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Preface
Learn	how	to	use	OpenCV	to	develop	vision-aware,	intelligent	Android	applications	in	a
step-by-step	tutorial	and	join	the	interesting	and	rapidly	expanding	field	of	computer
vision	to	enable	your	Android	phone	to	make	sense	of	the	world.

Starting	from	the	basics	of	computer	vision	and	OpenCV,	we’ll	take	you	through	all	the
ways	to	create	exciting	applications.	You	will	discover	that	although	computer	vision	is	a
challenging	subject,	the	ideas	and	algorithms	used	are	simple	and	intuitive,	and	you	will
appreciate	the	abstraction	layer	that	OpenCV	offers	in	order	to	do	the	heavy	lifting	for
you.

Packed	with	many	examples,	the	book	will	help	you	understand	the	main	data	structures
used	in	OpenCV,	and	how	you	can	use	them	to	gain	performance	boosts.	Next,	we	will
discuss	and	use	several	image	processing	algorithms,	such	as	histogram	equalization,
filters,	and	color	space	conversion.	You	then	will	learn	about	image	gradients	and	how
they	are	used	in	many	shape	analysis	techniques,	such	as	edge	detection,	Hough	line
transform,	and	Hough	circle	transform.	In	addition	to	using	shape	analysis	to	find	things	in
images,	you	will	learn	how	to	describe	objects	in	images	in	a	more	robust	way	using
different	feature	detectors	and	descriptors.	Finally,	you	will	be	able	to	make	intelligent
decisions	using	machine	learning,	specifically,	the	famous	adaptive	boosting	learning
algorithm	and	cascade	classifiers.



What	this	book	covers
Chapter	1,	Getting	Yourself	Ready,	explains	how	to	start	using	OpenCV	to	develop	vision-
aware	Android	applications	in	a	step-by-step	fashion.

Chapter	2,	App	1	-	Building	Your	Own	Darkroom,	shows	you	how	images	are	stored	and
represented	in	OpenCV,	and	how	to	utilize	this	representation	to	implement	interesting
algorithms	that	will	enhance	the	way	your	images	look.

Chapter	3,	App	2	-	Software	Scanner,	explains	how	to	implement	your	next	application,	a
software	scanner.	It	allows	people	to	take	a	photo	of,	let’s	say,	a	receipt,	and	apply	some
transformations	to	make	it	look	as	if	it	was	scanned.	In	this	chapter,	we	will	introduce	two
important	topics	that	will	help	us	to	reach	our	final	goal.

The	first	topic	will	be	about	spatial	filtering	and	its	definition	and	applications.	The	second
topic	will	be	about	a	famous	shape	analysis	technique	called	the	Hough	transform.	You
will	learn	about	the	basic	idea	behind	this	technique	that	has	made	it	very	popular	and
widely	used,	and	we	will	use	the	OpenCV	implementation	to	start	fitting	lines	and	circles
to	a	set	of	edge	pixels.

Chapter	4,	App	2	-	Applying	Perspective	Correction,	continues	to	build	on	the	application
that	we	started	in	Chapter	3.	We	will	use	the	concepts	that	you’ve	learned,	namely,	the
edge	detection	and	Hough	line	transform,	to	do	perspective	correction	to	a	quadrilateral
object.	Applying	perspective	transformation	to	an	object	will	change	the	way	that	we	see
it;	this	idea	will	come	in	handy	when	you	take	pictures	of	documents,	receipts,	and	so	on,
and	you	want	to	a	have	better	view	of	the	captured	image	or	a	scan-like	copy.

Chapter	5,	App	3	-	Panoramic	Viewer,	starts	working	on	a	new	application.	The	goal	of
the	application	is	to	stitch	two	images	together	in	order	to	form	a	panoramic	view,	and	in
this	chapter,	we	will	introduce	the	concept	of	image	features	and	why	they	are	important,
and	we	will	see	them	in	action.

Chapter	6,	App	4	–	Automatic	Selfie,	introduces	a	new	application.	The	goal	of	the
application	is	to	be	able	to	take	a	selfie	without	touching	your	phone’s	screen.	Your
application	will	be	able	to	detect	a	certain	hand	gesture	that	will	trigger	the	process	of
saving	the	current	camera	frame.





What	you	need	for	this	book
Tegra	Android	Development	Pack
An	IDE	of	your	choice	(Eclipse	or	Android	Studio)
Android	SDK
Android	NDK
OpenCV4Android	SDK





Who	this	book	is	for
If	you	are	an	Android	developer	and	want	to	know	how	to	implement	vision-aware
applications	using	OpenCV,	then	this	book	is	definitely	for	you.

It	would	be	very	helpful	if	you	understand	the	basics	of	image	processing	and	computer
vision,	but	no	prior	experience	is	required.





Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“To
uninstall	the	previous	installation,	go	to	the	previous	installation	directory	and	run
tadp_uninstall.exe.”

A	block	of	code	is	set	as	follows:

LOCAL_PATH	:=	$(call	my-dir)

include	$(CLEAR_VARS)

LOCAL_MODULE				:=	hello-jni

LOCAL_SRC_FILES	:=	hello-jni.c

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

Mat	rgbImage=new	Mat();

Imgproc.cvtColor(originalImage,	rgbImage,	Imgproc.COLOR_BGR2RGB);

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“You	will	need	to
choose	the	type	of	the	installation.	Select	a	custom	installation	and	click	Next.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support


Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from:
https://www.packtpub.com/sites/default/files/downloads/0593OS_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/0593OS_ColorImages.pdf


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions 
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com




Chapter	1.	Getting	Yourself	Ready
In	this	chapter,	I	will	explain,	in	a	step-by-step	fashion,	how	to	start	using	OpenCV	to
develop	vision-aware	Android	applications.

The	Open	Source	Computer	Vision	(OpenCV)	software	library	has	over	2,500
optimized	algorithms;	the	library	includes	a	comprehensive	set	of	both	classic	and	state-
of-the-art	computer	vision	and	machine	learning	algorithms.	It	has	been	around	for	a
decade	and	released	under	the	Berkeley	Software	Distribution	(BSD)	license,	making	it
easy	for	users	to	utilize	and	modify	the	code.

OpenCV	is	downloaded	over	seven	million	times	and	used	by	well-established	companies
such	as	Google,	Yahoo,	Microsoft,	Intel,	IBM,	Sony,	and	Honda.	Moreover,	OpenCV
supports	several	desktop	and	mobile	operating	systems	including	Windows,	Linux,	Mac
OS	X,	Android,	and	iOS.

In	this	book,	we	will	work	with	OpenCV	for	Android,	which	is	a	part	of	OpenCV	that	runs
on	the	Android	operating	system.

I’ll	be	covering	two	scenarios	for	the	installation	and	to	get	ready;	first,	if	you	are	starting
a	clean	installation	for	Android,	it	is	recommended	that	you	start	with	Tegra	Android
Development	Pack	(TADP).	The	other	scenario	is	a	manual	setup	of	every	component
needed	to	run	Android	with	OpenCV.	You	would	probably	go	with	this	option	if	you
already	have	a	previous	installation	of	the	Android	development	environment.	We	will
cover	the	following	topics:

Installing	Tegra	Android	Development	Pack
Installing	the	OpenCV	and	Android	development	environment	manually
Understanding	how	Native	Development	Kit	(NDK)	works
Building	your	first	Android	project	with	OpenCV



Installing	Tegra	Android	Development
Pack
TADP	was	released	by	NVIDIA	to	make	the	preparation	for	the	Android	development
environment	a	seamless	process.

NVIDIA	has	released	TADP	version	3.0r4	to	support	Android	SDK	(23.0.2),	NDK	(r10c),
and	OpenCV	for	Tegra	2.4.8.2,	which	is	a	regular	OpenCV4Android	SDK	extended	with
Tegra-specific	optimizations.



Downloading	and	installing	TADP
To	get	TADP,	visit	https://developer.nvidia.com/tegra-android-development-pack	and
follow	the	steps	to	become	a	registered	developer;	it	is	a	free	membership.

Once	you	have	your	membership	activated,	log	in	and	download	the	version
corresponding	to	your	operating	system.	NVIDIA	supports	the	following	operating
systems:

Windows	64-bit
Mac	OS	X
Ubuntu	Linux	(32/64-bit)

In	my	case,	I	have	Windows	7	64-bit	on	my	machine,	so	from	now	on,	all	the	upcoming
steps	are	tested	and	working	fine	on	this	operating	system.	However,	I	don’t	expect	any
major	changes	if	you	are	working	with	a	different	operating	system.

Note
For	the	Ubuntu	installation,	TADP	will	need	you	to	have	root	privileges,	so	make	sure	that
you	do.

Once	you	finish	downloading	the	TADP	installer,	launch	it	and	perform	the	following
steps:

1.	 Follow	the	onscreen	instructions	after	you	read	and	accept	the	license	agreement.
2.	 You	will	need	to	choose	the	type	of	installation.	Select	a	Custom	installation	and

click	on	the	Next	button:

https://developer.nvidia.com/tegra-android-development-pack


3.	 Select	the	components	to	be	installed	as	depicted	and	click	on	the	Next	button:



4.	 You	need	to	name	the	installation	and	download	the	directory.

Note
Note	that	if	you	have	a	previous	installation,	you	will	get	a	warning	message	that	the
previous	installation	needs	to	be	uninstalled.	To	uninstall	the	previous	installation,	go
to	the	previous	installation	directory	and	run	tadp_uninstall.exe.

Sometimes,	the	uninstaller	doesn’t	clean	everything.	In	this	case,	you	need	to	delete
the	contents	of	the	previous	installation	directory	manually.

5.	 Now	you	are	ready	to	install	the	selected	components.	Click	on	the	Next	button.
6.	 In	case	you	are	behind	a	proxy,	you	can	enter	the	proxy	details;	otherwise,	click	on

the	Next	button.
7.	 The	installer	will	start	to	download	all	the	selected	components;	this	may	take	a	while

depending	on	your	Internet	connection.
8.	 After	the	download	has	finished,	click	Next	to	start	installing	the	selected

components.

Note
Sometimes,	the	installer	window	will	not	respond;	this	is	okay.	After	a	few	minutes,
the	installation	will	continue	in	a	normal	way.



9.	 Select	the	post-installation	action	that	you	want	and	click	on	the	Finish	button.



TADP	post-installation	configuration
Yes,	TADP	will	download	and	install	everything	for	you;	yet	you	still	need	to	do	some
post-installation	configuration	in	order	to	make	sure	that	everything	will	work	properly.

Installing	emulator	system	images
You	need	to	install	a	system	image	for	every	Android	SDK	platform	installed	in	case	you
want	to	run	an	emulator	with	this	SDK	platform	as	a	target.

To	do	so,	just	follow	these	simple	steps:

1.	 Go	to	the	installation	directory	that	you	selected	while	installing	TADP.
2.	 Open	the	SDK	folder;	in	this	case,	it	is	android-sdk-windows.
3.	 Run	the	SDK	Manager.
4.	 For	every	installed	Android	X.X,	select	a	system	image	for	the	emulator,	such	as

ARM	EABI	V7a	System	Image:

5.	 Click	Install	packages.



6.	 Read	and	accept	the	license	agreement	for	the	selected	components.
7.	 Click	Install.

Now,	you	can	test	your	applications	on	an	emulator	of	any	of	the	installed	targets.

Configuring	Eclipse	to	work	with	NDK
You	also	need	to	configure	Eclipse	to	run	with	NDK	so	that	you	can	build	your	native
apps	directly	from	Eclipse:

1.	 Launch	Eclipse	from	the	installation	directory	that	you	specified	earlier.
2.	 Open	Window	|	Preferences.
3.	 In	the	pane	on	the	left-hand	side,	open	Android	Tree.
4.	 Select	the	tree	node	labeled	NDK.
5.	 In	the	right	pane,	click	Browse	and	select	the	NDK	directory;	you	will	find	it	under

the	installation	directory.
6.	 Click	OK.

NDK	verification
As	the	OpenCV	libraries	are	written	in	C/C++,	the	first	step	to	verify	that	your
environment	is	working	is	to	make	sure	that	you	are	able	to	run	Android	applications	that
use	native	code:

1.	 Launch	Eclipse.
2.	 From	the	NDK	installation	directory—in	my	case,	C:\NVPACK\android-ndk-r10c\

—import	the	hello-jni	sample	project	from	the	samples	folder	as	if	you	are
importing	any	other	Android	project.

3.	 Right-click	on	the	HelloJni	project.
4.	 In	the	context	menu,	choose	Android	Tools	|	Add	Native	Support.
5.	 Make	sure	that	the	library	name	is	set	to	hello-jni;	it	should	be	named	this	by

default.
6.	 Start	the	emulator	with	the	target	of	your	choice.
7.	 Right	click	on	the	hello-jni	project	in	the	project	explorer.	In	the	context	menu,

choose	Run	as	|	Android	application.

In	your	console	output,	there	should	be	a	list	of	.so	files;	these	are	the	native	shared
libraries	that	NDK	has	built	using	Application	Binary	Interface	(ABI),	which	defines
exactly	how	your	machine	code	should	look.

Android	NDK	supports	different	architectures.	By	default,	your	.so	will	be	built	for	ARM
EABI	in	addition	to	MIPS	and	x86	if	you	specify	so	in	the	application.mk	file.	We	will
discuss	this	subject	later	in	this	chapter.

If	everything	runs	smoothly,	your	emulator	should	have	an	app	running	as	follows:



This	application	is	very	simple	and	a	good	checkpoint	to	verify	that	you	are	able	to	invoke
native	code	from	your	Android	application.

Basically,	what	you	see	on	the	emulator	screen	is	a	string	returned	from	the	native	code
and	displayed	by	the	Android	framework	in	a	text	view.





Installing	the	OpenCV	and	Android
development	environment	manually
To	choose	to	manually	install	OpenCV	and	the	Android	development	environment,	you
probably	have	the	following	installed	components	on	your	machine:

Java	SE	Development	Kit	6
Android	Studio
Android	SDK
Eclipse	IDE
ADT	and	CDT	plugin	for	Eclipse
Android	NDK
OpenCV4Android	SDK

You	could	go	through	the	manual	installation	steps	to	make	sure	that	you	have	all	the
needed	components	in	order	to	start	developing	Android	applications	with	OpenCV	is
ready	and	properly	configured.



Java	SE	Development	Kit	6
You	can	download	the	JDK	installer	for	your	OS	from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

http://www.oracle.com/technetwork/java/javase/downloads/index.html


Android	Studio
Another	very	good	option	to	work	with	is	the	Android	Studio.	You	can	download	the
Android	Studio	from	http://developer.android.com/sdk/index.html.	Note	that	Android
Studio	comes	bundled	with	Android	SDK,	so	you	don’t	need	to	install	it	if	you	go	with
this	option.	Additionally,	you	can	skip	the	Eclipse	and	ADT	installation	and	note	that
starting	from	Android	Studio	1.3;	you	will	find	built-in	support	for	NDK	as	well.

http://developer.android.com/sdk/index.html


Android	SDK
To	download	and	install	Android	SDK,	follow	these	steps:

1.	 Go	to	http://developer.android.com/sdk/index.html.
2.	 Scroll	down	to	the	SDK	Tools	Only	section	and	click	on	the	.exe	file	of	Windows

installer	link.
3.	 After	you	have	read	and	accepted	the	terms	and	conditions,	click	the	download

button.
4.	 Save	the	installer	on	your	disk	and	click	on	the	.exe	file	to	start	the	installer	and	then

follow	the	onscreen	instructions.
5.	 Keep	a	note	of	the	SDK	directory	to	refer	to	it	later	from	the	command	line.
6.	 Once	the	installation	is	done,	Android	SDK	Manager	will	start.
7.	 Select	to	install	Android	SDK	Tools,	revision	20	or	newer.
8.	 For	the	SDK	platform,	Android,	select	Android	3.0	(API	11)	or	higher.	In	my	case,	I

used	API	15	and	you	are	recommended	to	do	so.
9.	 Read	and	accept	the	license	agreement,	then	click	Install.

http://developer.android.com/sdk/index.html


Eclipse	IDE
For	OpenCV	2.4.x,	it	is	recommended	to	have	Eclipse	3.7	(Indigo)	or	Eclipse	4.2	(Juno);
you	can	download	your	selected	version	from	Eclipse’s	official	website	at
http://www.eclipse.org/downloads/.

http://www.eclipse.org/downloads/


ADT	and	CDT	plugins	for	Eclipse
Assuming	that	you	have	already	downloaded	Eclipse,	you	can	follow	these	steps	to
download	the	Android	Developer	Tools	(ADT)	and	C/C++	Development	Tool	(CDT)
plugins:

1.	 Launch	Eclipse	and	then	navigate	to	Help	|	Install	New	Software.
2.	 Click	the	Add	button	in	the	top	corner	to	the	right.
3.	 In	the	Add	Repository	dialog,	write	ADT	Plug-in	in	the	Name	field	and	copy	and

paste	this	URL,	https://dl-ssl.google.com/android/eclipse/,	in	the	Location	field.
4.	 Click	OK.
5.	 Check	the	Developer	Tools	checkbox.
6.	 Click	Next.
7.	 A	list	of	the	tools	to	be	downloaded	will	be	shown	in	the	next	window.	Just	make

sure	that	it	includes	the	native	support	tools	(CDT)	and	click	Next.
8.	 Read	and	accept	the	license	agreement	and	click	Finish.
9.	 Once	the	installation	is	complete,	you	will	need	to	restart	Eclipse.

https://dl-ssl.google.com/android/eclipse/


Android	NDK
In	order	to	develop	for	Android	in	C++,	you	will	need	to	install	Android	NDK.

Note
Android	NDK	is	not	meant	to	be	used	in	all	situations.	As	a	developer,	you	need	to
balance	between	the	performance	gains	that	come	with	using	a	native	API	and	the
introduced	complexity.

In	our	case,	as	the	OpenCV	libraries	are	written	in	C/C++,	we	might	have	to	use	NDK.
However,	using	NDK	shouldn’t	be	just	because	the	programmer	prefers	to	write	in	C/C++.

Downloading	Android	NDK
You	can	download	Android	NDK	by	following	these	steps:

1.	 Go	to	the	Android	NDK	home	page,
http://developer.android.com/tools/sdk/ndk/index.html.

2.	 In	the	Downloads	section,	select	the	version	corresponding	to	your	operating	system.
In	my	case,	it	is	Windows	64-bit.

3.	 Read	and	agree	with	the	terms	and	conditions.
4.	 Click	the	Download	button.

Installing	and	configuring	Android	NDK
Once	the	download	has	finished,	you	will	need	to	follow	these	steps	to	configure	NDK:

1.	 Navigate	to	the	NDK	download	folder.
2.	 Double-click	on	the	downloaded	file	to	extract	it.
3.	 Rename	and	move	the	extracted	folder;	I’ll	refer	to	the	ndk	folder	as	<ndk_home>.

Now	you	are	ready	to	use	NDK	to	build	your	projects.
4.	 If	you	prefer	to	build	from	the	command	line,	you	will	need	to	add	the	<ndk_home>

folder	(in	my	case,	C:/android/android-ndk-r10d)	to	your	PATH	environment
variable.	For	Windows,	open	CMD.	Enter	the	following	command	and	replace	the
ndk	directory	with	yours:

set	PATH=%PATH%;c:/android/android-ndk-r10d

5.	 To	check	that	NDK	is	configured	properly,	go	to	the	directory	that	contains	your
project.	For	simplicity,	you	can	test	on	the	hello-jni	sample	project.	You	can	find	it
under	<ndk_home>/samples/.

6.	 Change	the	directory	by	executing	the	command	cd	<your_project_directory>/.
Run	the	following	command:

ndk-build

7.	 As	depicted	in	the	console	output,	the	files	with	the	.so	extension	are	the	compiled
version	of	the	C/C++	source	code	used	in	this	project:

http://developer.android.com/tools/sdk/ndk/index.html


Building	native	code	using	Eclipse
If	you	prefer	to	build	from	Eclipse,	which	is	more	convenient,	you	will	need	to	tell	Eclipse
where	to	find	NDK	so	that	you	can	build	your	apps:

1.	 Launch	Eclipse	and	open	Window	|	Preferences.
2.	 In	the	left-hand	side	pane,	open	the	Android	tree.
3.	 Select	the	NDK	tree	node	and	in	the	right-hand	side	pane,	click	Browse	and	select

the	<ndk_home>	directory.
4.	 Click	OK.
5.	 Import	the	hello-jni	sample	project	from	<ndk_home>/samples/	as	an	Android

project.
6.	 Open	the	Project	Explorer	and	right-click	on	the	hello-jni	project.
7.	 In	the	context	menu,	navigate	to	Android	Tools	|	Add	Native	Support	to	convert

this	project	to	a	C++	project.
8.	 Accept	the	default	library	name	and	click	Finish.
9.	 Build	the	application.

In	the	console,	you	will	see	a	list	of	.so	files,	which	are	the	compiled	C++	part	of	this
project.	Still,	if	you	open	any	C/C++	file	from	the	imported	project,	you	will	see	many
highlighted	errors.	You	just	need	to	do	some	extra	steps	related	to	the	CDT	plugin:

1.	 Navigate	to	Project	|	Properties.	In	the	left-hand	side	pane,	expand	the	C/C++
General	node.

2.	 Select	Paths	and	Symbols.
3.	 In	the	right-hand	side	pane,	select	the	Includes	tab.
4.	 Click	Add	and	then	File	system	to	add	the	following	paths:

If	you	installed	NDK	r8	or	prior:
<ndk_home>/platforms/android-9/arch-

arm/usr/include<ndk_home>/sources/cxx-stl/gnu-

libstdc++/include<ndk_home>/sources/cxx-stl/gnu-

libstdc++/libs/armeabi-v7a/include



If	you	installed	NDK	r8b	or	later:
<ndk_home>	/platforms/android-9/arch-arm/usr/include

<ndk_home>/sources/cxx-stl/gnu-libstdc++/4.6/include

<ndk_home>	/sources/cxx-stl/gnu-libstdc++/4.6/libs/armeabi-

v7a/include

5.	 Click	OK.	Eclipse	will	rebuild	the	project	and	all	the	syntax	errors	should	be	cleared
from	Eclipse.

6.	 Now,	you	can	build	the	project	to	package	both	the	Java	and	native	code	in	one	APK.
To	install	the	application	on	the	emulator	of	your	choice,	use	the	menu	item,	Run	|
Run	As	|	Android	Application.



OpenCV4Android	SDK
To	be	able	to	use	the	OpenCV	collection	of	native	(C/C++)	libraries	on	your	Android
device,	you	need	to	install	OpenCV4Android	SDK,	which	is	a	part	of	OpenCV	to	run	on
the	Android	operating	system.

1.	 First,	go	to	the	OpenCV	download	page,
http://sourceforge.net/projects/opencvlibrary/files/opencv-android/.

2.	 Download	the	latest	available	version,	which,	at	the	time	this	book	is	being	written,
was	2.4.10.

3.	 Extract	the	compressed	file	to	a	convenient	path,	for	example,	C:\opencv\.

Note
It	is	highly	recommended	to	use	paths	with	no	spaces	to	avoid	any	problems	with
ndk-build.

http://sourceforge.net/projects/opencvlibrary/files/opencv-android/




Understanding	how	NDK	works
Whether	you	had	a	clean	installation	using	TADP	or	followed	the	manual	setup	steps,	at
this	stage	you	should	have	all	the	needed	components	to	develop	vision-aware	Android
applications.

Before	we	move	forward	to	our	first	example,	let’s	first	elaborate	on	how	NDK	works.	It’s
always	a	good	idea	to	familiarize	yourself	with	the	basics	of	Android	NDK	and	be
comfortable	using	it	as	it	will	be	a	cornerstone	to	our	development	of	Android	applications
using	OpenCV.



An	overview	of	NDK
If	you	decided	to	compile	the	native	part	of	your	Android	application	using	the	command
prompt,	you	must	have	used	the	ndk-build	tool.	The	ndk-build	tool	is	actually	a	script
that	launches	different	build	scripts	that	are	responsible	for	the	following:

It	automatically	searches	your	project	to	decide	on	what	to	build
Once	the	search	is	done,	the	scripts	start	generating	binaries	and	managing
dependencies
It	copies	the	generated	binaries	to	your	project	path

Besides	the	ndk-build	tool,	there	are	a	few	other	main	components	that	you	should	be
familiar	with,	including	the	following:

Java	and	native	calls:	Android	applications	are	written	in	Java,	and	once	the	source
code	is	compiled,	it	is	transformed	to	bytecode	so	that	the	Android	OS	runs	under	the
Dalvik	or	Android	Runtime	(ART)	virtual	machine.

Note
Note	that	the	applications	that	execute	the	native	code	are	tested	only	on	a	Dalvik
virtual	machine.

When	you	are	using	methods	implemented	in	native	code,	you	should	use	the	native
keyword.

For	example,	you	could	declare	a	function	that	multiplies	two	numbers	and	instructs
the	compiler	that	it	is	a	native	library:

public	native	double	mul(double	x,	double	y);

Native	shared	libraries:	NDK	builds	these	libraries	with	an	extension,	.so.	As	the
name	suggests,	these	libraries	are	shared	and	linked	in	runtime.
Native	static	libraries:	NDK	also	builds	these	libraries	with	an	extension,	.a;	these
kind	of	libraries	are	actually	linked	at	the	compile	time.
Java	Native	Interface	(JNI):	As	you	write	your	Android	application	in	Java,	you
need	a	way	to	channel	your	calls	to	the	native	libraries	written	in	C/C++	and	that’s
where	the	JNI	comes	in	handy.
Application	Binary	Interface	(ABI):	It	is	the	interface	that	defines	how	your
application	machine	code	should	look	as	you	can	run	your	application	on	different
machine	architectures.	By	default,	NDK	builds	your	code	for	ARM	EABI;	however,
you	can	also	select	it	to	be	built	for	MIPS	or	x86.
Android.mk:	Think	of	this	file	as	a	Maven	build	script	or	better,	a	make	file,	which
instructs	the	ndk-build	script	about	the	definitions	of	the	module	and	its	name,	the
source	files	that	you	need	to	compile,	and	also	the	libraries	that	you	need	to	link.	It	is
very	important	to	understand	how	to	use	this	file	and	we	will	come	back	to	it	later	for
more	details.
Application.mk:	It	is	optional	to	create	this	file	and	it	is	used	to	list	the	modules	that
your	application	requires.	This	information	can	include	ABIs	to	generate	machine



code	for	a	specific	target	architecture,	toolchains,	and	standard	libraries.

With	these	components	in	mind,	you	can	summarize	the	general	flow	of	developing	native
applications	for	Android	as	follows:

1.	 Decide	which	parts	will	be	written	in	Java	and	which	parts	will	be	written	in	native
C/C++.

2.	 Create	an	Android	application	in	Eclipse.
3.	 Create	an	Android.mk	file	to	define	your	module,	list	the	native	source	code	files	to

be	compiled,	and	enumerate	the	linked	libraries.
4.	 Create	Application.mk;	this	is	optional.
5.	 Copy	your	Anrdoid.mk	file	under	the	jni	folder	in	your	project	path.
6.	 Build	the	project	using	Eclipse.	As	we	linked	Eclipse	to	the	installed	NDK,	the	ndk-

build	tool	will	compile	the	.so,	.a	libraries,	your	Java	code	will	be	compiled	to	the
.dex	files,	and	everything	will	be	packaged	in	one	single	APK	file	and	ready	to	be
installed.

A	simple	example	of	NDK
As	you	will	be	developing	Android	applications	with	native	support,	you	will	need	to	be
familiar	with	the	general	structure	of	a	typical	Android	application	using	NDK.

Usually,	your	Android	application	has	the	following	folder	structure.	The	project	root
folder	has	the	following	subdirectories:

jni/

libs/

res/

src/

AndroidManifest.xml

project.properties

Here,	the	NDK-related	folders	are	as	follows:

The	jni	folder	will	contain	the	native	part	of	your	application.	In	other	words,	this	is
the	C/C++	source	code	with	the	NDK	build	scripts	such	as	Android.mk	and
Application.mk,	which	are	needed	to	build	the	native	libraries.
The	libs	folder	will	contain	the	native	libraries	after	a	successful	build.

Note
The	NDK	build	system	requires	both	the	AndroidManifest.xml	and
project.properties	files	to	compile	the	native	part	of	your	application.	So,	if	any
of	these	files	are	missing,	you	will	need	to	compile	your	Java	code	first	before
compiling	the	C/C++	code.

Android.mk

In	this	section,	I’ll	describe	the	syntax	of	the	Android.mk	build	file.	As	mentioned	before,
Android.mk	is	actually	a	GNU	makefile	fragment	that	the	build	system	parses	to	know



what	to	build	in	your	project.	The	syntax	of	the	file	allows	you	to	define	modules.	A
module	is	one	of	the	following:

A	static	library
A	shared	library
A	standalone	executable

You	already	used	ndk-build	to	build	the	hello-jni	project,	so	let’s	take	a	look	at	the
contents	of	this	project	Android.mk	file:

LOCAL_PATH	:=	$(call	my-dir)

include	$(CLEAR_VARS)

LOCAL_MODULE				:=	hello-jni

LOCAL_SRC_FILES	:=	hello-jni.c

include	$(BUILD_SHARED_LIBRARY)

Now,	let’s	go	through	these	lines	one	by	one:

LOCAL_PATH	:=	$(call	my-dir):	Here,	the	script	defines	a	variable	called
LOCAL_PATH	and	sets	its	value	by	calling	the	my-dir	function,	which	returns	the
current	working	directory.
include	$(CLEAR_VARS):	In	this	line,	the	script	includes	another	GNU	makefile
called	CLEAR_VARS	to	clear	all	the	local	variables—variables	starting	with	Local_XXX
with	the	exception	of	LOCAL_PATH.	This	is	needed	because	the	build	files	are	parsed	in
a	single-make	execution	context	where	all	the	variables	are	declared	as	global.
LOCAL_MODULE	:=	hello-jni:	Here,	the	script	defines	a	module	called	hello-jni.
The	LOCAL_MODULE	variable	must	be	defined	and	unique	to	identify	each	module	in
Android.mk.

Note
The	build	system	will	add	the	lib	prefix	and	.so	suffix	to	your	defined	modules.	In
the	example	case,	the	generated	library	will	be	named	libhello-jni.so.

LOCAL_SRC_FILES	:=	hello-jni.c:	As	the	name	suggests,	you	will	list	all	the
source	files	that	you	need	be	built	and	assembled	in	one	module.

Note
You	only	list	the	source	files	and	not	the	header	files;	it	is	the	responsibility	of	the
build	system	to	compute	the	dependency	for	you.

include	$(BUILD_SHARED_LIBRARY):	Here	we	are	including	another	GNU	makefile,
which	will	collect	all	the	information	that	you	defined	after	the	last	include
command	and	decide	what	to	build	and	how	to	build	your	module.





Building	your	first	Android	project	with
OpenCV
With	the	development	environment	up	and	running	and	having	the	proper	NDK
background,	I	can	start	assembling	the	big	picture	on	how	you	can	use	the	OpenCV
libraries	in	your	Android	application.

OpenCV	for	Android	supports	access	to	its	functions	through	its	native	API	and	also	its
Java	wrappers	API.	In	the	case	of	a	native	API,	you	will	define	your	native	library	using
Android	NDK	and	include	the	OpenCV	libraries	that	you	are	using.	Then,	you	will	call
your	native	library	from	the	Java	code	using	Java	Native	Interface	(JNI).

The	other	option	is	to	use	the	OpenCV	Java	wrappers	directly	in	your	Java	code	using	the
usual	Java	imports.	What	will	happen	is	that	the	Java	wrappers	will	channel	your	calls	to
the	native	OpenCV	libraries	using	JNI.

Of	course,	it	is	up	to	you	to	choose	which	style	to	go	with;	however,	you	should
understand	that	using	native	calls	could	result	in	less	JNI	overhead	but	require	more
programming	effort.	On	the	other	hand,	using	Java	wrappers	could	cause	more	JNI
overhead	with	less	programming	effort.

Note
Consider	this	scenario:	you	are	processing	a	video	frame	or	still	image	and	in	your
algorithm,	you	will	call	several	OpenCV	functions.	In	this	case,	it	is	better	to	write	one
native	library	that	calls	all	these	functions.	In	your	Android	application,	you	can	access
this	native	library	using	only	one	JNI	call.



HelloVisionWorld	Android	application
We	will	build	our	first	Android	application	to	grab	preview	frames	from	the	camera	in	real
time	and	display	the	preview	on	a	fullscreen	using	OpenCV’s	Java	camera	API.

Creating	a	project	in	Eclipse
Following	are	the	steps	to	create	a	project	in	Eclipse:

1.	 Launch	Eclipse	and	create	a	new	workspace.
2.	 Create	a	new	Android	project	and	name	your	application	HelloVisionWorld.
3.	 Set	the	Minimum	SDK	version.	To	build	with	OpenCV4Android	SDK,	the

minimum	SDK	version	is	11;	however,	it	is	highly	recommended	to	use	API	15	or
higher.	In	my	case,	I	used	API	15.

4.	 Select	Target	SDK.	In	my	case,	I	set	it	to	API	19.	Click	Next.
5.	 Allow	Eclipse	to	create	New	Blank	Activity	and	name	it	HelloVisionActivity	with

a	layout	named	activity_hello_vision.
6.	 Import	the	OpenCV	library	project	to	your	workspace.	Navigate	to	File	|	Import	|

Existing	Android	Code	Into	Workspace.
7.	 Select	the	root	directory	of	OpenCV4Android	SDK.	Deselect	All	the	sample

projects	and	select	only	OpenCV	Library	and	click	Finish:



8.	 Reference	the	OpenCV	library	from	your	Android	project.	Click	Project	|
Properties.	Select	the	Android	tree	node	from	the	left-hand	side	pane	and	in	the
right-hand	side	pane,	click	Add	in	the	Library	section	and	then	OK:

Creating	a	project	in	Android	Studio
Following	are	the	steps	to	create	a	project	in	Android	Studio:

1.	 Launch	Android	Studio.
2.	 Create	a	new	Android	Studio	project	and	name	it	HelloVisionWorld	with

Company	Domain	set	to	app0.com.
3.	 Choose	Minimum	SDK.	To	build	with	OpenCV4Android	SDK,	the	Minimum	SDK

version	is	11.
4.	 Create	a	blank	activity	and	name	it	HelloVisionActivity.
5.	 To	add	OpenCV	as	a	dependency	to	your	project,	navigate	to	File	|	New	|	Import

Module	and	<OpenCV4Android_Directoy>\sdk\java.	Then,	click	OK.	At	this
point,	you	may	face	some	issues	depending	on	the	components	installed	from
Android	SDK.	Android	Studio	will	propose	quick-fix	links	to	solve	such	errors	and	it



should	be	a	straightforward	fix.
6.	 Right-click	on	your	newly	created	application	in	the	project	view	and	choose	Open

Module	Settings	or	press	F4.
7.	 In	the	Dependencies	tab,	press	the	+	button	and	select	Module	Dependency.
8.	 Choose	the	OpenCV	library	and	press	Add.	Now,	you	should	be	able	to	import	the

OpenCV	classes	to	your	project.

Moving	forward,	you	should	be	able	to	follow	the	steps	regardless	of	your	choice	of	an
IDE:

1.	 Open	the	layout	file	and	edit	it	to	match	the	following	code.	We	added	the	OpenCV
namespace	and	defined	a	Java	camera	view	layout:

<RelativeLayout	

xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				xmlns:opencv="http://schemas.android.com/apk/res-auto"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:paddingBottom="@dimen/activity_vertical_margin"

				android:paddingLeft="@dimen/activity_horizontal_margin"

				android:paddingRight="@dimen/activity_horizontal_margin"

				android:paddingTop="@dimen/activity_vertical_margin"

				tools:context="com.example.hellovisionworld.HelloVisionActivity"	>

				<org.opencv.android.JavaCameraView

								android:layout_width="fill_parent"

								android:layout_height="fill_parent"

								android:visibility="gone"

								android:id="@+id/HelloVisionView"

								opencv:show_fps="true"

								opencv:camera_id="any"	/>

</RelativeLayout>

Note
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	the	Packt	books	that	you	have
purchased	from	your	account	at	http://www.packtpub.com.	If	you	purchased	this
book	elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	in	order
to	have	the	files	e-mailed	to	you	directly.

2.	 As	we	will	be	using	the	device	camera,	we	need	to	set	some	permissions	in	the
AndroidManifest	file:

</application>

<uses-permission	android:name="android.permission.CAMERA"/>

<uses-feature	android:name="android.hardware.camera"	

android:required="false"/>

<uses-feature	android:name="android.hardware.camera.autofocus"	

android:required="false"/>

http://www.packtpub.com
http://www.packtpub.com/support


<uses-feature	android:name="android.hardware.camera.front"	

android:required="false"/>

<uses-feature	android:name="android.hardware.camera.front.autofocus"	

android:required="false"/>

3.	 Hide	the	title	and	system	buttons	in	the	AndroidManifest	file:

<application

				android:icon="@drawable/icon"

				android:label="@string/app_name"

				android:theme="@android:style/Theme.NoTitleBar.Fullscreen"	>

4.	 We	need	to	initialize	the	OpenCV	library	in	the	created	activity.	To	do	so,	we	use
asynchronous	initialization	using	the	OpenCV	Manager	service	to	access	the
OpenCV	libraries	externally	installed	in	the	target	system.	First,	we	need	to	install	the
OpenCV	Manager	on	the	emulator	that	we	will	use.	To	do	so,	use	the	adb	install
command	in	the	command	prompt:

adb	install	<OpenCV4Android	

SDK_Home>\apk\OpenCV_2.4.X_Manager_2.X_<platform>.apk

Replace	<OpenCV4Android	SDK_Home>	with	your	OpenCV	installation	folder	and	X	in
the	apk	name	with	the	available	versions	in	your	apk	folder.

For	<platform>,	use	the	following	table	to	choose	which	platform	to	install
according	to	the	system	image	that	is	installed	on	your	emulator:

Hardware	platform Package	name

armeabi-v7a	(ARMv7-A	+	NEON) OpenCV_2.4.X_Manager_2.X_armv7a-neon.apk

armeabi	(ARMv5,	ARMv6) OpenCV_2.4.X_Manager_2.X_armeabi.apk

Intel	x86 OpenCV_2.4.X_Manager_2.X_x86.apk

MIPS OpenCV_2.4.X_Manager_2.X_mips.apk

Note
When	you	are	testing	your	application	on	a	real	device,	a	message	will	be	displayed
asking	you	to	download	the	OpenCV	manager	from	Google	Play,	so	click	Yes	and
check	which	version	of	OpenCV	it	supports	so	that	you	can	load	it	through
asynchronous	initialization.

5.	 In	Activity,	define	the	following	and	fix	the	imports	accordingly:

//A	Tag	to	filter	the	log	messages

private	static	final	String		TAG	=	

"Example::HelloVisionWorld::Activity";

//A	class	used	to	implement	the	interaction	between	OpenCV	and	the	

//device	camera.

private	CameraBridgeViewBase	mOpenCvCameraView;



//This	is	the	callback	object	used	when	we	initialize	the	OpenCV	

//library	asynchronously

private	BaseLoaderCallback	mLoaderCallback	=	new	

BaseLoaderCallback(this)	{

				@Override

							//This	is	the	callback	method	called	once	the	OpenCV	//manager	

is	connected

				public	void	onManagerConnected(int	status)	{

						switch	(status)	{

		//Once	the	OpenCV	manager	is	successfully	connected	we	can	enable	the	

camera	interaction	with	the	defined	OpenCV	camera	view

						case	LoaderCallbackInterface.SUCCESS:

								{

										Log.i(TAG,	"OpenCV	loaded	successfully");

										mOpenCvCameraView.enableView();

								}	break;

										default:

												{

														super.onManagerConnected(status);

												}	break;

							}

				}

};

6.	 Update	the	onResume	activity	callback	method	to	load	the	OpenCV	library	and	fix	the
imports	accordingly:

@Override

public	void	onResume(){

		super.onResume();

//Call	the	async	initialization	and	pass	the	callback	object	we	

//created	later,	and	chose	which	version	of	OpenCV	library	to	//load.	

Just	make	sure	that	the	OpenCV	manager	you	installed	//supports	the	

version	you	are	trying	to	load.

		OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_10,	this,	

mLoaderCallback);

}

7.	 Your	activity	needs	to	implement	CvCameraViewListener2	to	be	able	to	receive
camera	frames	from	the	OpenCV	camera	view:

public	class	HelloVisionActivity	extends	Activity	implements	

CvCameraViewListener2

8.	 Fix	the	imports	error	accordingly	and	also	insert	the	unimplemented	methods	in	your
activity.

9.	 In	the	onCreate	activity	callback	method,	we	need	to	set	the	OpenCV	camera	view	as
visible	and	register	your	activity	as	the	callback	object	that	will	handle	the	camera
frames:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{



		Log.i(TAG,	"called	onCreate");

		super.onCreate(savedInstanceState);

				

getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

		setContentView(R.layout.activity_hello_vision);

		mOpenCvCameraView	=	(CameraBridgeViewBase)	

findViewById(R.id.HelloVisionView);

		//Set	the	view	as	visible

		mOpenCvCameraView.setVisibility(SurfaceView.VISIBLE);

		//Register	your	activity	as	the	callback	object	to	handle	//camera	

frames

		mOpenCvCameraView.setCvCameraViewListener(this);

}

10.	 The	last	step	is	to	receive	the	camera	frames.	In	order	to	do	so,	change	the
implementation	of	the	onCameraFrame	callback	method:

public	Mat	onCameraFrame(CvCameraViewFrame	inputFrame)	{

		//We're	returning	the	colored	frame	as	is	to	be	rendered	on	

//thescreen.

		return	inputFrame.rgba();

}

11.	 Now	you’re	ready	to	build	and	install	your	application	on	the	emulator	or	on	a	real
device.

12.	 This	is	the	application	running	on	an	emulated	camera:







Summary
By	now	you	should	have	developed	and	tested	your	first	vision-aware	Android
application.	In	this	chapter,	you’ve	learned	how	to	set	up	an	Android	development
environment	with	OpenCV	using	TADP	or	going	through	the	manual	scenario	to	update
an	existing	one.

Moreover,	you’ve	learned	the	basics	of	NDK	and	how	it	works.	Finally,	you’ve	seen	how
to	capture	camera	frames	using	the	OpenCV	camera	view	and	display	the	frames	on	the
device	screen.	This	example	will	be	our	building	block	to	implement	more	interesting
ideas.





Chapter	2.	App	1	-	Building	Your	Own
Darkroom
In	this	chapter,	you	will	learn	about	how	images	are	stored	and	represented	in	OpenCV
and	how	to	utilize	this	representation	to	implement	interesting	algorithms	that	will
enhance	how	your	images	look.

We	will	first	explain	the	digital	image	representation	and	different	color	spaces	to	explore
the	important	Mat	class	in	OpenCV.

Then,	we	will	go	through	the	steps	to	load	an	image	from	your	phone	gallery	and	display
it	on	your	device	screen	regardless	of	the	image	resolution.

Finally,	you	will	learn	about	the	image	histograms	and	how	to	calculate	and	use	them	to
enhance	your	images,	whether	they	are	black	and	white	or	colored.

We	will	cover	the	following	topics	in	this	chapter:

Digital	images
Processing	the	images	stored	on	your	phone
Calculating	an	image	histogram
Enhancing	the	image	contrast



Digital	images
Images	can	be	found	around	us	wherever	we	look;	so	it	is	very	important	to	understand
how	images	are	represented	and	how	the	images’	colors	are	mapped	if	we	want	to
understand,	process,	and	analyze	these	images	automatically.



Color	spaces
We	live	in	a	continuous	world,	so	to	capture	a	scene	in	a	discreet	digital	sensor,	a	discrete
spatial	(layout)	and	intensity	(color	information)	mapping	has	to	happen	in	order	to	store
the	real-world	data	in	a	digital	image.

The	two-dimensional	digital	image,	D(i,j),	represents	a	sensor	response	value	at	the	pixel
indicated	by	the	row	number	i	and	column	number	j,	starting	from	the	left	upper	corner	as
i=j=0.

To	represent	colors,	a	digital	image	usually	contains	one	or	more	channels	to	store	the
intensity	value	(color)	of	each	pixel.	The	most	widely	used	color	representation	is	a	one-
channel	image,	also	known	as	a	grayscale	image,	where	every	pixel	is	assigned	a	shade	of
gray	depending	on	its	intensity	value:	zero	is	black	and	the	maximum	intensity	value	is
white.

If	an	unsigned	character,	taking	values	from	0	to	 -1,	is	used	to	represent	the	color	depth
information,	then	each	pixel	can	store	an	intensity	value	from	0	(black)	to	255	(white).

In	addition	to	grayscale	color	mapping,	there	is	also	true	color	mapping	where	the	color	is
represented	by	three	channels	instead	of	one	and	the	pixel	value	becomes	a	tuple	of	three
elements	(Red,	Green,	and	Blue).	In	this	case,	the	color	is	represented	as	a	linear
combination	of	the	three	channels’	values	and	the	image	is	considered	to	be	three	two-
dimensional	planes.

Note
Sometimes,	a	fourth	channel	called	Alpha	is	added	and	used	to	represent	the	color
transparency.	In	this	case,	the	image	will	be	considered	as	four	two-dimensional	planes.

There	is	one	more	color	space	to	consider	that	is	more	related	to	human	understanding	and
perception	of	colors	than	the	RGB	representation.	It	is	the	Hue,	Saturation,	and	Value
(HSV)	color	space.

Each	of	the	color	dimensions	can	be	understood	as	follows:

Hue	(H):	It	is	the	color	itself,	Red,	Blue,	or	Green.
Saturation	(S):	It	measures	how	pure	the	color	is;	for	example,	is	it	a	dull	red	or	dark
red?	Think	of	it	as	how	much	white	is	blinded	with	the	color.
Value	(V):	It	is	the	brightness	of	the	color,	also	known	as	luminance.

The	last	image	type	to	consider	is	the	binary	image.	It	is	a	two-dimensional	array	of
pixels;	however,	each	pixel	can	store	only	the	value	of	zero	or	one.	This	type	or
representation	is	important	to	the	solving	of	vision	problems	such	as	edge	detection.

Having	a	two-dimensional	array	of	pixels	or	three	two-dimensional	planes	to	represent	the
images	with	each	cell	or	pixel	containing	the	intensity	value	of	the	color	in	case	of	an
RGB	color	space	or	the	Hue,	Saturation,	and	Value	in	case	of	an	HSV	color	space,	reduces
the	image	to	a	numerical	matrix.	As	OpenCV’s	main	focus	is	to	process	and	manipulate
images,	the	first	thing	that	you	will	need	to	understand	is	how	OpenCV	stores	and	handles



the	images.



The	Mat	class
The	most	important	and	fundamental	data	structure	that	you	will	be	using	when
developing	vision-aware	applications	using	OpenCV	is	the	Mat	class.

The	Mat	class	represents	an	n-dimensional	dense	numerical	single-channel	or	multichannel
array.	Basically,	if	you	are	using	the	Mat	class	to	represent	a	grayscale	image,	then	your
Mat	object	will	be	a	two-dimensional	array	(with	one	channel)	storing	the	pixel	intensity
values.	If	you	are	using	the	Mat	class	to	store	a	full	color	image,	then	the	Mat	object	will
be	a	two-dimensional	array	with	three	channels	(one	channel	for	Red	intensities,	one	for
Green,	and	one	for	Blue)	and	the	same	applies	to	the	HSV	color	space.

As	with	any	Java	class,	the	Mat	class	has	a	list	of	constructors	and,	in	most	cases,	the
default	constructor	will	be	sufficient.	However,	in	some	other	cases,	you	might	want	to
initialize	a	Mat	object	with	a	specific	size,	type,	and	number	of	channels.

In	this	case,	you	can	use	the	following	constructor:

int	numRow=5;

int	numCol=5;

int	type=org.opencv.core.CvType.CV_8UC1;

Mat	myMatrix=newMat(numRow,numCol,type);

This	constructor	takes	three	integer	parameters:

int	Rows:	The	number	of	the	new	matrix	rows
int	Cols:	The	number	of	the	new	matrix	columns
int	type:	The	new	matrix	type

Note
In	order	to	specify	what	type	the	Mat	class	is	storing	and	how	many	channels	there	are,
OpenCV	provides	you	with	a	CvType	class	with	static	int	fields	with	the	following
naming	convention:

CV_(Data	type	size	[“8”	|	“16”	|	“32”	|	“64”])([“S”	|	“U”	|	“F”	,	for	signed,	unsigned
integers,	or	floating	point	numbers])(Number	of	channels[“C1	|	C2	|	C3	|	C4”,	for	one,
two,	three,	or	four	channels	respectively])

For	example,	you	specified	the	type	parameter	as	org.opencv.core.CvType.CV_8UC1;	this
means	that	the	matrix	will	hold	8-bit	unsigned	characters	for	color	intensity	with	one
channel.	In	other	words,	this	matrix	will	store	a	grayscale	image	with	intensities	from	0
(black)	to	255	(white).

Basic	Mat	operations
Besides	understanding	how	digital	images	are	represented	in	the	OpenCV	library,	you	will
need	to	be	familiar	with	some	basic	operations	that	you	can	perform	on	the	Mat	object.

The	most	fundamental	operation	that	you	can	do	is	pixel-level	access	to	retrieve	the	pixel
value	whether	your	color	space	is	grayscale	or	full	RGB.	Assuming	that	you	have	the
sample	application	from	Chapter	1,	Getting	Yourself	Ready,	up	and	running,	you	can	recall



that	in	the	onCameraFrame()	callback	method,	we	were	retrieving	the	full	color	camera
frame	using	the	inputFrame.rgba()	method.

With	the	camera	frame,	we	can	access	the	pixel	value	using	the	following	code:

@Override

		public	Mat	onCameraFrame(CvCameraViewFrameinputFrame)	{

				Mat	cameraFram=inputFrame.rgba();

				double	[]	pixelValue=cameraFram.get(0,	0);

				double	redChannelValue=pixelValue[0];

				double	greenChannelValue=pixelValue[1];

				double	blueChannelValue=pixelValue[2];

				Log.i(TAG,	"red	channel	value:	"+redChannelValue);

				Log.i(TAG,	"green	channel	value:	"+greenChannelValue);

				Log.i(TAG,	"blue	channel	value:	"+blueChannelValue);

				return	inputFrame.rgba();

		}

Let’s	go	through	the	important	lines	and	the	rest	is	actually	straightforward:

double	[]	pixelValue=cameraFram.get(0,	0);

In	this	line,	we	are	calling	the	get(0,0)	function	and	passing	it	to	the	row	and	column
index;	in	this	case,	it	is	the	top	left	pixel.

Note	that	the	get()	method	returns	a	double	array	because	the	Mat	object	can	hold	up	to
four	channels.

In	our	case,	it	is	a	full	color	image,	so	each	pixel	will	have	three	intensities	for	each	of	the
Red	(r),	Green	(g),	and	Blue	(b)	color	channels	in	addition	to	one	channel	for	the
transparency,	Alpha	(a),	hence	the	name	of	the	method	is	rgba().

You	can	access	each	channel	intensity	independently	using	the	array	index	operator	[]	so,
for	the	Red,	Green,	and	Blue	intensities,	you	use	0,	1,	and	2,	respectively:

double	redChannelValue=pixelValue[0];

double	greenChannelValue=pixelValue[1];

double	blueChannelValue=pixelValue[2];

The	following	table	is	a	list	of	the	basic	Mat	class	operations	that	you	will	need	to	be
familiar	with:

Functionality Code	sample

To	retrieve	the	number	of	channels
Mat	myImage;	//declared	and	initialized

int

numberOfChannels=myImage.channels();

To	make	a	deep	copy	of	a	Mat	object	including	the	matrix	data Mat	newMat=existingMat.clone();

To	retrieve	the	number	of	matrix	columns

First	method:
Mat	myImage;	//declared	and	initialized

int	colsNum=myImage.cols();

Second	method:
int	colsNum=myImage.width();



Third	method:
//And	yes,	it	is	a	public	instance

variable.

int	colsNum=myImage.size().width;

To	retrieve	the	number	of	matrix	rows

First	method:
Mat	myImage;	//declared	and	initialized

int	rowsNum=myImage.rows();

Second	method:
int	rowsNum=myImage.height();

Thirst	method:
//And	yes,	it	is	a	public	instance

variable.

int	rowsNum=myImage.size().height;

To	retrieve	the	matrix	element	depth	(the	type	of	each	individual
channel):

CV_8U:	8-bit	unsigned	integers	(0	to	255)
CV_8S:	8-bit	signed	integers	(-128	to	127)
CV_16U:	16-bit	unsigned	integers	(0	to	65,535)
CV_16S:	16-bit	signed	integers	(-32,768	to	32,767)
CV_32S:	32-bit	signed	integers	(-2,147,483,648	to
2,147,483,647)
CV_32F:	32-bit	floating-point	numbers
CV_64F:	64-bit	floating-point	numbers

Mat	myImage;	//declared	and	initialized

int	depth=myImage.depth()

To	retrieve	the	total	number	of	matrix	elements	(number	of	pixels	in
an	image)

Mat	myImage;	//declared	and	initialized

long	numberOfPixels=myImage.total()





Processing	the	images	stored	on	your
phone
In	this	section,	you	will	learn	how	to	load	an	image	from	your	phone	and	apply	some
interesting	image	processing	algorithms	to	it,	such	as	contrast	enhancing,	smoothing
(removing	noise	from	your	image),	and	applying	some	filters.



Loading	an	image	to	a	Mat	object
Let’s	get	started	by	first	creating	a	new	Android	project.	As	you’ve	seen	in	the	previous
chapter,	in	order	to	start	using	the	OpenCV	algorithms,	you	will	need	to	add	the	OpenCV
library	to	your	project:

1.	 Launch	Eclipse.
2.	 Create	a	new	Android	project	application;	let’s	name	it	DarkRoom.
3.	 Choose	the	package	name.	In	this	example,	I	chose	it	to	be

com.example.chapter2.darkroom.
4.	 Set	the	minimum	required	SDK	to	be	anything	above	API	11	(Android	3.0).	In	my

case,	and	it	is	highly	recommended,	I	chose	it	to	be	API	16	(Android	4.1).	For	the
target	SDK,	you	should	choose	API	19	because	there	is	an	issue	when	loading	the
OpenCV	library	if	you	are	using	a	target	SDK	higher	than	19.

5.	 Click	Next.
6.	 Let	Eclipse	create	a	blank	activity	for	you	and	name	it	IODarkRoom.
7.	 Finish	creating	the	project.
8.	 Import	the	OpenCV	library	project	to	your	workspace	file,	Menu	|	Import	|	Existing

Android	Code	Into	Workspace.
9.	 Click	Browse	and	go	to	your	OpenCV	installation	home	directory.
10.	 Select	the	OpenCV	home	directory	and	click	Ok.
11.	 Deselect	all	the	projects	and	select	only	the	OpenCV	library	project.
12.	 Click	Finish.
13.	 Now,	you	need	to	link	your	newly	created	Android	project	with	the	OpenCV	library

that	you	just	imported	so,	on	the	new	project,	right-click	Properties.
14.	 In	the	left	pane,	select	the	Android	tree	node	and	in	the	right	pane,	click	Add.
15.	 Select	the	OpenCV	library	and	click	Ok.

UI	definitions
In	this	project,	you	will	load	an	image	stored	on	your	phone,	convert	it	to	a	bitmap	image,
and	display	it	in	an	image	view.

Let’s	start	by	setting	the	layout	of	the	application	activity:

<LinearLayoutxmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="horizontal">

		<ImageView

		android:id="@+id/IODarkRoomImageView"

		android:layout_width="fill_parent"

		android:layout_height="fill_parent"

		android:src="@drawable/ic_launcher"

		android:layout_marginLeft="0dp"

		android:layout_marginTop="0dp"

		android:scaleType="fitXY"/>

</LinearLayout>



It	is	a	simple	linear	layout	with	an	image	view.	The	next	step	is	to	set	some	needed
permissions.	Just	in	case	you	will	be	loading	images	from	your	SD	card,	you	will	need	to
set	the	corresponding	permission	so	that	Android	allows	your	application	to	read	and	write
from	the	external	storage.

In	your	manifest	file,	add	the	following	line:

<uses-permissionandroid:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

It	is	a	write	permission;	however,	your	application	is	also	implicitly	granted	a	read
permission	as	it	is	less	restrictive.

Now,	let’s	move	on	to	the	application	and	activity	definition:

<application

android:allowBackup="true"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme">

		<activity

		android:name=".IODarkRoom"

		android:label="@string/app_name"

		android:screenOrientation="portrait">

				<intent-filter>

						<actionandroid:name="android.intent.action.MAIN"/>

						

						<categoryandroid:name="android.intent.category.LAUNCHER"/>

				</intent-filter>

		</activity>

</application>

It	is	a	very	straightforward	definition;	however,	without	a	loss	of	generality,	I	restricted	the
orientation	of	the	activity	to	be	portrait,	which	means	that	your	activity	will	not	support
the	landscape	mode.	This	will	put	the	focus	on	image	manipulation	instead	of	handling
different	activity	modes.	However,	I	encourage	you	to	extend	this	application	to	also
support	landscape	orientation	after	digesting	the	content	of	this	chapter	as	it	will	give	you
a	good	hands-on	experience.

We	will	need	a	menu	item	for	every	action	that	we	will	support	in	the	application.	Our	first
action	will	be	opening	the	gallery	on	your	phone	in	order	to	select	a	specific	image	and	for
this,	you	will	need	to	add	the	following	menu	item	to	the	file:

res/menu/iodark_room.xml

<item

android:id="@+id/action_openGallary"

android:orderInCategory="100"

android:showAsAction="never"

android:title="@string/action_OpenGallary"/>

Add	the	corresponding	string	definition	to	res/values/strings.xml:

<stringname="action_OpenGallary">Open	Gallary</string>

We	are	done	with	the	UI	definitions	for	this	part	of	the	application,	so	let’s	move	on	to	the
code	behind	it.



Reading	an	image	using	OpenCV
The	first	step	is	to	load	the	OpenCV	library	asynchronously	using	the	OpenCV	manager
service	to	reduce	the	memory	footprint	of	your	application.	To	do	so,	you	will	need	to
have	this	boilerplate	code	in	every	activity	that	will	be	using	the	OpenCV	algorithms:

private	BaseLoaderCallback	mLoaderCallback	=	newBaseLoaderCallback(this)	{

		@Override

		public	void	onManagerConnected(int	status)	{

				switch	(status)	{

						case	LoaderCallbackInterface.SUCCESS:

						{

								Log.i(TAG,	"OpenCV	loaded	successfully");

						}	break;

						default:

						{

								super.onManagerConnected(status);

						}	break;

				}

		}

};

@Override

		public	void	onResume()

		{

				super.onResume();

				OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_8,	this,	

mLoaderCallback);

		}

The	next	step	is	to	handle	the	user	clicks	on	the	menu	item	that	we	defined	earlier:

private	static	final	int	SELECT_PICTURE	=	1;

private	String	selectedImagePath;

@Override

		public	boolean	onOptionsItemSelected(MenuItem	item)	{

				//	Handle	action	bar	item	clicks	here.	The	action	bar	will

				//	automatically	handle	clicks	on	the	Home/Up	button,	so	long

				//	as	you	specify	a	parent	activity	in	AndroidManifest.xml.

				int	id	=	item.getItemId();

				if	(id	==	R.id.action_openGallary)	{

						Intent	intent	=	newIntent();

						intent.setType("image/*");

						intent.setAction(Intent.ACTION_GET_CONTENT);

						startActivityForResult(Intent.createChooser(intent,"Select	Picture"),	

SELECT_PICTURE);

						return	true;

				}

				return	super.onOptionsItemSelected(item);

		}

Once	the	user	selects	an	image	to	load	from	the	gallery,	we	execute	the	loading	and
display	it	in	the	activity	result	callback	method:

public	void	onActivityResult(int	requestCode,	int	resultCode,	Intent	data)	

{



		if	(resultCode	==	RESULT_OK)	{

				if	(requestCode	==	SELECT_PICTURE)	{

						Uri	selectedImageUri	=	data.getData();

						selectedImagePath	=	getPath(selectedImageUri);

						Log.i(TAG,	"selectedImagePath:	"	+	selectedImagePath);

						loadImage(selectedImagePath);

						displayImage(sampledImage);

				}

		}

}

After	you	make	sure	that	the	opened	activity	returned	the	needed	result—in	this	case,	it	is
the	image	URI—we	call	the	helper	method,	getPath(),	to	retrieve	the	image	path	in	the
format	that	is	needed	to	load	the	image	using	OpenCV:

private	String	getPath(Uri	uri)	{

		//	just	some	safety	built	in	

		if(uri	==	null	)	{

				return	null;

		}

		//	try	to	retrieve	the	image	from	the	media	store	first

		//	this	will	only	work	for	images	selected	from	gallery

		String[]	projection	=	{	MediaStore.Images.Media.DATA	};

		Cursor	cursor	=	getContentResolver().query(uri,	projection,	null,	null,	

null);

		if(cursor	!=	null	){

				int	column_index	=	

cursor.getColumnIndexOrThrow(MediaStore.Images.Media.DATA);

				cursor.moveToFirst();

				return	cursor.getString(column_index);

		}

		return	uri.getPath();

}

Once	we	have	the	path	ready,	we	call	the	loadImage()	method:

private	void	loadImage(String	path)

{

		originalImage	=	Highgui.imread(path);

		Mat	rgbImage=new	Mat();

		

		Imgproc.cvtColor(originalImage,	rgbImage,	Imgproc.COLOR_BGR2RGB);

		Display	display	=	getWindowManager().getDefaultDisplay();

		//This	is	"android	graphics	Point"	class

		Point	size	=	new	Point();

		display.getSize(size);

		int	width	=	size.x;

		int	height	=	size.y;

		sampledImage=new	Mat();

		double	downSampleRatio=	calculateSubSampleSize(rgbImage,width,height);

		Imgproc.resize(rgbImage,	sampledImage,	new	

Size(),downSampleRatio,downSampleRatio,Imgproc.INTER_AREA);



		try	{

				ExifInterface	exif	=	new	ExifInterface(selectedImagePath);

				int	orientation	=	exif.getAttributeInt(ExifInterface.TAG_ORIENTATION,	

1);

				switch	(orientation)

				{

						case	ExifInterface.ORIENTATION_ROTATE_90:

								//get	the	mirrored	image

								sampledImage=sampledImage.t();

								//flip	on	the	y-axis

								Core.flip(sampledImage,	sampledImage,	1);

								break;

						case	ExifInterface.ORIENTATION_ROTATE_270:

								//get	up	side	down	image

								sampledImage=sampledImage.t();

								//Flip	on	the	x-axis

								Core.flip(sampledImage,	sampledImage,	0);

								break;

				}

		}	catch	(IOException	e)	{

				e.printStackTrace();

		}

}

Let’s	go	through	the	code	step	by	step:

originalImage	=	Highgui.imread(path);

This	method	reads	an	image	from	the	given	path	and	returns	it.	It	is	provided	as	a	static
member	in	the	Highgui	class.

Note
If	you	are	loading	a	colored	image,	it	is	very	important	to	know	the	order	of	the	color
channels.	In	the	case	of	imread(),	the	decoded	image	will	have	the	channels	stored	in	a	B,
G,	R	order.

Now,	let	us	see	the	following	snippet:

Mat	rgbImage=new	Mat();

Imgproc.cvtColor(originalImage,	rgbImage,	Imgproc.COLOR_BGR2RGB);

In	order	to	load	the	image	as	an	RGB	bitmap,	we	first	need	to	convert	the	decoded	image
from	the	color	space	B,	G,	R	to	the	color	space	R,	G,	B.

First,	we	instantiate	an	empty	Mat	object,	rgbImage,	then	we	execute	color	space	mapping
using	the	Imgproc.cvtColor()	method.	The	method	takes	three	parameters:	the	source
image,	destination	image,	and	mapping	code.	Luckily,	OpenCV	supports	over	150
mappings	and,	in	our	case,	we	need	the	BGR	to	RGB	mapping.	Now,	let	us	see	the
following	snippet:

Display	display	=	getWindowManager().getDefaultDisplay();

Point	size	=	new	Point();



display.getSize(size);

int	width	=	size.x;

int	height	=	size.y;

double	downSampleRatio=	calculateSubSampleSize(rgbImage,width,height);

It	would	be	very	wasteful	and	sometimes	impossible	to	display	the	images	in	their	original
resolution	due	to	memory	constraints.

For	example,	if	you	captured	an	image	with	your	phone’s	8	megapixel	camera,	then	the
memory	cost	of	the	colored	image,	assuming	1	byte	color	depth,	is	

.

To	overcome	this	issue,	it	is	advisable	to	resize	(downsample)	the	image	to	your	phone’s
display	resolution.	To	do	so,	we	first	retrieve	the	phone’s	display	resolution	and	then
calculate	the	downsample	ratio	using	the	calculateSubSampleSize()	helper	method:

private	static	double	calculateSubSampleSize(Mat	srcImage,	int	reqWidth,	

int	reqHeight)	{

		//	Raw	height	and	width	of	image

		final	int	height	=	srcImage.height();

		final	int	width	=	srcImage.width();

		double	inSampleSize	=	1;

		if	(height	>	reqHeight	||	width	>	reqWidth)	{

				//	Calculate	ratios	of	requested	height	and	width	to	the	raw

				//height	and	width

				final	double	heightRatio	=	(double)	reqHeight	/	(double)	height;

				final	double	widthRatio	=	(double)	reqWidth	/	(double)	width;

				//	Choose	the	smallest	ratio	as	inSampleSize	value,	this	will	

				//guarantee	final	image	with	both	dimensions	larger	than	or	

				//equal	to	the	requested	height	and	width.

				inSampleSize	=	heightRatio<widthRatio	?	heightRatio	:widthRatio;

		}

		return	inSampleSize;

}

The	calculateSubSampleSize()	method	takes	three	arguments:	the	source	image,
required	width,	and	required	height,	then	computes	the	downsample	ratio.	Now,	let	us	see
the	following	snippet:

sampledImage=new	Mat();

Imgproc.resize(rgbImage,	sampledImage,	new	

Size(),downSampleRatio,downSampleRatio,Imgproc.INTER_AREA);

Now,	we	are	ready	to	resize	the	loaded	image	to	fit	on	the	device	screen.	First,	we	create
an	empty	Mat	object,	sampledImage,	to	hold	the	resized	image.	Then,	we	call
Imgproc.resize()	passing	to	it:

The	source	Mat	object,	the	one	that	we	need	to	resize
The	destination	Mat	object
The	size	of	the	new	image;	in	our	case,	a	new	empty	Size	object	as	we	will	send	the



downsample	ratio	instead
A	double	for	the	downsample	ratio	in	the	X	direction	(for	the	width)
A	double	for	the	downsample	ratio	in	the	Y	direction	(for	the	height)
An	integer	for	the	interpolation	method;	the	default	value	is	INTER_LINEAR,	which
corresponds	to	the	linear	interpolation

Interpolation	is	needed	here	because	we	will	change	the	size	of	an	image	(upsize	or
downsize)	and	we	want	the	mapping	from	the	source	image	to	the	destination	image	to	be
as	smooth	as	possible.

Interpolation	will	decide	what	the	value	of	the	destination	image	pixel	is	when	it	falls
between	two	pixels	in	the	source	image	in	case	we	are	downsizing.	It	will	also	compute
the	value	of	the	new	pixels	in	the	destination	image,	which	doesn’t	have	a	corresponding
pixel	in	the	source	image,	in	case	we	are	upsizing.

In	either	case,	OpenCV	has	several	options	to	compute	the	value	of	such	pixels.	The
default	INTER_LINEAR	method	computes	the	destination	pixel	value	by	linearly	weighing
the	2-by-2	surrounding	source	pixels’	values	according	to	how	close	they	are	to	the
destination	pixel.	Alternatively,	INTER_NEAREST	takes	the	value	of	the	destination	pixel
from	its	closest	pixel	in	the	source	image.	The	INTER_AREA	option	virtually	places	the
destination	pixel	over	the	source	pixels	and	then	averages	the	covered	pixel	values.
Finally,	we	have	the	option	of	fitting	a	cubic	spline	between	the	4-by-4	surrounding	pixels
in	the	source	image	and	then	reading	off	the	corresponding	destination	value	from	the
fitted	spline;	this	is	the	result	of	choosing	the	INTER_CUBIC	interpolation	method.

Note
To	shrink	an	image,	it	will	generally	look	best	with	the	INTER_AREA	interpolation,	whereas
to	enlarge	an	image,	it	will	generally	look	best	with	INTER_CUBIC	(slow)	or	INTER_LINEAR
(faster,	but	still	looks	OK).

try	{

		ExifInterface	exif	=	new	ExifInterface(selectedImagePath);

		int	orientation	=	exif.getAttributeInt(ExifInterface.TAG_ORIENTATION,	1);

		switch	(orientation)

		{

				case	ExifInterface.ORIENTATION_ROTATE_90:

						//get	the	mirrored	image

						sampledImage=sampledImage.t();

						//flip	on	the	y-axis

						Core.flip(sampledImage,	sampledImage,	1);

						break;

				case	ExifInterface.ORIENTATION_ROTATE_270:

						//get	upside	down	image

						sampledImage=sampledImage.t();

						//Flip	on	the	x-axis

						Core.flip(sampledImage,	sampledImage,	0);

						break;

		}

}	catch	(IOException	e)	{

		e.printStackTrace();



}

Now,	we	need	to	handle	the	image	orientation	and	because	the	activity	only	works	in	the
portrait	mode,	we	will	handle	the	images	with	a	rotation	of	90	or	270	degrees.

In	the	case	of	a	90	degree	rotation,	this	means	that	you	took	the	image	with	the	phone	in
the	portrait	position;	we	rotate	the	image	90	degrees	counterclockwise	by	calling	the	t()
method	in	order	to	transpose	the	Mat	object.

The	result	of	the	transpose	is	a	mirrored	version	of	the	original	image,	so	we	need	one
more	step	to	flip	the	image	around	the	vertical	axis	by	calling	Core.flip()	and	passing	it
to	the	source	image	and	destination	image	and	calling	a	flip	code	to	specify	how	to	flip	the
image;	0	means	flipping	around	the	x	axis,	a	positive	value	(for	example,	1)	means
flipping	around	the	y	axis,	and	a	negative	value	(for	example,	-1)	means	flipping	around
both	the	axes.

For	the	270	degree	rotation	case,	this	means	that	you	took	the	picture	with	your	phone
upside	down.	We	follow	the	same	algorithm,	transpose	the	image	and	then	flip	it.	Yet,
after	we	transpose	the	image,	it	will	be	a	mirrored	version	around	the	horizontal	direction,
thus	we	call	Core.flip()	with	the	0	flip	code.

Now,	we	are	ready	to	display	the	image	using	the	image	view	component:

private	void	displayImage(Mat	image)

{

		//	create	a	bitMap

		Bitmap	bitMap	=	Bitmap.createBitmap(image.cols(),	

image.rows(),Bitmap.Config.RGB_565);

		//	convert	to	bitmap:

		Utils.matToBitmap(image,	bitMap);

		//	find	the	imageview	and	draw	it!

		ImageView	iv	=	(ImageView)	findViewById(R.id.IODarkRoomImageView);

		iv.setImageBitmap(bitMap);

}

First,	we	create	a	bitmap	object	with	the	color	channels’	order	matching	the	loaded	image
color	channels’	order,	RGB.	Then,	we	use	Utils.matToBitmap()	to	convert	a	Mat	object
to	a	bitmap	object.	Finally,	we	set	the	image	view	bitmap	with	the	newly	created	bitmap
object.





Calculating	an	image	histogram
We	are	one	step	closer	to	understanding	the	image	content,	and	one	of	the	fundamental
image	analysis	techniques	is	calculating	the	image	histogram.



What	are	histograms?
Histograms	are	plots	used	to	give	you	an	overall	idea	about	the	distribution	of	the	intensity
values	of	a	given	image.	In	the	x	axis,	the	plot	will	have	values	ranging	from	0	to	255
depending	on	the	image	depth	as	explained	earlier	and	the	y	axis	will	represent	the	number
of	occurrences	of	the	corresponding	intensity	value.

Once	you	calculate	and	display	the	histogram	of	an	image,	you	can	easily	gain	some
insights	about	the	image	contrast,	intensity	distribution,	and	so	on.	Actually,	if	you
normalize	the	histogram,	making	it	sum	to	one,	you	can	treat	the	histogram	as	a
probability	density	function	and	answer	questions	such	as	what	is	the	probability	of	a
given	intensity	value	to	occur	on	an	image	and	the	answer	is	simply	the	y	axis	reading	at
that	intensity	value.	In	the	following	figure,	you	can	see	that	pixels	with	an	intensity	of	50
appears	in	the	image	on	the	left	5,000	times:

Understanding	histogram	components
Before	we	dive	in	and	start	calculating	histograms,	we	need	to	understand	some
components	and	terminologies	to	calculate	a	histogram:

Histogram	bins:	As	explained	earlier,	the	x	axis	of	the	histogram	plot	represents	the
intensity	values	that	each	pixel	can	store.

For	example,	if	you	are	displaying	a	histogram	for	the	intensities	from	0	to	255,	you



will	need	256	bins	to	hold	the	number	of	occurrences	for	each	intensity	value.
However,	this	is	usually	not	the	case	as	this	is	considered	a	very	fine-grained
histogram	and	the	results	may	not	be	very	informative.

To	fix	this,	you	can	divide	the	histogram	into	bins	and	every	bin	holds	a	range	of
intensities.

For	our	example,	from	0	to	255,	we	can	have	25	bins	and	every	bin	will	hold	the
value	for	ten	consecutive	intensity	values,	from	0	to	9,	and	from	10	to	19,	and	so	on.
Yet,	if	the	histogram	is	still	not	very	representative,	you	can	decrease	the	number	of
bins	in	order	to	increase	the	range	of	intensity	values	in	every	bin.

Histogram	dimensions:	In	our	case,	the	number	of	dimensions	is	one	as	we	will	be
considering	only	the	intensity	value	for	each	pixel	for	one	channel	in	the	case	of	a
grayscale	image	or	an	individual	color	channel	in	the	case	of	a	full	color	image.
Histogram	range:	This	is	the	limit	of	values	to	be	measured.	In	our	example,	we
have	intensities	ranging	from	0	to	255,	so	the	range	of	values	that	we	want	to
measure	will	be	(0,	255),	that	is,	all	the	intensities.

Now,	we	are	ready	to	show	how	to	calculate	a	histogram	for	an	image	using	the	OpenCV
library.

UI	definitions

We	will	continue	to	build	on	the	same	app	that	we	started	in	the	previous	section.	The
change	is	to	add	one	more	menu	item	to	the	menu	file	in	order	to	trigger	the	histogram
calculation.

Go	to	the	res/menu/iodark_room.xml	file	and	open	it	to	include	the	following	menu
item:

<item

android:id="@+id/action_Hist"

android:orderInCategory="101"

android:showAsAction="never"

android:title="@string/action_Hist">

</item>

This	is	it,	in	terms	of	UI	changes.

Calculating	an	image	histogram

In	the	IODarkRoom	activity,	we	need	to	handle	the	user	pressing	the	display	histogram
menu	item.

Edit	the	onOptionesItemSelected()	method	as	follows:

@Override

public	boolean	onOptionsItemSelected(MenuItem	item)	{

		//	Handle	action	bar	item	clicks	here.	The	action	bar	will

		//	automatically	handle	clicks	on	the	Home/Up	button,	so	long

		//	as	you	specify	a	parent	activity	in	AndroidManifest.xml.

		int	id	=	item.getItemId();

		if	(id	==	R.id.action_openGallary)	{



				Intent	intent	=	newIntent();

				intent.setType("image/*");

				intent.setAction(Intent.ACTION_GET_CONTENT);

				startActivityForResult(Intent.createChooser(intent,"Select	Picture"),	

SELECT_PICTURE);

				return	true;

		}

		else	if	(id	==	R.id.action_Hist)	{

				if(sampledImage==null)

				{

						Context	context	=	getApplicationContext();

						CharSequence	text	=	"You	need	to	load	an	image	first!";

						int	duration	=	Toast.LENGTH_SHORT;

						Toast	toast	=	Toast.makeText(context,	text,	duration);

						toast.show();

						return	true;

				}

				Mat	histImage=new	Mat();

				sampledImage.copyTo(histImage);

				calcHist(histImage);

				displayImage(histImage);

				return	true;

		}

		return	super.onOptionsItemSelected(item);

}

Note	that	in	case	the	display	histogram	menu	item	is	pressed,	we	first	check	to	see	that	the
user	already	loaded	an	image	and	in	case	he	didn’t,	we	display	a	friendly	message	and
then	return	it.

Now	for	the	histogram	part,	which	is	as	follows:

Mat	histImage=new	Mat();

sampledImage.copyTo(histImage);

calcHist(histImage);

displayImage(histImage);

return	true;

We	first	make	a	copy	of	the	downsized	image	that	the	user	loaded;	this	is	necessary	as	we
will	change	the	image	to	display	the	histogram,	so	we	need	to	have	a	pristine	copy.	Once
we	have	the	copy,	we	call	calcHist()	and	pass	it	to	the	new	image:

private	void	calcHist(Mat	image)

{

		int	mHistSizeNum	=	25;

		MatOfInt	mHistSize	=	new	MatOfInt(mHistSizeNum);

		Mat	hist	=	new	Mat();

		float	[]mBuff	=	new	float[mHistSizeNum];

		MatOfFloat	histogramRanges	=	new	MatOfFloat(0f,	256f);

		Scalar	mColorsRGB[]	=	new	Scalar[]	{	new	Scalar(200,	0,	0,	255),	new	

Scalar(0,	200,	0,	255),	new	Scalar(0,	0,	200,	255)	};

		org.opencv.core.PointmP1	=	new	org.opencv.core.Point();

		org.opencv.core.PointmP2	=	new	org.opencv.core.Point();



		int	thikness	=	(int)	(image.width()	/	(mHistSizeNum+10)/3);

		if(thikness>	3)	thikness	=	3;

		MatOfInt	mChannels[]	=	new	MatOfInt[]	{	new	MatOfInt(0),	new	MatOfInt(1),	

new	MatOfInt(2)	};

		Size	sizeRgba	=	image.size();

		int	offset	=	(int)	((sizeRgba.width	-	(3*mHistSizeNum+30)*thikness));

		//	RGB

		for(int	c=0;	c<3;	c++)	{

				Imgproc.calcHist(Arrays.asList(image),	mChannels[c],	new	Mat(),	hist,	

mHistSize,	histogramRanges);

				Core.normalize(hist,	hist,	sizeRgba.height/2,	0,	Core.NORM_INF);

				hist.get(0,	0,	mBuff);

				for(int	h=0;	h<mHistSizeNum;	h++)	{

						mP1.x	=	mP2.x	=	offset	+	(c	*	(mHistSizeNum	+	10)	+	h)	*	thikness;

						mP1.y	=	sizeRgba.height-1;

						mP2.y	=	mP1.y	-	(int)mBuff[h];

						Core.line(image,	mP1,	mP2,	mColorsRGB[c],	thikness);

				}

		}

}

The	calcHist()	method	is	divided	into	two	parts.

The	first	part	is	related	to	configuring	the	histogram’s	look	and	defining	the	histogram
components:

int	mHistSizeNum	=	25;

MatOfInt	mHistSize	=	new	MatOfInt(mHistSizeNum);

First,	we	define	the	number	of	histogram	bins.	In	this	case,	our	histogram	will	have	25
bins.	Then,	we	initialize	a	MatOfInt()	object,	which	is	a	subclass	of	the	Mat	class	but	only
stores	integers,	with	the	number	of	histogram	bins.	The	result	of	such	an	initialization	is	a

MatOfInt	object	of	the	dimension,	 ,	holding	the
number	25.

Note
We	need	to	initialize	such	an	object	because,	according	to	the	specification,	the	OpenCV
calculate	histogram	method	takes	a	Mat	object	holding	the	number	of	histogram	bins.

Then,	we	initialize	a	new	Mat	object	to	hold	the	histogram	value	using	the	following
command:

Mat	hist	=	newMat();

This	time,	the	Mat	object	will	have	the	dimension,	 :

float	[]mBuff	=	new	float[mHistSizeNum];

Recall	that	in	the	beginning	of	this	chapter,	we	accessed	individual	pixels	in	the	image.
Here,	we	will	use	the	same	technique	to	access	the	histogram	bins’	values	and	store	them
in	an	array	of	the	float	type.	Here	we	are	defining	another	histogram	component,	which	is
the	histogram	range:



MatOfFloat	histogramRanges	=	new	MatOfFloat(0f,	256f);

We	use	the	MatOfFloat()	class;	it	is	a	subclass	of	the	Mat	class	and	as	the	name	suggests,
it	only	holds	floating	point	numbers.

The	result	of	such	an	initialization	will	be	a	Mat	object	of	the	dimension,	 ,	holding
the	values	0	and	256,	respectively:

Scalar	mColorsRGB[]	=	new	Scalar[]	{	new	Scalar(200,	0,	0,	255),	new	

Scalar(0,	200,	0,	255),	new	Scalar(0,	0,	200,	255)	};

As	we	are	creating	a	histogram	of	every	channel,	we	will	distinguish	between	every
channel’s	histogram	by	plotting	its	lines	with	the	corresponding	channel	color.	We
initialize	an	array	of	three	Scalar	objects,	which	is	simply	a	double	array	of	a	length	up	to
four,	representing	the	three	colors,	Red,	Green,	and	Blue.	Initialize	two	points	to	draw	a
line	for	every	histogram	bin:

org.opencv.core.PointmP1	=	new	org.opencv.core.Point();

org.opencv.core.PointmP2	=	new	org.opencv.core.Point();

For	every	line	that	we	draw	for	the	histogram	bin,	we	need	to	specify	the	line	thickness:

int	thikness	=	(int)	(image.width()	/	(mHistSizeNum+10)/3);

if(thikness>	3)	thikness	=	3;

Initialize	three	MatOfInt	objects	with	the	values	0,	1,	and	2	to	index	every	image	channel
independently:

MatOfInt	mChannels[]	=	new	MatOfInt[]	{	new	MatOfInt(0),	new	MatOfInt(1),	

new	MatOfInt(2)	};

Calculate	the	offset	from	which	we	will	start	drawing	the	histogram:

Size	sizeRgba	=	image.size();

int	offset	=	(int)	((sizeRgba.width	-	(3*mHistSizeNum+30)*thikness));

Let’s	move	forward	to	part	two	where	we	calculate	and	plot	the	histogram:

//	RGB

for(int	c=0;	c<3;	c++)	{

		Imgproc.calcHist(Arrays.asList(image),	mChannels[c],	new	Mat(),	hist,	

mHistSize,	histogramRanges);

		Core.normalize(hist,	hist,	sizeRgba.height/2,	0,	Core.NORM_INF);

		hist.get(0,	0,	mBuff);

		for(int	h=0;	h<mHistSizeNum;	h++)	{

				mP1.x	=	mP2.x	=	offset	+	(c	*	(mHistSizeNum	+	10)	+	h)	*	thikness;

				mP1.y	=	sizeRgba.height-1;

				mP2.y	=	mP1.y	-	(int)mBuff[h];

				Core.line(image,	mP1,	mP2,	mColorsRGB[c],	thikness);

		}

}

The	first	thing	to	notice	is	that	we	can	only	compute	the	histogram	for	one	channel	at	a



time.	That’s	why	we	have	a	for	loop	running	for	the	three	channels.	As	for	the	body	for	the
loop,	the	first	step	is	to	call	Imgproc.calcHist()	that	does	all	the	heavy	lifting	after
passing	it	to	the	following	arguments:

A	list	of	Mat	objects.	Imgproc.calcHist()	calculates	the	histogram	for	a	list	of
images	and,	in	our	case,	we	are	passing	a	list	of	Mat	objects	containing	only	one
image.
A	MatOfInt	object	for	the	channel	index.
A	Mat	object	to	be	used	as	a	mask	in	case	we	want	to	calculate	the	histogram	for	a
specific	region	of	the	image.	However,	in	our	case,	we	need	to	calculate	the
histogram	for	the	whole	image	and	that’s	why	we	send	an	empty	Mat	object.
A	Mat	object	to	store	the	histogram	values.
A	MatOfInt	object	to	hold	the	number	of	bins.
A	MatOfFloat	object	to	hold	the	histogram	range.

Now	that	we	have	computed	the	histogram,	it	is	necessary	to	normalize	its	values	so	that
we	can	display	them	on	the	device	screen.	Core.normalize()	can	be	used	in	several
different	ways:

Core.normalize(hist,	hist,	sizeRgba.height/2,	0,	Core.NORM_INF);

The	one	used	here	is	to	normalize	using	the	norm	of	the	input	array,	which	is	the
histogram	values	in	our	case,	passing	the	following	arguments:

A	Mat	object	as	the	source	of	the	values	to	normalize.
A	Mat	object	as	the	destination	after	normalization.
A	double	alpha.	In	the	case	of	a	norm	normalization,	the	alpha	will	be	used	as	the
norm	value.	For	the	other	case,	which	is	a	range	normalization,	the	alpha	will	be	the
minimum	value	of	the	range.
A	double	beta.	This	parameter	is	only	used	in	the	case	of	a	range	normalization	as	the
maximum	range	value.	In	our	case,	we	passed	0	as	it	is	not	used.
An	integer	norm	type.	This	argument	specifies	which	normalization	to	use.	In	our
case,	we	passed	Core.NORM_INF,	which	tells	OpenCV	to	use	the	infinity	norm	for
normalization,	setting	the	maximum	value	of	the	input	array	to	equal	the	alpha
parameter	that	in	our	case	is	set	to	half	of	the	image	height.	You	could	use	a	different
norm	such	as	an	L2	norm	or	L1	norm	and	this	is	equivalent	to	passing	Core.NORM_L2
or	Core.NORM_L1,	respectively.	Alternatively,	you	can	use	range	normalization	by
passing	Core.MINMAX,	which	will	normalize	the	values	of	the	source	to	be	between
the	alpha	and	beta	parameters.

After	normalization,	we	retrieve	the	histogram	bin	values	in	a	float	array:

hist.get(0,	0,	mBuff);

Finally,	we	plot	a	line	for	every	bin	in	the	histogram	using	Core.line():

for(int	h=0;	h<mHistSizeNum;	h++)	{

		//calculate	the	starting	x	position	related	to	channel	C	plus	10	//pixels	

spacing	multiplied	by	the	thickness

		mP1.x	=	mP2.x	=	offset	+	(c	*	(mHistSizeNum	+	10)	+	h)	*	thikness;



		mP1.y	=	sizeRgba.height-1;

		mP2.y	=	mP1.y	-	(int)mBuff[h];

		Core.line(image,	mP1,	mP2,	mColorsRGB[c],	thikness);

}

To	Core.line(),	we	pass	the	following	parameters:

A	Mat	object	to	plot	on
A	Point	object	representing	the	starting	point	of	the	line
A	Point	object	representing	the	ending	point	of	the	line
A	Scalar	object	representing	the	line	color
An	integer	representing	the	line	thickness

The	final	output	would	be	the	loaded	image	with	a	histogram	for	every	color	channel:





Enhancing	the	image	contrast
Now	that	you	understand	what	a	histogram	is	and	how	to	calculate	it,	it	is	time	to	look	at
one	of	the	most	widely	used	image	enhancing	techniques:	the	histogram	equalization.	The
histogram	equalization	technique	is	used	to	enhance	the	image	contrast,	that	is,	the
difference	between	the	minimum	and	maximum	intensity	values	in	order	to	strengthen
image	details	that	could	be	washed	out.



Understanding	histogram	equalization
From	an	abstract	point	of	view,	what	the	histogram	equalization	does	is	it	finds	a	function
that	takes	the	image’s	original	histogram	and	transforms	it	to	a	stretched	histogram	with	a
uniform	distribution	of	the	image	intensity	values,	thus	enhancing	the	image	contrast.

In	practice,	histogram	equalization	doesn’t	produce	a	perfectly	equalized	output
histogram;	however,	it	forms	a	good	approximation	of	the	needed	transformation	that
spreads	the	intensity	values	more	evenly	over	the	defined	equalization	range	of	the	image:

Enhancing	grayscale	images
Since	the	beginning	of	the	book,	we	haven’t	really	distinguished	between	applying	the	set
of	algorithms	that	we	have	to	a	grayscale	or	full	color	image.	However,	applying
histogram	equalization	to	a	grayscale	image	has	a	different	effect	than	applying	it	to	a	full
color	image.

We	will	start	by	applying	the	histogram	equalization	to	the	grayscale	images	first.

UI	definitions

We	will	build	on	the	project	that	we	developed	earlier	by	adding	more	menu	items	to
trigger	the	image	enhancing	functionality.

Open	the	menu	file,	res/menu/iodark_room.xml,	and	add	the	new	submenu:



<item	

android:id="@+id/enhance_gs"android:title="@string/enhance_gs"android:enabl

ed="true"android:visible="true"android:showAsAction="always"android:titleCo

ndensed="@string/enhance_gs_small">

		<menu>

		<item	android:id="@+id/action_togs"android:title="@string/action_ctgs"/>

		<item	

android:id="@+id/action_egs"android:title="@string/action_eqgsistring"/>

		</menu>

</item>

In	the	new	submenu,	we	added	two	new	items:	one	to	convert	the	image	to	grayscale	and
the	second	to	trigger	the	histogram	equalization.

Converting	an	image	to	grayscale

OpenCV	supports	many	color	space	conversions	so	the	effort	needed	to	convert	a	full
color	image	to	grayscale	is	very	minimal.

We	need	to	update	the	onOptionsItemSelected(MenuItem	item)	method	in	the	activity
to	handle	pressing	the	new	menu	item	in	order	to	convert	to	grayscale:

else	if	(id	==	R.id.action_togs)	{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

		greyImage=new	Mat();

		Imgproc.cvtColor(sampledImage,	greyImage,	Imgproc.COLOR_RGB2GRAY);

		displayImage(greyImage);

		return	true;

}

We	do	a	check	to	see	if	the	sampled	image	is	already	loaded	and	then	call
Imgproc.cvtColor()	and	pass	to	it	the	following	parameters:

A	Mat	object	as	our	source	image.
A	Mat	object	as	the	destination	image.
An	integer	to	indicate	which	color	space	to	convert	from	and	which	color	space	to
convert	to.	In	our	case,	we	chose	to	convert	from	RGB	to	grayscale.

Finally,	we	display	the	grayscale	image.

Equalizing	a	histogram	for	a	grayscale	image

We	change	the	onOptionsItemSelected(MenuItem	item)	method	to	handle	the	histogram
equalization	menu	item:

else	if	(id	==	R.id.action_egs)	{

		if(greyImage==null)



		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	convert	the	image	to	greyscale	

first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

		Mat	eqGS=new	Mat();

		Imgproc.equalizeHist(greyImage,	eqGS);

		displayImage(eqGS);

		return	true;		

}

We	will	again	check	to	see	if	the	user	already	converted	the	image	to	grayscale;	otherwise
the	histogram	equalization	method	will	fail.	Then,	we	call	Imgproc.equalizeHist()
passing	in	two	parameters:

A	Mat	object	as	the	source	image
A	Mat	object	as	the	destination	image

Finally,	we	call	displayImage()	to	show	the	image	after	the	enhancement:

Enhancing	an	HSV	image



To	enhance	a	full	color	image	using	histogram	equalization	and	get	the	same	effect,	that	is,
enhancing	the	image	contrast,	we	need	to	convert	the	image	from	the	RGB	space	to	the
HSV	and	then	apply	the	same	algorithm	to	the	saturation	(S)	and	value	(V)	channels.

UI	definitions

The	changes	are	related	to	adding	the	new	menu	item	to	trigger	the	HSV	enhancement:

<item	

android:id="@+id/action_HSV"android:titleCondensed="@string/action_enhanceH

SV"android:title="@string/action_enhanceHSV"android:enabled="true"android:s

howAsAction="ifRoom"android:visible="true"/>

Equalizing	a	histogram	for	the	image	saturation	and	value

The	main	skill	that	you	need	to	master	is	working	with	image	channels	on	individual
bases:

else	if	(id	==	R.id.action_HSV)	{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

First,	update	onOptionsItemSelected(MenuItem	item)	to	handle	the	new	menu	item:

Mat	V=new	Mat(sampledImage.rows(),sampledImage.cols(),CvType.CV_8UC1);

Mat	S=new	Mat(sampledImage.rows(),sampledImage.cols(),CvType.CV_8UC1);

Initialize	two	new	Mat	objects	to	hold	the	image	value	and	saturation	channels:

Mat	HSV=new	Mat();

Imgproc.cvtColor(sampledImage,	HSV,	Imgproc.COLOR_RGB2HSV);

Now,	we	convert	the	RGB	image	to	the	HSV	color	space:

byte	[]	Vs=new	byte[3];

byte	[]	vsout=new	byte[1];

byte	[]	ssout=new	byte[1];

						

for(int	i=0;i<HSV.rows();i++){

		for(int	j=0;j<HSV.cols();j++)

		{

				HSV.get(i,	j,Vs);

				V.put(i,j,new	byte[]{Vs[2]});

				S.put(i,j,new	byte[]{Vs[1]});

		}

}

Then,	we	access	the	image	pixel	by	pixel	to	copy	the	saturation	and	value	channels:



Imgproc.equalizeHist(V,	V);

Imgproc.equalizeHist(S,	S);

Call	Imgproc.equalizeHist()	to	enhance	the	value	and	saturation	channels:

for(int	i=0;i<HSV.rows();i++){

		for(int	j=0;j<HSV.cols();j++)

		{

				V.get(i,	j,vsout);

				S.get(i,	j,ssout);

				HSV.get(i,	j,Vs);

				Vs[2]=vsout[0];

				Vs[1]=ssout[0];

				HSV.put(i,	j,Vs);

		}

}

Now,	we	copy	the	enhanced	saturation	and	value	back	to	the	original	image:

Mat	enhancedImage=new	Mat();

Imgproc.cvtColor(HSV,enhancedImage,Imgproc.COLOR_HSV2RGB);

displayImage(enhancedImage);

return	true;

Finally,	we	convert	the	HSV	color	space	to	RGB	and	display	the	enhanced	image:

Enhancing	an	RGB	image



Executing	histogram	equalization	on	the	Red,	Green,	and	Blue	channels	will	give	you	a
different	effect	as	if	you	are	adjusting	the	color	hue.

UI	definitions

We	will	add	a	new	menu	item	to	execute	the	RGB	enhancement	on	individual	channels	or
a	group	of	channels:

<item	

android:id="@+id/action_RGB"android:title="@string/action_RGB"android:title

Condensed="@string/action_enhanceRGB_small"android:enabled="true"android:sh

owAsAction="ifRoom"android:visible="true">

		<menu>

				<item	

android:id="@+id/action_ER"android:titleCondensed="@string/action_enhance_r

ed_small"android:title="@string/action_enhance_red"android:showAsAction="if

Room"android:visible="true"android:enabled="true"android:orderInCategory="1

"/>

				<item	android:id="@+id/action_EG"	

android:showAsAction="ifRoom"android:visible="true"android:enabled="true"an

droid:titleCondensed="@string/action_enhance_green_small"android:title="@st

ring/action_enhance_green"android:orderInCategory="2"/>

				<item	android:id="@+id/action_ERG"	

android:showAsAction="ifRoom"android:visible="true"android:enabled="true"an

droid:titleCondensed="@string/action_enhance_red_green_small"android:title=

"@string/action_enhance_red_green"android:orderInCategory="3"/>

		</menu>

</item>

Equalizing	a	histogram	for	the	image	color	channels

You	probably	noticed	that	accessing	the	image	pixel	by	pixel	is	slow,	especially	if	the
image	resolution	is	high.	In	this	section,	we	will	explore	a	different	technique	to	work	with
image	channels	that	is	faster	as	follows:

else	if(id==R.id.action_ER)

{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

		Mat	redEnhanced=new	Mat();

		sampledImage.copyTo(redEnhanced);

		Mat	redMask=new	

Mat(sampledImage.rows(),sampledImage.cols(),sampledImage.type(),new	

Scalar(1,0,0,0));

The	important	line	here	is	initializing	redMask,	which	is	a	Mat	object,	with	all	the
channels	set	to	0	except	the	first	channel,	which	is	the	red	channel	in	an	RGB	image.



Then,	we	call	the	enhanceChannel()	method	passing	in	a	copy	of	the	loaded	image	and
channel	mask	that	we	created:

enhanceChannel(redEnhanced,redMask);

In	the	enhanceChannel()	method,	we	first	copy	the	loaded	image	to	another	Mat	object:

private	void	enhanceChannel(Mat	imageToEnhance,Mat	mask)

{

		Mat	channel=new		

Mat(sampledImage.rows(),sampledImage.cols(),CvType.CV_8UC1);

		sampledImage.copyTo(channel,mask);

		Imgproc.cvtColor(channel,	channel,	Imgproc.COLOR_RGB2GRAY,1);

		Imgproc.equalizeHist(channel,	channel);

		Imgproc.cvtColor(channel,	channel,	Imgproc.COLOR_GRAY2RGB,3);

		channel.copyTo(imageToEnhance,mask);

}

However,	this	time	we	pass	a	mask	to	the	copy	method	to	extract	only	the	designated
channel	of	the	image.

Then,	we	convert	the	copied	channel	to	a	grayscale	color	space	so	that	the	depth	is	8-bit
and	equalizeHist()	doesn’t	fail.

Finally,	we	convert	it	to	an	RGB	Mat	object,	replicating	the	enhanced	channel	to	the	Red,
Green,	and	Blue,	and	then	we	copy	the	enhanced	channel	to	the	passed	argument	using	the
same	mask.

You	can	easily	play	around	with	masks	that	you	construct	in	order	to	enhance	different
channels	or	a	combination	of	channels.





Summary
By	now	you	should	have	learned	about	how	images	are	represented	and	stored	in	OpenCV.
You	also	developed	your	own	darkroom	application,	loaded	images	from	your	gallery,
calculated	and	displayed	their	histograms,	and	executed	histogram	equalization	on
different	color	spaces	in	order	to	enhance	how	the	image	looks.

In	the	next	chapter,	we	will	develop	a	new	application	to	utilize	more	of	the	OpenCV
image	processing	and	computer	vision	algorithms.	We	will	use	algorithms	to	smooth
images	and	detect	ages,	lines,	and	circles.





Chapter	3.	App	2	-	Software	Scanner
In	this	chapter,	we	will	start	implementing	our	next	application,	a	software	scanner.	It
allows	people	to	take	a	photo	of,	let’s	say,	a	receipt,	and	applies	some	transformations	in
order	to	make	it	look	as	if	it	was	scanned.

This	application	will	be	divided	in	two	chapters.	In	this	chapter,	we	will	introduce	two
important	topics	that	will	help	us	to	reach	our	final	goal.

The	first	topic	will	be	about	spatial	filtering	and	its	definition	and	applications.	You	will
learn	how	to	reduce	image	noise,	also	known	as	image	smoothing.	Additionally,	you	will
understand	the	process	of	detecting	edges	(object	boundaries)	in	an	image	using	different
algorithms	implemented	in	OpenCV	with	a	high	level	of	abstraction.

The	second	topic	will	be	about	another	famous	shape	analysis	technique	called	the	Hough
transform.	You	will	learn	about	the	basic	idea	behind	this	technique	that	has	made	it	very
popular	and	widely	used,	and	we	will	use	the	OpenCV	implementation	to	start	fitting	lines
and	circles	to	a	set	of	edge	pixels.



Spatial	filtering
In	Chapter	2,	App	1	-	Building	Your	Own	Darkroom,	we	talked	about	how	you	can
enhance	a	given	image	using	techniques	such	as	histogram	equalization	to	make	the	image
more	pleasing	by	enhancing	the	image	contrast	in	different	color	spaces.	In	this	section,
we	will	discuss	another	enhancement	technique	that	is	usually	used	as	a	preprocessing	step
for	many	computer	vision	algorithms,	which	is	spatial	filtering.

Before	we	start	with	the	concept,	let’s	first	create	a	new	Android	application.	We	will
follow	the	same	steps	as	in	previous	chapter;	however,	we	will	list	the	different	steps
related	to	naming	the	application	and	so	on:

1.	 Create	a	new	Android	project	and	name	it	SoftScanner.
2.	 Choose	a	package	name;	in	our	example,	we	used	com.app2.softscanner.
3.	 When	creating	the	blank	activity,	just	name	it	SoftScanner.
4.	 Continue	with	the	steps	to	link	the	OpenCV	library	with	the	new	application.
5.	 For	the	UI	definitions	and	permissions,	please	follow	the	exact	same	steps	that	we

used	in	the	previous	chapter.
6.	 For	loading	the	OpenCV	library	asynchronously	and	reading	an	image	from	your

device,	please	follow	the	exact	same	steps	in	the	Reading	an	image	using	OpenCV
section	in	Chapter	2,	App	1	-	Building	Your	Own	Darkroom.

Note
Before	moving	on,	make	sure	that	you	are	able	to	load	the	OpenCV	library	and	read	and
display	an	image	stored	on	your	phone.



Understanding	convolution	and	linear	filtering
The	main	goal	of	enhancing	an	image	is	to	make	it	more	appealing	and	visually
acceptable,	and	the	usual	things	that	you	need	to	do	are	emphasize	the	edges,	reduce	the
noise,	and	sometimes	introduce	a	blurry	effect.

These	kinds	of	enhancement	operations	and	many	others	can	be	achieved	through	spatial
filtering.	We	use	the	term	spatial	here	to	emphasize	that	the	filtering	process	takes	place	on
the	actual	image	pixels	and	differentiate	between	it	and	the	other	filters	such	as	the
frequency	domain	filters.	As	we	move	forward,	we	are	not	going	to	talk	about	the
frequency	domain	filter,	so	from	now	on,	we	will	refer	to	the	spatial	filters	as	just	filters.

The	process	that	you	usually	follow	to	apply	a	filter	to	an	image	is	pretty	much	standard
regardless	of	which	filter	you	are	going	to	use.	Simply,	for	linear	filters,	we	consider	each
pixel	of	the	original	image,	usually	referring	to	it	as	the	target	pixel,	and	replace	its	value
with	a	weighted	sum	of	a	specified	neighborhood	around	it.	It	is	called	a	linear	filter
because	the	target	pixel’s	new	value	is	the	outcome	of	a	linear	combination	(weighted
sum)	of	the	pixels	in	its	neighborhood.

The	weights	in	the	weighted	sum	are	determined	by	a	filter	kernel	(a	mask);	this	is	just	a
subimage	of	the	size	of	the	neighborhood	that	we	want	to	consider.	The	way	to	calculate
the	new	target	pixel’s	value	is	by	positioning	the	kernel	such	that	the	location	of	the	center
weight	coincides	with	the	target	pixel;	then	we	combine	the	weighted	neighborhood
pixels,	including	the	target	pixel	and	its	corresponding	weight,	to	get	the	new	value	of	the
target	pixel.	Finally,	we	keep	on	repeating	this	process	for	every	pixel	in	the	target	image.

The	mechanics	of	applying	linear	filters	in	the	discrete	form	are	also	referred	to	as
convolution,	and	the	filter	kernels	are	sometimes	described	as	convolution	kernels.



Finally,	we	can	summarize	the	linear	convolution	process	as	follows:

1.	 Define	the	convolution	kernel	(that	is,	specify	the	weights	of	the	neighborhood
pixels).

2.	 Place	the	kernel	on	the	target	image	so	that	the	target	pixel	coincides	with	the	center
weight	of	the	kernel.

3.	 Multiply	the	pixels	beneath	the	kernel	with	the	corresponding	weights	in	the	kernel
and	replace	the	target	pixel	with	the	outcome.

4.	 Repeat	steps	2	and	3	for	every	pixel	in	the	target	image.



Removing	noise
The	first	application	of	filtering	is	blurring	an	image,	also	known	as	smoothing.	The
outcome	of	this	process	is	the	target	image	with	less	noise.	We	will	cover	three	different
blurring	techniques:	averaging,	Gaussian,	and	median.

The	averaging	filter
You	get	the	averaging	filter	by	designing	the	convolution	kernel	to	replace	the	target
pixel’s	value	with	the	average	of	the	neighborhood	under	the	kernel.

A	typical	convolution	kernel	 	of	size	 	would	look	as	this:	 .

Following	the	process	mentioned	before,	every	target	pixel	will	be	replaced	by	the	average
of	its	 	neighborhood	and	changing	the	size	of	the	kernel	will	make	the	image	more
blurry	as	you	including	more	and	more	pixels	in	the	neighborhood.

The	Gaussian	filter
The	averaging	filter	treats	every	pixel	in	the	neighborhood	equally	so	that	every	pixel	in
the	neighborhood	will	have	the	same	weight,	that	is,	the	same	effect	on	the	new	target
pixel’s	value.

However,	in	real	situations,	this	is	not	the	case.	Usually,	the	effect	of	the	neighborhood
grows	weaker	as	we	move	away	from	the	target	pixel’s	location;	thus	the	further	you	move
from	the	target	pixel,	the	lesser	your	effect	should	be,	that	is,	the	smaller	the	weight.

This	relationship	is	achieved	using	a	Gaussian	filter.	This	filter,	as	the	name	suggests,	uses
a	Gaussian	function	to	determine	the	weight	distribution	of	a	given	neighborhood	using
the	formula	for	one	dimension:

This	produces	a	bell	curve,	where	 	is	the	height	of	the	curve’s	peak,	 	is	the	position	of
the	center	of	the	peak	or	the	mean,	and	 	is	the	standard	deviation	or	sigma,	which
indicates	how	wide	the	bell	curve	is.	An	example	for	a	bell	curve	with	parameters	is	as

follows:	[ ]



To	use	the	Gaussian	function	to	filter,	we	should	extend	it	for	a	two-dimensional	space,
but	without	any	loss	of	generality,	the	same	concept	applies	on	the	one-dimensional
version	plotted	here.

Now,	consider	the	x	axis	as	the	weight	index	in	the	kernel	(where	0	is	the	center	weight)
and	the	y	axis	as	the	weight	value.	So,	if	we	moved	the	kernel	such	that	its	center	(the
center	of	the	curve	at	x=0)	coincides	with	the	target	pixel,	then	the	highest	weight	(the
peak	of	the	curve)	will	be	assigned	to	the	target	pixel,	and	moving	away	from	the	center	of
the	kernel,	the	weights	keep	on	decreasing,	thus	assigning	less	importance	to	the	pixel
lying	further	away	from	the	target	pixel.

The	median	filter
In	this	filter,	the	pixels	in	the	neighborhood	are	sorted	based	on	their	intensity	values,	and
the	target	pixel	is	replaced	by	the	median	of	the	sorted	neighborhood.	The	median	filter	is
very	effective	in	removing	a	type	of	noise	called	the	salt-and-pepper	noise,	as	shown
here:



UI	definitions
We	will	be	adding	different	menu	items	to	our	application	for	every	filter	type.	Go	to	the
res/menu/soft_scanner.xml	file	and	open	it	to	include	the	following	menu	item:

<item

		android:id="@+id/img_blurr"

		android:enabled="true"

		android:orderInCategory="4"

		android:showAsAction="ifRoom"

		android:title="@string/list_blurr"

		android:titleCondensed="@string/list_blurr_small"

		android:visible="true">

		<menu>

				<item

						android:id="@+id/action_average"

						android:title="@string/action_average"/>

				<item

						android:id="@+id/action_gaussian"

						android:title="@string/action_gaussian"/>

				<item

						android:id="@+id/action_median"

						android:title="@string/action_median"/>

			</menu>

</item>

Applying	filters	to	reduce	image	noise
OpenCV	provides	an	out-of-the-box	implementation	for	every	filter	that	we	discussed
here;	all	we	need	to	do	is	specify	some	filter-specific	parameters	and	we	are	ready	to	go.

In	the	SoftScanner	activity,	we	need	to	edit	the	onOptionesItemSelected()	method	and
add	the	following	cases:

else	if(id==R.id.action_average)



{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

		Mat	blurredImage=new	Mat();

		Size	size=new	Size(7,7);

		Imgproc.blur(sampledImage,	blurredImage,	size);

						

		displayImage(blurredImage);

		return	true;		

}

else	if(id==R.id.action_gaussian)

{

		/*	code	to	handle	the	user	not	loading	an	image**/

		

		/**/

		Mat	blurredImage=new	Mat();

		Size	size=new	Size(7,7);

		Imgproc.GaussianBlur(sampledImage,	blurredImage,	size,	0,0);

						

		displayImage(blurredImage);

		return	true;

}

else	if(id==R.id.action_median)

{

		/*	code	to	handle	the	user	not	loading	an	image**/

		

		/**/

		Mat	blurredImage=new	Mat();

		int	kernelDim=7;

		Imgproc.medianBlur(sampledImage,blurredImage	,	kernelDim);

						

		displayImage(blurredImage);

		return	true;

}

For	every	selected	filter,	we	follow	the	same	process:

1.	 We	handle	the	case	if	the	user	didn’t	select	or	load	an	image	from	the	gallery:

if(sampledImage==null)

{

		Context	context	=	getApplicationContext();

		CharSequence	text	=	"You	need	to	load	an	image	first!";

		int	duration	=	Toast.LENGTH_SHORT;

		Toast	toast	=	Toast.makeText(context,	text,	duration);

		toast.show();

		return	true;



}

2.	 For	the	averaging	filter,	we	call	the	Imgproc.blur()	method	passing	in	the	following
parameters:

A	Mat	object	for	the	input	image;	it	could	have	any	number	of	channels,	which
are	processed	independently.
A	Mat	object	for	the	output	image	after	applying	the	filter.
A	Size	object	indicating	the	size	of	the	kernel	(neighborhood)	to	be	used.	In	our
case	the	kernel	will	be	of	size	 .

Mat	blurredImage=new	Mat();

Size	size=new	Size(7,7);

Imgproc.blur(sampledImage,	blurredImage,	size);

displayImage(blurredImage);

return	true;

3.	 To	apply	a	Gaussian	filter,	we	call	the	Imgproc.GaussianBlur()	method	with	the
following	parameters:

A	Mat	object	for	the	input	image.
A	Mat	object	for	the	output	image.
A	Size	object	indicating	the	kernel	size.	You	can	use	a	kernel	with	different
height	and	width;	however,	both	should	be	odd	and	positive	numbers.
A	double	representing	the	standard	deviation	in	the	x	direction.	In	our	case,	we
set	it	to	0	so	that	OpenCV	computes	this	value	for	us	depending	on	the	kernel
width.
A	double	representing	the	standard	deviation	in	the	y	direction,	also	we	set	it	to
0	so	that	OpenCV	calculates	the	value	depending	on	the	kernel	height:

Mat	blurredImage=new	Mat();

Size	size=new	Size(7,7);

Imgproc.GaussianBlur(sampledImage,	blurredImage,	size,	0,0);

displayImage(blurredImage);

return	true;

4.	 Finally,	to	use	the	median	filter,	we	call	Imgproc.medianBlur()	with	the	following
parameters:

A	Mat	object	for	the	input	image.
A	Mat	object	for	the	output	image.
An	integer	representing	the	kernel	size,	and	we	are	using	one	value	because	the
median	filter	is	a	box	filter	(that	is,	the	kernel	width	equals	its	height).	However,
the	value	of	the	kernel	dimension	should	be	a	positive	and	odd	number.

Mat	blurredImage=new	Mat();

int	kernelDim=7;

Imgproc.medianBlur(sampledImage,blurredImage	,	kernelDim);

displayImage(blurredImage);

return	true;



The	following	image	shows	three	examples	of	applying	the	averaging	filter	with	different
kernel	sizes	(left:	11,	center:	25,	and	right:	35).	You	can	see	that	the	details	start	to	wash
out	with	increasing	kernel	size:

The	following	image	is	an	example	of	how	effective	the	median	filter	is	in	removing	the
salt-and-pepper	noise:



Finding	edges
Another	application	of	spatial	filtering	is	finding	edges	(object	boundaries)	in	images.	The
process	of	edge	detection	is	dependent	on	calculating	the	rate	of	a	change	in	pixel
intensities.	Intuitively,	when	the	rate	of	change	is	high,	it	is	more	likely	that	there	exists	an
edge	in	this	area.

To	calculate	the	rate	of	change,	we	use	the	concept	of	derivative	in	the	discrete	domain

because	for	an	image	of	size	 ,	we	only	have	row	number	 	and	column

number	 ,	and	we	don’t	have	row	number	 .

Let’s	consider	an	image	I	(x,y),	where	x	is	the	column	number	and	y	is	the	row	number.	As
it	is	a	function	of	two	variables,	we	will	calculate	the	partial	derivative	for	every	variable
independently	using	the	following	discrete	derivative	approximation	formula	for	x:

This	is	the	first	derivative	of	an	image	with	respect	to	x,	and	to	calculate	the	first
derivative	for	the	image	with	respect	to	y,	we	use	the	following	equation:

So,	it	is	very	simple	to	take	the	derivative	of	an	image	with	respect	to	x.	We	take	the	value
of	a	pixel	at	x+1	and	we	subtract	it	from	the	pixel	at	x-1,	and	this	is	called	the	central
difference	and	the	same	applies	for	y.

Finally,	because	images	have	two	dimensions	(rows	and	columns),	we	end	up	with	a

gradient	vector,	 ,	for	every	pixel	(one	for	the	x	direction	and	one	for	the	y	direction),
and	because	it	is	a	vector,	it	can	tell	us	two	things:

The	gradient	magnitude	representing	the	strength	of	the	edge	at	this	pixel
The	gradient	direction	representing	the	edge	direction

Moving	forward,	we	can	design	a	simple	kernel	to	calculate	the	average	central	difference
to	find	the	derivative	of	an	image	in	the	x	and	y	direction	as	follows:



Now,	we	can	summarize	the	first	derivative	edge	detection	process	in	the	following	steps:

1.	 We	smooth	an	image	using	a	smoothing	filter	(to	get	rid	of	the	noise).
2.	 Compute	the	derivative	in	the	x	direction;	the	output	will	be	an	image	filtered	with	a

kernel	as	 .
3.	 Compute	the	derivative	in	the	y	direction;	the	output	will	be	another	image	filtered

with	a	kernel	as	 .
4.	 Calculate	the	gradient	magnitude	for	every	pixel.
5.	 Threshold	the	gradient	magnitude,	that	is,	if	the	gradient	magnitude	of	a	pixel	is

greater	than	a	certain	threshold,	then	it	is	an	edge;	otherwise,	it	is	not.

The	following	image	is	an	example	to	compute	the	first	derivative	in	the	x	direction	to
detect	the	vertical	edges	(center)	and	for	the	y	direction	to	detect	the	horizontal	edges
(right)	for	the	original	image	(left):

The	Sobel	edge	detector
OpenCV	provides	you	with	different	edge	detectors.	The	one	that	we	will	start	with	is
named	Sobel	edge	detector.	The	main	idea	here	is	the	design	of	the	convolution	kernel:

The	kernel	puts	more	emphasis	on	the	central	row	for	 	and	central	column	for	 .



The	Canny	edge	detector
Another	very	good	edge	detector	also	known	as	the	optimal	detector	is	the	Canny	edge
detector.

In	the	Canny	edge	detector,	we	decide	on	an	edge	pixel	in	the	following	steps:

1.	 We	smooth	an	image	using	a	Gaussian	filter.
2.	 Calculate	the	gradient	vector	for	every	pixel	using,	for	example,	a	Sobel	filter.
3.	 Suppress	the	non-maximum	pixels	by	comparing	every	pixel’s	gradient	magnitude	to

its	neighborhood	in	the	direction	of	the	gradient.	We	decide	that	it	is	a	part	of	an
edge,	and	hence	we	keep	it	if	its	gradient	magnitude	is	the	maximum.

4.	 Finally,	Canny	uses	two	thresholds	(low	and	high)	for	a	procedure	called	hysteresis	to
decide	on	the	kept	pixels:

If	the	gradient	magnitude	of	the	pixel	is	greater	than	the	high	threshold,	then	the
pixel	is	accepted	as	an	edge	pixel.
The	pixel	is	immediately	rejected	if	its	gradient	magnitude	is	less	than	the	low
threshold.
If	the	pixel	gradient	magnitude	is	between	the	high	and	low	thresholds	and	it	is
connected	to	a	pixel	with	a	gradient	magnitude	higher	than	the	high	threshold,
then	the	pixel	will	be	accepted	as	an	edge	pixel.

UI	definitions
We	will	add	a	few	menu	items	to	our	application	in	order	to	trigger	the	different	edge
detectors	that	we	will	use.	Go	to	the	res/menu/soft_scanner.xml	file	and	open	it	to
include	the	following	menu	item:

<item

		android:id="@+id/img_edge_detection"

		android:enabled="true"

		android:orderInCategory="5"

		android:showAsAction="ifRoom"

		android:title="@string/list_ed"

		android:titleCondensed="@string/list_ed_small"

		android:visible="true">

		<menu>

				<item

						android:id="@+id/action_sobel"

						android:title="@string/action_sobel"/>

				<item

						android:id="@+id/action_canny"

						android:title="@string/action_canny"/>

		</menu>

</item>

Applying	the	Sobel	filter	to	find	edges
In	this	section,	we	will	use	both	the	Sobel	and	Canny	edge	detectors	to	find	edges	in
images.	We	will	start	with	the	Sobel	edge	filter.



In	the	SoftScanner	activity,	we	need	to	edit	the	onOptionesItemSelected()	method	and
add	the	following	case:

else	if(id==R.id.action_sobel)

{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

		Mat	blurredImage=new	Mat();

		Size	size=new	Size(7,7);

		Imgproc.GaussianBlur(sampledImage,	blurredImage,	size,	0,0);

						

		Mat	gray	=	new	Mat();

		Imgproc.cvtColor(blurredImage,	gray,	Imgproc.COLOR_RGB2GRAY);

						

		Mat	xFirstDervative	=new	Mat(),yFirstDervative	=new	Mat();

		int	ddepth=CvType.CV_16S;

		Imgproc.Sobel(gray,	xFirstDervative,ddepth	,	1,0);

		Imgproc.Sobel(gray,	yFirstDervative,ddepth	,	0,1);

		

		Mat	absXD=new	Mat(),absYD=new	Mat();

		

		Core.convertScaleAbs(xFirstDervative,	absXD);

		Core.convertScaleAbs(yFirstDervative,	absYD);

						

		Mat	edgeImage=new	Mat();

		Core.addWeighted(absXD,	0.5,	absYD,	0.5,	0,	edgeImage);

						

		displayImage(edgeImage);

		return	true;

}

As	Sobel	is	a	first	derivative	edge	detector,	we	will	follow	the	process	outlined	earlier:

1.	 We	smooth	the	image	using	one	of	the	blurring	filters	that	you	learned	about	earlier
to	reduce	noise	responses	when	we	calculate	edge	pixels.	In	our	case,	and	for	most	of
the	cases,	we	used	a	Gaussian	filter	of	size	 :

Mat	blurredImage=new	Mat();

Size	size=new	Size(7,7);

Imgproc.GaussianBlur(sampledImage,	blurredImage,	size,	0,0);

2.	 Convert	the	smoothed	image	to	a	grayscale	image:

Mat	gray	=	new	Mat();

Imgproc.cvtColor(blurredImage,	gray,	Imgproc.COLOR_RGB2GRAY);

3.	 Calculate	the	x	and	y	first	derivatives	for	the	grayscale	image	using



Imgproc.Sobel()	and	passing	in	the	following	parameters:

A	Mat	object	as	the	source	image.
A	Mat	object	as	the	output	image.
An	integer	depth	that	is	used	to	indicate	the	depth	of	the	output	image.	In	most
of	the	cases,	both	the	input	and	output	images	have	the	same	depth;	however,
when	we	calculate	the	derivative	in	some	cases,	the	value	is	negative	(that	is,
moving	from	white	(255)	to	black	(0),	 ).	So,	if	we
are	using	a	Mat	object	with	an	unsigned	8-bit	depth	(gray	image	only	holds	a
value	from	0	to	255),	then	the	value	of	the	negative	derivative	will	overflow	and
set	to	0,	that	is,	we	will	miss	this	edge.	To	work	around	this	issue,	we	use	a
signed	16-bit	depth	output	image	to	store	the	negative	derivatives.
An	integer	for	the	x	order	that	we	want	to	compute.	We	set	it	to	1	to	compute	the
first	derivative	for	x.
An	integer	for	the	y	order	that	we	want	to	compute.	We	set	it	to	1	to	compute	the
first	derivative	for	y.

Note
Note	that	to	calculate	the	gradient	in	the	x	direction,	we	use	x-order=1	and	y-
order=0.	We	do	the	same	analogously	for	the	y	direction.

The	following	is	the	code:

Mat	xFirstDervative	=new	Mat(),yFirstDervative	=new	Mat();

int	ddepth=CvType.CV_16S;

Imgproc.Sobel(gray,	xFirstDervative,ddepth	,	1,0);

Imgproc.Sobel(gray,	yFirstDervative,ddepth	,	0,1);

4.	 We	call	Core.convertScaleAbs()	to	perform	three	operations	sequentially	on	the
input	Mat	object:

Scale	the	input	Mat	object	values;	however,	as	we	didn’t	pass	any	scaling
factors,	the	scale	step	is	bypassed.
Take	the	absolute	value	for	every	element	in	the	input	Mat	object.	We	need	this
step	because	we	stored	the	negative	values	of	the	x	and	y	first	derivatives,	but
we	actually	care	about	the	absolute	value	of	the	derivatives	and	we	want	to	be
able	to	store	these	values	in	an	unsigned	8-bit	Mat	object	(storing	values	from	0
to	255).
Convert	to	an	unsigned	8-bit	depth	Mat	object.

The	parameters	for	Core.convertScaleAbs()	are	the	input	and	output	Mat	objects:

Mat	absXD=new	Mat(),absYD=new	Mat();

Core.convertScaleAbs(xFirstDervative,	absXD);

Core.convertScaleAbs(yFirstDervative,	absYD);

5.	 We	try	to	approximate	the	gradient	magnitude	to	display	the	edge	image	using
Core.addWeighted(),	which	calculates	the	weighted	sum	of	the	two	images.	We
achieve	this	by	passing	the	following	parameters:



A	Mat	object	for	the	first	image.	We	passed	the	absolute	first	derivative	in	the	x
direction.
A	double	for	the	weight	of	the	first	image;	in	our	case,	it	is	0.5	for	both	the
images.
A	Mat	object	for	the	second	image.	We	passed	the	absolute	first	derivative	in	the
y	direction.
A	double	for	the	weight	of	the	second	image.
A	double	value	added	to	each	sum.	We	don’t	need	to	add	anything	so	we	send	0.
A	Mat	object	to	store	the	output	image.

Note
This	is	an	approximation	for	the	gradient	magnitude.	It	is	good	for	the	purpose	of	this
example;	however,	if	you	need	to	calculate	the	actual	gradient	magnitude,	you	will

have	to	use	this	formula	 ,	where	 	are	the
values	of	the	first	derivative	in	the	x	and	y	directions,	respectively.

The	following	is	the	code:

Mat	edgeImage=new	Mat();

Core.addWeighted(absXD,	0.5,	absYD,	0.5,	0,	edgeImage);

6.	 Finally,	we	display	edgeImage:

displayImage(edgeImage);

An	example	of	applying	the	Sobel	filter	to	detect	edges

Using	the	Canny	edge	detector
Applying	the	Canny	edge	detector	is	simpler;	we	will	actually	need	to	execute	only	one
function	in	OpenCV,	and	all	the	steps	of	the	Canny	edge	detector	will	be	executed	for	us.
With	this	level	of	abstraction,	we	only	need	to	specify	some	of	the	algorithm	parameters.



In	the	SoftScanner	activity,	we	need	to	edit	the	onOptionesItemSelected()	method	and
add	the	following	case:

else	if(id==R.id.action_canny)

{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

		Mat	gray	=	new	Mat();

		Imgproc.cvtColor(sampledImage,	gray,	Imgproc.COLOR_RGB2GRAY);

						

		Mat	edgeImage=new	Mat();

		Imgproc.Canny(gray,	edgeImage,	100,	200);

						

		displayImage(edgeImage);

		return	true;		

}

You	can	see	that	the	steps	are	much	simpler:

1.	 We	convert	the	input	image	to	grayscale	because	Canny	only	works	on	grayscale
images:

Mat	gray	=	new	Mat();

Imgproc.cvtColor(sampledImage,	gray,	Imgproc.COLOR_RGB2GRAY);

2.	 We	call	Imgproc.Canny()	and	pass	the	following	parameters:

A	Mat	object	as	the	input	grayscale	image
A	Mat	object	for	the	output	edge	image
A	double	for	the	lower	threshold	in	the	hysteresis	step
A	double	for	the	upper	threshold	in	the	hysteresis	step

Note
Canny	recommends	a	ratio	for	the	upper	and	lower	thresholds	between	2:1	and	3:1.

The	following	is	the	code:

Mat	edgeImage=new	Mat();

Imgproc.Canny(gray,	edgeImage,	100,	200);

3.	 Finally,	we	display	edgeImage:

displayImage(edgeImage);



An	example	of	applying	the	Canny	edge	detector





Detecting	shapes
So,	we	have	seen	how	to	detect	edges;	however,	this	process	is	a	pixel-by-pixel	process
answering	the	question	of	whether	this	pixel	is	an	edge	or	not.	Moving	forward,	in	shape
analysis,	we	would	need	more	concrete	information	than	just	the	edge	test;	we	will	need	a
better	representation.

For	example,	if	we	have	a	picture	of	a	box	and	we	did	the	edge	detection,	we	will	end	up
with	thousands	and	thousands	of	edge	pixels;	however,	if	we	tried	to	fit	a	line	to	these
edge	pixels,	we	get	a	rectangle,	which	is	a	more	symbolic	and	useful	representation.



Understanding	the	Hough	line	transform
There	are	many	ways	to	fit	a	line	through	a	number	of	points,	and	Hough	transform	is
considered	an	under	constrained	method,	where	we	use	only	one	point	to	find	all	the
possible	lines	that	can	go	through	this	point	and	we	use	another	point	to	find	all	the	lines
that	can	go	through	it	too,	and	we	keep	doing	this	for	all	the	points	that	we	have.

We	end	up	with	a	voting	system	where	each	point	is	voting	for	a	line	and	the	more	points
lying	on	the	same	line,	the	higher	the	votes	given	to	that	line.	In	a	nutshell,	the	Hough
transform	can	be	described	as	mapping	a	point	in	the	 	space	to	the	parameter	space	of
the	shape	of	interest.

With	the	equation	of	a	line	in	the	 	and	y	space,	 ,	we	transform	it	to	the	space

of	the	slope	 	and	intercept	space	(b),	and	given	this	transformation,	a	point	in	the	x	and

y	space	is	actually	a	line	in	the	slope	and	intercept	space	with	the	equation,	 :

In	the	following	image,	we	have	five	points	in	the	x	and	y	space	(left).	When	converted	to
the	slope	and	intercept	space,	we	get	five	lines	(right):



Now,	every	point	in	the	x	and	y	space	will	vote	for	a	slope	and	intercept	in	the	slope	and
intercept	space,	so	all	we	have	to	do	is	find	the	maxima	in	the	parameter	space	and	this
will	be	the	line	to	fit	our	points	on:

In	the	right	image	of	preceding	image,	you	can	find	the	maxima	value	based	on	the	votes
of	the	points	in	the	left	image,	and	in	the	left	image,	you	can	see	that	the	maxima	is	the
slope	and	intercept	of	the	line	fitting	the	points.

In	the	case	of	vertical	lines,	the	slope	is	infinity	and	that’s	why	it	is	more	practical	to	use
the	polar	equation	of	a	line	instead	the	slope	and	intercept	form.	In	this	case,	the	equation

that	we	will	work	with	is	 ,	and	again	we	have	two	parameters	
and	 ,	and	we	will	follow	the	same	idea	except	that	the	space	is	now	 	and	 	instead	of
the	slope	and	intercept.



We	again	follow	the	voting	system	to	find	the	maxima	that	represents	 	and	 	of	the	line
fitting	our	points.	However,	this	time,	a	point	in	the	 	and	 	space	will	be	sinusoid,	and
if	two	or	more	sinusoids	intersect	at	the	same	 	and	 ,	this	means	that	they	belong	to	the
same	line:

Note
You	can	see	the	Hough	transform	in	action	using	the	applets	at	http://www.rob.cs.tu-
bs.de/teaching/interactive/.

http://www.rob.cs.tu-bs.de/teaching/interactive/


Detecting	lines	using	Hough	transform
In	OpenCV,	we	have	two	implementations	of	the	Hough	line	transform:

1.	 The	Standard	Hough	Transform:	The	process	is	pretty	much	similar	to	the
previously	explained	process;	however,	it	is	considered	the	slower	option	as	the
algorithm	has	to	examine	all	the	edge	points	in	a	given	image.

2.	 The	Probabilistic	Hough	Line	Transform:	This	option	is	the	one	we	will	use	in	our
example.	In	the	probabilistic	version,	the	algorithm	attempts	to	minimize	the	amount
of	computation	needed	to	detect	the	lines	by	exploiting	the	difference	in	the	fraction
of	votes	needed	to	detect	the	lines.	Intuitively,	for	strong	or	long	lines,	we	only	need	a
small	fraction	of	its	supporting	points	to	vote	before	deciding	if	the	accumulator	bin
reaches	a	count	that	is	non-accidental.	However,	for	shorter	lines,	a	much	higher
portion	is	needed	to	decide.	In	conclusion,	the	algorithm	tries	to	minimize	the	number
of	edge	points	that	are	needed	to	decide	on	the	fitting	line.

UI	definitions
We	will	add	a	new	menu	item	to	start	the	Hough	transform	algorithm.	Go	to	the
res/menu/soft_scanner.xml	file	and	open	it	to	include	the	following	menu	item:

<item	android:id="@+id/action_HTL"

		android:enabled="true"

		android:visible="true"

		android:title="@string/action_HL">

</item>

Detecting	and	drawing	lines
The	process	to	use	Hough	line	transform	is	divided	in	four	steps:

1.	 Load	the	image	of	interest.
2.	 Detect	image	edges	using	Canny;	the	output	will	be	a	binary	image.
3.	 Call	either	the	standard	or	probabilistic	Hough	line	transform	on	the	binary	image.
4.	 Draw	the	detected	lines.

In	the	SoftScanner	activity,	we	need	to	edit	the	onOptionesItemSelected()	method	and
add	the	following	case:

else	if(id==R.id.action_HTL)

{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;



		}

		Mat	binaryImage=new	Mat();

		Imgproc.cvtColor(sampledImage,	binaryImage,	Imgproc.COLOR_RGB2GRAY);

		Imgproc.Canny(binaryImage,	binaryImage,	80,	100);

		Mat	lines	=	new	Mat();

		int	threshold	=	50;

						

		Imgproc.HoughLinesP(binaryImage,	lines,	1,	Math.PI/180,	threshold);

		

		Imgproc.cvtColor(binaryImage,	binaryImage,	Imgproc.COLOR_GRAY2RGB);

		for	(int	i	=	0;	i	<	lines.cols();	i++)	

		{

				double[]	line	=	lines.get(0,	i);

				double	xStart	=	line[0],	

				yStart	=	line[1],

				xEnd	=	line[2],

				yEnd	=	line[3];

				org.opencv.core.Point	lineStart	=	new	org.opencv.core.Point(xStart,	

yStart);

				org.opencv.core.Point	lineEnd	=	new	org.opencv.core.Point(xEnd,	yEnd);

				Core.line(binaryImage,	lineStart,	lineEnd,	new	Scalar(0,0,255),	3);

		}

		displayImage(binaryImage);

		return	true;

}

The	code	is	actually	quite	straightforward	and	the	following	steps	are	to	detect	and	draw
lines:

1.	 We	first	handle	the	case	wherein	if	the	user	clicks	the	menu	item	and	doesn’t	load	an
image:

if(sampledImage==null)

{

		Context	context	=	getApplicationContext();

		CharSequence	text	=	"You	need	to	load	an	image	first!";

		int	duration	=	Toast.LENGTH_SHORT;

		Toast	toast	=	Toast.makeText(context,	text,	duration);

		toast.show();

		return	true;

}

2.	 Then,	we	initialize	a	new	Mat	object	and	convert	the	loaded	image	from	the	full	color
space	to	the	grayscale	space.	Finally,	we	call	Imgproc.Canny()	to	convert	the
grayscale	image	to	a	binary	image	with	only	the	edges	displayed:

Mat	binaryImage=new	Mat();

Imgproc.cvtColor(sampledImage,	binaryImage,	Imgproc.COLOR_RGB2GRAY);

Imgproc.Canny(binaryImage,	binaryImage,	80,	100);

3.	 The	next	step	is	to	call	Imgproc.HoughLinesP(),	which	is	the	probabilistic	version	of



the	original	Hough	transform	method,	passing	in	the	following	parameters:

A	Mat	object	representing	the	binary	image	version	of	the	loaded	image

A	Mat	object	to	hold	the	detected	lines	as	the	parameters	
A	double	for	the	resolution,	in	pixels,	of	the	parameter	 ;	in	our	case,	we	set
it	to	be	one	pixel
A	double	for	the	resolution,	in	radians,	of	the	parameter	 ;	in	our	case,	we	set	to

it	to	be	one	degree	
An	integer	for	the	accumulator	threshold	to	return	only	the	lines	with	enough
votes

Note
Usually,	when	using	the	probabilistic	version	of	the	Hough	transform,	you	would	use
a	smaller	threshold	because	the	algorithm	is	used	to	minimize	the	number	of	points
used	to	vote.	However,	in	the	standard	Hough	transform,	you	should	use	a	larger
threshold.

The	following	is	the	code:

Mat	lines	=	new	Mat();

int	threshold	=	50;

Imgproc.HoughLinesP(binaryImage,	lines,	1,	Math.PI/180,	threshold);

4.	 Finally,	we	convert	the	binary	image	to	a	full	color	space	in	order	to	display	the
detected	lines,	then	we	loop	on	the	detected	lines	and	draw	them	one	by	one	using	the

parameters,	 :

Imgproc.cvtColor(binaryImage,	binaryImage,	Imgproc.COLOR_GRAY2RGB);

for	(int	i	=	0;	i	<	lines.cols();	i++)	

{

		double[]	line	=	lines.get(0,	i);

		double	xStart	=	line[0],	

		yStart	=	line[1],

		xEnd	=	line[2],

		yEnd	=	line[3];

		org.opencv.core.Point	lineStart	=	new	org.opencv.core.Point(xStart,	

yStart);

		org.opencv.core.Point	lineEnd	=	new	org.opencv.core.Point(xEnd,	

yEnd);

		Core.line(binaryImage,	lineStart,	lineEnd,	new	Scalar(0,0,255),	3);

}		

displayImage(binaryImage);

You	can	note	the	detected	Hough	lines	in	the	grid	in	the	following	input	image:



Hough	lines	(in	blue)	detected	from	the	edge	image



Detecting	circles	using	Hough	transform
OpenCV	provides	you	with	another	implementation	of	the	Hough	transform,	but	this	time,
instead	of	detecting	the	lines,	we	detect	circles	following	the	same	idea	of	transforming
the	 	space	to	the	parameter	space.

With	the	equation	of	a	circle,	 ,	we	have	three	parameters,	

,	where	a	and	b	are	the	centers	of	the	circle	in	the	x	and	y	directions,
respectively,	and	r	is	the	radius.

Now,	the	parameter	space	is	three-dimensional	and	every	edge	point	belonging	to	a	circle
will	vote	in	this	three-dimensional	space,	then	we	search	for	the	maxima	in	the	parameter
space	to	detect	the	circle	center	and	radius.

This	procedure	is	very	memory-	and	computation-intensive,	and	the	three-dimensional
space	will	be	very	sparse.	The	good	news	is	that	OpenCV	implements	the	circle	Hough
transform	using	a	method	called	Hough	gradient	method.

The	Hough	gradient	method	works	as	follows:	for	step	one,	we	apply	an	edge	detector,	for
example,	the	Canny	edge	detector.	In	step	two,	we	increment	the	accumulator	cells	(two-
dimensional	space)	in	the	direction	of	the	gradient	for	every	edge	pixel.	Intuitively,	if	we
are	encountering	a	circle,	the	accumulator	cell	with	the	higher	votes	is	actually	that	circle’s
center.	Now	that	we	have	built	a	list	of	potential	centers,	we	need	to	find	the	circle’s
radius.	So,	for	every	center,	we	consider	the	edge	pixels	by	sorting	them	according	to	their
distance	from	the	center	and	keep	a	single	radius	that	is	supported	(voted	for)	by	the
highest	number	of	edge	pixels:

UI	definitions
To	trigger	the	circle	Hough	transform,	we	will	add	one	menu	item	to	our	existing	menu.
Go	to	the	res/menu/soft_scanner.xml	file	and	open	it	to	include	the	following	menu
item:



<item	android:id="@+id/action_CHT"

		android:enabled="true"

		android:visible="true"

		android:title="@string/action_CHT">

</item>

Detecting	and	drawing	circles
The	process	of	detecting	circles	is	much	similar	to	the	process	of	detecting	lines:

1.	 Load	the	image	of	interest.
2.	 Convert	it	from	a	full	color	space	to	a	grayscale	space.
3.	 Call	the	circle	Hough	transform	method	on	the	grayscale	image.
4.	 Draw	the	detected	circles.

We	edit	onOptionsItemSelected()	to	handle	the	circle	Hough	transform	case:

else	if(id==R.id.action_CHT)

{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

		Mat	grayImage=new	Mat();

		Imgproc.cvtColor(sampledImage,	grayImage,	Imgproc.COLOR_RGB2GRAY);

						

		double	minDist=20;

		int	thickness=5;

		double	cannyHighThreshold=150;

		double	accumlatorThreshold=50;

		Mat	circles	=	new	Mat();

		Imgproc.HoughCircles(grayImage,	circles,	Imgproc.CV_HOUGH_GRADIENT,	1,	

minDist,cannyHighThreshold,accumlatorThreshold,0,0);

						

		Imgproc.cvtColor(grayImage,	grayImage,	Imgproc.COLOR_GRAY2RGB);

		for	(int	i	=	0;	i	<	circles.cols();	i++)	

		{

				double[]	circle	=	circles.get(0,	i);

				double	centerX	=	circle[0],	

						centerY	=	circle[1],

						radius	=	circle[2];

				org.opencv.core.Point	center	=	new	org.opencv.core.Point(centerX,	

centerY);

				Core.circle(grayImage,	center,	(int)	radius,	new	

Scalar(0,0,255),thickness);

		}

		displayImage(grayImage);

		return	true;

}



The	code	for	the	circle	Hough	transform	is	just	as	the	one	for	the	detection	of	lines,	except
for	the	following	part:

double	minDist=20;

int	thickness=5;

double	cannyHighThreshold=150;

double	accumlatorThreshold=50;

Mat	circles	=	new	Mat();

Imgproc.HoughCircles(grayImage,	circles,	Imgproc.CV_HOUGH_GRADIENT,	1,	

minDist,cannyHighThreshold,accumlatorThreshold,0,0);

						

Imgproc.cvtColor(grayImage,	grayImage,	Imgproc.COLOR_GRAY2RGB);

for	(int	i	=	0;	i	<	circles.cols();	i++)	

{

		double[]	circle	=	circles.get(0,	i);

		double	centerX	=	circle[0],	

				centerY	=	circle[1],

				radius	=	circle[2];

		org.opencv.core.Point	center	=	new	org.opencv.core.Point(centerX,	

centerY);

		Core.circle(grayImage,	center,	(int)	radius,	new	

Scalar(0,0,255),thickness);

}

We	detect	circles	by	calling	Imgproc.HoughCircles()	and	passing	to	it	the	following
parameters:

A	Mat	object	representing	the	8-bit,	single-channel	grayscale	input	image.
A	Mat	object	that	will	hold	the	detected	circles.	Every	column	of	the	matrix	will	hold

a	circle	represented	by	these	parameters,	 .
An	integer	for	the	detection	method.	Currently,	OpenCV	only	implements	the	Hough
gradient	algorithm.
A	double	used	to	set	the	ratio	between	the	accumulator	and	input	image	size.	For
example,	if	we	passed	1,	the	accumulator	will	have	the	same	size	(width	and	height)
as	the	input	image.	If	we	passed	3,	the	accumulator	size	will	be	one-third	of	the	input
image.
A	double	for	the	minimum	distance	between	the	centers	of	the	detected	circles.	Note
that	the	greater	the	distance,	the	more	true	circles	you	will	miss;	the	shorter	the
distance,	the	more	false	circles	you	will	detect.
A	double	used	for	the	upper	threshold	of	the	internal	Canny	edge	detector;	as	for	the
lower	threshold,	it	will	be	half	the	upper	one.
A	double	for	the	accumulator	threshold	for	the	number	of	votes	for	every	detected
center.
An	integer	for	the	minimum	radius	that	we	are	looking	for;	if	you	don’t	know	it,	you
can	pass	0	instead.
An	integer	for	the	maximum	radius	to	be	detected;	if	unknown,	pass	0.

Finally,	we	loop	on	the	detected	circles	and	draw	them	one	by	one	using	Core.circle().





Summary
In	this	chapter,	we	covered	the	concept	of	spatial	filtering	and	showed	different
applications	for	the	convolution	kernel	from	noise	reduction	to	edge	detection.	We’ve	seen
how	to	use	OpenCV	to	smooth	images	using	the	averaging,	Gaussian,	and	median	filters.
We	also	used	the	OpenCV	implementation	for	Sobel	and	Canny	edge	detectors.	In
addition	to	image	smoothing	and	edge	detection,	we	also	covered	a	well-known	shape
analysis	technique	called	the	Hough	transform	to	fit	lines	and	circles	to	edge	pixels.

In	the	next	chapter,	we	will	continue	to	develop	this	application	in	order	to	use	the
concepts	to	detect	edges	and	fit	lines	to	find	the	appropriate	transformation	and	do	some
perspective	correction	so	that	the	documents	that	we	capture	using	the	device’s	camera
will	look	as	if	they	were	scanned.





Chapter	4.	App	2	-	Applying	Perspective
Correction
In	this	chapter,	we	will	continue	building	on	the	application	that	we	started	in	Chapter	3,
App	2	-	Software	Scanner.

We	will	use	the	concepts	that	we’ve	discussed,	namely,	the	edge	detection	and	Hough	line
transform	to	do	perspective	correction	to	a	quadrilateral	object.	Applying	perspective
transformation	to	an	object	will	change	the	way	we	see	it;	this	idea	will	come	in	handy
when	you	take	pictures	of	documents,	receipts,	and	so	on	and	you	want	to	have	a	better
view	of	the	captured	image	or	a	scan-like	copy.

We	will	see	how	to	implement	this	idea	using	three	different	flavors:

Rigid	perspective	correction
Flexible	perspective	correction
Manual	perspective	correction



Image	transformations	and	perspective
correction
Images	can	go	through	a	set	of	transformations.	The	simplest	ones	are	listed	here.



Translation
Basically,	in	image	coordinates	translation,	what	we	do	is	shift	every	pixel,	p=[x,y],	with

an	amount,	t=[ , ].	For	example,	we	can	write	the	translation	for	pixel	p	as	 .



Rotation	and	translation
In	this	transformation,	we	apply	rotation	to	every	pixel	followed	by	a	translation.	This
transformation	is	also	known	as	two-dimensional	Euclidean	transformation	as	Euclidean
distances	are	preserved.

We	can	write	this	transformation	as	 ,	where	R	is	a	2-by-2	matrix,	which	equals	

	and	 	is	the	angle	used	for	rotation.



Scaled	rotation
This	is	also	known	as	similarity	transformation,	and	in	this	transformation,	we	add	a

scaling	factor	 	so	that	the	transformation	can	be	expressed	as	 .	This
transformation	preserves	the	angles	between	the	lines.



Affine
In	the	Affine	transformation,	parallel	lines	remain	parallel	and	it	can	be	expressed	as	

,	where	 	and	A= .



Perspective	transformation
This	is	also	known	as	projective	transformation,	and	in	this	transformation,	we	use	a	3-by-
3	matrix	instead	of	a	2-by-3	matrix	to	change	the	viewpoint	of	the	pixels.	The	main
difference	between	Affine	and	perspective	transformation	is	that	the	latter	doesn’t	preserve
parallel	lines,	it	only	preserves	their	straightness.

One	can	argue	that	the	main	idea	behind	perspective	correction	is	finding	a	perspective
transformation	matrix	that	we	can	apply	to	an	image	to	get	a	better	view	of	the	object	of
interest.

To	find	this	matrix,	we	first	need	to	detect	the	object	of	interest	using	the	ideas	that	we
discussed	in	Chapter	3,	App	2	-	Software	Scanner,	select	a	set	of	interest	points,	and	then
specify	where	these	interest	points	should	be	in	order	to	have	a	better	view	of	the	object.

An	example	of	this	set	of	points	could	be	the	object	corners,	and	we	would	have	the	scan-
like	view	if	we	found	a	perspective	transformation	matrix	to	change	these	corners’
coordinates	to	correspond	to	the	corners	of	the	device	screen.

In	the	light	of	the	preceding	example,	we	will	discuss	the	three	flavors	of	perspective
correction	and	demonstrate	different	ways	of	finding	these	corners	to	build	the
correspondence	that	we	need	in	order	to	find	the	appropriate	perspective	transformation
matrix.





Rigid	perspective	correction
Our	first	trial	to	do	perspective	correction	will	be	a	rigid	one.	We	will	follow	these	steps:

1.	 Convert	the	input	image	to	grayscale.
2.	 Use	the	Canny	edge	detector	to	get	the	edge	image.
3.	 Detect	the	lines	in	the	edge	image	using	the	probabilistic	Hough	transform.
4.	 Find	the	bounding	lines	of	the	object	of	interest.
5.	 Estimate	the	bounding	rectangle	of	the	object	of	interest;	hence	the	name	rigid

because	the	object	doesn’t	need	to	have	parallel	opposite	sides,	but	we	will	enforce
this	by	using	a	rectangular	estimation	to	the	quadrilateral	object.

6.	 Build	a	list	of	the	rectangle’s	four	corners.
7.	 Impose	a	correspondence	between	the	rectangle	corners	and	screen	corners.
8.	 Use	the	correspondence	to	get	a	perspective	transformation	matrix.
9.	 Apply	the	transformation	matrix	to	the	input	image	to	get	the	corrected	perspective	of

the	object	of	interest.



UI	definitions
We	will	add	an	additional	menu	item	to	start	the	perspective	correction	process.	Go	to	the
res/menu/soft_scanner.xml	file	and	open	it	to	include	the	following	menu	item:

<item

		android:id="@+id/action_rigidscan"

		android:enabled="true"

		android:orderInCategory="6"

		android:title="@string/action_rigidscan"

		android:visible="true">

</item>



Estimating	the	perspective	transformation	using
the	object	bounding	box
In	the	SoftScanner	activity,	we	need	to	edit	the	onOptionesItemSelected()	method	and
add	a	new	case	to	handle	the	user	by	selecting	the	rigid	scan	option.

1.	 The	first	step	is	to	make	sure	that	the	user	has	already	loaded	an	image:

else	if(id==R.id.action_rigidscan)

{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

						

		}

2.	 Convert	the	input	image	to	a	grayscale	image:

Mat	gray	=	new	Mat();

Imgproc.cvtColor(sampledImage,	gray,	Imgproc.COLOR_RGB2GRAY);

3.	 Use	the	Canny	edge	detector	to	build	the	edge	image:

Mat	edgeImage=new	Mat();

Imgproc.Canny(gray,	edgeImage,	100,	200);

4.	 After	building	the	edge	image,	we	need	to	detect	lines,	so	we	use	the	probabilistic
Hough	line	transform:

Mat	lines	=	new	Mat();

int	threshold	=	50;

Imgproc.HoughLinesP(edgeImage,	lines,	1,	Math.PI/180,	threshold,60,10);

5.	 Declare	and	initialize	the	variables	needed	to	find	up	to	four	bounding	lines	of	the
object	of	interest	and	to	discard	any	lines	detected	on	the	object	itself	in	order	to	have
a	better	estimation	of	the	bounding	rectangle:

boolean	[]	include=new	boolean[lines.cols()];

double	maxTop=edgeImage.rows();

double	maxBottom=0;

double	maxRight=0;

double	maxLeft=edgeImage.cols();

int	leftLine=0;

int	rightLine=0;

int	topLine=0;

int	bottomLine=0;

ArrayList<org.opencv.core.Point>	points=new	

ArrayList<org.opencv.core.Point>();



6.	 In	the	following	for	loop,	we	test	every	line	to	find	the	left-most	border	line	of	the
object	of	interest.	Once	it	is	found,	we	set	its	corresponding	include	array	element	to
true	to	avoid	selecting	the	same	line	again	when	we	search	for	a	different	bounding
line:

for	(int	i	=	0;	i	<	lines.cols();	i++)	

{

		double[]	line	=	lines.get(0,	i);

		double	xStart	=	line[0],	xEnd	=	line[2];

		if(xStart<maxLeft	&&	!include[i])

		{		

				maxLeft=xStart;

				leftLine=i;

		}

		if(xEnd<maxLeft	&&	!include[i])

		{

				maxLeft=xEnd;

				leftLine=i;

		}

}

include[leftLine]=true;

7.	 Once	the	line	is	found,	we	add	its	two	points	to	the	points	array	list.	This	array	list
will	be	used	later	when	we	estimate	the	bounding	rectangle:

double[]	line	=	lines.get(0,	leftLine);

double	xStartleftLine	=	line[0],	

				yStartleftLine	=	line[1],

				xEndleftLine	=	line[2],

				yEndleftLine	=	line[3];

org.opencv.core.Point	lineStartleftLine	=	new	

org.opencv.core.Point(xStartleftLine,	yStartleftLine);

org.opencv.core.Point	lineEndleftLine	=	new	

org.opencv.core.Point(xEndleftLine,	yEndleftLine);

points.add(lineStartleftLine);

points.add(lineEndleftLine);

8.	 We	do	the	same	to	find	the	right-most	bounding	line:

for	(int	i	=	0;	i	<	lines.cols();	i++)	

{

		line	=	lines.get(0,	i);

		double	xStart	=	line[0],	xEnd	=	line[2];

										

		if(xStart>maxRight	&&	!include[i])

		{

				maxRight=xStart;

				rightLine=i;

		}

		if(xEnd>maxRight	&&	!include[i])



		{

				maxRight=xEnd;

				rightLine=i;

		}

}

include[rightLine]=true;

9.	 Add	the	points	that	belong	to	the	right-most	border	line	to	the	points	array	list:

line	=	lines.get(0,	rightLine);

double	xStartRightLine	=	line[0],	

				yStartRightLine	=	line[1],

				xEndRightLine	=	line[2],

				yEndRightLine	=	line[3];

						

org.opencv.core.Point	lineStartRightLine	=	new	

org.opencv.core.Point(xStartRightLine,	yStartRightLine);

org.opencv.core.Point	lineEndRightLine	=	new	

org.opencv.core.Point(xEndRightLine,	yEndRightLine);

points.add(lineStartRightLine);

points.add(lineEndRightLine);

10.	 Find	the	top	border	line:

for	(int	i	=	0;	i	<	lines.cols();	i++)	

{

		line	=	lines.get(0,	i);

		double	yStart	=	line[1],yEnd	=	line[3];

		if(yStart<maxTop	&&	!include[i])

		{

				maxTop=yStart;

				topLine=i;

		}

		if(yEnd<maxTop	&&	!include[i])

		{

				maxTop=yEnd;

				topLine=i;

		}

}

include[topLine]=true;

11.	 Add	the	points	that	belong	to	the	top	border	line	to	the	points	array	list:

line	=	lines.get(0,	topLine);

double	xStartTopLine	=	line[0],	

				yStartTopLine	=	line[1],

				xEndTopLine	=	line[2],

				yEndTopLine	=	line[3];

						

org.opencv.core.Point	lineStartTopLine	=	new	

org.opencv.core.Point(xStartTopLine,	yStartTopLine);

						

org.opencv.core.Point	lineEndTopLine	=	new	



org.opencv.core.Point(xEndTopLine,	yEndTopLine);

						

points.add(lineStartTopLine);

points.add(lineEndTopLine);

12.	 Find	the	bottom	border	line:

for	(int	i	=	0;	i	<	lines.cols();	i++)	

{

		line	=	lines.get(0,	i);

		double	yStart	=	line[1],yEnd	=	line[3];

		if(yStart>maxBottom	&&	!include[i])

		{

				maxBottom=yStart;

				bottomLine=i;

		}

		if(yEnd>maxBottom	&&	!include[i])

		{

				maxBottom=yEnd;

				bottomLine=i;

		}

}

include[bottomLine]=true;

13.	 Add	the	bottom	line	points	to	the	points	array	list:

line	=	lines.get(0,	bottomLine);

double	xStartBottomLine	=	line[0],	

				yStartBottomLine	=	line[1],

				xEndBottomLine	=	line[2],

				yEndBottomLine	=	line[3];

org.opencv.core.Point	lineStartBottomLine	=	new	

org.opencv.core.Point(xStartBottomLine,	yStartBottomLine);

						

org.opencv.core.Point	lineEndBottomLine	=	new	

org.opencv.core.Point(xEndBottomLine,	yEndBottomLine);

						

points.add(lineStartBottomLine);

points.add(lineEndBottomLine);

14.	 We	initialize	a	matrix	of	points,	MatOfPoint2f	object,	with	the	list	of	points	that	we
selected	from	the	detected	border	lines:

MatOfPoint2f	mat=new	MatOfPoint2f();

mat.fromList(points);

15.	 We	find	the	bounding	rectangle	by	calling	Imgproc.minAreaRect()	and	passing	in
the	matrix	of	points	that	we	initialized	earlier.	The	function	tries	to	find	a	rectangle
that	fits	a	set	of	points	and	has	the	minimum	area	of	all	the	possible	rectangles.	As	we
used	the	points	on	the	border	lines	of	the	object	of	interest,	we	will	get	the	bounding
rectangle	of	that	object:

RotatedRect	rect=	Imgproc.minAreaRect(mat);



16.	 Now,	we	extract	the	four	corner	points	of	the	estimated	rectangle	to	an	array	of
points:

org.opencv.core.Point	rect_points[]=new	org.opencv.core.Point	[4];

rect.points(rect_points);

17.	 Initialize	a	new	image	that	will	be	used	to	display	the	object	of	interest	after	doing
the	perspective	correction.	We	will	also	use	this	image’s	four	corners	to	find	the
transformation	that	will	minimize	the	distance	between	these	corners	and	the
corresponding	object	of	interest’s	corners.	So,	basically,	what	we	are	trying	to	do	is	to
find	a	transformation	(scale,	rotation,	or	translation)	that	will	make	the	four	corners
of	the	object	of	interest	as	close	as	possible	to	the	four	corners	of	the	new	initialized
image.

Mat	correctedImage=new	

Mat(sampledImage.rows(),sampledImage.cols(),sampledImage.type());

18.	 Now,	we	initialize	two	Mat	objects,	one	to	store	the	four	corners	of	the	object	of
interest	and	the	other	one	to	store	the	corresponding	corners	of	the	image	in	which	we
will	display	the	object	of	interest	after	the	perspective	correction:

Mat	

srcPoints=Converters.vector_Point2f_to_Mat(Arrays.asList(rect_points));

Mat	destPoints=Converters.vector_Point2f_to_Mat(Arrays.asList(new	

org.opencv.core.Point[]{

		new	org.opencv.core.Point(0,	correctedImage.rows()),

				new	org.opencv.core.Point(0,	0),

				new	org.opencv.core.Point(correctedImage.cols(),0),

		new	org.opencv.core.Point(correctedImage.cols(),	

correctedImage.rows())

}));

19.	 We	calculate	the	needed	transformation	matrix	by	calling
Imgproc.getPerspectiveTransform()	and	passing	it	to	the	source	and	destination
corner	points:

Mat	transformation=Imgproc.getPerspectiveTransform(srcPoints,	

destPoints);

20.	 Finally,	we	apply	the	transformation	that	we	calculated	using	the
Imgproc.warpPerspective()	method	and	passing	the	following	arguments:

A	Mat	object	for	the	source	image;	in	this	case,	it	is	the	image	that	contains	the
object	of	interest
A	Mat	object	for	the	output	image
A	Mat	object	for	the	transformation	that	we	want	to	apply
A	Size	object	to	hold	the	size	of	the	output	image

Imgproc.warpPerspective(sampledImage,	correctedImage,	

transformation,	correctedImage.size());

21.	 The	last	step	is	to	display	our	object	of	interest	after	applying	the	appropriate
transformation:



displayImage(correctedImage);

Before	(left)	and	after	(right)	the	transformation





Flexible	perspective	correction
Now	that	we	have	implemented	the	rigid	correction,	we	want	to	get	slightly	better	results.
As	discussed	before,	the	main	reason	to	use	the	perspective	correction	is	to	find	the	four
corner	points	of	the	object	of	interest.	In	the	Rigid	perspective	correction	section,	we	used
the	estimated	bounding	rectangle	to	find	the	corners	of	the	object	of	interest;	however,	as
you	know,	every	opposite	side	of	a	rectangle	is	parallel,	and	this	might	degrade	the	results
of	the	perspective	correction	because	parallel	lines	in	the	real	world	have	to	intersect	in
what	is	called	a	vanishing	point	when	projected	to	the	picture	plane.

So,	having	parallel	lines	to	estimate	the	corners	is	not	our	best	option	and	we	can	do	better
by	keeping	the	projected	lines	(the	ones	that	we	found	from	the	Hough	transform)	in	the
picture	as	is	and	use	simple	geometry	to	find	the	intersection	between	them	in	order	to
find	the	four	corners.

The	steps	that	we	will	perform	are	as	follows:

1.	 Convert	the	input	image	to	grayscale	and	smooth	using	a	Gaussian	filter.
2.	 Find	the	edge	image	using	the	Canny	edge	detector.
3.	 Use	the	probabilistic	Hough	line	transform	to	find	the	edge	lines	of	the	object	of

interest.
4.	 Find	every	corner	in	the	edge	image	by	computing	the	intersection	points	between	all

the	detected	lines.
5.	 Approximate	another	polygon	using	the	found	corners	(vertices)	in	the	previous	step.

This	step	is	necessary	to	minimize	the	number	of	vertices,	hence	eliminating	the	non-
useful	corners.	However,	we	still	keep	the	same	structure	of	the	original	polygon.

6.	 Now	that	we	have	the	minimum	set	of	corners	that	represent	our	object	of	interest,
we	need	to	sort	them	so	that	the	top	left	corner	comes	first,	then	the	top	right,	bottom
right,	and	finally,	bottom	left.

7.	 Impose	a	correspondence	between	the	sorted	corners	and	screen	corners.
8.	 Use	the	correspondence	to	get	a	perspective	transformation	matrix.
9.	 Apply	the	transformation	matrix	to	the	input	image	to	get	the	corrected	perspective	of

the	object	of	interest.



UI	definitions
We	will	use	one	menu	item	to	start	the	flexible	perspective	correction	process.	Go	to	the
res/menu/soft_scanner.xml	file	and	open	it	to	include	the	following	menu	item:

<item

		android:id="@+id/action_flexscan"

		android:enabled="true"

		android:orderInCategory="7"

		android:title="@string/action_flexscan"

		android:visible="true">

</item>



Applying	flexible	perspective	correction
In	the	SoftScanner	activity,	we	need	to	edit	the	onOptionesItemSelected()	method	and
add	a	new	case	for	the	flexible	scan:

1.	 The	first	step	is	to	make	sure	that	the	user	loaded	an	image:

else	if(id==R.id.action_flexscan)

{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

2.	 We	follow	the	same	steps	as	we	did	in	the	Rigid	perspective	correction	section	to	get
the	edge	lines:

Mat	gray	=	new	Mat();

Imgproc.cvtColor(sampledImage,	gray,	Imgproc.COLOR_RGB2GRAY);

Imgproc.GaussianBlur(gray,	gray,	new	Size(7,7),	0);

						

Mat	edgeImage=new	Mat();

Imgproc.Canny(gray,	edgeImage,	100,	300);

Mat	lines	=	new	Mat();

int	threshold	=	100;

Imgproc.HoughLinesP(edgeImage,	lines,	1,	Math.PI/180,	threshold,60,10);

3.	 We	compute	the	intersection	point—if	it	exists—between	every	pair	of	the	detected

edge	lines	 	defined	by	two	points	 	and	 defined	by	two	points	

	using	the	formulas,	

	and	

:

ArrayList<org.opencv.core.Point>	corners=new	

ArrayList<org.opencv.core.Point>();

for	(int	i	=	0;	i	<	lines.cols();	i++)	

{

		for	(int	j	=	i+1;	j	<	lines.cols();	j++)	

		{

				org.opencv.core.Point	intersectionPoint	=	

getLinesIntersection(lines.get(0,	i),	lines.get(0,	j));



				if(intersectionPoint!=null)

				{

						corners.add(intersectionPoint);

				}

		}

}

4.	 Now	that	we	have	the	intersection	points,	we	need	to	find	another	polygon	that	has
the	same	structure	as	the	detected	one,	yet	with	less	vertices.	To	achieve	this,	we	use
the	Imgproc.approxPolyDP()	method	and	we	pass	the	following	arguments	to	it:

A	Mat	object	storing	the	list	of	corners	that	we	found.
A	Mat	object	that	will	store	the	new	vertices	of	the	approximated	polygon.
A	double	representing	the	maximum	distance	between	the	original	polygon	and
approximated	one.	In	this	case,	we	used	the	Imgproc.arcLength()	method	to
calculate	the	perimeter	of	the	original	polygon	and	multiplied	it	by	a	small
factor,	0.02,	and	used	the	result	to	set	the	maximum	distance	between	the	two
shapes.
A	Boolean	to	indicate	whether	the	shape	is	closed	or	not,	and	in	our	case,	it	is:

MatOfPoint2f	cornersMat=new	MatOfPoint2f();

cornersMat.fromList(corners);

						

MatOfPoint2f	approxConrers=new	MatOfPoint2f();

Imgproc.approxPolyDP(cornersMat,	approxConrers,	

Imgproc.arcLength(cornersMat,	true)*0.02,	true);

5.	 In	this	step,	we	just	make	sure	that	the	approximated	polygon	has	at	least	four
corners:

if(approxConrers.rows()<4)

{

		Context	context	=	getApplicationContext();

		CharSequence	text	=	"Couldn't	detect	an	object	with	four	corners!";

		int	duration	=	Toast.LENGTH_LONG;

		Toast	toast	=	Toast.makeText(context,	text,	duration);

		toast.show();

		return	true;

}

6.	 We	copy	the	approximated	corners	in	the	corners	list,	then	use	this	list	to	find	the
polygon	centroid,	which	we	will	use	to	sort	the	approximated	corner	points.	A	good
centroid	approximation	is	the	average	of	all	the	approximated	corner	points.

corners.clear();

Converters.Mat_to_vector_Point2f(approxConrers,corners);

org.opencv.core.Point	centroid=new	org.opencv.core.Point(0,0);

for(org.opencv.core.Point	point:corners)

{

		centroid.x+=point.x;

		centroid.y+=point.y;

}

centroid.x/=corners.size();



centroid.y/=corners.size();

7.	 Now,	we	start	sorting	the	corner	points	according	to	the	polygon	centroid.	We	first
split	them	into	two	lists,	one	will	hold	the	top	corners	that	will	have	a	Y	coordinate
less	than	the	centroid’s,	and	the	second	list	will	hold	the	bottom	corners	that	will	have
a	Y	coordinate	greater	than	the	centroid’s.	Then,	we	sort	the	top	left	and	right	corners
based	on	the	X	coordinate	in	the	top	corners	list,	and	we	do	the	same	for	the	bottom
list:

ArrayList<org.opencv.core.Point>	top=new	

ArrayList<org.opencv.core.Point>();

ArrayList<org.opencv.core.Point>	bottom=new	

ArrayList<org.opencv.core.Point>();

for	(int	i	=	0;	i	<	corners.size();	i++)

{

		if	(corners.get(i).y	<	center.y)

				top.add(corners.get(i));

		else

				bottom.add(corners.get(i));

}

org.opencv.core.Point	topLeft	=	top.get(0).x	>	top.get(1).x	?	

top.get(1)	:	top.get(0);

org.opencv.core.Point	topRight	=	top.get(0).x	>	top.get(1).x	?	

top.get(0)	:	top.get(1);

						

org.opencv.core.Point	bottomLeft	=	bottom.get(0).x	>	bottom.get(1).x	?	

bottom.get(1)	:bottom.get(0);

						

org.opencv.core.Point	bottomRight	=	bottom.get(0).x	>	bottom.get(1).x	?	

bottom.get(0)	:	bottom.get(1);

corners.clear();

corners.add(topLeft);

corners.add(topRight);

corners.add(bottomRight);

corners.add(bottomLeft);

8.	 We	then	build	the	correspondence	between	the	sorted	corners	and	image	corners	as
we	did	in	the	Rigid	perspective	correction	section:

Mat	correctedImage=new	

Mat(sampledImage.rows(),sampledImage.cols(),sampledImage.type());

Mat	srcPoints=Converters.vector_Point2f_to_Mat(corners);

										

Mat	destPoints=Converters.vector_Point2f_to_Mat(Arrays.asList(new	

org.opencv.core.Point[]{

		new	org.opencv.core.Point(0,	0),

		new	org.opencv.core.Point(correctedImage.cols(),	0),

		new	

org.opencv.core.Point(correctedImage.cols(),correctedImage.rows()),new	

org.opencv.core.Point(0,correctedImage.rows())}));



9.	 We	calculate	the	needed	transformation	matrix	by	calling
Imgproc.getPerspectiveTransform()	and	passing	it	in	the	source	and	destination
corner	points:

Mat	transformation=Imgproc.getPerspectiveTransform(srcPoints,	

destPoints);

10.	 We	apply	the	transformation	that	we	calculated	using	the
Imgproc.warpPerspective()	method:

Imgproc.warpPerspective(sampledImage,	correctedImage,	transformation,	

correctedImage.size());

11.	 Finally,	we	display	our	object	of	interest	after	applying	the	appropriate
transformation:

displayImage(correctedImage);

Before	(left)	and	after	(right)	the	transformation





Manual	perspective	correction
One	more	option	that	we	can	include	is	making	use	of	the	device’s	touchscreen	and
making	the	user	select	the	corners	of	the	object	of	interest	manually.	This	option	could
come	in	handy	if	there	is	too	much	background	noise	and	the	automatic	perspective
correction	didn’t	give	the	desired	results.

The	steps	that	we	will	follow	are	very	similar	to	what	we	have	seen	in	the	Flexible
perspective	correction	section:

1.	 Let	the	user	select	the	four	corners	of	the	object	of	interest.
2.	 Find	the	object	centroid.
3.	 Sort	the	select	corners	according	to	the	object	centroid.
4.	 Impose	a	correspondence	between	the	sorted	corners	and	screen	corners.
5.	 Use	the	correspondence	to	get	a	perspective	transformation	matrix.
6.	 Apply	the	transformation	matrix	to	the	input	image	to	get	the	corrected	perspective	of

the	object	of	interest.



UI	definitions
We	will	add	one	more	menu	item	to	trigger	the	manual	process	after	the	user	selects	the
four	corners.	Go	to	the	res/menu/soft_scanner.xml	file	and	open	it	to	include	the
following	menu	item:

<item

		android:id="@+id/action_manScan"

		android:enabled="true"

		android:orderInCategory="8"

		android:title="@string/action_manscan"

		android:visible="true">

</item>



Selecting	the	corners	manually
We	will	follow	the	same	process	after	the	user	selects	the	object	of	interest’s	corners.
However,	the	trick	would	be	to	map	the	coordinates	selected	on	the	device	screen	to	the
coordinates	of	the	object	of	interest:

1.	 In	the	activity	onCreate()	method,	we	will	attach	an	onTouch()	event	handler	to
ImageView.	In	the	event	handler,	we	first	project	the	coordinates	of	the	selected
corners	from	ImageView	to	the	loaded	image	using	the	scale	factor	that	we	used	to
display	the	loaded	image.	Once	we	have	the	correct	coordinates	on	the	loaded	image,
the	following	steps	will	be	identical	to	what	we	did	before:

final	ImageView	iv	=	(ImageView)	findViewById(R.id.SSImageView);

iv.setOnTouchListener(new	OnTouchListener()	{

						

		@Override

		public	boolean	onTouch(View	view,	MotionEvent	event)	{

						

				int	projectedX	=	(int)((double)event.getX()	*	

((double)sampledImage.width()/(double)view.getWidth()));

								

				int	projectedY	=	(int)((double)event.getY()	*	

((double)sampledImage.height()/(double)view.getHeight()));

								

				org.opencv.core.Point	corner	=	new	

org.opencv.core.Point(projectedX,	projectedY);

								

				corners.add(corner);

								

				Core.circle(sampledImage,	corner,	(int)	5,	new	Scalar(0,0,255),2);

								

				displayImage(sampledImage);

				return	false;

		}

});	

2.	 We	need	to	make	sure	that	the	user	loaded	an	image	and	selected	the	four	corners:

if(sampledImage==null)

{

		Context	context	=	getApplicationContext();

		CharSequence	text	=	"You	need	to	load	an	image	first!";

		int	duration	=	Toast.LENGTH_SHORT;

		Toast	toast	=	Toast.makeText(context,	text,	duration);

		toast.show();

		return	true;

}

if(corners.size()!=4)

{

		Context	context	=	getApplicationContext();

		CharSequence	text	=	"You	need	to	select	four	corners!";

		int	duration	=	Toast.LENGTH_LONG;



		Toast	toast	=	Toast.makeText(context,	text,	duration);

		toast.show();

		return	true;

} 

3.	 Calculate	the	object	centroid	and	sort	the	four	corners	accordingly:

org.opencv.core.Point	centroid=new	org.opencv.core.Point(0,0);

for(org.opencv.core.Point	point:corners)

{

		centroid.x+=point.x;

		centroid.y+=point.y;

}

centroid.x/=corners.size();

centroid.y/=corners.size();

sortCorners(corners,centroid);

4.	 We	then	build	the	correspondence	between	the	sorted	corners	and	image	corners	as
we	did	in	the	Flexible	perspective	correction	section:

Mat	correctedImage=new	

Mat(sampledImage.rows(),sampledImage.cols(),sampledImage.type());

Mat	srcPoints=Converters.vector_Point2f_to_Mat(corners);

										

Mat	destPoints=Converters.vector_Point2f_to_Mat(Arrays.asList(new	

org.opencv.core.Point[]{

		new	org.opencv.core.Point(0,	0),

		new	org.opencv.core.Point(correctedImage.cols(),	0),

		new	

org.opencv.core.Point(correctedImage.cols(),correctedImage.rows()),

		new	org.opencv.core.Point(0,correctedImage.rows())}));

5.	 We	calculate	the	needed	transformation	matrix	by	calling
Imgproc.getPerspectiveTransform()	and	passing	it	in	the	source	and	destination
corner	points:

Mat	transformation=Imgproc.getPerspectiveTransform(srcPoints,	

destPoints);

6.	 We	apply	the	transformation	that	we	calculated	using	the
Imgproc.warpPerspective()	method:

Imgproc.warpPerspective(sampledImage,	correctedImage,	transformation,	

correctedImage.size());

7.	 Finally,	we	display	our	object	of	interest	after	applying	the	appropriate
transformation:

displayImage(correctedImage);





Summary
We’ve	seen	how	to	change	the	view	of	an	object	in	an	image	using	the	perspective
transformation.	We	demonstrated	the	idea	on	quadrilateral	objects	and	we	discussed	three
different	ways	to	do	the	perspective	correction.

In	the	next	chapter,	we	will	explore	different	types	of	image	features	and	how	we	can	find
them	and	why	they	are	important.





Chapter	5.	App	3	-	Panoramic	Viewer
In	this	chapter,	we	will	start	working	on	a	new	application.	The	goal	of	the	application	is
to	stitch	two	images	together	in	order	to	form	a	panoramic	view.	We	will	introduce	the
concept	of	image	features	and	why	they	are	important,	and	we	will	see	them	in	action.

We	can	summarize	the	topics	that	we	will	cover	as	follows:

Feature	detection
Feature	description
Feature	matching
Image	stitching



Image	features
In	this	section,	we	will	understand	what	we	mean	by	image	features	and	why	they	are
important.

Imagine	a	case	where	you	see	a	person	and	you	immediately	detect	the	face	of	the	person
—his	eyes,	nose,	and	many	other	facial	features.	The	question	is	how	do	we	do	this?	What
is	the	algorithm	that	we	follow	to	detect	these	facial	features?	How	do	we	describe	them?
Additionally,	when	we	see	another	person	with	the	same	facial	features,	we	can	easily	spot
the	matching	features	between	the	two	persons.	What	is	the	metric	that	we	use	to	measure
this	similarity?

We	simply	follow	the	process	of	detecting,	describing,	and	matching	the	features.	From
the	computer’s	perception,	we	want	the	process	to	be	able	to	find	features	that	can	be
repeatedly	extracted,	adequately	represented,	and	accurately	matched.

These	features	are	considered	good	features,	and	to	measure	the	goodness	of	a	feature,	we
should	consider	its	robustness	and	invariance	(especially,	invariance	to	scale	and	rotation;
for	example,	our	facial	features,	such	as	our	eyes,	are	invariant	to	change	in	the	face	scale;
whether	the	face	is	small	or	big,	you	can	easily	detect	where	the	eyes	are).	Usually,	to
achieve	such	robustness,	we	consider	the	quality	attributes	of	the	feature	detected
combined	with	the	quality	attributes	of	the	method	used	to	describe	it.

For	example,	we	will	see	some	feature	detectors,	namely	Harris	and	FAST,	find	features
at	mono-scale	(single	scale),	while	others	such	as	ORB	find	features	at	multiscale	by
building	what	is	known	as	scale	space.

I	find	this	a	nice	opportunity	to	introduce	the	basic	idea	of	the	scale	space,	which	is	to
build	an	image	pyramid	using	different	scale	reduction	methods.	The	simplest	method
would	be	to	remove	every	other	pixel	in	the	X	and	Y	directions.	So,	for	example,	if	you
have	a	100x100	image,	removing	every	other	pixel	from	the	x	and	y	will	result	in	an
image	of	size	50x50.	You	keep	repeating	this	step	until	you	reach	the	minimum	acceptable
scale	that	your	program	will	work	with.





Feature	detectors
The	question	to	begin	with	is	which	features	are	good	features	in	the	context	of	a
computer’s	vision?	To	answer	this	question,	let’s	take	the	image	of	a	mountaintop	as	an
example.	We	can	start	looking	at	features	inside	the	boundaries	of	this	mountain	(rectangle
2),	but	the	problem	is	that	these	kinds	of	features	can’t	be	repeatedly	found	nor	adequately
described,	and	hence,	they	will	be	very	difficult	to	match.

Another	candidate	to	look	for	is	the	edges	of	the	mountain;	we’ve	learned	in	Chapter	3,
App	2	-	Software	Scanner	how	to	detect	edges,	so	this	type	of	features	can	be	easily	found.
However,	the	problem	would	be	how	to	uniquely	describe	them,	because	if	you	look	at
rectangles	1.1	and	1.2,	you	can	easily	confuse	them	for	the	same	edge.	This	problem	is
known	as	the	aperture	problem,	and	again,	it	will	be	very	difficult	to	match.

What	about	rectangle	3?	This	rectangle	looks	like	a	good	option,	because	if	you	move	it	in
any	direction,	the	area	beneath	it	will	look	different	and	so	it	is	unique.	Based	on	this,	we
can	say	that	corners	are	good	features	to	consider.

Understanding	the	Harris	corner	detector
We	answered	the	question	of	which	features	are	good	features	and	we	gave	an	example	of
a	good	feature.	Now,	we	need	to	find	a	way	to	easily	detect	them.	So,	let’s	consider	the
mountaintop	image.	If	we	start	scanning	the	image	with	a	square	window,	the	corners	will
have	the	maximum	change	in	intensities,	because	there	will	be	a	change	in	two	orthogonal
directions	unlike	the	edge,	where	there	will	be	a	change	in	only	one	direction	(x	or	y).

This	is	the	basic	idea	behind	the	Harris	corner	detector;	we	try	to	find	a	patch	where	it	will
give	us	the	maximum	change	or	variation	in	intensities	if	we	moved	our	scanning	window
in	a	different	direction	inside	this	patch.



The	Harris	corner	detector	is	rotation	invariant;	however,	it	is	not	scale	invariant.

UI	definitions

After	we	create	a	new	application	with	a	blank	activity	named	PanoActivity	and	add	the
functionality	of	loading	images	from	the	device	gallery	along	with	loading	the	OpenCV
library,	we	will	add	the	first	menu	item	to	execute	the	Harris	corner	detector	on	the	loaded
image.	Go	to	the	res/menu/pano.xml	file	and	open	it	to	include	the	following	menu	item:

<itemandroid:id="@+id/action_harris"	

		android:orderInCategory="2"	

		android:title="@string/action_harris">

</item>

Using	the	Harris	corner	detector

OpenCV	provides	you	with	different	interest	points	or	feature	detectors,	and	the	API	has	a
very	simple	interface	to	work	with	the	class	org.opencv.features2d.	FeatureDetector
has	a	factory	method,	and	given	a	detector	ID,	the	factory	method	will	return	an	instance
of	a	feature	detector	corresponding	to	this	ID.

We	update	onOptionsItemSelected	to	handle	the	Harris	menu	item:

if(sampledImage==null)

{

		Context	context	=	getApplicationContext();

		CharSequence	text	=	"You	need	to	load	an	image	first!";

		int	duration	=	Toast.LENGTH_SHORT;

		Toast	toast	=	Toast.makeText(context,	text,	duration);

		toast.show();

		return	true;

}

						

Mat	greyImage=new	Mat();

MatOfKeyPoint	keyPoints=new	MatOfKeyPoint();

Imgproc.cvtColor(sampledImage,	greyImage,	Imgproc.COLOR_RGB2GRAY);

						

FeatureDetector	detector	=	FeatureDetector.create(FeatureDetector.HARRIS);

detector.detect(greyImage,	keyPoints);

Features2d.drawKeypoints(greyImage,	keyPoints,	greyImage);

displayImage(greyImage);

The	steps	are	very	simple,	as	follows:

1.	 We	first	convert	the	input	image	to	grayscale	and	instantiate	a	matrix	of	the	key
points	object:

Mat	greyImage=new	Mat();

MatOfKeyPoint	keyPoints=new	MatOfKeyPoint();

Imgproc.cvtColor(sampledImage,	greyImage,	Imgproc.COLOR_RGB2GRAY);

2.	 We	instantiate	the	feature	detector	of	our	choice	using	the	FeatureDetector.create
factory	method	and	passing	its	ID:



FeatureDetector	detector	=	

FeatureDetector.create(FeatureDetector.HARRIS);

3.	 Call	the	detect	method	using	the	following	command:

detector.detect(greyImage,	keyPoints);

The	detect	method	is	called	to	find	the	interest	points	with	the	following	parameters:

A	Mat	object	representing	the	input	image
A	MatOfKeyPoint	object	to	store	the	detected	interest	points

4.	 To	display	the	detected	interest	points,	we	call	Feature2d.drawKeypoints():

Features2d.drawKeypoints(greyImage,	keyPoints,	greyImage);

We	call	Feature2d.drawKeypoints()	with	the	following	parameters:

A	Mat	object	as	the	input	image
A	MatOfKeyPoint	to	be	drawn
A	Mat	object	for	the	output	image

5.	 Finally,	display	the	image	with	the	interest	points	detected:

displayImage(greyImage);

Calling	a	native	Harris	corner	detector

In	many	cases,	your	application	will	need	to	respond	in	real	time,	such	as	detecting
features	in	a	video	feed	from	your	phone’s	camera.	Relying	only	on	Java	calls	might	not
deliver	the	performance	that	you	desire	and	hence,	missing	your	deadlines.	In	this	case,	it
is	more	than	20	frames	per	second;	and	that’s	why	I	find	this	a	nice	opportunity	to
introduce	you	to	the	native	OpenCV	API.	You	don’t	need	to	be	familiar	with	C++;
however,	knowing	the	language	constructs	will	be	very	helpful.

The	first	thing	that	we	will	need	to	do	is	add	C++	support	to	our	project.
Using	the	native	OpenCV	library	within	Eclipse

1.	 Right-click	on	the	project	name	in	the	project	explorer.
2.	 Navigate	to	New	|	Other	|	C/C++	|	Convert	to	a	C/C++	Project.
3.	 Select	Makefile	project,	choose	Other	Toolchain,	and	click	on	Finish:



4.	 Define	an	environment	variable,	NDKROOT,	pointing	to	the	home	folder	of	NDK,	for
example,	C:\NVPACK\android-ndk-r10c.

5.	 Right-click	on	the	project	name	in	the	project	explorer	and	select	Properties.
6.	 Click	on	the	tree	node,	C/C++	Build.	In	the	Builder	Setting	tab,	clear	the	Use

default	build	command	checkbox	and	write	the	following	in	the	Build	command
textbox:	${NDKROOT}/ndk-build.cmd.

7.	 Go	to	the	Behaviour	tab,	and	in	the	Workbench	Build	Behavior	group,	check	Build
on	resource	save	and	clear	the	Make	build	target	textbox.	Clear	Make	build	target
textbox	for	the	Build	(Incremental	build)	checkbox:



8.	 At	this	point,	invoking	NDK	to	build	your	project	will	fail,	and	to	fix	this,	we	need	to
create	a	new	folder	under	the	project	folder	and	name	it	jni.

9.	 In	this	folder,	we	will	have	three	files:

10.	 The	content	of	Android.mk	should	be	as	follows:

LOCAL_PATH	:=	$(call	my-dir)

include$(CLEAR_VARS)

#	Must	include	the	opencv.mk	file,	change	the	path	accordingly	include	

C:\NVPACK\OpenCV-2.4.8.2-Tegra-sdk\sdk\native\jni\OpenCV-tegra3.mk

#	Name	the	library	and	list	the	cpp	source	files

LOCAL_MODULE				:=	Pano

LOCAL_SRC_FILES	:=	Pano.cpp

LOCAL_LDLIBS	+=		-llog	-ldl

include$(BUILD_SHARED_LIBRARY)

11.	 The	content	of	Application.mk	should	be	as	follows:

APP_PLATFORM	:=	android-9

APP_ABI	:=	armeabi-v7a

APP_STL	:=	gnustl_static

APP_CPPFLAGS	:=	-frtti	-fexceptions

12.	 For	the	cpp	file,	it	can	be	empty	and	include	only	one	header:

#include	<jni.h>

13.	 Build	the	project.
14.	 We	need	to	include	some	directories	so	that	we	can	write	C++	code	and	use	the

Standard	Template	Library	(STL)	and	OpenCV.	To	do	this,	right-click	on	the
project	name	|	Properties	|	C/C++	General	|	Paths	and	Symbols.

Note
The	STL	provides	you	with	a	set	of	ready-made	classes	that	implements	different
data	structures	and	algorithms.

15.	 Select	GNU	C++,	add	the	following	directories,	and	change	the	paths	according	to
your	installation:

${NDKROOT}/platforms/android-9/arch-arm/usr/include



${NDKROOT}/sources/cxx-stl/gnu-libstdc++/4.6/include

${NDKROOT}/sources/cxx-stl/gnu-libstdc++/4.6/libs/	armeabi-v7a/include

C:\NVPACK\OpenCV-2.4.8.2-Tegra-sdk\sdk\native\jni\include

Using	the	native	OpenCV	library	within	Android	Studio

1.	 In	the	project	view,	right-click	on	the	app	node	and	select	Open	Module	Settings,	or
press	F4.

2.	 Select	SDK	location.	In	Android	NDK	location,	select	the	directory	where	NDK	is
located.	Note	that	we	will	build	the	project	using	the	experimental	Gradle	plugin
version	2.5;	hence	we	need	NDK	version	r10e:

3.	 If	you	are	working	with	Android	Studio	1.3.2,	you	will	need	to	update	gradle-
wrapper.properties	and	change	the	distribution	URL	as	follows:

distributionUrl=https\://services.gradle.org/distributions/gradle-2.5-

all.zip

4.	 In	the	build.gradle	file	for	the	project,	update	the	dependency	class	path	as	follows:

dependencies	{classpath	'com.android.tools.build:gradle-

experimental:0.2.0'}

5.	 In	the	project	folder,	create	two	folders,	jni	and	jniLibs	under	app\src\main.
6.	 In	the	jni	folder,	create	a	new	file	and	name	it	Pano.cpp.
7.	 Now,	navigate	to	<OpenCV4AndroidSDKFolder>\sdk\native\libs\	and	copy	all	the

folders	to	your	newly	created	jniLibs	folder.	Your	project	tree	should	look	as
follows:



8.	 We	need	to	update	domain-specific	language	(DSL)	in	build.gradle	in	order	for
our	module	to	work	with	Gradle	2.5.	To	do	so,	update	the	build	file	to	match	the
following	and	keep	the	dependencies	method	as	is.	Note	that	you	will	need	to	update
the	absolute	paths	to	match	your	installations:

applyplugin:	'com.android.model.application'	model	{

		android	{

				compileSdkVersion	=	23	buildToolsVersion	=	"23.0.1"	

defaultConfig.with	{

						applicationId	=	"com.app3.pano"	minSdkVersion.apiLevel	=	15	

targetSdkVersion.apiLevel	=	19	versionCode	=	1	versionName	=	"1.0"

				}

		}

		//Make	sure	to	build	with	JDK	version	7

		compileOptions.with	{

				sourceCompatibility=JavaVersion.VERSION_1_7	

targetCompatibility=JavaVersion.VERSION_1_7

		}

		android.ndk	{

				moduleName	=	"Pano"	ldLibs	+=	['log']

				cppFlags	+=	"-std=c++11"	cppFlags	+=	"-fexceptions"	cppFlags		+=	"-

I${file("<OpenCV4AndroidSDK_Home>/sdk/native/jni/include")}".toString()

				cppFlags		+=	"-I${file("

<OpenCV4AndroidSDK_Home>/sdk/native/jni/include/opencv")}".toString()

				ldLibs	+=	["android",	"EGL",	"GLESv2",	"dl",	"log",	"z"]//	,	

"ibopencv_core"	stl	=	"gnustl_shared}

				android.buildTypes	{

						release	{

								minifyEnabled=	false	proguardFiles+=	file('proguard-rules.pro')

						}

				}

				android.productFlavors	{

						create("arm")	{

								ndk.with	{



										abiFilters	+=	"armeabi"	File	curDir	=	file('./')

										curDir	=	file(curDir.absolutePath)

										String	libsDir	=	

curDir.absolutePath+"\\src\\main\\jniLibs\\armeabi\\"	//"-L"	+	ldLibs	

+=	libsDir	+	"libopencv_core.a"	ldLibs	+=	libsDir	+	

"libopencv_imgproc.a"	ldLibs	+=	libsDir	+	"libopencv_java.so"	ldLibs	+=	

libsDir	+	"libopencv_features2d.a"

								}

						}

						create("armv7")	{

								ndk.with	{

										abiFilters	+=	"armeabi-v7a"	File	curDir	=	file('./')

										curDir	=	file(curDir.absolutePath)

										String	libsDir	=	

curDir.absolutePath+"\\src\\main\\jniLibs\\armeabi-v7a\\"	//"-L"	+	

ldLibs	+=	libsDir	+	"libopencv_core.a"	ldLibs	+=	libsDir	+	

"libopencv_imgproc.a"	ldLibs	+=	libsDir	+	"libopencv_java.so"	ldLibs	+=	

libsDir	+	"libopencv_features2d.a"	

								}

						}

						create("x86")	{

								ndk.with	{

										abiFilters	+=	"x86"

								}

						}

						create("mips")	{

								ndk.with	{

										abiFilters	+=	"mips"

								}

						}

						create("fat")	{

						}

				}

		}

}

9.	 Finally,	we	need	to	update	the	build.gradle	file	for	the	OpenCV	module	in	order	to
match	the	following:

apply	plugin:	'com.android.model.library'	model	{

		android	{

				compileSdkVersion	=	23	buildToolsVersion	=	"23.0.1"	

defaultConfig.with	{

						minSdkVersion.apiLevel	=	15	targetSdkVersion.apiLevel	=	19

				}

		}

		//Make	sure	to	build	with	JDK	version	7

		compileOptions.with	{

				sourceCompatibility=JavaVersion.VERSION_1_7	

targetCompatibility=JavaVersion.VERSION_1_7

		}

		android.buildTypes	{

				release	{

						minifyEnabled=	false	proguardFiles+=	file('proguard-rules.pro')

				}

		}



}

10.	 Now,	sync	and	build	the	project.

Working	on	the	native	part

Regardless	of	the	IDE	of	your	choice,	you	can	follow	these	steps	to	add	the	native	code	to
the	application:

1.	 Open	Pano.cpp	and	add	the	following	code;	we	will	go	through	the	code	later:

#include<jni.h>

#include<opencv2/core/core.hpp>

#include<opencv2/imgproc/imgproc.hpp>

#include<opencv2/features2d/features2d.hpp>

#include<vector>

extern"C"	{

		JNIEXPORT	void	JNICALL	

Java_com_app3_pano_PanoActivity_FindHarrisCorners(JNIEnv*,	jobject,	

jlong	addrGray,	jlong	addrRgba)

		{

				cv::Mat&	mGr		=	*(cv::Mat*)addrGray;

				cv::Mat&	mRgb	=	*(cv::Mat*)addrRgba;

				cv::Mat	dst_norm;

				cv::Mat	dst	=	cv::Mat::zeros(mGr.size(),CV_32FC1);

				//the	size	of	the	neighbor	in	which	we	will	check	

				//the	existence	of	a	corner

				int	blockSize	=	2;

				//used	for	the	Sobel	kernel	to	detect	edges	before	

				//checking	for	corners

				int	apertureSize	=	3;

				//	a	free	constant	used	in	Harris	mathematical	formula

				double	k	=	0.04;				

				//corners	response	threshold

				float	threshold=150;

				cv::cornerHarris(	mGr,	dst,	blockSize,	apertureSize,	k,	

cv::BORDER_DEFAULT	);

				cv::normalize(	dst,	dst_norm,	0,	255,	cv::NORM_MINMAX,	CV_32FC1,	

cv::Mat()	);

				for(	unsignedint	i	=	0;	i	<	dst_norm.rows;	i++	)

				{

						float	*	row=dst_norm.ptr<float>(i);

						for(int	j=0;j<dst_norm.cols;j++)

						{

								if(row[j]>=threshold)

								{

										cv::circle(mRgb,	cv::Point(j,	i),	10,	

cv::Scalar(255,0,0,255));

								}



						}

				}

		}

}

2.	 We	declare	a	native	method	in	the	PanoActivity	class	so	that	we	can	call	the	native
code	later:

public	native	void	FindHarrisCorners(long	matAddrGr,	long	matAddrRgba);

3.	 We	build	the	native	library	and	declare	the	native	method	in	our	activity,	but	when	we
try	to	call	the	native	method,	we	receive	java.lang.UnsatisfiedLinkError,	because
we	haven’t	loaded	the	native	library	yet.	To	do	so,	we	change	the
onManagerConnected()	method	to	load	the	native	library	after	the	OpenCV
initialization:

private	BaseLoaderCallback	mLoaderCallback	=	new	

BaseLoaderCallback(this)	{

		@Override

		public	void	onManagerConnected(int	status)	{

				switch	(status)	{

						case	LoaderCallbackInterface.SUCCESS:

						{

								Log.i(TAG,	"OpenCV	loaded	successfully");

								//	Load	native	library	after(!)	OpenCV	initialization

								System.loadLibrary("Pano");

						}	break;

						

						default:

						{

								super.onManagerConnected(status);

						}	break;

				}

		}

};

4.	 Now,	we	are	ready	to	use	the	native	library	using	a	menu	item	to	trigger	the	native
Harris	corner	detector.	So,	open	res/menu/pano.xml	and	add	the	following	menu
item:

<itemandroid:id="@+id/action_nativeHarris"	

		android:orderInCategory="2"	

		android:title="@string/action_nativeHarris">

</item>

5.	 In	PanoActivity,	change	onOptionsItemSelected()	to	handle	the	native	case:

else	if(id==R.id.action_nativeHarris)

{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);



				toast.show();

				return	true;

		}

						

		Mat	greyImage=new	Mat();

		Imgproc.cvtColor(sampledImage,	greyImage,	Imgproc.COLOR_RGB2GRAY);

		

		

FindHarrisCorners(greyImage.getNativeObjAddr(),sampledImage.getNativeOb

jAddr());

						

		displayImage(sampledImage);

}

We’ve	listed	the	steps	needed	to	invoke	the	native	implementation	of	the	Harris	corner
detector;	however,	we	still	need	to	go	through	the	details	of	the	C++	code	to	get	a	sense	of
what	we	did	so	that	you	can	extend	and	build	on	the	ideas	that	you	learn	here.	Of	course,
having	a	basic	idea	of	the	C++	language	constructs	will	be	very	beneficial.

1.	 We	first	include	a	list	of	the	header	files	that	we	need:

#include<opencv2/core/core.hpp>

#include<opencv2/imgproc/imgproc.hpp>

#include<opencv2/features2d/features2d.hpp>

#include<vector>

2.	 Declare	the	function	we	will	use	following	this	naming	convention,
Java_Fully_Qualified_Class_Name_MethodName.	The	method	that	we	declared	in
PanoActivity	takes	only	two	parameters:	the	addresses	of	the	grayscale	and	colored
image;	however,	the	native	method	takes	four.	The	first	two	are	always	used	in	any
JNI	method	declaration.	The	second	two	correspond	to	the	addresses	that	we	sent
(jlong	is	mapped	to	long	in	Java):

JNIEXPORT	void	JNICALL	

Java_com_app3_pano_PanoActivity_FindHarrisCorners(JNIEnv*,	jobject,	

jlong	addrGray,	jlong	addrRgba)

3.	 We	cast	the	references	that	we	sent	to	Mat	references,	one	for	the	grayscale	image
and	one	for	the	colored:

cv::Mat&	mGr		=	*(cv::Mat*)addrGray;

cv::Mat&	mRgb	=	*(cv::Mat*)addrRgba;

4.	 We	declare	and	initialize	a	list	of	variables	that	we	will	use	to	detect	the	corners:

cv::Mat	dst_norm;

cv::Mat	dst	=	cv::Mat::zeros(mGr.size(),CV_32FC1);

int	blockSize	=	2;

intapertureSize	=	3;

double	k	=	0.04;

float	threshold=150;

5.	 We	call	the	native	implementation	for	the	Harris	corner	detector	and	normalize	the
corners’	responses	to	be	between	0	and	255:



cv::cornerHarris(	mGr,	dst,	blockSize,	apertureSize,	k,	

cv::BORDER_DEFAULT	);

cv::normalize(	dst,	dst_norm,	0,	255,	cv::NORM_MINMAX,	CV_32FC1,	

cv::Mat()	);

6.	 We	loop	on	the	normalized	corners	and	draw	a	circle	for	the	detected	corner	in	case
its	response	is	greater	than	the	threshold:

for(	unsignedint	i	=	0;	i	<	dst_norm.rows;	i++	)

{

		float	*	row=dst_norm.ptr<float>(i);

		for(int	j=0;j<dst_norm.cols;j++)

		{

				if(row[j]>=threshold)

				{

				cv::circle(mRgb,	cv::Point(j,	i),	10,	cv::Scalar(255,0,0,255));

				}

		}

}

The	left	image	is	HCD	using	Java	wrappers	and	the	right	image	is	native	HCD

Understanding	the	FAST	corner	detector
When	it	comes	to	real-time	applications,	there	are	better	detectors	in	terms	of	speed.	In
this	section,	we	will	describe	how	the	FAST	corner	detector	works.



Let’s	consider	a	pixel,	P.	We	say	that	P	is	a	potential	interest	point	or	a	corner	if	we	test	16
pixels	in	a	circular	neighborhood	of	pixel	P,	and	12	of	them	have	intensities	either	greater
than	or	less	than	P’s	intensity	plus/minus	a	threshold.

This	process	is	computationally	expensive,	so	to	speed	up	the	detection,	another	test	was
proposed.	The	algorithm	first	tests	only	4	pixels	at	specific	locations	(1,	9,	5,	13);	if	three
of	them	are	greater	than	or	less	than	P’s	intensity	plus/minus	the	threshold,	and	then
proceeds	with	the	other	8	pixels;	otherwise	this	pixel	is	discarded:

UI	definitions

Add	the	following	menu	item	to	res/menu/pano.xml:

<itemandroid:id="@+id/action_fast"

		android:orderInCategory="4"

		android:title="@string/action_fast">

</item>

Using	the	FAST	corner	detector

Open	PanoActivity	and	edit	onOptionsItemSelected()	to	include	the	following	case:

else	if(id==R.id.action_fast)

{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}



						

		Mat	greyImage=new	Mat();

		Imgproc.cvtColor(sampledImage,	greyImage,	Imgproc.COLOR_RGB2GRAY);

						

MatOfKeyPoint	keyPoints=new	MatOfKeyPoint();

		FeatureDetector	detector=FeatureDetector.create(FeatureDetector.FAST);

		detector.detect(greyImage,	keyPoints);

		Features2d.drawKeypoints(greyImage,	keyPoints,	greyImage);		

		displayImage(greyImage);

}

As	we	described	earlier,	OpenCV	has	a	very	simple	interface	and	factory	method	to	build
different	detectors.	The	only	difference	between	the	Harris	detector	and	FAST	is	the
following	parameter	that	we	send	to	the	factory	method:

FeatureDetector	detector	=	FeatureDetector.create(FeatureDetector.FAST);

The	rest	of	the	code	is	exactly	the	same.

Using	native	FAST

In	this	section,	we	will	add	another	native	method	to	the	PanoActivity	class	in	order	to
call	the	native	implementation	to	the	FAST	corner	detector:

1.	 Open	the	activity	class	and	add	the	following	declaration:

public	native	void	FindFastFeatures(long	matAddrGr,	long	matAddrRgba);

This	method	takes	two	arguments;	the	first	is	the	address	of	the	grayscale	image	and
the	second	is	the	address	for	the	colored	version.

2.	 Add	the	following	method	to	the	Pano.cpp	file:

JNIEXPORT	void	JNICALL	

Java_com_app3_pano_PanoActivity_FindFastFeatures(JNIEnv*,	jobject,	

jlong	addrGray,	jlong	addrRgba)

{

		cv::Mat&	mGr		=	*(cv::Mat*)addrGray;

		cv::Mat&	mRgb	=	*(cv::Mat*)addrRgba;

		std::vector<cv::KeyPoint>	v;

		cv::FastFeatureDetector	detector(50);

		detector.detect(mGr,	v);

		for(	unsignedint	i	=	0;	i	<	v.size();	i++	)

		{

				const	cv::KeyPoint&	kp	=	v[i];

				cv::circle(mRgb,	cv::Point(kp.pt.x,	kp.pt.y),	10,	

cv::Scalar(255,0,0,255));

		}

}

In	the	preceding	code,	we	first	instantiate	a	vector	of	key	points	and	a
FastFeatureDetector	object	with	a	threshold	of	50	and	call	the	detection	method
by	passing	in	the	grayscale	image	and	the	empty	vector	of	key	points.	Then,	we	draw
a	circle	for	every	detected	key	point.



3.	 We	add	one	more	menu	item	to	res/menu/pano.xml:

<itemandroid:id="@+id/action_nativefast"	

		android:orderInCategory="5"	

		android:title="@string/action_fastnative">

</item>

4.	 Finally,	open	PanoActivity	and	edit	onOptionsItemSelected()	to	include	the
following	case:

else	if(id==R.id.action_nativefast)

{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

						

		Mat	greyImage=new	Mat();

		Imgproc.cvtColor(sampledImage,	greyImage,	Imgproc.COLOR_RGB2GRAY);

		

FindFastFeatures(greyImage.getNativeObjAddr(),sampledImage.getNativeObj

Addr());

						

		displayImage(sampledImage);

}



The	left	image	is	FAST	using	Java	wrappers	and	the	right	image	is	native	FAST

Understanding	the	ORB	feature	detector
Another	important	detector,	and	also	a	descriptor,	came	from	the	OpenCV	labs	as	an
alternative	for	two	very	famous,	yet	patented,	algorithms	(Scale	Invariant	Feature
Transform	(SIFT)	and	Speeded	Up	Robust	Features	(SURF)),	the	ORB.	To	use	SIFT
and	SURF,	you	need	to	pay;	however,	ORB	provides	a	free,	good	alternative	in
computation	cost	and	matching	performance.

In	this	section,	we	will	discuss	the	detector	part	of	the	ORB.	It	mainly	uses	the	FAST
algorithm	that	we	saw	in	the	previous	section	with	the	following	few	important	additions:

ORB	first	uses	the	FAST	algorithm	to	detect	interest	points	or	corners
It	uses	Harris	to	assign	a	score	for	every	corner	(based	on	the	variation	of	intensities
around	the	detected	corner)
It	sorts	the	scored	interest	points	and	considers	only	the	top	N	corners
It	uses	the	image	pyramid	to	produce	multiscale	interest	points	instead	of	the	mono-
scale	interest	points	detected	by	FAST
It	computes	an	intensity-weighted	centroid	for	the	interest	points’	neighborhood
With	the	interest	point	and	centroid,	the	algorithm	computes	this	vector	direction	and
assigns	it	as	the	interest	point	orientation;	this	step	is	important	for	the	description
part	of	the	algorithm



UI	definitions

Add	the	following	menu	item	to	res/menu/pano.xml:

<itemandroid:id="@+id/action_orb"

		android:orderInCategory="6"

		android:title="@string/action_orb">

</item>

Using	the	ORB	feature	detector

We	need	to	edit	onOptionsItemSelected()	in	the	PanoActivity	class	to	include	the
following	case:

else	if(id==R.id.action_orb)

{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

						

		Mat	greyImage=new	Mat();

		Imgproc.cvtColor(sampledImage,	greyImage,	Imgproc.COLOR_RGB2GRAY);

		MatOfKeyPoint	keyPoints=new	MatOfKeyPoint();

						

		FeatureDetector	detector	=	FeatureDetector.create(FeatureDetector.ORB);

						

		detector.detect(greyImage,	keyPoints);

		Features2d.drawKeypoints(greyImage,	keyPoints,	greyImage);		

		displayImage(greyImage);

}

It	is	very	simple	to	switch	between	the	different	feature	detectors.	We	just	pass	the	ID	of
the	ORB	to	the	factory	method	and	call	the	detect	method.

Using	native	ORB

In	this	section,	we	will	use	the	native	implementation	of	the	ORB	detector	and	move	the
preprocessing	steps	to	the	CPP	file	in	order	to	reduce	the	JNI	calls	overhead	to	only	one
call:

1.	 Open	the	PanoActivity	class	and	add	the	following	declaration:

public	native	void	FindORBFeatures(long	matAddrRgba,	int	

featuresNumber);

The	method	takes	two	arguments,	the	address	of	native	object	and	maximum	number
of	features	to	detect.

2.	 In	Pano.cpp,	add	the	following	method	implementation:



JNIEXPORT	void	JNICALL	

Java_com_app3_pano_PanoActivity_FindORBFeatures(JNIEnv*,	jobject,	jlong	

addrRgba,	jint	featuresNumber)

{

		cv::Mat&	mRgb	=	*(cv::Mat*)addrRgba;

		cv::Mat	grayImg;

		std::vector<cv::KeyPoint>	v;

		cv::cvtColor(mRgb,grayImg,cv::COLOR_RGBA2GRAY);

		cv::OrbFeatureDetector	detector(featuresNumber);

		detector.detect(grayImg,	v);

		

cv::drawKeypoints(grayImg,v,mRgb,cv::Scalar::all(-1),cv::DrawMatchesFla

gs::DRAW_RICH_KEYPOINTS);

}

We	moved	the	preprocessing	step	of	converting	the	colored	image	to	grayscale	to
Pano.cpp.	We	achieved	this	by	calling	cv::cvtColor	and	passing	the	input	image,
output	image,	and	mapping	code.	Then,	we	instantiated	an	ORBFeatureDetector
object	with	a	maximum	number	of	features	that	equals	the	parameter	we	sent.

In	the	next	line,	we	call	the	detect	method.	Finally,	we	draw	the	key	points	using	the
cv::drawKeypoints	method	and	passing	the	input	image	(the	one	used	to	detect	the
key	points),	vector	of	KeyPoint,	output	image,	color	used	to	draw	the	key	points
(using	cv::Scalar::all(-1)	means	that	the	used	colors	will	be	random),	and
finally	a	flag	to	use	as	a	circle	for	every	key	point	with	a	size	that	equals	the	key
point	size	and	draw	the	key	point	orientation.

3.	 Add	the	following	menu	item	to	res/menu/pano.xml:

<itemandroid:id="@+id/action_nativeorb"	

		android:orderInCategory="7"	

		android:title="@string/action_orbnative">

</item>

4.	 Finally,	open	PanoActivity	and	edit	onOptionsItemSelected()	to	include	the
following	case:

else	if(id==R.id.action_nativeorb)

{

		if(sampledImage==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	image	first!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

						

		Mat	copy=sampledImage.clone();



		FindORBFeatures(copy.getNativeObjAddr(),100);

		displayImage(copy);		

}

The	left	image	is	ORB	using	Java	wrappers	and	the	right	image	is	native	ORB	with
feature	scale	and	orientation



Feature	description	and	matching
The	second	step	in	the	process	of	using	image	features	is	feature	description.	The	feature
descriptors	are	used	to	provide	you	with	more	information	around	the	interest	points	and
are	computed	over	the	local	region/neighborhood	of	the	detected	feature.

Feature	descriptors	can	be	categorized	with	respect	to	the	local	region	shape	(rectangle	or
circle),	sampling	pattern	(dense	sampling,	where	all	the	pixels	in	the	local	region	will
contribute	to	the	feature	description	or	sparse	sampling,	where	only	the	selected	pixels
will	be	used),	and	spectra	(binary,	where	the	description	vector	will	only	be	ones	and	zeros
or	scalar	using	any	scalar	value	or	other	values).

OpenCV	provides	feature	descriptors	belonging	to	different	categories;	however,	in	this
section,	we	will	focus	only	on	sparse,	binary	descriptors	(also	known	as	local	binary
descriptors)	due	to	the	fact	that	SIFT	and	SURF	(dense	and	scalar)	descriptors	are	patent
algorithms	and	you	have	to	pay	to	use	them.

The	local	binary	descriptors	are	computed	regardless	of	the	descriptor	shape,	using	the
pixel	pair	sampling	method,	where	selected	pairs	of	pixels	are	compared	in	order	to	yield	a
binary	string	representing	the	description	vector.	For	example,	if	we	have	a	pair	of	pixels
(P1,	P2),	we	compare	the	intensity	of	P1	and	P2.	If	P1’s	intensity	is	greater	than	P2,	then
we	put	1	in	the	description	vector,	otherwise	we	insert	0.

Understanding	BRIEF	and	ORB	feature	descriptors
The	Binary	Robust	Independent	Elementary	Features	(BRIEF)	descriptor	is
considered	the	simplest	and	first	local	binary	descriptor	that	was	proposed.	To	describe	an
interest	point	with	a	description	vector	of	length	N,	the	algorithm	chooses	N	random	pairs
of	pixels	in	the	31x31	patch	region	by	several	randomization	methods	(uniform,	Gaussian,
and	others)	and	compares	them	to	construct	the	binary	string.

As	for	the	ORB,	the	descriptor	adds	orientation	to	BRIEF	by	steering	the	interest	point	to
the	canonical	orientation	(given	that	we	know	the	interest	point	dominant	orientation	in
the	detection	stage)	and	then	calculates	the	description;	as	a	result,	we	achieve	some
rotation	invariance.	For	example,	if	the	interest	point	dominant	orientation	is	90	degrees,
the	interest	point	and	its	neighborhood	are	rotated	to	point	upwards	(orientation=zero)
before	ORB	is	used	to	describe	it,	and	then	the	interest	point	is	described	so	that	we	can
achieve	rotation	invariance.

For	the	pixels	pair	sampling	method,	ORB	learned,	offline,	to	choose	the	pixel	pairs	in	a
way	that	maximizes	the	variance	and	reduces	the	correlation	so	that	every	chosen	pixel
adds	new	information	to	the	descriptor.

Using	the	randomization	method	(BRIEF)	or	the	learned	sampling	method	(ORB)	to
choose	the	pixel	pairs	results	in	a	nonsymmetrical	descriptor	shape,	as	follows:



Understanding	the	BRISK	feature	descriptor
The	Binary	Robust	Invariant	Scalable	Keypoints	(BRISK)	descriptor	is	built	on	60
points	arranged	in	four	concentric	rings,	hence	the	point-pair	sampling	shape	is	circular
and	symmetric.	Each	point	represents	a	circular	sampling	area	(to	choose	the	sampling
pairs)	that	increases	in	size	as	we	move	away	from	the	interest	point.

To	calculate	the	orientation,	every	sampling	region	is	smoothed	with	a	Gaussian	filter	and
local	gradients	are	calculated.	The	sampling	pairs	are	divided	into	two	groups:	long
segments,	where	the	distances	between	the	pairs	are	above	a	certain	threshold	and	are	used
with	the	local	gradients	to	calculate	the	orientation	angle	in	order	to	steer	the	interest	point
so	that	we	can	achieve	rotation	invariance.	The	second	category	is	short	segments,	where
the	distances	between	the	pairs	are	below	another	threshold	and	are	used	to	construct	a
512-bit	binary	descriptor	by	comparing	512	pairs.	Following	is	a	figure	depicting	the
distribution	of	BRISK	sampling	regions:

Understanding	the	FREAK	feature	descriptor



The	Fast	Retina	Keypoint	(FREAK)	descriptor’s	circular	shape	is	based	on	the	human
retinal	system,	where	the	density	of	the	receptor	cells	is	the	highest	at	the	center	and
decreases	as	we	move	away.	As	for	the	sampling	pattern,	the	best	pairs	of	pixels	are
learned	using	an	offline	training	algorithm	to	maximize	the	point-pairs	variance	and
minimize	the	correlation.

Matching	the	features
Once	you	decide	on	the	descriptor	that	fits	your	needs,	you	will	need	to	choose	a	distance
function	to	determine	feature	matching.	There	are	many	distance	functions	to	use
depending	on	which	descriptor	you	choose.	In	the	case	of	local	binary	features,	the
favorite	choice	would	be	the	Hamming	distance	to	measure	the	difference	between	two
equal-length	binary	strings.	The	operation	is	very	efficient	and	fast	because	it	can	be
executed	using	machine	language	instructions	or	an	XOR	operation	followed	by	a	bit
count.

Working	with	feature	matching
In	this	section,	we	will	update	the	application	so	that	you	can	mix	and	match	different
detectors	with	different	descriptors	to	find	the	matching	features.

UI	definitions

We	will	define	two	groups	in	the	application	menu.	One	will	be	for	the	set	of	detectors	that
we	use	and	the	other	will	be	for	the	set	of	descriptors.	We	will	also	add	one	more	menu
item	where	you	can	select	an	object	to	find	in	a	given	scene.	Open	res/menu/pano.xml
and	add	the	following	items:

<item	android:orderInCategory="8"	android:id="@+id/detector"	

android:title="@string/list_detector">

		<menu><group	android:checkableBehavior="single">

				<item	android:id="@+id/harris_check"

						android:title="@string/action_harris"/>

				<item	android:id="@+id/fast_check"

						android:title="@string/action_fast"	android:checked="true"/>

				<item	android:id="@+id/orbD_check"



						android:title="@string/action_orb"	/>

		</group></menu>

</item>

<item	android:orderInCategory="9"	android:id="@+id/descriptor"	

android:title="@string/list_descriptor">

		<menu><group	android:checkableBehavior="single">

				<item	android:id="@+id/BRIEF_check"

						android:title="@string/action_brief"/>

				<item	android:id="@+id/ORB_check"

						android:title="@string/action_orb"	android:checked="true"/>

				<item	android:id="@+id/BRESK_check"

						android:title="@string/action_brisk"/>

				<item	android:id="@+id/FREAK_check"

						android:title="@string/action_freak"/>

		</group></menu>

</item>

<item	android:id="@+id/action_match"

		android:orderInCategory="10"

		android:title="@string/action_match">

</item>

<item

		android:id="@+id/action_selectImgToMatch"

		android:orderInCategory="1"

		android:showAsAction="never"

		android:title="@string/action_selectImgToMatch"/>

Finding	an	object	in	a	scene

We	will	follow	this	process	to	find	an	object	in	a	given	scene.	First,	you	load	the	scene,
then	you	load	the	object	image,	and	finally,	select	match.	To	execute	the	matching	process,
we	edit	onOptionsItemSelected()	to	include	the	following	case:

else	if(id==R.id.action_match)

{

		if(sampledImage==null	||	imgToMatch==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	object	and	a	scene	to	match!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

						

		int	maximumNuberOfMatches=10;

		Mat	greyImage=new	Mat();

		Mat	greyImageToMatch=new	Mat();

		Imgproc.cvtColor(sampledImage,	greyImage,	Imgproc.COLOR_RGB2GRAY);

		Imgproc.cvtColor(imgToMatch,	greyImageToMatch,	Imgproc.COLOR_RGB2GRAY);

		MatOfKeyPoint	keyPoints=new	MatOfKeyPoint();

		MatOfKeyPoint	keyPointsToMatch=new	MatOfKeyPoint();



		FeatureDetector	detector=FeatureDetector.create(detectorID);

		detector.detect(greyImage,	keyPoints);

		detector.detect(greyImageToMatch,	keyPointsToMatch);

		DescriptorExtractor	dExtractor	=	

DescriptorExtractor.create(descriptorID);

		Mat	descriptors=new	Mat();

		Mat	descriptorsToMatch=new	Mat();

		dExtractor.compute(greyImage,	keyPoints,	descriptors);

		dExtractor.compute(greyImageToMatch,	keyPointsToMatch,	

descriptorsToMatch);

		DescriptorMatcher	matcher	=	

DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);

		MatOfDMatch	matches=new	MatOfDMatch();

		matcher.match(descriptorsToMatch,descriptors,matches);

						

		ArrayList<DMatch>	goodMatches=new	ArrayList<DMatch>();

		List<DMatch>	allMatches=matches.toList();

		double	minDist	=	100;

		for(	int	i	=	0;	i	<	descriptorsToMatch.rows();	i++	)

		{	

				double	dist	=	allMatches.get(i).distance;

				if(	dist	<	minDist	)	minDist	=	dist;

		}

		for(	int	i	=	0;	i	<	descriptorsToMatch.rows()	&&	goodMatches.size()

<maximumNuberOfMatches;	i++	)

		{	

				if(allMatches.get(i).distance<=	2*minDist)

				{					

						goodMatches.add(allMatches.get(i));	

				}

		}

		MatOfDMatch	goodEnough=new	MatOfDMatch();

		goodEnough.fromList(goodMatches);

		Mat	finalImg=new	Mat();

		Features2d.drawMatches(greyImageToMatch,	keyPointsToMatch,	greyImage,	

keyPoints,	goodEnough,	finalImg,Scalar.all(-1),Scalar.all(-1),new	

MatOfByte(),	Features2d.DRAW_RICH_KEYPOINTS	+	

Features2d.NOT_DRAW_SINGLE_POINTS);

		displayImage(finalImg);

}

1.	 We	first	make	sure	that	the	scene	and	the	object	images	are	loaded:

if(sampledImage==null	||	imgToMatch==null)

{

		Context	context	=	getApplicationContext();

		CharSequence	text	=	"You	need	to	load	an	object	and	a	scene	to	

match!";

		int	duration	=	Toast.LENGTH_SHORT;



		Toast	toast	=	Toast.makeText(context,	text,	duration);

		toast.show();

		return	true;

}

2.	 Convert	both	the	scene	and	object	image	to	grayscale:

Imgproc.cvtColor(sampledImage,	greyImage,	Imgproc.COLOR_RGB2GRAY);

Imgproc.cvtColor(imgToMatch,	greyImageToMatch,	Imgproc.COLOR_RGB2GRAY);

3.	 Construct	a	detector	object	based	on	the	selection	made	from	the	application	menu
and	use	it	to	detect	features	in	both	the	scene	and	object	image:

MatOfKeyPoint	keyPoints=new	MatOfKeyPoint();

MatOfKeyPoint	keyPointsToMatch=new	MatOfKeyPoint();

FeatureDetector	detector	=	FeatureDetector.create(detectorID);

detector.detect(greyImage,	keyPoints);

detector.detect(greyImageToMatch,	keyPointsToMatch);

4.	 We	do	the	same	thing	for	the	type	of	descriptor	that	we	use.	OpenCV	has	a	descriptor
interface	similar	to	the	detector	one.	You	call	one	create	method	on	the
DescriptorExtractor	class	and	pass	the	ID	of	the	descriptor	that	you	want	to	use.	In
our	case,	the	ID	is	based	on	the	selection	that	we	make	from	the	application	menu.

DescriptorExtractor	dExtractor	=	

DescriptorExtractor.create(descriptorID);

5.	 Next,	we	compute	the	description	for	each	feature	detected	in	the	scene	and	the
object	image	by	calling	the	compute	method	on	the	descriptor	object	that	we	created
and	passing	the	image,	detected	key	points,	and	an	empty	Mat	object	to	store	the
description:

Mat	descriptors=new	Mat();

Mat	descriptorsToMatch=new	Mat();

dExtractor.compute(greyImage,	keyPoints,	descriptors);

dExtractor.compute(greyImageToMatch,	keyPointsToMatch,	

descriptorsToMatch);

6.	 Then,	we	construct	a	matcher	object	by	calling	the	create	method	on	the
DescriptorMacther	class	and	passing	the	ID	of	the	distance	function	of	your	choice.
In	our	case,	we	are	using	local	binary	descriptors;	hence,	the	Hamming	distance	will
be	our	favorite	choice:

DescriptorMatcher	matcher	=	

DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);

7.	 Now,	we	are	ready	to	find	the	matching	features	from	the	scene	and	object	images	by
calling	the	match	method	on	the	matcher	object	and	passing	the	object	feature
description,	scene	feature	description,	and	an	empty	matrix	of	DMatch	objects.	The
DMatch	object	is	a	simple	data	structure	used	to	store	two	matching	descriptors	and
their	distance	(in	our	case,	the	Hamming	distance):

MatOfDMatch	matches=new	MatOfDMatch();



matcher.match(descriptorsToMatch,descriptors,matches);

8.	 Finally,	we	select	the	best	matching	points	and	draw	them:

ArrayList<DMatch>	goodMatches=new	ArrayList<DMatch>();

List<DMatch>	allMatches=matches.toList();

double	minDist	=	100;

for(	int	i	=	0;	i	<descriptorsToMatch.rows();	i++	)

{	

		double	dist	=	allMatches.get(i).distance;

		if(	dist	<	minDist	)	minDist	=	dist;

}

for(	int	i	=	0;	i	<descriptorsToMatch.rows()	&&	goodMatches.size()

<maximumNuberOfMatches;	i++	)

{	

		if(	allMatches.get(i).distance<=	2*minDist)

		{					

				goodMatches.add(allMatches.get(i));	

		}

}

MatOfDMatch	goodEnough=new	MatOfDMatch();

goodEnough.fromList(goodMatches);

						

Mat	finalImg=new	Mat();

Features2d.drawMatches(greyImageToMatch,	keyPointsToMatch,	greyImage,	

keyPoints,	goodEnough,	finalImg,Scalar.all(-1),Scalar.all(-1),new	

MatOfByte(),Features2d.DRAW_RICH_KEYPOINTS	+	

Features2d.NOT_DRAW_SINGLE_POINTS);

displayImage(finalImg);



Using	ORB	for	feature	detection	and	description	is	invariant	to	scale	and	rotation

Native	feature	matching
We’ve	seen	how	to	detect,	describe,	and	match	features	using	the	Java	wrappers;	however,
it	would	be	faster	if	we	can	group	these	steps	into	a	single	JNI	call	because	the	process
requires	many	steps	and	every	step	is	translated	to	an	individual	JNI	call	to	the	native
code.

In	this	section,	we	will	execute	the	feature	detection,	description,	and	matching	process	in
the	native	side	of	the	application.

UI	definitions

We	will	add	a	new	menu	item	in	order	to	execute	the	native	process.	Open
res/menu/pano.xml	and	add	the	following	item:

<itemandroid:id="@+id/action_native_match"	

		android:orderInCategory="11"	

		android:title="@string/action_native_match">

</item>

The	native	matching	process

In	this	section,	we	will	move	the	process	and	preprocessing	steps	to	the	native	side	of	the
application;	thereby,	reducing	the	overall	JNI	overhead	to	a	minimum:



1.	 We	first	declare	a	new	native	method	in	the	activity	class.	The	native	method	takes	a
reference	to	the	object	image,	scene	image,	detector	ID,	and	descriptor	ID	and	returns
an	image	with	the	matching	results:

public	native	void	FindMatches(long	objectAddress,	long	

sceneAddress,int	detectorID,	int	descriptorID,long	matchingResult);

2.	 We	define	the	native	method	in	the	Pano.cpp	file:

JNIEXPORT	void	JNICALL	

Java_com_app3_pano_PanoActivity_FindMatches(JNIEnv*,	jobject,	jlong	

objectAddress,	jlong	sceneAddress,jint	detectorID,	jint	

descriptorID,jlong	matchingResult)

{

		cv::Mat&	object		=	*(cv::Mat*)objectAddress;

		cv::Mat&	scene	=	*(cv::Mat*)sceneAddress;

		cv::Mat&	result	=	*(cv::Mat*)matchingResult;

		cv::Mat	grayObject;

		cv::Mat	grayScene;

		//Convert	the	object	and	scene	image	to	grayscale

		cv::cvtColor(object,grayObject,cv::COLOR_RGBA2GRAY);

		cv::cvtColor(scene,grayScene,cv::COLOR_RGBA2GRAY);

		std::vector<cv::KeyPoint>	objectKeyPoints;

		std::vector<cv::KeyPoint>	sceneKeyPoints;

		cv::Mat	objectDescriptor;

		cv::Mat	scenceDescriptor;

		//Construct	a	detector	object	based	on	the	input	ID

		if(detectorID==1)//FAST

		{

				cv::FastFeatureDetector	detector(50);

				detector.detect(grayObject,	objectKeyPoints);

				detector.detect(grayScene,	sceneKeyPoints);

		}

		else	if(detectorID==5)//ORB

		{

				cv::OrbFeatureDetector	detector;

				detector.detect(grayObject,	objectKeyPoints);

				detector.detect(grayScene,	sceneKeyPoints);

		}

		//Construct	a	descriptor	object	based	on	the	input	ID

		if(descriptorID==3)//ORB

		{

				cv::OrbDescriptorExtractor	descriptor;

				descriptor.compute(grayObject,objectKeyPoints,objectDescriptor);

				descriptor.compute(grayScene,sceneKeyPoints,scenceDescriptor);

		}

		else	if(descriptorID==4)//BRIEF

		{

				cv::BriefDescriptorExtractor	descriptor;

				descriptor.compute(grayObject,objectKeyPoints,objectDescriptor);

				descriptor.compute(grayScene,sceneKeyPoints,scenceDescriptor);

		}



		else	if(descriptorID==5)//BRISK

		{

				cv::BRISK	descriptor;

				descriptor.compute(grayObject,objectKeyPoints,objectDescriptor);

				descriptor.compute(grayScene,sceneKeyPoints,scenceDescriptor);

		}

		else	if(descriptorID==6)//FREAK

		{

				cv::FREAK	descriptor;

				descriptor.compute(grayObject,objectKeyPoints,objectDescriptor);

				descriptor.compute(grayScene,sceneKeyPoints,scenceDescriptor);

		}

		//Construct	a	brute	force	matcher	object	using	the	

		//Hamming	distance	as	the	distance	function

		cv::BFMatcher	matcher(cv::NORM_HAMMING);

		std::vector<	cv::DMatch>	matches;

		matcher.match(	objectDescriptor,	scenceDescriptor,	matches);

		//Select	the	best	matching	points	and	draw	them

		double	min_dist	=	100;

		for(	int	i	=	0;	i	<	objectDescriptor.rows;	i++	)

		{

				double	dist	=	matches[i].distance;

				if(	dist	<	min_dist	)	min_dist	=	dist;

		}

		std::vector<	cv::DMatch>	good_matches;

		for(	int	i	=	0;	i	<	objectDescriptor.rows;	i++	)

		{

				if(	matches[i].distance	<=	3*min_dist	)

				{

						good_matches.push_back(	matches[i]);

				}

		}

		drawMatches(	grayObject,	objectKeyPoints,	grayScene,	

sceneKeyPoints,good_matches,	result,	cv::Scalar::all(-1),	

cv::Scalar::all(-1),std::vector<char>(),	

cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS+cv::DrawMatchesFlags::DRAW

_RICH_KEYPOINTS);

}

3.	 In	the	activity	class,	edit	onOptionsItemSelected()	to	include	the	following	case:

else	if(id==R.id.action_native_match)

{

		if(detectorID==FeatureDetector.HARRIS)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"Not	a	valid	option	for	native	matching";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

		if(sampledImage==null	||	imgToMatch==null)



		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	object	and	a	scene	to	

match!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

		Mat	finalImg=new	Mat();

		

		

FindMatches(imgToMatch.getNativeObjAddr(),sampledImage.getNativeObjAddr

(),detectorID,descriptorID,finalImg.getNativeObjAddr());

		

		displayImage(finalImg);

}	

Native	matching	using	ORB	for	feature	detection	and	description

Stitching	two	images
Image	stitching	is	the	process	of	finding	a	correspondence	relation	between	images	that
already	have	some	degree	of	overlap.

Usually,	the	stitching	is	divided	into	the	following	two	phases:



Image	registration	and	alignment:	Here,	we	are	given	two	images—one	as	a	source
and	the	other	as	the	target—and	the	process	involves	registering	the	target	image
spatially	to	align	with	the	source	image.	The	process	can	be	categorized	into
intensity-based	alignment	and	feature-based	alignment.	We	will	use	the	feature-based
alignment	as	we	are	already	familiar	with	the	components	of	this	approach	(finding,
describing,	and	matching	features	in	two	images).	The	outcome	of	this	process	is	a
motion	model	with	known	parameters	(that	is,	a	3x3	homography	matrix)	that	is	used
to	map	the	coordinates	of	one	image	to	the	other.	Once	you	extend	your	stitching
application	to	work	with	more	than	two	images,	you	will	start	facing	issues	related	to
global	registration	and	finding	a	globally	consistent	set	of	alignment	parameters	that
minimizes	the	misregistration	between	all	the	pairs	of	images.	The	techniques	used	to
tackle	such	issues	are	bundle	adjustment,	which	improves	the	estimations	by
minimizing	the	reprojection	error	between	every	pair	of	images,	and	wave	correction,
which	is	used	to	straighten	the	final	result	as	we	typically	find	a	wavy	effect	in	the
output	of	the	panorama.
Composition:	Once	we	have	all	the	images	aligned	and	registered,	we	will	need	to
do	exposure	correction	to	the	input	images	so	that	the	blending	looks	more	natural.
We	will	also	need	to	remove	visible	seams	and	other	stitching	artefacts	through	a
process	called	multi-band	blending.

Luckily	for	us,	OpenCV	is	bundled	with	a	stitcher	class	that	will	execute	the	stitching
pipeline	with	a	very	easy	interface;	however,	OpenCV4Android	SDK	doesn’t	come	with
a	Java	wrapper,	and	I	think	that	this	is	another	reason	why	you	should	be	familiar	with
using	the	native	implementation	in	your	application	so	that	you	can	extend	and	add	to	the
current	OpenCV	Java	wrappers	in	order	to	fit	your	needs.	So,	to	work	around	this,	we	will
add	one	more	function	to	Pano.cpp	to	call	the	stitcher	class	and	return	the	result.

UI	definitions

We	will	add	a	new	menu	item	to	execute	the	native	stitching	pipeline.	Open
res/menu/pano.xml	and	add	the	following	item:

<item	android:id="@+id/action_native_stitcher"	android:orderInCategory="11"	

android:title="@string/action_native_stitch">

</item>

The	native	stitcher

In	this	section,	we	will	implement	a	Java	wrapper	for	the	native	stitcher	class	so	that	we
can	use	it	in	our	application:

1.	 We	first	declare	a	new	native	method	in	the	activity	class.	The	native	method	takes
a	reference	to	the	first	and	second	scenes	and	returns	an	image	with	the	stitching
results:

public	native	void	Stitch(long	sceneOneAddress,	long	

sceneTwoAddress,long	stitchingResult);

2.	 We	define	the	new	stitching	method	in	Pano.cpp:



JNIEXPORTvoid	JNICALL	Java_com_app3_pano_PanoActivity_Stitch(JNIEnv*,	

jobject,	jlong	sceneOneAddress,	jlong	sceneTwoAddress,jlong	

stitchingResult)	{

		cv::Mat&	sceneOne		=	*(cv::Mat*)sceneOneAddress;

		cv::Mat&	sceneTwo	=	*(cv::Mat*)sceneTwoAddress;

		cv::Mat&	result	=	*(cv::Mat*)stitchingResult;

		/*	The	core	stitching	calls:	*/

		//a	list	to	store	all	the	images	that	need	to	be	stitched

		std::vector<cv::Mat>	natImgs;

		natImgs.push_back(sceneOne);

		natImgs.push_back(sceneTwo);

		//create	a	stitcher	object	with	the	default	pipeline

		cv::Stitcher	stitcher	=	cv::Stitcher::createDefault();

		//stitch	and	return	the	result

		stitcher.stitch(natImgs,	result);

}

3.	 In	the	activity	class,	edit	onOptionsItemSelected	to	include	the	following	case:

else	if(id==R.id.action_native_stitcher)

{

if(sampledImage==null	||	imgToMatch==null)

		{

				Context	context	=	getApplicationContext();

				CharSequence	text	=	"You	need	to	load	an	two	scenes!";

				int	duration	=	Toast.LENGTH_SHORT;

				Toast	toast	=	Toast.makeText(context,	text,	duration);

				toast.show();

				return	true;

		}

		Mat	finalImg=new	Mat();

		

Stitch(imgToMatch.getNativeObjAddr(),sampledImage.getNativeObjAddr(),fi

nalImg.getNativeObjAddr());

		displayImage(finalImg);

}





Summary
We’ve	seen	how	to	detect,	describe,	and	match	different	features	using	both	the	native	and
Java	wrappers.	Additionally,	we	have	seen	two	applications	of	image	features—one	where
you	can	use	them	to	find	an	object	in	a	scene	and	the	other	to	stitch	two	images	together	in
order	to	build	a	panorama.

In	the	next	chapter,	we	will	shift	gears	and	touch	on	the	topic	of	machine	learning	and	how
we	can	use	learning	algorithms	to	detect	hand	gestures,	which	we	can	use	to	build	an
automatic	selfie	application.





Chapter	6.	App	4	–	Automatic	Selfie
In	this	chapter,	we	will	start	working	on	a	new	application.	The	goal	of	the	application	is
to	be	able	to	take	a	selfie	without	touching	your	phone’s	screen.	Your	application	will	be
able	to	detect	a	certain	hand	gesture	that	will	trigger	the	process	of	saving	the	current
camera	frame.

The	topics	that	we	will	cover	will	include	the	following:

Cascade	classifiers	used	for	object	detection
Using	OpenCV	to	manipulate	camera	frames
Using	a	trained	cascade	classifier	to	detect	objects



Cascade	classifiers
In	this	section,	we	will	discuss	the	powerful	cascade	classifier	and	its	components,	Haar
features,	integral	images,	Adaptive	Boosting	(Adaboost),	and	cascading	to	build	an
object	detector.

In	a	nutshell,	to	construct	an	object	detector,	you	train	it	using	positive	samples	(let’s	say,
faces	of	size	24x24)	and	negative	samples	(any	other	images	that	are	not	faces).	You	keep
refining	the	training	process	to	minimize	the	training	error	(the	total	number	of	faces
classified	as	non-faces	and	total	number	of	non-faces	classified	as	faces).

Once	the	training	is	done	and	we	get	a	new	image,	we	ask	the	detector	to	check	if	it	has	a
positive	sample	(that	is,	face).	The	steps	followed	to	do	so	are	as	follows:

1.	 The	detector	will	scan	the	input	image	using	a	scanning	window,	and	every	window
scanned	will	get	a	score.

2.	 The	detector	then	will	say	that	this	window	contains	a	positive	sample	if	its	score	is
greater	than	a	certain	threshold;	otherwise,	it	does	not.



Haar-like	features
Haar-like	features	are	another	type	of	features	that	are	used	to	detect	rigid	objects	such	as
faces,	pedestrians,	and	so	on.

The	Rapid	Object	Detection	using	a	Boosted	Cascade	of	Simple	Features	paper,	by	Paul
Viola	and	Michael	Jones,	proposed	in	2001,	introduced	the	use	of	Haar-like	features	with
adaptive	boosting	and	cascading	to	detect	faces.	Since	then,	many	other	features	and
boosting	variations	were	used	to	produce	classifiers	of	many	other	object	categories.

The	first	step	to	build	a	cascade	classifier	for	object	detection	is	try	to	encode	rich
information	about	the	positive	samples	and	negative	samples	as	well.	In	other	words,	we
need	to	decide	which	features	are	considered	good	enough	to	separate	between,	let’s	say,
faces	and	non-faces.	In	this	section,	we	will	discuss	a	different	type	of	feature,	different
from	the	features	that	we	have	seen	in	Chapter	5,	App	3	-	Panoramic	Viewer.	The	features
used	here	are	fixed-size	pixel	grids,	and	in	this	case,	no	interest	point	detection	is	needed
because	the	fixed-size	grid	defines	the	description	region.

Haar-like	features	are	a	fixed-size	pixel	grid	divided	into	black	and	white	regions,	very
similar	to	the	convolution	kernels	that	we	discussed	in	Chapter	2,	App	1	-	Building	Your
Own	Darkroom.	When	you	apply	the	Haar	feature	to	a	given	image	region,	you	can
describe	the	corresponding	image	region	by	subtracting	the	sum	of	the	pixels’	intensities
under	the	white	regions	from	the	sum	of	intensities	under	the	black	regions,	yielding	a
single	value.

The	design	of	Haar-like	features	is	flexible;	for	example,	you	can	have	several	Type	1
features	but	with	different	height	and/or	width	applied	to	different	regions	of	the	image.
So,	given	these	parameters—feature	type	(1,	2,	3,	4,	or	5),	feature	width,	feature	height,
and	image	region	on	which	it	is	applied—you	get	a	huge	pool	of	features	that	can	be	used
to	describe	positive	and	negative	samples.

Note



In	the	work	of	Viola	and	Jones,	the	algorithm	uses	a	24x24	window	as	the	base	window
size	(all	the	faces	and	non-faces	are	resized	to	24x24	pixels),	and	if	we	consider	all	the
parameters	(type,	scale,	and	position),	we	end	up	with	a	pool	of	size	160,000	features.

The	following	figure	is	an	example	of	the	features	pool:

With	this	huge	number	of	features,	applying	such	an	algorithm	to	a	real-time	application
will	be	a	challenge.	So,	we	need	to	start	doing	some	optimizations.

One	of	the	optimization	techniques	that	we	can	use	to	eliminate	the	redundant	features	or
select	a	subset	of	features	that	are	really	discriminate	is	Adaptive	Boosting,	and	we	will
get	back	to	the	details	of	this	algorithm	later	in	this	chapter.

Another	optimization	technique	is	used	in	calculating	the	feature	value	(that	is,	subtracting
the	white	regions	from	the	black	regions)	and	is	achieved	by	calculating	what	is	called	the
integral	image.



The	integral	image
Whenever	we	want	to	calculate	the	feature	value,	we	need	to	sum	the	white	patches	and
subtract	them	from	the	black	patches,	and	to	do	this	quickly,	Viola	and	Jones	came	up	with
this	nice	trick	called	an	integral	image,	as	follows:

An	integral	image	is	an	image	of	the	same	dimension	as	the	input	image,	but	every
integral	pixel	(i,j)	is	the	sum	of	all	the	input	pixels	that	are	above	and	to	the	left	of	the
input	pixel	(i,j).	For	example,	when	the	top	left	pixel	is	indexed	with	(0,0),	an	integral
pixel	(1,2)	with	value	6	is	the	sum	of	all	the	input	pixels	(i,j),	where	i<=1	and	j<=2.

After	calculating	the	integral	image,	getting	the	sum	of	the	input	pixels	at	any	region	in	the
image	would	become	an	O(1)	operation.

For	example,	consider	an	integral	image	with	four	regions:	A,	B,	C,	and	D.	The	integral
pixel	indicated	by	1	stores	the	sum	of	all	the	input	pixels	in	region	A,	the	integral	pixel
indicated	by	2	is	the	sum	of	all	the	input	pixels	in	regions	A	and	B,	the	integral	pixel
indicated	by	3	is	the	sum	of	all	the	input	pixels	in	regions	A	and	C,	and	the	same	for
integral	pixel	4,	which	stores	the	sum	of	the	input	pixels	in	regions	A,	B,	C,	and	D.

Now,	to	get	the	sum	of	the	input	pixels	in	region	D,	you	only	need	the	values	of	the	four
integral	corner	pixels	1,	2,	3,	and	4,	and	with	a	simple	arithmetic	operation	D=4+1-2-3,
you	get	the	input	region	sum,	as	follows:





Adaptive	Boosting
Now	that	we’ve	used	the	integral	image	trick	to	optimize	the	feature	calculation,	we	need
to	minimize	the	number	of	features	to	use.

To	accomplish	this,	Viola	and	Jones	used	the	Adaboost	algorithm	to	select	a	subset	of	the
relevant	features	(also	known	as	weak	classifiers)	that	can	discriminate	between	positive
and	negative	samples,	as	shown	in	the	following	image:

The	Adaboost	algorithm,	in	its	simplest	form,	can	be	described	as	follows:

1.	 Start	with	a	uniform	weight	for	the	positive	and	negative	samples.	All	of	the	samples,
positive	or	negative,	are	equally	important.

2.	 Iterate	over	the	pool	of	features/weak	classifiers	and	select	the	one	that	will	have	the
lowest	weighted	classification	error.

Note
A	classification	error	is	how	many	faces	are	classified	as	non-faces	and	how	many
non-faces	are	classified	as	faces	using	this	feature.

3.	 Increase	the	weights	of	the	misclassified	samples	(negative	or	positive	samples)	to
emphasize	the	importance	of	classifying	these	samples	correctly	in	the	next	iteration.

4.	 Repeat	steps	2	and	3	until	convergence.	In	many	cases,	convergence	could	be	by
selecting	the	maximum	N	number	of	features.

Once	we	have	the	list	of	these	features	(weak	classifiers),	we	combine	them	linearly	to
form	a	stronger	classifier,	which	performs	better	than	any	individual	weak	classifier,	and
finally	decide	on	a	threshold	that	will	be	used	to	best	separate	between	the	faces	and	non-
faces.

With	a	new	image	to	classify,	we	compute	N	number	of	relevant	features	that	we	select
using	Adaboost	on	the	input	image	and	decide	if	it	is	a	face	or	non-face,	based	on	the
selected	threshold.





Cascading
One	last	trick,	which	gives	this	type	of	classifier	its	name,	to	speed	the	detection	on	any
given	image	is	based	on	the	fact	that	we	need	to	scan	the	input	image	with	windows	of
size,	let’s	say,	24x24,	similar	to	that	of	Viola	and	Jones’s	work.	However,	we	know	that	in
many	of	these	windows,	the	object	of	interest	doesn’t	exist,	so	the	algorithm	will	need	to
be	modified	in	order	to	reject	the	negative	windows	as	soon	as	possible	and	concentrate	on
probable	positive	windows.

To	do	so,	we	build	a	cascade	of	strong	classifiers	instead	of	training	one	strong	classifier.
So,	all	the	selected	features	are	grouped	into	stages	where	each	stage	is	used	to	determine
whether	a	given	window	is	definitely	a	negative	window	or	probably	a	positive	window
containing	the	object	of	interest.	Basically,	this	update	allows	us	to	get	rid	of	a	big	number
of	negative	windows	as	early	as	possible	using	a	smaller	set	of	the	relevant	features,	as
follows:

Once	the	training	process	is	done,	we	end	up	with	a	cascade	of	strong	classifiers	that	can
be	applied	with	a	fixed-size	sliding	window	on	any	given	image	and	detect	if	the	given
window	contains	the	object	of	interest	or	not:

In	the	next	section,	we	will	use	an	already	trained	cascade	classifier	that	can	detect	closed



palms	in	an	image,	and	we	will	use	the	presence	of	the	closed	palms	as	a	cue	to	save	the
current	image	frame.





Using	cascade	classifiers	to	detect	objects
In	this	section,	we	will	use	a	cascade	classifier	to	detect	closed	palms	in	your	phone’s
camera	feed,	but	first,	we	will	have	to	touch	on	how	to	access	your	phone’s	camera	using
OpenCV.



Accessing	your	phone’s	camera	using	OpenCV
We	will	first	create	a	new	application	with	one	blank	activity	named	AutoSelfie,
following	the	same	steps	that	we	used	in	the	previous	chapters.

For	the	application	to	access	the	phone’s	camera	and	be	able	to	save	pictures,	you	will
need	to	add	the	following	two	permissions	in	the	manifest	file:

<uses-permissionandroid:name="android.permission.CAMERA"/>

<uses-permissionandroid:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

You	can	find	the	rest	of	the	configurations	with	the	code	bundle	provided	with	this
chapter.

A	camera	preview
OpenCV	provides	a	Java	implementation	for	a	camera	preview	class	that	handles	the
interaction	between	the	device	camera	and	OpenCV	library.	The
org.opencv.android.JavaCameraView	class	enables	the	camera	to	process	and	draw
frames	on	the	device	screen.

Up	till	now,	using	JavaCameraView	to	preview	camera	frames	was	sufficient;	however,	we
will	need	to	define	our	own	camera	view	class	to	be	able	to	extend	the	functionality	of	the
JavaCameraView	class	later	on.	Now,	let’s	see	how	to	define	our	own	camera	view	class:

1.	 Create	a	new	Java	class	named	com.app4.autodselfie.CamView.
2.	 Make	the	new	class	extend	to	org.opencv.android.JavaCameraView.
3.	 Define	the	CamView	class	constructor	as	follows:

public	CamView(Context	context,	AttributeSet	attrs)	{

		super(context,	attrs);

}

This	is	it.	We	will	get	back	to	this	class	later	when	we	add	the	picture-taking	functionality
to	our	application.

UI	definitions

In	the	application	layout	file,	activity_auto_selfie.xml,	we	define	the	main	view	to	be
our	CamView	class	(as	it	is	a	subclass	of	the	android.view.SurfaceView	class):

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent">

<com.app4.autoselfie.CamView

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:id="@+id/auto_selfie_activity_surface_view"/>

</LinearLayout>



Previewing	the	camera	frames

Back	to	the	AutoSelfie	activity,	we	will	follow	these	steps	to	start	receiving	frames	from
the	device’s	camera:

1.	 Change	the	activity	class	to	implement	the	CvCameraViewListener2	interface,	which
will	turn	the	activity	class	to	a	listener	for	three	life	events	of	our	CamView	class,
camera	view	start,	camera	view	stop,	and	camera	frame	received:

public	class	AutoSelfie	extends	Activity	implements	

CvCameraViewListener2

2.	 We	declare	two	empty	Mat	objects—one	to	hold	the	RGB	version	of	the	current
camera	frame	and	the	other	to	hold	the	grayscale	version:

private	Mat	mRgba;

private	Mat	mGray;

3.	 We	implement	the	three	missing	event	handlers	of	CvCameraViewListener2.	Once
the	camera	view	has	been	started,	we	initialize	the	two	Mat	objects;	when	the	camera
view	is	stopped,	we	release	them,	and	when	we	start	receiving	camera	frames,	we
will	return	the	RGB	version	of	the	current	frame	to	be	drawn	on	the	screen:

public	void	onCameraViewStarted(int	width,	int	height)	{

		mGray	=	new	Mat();

		mRgba	=	new	Mat();

}

public	void	onCameraViewStopped()	{

		mGray.release();

		mRgba.release();

}

public	Mat	onCameraFrame(CvCameraViewFrame	inputFrame)	{

		mRgba=inputFrame.rgba();

		return	mRgba;

}

4.	 Update	the	onCreate()	method	in	order	to	find	the	CamView	object	that	we	defined	in
the	application	layout	file,	set	the	camera	to	connect	to	(frontal	or	rear)—in	our	case,
we	will	connect	to	the	frontal	camera—and	finally,	register	our	activity	to	be	the
listener	to	the	CamView	object	life	events:

mOpenCvCameraView	=	(CamView)	

findViewById(R.id.auto_selfie_activity_surface_view);

mOpenCvCameraView.setCameraIndex(1);

mOpenCvCameraView.setCvCameraViewListener(this);

5.	 Finally,	after	loading	the	OpenCV	library	successfully,	we	can	enable	our	CamView
object	to	connect	to	the	device	camera;	only	then	onCameraViewStarted()	will	be
called	and	the	CamView	object	becomes	live:

private	BaseLoaderCallback		mLoaderCallback	=	new	

BaseLoaderCallback(this)	{

		@Override



		public	void	onManagerConnected(int	status)	{

				switch	(status)	{

						case	LoaderCallbackInterface.SUCCESS:

						{

								Log.i(TAG,	"OpenCV	loaded	successfully");

								mOpenCvCameraView.enableView();

						}	break;

						default:

						{

								super.onManagerConnected(status);

						}	break;

				}

		}

};

Note
You	will	notice	that	the	frames	drawn	are	flipped	when	you	hold	the	device	in	an	upright
position;	don’t	worry,	we	will	deal	with	this	issue	later.



Detecting	closed	palms	in	the	camera	frames
The	next	step	towards	an	automatic	selfie	application	is	detecting	a	cue	to	capture	the
current	camera	frame.	I	found	that	a	closed	palm	is	a	good	enough	cue,	and	you	can
consider	other	cues	such	as	smiling	faces	and	so	on.

As	we’ve	mentioned	in	the	Cascade	classifiers	section,	our	detector	will	be	a	cascade
classifier	using	Haar-like	features.

Note
The	trained	stages	and	selected	features	are	saved	in	an	XML	file.	You	can	download	the
file	directly	from
https://github.com/Aravindlivewire/Opencv/blob/master/haarcascade/aGest.xml,	or	you
can	find	it	in	the	project	folder	provided	with	this	chapter.

Using	the	Java-based	cascade	classifier
Once	you	have	the	trained	classifier	detecting	the	object	of	your	choice—in	our	case,	a
closed	palm—OpenCV	provides,	out	of	the	box,	a	multiscale	sliding	window	detector	that
will	run	your	trained	classifier	in	a	sliding	window	fashion,	and	on	multiple	scales	of	the
input	image,	return	the	bounding	boxes	around	the	detected	object	at	different	scales.

Note
The	multiple	scales	are	constructed	using	the	idea	of	the	image	pyramid	that	we
encountered	in	Chapter	5,	App	3	-	Panoramic	Viewer.

Using	the	org.opencv.objdetect.CascadeClassifier	class	as	the	out-of-the-box	sliding
window	detector	is	very	easy.	We	first	need	to	copy	the	trained	classifier	XML	file	to	the
application	raw	resources	folder,	\res\raw\haarhand.xml.

Next,	we	declare	and	initialize	the	org.opencv.objdetect.CascadeClassifier	object	by
changing	the	BaseLoaderCallback	implementation	as	follows:

private	File	cascadeFile;

private	CascadeClassifier	cascadeClassifier;

private	BaseLoaderCallback	mLoaderCallback	=	new	BaseLoaderCallback(this)	{

		@Override

		public	void	onManagerConnected(int	status)	{

				switch	(status)	{

						case	LoaderCallbackInterface.SUCCESS:

						{

								Log.i(TAG,	"OpenCV	loaded	successfully");

								try	{

										//	load	cascade	file	from	application	resources

										InputStream	is	=	getResources().openRawResource(R.raw.haarhand);

										File	cascadeDir	=	getDir("cascade",	Context.MODE_PRIVATE);

										cascadeFile	=	new	File(cascadeDir,	"haarhand.xml");

										FileOutputStream	os	=	new	FileOutputStream(cascadeFile);

										byte[]	buffer	=	new	byte[4096];

										int	bytesRead;

https://github.com/Aravindlivewire/Opencv/blob/master/haarcascade/aGest.xml


										while	((bytesRead	=	is.read(buffer))	!=	-1)	{

												os.write(buffer,	0,	bytesRead);

										}

										is.close();os.close();

										//Initialize	the	Cascade	Classifier	object	using	the	

										//	trained	cascade	file

										cascadeClassifier	=	new	

CascadeClassifier(cascadeFile.getAbsolutePath());

										if	(cascadeClassifier.empty())	{

												Log.e(TAG,	"Failed	to	load	cascade	classifier");

												cascadeClassifier	=	null;

										}	else

												Log.i(TAG,	"Loaded	cascade	classifier	from	"	+	

cascadeFile.getAbsolutePath());

										cascadeDir.delete();

								}	catch	(IOException	e)	{

										e.printStackTrace();

										Log.e(TAG,	"Failed	to	load	cascade.	Exception	thrown:	"	+	e);

								}

								mOpenCvCameraView.enableView();

						}	break;

						default:

						{

								super.onManagerConnected(status);

						}	

						break;

				}

		}

};

Now,	we	are	ready	to	process	every	camera	frame	to	detect	the	closed	palms	and	take	a
selfie	automatically.

The	algorithm	that	we	will	use	can	be	summarized	as	follows:

1.	 Calculate	the	minimum	size	(width	and	height)	of	the	object	that	we	are	looking	for.
In	our	case,	the	minimum	size	will	be	20	percent	of	the	frame	size.	Of	course,	you
can	change	the	minimum	size	according	to	your	needs,	but	be	aware	that	the	smaller
the	object	we	are	looking	for,	the	slower	the	detection	algorithm	will	run.

2.	 Run	the	sliding	window	detector	that	we	initialized	on	the	current	frame	to	look	for
the	object	of	interest	with	the	minimum	size	specified	in	step	1.

3.	 Ignore	false	positive	detections.	False	positive	detections	occur	when	the	sliding
window	detector	returns	a	bounding	box	that	doesn’t	actually	contain	the	object	of
interest.	To	minimize	the	false	positives	and	to	stabilize	the	detection	we	do	the
following:

First,	we	quantize	the	bounding	boxes	for	every	100	pixels.	In	other	words,	we
divide	the	camera	frame	into	100x100	pixels	spatial	bucket,	and	every	bounding
box	is	placed	in	the	corresponding	spatial	bucket	depending	on	its	position.
Second,	after	N	frames,	we	check	to	see	if	there	is	a	bucket	that	contains	N
bounding	boxes.	This	means	that	the	detection	was	stable	for	N	consecutive
frames,	hence	the	probability	that	it	is	a	false	positive	is	very	low.



4.	 Once	we	have	a	stable	true	positive	detection	(an	actual	closed	palm),	we	save	the
current	camera	frame.

To	start	implementing	this	algorithm,	we	first	need	to	change	our	CamView	class	to
implement	android.hardware.Camera.PictureCallback	in	order	to	provide	an
implementation	to	the	onPictureTaken()	callback	method	to	save	a	given	camera	frame.

The	new	CamView	class	would	look	as	follows:

public	class	CamView	extends	JavaCameraView	implements	PictureCallback	{

		private	static	final	String	TAG	=	"AutoSelfie::camView";

		private	String	mPictureFileName;

		public	CamView(Context	context,	AttributeSet	attrs)	{

				super(context,	attrs);

		}

		@Override



		public	void	onPictureTaken(byte[]	data,	Camera	camera)	{

				Log.i(TAG,	"Saving	a	bitmap	to	file");

				//	The	camera	preview	was	automatically	stopped.	Start	it

				//	again.

				mCamera.startPreview();

				mCamera.setPreviewCallback(this);

				//	Write	the	image	in	a	file	(in	jpeg	format)

				try	{

						FileOutputStream	fos	=	new	FileOutputStream(mPictureFileName);

						fos.write(data);

						fos.close();

				}	catch	(java.io.IOException	e)	{

						Log.e("PictureDemo",	"Exception	in	photoCallback",	e);

				}

		}

		public	void	takePicture(final	String	fileName)	{

				Log.i(TAG,	"Taking	picture");

				this.mPictureFileName	=	fileName;

				//	Postview	and	jpeg	are	sent	in	the	same	buffers	if	the	

				//queue	is	not	empty	when	performing	a	capture.

				//	Clear	up	buffers	to	avoid	mCamera.takePicture	to	be	stuck	

				//because	of	a	memory	issue

				mCamera.setPreviewCallback(null);

				//	PictureCallback	is	implemented	by	the	current	class

				mCamera.takePicture(null,	null,	this);

		}

}

Once	we	have	the	functionality	of	saving	a	camera	frame	ready,	we	update	the	AutoSelfie
activity	class	by	changing	the	implementation	of	onCameraFrame()	in	order	to	detect
closed	palms:

public	Mat	onCameraFrame(CvCameraViewFrame	inputFrame)	{

		//Flip	around	the	Y	axis

		Core.flip(inputFrame.rgba(),	mRgba,	1);

		Core.flip(inputFrame.gray(),mGray,1);

		if	(mAbsoluteFaceSize	==	0)	{

				int	height	=	mGray.rows();

				if	(Math.round(height	*	mRelativeFaceSize)	>	0)	{

						mAbsoluteFaceSize	=	Math.round(height	*	mRelativeFaceSize);

				}

		}

		MatOfRect	closedHands	=	new	MatOfRect();

		if	(cascadeClassifier	!=	null)

				cascadeClassifier.detectMultiScale(mGray,	closedHands,	1.1,	2,	2,new	

Size(mAbsoluteFaceSize,	mAbsoluteFaceSize),	new	Size());

		Rect[]	facesArray	=	closedHands.toArray();

		for	(int	i	=	0;	i	<	facesArray.length;	i++)

		{

				Core.rectangle(mRgba,	facesArray[i].tl(),	facesArray[i].br(),	

HAND_RECT_COLOR,	3);



				Point	quatnizedTL=new	Point(((int)(facesArray[i].tl().x/100))*100,

((int)(facesArray[i].tl().y/100))*100);

				

				Point	quatnizedBR=new	Point(((int)(facesArray[i].br().x/100))*100,

((int)(facesArray[i].br().y/100))*100);

				

				int	bucktID=quatnizedTL.hashCode()+quatnizedBR.hashCode()*2;

				if(rectBuckts.containsKey(bucktID))

				{

						rectBuckts.put(bucktID,	rectBuckts.get(bucktID)+1);

						rectCue.put(bucktID,	new	Rect(quatnizedTL,quatnizedBR));

				}

				else

				{

						rectBuckts.put(bucktID,	1);

				}

		}

		int	maxDetections=0;

		int	maxDetectionsKey=0;

		for(Entry<Integer,Integer>	e	:	rectBuckts.entrySet())

		{

				if(e.getValue()>maxDetections)

				{

						maxDetections=e.getValue();

						maxDetectionsKey=e.getKey();

				}

		}

		if(maxDetections>5)

		{

				Core.rectangle(mRgba,	rectCue.get(maxDetectionsKey).tl(),	

rectCue.get(maxDetectionsKey).br(),	CUE_RECT_COLOR,	3);

				SimpleDateFormat	sdf	=	new	SimpleDateFormat("yyyy-MM-dd_HH-mm-ss");

				String	currentDateandTime	=	sdf.format(new	Date());

				String	fileName	=	Environment.getExternalStorageDirectory().getPath()	+	

"/sample_picture_"	+	currentDateandTime	+	".jpg";

				

				mOpenCvCameraView.takePicture(fileName);

				Message	msg	=	handler.obtainMessage();

				msg.arg1	=	1;

				Bundle	b=new	Bundle();

				b.putString("msg",	fileName	+	"	saved");

				msg.setData(b);

				handler.sendMessage(msg);

				rectBuckts.clear();

		}

		return	mRgba;

}

Let’s	go	through	the	code	step	by	step:

1.	 We	flip	the	input	frame	on	the	y	axis	to	get	rid	of	the	mirroring	effect:

				//Flip	around	the	Y	axis

				Core.flip(inputFrame.rgba(),	mRgba,	1);

				Core.flip(inputFrame.gray(),mGray,1);



2.	 Calculate	the	minimum	object	size	depending	on	the	height	of	the	input	frame:

if	(mAbsoluteFaceSize	==	0)	{

int	height	=	mGray.rows();

if	(Math.round(height	*	mRelativeFaceSize)	>	0)	{

		mAbsoluteFaceSize	=	Math.round(height	*	mRelativeFaceSize);}}

3.	 We	call	the	detectMultiScale()	method	on	the	cascade	classifier	object	to	build	an
image	pyramid	and	run	a	sliding	window	detector	on	every	scale:

MatOfRect	closedHands	=	new	MatOfRect();

if	(cascadeClassifier	!=	null)

cascadeClassifier.detectMultiScale(mGray,	closedHands,	1.1,	2,	

Objdetect.CASCADE_SCALE_IMAGE,new	Size(mAbsoluteFaceSize,	

mAbsoluteFaceSize),	new	Size());

We	call	detectMultiScale()	with	the	following	parameters:

The	grayscale	version	of	the	camera	frame
An	empty	MatOfRect	object	to	store	the	detected	bounding	boxes
A	scale	factor	to	determine	how	much	the	input	frame	is	reduced	at	each	scale
(1.1	means	reducing	the	current	scale	by	10%	to	construct	the	next	scale	in	the
pyramid;	having	high	values	means	faster	computation	at	the	cost	of	possibly
missing	positive	detections	if	the	scaling	misses	the	closed	palms	at	certain
sizes)
A	minimum	neighborhood	size	to	specify	how	many	neighbors	each	detection
should	have	in	order	to	be	retained;	otherwise,	it	will	be	discarded—this
parameter	is	used	to	reduce	the	false	positives	because	true	positives	tend	to
have	many	neighbors	detected	in	the	same	area	due	to	the	use	of	different	scales
—a	flagCASCADE_SCALE_IMAGE	to	scale	the	image	to	build	the	image	pyramid
(because	there	is	another	approach	to	detect	objects	at	different	scales	by	scaling
the	features	instead),	so	for	performance	gains	and	simplicity,	we	will	stick	with
the	image	pyramid	approach	that	we	touched	on	in	Chapter	5,	App	3	-
Panoramic	Viewer
The	minimum	and	maximum	size	at	which	we	can	find	the	object	of	interest

4.	 Once	we	have	the	list	of	detections,	we	want	to	group	them	into	spatial	buckets	of
size	100	x	100	pixels	to	stabilize	the	detections	through	different	frames	and	to	get
rid	of	the	false	positives:

Rect[]	facesArray	=	closedHands.toArray();

for	(int	i	=	0;	i	<	facesArray.length;	i++){

		//draw	the	unstable	detection	using	the	color	red

		Core.rectangle(mRgba,	facesArray[i].tl(),	facesArray[i].br(),	

HAND_RECT_COLOR,	3);

		//group	the	detections	by	the	top-left	corner

		Point	quatnizedTL=new	Point(((int)(facesArray[i].tl().x/100))*100,

((int)(facesArray[i].tl().y/100))*100);

		//group	the	detections	by	the	bottom-right	corner

		Point	quatnizedBR=new	Point(((int)(facesArray[i].br().x/100))*100,

((int)(facesArray[i].br().y/100))*100);

		//get	the	spatial	bucket	ID	using	the	grouped	corners	hashcodes



		int	bucktID=	quatnizedTL.hashCode()+quatnizedBR.hashCode()*2;

		//add	or	increase	the	number	of	grouped	detections	per	bucket

		if(rectBuckts.containsKey(bucktID)){

				rectBuckts.put(bucktID,	rectBuckts.get(bucktID)+1);

				rectCue.put(bucktID,	new	Rect(quatnizedTL,quatnizedBR));

		}

		else{

				rectBuckts.put(bucktID,1);

		}

}

5.	 We	threshold	the	number	of	frames	that	the	object	is	detected	in	to	indicate	a	stable
detection.	If	the	number	of	frames	is	greater	than	the	threshold,	we	save	the	current
frame:

int	maxDetections=0;

int	maxDetectionsKey=0;

for(Entry<Integer,Integer>	e	:	rectBuckts.entrySet()){

		if(e.getValue()>maxDetections){

				maxDetections=e.getValue();

				maxDetectionsKey=e.getKey();

				}

		}

		//Threshold	for	a	stable	detection

		if(maxDetections>5){

				//Draw	the	stable	detection	in	green

				Core.rectangle(mRgba,	rectCue.get(maxDetectionsKey).tl(),	

rectCue.get(maxDetectionsKey).br(),	CUE_RECT_COLOR,	3);

				//build	the	file	name

				SimpleDateFormat	sdf	=	new	SimpleDateFormat("yyyy-MM-dd_HH-mm-ss");

				String	currentDateandTime	=	sdf.format(new	Date());

				String	fileName	=	

Environment.getExternalStorageDirectory().getPath()	+"/sample_picture_"	

+	currentDateandTime	+	".jpg";

				//take	the	picture

				mOpenCvCameraView.takePicture(fileName);

				//show	a	notification	that	the	picture	is	saved

				Message	msg	=	handler.obtainMessage();msg.arg1	=	1;

				Bundle	b=new	Bundle();b.putString("msg",	fileName	+	"	saved");

				msg.setData(b);handler.sendMessage(msg);

				//clear	the	spatial	buckets	and	start	over

				rectBuckts.clear();

		}

		return	mRgba;

}





Summary
In	this	chapter,	we	built	a	new	application	to	take	automatic	selfies	based	on	the	famous
cascade	classifier.	We’ve	seen	what	a	cascade	classifier	is	built	of	starting	from	the	type	of
features	used	to	the	adaptive	boosting	learning	algorithm	and	cascading.	You	also	learned
how	to	initialize	and	use	a	multiscale	sliding	window-based	detector	with	an	already
trained	classifier	to	detect	closed	palm	hand	gestures	and	use	these	detections	as	cues	to
capture	frames	from	the	device’s	camera.
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