

ASP.NET

Katana.	See	Katana

membership	providers,	14

project	templates	for	web	APIs,	287

support	for	web	sign-on,	137.	See	also	Open	Web	Interface	for	.NET	(OWIN)
middlewares

templates	in	Visual	Studio	2015,	87

ASP.NET	4.6

vs.	ASP.NET	5,	90

initialization	code,	95

web	API	projects,	254.	See	also	web	APIs

ASP.NET	5,	85,	90

ASP.NET	applications,	3–7.	See	also	web	applications

building,	89

claims-based	identity	support,	82

MVC	project	type,	90–91

OWIN	components,	83–84

assembly:OwinStartup	attribute,	139

assertions,	26

attributes,	20,	59,	290

audience	claims,	132,	282

authentication

Application	object	properties,	180–183

Azure	AD	for,	1

claims-based	identity,	17–23

default	process,	4–7

defined,	12

failure	notification,	166

indicating	success,	98

mechanisms	for,	7

mode,	152,	158–159

modern,	31–48

multitenant	systems,	58

native	apps	vs.	web	apps,	94

pre-claims	techniques,	12–16

round-trip	web	apps,	23–31

steps	of,	73

triggering,	97–98,	100

type	setting,	158

AuthenticationContext	class,	228

initialization,	287

AuthenticationFailed	notification,	167

authentication	flows

across	multiple	tenants,	205–208

authorization-code,	42–43

hybrid,	40–42,	108

OWIN	middlewares	pipeline,	148–153

state,	preserving,	116–117

AuthenticationManager	instance,	148

authentication	middlewares,	148–153

Authentication	property,	146

AuthenticationMode	property,	159

Active	option,	149

AuthenticationProperties	settings,	100

Authentication	property,	146,	150,	152–153

AuthenticationReponseGrant,	150

authentication-request	message	type,	39

authentication	requests,	98,	113–119

authorization	endpoints,	114

clientID,	114

nonce,	117

omitted	parameters,	117–119

response	mode	and	response	type,	114–116

scope,	116

state,	116–117

AuthenticationResult	instance,	229

AuthenticationTicket	store,	171

AuthenticationType	property,	159

authorities,	18

/adfs/,	287

control	over	user	authentication	experience,	122

validation	in	ADFS,	287

authority	coordinates,	validation	and,	157–158

Authority	property,	155

authority	types.	See	Active	Directory	Federation	Services	(ADFS);	Azure	Active
Directory

authorization,	33–39,	116

OAuth2	grants,	55,	252

<Authorization>,	216

AuthorizationCodeReceived	notification,	167,	227–230,	286

authorization	codes

acquiring,	225

client	secrets,	156

code-redemption	logic,	227–230

OpenID	Connect	flow,	42–43

redeeming,	224–232,	286

authorization	endpoint,	35,	63,	114,	207,	285

Authorization	HTTP	headers,	tokens	embedded	in,	232–234

authorization	requests,	149

authorization	server	(AS),	34–35

[Authorize]	attribute,	97–98,	148–149

on	entire	class,	257

role	information,	216

scope-verification	logic,	264

auth_time	claims,	133

availableToOtherTenants	property,	182–183,	209

Azure	Access	Control	Service	(ACS),	41,	78–79

Azure	Active	Directory,	1,	56–67

access	token	representation,	255

application	access,	66

application	entry	permissions,	224–225

application	model.	See	Azure	Active	Directory	application	model

Application	Proxy,	67

apps,	adding	entry	for,	60

authorization	endpoints,	114

B2C	(business	to	consumer),	294–295

client-credentials	grants,	251

client	IDs,	94,	97

cloud	workload	functionality,	59

consent	prompt,	5–6

cookies	on	user	browser,	124

credential	gathering,	122–123

credentials	prompt,	5

default	domain,	62–63

development	and,	2,	60–61

Directory	Graph	API,	10,	59.	See	also	Directory	Graph	API

directory	sync,	65–66

discovery,	119–120

functional	components,	59–60,	63–65

group	information	in	tokens,	219–220

libraries,	75–86

multitenancy,	58,	205–208

oauth2PermissionGrants	collection,	189–192

obtaining	tenant,	61–62

online	developer	guide,	293

OpenID	Connect	endpoints,	109

permissions	for	directory	access,	193–197

private/public	key	pair	information,	227

programmatic	access	to	entities,	236–237

programmatic	interface,	64–65.	See	also	Directory	Graph	API

projection	of	on-premises,	65

protocol	endpoints,	63–64

protocols	supported,	58

redirect	URIs,	100

refresh	tokens,	240–243

registering	apps,	93–94

resource	identifiers	in	token	requests,	256

resource-protector	library	references,	92

response	to	POST,	123–125

response	types,	124

service	deployments,	63

sessions,	cleaning,	135

synchronizing	users	and	groups	to,	65–66

tenantID,	63

tenants,	62,	93

tokens,	61.	See	also	tokens

token-signing	keys,	120–122

token	validation,	149–151

trial,	2

tying	to	Visual	Studio,	2–3

user	information,	accessing,	7–10

Visual	Studio	2015	connected	services,	87

web	API	provisioning,	253

Azure	Active	Directory	application	model,	64,	173–221

admin	consent,	200–204

admin-level	permissions,	198–200

admin	user	application	creation,	204

app-level	permissions,	216–219

Application	object,	175,	177–186

app	roles,	213–216

app	user	assignments,	211–213

consent,	175,	189–192

delegated	permissions,	192–197

functions,	173

groups,	219–221

multitenancy,	205–211

provisioning	flow,	175–176

ServicePrincipal	object,	187–188

service	principals,	174–177

Azure	Active	Directory	Basic,	62,	66–67

Azure	Active	Directory	Connect,	65

Azure	Active	Directory	Free	tier,	61–62

Azure	Active	Directory	Premium,	62,	66–67,	215

Azure	Active	Directory	vNext,	295

Azure	management	portal,	60–61,	64

application	configuration	section,	178

application	credentials,	assigning,	226

Application	entity	JSON	file,	178

application	permission	selection	UI,	198

application	permissions	screen,	217–218

application	tags,	188

manifest	management	section,	178

multitenancy	setting,	209

provisioning	apps	in	Azure	AD,	93–94

Users	tab,	212

Azure	subscription,	2,	93

B
back	ends,	HTTP	requests	to,	46

Balfanz,	Dirk,	41

BaseNotification	class,	161

bearer	token	middleware

diagnosing	issues,	261

notifications,	264

Provider,	specifying,	265

tokens	from	ADFS,	validation,	271

bearer	tokens,	232–237,	262

extraction	and	validation,	255

BootstrapContext	property,	268

broker	apps,	48

browsers

hosting	prompting	logic	in,	48

network	tracing	features,	110

presentation	layer,	45–46

business	to	consumer	(B2C)	Azure	AD,	294–295

C
CallbackPath	property,	158

caller	identity	class,	7–10

callers

attributes,	7

identifying,	23–24

retrieving	names	of,	7–8

Caption	property,	159

Challenge	method,	99–100

Challenge	sequence	in	OpenID	Connect	middleware,	152

claims,	7,	20

from	access	tokens,	263

adding	to	access	tokens,	289–290,	292

vs.	attributes,	290

group	information,	182,	219–220

in	ID	tokens,	132–134

information	in,	57

JWT	types,	131–132

OAuth2	and,	36–37

sourcing	values,	52

type	identifiers,	8–9

claims-based	identity,	17–23

authentication	process,	21–22

identity	providers,	17–18

just-in-time	identity	information,	57

protocols,	20–23

tokens,	18–20

trust	and	claims,	20

claims-oriented	protocols,	communication	across	boundaries,	36–37

ClaimsPrincipal	class,	7–10,	82

Claims	list,	263

Current.FindFirst(“roles”),	215–216

Current	property,	8

in	OWIN,	83

saving,	151

source	location,	8

ClaimsPrincipalSelector	delegate,	8

claims	rules	engine,	52

claims	transformation	engine,	60

ClaimTypes	enumeration,	8–9

ClientAssertionCertificate,	231

ClientCredential	class,	229,	251,	287

client	credentials	grants,	44–45,	251,	266

client	IDs,	94,	97,	114,	155,	190

of	application,	256

overriding	at	registration,	276

refresh	tokens	and,	243

client-resource	interactions,	tokens	for,	70–71

clients,	70.	See	also	token	requestors

access	control	policies	for	web	APIs,	283

in	ADFS	“3,”	274

ADFS	support,	55

application	permissions	for	web	APIs,	284

confidential,	181,	275

definitions	of	term,	72

entries	in	target	directories,	183

granted	permissions,	189–192

identity	and	resource	consumption,	265–266

public,	181,	275

scopes,	284–285

as	token	requestors,	72

of	web	APIs,	291

client	secrets,	156,	227

cloud	applications,	57–58

cloud-based	Active	Directory,	58–59.	See	also	Azure	Active	Directory

cloud-based	authentication,	56.	See	also	Azure	Active	Directory

cloud-based	directories,	60

cloudidentity.com	blog,	80

cloud	services,	58.	See	also	Azure	Active	Directory

cloud	stores,	59

code	reuse,	71

common	endpoint,	121,	207

confidential	clients,	181,	275

ConfigurationManager	class,	157–158

ConfigureAuth,	141

consent,	189–192

across	tenants,	209–211

admin,	173,	200–204,	210

AppRoleAssigment	entries,	212

provisioning	flow,	175–176

for	resource	access,	186

revoking,	259

settings,	211

for	web	APIs,	258

consent	prompts,	44,	191

for	admin	users,	199

for	multitenant	pages,	210

constrained	delegation,	43

context

AuthenticationManager	instance,	148

Authentication	property,	146,	150,	152–153

environment	dictionary,	147

middlewares,	142,	145–148

Request	and	Response	properties,	147–149

TraceOutput	property,	148

contracts,	23

controllers,	MVC	5	Controller,	100

cookie-based	sessions,	92

cookie	middleware

adding	to	pipeline,	96

adding	to	web	apps,	92

ClaimsPrincipal,	saving,	151

collaboration	with	protocol	middleware,	148

response	processing,	150

sessions,	managing,	171

sessions,	saving,	150

sign-out,	100–101

cookies

domain-bound,	24–25

life	cycles,	24,	46

limitations,	46

nonce	value,	tracking,	124–125

session.	See	session	cookies

on	user	browser,	124

for	web	API	protection,	235–236

Cordova	ADAL	library,	81

credentials

application,	226–227

assigning,	226

gathering,	122–123

grants,	44–45,	251,	266

keys,	181.	See	also	keys

passwords,	181

in	ServicePrincipal,	188

sharing	among	apps,	32–33

storage,	226

types,	13

credentials	validation	and	session	cookie	authentication	pattern,	23–24

cross-collaboration	scenarios,	17

cross-domain	single	sign-on,	problems,	23–25

Current	property,	8

D
decoupling	web	servers	from	apps,	138.	See	also	middlewares;	Open	Web	Interface	for
.NET	(OWIN)

default	authentication	process,	4–7

delegated	access,	34–36

delegated	permissions,	185,	192–197

scopes,	201

deletionTimestamp	property,	180,	188

Devasahayam,	Samuel,	15

developer-assigned	application	identifiers,	181

development	certificates,	91

development	libraries

in	Active	Directory,	75.	See	also	libraries

for	native	clients,	294

for	other	platforms,	293

development	on	dedicated	machines,	91

diagnostic	middleware,	153–154

digital	signatures,	19

directories,	defined,	62

Directory.AccessAsUser.All	permission,	196

directory	access	permissions,	193–196

directory	entities,	programmatic	access	to,	236–237

directory	entries	for	web	APIs,	257–258

Directory	Graph	API,	10,	59–60,	64–65,	236–237

Application	object	JSON	file,	178–180

application	permissions,	217–218

calling,	233–234

group	information,	219

directory	permissions,	193–197

directory	queries	in	cloud	applications,	57–58

Directory.Read.All	permission,	196

Directory.Read	permission,	196

Directory.ReadWrite.All	permission,	196

directory	services	for	multitenant	systems,	58

directory	sync,	65–66

directory	tenants,	58

Directory.Write	permission,	196

discovery	document,	119,	208

keys	document,	120–121

location,	277

displayName	property,	181,	188

distributed	sign-out,	27,	29,	101,	109

domain-based	identifiers,	63

domain	controllers	(DCs),	15,	20,	23

domain_hint	parameter,	118

domain-joined	servers,	ADFS	on,	54

domain-joined	workstations,	14–16

domains,	14–16,	62

E
email	claims,	133

endpoints,	18

ADFS,	276–277

common,	207

multitenancy	and,	206–207

network,	52

OAuth2,	64

protocol,	60,	63–64

protocol/credential	type,	60

turning	on	and	off,	52

entities,	22–23,	70

environment	dictionary,	138,	147

errorUrl	property,	188

exp	claims,	132

ExpiresOn	property,	230

F
family_name	claims,	133

federated	tenants,	65–66,	122

federation.	See	also	Active	Directory	Federation	Services	(ADFS)

for	integrating	with	Azure	AD,	66

for	synchronized	deployments	of	Azure	AD,	65

Fiddler,	110

capturing	trace,	112

HttpClient	traffic	tracing,	261

setup,	111

Fiddler	inspector,	127

first-name	claim	type,	8

form	post	response	mode,	115

fragment	response	mode,	115

functions,	creating,	163–164

G
GET	operations

of	Account/SignOut,	134

for	authenticated	resource	requests,	125

requests	through,	182

given_name	claims,	133

Goland,	Yaron,	41

grants

admin	consent,	203–204

AuthenticationReponseGrant,	150

client	credentials,	44–45,	251,	266

implicit,	46–47

OAuth2	grants,	252

oauth2PermissionGrants	collection,	189–192

refresh	token,	239–240,	242

Graph	API.	See	Directory	Graph	API

groupMembershipClaims	property,	182,	219

Group.Read.All	permission,	197

Group.ReadWrite.All	permission,	197

groups,	219–221

assigning,	215

consuming,	220–221

names,	220

number	of,	221

guest	Microsoft	account	users,	122

H
HandleResponse	method,	162

hero	apps,	48

homepage	property,	181,	188

HostAuthenticationFilter	attribute,	266

hosts	in	OWIN	pipeline,	140

HTTP	302s,	98

redirects,	113–119,	145,	149–150

requests,	29–30,	44,	46

responses,	125

HTTP	401	responses,	149,	235,	261–262

HTTP	claims-based	identity,	22

HttpClient	traffic	tracing,	261

HttpContext.Current.User,	8

HttpContext.GetOwinContext().Authentication	method,	100

HttpContext.GetOwinContext().Authentication.SignOut	method,	134

HttpModules,	83,	137

as	host	for	OWIN	pipeline,	140

predefined	events,	145

HTTP	requests	to	back	end,	46

HTTPS	URL	for	projects,	91,	94

HttpWatch,	110

hybrid	authentication	flow

APIs,	obtaining	tokens,	224–232

authorization	code	redemption,	227–232

authorization	codes,	166

initialization,	113

OpenID	Connect,	40–42,	108

token	validation	requirements,	133

hybrid	token-requestor	and	resource-protector	role	development	libraries,	85–86

I
IAppBuilder	interface,	140

iat	claims,	132

IAuthenticationSessionStore	interface,	171

identifierUris	property,	181

identity	libraries.	See	libraries

identity	party	trusts	in	ADFS,	274

identity	providers	(IdPs),	17–18,	20

endpoints,	18

metadata,	18,	21,	108

public-private	key	pairs,	18–19

redirecting	to,	160

SAML,	25–26

string	identifiers,	18

WS-Federation,	28–29

identity	transactions,	17–23

ID	tokens,	39–40,	116,	127–134,	230,	280–281,	286

claims	in,	133–134

decoding,	127–129

from	server-to-server	calls,	42

user	information	in,	269

validating,	42,	133

IIS	Express,	91

IIS	integrated	pipeline,	145

impersonation,	44

implicit	flow,	182

implicit	grants,	46–47

integrated	authentication,	14–16

interceptors,	74

intranets,	authentication	on,	14–16

Intune	API,	61

Invoke	method,	142

IOwinContext	wrapper,	142

IsInRole()	role	information,	216

IsMultipleRefreshToken	property,	230

iss	claims,	132

IssuerSigningKey	property,	167

issuer	validation,	208–209

iss	(issuer)	value,	120–121,	208

J
JavaScript

HTTP	requests	to	back	end,	46

logic-layout	management,	45–46

native	apps,	81

token	bits,	retrieving,	46–47

Jones,	Mike,	41

JSON	Tokens,	41

JSON	Web	Algorithms	(JWA),	110,	131

JSON	Web	encryption	(JWE),	129

JSON	Web	Keys	set	(JWKS),	280

JSON	Web	Signature	(JWS),	129–131

JSON	Web	Token	(JWT),	19,	40

access	token	representation	as,	255

for	access	tokens,	271

ADFS	support,	55

claim	set,	131–132

components,	129–130

handlers,	84,	92

header	types,	131

specification,	110,	129

tokens,	84

just-in-time	provisioning,	58

K
Katana,	139–154.	See	also	Open	Web	Interface	for	.NET	(OWIN)

assembly:OwinStartup	attribute,	139

context,	145–148

diagnostic	middleware,	153–154

appSettings	entry,	139

middleware	behavior	settings,	158–159

middleware	execution,	145

notifications,	159–166

OwinStartup	attribute,	139

Startup	class,	139–141

UseStageMarker	method,	145

“Katana”	3.x,	83–84

“Katana”	vNext,	84

Kerberos

native	applications	and,	47

service	principals,	174

Kerberos	federation,	17

keyCredentials	property,	181,	188,	226–227

keys

assigning	to	applications,	226–227

credentials,	181

IssuerSigningKey	property,	167

JSON	Web	Keys	set,	280

keyCredentials	property,	181,	188,	226–227

public-private,	18–19,	227

RefreshOnIssuerKeyNotFound	property,	158

signing,	280

symmetric,	19

token-signing,	120–122,	158

token-validation,	167

ValidateIssuerSigningKey	property,	168

keys	document,	120–121

Klout	web	application,	248–249

knownClientApplications	property,	183,	258

L
libraries

in	Active	Directory,	75

authentication	tasks,	73–74

for	hybrid	token-requestor	and	resource-protector	role,	74–75,	85–86

for	native	clients,	294

open	source,	76

for	other	platforms,	293

reasons	for	using,	71

for	resource-protector	role,	73–74,	82–85

for	token-requestor	role,	70–71,	76–81

line-of-business	(LOB)	applications,	4–5

local	networks,	authentication	on,	14–15

localStorage,	47

login_hint	parameter,	117

logoutUrl	property,	188

M
managed	tenants,	65–66,	122

manifest	files,	214,	219

/me	alias,	237

MessageReceived	notification,	165

messages

SAML,	26–27

signed,	26

WS-Federation,	28–31

metadata,	18,	21

MetadataAddress,	104,	277

metadata	documents,	158

discovery	document,	119

OpenID	Connect	format,	39

SAML	format,	26

WS-Federation	format,	29

MetadataEndpoint,	287

Microsoft.AspNet.WebApi.Owin	NuGet	package,	266

Microsoft	Azure.	See	Azure	Active	Directory

Microsoft	cloud	service,	61

Microsoft	Enterprise	Agreement,	62

Microsoft.IdentityModel.Protocol.Extensions	NuGet	package,	84,	92

Microsoft	Office	365.	See	Office	365

Microsoft	Online	Directory	Service	(MSODS),	60

Microsoft.Owin.Diagnostics	NuGet	package,	154

Microsoft.Owin	NuGet	package,	92

Microsoft.Owin.Security.ActiveDirectory	NuGet	package,	83,	254

Microsoft.Owin.Security.Jwt	NuGet	package,	254

Microsoft.Owin.Security.OAuth	NuGet	package,	254

Microsoft.Owin.Security.OpenIdConnect	NuGet	package,	84

Microsoft.Owin.Security	NuGet	package,	92

Microsoft.Owin.Security.WsFederation	NuGet	package,	83

Microsoft	Visual	Studio.	See	Visual	Studio

_middleware	entry,	141

middleware	initialization	options	class,	155–159

middlewares

activation	sequence,	142–145

behavior	settings,	158–159

building,	138.	See	also	Open	Web	Interface	for	.NET	(OWIN)

caption	setting,	159

context,	142,	145–148

environment	dictionary,	138

initialization	pipeline,	265–266

Invoke	method,	142

message	received	notification,	164

observing	pipeline,	143–145

pipeline	of	web	APIs,	254–255

pointers	to	next	entries,	142

requesting	execution,	145

resource	protectors,	74,	81

response	handling,	161

security	token	received	notification,	164

security	token	validated	notification,	164–165

sign-in	and	sign-out	flow,	99–103

skipping	to	next,	161

stopping	processing,	142,	145

UseStageMarker	method,	145

midtier	clients	ADAL	libraries,	81

MMC	(Microsoft	Management	Console),	60

mobile	operating	systems,	native	apps	on,	80

modern	authentication	techniques,	31–48

multiple	authentication	factors	(MFA),	122

Multiple	Response	Type	specifications,	109

multiresource	refresh	tokens	(MRRT),	242–243,	260

multitenancy,	205–211

MVC	5	Controller,	100

/myorganization	alias,	237

N
native	applications,	47–48

ADAL	libraries,	48,	80–81

ADFS	support,	55

ADFS	template,	275

admin	creation	in	Azure	portal,	204

authentication	flows,	94

broker	apps	and,	48

development	libraries,	75–76

Kerberos	and,	47

modern	authentication	for,	294

popularity,	47–48

tokens,	obtaining,	21–22

nbf	claims,	132

.NET-based	applications,	78

.NET	core,	OWIN	middleware	for,	84

.NET	Framework

caller	identity	class,	7–10

SAML	and,	25

version	4.5,	82

Windows	Identity	Foundation	classes,	82–83

.NET	JWT	handler,	84

.NET	web	development,	138

network	endpoints,	52

network	tracing	features,	110

nickname	claims,	133

Node.JS,	81

nonadmin	users,	application	creation,	189–192.	See	also	users

nonce	value

of	authentication	requests,	117

cookie	tracking,	124–125

OpenID	Connect,	149

notifications,	159–166

AuthenticationFailed,	166

AuthorizationCodeReceived,	166

in	bearer	token	middleware,	264

MessageReceived,	164

RedirectToIdentityProvider,	162–164

SecurityTokenReceived,	164

SecurityTokenValidated,	164–165

sequence,	159–161

of	TokenCache	class,	244–245

Notifications	property,	155

NuGet	packages

adding	references,	92

Microsoft.AspNet.WebApi.Owin,	266

Microsoft.IdentityModel.Protocol.Extensions,	84,	92

Microsoft.Owin,	92

Microsoft.Owin.Diagnostics,	154

Microsoft.Owin.Security,	92

Microsoft.Owin.Security.ActiveDirectory,	254

Microsoft.Owin.Security.Jwt,	254

Microsoft.Owin.Security.OAuth,	254

Microsoft.Owin.Security.OpenIdConnect,	83

.NET,	227–228

System.IdentityModel.Tokens.Jwt,	84,	92

SystemWeb,	92

for	web	APIs,	254

web	apps	referencing,	92

O
OAuth,	33–37

OAuth2,	33–37

ADAL	and,	76–77

ADFS	“3”	support,	272

authorization	grants,	55,	252

bearer	token	usage,	232–237,	262

claims	and,	36–37

client	credentials	grants,	44–45

endpoints,	64

ID	token,	39

interoperability,	37

limitations,	118

Multiple	Response	Type,	109

“on-behalf-of”	security	token	requests,	44

OpenID	Connect	extensions,	39,	110

permissions	in	applications,	183–185

Post	Response	Mode,	109

refresh	token	grants,	239–240

refresh	tokens,	238–251

scope,	116

support	for,	37

Token	Exchange	extensions	on-behalf-of	flow,	267–270

web	sign-in,	37–39

oauth2AllowImplicitFlow	property,	182

oauth2AllowUrlPathMatching	property,	182

OAuth2	Authorization	Framework	specification,	110

OAuth2	bearer	token	middleware,	287

OAuth2	Bearer	Token	Usage	specification,	110

oauth2PermissionGrants	collection,	189–192

admin	consent,	203–204

consent	entries,	210

oauth2Permissions	collection,	183–185,	188,	192–195

default	entry	for	web	APIs,	257

value	property,	257–258

oauth2RequirePostResponse	property,	182

OAuth	WRAP	(Web	Resource	Authorization	Profile),	33,	40–41

objectId	property,	180,	188,	190

odata	parameters	in	URL	template,	237

Office	365,	61

cloud-based	issues,	58

Visual	Studio	2015	tools,	87

oid	claims,	133

on-behalf-of	flow,	267–270

security	token	requests,	44

on-premises	Active	Directory,	15–16,	58–59

on-premises	directories

functional	components,	60

querying	protocols,	59

OnValidateIdentity,	265

opaque	channels,	72,	91

OpenID,	37–38

OpenID	Connect,	9,	38–43,	108–109

authentication,	122–123

authentication-request	message	type,	39

authentication	requests,	113–119

authorization-code	flow,	42–43

authorization	requests,	98,	149

discovery,	119–122

document	format,	39

endpoints,	advertising	by	Azure	AD,	109

ID	token,	127–134

initialization	code,	95–97

JWT	format,	129–132

nonce,	149

opaque	channels,	91

response,	123–125

session	management,	109

sign-in	sequence,	110–112,	126–127

sign-out,	134–136

support	for,	43

supporting	specifications,	110

web	sign-on	with	ADFS,	276–281

OpenIdConnectAuthenticationOptions	class,	159

OpenIdConnectAuthenticationOptions	parameter,	96,	155–159,	276

TokenValidationParameters	property,	166–169

OpenID	Connect	Core	1.0,	108

OpenID	Connect	Discovery	1.0,	109

OpenID	Connect	hybrid	flow,	40–42,	224–232

OpenID	Connection	Session	Management	specification,	109

OpenID	Connect	middleware,	92,	155–166

ADFS	and,	276–277

authentication	flow	control,	96

authority	value,	97

Challenge	sequence,	152

client	ID,	94,	97,	256

distributed	sign-out,	101

initializing,	95–97,	277

notifications,	159–166

OpenIdConnectAuthenticationOptions,	155–159

outgoing	401s,	98

Passive	authentication	mode,	152,	159

postlogout	redirects,	102

session	management,	149–151,	171

sign-out,	100–101,	152–153

token	validation,	149–151

TokenValidationParameters	property,	166–169

OpenIdConnectNotifications	class,	159–166

OpenIdConnectProtocolValidator	class,	158

OpenID	Connect	Session	Management	specification,	135

openid	scope,	116,	286

open	redirector	attacks,	182

open	source	libraries,	76

Open	Web	Interface	for	.NET	(OWIN),	83–84,	137–138.	See	also	middlewares

ASP.NET-specific	implementation,	138

context,	145–148

defined,	138

environment	dictionary,	138

Katana	and,	139–154.	See	also	Katana

Open	Web	Interface	for	.NET	(OWIN)	middlewares

adding	to	web	apps	configuration,	92

authentication	capabilities,	146

authentication	flow,	148–153

for	claims-based	identity,	83

core	status,	147

diagnostic	middleware,	153–154

environment	dictionary,	147

hosting,	92,	95–96

for	.NET	core,	85

OpenID	Connect,	137–170

sign-in	flow,	148–152

sign-out	flow,	152–153

WS-Federation	support,	103

Open	Web	Interface	for	.NET	(OWIN)	pipeline

adding	middleware,	141–142

hosts,	140

initializing,	139–141

_middleware	entry,	141

servers,	140

OS	X	apps,	ADAL	libraries,	81

OwinMiddleware	class,	142–143

OwinStartup	attribute,	139

P
parametric	STS,	205–208

password-based	authentication,	12–14

passwordCredentials	property,	181,	188,	226

passwords,	13–14

password	sharing	antipattern,	32–33

path	matching,	182

permissions

admin-level,	198–200

app-level,	216–219

on	application	entry	in	Azure	AD,	224–225

consented,	186

delegated,	192–197

directory,	193–197

for	directory	access,	193–196

fine-grained,	59

granted,	storage	of,	189–192

roles	and,	213

Permissions	To	Other	Applications,	259

platform	as	a	service	(PaaS),	57

postlogout	redirects,	102,	156

PostLogoutRedirectUri	property,	102,	156,	276

Post	Response	Mode	specifications,	109

pre-claims	authentication	techniques,	12–16

principalType	property,	212

private/public	key	pairs,	227

profile	scope	value,	116

profile	stores,	12–14,	20

programmable	web,	31–33

Programming	Windows	Identity	Foundation,	82,	137

prompt=admin_consent	flag,	200–201,	218

prompt	parameter,	117–118

Properties	dictionary,	140–141

protected	APIs.	See	also	web	APIs

accessing,	232–251

exposing,	253–272

refresh	tokens,	238

protected	clients,	78

protocol	coordinates,	73–74

protocol/credential	type	endpoints,	60

protocol	endpoints,	60,	63–64

protocol	enforcement,	73

protocol	libraries,	77

protocol	middleware.	See	also	OpenID	Connect	middleware

collaboration	with	cookie	middleware,	148

protocols,	application	identifiers,	181

protocol	URLs,	63,	94

protocol	validation,	158

ProtocolValidator	property,	158

providers

claims	issued,	9

specifying,	265

provisioning

in	ADFS,	271,	287

applications,	53–54,	57,	189

in	Azure	management	portal,	93–94

just-in-time,	58

relying	parties,	52

ServicePrincipal,	186

web	APIs,	253

provisioning	flow,	175–176

provisioning	resources,	183

proxy	role,	52

proxy	utilities,	110

publicClient	property,	181

public	clients,	78,	275

public	key	cryptography,	19

public-private	key	pairs,	18

publisherName	property,	188

pwd_exp	claims,	133

pwd_url	claims,	133

Q
querying	protocols,	59

query	response	mode,	115

R
reauthorization,	248–249

redirects,	35

RedirectToIdentityProvider	notification,	160–164

modifying	authentication	requests,	201

redirect	URIs,	100,	115,	117,	135,	156,	180–181,	276

for	web	apps,	278

RefreshOnIssuerKeyNotFound	property,	158

refresh	token	grants,	239–240,	242

RefreshToken	property,	230

refresh	tokens,	35,	238–251

in	Azure	AD,	240–242

expiration,	246–251

invalidating,	240

multiresource,	286

opacity	to	client,	242

validity	times,	240

relying	parties	(RPs),	18

distributed	sign-out,	109

IdP	metadata,	108

provisioning,	52

user	sign-in	status	inquiries,	109

WS-Federation,	29

relying	party	trusts,	274–276

renewal	operations,	71

replyUrls	property,	180–181

Request	and	Response	methods,	148–149

Request	and	Response	properties,	147–148

requests

ClientAssertionCertificate,	231

client_secret	property,	227

interception,	73

redirect	URI,	156

resource	for	authorization	code,	156

response	type,	156

scope	parameter,	156

through	GET	operations,	182

through	middleware	pipeline,	138

token	inclusion,	70

requiredResourceAccess,	198–199

RequiredResourceAccessCollection,	185–187

Role	type	entries,	218

resource	apps

configuring	by	IdP’s	metadata,	73

token	acquisition,	73

token	validation,	73

resource	consumption

identity	of	clients,	265–266

patterns,	43–45

resource	identifiers	in	token	requests,	256

resourceId	property,	190

Resource	parameter,	118,	156,	231

<resource	path>	component	in	URL	template,	236–237

resource	protectors,	69,	73–74

development	libraries,	81–85

interceptors,	74

resources

accessing,	185–187

accessing	as	application,	44–45

access	requests,	70–71.	See	also	requests

authorizing	access,	97–98

client	libraries,	71–72

multiple,	refresh	tokens	for,	242–243

third-party	access,	34

type	of	access	scope,	185–186

resource	STS,	205–206

response	mode	and	response	type	parameters	of	authentication	requests,	114–116

Response	object,	149–150

responses

handling,	161

ID	token,	127–134

OpenID	Connect	message,	123–125

through	middleware	pipeline,	138

ResponseType	parameter,	156

response	types,	124

REST	API	calls,	233–235

REST-based	protocols,	28

REST	operations	for	directory	queries,	59

RoleClaimType	property,	216

groups	as,	220

roles

allowedMemberTypes	property,	214

application,	212–219

assigning,	213–214

claims,	133,	215

displayName	and	description	strings,	214

id	property,	214

value	property,	214

WS-Federation,	28–29

round	trips

performance	and,	45

request-response	pattern,	22–23,	45

web	apps,	23–31

RS256	signatures,	131

S
samlMetadataUrl	property,	182,	188

SaveSignInToken	property,	171,	268

scope-driven	authorization,	262–265

scopes,	116,	118,	156,	201

openid,	286

of	web	APIs,	284–285

security

HTTPS,	91

nonce	values,	117

for	web	API	calls,	46–47

Security	Assertion	Markup	Language	(SAML),	8,	25–27,	55,	182

security	code,	custom,	71

security	groups,	219

SecurityTokenHandlers	property,	158

SecurityTokenReceived	notification,	165

Security	Token	Service	(STS),	29

Access	Control	Service,	78–79

resource,	205–206

SecurityTokenValidated	notification,	165–166

server	applications,	ADFS	template,	275

servers

in	OWIN	pipeline,	140

server-to-server	calls,	42

ServicePrincipal,	174–177,	187–188

AppId,	193

oauth2Permissions,	193–196

ObjectId,	193

properties,	187–188

provisioning,	186

for	web	APIs,	257

ServicePrincipal.appRoleAssignedTo	object,	216–219

servicePrincipalNames	property,	188

service	providers	(SPs),	26

session	artifacts,	73

session	cookies,	24–25,	45,	92,	122

discarding,	135

in	OpenID	Connect	hybrid	flow,	42

persisting,	150

validation,	73,	125

session	data,	24

session	management,	70–71

by	ADAL,	238–251

in	OpenID	Connect	middleware,	109,	171

sessions

ClaimsPrincipal,	saving,	151

cleaning,	135

ending,	134–136

establishing,	22,	73,	149–151

properties,	151

request	token	validation,	152

saving,	150

validation,	73

sessionStorage,	47

Set-Cookie	value,	135,	149–151

shared	secrets,	279–280,	287

signatures,	19

signature	verification,	SAML	and,	26

signed	tokens,	20

sign-in,	37–39,	99–103,	126.	See	also	web	sign-on

notifications,	159–160

response	phase,	224–225

sequence,	126–127,	224

UI	elements,	102–103

user	credentials	prompts,	163

sign-in	and	sign-out	flow,	110–112

SignInAsAuthenticationType	property,	159

sign-in	flow

access	in	context	of	session,	148,	152

challenge	generation,	148–149,	152–153

OpenID	Connect	for,	107–134

response	processing,	149–151

session	generation,	149–151

specifications	and	dependencies,	107–108

WS-Federation,	29–31

signing	keys	for	web	apps,	280

sign-in	messages

generation	of,	149

redirects,	148–149

request	generation,	73–74

sign-out,	99–103

distributed,	101,	109

flow	sequence,	136

ID	hint,	135

notifications,	161

OpenID	Connect,	134–136

postlogout	redirects,	156

PostLogoutRedirectUri	property,	102

redirect	URI,	135

request	syntax,	135

state	preservation,	135

target	endpoint,	135

UI	elements,	102–103

user	credentials	prompts,	163

sign-out	flow,	152–153

SignOut	method,	99

Simple	Web	Token	(SWT),	40–41

Single	Logout	messages,	27

single-page	applications	(SPAs),	45–47,	294

ADAL	JS	library	for,	85

single	sign-on,	hack	for,	38

single	sign-out,	27

SkipToNextMiddleware	method,	161

software	as	a	service	(SaaS)	apps,	17

_sso_data	claim,	289

SSO	sessions,	27

stage	markers,	145

Startup.Auth.cs	file

ADFS	identity	provider	code,	103–104

identity	pipeline	initialization	code,	96–97

Startup	class,	139–141

Startup.Configure,	140

Startup.cs	file,	95

call	to	activate	authentication,	97

state,	preserving	at	sign-out,	135

state	parameter

of	authentication	requests,	116–117

local	URL	of	resource,	125

storing	tokens,	70–71

string	identifiers,	18

verification,	19

sub	claims,	132

subjects,	25

symmetric	keys,	19

synchronized	deployments	of	Azure	AD,	65

synchronizing	users	and	groups	to	Azure	AD	tenants,	65–66

System.IdentityModel.Tokens.Jwt	NuGet	package,	84,	92

System.Security.Claims	namespace,	7

SystemWeb	NuGet	package,	92

System.Web	pipeline,	140

T
tags	property,	188

target	directories

consent,	recording,	186

resource	entries	in,	183

target	platforms,	native	libraries	for,	81

<tenant>	component	in	URL	template,	236

tenant	IDs,	63,	188,	230

Tenant	parameter,	255

tenants

application	availability,	182–183

defined,	62

display	name,	188

federated	and	managed,	65–66

ServicePrincipal	and,	176,	193

tenant	IDs,	63,	188,	230

third-party	access	to	resources,	34

Thread.CurrentPrincipal,	8

tid	claims,	133

token	acquisition,	70

ADAL	pattern,	77

TokenCache	class,	244–245

token	endpoint,	35

authenticated	requests	against,	226

response	to	token	request,	231–232

token	handlers,	158

token	replay	attacks,	117

TokenReplayCache	property,	170

token	requestors,	69–72,	74

access	token	format	and,	72

client	applications	as,	72

development	libraries,	76–81

token	requests,	70

on-behalf-of,	44

resource	identifiers	in,	256

user	consent,	64

tokens,	18–20.	See	also	access	tokens

accessing	independent	of	protocol,	268

acquiring	by	authorization	code,	227–229

assertions,	26

audience	claims,	282

in	Authorization	HTTP	headers,	232–234

Azure	AD,	61

bearer,	232–237,	262

broker	apps,	48

caching,	70–71,	238

callback	path,	158

for	client-resource	interactions,	70

cross-domain,	25

group	information,	219–220

group	membership	claims,	182

HTTP	carrier	mechanisms,	109

ID.	See	ID	tokens

issuance	of,	21–22

issuers,	120

JWT	format,	40,	129–132

life-cycle	management,	159,	238

refresh,	35,	238–251,	286

replaying,	169

in	requests,	70–71

response	mode,	114

response	type,	109

SAML	structure,	26

saving,	169

scope,	257–258

security	of,	42–43

signed,	20,	120–122

Simple	Web	Token,	40–41

with	user	attributes	from	cloud	store,	59

user	information,	42,	268

validation.	See	token	validation

for	web	API	calls,	46–47

token	validation,	22,	73,	119,	149–151

audience,	167

discovery	of	criteria,	119–120

issuer,	167

key	for	signing,	167

notification	of,	164–165

parameters,	166–169

signature	check,	129–130

validation	flags,	168

validator	delegates,	168–169

validity	interval,	167

TokenValidationParameters	class,	155,	157,	167–170,	256–257,	261,	264

IssuerValidator	property,	208

ValidIssuers	property,	208

TraceOutput	property,	148

traces

capturing,	110–112

exposing,	148

traffic,	capturing	in	trace,	110–112

trusts,	18

between	app	and	IdP,	20–21

establishment,	57

type	identifiers,	claim,	8–9

U
UI,	sign-in	and	sign-out,	102–103

unique	identifiers,	18

unique_name	claims,	133

upn	claims,	133

URI	fragments,	46–47

UseCookieAuthentication	method,	96,	141

UseErrorPage	method,	154

Use	method,	140,	142

UseOpenIdConnectAuthentication	method,	96,	141

UserAssertion	class,	268–269

user	assignment,	211–213

user	attributes,	7,	12

user	consent	for	token	requests,	64

user	credentials.	See	also	credentials

for	synchronized	deployments	of	Azure	AD,	65

synching	to	cloud,	65–66

user_impersonation	permission,	196

UserInfo	property,	42,	230

username-password-profiles	authentication,	13–14

UserProfile.Read	permission,	195–196

User.Read.All	permission,	197

User.ReadBasic.All	permission,	196

User.Read	permission,	195–196

users

accessing	web	APIs,	252

application	creation,	189–192

assignment,	211–213

authentication	experience,	122–123

Azure	AD	landing	page,	66

consent	prompts,	191

identity,	12–13

life	cycles,	14

roles	and,	213

Use*	sequence,	143

UseStageMarker	method,	145

UseTokenLifetime	property,	159

UseWindowsAzureActiveDirectoryBearerAuthentication	method,	255,	271

UseXXX	extension	methods,	96

V
validate-and-drop-a-cookie	approach,	23–24

ValidateAudience	property,	168

ValidateIssuer	property,	168

ValidateIssuerSigningKey	property,	168

validation

authority	coordinates	and,	157–158

components,	9

flags,	169

of	ID	tokens,	133

issuer,	208–209

session,	73

of	session	cookies,	73

token,	73

validator	delegates,	169–170

ValidAudience	property,	167,	256

ValidIssuer	property,	167

verification,	19,	24

Visual	Studio

application	credentials,	assigning,	226

ASP.NET	4.6	Web	API	projects,	254,	287

authentication	preferences	settings,	288

Browser	Link,	144

creating	new	web	app,	90–91

F5	verification	procedure,	91

identity-integration	features,	86–87

Immediate	window,	247

Multiple	Startup	Projects	option,	288

MVC	5	Controller,	100

Package	Manager	Console,	92

Startup.cs	file,	95

using	directives,	98

web	API	project	setup,	253–258

web	API	project	template	on-premises	option,	271

Windows	Identity	Foundation	tools,	82

Visual	Studio	2013,	86

Visual	Studio	2015,	2–3

accounts,	associating	with,	3

AD	integration	features,	86

keychain,	87

tying	to	Azure	user	account,	2–3

W
web	API	calls

handling,	258–265

securing,	46–47

web	APIs

access	control	policies,	283

accessing	as	an	application,	251–252

accessing	as	arbitrary	user,	252

application	permissions	for,	284

calling,	260

calling	another	API,	266–270

claims	in	token,	289–290

client	access,	291

clients,	adding,	291

client	setup,	258–262

consent	for,	258

directory	entries,	257–258

exposing,	253–272

failed	token	requests,	261–262

identifiers,	282

invoking	from	web	app,	223–252,	285–289

invoking	with	access	tokens,	232–251

invoking	with	bearer	tokens,	232–237

middleware	pipeline,	254–255

modeling,	177

NuGet	packages	for,	254

project	setup,	253–258

protecting	with	ADFS,	271–272,	281–292

request	processing,	262–265

scope-driven	authorization,	262–265

scopes	of,	284–285

ServicePrincipal,	257

tokens,	obtaining,	21–22

troubleshooting,	261

unauthorized	caller	errors,	261

web	applications

ADAL	cache	considerations,	243–246

ADFS	as	identity	provider,	103–104

ADFS	support,	55

application	credentials,	279

authentication	flows,	94

claims,	98

client	ID,	94,	278

creating,	90–91

delegated	access,	34–36

HTTPS,	91

hybrid	role	of	token	requestor	and	resource	protector,	74–75

interaction	pattern,	22–23

invoking	web	API	from,	285–289

middlewares,	adding	and	initializing,	95

OpenID	Connect	initialization	code,	95–97

OWIN	pipeline,	adding,	95

Permissions	To	Other	Applications,	259

protocol	coordinates,	276,	278

redirect	URIs,	278

referencing	NuGet	packages,	92

registering	in	Azure	AD,	93–94

roundtrip-based	request-response	pattern,	22–23,	45

running,	98–99,	103

setup	in	ADFS,	277–280

shared	secrets,	279–280

sign-in	and	sign-out,	99–103

signing	keys,	280

sign-in	message	generation,	73

single-page	applications,	46

single	sign-on,	38

SSL	Enabled,	91

third-party	access	to	resources,	34

triggering	authentication,	97–98

unique	resource	identifier,	94

user	authentication,	21

web	API,	consuming,	223–252

Windows	Integrated	Authentication	credential,	279

web	browser–based	SSO,	25–27

web.config	files,	83

web	servers,	decoupling	from	apps,	138

web	sign-on,	29–31.	See	also	sign-in

ASP.NET	support	for,	137.	See	also	Open	Web	Interface	for	.NET	(OWIN)
middlewares

hybrid	authentication	flow,	108

OpenID	Connect	Core	1.0,	108

with	OpenID	Connect	in	ADFS,	276–281

testing,	280–281

URLs,	94

web	UX,	exposing,	265–266

Wells,	Dean,	15

WindowsAzureActiveDirectoryBearerAuthenticationOptions	initialization,	255

Windows	Identity	Foundation	(WIF),	82–83

Windows	Internal	Database	(WID),	52

Windows	Server.	See	also	Active	Directory	Federation	Services	(ADFS)

ADFS	server	role,	54

Windows	Server	2016,	ADFS	in,	56,	103,	273–292

workplace-joined	device	detection,	56

WS-Federation,	8,	27–31

ADFS	support,	55

messages,	29–31

metadata	document	format,	29

OWIN	middlewares	support,	103

relying	parties,	29

roles,	28–29

Security	Token	Service,	29

sign-in	flow,	29–31

support,	31

support	in	.NET	core,	85

tokens,	29

WS-Federation	middleware.	See	OpenID	Connect	middleware

WS-*	specifications,	27–28

native	apps	and,	47

WS-Trust,	ADFS	support,	55

Wtrealm,	104

WWW-Authenticate	header,	262

X
X.509	certificates,	18–19

Xamarin,	80

About	the	author

VITTORIO	BERTOCCI	is	principal	program	manager	on	the	Azure	Active	Directory
team,	where	he	works	on	the	developer	experience:	Active	Directory	Authentication
Library	(ADAL),	OpenID	Connect	and	OAuth2	OWIN	components	in	ASP.NET,	Azure
AD	integration	in	various	Visual	Studio	workstreams,	and	other	things	he	can’t	tell	you
about	(yet).

Vittorio	joined	the	product	team	after	years	as	a	virtual	member	in	his	role	as	principal
architect	evangelist,	during	which	time	he	contributed	to	the	inception	and	launch	of
Microsoft’s	claims-based	platform	components	(Windows	Identity	Foundation,	ADFS	2.0)
and	owned	SaaS	and	identity	evangelism	for	the	.NET	developers	community.

Vittorio	holds	a	masters	degree	in	computer	science	and	began	his	career	doing	research
on	computational	geometry	and	scientific	visualization.	In	2001	he	joined	Microsoft	Italy,
where	he	focused	on	the	.NET	platform	and	the	nascent	field	of	web	services	security,
becoming	a	recognized	expert	at	the	national	and	European	level.

In	2005	Vittorio	moved	to	Redmond,	where	he	helped	launch	the	.NET	Framework	3.5	by
working	with	Fortune	100	and	Global	100	companies	on	cutting-edge	distributed	systems.
He	increasingly	focused	on	identity	themes	until	he	took	on	the	mission	of	evangelizing
claims-based	identity	for	mainstream	use.	After	years	of	working	with	customers,
partners,	and	the	community,	he	decided	to	contribute	the	experience	he	had	accumulated
back	to	the	product	and	joined	the	identity	product	team.

Vittorio	is	easy	to	spot	at	conferences.	He	has	spoken	about	identity	in	23	countries	on
four	continents,	from	keynote	addresses	to	one-on-one	meetings	with	customers.	Vittorio
is	a	regular	speaker	at	Ignite,	Build,	Microsoft	PDC,	TechEd	(US,	Europe,	Australia,	New
Zealand,	Japan),	TechDays,	Gartner	Summit,	European	Identity	Conference,	IDWorld,
OreDev,	NDC,	IASA,	Basta,	and	many	others.	At	the	moment	his	Channel	9	speaker	page
at	https://channel9.msdn.com/events/speakers/vittorio-bertocci	lists	44	recordings.

Vittorio	is	a	published	author,	both	in	the	academic	and	industry	worlds,	and	has	written
many	articles	and	papers.	He	is	the	author	of	Programming	Windows	Identity	Foundation
(Microsoft	Press,	2010)	and	coauthor	of	A	Guide	to	Claims-Based	Identity	and	Access
Control	(Microsoft	patterns	&	practices,	2010)	and	Understanding	Windows	Cardspace
(Addison-Wesley,	2008).	He	is	a	prominent	authority	and	blogger	on	identity,	Azure,	.NET

https://channel9.msdn.com/events/speakers/vittorio-bertocci

development,	and	related	topics:	he	shares	his	thoughts	at	www.cloudidentity.com	and	via
his	twitter	feed,	http://www.twitter.com/vibronet.

Vittorio	lives	in	the	lush	green	of	Redmond	with	his	wife,	Iwona.	He	doesn’t	mind	the
gray	skies	too	much,	but	every	time	he	has	half	a	chance,	he	flies	to	some	place	on	the
beach,	be	it	the	South	Pacific	or	Camogli,	his	home	town	in	Italy.

http://www.cloudidentity.com
http://www.twitter.com/vibronet

Code	Snippets

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape	mode	and
adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code	that
mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable	format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

	Title Page
	Copyright Page
	Dedication Page
	Contents
	Foreword
	Introduction
	Acknowledgments
	Chapter 1. Your first Active Directory app
	The sample application
	Prerequisites
	Microsoft Azure subscription
	Visual Studio 2015

	Creating the application
	Running the application
	ClaimsPrincipal: How .NET represents the caller
	Summary

	Chapter 2. Identity protocols and application types
	Pre-claims authentication techniques
	Passwords, profile stores, and individual applications
	Domains, integrated authentication, and applications on an intranet

	Claims-based identity
	Identity providers: DCs for the Internet
	Tokens
	Trust and claims
	Claims-oriented protocols

	Round-trip web apps, first-generation protocols
	The problem of cross-domain single sign-on
	SAML
	WS-Federation

	Modern apps, modern protocols
	The rise of the programmable web and the problem of access delegation
	OAuth2 and web applications
	Layering web sign-in on OAuth
	OpenID Connect
	More API consumption scenarios
	Single-page applications
	Leveraging web investments in native clients

	Summary

	Chapter 3. Introducing Azure Active Directory and Active Directory Federation Services
	Active Directory Federation Services
	ADFS and development
	Getting ADFS
	Protocols support

	Azure Active Directory: Identity as a service
	Azure AD and development
	Getting Azure Active Directory
	Azure AD for developers: Components
	Notable nondeveloper features

	Summary

	Chapter 4. Introducing the identity developer libraries
	Token requestors and resource protectors
	Token requestors
	Resource protectors
	Hybrids

	The Azure AD libraries landscape
	Token requestors
	Resource protectors
	Hybrids

	Visual Studio integration
	AD integration features in Visual Studio 2013
	AD integration features in Visual Studio 2015

	Summary

	Chapter 5. Getting started with web sign-on and Active Directory
	The web app you build in this chapter
	Prerequisites
	Steps

	The starting project
	NuGet packages references
	Registering the app in Azure AD
	OpenID Connect initialization code
	Host the OWIN pipeline
	Initialize the cookie and OpenID Connect middlewares

	[Authorize], claims, and first run
	Adding a trigger for authentication
	Showing some claims
	Running the app

	Quick recap
	Sign-in and sign-out
	Sign-in logic
	Sign-out logic
	The sign-in and sign-out UI
	Running the app

	Using ADFS as an identity provider
	Summary

	Chapter 6. OpenID Connect and Azure AD web sign-on
	The protocol and its specifications
	OpenID Connect Core 1.0
	OpenID Connect Discovery
	OAuth 2.0 Multiple Response Type, OAuth2 Form Post Response Mode
	OpenID Connection Session Management
	Other OpenID Connect specifications
	Supporting specifications

	OpenID Connect exchanges signing in with Azure AD
	Capturing a trace
	Authentication request
	Discovery
	Authentication
	Response
	Sign-in sequence diagram
	The ID token and the JWT format

	OpenID Connect exchanges for signing out from the app and Azure AD
	Summary

	Chapter 7. The OWIN OpenID Connect middleware
	OWIN and Katana
	What is OWIN?
	Katana

	OpenID Connect middleware
	OpenIdConnectAuthenticationOptions
	Notifications

	TokenValidationParameters
	Valid values
	Validation flags
	Validators
	Miscellany

	More on sessions
	Summary

	Chapter 8. Azure Active Directory application model
	The building blocks: Application and ServicePrincipal
	The Application
	The ServicePrincipal object

	Consent and delegated permissions
	Application created by a nonadmin user
	Interlude: Delegated permissions to access the directory
	Application requesting admin-level permissions
	Admin consent
	Application created by an admin user
	Multitenancy

	App user assignment, app permissions, and app roles
	App user assignment
	App roles
	Application permissions

	Groups
	Summary

	Chapter 9. Consuming and exposing a web API protected by Azure Active Directory
	Consuming a web API from a web application
	Redeeming an authorization code in the OpenID Connect hybrid flow
	Using the access token for invoking a web API
	Other ways of getting access tokens

	Exposing a protected web API
	Setting up a web API project
	Handling web API calls
	Exposing both a web UX and a web API from the same Visual Studio project
	A web API calling another API: Flowing the identity of the caller and using “on behalf of”
	Protecting a web API with ADFS “3”

	Summary

	Chapter 10. Active Directory Federation Services in Windows Server 2016 Technical Preview 3
	Setup (for developers)
	The new management UX
	Web sign-on with OpenID Connect and ADFS
	OpenID Connect middleware and ADFS
	Setting up a web app in ADFS
	Testing the web sign-on feature

	Protecting a web API with ADFS and invoking it from a web app
	Setting up a web API in ADFS
	Code for obtaining an access token from ADFS and invoking a web API
	Testing the web API invocation feature
	Additional settings

	Summary

	Appendix: Further reading
	Index
	About the author
	Code Snippets

