

Monitoring	Docker

Table	of	Contents

Monitoring	Docker

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Introduction	to	Docker	Monitoring

Pets,	Cattle,	Chickens,	and	Snowflakes

Pets

Cattle

Chickens

Snowflakes

So	what	does	this	all	mean?

Docker

Launching	a	local	environment

Cloning	the	environment

Running	a	virtual	server

Halting	the	virtual	server

Summary

2.	Using	the	Built-in	Tools

Docker	stats

Running	Docker	stats

What	just	happened?

What	about	processes?

Docker	top

Docker	exec

Summary

3.	Advanced	Container	Resource	Analysis

What	is	cAdvisor?

Running	cAdvisor	using	a	container

Compiling	cAdvisor	from	source

Collecting	metrics

The	Web	interface

Overview

Processes

CPU

Memory

Network

Filesystem

Viewing	container	stats

Subcontainers

Driver	status

Images

This	is	all	great,	what’s	the	catch?

Prometheus

Launching	Prometheus

Querying	Prometheus

Dashboard

The	next	steps

Alternatives?

Summary

4.	A	Traditional	Approach	to	Monitoring	Containers

Zabbix

Installing	Zabbix

Using	containers

Using	vagrant

Preparing	our	host	machine

The	Zabbix	web	interface

Docker	metrics

Create	custom	graphs

Compare	containers	to	your	host	machine

Triggers

Summary

5.	Querying	with	Sysdig

What	is	Sysdig?

Installing	Sysdig

Using	Sysdig

The	basics

Capturing	data

Containers

Further	reading

Using	Csysdig

Summary

6.	Exploring	Third	Party	Options

A	word	about	externally	hosted	services

Deploying	Docker	in	the	cloud

Why	use	a	SaaS	service?

Sysdig	Cloud

Installing	the	agent

Exploring	your	containers

Summary	and	further	reading

Datadog

Installing	the	agent

Exploring	the	web	interface

Summary	and	further	reading

New	Relic

Installing	the	agent

Exploring	the	web	interface

Summary	and	further	reading

Summary

7.	Collecting	Application	Logs	from	within	the	Container

Viewing	container	logs

ELK	Stack

Starting	the	stack

Logspout

Reviewing	the	logs

What	about	production?

Looking	at	third	party	options

Summary

8.	What	Are	the	Next	Steps?

Some	scenarios

Pets,	Cattle,	Chickens,	and	Snowflakes

Pets

Cattle

Chickens

Snowflakes

Scenario	one

Scenario	two

Scenario	three

A	little	more	about	alerting

Chickens

Cattle	and	Pets

Sending	alerts

Keeping	up

Summary

Index

Monitoring	Docker

Monitoring	Docker
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1041215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-275-3

www.packtpub.com

http://www.packtpub.com

Credits
Author

Russ	McKendrick

Reviewer

Marcelo	Correia	Pinheiro

Commissioning	Editor

Veena	Pagare

Acquisition	Editor

Rahul	Nair

Content	Development	Editor

Anish	Sukumaran

Technical	Editor

Saurabh	Malhotra

Copy	Editor

Trishya	Hajare

Project	Coordinator

Izzat	Contractor

Proofreader

Safis	Editing

Indexers

Mariammal	Chettiyar

Priya	Sane

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Russ	McKendrick	is	an	experienced	solutions	architect	who	has	been	working	in	IT	and
IT-related	industries	for	the	better	part	of	23	years.	During	his	career,	he	has	had	varied
responsibilities	in	a	number	of	industries,	ranging	from	looking	after	entire	IT
infrastructures	to	providing	first	line,	second	line,	and	senior	support	in	client	facing,	and
internal	teams	for	corporate	organizations.

He	works	almost	exclusively	with	Linux,	using	open	source	systems	and	tools	on	various
platforms	ranging	from	dedicated	hardware	and	virtual	machines	to	public	clouds.

About	the	Reviewer
Marcelo	Correia	Pinheiro	is	a	Brazilian	software	engineer	from	Porto	Alegre.	He	started
to	work	as	a	web	designer	and	programmer	in	2000	with	ASP	and	PHP,	naturally	getting
in	touch	with	the	Microsoft	.NET	framework	and	Java	running	respective	databases	of
choice	for	web	applications.	Since	2003,	he	has	used	Linux	and	UNIX-related	operational
systems,	from	Slackware	to	Gobo	Linux,	Archlinux,	CentOS,	Debian,	and	today	OSX,
having	some	contact	with	BSD	distributions	too.	He	has	lost	some	nights	compiling	and
applying	patches	to	the	Linux	kernel	to	make	its	desktop	work.	Since	the	beginning,	he
has	been	acting	as	a	problem	solver,	no	matter	what	the	programming	language,	database,
or	platform	is—open	source	enthusiast.

After	a	few	years,	he	decided	to	live	in	São	Paulo	to	work	with	newer	technologies	such	as
NoSQL,	cloud	computing,	and	Ruby,	where	he	started	to	conduct	tech	talks	with	this
language	in	Locaweb.	He	created	some	tools	to	standardize	development	using	tools	such
as	vagrant	and	Ruby	gems—some	of	these	in	their	GitHub—in	Locaweb	to	ensure	fast
application	packaging	and	reduced	deployment	rollbacks.	In	2013,	he	changed	his	career
to	be	a	full-stack	developer	following	the	DevOps	movement.	Since	2012,	he	has
attended,	as	a	speaker,	some	of	the	biggest	software	conferences	in	Brazil—RS	on	Rails,
QConSP,	The	Developer’s	Conference,	and	RubyConf	Brazil—talking	not	only	about
Ruby,	but	also	about	some	of	the	well-known	DevOps	tools	such	as	Terraform,	Packer,
Ansible,	and	Docker.	Today,	he	works	as	a	DevOps	consultant	in	their	company.

In	his	free	time,	he	loves	playing	the	guitar,	having	some	fun	with	cats,	traveling,	and
drinking	beer.	He	can	be	found	on	his	blog	(http://salizzar.net),	Twitter
(https://twitter.com/salizzar),	GitHub	(https://github.com/salizzar)	and	Linkedin
(https://www.linkedin.com/in/salizzar).

He	has	worked	as	a	reviewer	for	Vagrant	Virtual	Development	Environment	Cookbook,	a
Packt	Publishing	book	with	useful	recipes	using	vagrant	with	configuration	management
tools	such	as	Puppet,	Chef,	Ansible,	and	SaltStack.

I	want	to	thank	all	my	friends,	who	believed	in	my	potential	since	the	beginning	and	who
still	follow	me	despite	the	distance.	I	would	also	like	to	thank	my	mentors,	Gleicon
Moraes,	Roberto	Gaiser,	and	Rodrigo	Campos,	who	gave	me	the	incentive	and	tips	to	be	a
better	software	engineer	and	person.

http://salizzar.net
https://twitter.com/salizzar
https://github.com/salizzar
https://www.linkedin.com/in/salizzar

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
With	the	increase	in	the	adoption	of	Docker	containers,	the	need	to	monitor	which
containers	are	running,	what	resources	they	are	consuming,	and	how	it	affects	the	overall
performance	of	the	system,	has	become	a	time-related	need.	Monitoring	Docker	will	teach
you	how	monitoring	containers	and	keeping	a	keen	eye	on	the	working	of	applications
help	to	improve	the	overall	performance	of	the	applications	that	run	on	Docker.

This	book	will	cover	monitoring	containers	using	Docker’s	native	monitoring	functions,
various	plugins,	and	also	third-party	tools	that	help	in	monitoring.	The	book	will	first
cover	how	to	obtain	detailed	stats	for	the	active	containers,	resources	consumed,	and
container	behavior.	This	book	will	also	show	the	readers	how	to	use	these	stats	to	improve
the	overall	performance	of	the	system.

What	this	book	covers
Chapter	1,	Introduction	to	Docker	Monitoring,	discusses	how	different	it	is	to	monitor
containers	compared	to	more	traditional	servers	such	as	virtual	machines,	bare	metal
machines,	and	cloud	instances	(Pets	versus	Cattle	and	Chickens	versus	Snowflakes).	This
chapter	also	details	the	operating	systems	covered	in	the	examples	later	in	this	book	and
also	gives	a	little	information	on	how	to	get	a	local	test	environment	up	and	running	using
vagrant,	so	that	installation	instructions	and	practical	examples	can	be	easily	followed.

Chapter	2,	Using	the	Built-in	Tools,	helps	you	learn	about	the	basic	metrics	you	can	get
out	of	the	vanilla	Docker	installation	and	how	you	can	use	them.	Also,	we	will	understand
how	to	get	real-time	statistics	on	our	running	containers,	how	to	use	commands	that	are
familiar	to	us,	and	how	to	get	information	on	the	processes	that	are	launched	as	part	of
each	container.

Chapter	3,	Advanced	Container	Resource	Analysis,	introduces	cAdvisor	from	Google,
which	adds	a	lot	more	precision	to	the	basic	tools	provided	by	Docker.	You	will	also	learn
how	to	install	cAdvisor	and	start	collecting	metrics.

Chapter	4,	A	Traditional	Approach	to	Monitoring	Containers,	looks	at	a	traditional	tool	for
monitoring	services.	By	the	end	of	this	chapter,	you	should	know	your	way	around	Zabbix
and	the	various	ways	you	can	monitor	your	containers.

Chapter	5,	Querying	with	Sysdig,	describes	Sysdig	as	“an	open	source,	system-level
exploration	tool	to	capture	system	state	and	activity	from	a	running	Linux	instance,	then
save,	filter,	and	analyze	it.”	In	this	chapter,	you	will	learn	how	to	use	Sysdig	to	both	view
your	containers’	performance	metrics	in	real	time	and	also	record	sessions	to	query	later.

Chapter	6,	Exploring	Third	Party	Options,	walks	you	through	a	few	of	the	Software	as	a
Service	(SaaS)	options	that	are	available,	why	you	would	use	them,	and	how	to	install
their	clients	on	the	host	server.

Chapter	7,	Collecting	Application	Logs	from	within	the	Container,	looks	at	how	we	can
get	the	content	of	the	log	files	for	the	applications	running	within	our	containers	to	a
central	location	so	that	they	are	available	even	if	you	have	to	destroy	and	replace	a
container.

Chapter	8,	What	Are	the	Next	Steps?,	looks	at	the	next	steps	you	can	take	in	monitoring
your	containers	by	talking	about	the	benefits	of	adding	alerting	to	your	monitoring.	Also,
we	will	cover	some	different	scenarios	and	look	at	which	type	of	monitoring	is	appropriate
for	each	of	them.

What	you	need	for	this	book
To	ensure	the	experience	is	as	consistent	as	possible,	we	will	be	installing	vagrant	and
VirtualBox	to	run	the	virtual	machine	that	will	act	as	a	host	to	run	our	containers.	Vagrant
is	available	for	Linux,	OS	X,	and	Windows;	for	details	on	how	to	install	this,	see	the
vagrant	website	at	https://www.vagrantup.com/.	The	details	of	how	to	download	and
install	VirtualBox	can	be	found	at	https://www.virtualbox.org/;	again,	VirtualBox	can	be
installed	on	Linux,	OS	X,	and	Windows.

https://www.vagrantup.com/
https://www.virtualbox.org/

Who	this	book	is	for
This	book	is	for	DevOps	engineers	and	system	administrators	who	want	to	manage
Docker	containers,	better	manage	these	containers	using	expert	techniques	and	methods,
and	better	maintain	applications	built	on	Docker.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

{

		"fields":	{

				"@timestamp":	[

						1444567706641

]

		},

		"sort":	[

				1444567706641

]

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

{

		"fields":	{

				"@timestamp":	[

						1444567706641

]

		},

		"sort":	[

				1444567706641

]

}

Any	command-line	input	or	output	is	written	as	follows:

cd	~/Documents/Projects/monitoring-docker/vagrant-ubuntu

vagrant	up

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Clicking	the	Next
button	moves	you	to	the	next	screen.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from:
http://www.packtpub.com/sites/default/files/downloads/Monitoring_Docker_ColorImages.pdf

http://www.packtpub.com/sites/default/files/downloads/Monitoring_Docker_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Introduction	to	Docker
Monitoring
Docker	has	been	a	recent	but	very	important	addition	to	a	SysAdmins	toolbox.

Docker	describes	itself	as	an	open	platform	for	building,	shipping,	and	running	distributed
applications.	This	means	that	developers	can	bundle	their	code	and	pass	it	to	their
operations	team.	From	here,	they	can	deploy	safe	in	the	knowledge	that	it	will	be	done	so
in	a	way	that	introduces	consistency	with	the	environment	in	which	the	code	is	running.

When	this	process	is	followed,	it	should	make	the	age-old	developers	versus	operations
argument	of	“it	worked	on	my	local	development	server”—a	thing	of	the	past.	Since
before	its	“production	ready”	1.0	release	back	in	June	2014,	there	had	been	over	10,000
Dockerized	applications	available.	By	the	end	of	2014,	that	number	had	risen	to	over
71,000.	You	can	see	how	Docker	grew	in	2014	by	looking	at	the	infographic	that	was
published	by	Docker	in	early	2015,	which	can	be	found	at
https://blog.docker.com/2015/01/docker-project-2014-a-whirlwind-year-in-review/.

While	the	debate	is	still	raging	about	how	production	ready	the	technology	is,	Docker	has
gained	an	impressive	list	of	technology	partners,	including	RedHat,	Canonical,	HP,	and
even	Microsoft.

Companies	such	as	Google,	Spotify,	Soundcloud,	and	CenturyLink,	have	all	open	sourced
tools	that	support	Docker	in	some	way,	shape,	or	form	and	there	has	also	been	numerous
independent	developers	who	have	released	apps	that	provide	additional	functionality	to	the
core	Docker	product	set.	Also,	all	the	companies	have	sprung	up	around	the	Docker
ecosystem.

This	book	assumes	that	you	have	had	some	level	of	experience	building,	running,	and
managing	Docker	containers,	and	that	you	would	now	like	to	start	to	metrics	from	your
running	applications	to	further	tune	them,	or	that	you	would	like	to	know	when	a	problem
occurs	with	a	container	so	that	you	can	debug	any	ongoing	issues.

If	you	have	never	used	Docker	before,	you	may	want	to	try	one	of	the	excellent	books	that
serve	and	introduce	you	to	all	the	things	that	Docker	provides,	books	such	as	Learning
Docker,	Packt	Publishing,	or	Docker’s	own	introduction	to	containers,	which	can	be
found	at	their	documentation	pages,	as	follows:

Learning	Docker:	https://www.packtpub.com/virtualization-and-cloud/learning-
docker
Official	Docker	docs:	https://docs.docker.com/

Now,	we	have	a	brought	ourselves	up	to	speed	with	what	Docker	is;	the	rest	of	this	chapter
will	cover	the	following	topics:

How	different	is	it	to	monitor	containers	versus	more	traditional	servers	such	as
virtual	machines,	bare	metal	machine,	and	cloud	instances	(Pets,	Cattle,	Chickens,
and	Snowflakes).

https://blog.docker.com/2015/01/docker-project-2014-a-whirlwind-year-in-review/
https://www.packtpub.com/virtualization-and-cloud/learning-docker
https://docs.docker.com/

What	are	the	minimum	versions	of	Docker	you	should	be	running?
How	to	follow	instructions	on	bringing	up	an	environment	locally	using	Vagrant	in
order	to	follow	the	practical	exercises	in	this	book

Pets,	Cattle,	Chickens,	and	Snowflakes
Before	we	start	discussing	the	various	ways	in	which	you	can	monitor	your	containers,	we
should	get	an	understanding	of	what	a	SysAdmins	world	looks	like	these	days	and	also
where	containers	fit	into	it.

A	typical	SysAdmin	will	probably	be	looking	after	an	estate	of	servers	that	are	hosted	in
either	an	on-site	or	third-party	data	center,	some	may	even	manage	instances	hosted	in	a
public	cloud	such	as	Amazon	Web	Services	or	Microsoft	Azure,	and	some	SysAdmins
may	juggle	all	their	server	estates	across	multiple	hosting	environments.

Each	of	these	different	environments	has	its	own	way	of	doing	things,	as	well	as
performing	best	practices.	Back	in	February	2012,	Randy	Bias	gave	a	talk	at	Cloudscaling
that	discussed	architectures	for	open	and	scalable	clouds.	Towards	the	end	of	the	slide
deck,	Randy	introduced	the	concept	of	Pets	versus	Cattle	(which	he	attributes	to	Bill
Baker,	who	was	then	an	engineer	at	Microsoft).

You	can	view	the	original	slide	deck	at	http://www.slideshare.net/randybias/architectures-
for-open-and-scalable-clouds.

Pets	versus	Cattle	is	now	widely	accepted	as	a	good	analogy	to	describe	modern	hosting
practices.

http://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds

Pets
Pets	are	akin	to	traditional	physical	servers	or	virtual	machines,	as	follows:

Each	pet	has	a	name;	for	example,	myserver.domain.com.
When	they’re	not	well,	you	take	them	to	the	vet	to	help	them	get	better.	You	employ
SysAdmins	to	look	after	them.
You	pay	close	attention	to	them,	sometimes	for	years.	You	take	backups,	patch	them,
and	ensure	that	they	are	fully	documented.

Cattle
Cattle,	on	the	other	hand,	represent	more	modern	cloud	computing	instances,	as	follows:

You’ve	got	too	many	to	name,	so	you	give	them	numbers;	for	example,	the	URL
could	look	something	like	ip123123123123.eu.public-cloud.com.
When	they	get	sick,	you	shoot	them	and	if	your	herd	requires	it,	you	replace	anything
you’ve	killed:	A	server	crashes	or	shows	signs	that	it	is	having	problems,	you
terminate	it	and	your	configuration	automatically	replaces	it	with	an	exact	replica.
You	put	them	in	a	field	and	watch	them	from	far	and	you	don’t	expect	them	to	live
long.	Rather	than	monitoring	the	individual	instances,	you	monitor	the	cluster.	When
more	resources	are	needed,	you	add	more	instances	and	once	the	resource	is	no
longer	required,	you	terminate	the	instances	to	get	you	back	to	your	base
configuration.

Chickens
Next	up	is	a	term	that	is	a	good	way	of	describing	how	containers	fit	into	the	Pets	versus
Cattle	world;	in	a	blog	post	title	“Cloud	Computing:	Pets,	Cattle	and	…	Chickens?”	on
ActiveState,	Bernard	Golden	describes	containers	as	Chickens:

They’re	more	efficient	than	cattle	when	it	comes	to	resource	use.	A	container	can
boot	in	seconds	where	a	instance	or	server	can	take	minutes;	it	also	uses	less	CPU
power	than	a	typical	virtual	machine	or	cloud	instance.
There	are	many	more	chickens	than	cattle.	You	can	quite	densely	pack	containers
onto	your	instances	or	servers.
Chickens	tend	to	have	a	shorter	lifespan	than	cattle	and	pets.	Containers	lend
themselves	to	running	micros-services;	these	containers	may	only	be	active	for	a	few
minutes.

The	original	blog	post	can	be	found	at	http://www.activestate.com/blog/2015/02/cloud-
computing-pets-cattle-and-chickens.

http://www.activestate.com/blog/2015/02/cloud-computing-pets-cattle-and-chickens

Snowflakes
The	final	term	is	not	animal-related	and	it	describes	a	type	of	server	that	you	defiantly
don’t	want	to	have	in	your	server	estate,	a	Snowflake.	This	term	was	penned	by	Martin
Fowler	in	a	blog	post	titled	“SnowflakeServer”.	Snowflakes	is	a	term	applied	to	“legacy”
or	“inherited”	servers:

Snowflakes	are	delicate	and	are	treated	with	kid	gloves.	Typically,	the	server	has
been	in	the	data	center	since	you	started.	No	one	knows	who	originally	configured	it
and	there	is	no	documentation	of	it;	all	you	know	is	that	it	is	important.
Each	one	is	unique	and	is	impossible	to	exactly	reproduce.	Even	the	most	hardened
SysAdmin	fears	to	reboot	the	machine	incase	it	doesn’t	boot	afterwards,	as	it	is
running	end-of-life	software	that	can	not	easily	be	reinstalled.

Martin’s	post	can	be	found	at	http://martinfowler.com/bliki/SnowflakeServer.html.

http://martinfowler.com/bliki/SnowflakeServer.html

So	what	does	this	all	mean?
Depending	on	your	requirements	and	the	application	you	want	to	deploy,	your	containers
can	be	launched	onto	either	pet	or	cattle	style	servers.	You	can	also	create	a	clutch	of
chickens	and	have	your	containers	run	micro-services.

Also,	in	theory,	you	can	replace	your	feared	snowflake	servers	with	a	container-based
application	that	meets	all	the	end-of-life	software	requirements	while	remaining
deployable	on	a	modern	supportable	platform.

Each	of	the	different	styles	of	server	has	different	monitoring	requirements,	in	the	final
chapter	we	will	look	at	Pets,	Cattle,	Chickens,	and	Snowflakes	again	and	discuss	the	tools
we	have	covered	in	the	coming	chapters.	We	will	also	cover	best	practices	you	should	take
into	consideration	when	planning	your	monitoring.

Docker
While	Docker	hit	its	version	1.0	milestone	over	a	year	ago,	it	is	still	in	it’s	infancy;	with
each	new	release	comes	new	features,	bug	fixes,	and	even	support	for	some	early
functionality	that	is	being	depreciated.

Docker	itself	is	now	a	collection	of	several	smaller	projects;	these	include	the	following:

Docker	Engine
Docker	Machine
Docker	Compose
Docker	Swarm
Docker	Hub
Docker	Registry
Kitmatic

In	this	book,	we	will	be	using	Docker	Engine,	Docker	Compose,	and	the	Docker	Hub.

Docker	Engine	is	the	core	component	of	the	Docker	project	and	it	provides	the	main	bulk
of	the	Docker	functionality.	Whenever	Docker	or	the	docker	command	is	mentioned	in
this	book,	I	will	be	referring	to	Docker	Engine.

The	book	assumes	you	have	Docker	Engine	version	1.71	or	later	installed;	older	versions
of	Docker	Engine	may	not	contain	the	necessary	functionality	required	to	run	the
commands	and	software	covered	in	the	upcoming	chapters.

Docker	Compose	started	its	life	as	a	third-party	orchestration	tool	called	Fig	before	being
purchased	by	Docker	in	2014.	It	is	described	as	a	way	of	defining	a	multi-container
application	using	YAML	(http://yaml.org).	Simply	put,	this	means	that	you	quickly	deploy
complex	applications	using	a	single	command	that	calls	a	human	readable	configuration
file.

We	assume	that	you	have	Docker	Compose	1.3.3	or	later	installed;	the	docker-
compose.yml	files	mentioned	in	this	book	have	been	written	with	this	version	in	mind.

Finally,	the	majority	of	the	images	we	will	be	deploying	during	this	book	will	be	sourced
from	the	Docker	Hub	(https://hub.docker.com/),	which	not	only	houses	a	public	registry
containing	over	40,000	public	images	but	also	100	official	images.	The	following
screenshot	shows	the	official	repositories	listing	on	the	Docker	Hub	website:

http://yaml.org
https://hub.docker.com/

You	can	also	sign	up	and	use	the	Docker	Hub	to	host	your	own	public	and	private	images.

Launching	a	local	environment
Wherever	possible,	I	will	try	to	ensure	that	the	practical	exercises	in	this	book	will	be	able
to	be	run	on	a	local	machine	such	as	your	desktop	or	laptop.	For	the	purposes	of	this	book,
I	will	assume	that	your	local	machine	is	running	either	a	recent	version	OS	X	or	an	up-to-
date	Linux	distribution	and	has	a	high	enough	specification	to	run	the	software	mentioned
in	this	chapter.

The	two	tools	we	will	be	using	to	launch	our	Docker	instances	will	also	run	on	Windows;
therefore,	it	should	be	possible	to	follow	the	instructions	within	this,	although	you	may
have	to	refer	the	usage	guides	for	any	changes	to	the	syntax.

Due	to	the	way	in	which	Docker	is	architected,	a	lot	of	the	content	of	this	book	will	have
you	running	commands	and	interacting	with	the	command	line	on	the	virtual	server	that	is
acting	as	the	host	machine,	rather	than	the	containers	themselves.	Because	of	this,	we	will
not	be	using	either	Docker	Machine	or	Kitematic.

Both	of	these	are	tools	provided	by	Docker	to	quickly	bootstrap	a	Docker-enabled	virtual
server	on	your	local	machine,	as	unfortunately	the	host	machines	deployed	by	these	tools
contain	a	stripped	down	operating	system	that	is	optimized	for	running	Docker	with	the
smallest	footprint	as	possible.

As	we	will	be	installing	additional	packages	on	the	host	machines,	a	stripped	down
“Docker	only”	operating	system	may	not	have	the	components	available	to	meet	the
prerequisites	of	the	software	that	we	will	be	running	in	the	later	chapters;	therefore,	to
ensure	that	there	are	no	problems	further	on,	we	be	running	a	full	operating	system.

Personally,	I	prefer	a	RPM-based	operating	system	such	as	RedHat	Enterprise	Linux,
Fedora,	or	CentOS,	as	I	have	been	using	them	pretty	much	since	the	day	I	first	logged	into
a	Linux	server.

However,	as	a	lot	of	readers	will	be	familiar	with	the	Debian-based	Ubuntu,	I	will	be
providing	practical	examples	for	both	operating	systems.

To	ensure	the	experience	is	as	consistent	as	possible,	we	will	be	installing	Vagrant	and
VirtualBox	to	run	the	virtual	machine	that	will	act	as	a	host	to	run	our	containers.

Vagrant,	written	by	Mitchell	Hashimoto,	is	a	command	line	tool	for	creating	and
configuring	reproducible	and	portable	virtual	machine	environments.	There	have	been
numerous	blog	posts	and	articles	that	actually	pitch	Docker	against	Vagrant;	however,	in
our	case,	the	two	technologies	work	quite	well	together	in	providing	a	repeatable	and
consistent	environment.

Vagrant	is	available	for	Linux,	OS	X,	and	Windows.	For	details	on	how	to	install,	go	to
the	Vagrant	website	at	https://www.vagrantup.com/.

VirtualBox	is	a	great	all	round	open	source	virtualization	platform	originally	developed	by
Sun	and	now	maintained	by	Oracle.	It	allows	you	to	run	both	32-bit	and	64-bit	guest
operating	systems	on	your	local	machine.	Details	on	how	to	download	and	install
VirtualBox	can	be	found	at	https://www.virtualbox.org/;	again,	VirtualBox	can	be	installed

https://www.vagrantup.com/
https://www.virtualbox.org/

on	Linux,	OS	X,	and	Windows.

Cloning	the	environment
The	source	for	the	environment	along	with	the	practical	examples	can	be	found	on	GitHub
in	the	Monitoring	Docker	repository	at	https://github.com/russmckendrick/monitoring-
docker.

To	clone	the	repository	on	a	terminal	on	your	local	machine,	run	the	following	commands
(replacing	the	file	path	as	needed):

mkdir	~/Documents/Projects

cd	~/Documents/Projects/

git	clone	https://github.com/russmckendrick/monitoring-docker.git

Once	cloned,	you	should	see	a	directory	called	monitoring-docker	and	then	enter	that
directory,	as	follows:

cd	~/Documents/Projects/monitoring-docker

https://github.com/russmckendrick/monitoring-docker

Running	a	virtual	server
In	the	repository,	you	will	find	two	folders	containing	the	necessary	Vagrant	file	to	launch
either	a	CentOS	7	or	a	Ubuntu	14.04	virtual	server.

If	you	would	like	to	use	the	CentOS	7	vagrant	box,	change	the	directory	to	vagrant-
centos:

cd	vagrant-centos

Once	you	are	in	the	vagrant-centos	directory,	you	will	see	that	there	is	a	Vagrant	file;	this
file	is	all	you	need	to	launch	a	CentOS	7	virtual	server.	After	the	virtual	server	has	been
booted,	the	latest	version	of	docker	and	docker-compose	will	be	installed	and	the
monitoring-docker	directory	will	also	be	mounted	inside	the	virtual	machine	using	the
mount	point	/monitoring-docker.

To	launch	the	virtual	server,	simply	type	the	following	command:

vagrant	up

This	will	download	the	latest	version	of	the	vagrant	box	from
https://atlas.hashicorp.com/russmckendrick/boxes/centos71	and	then	boot	the	virtual
server;	it’s	a	450	MB	download	so	it	may	take	several	minutes	to	download;	it	only	has	to
do	this	once.

If	all	goes	well,	you	should	see	something	similar	to	the	following	output:

https://atlas.hashicorp.com/russmckendrick/boxes/centos71

Now	that	you	have	booted	the	virtual	server,	you	can	connect	to	it	using	the	following
command:

vagrant	ssh

Once	logged	in,	you	should	verify	that	docker	and	docker-compose	are	both	available:

Finally,	you	can	try	running	the	hello-world	container	using	the	following	command:

docker	run	hello-world

If	everything	goes	as	expected,	you	should	see	the	following	output:

To	try	something	more	ambitious,	you	can	run	an	Ubuntu	container	with	the	following
command:

docker	run	-it	ubuntu	bash

Before	we	launch	and	enter	the	Ubuntu	container,	lets	confirm	that	we	are	running	the
CentOS	host	machine	by	checking	the	release	file	that	can	be	found	in	/etc:

Now,	we	can	launch	the	Ubuntu	container.	Using	the	same	command,	we	can	confirm	that
we	are	inside	the	Ubuntu	container	by	viewing	its	release	file:

To	exit	the	container	just	type	in	exit.	This	will	stop	the	container	from	running,	as	it	has
terminated	the	only	running	process	within	the	container,	which	was	bash,	and	returned
you	to	the	host	CentOS	machine.

As	you	can	see	here	from	our	CentOS	7	host,	we	have	launched	and	removed	an	Ubuntu
container.

Both	the	CentOS	7	and	Ubuntu	Vagrant	files	will	configure	a	static	IP	address	on	your
virtual	machine.	It	is	192.168.33.10;	also,	there	is	a	DNS	record	for	this	IP	address

available	at	docker.media-glass.es.	These	will	allow	you	to	access	any	containers	that
expose	themselves	to	a	browser	at	either	http://192.168.33.10/	or	http://docker.media-
glass.es/.

Tip
The	URL	http://docker.media-glass.es/	will	only	work	while	the	vagrant	box	is	up,	and
you	have	a	container	running	which	serves	Web	pages.

You	can	see	this	in	action	by	running	the	following	command:

docker	run	-d	-p	80:80russmckendrick/nginx-php

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

This	will	download	and	launch	a	container	running	NGINX.	You	can	then	go	to
http://192.168.33.10/	or	http://docker.media-glass.es/	in	your	browser;	you	should	see
a	forbidden	page.	This	is	because	we	have	not	yet	given	NGINX	any	content	to	serve
(more	on	this	will	be	covered	later	in	the	book):

For	more	examples	and	ideas,	go	to	the	website	at	http://docs.docker.com/userguide/.

http://docker.media-glass.es
http://docker.media-glass.es/
http://docker.media-glass.es/
http://www.packtpub.com
http://www.packtpub.com/support
http://docker.media-glass.es/
http://docs.docker.com/userguide/

Halting	the	virtual	server
To	log	out	of	the	virtual	server	and	return	to	your	local	machine,	you	type	exit.

You	should	now	see	your	local	machine’s	terminal	prompt;	however,	the	virtual	server	you
booted	will	still	be	running	in	the	background	happily,	using	resources,	until	you	either
power	it	down	using	the	following	command:

vagrant	halt

Terminate	the	virtual	server	altogether	using	vagrant	destroy:

vagrant	destroy

To	check	the	current	status	of	the	virtual	server,	you	can	run	the	following	command:

vagrant	status

The	result	of	the	preceding	command	is	given	in	the	following	output:

Either	powering	the	virtual	server	back	on	or	creating	it	from	scratch	again,	can	be
achieved	by	issuing	the	vagrant	up	command	again.

The	preceding	details	show	how	to	use	the	CentOS	7	vagrant	box.	If	you	would	prefer	to
launch	an	Ubuntu	14.04	virtual	server,	you	can	download	and	install	the	vagrant	box	by
going	into	the	vagrant-ubuntu	directory	using	the	following	command:

cd	~/Documents/Projects/monitoring-docker/vagrant-ubuntu

vagrant	up

From	here,	you	will	be	able	run	vagrant	up	and	follow	the	same	instructions	used	to	boot
and	interact	with	the	CentOS	7	virtual	server.

Summary
In	this	chapter,	we	talked	about	different	types	of	server	and	also	discussed	how	your
containerized	applications	can	fit	into	each	of	the	categories.	We	have	also	installed
VirtualBox	and	used	Vagrant	to	launch	either	a	CentOS	7	or	Ubuntu	14.04	virtual	server,
with	docker	and	docker-compose	installed.

Our	new	virtual	server	environment	will	be	used	throughout	the	upcoming	chapters	to	test
the	various	different	types	of	monitoring.	In	the	next	chapter,	we	will	start	our	journey	by
using	Docker’s	in-built	functionality	to	explore	metrics	about	our	running	containers.

Chapter	2.	Using	the	Built-in	Tools
In	the	later	chapters	of	this	book,	we	will	explore	the	monitoring	parts	of	the	large	eco-
system	that	has	started	to	flourish	around	Docker	over	the	last	24	months.	However,
before	we	press	ahead	with	that,	we	should	take	a	look	at	what	is	possible	with	a	vanilla
installation	of	Docker.	In	this	chapter,	we	will	cover	the	following	topics:

Using	the	tools	built	into	Docker	to	get	real-time	metrics	on	container	performance
Using	standard	operating	system	commands	to	get	metrics	on	what	Docker	is	doing
Generating	a	test	load	so	you	can	view	the	metrics	changing

Docker	stats
Since	version	1.5,	there	has	been	a	basic	statistic	command	built	into	Docker:

docker	stats	--help

Usage:	docker	stats	[OPTIONS]	CONTAINER	[CONTAINER…]

Display	a	live	stream	of	one	or	more	containers'	resource	usage	statistics

		--help=false									Print	usage

		--no-stream=false				Disable	streaming	stats	and	only	pull	the	first	

result

This	command	will	stream	details	of	the	resource	utilization	of	your	containers	in	real
time.	The	best	way	to	find	out	about	the	command	is	to	see	it	in	action.

Running	Docker	stats
Let’s	launch	a	container	using	the	vagrant	environment,	which	we	covered	in	the	last
chapter:

[russ@mac	~]$	cd	~/Documents/Projects/monitoring-docker/vagrant-centos/

[russ@mac	~]$	vagrant	up

Bringing	machine	'default'	up	with	'virtualbox'	provider…

==>	default:	Importing	base	box	'russmckendrick/centos71'...

==>	default:	Matching	MAC	address	for	NAT	networking…

==>	default:	Checking	if	box	'russmckendrick/centos71'	is	up	to	date…

.....

==>	default:	=>	Installing	docker-engine…

==>	default:	=>	Configuring	vagrant	user…

==>	default:	=>	Starting	docker-engine…

==>	default:	=>	Installing	docker-compose…

==>	default:	=>	Finished	installation	of	Docker

[russ@mac	~]$	vagrant	ssh

Now	that	you	are	connected	to	the	vagrant	server,	launch	the	container	using	the	Docker
compose	file	in	/monitoring_docker/Chapter01/01-basic/:

[vagrant@centos7	~]$	cd	/monitoring_docker/Chapter01/01-basic/

[vagrant@centos7	01-basic]$	docker-compose	up	-d

Creating	01basic_web_1…

You	have	now	pulled	down	and	launched	a	container	in	the	background.	The	container	is
called	01basic_web_1	and	it	runs	NGINX	and	PHP	serving	a	single	PHP	information	page
(http://php.net/manual/en/function.phpinfo.php).

To	check	whether	everything	has	been	launched	as	expected,	run	docker-compose	ps.
You	should	see	your	single	container	with	State	of	Up:

[vagrant@centos7	01-basic]$	docker-compose	ps

				Name													Command									State									Ports								

01basic_web_1			/usr/local/bin/run			Up						0.0.0.0:80->80/tcp

Finally,	you	should	be	able	to	see	the	page	containing	the	output	of	the	PHP	information	at
http://192.168.33.10/	(this	IP	address	is	hardcoded	into	the	vagrant	configuration),	if
you	put	it	in	your	local	browser:

http://php.net/manual/en/function.phpinfo.php

Now,	you	have	a	container	up	and	running;	let’s	look	at	some	of	the	basic	stats.	We	know
from	the	output	of	docker-compose	that	our	container	is	called	01basic_web_1,	so	enter
the	following	command	to	start	streaming	statistics	in	your	terminal:

docker	stats	01basic_web_1

It	will	take	a	second	to	initiate;	after	this	is	done,	you	should	see	your	container	listed
along	with	the	statistics	for	the	following:

CPU	%:	This	shows	you	how	much	of	the	available	CPU	resource	the	container	is
currently	using.
MEM	USEAGE/LIMIT:	This	tells	you	how	much	RAM	the	container	is	utilizing;	it	also
displays	how	much	allowance	the	container	has.	If	you	haven’t	explicitly	set	a	limit,
it	will	show	the	total	amount	of	RAM	on	the	host	machine.
MEM	%:	This	shows	you	what	percentage	of	the	RAM	allowance	the	container	is
using.

NET	I/O:	This	gives	a	running	total	of	how	much	bandwidth	has	been	transferred	in
and	out	of	the	container.

If	you	go	back	to	your	browser	window	and	start	to	refresh	http://192.168.33.10/,	you
will	see	that	the	values	in	each	of	the	columns	start	to	change.	To	stop	streaming	the
statistics,	press	Ctrl	+	c.

Rather	than	keeping	on	hitting	refresh	over	and	over	again,	let’s	generate	a	lot	of	traffic	to
01basic_web_1,	which	should	put	the	container	under	a	heavy	load.

Here,	we	will	launch	a	container	that	will	send	10,000	requests	to	01basic_web_1	using
ApacheBench	(https://httpd.apache.org/docs/2.2/programs/ab.html).	Although	it	will	take
a	minute	or	two	to	execute,	we	should	run	docker	stats	as	soon	as	possible:

docker	run	-d	--name=01basic_load	--link=01basic_web_1	russmckendrick/ab	ab	

-k	-n	10000	-c	5	http://01basic_web_1/	&&	docker	stats	01basic_web_1	

01basic_load

After	the	ApacheBench	image	has	been	downloaded	and	the	container	that	will	be	called
01basic_load	starts,	you	should	see	the	statistics	for	both	01basic_web_1	and
01basic_load	begin	to	stream	in	your	terminal:

CONTAINER					CPU	%					MEM	USAGE/LIMIT					MEM	%				NET	I/O

01basic_load		18.11%				12.71	MB/1.905	GB			0.67%				335.2	MB/5.27	MB

01basic_web_1	139.62%			96.49	MB/1.905	GB			5.07%				5.27	MB/335.2	MB

After	a	while,	you	will	notice	that	most	of	the	statistics	for	01basic_load	will	drop	off	to
zero;	this	means	that	the	test	has	completed	and	that	the	container	running	the	test	has
exited.	The	docker	stats	command	can	only	stream	statistics	for	the	running	containers;
ones	that	have	exited	are	no	longer	running	and,	therefore,	do	not	produce	output	when
running	docker	stats.

Exit	from	docker	stats	using	Ctrl	+	c;	to	see	the	results	of	the	ApacheBench	command,
you	can	type	docker	logs	01basic_load;	you	should	see	something	like	the	following
screenshot:

https://httpd.apache.org/docs/2.2/programs/ab.html

You	shouldn’t	worry	if	you	see	any	failures	like	in	the	preceding	output.	This	exercise	was
purely	to	demonstrate	how	to	view	the	statistics	of	the	running	containers	and	not	to	tune	a
web	server	to	handle	the	amount	of	traffic	we	sent	to	it	using	ApacheBench.

To	remove	the	containers	that	we	launched,	run	the	following	commands:

[vagrant@centos7	01-basic]$	docker-compose	stop

Stopping	01basic_web_1…

[vagrant@centos7	01-basic]$	docker-compose	rm

Going	to	remove	01basic_web_1

Are	you	sure?	[yN]	y

Removing	01basic_web_1…

[vagrant@centos7	01-basic]$	docker	rm	01basic_load

01basic_load

To	check	whether	everything	has	been	removed	successfully,	run	docker	ps	-a	and	you
should	not	be	able	to	see	any	running	or	exited	containers	that	have	01basic_	in	their
names.

What	just	happened?
While	running	the	ApacheBench	test,	you	may	have	noticed	that	the	CPU	utilization	on
the	container	running	NGINX	and	PHP	was	high;	in	the	example	in	the	previous	section,	it
was	using	139.62	percent	of	the	available	CPU	resource.

As	we	did	not	attach	any	resource	limits	to	the	containers	we	launched,	it	was	easy	for	our
test	to	use	all	of	the	available	resources	on	the	host	Virtual	Machine	(VM).	If	this	VM
was	being	used	by	several	users,	all	running	their	own	containers,	they	may	have	started	to
notice	that	their	applications	had	started	to	slow	down	or,	even	worse,	the	applications	had
started	showing	errors.

If	you	ever	find	yourself	in	this	situation,	you	can	use	docker	stats	to	help	track	down
the	culprit.

Running	docker	stats	$(docker	ps	-q)	will	stream	the	statistics	for	all	the	currently
running	containers:

CONTAINER							CPU	%					MEM	USAGE/LIMIT					MEM	%				NET	I/O

361040b7b33e				0.07%					86.98	MB/1.905	GB			4.57%				2.514	kB/738	B

56b459ae9092				120.06%			87.05	MB/1.905	GB			4.57%				2.772	kB/738	B

a3de616f84ba				0.04%					87.03	MB/1.905	GB			4.57%				2.244	kB/828	B

abdbee7b5207				0.08%					86.61	MB/1.905	GB			4.55%				3.69	kB/738	B

b85c49cf740c				0.07%					86.15	MB/1.905	GB			4.52%				2.952	kB/738	B

As	you	may	have	noticed,	this	displays	the	container	ID	rather	than	the	name;	this
information	should,	however,	be	enough	to	spot	the	resource	hog	so	that	you	can	quickly
stop	it:

[vagrant@centos7	01-basic]$	docker	stop	56b459ae9092

56b459ae9092

Once	stopped,	you	can	then	get	the	name	of	the	rogue	container	by	running	the	following
command:

[vagrant@centos7	01-basic]$	docker	ps	-a	|	grep	56b459ae9092

56b459ae9092								russmckendrick/nginx-php			"/usr/local/bin/run"	9	

minutes	ago							Exited	(0)	26	seconds	ago						my_bad_container

Alternatively,	for	more	detailed	information,	you	can	run	docker	inspect	56b459ae9092,
which	will	give	you	all	the	information	you	need	on	the	container.

What	about	processes?
One	of	the	great	things	about	Docker	is	that	it	isn’t	really	virtualization;	as	mentioned	in
the	previous	chapter,	it	is	a	great	way	of	isolating	processes	rather	than	running	an	entire
operating	system.

This	can	get	confusing	when	running	tools	such	as	top	or	ps.	To	get	an	idea	just	how
confusing	this	can	get,	lets	launch	several	containers	using	docker-compose	and	see	for
ourselves:

[vagrant@centos7	~]$	cd	/monitoring_docker/Chapter01/02-multiple

[vagrant@centos7	02-multiple]$	docker-compose	up	-d

Creating	02multiple_web_1…

[vagrant@centos7	02-multiple]$	docker-compose	scale	web=5

Creating	02multiple_web_2…

Creating	02multiple_web_3…

Creating	02multiple_web_4…

Creating	02multiple_web_5…

Starting	02multiple_web_2…

Starting	02multiple_web_3…

Starting	02multiple_web_4…

Starting	02multiple_web_5…

Now,	we	have	five	web	servers	that	have	all	been	launched	from	the	same	image	using	the
same	configuration.	One	of	the	first	things	I	do	when	logging	into	a	server	to	troubleshoot
a	problem	is	run	ps	-aux;	this	will	show	all	the	running	processes.	As	you	can	see,	when
running	the	command,	there	are	a	lot	processes	listed.

Even	just	trying	to	look	at	the	processes	for	NGINX	is	confusing,	as	there	is	nothing	to
differentiate	the	processes	from	one	container	to	another,	as	shown	in	the	following
output:

So,	how	can	you	know	which	container	owns	which	processes?

Docker	top
This	command	lists	all	the	processes	that	are	running	within	a	container;	think	of	it	as	a
way	of	filtering	the	output	of	the	ps	aux	command	we	ran	on	the	host	machine:

As	docker	top	is	an	implementation	of	the	standard	ps	command,	any	flags	you	would
normally	pass	to	ps	should	work	as	follows:

[vagrant@centos7	02-multiple]$	docker	top	02multiple_web_3	–aux

[vagrant@centos7	02-multiple]$	docker	top	02multiple_web_3	-faux

Docker	exec
Another	way	to	view	what	is	going	on	within	a	container	is	to	enter	it.	To	enable	you	to	do
this,	Docker	introduced	the	docker	exec	command.	This	allows	you	to	spawn	an
additional	process	within	an	already	running	container	and	then	attach	to	the	process;	so,	if
we	wanted	to	look	at	what	is	currently	running	on	02multiple_web_3,	we	should	use	the
following	command	spawn	a	bash	shell	within	an	already	running	container:

docker	exec	-t	-i	02multiple_web_3	bash

Once	you	have	an	active	shell	on	the	container,	you	will	notice	that	your	prompt	has
changed	to	the	container’s	ID.	Your	session	is	now	isolated	to	the	container’s
environment,	meaning	that	you	will	only	be	able	to	interact	with	the	processes	belonging
to	the	container	you	entered.

From	here,	you	can	run	the	ps	aux	or	top	command	as	you	would	do	on	the	host	machine,
and	only	see	the	processes	associated	with	the	container	you	are	interested	in:

To	leave	the	container,	type	in	exit,	you	should	see	your	prompt	change	back	in	your	host
machine.

Finally,	you	can	stop	and	remove	the	containers	by	running	docker-compose	stop	and
docker-compose	kill.

Summary
In	this	chapter,	we	saw	how	we	can	get	real-time	statistics	on	our	running	containers	and
how	we	can	use	commands	that	are	familiar	to	us,	to	get	information	on	the	processes	that
are	launched	as	part	of	each	container.

On	the	face	of	it,	docker	stats	seems	like	a	really	basic	piece	of	functionality	that	isn’t
really	anything	more	than	a	tool	to	help	you	identify	which	container	is	using	all	the
resources	while	a	problem	is	occurring.	However,	the	Docker	command	is	actually	pulling
the	information	from	a	quite	powerful	API.

This	API	forms	the	basis	for	a	lot	of	the	monitoring	tools	we	will	be	looking	at	in	the	next
few	chapters.

Chapter	3.	Advanced	Container	Resource
Analysis
In	the	last	chapter,	we	looked	at	how	you	can	use	the	API	built	into	Docker	to	gain	an
insight	to	what	resources	your	containers	are	running.	Now,	we	are	to	see	how	we	can	take
it	to	the	next	level	by	using	cAdvisor	from	Google.	In	this	chapter,	you	will	cover	the
following	topics:

How	to	install	cAdvisor	and	start	collecting	metrics
Learn	all	about	the	web	interface	and	real-time	monitoring
What	your	options	are	for	shipping	metrics	to	a	remote	Prometheus	database	for
long-term	storage	and	trend	analysis

What	is	cAdvisor?
Google	describes	cAdvisor	as	follows:

“cAdvisor	(Container	Advisor)	provides	container	users	an	understanding	of	the
resource	usage	and	performance	characteristics	of	their	running	containers.	It	is	a
running	daemon	that	collects,	aggregates,	processes,	and	exports	information	about
running	containers.	Specifically,	for	each	container,	it	keeps	resource	isolation
parameters,	historical	resource	usage,	histograms	of	complete	historical	resource
usage,	and	network	statistics.	This	data	is	exported	by	a	container	and	is	machine-
wide.”

The	project	started	off	life	as	an	internal	tool	at	Google	for	gaining	an	insight	into
containers	that	had	been	launched	using	their	own	container	stack.

Note
Google’s	own	container	stack	was	called	“Let	Me	Contain	That	For	You”	or	lmctfy	for
short.	The	work	on	lmctfy	has	been	installed	as	a	Google	port	functionality	over	to
libcontainer	that	is	part	of	the	Open	Container	Initiative.	Further	details	on	lmctfy	can	be
found	at	https://github.com/google/lmctfy/.

cAdvisor	is	written	in	Go	(https://golang.org);	you	can	either	compile	your	own	binary	or
you	can	use	the	pre-compiled	binary	that	are	supplied	via	a	container,	which	is	available
from	Google’s	own	Docker	Hub	account.	You	can	find	this	at
http://hub.docker.com/u/google/.

Once	installed,	cAdvisor	will	sit	in	the	background	and	capture	metrics	that	are	similar	to
that	of	the	docker	stats	command.	We	will	go	through	these	stats	and	understand	what
they	mean	later	in	this	chapter.

cAdvisor	takes	these	metrics	along	with	those	for	the	host	machine	and	exposes	them	via	a
simple	and	easy-to-use	built-in	web	interface.

https://github.com/google/lmctfy/
https://golang.org
http://hub.docker.com/u/google/

Running	cAdvisor	using	a	container
There	are	a	number	of	ways	to	install	cAdvisor;	the	easiest	way	to	get	started	is	to
download	and	run	the	container	image	that	contains	a	copy	of	a	precompiled	cAdvisor
binary.

Before	running	cAdvisor,	let’s	launch	a	fresh	vagrant	host:

[russ@mac	~]$	cd	~/Documents/Projects/monitoring-docker/vagrant-centos/

[russ@mac	~]$	vagrant	up

Bringing	machine	'default'	up	with	'virtualbox'	provider…

==>default:	Importing	base	box	'russmckendrick/centos71'...

==>default:	Matching	MAC	address	for	NAT	networking…

==>default:	Checking	if	box	'russmckendrick/centos71'	is	up	to	date…

.....

==>default:	=>	Installing	docker-engine…

==>default:	=>	Configuring	vagrant	user…

==>default:	=>	Starting	docker-engine…

==>default:	=>	Installing	docker-compose…

==>default:	=>	Finished	installation	of	Docker

[russ@mac	~]$	vagrantssh

Tip
Using	a	backslash

As	we	have	a	lot	options	to	pass	to	the	docker	run	command,	we	are	using	\	to	split	the
command	over	multiple	lines	so	it’s	easier	to	follow	what	is	going	on.

Once	you	have	access	to	the	host	machine,	run	the	following	command:

docker	run	\

		--detach=true	\

		--volume=/:/rootfs:ro	\

		--volume=/var/run:/var/run:rw	\

		--volume=/sys:/sys:ro	\

		--volume=/var/lib/docker/:/var/lib/docker:ro	\

		--publish=8080:8080	\

		--privileged=true	\

		--name=cadvisor	\

google/cadvisor:latest

You	should	now	have	a	cAdvisor	container	up	and	running	on	your	host	machine.	Before
we	start,	let’s	look	at	cAdvisor	in	more	detail	by	discussing	why	we	have	passed	all	the
options	to	the	container.

The	cAdvisor	binary	is	designed	to	run	on	the	host	machine	alongside	the	Docker	binary,
so	by	launching	cAdvisor	in	a	container,	we	are	actually	isolating	the	binary	in	its	down
environment.	To	give	cAdvisor	access	to	the	resources	it	requires	on	the	host	machine,	we
have	to	mount	several	partitions	and	also	give	the	container	privileged	access	to	let	the
cAdvisor	binary	think	it	is	being	executed	on	the	host	machine.

Note
When	a	container	is	launched	with	--privileged,	Docker	will	enable	full	access	to
devices	on	the	host	machine;	also,	Docker	will	configure	both	AppArmor	or	SELinux	to
allow	your	container	the	same	access	to	the	host	machine	as	a	process	running	outside	the
container	will	have.	For	information	on	the	--privileged	flag,	see	this	post	on	the	Docker
blog	at	http://blog.docker.com/2013/09/docker-can-now-run-within-docker/.

http://blog.docker.com/2013/09/docker-can-now-run-within-docker/

Compiling	cAdvisor	from	source
As	mentioned	in	the	previous	section,	cAdvisor	really	ought	to	be	executed	on	the	host
machine;	this	means,	you	may	have	to	use	a	case	to	compile	your	own	cAdvisor	binary
and	run	it	directly	on	the	host.

To	compile	cAdvisor,	you	will	need	to	perform	the	following	steps:

1.	 Install	Go	and	Mercurial	on	the	host	machine—version	1.3	or	higher	of	Go	is	needed
to	compile	cAdvisor.

2.	 Set	the	path	for	Go	to	work	from.
3.	 Grab	the	source	code	for	cAdvisor	and	godep.
4.	 Set	the	path	for	your	Go	binaries.
5.	 Build	the	cAdvisor	binary	using	godep	to	source	the	dependencies	for	us.
6.	 Copy	the	binary	to	/usr/local/bin/.
7.	 Download	either	an	Upstart	or	Systemd	script	and	launch	the	process.

If	you	followed	the	instructions	in	the	previous	section,	you	will	already	have	a	cAdvisor
process	running.	Before	compiling	from	source,	you	should	start	with	a	clean	host;	let’s
log	out	of	the	host	and	launch	a	fresh	copy:

[vagrant@centos7	~]$	exit

logout

Connection	to	127.0.0.1	closed.

[russ@mac	~]$	vagrant	destroy

default:	Are	you	sure	you	want	to	destroy	the	'default'	VM?	[y/N]	y

==>default:	Forcing	shutdown	of	VM…

==>default:	Destroying	VM	and	associated	drives…

==>default:	Running	cleanup	tasks	for	'shell'	provisioner…

[russ@mac	~]$	vagrant	up

Bringing	machine	'default'	up	with	'virtualbox'	provider…

==>default:	Importing	base	box	'russmckendrick/centos71'...

==>default:	Matching	MAC	address	for	NAT	networking…

==>default:	Checking	if	box	'russmckendrick/centos71'	is	up	to	date…

.....

==>default:	=>	Installing	docker-engine…

==>default:	=>	Configuring	vagrant	user…

==>default:	=>	Starting	docker-engine…

==>default:	=>	Installing	docker-compose…

==>default:	=>	Finished	installation	of	Docker

[russ@mac	~]$	vagrantssh

To	build	cAdvisor	on	the	CentOS	7	host,	run	the	following	command:

sudo	yum	install	-y	golanggit	mercurial

export	GOPATH=$HOME/go

go	get	-d	github.com/google/cadvisor

go	get	github.com/tools/godep

export	PATH=$PATH:$GOPATH/bin

cd	$GOPATH/src/github.com/google/cadvisor

godep	go	build	.

sudocpcadvisor	/usr/local/bin/

sudowgethttps://gist.githubusercontent.com/russmckendrick/f647b2faad5d92c96

771/raw/86b01a044006f85eebbe395d3857de1185ce4701/cadvisor.service	-O	

/lib/systemd/system/cadvisor.service

sudosystemctl	enable	cadvisor.service

sudosystemctl	start	cadvisor

On	the	Ubuntu	14.04	LTS	host,	run	the	following	command:

sudo	apt-get	-y	install	software-properties-common

sudo	add-apt-repository	ppa:evarlast/golang1.4

sudo	apt-get	update

sudo	apt-get	-y	install	golang	mercurial

export	GOPATH=$HOME/go

go	get	-d	github.com/google/cadvisor

go	get	github.com/tools/godep

export	PATH=$PATH:$GOPATH/bin

cd	$GOPATH/src/github.com/google/cadvisor

godep	go	build	.

sudocpcadvisor	/usr/local/bin/

sudowgethttps://gist.githubusercontent.com/russmckendrick/f647b2faad5d92c96

771/raw/e12c100d220d30c1637bedd0ce1c18fb84beff77/cadvisor.conf	-O	

/etc/init/cadvisor.conf

sudo	start	cadvisor

You	should	now	have	a	running	cAdvisor	process.	You	can	check	this	by	running	ps	aux
|	grep	cadvisor	and	you	should	see	a	process	with	a	path	of	/usr/local/bin/cadvisor
running.

Collecting	metrics
Now,	you	have	cAdvisor	running;	what	do	you	need	to	do	to	configure	the	service	in	order
to	start	collecting	metrics?	The	short	answer	is,	nothing	at	all.	When	you	started	the
cAdvisor	process,	it	instantly	started	polling	your	host	machine	to	find	out	what	containers
are	running	and	gathered	information	on	both	the	running	containers	and	your	host
machine.

The	Web	interface
cAdvisor	should	be	running	on	the	8080	port;	if	you	open	http://192.168.33.10:8080/,
you	should	be	greeted	with	the	cAdvisor	logo	and	an	overview	of	your	host	machine:

This	initial	page	streams	live	stats	about	the	host	machine,	though	each	section	is	repeated
when	you	start	to	drill	down	and	view	the	containers.	To	start	with,	let’s	look	at	each
section	using	the	host	information.

Overview
This	overview	section	gives	you	a	bird’s-eye	view	of	your	system;	it	uses	gauges	so	you
can	quickly	get	an	idea	of	which	resources	are	reaching	their	limits.	In	the	following
screenshot,	there	is	very	little	in	the	way	of	CPU	utilization	and	the	file	system	usage	is
relatively	low;	however,	we	are	using	64%	of	the	available	RAM:

Processes
The	following	screenshot	displays	a	combined	view	of	the	output	of	the	ps	aux,	dockerps
and	top	commands	we	used	in	the	previous	chapter:

Here	is	what	each	column	heading	means:

User:	This	shows	which	user	is	running	the	process
PID:	This	is	the	unique	process	ID
PPID:	This	is	the	PID	of	the	parent	process
Start	Time:	This	shows	what	time	the	process	started
CPU	%:	This	is	the	percentage	of	the	CPU	the	process	is	currently	consuming
MEM	%:	This	is	the	percentage	of	the	RAM	the	process	is	currently	consuming
RSS:	This	shows	how	much	of	the	main	memory	the	process	is	using
Virtual	Size:	This	shows	how	much	of	the	virtual	memory	the	process	is	using
Status:	This	shows	the	current	status	of	the	process;	this	are	the	standard	Linux
process	state	codes
Running	Time:	This	shows	how	long	the	process	has	been	running
Command:	This	shows	which	command	the	process	is	running
Container:	This	shows	which	container	the	process	is	attached	to;	the	container
listed	as	/	is	the	host	machine

As	there	could	be	several	hundred	processes	active,	this	section	is	split	into	pages;	you	can
navigate	to	these	with	the	buttons	on	the	bottom-left.	Also,	you	can	sort	the	processes	by
clicking	on	any	of	the	headings.

CPU
The	following	graph	shows	the	CPU	utilization	over	the	last	minute:

Here	is	what	each	term	means:

Total	Usage:	This	shows	an	aggregate	usage	across	all	cores
Usage	per	Core:	This	graph	breaks	down	the	usage	per	core
Usage	Breakdown	(not	shown	in	the	preceding	screenshot):	This	shows	aggregate
usage	across	all	cores,	but	breaks	it	down	to	what	is	being	used	by	the	kernel	and
what	is	being	used	by	the	user-owned	processes

Memory
The	Memory	section	is	split	into	two	parts.	The	graph	tells	you	the	total	amount	of
memory	used	by	all	the	processes	for	the	host	or	container;	this	is	the	total	of	the	hot	and
cold	memory.	The	Hot	memory	is	the	current	working	set:	pages	that	have	been	touched
by	the	kernel	recently.	The	Cold	memory	is	the	page	that	hasn’t	been	touched	for	a	while
and	could	be	reclaimed	if	needed.

The	Usage	Breakdown	gives	a	visual	representation	of	the	total	memory	in	the	host
machine,	or	allowance	in	the	container,	alongside	the	total	and	hot	usage:

Network
This	section	shows	the	incoming	and	outgoing	traffic	over	the	last	minute.	You	can	change
the	interface	using	the	drop-down	box	on	the	top-left.	There	is	also	a	graph	that	shows	any
networking	errors.	Typically,	this	graph	should	be	flat.	If	it	isn’t,	then	you	will	be	seeing
performance	issues	with	your	host	machine	or	container:

Filesystem
The	final	section	gives	a	break	down	of	the	filesystem	usage.	In	the	following	screenshot,
/dev/sda1	is	the	boot	partition,	/dev/sda3	is	the	main	filesystem,	and
/dev/mapper/docker-8…	is	an	aggregate	of	the	write	file	systems	of	your	running
containers:

Viewing	container	stats
At	the	top	of	the	page,	there	is	a	link	of	your	running	containers;	you	can	either	click	on
the	link	or	go	directly	to	http://192.168.33.10:8080/docker/.	Once	the	page	loads,	you
should	see	a	list	of	all	your	running	containers,	and	also	a	detailed	overview	of	your
Docker	process,	and	finally	a	list	of	the	images	you	have	downloaded.

Subcontainers
Subcontainers	shows	a	list	of	your	containers;	each	entry	is	a	clickable	link	that	will	take
you	to	a	page	that	will	give	you	the	following	details:

Isolation:

CPU:	This	shows	you	the	CPU	allowances	of	the	container;	if	you	have	not	set
any	resource	limits,	you	will	see	the	host’s	CPU	information
Memory:	This	shows	you	the	memory	allowances	of	the	container;	if	you	have
not	set	any	resource	limits,	your	container	will	show	an	unlimited	allowance

Usage:

Overview:	This	shows	gauges	so	you	can	quickly	see	how	close	to	any	resource
limits	you	are
Processes:	This	shows	the	processes	for	just	your	selected	container
CPU:	This	shows	the	CPU	utilization	graphs	isolated	to	just	your	container
Memory:	This	shows	the	memory	utilization	of	your	container

Driver	status
The	driver	gives	the	basic	stats	on	your	main	Docker	process,	along	with	the	information
on	the	host	machine’s	kernel,	host	name,	and	also	the	underlying	operating	system.

It	also	gives	information	on	the	total	number	of	containers	and	images.	You	may	notice
that	the	total	number	of	images	is	a	much	larger	figure	than	you	expected	to	see;	this	is
because	it	is	counting	each	file	system	as	an	individual	image.

Note
For	more	details	on	Docker	images,	see	the	Docker	user	guide	at
https://docs.docker.com/userguide/dockerimages/.

It	also	gives	you	a	detailed	breakdown	of	your	storage	configuration.

https://docs.docker.com/userguide/dockerimages/

Images
Finally,	you	get	a	list	of	the	Docker	images	which	are	available	on	the	host	machine.	It
lists	the	Repository,	Tag,	Size,	and	when	the	image	was	created,	along	with	the	images’
unique	ID.	This	lets	you	know	where	the	image	originated	from	(Repository),	which
version	of	the	image	you	have	downloaded	(Tag)	and	how	big	the	image	is	(Size).

This	is	all	great,	what’s	the	catch?
So	you	are	maybe	thinking	to	yourself	that	all	of	this	information	available	in	your
browser	is	really	useful;	being	able	to	see	real-time	performance	metrics	in	an	easily
readable	format	is	a	really	plus.

The	biggest	drawback	of	using	the	web	interface	for	cAdvisor,	as	you	may	have	noticed,	is
that	it	only	shows	you	one	minute’s	worth	of	metrics;	you	can	quite	literally	see	the
information	disappearing	in	real	time.

As	a	pane	of	glass	gives	a	real-time	view	into	your	containers,	cAdvisor	is	a	brilliant	tool;
if	you	want	to	review	any	metrics	that	are	older	than	one	minute,	you	are	out	of	luck.

That	is,	unless	you	configure	somewhere	to	store	all	of	your	data;	this	is	where
Prometheus	comes	in.

Prometheus
So	what’s	Prometheus?	Its	developers	describe	it	as	follows:

Prometheus	is	an	open-source	system’s	monitoring	and	alerting	toolkit	built	at
SoundCloud.	Since	its	inception	in	2012,	it	has	become	the	standard	for
instrumenting	new	services	at	SoundCloud	and	is	seeing	growing	external	usage	and
contributions.

OK,	but	what	does	that	have	to	do	with	cAdvisor?	Well,	Prometheus	has	quite	a	powerful
database	backend	that	stores	the	data	it	imports	as	a	time	series	of	events.

Wikipedia	describes	a	time	series	as	follows:

“A	time	series	is	a	sequence	of	data	points,	typically	consisting	of	successive
measurements	made	over	a	time	interval.	Examples	of	time	series	are	ocean	tides,
counts	of	sunspots,	and	the	daily	closing	value	of	the	Dow	Jones	Industrial	Average.
Time	series	are	very	frequently	plotted	via	line	charts.”

https://en.wikipedia.org/wiki/Time_series

One	of	the	things	cAdvisor	does,	by	default,	is	expose	all	the	metrics	it	is	capturing	on	a
single	page	at	/metrics;	you	can	see	this	at	http://192.168.33.10:8080/metrics	on
our	cAdvisor	installation.	The	metrics	are	updated	each	time	the	page	is	loaded:

As	you	can	see	in	the	preceding	screenshot,	this	is	just	a	single	long	page	of	raw	text.	The
way	Prometheus	works	is	that	you	configure	it	to	scrape	the	/metrics	URL	at	a	user-
defined	interval,	let’s	say	every	five	seconds;	the	text	is	in	a	format	that	Prometheus
understands	and	it	is	ingested	into	the	Prometheus’s	time	series	database.

What	this	means	is	that,	using	Prometheus’s	powerful	built-in	query	language,	you	can
start	to	drill	down	into	your	data.	Let’s	look	at	getting	Prometheus	up	and	running.

https://en.wikipedia.org/wiki/Time_series

Launching	Prometheus
Like	cAdvisor	there	are	several	ways	you	can	launch	Prometheus.	To	start	with,	we	will
launch	a	container	and	inject	our	own	configuration	file	so	that	Prometheus	knows	where
our	cAdvisor	endpoint	is:

docker	run	\

		--detach=true	\

		--

volume=/monitoring_docker/Chapter03/prometheus.yml:/etc/prometheus/promethe

us.yml	\

		--publish=9090:9090	\

		--name=prometheus	\

prom/prometheus:latest

Once	you	have	launched	the	container,	Prometheus	will	be	accessible	on	the	following
URL:	http://192.168.33.10:9090.	When	you	first	load	the	URL,	you	will	be	taken	to	a
status	page;	this	gives	some	basic	information	on	the	Prometheus	installation.	The
important	part	of	this	page	is	the	list	of	targets.	This	lists	the	URL	that	Prometheus	will	be
scrapping	to	capture	metrics;	you	should	see	your	cAdvisor	URL	listed	with	a	state	of
HEALTHY,	as	shown	in	the	following	screenshot:

Another	information	page	contains	the	following:

Runtime	information:	This	displays	how	long	Prometheus	has	been	up	and	polling
data,	if	you	have	configured	an	endpoint
Build	information:	This	contains	the	details	of	the	version	of	Prometheus	that	you
have	been	running
Configuration:	This	is	a	copy	of	the	configuration	file	we	injected	into	the	container
when	it	was	launched
Rules:	This	is	a	copy	of	any	rules	we	injected;	these	will	be	used	for	alerting
Startup	flags:	This	shows	all	the	runtime	variables	and	their	values

Querying	Prometheus
As	we	only	have	a	few	containers	up	and	running	at	the	moment,	let’s	launch	one	that	runs
Redis	so	we	can	start	to	look	at	the	query	language	built	into	Prometheus.

We	will	use	the	official	Redis	image	for	this	and	as	we	are	only	going	to	use	this	as	an
example	we	won’t	need	to	pass	it	any	user	variables:

docker	run	--name	my-redis-server	-d	redis

We	now	have	a	container	called	my-redis-server	running.	cAdvisor	should	already	be
exposing	metrics	about	the	container	to	Prometheus;	let’s	go	ahead	and	see.	In	the
Prometheus	web	interface,	go	to	the	Graph	link	in	the	menu	at	the	top	of	the	page.	Here,
you	will	be	presented	with	a	text	box	into	which	you	can	enter	your	query.	To	start	with,
let’s	look	at	the	CPU	usage	of	the	Redis	container.

In	the	box,	enter	the	following:

container_cpu_usage_seconds_total{job="cadvisor",name="my-redis-server"}

Then,	after	clicking	on	Execute,	you	should	have	two	results	returned,	listed	in	the
Console	tab	of	the	page.	If	you	remember,	cAdvisor	records	the	CPU	usage	of	each	of	the
CPU	cores	that	the	container	has	access	to,	which	is	why	we	have	two	values	returned,
one	for	“cpu00”	and	one	for	“cpu01”.	Clicking	on	the	Graph	link	will	show	you	results
over	a	period	of	time:

As	you	can	see	in	the	preceding	screenshot,	we	now	have	access	to	the	usage	graphs	for
the	last	25	minutes,	which	is	about	how	long	ago	I	launched	the	Redis	instance	before

generating	the	graph.

Dashboard
Also,	when	creating	one	of	the	graphs	using	the	query	tool	in	the	main	application,	you
can	install	a	separate	Dashboard	application.	This	runs	in	a	second	container	that	connects
to	your	main	Prometheus	container	using	the	API	as	a	data	source.

Before	we	start	the	Dashboard	container,	we	should	initialize	a	SQLite3	database	to	store
our	configuration.	To	ensure	that	the	database	is	persistent,	we	will	store	this	on	the	host
machine	in	/tmp/prom/file.sqlite3:

docker	run	\

		--volume=/tmp/prom:/tmp/prom	\

		-e	DATABASE_URL=sqlite3:/tmp/prom/file.sqlite3	\

prom/promdash	./bin/rake	db:migrate

Once	we	have	initialized	the	database,	we	can	launch	the	Dashboard	application	properly:

docker	run	\

		--detach=true	\

		--volume=/tmp/prom:/tmp/prom	\

		-e	DATABASE_URL=sqlite3:/tmp/prom/file.sqlite3	\

		--publish=3000:3000		\

		--name=promdash	\

prom/promdash

The	application	should	now	be	accessible	at	http://192.168.33.10:3000/.	The	first
thing	we	need	to	do	is	set	up	the	data	source.	To	do	this,	click	on	the	Servers	link	at	the
top	of	the	screen	and	then	click	on	New	Server.	Here,	you	will	be	asked	to	provide	the
details	of	your	Prometheus	server.	Name	the	server	and	enter	the	following	URL:

Name:	cAdvisor
URL:	http://192.168.33.10:9090
Server	Type:	Prometheus

Once	you	click	on	Create	Server,	you	should	receive	a	message	saying	Server	was
successfully	created.	Next	up,	you	need	to	create	a	directory;	this	is	where	your
dashboards	will	be	stored.

Click	on	the	Dashboards	link	in	the	top	menu	and	then	click	on	New	directory	and	create
one	called	Test	directory.	Now,	you	are	ready	to	start	creating	Dashboards.	Click	on
New	Dashboard,	call	it	My	Dashboard,	place	it	in	Test	directory.	Once	you	click	on
Create	Dashboard,	you	will	be	taken	to	the	preview	screen.

From	here,	you	can	build	up	dashboards	using	the	control	in	the	top	right-hand	side	of
each	section.	To	add	data,	you	simply	enter	the	query	you	would	like	to	see	in	the
dashboard	section:

Note
For	detailed	information	on	how	to	create	Dashboards,	see	the	PROMDASH	section	of
the	Prometheus	documentation	at	http://prometheus.io/docs/visualization/promdash/.

http://prometheus.io/docs/visualization/promdash/

The	next	steps
At	the	moment,	we	are	running	Prometheus	in	a	single	container	and	its	data	is	being
stored	within	that	same	container.	This	means,	if	for	any	reason	the	container	is
terminated,	our	data	is	lost;	it	also	means	that	we	can’t	upgrade	without	loosing	out	data.
To	get	around	this	problem,	we	can	create	a	data	volume	container.

Note
A	data	volume	container	is	a	special	type	of	container	that	only	exists	as	storage	for	other
containers.	For	more	details,	see	the	Docker	user	guide	at
https://docs.docker.com/userguide/dockervolumes/#creating-and-mounting-a-data-
volume-container.

First	of	all,	let’s	make	sure	we	have	removed	all	the	running	Prometheus	containers:

docker	stop	prometheus&&dockerrm	Prometheus

Next	up,	let’s	create	a	data	container	called	promdata:

docker	create	\

		--volume=/promdata	\

		--name=promdata	\

prom/prometheus	/bin/true

Finally,	launch	Prometheus	again,	this	time,	using	the	data	container:

docker	run	\

		--detach=true	\

		--volumes-from	promdata	\

		--

volume=/monitoring_docker/Chapter03/prometheus.yml:/etc/prometheus/promethe

us.yml	\

		--publish=9090:9090	\

		--name=prometheus	\

prom/prometheus

This	will	ensure	that,	if	you	have	to	upgrade	or	relaunch	your	container,	the	metrics	you
have	been	capturing	are	safe	and	sound.

We	have	only	touched	on	the	basics	of	using	Prometheus	in	this	section	of	the	book;	for
further	information	on	the	application,	I	recommend	the	following	links	as	a	good	starting
point:

Documentation:	http://prometheus.io/docs/introduction/overview/
Twitter:	https://twitter.com/PrometheusIO
Project	page:	https://github.com/prometheus/prometheus
Google	groups:	https://groups.google.com/forum/#!forum/prometheus-developers

https://docs.docker.com/userguide/dockervolumes/#creating-and-mounting-a-data-volume-container
http://prometheus.io/docs/introduction/overview/
https://twitter.com/PrometheusIO
https://github.com/prometheus/prometheus
https://groups.google.com/forum/#!forum/prometheus-developers

Alternatives?
There	are	some	alternatives	to	Prometheus.	One	such	alternative	is	InfluxDB	that
describes	itself	as	follows:

An	open-source	distributed	time	series	database	with	no	external	dependencies.

However,	at	the	time	of	writing,	cAdvisor	is	not	currently	compatible	with	the	latest
version	of	InfluxDB.	There	are	patches	in	the	codebase	for	cAdvisor;	however,	these	are
yet	to	make	it	through	to	the	Google-maintained	Docker	Image.

For	more	details	on	InfluxDB	and	it’s	new	visualization	complain	application	Chronograf,
see	the	project	website	at	https://influxdb.com/	and	for	more	details	on	how	to	export
cAdvisor	statistics	to	InfluxDB,	see	the	supporting	documentation	for	cAdvisor	at
https://github.com/google/cadvisor/tree/master/docs.

https://influxdb.com/
https://github.com/google/cadvisor/tree/master/docs

Summary
In	this	chapter,	we	learned	how	to	take	the	viewing	real-time	statistics	of	our	containers
off	the	command	line	and	into	the	web	browser.	We	explored	some	different	methods	to
install	Google’s	cAdvisor	application	and	also	how	to	use	its	web	interface	to	keep	an	eye
on	our	running	containers.	We	also	learned	how	to	capture	metrics	from	cAdvisor	and
store	them	using	Prometheus,	a	modern	time	series	database.

The	two	main	technologies	we	have	covered	in	this	chapter	have	only	been	publically
available	for	less	than	twelve	months.	In	the	next	chapter,	we	will	look	at	using	a
monitoring	tool	that	has	been	in	a	SysAdmins	toolbox	for	over	10	years—Zabbix.

Chapter	4.	A	Traditional	Approach	to
Monitoring	Containers
So	far,	we	have	looked	at	only	a	few	technologies	to	monitor	our	containers,	so	in	this
chapter,	we	will	be	looking	more	at	a	traditional	tool	for	monitoring	services.	By	the	end
of	this	chapter,	you	should	know	your	way	around	Zabbix	and	the	various	ways	you	can
monitor	your	containers.	We	will	cover	the	following	topics	in	this	chapter:

How	to	run	a	Zabbix	Server	using	containers
How	to	launch	a	Zabbix	Server	on	a	vagrant	machine
How	to	prepare	our	host	system	for	monitoring	containers	using	the	Zabbix	agent
How	to	find	your	way	around	the	Zabbix	web	interface

Zabbix
First	things	first,	what	is	Zabbix	and	why	use	it?

I	have	personally	been	using	it	since	version	1.2;	the	Zabbix	site	describes	it	as	follows:

“With	Zabbix,	it	is	possible	to	gather	virtually	limitless	types	of	data	from	the
network.	High-performance	real-time	monitoring	means	that	tens	of	thousands	of
servers,	virtual	machines,	and	network	devices	can	be	monitored	simultaneously.
Along	with	storing	the	data,	visualization	features	are	available	(overviews,	maps,
graphs,	screens,	and	so	on),	as	well	as	very	flexible	ways	of	analyzing	the	data	for
the	purpose	of	alerting.

Zabbix	offers	great	performance	for	data	gathering	and	can	be	scaled	to	very	large
environments.	Distributed	monitoring	options	are	available	with	the	use	of	Zabbix
proxies.	Zabbix	comes	with	a	web-based	interface,	secure	user	authentication,	and	a
flexible	user	permission	schema.	Polling	and	trapping	is	supported,	with	native	high-
performance	agents	gathering	data	from	virtually	any	popular	operating	system;
agent-less	monitoring	methods	are	available	as	well.”

At	the	time	I	started	using	Zabbix,	the	only	real	viable	options	were	as	follows:

Nagios:	https://www.nagios.org/
Zabbix:	http://www.zabbix.com/
Zenoss:	http://www.zenoss.org/

Out	of	the	these	three	options,	Zabbix	seemed	to	be	the	most	straightforward	one	at	the
time.	It	was	doing	enough	work	to	manage	the	several	hundred	servers	I	was	going	to
monitor	without	having	to	have	the	extra	work	of	learning	the	complexities	of	setting	up
Nagios	or	Zenoss;	after	all,	given	the	task	the	software	had,	I	needed	to	be	able	to	trust
that	I	had	set	it	up	correctly.

In	this	chapter,	while	I	am	going	to	go	into	some	detail	about	the	setup	and	the	basics	of
using	Zabbix,	we	will	only	be	touching	on	some	of	the	functionalities,	which	can	do	a	lot
more	than	just	monitor	your	containers.	For	more	information,	I	would	recommend	the
following	as	a	good	starting	point:

Zabbix	blog:	http://blog.zabbix.com
Zabbix	2.4	manual:	https://www.zabbix.com/documentation/2.4/manual
Further	reading:	https://www.packtpub.com/all/?search=zabbix

https://www.nagios.org/
http://www.zabbix.com/
http://www.zenoss.org/
http://blog.zabbix.com
https://www.zabbix.com/documentation/2.4/manual
https://www.packtpub.com/all/?search=zabbix

Installing	Zabbix
As	you	may	have	noticed	from	the	links	in	the	previous	section,	there	are	a	lot	of	moving
parts	in	Zabbix.	It	leverages	several	open	source	technologies,	and	a	production-ready
installation	needs	a	little	more	planning	than	we	can	go	into	in	this	chapter.	Because	of	this
we	are	going	to	look	at	two	ways	of	installing	Zabbix	quickly	rather	go	into	too	much
detail.

Using	containers
At	the	time	of	writing,	there	are	over	a	hundred	Docker	images	available	on	the	Docker
Hub	(https://hub.docker.com)	that	mentions	Zabbix.	These	range	from	full	server
installations	to	just	the	various	parts,	such	as	the	Zabbix	agent	or	proxy	services.

Out	of	the	ones	listed,	there	is	one	that	is	recommend	by	Zabbix	itself.	So,	we	will	look	at
this	one;	it	can	be	found	at	the	following	URLs:

Docker	Hub:	https://hub.docker.com/u/zabbix/
Project	page:	https://github.com/zabbix/zabbix-community-docker

To	get	the	ZabbixServer	container	up	and	running,	we	must	first	launch	a	database
container.	Let’s	start	afresh	with	our	vagrant	instance	by	running	the	following	command:

[russ@mac	~]$	cd	~/Documents/Projects/monitoring-docker/vagrant-centos/

[russ@mac	~]$	vagrant	destroy

default:	Are	you	sure	you	want	to	destroy	the	'default'	VM?	[y/N]	y

==>default:	Forcing	shutdown	of	VM…

==>default:	Destroying	VM	and	associated	drives…

==>default:	Running	cleanup	tasks	for	'shell'	provisioner…

[russ@mac	~]$	vagrant	up

Bringing	machine	'default'	up	with	'virtualbox'	provider…

==>default:	Importing	base	box	'russmckendrick/centos71'...

==>default:	Matching	MAC	address	for	NAT	networking…

==>default:	Checking	if	box	'russmckendrick/centos71'	is	up	to	date…

.....

==>default:	=>	Installing	docker-engine…

==>default:	=>	Configuring	vagrant	user…

==>default:	=>	Starting	docker-engine…

==>default:	=>	Installing	docker-compose…

==>default:	=>	Finished	installation	of	Docker

[russ@mac	~]$	vagrantssh

Now,	we	have	a	clean	environment	and	it’s	time	to	launch	our	database	container,	as
follows:

docker	run	\

		--detach=true	\

		--publish=3306	\

		--env="MARIADB_USER=zabbix"	\

		--env="MARIADB_PASS=zabbix_password"	\

		--name=zabbix-db	\

million12/mariadb

This	will	download	the	million12/mariadb	image	from
https://hub.docker.com/r/million12/mariadb/	and	launch	a	container	called	zabbix-db,
running	MariaDB	10	(https://mariadb.org)	with	a	user	called	zabbix	who	has	a	password
zabbix_password.	We	have	also	opened	the	MariaDB	port	3306	up	on	the	container,	but
as	we	will	be	connecting	to	it	from	a	linked	container,	there	is	no	need	to	expose	that	port
on	the	host	machine.

https://hub.docker.com
https://hub.docker.com/u/zabbix/
https://github.com/zabbix/zabbix-community-docker
https://hub.docker.com/r/million12/mariadb/
https://mariadb.org

Now,	we	have	the	database	container	up	and	running,	we	now	need	to	launch	our	Zabbix
Server	container:

docker	run	\

		--detach=true	\

		--publish=80:80	\

		--publish=10051:10051	\

		--link=zabbix-db:db	\

		--env="DB_ADDRESS=db"	\

		--env="DB_USER=zabbix"	\

		--env="DB_PASS=zabbix_password"	\

		--name=zabbix	\

zabbix/zabbix-server-2.4

This	downloads	the	image,	which	at	the	time	of	writing	is	over	1	GB	so	this	process	could
take	several	minutes	depending	on	your	connection,	and	launches	a	container	called
zabbix.	It	maps	the	web	server	(port	80)	and	the	Zabbix	Server	process	(port	10051)	on
the	host	to	the	container,	creates	a	link	to	our	database	container,	sets	up	the	alias	db,	and
injects	the	database	credentials	as	environment	variables	so	that	the	scripts	that	launch
when	the	container	boots	can	populate	the	database.

You	can	verify	that	everything	worked	as	expected	by	checking	the	logs	on	the	container.
To	do	this,	enter	docker	logs	zabbix.	This	will	print	details	of	what	happened	when	the
container	launched	on	screen:

Now,	once	we	have	the	container	up	and	running,	it	is	time	to	move	to	the	browser	for	our
first	taste	of	the	web	interface.	Go	to	http://192.168.33.10/	in	your	browser	and	you
will	be	greeted	by	a	welcome	page;	before	we	can	start	using	Zabbix,	we	need	to	complete
the	installation.

On	the	welcome	page,	click	on	Next	to	be	taken	to	the	first	step.	This	will	verify	that
everything	we	need	to	run	a	Zabbix	Server	is	installed.	As	we	have	launched	it	in	a
container,	you	should	see	OK	next	to	all	of	the	prerequisites.	Click	on	Next	to	move	onto
the	next	step.

Now,	we	need	to	configure	the	database	connection	for	the	web	interface.	Here,	you
should	have	the	same	details	as	you	did	when	you	launched	the	container,	as	illustrated	in
the	following	screenshot:

Once	you	have	entered	the	details,	click	on	Test	connection	and	you	should	receive	an
OK	message;	you	will	not	be	able	to	proceed	until	this	test	completes	successfully.	Once
you	have	entered	the	details	and	have	an	OK	message,	click	on	Next.

Next	up,	are	the	details	on	the	Zabbix	Server	that	the	web	interface	needs	to	connect	to;
click	on	Next	here.	Next	up,	you	will	receive	a	summary	of	the	installation.	To	proceed,
click	on	Next	and	you	will	be	get	confirmation	that	the
/usr/local/src/zabbix/frontends/php/conf/zabbix.conf.php	file	has	been	created.
Click	on	Finish	to	be	taken	to	the	login	page.

Using	vagrant
While	writing	this	chapter,	I	thought	a	lot	about	providing	another	set	of	installation
instructions	for	the	Zabbix	Server	service.	While	the	book	is	all	about	Monitoring	Docker
containers,	having	a	service	as	resource	intensive	as	Zabbix	running	inside	a	container
feels	a	little	counter	intuitive.	Because	of	this,	there	is	a	vagrant	machine	that	uses	Puppet
to	bootstrap	a	working	installation	of	Zabbix	Server:

[russ@mac	~]$	cd	~/Documents/Projects/monitoring-docker/vagrant-zabbix/

[russ@mac	~]$	vagrant	up

Bringing	machine	'default'	up	with	'virtualbox'	provider…

==>default:	Importing	base	box	'russmckendrick/centos71'...

==>default:	Matching	MAC	address	for	NAT	networking…

==>default:	Checking	if	box	'russmckendrick/centos71'	is	up	to	date…

.....

==>default:	Debug:	Received	report	to	process	from	zabbix.media-glass.es

==>default:	Debug:	Evicting	cache	entry	for	environment	'production'

==>default:	Debug:	Caching	environment	'production'	(ttl	=	0	sec)

==>default:	Debug:	Processing	report	from	zabbix.media-glass.es	with	

processor	Puppet::Reports::Store

As	you	may	have	noticed,	there	is	a	lot	of	output	streamed	to	the	terminal,	so	what	just
happened?	First	of	all,	a	CentOS	7	vagrant	instance	was	launched	and	then	a	Puppet	agent
was	installed.	Once	installed,	the	installation	was	handed	off	to	Puppet.	Using	the	Zabbix
Puppet	module	by	Werner	Dijkerman,	Zabbix	Server	was	installed;	for	more	details	on	the
module,	see	its	Puppet	Forge	page	at	https://forge.puppetlabs.com/wdijkerman/zabbix.

Unlike	the	containerized	version	of	Zabbix	Server,	there	is	no	additional	configuration
required,	so	you	should	be	able	to	access	the	Zabbix	login	page	at	http://zabbix.media-
glass.es/	(an	IP	address	of	192.168.33.11	is	hardcoded	into	the	configuration).

https://forge.puppetlabs.com/wdijkerman/zabbix
http://zabbix.media-glass.es/

Preparing	our	host	machine
For	the	remainder	of	this	chapter,	I	will	assume	that	you	are	using	the	Zabbix	Server	that
is	running	on	its	own	vagrant	instance.	This	helps	to	ensure	that	your	environment	is
consistent	with	the	configuration	of	the	Zabbix	agent	we	will	be	looking	at.

To	pass	the	statistics	from	our	containers	to	the	Zabbix	agent,	which	will	then	in	turn
expose	them	to	the	Zabbix	Server,	we	will	be	installing	using	the	Zabbix-Docker-
Monitoring	Zabbix	agent	module	that	has	been	developed	by	Jan	Garaj.	For	more
information	on	the	project,	see	the	following	URLs:

The	Project	page:	https://github.com/monitoringartist/Zabbix-Docker-Monitoring/
The	Zabbix	share	page:	https://share.zabbix.com/virtualization/docker-containers-
monitoring

To	get	the	agent	and	module	installed,	configured,	and	running,	we	need	to	execute	the
following	steps:

1.	 Install	the	Zabbix	package	repository.
2.	 Install	the	Zabbix	agent.
3.	 Install	the	prerequisites	for	the	module.
4.	 Add	the	Zabbix	agent	user	to	the	Docker	group.
5.	 Download	the	auto-discovery	bash	script.
6.	 Download	the	precompiled	zabbix_module_docker	binary.
7.	 Configure	the	Zabbix	agent	with	the	details	of	our	Zabbix	Server	and	also	the	Docker

module.
8.	 Set	the	correct	permissions	on	all	the	files	we	have	downloaded	and	created.
9.	 Start	the	Zabbix	agent.

While	the	steps	remain	the	same	for	both	CentOS	and	Ubuntu,	the	actions	taken	to	do	the
initial	package	installation	differ	slightly.	Rather	than	going	through	the	process	of
showing	the	commands	to	install	and	configure	the	agent,	there	is	a	script	for	each	of	the
host	operating	systems	in	the	/monitoring_docker/chapter04/	folder.	To	view	the
scripts,	run	the	following	command	from	your	terminal:

cat	/monitoring_docker/chapter04/install-agent-centos.sh

cat	/monitoring_docker/chapter04/install-agent-ubuntu.sh

Now,	you	have	taken	a	look	at	the	scripts	its	time	to	run	them,	to	do	this	type	one	of	the
following	commands.	If	you	are	running	CentOS,	run	this	command:

bash	/monitoring_docker/chapter04/install-agent-centos.sh

For	Ubuntu,	run	the	following	command:

bash	/monitoring_docker/chapter04/install-agent-ubuntu.sh

To	verify	that	everything	ran	as	expected,	check	the	Zabbix	agent	log	file	by	running	the
following	command:

https://github.com/monitoringartist/Zabbix-Docker-Monitoring/
https://share.zabbix.com/virtualization/docker-containers-monitoring

cat	/var/log/zabbix/zabbix_agentd.log

You	should	see	that	the	end	of	the	file	confirms	that	the	agent	has	started	and	that	the
zabbix_module_docker.so	module	has	been	loaded:

Before	we	move	onto	the	Zabbix	web	interface,	let’s	launch	a	few	containers	using	the
docker-compose	file	from	Chapter	2,	Using	the	Built-in	Tools:

[vagrant@docker	~]$	cd	/monitoring_docker/chapter02/02-multiple/

[vagrant@docker	02-multiple]$	docker-compose	up	-d

[vagrant@docker	02-multiple]$	docker-compose	scale	web=3

[vagrant@docker	02-multiple]$	docker-compose	ps

We	should	now	have	three	web	server	containers	running	and	a	running	Zabbix	agent	on
the	host.

The	Zabbix	web	interface
Once	you	have	Zabbix	installed	you	can	open	the	Zabbix	web	interface	by	going	to
http://zabbix.media-glass.es/	in	your	browser,	this	link	will	only	work	when	you	have	the
Zabbix	vagrant	box	up	and	running,	if	you	don’t	have	it	running	the	page	will	time	out.
You	should	be	presented	with	a	login	screen.	Enter	the	default	username	and	password
here,	which	is	Admin	and	zabbix	(note	that	the	username	has	a	capital	A),	to	login.

Once	logged	in,	you	will	need	to	add	the	host	templates.	These	are	preconfigured
environment	settings	and	will	add	some	context	around	the	statistics	that	the	Zabbix	agent
is	sending	to	the	server,	along	with	the	auto-discovery	of	containers.

To	add	the	templates,	go	to	the	Configuration	tab	in	the	top	menu	and	select	Template;
this	will	bring	up	a	list	of	all	the	templates	that	are	currently	installed.	Click	on	the	Import
button	in	the	header	and	upload	a	copy	of	the	two	template	files	you	can	find	in	the
~/Documents/Projects/monitoring-docker/chapter04/template	folder	on	your	main
machine;	there	is	no	need	to	change	the	rules	when	uploading	the	templates.

Once	both	templates	have	been	successfully	imported,	it	is	time	to	add	our	Docker	host.
Again,	go	to	the	Configuration	tab,	but	this	time	select	Hosts.	Here,	you	need	to	click	on
Create	host.	Then,	enter	the	following	information	in	the	Host	tab:

http://zabbix.media-glass.es/

Here	are	the	details	of	the	preceding	information:

Host	name:	This	is	the	host	name	of	our	Docker	host
Visible	name:	Here,	the	name	server	will	appear	as	in	Zabbix
Groups:	Which	group	within	Zabbix	the	server	you	would	like	the	Docker	host	to	be
part	of
Agent	Interfaces:	This	is	the	IP	address	or	the	DNS	name	of	our	Docker	host
Enabled:	This	should	be	ticked

Before	clicking	on	Add,	you	should	click	on	the	Templates	tab	and	link	the	following	two
templates	to	the	host:

Template	App	Docker
Template	OS	Linux

Here	is	the	screenshot	of	the	host:

Once	you	have	added	the	two	templates,	click	on	Add	to	configure	and	enable	the	host.	To
verify	that	the	host	has	been	added	correctly,	you	should	go	to	the	Monitoring	tab	and
then	Latest	data.	From	here,	click	on	Show	filter	and	enter	the	host	machine	in	the	Hosts
box.	You	should	then	start	to	see	items	appearing:

Don’t	worry	if	you	don’t	see	the	Docker	section	immediately,	by	default,	Zabbix	will
attempt	to	auto-discover	new	containers	every	five	minutes.

Docker	metrics
For	each	container,	Zabbix	discovers	the	following	metrics	that	will	be	recorded:

Container	(your	Containers	name)	is	running
CPU	system	time
CPU	user	time
Used	cache	memory
Used	RSS	memory
Used	swap

Apart	from	“Used	swap”,	these	are	the	same	metrics	recorded	by	cAdvisor.

Create	custom	graphs
You	can	access	a	time-based	graph	for	any	of	the	metrics	collected	by	Zabbix;	you	can
also	create	your	own	custom	graphs.	In	the	following	graph,	I	have	created	a	graph	that
plots	all	the	CPU	System	stats	from	the	three	web	containers	we	launched	earlier	in	the
chapter:

As	you	can	see,	I	performed	a	few	tests	using	ApacheBench	to	make	the	graph	a	little
more	interesting.

For	more	information	on	how	to	create	custom	graphs,	see	the	graphs	section	of	the
documentation	site	at
https://www.zabbix.com/documentation/2.4/manual/config/visualisation/graphs.

https://www.zabbix.com/documentation/2.4/manual/config/visualisation/graphs

Compare	containers	to	your	host	machine
As	we	added	the	Linux	OS	template	and	the	Docker	template	to	the	host	and	we	are	also
recording	quite	a	lot	of	information	about	the	system,	here	we	can	tell	the	effect	the	testing
with	ApacheBench	had	on	the	overall	processor	load:

We	can	drill	down	further	to	get	information	on	the	overall	utilization:

Triggers
Another	feature	of	Zabbix	is	triggers:	you	can	define	actions	to	happen	when	a	metric
meets	a	certain	set	of	criteria.	In	the	following	example,	Zabbix	has	been	configured	with
a	trigger	called	Container	Down;	this	changes	the	status	of	the	monitored	item	to
Problem	with	a	severity	of	Disaster:

This	change	in	status	then	triggers	an	e-mail	to	inform	that,	for	some	reason	the	container
is	no	longer	up	and	running:

This	could	have	also	triggered	other	tasks,	such	as	running	a	custom	script,	sending	an
instant	message	via	Jabber,	or	even	triggering	a	third-party	service	such	as	PagerDuty
(https://www.pagerduty.com)	or	Slack	(https://slack.com).

https://www.pagerduty.com
https://slack.com

For	more	information	on	Triggers,	Events,	and	Notifications,	see	the	following	sections	of
the	documentation:

https://www.zabbix.com/documentation/2.4/manual/config/triggers
https://www.zabbix.com/documentation/2.4/manual/config/events
https://www.zabbix.com/documentation/2.4/manual/config/notifications

https://www.zabbix.com/documentation/2.4/manual/config/triggers
https://www.zabbix.com/documentation/2.4/manual/config/events
https://www.zabbix.com/documentation/2.4/manual/config/notifications

Summary
So,	how	does	this	traditional	approach	to	monitoring	fit	into	a	container’s	lifecycle?

Going	back	to	the	Pets	versus	Cattle	analogy,	at	first	glance,	Zabbix	seems	to	be	geared
more	towards	Pets:	its	feature	set	is	best	suited	to	monitoring	services	that	are	static	over	a
long	period	of	time.	This	means	that	the	same	approach	to	monitoring	a	pet	can	also	be
applied	to	long-running	processes	running	within	your	containers.

Zabbix	is	also	the	perfect	option	for	monitoring	mixed	environments.	Maybe	you	have
several	database	servers	that	are	not	running	as	containers,	but	you	have	several	hosts
running	Docker,	and	have	equipment	such	as	switches	and	SANs	that	you	need	to	monitor.
Zabbix	can	provide	you	with	a	single	pane	of	glass	showing	you	metrics	for	all	your
environments,	along	with	being	able	to	alert	you	to	problems.

So	far,	we	have	looked	at	using	APIs	and	metrics	provided	by	Docker	and	LXC,	but	what
about	other	metrics	can	we	use?	In	the	next	chapter,	we	will	look	at	a	tool	that	hooks
straight	into	the	host	machine’s	kernel	to	gather	information	on	your	containers.

Chapter	5.	Querying	with	Sysdig
The	previous	tools	we	have	looked	at	have	all	relied	on	making	API	calls	to	Docker	or
reading	metrics	from	LXC.	Sysdig	works	differently	by	hooking	itself	into	the	hosts
machine’s	kernel	while	this	approach	does	go	against	Docker’s	philosophy	of	each	service
being	run	in	its	own	isolated	container,	the	information	you	can	get	by	running	Sysdig
only	for	a	few	minutes	far	outweighs	any	arguments	about	not	using	it.

In	this	chapter,	we	will	look	at	the	following	topics:

How	to	install	Sysdig	and	Csysdig	on	the	host	machine
Basic	usage	and	how	to	query	your	containers	in	real	time
How	to	capture	logs	so	they	can	be	queried	later

What	is	Sysdig?
Before	we	start	to	get	into	Sysdig,	let’s	first	understand	what	it	is.	When	I	first	heard	about
the	tool,	I	thought	to	myself	that	it	sounded	too	good	to	be	true;	the	website	describes	the
tool	as	follows:

“Sysdig	is	open	source,	system-level	exploration:	capture	system	state	and	activity
from	a	running	Linux	instance,	then	save,	filter	and	analyze.	Sysdig	is	scriptable	in
Lua	and	includes	a	command	line	interface	and	a	powerful	interactive	UI,	csysdig,
that	runs	in	your	terminal.	Think	of	sysdig	as	strace	+	tcpdump	+	htop	+	iftop	+	lsof
+	awesome	sauce.	With	state	of	the	art	container	visibility	on	top.”

This	is	quite	a	claim	as	all	the	tools	that	it	is	claiming	to	be	as	powerful	were	all	in	a	set	of
goto	commands	to	run	when	looking	into	problems,	so	I	was	a	little	skeptical	at	first.

As	any	one	who	has	had	to	try	and	track	down	a	haywire	process	of	try	and	track	down	an
issue	that	isn’t	being	very	verbose	in	its	error	logs	on	a	Linux	server	will	know	that	using
tools	such	as	strace,	lsof,	and	tcpdump	can	get	complicated	very	quickly	and	it	normally
involves	capturing	a	whole	lot	of	data	and	then	using	a	combination	of	several	tools	to
slowly,	and	manually,	trace	the	problem	by	reducing	the	amount	of	data	you	captured.

Imagine	my	delight	when	Sysdig’s	claims	turned	out	to	be	true.	It	made	me	wish	I	had	the
tool	back	when	I	was	a	front	line	engineer;	it	would	have	made	my	life	a	lot	easier.

Sysdig	comes	in	two	different	flavors,	first	is	the	Open	Source	version	available	at
http://www.sysdig.org/;	this	comes	with	an	ncurses	interface	so	that	you	can	easily	access
and	query	data	from	a	terminal-based	GUI.

Note
Wikipedia	describes	ncurses	(new	curses)	as	a	programming	library	that	provides	an	API
that	allows	the	programmer	to	write	text-based	user	interfaces	in	a	terminal-independent
manner.	It	is	a	toolkit	for	developing	“GUI-like”	application	software	that	runs	under	a
terminal	emulator.	It	also	optimizes	screen	changes	in	order	to	reduce	the	latency
experienced	when	using	remote	shells.

There	is	also	a	commercial	service	that	allows	you	to	stream	your	Sysdig	to	their
externally	hosted	service;	this	version	has	a	web-based	interface	for	viewing	and	querying
your	data.

In	this	chapter,	we	will	be	concentrating	on	the	open	source	version.

http://www.sysdig.org/

Installing	Sysdig
Considering	how	powerful	Sysdig	is,	it	has	one	of	the	most	straightforward	installation
and	configuration	processes	I	have	come	across.	To	install	Sysdig	on	either	a	CentOS	or
Ubuntu	server,	type	the	following	command:

curl	-s	https://s3.amazonaws.com/download.draios.com/stable/install-sysdig	

|	sudo	bash

After	running	the	preceding	command,	you	will	get	the	following	output:

That’s	it,	you	are	ready	to	go.	There	is	nothing	more	to	configure	or	do.	There	is	a	manual
installation	process	and	also	a	way	of	installing	the	tool	using	containers	to	build	the
necessary	kernel	modules;	for	more	details,	see	the	installation	guide	as	follows:

http://www.sysdig.org/wiki/how-to-install-sysdig-for-linux/

http://www.sysdig.org/wiki/how-to-install-sysdig-for-linux/

Using	Sysdig
Before	we	look	at	how	to	use	Sysdig,	let’s	launch	a	few	containers	using	docker-compose
by	running	the	following	command:

cd	/monitoring_docker/chapter05/wordpress/

docker-compose	up	–d

This	will	launch	a	WordPress	installation	running	a	database	and	two	web	server
containers	that	are	load	balanced	using	an	HAProxy	container.	You	will	be	able	to	view
the	WordPress	installation	at	http://docker.media-glass.es/	once	the	containers	have
launched.	You	will	need	to	enter	some	details	to	create	the	admin	user	before	the	site	is
visible;	follow	the	on-screen	prompts	to	complete	these	steps.

http://docker.media-glass.es/

The	basics
At	its	core,	Sysdig	is	a	tool	for	producing	a	stream	of	data;	you	can	view	the	stream	by
typing	sudo	sysdig	(to	quit,	press	Ctrl+c).

There	is	a	lot	information	there	so	let’s	start	to	filter	the	stream	down	and	run	the
following	command:

sudosysdigevt.type=chdir

This	will	display	only	events	in	which	a	user	changes	directory;	to	see	it	in	action,	open	a
second	terminal	and	you	will	see	that	when	you	log	in,	you	see	some	activity	in	the	first
terminal.	As	you	can	see,	it	looks	a	lot	like	a	traditional	log	file;	we	can	format	output	to
give	information	such	as	the	username,	by	running	the	following	command:

sudosysdig	-p"user:%user.name	dir:%evt.arg.path"	evt.type=chdir

Then,	in	your	second	terminal,	change	the	directory	a	few	times:

As	you	can	see,	this	is	a	lot	easier	to	read	than	the	original	unformatted	output.	Press	Ctrl
+	c	to	stop	filtering.

Capturing	data
In	the	previous	section,	we	looked	at	filtering	data	in	real	time;	it	is	also	possible	to	stream
Sysdig	data	to	a	file	so	that	you	can	query	the	data	at	a	later	time.	Exit	from	your	second
terminal	and	run	the	following	command	on	your	first	one:

sudosysdig	-w	~/monitoring-docker.scap

While	the	command	is	running	on	the	first	terminal,	log	in	to	the	host	on	the	second	one
and	change	the	directory	a	few	times.	Also,	while	we	are	recording,	click	around	the
WordPress	site	we	started	at	the	beginning	of	this	section,	the	URL	is
http://docker.media-glass.es/.	Once	you	have	done	that,	stop	the	recording	by
pressing	Crtl	+	c;	you	should	have	now	dropped	back	to	a	prompt.	You	can	check	the	size
of	the	file	created	by	Sysdig	by	running	the	following:

ls	-lha	~/monitoring-docker.scap

Now,	we	can	use	the	data	that	we	have	captured	to	apply	the	same	filter	as	we	did	when
looking	at	the	real-time	stream:

sudosysdig	-r	~/monitoring-docker.scap	-p"user:%user.name	

dir:%evt.arg.path"	evt.type=chdir

By	running	the	preceding	command,	you	will	get	the	following	output:

Notice	how	we	get	similar	results	to	when	we	were	viewing	the	data	in	real	time.

Containers
One	of	the	things	that	was	recorded	in	~/monitoring-docker.scap	was	details	on	the
system	state;	this	includes	information	on	the	containers	we	launched	at	the	start	of	the
chapter.	Let’s	use	this	file	to	get	some	stats	on	the	containers.	To	list	the	containers	that
were	active	during	the	time,	we	captured	the	data	file	run:

sudo	sysdig	-r	~/monitoring-docker.scap	-c	lscontainers

To	see	which	of	the	containers	utilized	the	CPU	most	of	the	time,	we	were	clicking	around
the	WordPress	site	run:

sudo	sysdig	-r	~/monitoring-docker.scap	-c	topcontainers_cpu

To	have	a	look	at	the	top	processes	in	each	of	the	containers	that	have	“wordpress”	in	their
names	(which	is	all	of	them	in	our	case),	run	the	following	command:

sudo	sysdig	-r	~/monitoring-docker.scap	-c	topprocs_cpu	container.name	

contains	wordpress

Finally,	which	of	our	containers	transferred	the	most	amount	of	data?:

sudosysdig	-r	~/monitoring-docker.scap	-c	topcontainers_net

By	running	the	preceding	command,	you	will	get	the	following	output:

As	you	can	see,	we	have	extracted	quite	a	bit	of	information	on	our	containers	from	the
data	we	captured.	Also,	using	the	file,	you	can	remove	the	-r	~/monitoring-
docker.scap	part	of	the	command	to	view	the	container	metrics	in	real	time.

It’s	also	worth	pointing	out	that	there	are	binaries	for	Sysdig	that	work	on	both	OS	X	and
Windows;	while	these	do	not	capture	any	data,	they	can	be	used	to	read	data	that	you	have
recorded	on	your	Linux	host.

Further	reading
From	the	few	basic	exercises	covered	in	this	section,	you	should	start	to	get	an	idea	of	just
how	powerful	Sysdig	can	be.	There	are	more	examples	on	the	Sysdig	website	at
http://www.sysdig.org/wiki/sysdig-examples/.	Also,	I	recommend	you	to	read	the	blog
post	at	https://sysdig.com/fishing-for-hackers/;	it	was	my	first	exposure	to	Sysdig	and	it
really	demonstrates	its	usefulness.

http://www.sysdig.org/wiki/sysdig-examples/
https://sysdig.com/fishing-for-hackers/

Using	Csysdig
As	easy	as	it	is	to	view	data	captured	by	Sysdig	using	the	command	line	and	manually
filtering	the	results,	it	can	get	more	complicated	as	you	start	to	string	more	and	more
commands	together.	To	help	make	the	data	captured	by	Sysdig	as	accessible	as	possible,
Sysdig	ships	with	a	GUI	called	Csysdig.

Launching	the	Csysdig	is	done	with	a	single	command:

sudo	csysdig

Once	the	process	has	launched,	it	should	instantly	look	familiar	to	anyone	who	has	used
top	or	cAdvisor	(minus	the	graphs);	its	default	view	will	show	you	real-time	information
on	the	processes	that	are	running:

To	change	this	view,	known	as	the	Processes	view,	press	F2	to	open	the	Views	menu;
from	here,	you	can	use	the	up	and	down	arrows	on	your	keyboard	to	select	a	view.	As	you
may	have	already	guessed,	we	would	like	to	see	the	Containers	view:

However,	before	we	drill	down	into	our	containers,	let’s	quit	Csysdig	by	pressing	q	and
load	up	the	file	we	created	in	the	previous	section.	To	do	this,	type	the	following
command:

sudo	csysdig	-r	~/monitoring-docker.scap

Once	Csysdig	loads,	you	will	notice	that	Source	has	changed	from	Live	System	to	the	file
path	of	our	data	file.	From	here,	press	F2	and	use	the	up	arrow	to	select	containers	and
then	hit	Enter.	From	here,	you	can	use	the	up	and	down	arrows	to	select	one	of	the	two
web	servers,	these	would	be	either	wordpress_wordpress1_1	or
wordpress_wordpress2_1	as	shown	in	the	following	screen:

Note
The	remaining	part	of	this	chapter	assumes	that	you	have	Csysdig	open	in-front	of	you,	it
will	talk	you	through	how	to	navigate	around	the	tool.	Please	feel	free	to	explore	yourself
as	well.

Once	you	have	selected	a	server,	hit	Enter	and	you	will	be	presented	with	a	list	of
processes	that	the	container	was	running.	Again,	you	can	use	the	arrow	keys	to	select	a
process	to	drill	down	further	into.

I	suggested	looking	at	one	of	the	Apache	processes	that	has	a	value	listed	in	the	File
column.	This	time,	rather	than	pressing	Enter	to	select	the	process,	let’s	“Echo”	what	the
process	was	up	to	at	the	time	we	captured	the	data;	with	the	process	selected,	press	F5.

You	can	use	the	up	and	down	arrows	to	scroll	through	the	output:

To	better	format	the	data,	press	F2	and	select	Printable	ASCII.	As	you	can	see	from	the
preceding	screenshot,	this	Apache	process	performed	the	following	tasks:

Accepted	an	incoming	connection
Accessed	the	.htaccess	file
Read	the	mod_rewrite	rules
Got	information	from	the	hosts	file
Made	a	connection	to	the	MySQL	container
Sent	the	MySQL	password

By	scrolling	through	the	remainder	of	the	data	in	the	“Echo”	results	for	the	process,	you
should	be	able	to	easily	follow	the	interactions	with	the	database	all	the	way	through	to	the
page	being	sent	to	the	browser.

To	leave	the	“Echo”	screen,	press	Backspace;	this	will	always	take	you	a	level	back.

If	you	want	a	more	detailed	breakdown	on	what	the	process	was	doing,	then	press	F6	to
enter	the	Dig	view;	this	will	list	the	files	that	the	process	was	accessing	at	the	time,	along
with	the	network	interaction	and	how	it	is	accessing	the	RAM.

To	view	a	full	list	of	commands	and	for	more	help,	you	can	press	F1	at	anytime.	Also,	to
get	a	breakdown	on	any	columns	that	are	on	screen,	press	F7.

Summary
As	I	mentioned	at	the	start	of	this	chapter,	Sysdig	is	probably	one	of	the	most	powerful
tools	I	have	come	across	in	recent	years.

Part	of	its	power	is	the	way	that	it	exposes	a	lot	of	information	and	metrics	in	a	way	that
never	feels	overwhelming.	It’s	clear	that	the	developers	have	spent	a	lot	of	time	ensuring
that	both	the	UI	and	the	way	that	commands	are	structured	feel	natural	and	instantly
understandable,	even	by	the	newest	member	of	an	operations	team.

The	only	downside	is	that,	unless	you	want	to	view	the	information	in	real	time	or	look
into	a	problem	in	development	storing	the	amount	of	data	that	is	being	generated	by
Sysdig,	it	can	be	quite	costly	in	terms	of	disc	space	being	used.

This	is	something	that	Sysdig	has	recognized,	and	to	help	with	this,	the	company	offers	a
cloud-based	commercial	service	called	Sysdig	Cloud	for	you	to	stream	your	Sysdig	data
into.	In	the	next	chapter,	we	will	look	at	this	service	and	also	some	of	its	competitors.

Chapter	6.	Exploring	Third	Party	Options
So	far,	we	have	been	looking	at	the	tools	and	services	you	host	yourself.	Along	with	these
self-hosted	tools,	a	large	amount	of	cloud-based	software	has	developed	around	Docker	as
a	service	ecosystem.	In	this	chapter,	we	will	look	at	the	following	topics:

Why	use	a	SaaS	service	over	self-hosted	or	real-time	metrics?
What	services	are	available	and	what	do	they	offer?
Installation	of	agents	for	Sysdig	Cloud,	Datadog,	and	New	Relic	on	the	host
machines
Configuration	of	the	agents	to	ship	metrics

A	word	about	externally	hosted	services
So	far,	to	work	through	the	examples	in	this	book,	we	have	used	locally	hosted	virtual
servers	that	are	launched	using	vagrant.	During	this	chapter,	we	are	going	to	use	services
that	need	to	be	able	to	communicate	with	your	host	machine,	so	rather	than	trying	to	do
this	using	your	local	machine,	its	about	time	you	took	your	host	machine	into	the	cloud.

As	we	are	going	to	start	and	stop	the	remote	hosts	while	we	look	at	the	services,	it	pays	to
use	a	public	cloud,	as	we	only	get	charged	for	what	we	use.

There	are	several	public	cloud	services	that	you	can	use	to	evaluate	the	tools	covered	in
this	chapter,	which	one	you	choose	to	use	is	up	to	you,	you	could	use:

Digital	Ocean:	https://www.digitalocean.com/
Amazon	Web	Services:	https://aws.amazon.com/
Microsoft	Azure:	https://azure.microsoft.com/
VMware	vCloud	Air:	http://vcloud.vmware.com/

Or	use	your	own	preferred	provider,	the	only	pre-requisite	is	that	your	server	is	publically
accessible.

This	chapter	assumes	that	you	are	capable	of	launching	either	a	CentOS	7	or	Ubuntu	14.04
cloud	instance	and	you	understand	that	you	will	likely	incur	charges	while	the	cloud
instance	is	up	and	running.

https://www.digitalocean.com/
https://aws.amazon.com/
https://azure.microsoft.com/
http://vcloud.vmware.com/

Deploying	Docker	in	the	cloud
Once	you	have	launched	your	cloud	instance,	you	can	bootstrap	Docker	in	the	same	way
that	you	installed	using	vagrant.	In	the	chapter	6	folder	of	the	Git	repository,	there	are
two	separate	scripts	to	download	and	install	the	Docker	engine	and	compose	it	on	your
cloud	instance.

To	install	Docker,	ensure	that	your	cloud	instance	is	updated	by	running:

sudo	yum	update

For	the	CentOS	instance	of	your	Ubuntu,	run	the	following	command:

sudo	apt-get	update

Once	updated,	run	the	following	command	to	install	the	software.	Due	to	the	differences
in	the	way	different	cloud	environments	are	configured,	it	is	best	to	switch	over	to	the	root
user	to	run	the	remainder	of	the	commands,	to	do	this,	run:

sudo	su	-

Now	you	will	be	able	to	run	the	install	script	using	the	following	command:

curl	-fsS	https://raw.githubusercontent.com/russmckendrick/monitoring-

docker/master/chapter06/install_docker/install_docker.sh	|	bash

To	check	that	everything	works	as	expected,	run	the	following	command:

docker	run	hello-world

You	should	see	something	similar	to	the	terminal	output,	as	shown	in	the	following
screenshot:

We	can	start	to	look	at	the	SasS	services	once	you	have	Docker	up	and	running.

Why	use	a	SaaS	service?
You	may	have	noticed	while	working	with	the	examples	in	the	previous	chapters	that	the
tools	we	have	used	can	potentially	use	many	resources	if	we	needed	to	start	collecting
more	metrics,	especially	if	the	applications	we	want	to	monitor	are	in	production.

To	help	shift	this	load	from	both	storage	and	CPU,	a	number	of	cloud-based	SaaS	options
have	started	offering	support	to	record	metrics	for	your	containers.	Many	of	these	services
were	already	offering	services	to	monitor	servers,	so	adding	support	for	containers	seemed
a	natural	progression	for	them.

These	typically	require	you	to	install	an	agent	on	your	host	machine,	once	installed,	the
agent	will	sit	in	the	background	and	report	to	the	services,	normally	cloud-based	and	API
services.

A	few	of	the	services	allow	you	to	deploy	the	agents	as	Docker	containers.	They	offer
containerized	agents	so	that	the	service	can	run	on	stripped	down	operating	systems,	such
as:

CoreOS:	https://coreos.com/
RancherOS:	http://rancher.com/rancher-os/
Atomic:	http://www.projectatomic.io/
Ubuntu	Snappy	Core:	https://developer.ubuntu.com/en/snappy/

These	operating	systems	differ	from	traditional	ones,	as	you	cannot	install	services	on
them	directly;	their	only	purpose	is	to	run	a	service,	such	as	Docker,	so	that	you	can
launch	the	services	or	applications	you	need	to	be	run	as	containers.

As	we	are	running	full	operating	systems	as	our	host	systems,	we	do	not	need	this	option
and	will	be	deploying	the	agents	directly	to	the	hosts.

The	SaaS	options	that	we	are	going	to	look	at	in	this	chapter	are	as	follows:

Sysdig	Cloud:	https://sysdig.com/product/
Datadog:	https://www.datadoghq.com/
New	Relic:	http://newrelic.com

They	all	offer	free	trials	and	two	of	them	offer	free	cut-down	versions	of	the	main	service.
On	the	face	of	it,	they	might	all	appear	to	offer	similar	services;	however,	when	you	start
to	use	them,	you	will	immediately	notice	that	they	are	in	fact	all	very	different	from	each
other.

https://coreos.com/
http://rancher.com/rancher-os/
http://www.projectatomic.io/
https://developer.ubuntu.com/en/snappy/
https://sysdig.com/product/
https://www.datadoghq.com/
http://newrelic.com

Sysdig	Cloud
In	the	previous	chapter,	we	had	a	look	at	the	open	source	version	of	Sysdig.	We	saw	that
there	is	a	great	ncurses	interface	called	cSysdig	and	it	allows	us	to	navigate	through	all	the
data	that	Sysdig	is	collecting	about	our	host.

The	sheer	amount	of	metrics	and	data	collected	by	Sysdig	means	that	you	have	to	try	to
stay	on	top	of	it	either	by	shipping	your	files	off	the	server,	maybe	to	Amazon	Simple
Storage	Service	(S3),	or	to	some	local	shared	storage.	In	addition,	you	can	query	the	data
in	the	command	line	on	the	host	itself	or	on	your	local	machine	using	an	installation	of	the
command-line	tools.

This	is	where	Sysdig	Cloud	comes	into	play;	it	offers	a	web-based	interface	to	the	metrics
that	Sysdig	captures	along	with	the	options	to	ship	the	Sysdig	captures	off	your	host
machine	either	to	Sysdig’s	own	storage	or	to	your	S3	bucket.

Sysdig	cloud	offers	the	following	functionality:

ContainerVision™
Real-Time	Dashboard
Historical	Replay
Dynamic	Topology
Alerting

As	well	as,	the	option	to	trigger	a	capture	on	any	of	your	hosts	and	at	any	time.

Sysdig	describes	ContainerVision	as:

“Sysdig	Cloud’s	patent-pending	core	technology,	ContainerVision,	is	the	only
monitoring	technology	on	the	market	designed	specifically	to	respect	the	unique
characteristics	of	containers.	ContainerVision	offers	you	deep	and	comprehensive
visibility	into	all	aspects	of	your	containerized	environment	-	applications,
infrastructures,	servers,	and	networks	-	all	without	the	need	to	pollute	your
containers	with	any	extra	instrumentation.	In	other	words,	ContainerVision	gives	you
100%	visibility	into	the	activity	inside	your	containers,	from	the	outside.”

Before	we	delve	into	Sysdig	Cloud	any	further,	I	should	point	out	that	this	is	a	commercial
server	and	at	the	time	of	writing,	it	costs	$25	per	host	per	month.	There	is	also	a	14-day
fully	featured	trial	available.	If	you	wish	to	work	through	the	agent	installation	and	follow
the	example	in	this	chapter,	you	will	need	an	active	account	that	runs	either	on	the	14-day
trial	or	a	paid	subscription.

Sign	up	for	a	14-day	free	trial:	https://sysdig.com/
Details	on	pricing:	https://sysdig.com/pricing/
Introduction	to	the	company:	https://sysdig.com/company/

https://sysdig.com/
https://sysdig.com/pricing/
https://sysdig.com/company/

Installing	the	agent
The	agent	installation	is	similar	to	installing	the	open	source	version;	you	need	to	ensure
that	your	cloud	host	is	running	an	up-to-date	kernel	and	that	you	are	also	booted	into	the
kernel.

Some	cloud	providers	keep	a	tight	control	on	the	kernels	you	can	boot	into	(for	example,
Digital	Ocean),	and	they	do	not	allow	you	to	manage	your	kernel	on	the	host	itself.
Instead,	you	need	to	choose	the	correct	version	through	their	control	panel.

Once	you	have	the	correct	kernel	installed,	you	should	be	able	to	run	the	following
command	to	install	the	agent.	Ensure	that	you	replace	the	access	key	at	the	end	of	the
command	with	your	own	access	key,	which	can	be	found	on	your	User	Profile	page	or	on
the	agent	installation	pages;	you	can	find	these	at:

User	Profile:	https://app.sysdigcloud.com/#/settings/user
Agent	Installation:	https://app.sysdigcloud.com/#/settings/agentInstallation

The	command	to	run	is:

curl	-s	https://s3.amazonaws.com/download.draios.com/stable/install-agent	|	

sudo	bash	-s—--access_key	wn5AYlhjRhgn3shcjW14y3yOT09WsF7d

The	shell	output	should	look	like	the	following	screen:

Once	the	agent	has	been	installed,	it	will	immediately	start	to	report	the	data	back	to
Sysdig	Cloud.	If	you	click	on	Explore,	you	will	see	your	host	machine	and	the	running

https://app.sysdigcloud.com/#/settings/user
https://app.sysdigcloud.com/#/settings/agentInstallation

containers:

As	you	can	see	here,	I	have	my	host	machine	and	four	containers	running	a	WordPress
installation	similar	to	the	one	we	used	in	the	previous	chapter.	From	here,	we	can	start	to
drill	down	into	our	metrics.

To	launch	the	WordPress	installation	on	your	cloud-based	machine,	run	the	following
commands	as	the	root	user:

sudo	su	-

mkdir	~/wordpress

curl	-L	https://raw.githubusercontent.com/russmckendrick/monitoring-

docker/master/chapter05/wordpress/docker-compose.yml	>	~/wordpress/docker-

compose.yml

cd	~/wordpress

docker-compose	up	-d

Exploring	your	containers
The	Sysdig	Cloud	web	interface	will	feel	instantly	familiar,	as	it	shares	a	similar	design
and	overall	feeling	with	cSysdig:

Once	you	start	to	drill	down,	you	can	see	that	a	bottom	pane	opens	up	and	this	is	where
you	can	view	the	statistics.	One	of	the	things	I	liked	about	Sysdig	Cloud	is	that	it	opens	up
a	wealth	of	metrics	and	there	should	be	very	little	that	you	need	to	configure	from	here.

For	example,	if	you	want	to	know	what	processes	have	been	consuming	the	most	CPU
time	in	the	last	2	hours,	click	on	2H	in	the	secondary	menu	and	then	from	the	Views	tab	in
the	bottom-left	click	on	System:	Top	Processes;	this	will	give	you	a	table	of	the
processes,	ordered	by	the	ones	that	have	used	the	most	time.

To	apply	this	view	to	a	container,	click	on	a	container	in	the	top-section	and	the	bottom-
section	will	be	instantly	updated	to	reflect	the	top	CPU	utilization	for	just	that	container;
as	most	containers	will	only	run	one	or	two	processes,	this	may	not	be	that	interesting.	So,
let’s	have	a	deep	look	at	the	processes	themselves.	Let’s	say,	we	clicked	on	our	database

container	and	we	wanted	information	on	what	is	happening	within	MySQL.

Sysdig	Cloud	comes	with	application	overlays,	these	when	selected	give	you	more
granular	information	on	the	processes	within	the	container.	Selecting	the	App:
MySQL/PostgreSQL	view	gives	you	an	insight	into	what	your	MySQL	processes	are
currently	doing:

Here,	you	can	see	that	view	in	the	bottom	section	has	instantly	updated	to	give	a	wealth	of
information	on	what	has	been	happening	in	the	last	5	minutes	within	MySQL.

Sysdig	Cloud	supports	a	number	of	application	views,	including:

Apache
HAProxy

NGINX
RabbitMQ
Redis
Tomcat

Each	one	gives	you	immediate	access	to	metrics,	which	even	the	most	experienced
SysAdmins	will	find	valuable.

You	may	have	noticed	that	at	the	top	of	the	second	panel	there	are	also	a	few	icons,	these
allow	you	to:

Add	Alert:	Creates	an	alert	based	on	the	view	you	have	open;	it	lets	you	tweak	the
threshold	and	also	choose	how	you	are	notified.
Sysdig	Capture:	Pressing	this	brings	up	a	dialog,	which	lets	you	record	a	Sysdig
session.	Once	recorded,	the	session	is	transferred	to	Sysdig	Cloud	or	your	own	S3
bucket.	Once	the	session	is	available,	you	download	it	or	explore	it	within	the	web
interface.
SSH	Connect:	Gets	a	remote	shell	on	the	server	from	the	Sysdig	Cloud	web
interface;	it	is	useful	if	you	do	not	have	immediate	access	to	your	laptop	or	desktop
machine	and	you	want	to	do	some	troubleshooting.
Pin	to	dashboard:	Adds	the	current	view	to	a	custom	dashboard.

Out	these	options	icons,	the	“Add	Alert”	and	“Sysdig	Capture”	options	are	probably	the
ones	that	you	will	end	up	using	the	most.	One	final	view	that	I	found	interesting,	is	the
topology	one.	It	gives	you	a	bird’s	eye	view	of	your	host	and	containers,	this	is	useful	too
see	the	interaction	between	containers	and	hosts:

Here,	you	can	see	me	request	a	page	from	the	WordPress	site	(it’s	in	the	box	on	the	left),
this	request	hits	my	host	machine	(the	box	on	the	right).	Once	it’s	on	the	host	machine,	it
is	routed	to	the	HAProxy	container,	which	then	passes	the	page	request	to	the	Wordpress2
container.	From	here,	the	Wordpress2	container	interacts	with	the	database	that	is	running
on	the	MySQL	container.

Summary	and	further	reading
Although	Sysdig	Cloud	is	quite	a	new	service,	it	feels	instantly	familiar	and	fully	featured
as	it	is	built	on	top	of	an	already	established	and	respected	open	source	technology.	If	you
like,	the	level	of	detail	you	get	from	the	open	source	version	of	Sysdig,	then	Sysdig	Cloud
is	a	natural	progression	for	you	to	start	storing	your	metrics	offsite	and	also	to	configure
alerts.	Some	good	starting	points	for	learning	more	about	Sysdig	Cloud	are:

Video	Introduction:	https://www.youtube.com/watch?v=p8UVbpw8n24
Sysdig	Cloud	Best	Practices:	http://support.sysdigcloud.com/hc/en-
us/articles/204872795-Best-Practices
Dashboards:	http://support.sysdigcloud.com/hc/en-us/articles/204863385-Dashboards
Sysdig	blog:	https://sysdig.com/blog/

Tip
If	you	have	launched	a	cloud	instance	and	are	no	longer	using	it,	now	would	be	a	good
time	to	power	the	instance	down	or	terminate	it	altogether.	This	will	ensure	that	you	do	not
get	billed	for	services	that	you	are	not	using.

https://www.youtube.com/watch?v=p8UVbpw8n24
http://support.sysdigcloud.com/hc/en-us/articles/204872795-Best-Practices
http://support.sysdigcloud.com/hc/en-us/articles/204863385-Dashboards
https://sysdig.com/blog/

Datadog
Datadog	is	a	full	monitoring	platform;	it	supports	various	servers,	platforms,	and
applications.	Wikipedia	describes	the	service	as:

“Datadog	is	a	SaaS-based	monitoring	and	analytics	platform	for	IT	infrastructure,
operations	and	development	teams.	It	brings	together	data	from	servers,	databases,
applications,	tools	and	services	to	present	a	unified	view	of	the	applications	that	run
at	scale	in	the	cloud.”

It	uses	an	agent	that	is	installed	on	your	host	machine;	this	agent	sends	metrics	back	to	the
Datadog	service	periodically.	It	also	support	multiple	cloud	platforms,	such	as	Amazon
Web	Services,	Microsoft	Azure,	and	OpenStack	to	name	a	few.

The	aim	is	to	bring	all	of	your	servers,	applications,	and	host	provider	metrics	into	a	single
pane	of	glass;	from	here,	you	can	create	custom	dashboards	and	alerts	so	that	you	can	be
notified	of	any	problem	at	any	level	within	your	infrastructure.

You	can	sign	up	for	a	free	trial	of	the	full	service	at	https://app.datadoghq.com/signup.
You	will	need	at	least	a	trial	account	to	configure	the	altering,	and	if	your	trial	has	already
expired	the	lite	account	will	do.	For	more	detail	on	Datadog’s	pricing	structure,	please	see
https://www.datadoghq.com/pricing/.

https://app.datadoghq.com/signup
https://www.datadoghq.com/pricing/

Installing	the	agent
The	agent	can	be	installed	either	directly	on	the	host	machine	or	as	a	container.	To	install
directly	on	the	host	machine,	run	the	following	command	and	make	sure	that	you	use	your
own	unique	DD_API_KEY:

DD_API_KEY=wn5AYlhjRhgn3shcjW14y3yOT09WsF7d	bash	-c	"$(curl	-L	

https://raw.githubusercontent.com/DataDog/dd-

agent/master/packaging/datadog-agent/source/install_agent.sh)"

To	run	the	agent	as	a	container,	use	the	following	command	and	again	make	sure	that	you
use	your	own	DD_API_KEY:

sudo	docker	run	-d	--name	dd-agent	-h	`hostname`	-v	

/var/run/docker.sock:/var/run/docker.sock	-v	

/proc/mounts:/host/proc/mounts:ro	-v	/sys/fs/cgroup/:/host/sys/fs/cgroup:ro	

-e	API_KEY=wn5AYlhjRhgn3shcjW14y3yOT09WsF7d	datadog/docker-dd-agent

Once	the	agent	has	been	installed,	it	will	call	back	to	Datadog	and	the	host	will	appear	in
your	account.

If	the	agent	has	been	installed	directly	on	the	host	machine	then	we	will	need	to	enable	the
Docker	integration,	if	you	installed	the	agent	using	the	container	then	this	will	have	been
done	for	you	automatically.

To	do	this,	you	first	need	to	allow	the	Datadog	agent	access	to	your	Docker	installation	by
adding	the	dd-agent	user	to	the	Docker	group	by	running	the	following	command:

usermod	-a	-G	docker	dd-agent

The	next	step	is	to	create	the	docker.yaml	configuration	file,	luckily	the	Datadog	agent
ships	with	an	example	configuration	file	that	we	can	use;	copy	this	in	place	and	then
restart	the	agent:

cp	-pr	/etc/dd-agent/conf.d/docker.yaml.example	/etc/dd-

agent/conf.d/docker.yaml

sudo	/etc/init.d/datadog-agent	restart

Now	the	agent	on	our	host	machine	has	been	configured	and	the	final	step	is	to	enable	the
integration	through	the	website.	To	do	this,	go	to	https://app.datadoghq.com/	and	click	on
Integrations,	scroll	down	and	then	click	on	install	on	Docker:

https://app.datadoghq.com/

Once	you	click	install,	you	will	be	presented	with	an	overview	of	the	integration,	click	on
the	Configuration	tab,	this	gives	instructions	on	how	to	configure	the	agent;	as	we	have
already	done	this	step,	you	can	click	on	Install	Integration.

You	can	find	more	information	on	installing	the	agent	and	the	integrations	at	the	following
URLs:

https://app.datadoghq.com/account/settings#agent
https://app.datadoghq.com/account/settings#integrations

https://app.datadoghq.com/account/settings#agent
https://app.datadoghq.com/account/settings#integrations

Exploring	the	web	interface
Now,	you	have	installed	the	agent	and	enabled	the	Docker	integration,	you	can	start	to
have	a	look	around	the	web	interface.	To	find	your	host,	click	on	“Infrastructure”	in	the
left-hand	side	menu.

You	should	be	taken	to	a	screen	that	contains	a	map	of	your	infrastructure.	Like	me,	you
probably	only	have	a	single	host	machine	listed,	click	on	it	and	some	basic	stats	should
appear	at	the	bottom	of	the	screen:

If	you	don’t	already	have	the	containers	launched,	now	would	be	a	good	time	to	do	so,	lets
launch	the	WordPress	installation	again	using:

sudo	su	-

mkdir	~/wordpress

curl	-L	https://raw.githubusercontent.com/russmckendrick/monitoring-

docker/master/chapter05/wordpress/docker-compose.yml	>	~/wordpress/docker-

compose.yml

cd	~/wordpress

docker-compose	up	-d

Now,	go	back	to	the	web	interface,	from	there	you	can	click	on	any	of	the	services	listed
on	the	hexagon.	This	will	bring	up	some	basic	metrics	for	the	service	you	have	selected.	If
you	click	on	docker,	you	will	see	a	link	for	a	Docker	Dashboard	among	the	various
graphs	and	so	on;	clicking	this	will	take	you	to	a	more	detailed	view	of	your	containers:

As	you	can	see,	this	gives	us	our	now	familiar	break	down	of	the	CPU	and	memory
metrics,	along	with	in	the	top	right	of	the	dashboard	a	breakdown	of	the	container	activity
on	the	host	machine;	this	logs	events,	such	as	stopping	and	starting	containers.

Datadog	currently	records	the	following	metrics:

docker.containers.running

docker.containers.stopped

docker.cpu.system

docker.cpu.user

docker.images.available

docker.images.intermediate

docker.mem.cache

docker.mem.rss

docker.mem.swap

From	the	Metrics	explorer	option	in	the	left-hand	side	menu,	you	can	start	to	graph	these
metrics	and	once	you	have	the	graphs,	you	can	then	start	to	add	them	to	your	own	custom
dashboards	or	even	annotate	them.	When	you	annotate	a	graph,	a	snapshot	is	created	and
the	graph	shows	up	in	the	events	queue	along	with	the	other	events,	that	have	been
recorded,	such	as	container	stopping	and	starting:

Also,	within	the	web	interface	you	can	configure	monitors;	these	allow	you	to	define
triggers,	which	alert	you	if	your	conditions	are	not	met.	Alerts	can	be	sent	as	e-mails	or	via
third	party	services,	such	as	Slack,	Campfire,	or	PagerDuty.

Summary	and	further	reading
While	Datadog’s	Docker	integration	only	gives	you	the	basic	metrics	on	your	containers,
it	does	have	a	wealth	of	features	and	integration	with	other	applications	and	third	parties.
If	you	need	to	monitor	a	number	of	different	services	alongside	your	Docker	containers,
then	this	service	could	be	for	you:

Home	page:	https://www.datadoghq.com
Overview:	https://www.datadoghq.com/product/
Monitoring	Docker	with	Datadog:	https://www.datadoghq.com/blog/monitor-docker-
datadog/
Twitter:	https://twitter.com/datadoghq

Tip
Please	Remember

If	you	have	launched	a	cloud	instance	and	are	no	longer	using	it	then	now	would	be	a
good	time	to	power	the	instance	down	or	terminate	it	altogether.	This	will	ensure	that	you
do	not	get	billed	for	any	services	you	are	not	using.

https://www.datadoghq.com
https://www.datadoghq.com/product/
https://www.datadoghq.com/blog/monitor-docker-datadog/
https://twitter.com/datadoghq

New	Relic
New	Relic	could	be	considered	the	granddaddy	of	SaaS	monitoring	tools,	chances	are	that
if	you	are	a	developer	you	will	have	heard	of	New	Relic.	It	has	been	around	for	a	while
and	it	is	the	standard	to	which	other	SaaS	tools	compare	themselves.

New	Relic	has	grown	into	several	products	over	the	year,	currently,	they	offer:

New	Relic	APM:	The	main	application	performance-monitoring	tool.	This	is	what
most	people	will	know	New	Relic	for;	this	toll	gives	you	the	code	level	visibility	of
your	application.
New	Relic	Mobile:	A	set	of	libraries	to	embed	into	your	native	mobile	apps,	giving
APM	levels	of	detail	for	your	iOS	and	android	application.
New	Relic	Insights:	A	high-level	view	of	all	of	the	metrics	collected	by	other	New
Relic	services.
New	Relic	Servers:	Monitors	your	host	servers,	recording	metrics	around	CPU,
RAM,	and	storage	utilization.
New	Relic	Browser:	Gives	you	an	insight	into	what	happens	with	your	web-based
applications	once	they	leave	your	servers	and	enter	your	end	user’s	browser
New	Relic	Synthetics:	Monitors	your	applications	responsiveness	from	various
locations	around	the	world.

Rather	than	looking	at	all	of	these	offerings	that	give	us	an	insight	into	what	is	happening
with	our	Docker-based	code,	as	that’s	probably	a	whole	book	on	its	own,	we	are	going	to
take	a	look	at	the	server	product.

The	server	monitoring	service	offered	by	New	Relic	is	available	free	of	charge,	you	just
need	an	active	New	Relic	account,	you	can	sign	up	for	an	account	at
https://newrelic.com/signup/	details	on	New	Relics	pricing	can	be	found	at	their	homepage
at	http://newrelic.com/.

https://newrelic.com/signup/
http://newrelic.com/

Installing	the	agent
Like	the	other	SaaS	offerings	we	have	looked	at	in	this	chapter,	New	Relic	Servers	has	a
host-based	client,	which	needs	to	be	able	to	access	the	Docker	binary.	To	install	this	on	a
CentOS	machine,	run	the	following:

yum	install	http://download.newrelic.com/pub/newrelic/el5/i386/newrelic-

repo-5-3.noarch.rpm

yum	install	newrelic-sysmond

For	Ubuntu,	run	the	following	command:

echo	'deb	http://apt.newrelic.com/debian/	newrelic	non-free'	|	sudo	tee	

/etc/apt/sources.list.d/newrelic.list

wget	-O-	https://download.newrelic.com/548C16BF.gpg	|	sudo	apt-key	add	-

apt-get	update

apt-get	install	newrelic-sysmond

Now	that	you	have	the	agent	installed,	you	need	to	configure	the	agent	with	your	license
key.	You	can	do	this	with	the	following	command	and	make	sure	that	you	add	your
license,	which	can	be	found	in	your	settings	page:

nrsysmond-config	--set	license_key=	wn5AYlhjRhgn3shcjW14y3yOT09WsF7d

Now	that	the	agent	is	configured,	we	need	to	add	the	newrelic	user	to	the	docker	group
so	that	the	agent	has	access	to	our	container	information:

usermod	-a	-G	docker	newrelic

Finally,	we	need	to	start	the	New	Relic	Server	agent	and	restart	Docker:

/etc/init.d/newrelic-sysmond	restart

/etc/init.d/docker	restart

Tip
Restarting	Docker	will	stop	the	running	containers	that	you	have;	make	sure	that	you
make	a	note	of	these	using	docker	ps	and	then	start	them	manually	and	back	up	once	the
Docker	service	restarts.

You	should	see	your	server	appear	on	your	New	Relic	control	panel	after	a	few	minutes.

Exploring	the	web	interface
Once	you	have	the	New	Relic	server	agent	installed,	configured,	and	running	on	your	host
machine,	you	will	see	something	similar	to	the	following	screenshot	when	clicking	on
Servers	in	the	top	menu:

Selecting	the	server	will	allow	you	to	start	exploring	the	various	metrics	that	the	agent	is
recording:

From	here,	you	have	the	option	to	drill	down	further:

Overview:	Gives	a	quick	overview	of	your	host	machine
Processes:	Lists	all	of	the	processes	that	are	running	both	on	the	host	machine	and
within	your	containers
Network:	Lets	you	see	the	network	activity	for	your	host	machine
Disks:	Gives	you	details	on	how	much	space	you	are	using
Docker:	Shows	you	the	CPU	and	memory	utilization	for	your	containers

As	you	may	have	guessed,	we	are	going	to	be	looking	at	the	Docker	item	next,	click	on	it
and	you	will	see	a	list	of	your	active	images:

You	may	have	noticed	a	difference	between	New	Relic	and	the	other	services,	as	you	can
see	New	Relic	does	not	show	you	the	running	containers,	instead	it	shows	you	the
utilization	by	Docker	image.

In	the	preceding	screenshot,	I	have	four	containers	active	and	running	the	WordPress
installation	we	have	used	elsewhere	in	the	book.	If	I	wanted	a	breakdown	per	container,
then	I	would	be	out	of	luck,	as	demonstrated	by	the	following	screen:

It’s	a	pretty	dull	screen,	but	it	gives	you	an	idea	about	what	you	will	see	if	you	are	running
multiple	containers	that	have	been	launched	using	the	same	image.	So	how	is	this	useful?
Well,	coupled	with	the	other	services	offered	by	New	Relic,	it	can	give	you	an	indication
of	what	your	containers	were	up	to	when	a	problem	occurred	within	your	application.	If
you	remember	the	Pets	versus	Cattle	versus	Chickens	analogy	from	Chapter	1,
Introduction	to	Docker	Monitoring,	we	don’t	necessarily	care	which	container	did	what;
we	just	want	to	see	the	impact	it	had	during	the	issue	we	are	looking	into.

Summary	and	further	reading
Due	to	the	amount	of	products	it	offers,	New	Relic	can	be	a	little	daunting	at	first,	but	if
you	work	with	a	development	team	that	actively	uses	New	Relic	within	their	day-to-day
workflow,	then	having	all	of	the	information	about	your	infrastructure	alongside	this	data
can	be	both	valuable	and	necessary,	especially	during	an	issue:

New	Relic	Server	monitoring:	http://newrelic.com/server-monitoring
New	Relic	and	Docker:	http://newrelic.com/docker/
Twitter:	https://twitter.com/NewRelic

Tip
If	you	have	launched	a	cloud	instance	and	are	no	longer	using	it	then,	now	is	a	good	time
to	power	the	instance	down	or	terminate	it	altogether,	this	will	ensure	you	do	not	get	billed
for	any	services	you	are	not	using.

http://newrelic.com/server-monitoring
http://newrelic.com/docker/
https://twitter.com/NewRelic

Summary
Which	SaaS	service	you	choose	depends	on	your	circumstances,	there	are	a	number	of
questions	you	should	ask	yourself	before	you	start	evaluating	the	SaaS	offerings:

How	many	containers	would	you	like	to	monitor?
How	many	host	machines	do	you	have?
Is	there	a	non-containerized	infrastructure	you	need	to	monitor?
What	metrics	do	you	need	from	the	monitoring	service?
How	long	should	the	data	be	retained	for?
Could	other	departments,	such	as	development	and	utilize	the	service?

We	covered	just	three	of	the	available	SaaS	options	in	this	chapter,	there	are	other	options
available,	such	as:

Ruxit:	https://ruxit.com/docker-monitoring/
Scout:	https://scoutapp.com/plugin_urls/19761-docker-monitor
Logentries:	https://logentries.com/insights/server-monitoring/
Sematext:	http://sematext.com/spm/integrations/docker-monitoring.html

Monitoring	servers	and	services	are	only	as	good	as	the	metrics	you	collect,	if	possible
and	if	your	budget	allows,	you	should	take	full	advantage	of	the	services	offered	by	your
chosen	providers,	as	more	data	being	recorded	by	a	single	provider	will	only	benefit	you
when	it	comes	to	analyzing	problems	with	not	only	your	containerized	applications,	but
also	with	your	infrastructure,	code	and	even	your	cloud	provider.

For	example,	if	you	are	monitoring	your	host	machine	using	the	same	service	as	you	use
to	monitor	your	containers,	then	by	using	the	custom	graphing	functions,	you	should	be
able	to	create	overlay	graphs	of	CPU	load	spikes	of	both	your	host	machine	and	your
container.	This	is	a	lot	more	useful	than	trying	to	compare	two	different	graphs	from
different	systems	side	by	side.

In	the	next	chapter,	we	will	look	at	an	often-overlooked	part	of	monitoring:	shipping	your
log	files	away	from	your	containers/hosts	to	a	single	location	so	that	they	can	be
monitored	and	reviewed.

https://ruxit.com/docker-monitoring/
https://scoutapp.com/plugin_urls/19761-docker-monitor
https://logentries.com/insights/server-monitoring/
http://sematext.com/spm/integrations/docker-monitoring.html

Chapter	7.	Collecting	Application	Logs
from	within	the	Container
One	of	the	most	overlooked	parts	of	monitoring	are	log	files	generated	by	the	application
or	services	such	as	NGINX,	MySQL,	Apache,	and	so	on.	So	far	we	have	looked	at	various
ways	of	recording	the	CPU	and	RAM	utilization	of	the	processes	within	your	containers
are	at	a	point	in	time,	now	its	time	to	do	the	same	for	the	log	files.

If	you	are	running	your	containers	as	Cattle	or	Chickens,	then	the	way	you	deal	with	the
issues	to	destroy	and	relaunch	your	container	either	manually	or	automatically	is
important.	While	this	should	fix	the	immediate	problem,	it	does	not	help	with	tracking
down	the	root	cause	of	the	issue	and	if	you	don’t	know	that	then	how	can	you	attempt	to
resolve	it	so	that	it	does	not	reoccur.

In	this	chapter,	we	will	look	at	how	we	can	get	the	content	of	the	log	files	for	the
applications	running	within	our	containers	to	the	central	location	so	that	they	are	available,
even	if	you	have	to	destroy	and	replace	a	container.	We	are	going	to	cover	the	following
topics	in	this	chapter:

How	to	view	container	logs?
Deploying	an	“ELK”	stack	using	a	Docker	containers	stack	to	ship	the	logs	to
Reviewing	your	logs
What	third	party	options	are	available?

Viewing	container	logs
Like	the	docker	top	command,	there	is	a	very	basic	way	of	viewing	logs.	When	you	use
the	docker	logs	command,	you	are	actually	viewing	the	STDOUT	and	STDERR	of	the
processes	that	are	running	within	the	container.

Note
For	more	information	on	Standard	Streams,	please	see
https://en.wikipedia.org/wiki/Standard_streams.

As	you	can	see	from	the	following	screenshot,	the	simplest	thing	you	have	to	do	is	run
docker	logs	followed	by	your	container	name:

To	see	this	on	your	own	host,	let’s	launch	the	WordPress	installation	from	chapter05
using	the	following	commands:

cd	/monitoring_docker/chapter05/wordpress/

docker-compose	up	–d

docker	logs	wordpress_wordpress1_1

You	can	extend	the	dockerlogs	command	by	adding	the	following	flags	before	your
container	name:

-f	or	--follow	will	stream	the	logs	in	real	time
-t	or	--timestamps	will	show	a	timestamp	at	the	start	of	each	line
--tail="5"	will	show	the	last	x	number	of	lines
--since="5m00s"	will	show	only	the	entries	for	the	last	5	minutes

Using	the	WordPress	installation	that	we	have	just	launched,	try	running	the	following
commands:

docker	logs	--tail="2"	wordpress_wordpress1_1

This	will	show	the	last	two	lines	of	the	logs,	you	can	add	timestamps	using:

https://en.wikipedia.org/wiki/Standard_streams

docker	logs	--tail="2"	–timestamps	wordpress_wordpress1_1

As	you	can	see	in	the	following	terminal	output,	you	can	also	string	commands	together	to
form	a	very	basic	query	language:

The	downside	of	using	docker	logs	is	exactly	the	same	as	using	docker	top,	in	that	it	is
only	available	locally	and	the	logs	are	only	present	for	the	time	the	container	is	around,
you	can	view	the	logs	of	a	stopped	container,	but	once	the	container	is	removed,	so	are	the
logs.

ELK	Stack
Similar	to	some	of	the	technologies	that	we	have	covered	in	this	book,	an	ELK	stack	really
deserves	a	book	by	itself;	in	fact,	there	are	books	for	each	of	the	elements	that	make	an
ELK	stack,	these	elements	are:

Elasticsearch	is	a	powerful	search	server,	which	has	been	developed	with	modern
workloads	in	mind
Logstash	sits	between	your	data	source	and	Elasticsearch	services;	it	transforms	your
data	in	real	time	to	a	format,	which	Elasticsearch	can	understand.
Kibana	is	in	front	of	your	Elasticsearch	services	and	allows	you	to	query	your	data	in
a	feature-rich	web-based	dashboard.

There	are	a	lot	of	moving	parts	with	an	ELK	stack,	so	to	simplify	things,	we	will	use	a
prebuilt	stack	for	the	purpose	of	testing;	however,	you	probably	don’t	want	to	use	this
stack	in	production.

Starting	the	stack
Let’s	launch	a	fresh	vagrant	host	on	which	to	run	the	ELK	stack:

[russ@mac	~]$	cd	~/Documents/Projects/monitoring-docker/vagrant-centos/

[russ@mac	~]$	vagrant	up

Bringing	machine	'default'	up	with	'virtualbox'	provider…

==>	default:	Importing	base	box	'russmckendrick/centos71'...

==>	default:	Matching	MAC	address	for	NAT	networking…

==>	default:	Checking	if	box	'russmckendrick/centos71'	is	up	to	date…

.....

==>	default:	=>	Installing	docker-engine…

==>	default:	=>	Configuring	vagrant	user…

==>	default:	=>	Starting	docker-engine…

==>	default:	=>	Installing	docker-compose…

==>	default:	=>	Finished	installation	of	Docker

[russ@mac	~]$	vagrant	ssh

Now,	we	have	a	clean	host	that	is	up	and	running,	we	can	start	the	stack	by	running	the
following	commands:

[vagrant@docker	~]$	cd	/monitoring_docker/chapter07/elk/

[vagrant@docker	elk]$	docker-compose	up	-d

As	you	may	have	noticed,	it	did	more	that	just	pull	down	some	images;	what	happened
was:

An	Elasticsearch	container	was	launched	using	the	official	image	from
https://hub.docker.com/_/elasticsearch/.
A	Logstash	container	was	launched	using	the	official	image	from
https://hub.docker.com/_/logstash/,	it	was	also	launched	with	our	own	configuration,
which	means	that	our	installation	listens	for	logs	sent	from	Logspout	(more	about	that
in	a	minute).
A	custom	Kibana	image	was	built	using	the	official	image	from
https://hub.docker.com/_/kibana/.	All	it	did	was	add	a	small	script	to	ensure	that
Kibana	doesn’t	start	until	our	Elasticsearch	container	is	fully	up	and	running.	It	was
then	launched	with	a	custom	configuration	file.
A	custom	Logspout	container	was	built	using	the	official	image	from
https://hub.docker.com/r/gliderlabs/logspout/	and	then	we	added	a	custom	module	so
that	Logspout	could	talk	to	Logstash.

Once	docker-compose	has	finished	building	and	launching	the	stack	you	should	be	able	to
see	the	following	when	running	docker-compose	ps:

https://hub.docker.com/_/elasticsearch/
https://hub.docker.com/_/logstash/
https://hub.docker.com/_/kibana/
https://hub.docker.com/r/gliderlabs/logspout/

We	now	have	our	ELK	stack	up	and	running,	as	you	may	have	noticed,	there	is	an
additional	container	running	and	giving	us	an	ELK-L	stack,	so	what	is	Logspout?

Logspout
If	we	were	to	launch	Elasticsearch,	Logstash,	and	Kibana	containers,	we	should	have	a
functioning	ELK	stack	but	we	will	have	a	lot	of	configuration	to	do	to	get	our	container
logs	into	Elasticsearch.

Since	Docker	1.6,	you	have	been	able	to	configure	logging	drivers,	this	meant	that	it	is
possible	to	launch	a	container	and	have	it	send	its	STDOUT	and	STDERR	to	a	Syslog	Server,
which	will	be	Logstash	in	our	case;	however,	this	means	that	you	will	have	to	add
something	similar	to	the	following	options	each	time	we	launch	a	container:

--log-driver=syslog	--log-opt	syslog-address=tcp://elk_logstash_1:5000	

This	is	where	Logspout	comes	in,	it	has	been	designed	to	collect	all	of	the	STDOUT	and
STDERR	messages	on	a	host	machine	by	intercepting	the	messages	that	are	being	collected
by	the	Docker	process	and	then	it	routes	them	to	our	Logstash	instance	in	a	format	that	is
understood	by	Elasticsearch.

Just	as	the	log-driver,	it	supports	Syslog	out	of	the	box;	however,	there	is	a	third	party
module	that	transforms	the	output	to	JSON,	which	Logstash	understands.	As	a	part	of	our
build	we	downloaded,	compiled	and	configured	the	module.

You	can	find	out	more	about	Logspout	and	logging	drivers	at	the	following:

Official	Logspout	image:	https://hub.docker.com/r/gliderlabs/logspout/
Logspout	Project	page:	https://github.com/gliderlabs/logspout
Logspout	Logstash	module:	https://github.com/looplab/logspout-logstash
Docker	1.6	release	notes:	https://blog.docker.com/2015/04/docker-release-1-6/
Docker	Logging	Drivers:	https://docs.docker.com/reference/logging/overview/

https://hub.docker.com/r/gliderlabs/logspout/
https://github.com/gliderlabs/logspout
https://github.com/looplab/logspout-logstash
https://blog.docker.com/2015/04/docker-release-1-6/
https://docs.docker.com/reference/logging/overview/

Reviewing	the	logs
So	now,	we	have	our	ELK	running	and	a	mechanism	in	place	to	stream	all	of	the	STDOUT
and	STDERR	messages	generated	by	our	containers	into	Logstash,	which	in	turn	routes	the
data	into	Elasticsearch.	Now	its	time	to	view	the	logs	in	Kibana.	To	access	Kibana	go	to
http://192.168.33.10:8080/	in	your	browser;	when	you	access	the	page,	you	will	be
asked	to	Configure	an	index	pattern,	the	default	index	pattern	will	be	fine	for	our	needs
so	just	click	the	Create	button.

Once	you	do,	you	will	see	a	list	of	the	index	patterns,	these	are	taken	directly	from	the
Logspout	output,	and	you	should	notice	the	following	items	in	the	index: 

docker.name:	The	name	of	container
docker.id:	The	full	container	ID
docker.image:	The	name	of	the	image	used	to	launch	the	image

From	here,	if	you	were	to	click	on	Discover	in	the	top	menu	you	would	see	something
similar	to	the	following	page:

In	the	screenshot,	you	will	see	that	I	have	recently	launched	the	WordPress	stack	and	we
have	been	using	it	throughout	the	book,	using	the	following	commands:

[vagrant@docker	elk]$	cd	/monitoring_docker/chapter05/wordpress/

[vagrant@docker	wordpress]$	docker-compose	up	–d

To	give	you	an	idea	of	what	is	being	logged,	here	is	the	raw	JSON	taken	from	Elasticseach
for	running	the	WordPress	installation	script:

{

		"_index":	"logstash-2015.10.11",

		"_type":	"logs",

		"_id":	"AVBW8ewRnBVdqUV1XVOj",

		"_score":	null,

		"_source":	{

				"message":	"172.17.0.11	-	-	[11/Oct/2015:12:48:26	+0000]	\"POST	/wp-

admin/install.php?step=1	HTTP/1.1\"	200	2472	\"http://192.168.33.10/wp-

admin/install.php\"	\"Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_11)	

AppleWebKit/601.1.56	(KHTML,	like	Gecko)	Version/9.0	Safari/601.1.56\"",

				"docker.name":	"/wordpress_wordpress1_1",

				"docker.id":	

"0ba42876867f738b9da0b9e3adbb1f0f8044b7385ce9b3a8a3b9ec60d9f5436c",

				"docker.image":	"wordpress",

				"docker.hostname":	"0ba42876867f",

				"@version":	"1",

				"@timestamp":	"2015-10-11T12:48:26.641Z",

				"host":	"172.17.0.4"

		},

		"fields":	{

				"@timestamp":	[

						1444567706641

]

		},

		"sort":	[

				1444567706641

]

}

From	here,	you	can	start	to	use	the	free	text	search	box	and	build	up	some	quite	complex
queries	to	drill	down	into	your	container’s	STDOUT	and	STDERR	logs.

What	about	production?
As	mentioned	at	the	top	of	this	section,	you	probably	don’t	want	to	run	your	production
ELK	stack	using	the	docker-compose	file,	which	accompanies	this	chapter.	First	of	all,
you	will	want	your	Elasticsearch	data	to	be	stored	on	a	persistent	volume	and	you	more
than	likely	want	your	Logstash	service	to	be	highly	available.

There	are	numerous	guides	on	how	to	configure	a	highly	available	ELK	stack,	as	well	as,
the	hosted	services	from	Elastic,	which	is	the	creator	of	Elasticsearch,	and	also	Amazon
Web	Services,	which	offers	an	Elasticsearch	service:

ELK	tutorial:	https://www.youtube.com/watch?v=ge8uHdmtb1M
Found	from	Elastic:	https://www.elastic.co/found
Amazon	Elasticsearch	Service:	https://aws.amazon.com/elasticsearch-service/

https://www.youtube.com/watch?v=ge8uHdmtb1M
https://www.elastic.co/found
https://aws.amazon.com/elasticsearch-service/

Looking	at	third	party	options
There	are	a	few	options	when	it	comes	to	hosting	central	logging	for	your	containers
external	to	your	own	server	instances.	Some	of	these	are:

Log	Entries:	https://logentries.com/
Loggly:	https://www.loggly.com/

Both	of	these	services	offer	a	free	tier.	Log	Entries	also	offers	a	“Logentries	DockerFree”
account	that	you	can	find	out	more	about	at	https://logentries.com/docker/

Note
As	recommended	in	the	Exploring	Third	Party	Options	chapter,	it	is	best	to	use	a	cloud
service	when	evaluating	third	party	services.	The	remainder	of	this	chapter	assumes	that
you	are	running	a	cloud	host.

Let’s	look	at	configuring	the	Log	Entries	on	an	external	server,	first	of	all	you	need	to
have	signed	up	for	an	account	at	https://logentries.com/.	Once	you	have	signed	up,	you
should	be	taken	to	a	page	in	which	your	logs	will	eventually	be	displayed.

To	start,	click	on	the	Add	new	log	button	in	the	top-right	corner	of	the	page	and	then	click
the	Docker	logo	in	the	Platforms	section.

You	have	to	name	your	set	of	logs	in	the	Select	set	section,	so	give	a	name	to	your	log	set.
You	now	have	the	choice	of	building	your	own	container	locally	using	the	Docker	file
from	https://github.com/logentries/docker-logentries:

git	clone	https://github.com/logentries/docker-logentries.git

cd	docker-logentries

docker	build	-t	docker-logentries	.

After	running	the	preceding	command,	you	will	get	the	following	output:

https://logentries.com/
https://www.loggly.com/
https://logentries.com/docker/
https://logentries.com/
https://github.com/logentries/docker-logentries

Before	you	start	your	container,	you	will	need	to	generate	an	access	token	for	your	log	set
by	clicking	on	Generate	Log	Token.	Once	you	have	this,	you	can	launch	your	locally
built	containers	using	the	following	command	(replace	the	token	with	the	one	you	have
just	generated):

docker	run	-d	-v	/var/run/docker.sock:/var/run/docker.sock	docker-

logentries	-t	wn5AYlh-jRhgn3shc-jW14y3yO-T09WsF7d	-j

You	can	download	the	image	straight	from	the	Docker	hub	by	running:

docker	run	-d	-v	/var/run/docker.sock:/var/run/docker.sock	

logentries/docker-logentries	-t	wn5AYlh-jRhgn3shc-jW14y3yO-T09WsF7d	–j

It’s	worth	pointing	out	that	the	automatically	generated	instructions	given	by	Log	Entries
launches	the	container	in	the	foreground,	rather	than	detaching	from	the	container	once	it
has	been	launched	like	the	preceding	instructions.

Once	you	have	the	docker-logentries	container	up	and	running,	you	should	start	to	see
logs	from	your	container	streamed	in	real-time	to	your	dashboard:

From	here,	you	will	be	able	to	query	your	logs,	create	dashboards,	and	create	alerts
depending	on	the	account	option	you	go	for.

Summary
In	this	chapter,	we	have	covered	how	to	query	the	STDOUT	and	STDERR	output	from	your
containers	using	the	tool	built	into	Docker,	how	to	ship	the	messages	to	an	external	source,
our	ELK	stack,	and	how	to	store	the	messages	even	after	the	container	has	been
terminated.	Finally,	we	have	looked	at	a	few	of	the	third-party	services	who	offer	services
to	which	you	can	stream	your	logs.

So	why	go	to	all	of	this	effort?	Monitoring	isn’t	just	about	keeping	and	querying	CPU,
RAM,	HDD,	and	Network	utilization	metrics;	there	is	no	point	in	knowing	if	there	was	a
CPU	spike	an	hour	ago	if	you	don’t	have	access	to	the	log	files	to	see	if	any	errors	were
being	generated	at	that	time.

The	services	we	have	covered	in	this	chapter	offer	the	quickest	and	most	efficient	insights
into	what	can	quickly	become	a	complex	dataset.

In	the	next	chapter,	we	will	look	at	all	of	the	services	and	concepts	we	have	covered	in	the
book	and	apply	them	to	some	real	world	scenarios.

Chapter	8.	What	Are	the	Next	Steps?
In	this	final	chapter,	we	will	look	at	the	next	steps	you	can	take	to	monitor	your
containers,	by	talking	about	the	benefits	of	adding	alerts	to	your	monitoring.	Also,	we	will
cover	some	different	scenarios	and	also	which	type	of	monitoring	is	appropriate	for	each
of	them:

Common	problems	(performance,	availability,	and	so	on)	and	which	type	of
monitoring	is	best	for	your	situation.
What	are	the	benefits	of	alerting	on	the	metrics	you	are	collecting	and	what	are	the
options?

Some	scenarios
To	look	at	which	type	of	monitoring	you	might	want	to	implement	for	your	container-
based	applications,	we	should	work	through	a	few	different	example	configurations	that
your	container-based	applications	could	be	deploying	into.	First,	let’s	remind	ourselves
about	Pets,	Cattle,	Chickens,	and	Snowflakes.

Pets,	Cattle,	Chickens,	and	Snowflakes
Back	in	the	Chapter	1,	Introduction	to	Docker	Monitoring,	we	spoke	about	Pets,	Cattle,
Chickens,	and	Snowflakes;	in	that	chapter,	we	described	what	each	term	meant	when	it
was	applied	to	modern	cloud	deployments.	Here,	we	will	go	into	a	little	more	detail	about
how	the	terms	can	be	applied	to	your	containers.

Pets
For	your	containers	to	be	considered	a	Pet,	you	will	be	more	than	likely	to	be	running
either	a	single	or	a	small	number	of	fixed	containers	on	a	designated	host.

Each	one	of	these	containers	could	be	considered	a	single	point	of	failure;	if	any	one	of
them	goes	down,	it	will	more	than	likely	result	in	errors	for	your	application.	Worst	still,	if
the	host	machine	goes	down	for	any	reason,	your	entire	application	will	be	offline.

This	is	a	typical	deployment	method	for	most	of	our	first	steps	with	Docker,	and	in	no	way
should	it	be	considered	bad,	frowned	upon,	or	not	recommend;	as	long	as	you	are	aware	of
the	limitations,	you	will	be	fine.

This	pattern	can	also	be	used	to	describe	most	development	environments,	as	you	are
constantly	reviewing	its	health	and	tuning	as	needed.

You	will	more	than	likely	be	hosting	the	machine	on	your	local	computer	or	on	a	hosting
service	such	as	DigitalOcean	(https://www.digitalocean.com/).

Cattle
For	the	bulk	of	production	or	business	critical	deployments,	you	should	aim	to	launch	your
containers	in	a	configuration	that	allows	them	to	automatically	recover	themselves	after	a
failure,	or,	when	more	capacity	is	needed,	additional	containers	are	launched	and	then
terminated	when	the	scaling	event	is	over.

You	will	more	than	likely	be	using	a	public	cloud-based	service	as	follows:

Amazon	EC2	Container	Service:	https://aws.amazon.com/ecs/
Google	Container	Engine:	https://cloud.google.com/container-engine/
Joyent	Triton:	https://www.joyent.com/blog/understanding-triton-containers/

Alternatively,	you	will	be	hosting	on	your	own	servers	using	a	Docker-friendly	and
cluster-aware	operating	system	as	follows:

CoreOS:	https://coreos.com/
RancherOS:	http://rancher.com/rancher-os/

You	won’t	care	so	much	as	to	where	a	container	is	launched	within	your	cluster	of	hosts,
as	long	as	you	can	route	traffic	to	it.	To	add	more	capacity	to	the	cluster,	you	will	be
bringing	up	additional	hosts	when	needed	and	removing	them	from	the	cluster	when	not
needed	in	order	to	save	on	costs.

Chickens

https://www.digitalocean.com/
https://aws.amazon.com/ecs/
https://cloud.google.com/container-engine/
https://www.joyent.com/blog/understanding-triton-containers/
https://coreos.com/
http://rancher.com/rancher-os/

Its	more	than	likely	you	will	be	using	containers	to	launch,	process	data,	and	then
terminate.	This	can	happen	anytime	from	once	a	day	to	several	times	a	minute.	You	will
be	using	a	distributed	scheduler	as	follows:

Kubernetes	by	Google:	http://kubernetes.io/
Apache	Mesos:	http://mesos.apache.org/

Because	of	this,	you	will	have	a	large	number	of	containers	launching	and	terminating
within	your	cluster;	you	definitely	won’t	care	about	where	a	container	is	launched	or	even
how	traffic	is	routed	to	it,	as	long	as	your	data	is	processed	correctly	and	passed	back	to
your	application.

Like	the	cluster	described	in	the	Cattle	section’s	description,	hosts	will	be	added	and
removed	automatically,	probably	in	response	to	scheduled	peaks	such	as	end	of	month
reporting	or	seasonal	sales	and	so	on.

Snowflakes
I	hope	one	of	the	things	you	took	away	from	the	first	chapter	is	that	if	you	have	any
servers	or	services	that	you	consider	being	Snowflakes,	then	you	should	do	something	to
retire	them	as	soon	as	possible.

Luckily,	due	to	the	way	the	containerizing	of	your	applications	works,	you	should	never
be	able	to	create	a	snowflake	using	Docker,	as	your	containerized	environment	should
always	be	reproducible,	either	because	you	have	the	Docker	file	(everyone	makes	backups
right?)	or	you	have	a	working	copy	of	the	container	image	because	you	have	exported	the
container	as	a	whole	using	the	built-in	tools.

Note
Sometimes	it	may	not	be	possible	to	create	a	container	using	a	Docker	file.	Instead,	you
can	backup	or	migrate	your	containers	by	using	the	export	command.	For	more
information	on	exporting	your	containers,	see	the	following	URL:

https://docs.docker.com/reference/commandline/export/

If	you	find	yourself	in	this	position,	let	me	be	the	first	to	congratulate	you	on	mitigating	a
future	disaster	by	promoting	your	Snowflake	into	a	Pet	or	even	Cattle	ahead	of	any
problems.

Tip
Still	running	a	Snowflake?

If	you	find	yourself	still	running	a	Snowflake	server	or	service,	I	cannot	stress	enough	that
you	look	at	documenting,	migrating,	or	updating	the	Snowflake	as	soon	as	possible.	There
is	no	point	in	monitoring	a	service	that	may	be	impossible	for	you	to	recover.	Remember
that	there	are	containers	for	old	technologies,	such	as	PHP4,	if	you	really	need	to	run
them.

http://kubernetes.io/
http://mesos.apache.org/
https://docs.docker.com/reference/commandline/export/

Scenario	one
You	are	running	a	personal	WordPress	website	using	the	official	containers	from	the
Docker	Hub;	the	containers	have	been	launched	using	a	Docker	Compose	file	like	the	one
we	have	used	several	times	throughout	this	book.

You	have	the	Docker	Compose	file	stored	in	a	GitHub	repository	and	you	can	take
snapshots	of	the	host	machine	as	a	backup.	As	it’s	your	own	blog,	you	are	fine	running	it
on	a	single	cloud-based	host.

A	suitable	monitoring	will	be	as	follows:

Docker	stats
Docker	top
Docker	logs
cAdvisor
Sysdig

As	you	are	running	a	single	host	machine	that	you	are	treating	as	a	backup,	there	is	no	real
need	for	you	to	ship	your	log	files	to	a	central	location	as	odds	are	your	host	machines;
like	the	containers,	its	hosting	will	be	online	for	months	or	possibly	even	years.

It	is	unlikely	that	you	will	need	to	dig	too	deeply	into	your	containers’	historical
performance	stats,	as	most	of	the	tuning	and	troubleshooting	will	be	done	in	real	time	as
problems	occur.

With	the	monitoring	tools	suggested,	you	will	be	able	to	get	a	good	insight	into	what	is
happening	within	your	containers	in	real	time,	and	to	get	more	than	enough	information	on
processes	that	are	consuming	too	much	RAM	and	CPU,	along	with	any	error	messages
from	within	the	containers.

You	may	want	to	enable	a	service	such	as	Pingdom	(https://www.pingdom.com/)	or
Uptime	Robot	(http://uptimerobot.com/).	These	services	poll	your	website	every	few
minutes	to	ensure	that	the	URL	you	configure	them	to,	check	whether	its	loading	within	a
certain	time	or	at	all.	If	they	detect	any	slowdown	or	failures	with	the	page	loading,	they
can	be	configured	to	send	an	initial	alert	to	notify	you	that	there	is	a	potential	issue,	such
as	both	the	services	mentioned	have	a	free	tier.

https://www.pingdom.com/
http://uptimerobot.com/

Scenario	two
You	are	running	a	custom	e-commerce	application	that	needs	to	be	highly	available	and
also	scale	during	your	peak	times.	You	are	using	a	public	cloud	service	and	the	toolset	that
comes	with	it	to	launch	containers	and	route	traffic	to	them.

A	suitable	monitoring	will	be	as	follows:

cAdvisor	+	Prometheus
Zabbix
Sysdig	Cloud
New	Relic	Server	Monitoring
Datadog
ELK	+	Logspout
Log	Entries
Loggly

With	this	scenario,	there	is	a	business	need	to	not	only	be	notified	about	container	and	host
failures,	but	also	to	hold	your	monitoring	data	and	logs	away	from	your	host	servers	so
that	you	can	properly	review	historical	information.	You	may	also	need	to	keep	logs	for
PCI	compliance	or	internal	auditing	for	a	fixed	period	of	time.

Depending	on	your	budget,	you	can	achieve	this	by	hosting	your	own	monitoring	(Zabbix
and	Prometheus)	and	central	logging	(ELK)	stacks	somewhere	within	your	infrastructure.

You	can	also	choose	to	run	a	few	different	third-party	tools	such	as	combining	tools	that
monitor	performance,	for	example,	Sysdig	Cloud	or	Datadog,	with	a	central	logging
service,	such	as	Log	Entries	or	Loggly.

If	appropriate,	you	can	also	run	a	combination	of	self-hosted	and	third-party	tools.

While	the	self-hosted	option	may	appear	to	be	the	most	budget-friendly	option,	there	are
some	considerations	to	take	into	account,	as	follows:

Your	monitoring	needs	to	be	hosted	away	from	your	application.	There	is	no	point	in
having	your	monitoring	installed	on	the	same	host	as	your	application;	what	will	alert
you	if	the	host	fails?
Your	monitoring	needs	to	be	highly	available;	do	you	have	the	infrastructure	to	do
this?	If	your	application	needs	to	be	highly	available,	then	so	does	your	monitoring.
You	need	to	have	enough	capacity.	Do	you	have	the	capacity	to	be	able	to	store	log
files	and	metrics	going	back	a	month,	6	months,	or	a	year?

If	you	are	going	to	have	to	invest	in	any	of	the	preceding	options,	then	it	will	be	worth
weighing	up	the	costs	of	investing	in	both	the	infrastructure	and	the	management	of	your
own	monitoring	solution	against	using	a	third-party	that	will	offer	the	preceding	options	as
a	service.

If	you	are	using	a	container-only	operating	system	such	as	CoreOS	or	RancherOS,	then
you	will	need	to	choose	a	service	whose	agent	or	collector	can	be	executed	from	within	a
container,	as	you	will	not	be	able	to	install	the	agent	binaries	directly	on	the	OS.

You	will	also	need	to	ensure	that	your	host	machine	is	configured	to	start	the
agents/collectors	on	boot.	This	will	ensure	that	as	soon	as	the	host	machine	joins	a	cluster
(which	is	typically	when	containers	will	start	to	popup	on	the	host),	it	is	already	sending
metrics	to	your	chosen	monitoring	services.

Scenario	three
Your	application	launches	a	container	each	time	your	API	is	called	from	your	frontend
application;	the	container	takes	the	user	input	from	a	database,	processes	it,	and	then
passes	the	results	back	to	your	front	end	application.	Once	the	data	has	been	successfully
processed,	the	container	is	terminated.	You	are	using	a	distributed	scheduling	system	to
launch	the	containers.

A	suitable	monitoring	will	be	as	follows:

Zabbix
Sysdig	Cloud
Datadog
ELK	+	Logspout
Log	Entries
Loggly

In	this	scenario,	you	more	than	likely	do	not	want	to	monitor	things	such	as	CPU	and
RAM	utilization.	These	containers	after	all	should	only	be	around	for	a	few	minutes,	and
also	your	scheduler	will	launch	the	container	on	the	host	machine	where	there	is	enough
capacity	for	the	task	to	execute.

Instead,	you	will	probably	want	to	keep	a	record	to	verify	that	the	container	launched	and
terminated	as	expected.	You	will	also	want	to	make	sure	that	you	log	the	STDOUT	and
STDERR	from	the	container	while	it	is	active,	as	once	the	container	has	been	terminated,	it
will	be	impossible	for	you	to	get	these	messages	back.

With	the	tools	listed	in	the	preceding	points,	you	should	be	able	to	build	some	quite	useful
queries	to	get	a	detailed	insight	into	how	your	short	run	processes	are	performing.

For	example,	you	will	be	able	to	get	the	average	lifetime	of	a	container,	as	you	know	the
time	the	container	was	launched	and	when	it	was	terminated;	knowing	this	will	then	allow
you	to	set	a	trigger	to	alert	you	if	any	containers	are	around	for	any	longer	than	you	would
expect	them	to	be.

A	little	more	about	alerting
A	lot	of	the	tools	we	have	looked	at	in	this	book	offer	at	least	some	sort	of	basic	alerting
functionality;	the	million-dollar	question	is	should	you	enable	it?

A	lot	of	this	is	dependent	on	the	type	of	application	you	are	running	and	how	the
containers	have	been	deployed.	As	we	have	already	mentioned	a	few	times	in	this	chapter,
you	should	never	really	have	a	Snowflake	container;	this	leaves	us	with	Pets,	Cattle,	and
Chickens.

Chickens
As	already	discussed	in	the	previous	section,	you	probably	don’t	need	to	worry	about
getting	alerts	for	RAM,	CPU,	and	hard	drive	performance	on	a	cluster	that	is	configured	to
run	Chickens.

Your	containers	should	not	be	up	long	enough	to	experience	any	real	problems;	however,
should	there	be	any	unexpected	spikes,	your	scheduler	will	probably	have	enough
intelligence	to	distribute	your	containers	to	hosts	that	have	the	most	available	resources	at
that	time.

You	will	need	to	know	if	any	of	your	containers	have	been	running	longer	than	you	expect
them	to	be	up;	for	example,	a	process	in	a	container	that	normally	takes	no	more	than	60
seconds	is	still	running	after	5	minutes.

This	not	only	means	that	there	is	a	potential	problem,	it	also	means	that	you	find	yourself
running	hosts	that	only	contain	stale	containers.

Cattle	and	Pets
When	it	comes	to	setting	up	alerts	on	Cattle	or	Pets,	you	have	a	few	options.

You	will	more	than	likely	want	to	receive	alerts	based	on	CPU	and	RAM	utilization	for
both	the	host	machine	and	the	containers,	as	this	could	indicate	a	potential	problem	that
could	cause	slow	down	within	the	application	and	also	loss	of	business.

As	mentioned	previously,	you	will	probably	also	want	to	be	alerted	if	your	application
starts	to	serve	the	content	that	is	unexpected.	For	example,	a	host	and	a	container	will
quite	happily	sit	there	serving	an	application	error.

You	can	use	a	service	such	as	Pingdom,	Zabbix,	or	New	Relic	to	load	a	page	and	check	for
the	content	in	the	footer;	if	this	content	is	missing,	then	an	alert	can	be	sent.

Depending	on	how	fluid	your	infrastructure	is,	in	a	Cattle	configuration,	you	will	probably
want	to	be	alerted	when	containers	spin	up	and	down,	as	this	will	indicate	periods	of	high
traffic/transactions.

Sending	alerts
Sending	alerts	differs	for	each	tool,	for	example,	an	alert	could	be	as	simple	as	sending	an
email	to	inform	you	that	there	is	an	issue	to	the	sounding	of	an	audible	alert	in	a	Network
Operations	Center	(NOC)	when	the	CPU	load	of	a	container	goes	above	five,	or	the	load
on	the	host	goes	above	10.

For	those	of	you	who	require	an	on-call	team	to	be	alerted,	most	of	the	software	we	have
covered	has	some	level	of	integration	alert	aggregation	services	such	as	PagerDuty
(https://www.pagerduty.com).

These	aggregation	services	either	intercept	your	alert	emails	or	allow	services	to	make
API	calls	to	them.	When	triggered,	they	can	be	configured	to	place	phone	calls,	send	SMS
messages,	and	even	escalate	to	secondary	on-call	technician	if	an	alert	has	not	been
flagged	down	within	a	definable	time.

I	can’t	think	of	any	cases	where	you	shouldn’t	look	at	enabling	alerting,	after	all,	it’s
always	best	to	know	about	anything	that	could	effect	your	application	before	your	end
users	do.

How	much	alerting	you	enable	is	really	down	to	what	you	are	using	your	containers	for;
however,	I	would	recommend	that	you	review	all	your	alerts	regularly	and	also	actively
tune	your	configuration.

The	last	thing	you	want	is	a	configuration	that	produces	too	many	false	positives	or	one
that	is	too	twitchy,	as	you	do	not	want	the	team	who	receives	your	alerts	to	become
desensitized	to	the	alerts	that	you	are	generating.

For	example,	if	a	critical	CPU	alert	is	triggered	every	30	minutes	because	of	a	scheduled
job,	then	you	will	probably	need	to	review	the	sensitivity	of	the	alert,	otherwise	it	is	easy
for	the	engineer	to	simply	dismiss	a	critical	alert	without	thinking	about	it,	as	“this	alert
comes	every	half	an	hour	and	will	be	ok	in	a	few	minutes”,	when	your	entire	application
could	be	unresponsive.

https://www.pagerduty.com

Keeping	up
While	Docker	has	been	built	on	top	of	well-established	technologies	such	as	Linux
Containers	(LXC),	these	have	traditionally	been	difficult	to	configure	and	manage,
especially	for	non-system	administrators.

Docker	removes	almost	all	the	barriers	to	entry,	allowing	everyone	with	a	small	amount	of
command-line	experience	to	launch	and	manage	their	own	container-based	applications.

This	has	forced	a	lot	of	the	supporting	tools	to	also	lower	their	barrier	to	entry.	Software
that	once	required	careful	planning	to	deploy,	such	as	some	of	the	monitoring	tools	we
covered	in	this	book,	can	now	be	deployed	and	configured	in	minutes	rather	than	hours.

Docker	is	also	a	very	fast-moving	technology;	while	it	has	been	considered	production-
ready	for	a	while,	new	features	are	being	added	and	existing	features	are	improved	with
regular	updates.

So	far,	in	2015,	there	have	been	11	releases	of	Docker	Engine;	of	these,	only	six	have	been
minor	updates	that	fix	bugs,	and	the	rest	have	all	been	major	updates.	Details	of	each
release	can	be	found	in	the	project’s	Changelog,	which	can	be	found	at
https://github.com/docker/docker/blob/master/CHANGELOG.md.

Because	of	the	pace	of	development	of	Docker,	it	is	import	that	you	also	update	any
monitoring	tools	you	deploy.	This	is	not	only	to	keep	up	with	new	features,	but	also	to
ensure	that	you	don’t	loose	any	functionality	due	to	changes	in	the	way	in	which	Docker
works.

This	attitude	of	updating	monitoring	clients/tools	can	be	a	bit	of	a	change	for	some
administrators	who	maybe	in	the	past	would	have	configured	a	monitoring	agent	on	a
server	and	then	not	thought	about	it	again.

https://github.com/docker/docker/blob/master/CHANGELOG.md

Summary
As	discussed	in	this	chapter,	Docker	is	a	fast	moving	technology.	While	this	book	has	been
in	production,	there	have	been	three	major	versions	released	from	1.7	to	1.9;	with	each
release	Docker	has	become	more	stable	and	more	powerful.

In	this	chapter,	we	have	looked	at	different	ways	to	implement	the	technologies	that	have
been	discussed	in	the	previous	chapters	of	this	book.	By	now,	you	should	have	an	idea	of
which	approach	is	appropriate	to	monitor	your	containers	and	host	machines,	for	both
your	application	and	for	the	way	the	application	has	been	deployed	using	Docker.

No	matter	which	approach	you	chose	to	take,	it	is	important	that	you	stay	up-to-date	with
Docker’s	development	and	also	the	new	monitoring	technologies	as	they	emerge,	the
following	links	are	good	starting	points	to	keep	yourself	informed:

Docker	Engineering	Blog:	http://blog.docker.com/category/engineering/
Docker	on	Twitter:	https://twitter.com/docker
Docker	on	Reddit:	https://www.reddit.com/r/docker
Docker	on	Stack	Overflow:	http://stackoverflow.com/questions/tagged/docker

One	of	the	reasons	why	the	Docker	project	has	been	embraced	by	developers,	system
administrators	and	even	enterprise	companies	is	because	it	is	able	to	move	at	a	quick	pace,
while	adding	more	features	and	very	impressively	maintaining	its	ease	of	use	and
flexibility.

Over	the	next	12	months,	the	technology	is	set	to	be	even	more	widespread;	the
importance	of	ensuring	that	you	are	capturing	useful	performance	metrics	and	logs	from
your	containers	will	become	more	critical	and	I	hope	that	this	book	has	helped	you	start
your	journey	into	monitoring	Docker.

http://blog.docker.com/category/engineering/
https://twitter.com/docker
https://www.reddit.com/r/docker
http://stackoverflow.com/questions/tagged/docker

Index
A

alerts
enabling	/	A	little	more	about	alerting
setting	up,	on	Chickens	/	Chickens
setting	up,	on	Cattle	/	Cattle	and	Pets
setting	up,	on	Pets	/	Cattle	and	Pets
sending	/	Sending	alerts

Amazon	EC2	Container	Service
URL	/	Cattle

Amazon	Web	Services
URL	/	A	word	about	externally	hosted	services

ApacheBench
URL	/	Running	Docker	stats

Apache	Mesos
URL	/	Chickens

Atomic
URL	/	Why	use	a	SaaS	service?

B
backslash

using	/	Running	cAdvisor	using	a	container

C
cAdvisor

about	/	What	is	cAdvisor?
executing,	container	used	/	Running	cAdvisor	using	a	container
compiling,	from	source	/	Compiling	cAdvisor	from	source
reference	link	/	Alternatives?

Cattle
about	/	Cattle
containers,	deploying	onto	/	Cattle
alerts,	setting	up	/	Cattle	and	Pets

Changelog,	Docker
URL	/	Keeping	up

Chickens
about	/	Chickens
containers,	deploying	onto	/	Chickens
alerts,	setting	up	/	Chickens

cloud
Docker,	deploying	in	/	Deploying	Docker	in	the	cloud

Cloud	Computing
reference	link	/	Chickens

Cloudscaling
reference	link	/	Pets,	Cattle,	Chickens,	and	Snowflakes

container
used,	for	executing	cAdvisor	/	Running	cAdvisor	using	a	container

Container	Down
about	/	Triggers

container	logs
viewing	/	Viewing	container	logs

containers
resource	utilization,	tracking	/	What	just	happened?
comparing,	to	host	machine	/	Compare	containers	to	your	host	machine
deploying,	onto	Pets	/	Pets
deploying,	onto	Cattle	/	Cattle
deploying,	onto	Chickens	/	Chickens
deploying,	onto	Snowflakes	/	Snowflakes

containers,	monitoring
scenarios	/	Scenario	one,	Scenario	two,	Scenario	three

container	stats
viewing	/	Viewing	container	stats
subcontainers	/	Subcontainers
driver	status	/	Driver	status
images	/	Images

CoreOS

URL	/	Why	use	a	SaaS	service?,	Cattle
Csysdig

about	/	Using	Csysdig
using	/	Using	Csysdig

custom	graphs
creating	/	Create	custom	graphs
reference	link	/	Create	custom	graphs

D
Dashboard

launching	/	Dashboard
Datadog

URL	/	Why	use	a	SaaS	service?,	Datadog
about	/	Datadog
agent,	installing	/	Installing	the	agent
agent	installation,	URL	/	Installing	the	agent
web	interface,	exploring	/	Exploring	the	web	interface
references	/	Summary	and	further	reading

data	volume	container
creating	/	The	next	steps

DigitalOcean
URL	/	Pets

Digital	Ocean
URL	/	A	word	about	externally	hosted	services

Docker
about	/	Docker
URL,	for	user	guide	/	Running	a	virtual	server,	The	next	steps
deploying,	in	cloud	/	Deploying	Docker	in	the	cloud
advancements	/	Keeping	up

docker-compose	file
used,	for	executing	ELK	stack	/	What	about	production?

Docker	Compose
about	/	Docker

Docker	Engine
about	/	Docker

Docker	exec
about	/	Docker	exec

docker	export	command
URL	/	Snowflakes

Docker	Hub
about	/	Docker
URL	/	Docker,	What	is	cAdvisor?,	Using	containers

Docker	images
URL	/	Driver	status

Docker	stats
about	/	Docker	stats
executing	/	Running	Docker	stats

Docker	top
about	/	Docker	top

driver	status
obtaining	/	Driver	status

E
Elasticsearch

URL,	for	launching	/	Starting	the	stack
ELK	stack

about	/	ELK	Stack
starting	/	Starting	the	stack
Logspout	/	Logspout
logs,	reviewing	/	Reviewing	the	logs
executing,	docker-compose	file	used	/	What	about	production?
references	/	What	about	production?

environment
cloning	/	Cloning	the	environment

externally	hosted	services
about	/	A	word	about	externally	hosted	services
Docker,	deploying	in	cloud	/	Deploying	Docker	in	the	cloud

F
Fig

about	/	Docker

G
Go

URL	/	What	is	cAdvisor?
Google	Container	Engine

URL	/	Cattle

H
host	machine

containers,	comparing	to	/	Compare	containers	to	your	host	machine

I
images

listing	/	Images
InfluxDB

about	/	Alternatives?
URL	/	Alternatives?

J
Joyent	Triton

URL	/	Cattle

K
Kibana

URL,	for	launching	/	Starting	the	stack
Kubernetes

URL	/	Chickens

L
Liquid	Wax	Ester	(LXE)

about	/	Keeping	up
lmctfy

URL	/	What	is	cAdvisor?
local	environment

launching	/	Launching	a	local	environment
Log	Entries

URL	/	Looking	at	third	party	options
configuring	/	Looking	at	third	party	options

Loggly
URL	/	Looking	at	third	party	options

logs
reviewing	/	Reviewing	the	logs

Logspout
URL,	for	launching	/	Starting	the	stack
about	/	Logspout
references	/	Logspout

Logstash
URL,	for	launching	/	Starting	the	stack

M
MariaDB	10

URL	/	Using	containers
metrics

collecting	/	Collecting	metrics
recording	/	Docker	metrics
custom	graphs,	creating	/	Create	custom	graphs
containers,	comparing	to	host	machine	/	Compare	containers	to	your	host
machine
triggers,	defining	/	Triggers

Microsoft	Azure
URL	/	A	word	about	externally	hosted	services

Monitoring	Docker	repository
URL	/	Cloning	the	environment

N
Nagios

URL	/	Zabbix
ncurses

about	/	What	is	Sysdig?
Network	Operations	Center	(NOC)

about	/	Sending	alerts
New	Relic

URL	/	Why	use	a	SaaS	service?,	New	Relic
about	/	New	Relic
agent,	installing	/	Installing	the	agent
web	interface,	exploring	/	Exploring	the	web	interface
references	/	Summary	and	further	reading

P
—privileged	flag

about	/	Running	cAdvisor	using	a	container
URL	/	Running	cAdvisor	using	a	container

PagerDuty
URL	/	Triggers,	Sending	alerts

Pets
about	/	Pets
containers,	deploying	onto	/	Pets
alerts,	setting	up	/	Cattle	and	Pets

phpinfo
URL	/	Running	Docker	stats

Pingdom
URL	/	Scenario	one

processes
isolating	/	What	about	processes?
Docker	top	/	Docker	top
Docker	exec	/	Docker	exec

Prometheus
about	/	Prometheus
launching	/	Launching	Prometheus
querying	/	Querying	Prometheus
Dashboard,	launching	/	Dashboard
URL,	for	documentation	/	Dashboard
data	volume	container,	creating	/	The	next	steps
references	/	The	next	steps

Puppet	Forge
URL	/	Using	vagrant

R
RancherOS

URL	/	Why	use	a	SaaS	service?,	Cattle

S
SaaS	service

using	/	Why	use	a	SaaS	service?
server	styles

selecting	/	So	what	does	this	all	mean?
Slack

URL	/	Triggers
Snowflakes

about	/	Snowflakes
reference	link	/	Snowflakes
containers,	deploying	onto	/	Snowflakes

Standard	Streams
reference	link	/	Viewing	container	logs

subcontainers
about	/	Subcontainers

SysAdmin
about	/	Pets,	Cattle,	Chickens,	and	Snowflakes

Sysdig
about	/	What	is	Sysdig?
installing	/	Installing	Sysdig
URL	/	Installing	Sysdig
using	/	Using	Sysdig
basics	/	The	basics
data,	capturing	/	Capturing	data
containers,	listing	/	Containers
references	/	Further	reading

SysDig	Cloud
URL	/	Why	use	a	SaaS	service?

Sysdig	Cloud
about	/	Sysdig	Cloud
functionality	/	Sysdig	Cloud
references	/	Sysdig	Cloud,	Summary	and	further	reading
agent,	installing	/	Installing	the	agent
agent	installation,	URL	/	Installing	the	agent
containers,	exploring	/	Exploring	your	containers

T
time	series

about	/	Prometheus
reference	link	/	Prometheus

triggers
defining	/	Triggers

U
Ubuntu	Snappy	Core

URL	/	Why	use	a	SaaS	service?
Uptime	Robot

URL	/	Scenario	one

V
Vagrant

URL	/	Launching	a	local	environment
vagrant	box

URL	/	Running	a	virtual	server
VirtualBox

URL	/	Launching	a	local	environment
virtual	server

executing	/	Running	a	virtual	server
halting	/	Halting	the	virtual	server

VMware	vCloud	Air
URL	/	A	word	about	externally	hosted	services

W
Web	interface

about	/	The	Web	interface
overview	/	Overview
Processes	/	Processes
CPU	/	CPU
Memory	/	Memory
Network	/	Network
Filesystem	/	Filesystem
drawbacks	/	This	is	all	great,	what’s	the	catch?

WordPress
URL,	for	installation	/	Using	Sysdig

Y
YAML

URL	/	Docker

Z
Zabbix

about	/	Zabbix
URL	/	Zabbix,	Using	vagrant,	The	Zabbix	web	interface
references	/	Zabbix
installing	/	Installing	Zabbix
containers,	using	/	Using	containers
vagrant,	using	/	Using	vagrant
host	machine,	preparing	/	Preparing	our	host	machine
host	templates,	adding	/	The	Zabbix	web	interface

Zenoss
URL	/	Zabbix

	Monitoring Docker
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Introduction to Docker Monitoring
	Pets, Cattle, Chickens, and Snowflakes
	Pets
	Cattle
	Chickens
	Snowflakes
	So what does this all mean?
	Docker
	Launching a local environment
	Cloning the environment
	Running a virtual server
	Halting the virtual server
	Summary
	2. Using the Built-in Tools
	Docker stats
	Running Docker stats
	What just happened?
	What about processes?
	Docker top
	Docker exec
	Summary
	3. Advanced Container Resource Analysis
	What is cAdvisor?
	Running cAdvisor using a container
	Compiling cAdvisor from source
	Collecting metrics
	The Web interface
	Overview
	Processes
	CPU
	Memory
	Network
	Filesystem
	Viewing container stats
	Subcontainers
	Driver status
	Images
	This is all great, what's the catch?
	Prometheus
	Launching Prometheus
	Querying Prometheus
	Dashboard
	The next steps
	Alternatives?
	Summary
	4. A Traditional Approach to Monitoring Containers
	Zabbix
	Installing Zabbix
	Using containers
	Using vagrant
	Preparing our host machine
	The Zabbix web interface
	Docker metrics
	Create custom graphs
	Compare containers to your host machine
	Triggers
	Summary
	5. Querying with Sysdig
	What is Sysdig?
	Installing Sysdig
	Using Sysdig
	The basics
	Capturing data
	Containers
	Further reading
	Using Csysdig
	Summary
	6. Exploring Third Party Options
	A word about externally hosted services
	Deploying Docker in the cloud
	Why use a SaaS service?
	Sysdig Cloud
	Installing the agent
	Exploring your containers
	Summary and further reading
	Datadog
	Installing the agent
	Exploring the web interface
	Summary and further reading
	New Relic
	Installing the agent
	Exploring the web interface
	Summary and further reading
	Summary
	7. Collecting Application Logs from within the Container
	Viewing container logs
	ELK Stack
	Starting the stack
	Logspout
	Reviewing the logs
	What about production?
	Looking at third party options
	Summary
	8. What Are the Next Steps?
	Some scenarios
	Pets, Cattle, Chickens, and Snowflakes
	Pets
	Cattle
	Chickens
	Snowflakes
	Scenario one
	Scenario two
	Scenario three
	A little more about alerting
	Chickens
	Cattle and Pets
	Sending alerts
	Keeping up
	Summary
	Index

