
www.allitebooks.com

http://www.allitebooks.org

PHP Web 2.0 Mashup Projects

Create practical mashups in PHP, grabbing and
mixing data from Google Maps, Flickr, Amazon,
YouTube, MSN Search, Yahoo!, Last.fm, and
411Sync.com

Shu-Wai Chow

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

PHP Web 2.0 Mashup Projects
Create practical mashups in PHP, grabbing and mixing data from
Google Maps, Flickr, Amazon, YouTube, MSN Search, Yahoo!,
Last.fm, and 411Sync.com

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September, 2007

Production Reference: 1070907

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847190-88-8

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Shu-Wai Chow

Reviewer

Stoyan Stefanov

Senior Acquisition Editor

Douglas Paterson

Development Editor

Nikhil Bangera

Technical Editors

Adil Rizwan

Ajay. S

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Abhijeet Deobhakta

Indexer

Bhushan Pangaonkar

Proofreader

Cathy Cumberlidge

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Shu-Wai Chow has worked in computer programming and information
technology for the past eight years. He started his career in Sacramento, California,
spending four years as the webmaster for Educaid, a First Union Company, and
another four years at Vision Service Plan as an application developer. Through the
years, he has become proficient in Java, JSP, PHP, ColdFusion, ASP, LDAP, XSLT,
and XSL-FO. Shu has also been the volunteer webmaster and a feline adoption
counselor for several animal welfare organizations in Sacramento.

He is currently a software engineer at Antenna Software in Jersey City, New Jersey,
and is finishing his studies in Economics at Rutgers, the State University of
New Jersey.

Born in the British Crown Colony of Hong Kong, Shu did most of his alleged
growing up in Palo Alto, California. He lives on the Jersey Shore with seven very
demanding cats, four birds that are too smart for their own good, a tail-less bearded
dragon, a betta who needs her tank cleaned, a dermestid beetle colony, a cherished
Fender Stratocaster, and a beloved, saint-like fiancé.

I received a lot of help from many different people and companies
on this book.

First and foremost, thank you to the people at Packt Publishing,
especially Doug Paterson, Nikhil Bangera, Adil Rizwan, and
Abhijeet Deobhakta, for a professional working experience, giving
me this opportunity, and once again, for their faith in me (which I
still don’t completely understand).

Thank you, Stoyan Stefanov, for your great review comments. Your
insight and suggestions really improved this book’s content and
personally pushed me further.

www.allitebooks.com

http://www.allitebooks.org

Each chapter deserves some special attention.

Chapter 2: Thank you to the folks at the UPC Internet Database and
Amazon, Inc. for their permission. Thanks especially to everyone at
UPC Internet Database for answering my questions.

Chapter 3: Thank you to Yahoo! and Microsoft for their permission,
and the prompt service and ��� assistance from their legal departments.
Special thanks are given to Data Access Corporation and Vincent
Oorsprong for their helpful and educational SOAP services. Data
Access Worldwide (www.dataccess.com) delivers advanced
products and services to help customers build great applications and
get more value from their data.

Chapter 4: Thanks to the people at YouTube and Last.fm for their
permission. Special thanks go to Last.fm for their interest in my
project.

Chapter 5: Thank you to 411Sync and the California Highway Patrol
for their assistance. A big thank you goes to ������������������� Manish Lachwani of
411Sync, who is probably the most patient person in the world.

Chapter 6: Thank you to Google, Flickr, and Jo Walsh for permission
to be included. A big thanks to Jo Walsh for her help and insight.
Special thanks to the people at Google, whose enthusiasm made me
think that this book wasn’t such a nutty idea.

I neglected to thank Ed Hansen and Keith Easterbrook in the last
book. They were the ones that forced us to use WebSphere Application
Developer. Without WSAD, I never would have used Eclipse, and I
never would have used PHPEclipse, which means that I never would
have written the first book, and without the first book, there would
not be this second book. So, thank you, gentlemen, and I apologize
for the oversight.

Thank you to Kaya’s Kitchen of Belmar, New Jersey for making
the best vegetarian cuisine in the whole wide world. If you ever
find yourself on the Jersey Shore, you absolutely must visit this
restaurant.

Finally, all hail the Palo Alto Duck Pond, Hobee’s on El Camino and
Arastradero, Dodger Stadium, and the Davis Greenbelt.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Stoyan Stefanov is a Yahoo! web developer, Zend Certified Engineer, book author
and contributor to the international PHP community. His personal blog is at
http://www.phpied.com.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Once upon a time, a diviner told me that I would meet an angel on
Earth in the month of February. This book is dedicated to that

February angel and love of my life, Anneliese Strunk.
You have brought more happiness, inspiration,

and joy to my life than I could ever have imagined.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introduction to Mashups	 7

Web 2.0 and Mashups	 9
Importance of Data	 9
User Communities	 10

How We Will Create Mashups	 11
More Mashups	 12

Chapter 2: Buy it on Amazon	 13
 Project Overview	 13
XML-RPC	 14

XML-RPC Structure	 14
XML-RPC Request	 15
Arrays	 18
Struct	 19

XML-RPC Response	 20
Working with XML-RPC in PHP	 21

Making an XML-RPC Request	 22
Serializing Data with XML-RPC Encode Request	 22
Calling XML-RPC Using Sockets	 29

Processing an XML-RPC Response	 31
Creating an XML-RPC Parser Class	 32

Testing Our XML-RPC Parser Class	 33
Using PEAR to Handle XML-RPC	 35

REST	 38
Working with REST in PHP	 39

Making a REST Request	 40
A GET and POST Refresher	 40
Using Sockets to Initiate a REST Request	 41
Creating GET and POST Request Functions	 42
Making a REST Parser Class	 43

Table of Contents

[ii]

Testing Our REST Parser Class	 45
Processing a REST Response	 47

Basic Walkthrough with PHP and SAX	 48
Creating a SAX Parser Class	 54

Internet UPC Database API	 58
Amazon API	 61

A Tour of ECS	 62
Anatomy of an ECS REST Request	 63

Location of Service	 63
Mashing Up	 65

Product Lookups	 66
Handling Amazon's XML Responses	 70

Summary	 79
Chapter 3: Make Your Own Search Engine	 81

 Project Overview	 81
SOAP	 82

Web Services Descriptor Language (WSDL) With XML Schema Data (XSD)	
83

Basic WSDL Structure	 84
definitions Element	 84
types Element	 85
message Element	 91
portType Element	 93
binding Element	 95
service Element	 96

The SOAP Message	 97
Envelope	 97
Header	 98
Body	 98
Fault	 100

PHP's SoapClient	 101
Creating Parameters	 102
Instantiate the SoapClient	 103

Instantiating in WSDL Mode	 104
Instantiating in Non-WSDL Mode	 104

Making the Call and Using SoapClient Methods	 105
Handling the SOAP Response	 108

Microsoft Live Search Web Service	 112
Using Search	 112

Yahoo! Search Web Service	 116
Using Web Search	 116

Mashing Up	 119
Summary	 123

Table of Contents

[iii]

Chapter 4: Your Own Video Jukebox	 125
 Project Overview	 125
XSPF	 126
RSS	 129
YouTube Overview	 136

YouTube Developer API	 138
Last.fm Overview	 140

Audioscrobbler Web Services	 141
Parsing With PEAR	 142

Package Installation and Usage	 143
File_XSPF	 144
Services_YouTube	 147
XML_RSS	 149

Mashing Up	 153
Mashup Architecture	 153
Main Page	 154
Navigation Page	 154
Content Page	 156
Using the Mashup	 158

Summary	 161
Chapter 5: Traffic Incidents via SMS	 163

 Project Overview	 163
Screen Scraping the PHP Way	 164

Parsing with DOM Functions	 167
Basic Element and Attribute Parsing	 168
Testing the Schema	 171
More About PHP's Implementation of the DOM	 172

411Sync.com API	 179
Creating Your Mobile Search Keyword	 180

Name Your Keyword	 181
Format the Users will Use when They Use Your Search	 182
HTTP Location of the XML Data	 182

California Highway Patrol Incident Page	 183
Mashing Up	 190

The Incident Class	 191
The DOM Parser Class	 191
The CHP DOM Parser Class	 193
Creating the Feed Page	 199
Testing and Deploying	 200

Summary	 201

Table of Contents

[iv]

Chapter 6: London Tube Photos	 203
 Project Overview	 203
Preliminary Planning	 204
Finding Tube Information	 205
Integrating Google Maps and Flickr Services	 206
Application Sequence	 207
Resource Description Framework (RDF)	 207
SPARQL	 210

Analyzing the Query Subject	 210
Anatomy of a SPARQL Query	 211
Writing SPARQL WHERE Clauses	 213

Basic Principles	 213
A Simple Query	 214
Querying for Types	 217
Ordering, Limiting, and Offsetting	 219
UNION and DISTINCT	 220

More SPARQL Features	 221
RDF API for PHP (RAP)	 221
XMLHttpRequest Object	 224

XMLHttpRequest Object Overview	 226
Using the Object	 226

Creating the Object	 226
Making the HTTP Request	 227
Creating and Using the Callback	 228

JavaScript Object Notation (JSON)	 231
JavaScript Objects Review	 231
JSON Structure	 232
Accessing JSON Properties	 233
Serializing the JSON Response	 234

Google Maps API	 235
Creating a Map	 235
Geocoding	 236
Markers	 239
Events	 240
InfoWindow Box	 240

Flickr Services API	 243
Executing a Search	 244
Interpreting Service Results	 245
Retrieving a Photo or a Photo's Page	 247

Mashing Up	 249
Building and Populating the Database	 249

Examining the File	 249
Creating Our Database Schema	 250

Table of Contents

[�]

Building SPARQL Queries	 251
Stations Query	 252
Lines Query	 253
Lines to Stations Query	 253
Database Population Script	 254

The TubeSource Database Interface Class	 261
The Main User Interface	 262
Using Flickr Services with AJAX	 267

Creating an XMLHttpRequest Proxy	 267
Modifying the Main JavaScript	 269
Making the XMLHttpRequest	 269
Race Conditions	 271
Parsing the AJAX Response	 273

Summary	 278
Index	 279

Preface
A mashup is a web page or application that combines data from two or more
external online sources into an integrated experience. This book is your entryway to
the world of mashups and Web 2.0. You will create PHP projects that grab data from
one place on the Web, mix it up with relevant information from another place on the
Web and present it in a single application. All the mashup applications used in the
book are built upon free tools and are thoroughly explained. You will find all the
source code used to build the mashups in the code download section on our website.

This book is a practical tutorial with five detailed and carefully explained case
studies to build new and effective mashup applications.

What This Book Covers
You will learn how to write PHP code to remotely consume services like Google
Maps, Flickr, Amazon, YouTube, MSN Search, Yahoo!, Last.fm, and the Internet UPC
Database, not to mention the California Highway Patrol Traffic data! You will also
learn about the technologies, data formats, and protocols needed to use these web
services and APIs, and some of the freely-available PHP tools for working with them.

You will understand how these technologies work with each other and see how
to use this information, in combination with your imagination, to build your own
cutting-edge websites.

Chapter 1 provides an overview of mashups: what a mashup is, and why you would
want one.

In Chapter 2 we create a basic mashup, and go shopping. We will simply look up
products on Amazon.com based on the Universal Product Code (UPC). To do this,
we cover two basic web services to get our feet wet — XML-RPC and REST. The
Internet UPC database is an XML-RPC-based service, while Amazon uses REST.

Preface

[�]

We will create code to call XML-RPC and REST services. Using PHP's SAX function,
we create an extensible object-oriented parser for XML. The mashup covered in this
chapter integrates information taken from Amazon's E-commerce Service (ECS) with
the Internet UPC database.

In Chapter 3, we create a custom search engine using the technology of MSN, and
Yahoo! The chapter starts with an introduction to SOAP, the most complex of the
web service protocols. SOAP relies heavily on other standards like WSDL and XSD,
which are also covered in readable detail. We take a look at a WSDL document and
learn how to figure out what web services are available from it, and what types of
data are passed. Using PHP 5's SoapClient extension, we then interact with SOAP
servers to grab data. We then finally create our mashup, which gathers web search
results sourced from Microsoft Live and Yahoo!

For the mashup in Chapter 4, we use the API from the video repository site YouTube,
and the XML feeds from social music site Last.fm. We will take a look at three
different XML-based file formats from those two sites: XSPF for song playlists, RSS
for publishing frequently updated information, and YouTube's custom XML format.
We will create a mashup that takes the songs in two Last.fm RSS feeds and
queries YouTube to retrieve videos for those songs. Rather than creating our own
XML-based parsers to parse the three formats, we have used parsers from PEAR,
one for each of the three formats. Using these PEAR packages, we create an
object-oriented abstraction of these formats, which can be consumed by our
mashup application.

In Chapter 5, we screen-scrape from the California Highway Patrol website. The
CHP maintains a website of traffic incidents. This site auto-refreshes every minute,
ensuring the user gets live data about accidents throughout the state of California.
This is very valuable if you are in front of a computer. If you are out and about
running errands, it would be fairly useless. However, our mashup will use the web
service from 411Sync.com to accept SMS messages from mobile users to deliver these
traffic incidents to users.

We've thrown almost everything into Chapter 6! In this chapter, we use RDF
documents, SPARQL, RAP, Google Maps, Flickr, AJAX, and JSON. We create a
geographically-centric way to present pictures from Flickr on Google Maps. We see
how to read RDF documents and how to extract data from them using SPARQL and
RAP for RDF. This gets us the latitude and longitude of London tube stations. We
display them on a Google Map, and retrieve pictures of a selected station from Flickr.
Our application needs to communicate with the API servers for which we use
AJAX and JSON, which is emerging as a major data format. The biggest pitfall in
this AJAX application is race conditions, and we will learn various techniques to
overcome these.

Preface

[�]

What You Need for This Book
To follow along with the projects and use the example code in this book, you will
need a web server running PHP 5.0 or higher and Apache 1.3.

All of the examples assume you are running the web server on your local work
station, and all development is done locally.

Additionally, two projects have special requirements. In Chapter 5, you will need
access to a web server that can be reached externally from the Internet. In Chapter
6, you will need a MySQL server. Again, we assume you are running the MySQL
server locally and it is properly configured.

To quickly install PHP, Apache, and MySQL, check out XAMPP
(http://www.apachefriends.org/en/xampp.html). XAMPP is a one-step
installer for PHP, Apache, and MySQL, among other things.

XAMPP is available for Windows, Linux, and Mac OS X. However, many standard
Linux distributions already have PHP, Apache, and MySQL installed. Check your
distribution's documentation on how to activate them. Mac OS X already has Apache
and PHP installed by default. You can turn them on by enabling Web Sharing in
your Sharing Preferences.

MySQL can be installed as a binary downloaded from MySQL.com
(http://dev.mysql.com/downloads/mysql/4.1.html).

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code will be set as follows:

<?php
 $aDom = new DOMDocument();
 try {
 $aDom->loadHTMLFile('examplehtml.html');
 } catch (Exception $ex) {
 $aDom = false;	
 }

www.allitebooks.com

http://www.allitebooks.org

Preface

[�]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

<param>
 <value><string>Hello, world!</string></value>
</param>

Any command-line input and output is written as follows:

Buttercup:~ root# pear list

Buttercup:~ root# is the shell prompt on the author's machine.

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"In the search box, enter in your keyword and the region code then press Search."

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[�]

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction to Mashups
Mashups, more specifically called web application hybrids by Wikipedia, have been
an exciting trend in web applications in recent years. Web mashups are exactly what
they sound like—web applications that merge data from one or more sources and
present them in new ways. Very often, the data owners encourage and facilitate
third parties to use the data. In many cases, this facilitation is made possible by
the data owners providing application programming interfaces (API) to their data.
These APIs follow standard web service protocols and can be implemented quickly
and easily in a variety of programming languages, including PHP. New, innovative
mashups, made by individuals that combine data from traditionally unlikely
pairings are popping up every day.

One example is the Wii Seeker site. When the Nintendo Wii launched in November
2006, many knew there would be shortages. The object of the Wii Seeker site is to
help people find Wiis by combining expected initial shipment information to Target
stores and Google Maps. A marker on a Google Map represented a Target retail
store. If the user clicked on the marker they would see information about the store
such as the address. They would also see the number of Wiis the store was expected
to have on launch day. By representing numerical inventory data on a map, a user
could see Target stores near their location and plan their store visits on launch day to
maximize their chances of actually finding a Wii.

After the Nintendo Wii was launched, the site reinvented itself by adding auction
information from eBay and product information from Amazon. They also added
additional chain retail stores like Circuit City and Walmart. Instead of seeing
Nintendo Wii inventory information on each store, the site now allows visitors to
post notes for each other about the store's inventory.

Introduction to Mashups

[�]

Another mashup example is Astrolicio.us. This site queries data feeds from sites like
Digg.com, Google News, and Google Videos and presents it to the user on one page.
By combining data feeds, the site's creator has made a portal of current astronomy
news for visitors.

Chapter 1

[�]

On the homepage, the user can quickly scan items that may interest them. For news,
the user is given bullet points for each news item containing the headline and a
synopsis. For videos, the user is shown a thumbnail. If a user clicks on a link, they
are taken to the source of the article or video. This site is clean, simple, and full of
information. It is also quite easy to make using the APIs of the sources. It probably
did not take the site creator more than an afternoon to go from the start of coding
to launch.

Web 2.0 and Mashups
How, in just a few short years, have mashups suddenly sprung up everywhere? The
story leads back to just a few years ago. After the technology industry's financial
bubble collapsed in 2001, internet firms regrouped and redefined themselves. There
were business lessons to be learned, technologies to be re-evaluated, and people's
perceptions had changed. By the middle of the decade, many trends and differences
became clear. The term "Web 2.0" started to surface, to draw separation between new
sites and sites that gained popularity in the late Nineties. The term was vague and
seemed suspiciously gimmicky at first. However, the differences between old and
new were real. They were not just historical and chronological. Sites like Google,
YouTube, and Flickr demonstrated new approaches to building a web business.
These sites often had simple interfaces, fully embraced web services, and returned a
lot of control to the user. Many of these sites relied solely on their users for content.
In September 2005, technology publisher Tim O'Reilly wrote an article entitled
What Is Web 2.0 to succinctly declare the traits of Web 2.0 versus 1.0 sites. There were
two characteristics that were direct catalysts for the growth of mashups:

Importance of Data
User Communities

Importance of Data
The first characteristic is the importance of data. The question of who owned data
and what they choose to do with the data became a big issue. Why in the world
would companies invest millions of dollars to gather their data and their database
systems, but then freely give it away for others to use? The answer is by opening
their systems, mashup developers help increase the reach of the data owners.

O'Reilly used the example of MapQuest to illustrate this. MapQuest was the leader
in mapping in the mid to late nineties. However, their system was closed and did not
allow outside parties to do anything with their data. In the early Aughts, mapping
sites started to leverage this weakness. Yahoo! Maps, Microsoft Virtual Earth, and
Google Maps entered the market, and each one had APIs. Despite the huge

•

•

Introduction to Mashups

[10]

early market lead, MapQuest quickly lost to bigger players with open data. There
are many examples like this. Amazon opened up their data through the Amazon
Ecommerce Service (ECS). Many mashups have used this web service to create
their own store fronts. Amazon gets the sale and gives a percentage to mashup
developers. This has created many more channels for Amazon to sell their goods
besides www.amazon.com. Contrast this with a site like BarnesAndNoble.com which
does not open their data. The only channel that they can sell is through the main
website. Not only do they lose sales opportunities, but they lack the affiliate loyalty
that Amazon has.

In our earlier examples, Wii Seeker helps the Target by funneling buyers to stores.
Wii Seeker in turn, receives adverting revenue and affiliate commissions on their
site. Google Videos, Google News, and Digg.com get visitors when a user clicks on
a link from astrolicious.us. Astrolicious.us gets advertising revenue with very little
development time invested.

User Communities
The second characteristic is that user added data is more valuable than we once
thought. User product reviews on ecommerce sites are nothing new. Neither are
web forums. However, it is how sites are using this information, and who owns
the data, that is becoming important. Movie rental site Netflix has always allowed
users to rate movies they have watched. Based on these recommendations, Netflix
will suggest other movies you might like. Recently, they have added a new social
networking feature called "Friends", where you can see how your friends have rated
movies and what they are watching. One feature of Friends is compatibility ratings.
Comparing both you and your friends' recommendations, Netflix comes up with a
percentage of your shared movie tastes.

Other sites are completely dependent on user-added data. YouTube and Flickr
provide video and picture hosting, respectively, for free. Their widespread adoption,
though, is not simply from hosting. Before Flickr, there were many sites that hosted
images for free. That was nothing new. The difference, again, is what both sites do
with user-added data. Both sites provide social networking features. You can leave
your ratings and comments on a hosted item and you can subscribe to a person's
profile. Anytime that person uploads something, you will be notified of the new
content. Both sites also allow folksonomic tagging, which basically lets uploaders
describe the content with their own keywords. Visitors can use these keywords to
search when they are looking for content. Tagging has proven to be an incredible aid
for search algorithms.

Chapter 1

[11]

Thus, it is these two characteristics of new sites that have allowed small web
developers to appear much bigger. Backed with data from large internet presences,
mashup developers create usage channels that data owners could not have foreseen,
or been restricted by business rules.

How We Will Create Mashups
Technologically, the mashup phenomenon could not have happened without
website owners making a clean separation between the data that is used on their
sites, and the actual presentation of the data. This has always been a goal in
computer application development, and therefore, it is no surprise that website
and web application architecture have progressed towards this stage ever since the
World Wide Web was created. This separation is quickly turning the World Wide
Web into what is known as the semantic web—a philosophy where web content is
presented not only for humans to read, but also in a way that can be easily processed
by software and machines. We have moved from static pages to database-driven
sites, from presentational FONT tags to cascading style sheets. It is perhaps inevitable
that the web has become an environment that fosters mashup development.

Data sources of mashups are varied. Often, data owners provide mashup developers
access to their data through official application programming interfaces. As we are
talking about web applications, these APIs utilize web services, which come in a
variety of protocols. Really Simple Syndication (RSS), a family of formats to present
data, is another common data source that has helped spur the mashup adoption.
When official methods are unavailable, developers become really creative in getting
data. Screen scraping is a method that has always been around. Regardless of the
method, mashups also deal with a variety of data formats. While mashups can be
simple to create, a mashup developer must be flexible and well-rounded in the
knowledge of their tools.

Open-source software is particularly well-suited in this mashup environment. The
Apache and PHP combination makes for fast development. Being open source,
developers are constantly and quickly adding new features to keep up with the web
service world.

This book will take a look at how to use common data sources with PHP. Most
official APIs are based on the big three web service protocols—XML-RPC, REST, and
SOAP. We will of course look at these protocols. APIs and raw web service requests
by hand, of course, are not the only way to retrieve data. We will look at using
third-party libraries to interface with some popular sites. Feeds are also an important
data source which we will use. By giving you a broad overview of the tools
used in the mashup world, you should be able to start developing your own
mashups quickly.

Introduction to Mashups

[12]

More Mashups
For more examples and inspirations, check out these popular mashups:

Popurls (popurls.com)—Collects URLs from popular sites.
Housingmaps.com (www.housingmaps.com)—Plots housing listings from
Craigslist on to a map.
Keegy (us.keegy.com)—A site that aggregates news from different sources
and personalizes it for the reader.
Alkemis (local.alkemis.com)—Aggregates and maps all sorts of data, for
example, pictures and live web cams, in selected cities.
Gametripping.com (www.gametripping.com)—A collection of satellite and
Flickr photos of baseball stadiums.

•

•

•

•

•

Buy it on Amazon
 Project Overview

What Build an application that takes UPC symbols and
looks them up on Amazon.com.

Protocols Used XML-RPC, REST
Data Formats XML-RPC, XML

Tools Featured PHP's XML-RPC Functions and SAX Functions
APIs Used Internet UPC Database, Amazon Web Services

We are going to start off with a relatively simple project. Our project will accept
a Universal Product Code number from a user, look up the product information
associated with the UPC number from the Internet UPC Database, and allow the user
to buy the product from our site using Amazon.com. In other words, we are going
to create an online store based on UPC numbers. By using Amazon.com's inventory,
users can buy from Amazon.com, but they'll be able to do everything from our site
alone. While such a site may not make us the next ecommerce king, it will introduce
us to the two most basic web services—XML-RPC and REST. Each protocol will
require us to structure our request in a certain way.

XML-RPC will return an XML document formatted to the XML-RPC specifications.
REST responses are a lot more varied and in free form. They may be anything from
a plain text string to huge, complex XML documents. Although most web services
return a descriptive, well formed XML document, REST responses are not bound to
any standard or specification. We will create utilities to process both XML-RPC and
REST requests that we can use for the current and future mashups.

www.allitebooks.com

http://www.allitebooks.org

Buy it on Amazon

[14]

XML-RPC
As developers in today's world, we should be familiar with XML. On the surface, it is
a group of data that is packaged and organized neatly into opening and closing tags.
A deeper look tells us that this structure of XML makes it easy for machines to read
and process. Thus, while XML can be hard on human eyes, we know it is designed
for machine communication. However, without any sort of agreed structure of the
XML document by the machines, the advantages of XML are effectively eliminated.
This is where XML-RPC comes in.

RPC is an acronym for Remote Procedure Call; developed by David Winer of
UserLand software in 1996. Its purpose is to allow applications, regardless of how
different each program or the purpose of each program, to communicate with each
other across a network in a standardized manner.

In computer terms, a procedure call is that which gets executed when the operating
system communicates to the input devices about what you are doing: Which key did
you just hit on the keyboard? Where did you move the mouse? What did you just click on,
with the mouse?

XML-RPC carries this idea into the networking world (the "Remote" part of RPC) by
creating a standard for one program to get information from another program across
the network. Program A sends a remote procedure call to Program B. This call may
include parameters that Program B needs to retrieve the data.

For example, if the query is against a list of people's name: Do you want to retrieve
a list of only those whose first name is "Peter"? Do you want to narrow your search down
to a city? The requests, and all its parameters, are formatted in a generic way that
Program B understands. Regardless of the data type or size, Program B returns the
answer back in a generic way that Program A understands. Program A can then do
with the data whatever the user requested.

XML-RPC Structure
Two programs communicating across a network is obviously very different from
an operating system talking with a mouse. An operating system has the advantage
of super high speed internal buses and the ability to talk on a lower machine level.
A procedure call using XML-RPC must be program neutral and friendly to the
network transport protocol. It does not have the luxury of constantly polling the
other machine hundreds of times per second. Thus, XML-RPC communication must
accomplish its mission in the most efficient means possible in the lowest common
denominator. This is accomplished by dividing calls into strictly formed XML
requests and responses.

Chapter 2

[15]

The Official Specifications
We are going to take a casual tour of an XML request and response call.
For more formal details, you can read the official XML-RPC specifications
at http://www.xmlrpc.com/spec

XML-RPC Request
XML-RPC requests function as HTTP POST requests. Therefore, it must have a proper
HTTP POST header. The actual remote call and parameters, in XML format, follows
the header as the body of the HTTP request.

POST /RPC2 HTTP/1.0
User-Agent: PHP5 XML-RPC Client (Mac OS X)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>
 <methodName>examples.getStateName</methodName>
 <params>
 <param>
 <value><int>42</int></value>
 </param>
 </params>
</methodCall>

The first line in the header, POST and the Host line tell us that this XML-RPC call
is to a web service that sits at betty.userland.com/RPC2. The name of the call to
be requested, in this case, examples.getStateName, is the first useful information
in the message body. We pass an integer of 42 as the parameter to examples.
getStateName. Let's take a look at these elements one by one:

The root element in an XML-RPC call is methodCall. It has one required child
element, methodName, which specifies the name of the call to be requested. There can
only be one methodCall per request. If parameters are passed to the call, they are
encapsulated in the params element.

A procedure call can require an unlimited number of parameters. XML-RPC calls do
not have named parameters. In other words, you do not name your parameter before
assigning a value, for example:

// This is wrong.Parameters are not named.
<param name="myInt">
 <value><int>42</int></value>
</param>

Buy it on Amazon

[16]

Instead, for functions requiring more than one parameter, the correct parameter order
is defined by the remote function. You will have to check the API's documentation for
this information and make sure you order the parameters correctly.

//The correct way to differentiate parameters is in their order as
defined by the API
<params>
 <param><value><int>42</int></value></param>
 <param><value><int>13</int></value></param>
 <param><value><int>32</int></value></param>
</params>

In the request, each parameter is enclosed by a param element. Within each param,
the actual parameter is wrapped up by a value element. Within this value element
are the actual parameter values and data types.

XML-RPC Data Types
XML-RPC parameters can be one of the following three types. Each is represented in
a different way inside the value element.

Scalars: basic primitive data types
Arrays: similar to PHP numerically indexed arrays
Structs: equivalent to associative arrays in the PHP world

Right now, we are using these data types and their structural definitions as request
parameters. However, the same data types are used throughout XML-RPC. The
server response will give us data in the same schema.

Scalar Values
Scalar values are the common primitive data types found in most languages. Almost
every scalar value must be encapsulated by an element that declares what data type
that value is.

String
This is your basic text string. It corresponds to the string data type in PHP.

<param>
 <value><string>Hello, world!</string></value>
</param>

•

•

•

Chapter 2

[17]

Since this is the most common data type, any values of the value element without
data type tags inside will default to string. For example, the following is perfectly
legal in XML-RPC and will default to a string:

<param>
 <value>Goodbye, cruel world!</value>

</param>

Integer
This is a four byte signed integer. It is the same as the PHP data type integer. Hence,
it can take the more obvious tag of int or i4, for four byte integer.

<param>
 <value><int>42</int></value>
</param>

// This is the same:
<param>
 <value><i4>42</i4></value>
</param>

Double
Double is a double precision signed floating point number. It is the equivalent to
float in PHP. Note that in PHP 4, there was also a double data type, but this has been
deprecated in preference of float.

<param>
 <value><double>-44.352301</double></value>

</param>

Boolean
Boolean is your basic true or false state. It is the same as the PHP boolean. The
difference is that in PHP, and many other languages for that matter, boolean can be
represented by the keywords TRUE or FALSE, or a numerical setting of 1 for true and
0 for false. In XML-RPC, booleans can only be represented with 1 or 0.

<param>
 <value><boolean>0</boolean></value>

</param>

Buy it on Amazon

[18]

Date/Time
A date/time data type specifies a date and a time value, up to the second. It follows
the format YYYYMMDDTHH:MM:SS. Year, month, day, hour, minute, and second
should be apparent in that format. The "T", however, is a literal. There is no date/
time data type in PHP, so you will have to represent this as a string.

<param>
 <value>

 <dateTime.iso8601>20060710T11:30:32</ dateTime.iso8601>

 </value>
</param>

In PHP 5, there is a date parameter of "c" that will return a date/time object in ISO
8601 format. It will not return the exact format that XML-RPC needs, but later we
will use a function to automatically encode it into a date/time type.

Base64-Encoded Binary
To transfer binary information via XML-RPC, encode it in base64 and wrap it around
base64 tags.

<param>
<value>

 <base64>Pj4UijBdhLr6IdvCc0Ad3NVP4OidTd8E1kRY5Edh</base64>

</value>
</param>

There is no binary data type in PHP, but you can encode files in base64 for XML-RPC
transfer by using the file_get_contents function.

Arrays
Numerically indexed arrays are passed as a single structure within the value
element. Arrays are defined with a specific structure of child and grandchild
elements.

<params>
 <param>
 <value>
 <array>
 <data>
 <value><string>One</string></value>
 <value><boolean>Monkey</boolean></value>
 <value><double>4.307400</double></value>
 </data>

Chapter 2

[19]

 </array>
 </value>
 </param>
</params>

There are two levels of children before we actually see the data. array, which defines
the value of the parameter to be an array, and data, which signals the start of the
data. The data is encapsulated exactly like scalar values. There is a value element
for each item in the array and they may have children elements that define the data
type of the value.

Arrays can be recursive. Within each value element, can be another array as long as
they contain the array/data/value descendant sequence.

Struct
Similar to arrays, structs are the XML-RPC representation of PHP's associative
arrays. Each item has a named key and a value pair. Like arrays, a single struct
element defines a struct. Each item has one member element, each member element
has a required name element, which names the item, and one value element which
represents the value. Also, like arrays, the value element follows the definition rules
of scalar values in XML-RPC.

<value>
 <struct>
 <member>
 <name>One</name>
 <value><string>This is a string</string></value>
 </member>
 <member>
 <name>Two</name>
 <value><boolean>1</boolean></value>
 </member>
 <member>
 <name>This is a Name</name>
 <value><double>-98.330000</double></value>
 </member>
 </struct>
</value>

XML-RPC requests, then, are basically HTTP POST actions that specify a remote
method to be called with properly formatted parameters. Let's take a look at the
response back from the server.

Buy it on Amazon

[20]

XML-RPC Response
Once we make a request, we can expect one of the two types of responses from
the service. If an XML-RPC request was successful, we will receive the data we
requested returned to us in a fashion defined by the XML-RPC specifications. If there
was an error, a special XML-RPC fault message will be returned.

Similar to a regular web page call, a header will be returned with the results in
the body.

HTTP/1.x 200 OK
Date: Fri, 11 Aug 2007 23:34:43 GMT
Server: Apache/1.3.33 (Darwin) PHP/5.1.4 DAV/1.0.3
X-Powered-By: PHP/5.1.4
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/xml

<?xml version="1.0" encoding="iso-8859-1"?>
<methodResponse>
 <params>
 <param>
 <value><string>A woeful jeremiad</string></value>
 </param>
 </params>
</methodResponse>

This is a successful XML-RPC response. It should look familiar to you.
methodResponse is the root element that defines this as a response. Following
that is a params child. Each value that is returned is enclosed in a param element.
Underneath that, each value follows the rules for scalar values we saw earlier. This
example shows a single string value that the service returns. However, like the
request, everything under params can also be a multiple value return, an array or a
struct in addition to single values. For example, an array returned from the service
would look like this:

<methodResponse>
 <params><param><value>
 <array>
 <data>
 <value><string>system.multicall</string></value>
 <value><string>system.listMethods</string></value>
 <value><string>system.getCapabilities</string></value>
 </data>
 </array>
 </value></param></params>
</methodCall>

Chapter 2

[21]

If the service could not fulfill your request, it will return an XML-RPC fault. Instead
of a params element, methodResponse will have a fault element. methodResponse
will always have either a params child or a fault child, but not both.

An XML-RPC fault is basically a struct that is returned to you. There are two named
members in this struct. A faultString is a human readable alert of the error, and
faultCode, which is an integer assigned by the service. Neither faultString or
faultCode are defined or standardized by the XML-RPC specifications. They depend
solely on the server implementation.

HTTP/1.x 200 OK
Date: Fri, 11 Aug 2007 23:41:18 GMT
Server: Apache/1.3.33 (Darwin) PHP/5.1.4 DAV/1.0.3
X-Powered-By: PHP/5.1.4
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/xml

<?xml version="1.0"?>
<methodResponse>
 <fault>	
 <value>
 <struct>
 <member>
 <name>faultCode</name>
 <value><int>4</int></value>
 </member>
 <member>
 <name>faultString</name>
 <value><string>Too many parameters.</string></value>
 </member>
 </struct>
 </value>
 </fault>
</methodResponse>

Working with XML-RPC in PHP
XML-RPC is a very straightforward and effective data transport mechanism.
Requests and responses are formatted in a common way. Clients and service
providers can easily implement this simple protocol. PHP has a group of XML-RPC
functions that are made for working with XML-RPC data.

Buy it on Amazon

[22]

PHP's XML-RPC functions are documented at: http://www.php.net/manual/en/
ref.xmlrpc.php. The collection is small but invaluable. They can be grouped into
functions that enable PHP applications to be XML-RPC clients, or functions that
create PHP-powered XML-RPC services. These functions are available, if PHP was
compiled with the –with-xmlrpc option.

If you check out the official PHP XML-RPC documentation, you will see
they have been marked "experimental". However, they have been
around since PHP 4.1 and are long considered stable and reliable for
production usage.

To make your mashup, you need to know how to create an XML-RPC request, how
to call the service, and how to process the return data. We will focus our attention on
three PHP functions that will help us do this: xmlrpc_encode_request to convert
our PHP variables into XML-RPC format, xmlrpc_decode does the reverse, and
xmlrpc_is_fault checks to see if there was an error with our request to the server.

Making an XML-RPC Request
Our first task is to create an XML-RPC request. This process can be broken up into
individual steps:

1.	 Serialize the PHP data into XML-RPC format
2.	 Create an XML-RPC request by combining HTTP headers and serialized data
3.	 Make the call to the service

Serializing Data with XML-RPC Encode Request
In network programming terms, "serializing" means transforming the data into a
format that can be delivered across a network. In our case, we will serialize PHP
variable values into the XML-RPC specifications that we discussed earlier. To do this,
we will use the PHP function xmlrpc_encode_request. xmlrpc_encode_request
that creates our entire XML-RPC request call starting with the methodCall element
and drilling all the way down to the value elements.

This function requires two parameters. The first is the name of the remote call we
wish to request. xmlrpc_encode_request will use this to create the methodName
element. The second parameter is the variables you wish to pass. It will use this to
create the params structure. For this second parameter, xmlrpc_encode_request
will automatically detect what kind of variable was passed into it, (variable types,
numerical arrays, or associative arrays), and format them into the data type schema
dictated by the XML-RPC specifications.

Chapter 2

[23]

Let's try creating some different types of XML-RPC requests using
xmlrpc_encode_request.

Creating a Single Parameter XML-RPC Request
The simplest XML-RPC request is one single parameter. Create this simple script and
put it on your web server:

<?php
 $singleVar = "Hello!";
 $requestMessage = xmlrpc_encode_request('theRemoteCall', $singleVar);
 echo $requestMessage;
?>

Hit this page with a web browser, and examine the source. Your source will
look like:

<?xml version="1.0" encoding="iso-8859-1"?>
<methodCall>
 <methodName>theRemoteCall</methodName>
 <params>
 <param>
 <value><string>Hello!</string></value>
 </param>
 </params>
</methodCall>

xmlrpc_encode_request has created the entire XML-RPC request for you.

If you manipulate the variable type that is passed, xmlrpc_encode_request is
smart enough to figure out the XML-RPC data type equivalent. We can test this
functionality with the following script:

<?php
 $singleVar = "88";
 settype($singleVar, "integer");
 $requestMessage = xmlrpc_encode_request('theRemoteCall', $singleVar);
 echo $requestMessage;
?>

Here, we are first assigning the value of $singleVar to be a string, whose
value is "88", settype will cast $singleVar to an integer before we pass it to
xmlrpc_encode_request. The resulting XML-RPC value returned by
xmlrpc_encode_request will reflect this data type by wrapping it around int tags.

www.allitebooks.com

http://www.allitebooks.org

Buy it on Amazon

[24]

Again, if you hit this page with a web browser, you can view this returned structure:

<?xml version="1.0" encoding="iso-8859-1"?>
<methodCall>
 <methodName>theRemoteCall</methodName>
 <params>
 <param>
 <value><int>88</int></value>
 </param>
 </params>
</methodCall>

There are two other special data type cases that we need to be careful about.

Double Data Type
The first case is the double data type. xmlrpc_encode_request will always pad
doubles to six digits past the decimal point. For example, passing 1.6;

$singleVar = 1.6;
$requestMessage = xmlrpc_encode_request('theRemoteCall', $singleVar);

will result in the following XML-RPC snippet:

<value>
 <double>1.600000</double>

</value>

Furthermore, anything longer than six digits will be rounded. We can see how this
works by passing a long number that should be rounded up, and one that should be
rounded off.

$roundedUp = 1.123456789;
$roundedOff = 1.87654321;
$requestMessage1 = xmlrpc_encode_request('theRemoteCall', $roundedUp);
$requestMessage2 = xmlrpc_encode_request('theRemoteCall',
$roundedOff);

These two calls will result in these two respective value elements:

<value>
 <double>1.123457</double>
</value>
<value>
 <double>1.876543</double>
</value>

Chapter 2

[25]

Date/Time and Base64 Data Types
The second case that we need to take caution around is date/time and base64.
Neither of them have a data type equivalent in PHP. If you assign them to a variable,
PHP will consider that variable to be a string. And when they are passed to xmlrpc_
encode_request, xmlrpc_encode_request will also consider them to be strings.

For example, if we had a special string of binary data, PHP can only treat that as a
string of characters;

$singleVar = '8923hfjsd89783hiuyi9yhw938ihfasid9yh32iyr9wy';
$ requestMessage = xmlrpc_encode_request('theRemoteCall', $singleVar);

The resulting XML-RPC request will be generated. If the remote call is specifically
looking for base64, the remote call will fail.

<value>
 <string>8923hfjsd8938ihfasid9yh32iyr9wy</string>
</value>

To tell PHP they are XML-RPC data types, we need to use a special function,
xmlrpc_set_type, before we call xmlrpc_encode_request. xmlrpc_set_type
takes two parameters, the first is the actual variable that you wish to change, and the
second is the XML-RPC type you want to change it to.

If we took the same binary string and called xmlrpc_set_type to change it to base64:

$singleVar = '8923hfjsd89783hiuyi9yhw938ihfasid9yh32iyr9wy';
xmlrpc_set_type($singleVar, "base64");
$requestMessage = xmlrpc_encode_request('theRemoteCall', $singleVar);

Our resulting XML-RPC request will be what the service is expecting.

<value>
 <base64>ODkyM2hmanNkODkzOGloZmFzaWQ5eWgzMml5cjl3eQ==
</base64>
</value>

The same thing is true if you had a string formatted to the correct date/time format.

$singleVar = '20060814T09:08:23';
xmlrpc_set_type($singleVar, "datetime");
$requestMessage = xmlrpc_encode_request('theRemoteCall', $singleVar);

After encoding, the value will have the correct date/time element wrapped around it
in the XML-RPC request.

<value>
 <dateTime.iso8601>20060814T09:08:23</dateTime.iso8601>
</value>

Buy it on Amazon

[26]

xmlrpc_set_type was designed specifically to address the presence of base64 and
date/time types in XML-RPC, and their lack in PHP. The second parameter, which
determines what kind of XML-RPC data type that you wish to cast, can only take a
value of base64 or date/time. It is not meant to be a generic type casting function
like PHP's settype.

The other structures that xmlrpc_encode_request creates, builds upon its basic
handling of scalar data. This is in much the same way that XML-RPC's structs and
arrays use the same basic scalar schemas at the value level. The main limitation
is that xmlrpc_encode_request can accept only one parameter for its variables
parameter. It works around this by accepting different array structures for the
variables parameter, and outputting different XML-RPC requests depending on
what it receives.

Creating a Multiple Parameter XML-RPC Request
Sometimes, you may find a remote call that requests more than one parameter in a
simple list. To do this, simply create an array of the variables and pass the array as
the second argument of xmlrpc_encode_request like:

<?php
 $dt = '20060814T09:08:23';
 xmlrpc_set_type($dt, «datetime»);
 $listArray = array(«One», 2.09, $dt);
 $requestMessage = xmlrpc_encode_request('theRemoteCall', $listArray);
 echo $requestMessage;
?>

This will create an XML-RPC request with a param element for each variable. As you
can see, it is perfectly legal to mix and match data types.

<params>
 <param>
 <value><string>One</string></value>
 </param>
 <param>
 <value><double>2.090000</double></value>
 ��������</param>
 <param>
 <value>
<dateTime.iso8601>20060814T09:08:23</dateTime.iso8601>
</value>
 ��������</param>
</params>

Chapter 2

[27]

Passing Arrays in XML-RPC Requests
Remember that an XML-RPC array is a serialized, numerically indexed PHP array.
We need to pass it as the second argument to xmlrpc_encode_request. However,
if we just pass an array, xmlrpc_encode_request will create a multiple parameter
XML-RPC request, like we just demonstrated. The solution is to place the numerical
array into another array and pass the new bundle as the second parameter of
xmlrpc_encode_request:

<?php
 $listArray = array("One", "Monkey", 4.3074);
 $requestMessage = xmlrpc_encode_request('theRemoteCall', $listArray);
 echo $requestMessage;
?>

This code will create the XML-RPC array that we need. This snippet will create the
example array, we saw earlier in the chapter.

This works because every parameter in an XML-RPC request is placed
within its own value element. Technically, we passed only one
parameter into xmlrpc_encode_request. The function recognized it
as a numerical array and created the necessary structure underneath the
value element.

Passing Struct in XML-RPC Requests
An XML-RPC array is related to a struct much like a numerically indexed PHP array
is to an associative PHP array. Knowing this, you can make a logical guess that to
create a struct, all we need to do is change the second parameter passed into from a
numerically indexed array to an associative array.

$listArray = array("One" => "This is a string", "Two" => "true, "This
is a Name" => -98.33);
$requestMessage = xmlrpc_encode_request('theRemoteCall',
array($listArray));

In this code snippet, $listArray now assigns keys to the array values before being
passed to xmlrpc_encode_request. This will create the example struct, we saw
earlier in the chapter.

Creating the Request Call Header

Now that we have the body, we can create the HTTP header that the request needs.
The header goes before the payload. We work backwards because one part of the
header requires us to know the length of the payload.

Buy it on Amazon

[28]

Let's take a look at a complete XML-RPC request:

POST /rpc HTTP/1.0
User-Agent: XML-RPC Client
Host: www.upcdatabase.com
Content-Type: text/xml
Content-Length: 185

<?xml version="1.0" encoding="iso-8859-1"?>
<methodCall>
<methodName>lookupUPC</methodName>
<params>
 <param>
 <value><string>079400560704</string> </value>
 </param>
</params>
</methodCall>

Looking at this, there are several header items that can be static. Other items (that are
highlighted) can be turned into variables.

1.	 After POST is the name of the script we are hitting on the server
2.	 The host
3.	 The content length
4.	 Finally, the payload

It would be efficient to create a function that would return a complete request to us.
The variable candidates will be our parameters.

function createPostRequest($remoteServer, $remotePath, $requestBody) {
 $theRequest = "POST " . $remotePath . " HTTP/1.0\n" .	
 "User-Agent: XML-RPC Client\n" .
 "Host: " . $remoteServer . "\n" .	
 "Content-Type: text/xml\n" .
 "Content-Length: " .strlen($requestBody) . "\n" .
 "\n" . $requestBody . "\n";
 return $theRequest;
}

createPostRequest is a simple function. It takes three parameters and concatenates
them with standard HTTP request headers to create a full, complete XML-RPC
request. The three parameters it takes are:

$remoteServer is the name and domain of the server. For example,
"www.amazon.com". Do not add a protocol like http:// because that is not
only redundant, but also illegal.

•

Chapter 2

[29]

$remotePath is the path to the XML-RPC service starting at the root of the
server. This value starts with a beginning slash (/) and is the same as
an absolute path in a directory structure. An example would be
"/services/xmlrpc".
$requestBody is the part that is returned to us by xmlrpc_encode_request.
This is the XML portion of the XML-RPC call.

This function uses $remoteServer and $remotePath to build the first line of the
header and the host line. The body, $requestBody, is not only appended to the
request, but it's size must be first analyzed by the strlen function for the content
length part of the header.

Notice how we concatenate the headers in the function. Although the
headers are broken up and formatted for readability in the header output
itself, there are no spaces or tabs from the end of the lines ("\n") to the
beginning of the next line. This is a strict formatting requirement of the
HTTP protocol. If there is any whitespace at the beginning of the lines, the
request will fail.

Calling XML-RPC Using Sockets
We now have a fully formatted XML-RPC call. All variables have been serialized.
Our headers have also been created. The only thing left to do is to make the actual
call to the service and send it our request.

Sockets are a clean way to call XML-RPC. A socket is basically a direct network
connection to another machine. We can build a socket to the XML-RPC server and
send our request directly to it. This can be accomplished by another function that
builds upon our createPostRequest function. This function will not only send the
request to the server, but it will capture the result and let us manipulate it later.

function send($remoteServer, $remotePort, $fullXMLRPCRequest) {
 $headers = '';
 $data = '';
 $socket = fsockopen($remoteServer, $remotePort);
 fwrite($socket, $fullXMLRPCRequest);
 while ($str = trim(fgets($socket))) {
 $headers .= $str . "\n";
 }
 while (!feof($socket)) {
 $data .= fgets($socket);
 }
 fclose($socket);
 return $data;
}

•

•

Buy it on Amazon

[30]

This function also takes the following three parameters:

$remoteServer is the same exact variable you used in createPostRequest.
Like its use in the HTTP header, do not include the protocol (http://).
$remotePort is network port that you wish to connect through. For standard
HTTP connections, this will be 80.
$fullXMLRPCRequest is the complete XML-RPC request with headers and
payload. This is the part that is returned from createPostRequest.

This function does a few things. Let's break it down:

After some initialization of variables, we use fsockopen to open our connection to
the remote server.

$socket = fsockopen($remoteServer, $remotePort);

The call to fwrite() will send our XML-RPC request directly to the server through
the socket.

fwrite($socket, $request);

A socket is basically a tunnel. We not only write through it, but we capture the
server's response to it. After writing, the first thing that is returned is the HTTP
response header. We don't need this information, so we can just read the response
and dump it to a local variable that will be discarded when the function completes
its execution.

while ($str = trim(fgets($socket))) {
 $headers .= $str . '\n';
}

After the headers come through, we capture what we're really after—the XML-RPC
response payload.

while (!feof($socket)) {
 $data .= fgets($socket);
}

While data is coming through the socket, we capture everything that comes through
and dump it into a local variable. Once the response data has stopped coming, we
can get rid of our socket and return the portion of the data to the function caller.

fclose($socket);
return $data;

At this point, we have passed variables into a function we created,
createPostRequest(), and it returned a full-fledged XML-RPC request. We took

•

•

•

Chapter 2

[31]

that request and passed it to another function that we defined, send(). This function
opens a socket connection to the remote server, writes the request, and parses the
response. It returns to us this XML-RPC response. We now need to transform the
XML-RPC response into PHP data we can use.

Processing an XML-RPC Response
To extract data from an XML-RPC response and transform them into PHP
variables, we will use xmlrpc_encode_request()'s complementary function,
xmlrpc_decode(). xmlrpc_encode_request() was smart enough to take variables,
whether they are primitive variables, arrays, or structures, and transform them into
an XML-RPC request.

xmlrpc_decode() will take an XML-RPC response, look for the type of data being
returned for example, whether they are simple primitives, structures, or arrays, and
return either a straight PHP value (if primitive) or an array of values (if they are an
XML-RPC struct or array). xmlrpc_decode() will also process XML-RPC response
errors. Using another function, xmlrpc_is_fault(), we can evaluate the return
value to see if it is an error and handle them accordingly.

Let's create a function to demonstrate both xmlrpc_decode() and
xmlrpc_is_fault().

function processXMLRPCResponse($xmlrpcResponse) {
 $data = xmlrpc_decode($xmlrpcResponse);
 if (xmlrpc_is_fault($data)) {
 ��������������������������� �������������� �������� echo 'Error Code: ' . $data['faultCode'] . "\n";
 echo 'Error Message: ' . ���������������������$data['faultString'];
 } else {
 if (is_array($data)) {
 �����������������var_dump($data);
 } else {
 echo $data;
 ��}
 }
}

This function takes an XML-RPC response as the parameter.

The first thing this function does is send the XML-RPC response through
xmlrpc_decode(). If you were to examine the returned value, it would be either a
simple value or an array. If the service returned just a single simple value, $data
would be that value. If the return was an array, $data will be a numerically indexed
PHP array. If the return was a struct or an XML-RPC fault, $data will be a PHP

Buy it on Amazon

[32]

associative array. The if-else statement and the nested if-else statement that
follows xmlrpc_decode() makes this evaluation.

The first if statement calls xmlrpc_is_fault(). This function determines if the data
structure is an XML-RPC fault. If it is, the return value is an associative array with
two items whose indexes are faultCode and faultString, and whose values are the
responses of faultCode and faultString elements.

If it is not an error, we then check to see if it's an array or a value. Here, we are
simply echoing out the values. In practice, you will want to do something like pass
the arrays to another function for looping or searching.

Creating an XML-RPC Parser Class
Using all three functions (createPostRequest, send, and processXMLRPCResponse),
we have some basic tools to create an all-purpose XML-RPC parser utility class. To
make it even simpler to use these functions, we can add a public facade function to
call the others.

class XMLRPCParser {

 public function callService($remoteMethod, $parameters,
 $remoteServer, $remotePath, $port=80) {
 $requestXML = xmlrpc_encode_request($remoteMethod, $parameters);
 $fullRequest = $this->createPostRequest($remoteServer,
 $remotePath, $requestXML);
 $response = $this->send($remoteServer, $port, $fullRequest);
 return xmlrpc_decode($response);
 }

	 private function createPostRequest($remoteServer, $remotePath,
 $requestBody) {

 $theRequest = "POST " . $remotePath . "HTTP/1.0\n" .
 "Host: " . $remoteServer . "\n" .
 "User-Agent: XML-RPC Client\n" .
 "Content-Type: text/xml\n" .
 "Content-Length: " .strlen($requestBody) . "\n" .
 "\n" . $requestBody . "\n";
 return $theRequest;
 }

 private function send($remoteServer, $remotePort,
 $fullXMLRPCRequest) {
 $headers = '';
 $data = '';

 $socket = fsockopen($remoteServer, $remotePort);
 fwrite($socket, $fullXMLRPCRequest);

Chapter 2

[33]

 while ($str = trim(fgets($socket))) {
 $headers .= $str . '\n';
 }

 $data = '';
 while (!feof($socket)) {
 $data .= fgets($socket);
 }
 fclose($socket);
 return $data;

 }

 public function processXMLRPCResponse($data) {

 if (xmlrpc_is_fault($data)) {
 ��������������������������� �������������� ������� echo 'Error Code: ' . $data['faultCode'] . "\n";
 echo 'Error Message: ' . ���������������������$data['faultString'];
 } else {

 if (is_array($data)) {
 ����������������var_dump($data);
 } else {
 echo $data;
 �}

 }

 }

}

We've seen the last three functions. The first function, callService(), is a
façade for the xmlrpc_encode_request(), createPostRequest(), and send()
functions. Any of our applications that wants to make an XML-RPC call can just use
callService() to handle everything. We pass it as the remote method we want to
call, the parameters as an array, the remote server name, the path to the service, and,
if necessary, the port number. The first line in the function takes the name of
the method and the parameters and uses xmlrpc_encode_request() to get a
XML-RPC request. We pass the request along with the server name, and the service
path to createPostRequest(). This returns to us the XML-RPC request and a valid
HTTP POST header. Finally, we pass that to send() which makes a socket connection
to the server and gives it the XML-RPC request. The return value of send() is the
XML-RPC response.

Testing Our XML-RPC Parser Class
To see this all in action, we can use it to call a few public XML-RPC services. In the
example code, the file example RPC.php has the XML-RPC parser class plus a few
lines of code at the top to call a few services:

www.allitebooks.com

http://www.allitebooks.org

Buy it on Amazon

[34]

$parser = new XMLRPCParser();
echo "<h3>First Example</h3>";
$returnedData = $parser->callService('latestDownloadURL',
 null,
 'www.upcdatabase.com',
 '/rpc',
 80);
$parser->processXMLRPCResponse($returnedData);

echo "<h3>Second Example</h3>";
$returnedData = $parser->callService('geocode',
 '1000 Elysian Park Ave., Los Angeles, CA',
 'geocoder.us',
 '/service/xmlrpc',
 80);
$parser->processXMLRPCResponse($returnedData);

class XMLRPCParser {
/* Rest of XMLRPCParser Class */

In the first line, we create the XML-RPC Parser object, which will be used twice.
In the first example, we will use the Internet UPC Database XML-RPC service to
call a method named latestDownloadURL. This returns the current URL to a
zipped copy of the entire Internet UPC Database. The service is located at
http://www.upcdatabase.com/rpc. We will use it to look up product information
before we send it to Amazon, later in our mashup.

This service takes no parameters. You will run into a lot of XML-RPC methods
that do not take any parameters. However, xmlrpc_encode_request() requires
something to be passed for the parameters in the second argument. In such a case,
simply pass null for the second argument to xmlrpc_encode_request() like we do
here. In this example, null eventually gets passed to xmlrpc_encode_request() in
the first line of the callService() function.

In the second example, we use the geocoder at http://geocoder.us/service/
xcmlrpc. Geocoder takes an address and finds the longitude and latitude of the
address. The remote method is called geocode and it takes a string of the address
that you want to look up. In both examples, we pass the results of callService() to
processXMLRPCReponse(), which simply displays the results from the service call.

Now we are ready to see this in action. Save this file to your web server and load the
page in your browser.

Chapter 2

[35]

You should see something like this:

In the first example, the return is just a simple string, processXMLRPCReponse() just
outputs this on the browser. In the geocoder.us example, an array is returned by
the response. processXMLRPCReponse() passes arrays through var_dump(), which
outputs the key, value, and value data type for each item in the array.

Satisfied that this class works, we can use this class for our mashup. Remember to
remove the example instantiation and usage code before actually using this class.

Using PEAR to Handle XML-RPC
Out of the box, PHP does a good job of handling XML-RPC. There are a few
drawbacks with our approach. The first is that it does require PHP to have been
compiled with -with-xmlrpc option. If not, you will have to recompile PHP. If you
are in a tightly controlled corporate environment, a shared web hosting service, or
using a precompiled binary, recompiling may not be an option to you.

From a development effort standpoint, our approach is a bit of a hassle.
xmlrpc_encode_request and xmlrpc_decode do a lot of translation work for us,
but we still need to make the HTTP headers and get down and dirty with sockets
in order to make a tunnel to the server. These two tasks seem like they can be
abstracted out to another function. Fortunately, PEAR has an XML-RPC extension
that does both of these things for us.

PEAR, if you are not familiar with it, is an official set of third-party libraries
compiled for PHP. Although, it is its own separate open-source project, the PEAR
installer and package manager is included with the official PHP release. Using the
PEAR installer, you can easily install, upgrade, and uninstall PEAR libraries with
simple command line options.

Buy it on Amazon

[36]

To see what you currently have installed, go into your command line on the PHP
server and type in the command to list your installed PEAR extensions:

Buttercup:~ root# pear list

Depending on how PHP was installed, you might have to be the root user to manage
PEAR libraries on the machine. Another problem is that your PHP might be non-
standards, and it may not have PEAR installed. If this is the case, you can download
PEAR from http://pear.php.net/package/PEAR/download.

Assuming you have the correct permissions and PEAR is installed, you may see
something like this:

Buttercup:~ root# pear list

Installed packages:

===================

Package Version	 State

Archive_Tar		 1.1		 stable

Console_Getopt 	 1.2		 stable

…

PEAR			 1.3.6	 stable

XML_Parser 		 1.0.1	 stable

XML_RPC		 1.4.0 	 stable

These are your currently installed PEAR extensions. If you see the last line,
XML_RPC, you are in business. PEAR's XML-RPC extension is already installed and
you can go ahead and use it. If an XML_RPC line is not on the output list, you can
simply install the extension by typing:

Buttercup:~ root# pear install XML-RPC

Let's take a quick look at how the XML_RPC extension is used to interact with
XML-RPC services. Let's create a simple script to invoke a service from the UPC
Internet Database:

<?php
 require_once("XML/RPC.php");
 $params = array (new XML_RPC_VALUE('079400560704', 'string'));
 $msg = new XML_RPC_Message('lookupUPC', $params);
 $client = new XML_RPC_Client('/rpc', 'www.upcdatabase.com');
 $retVal = $client->send($msg);
 $valueObj = $retVal->value();
 echo $valueObj->scalarVal();
?>

Chapter 2

[37]

The first line, the require_once() statement, will include the necessary PEAR
library file into our script. Once this is included, all the XML_RPC functions in PEAR
will be available to us. This statement is absolutely required to be the first line in our
script. The next line:

$params = array (new XML_RPC_VALUE('079400560704', 'string'));

builds an array of parameters. There are several things going on here. The first is that
we are creating a new object, XML_RPC_Value. In PEAR, each XML-RPC parameter
is placed in its own new XML_RPC_Value object. The arguments are then placed in
an array. XML_RPC takes this array and creates the necessary XML_RPC parameter
structure in the request.

The XML_RPC_Value object takes two arguments. The first argument is value of the
parameter. The second argument is the XML_RPC data type of parameter. While this
approach explicitly requires us to specify the XML_RPC data type, it eliminates the
need to call xmlrpc_set_type() for date/time and base64, making the conversion
more consistent and the code cleaner.

$msg = new XML_RPC_Message('lookupUPC', $params);

The next line takes the name of the function we wish to call and the parameters array
we just created, and places it in a new object, XML_RPC_Message. The return value
is an object representation of everything that is needed to create an XML-RPC
request message.

Finally, an XML_RPC_Client object is created using the XML_RPC_Message object
and service details. This client object now has everything that we need to create an
XML-RPC request. It has the server name, the path to the service, and the name of
the remote call. The object has a method, send(), which uses all its information and
makes an XML-RPC request to the service. We call send(), passing in the message
object, which contains the parameters, to execute the remote call.

$retVal = $client->send($msg);

send() automatically takes the service response and places it in an object of class
XML_RPC_Response.

XML_RPC_Response is a PHP class that represents the XML-RPC response. It has
methods that can tell us whether the response was a fault, what the fault was, and, if
it was not a fault, the actual response values. To get the response values, we use the
object's value() method.

$valueObj = $retVal->value();

Buy it on Amazon

[38]

Finally, we get to the raw data. value() returns another XML_RPC_Value object that
holds only the data that the remote call gave us. We call scalarVal() to get the
actual data this holds. Note that regardless of whether the response is a single scalar
value, a struct, or an array, scalarval() will return it. It is up to us to properly
detect and handle complex return values.

In a nutshell, that is how PEAR is used to create an XML-RPC client. This has been
a very brief introduction to the XML_RPC objects used. A deeper look at the objects,
properties and methods will give a good idea on how to do more important things,
like detecting faults and changing the port of the call. For more information on
PEAR XML_RPC, you can refer to PHP Programming with PEAR by Stoyan Stefanov,
et. al. (ISBN 1904811795) published by Packt Publishing.

REST
Since XML-RPC came along, other web services standards have arisen to fulfill needs
that XML-RPC does not address. Some, like SOAP and its derivatives, are designed
to give more power and flexibility to the developer. Others, like RSS, are used for
a specific niche. This is not unlike other evolutionary trends in technology where
standards start off simple, and for better or for worse, become more complex. Very
recently, though, a new web service standard has become popular that bucks this
trend. REST, an acronym for Representational State Transfer, is not a formalized
standard but instead an architectural style.

In theory, REST is rich and modern. Its application is not limited to the World Wide
Web. However, web browsers and web servers fit nicely in REST theory. Described
by Roy Fielding for a doctoral dissertation, in 2000, REST attempts to describe
network-based software architectures.

In practice, REST is simple and flexible. Like XML-RPC, a client makes a request
to the server, but this is pretty much where the similarities end. REST requests are
simply an HTTP request. They can be any of the standard five HTTP methods of GET,
POST, PUT, DELETE, or HEAD. The latter three are rare in web application development,
and are still rare in the REST world. POST and GET are prevalent. However, a lot of
APIs currently will use GET, even if the operation is better suited for POST. Either
way, REST requests operate very similarly to browsers hitting a web server.

Acceptable parameters are defined in the API. For REST over GET, the parameters
would be in the URL query string. This is no different than passing URL parameters
normally through GET. We do not have to structure our request in XML.

Chapter 2

[39]

Likewise, the return value is completely up to the API. A lot of APIs return some sort
of XML structure. Others simply return a string value without any structure. The
latter is especially common in responses that return one value instead of multiple
values. There are no standardized error structures returned. The API defines how
it will return an error. It is completely up to us to determine how we are going to
process this response.

Practitioners of REST recognize that even the simplicity of XML-RPC can be overkill in
some circumstances. It is very well suited for web services that do not exchange a lot
of values from the client to the server, although its flexibility does allow for complex
responses. REST also realizes that from an HTTP service provider's point of view, data
types are completely superficial. In HTTP, everything that gets transmitted is a string
of characters. A double is only a double because of XML-RPC's double element tag.
Likewise, booleans could easily have been represented by the words "true/false", "Y/
N", or even "table/chair." It is up to the service to treat 1.974234 as a double and "Y" as
true, which eliminates the need for casting on our client side.

REST and AJAX
An important reason for REST's recent rise is that it plays very well with
another architectural design that has become quite popular. Asynchronous
JavaScript and XML, or AJAX is based on the browser sending a bit of
information to a server through JavaScript's XMLHttpRequest object,
parsing the XML response back using JavaScript Document Object
Model functions, and updating the page dynamically without reloading.
XMLHttpRequest merely needs the URL of the service and a name/value
string of parameter names and their values. It would be difficult and
tedious to concatenate a string to make a complete XML-RPC request in
JavaScript. You would have to essentially code a properly formed XML
document entirely in JavaScript mixing the two languages. Concatenating
a string of name/value pairs together to make a URL, which is exactly
what REST needs, with is much easier. While we are concentrating on
consuming REST with PHP, keep this in mind if you are coding JavaScript
clients and have a choice of protocols to choose from in the API. For more
information on coding AJAX applications, refer to Ajax and PHP: Building
Responsive Web Applications, by Darie et. al (ISBN 1904811825), published
by Packt Publishing..

Working with REST in PHP
Like XML-RPC, we will need to create a REST request with PHP and use PHP to
process the response. Unlike XML-RPC, there are no functions created specifically
for REST, but that is not necessary. As REST uses just a simple HTTP request, we can
use the existing network functions to make and capture the response. The results will
come back in XML. We will look at two ways of processing it and turning into PHP
data that we can use.

Buy it on Amazon

[40]

Making a REST Request
Like we talked about earlier, REST is basically like a web page request to the web
server. It does not get any more glamorous than that. We will look at a couple of
ways to initiate this hit.

A GET and POST Refresher
We constructed a POST request earlier in order to make our XML-RPC call. Let's take
a closer and quick look at the differences between a GET header and a POST header.

Here is a bare bones GET request:

GET /aService.php?One=1&Two=2+and+2%25&Three=3 HTTP/1.0
Host: localhost
User-Agent: A PHP Client

There are a couple of things to note here:

1.	 GET is the first command in the first line.
2.	 The path to the service, /aService.php follows.
3.	 The query string, One=1&Two=2+and+2%25&Three=3, is a set of parameters

that follows the path. It is separated from the path by a question mark. Each
parameter is separated by an ampersand.

4.	 The parameter values must be URL encoded. In this example, the value for
"Two" actually reads "2 and 2%".

5.	 There is no body following the headers.

Now, using the same parameters, let's convert it into an example POST request and
compare it with the GET request.

POST /aService.php HTTP/1.0
User-Agent: XML-RPC Client
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: 28

One=1&Two=2+and+2%25&Three=3

1.	 POST is the first command in the line.
2.	 The path to the service, also follows this command.
3.	 The parameters, One=1&Two=2+and+2%25&Three=3, do not follow the path,

instead, they make up the body of the request.
4.	 The values are also URL encoded.

Chapter 2

[41]

5.	 POST requests via web browsers must also have a Content-Type header with
a value of "application/x-www-form-urlencoded". In XML-RPC, as the
XML-RPC request is an XML-formatted document, it was text/xml.

6.	 The Content-Length header must have the length of the body.

HTTP requests can have many more headers and be much more complex. However,
for the purposes of making REST requests, these are the only headers that we need.

You may notice that all of the examples this far have been using HTTP
1.0. This may seem archaic since HTTP 1.1 has been around for years.
The reason that we are using the older protocol is that with HTTP 1.1,
servers can, and often do, respond with chunked responses when 1.1 is
used. That is, to save response time, the server will start sending back
the actual response without knowing what size it is, and thus, does not
provide a Content-Length header. While most modern clients can handle
this just fine, PHP does not. The nature of sockets makes it so that we
must essentially handle the transfer chunks ourselves. While this is by no
means impossible, it is quite tedious. Therefore, for this book, we'll stick
with HTTP 1.0.

Using Sockets to Initiate a REST Request
Knowing the differences between GET and POST, we can make a few modifications
to our previous XML-RPC request functions, which uses POST, to make them work
with REST. Our socket connection function from before, send(), takes a full HTTP
request, opens the socket and returns the server response. We can use this exact
function to do the same thing. All we need to do is create the full HTTP request. We
can modify another previous function, createPostrequest() to make the HTTP
request. There are some key differences from things that we will have to
change, though:

1.	 We do not have the luxury of xmlrpc_encode_request() to turn PHP
variables into a formatted HTTP body for us.

2.	 The variables will have to be converted into a URL query string and, for
GET, appended to either after the path to the service, or, in the case of POST,
appended as the body of the request.

3.	 While XML-RPC requests occur over POST, the majority of REST requests
happen with GET. However, some APIs may call for POST. We should be
ready to create both.

To address the first and some of the second points, we will create a function that
takes an associative PHP array, loops through it, encodes the values into a
URL-friendly format, and creates a single query string from the key and values.

Buy it on Amazon

[42]

function makeParameterString($anArray) {
 $returnMe = '';
 foreach($anArray as $key => $value) {
 $returnMe .= "&" . $key . "=" . urlencode($value);
 }
 return substr($returnMe, 1);
}

This function assumes that the keys in the array are the names of the parameters
and the values of the array are the values of the variables that you want to pass.
The foreach loop in this function goes through the array and formats the name and
value pair of each array item into a query string. Each name/value pair is separated
with an ampersand, so we start off with that first. We concatenate the name of the
parameter, $key, to the string, followed by an equal sign to assign the value, and
finally the value of the parameter represented by $value. The value is passed
through the urlencode() function before it is concatenated. Outside of the loop, we
strip out the leading ampersand of the first name/value pair with substr()
and return it.

Creating GET and POST Request Functions
Now that we have the parameter string, we can create the headers and make a
request out of it. We'll start off with a POST request because it is strikingly similar to
the XML-RPC version.

function createPostRequest($remoteServer, $remotePath, $paramString) {
 $theRequest = "POST " . $remotePath . " HTTP/1.0\n" .
 "User-Agent: XML-RPC Client\n" .
 "Host: " . $remoteServer . "\n" .
 "Content-Type: application/x-www-form-urlencoded\n" .
 "Content-Length: " .strlen($paramString) . "\n" .
 "\n" . $paramString . "\n";
 return $theRequest;
}

This function takes a server address, a path to the service, and a parameter string
to make a full HTTP POST request. The only difference is that the Content-Type
header has been changed from test/xml, which is what an XML-RPC request is, to
application/x-www-form-urlencoded, which is a more generic POST type.

Now, we can create a function to make a GET request. This should be very similar
to the POST request, but the parameters need to be moved up to the first line, the
method changed to GET, and the Content-Length changed to zero, because there is
no body.

Chapter 2

[43]

function createGetRequest($remoteServer, $remotePath, $paramString) {
	 $theRequest = "GET " . $remotePath . "?" . $paramString . "
 HTTP/1.0\n" .
 "Host: " . $remoteServer . ������� "\n" .
 "User-Agent: XML-RPC Client\n\n";
 ������������������� return $theRequest;
}

Looking at the first line, we see that our method now says GET instead of POST. The
path is appended as normal, however, now we append a question mark to indicate
that a server is going to send some query parameters. The values of the parameters
are concatenated after the question mark. Content-Type, Content-Length, and the
body are removed because they are not needed here.

Following functions will get a REST service response for us.

Making a REST Parser Class
Like the XML-RPC Parser class, we should create a facade function to simplify the
REST call for us. For clean code organization, we'll organize all the functions into
a class.

class RESTParser {

 public function callService($parameters, $remoteServer, $remotePath,
 $httpMethod, $port=80) {
 $paramString = $this->makeParameterString($parameters);

 switch(strtoupper($httpMethod)) {
 case "POST":
 $fullRequest = $this->createPostRequest($remoteServer,
 $remotePath, $paramString);
 break;
 case "GET":
 $fullRequest = $this->createGetRequest($remoteServer,
 $remotePath, $paramString);
 break;
 default:
 $fullRequest = $this->createGetRequest($remoteServer,
 $remotePath, $paramString);
 }

 return $this->send($remoteServer, $port, $fullRequest);
 }

 private function makeParameterString($anArray) {
 $returnMe = '';
 foreach($anArray as $key => $value) {
 $returnMe .= "&" . $key . "=" . urlencode($value);	

www.allitebooks.com

http://www.allitebooks.org

Buy it on Amazon

[44]

 }
 return substr($returnMe, 1);
 }

 private function createPostRequest($remoteServer, $remotePath,
 $paramString) {
 $theRequest = "POST " . $remotePath . " HTTP/1.0\n" .
 "Host: " . $remoteServer . "\n" .
 "User-Agent: XML-RPC Client\n" .
 "Content-Type: application/x-www-form-urlencoded\n" .
 "Content-Length: " .strlen($paramString) . "\n" .
 "\n" . $paramString . "\n";
 return $theRequest;
 }

 function createGetRequest($remoteServer, $remotePath, $paramString) {
 $theRequest = "GET " . $remotePath . "?" . $paramString . "
 HTTP/1.0\n" .
 "Host: " . $remoteServer . ������� "\n" .
 "User-Agent: XML-RPC Client\n\n";

 ������������������� return $theRequest;
 }

	 private function send($remoteServer, $remotePort,
 $fullXMLRPCRequest) {
 $headers = '';
 $data = '';

 $socket = fsockopen($remoteServer, $remotePort);
 fwrite($socket, $fullXMLRPCRequest);

 while ($str = trim(fgets($socket))) {
 $headers .= $str . '\n';
 }
 $data = '';
 while (!feof($socket)) {
 $data .= fgets($socket);	
 }
 fclose($socket);
 return $data;

 }
}

Chapter 2

[45]

This class uses the same functions as was described. Besides encapsulating the
functions in a class, there is also the addition of a new callService() façade. This
function is like the one in the XMLRPC Parser class with two differences. First, it
does not take a remote method name as a parameter because that concept does not
exist for REST. Second, the method expects the keyword of GET or POST to specify
which HTTP method we want to use for the REST call.

In summary, the sequence of events that this class executes is:

1.	 Pass an array of parameters to makeParameterString to get a URL encoded
query string.

2.	 Pass the results of that to either createGetRequest or createPostRequest
depending on the request type we want. This will give us a full request with
the proper headers.

3.	 Pass the full request, headers and all, to the send function from before. This
will give us the REST response from the service.

Testing Our REST Parser Class
To test our REST functions, we can set up a basic REST service on our web server
environment. This will demonstrate how all the functions work together. The service
that we will create will basically take an incoming request, report what method was
used to make the request, and report any POST or GET parameters that were sent with
the request.

Create a file with the following chunk of code:

Method <?= $_SERVER['REQUEST_METHOD'] ?>
<p>
POST Variables:

<?php foreach ($_POST as $key => $value) { ?>
 Key: <?= $key ?> | Value: <?= $value ?>

<?php } ?>
</p>
<p>
GET Variables:

<?php foreach ($_GET as $key => $value) { ?>
 Key: <?= $key ?> | Value: <?= $value ?>

<?php } ?>
</p>

Name this file RESTService.php and place it in an area on your web server that is
accessible from a web browser.

Buy it on Amazon

[46]

The file displays the method that was used to access the file, using the $_SERVER
global array. It then loops through the global $_GET and $_POST arrays, and echos
out any items in those arrays.

An example REST client page named exampleREST.php is in the examples code that
will interact with this service. Using the REST Parser class we created, we put some
test code at the top of the page, like we did to test the XML-RPC class. This code
will instantiate the Parser and create two arrays. We are going to use the first array
for the call to the service using POST, and the second array for the call to the service
using GET.

<?php

 $params1 = array("One" => 1, "Two" => "2 and 2 = 4");	
 $params2 = array("Three" => 3, "Four" => "4 o'clock");
 $parser = new RESTParser();

 echo $parser->callService($params1, 'localhost', '/mashups/ch1/
 RESTService.php', 'POST');
 echo "<hr>";
 echo $parser->callService($params2, 'localhost', '/mashups /ch1/
 RESTService.php', 'GET');

 class RESTParser {
/* Rest of RESTParser Class */

In this code, variables ending with "1" are associated with the POST request and
anything ending with "2" are associated with the GET request. For brevity, we will
only take a look at the lines for one of the sets.

$params1 = array("One"=>1, "Two"=>"2 and 2 = 4");

The first thing this code does is create an array and assigns it to $params1.

Next, callService() is called, initiating the chain of events, it passes the arrays as
parameters for the REST request, the name of the server, the path to the service, and
the method that we wish to use. The returned data of callService() is whatever
the REST service returns. We just echo out the return value.

Like you did for the XML-RPC parser class, save this file in an area that is servable
by your web server. Hit this client page with your web browser.

Chapter 2

[47]

You should see the following:

The horizontal rule separates the two REST requests. The top half is the result of
the REST call that used createPostRequest(). The service looped through the
POST variables and outputted them. There were no GET variables, so that section is
blank. In the bottom half, the opposite happened. We used createGetRequest()
with a completely different set of variables. The service found GET parameters and
outputted those, but did not find any POST variables to output.

At last we have a tool to call and store REST services. It's time to process REST
results into something that we can use and manipulate within PHP.

Processing a REST Response
If the response is one simple, unformatted text string, we can easily manipulate
it using the variable that we declared and used to store the return value of
sendResult(). However, REST APIs will rarely send us something that simple.
Instead, they are likely to send us a response in XML. We will need to use PHP to
load the XML file, go through it, extract the data that we need, and convert them into
PHP variables.

Buy it on Amazon

[48]

There are a few parsers in PHP's arsenal that can be used to process raw XML. They
can be classified as either SAX-based parsers or DOM-based parsers. SAX, which
stands for Simple API for XML, is event-based. The parser starts at the beginning of
an XML stream and executes callback functions when certain events occur like the
start of an element, the start of an element value stream, or the start of the end of an
element. Callback functions are functions that are automatically called when certain
events take place.

When the parser passes any point in the XML document, it cannot revisit that point.
If it wishes to do so, it would have to reload the entire document.

DOM, Document Object Model processing, works quite differently. The parser
loads and stores the entire XML document in memory. It models the document as
a hierarchy of elements, and because of this, DOM-based parsers are also known as
tree-based parsers. We can manipulate and extract information from anywhere in the
document using certain PHP functions. While this gives us more flexibility, the act of
holding an XML document in memory is resource intensive. Also, in order to extract
information from a DOM, PHP has to do some sort of searching within the document
before anything is done with the data. In SAX, the search overhead is not there.
The parser just needs to go through the document and gives the data to some other
function to process. Because of these factors, DOM-based parsing is considered to be
slower and more resource hungry than SAX-based parsing.

That's not to say that tree-based processing does not have its place. The ability to
search a document at any time without the overhead of reloading is invaluable,
and sooner or later in your career, you will need it. Which ever method you use for
a project is entirely dependent on your application and how you architecture it. In
future projects, we will explore PHP and DOM parsing. For now, we will use PHP's
implementation of SAX in this project.

The SAX functions are documented at http://www.php.net/manual/en/ref.xml.
php. These functions have the honor of being the first group of functions created to
parse XML, and have been around since PHP 3. Enabled by default, you do not have
to recompile PHP to use them, unless your build of PHP explicitly disabled them
with the –disable-xml switch at compile time.

Basic Walkthrough with PHP and SAX
While there are a lot of functions in PHP's XML family, basic SAX processing with
PHP can be done in just six steps:

1.	 Create a SAX parser.
2.	 If any parser options are necessary, set them.

Chapter 2

[49]

3.	 Declare the callback function that will be called when a start of an element
is encountered, and the function that will be called when an end element
is encountered.

4.	 Declare the callback function that will be called when character data, or data
in between elements, is encountered.

5.	 Feed the document into the parser.
6.	 Release the parser.

Let's take a look at this process with a very simple script. This script is named
exampleSAX.php.

<?php
 $xml = "<Pet>" .

 " <Name id='4323412'>Avi</Name>" .
 " <Species>African Grey</Species>" .
 " <Gender>F</Gender>" .
 "</Pet>";
 $parser = xml_parser_create();
 xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, 0);
 xml_parser_set_option($parser, XML_OPTION_TARGET_ENCODING,

 "UTF-8");
 xml_set_element_handler($parser, "startElement", "endElement");
 xml_set_character_data_handler($parser, "characterData");
 xml_parse($parser, $xml);

 function startElement($parser, $name, $attributes) {
 echo «Start: « . $name . «
»;

 foreach ($attributes as $key => $value) {
 echo «Attribute: « . $key . « :: « . $value . «
»;

}
}

 function endElement($parser, $name) {
 echo «End:» . $name . «
»;
 }

 function characterData($parser, $data) {
 echo «Data:» . $data . «
»;

 }
?>

At the beginning of this script, we set up a simulated XML document chunk and set
it to the variable $xml. After that, we can begin the SAX parsing process.

Buy it on Amazon

[50]

Using the PHP's XML Functions
The very first thing we have to do is create a parser using the function
xml_parser_create(). This function returns a SAX parser for us that we will use
throughout this process.

$parser = xml_parser_create();

To set any parser options, we use xml_parser_set_option().

xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, 0);

There are four options that can be changed:

Option Value Description
XML_OPTION_CASE_FOLDING 1 or 0 Controls whether the element name

is passed to the callback function.
Enabled (1) by default.

XML_OPTION_SKIP_TAGSTART Integer Specifies how many characters should
be skipped at the beginning of a tag.
Zero by default.

XML_OPTION_SKIP_WHITE 1 or 0 Controls whether data with only
whitespace are skipped.
Disabled (0) by default.

XML_OPTION_TARGET_ENCODING String Specifies which encoding is to be
used. Supported are ISO-8859-1,
US-ASCII and UTF-8.
By default, it is whatever encoding
was used to create the parser.

The middle two have exhibited some inconsistent behavior between PHP 4 and 5
and the UNIX and Windows version of PHP. Use them with caution.

The first, and last, however, are stable and it will not be uncommon for you to run
into situations where you need them. We should take a quick look at them. We will
see later how the start element and end element callback functions get passed the
name of the element. We will need to test the value of the elements in the callback
functions. PHP's SAX parser does case folding on the names of the elements when
they are passed to the functions. In other words, the letter case of the element name
gets passed as uppercase to the callback function. XML, however, is case sensitive.
This default behavior of PHP is a little controversial, as PHP treats the element
name as all uppercase when XML considers elementName and ELEMENTNAME to
be different. Some regard turning off case folding in the parser to be good
coding practice.

Chapter 2

[51]

The other important option is the target encoding option. By default, the SAX parser
will set the encoding to whatever the script is when xml_create_parser() is called.
If you are processing an XML document whose encoding is different, you will need
to use XML_OPTION_TARGET_ENCODING to switch it. Pass the encoding that you wish
to set as the third parameter of xml_parser_set_option().

xml_parser_set_option($parser, XML_OPTION_TARGET_ENCODING,
"UTF-8");

After we change the options, we can set the callback functions for the start and end
elements. We do this with the function xml_set_element_handler().

xml_set_element_handler($parser, "startElement", "endElement");

This function takes three parameters. The first is the parser we created. The
second is the name of the start element callback function, and the third is the end
element callback function. More notes about PHP callbacks can be found at
http://uk.php.net/callback.

Finally, we need to set one more callback function before we start parsing. We need
to specify the function that will be called when the parser encounters character data.
We do this with xml_set_character_data_handler().

xml_set_character_data_handler($parser, "characterData");

This function works very similar to xml_set_element_handler. It takes the parser
as the first parameter, and the name of the callback function in the second parameter.

In our example script, we have also defined the callback functions startElement(),
endElement(), and characterData(). We will take a look at those shortly. As long
as they are defined and available in the script, you can start the parsing of the XML
with xml_parse().

xml_parse($parser, $xml);

Pass the parser and the XML as the parameters to xml_parse().

Setting up the Callback Functions
In the callback functions we set up, they simply display the name of the element,
any attributes, and any data that exists in the element. The functions get these values
from parameters passed to it by PHP, when the callback functions are called. If
you are familiar with object-oriented programming, think of callback functions as
implementing an interface. When we create our callback function, we must declare
these parameters in our method signature. Let's take a look at each callback function
we have defined and how they use the individual parameters.

Buy it on Amazon

[52]

Our start element callback simply displays the element name and loops through any
attributes the element has.

function startElement($parser, $name, $attributes) {
 echo "Start: " . $name . "
";

foreach ($attributes as $key => $value) {
 echo "Attribute: " . $key . " :: " . $value . "
";

}
}

PHP passes the parser, the name of the element, and the attributes as an array to
the start element callback. If the element has any attributes, they are passed to the
callback as an associative array in the third parameter. Here, we simply loop through
the array.

The end element callback has two parameters passed to it—the parser and, again, the
name of the element.

function endElement($parser, $name) {
	 echo "End:" . $name . "
";
}

Our last callback function is the function that's called whenever the parser
encounters character data, that is, data that is not an element.

function characterData($parser, $data) {
echo "Data:" . $data . "
";

}

The parser is passed as the first parameter and the value of the data is passed as the
second. Again we simply echo out the data.

Seeing the Callbacks in Action
Now it's time to see the script in action and see how the callback functions are being
called. Save the script in an area servable by your web server. Hit the script with a
web browser.

Chapter 2

[53]

You should see this:

As we walk through this, recollect the structure of the XML document that we
passed. There is a Pet element, three elements (Name, Species, Gender) nested inside
it, all of them with data.

The events and function execution are:

1.	 The Pet element is encountered, triggering startElement().
2.	 Character data in the form of the whitespace after Pet executes

characterData().The echo statement of characterData is simply blank.
3.	 The Name element is encountered, triggering startElement().The element

has attributes, the $attributes value of the start element callback has
an array.

4.	 The foreach loop inside startElement() is executed, and the value of the
Name element's attributes are looped through and echoed.

5.	 The value of Name appears courtesy of characterData() since this time, the
character data is not just whitespace.

6.	 With the closing of the Name element, endElement() is called.
7.	 The startElement(), characterData(), endElement() sequence is

executed again for the Species and Gender elements.
8.	 Finally, endElement() is called when the Pet element is closed.

www.allitebooks.com

http://www.allitebooks.org

Buy it on Amazon

[54]

Creating a SAX Parser Class
The important thing to note about SAX is that when an opening element, character
data, or a closing element is encountered, one and only one function is activated.
This holds several implications:

1.	 When the parser goes through a document, we must store values that we
care about in a more "global" variable. It cannot be stored in the callback
function's local variables because they would disappear after the function
is executed.

2.	 We must detect which "global" variable to use as storage. The only way to do
this is to inspect the element name when the start element callback function
is called. We can also detect element attributes when we inspect the
element name.

3.	 As we must compare the name of the element in the start element callback,
any SAX parser is highly customized to the XML document that it parses.
Any changes to the XML document are likely to result in needed changes
to any SAX parser we create. We should do our best to minimize the coding
maintenance that is necessary because the parser and XML document is so
tightly coupled.

Creating a parser class to handle our SAX processing is an easy and efficient way to
handle our needs and work with SAX's event-oriented parsing method. Moreover,
with PHP 5's new object-oriented features, we can design an architecture that gives
us a bit of flexibility.

Instead of a single parser class, we are really going to create two classes. The first is
an abstract class. The constructor will declare the parser, set the options, and execute
the parsing. The start element, end element, and character data callback functions
need to be customized to an individual XML document, so they will be abstract in
this class.

 Our second class will extend this abstract class. The second class will implement
the parent's abstract classes with its own specialized code. The properties of this
class are the values that we wish to extract from the XML document. This allows us
to separate code that is specific to an XML document from code that can be generic.
If our application needs to parse more XML documents, we do not have to rewrite
the generic code. We simply need to extend the abstract class, and the loading and
setup code will be there for us. While this sounds complex, we can refactor our
walkthrough code from earlier.

abstract class SAXParser {
 private $parser;
 protected $tagName = "";

Chapter 2

[55]

 abstract public function startElement($parser, $name, $attributes);
 abstract public function endElement($parser, $name);
 abstract public function characterData($parser, $data);

 protected parse($xml) {
 xml_parse($this->parser, $xml);
 }	

 public function __construct($xml) {
 $this->parser = xml_parser_create();
 xml_set_object($this->parser, $this);
 xml_parser_set_option($this->parser, XML_OPTION_CASE_FOLDING, 0);
 xml_set_element_handler($this->parser, "startElement",
 "endElement");
 xml_set_character_data_handler($this->parser, "characterData");
 }	

}

class PetParser extends SAXParser {

 public $petName;
 public $petId;

 public function startElement($parser, $name, $attributes) {
 if ($name == "Name") {
 $this->tagName = $name;	
 $this->petId = $attributes['id'];
 }
 }

 public function characterData($parser, $data) {
 if ($this->tagName == "Name") {
 $this->petName = $data;	
 }
 }

 Public function endElement($parser, $name) {
 $this->tagName = "";
 }

}

Examining the Classes
Our abstract class is called SAXParser. Any parser classes we create will implement
SAXParser. SAXParser has two properties: tagName and parser. parser is the XML
parser that PHP creates with xml_parser_create. By putting it as an object, we can
separate out the creation and setup of the parser from the actual XML parsing. We
will see that later when we look at the constructor and the parse abstract method.
tagName is a container that we use to store and inspect element names. When we are

Buy it on Amazon

[56]

interested in an element, the start element callback will store the name of the element
in this property. When the character data callback detects a value in here, we know
this is an element we are interested in, and can store the value somewhere. We will
see this in action when we step through the parsing process.

SAXParser then declares the start element, end element, and character data callbacks
as abstract methods. As these callbacks hold logic specific to the XML document, this
is where the business logic separation occurs. The parser will still call the callbacks in
the same way as the example code. Therefore, like the walkthrough code, we have to
define these functions with the same method signature as usual.

We create another abstract method called parse that will fire off the XML parsing
sequence. It takes one argument, the XML, and uses the object's parser to call
xml_parse. The last function in SAXParser is the constructor.

The constructor of this object sets up the parser. It creates the parser, puts it in the
$parser object property, sets options, sets handlers, and parses just like in the
example. The only difference is that we have to tell PHP that the parser is being used
in an object. We do it with xml_set_object.

xml_set_object($this->parser, $this);

This function sets the object context of the parser. The first argument is the parser.
The second is to which object the parser belongs. As we are creating and using the
parser in the same object, pass $this into the second parameter.

xml_set_object is absolutely critical when you are creating parsers
in a PHP object. Otherwise, PHP will not be able to find the callback
functions that you specified, and you will get an error.

The next class is PetParser, which is the document-specific implementation of our
parser. All SAXParser implementers will follow the class' general structure. The
properties of this class are the values that are of interest to us in the XML document.
In this example, we are only interested in the name of the pet and the ID number, so
we create properties for them.

The methods in this class are the abstract methods from SAXParser. We start with
the start element callback method, startElement. When the PHP parser goes
through the document, it will call startElement. This method is basically a series
of if statements that examine the name of the element, represented by $name, that
triggered the call. If it is an element that we are interested in, we store the name
of the element, in SAXParser's tagName property. Next, when the parser calls the
character data callback, the first thing it does is check the tagName property. If the
value is something we are interested in, we store it in the property's method that we
declared. Finally, the end element callback wipes the value of tagName.

Chapter 2

[57]

Let's apply our example XML document to this walkthrough.

1.	 When the first element, Pet, is encountered, startElement() is called.
However, there is no if statement to catch it, so startElement() executes
without doing anything.

2.	 Next, characterData() is called when the parser reaches the end of <Pet>
in the XML document.

3.	 It examines tagName, which is still empty, and does nothing.
4.	 endElement() sets tagName equal to a blank string, even though it already

is blank.
5.	 Next, the PHP parser reaches the Name element. Again, startElement() is

triggered. This time, however, an if statement catches $name. $name is stored
in the tagName property.

6.	 As the Name element has an attribute that we are interested in, id, we also
store the value of that attribute in the class' petId property. If we didn't care
about any attributes, we could just close off the if statement.

7.	 This time, when characterData() is called, it sees that there is a value in
tagName. More specifically, the if statement sees that we are inside the
Name element.

8.	 This is a value we are interested in, so we store it in the class'
petName property.

9.	 The end element callback is then called, which wipes tagName. This causes
the whole process to be skipped if the next element encountered is one that
we are not interested in.

Using and Testing the Class
Using this class, we only need to do two things to extract data from an XML
document. First, we feed the XML into the constructor. To actually use the data
extracted, we access the properties of the implementing class. To see this in action,
open the file named exampleSAXAbstractClass.php in the examples code. At
the top of the file is some example usage code followed by the SAXParser and
PetParser classes.

<?php
 $xml = "<Pet>" .
 "<Name id='4323412'>Avi</Name>" .
 "<Species>African Grey</Species>" .
 "<Gender>F</Gender>" .
 "</Pet>";

 $pp = new PetParser();

Buy it on Amazon

[58]

 $pp->parse($xml);
 echo $pp->petName . «
»;
 echo $pp->petId;

 abstract class SAXParser {

 /* Rest of the SAXParser class and PetParser class */

Place the file on a servable area on your web server and pull up the page. You will
see this in your web browser:

This example creates a new PetParser, the implementing class, and feeds it the
example XML. As the execution code is mainly in PetParser's constructor, it does its
thing and extracts the information that we're looking for, behind the scenes. We echo
out that information by specifying PetParser's properties.

Using abstract classes and a little discipline, we have put an elegant implementation
into a process that could have easily turned procedural. This design lets us reuse the
code we need to create the parser and execute, scales easily to however many XML
documents our application needs to access, and allows us to easily maintain the
business logic code.

We now have a set of tools and know-how to create this mashup.

We know how to use XML-RPC services, and created a generic utility class to
make XML-RPC calls for us.
We know how to use REST services, and created a generic utility class to
make REST calls.

It's time to look at the APIs we are going to use for our mashup.

Internet UPC Database API
The Internet UPC Database is the first part of our mashup. This site, located at
http://www.upcdatabase.com, is an interesting project. This site is a library of
Universal Product Codes. Users can enter UPC numbers to see what the product

•

•

Chapter 2

[59]

is, and they can contribute to the site by adding UPC numbers and product
descriptions. There are commercial vendors that sell this information to people.
However, being an open, collaborative project, the Internet UPC Database gives this
information away for free. Other sites have arisen to compete with the Database, but
I personally like this site because it's one of, if not the, largest and oldest sites of its
kind, the content is explicitly issued under a Creative Commons License (Creative
Commons Attribution-ShareAlike 2.5), and most importantly, the site offers a
XML-RPC service to interact with its database.

The XML-RPC service is free and open. There is no need to get a developer's key or
authenticate against. The API's home page is located at http://www.upcdatabase.
com/xmlrpc.asp. To get a list of available functions, we simply request a call
named help from the service. To use the XML-RPC class we created, we can use the
following code:

$parser = new XMLRPCParser();
$returnedData = $parser->callService('help',
 null,
 'www.upcdatabase.com',
 '/rpc',
 80);

$parser->processXMLRPCResponse($returnedData);

A working version named UPCDatabaseHelp.php is in the examples code. You can
place this file on your webserver. Hit the page to see the help file from the database.
This will return a list of available calls, required parameters, and returned value from
the service. This API is not very complex. There are only a handful of calls, and even
a smaller subset is needed to do what we want it to do.

Help!
The Internet UPC Database's naming of help deviates from the norm a
little bit. Instead of help, most XML-RPC services support a call named
system.listMethods, which serves the same purpose. If you have
trouble finding documentation for an XML-RPC service, try calling
system.listMethods against the service.
There are two calls in this API that we should focus our attention on:
lookupEAN and lookupUPC. One queries the database and returns
product information based on EAN and one queries based on UPC.

Buy it on Amazon

[60]

Before we go further, we need to know a little bit about the "business
logic" of what we are dealing with. We need to clarify the difference
between a Universal Product Code, UPC, and an European Article
Number, otherwise known as EAN. UPC is what most people are
familiar with, especially in the United States. It is the twelve digit number
underneath bar codes on products. EAN-13 is a newer version of the UPC.
It has thirteen digits. EANs have been in use in Europe for years and have
now been adopted world-wide. UPC is starting to disappear, but we will
still encounter them in the real world, and the term serves as a generic
reference for these types of numbers in the cultural lexicon. However, we
will have to remember the technical difference later, when we are given a
twelve-digit number by our user versus a thirteen-digit number.

Both return a struct to us, which xmlrpc_decode turns into an associative array. We
can see what information is returned to us by calling the service with a known EAN.

$parser = new XMLRPCParser();
$returnedData = $parser->callService('lookupEAN',
 '0737628087501',
 'www.upcdatabase.com',
 '/rpc',
 80);

$parser->processXMLRPCResponse($returnedData);

Our generic echo code in processXMLRPCResponse will display the array contents in
our browser.

Array Key Example Value Description
upc "737628087501" The UPC code of this product.
pendingUpdates 0 The number of pending updates to this

product in the database, if any.
isCoupon false (Boolean) If this UPC/EAN is a coupon.
ean "0737628087501" The EAN of this product.
issuerCountryCode "us" The country code of the UPC/EAN
Description "Thai Kitchen Noodle

Cart Single Serve Size
Thai Peanut Instant Rice
Noodles & Sauce"

The product description.

found true (Boolean) If the entry was found in the database.
size "2.25 oz (64 g)" The size or weight of the product.

Chapter 2

[61]

Array Key Example Value Description
message "Database entry found" A message response from the service.
issuerCountry "United States" Where this product comes from.
lastModified "2006-04-17 21:42:26" The last time this product was modified

in the Database. A string, not an
ISO8601 date.

If the UPC/EAN is valid, but not found in the Database, only two of the items are
returned. found will be false, and message will be, "No database entry found". We
can use either to test the results.

Note that the lookup returns both a UPC and a EAN. This is a subtle feature of
the Internet UPC Database. For every search, it translates UPCs and EANs. This
translation is crucial for our mashup. When we look closer at Amazon Web Services,
we will see that it can grab a product directly with the EAN if you are searching any
Amazon store other than Amazon US. If you are searching Amazon US, you must
provide a UPC. EAN searches are not available for the US even though EANs are
popping up throughout shelves in the United States. Conversely, if you wind up
with a UPC number and want to search for it on Amazon UK, you must convert it
to EAN.

The Internet UPC Database API is a simple API based on a simple web service
protocol. Now let's take a look at a much more complex API, Amazon Web Services.

Amazon API
The Amazon Web Services (http://www.amazon.com/aws) is a whole family of web
services for a variety of Amazon products. Among the products Amazon offers is a
virtual computing service, a digital storage service, and a messaging queue service
(and you thought they just sold DVDs and books…). Some of their services are
fee-based like their historical pricing data, while others, like their Alexa Web Service,
are free or free for a certain number of requests. Not surprisingly, Amazon has a free
web service for their traditional ecommerce products like books and DVDs, called
their Amazon E-Commerce Service (ECS).

Architecturally, the web services are available as either REST or SOAP. According
to Amazon's Chief Web Services Evangelist, Jeff Barr, 85% of their web service
developers use their REST services. Later, we will look at SOAP for another mashup,
but for now, we will join that 85% and use the simpler REST service.

Buy it on Amazon

[62]

The ECS is what we will be looking at. Before we get started, you will need to sign
up for an Access Key ID with Amazon. The ID itself is free and can be obtained
by registering at https://aws-portal.amazon.com/gp/aws/developer/
registration/index.htm. You will need to pass this key as one of your parameters
of your Amazon request whenever you use any of Amazon's Web Services.

A Tour of ECS
The Amazon E-Commerce Service is really huge. Printed out, the developer
documentation is over 450 pages long. ECS has a web service function, which they
call operations (and we will keep this term in reference to them) for everything
that you can do on the real Amazon.com. First and foremost, for more details on
anything covered here, you can find the ECS documentation at http://developer.
amazonwebservices.com/connect/kbcategory.jspa?categoryID=5. There
is a whole collection of references, how-to guides, and best-practices papers
collected there. The current and previous versions of the API documentation is
located at http://developer.amazonwebservices.com/connect/kbcategory.
jspa?categoryID=19. At the time of writing this book, the current version is dated
August 30, 2007. You can quite literally build an Amazon clone using ECS. Entire
books have been written about ECS, and they're quite lengthy, too. For our little
mashup, we're going to focus on just a few features. However, it's worth taking a
look at what other things you can do with ECS:

Searching For Products
ECS has an extensive search feature. Product searches are broken down into
individual indexes. These indexes are for categories of products—books,
DVDs, electronics, sporting goods, etc. There are also composite indexes that
combine two or more indexes. For example, "video'' is actually a combination
of DVD and VHS indexes. For each search, there are a plethora of search
parameters you can provide. Parameters like manufacturer, price range, and
condition will allow you to fine tune a search.
Extensive Information About Products
Once you find the product you are looking for, you can retrieve an incredible
amount of information about that product. Basic information about a
product, like price, title, and description are just the beginning. Almost
everything that you see on a product page on Amazon can be returned
via ECS, for example, images, reviews, Listmania, sales rankings, and
accessories. Albums can also return a list of tracks in the albums.

•

•

Chapter 2

[63]

Shopping Carts Through Web Services
Shopping carts for ecommerce sites are not difficult to create, but they can
be tedious. Luckily, ECS has a complete section to create your own Amazon
shopping cart. Using ECS, you can create shopping carts, add and delete
items, and pass it through to the checkout.
XSL Support
ECS's REST response is in XML format. The developer is required to properly
process and present the data. This process is made easier by the support of
XSLT. One of the parameters you can supply is the URL of an XSLT template.
ECS will automatically apply the XSLT template to the XML results before it
returns it to you.
Retrieve Customer Information
ECS has a special mode to search for customers by name or email address.
No private information, like addresses or credit card information can be
returned. However, you can get any public information, like reviews and
wish lists.
Retrieve Seller Information
Conversely, you can get information about Amazon Marketplace Sellers or
Merchants. Again, private information is not available, but you can retrieve
any information that you see on Amazon.com. You can also retrieve a list of
items they are currently selling.
Restaurant Information
Admittedly, this doesn't seem to fit into Amazon's traditional offerings.
However, you can look up restaurant information through ECS. The number
of cities is limited, but you can search by price ranges, neighborhoods,
and cuisine.

Anatomy of an ECS REST Request
There are two things you need to know about making an ECS request. The first is the
location of the service. The second are the parameters in each request. Each request
comprises some basic global parameters enclose in brackets and parameters that are
specific to the operation. We will take a look at the required global parameters in
this section. Shortly, when we begin to mashup, we will see some of the operation-
specific parameters in action, when we put the operations to use, and look them up
in the ECS documentation.

Location of Service
The URL of the service we wish to call is entirely dependent on which Amazon
location we want to use.

•

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Buy it on Amazon

[64]

Amazon Locale REST Service URL
United States http://webservices.amazon.com/onca/xml

United Kingdom http://webservices.amazon.co.uk/onca/xml

Germany http://webservices.amazon.de/onca/xml

Japan http://webservices.amazon.co.jp/onca/xml

France http://webservices.amazon.fr/onca/xml

Canada http://webservices.amazon.ca/onca/xml

Depending on which Amazon store you want to write your application against, these
are the base URLs we will use. You will append your parameters to the end
of this URL.

Each function will have its own set of parameters you need to pass. However, there
are a few global parameters that apply to every ECS transaction. Some of these are
required, some of these are optional. Before we muck with the innards of some ECS
transactions, we should look at these global parameters:

Parameter Name Valid Values Description
Required Parameters
Service "AWSECommerceService" Specifies that you want to use the

ECS service.
SubscriptionID Your Amazon Access Key

ID
Identifies your application. This is
the ID that you registered for earlier.

Operation A valid operation name Names the ECS operation you wish
to perform.

Optional Parameters
AssociateTag Your Amazon Associate ID Used to identify you for the Amazon

Affiliate Program.
ResponseGroup See Documentation Controls what information is

returned by the service. See an
operation's documentation for
allowed values.

Validate "True" For debugging purposes, used to
validate if a request is valid and
well structured without actually
executing it.

Chapter 2

[65]

For example, to search for MP3 Players on Amazon U.S., your REST request URL
could look like this:

http://webservices.amazon.com/onca/xml
?Service=AWSECommerceService
&������������������������������ SubscriptionID=(Your Key Here)
&Operation=ItemSearch
&AssociateTag=(Your Tag Here)
&ResponseGroup=Large
&searchIndex=Blended

 &Keywords=MP3%20Players

In this example, a search for items is triggered by the ItemSearch value for the
Operation parameter. Everything else is required for all transactions, except the last
two, searchIndex and keywords, which are required because of ItemSearch.

In its most basic form, mashups against ECS is basically a series of similarly-formatted
REST requests made against ECS. The biggest challenge will be to navigate through all
the available features.

Mashing Up
We now have a little more detail about how the Internet UPC Database and ECS
work beyond just knowing that one is an XML-RPC service and one is a REST
service. We can start mashing up.

Our mashup will use ECS and the UPC Database services to do the following:

1.	 A form will take the UPC, short UPC, or EAN to lookup the full UPC at
Internet UPC Database.

2.	 Find the price and product information using Amazon's ECS. Display this on
our site.

3.	 Offer the visitor the chance to buy this item.
4.	 If they wish to buy it, add the item to a shopping cart using ECS.
5. Pass the user to Amazon.com for checkout.

The following code listings are included in the example code, and, provided that you
substitute your own Amazon Access Key, is a functioning version of the mashup. For
the sake of brevity, I will include each entire script page and comment on them as
we go.

Buy it on Amazon

[66]

Product Lookups
We will start with a simple form and action page. The form accepts a UPC code and
has a pull-down menu. This pull-down menu contains a few categories available in
Amazon.com, and just so happens that their values are SearchIndexes of Amazon
ECS. This form is named UPCForm.php in the example code.

<html>
 <head>
 <title>UPC Lookup Form</title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8" />
 </head>
 <body>

 <form action"UPCAction.php" method="pos">
	 <p>
 Enter UPC/EAN Number Here: <input type"text" size="20"
 name"numberSubmitted" />

 Search Against:
 <select name="SearchIndex">
 		 <option value="Apparel">Apparel</option>
 		 <option value="Video">DVDs/VHS</option>
 		 <option value="Electronics">Electronics</option>
 </select>
 </p>
 <input type="submit" />
 </form>

 </body>
</html>

This form posts to a page called UPCAction.php.

<?php

 require_once('classes/XMLRPCParser.php');
 require_once('classes/RESTParser.php');
 require_once('classes/SAXParser.php');
 require_once('classes/AmazonSAXParser.php');

Here, we are simply including copies of the REST, SAX, and XML-RPC parsers that
we created earlier and also an Amazon-specific implementation of the SAXParser
class. I have organized them by placing them in a subdirectory called classes, but
you can organize them however you see fit.

 $XMLRPCparser = new XMLRPCParser();
 $RESTParser = new RESTParser();
 $amazonXMLParser = new AmazonSAXParser();
 $submitted = trim($_POST['numberSubmitted']);

Chapter 2

[67]

We do some object creation here. XML-RPC, REST, and Amazon XML parsers are
created. The incoming UPC code is in a field named numberSubmitted. As we'll be
checking and using this later, we set it to a local variable named $submitted.

switch ($submitted) {
 case strlen($submitted) == 12:
 $upcDbCall = "lookupUPC";
 break;
 case strlen($submitted) == 13:
 $upcDbCall = "lookupEAN";
 break;
 default:
 $upcDbCall = '';

}

We now set up our first call to the Internet UPC Database service. The service has
two available calls. lookupUPC is used to look up product information based on UPC
codes. lookupEAN is used to look up product information based on EAN. If a 12-digit
code was submitted, we will assume that it was a UPC code and use lookupUPC.
If a 13-digit code was submitted, we will assume that it was a EAN code and use
lookupEAN. This switch statement detects the length of the submitted code and
stores the name of the service that we will use in the variable $upcDbCall.

$returnedXMLRPC = $XMLRPCparser->callService($upcDbCall,
 $submitted,
 'www.upcdatabase.com',
 '/rpc',
 80);

After the setup, we call the UPC Database web service, passing the name of the call
that we wish to use (lookupEAN or lookupUPC) and the submitted code. The rest of
the parameters, domain, path, and port, are required values for the UPC Database
service. If you recall, the callService method returns the values that the Database
service in the form of an array. We catch this array in $returnedXMLRPC. On a
successful lookup, one of the elements returned, regardless of whether we used
lookupEAN or lookupUPC, is an element named upc, which is the UPC code of
the item.

$restParams = array();
$restParams['Service'] = "AWSECommerceService";
$restParams['AWSAccessKeyId'] = 'Your Amazon Access ID Key';
$restParams['Operation'] = 'ItemLookup';
$restParams['XMLEscaping'] = 'Single';
$restParams['IdType'] = 'UPC';
$restParams['ResponseGroup'] = 'Large';
$restParams['ItemId'] = $returnedXMLRPC['upc'];
$restParams['SearchIndex'] = $_POST['SearchIndex'];

Buy it on Amazon

[68]

Next, we set up the call to Amazon ECS. The REST class we set up, takes an array
and prepares a string of URL query parameters with it. These lines set the values for
the ECS call. Let's take a closer look at some of these parameters.

The first important one is your Amazon Web Services Access Key ID. This is one of
the global ones that need to be passed.

After that is the Operation parameter. The ECS API Reference's Operations section
groups operations by those that are related to customer information, items, shopping
carts, and seller information. In the items operations, you can either search for items
given a set of criteria using the ItemSearch operation, or you can use a search key
to look up a specific item using the ItemLookup operation. The latter will give you
specific information about the product, like price and Amazon.com URLs. To use
ItemLookup, though, you need a unique identifier, and a UPC code is sufficient. If
you don't have an identifier, you generally would do an ItemSearch first, and then
use that information for an ItemLookup. However, because we have a UPC code, we
can directly call ItemLookup.

Now we have the operation, we can check the ECS API Reference Guide to see what
other parameters we need besides the global ones. According to the API, to do an
item lookup, we need to tell it what sort of unique identifier we're giving it in the
IdType parameter. In our case, it is a UPC code. We need to pass the identifier in a
parameter named ItemId, and we also need to tell it what SearchIndex to use. We
found the UPC code from the call to the UPC Database service, so we use that to set
ItemId. The SearchIndex was selected by the user in the form. Now this parameters
array is set up, we can use it to call RESTParser's callService() method to execute
the Amazon ECS.

$amazonResponse = $RESTParser->callService($restParams, 'webservices.
amazon.com', '/onca/xml', 'GET');
$amazonXMLParser->parse($amazonResponse);

We take the result of that and give it to our Amazon XML Parser. Remember the
Amazon XML Parser is the parser specific to the XML response given by Amazon's
ECS. We will take a look at how that parser is constructed, and the XML response
of Amazon's ItemLookup after we look at this page. However, for now, as we
walkthrough the rest of this page, just note the values of that XML response are
stored as properties in the Amazon XML Parser class. We access these properties as
we enter in the HTML section of the script.

?>
<html>
 <head><title>UPC Action</title></head>
 <body>
 <?php
 if (is_array($amazonXMLParser->errorMessage)) {
?>

Chapter 2

[69]

After setting up the HTML head and body tags, we do a check to see if the Amazon
response was an error. If it was, the errorMessage property of the Amazon XML
Parser will be an array that holds the error messages returned by ECS, and an
is_array() check will return true. This if statement essentially separates our
HTML page into two sections. The top section will only execute and display if
there was an ECS error, and the bottom section will only execute and display if the
operation found our search product.

<h1>Error</h1>
There were problems with your lookup:

 <?php foreach ($amazonXMLParser->errorMessage as $key => $value) { ?>
 <?= $value ?>	
 <?php } ?>

On an ECS error, loop through the errorMessage array in a foreach loop and
display them in an HTML unordered list.

<?php } else { ?>
 <h1>Found!</h1>
 <img src="<?= $amazonXMLParser->imageURL ?>" />
 <p>
 Price: <?= $amazonXMLParser->formattedPrice ?>
 </p>

If there was not an error, the product was found. One of the values returned by ECS
is a URL to the product image on Amazon. Another value returned is the Price.

 <a href="AmazonCartAdd.php?asin=<?= $amazonXMLParser->asin ?>">Add
 This To My Cart

Another value returned is an Amazon Standard Identification Number. While UPC
is fine for lookups, Amazon.com really likes an ASIN number for an identifier. This
is Amazon's self-generated identifier, and many other ECS operations require an
ASIN number. We will use this ASIN number to identify the item when we add it to
the shopping cart.

<?php } ?>
 Search Again
 </body>
 </html>

Finally, we close out the error check if statement and we close out the form. We add
a link back to the form for our users' convenience.

Buy it on Amazon

[70]

Handling Amazon's XML Responses
The action page relied heavily on the AmazonSAXParser to parse the Amazon
response. I asked you to take a leap of faith to just assume that the important
response values were stored as values in the Amazon SAX parser class. Your
patience and faith will be rewarded as we take a look at the Amazon ECS response
and how the Amazon SAX Parser interacts with it.

An ECS Lookup Response
In the example application, the Amazon response is captured in the variable
$amazonResponse. You can examine this variable to take a look at the entire
Amazon ECS response. It is also included in the example code in the file named
AmazonLookupResponse.xml. The response from a successful Amazon item
lookup can be quite lengthy. In this section, let's take a look at some snippets from
this response.

All sorts of information are returned. Everything you can see on a typical Amazon.
com product page is returned in the XML response, and even a lot of information
that you do not see. For example, while you only see one picture of the item on
Amazon.com, there are actually three pictures of the item—small, medium, and
large versions.

<SmallImage>
<URL>http://ec1.images-amazon.com/images/P/B0001EMM0Q.01._

 SCTHUMBZZZ_.jpg</URL>
 <Height Units="pixels">60</Height>
 <Width Units="pixels">29</Width>
</SmallImage>

This is the returned chunk of XML that contains information for the small image.
When we first looked at SAX, we used simple examples where the XML response
was short and off the root. This response from Amazon is much more like what
we will see in the real world—large with nesting. The URL element is what we are
looking for. However, we can't grab just the URL element. This URL element is a child
of SmallImage. However, other URL elements exist in the document. We need to grab
this specific on under SmallImage.

Another possibility is that the lookup failed. In this case, we would get an error from
Amazon. The elements and structure would be much different from a successful
lookup, but the key to focus on is the Errors element.

<Errors>
 <Error>
 <Code>AWS.MissingParameters</Code>
 <Message>Your request is missing required parameters. Required

Chapter 2

[71]

parameters include ItemId.</Message>
 </Error>
<Error>
<Code>AWS.MinimumParameterRequirement</Code>
<Message>Your request should have atleast 1 of the following
 parameters: ASIN, OfferListingId.</Message>
</Error>
</Errors>

Each error that is triggered is a child of the Errors element. Within each error is
a machine-friendly Code element and a human-readable Message element. This
is another situation you will often encounter—child elements that may differ in
number with each request. Not only are error codes a common application of this,
but also search results via web services.

Let's take a look at how the Amazon SAX Parser class is structured, and how we
tackle the two previous problems.

<?php

class AmazonSAXParser extends SAXParser {

 private $inError;
 private $inImage;

These two properties hold state information about where we are during the parsing
process. The first asks if we are in an Error element, and the second if we are in a
SmallImage element. These two properties are Booleans that are toggled during
parsing, and are not accessible outside of the object.

 public $errorMessage;
 public $asin;
 public $imageURL;
 public $formattedPrice;

These next properties are the values in the XML document that we are interested in.
They are the error messages, the ASIN code, the image URL, and a price which is
formatted with a currency symbol and decimal points.

 public $cartId;
 public $hmac;
 public $purchaseURL;

These three are also properties that we are interested in, but they will be used later
when we look at the shopping cart. I've grouped the properties in this class to keep
the application simple. However, it is perfectly legal to place these two properties
in its own separate class. This design would lead you down a road where each XML
Response, not just each application, would have its own class. From a performance
and code maintenance standpoint, though, this is certainly not a bad thing.

Buy it on Amazon

[72]

Now we start with the start element callback function.

 public function startElement($parser, $name, $attributes) {
 if ($name == "Errors") {
 $this->tagName = $name;
 $this->inError = true;
 $this->errorMessage = array();
 }

Let's start with the error checking. When an element with the name Errors is
encountered, we assume that it is indeed an Amazon error. We capture the name of
the element, and set the inError flag to true. In the character data callback function,
we will check this flag.

As there were one or more errors present, we initialize the errorMessage property
as an array. An array gives us the most flexibility to store multiple element values.
Back in the form action page, the is_array function in the if statement was
checking to see if errorMessage was turned into an array here.

 if ($name == "Message") {
 $this->tagName = $name;
 }

 if ($name == "SmallImage") {
 $this->tagName = $name;	
 $this->inImage = true;
 }

A similar method is used to capture the image URL. We are interested in the small
image. When we enter the SmallImage element, we set the inImage flag to true.

 if ($name == "URL") {
 $this->tagName = $name;	
 }

 if ($name == "ASIN") {
 $this->tagName = $name;
 }

 if ($name == "FormattedPrice") {
 $this->tagName = $name;	
 }

 if ($name == "CartId") {
 $this->tagName = $name;	
 }

 if ($name == "HMAC") {
 $this->tagName = $name;	
 }
 }

Chapter 2

[73]

The rest of these are elements of interest like in the SAX Parser example. We simply
note that we are interested in them by storing their name.

 public function characterData($parser, $data) {
 if ($this->inError == true && $this->tagName == "Message") {
 array_push($this->errorMessage, $data);
 }

We are now in the character data callback function. The first if statement captures
an error message. The actual human readable message is stored in the Message
element. The start element callback has already set the inError flag to true, and
when it encountered the Message element, it stores its name. We now know that this
is an error message. Thus, we place it in the errorMessage array.

 if ($this->tagName == "ASIN") {
 $this->asin = $data;	
 }

 if ($this->inImage == true && $this->tagName == "URL") {
 $this->imageURL = $data;
 }

Similarly, when the small image URL is found, we check to see if we are in the
SmallImage element, and then see if the tag name we are looking at is indeed the
URL. If it is, store it in the imageURL property.

 if ($this->tagName == "FormattedPrice") {
 $this->formattedPrice = $data;	
 }

 if ($this->tagName == "CartId") {
 $this->cartId = $data;	
 }

 if ($this->tagName == "HMAC") {
 $this->hmac = $data;
 }

Store the rest of the element values we are interested in.

 }

 public function endElement($parser, $name) {
 if ($this->tagName == "Errors") {
 $inError = false;
 }

 if ($this->tagName == "SmallImage") {
 $inImage = false;
 }

www.allitebooks.com

http://www.allitebooks.org

Buy it on Amazon

[74]

Once we encounter the end Errors and SmallImage element, we are no longer in
any sort of special state. We clear these two flags here in endElement.

 $this->tagName = "";

And we clear the tagName property to make sure the next element that we are not
interested in is not captured.

 }

}

?>

Our form is ready to be used at this point. If you load UPCForm.php into your web
browser, you can enter a UPC number and hit the submit button to see it in action.

If you enter a book's UPC number, they will probably not appear in the
Internet UPC Database call results. Books usually use a special UPC
number that begins with 978, followed by the ISBN number. This is a
special subset of UPC and EAN numbers that the Internet UPC Database
does not support.

Chapter 2

[75]

Your Own Amazon Cart
Simply looking up the product is a good test of our mashup. We can fancy up the
application a bit by allowing the user to actually purchase the item. In order to
purchase an item, we need to create a shopping cart to store the items. Normally, we
would have to either create our own shopping cart functionality or use a third party
package that probably has more features than we need for this simple application.
Luckily, Amazon ECS can manage a shopping cart for us with little coding.

Buy it on Amazon

[76]

There are five shopping cart operations in ECS:

CartAdd to add items to the shopping cart
CartClear to empty the cart
CartCreate to create the cart
CartGet to get the contents of the cart
CartModify to change items in the cart

All of the operations are very easy to use and well documented. We'll use two of
them—CartCreate and CartAdd to show a sample usage.

We will use these operations in the file named AmazonCartAdd.php. Using the
CartCreate operation, this script will create the cart for us and add the item to the
cart. If the user continues shopping, the script will skip the cart creation, and instead,
use CartAdd to add the item to the existing cart. To remember the cart, ECS requires
us to always pass two variables to the service. We will use sessions to hold these
variables across the application.

<?php
	 session_start();

require_once('classes/SAXParser.php');
require_once('classes/AmazonSAXParser.php');
require_once('classes/RESTParser.php');
$RESTParser = new RESTParser();
$amazonXMLParser = new AmazonSAXParser();
$restParams = array();
$restParams['Service'] = “AWSECommerceService";

 $restParams['AWSAccessKeyId'] = 'Your Amazon Access ID Key';

$restParams['XMLEscaping'] = 'Single';
	 $restParams['Item.1.ASIN'] = $_GET['asin'];
	 $restParams['Item.1.Quantity'] = '1';
?>

We begin the script just like before. We include some scripts and create some
parser objects. There are a few key differences. The first is the session_start call
to start a session. In our form action page earlier, we link to this page and pass the
ASIN to this page to uniquely identify the product. We use this for the parameter
Item.1.ASIN. This is the name of the parameter that tells ECS that our first item we
are adding is an ASIN, and the number itself. Lastly, we pass another parameter,
Item.1.Quantity, to tell ECS how many of the item we want to add.

<html>
<head></head>
<body>

•

•

•

•

•

Chapter 2

[77]

<h1>Added</h1>
<?php
 if (!$_SESSION['cartId']) {
 $restParams['Operation'] = 'CartCreate';
 $response = $RESTParser->callService(
 $restParams, 'webservices.amazon.com', '/onca/xml', 'GET');
 $amazonXMLParser->parse($response);
 $_SESSION['cartId'] = $amazonXMLParser->cartId;
 $_SESSION['hmac'] = $amazonXMLParser->hmac;
?>

This first half is where the shopping cart is created. There are two variables we
need to carry in the session to identify this user's cart—cartId and hmac. Both are
generated by Amazon and returned when a cart is created. In this first session, we
check to see if the cartID is already in session. If it is, we have stepped through this
block before, and we can skip this.

Otherwise, we identify the CartCreate as the operation we wish to call. We then call
this service. An XML response will be returned and parsed with our Amazon parser.
Recall in the Amazon SAX Parser class that we were specifically looking for two
elements, CartId and HMAC. These two are returned in the CartCreate operation's
XML response. We take these returned values and store them in session.

<p>
A shopping cart was created...

</p>
<p>

The CartId is <?= $amazonXMLParser->cartId ?>
	
The HMAC is <?= $amazonXMLParser->hmac ?>

</p>

To verify this, we echo out what the parser found. This block will only be displayed
to the user if a cart was indeed created.

<?php } else {	
$restParams['Operation'] = 'CartAdd';
$restParams['CartId'] = $_SESSION['cartId'];
$restParams['HMAC'] = $_SESSION['hmac'];
$response = $RESTParser->callService(
$restParams, 'webservices.amazon.com', '/onca/xml', 'GET');
$amazonXMLParser->parse($response);

?>

Buy it on Amazon

[78]

The rest of this if block executes if a CartId is already in session. Here, we only
need to add the cart item. We call CartAdd to achieve this.

<p>
A shopping cart already exists, so one was not created...

</p>
<p>

The CartId is <?= �������������������� ��������� $_SESSION['cartId'] ?>

The HMAC is <?= $_SESSION['hmac'] ?>

</p>
<?php } ?>

This section visually verifies the item add for the user.

<a href="<?= $amazonXMLParser->purchaseURL ?>">Checkout
Search Again
</p>
</body>

</html>

Finally, the page is closed. Our SAX Parser captured an element named
PurchaseURL. This URL is the checkout link for the cart. We include the link here
at the bottom of the page. Clicking on the link will direct the user to the Amazon
checkout process.

This is how the page will appear in our browser.

Chapter 2

[79]

If the user clicks on the Checkout link, Amazon.com will take over the checkout and
payment process.

Summary
We have taken a look at two web services to get our feet wet. The Internet UPC
Database is an XML-RPC based service. While the ECS is available in both SOAP and
REST flavors, we used the simpler and more popular REST tools. The mashup we
created looked up product information from the Internet UPC Database and passed
it to ECS. We found how much the product cost on Amazon.com and integrated
ECS's shopping cart operations to create a shopping cart on our site. Finally, the user
can purchase the items directly from Amazon.

In creating our mashup, we created a couple of object tools to call XML-RPC and
REST services. REST usually returns a XML document to the caller. Using PHP's SAX
function, we created an extensible object-oriented parser for XML. We will use these
tools later in other projects.

XML-RPC and REST are the most simple web services. As we progress to later
projects, we will see more complex protocols like SOAP.

Make Your Own
Search Engine

 Project Overview
What Using web services from Microsoft, and Yahoo!,

build your own search engine.
Protocols Used REST, SOAP

Data Formats XML, SOAP
Tools Featured SoapClient

APIs Used Microsoft Live Search API, Yahoo! Web API

At this point, we have a little bit of mashup experience and have utilized two simple,
but popular, web services protocols. We're going to build on that knowledge in this
chapter by creating a slightly more useful web application. We are also going to be
introduced to SOAP, the third, and most complex of the currently fashionable web
service protocols.

In this chapter, we are going to create our own search engine. In the past, this would
require a massive amount of hardware resources, and complex search and spidering
algorithms. Lucky for us, search engines like Google, Microsoft MSN, and Yahoo!
have already done this for us. Even luckier for us, these sites have released web
services for us to query their data centers and retrieve results. Our main advantage is
that all three offer web APIs, so we can leverage the data of all three engines. Instead
of just one set of results from one search engine, our application will query each
engine and present the results to the user on one page. No longer will users have to
visit these sites individually to search each engine.

Make Your Own Search Engine

[82]

In this project, we will use the APIs from Google, Microsoft's MSN, and Yahoo!.
Yahoo! uses REST, which we already know about, to access its services. Microsoft
Live Search is accessed through another web service called SOAP. Before we start
building a search page, we will look at SOAP, and how PHP 5 interacts with it.

SOAP
SOAP, formerly known as Simple Object Access Protocol (until the acronym was
dropped in version 1.2), came around shortly after XML-RPC was released. It was
created by a group of developers with backing from Microsoft. Interestingly, the
creator of XML-RPC, David Winer, was also one of the primary contributors to
SOAP. Winer released XML-RPC before SOAP, when it became apparent to him that
though SOAP was still a way away from being completed, there was an immediate
need for some sort of web service protocol.

Like XML-RPC, SOAP is an XML-based web service protocol. SOAP, however,
satisfies a lot of the shortcomings of XML-RPC: namely the lack of user-defined
data types, better character set support, and rudimentary security. It is quite simply,
a more powerful and flexible protocol than REST or XML-RPC. Unfortunately,
sacrifices come with that power. SOAP is a much more complex and rigid protocol.

For example, even though SOAP can stand alone, it is much more useful when you
use another XML-based standard, called Web Services Descriptor Language (WSDL),
in conjunction with it. Therefore, in order to be proficient with SOAP, you should
also be proficient with WSDL.

The most-levied criticism of SOAP is that it is overly complex. Indeed, SOAP is not
simple. It is long and verbose. You need to know how namespaces work in XML.
SOAP can rely heavily on other standards. This is true for most implementations
of SOAP, including Microsoft Live Search, which we will be looking at. The most
common external specifications used by a SOAP-based service is WSDL to describe
its available services, and that, in turn, usually relies on XML Schema Data (XSD)
to describe its data types. In order to "know" SOAP, it would be extremely useful to
have some knowledge of WSDL and XSD. This will allow one to figure out how to
use the majority of SOAP services.

We are going to take a "need to know" approach when looking at SOAP. Microsoft
Live Search's SOAP API uses WSDL and XSD, so we will take a look at SOAP with
the other two in mind. We will limit our discussion on how to gather information
about the web service that you, as a web service consumer, would need and how
to write SOAP requests using PHP 5 against it. Even though this chapter will just
introduce you to the core necessities of SOAP, there is a lot of information and detail.
SOAP is very meticulous and you have to keep track of a fair amount of things. Do
not be discouraged, take notes if you have to, and be patient.

Chapter 3

[83]

All three, SOAP, WSD, and XSD are maintained by the W3C. All
three specifications are available for your perusal. The official SOAP
specification is located at http://www.w3.org/TR/soap/. WSDL
specification is located at http://www.w3.org/TR/wsdl.
Finally, the recommended XSD specification can be found at
http://www.w3.org/XML/Schema.

Web Services Descriptor Language (WSDL)
With XML Schema Data (XSD)
Out of all the drawbacks of XML-RPC and REST, there is one that is prominent.
Both of these protocols rely heavily on good documentation by the service provider
in order to use them. Lacking this, you really do not know what operations are
available to you, what parameters you need to pass in order to use them, and
what you should expect to get back. Even worse, an XML-RPC or REST service
may be poorly or inaccurately documented and give you inaccurate or unexpected
results. SOAP addresses this by relying on another XML standard called WSDL to
set the rules on which web service methods are available, how parameters should
be passed, and what data type might be returned. A service's WSDL document,
basically, is an XML version of the documentation. If a SOAP-based service is bound
to a WSDL document, and most of them are, requests and responses must adhere to
the rules set in the WSDL document, otherwise a fault will occur.

WSDL is an acronym for a technical language. When referring to a specific
web service's WSDL document, people commonly refer to the document
as "the WSDL" even though that is grammatically incorrect.

Being XML-based, this allows clients to automatically discover everything about the
functionality of the web service. Human-readable documentation is technically not
required for a SOAP service that uses a WSDL document, though it is still highly
recommended. Let's take a look at the structure of a WSDL document and how we
can use it to figure out what is available to us in a SOAP-based web service.

Out of all three specifications that we're going to look at in relationship to SOAP,
WSDL is the most ethereal. Both supporters and detractors often call writing WSDL
documents a black art. As we go through this, I will stress the main points and just
briefly note other uses or exceptions.

Make Your Own Search Engine

[84]

Basic WSDL Structure
Beginning with a root definitions element, WSDL documents follow this basic
structure:

<definitions>
 <types>
 …
 </types>
 <message>
 …
 </message>
 <portType>
 …
 </portType>
 <binding>
 …
 </binding>
</definitions>

As you can see, in addition to the definitions element, there are four main sections
to a WSDL document: types, message, portType, and binding. Let's take a look at
these in further detail.

Google used to provide a SOAP service for their web search engine.
However, this service is now deprecated, and no new developer API
keys are given out. This is unfortunate because the service was simple
enough to learn SOAP quickly, but complex enough to get a thorough
exposure to SOAP. Luckily, the service itself is still working and the
WSDL is still available. As we go through WSDL elements, we will look
at the Google SOAP Search WSDL and Microsoft Live Search API WSDL
documents for examples. These are available at http://api.google.
com/GoogleSearch.wsdl and http://soap.search.msn.com/
webservices.asmx?wsdl respectively.

definitions Element
This is the root element of a WSDL document. If the WSDL relies on other
specifications, their namespace declarations would be made here. Let's take a look at
Google's WSDL's definition tag:

<definitions name="GoogleSearch"
 targetNamespace="urn:GoogleSearch"
 xmlns:typens="urn:GoogleSearch"

Chapter 3

[85]

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

The more common ones you'll run across are xsd for schema namespace, wsdl for
the WSDL framework itself, and soap and soapenc for SOAP bindings. As these
namespaces refer to W3C standards, you will run across them regardless of the web
service implementation. Note that some searches use an equally common prefix, xs,
for XML Schema. tns is another common namespace. It means "this namespace" and
is a convention used to refer to the WSDL itself.

types Element
In a WSDL document, data types used by requests and responses need to be
explicitly declared and defined. The textbook answer that you'll find is that the
types element is where this is done. In theory, this is true. In practice, this is mostly
true. The types element is used only for special data types.

To achieve platform neutrality, WSDL defaults to, and most implementations use,
XSD to describe its data types. In XSD, many basic data types are already included
and do not need to be declared.

Common Built-In XSD Data Types
Time Date Boolean
String Base64Binary Float
Double Integer Byte

For a complete list, see the recommendation on XSD data types at
http://www.w3.org/TR/xmlschema-2/.

If the web service utilizes nothing more than these built-in data types, there is no
need to have special data types, and thus, types will be empty. So, the data types
will just be referred to later, when we define the parameters.

There are three occasions where data types would be defined here:

1.	 If you want a special data type that is based on a built-in data type. Most
commonly this is a built-in, whose value is restricted in some way. These are
known as simple types.

Make Your Own Search Engine

[86]

2.	 If the data type is an object, it is known as a complex type in XSD, and must
be declared.

3.	 An array, which can be described as a hybrid of the former two.

Let's take a look at some examples of what we will encounter in the types element.

Simple Type
Sometimes, you need to restrict or refine a value of a built-in data type. For example,
in a hospital's patient database, it would be ludicrous to have the length of a field
called Age to be more than three digits. To add such a restriction in the SOAP world,
you would have to define Age here in the types section as a new type.

Simple types must be based on an existing built-in type. They cannot have children
or properties like complex types. Generally, a simple type is defined with the
simpleType element, the name as an attribute, followed by the restriction or
definition. If the simple type is a restriction, the built-in data type that it is based on,
is defined in the base attribute of the restriction element.

 For example, a restriction for an age can look like this:

<xsd:simpleType name="Age">
 <xsd:restriction base="xsd:integer">
 <xsd:totalDigits value="3" />
 </xsd:restriction>
</xsd:simpleType>

Children elements of restriction define what is acceptable for the value. totalDigits
is used to restrict a value based on the character length. A table of common
restrictions follows:

Restriction Use Applicable In
enumeration Specifies a list of acceptable values. All except boolean
fractionDigits Defines the number of decimal places

allowed.
Integers

length Defines the exact number of characters
allowed.

Strings and all
binaries

maxExclusive/
maxInclusive

Defines the maximum value allowed. If
Exclusive is used, value cannot be equal to
the definition. If Inclusive, can be equal to,
but not greater than, this definition.

All numeric and
dates

minLength/
maxLength

Defines the minimum and maximum number
of characters or list items allowed.

Strings and all
binaries

Chapter 3

[87]

Restriction Use Applicable In
minExclusive/
minInclusive

Defines the minimum value allowed. If
Exclusive is used, value cannot be equal to
the definition. If Inclusive, can be equal to,
but not less than, this definition.

All numeric and
dates

pattern A regular expression defining the
allowed values.

All

totalDigits Defines the maximum number of digits
allowed.

Integers

whiteSpace Defines how tabs, spaces, and line breaks
are handled. Can be preserve (no changes),
replace (tabs and line breaks are converted to
spaces) or collapse (multiple spaces, tabs, and
line breaks are converted to one space.

Strings and all
binaries

A practical example of a restriction can be found in the MSN Search Web Service
WSDL. Look at the section that defines SafeSearchOptions.

<xsd:simpleType name="SafeSearchOptions">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Moderate" />
 <xsd:enumeration value="Strict" />
 <xsd:enumeration value="Off" />
 </xsd:restriction>
</xsd:simpleType>

In this example, the SafeSearchOptions data type is based on a string data
type. Unlike a regular string, however, the value that SafeSearchOptions takes
is restricted by the restriction element. In this case, the several enumeration
elements that follow. SafeSearchOptions can only be what is given in this
enumeration list. That is, SafeSearchOptions can only have a value of "Moderate",
"Strict", or "Off".

Restrictions are not the only reason to use a simple type. There can also be two other
elements in place of restrictions. The first is a list. If an element is a list, it means that
the value passed to it is a list of space-separated values. A list is defined with the
list element followed by an attribute named itemType, which defines the allowed
data type. For example, this example specifies an attribute named listOfValues,
which comprises all integers.

<xsd:simpleType name="listOfValues">
 <xsd:list itemType="xsd:integer" />
</xsd:simpleType>

Make Your Own Search Engine

[88]

The second is a union. Unions are basically a combination of two or more
restrictions. This gives you a greater ability to fine-tune the allowed value. Back to
our age example, if our service was for a hospital's pediatrics ward that admits only
those under 18 years old, we can restrict the value with a union.

<xsd:simpleType name="Age">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="decimal">
 <xsd:minInclusive value="0" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="decimal">
 <xsd:maxExclusive value="18" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
</xsd:simpleType>

Finally, it is important to note that while simple types are, especially in the case
of WSDLs, used mainly in the definition of elements, they can be used anywhere
that requires the definition of a number. For example, you may sometimes see an
attribute being defined and a simple type structure being used to restrict the value.

Complex Type
Generically, a complex type is anything that can have multiple elements or attributes.
This is opposed to a simple type, which can have only one element. A complex type
is represented by the element complexType in the WSDL. The most common use for
complex types is as a carrier for objects in SOAP transactions. In other words, to pass
an object to a SOAP service, it needs to be serialized into an XSD complex type in
the message.

The purpose of a complexType element is to explicitly define what other data
types make up the complex type. Let's take a look at a piece of Google's WSDL for
an example:

<xsd:complexType name="ResultElement">
 <xsd:all>
 <xsd:element name="summary" type="xsd:string"/>
 <xsd:element name="URL" type="xsd:string"/>
 <xsd:element name="snippet" type="xsd:string"/>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="cachedSize" type="xsd:string"/>

Chapter 3

[89]

 <xsd:element name=
 "relatedInformationPresent" type="xsd:boolean"/>
 <xsd:element name="hostName" type="xsd:string"/>
 <xsd:element name=
 "directoryCategory" type="typens:DirectoryCategory"/>
 <xsd:element name="directoryTitle" type="xsd:string"/>
 </xsd:all>
</xsd:complexType>

First thing to notice is how the xsd: namespace is used throughout types. This
denotes that these elements and attributes are part of the XSD specification.

In this example, a data type called ResultElement is defined. We don't exactly
know what it is used for right now, but we know that it exists. An element tag
denotes complex type's equivalent to an object property. The first property of it is
summary, and the type attribute tells us that it is a string, as are most properties
of ResultElement. One exception is relatedInformationPresent, which is
a Boolean. Another exception is directoryCategory. This has a data type of
DirectoryCategory. The namespace used in the type attribute is typens. This tells
us that it is not an XSD data type. To find out what it is, we'll have to look for the
namespace declaration that declared typens.

Namespace definitions are usually at the top root element tag. Looking there, we find
our namespace is indeed defined:

<definitions name="GoogleSearch"
 targetNamespace="urn:GoogleSearch"
 xmlns:typens="urn:GoogleSearch"

The name of the root element is GoogleSearch, and that is the target of typens. The
value of the declaration is this document itself. Therefore, DirectoryCategory must
be defined elsewhere in this document.

Looking further down the WSDL, we find the definition:

<xsd:complexType name="DirectoryCategory">
 <xsd:all>
 <xsd:element name="fullViewableName" type="xsd:string"/>
 <xsd:element name="specialEncoding" type="xsd:string"/>
 </xsd:all>
</xsd:complexType>

DirectoryCategory appears to be another complex type. Two string elements
comprise the object.

Make Your Own Search Engine

[90]

The point of looking at this is to understand that basically anything can be a property
of the main class. Most properties of objects will be XSD built in data types, but it is
perfectly legal to hold other complex types as properties.

Arrays
The last common data type that you'll encounter is an array. Arrays in WSDL are a
little unusual. Up to this point, WSDL has been using XSD to define data types. XSD
is primarily used to define a document structure, unlike WSDL, which is used to
define a network transport payload.

In the latter, passing arrays is crucial, while in the former, it is less so. Not entirely
surprising then, that in XSD, declaring an array is not a straightforward and easy
thing to do.

To keep the writing of WSDL as simple as possible, WSDL drops the use of XSD
when declaring arrays, and instead, uses SOAP's array structures to define its own
arrays. An array is declared in WSDL by creating a complex type and restricting it
(using the same restriction element found in simple types) to the SOAP array data
type. After that, the data type of each element of the array is declared.

In this example, an array of integers is declared.

<xsd:complexType name="ArrayOfInteger">
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <xsd:attribute ref="soapenc:arrayType" wsdl:
 arrayType="integer[]"/>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

The declaration begins with the complexType tag. We name the array with the name
attribute. WSDL convention states that the name of arrays should be in the format
of "ArrayOfxxxx" where xxxx is the type of items in the array, be they one of the
built-in data types or other specialized types defined here in the types element.

Remember, in types, we are merely defining the available data types in the web
service. We are not tying them to any operation just yet. If the web service has more
than one operation that uses arrays of integers, the operations definitions later will
just reuse this one array. Therefore, it is perfectly legal to have a generic name like
ArrayOfInteger or ArrayOfDate, etc.

Chapter 3

[91]

A tag named complexContent is the first and only child. Then we begin with the
restriction. This is where the divergence from XSD takes place. First, note the base
attribute. Unlike the previous restriction tags we've seen, this one does not have
the xsd: namespace. Instead, as WSDL uses SOAP encoding for arrays, the base
attribute now uses the soapenc: namespace followed by the SOAP structure
named Array.

Next is an XSD attribute to specify the encoding and a WSDL attribute named
arrayType that defines the data type. The data type is followed by open and close
brackets. This example uses integers. An array of strings would have string[],
and an array of objects would have the name of the complex type followed by
the brackets.

The data types are probably the most important things you will need to understand
from the WSDL apart from the actual operations themselves, which are defined
later. This section lets us know what data format we need to pass into operation
parameters and what we can expect back.

This has been just an overview of how simple type elements are structured. For a
reference of every built-in data type and restrictions supported, see the official XSD
data type recommendation at http://www.w3.org/TR/xmlschema-2/.

message Element
This is the second of the four children of the definitions root element. In this
element, we gather up the data types and bundle them together to prepare them
for use later in portType, where we actually define the available service operations.
Message is merely a layer of abstraction between the data types and portType.
Think of the items in types as data types and message assigns these data types to
parameters. Later, we'll assign these parameters to actual operations in portType.

The format of messages depends on what is used in the SOAP binding, later on in
the binding element. The binding also affects how we create the SOAP message
later when we are actually writing the SOAP message body. We will see this in more
detail later, however, for now, know that the style attribute in the SOAP binding
element can be either rpc or Document.

RPC Binding
If the binding is rpc, which stands for Remote Procedure Call, like in XML-RPC,
messages are merely an element named message, each with one or more part
elements. Each part is the name of an item in types.

Make Your Own Search Engine

[92]

The Google WSDL provides us with another good example:

<message name="doGoogleSearch">
 <part name="key"	 type="xsd:string"/>
 <part name="q" type="xsd:string"/>
…
 <part name="oe" type="xsd:string"/>
</message>

The WSDL defines a message called doGoogleSearch. It's made up of approximately
10 part elements. These part elements take two attributes name, which defines the
parameter name, and type, which is the data type. In doGoogleSearch, a part named
key is a string. Another named q is also a string, and so forth.

<message name="doGoogleSearchResponse">
 <part name="return"	 type="typens:GoogleSearchResult"/>
</message>

Another message named doGoogleSearchResponse is defined. The parameter
returned is named return and it is a GoogleSearchResult object. In doGoogleSearch,
the data types were regular XSD built-in types, they are not mentioned in types.
However, GoogleSearchResult is obviously not an XSD standard data type, so we
would have to look back in types to get the object definition.

Document Binding
Another common value for the binding elment is document. By fortunate chance,
the Microsoft Live Search API gives us an example of document binding. We can use
the messages in this WSDL to see the difference:

 <wsdl:message name="SearchMessage">
 <wsdl:part name="parameters" element="tns:Search" />
 </wsdl:message>

Here, the message element is the same as the rpc version. The part element and
name parameters are also present. However, instead of a type attribute, there is an
element attribute. This is the operation name that we will call later on when we
write our SOAP request.

How do we know what parameters Search needs? We look back up to the types
section. In here, we find a data type of element that has the same name as the
element in SearchMessage:

 <xsd:element name="Search">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="1" maxOccurs="1"

Chapter 3

[93]

 name="Request" type="tns:SearchRequest" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

In it, there are some data rules, but this element points to another data type called
SearchRequest. We look again in the data types for SearchRequest:

 <xsd:complexType name="SearchRequest">
 <xsd:sequence>
 <xsd:element minOccurs="1" maxOccurs="1"
 name="AppID" type="xsd:string" />
 <xsd:element minOccurs="1" maxOccurs="1"
 name="Query" type="xsd:string" />
 <xsd:element minOccurs="1" maxOccurs="1"
 name="CultureInfo" type="xsd:string" />
 …
 </xsd:sequence>
 </xsd:complexType>

Finally, we see that SearchRequest is a complex type, and we see which elements
make up this object, and hence, which parameters the Search operation will need.

This type of document hopping is all too common in the WSDL world. Fortunately,
the basic elements and theory of WSDL have a bit of logic and common sense behind
them. It may take a bit of diligence, but you can eventually find the operation name
and parameters in a SOAP-based service.

portType Element
Finally, we get to the definition of the actual web service operations. This is done
in the portType element. Think of operations as the actual functions available in a
web service. A portType element is the parent element for a group of operations.
portType is merely a way to categorize sets of operations. For example, a web
service may have one group of operations used solely by partner sites and another
group of services used only be customers. The group of operations used by
partners may be under a single portType element named PartnerOperations
while operations used by customers are grouped under another portType named
CustomerOperations. Most simple web services, though, will just have one
portType element. This is true of the Google and Microsoft Live Search APIs we
will look at.

Make Your Own Search Engine

[94]

Each operation is defined with the operation element. Each operation can be either
of the following four types:

1.	 One-way: The client sends an input message to the server.
2.	 Request-Response: The client sends an input message to the server. The

server responds with an output message.
3.	 Solicit-Response: The server sends an output message to the client. The

client responds with an input message.
4.	 Notification: The server sends an output message to the client.

Out of the four, the vast majority used in web services is the Request-Response
method. Even if the web service has an operation that just takes an input to
manipulate data on the server, best practices state that a service should send a
success or failure response message back to the client. This operation type defines the
necessary children elements for the operation element. For Request-Reponses, both
an input element specifying the message to be used must be defined, and an output
element specifying the associated message needs to be included. Let's take another
look at the Google SOAP Search API WSDL.

<portType name="GoogleSearchPort">
 <operation name="doGetCachedPage">
 <input message="typens:doGetCachedPage"/>
 <output message="typens:doGetCachedPageResponse"/>
 </operation>

...
</portType>

The first operation defined is doGetCachedPage. It takes an input message of
doGetCachedPage and returns a doGetCachedPageResponse message as the
output. This tells us that to do a doGetCachedPage operation against the Google
SOAP Search service, we need to pass whatever parameters are specified in the
doGetCachedPage message. If successful, we will get data back that is in the form
defined in the doGetCachedPageResponse message.

Think of the relationship as "types make up messages, and messages make
up operations".

Data Type 1

Message 1 Message 2

Operation

Data Type 2 Data Type 3 Data Type 4

Chapter 3

[95]

binding Element
The last element in a WSDL we should note is the binding element. In WSDL, these
are extensions to SOAP. This element ties the operations defined in portType to
specific SOAP actions. Unless you are making your own SOAP client or writing a
WSDL document, you do not need too much detail about this. However, it is nice to
know what exactly is going on here.

The binding from WSDL portType to SOAP actions is declared in the type attribute
of the binding element. The value of this should point back to a name of a
portType element.

<binding name="GoogleSearchBinding" type="typens:GoogleSearchPort">

 <soap:binding style="rpc" transport=
 "http://schemas.xmlsoap.org/soap/http"/>
 <operation name="doGetCachedPage">
 <soap:operation soapAction="urn:GoogleSearchAction"/>
 <input>
 <soap:body use="encoded" namespace="urn:GoogleSearch"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="urn:GoogleSearch"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>

The children elements are basically metadata details for the SOAP transactions. We
talked about the soap:binding element when we described messages. The style
attribute here is where rpc or document is set.

The important thing you should pay attention to are the operation elements.
These elements expose the portType operations to SOAP by mapping them directly
to a SOAP operation. If the portType operations are not listed here, they will not
be available to the caller. Underneath this, can be body elements. These elements
provide SOAP-specific metadata to the operation.

The use attribute here is either encoded or literal. In combination with the
binding's style attribute, this determines how the messages section and SOAP body
elements are created.

Make Your Own Search Engine

[96]

The only thing you may run across in the course of making a mashup, especially
with proprietary data, is the use of SOAP headers. SOAP headers often contain
information about the transaction itself. One of the common uses for headers is
authentication data. You may have to supply some credentials to the service before
it fulfills your request. In the WSDL, a header requirement is defined in the input
element here in the bindings. Like the messages definition, it will state the data type
required with the part attribute.

<input>
 <soap:header message="tns:submitPassword" part=
 "xsd:string" use="literal"/>
<soap:body

Then, you can trace back up the WSDL to the message section to find out the exact
element name you need to pass in the SOAP header.

<message name="submitPassword">
<part name="password_header" element="Password" />

The element attribute is the key. It states the name of the element you need to pass
in the SOAP header. In this example, this service expects a SOAP header with an
element of Password that is a string to be passed with the SOAP message.

We won't run across headers in the Google and Microsoft Live Search APIs, but be
aware of them if you do run across one in the WSDL.

service Element
Lastly, we come to the service element. This element gives us the specific location
of where the SOAP action point is for each port. Each port will have its own element
here, followed by the SOAP address tag that points back to the service. Google's
service element looks like this:

<service name="GoogleSearchService">
 <port name="GoogleSearchPort" binding="typens:
 GoogleSearchBinding">
 <soap:address location="http://api.google.com/search/beta2"/>
</port>
</service>

The main thing this tells us is that all operations that happen in GoogleSearchPort
occur at the URL http://api.google.com/search/beta2. We may need to use this
information later if we hit a service directly.

Chapter 3

[97]

The SOAP Message
Being able to decipher a WSDL gives us the rules that we need to write a SOAP
message to a service. We can now call operations against a service, pass parameters
that the service needs in the data type that it expects, and prepare for a response
from the server.

The structure of a SOAP message is fairly straightforward. Further, SOAP utilizes the
same structure for request and responses. An element named Envelope is the root
element for the whole message. Within that, an element named Header holds routing
data for the message. A Body element holds the message content. This may be the
parameters we pass when we make a request, or the service results when we get a
response. Finally, a Fault element gives information on any errors that occurred
during execution. Structurally, a SOAP message looks like this:

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:Header>	
 ...
 </soap:Header>
 <soap:Body>

...
 <soap:Fault>
...
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

Again, we will not take too detailed a look into this. Luckily for us, PHP's
SoapClient, which we will investigate later, hides a lot of SOAP details for us.
However, knowing how a SOAP request is structured is essential to using the SOAP
client and troubleshooting.

Envelope
The Envelope element identifies the XML document as a SOAP message. There
are two things it must do. First, and absolutely essential, is to declare the SOAP
namespace. Second, the encoding style must be set in the document. Both are done
through attributes of the Envelope element.

<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

Make Your Own Search Engine

[98]

If there are other namespaces that the SOAP messages uses, they must be declared
here also. For example, a proper request to Google SOAP Search API would need to
declare XSD data types when we define parameters. In order to do this, we would
declare the XSD data types in a namespace here in the Envelope element.

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="urn:GoogleSearch"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

Header
If the service requires any headers, they should be added in the SOAP header
element. If headers are required, they will be noted in the documentation, or
explicitly stated in the WSDL. SOAP headers are specific to the web service
implementation. Therefore, each one needs to be namespace qualified.

In the previous password example, the service is expecting an element named
password that is a string to be passed in the Header. We place this in the SOAP
header like so:

<soapenv:Header>
 <mysoap:password xmlns:mysoap="http://yourserviceURL">
password
</xmlns:mysoap>
</soapenv:Header>

If the service does not require headers, we can omit the Header element. In the SOAP
specifications, this element is optional.

Body
Finally, we get to the body of the SOAP message. Here is where we pass the request
to the server and all the required parameters. What is included in this section and
how it's structured is dictated entirely by the web service. Most notably, we refer
back to the SOAP binding element in the WSDL for the exact structure of the body.

In most public web service cases, the schema is rather simple. The name of the
operation you wish to call is a child element of the Body tag. Underneath that, the
parameters are nested as elements.

Chapter 3

[99]

In the most basic form, a body element will look like this:

<soapenv:Body>
 <nameOfOperationToBeCalled>
 <parameterOne>Parameter One</parameterOne>
 <parameterTwo>23.39</parameterTwo>
 <parameterThree>true</parameterThree>
 </nameOfOperationToBeCalled>
</soapenv:Body>

Let's see how the SOAP binding affects the creation of the messages.

RPC Binding
RPC binding needs the data types of the parameter passed in each parameter. We
can look at how a request to the Google SOAP Search API is made:

<soap-env:Body>
 <ns1:doGoogleSearch>
 <key xsi:type="xsd:string">Your Google License Key</key>
 <q xsi:type="xsd:string">Orange Tabbies</q>
 <start xsi:type="xsd:int">0</start>
 <maxResults xsi:type="xsd:int">10</maxResults>
 …
 </ns1:doGoogleSearch>
</soap-env:Body>

The data type is declared in the type attribute. In Google's implementation, it calls
upon the XSD and XSDI standards for the data types. These namespaces were
declared back in the envelope element.

Document Binding
In document binding, the data types are not required to be part of the body. We can
look at how to make a call against the Microsoft Live Search service to see how
that works.

<soap-env:Body>
<ns1:Search>
 <ns1:Request>
 <ns1:AppID>Your MSN Search API Key</ns1:AppID>
 ������������������������������������� <ns1:Query>Orange Tabbies</ns1:Query>
 <ns1:CultureInfo>en-US</ns1:CultureInfo>
 �…
 </ns1:Request>
</ns1:Search>
</soap-env:Body>

Make Your Own Search Engine

[100]

This looks very similar to the RPC binding version.ns1 is the Microsoft schema
namespace, so that is required for all elements. Like RPC, the operation name serves
as the parent element within Body. Each parameter name is a child element with the
parameter value set as the value of the element. This time, though, there are no data
types attributes.

Fault
Error reporting is standardized in SOAP through the Fault element. This element
is passed by the server if there was a problem with the request. It always appears as
a child of the Body element. Obviously, we won't have to deal with writing a fault
when consuming web services. However, knowing about what comes back when
something goes wrong is crucial to troubleshooting.

There are four children of Fault:

Child Element Description
faultcode One of four codes to identify the fault.
faultstring A descriptive explanation of what went wrong.
faultactor Where the fault occurred.
detail A container for any application-specific error information

about the body element.

In SOAP 1.1, there are four possible fault codes:

faultcode Description
VersionMismatch Problem with the SOAP namespace declaration in the

Envelope element.
MustUnderstand A MustUnderstand attribute in the Header was not

understood.
Client The error is related to the client-end. The request was

misformed.
Server There was a server processing error. The request could

not continue.

Now that we have some working knowledge of SOAP, WSDL, and XSD, we can put
this to use to start writing PHP code.

Chapter 3

[101]

PHP's SoapClient
Knowing the intricacies of SOAP, WSDL, and XSD is very helpful. However, coding
every little detail is a headache. For requests, we'd have to extensively manipulate
and parse an XML document. Quite frankly, SOAP comes with a lot of overhead.
We'd have to create the Envelope and Header by hand, and manually create the
message body. When data is returned, we'd have to create our own parser to loop
through an XML-based SOAP document. We also haven't even mentioned creating
our own sockets to talk to the server. That's a lot of things that can go wrong.
Fortunately, PHP 5 has a great interface for talking with SOAP. Much of the dirty
details are hidden away and completed by the client. We don't have to manually
touch the request and response at all. In fact, we really don't need to do anything in
XML. Further, the ugly networking connections are executed for us automatically.

PHP 5's SOAP interface is a built-in extension called SOAP. This extension actually
comprises six classes. SoapClient is the class we will use to make SOAP calls. We
will also take a look at SoapFault to handle errors. SoapServer is used for PHP
SOAP providers. We won't be using this for mashups, but if you wish to offer
SOAP services in the future, this is the class you want to use. The three other
classes, SoapHeader, SoapParam, and SoapVar, are used primarily by SoapClient
and SoapServer. Unless you are mucking in the really low levels of SOAP and
networking, you will not fiddle with these.

The documentation to the SOAP extension is located at
http://php.net/manual/ref.soap.php.

The steps for using SoapClient to make a SOAP request is very simple and
straightforward. Assuming you know something about the service you are hitting,
the process is, at the most, four steps:

1.	 If parameters are required, place them into an array. Subobjects and
subarrays will have to be nested.

2.	 Instantiate the SoapClient object. SoapClient supports two modes of
operation—WSDL and Non-WSDL. We will discuss the difference between
these two modes soon, but for now, know that the way the client is
instantiated decides on which mode is used.

3.	 Make the call to the service using the methods available to us in SoapClient.
4.	 Handle the request or error. This involves capturing the results and

manipulating them as necessary.

Make Your Own Search Engine

[102]

We will walk through these four steps to create a working SOAP client. XMethods
(www.xmethods.com) is a site that lists freely available web services to test against.
One operation takes in a URL and returns back an array of hyperlinks used on the
site. As we create our client, we will use this service to test.

Creating Parameters
As we discussed, parameters are dictated by the WSDL. With a lot of web services,
there will be some form of documentation about available operations and required
parameters. However, in this, and many other cases, there is no documentation. We
will have to work through a WSDL.

The WSDL is located at http://webservices.daelab.net/
temperatureconversions/TemperatureConversions.wso?WSDL. A good strategy
is to start in the binding element and work your way up the chain to get the
operation name, then the required parameter names.

Looking at the binding, there appears to be an operation that will be helpful to us:

<binding name="TemperatureConversionsSoapBinding"
 type="tns:TemperatureConversionsSoapType">
 <soap:binding style="document" transport=
 "http://schemas.xmlsoap.org/soap/http"/>
 <operation name="CelciusToFahrenheit">

The operation name, CelciusToFahrenheit appears to be what we want.

Looking further up the WSDL, we see this chunk:

<portType name="TemperatureConversionsSoapType">
 <operation name="CelciusToFahrenheit">
 <documentation>Converts a Celcius Temperature to a Fahrenheit
 value</documentation>
 <input message="tns:CelciusToFahrenheitSoapRequest"/

The documentation element confirms this is what we are looking for. The last line
in this chunk is the input tag. The message attribute points to a message named
CelciusToFahrenheitSoapRequest. Let's take a look at this message:

<message name="CelciusToFahrenheitSoapRequest">
 <part name="parameters" element="tns:CelciusToFahrenheit"/>
</message>

Chapter 3

[103]

This points us towards the types element. We'll look for a data type named
CelciusToFahrenheit in there.

<xs:element name="CelciusToFahrenheit">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="nCelcius" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Finally, we reach the exact name and type of the parameter we need to pass. We need
to pass a decimal named nCelcius to an operation named CelciusToFahrenheit, in
order to get the data we want.

This parameter requirement is quite simple, but common. All parameters that need
to be passed by SoapClient need to be put into an associative array.

Create a PHP file on your web server that can be served. To create the parameters
for this request, create an array with one element in it. The key is nCelcius while the
value is the temperature you wish to convert.

$params = array('nCelcius' => 37);

Instantiate the SoapClient
The SoapClient is an object and all calls are made through methods to this object, so
we need to first instantiate it. Before we do this, we need to decide if we are going to
use WSDL mode or non-WSDL mode for our SoapClient.

In WSDL mode, SoapClient gets the WSDL file from the remote server and
automatically figures out which operation is available on the service, which
parameters are needed, and how they should be constructed. There are also a few
methods available to us in WSDL mode that allow us to query the service. For
example, __getFunctions returns a list of SOAP operations available for the service,
and __getTypes returns a list of SOAP data types used.

In non-WSDL mode, we specify the actual location of the web service, not the WSDL,
in arguments when we instantiate. We also specify the namespace of the document
at creation time. We have to be a bit more careful later when we create the
actual request.

Given that WSDL will do a lot of things automatically, why would anyone ever use
non-WSDL? Performance is one reason.

Make Your Own Search Engine

[104]

In non-WSDL, you do not have to make the request for a WSDL document and you
do not have the parsing overhead. Control is another reason. In non-WSDL mode,
for some advanced operations, you may be required to handle more minute tasks.
Some people like this.

Non-WSDL mode also gives you access to a couple of instantiation options that are
not available otherwise. The main reason, though, is that you simply might not have
any choice. The WSDL file might not be publicly available to you. To make your
life easier, I recommend using WSDL mode whenever possible. However, working
in non-WSDL mode is certainly acceptable and not uncommon in practice. We will
cover how to make calls using both, and later, in the actual mashup, we will use
non-WSDL for one of our calls.

Instantiating in WSDL Mode
The decision on whether a SoapClient is WSDL or non-WSDL is dependent on how
you initially instantiate SoapClient. Let's take a look at the constructor for the class:

class SoapClient {
__construct (mixed wsdl [, array options])
}

The first parameter passed to it is a WSDL. This usually is a simple URI to the WSDL
file, although the mixed type allows you to pass a WSDL file stored in a string into
this parameter. The second parameter is an optional array of options.

If you want to go into WSDL mode, simply pass a WSDL into the first argument.

$client = new SoapClient(
'http://webservices.daelab.net/temperatureconversions/
TemperatureConversions.wso?WSDL'
);

All further operations with this object will be in WSDL mode.

Instantiating in Non-WSDL Mode
Creating a non-WSDL client is a tad bit more complicated. First, the wsdl parameter
is irrelevant. You must pass a null value to this option. This also means that your
client won't automatically know where the service action point is. You will have to
tell it manually. To do this, set the location and the target namespace of the service
in the options array when you instantiate. In other words, this optional parameter
no longer is optional. This is done with the location and options elements of the
array, respectively.

Chapter 3

[105]

$client = new SoapClient(
 null,
 array(.
 'location' => '������������������������������http://webservices.daelab.net/
 temperatureconversions/TemperatureConversions.wso��',
 'uri' => 'http://webservices.daelab.net/temperature'
)
);

Where did we get the location value of the URL? This is grabbed from the service
element. It is the child address element for the port. The uri value is also taken from
the WSDL, but at the very top. It is the targetNamespace value of the definitions
element. In this case, they are the same value, but in many implementations they
are not.

Using Other Options
You may want to take a look at the options array documentation,
although most of the options are not needed, especially in WSDL mode, in
the majority of basic calls. They are all listed in the SoapClient constructor
page at http://php.net/manual/function.soap-soapclient-
construct.php. One particular option, trace, is quite useful. If set to
true, this will allow us to examine the actual SOAP envelope later on, and
do general debugging. Still, it is nice to know about the others, especially
if you run across a weird communication issue with the SOAP service.
The solution might be a setting in the options array.

Either of these options will give us a new SoapClient object named $client. We can
now use the methods of the object.

Making the Call and Using SoapClient
Methods
Before we make the SOAP call, let's take a look at some of the methods
available to us. If you are using WSDL mode, two methods will be especially useful,
__getFunctions and __getTypes.

Remember that PHP has already queried the WSDL when we created the SoapClient
object. It doesn't just make a mental note of the WSDL. It reads it and makes our life
easier by translating the operations into available methods within the SoapClient
object itself. (We'll see how this affects the way we make SOAP calls in a little bit.) In
doing so, it obviously holds a list of available functions and data types.

Make Your Own Search Engine

[106]

To access these lists, use __getFunctions against the SoapClient to return an array
of all SOAP operations, and their parameters, available in the WSDL. __getTypes
returns an array of all data types used in the WSDL. These are extremely useful if
documentation is not available.

We can see this in action against the URL Extraction service:

<?php
 $client = new SoapClient(
 '���http://webservices.daelab.net/temperatureconversions/
 TemperatureConversions.wso?WSDL'
);
 ?>
 <h1>Types:</h1>
 <?= var_dump($client->__getTypes()); ?>
 <h1>Functions:</h1>
<?= var_dump($client->getFunctions()); ?>

This code is in the examples as SoapClientTest.php. Running the page will give us
this output in the page source:

<h1>Types:</h1>
array(8) {
 [0]=>
 string(49) "struct CelciusToFahrenheit {
 decimal nCelcius;
}"
 [1]=>
 string(74) "struct CelciusToFahrenheitResponse {
 decimal CelciusToFahrenheitResult;
}"
 [2]=>
 string(52) "struct FahrenheitToCelcius {
 decimal nFahrenheit;
}"
…
<h1>Functions:</h1>
array(4) {
 [0]=>
 string(80) "CelciusToFahrenheitResponse CelciusToFahrenheit(CelciusT
 oFahrenheit $parameters)"
 [1]=>
 string(80) "FahrenheitToCelciusResponse FahrenheitToCelcius(Fahrenhe
 itToCelcius $parameters)"
 [2]=>

Chapter 3

[107]

 string(77) "WindChillInCelciusResponse WindChillInCelcius(
 WindChillInCelcius $parameters)"
 [3]=>
 string(86) "WindChillInFahrenheitResponse WindChillInFahrenheit(
 WindChillInFahrenheit $parameters)"
}

The format of the method signatures is very C-style. It uses object hinting for inputs
and returns. The very first function listed is CelciusToFahrenheit. It takes in an
CelciusToFahrenheit object.

Looking at the types, we see that CelciusToFahrenheit is a struct of only one
element, a decimal called nCelcius. Like we found in the WSDL, this tells us we
need to pass a parameter called nCelcius to the CelciusToFahrenheit operation.

The return is an CelciusToFahrenheitResponse object. Looking at the types, we
trace that object back to a struct named CelciusToFahrenheitResponse. That's a
struct that gives us this definition:

string(74) "struct CelciusToFahrenheitResponse {
 decimal CelciusToFahrenheitResult;

Finally, we see that CelciusToFahrenheit is basically a decimal named
CelciusToFahrenheitResult. You can see if there are more details in the WSDL.
Alternatively, as you already know which parameters are required, you can just
make the SOAP call and use SoapClient to examine the results.

How you make the WSDL call depends on whether you are in WSDL mode or
Non-WSDL mode. This is the only grammatical area, besides access to certain
functions, which varies depending on WSDL or Non-WSDL.

Calling SOAP Operations in WSDL Mode
In WSDL mode, PHP has internalized the operations and made them an extension of
the SoapClient object. Their use is extraordinarily easy. You treat these operations as
if they were methods of the SoapClient object.

$params = array('nCelcius' => 37);
$client = new SoapClient(
'���http://webservices.daelab.net/temperatureconversions/
TemperatureConversions.wso?WSDL'�,
array('trace' => true)
);
$result = $client->CelciusToFahrenheit($params);

Make Your Own Search Engine

[108]

Calling SOAP Operations in Non-WSDL Mode
In Non-WSDL mode, SoapClient has no idea what methods are available. To handle
this, SoapClient holds an operation calling method called __soapCall. This method's
sole existence is to launch SOAP calls against a service, and it takes two parameters.
The first is the name of the SOAP operation. The second is an array of the SOAP
parameters you wish to pass to the service. Rewriting the above call in Non-WSDL
mode, we get this:

$params = array('nCelcius' => 37);
$client = new SoapClient(
null,
array(
'location' => 'http://webservices.daelab.net/temperatureconversions/
 TemperatureConversions.wso',
 'uri' => 'http://webservices.daelab.net/temperature
)
);
$result = $client->__soapCall('CelciusToFahrenheit', $params);

Remember we need the location and uri options when instantiating SoapClient to
go to non-WSDL mode, and we pass null to the first parameter. After that, we can
use __soapCall to make the call to the operation.

Either of these two methods will place the SOAP response into a variable named
$result. Now, we can use this to see what the server returned to us.

Handling the SOAP Response
Before we start displaying the result, we need to see if it was even successful.

Handling SOAP Errors with SoapFault
SoapClient leverages the new try/catch blocks in PHP 5 to handle errors. If
something went wrong, either from our end or if the server returned a fault,
SoapClient throws a SoapFault object. We need to catch this and handle the error
gracefully. In the following example, I purposely changed the method name to
GetURLs. Because this method doesn't exist, it will fail.

try {
 $result = $client->���������������������� ConvertTemp����������($params);
 }
catch (SoapFault $e) {
 echo "Error!
";

Chapter 3

[109]

 �� echo "faultcode: " . $e->faultcode . �������«
»;
 echo «faultstring: « .$e->faultstring. «
»;
 echo «detail: « .$e->detail;	
}

The best way to do this is to wrap the call to the operation in the try block. If that
fails, the catch block will catch the SoapFault and place it in an object, in this case,
$e. SoapFault's documentation is at http://php.net/manual/function.soap-
soapfault-construct.php. It has no methods besides the constructor. It does have
several parameters. These parameters directly correlate to the children element of
SOAP's Faults element we talked about earlier. Therefore, using the SoapFault
object, we can examine which SOAP message the server sent us.

Running the above block will generate this message on the browser:

Error!
faultcode: Client
faultstring: Function ("ConvertTemp") is not a valid method for this
service
detail:

Of course, displaying the error is not your only option. Your business rules may
dictate that your application does something else behind the scenes on an error.

Handling Successful Results
Hopefully, though, our query was successful. If this is the case, SoapClient will take
the incoming response SOAP message, extract the data elements, place it in a PHP
data structure, and return it to the variable that was assigned to the SOAP call.

Unfortunately, this is both a blessing and a curse. The blessing is that once you
understand the data structure created by that particular SOAP response, it is
very easy to manipulate and very powerful. The curse is getting to the point of
understanding the data structure.

With XML, it is very easy to understand elements and child elements. Even long
XML documents are easy to read because of the nice structure. PHP has to shoe horn
this into a system that includes objects, primitive data types, arrays of primitive
data types, arrays of objects, arrays of objects that hold other arrays, and so forth.
Needless to say, it can get quite messy. While SoapClient does a superb job of
mapping SOAP data types to PHP data types, it takes a little bit of patience for a
human to figure out what decisions SoapClient made.

Make Your Own Search Engine

[110]

Fortunately, we have some clues to help us. The first clue is documentation. If
you don't live in a perfect world, though, you can turn to the trusty WSDL
document. Looking back at the portType for this operation, we see that there is
an output message.

<output message="tns:CelciusToFahrenheitSoapResponse"/>

We can then do the upward dance again back to the message and types elements.

<message name="CelciusToFahrenheitSoapResponse">
 <part name="parameters" element=
 "tns:CelciusToFahrenheitResponse"/>
 </message>
…
<xs:element name="CelciusToFahrenheitResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name=
 "CelciusToFahrenheitResult" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

This tells us we should expect an object named CelciusToFahrenheitResponse.
Within that is a decimal named CelciusToFahrenheitResult.

Our next clue is the PHP variable that holds the response. In our previous examples,
we stored this in a variable named $results. We can pass this through var_dump to
examine how SoapClient mapped the data.

Passing it through var_dump will yield this result:

object(stdClass)#2 (1) {
 ["CelciusToFahrenheitResult"]=>string(4) "98.6"
}

Working our way from the top line down, we see the first line tells us that this whole
variable is an object. The first property is named CelciusToFahrenheitResult, and
it is a string. Even though the WSDL says this should be a decimal, SoapClient will
turn this into a string because PHP is typeless. To access the Fahrenheit value, we
simply access the object property:

$result->CelciusToFahrenheitResult ->

We can now take everything and put it all together. In this example, let's convert 37
degrees Celcius to Fahrenheit. Our script will execute the SOAP call, check for an
error, and output the result.

Chapter 3

[111]

<?php

$params = array('nCelcius' => 37);

$client = new SoapClient(
'http://webservices.daelab.net/temperatureconversions/
TemperatureConversions.wso?WSDL',
array('trace' => true)
);�

try {
 $result = $client->CelciusToFahrenheit($params);
} catch (SoapFault $e) {
 echo "Error!
";
 echo "faultcode: " . $e->faultcode . "
";
 echo "faultstring: " .$e->faultstring. "
";
 echo "detail: " .$e->detail;
}
?>

<html>.
<head><title>Soap Test</title></head>
<body>
<?php if ($result) { ?>
 Fahrenheit: <?= $result->CelciusToFahrenheitResult ?>
<?php } else { ?>
 Problem with conversion.
<?php } ?>

</body>
</html>

This script is named SoapClientTest2.php. Running it on our web browser will
show us this:

Make Your Own Search Engine

[112]

Now we have all the background knowledge we need to make SOAP calls and use
the Microsoft Live Search service. Combine this with what we already know about
REST, and we can start to create our mashup. Before we start writing code, as every
web service implementation is different, we need to take a look at each service to see
what we're dealing with.

Microsoft Live Search Web Service
The Microsoft Live Search Web Service is an easy to use SOAP service. These are a
few key highlights:

MSN Search Web Service only has one operation, which is named Search. A
cached version of the page is available, as part of the Search result.
MSN Search has a search request limit of 20,000 requests per day.
There are 250 maximum results returned with each search.

The home page for MSN Search Web Service is at http://msdn.microsoft.
com/live/msnsearch/default.aspx. Extensive documentation, sample code (in
.NET), and developer forums are available. You will also need a license key, which
they call an AppID, for Live Search. You can get that at http://search.msn.com/
developer.

Using Search
Microsoft Live Search Web Service organizes all of its related operations and
parameters into objects. This is a bit of a challenge for us because the parameters
argument for SoapClient's SOAP calls must be an array. SoapClient then serializes
it into a format the service likes. We will have to construct an array that is more
than two dimensions to accommodate this. However, we must be careful when
constructing this initial array.

On the surface, Search requires only one parameter—a SearchRequest object.
Translated into PHP array terms, this is already one array level.

•

•

•

Chapter 3

[113]

This object has several properties:

Property Description Default if Optional
AppID Your generated AppID. Required
Query The query term you are searching for. Required
CultureInfo Language and locale information. See the

Microsoft Live Search Web Service reference for a
complete list of codes.

Required

SafeSearch A setting level for filtering adult content. Value
can be Strict, Moderate, or Off.

Moderate

Flags Controls whether query words are marked when
they are returned. Value can be either None or
MarkQueryWords.

None

Location Controls location data, if applicable, for the
search. See the Microsoft Live Search Web Service
reference for applicability.

Optional, No default

Requests An array of SourceRequest objects giving you
further control of how the results are returned.

Required

The SourceRequest properties are also well documented:

Property Description Default if Optional
Source An enumerated list of possible source searches.

See the Microsoft Live Search Web Service
reference for a complete list, but this value should
be set to Web.

Optional, No default

Offset With zero being the most relevant, this is the
first result you want to be returned back. If for
some reason you only want moderately relevant
responses, pick a higher number.

0

Count Specifies the number of results to return. 10
ResultFields An enumerated list of fields to return in the

search. See the Microsoft Live Search Web Service
reference for a complete list. To see all, set this
value to All.

All

The Requests property is an array of objects, so we need to set two array levels to
that. A complete parameter for a Microsoft Live Search, then looks as follows:

$params = array('Request' => array(
 'AppID' => 'Your Microsoft Live Search AppID',
 'Query' => 'Orange Tabby Kittens',

Make Your Own Search Engine

[114]

 ������������������������� 'CultureInfo' => 'en-US',
 ������������������������� 'SafeSearch' => 'Strict',
 'Flags' => '',
 'Location' => '',
 'Requests' => array(
 'SourceRequest' => array(
 'Source' => 'Web',
 'Offset' => 0,
 'Count' => 50,�
 'ResultFields' => 'All')
)
)
);

Again, all fields are required, but they can be blank. The Requests nesting makes it a
little confusing to construct, but SoapClient handles the request admirably. After this
is setup, we can go ahead and pass it to SoapClient and make the call to Search. This
time, I will demonstrate the use of WSDL mode. We will wrap the call in a try-catch
block to check for errors.

 $client = new SoapClient(
 'http://soap.search.msn.com/webservices.asmx?wsdl',
 array('trace' => true);

);

 try{
 $result = $client->Search($params);
 }
 catch(SoapFault $e) {
 echo "Error!
";
 �� echo "faultcode: " . $e->faultcode . �������«
»;
 echo «faultstring: « .$e->faultstring. «
»;
 echo «detail: « .$e->detail;	
 }

When it comes back, we can break down the $result variable to see how we're
going to parse the response. Looking at var_dump results and documentation, we
see the $result is an object of the Response class. There is a property that is an
object named Responses. Responses has a property named SourceResponse.
SourceResponse holds information about the query results. The actual query results
are in an array named Results, which is one of the properties of SourceResponse.
The elements of the Results array are objects named Result. The properties of the
Result object are the Title, Description, Actual URL, Display URL, and a URL to a
cached version.

Chapter 3

[115]

This, then, is the chain to the Results object:
$result->Response->Responses->SourceResponse->Results->Result

The example file named MSNSoapTest.php demonstrates this. This script executes
a SOAP-based query against the Microsoft Live Search Web Service and parses the
results with the Microsoft Live Search response structure.

<?php if ($result) { ?>
<table>
<tr>
<th>Title</th>
<th>URL</th>
</tr>
 <?php foreach ($result->Response->Responses->SourceResponse
 ->Results->Result as $key => $value) { ?>
 <tr>
 <td><?= $value->Title ?></td>
 <td><?= $value->Url ?></td>
 </tr>
 <?php } ?>
</table>
<?php } ?>

And this will appear in our browser like so:

Make Your Own Search Engine

[116]

Yahoo! Search Web Service
The second search service we will look at is the Yahoo! Search Web Service. Unlike
the other Microsoft Live Search, this service is REST based. We will utilize what we
learned in the previous chapter to access this service. Still, we need to examine this
web service to see what parameters we need to pass, and what we can expect back.

The home page of this web service is located at http://developer.yahoo.com/
search/. Just like the other two, the service is supported by excellent documentation,
a forum community, and sample codes. Out of all three services, Yahoo!'s sample
code is far more extensive and provides examples in PHP, Perl, Python, Java,
JavaScript, and Flash. Again, like all three, you will have to download an identifier
key. You can get this key at http://api.search.yahoo.com/webservices/
register_application.

Yahoo! Search Web Service is actually a whole family of web search services. Among
the other services available are audio search, image search, and news search. The
Web Search interface is the more traditional World Wide Web search engine, and
that is what we will be concentrating on.

Yahoo! Search Web Service offers some key differences from Microsoft Live Search:

1.	 The REST based service is a blessing in that it is quite easy to use, and
integrates well with more technologies including client side ones like Flash
and JavaScript. It's also a curse because we won't have the advantages of
things like WSDL.

2.	 Yahoo! Search Web Service gives you 5,000 queries per 24-hour period.

Using Web Search
The location of the web service is at http://search.yahooapis.com/
WebSearchService/V1/webSearch. There are a number of parameters that we will
have to include:

Parameter Name Description
appid Your application ID.
query The query term you are searching for.
region The region that you are searching against.
type The type of search you wish to return. "all" for the whole query

submitted, "any" returns results all results with any of the search
terms. Phrase considers the query to be a phrase and will treat it
as such.

Chapter 3

[117]

Parameter Name Description
results Maximum number of results to return. Maximum value is 100.
start Number of result you wish to start at.
format The kind of file to look for.
adult_ok Flag to indicate whether you wish to filter adult material.
similar_ok Flag to indicate whether you wish to include duplicate results.
language The language of the response.
country The country you wish to restrict the search to.
site The domain you wish to restrict the search to.
subscription Special container for premium, fee-based content.
license The Creative Commons license you wish to apply to the

search results.
output The format to return the search. Can be XML (default), JSON, or

serialized PHP.
callback JavaScript callback function to call.

Of particular importance is the Output flag. Yahoo! Web Services can pass the result
back as serialized PHP, so we can just pass the return value to unserialize(). We
do not have to pass the results through a SAX parser.

Because this service is REST, we have a bit more flexibility for our parameters. If we
want to accept a default value, we can simply omit it from the parameters. A simple
parameters array for these values may look like this:

$params = array('appid' => 'Your Yahoo! App ID',

 'query' => 'Orange Tabby Kittens',
 'region' => 'us',

 'type' => 'all',

 'results' => 50,

 'start' => 0,

 'format' => 'any',

 'adult_ok' => 1,

 'similiar_ok' => 0,

 'output' => 'php'

);

We are going to leverage the serialized PHP functionality by setting the output
parameter to php.

Make Your Own Search Engine

[118]

To make the call, we will use the RESTParser class we created in the last chapter,
instantiate the class, and make the REST call.

require_once('classes/RESTParser.php');
$parser = new RESTParser();

$t = $parser->callService($params, 'search.yahooapis.com', '/
WebSearchService/V1/webSearch', 'GET');
$result = unserialize($t);

Note the last line. We pass the result of the REST call through unserialize(). Now
the result is easily manipulated through PHP.

The PHP structure of the returned value is different than that of Microsoft Live
Search. The response does not use objects, mainly because that concept does not exist
in REST, but is common in SOAP. Instead, Yahoo! uses arrays extensively.

To access the values of the service return, we must go through ResultSet, which
is an array of Result objects, then we must loop through Result itself because that
is an array that holds the returned objects. For example, to go from the top level to
Result objects, we would use this chain:

result['ResultSet']['Result']

For each individual Result object returned, we would have to access those array
elements. We can demonstrate using the sample YahooTest.php page:

<?php if ($result) { ?>
<table>
<tr>
<th>Title</th>
<th>URL</th>
</tr>
 <?php foreach ($result['ResultSet']['Result'] as $key => $value) {
?>
 <tr>
 <td><?= $value['Title'] ?></td>
 <td><?= $value['Url'] ?></td>
 </tr>
 <?php } ?>
</table>
<?php } ?>

Chapter 3

[119]

Note how we access the title and URL as array elements, not objects. Running this
through the browser will give us the results from Yahoo!

Mashing Up
Now is the time to put it all together. We've looked at SOAP, which allowed us to
access the Microsoft Live Search Web Service. We then looked at each individual
service and saw how they accept and return data. Let's now put it all together under
one common interface.

Let's start with a front-end form to accept queries.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en_US" xml:lang="en_
US">
 <head>
 <title>Mashups Chapter 2</title>
 </head>
 <body>
 <form action="action.php" method="post">
 <input type="text" size="20" maxlength="40" "name="query" />
 <input type="submit"
 </form>
 </body>
</html>

Make Your Own Search Engine

[120]

This will post the query to an action page. For our action page, we will just take the
example code we have written so far and consolidate it. The only changes we will
make are to a few variable names that ensure a particular object is unique. At
the very beginning, we also include the required RESTParser class for Yahoo!
Web Services.

<?php

$q = $_POST['query'];
 ���������������������������������������require_once('classes/RESTParser.php');

/******
 * Begin MSN
 */

$params = array('Request' => array(
 'AppID' => 'Your Microsoft Live Search API Key',
 ����������������� ����������'Query' => $_POST['query'],
 'CultureInfo' => 'en-US',
 ������������������������� 'SafeSearch' => 'Strict',
 'Flags' => '',
 'Location' => '',
 'Requests' => array(
 'SourceRequest' => array(
 'Source' => 'Web',
 'Offset' => 0,
 'Count' => 10,
 'ResultFields' => 'All')
)
)
);

 $msnClient = new SoapClient("http://soap.search.msn.com/
 webservices.asmx?wsdl");

 try {
 $msnResults = $msnClient->Search($params);
 }
 catch(SoapFault $msnError) {
 echo "Error!
";
 echo "faultcode: " . $msnError->faultcode . "
";
 echo "faultstring: " .$msnError->faultstring. "
";
 echo "detail: " . $msnError->detail;	
 }
 /****
 * End MSN
 */

Chapter 3

[121]

 /*****
 * Begin Yahoo!
 */

$params = array('appid' => 'Your Yahoo! App ID',
 'query' => $_POST['query'],
 'region' => 'us',
 'type' => 'all',
 'results' => 10,
 'start' => 0,
 'format' => 'any',
 'adult_ok' => 1,
 'similiar_ok' => 0,
 'output' => 'php'
);

$parser = new RESTParser();
$t = $parser->callService($params, 'search.yahooapis.com', '/
WebSearchService/V1/webSearch', 'GET');

$yahooResults = unserialize($t);
 /****
 * End Yahoo!
 */
?>
<html>
<head><title>Mashup Search Engine Results?</title></head>
<body>

<?php if ($msnResults) { ?>
<h1>Results from MSN</h1>
<table>
<tr>
<th>Title</th>
<th>URL</th>
</tr>
 <?php foreach ($msnResults->Response->Responses->SourceResponse-
>Results->Result as $key => $value) { ?>
 <tr>
 <td><?= $value->Title ?></td>
 <td><?= $value->Url ?></td>
 </tr>
<?php } ?>
</table>
<?php } ?>

<?php if ($yahooResults) { ?>
<h1>Results from Yahoo!</h1>

Make Your Own Search Engine

[122]

<table>
<tr>
<th>Title</th>
<th>URL</th>
</tr>
 <?php foreach ($yahooResults['ResultSet']['Result'] as $key =>
$value) { ?>
 <tr>
 <td><?= $value['Title'] ?></td>
 <td><?= $value['Url'] ?></td>
 </tr>
 <?php } ?>
</table>
<?php } ?>
</body>
</html>

Our mashup is ready to be used. Hitting searchForm.php will give us a form to
enter in a query.

Chapter 3

[123]

Our action page will then query both web services and display the results for
the user.

Summary
In this chapter, we were introduced to SOAP, the most complex of the web service
protocols so far. SOAP relies heavily on other standards like WSDL and XSD. We
took a look at a WSDL document and learned how to figure out what web services
are available from it, and what types of data are passed. Using PHP 5's SoapClient
extension, we then interacted with SOAP servers to grab data. This culminated into
the creation of our mashup, which gathered web search results from MSN, and
Yahoo!. This mashup was not just about SOAP, though. Using web services from
MSN, and Yahoo!, we have now been exposed to three very big players in the web
service game. If we use web services from them in the future, we'll know what type
of documentation and support we can expect from each one.

Your Own Video Jukebox
 Project Overview

What Mashup the web APIs from Last.fm and YouTube to
create a video jukebox of songs

Protocols Used REST (XML-RPC available)
Data Formats XML, XPSF, RSS

Tools Featured PEAR
APIs Used Last.fm and YouTube

Now that we've had some experience using web services, it's time to fine tune their
use. XML-RPC, REST, and SOAP will be frequent companions when you use web
services and create mashups. You will encounter a lot of different data formats, and
interesting ways in which the PHP community has dealt with these formats. This is
especially true because REST has become so popular. In REST, with no formalized
response format, you will encounter return formats that vary from plain text to
ad-hoc XML to XML-based standards.

The rest of our projects will focus on exposing us to some new formats, and we will
look at how to handle them through PHP. We will begin with a project to create our
own personalized video jukebox. This mashup will pull music lists feeds from the
social music site, Last.fm. We will parse out artist names and song titles from these
feeds and use that information to search videos on YouTube, a user-contributed
video site, using the YouTube web service. By basing the song selections on
ever-changing feeds, our jukebox selection will not be static, and will change as
our music taste evolves. As YouTube is a user-contributed site, we will see many
interesting interpretations of our music, too. This jukebox will be personalized,
dynamic, and quite interesting.

Your Own Video Jukebox

[126]

Both Last.fm and YouTube's APIs offer their web services through REST, and
YouTube additionally offers an XML-RPC interface. Like with previous APIs,
XML is returned with each service call. Last.fm returns either plain text, an XML
playlist format called XSPF (XML Shareable Playlist Format), or RSS (Really Simple
Syndication). In the case of YouTube, the service returns a proprietary format.
Previously, we wrote our own SAX-based XML parser to extract XML data. In this
chapter, we will take a look at how PEAR, the PHP Extension and Application
Repository, can do the XSPF parsing work for us on this project and might help in
other projects.

Let's take a look at the various data formats we will be using, and then the web
services themselves.

XSPF
One of XML's original goals was to allow industries to create their own markup
languages to exchange data. Because anyone can create their own elements and
schemas, as long as people agreed on a format, XML can be used as the universal
data transmission language for that industry. One of the earliest XML-based
languages was ChemXML, a language used to transmit data within the chemical
industry. Since then, many others have popped up.

XSPF was a complete grassroots project to create an open, non-proprietary music
playlist format based on XML. Historically, playlists for software media players and
music devices were designed to be used only on the machine or device, and schemas
were designed by the vendor themselves. XSPF's goal was to create a format that
could be used in software, devices, and across networks.

XSPF is a very simple format, and is easy to understand. The project home page is
at http://www.xspf.org. There, you will find a quick start guide which outlines a
simple playlist as well as the official specifications at http://www.xspf.org/specs.
Basically, a typical playlist has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<playlist version="1" xmlns="http://xspf.org/ns/0/">
 <title>Shu Chow's Playlist</title>
 <date>2006-11-24T12:01:21Z</data>
 <trackList>
 <track>
 <title>Pure</title>
 <creator>Lightning Seeds</creator>
 <location>
 file:///Users/schow/Music/Pure.mp3

Chapter 4

[127]

 </location>
 </track>
 <track>
 <title>Roadrunner</title>
 <creator>The Modern Lovers</creator>
 <location>
 file:///Users/schow/Music/Roadrunner.mp3
 </location>
 </track>
 <track>
 <title>The Bells</title>
 <creator>April Smith</creator>
 <location>
 file:///Users/schow/Music/The_Bells.mp3
 </location>
 </track>
 </trackList>
 </playlist>

playlist is the parent element for the whole document. It requires one child
element, trackList, but there can be several child elements that are the metadata
for the playlist itself. In this example, the playlist has a title specified in the title
element, and the creation date is specified in the date element. Underneath
trackList are the individual tracks that make up the playlist. Each track is
encapsulated by the track element. Information about the track, including
the location of its file, is encapsulated in elements underneath track. In our
example, each track has a title, an artist name, and a local file location. The official
specifications allow for more track information elements such as track length and
album information.

Here are the playlist child elements summarized:

Playlist Child Element Required? Description
trackList Yes The parent of individual track elements.

This is the only required child element of a
playlist. Can be empty if the playlist has
no songs.

title No A human readable title of the XSPF playlist.
creator No The name of the playlist creator.
annotation No Comments on the playlist.
info No A URL to a page containing more

information about the playlist.
location No The URL to the playlist itself.

Your Own Video Jukebox

[128]

Playlist Child Element Required? Description
identifier No The unique ID for the playlist. Must be a

legal Uniform Resource Name (URN).
image No A URL to an image representing the playlist.
date No The creation (not the last modified!) date

of the playlist. Must be in XML schema
dateTime format. For example, "2004-02-
27T03:30:00".

license No If the playlist is under a license, the license is
specified with this element.

attribution No If the playlist is modified from another
source, the attribution element gives credit
back to the original source, if necessary.

link No Allows non-XSPF resources to be included in
the playlist.

meta No Allows non-XSPF metadata to be included in
the playlist.

extension No Allows non-XSPF XML extensions to be
included in the playlist.

A trackList element has an unlimited number of track elements to represent each
track. track is the only allowed child of trackList. track's child elements give us
information about each track. The following table summarizes the children of track:

Track Child Element Required? Description
location No The URL to the audio file of the track.
identifier No The canonical ID for the playlist. Must be a

legal URN.
title No A human readable title of the track. Usually,

the song's name.
creator No The name of the track creator. Usually, the

song's artist.
annotation No Comments on the track.
info No A URL to a page containing more

information about the track.
image No A URL to an image representing the track.
album No The name of the album that the track

belongs to.
trackNum No The ordinal number position of the track in

the album.

Chapter 4

[129]

Track Child Element Required? Description
duration No The time to play the track in milliseconds.
link No Allows non-XSPF resources to be included in

the track.
meta No Allows non-XSPF metadata to be included in

the track.
extension No Allows non-XSPF XML extensions to be

included in the track.

Note that XSPF is very simple and track oriented. It was not designed to be a
repository or database for songs. There are not a lot of options to manipulate the list.
XSPF is merely a shareable playlist format, and nothing more.

RSS
The simplest answer to, "What is RSS?", is that it's an XML file used to publish
frequently updated information, like news items, blogs entries, or links to podcast
episodes. News sites like Slashdot.org and the New York Times provide their news
items in RSS format. As new news items are published, they are added to the RSS
feed. Being XML-based, third-party aggregator software makes reading news items
easy. With one piece of software, I can tell it to grab feeds from various sources and
read the news items in one location. Web applications can also read and parse RSS
files. By offering an RSS feed for my blog, another site can grab the feed and keep
track of my daily life. This is one way by which a small site can provide rudimentary
web services with minimal investment.

The more honest answer is that it is a group of XML standards (used to publish
frequently updated information like news items or blogs) that may have little
compatibility with each other. Each version release also has a tale of conflict and
strife behind it. We won't dwell on the politicking of RSS. We'll just look at the
outcomes. The RSS world now has three main flavors:

The RSS 1.0 branch includes versions 0.90, 1.0, and 1.1. It's goal is to be
extensible and flexible. The downside to the goals is that it is a
complex standard.
The RSS 2.0 branch includes versions 0.91, 0.92, and 2.0.x. Its goal is to be
simple and easy to use. The drawback to this branch is that it may not be
powerful enough for complex sites and feeds.

•

•

Your Own Video Jukebox

[130]

There are some basic skeletal similarities between the two formats. After the XML
root element, metadata about the feed itself is provided in a top section. After the
metadata, one or more items follow. These items can be news stories, blog entries, or
podcasts episodes. These items are the meat of an RSS feed.

The following is an example RSS 1.1 file from XML.com:

<Channel xmlns="http://purl.org/net/rss1.1#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 rdf:about="http://www.xml.com/xml/news.rss">

 <title>XML.com</title>
 <link>http://xml.com/pub</link>
 <description>

XML.com features a rich mix of information and services for the
XML community.

 </description>
 <image rdf:parseType="Resource">
 <title>XML.com</title>
 <url>http://xml.com/universal/images/xml_tiny.gif</url>
 </image>

 <items rdf:parseType="Collection">
 <item rdf:about=
 "http://www.xml.com/pub/a/2005/01/05/restful.html">

 <title>
 The Restful Web: Amazon's Simple Queue Service
 </title>
 <link>
 http://www.xml.com/pub/a/2005/01/05/restful.html
 </link>
 <description>

 In Joe Gregorio's latest Restful Web column, he explains
 that Amazon's Simple Queue Service, a web service offering a
 queue for reliable storage of transient

 messages, isn't as RESTful as it claims.
 </description>
 </item>

 <item rdf:about=
 "http://www.xml.com/pub/a/2005/01/05/tr-xml.html">
 <title>
 Transforming XML: Extending XSLT with EXSLT
 </title>
 <link>
 http://www.xml.com/pub/a/2005/01/05/tr-xml.html

Chapter 4

[131]

 </link>
 <description>

 In this month's Transforming XML column, Bob DuCharme
 reports happily that the promise of XSLT extensibility via
 EXSLT has become a reality.
 </description>
 </item>
 </items>
</Channel>

The root element of an RSS file is an element named Channel. Immediately, after the
root element are elements that describe the publisher and the feed. The title, link,
description, and image elements give us more information about the feed.

The actual content is nested in the items element. Even if there are no items in the
feed, the items element is required, but will be empty. Usage of these elements can
be summarized as follows:

Channel Child Element Required? Description
title Yes A human readable title of the channel.
link Yes A URL to the feed.
description Yes A human readable description of the feed.
items Yes A parent element to wrap around item

elements.
image No A section to house information about an

official image for the feed.
others No Any other elements not in the RSS

namespace can be optionally included here.
The namespace must have been declared
earlier, and the child elements must
be prefixed.

If used, the image element needs its own child elements to hold
information about the feed image. A title element is required and
while optional, a link element to the actual URL of the image would be
extremely useful.

Each news blog, or podcast entry is represented by an item element. In this RSS
file, each item has a title, link, and a description, each, represented by the respective
element. This file has two items in it before the items and Channel elements are
closed off.

Your Own Video Jukebox

[132]

Note the use of the rdf namespace. The RSS 1.0 branch uses Rich Description
Framework (RDF) extensively. RDF is an XML framework to make documents not
only machine-friendly, but also human-friendly by organizing topics together. To
consume RSS 1.0, we do not need to know too much about RDF. However, we will
be taking a little closer look at it on a future project. For now, the key concept to
take away is that individual items are represented by the item element in the
RSS 1.0 branch.

The item element's children are summarized as follows:

Item Child Element Required? Description
title Yes A human readable title of the item.
link Yes A URL to the item.
description Yes A human readable description of the item.
others No Any other elements not in the RSS

namespace can be optionally included here.
The namespace must have been declared
earlier, and the child elements must
be prefixed.

Looking at a RSS 2.0 feed from IBM DeveloperWorks, we can see a lot of similarities:

<rss version="2.0">
<channel>
<title>developerWorks : Linux : Technical library</title>
<link>http://www.ibm.com/developerworks/index.html</link>
<description>
 The latest content from IBM developerWorks
</description>
<pubDate>Wed, 10 Jan 2007 01:03:11 EST</pubDate>
<language>en-us</language>
<copyright>Copyright 2004 IBM Corporation.</copyright>

<item>
 <title>

Chapter 4

[133]

 <![CDATA[
 Whistle while you work to run commands on your computer
]]>
</title>

 <description>
 <![CDATA[
 Use Linux or Microsoft Windows, the open source sndpeek
 program, and a simple Perl script to read specific
 sequences of tonal events -- literally whistling,
 humming, or singing to your computer -- and run commands
 based on those tones. Give your computer a short low
 whistle to check your e-mail or unlock your your
 screensaver with the	 opening bars of Beethoven's Fifth
 Symphony. Whistle while you work for higher efficiency

]]>
</description>

 <link>
 <![CDATA[
 http://www.ibm.com/developerworks/library/os-
 whistle/index.html?ca=drs-
]]>
 </link>

<category>Articles</category>
</item>
<item>

<title>
 <![CDATA[
 Programming high-performance applications on the Cell BE
 processor, Part 1: An introduction to Linux on the
 PLAYSTATION 3
]]>
</title>
<description>
 <![CDATA[
 The Sony PLAYSTATION 3 (PS3) is the easiest and cheapest

 way for programmers to get their hands on the new Cell
 Broadband Engine (Cell BE) processor and take it for a

 drive. Discover what the fuss is all about, how to
 install Linux on the PS3, and how to get started
 developing for the Cell BE processor on the PS3.
]]>

 </description>
 <link>
 <![CDATA[
 http://www.ibm.com/developerworks/linux/library/pa-
 linuxps3-1/index.html?ca=drs-
]]>

Your Own Video Jukebox

[134]

 </link>
<category>Articles</category>

</item>
</channel>
</rss>

Like the 1.1 feed, 2.0 starts with information about the feed and the publisher,
followed by news items.

There are some key differences between 1.1 and 2.0:

The rss element is the root element for 2.0.
A channel element follows rss and encompasses all other elements.
Each item is represented by an item element, but items do not have a parent
element that groups like all together (like items in 1.1 does).

While structurally the feeds are similar, the tags and nesting are different enough
to cause problems, especially when you consider that \programs are the primary
consumers of RSS feeds.

RSS 2.0 also has many more standard tags available in its namespace. RSS 2.0
recognized there is a lot of common information for channels and items that
people would like to include beyond just titles, links, and descriptions. Things
like a publication date, languages, and categories are used frequently. In RSS 1.1,
one would have to use another standard and pull it into the document through
namespacing. This is not only added overhead, but creates many ways of putting
something as simple as a publication date into the feed.

Channel Child Element Required? Description
title Yes A human readable title of the feed.
link Yes A URL to the feed.
description Yes A human readable description of the feed.
category No One or more categories for the feed. There

is no set standard for the available values of
this element.

cloud No A cloud is a centralized server that holds
information about a group of RSS feeds. This
element will hold information about a remote
procedure to call on the cloud server when
the feed is updated. Attributes for this are the
domain, port, path, procedure, and protocol.
The remote procedure can be either
XML-RPC or SOAP.

•

•

•

Chapter 4

[135]

Channel Child Element Required? Description
copyright No If the content is copyrighted, the copyright is

placed into this element.
docs No A URL to the documentation for the feed.
generator No The name of the program used to generate

the feed.
image No A section to house information about an

official image for the feed.
language No The language in which the feed is written.
lastBuildDate No The last modification date of the feed.
managingEditor No The email address for the person responsible

for the content of the feed.
pubDate No The last publication date of the feed.
rating No The PICS (Platform for Internet Content

Selection) rating of the feed. See http://
www.w3.org/PICS/ for more information
about PICS.

skipDays No Days in which RSS aggregators should not
read this feed.

skipHours No Hours in which RSS aggregators should not
read this feed.

textInput No The name of a text input field to be displayed
with this field.

ttl No TTL stands for, "Time To Live". It is the
number of minutes the feed should stay in a
client's cache.

webMaster No An email address of the person responsible
for the technical aspects of this feed.

Likewise, RSS 2.0 has many more available child elements for item elements.

Item Child Element Required? Description
title Yes A human readable title of the item.
link Yes A URL to the item.
description Yes A human readable description of the item.
author No The email address of the author of this item.
category No One or more categories for the item. There

is no set standard for the available values of
this element.

Your Own Video Jukebox

[136]

Item Child Element Required? Description
comments No URL to a page of reader comments of

the item.
enclosure No Allows a media file to be included for the

item. The URL to the media file is included
in a required attribute named url.length,
in bytes, of the media file and type, the
MIME type of the file, are also required. The
most common use of this tag is to specify an
MP3 in podcasts.

guid No A unique identifier for the item.
pubDate No The last publication date of the item.
source No A third-party source for the item. Used in

citation sources for an item.

Atom Syndication Format
There is a new, third syndication feed called Atom. Atom attempts
to bridge the extensibility and simplicity goals of both RSS branches.
Structurally, Atom feeds share a similar model to RSS—metadata
followed by entries. However, the element names are quite different.
We won't be using Atom in this project, but you should be aware of
it. Although it is the least mature of the formats and the market share
is relatively smaller, it is the only format supported by an industry
standards body (specifically, the Internet Engineering Task Force) and is
already being used by powerhouses like Google News.

YouTube Overview
YouTube almost needs no introduction these days. The site is as ubiquitous as many
of the previous sites we discussed—Amazon, Google, Yahoo!, and MSN. Links to
its videos have been passed around email accounts. In case you have lead a very
sheltered existence, we will take a brief look at what YouTube does, some features,
and its Web API.

In a nutshell, YouTube is a site that allows users to share homemade videos with
the public via the Internet. Users upload any video they wish (with much respect to
copyright laws) and other users may view and comment on them. The latter has led
YouTube to become a strong social networking site in addition to just sharing videos.

Chapter 4

[137]

Some of the available features of YouTube include:

Video Tagging
YouTube relies on its user community to describe the videos in its repository.
This is done by allowing users to associate descriptive words and short
phrases with a particular video. This process is known as tagging. For
example, if I am watching a clip of a live performance by the Brooklyn, New
York-based band, They Might Be Giants, YouTube allows me to tag the clip
with, "They Might Be Giants", "Brooklyn", "alternative".
Video Search
YouTube has a robust search engine that queries the tags placed on videos.
By searching on tags, a video's description is democratized. If YouTube's
search engine queried only the description given to it by the submitter, that
person has a large influence on how that video is returned in search results.
By also querying tags, the search engine can find videos the community
thinks should be returned. In our example, with "They Might Be Giants",
the clip submitter may not have noted that the band is based in Brooklyn.
However, because I tagged the clip with "Brooklyn," any Brooklynite looking
for local bands may also discover They Might Be Giants.
Submitter Subscriptions
YouTube keeps track of a user's video submissions. It is then natural to let
other users subscribe to another user's submissions. Through their antics
and jeremiads, a few people have gained quite a following on YouTube, and
found their fifteen minutes of fame.
Community
YouTube builds to the social aspect of its site by allowing users to comment
on videos.
Embedding on Other Sites
YouTube allows users to embed a video on their own web site. YouTube,
then, essentially acts a video hosting service. In addition, an external site can
also just display a quick thumbnail of a video with a link to the video and all
its information and comments on YouTube.

The social networking aspect of YouTube makes for a good web service subject, and
the site has taken advantage of that.

•

•

•

•

•

Your Own Video Jukebox

[138]

YouTube Developer API
Like some of the other web services we've encountered, YouTube's API requires
a developer ID that needs to be passed to the server when calling services. You
can sign up for a developer ID at http://www.youtube.com/signup?next=my_
profile_dev. After you have an ID, you can dig into the documentation. The
documentation can be found at http://www.youtube.com/dev_docs.

The available methods fall into two categories.
A method can either be related to user information, or related to video viewing.
YouTube uses a quasi-Java, dot notation to name their web service methods. For
example, the method to get a user's profile is named youtube.users.get_profile,
and the method to get a list of featured YouTube videos is named youtube.videos.
list_featured.

Each method can be called either using REST or XML-RPC. A REST request takes the
method name as a parameter along with any other parameters needed. The format
used is http://www.youtube.com/api2_rest?method=METHOD_NAME¶meter1
=VALUE1¶meter2=VALUE2. For example, let's look at get_profile, which gets a
user's profile. The documentation for this method (located at http://youtube.com/
dev_api_ref?m=youtube.users.getprofile) says this method requires
three parameters:

method is the method name itself. For get_profile, the value for method is
the method's formal name, youtube.users.getprofile. This parameter is
only needed for REST requests, which we are using in this example.
dev_id, which is your developer ID.
user, the profile name of the user whom you want to retrieve.

The REST request for get_profile would be http://www.youtube.com/
api2_rest?method=youtube.users.getprofile&dev_id=YOUR_DEVELOPER_
ID&user=PROFILE_NAME.

The same method names are used when interfacing with XML-RPC. To use
XML-RPC, the request is a standard XML-RPC call that takes only one param
element, a struct, and each YouTube method parameter is sent as a value of the
struct. The name of the method is not passed into the struct. Instead, follow XML-
RPC standards by putting the name of the method in the methodName element of the
call. Under XML-RPC, the call to get_profile would look like this:

<?xml version="1.0" ?>
<methodCall>
 <methodName>youtube.users.get_profile</methodName>
 <params>

•

•

•

Chapter 4

[139]

 <param>
 <value>
 <struct>
 <member>
 <name>dev_id</name>
 <value>
 <string>YOUR DEVELOPER ID</string>
 </value>
 </member>
 <member>
 <name>user</name>
 <value>
 <string>PROFILE NAME</string>
 </value>
 </member>
 </struct>
 </value>
 </param>
 </params>
</methodCall>

The server will always return an XML response. Each method's response is detailed
in the documentation. If REST is used, the response is just the XML in string form. If
XML-RPC is used, that same documented XML string is escaped and encased in an
XML-RPC response wrapper.

We can see how this works with get_profile. Consult the documentation to see
how the response is structured. According to the documentation, this is how the
response will be returned if we are using REST:

<user_profile>
 <first_name>Shu</first_name>
 <last_name>Chow</last_name>
 <about_me>I pound on a keyboard for a living</about_me>
 …
 <friend_count>3</friend_count>
 <favorite_video_count>7</favorite_video_count>
 <currently_on>false</currently_on>
</user_profile>

If we made the call with XML-RPC, the XML structure would be the same, but this
time, the XML is a string within a methodResponse element:

<?xml version='1.0' ?>
<methodResonse>
 <params>

Your Own Video Jukebox

[140]

 <param>
 <value><string>
 <user_profile>
 <first_name>Shu</first_name>
 <last_name>Chow</last_name>
 <about_me>

 I pound on a keyboard for a living
 </about_me>

 …
 <friend_count>3</friend_count>
 <favorite_video_count>7</favorite_video_count>
 <currently_on>false</currently_on>
 </user_profile>
 </string></value>
 </param>
 </params>
</methodResponse>

As you can see, the YouTube API is simple, consistent, and well-documented.

Last.fm Overview
Last.fm (http://www.last.fm) describes itself as a social music networking site. It is
an interesting way to find new music based on user contributions. Users register for
free at the site. You then download a small client program to run on your machine.
This program monitors what music you are playing through software media players
such as iTunes and WinAmp. You can also tag the songs through the program. The
program uploads the song information, including tags, back to the Last.fm server.
Based on the artist, song, genre, and what other people have tagged songs, Last.
fm builds a music profile for you. It uses this profile to build a custom streaming
radio station for you that you can also listen to through the client program, and
recommends other artists and songs that are similar to the music that you like.

Vigilant users may, understandably, bristle at installing a desktop
program that sends their music listening habits off to a server somewhere.
However, Last.fm does a good job of protecting your privacy. First off,
the client program is open source. It does not contain any malware that
would compromise your privacy or your computer's security, and the
code is opened up for peer review. Second, their privacy policy explicitly
states they do not share your personal information to outside parties.
Finally, the registration process does not ask for information such as
address or names, although you can enter your zip or postal code to see
music events in your area. The music profile that it generates is tied to
your account and profile you create. Any private information regarding
you, the individual, is not required.

Chapter 4

[141]

As we walk through the project and the examples, I will be demonstrating things
using my own personal account. This will guarantee that the examples indeed
work. To truly personalize this project as your own, you should consider creating an
account and uploading some track data through the Last.fm client program.

Audioscrobbler Web Services
Audioscrobbler Web Services API is the web service that allows you to access data
displayed on Last.fm. Audioscrobbler's home is at http://www.audioscrobbler.
net/data/webservices. This web service is basically a collection of RSS feeds that
fall within several categories:

User Profile Data: The largest collection of feeds, this category provides
data about a certain user. For example, there are feeds that list the top artists
they've listened to, and the top tracks.
Artist Data: This category aggregates data about all artists in the Last.fm
database. By providing an artist name, you can get things such as their most
listened to tracks on Last.fm, their largest fans, the users that have listened to
them the most, etc.
Album Data: This category holds information about albums. Currently, there
is only one feed associated with this category. By providing a title name to
the Info feed, you can get a track listing for the album.
Track Data: Information about specific tracks is given here.
Tag Data: Like YouTube, Last.fm allows users to tag songs with their own
descriptions.
Group Data: Like other social networking sites, Last.fm provides groups
users can create and join. Information about what members are listening to in
these groups is available in the Group Data feeds.
Forum Data: Last.fm has a community forum. The posts are offered in an
RSS feed.
LiveJournal Protocol: Audioscrobbler can interact with the LiveJournal web
service through this web service.

Looking at the Audioscrobbler Web Services API home page, we see that each feed
can be in up to four formats—plain text, generic XML, XSPF, or RSS. Often, the
available formats are dictated by their purpose. For example, it would not make
sense to output user information in XSPF, a format made just for representing
song playlists.

•

•

•

•

•

•

•

•

Your Own Video Jukebox

[142]

The web service is not documented well, but is very simple, and documentation is
by example. On the API home page, the format links to each feed is an example of
how to use the feed. Feeds pertaining to member information use the user "RJ", who
is one of the original founders of Last.fm. Feeds pertaining to artist information, like
top listeners, use an assortment of artists. To use any of the feeds, take the URL of the
playlist and format you want, and replace it with the user or artist.

Let's play with some examples. The feeds are easy to use and experiment with,
because the Audioscrobbler feeds are just URLs and no developer ID is necessary to
use them. The API home page shows the top tracks played by a user are available
in plain text, Last.fm's own XML format, and as an XSPF playlist. The URL on that
page for RJ's top tracks in XSPF is http://ws.audioscrobbler.com/1.0/user/RJ/
toptracks.xspf.

If I want to see my top tracks, I can just replace RJ with my own Last.fm user name:
http://ws.audioscrobbler.com/1.0/user/ShuTheMoody/toptracks.xspf.

The artist feeds uses Metallica as the default example. To see a list of top
Last.fm fans of Metallica, use the Top Fans feed on the API home page:
http://ws.audioscrobbler.com/1.0/artist/Metallica/fans.xml. To see
another artist's top fans, just change the Metallica section of the URL:
http://ws.audioscrobbler.com/1.0/artist/Donnas/fans.xml.

Parsing With PEAR
If we were to start mashing up right now, between XSPF, YouTube's XML response,
and RSS, we would have to create three different parsers to handle all three response
formats. We would have to comb through the documentation and create flexible
parsers for all three formats. If the XML response for any of these formats changes,
we would also be responsible for changing our parser code. This isn't a difficult
task, but we should be aware that someone else has already done the work for us.
Someone else has already dissected the XML code. To save time, we can leverage this
work for our mashup.

We used PEAR, earlier in Chapter 1 to help with XML-RPC parsing. For this project,
we will once again use PEAR to save us the trouble of writing parsers for the three
XML formats we will encounter.

For this project, we will take a look at three packages for our mashup. File_XSPF is
a package for extracting and setting up XSPF playlists. Services_YouTube is a Web
Services package that was created specifically for handling the YouTube API for us.
Finally, XML_RSS is a package for working with RSS feeds.

Chapter 4

[143]

For this project, it works out well that there are three specific packages that fits our
XML and RSS formats. If you need to work with an XML format that does not have
a specific PEAR package, you can use the XML_Unserializer package. This package
will take a XML and return it as a string.

Is PEAR Right For You?
Before we start installing PEAR packages, we should take a look if it
is even feasible to use them for a project. PEAR packages are installed
with a command line package manager that is included with every core
installation of PHP. In order for you to install PEAR packages, you need
to have administrative access to the server. If you are in a shared hosting
environment and your hosting company is stingy, or if you are in a strict
corporate environment where getting a server change is more hassle than
it is worth, PEAR installation may not be allowed. You could get around
this by downloading the PEAR files and installing them in your web
documents directory. However, you will then have to manage package
dependencies and package updates by yourself. This hassle may be more
trouble than it's worth, and you may be better off writing your own code
to handle the functionality.
On the other hand, PEAR packages are often a great time saver. The
purpose of the packages is to either simplify tedious tasks, or interface
with complex systems. The PEAR developer has done the difficult work
for you already. Moreover, as they are written in PHP and not C, like a
PHP extension would be, a competent PHP developer should be able to
read the code for documentation if it is lacking. Finally, one key benefit of
many packages, including the ones we will be looking at, is that they are
object-oriented representations of whatever they are interfacing. Values
can be extracted by simply calling an object's properties, and complex
connections can be ignited by a simple function call. This helps keep our
code cleaner and modular. Whether the benefits of PEAR outweigh the
potential obstacles depends on your specific situation.

Package Installation and Usage
Just like when we installed the XML-RPC package, we will use the install binary
to install our three packages. If you recall, installing a package, simply type install
into the command line followed by the name of the package. In this case, though, we
need to set a few more flags to force the installer to grab dependencies and code in
beta status.

To install File_XSPF, switch to the root user of the machine and use this command:

[Blossom:~] shuchow# /usr/local/php5/bin/pear install –f --
alldeps File_XSPF

Your Own Video Jukebox

[144]

This command will download the package. The -alldeps flag tells PEAR to also
check for required dependencies and install them if necessary. The progress and
outcome of the downloads will be reported.

Do a similar command for Services_YouTube:

[Blossom:~] shuchow# /usr/local/php5/bin/pear install -f ––alldeps
Services_YouTube

Usually, you will not need the –f flag. By default, PEAR downloads the latest
stable release of a package. The –f flag, force, forces PEAR to download the most
current version, regardless of its release state. As of this writing, File_XSPF and
Services_YouTube do not have stable releases, only beta and alpha respectively.
Therefore, we must use –f to grab and install this package. Otherwise, PEAR
will complain that the latest version is not available. If the package you want to
download is in release state, you will not need the –f flag.

This is the case of XML_RSS, which has a stable version available.

[Blossom:~] shuchow# /usr/local/php5/bin/pear install ––alldeps XML_RSS

After this, sending a list-all command to PEAR will show the three new packages
along with the packages you had before.

PEAR packages are basically self-contained PHP files that PEAR installs into your PHP
includes directory. The includes directory is a directive in your php.ini file. Navigate
to this directory to see the PEAR packages' source files. To use a PEAR package,
you will need to include the package's source file in the top of your code. Consult
the package's documentation on how to include the main package file. For example,
File_XSPF is activated by including a file named XSPF.php. PEAR places XSPF.php in a
directory named File, and that directory is inside your includes directory.

<?php
require_once 'File/XSPF.php';

 //File_XSPF is now available.

File_XSPF
The documentation to the latest version of XSPF is located at http://pear.php.
net/package/File_XSPF/docs/latest/File_XSPF/File_XSPF.html.

The package is simple to use. The heart of the package is an object called XSPF. You
instantiate and use this object to interact with a playlist. It has methods to retrieve
and modify values from a playlist, as well as utility methods to load a playlist into
memory, write a playlist from memory to a file, and convert an XSPF file to
other formats.

Chapter 4

[145]

Getting information from a playlist consists of two straightforward steps. First, the
location of the XSPF file is passed to the XSPF object's parse method. This loads
the file into memory. After the file is loaded, you can use the object's various getter
methods to extract values from the list. Most of the XSPF getter methods are related
to getting metadata about the playlist itself. To get information about the tracks in
the playlist, use the getTracks method. This method will return an array of XSPF_
Track objects. Each track in the playlist is represented as an XSPF_Track object in this
array. You can then use the XSPF_Track object's methods to grab information about
the individual tracks.

We can grab a playlist from Last.fm to illustrate how this works. The web service
has a playlist of a member's most played songs. Named Top Tracks, the playlist is
located at http://ws.audioscrobbler.com/1.0/user/USERNAME/toptracks.
xspf, where USERNAME is the name of the Last.fm user that you want to query.

This page is named XSPFPEARTest.php in the examples. It uses File_XSPF to display
my top tracks playlist from Last.fm.

<?php

require_once 'File/XSPF.php';

$xspfObj =& new File_XSPF();

//Load the playlist into the XSPF object.
$xspfObj->parseFile('http://ws.audioscrobbler.com/1.0/user/

 ShuTheMoody/toptracks.xspf');

//Get all tracks in the playlist.
$tracks = $xspfObj->getTracks();

?>

This first section creates the XSPF object and loads the playlist. First, we bring in the
File_XSPF package into the script. Then, we instantiate the object. The parseFile
method is used to load an XSPF file list across a network. This ties the playlist to
the XSPF object. We then use the getTracks method to transform the songs on the
playlist into XSPF_Track objects.

<html>
<head>
 <title>Shu Chow's Last.fm Top Tracks</title>
</head>
<body>

Title: <?= $xspfObj->getTitle() ?>

 Created By: <?= $xspfObj->getCreator() ?>

Your Own Video Jukebox

[146]

Next, we prepare to display the playlist. Before we do that, we extract some
information about the playlist. The XSPF object's getTitle method returns the XSPF
file's title element. getCreator returns the creator element of the file.

<?php foreach ($tracks as $track) { ?>
<p>

 Title: <?= $track->getTitle() ?>

 Artist: <?= $track->getCreator() ?>

</p>
<?php } ?>
</body>
</html>

Finally, we loop through the tracks array. We assign the array's elements, which are
XSPF_Track objects, into the $track variable. XSPF_Track also has getTitle and
getCreator methods. Unlike XSPF's methods of the same names, getTitle returns
the title of the track, and getCreator returns the track's artist.

Running this file in your web browser will return a list populated with data
from Last.fm.

Chapter 4

[147]

Services_YouTube
Services_YouTube works in a manner very similar to File_XSPF. Like File_XSPF, it
is an object-oriented abstraction layer on top of a more complicated system. In this
case, the system is the YouTube API.

Using Services_YouTube is a lot like using File_XSPF. Include the package in your
code, instantiate a Services_YouTube object, and use this object's methods to interact
with the service. The official documentation for the latest release of Services_
YouTube is located at http://pear.php.net/package/Services_YouTube/docs/
latest/. The package also contains online working examples at http://pear.php.
net/manual/en/package.webservices.services-youtube.php.

Many of the methods deal with getting members' information like their profile and
videos they've uploaded. A smaller, but very important subset is used to query
YouTube for videos. We will use this subset in our mashup. To get a list of videos
that have been tagged with a specific tag, use the object's listByTag method.

listByTag will query the YouTube service and store the XML response in memory.
It is does not return an array of video objects we can directly manage, but with one
additional function call, we can achieve this. From there, we can loop through an
array of videos similar to what we did for XSPF tracks.

The example file YouTubePearTest.php illustrates this process.

<?php

 require_once 'Services/YouTube.php';

 $dev_id = 'Your YouTube DeveloperID';
 $tag = 'Social Distortion';
 $youtube = new Services_YouTube($dev_id, array('usesCache' => true));
 $videos = $youtube->listByTag($tag);
?>

First, we load the Services_YouTube file into our script. As YouTube's web service
requires a Developer ID, we store that information into a local variable. After that,
we place the tag we want to search for in another local variable named $tag. In this
example, we are going to check out which videos YouTube has for the one of the
greatest bands of all time, Social Distortion. Service_YouTube's constructor takes
this Developer ID and uses it whenever it queries the YouTube web service. The
constructor can take an array of options as a parameter. One of the options is to use a
local cache of the queries. It is considered good practice to use a cache, as to not slam
the YouTube server and run up your requests quota.

Your Own Video Jukebox

[148]

Another option is to specify either REST or XML-RPC as the protocol via the driver
key in the options array. By default, Services_YouTube uses REST. Unless you have a
burning requirement to use XML-RPC, you can leave it as is.

Once instantiated, you can call listByTag to get the response from YouTube.
listByTag takes only one parameter—the tag of our desire.

Services_YouTube now has the results from YouTube. We can begin the display of
the results.

<html>
<head>
 <title>Social Distortion Videos</title>
</head>
<body>
 <h1>YouTube Query Results for Social Distortion</h1>

Next, we will loop through the videos. In order to get an array of video objects, we
first need to parse the XML response. We do that using Services_YouTube's xpath
method, which will use the powerful XPATH query language to go through the XML
and convert it into PHP objects. We pass the XPATH query into the method, which
will give us an array of useful objects. We will take a closer look at XPATH and
XPATH queries later in another project. For now, trust that the query //video will
return an array of video objects that we can examine.

Within the loop, we display each video's title, a thumbnail image of the video, and a
hyperlink to the video itself.

<?php foreach ($videos->xpath('//video') as $i => $video) { ?>
<p>
 Title: <?= $video->title ?>

 <img src='<?= $video->thumbnail_url ?>' alt='<?= $video->title ?>'
/>

 <a href='<?= $video->url ?>'>URL
</p>
<?php } ?>
</body>
</html>

Running this query in our web browser will give us a results page of videos that
match the search term we submitted.

Note that before running YouTubePearTest.php file, you will have to
install CURL.

Chapter 4

[149]

XML_RSS
Like the other PEAR extensions, XML_RSS changes something very complex,
RSS, into something very simple and easy to use, PHP objects. The complete
documentation for this package is at http://pear.php.net/package/XML_RSS/
docs/XML_RSS.

There is a small difference to the basic philosophy of XML_RSS compared to
Services_YouTube and File_XSPF. The latter two packages take information from
whatever we're interested in, and place them into PHP object properties.

For example, File_XSPF takes track names into a Track object, and you use a
getTitle() getter method to get the title of the track. In Services_YouTube, it's the
same principle, but the properties are public, and so there are no getter methods. You
access the video's properties directly in the video object.

Your Own Video Jukebox

[150]

In XML_RSS, the values we're interested in are stored in associative arrays. The
available methods in this package get the arrays, then you manipulate them directly.
It's a small difference, but you should be aware of it in case you want to look at the
code. It also means that you will have to check the documentation of the package to
see which array keys are available to you.

Let's take a look at how this works in an example. The file is named RSSPEARTest.php
in the example code. One of Audioscrobbler's feeds gives us an RSS file of songs that a
user recently played. The feed isn't always populated because after a few hours, songs
that are played aren't considered recent. In other words, songs will eventually drop off
the feed simply because they are too old. Therefore, it's best to use this feed on a heavy
user of Last.fm.

RJ is a good example to use. He seems to always be listening to something. We'll
grab his feed from Audioscrobbler:

<?php
include ("XML/RSS.php");
$rss =& new XML_RSS("http://ws.audioscrobbler.com/1.0/user/RJ/

 recenttracks.rss");
 $rss->parse();

We start off by including the module and creating an XML_RSS object. XML_RSS
is where all of the array get methods reside, and is the heart of this package. It's
constructor method takes one variable—the path to the RSS file. At instantiation, the
package loads the RSS file into memory.

parse() is the method that actually does the RSS parsing. After this, the get methods
will return data about the feed. Needless to say, parse() must be called before you
do anything constructive with the file.

$channelInfo = $rss->getChannelInfo();
?>

The package's getChannelInfo() method returns an array that holds information
about the metadata, the channel, of the file. This array holds the title,
description, and link elements of the RSS file. Each of these elements is stored in
the array with the same key name as the element.

<?= "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>" ?>

Chapter 4

[151]

The data that comes back will be UTF-8 encoded. Therefore, we need to force the
page into UTF-8 encoding mode. This line outputs the XML declaration into the
top of the web page in order to insure proper rendering. Putting a regular <?xml
declaration will trigger the PHP engine to parse the declaration. However, PHP will
not recognize the code and halt the page with an error.

<html>
 <head>
 <title><?= $channelInfo['title'] ?></title>
 </head>
 <body>
 <h1><?= $channelInfo['description'] ?></h1>

Here we begin the actual output of the page. We start by using the array returned
from getChannelInfo() to output the title and description elements of the feed.

 <?php foreach ($rss->getItems() as $item { ?>

 <?= $item['title'] ?>:
 <a href="<?= $item ['link'] ?>"><?= $item ['link'] ?>

 <?php } ?>

Next, we start outputting the items in the RSS file. We use getItems() to grab
information about the items in the RSS. The return is an array that we loop through
with a foreach statement. Here, we are extracting the item's title and link
elements. We show the title, and then create a hyperlink to the song's page on Last.
fm. The description and pubDate elements in the RSS are also available to us in
getItems's returned array.

 Link to User:
 <a href="<?= $channelInfo['link'] ?>"><?=
 $channelInfo['link'] ?>
 </body>
</html>

Finally, we use the channel's link property to create a hyperlink to the user's Last.fm
page before we close off the page's body and html tags.

Your Own Video Jukebox

[152]

Using More Elements
In this example, the available elements in the channel and item arrays
are a bit limited. getChannelInfo() returns an array that only has the
title, description, and link properties. The array from getItems() only
has title, description, link, and pubDate properties. This is because we
are using the latest release version of XML_RSS. At the time of writing
this book, it is version 0.9.2. The later versions of XML_RSS, currently in
beta, handle many more elements. Elements in RSS 2.0 like category
and authors are available. To upgrade to a beta version of XML_RSS,
use the command PEAR upgrade –f XML_RSS in the command line. The
–f flag is the same flag we used to force the beta and alpha installations
of Service_YouTube and File_XSPF. Alternatively, you can install the beta
version of XML_RSS at the beginning using the same –f flag.

If we run this page on our web browser, we can see the successful results of our hit.

At this point, we know how to use the Audioscrobbler feeds to get information. The
majority of the feeds are either XSPF or RSS format. We know generally how the
YouTube API works. Most importantly, we know how to use the respective PEAR
packages to extract information from each web service. It's time to start coding
our application.

Chapter 4

[153]

Mashing Up
If you haven't already, you should, at the very least, create a YouTube account
and sign up for a developer key. You should also create a Last.fm account, install
the client software, and start listening to some music on your computer. This will
personalize the video jukebox to your music tastes. All examples here will assume
that you are using your own YouTube key. I will use my own Last.fm account for the
examples. As the feeds are open and free, you can use the same feeds if you choose
not to create a Last.fm account.

Mashup Architecture
There are obviously many ways in which we can set up our application. However,
we're going to keep functionality fairly simple.

The interface will be a framed web page. The top pane is the navigation pane. It will
be for the song selection. The bottom section is the content pane and will display and
play the video.

In the navigation pane, we will create a select menu with all of our songs. The value,
and label, for each option will be the artist name followed by a dash, followed by the
name of the song (For example, "April Smith—Bright White Jackets"). Providing both
pieces of information will help YouTube narrow down the selection.

When the user selects a song and pushes a "Go" button, the application will load
the content page into the content pane. This form will pass the artist and song
information to the content page via a GET parameter. The content page will use this
GET parameter to query YouTube. The page will pull up the first, most relevant result
from its list of videos and display it.

Your Own Video Jukebox

[154]

Main Page
The main page is named jukebox.html in the example code. This is our frameset
page. It will be quite simple. All it will do is define the frameset that we will use.

<html>
<head>
<title>My Video Jukebox</title>
</head>
 <frameset rows="10%,90%">
 <frame src="navigation.php" name="Navigation" />
 <frame src="" name="Content" />
 </frameset>
</html>

This code defines our page. It is two frame rows. The navigation section, named
Navigation, is 10% of the height, and the content, named Content, is the remaining
90%. When first loaded, the mashup will load the list of songs in the navigation page
and nothing else.

Navigation Page
The navigation page is named navigation.php. This page will use File_XSPF and
XML_RSS to load the songs from Last.fm's Top Tracks and Recent Tracks feeds for
the user, and merge them together to create a select menu.

<?php

 require_once ('File/XSPF.php');
 require_once ('XML/RSS.php');

In the beginning, the File_XSPF and XML_RSS PEAR packages are loaded.

 $songsArray = array();

An array to hold all the songs is initialized. We need this because we are dealing
with two feeds—Top Tracks and Recent Tracks. Also, both feeds return different
things. File_XSPF returns an array of song objects. RSS_XML returns an associative
array of values where the property names are the key in the array.

 //Top Tracks
 $xspfObj =& new File_XSPF();
 $xspfObj->parseFile('http://ws.audioscrobbler.com/1.0/user/
 ShuTheMoody/toptracks.xspf');
 $topTracks = $xspfObj->getTracks();

Chapter 4

[155]

First, we create an array of song objects from the Top Tracks XSPF feed.

//Recent Tracks
$rss =& new XML_RSS('http://ws.audioscrobbler.com/1.0/user/
 ShuTheMoody/recenttracks.rss');
$rss->parse();
$recentTracks = $rss->getItems();

We extract the second, associative array from XML_RSS:

foreach ($topTracks as $trackObj) {
 $songsArray[] =
 $trackObj->getCreator() . " - " . $trackObj->getTitle();
 }

We use the getCreator() and getTitle() methods on the Top Track objects to
create a string in the Artist—Song format, and we place it in $songsArray.

foreach ($recentTracks as $tracksArray) {
 $tempSong =
 htmlentities($tracksArray['title'], ENT_COMPAT, 'UTF-8');
	 $songsArray[] = str_replace('–', "-", $tempSong);
 }

By default, the "Artist—Song" format is what the RSS feed returns. Therefore, we
can just extract it and place it into the $songsArray. However, we have to do a little
massaging first. As the data is coming from an XML-based file, certain characters are
encoded. This includes the dash mark inbetween the artist and song. The first line
uses the PHP htmlentities() function and converts the value from XML encoding
to the equivalent HTML entity. In this case, the dash in the RSS file becomes
"–" This new value is placed inside a variable named $tempSong. The next
line replaces – with a regular dash character, and pushes it into $songsArray.

$songsArray = array_unique($songsArray);
sort($songsArray);

Finally, we make the list presentable. array_unique() will eliminate duplicate songs
between the Top Tracks feed and the Recent Tracks feed. sort() will sort the list for
us alphabetically. This ends the preliminary required PHP code. We can start with
the HTML next:.

?>
<?= '<?xml version="1.0" encoding="UTF-8" ?>' ?>
<html>
 <head><title>Selections</title></head>
<body>
 <form method="GET" action="content.php" target="Content">

Your Own Video Jukebox

[156]

<select name="query">
<?php foreach ($songsArray as $key => $value) { ?>
 <option value="<?= $value ?>"><?= $value ?></option>
<?php } ?>
</select>
<input type="submit" value="Go" />
</form>
</html>

Again, before we start with the actual HTML, we use a PHP echo to declare the
encoding on this page. In the HTML, we create the form. The form will use a GET
method to pass the selected option value to the content.php page targeted for the
Content frame. We use $songsArray, which we previously populated to create the
select menu.

Finally, an input button is added to trigger the load. The form and html tags are
then closed.

Content Page
Our content page, named content.php, is loaded when the form on the navigation
page is submitted. The form sends the artist and song title to content.php via a
query parameter named query. content.php will have to take this parameter, pass it
to YouTube's Web API, and display the results.

<?php

 require_once ('Services/YouTube.php');

 //YouTube parameters
 $devId = 'YOU OWN YOUTUBE DEVELOPER ID';
 $tag = $_GET['query'];

 //YouTube Result Parameters
 $videosArray = array();
 $firstVideo = null;

We start off with some basic initialization. We pull in the Services_YouTube package,
set up the $dev_id variable, which holds our YouTube Developer ID, and set up a
variable named $tag which holds the GET parameter received when the page
is called.

Next, an array is set up to hold the video return results. A variable named
$firstVideo is declared. A query can, and often does, return multiple results,
with the most relevant result returned at the top. $firstVideo will hold this most
relevant hit.

Chapter 4

[157]

$youtube = new Services_YouTube($devID, array('usesCache' => true));
$videos = $youtube->listByTag($tag);

$videosArray = $videos->xpath('//video');
$firstVideo = $videosArray[0];

The first three lines of this block operate just like the Services_YouTube example: a
Services_YouTube object is declared, the service is called, and the results are queried
through XPATH.

We now have an array of all results. As we're only interested in the most relevant,
we capture the one at index position 0 and place it into the $firstVideo array. Our
setup PHP code is now completed, and we can begin the HTML.

?>
<?= '<?xml version="1.0" encoding="UTF-8" ?>' ?>
<html>
<head><title>Content</title></head>
<body>
<h1>YouTube Query Results for <?= $_GET['query'] ?></h1>

<?php if ($firstVideo) { ?>

In the HTML, we encounter a PHP if statement. This if statement checks to see if
the $firstVideo array actually has anything in it. We check to see if the object exists.

 Title: <?= $firstVideo->title ?>

 <object width="425" height="350">
 <param name="movie" value="http://www.youtube.com/v/<?=
 $firstVideo->id ?>"></param>
 <param name="wmode" value="transparent"></param>
 <embed src="http://www.youtube.com/v/<?= $firstVideo->id ?>"
 type="application/x-shockwave-flash" wmode="transparent"
 width="425" height="350"></embed>
 </object>
 <p>
 <a href="<?= $firstVideo->url ?>"><?=
 $firstVideo->title ?>'s YouTube Page
 </p>

If the object exists, we use it to create the display page. The video object has three
properties that we use in this section:

title is the YouTube title.
id is the YouTube unique identifier.
url is the URL to the YouTube page.

•

•

•

Your Own Video Jukebox

[158]

The id is particularly important. Each video's page on YouTube has sample code
you can use to copy and paste into your own web page. This will embed the video
into the page and play it within the page. The sample code involves an object,
two param tags, and an embed tag. We have copied this code into our application.
However, we substitute the hard-coded example ids with our object's id property.

<?php } else { ?>
	 No Results Found
<?php } ?>
</body>
</html>

We add an else block to display a, "No Results Found", message if YouTube returns
nothing from the query. Finally, we close the body and html tags.

Place these three files into the same, web-server accessible directory on a web server.
You can start using the mashup by launching jukebox.php in your web browser.

Using the Mashup
Using the mashup is quite simple. Load jukebox.html into your web browser.

Chapter 4

[159]

When you load jukebox.php, you will see a page similar to the one shown on the
previous page. navigation.php will load, and the select menu will be created from
our Last.fm feeds.

Your Own Video Jukebox

[160]

Click on the menu. You will see a list of the songs from the two feeds. Select one and
press the Go button.

My first selection, a song by Tangerine, yielded no results. We see the error message
in the content pane. This isn't surprising because they are a small, up and coming
local band based in Pittsburgh, Pennsylvania. Once they become more popular, their
legions of fans will grow and hopefully someone will put something up on YouTube.

Let's select a more well-known band and song.

Chapter 4

[161]

Our next selection, Atmosphere by Joy Division, was more successful. In this case,
someone upload Atmosphere's music video. Pressing on the Play button will start
playing the video without leaving our mashup.

The great thing about this mashup is the user-driven nature of YouTube. You can't be
sure of what will be returned In Atmosphere's case, we saw the official music video
that someone uploaded. In many other cases, we get to see rare live performances
that someone recorded with a camcorder and uploaded. Sometimes we'll see some
creative minds who made their own music video and set it to the music that we
queried. Other times, the video may have nothing to do with the song at all, except
that it plays in the background. For example, when I submitted The Clash's classic
Death or Glory, the only video that was returned was a tribute slideshow of, of all
people, Harry Potter star Daniel Radcliffe that someone created.

Summary
In this mashup, we used two different web APIs—one from video repository site
YouTube, and the XML feeds from social music site Last.fm. We took a look at three
different XML-based file formats from those two sites: XSPF for song playlists, RSS
for publishing frequently updated information, and YouTube's custom XML format.
We created a mashup that took the songs in two Last.fm feeds and queried YouTube
to retrieve videos based on the song.

If we were to create our own XML-based parsers to parse the three formats, this
would have taken much more time than it actually did. We found that the PHP
Extension and Application Repository, PEAR, already had parsers we could use; one
for each of the three formats. Using these PEAR packages, we were able to create
an object-oriented abstraction of these formats, which allowed us to easily finish
our application.

Traffic Incidents via SMS
 Project Overview

What Deliver content from the California Highway Patrol
Live Incidents website to mobile users through Short
Messaging Service (SMS)

Protocols Used Not applicable
Data Formats RSS

Tools Featured PHP's DOM Extensions
APIs Used 411Sync

And, on this project, we will learn how to use the dark arts. No, I'm not talking
about controlling mindless zombies through black magic. I'm talking about
screen-scraping.

In this project, we will screen-scrape from the California Highway Patrol website.
The CHP maintains a website of traffic incidents. This site auto-refreshes every
minute, ensuring the user gets live data about accidents throughout the state of
California. This is very valuable if you are in front of a computer. If you are out
and about running errands, it would be useless unless you had an Internet-enabled
personal digital assistant. Even then, the site uses JavaScript and frames, and
may not work on many PDA web browsers. More widely available than Internet
PDAs are cell phones with text messaging through Short Messaging Service (SMS)
capabilities. Our mashup will make the CHP data available through SMS instead of a
web browser.

Traffic Incidents via SMS

[164]

Our application will take the information from the CHP Incidents website and
modify it into an RSS file. We will then sign-up for an account at 411Sync.com to
make this feed available to us just by sending an SMS message to a phone number.
When a user sends an SMS message with a keyword that we have reserved to
411Sync.com, they will hit our feed and return it to the user in another SMS. Our
mashup makes data more accessible, and we don't have to invest in new hardware to
send SMS messages.

411Sync.com makes an HTTP request to our script, so this project will
require a publicly accessible web server to use for development and
deployment. This is the only project in this book that has such
a requirement.

Screen Scraping the PHP Way
Screen-scraping has always been a dubious practice and the trigger of many lawsuits.
Many website owners, not surprisingly, jealously guard their content and are
resentful of anyone who sends spiders to grab data and use it on their own site. They
view screen-scrapers as necrotic vampires who steal users, siphon-off advertising
revenue, and suck-up server and bandwidth resources without giving anything back.
On the other side, screen scrapers have argued that if content providers don't want to
share their data, they should not put it in such a public place like the World
Wide Web.

Amongst honest web developers, screen-scraping without prior approval is
generally frowned upon. From a legal standpoint, depending on where you are,
restrictions on screen-scraping usually fall into the realm of civil contract law
through website Terms and Conditions clauses. Those who wish to screen-scrape
should, first and foremost, get permission to do so. Otherwise, they should not be
surprised if they receive a Cease and Desist letter from the scrapee's attorney. Yes,
we have permission from the California Highway Patrol to screen scrape for
this book.

Even if you get over the legal hurdles, you have technical hurdles to overcome.
Earlier, screen scraping for the web often involved writing a script with a language
such as Perl that loaded the information in memory. Through complex and cryptic
regular expressions, the program would come through the text and look for
what it needed. If the program was interested in data that was stored in the third
column of a table, it would have to go through all of the <table>, <tr>, and <td>
tags, maintaining a count of where it is at any point, if it's interested in the data it
encountered, and if it is, store it somewhere else. Screen scrapers would have to take
into account malformed HTML. If the page was changed at all, it's time for a rewrite.

Chapter 5

[165]

Luckily, these days of tedium are long past. There are two key differences that have
made it much easier to screen scrape today than it was years ago.

First, it is more common to have a website that is generated through programs
than hand-coded sites. Customer relationship management systems, document
management systems, bulletin board forums, and plain database web applications
are just some of the examples from where we may want to extract data. Not only
is there more data out there, but having programs generate the pages theoretically
reduces the chance of human coding errors. Less coding errors mean scraping
programs have to worry less about inconsistencies.

The second thing that has changed is the widespread adoption of the Document
Object Model. In the first chapter, we used a SAX-based parser to parse an XML
document. We touched on the difference between SAX-based parsers and
DOM-based parsers. The key difference being that a SAX-based parsers parse as it is
reading the data, while a DOM-based parser loads the document into memory before
taking any action. When we look at the data source later, we will see that the CHP
site is a good candidate for a DOM-based parser, which is what we will use. Before
we start actually mucking around with a DOM-based parser, we should know what
a Document Object Model even is.

A DOM is an official W3C specification that describes an object model representation
of an XML document. Whatever is holding the model knows all of the elements in
a document, and their relation to each other, like parent, child, and siblings. Simply
holding the document in memory is not enough; whatever loads the document
also provides hooks for a developer to access data in the document. The DOM is a
programmatic way to access parts of an XML document.

A practical, specific example is how a web browser sees an HTML document. The
browser knows there is a root element named HTML. There are two child elements
named HEAD and BODY. Within the BODY, there may be elements such as P and TABLE.
In TABLE, there are TR and TD. The browser knows that some TD elements are siblings
of each other, and which specific TR element is a TD element's parent. The browser
knows how each piece of a web page relates to every other piece.

All of the elements, values, and attributes in a document are often
referred to as a DOM tree, because when diagrammed out visually,
elements and their parents and children often look like branches in a tree.

A DOM-based parser works in a similar way. It loads the entire XML document
in memory, and through different commands, you can extract values or navigate
to another part of the document. All operations are done against the document in
memory. You can also create nodes and insert them into the model.

Traffic Incidents via SMS

[166]

PHP 5 has a built in DOM-based parser in the DOM XML functions (http://www.
php.net/manual/en/ref.dom.php). The parser is actually a collection of classes
that represent components of a DOM, and the documented DOM functions are
methods in those classes. The classes are interfaces defined in the W3C DOM Level
3 specification. The DOM Functions actually follow the official specifications fairly
closely. The official specs can be found at http://www.w3.org/TR/2003/WD-DOM-
Level-3-Core-20030226/DOM3-Core.html. The following table summarizes the
essential classes in the W3C DOM and their implementation in PHP DOM.

DOM Class PHP Equivalent Purpose
Document DOMDocument Represents the entire XML

document. You can think of it as
the root element. In parsing, this is
the object you first start with.

Node DOMNode Every "part" of an XML document.
In the DOM, everything is a type
of node—elements are Element
Nodes, attributes are Attribute
Nodes, etc. Node methods operate
on nodes in a high level, like
traversing through the tree and
naming.

NodeList DOMNodeList In the DOM, methods that return
nodes are usually in a NodeList,
which is just what it sounds
like—a list of node objects. In PHP,
these functions usually return an
array of nodes.

Element DOMElement An element in the XML
document other than the root;
for example, "div".

Attribute DOMAttribute An attribute within an, for
example, class="content".

Text DOMText In the DOM, a Text object is a text
value of the element or attribute.

ProcessingInstruction DOMProcessingInstruction Parser processing instructions.

Chapter 5

[167]

The following diagram shows common node types in an a simple XML snippet:

As the PHP DOM functions implement a specification based on classes, they work
slightly differently than other PHP functions. The official PHP documentation takes
a little bit of adjustment to find what you're used to, and because the functions are
object methods, you must first have the object created in order to use them.

When you look at a DOM function in the documentation, you'll notice that the class
name is also part of the function name. The classes in PHP implement required
interfaces of the DOM. A class's methods are relevant to the DOM component that
they are named after. For example, the DOMElement class is equivalent to the Element
interface of the DOM, and affect the elements in a document. In PHP.net's function
reference, other functions are usually organized alphabetically in
their category. DOM XML functions in PHP.net are grouped by class before
being alphabetized.

If you explore through the DOM XML documentation, you'll see that objects are
very, very important. Most of the functions take in and return other DOM XML
objects, and not just the simple data types of other PHP functions. Beginners will like
to have the documentation open and handy to see which objects are returned with
a function because the return type obviously affects which functions are available.
We'll see this in action as we parse through some code.

Parsing with DOM Functions
The first step in parsing with the DOM Functions is to load the XML document
into the DOMDocument class. There is several functions you can use to do this. Each
function is in DOMDocument, and are used for a specific purpose.

Traffic Incidents via SMS

[168]

Function Purpose
DOMDocument->load() Loads a XML file
DOMDocument->loadHTMLFile() Loads an HTML page
DOMDocument->loadXML() Loads a string of XML text
DOMDocument->loadHTML() Loads a string of HTML text

The first two functions, load() and loadHTMLFile(), are used to load an XML file or
HTML page. They take the URL of the resource as the input parameter. You can pass
either a path to a file on the local server or a fully qualified URL to another server.If
you pass a URL, the functions will execute a GET request to the server hosting the file.
The resource, for example loaded must have the appropriate content type. That is,
the content type must be text/xml or text/html, respectively.

The next two functions, loadXML() and loadHTML(), serve the same purpose, but
work in a different way. Instead of reaching across a network to get a file like the
former two, these two functions load a string representation of XML or HTML. For
example, if your XML or HTML is stored in a variable, use these functions to
load them.

Basic Element and Attribute Parsing
Once you have a document loaded, you can start using the functions in the
DOMDocument class to extract information. Let's walk through an example session. In
the examples code for this project, there is a file named domxmlexample.php. This
small example shows the basic procedure for using DOM XML. This file has a small
XML block stored in a variable. Our code then extracts data from this block using
PHP's DOM XML functions.

<?php

 $xml = '<posts>
 <date>February 26, 2007</date>
 <post author="James Edward Farley, III">
 <title>Damn Intarwebs!</title>
 <date>April 23, 2007</date>
 </post>
 <post author="Elizabeth Rankin">
 <title>Chinese New Year in New York City</title>
 <date>March 3, 2007</date>
 </post>
 <post author="Evan Spiegel">
 <title>I got an AppleTV</title>
 <date>May 2, 2007</date>
 </post>
 </posts>';

Chapter 5

[169]

This example uses a small piece of XML that one might find in a blog feed. The root
element is named posts, and each individual post is wrapped in a post element.
The author is an attribute in the post element. Title and date information are child
elements of the post.

$aDom = new DOMDocument();

 try {
 @$aDom->loadXML($xml);
 } catch (Exception $ex) {
 $aDom = false;	
 }

The DOMDocument object is instantiated, but is empty. We use loadXML() to load the
XML string into the DOMDocument.

Now we can use methods on the DOMDocument object to extract data from itself. The
first example will pull all of the dates from the document.

<p>
 All Dates:

<?php
 $allDates = $aDom->getElementsByTagName('date');

 foreach ($allDates as $date) { ?>
 Date: <?= $date->nodeValue ?>

<?php } ?>

</p>

The first line calls getElementsByTagName() and gets all elements in the document
with a tag name of date. This includes all date elements within each post and the
date element right after the root element:

<date>February 26, 2007</date>
<date>April 23, 2007</date>
<date>March 3, 2007</date>
<date>May 2, 2007</date>

In the DOM, getElementsByTagName() will return a NodeList object, which is a
List of nodes. Lists are a special type of data structure found in other languages, like
Java, that are a type of array. In PHP, a NodeList is implemented similarly to an
array of DOMElement objects. To use the dates we extracted, we must loop through
this array. A node holds its property inside the nodeValue property. In this example,
we echo out this property to the browser.

Traffic Incidents via SMS

[170]

The lesson here is that getElementsByTagName() will return all elements regardless
of where they are and how they are nested. If we want to isolate the dates that are
nested within posts, we need to get the posts first.

<p>
Post Dates:

<?php
$posts = $aDom->getElementsByTagName('post');

foreach ($posts as $post) {
 $postDate = $post->getElementsByTagName('date'); ?>
 Date: <?= $postDate->item(0)->nodeValue ?>
<?php } ?>
</p>
<p>

The first line of PHP code will put an array of node objects into a variable
named $posts.

<post author="James Farley, III">
<post author="Elizabeth Rankin">
<post author="Evan Spiegel">

Every child element of post is now available to us. We loop through the $posts
array and extract data from each post element. Now, though we are limited to
methods that are available in DOMElement, and because DOMElement implements
DOMNode, the DOMNode methods, too. Looking at the DOMElement documentation,
getElementsByTagName() is also a method in DomElment, so we'll use it. Every
time we loop through $posts, we'll call getElementsByTagName() again, but
this time, it's isolated to the post element we are in. $postDate will hold this new
DOMNodeList. We could loop through this again, but as we know that there is
one and only one date element nested in post, we can access it directly using the
DOMNodeList's item() method.

Even though a DOMNodeList functions similarly to an array, it isn't exactly the same.
You cannot directly access values by placing the array index within brackets like
for other PHP arrays. Instead, the item() method will return the array element.
Pass the index value that you wish to extract to item(). As the only date element
is in the first position, we give item() an index parameter of zero. This gives us a
DOMElement in return, and we can use the nodeValue property again to get the value.

Authors:

<?php foreach ($posts as $post) { ?>
Author: <?= $post->getAttribute('author') ?>

<? } ?>

Chapter 5

[171]

Another common task is to retrieve attributes of an XML element. DOMElement's
getAttribute() method will accomplish this. This method takes a name of the
attribute that you wish to look for in a DOMElement and return its value. In our
sample XML, the post author's name is an attribute of post. We can loop through
$posts again. This time for each post element, we call getAttribute() and pass
the string "author," which is what we are seeking. The documentation states that
getAttribute() will simply return the attribute value (and not a DomAttribute
object), so there is no need to access any further properties or methods. If you need
the node, there is a companion method named getAttributeNode(), that will
return the node instead of the attribute value.

Loading this example page in a browser will return the screenshot below:

Testing the Schema
The previous example works fine when the XML document is well structured.
However, if the document is not well-formed, a script error may occur. For example,
if you use method to retrieve an element, but the element does not exist, subsequent
calls to any DOMElement methods on it will result in an non-existent object error.
To help prevent this, the DOM Functions include some methods that queries and
validates the XML schema. All of these methods return true on success or false on
failure. You can use these methods to test for an element or object before calling
methods on it.

Traffic Incidents via SMS

[172]

Object Method Description
DOMDocument relaxNGValidate Validates an RNG file for

well-formedness
DOMDocument relaxNGValidateSource Validates a string of RNG data

for well-formedness
DOMDocument schemaValidate Validates an XML file for

well-formedness
DOMDocument schemaValidateSource Validates a string of XML data

for well-formedness
DOMDocument Validate Validates a string of XML

based on its DTD
DOMElement has Attribute Checks whether the element

has an attribute
DOMElement hasAttributeNS Checks whether the element

has an attribute within a given
namespace

DOMImplementation hasFeature Checks whether the document
implementation has a certain
W3C feature

DOMNode has Attributes Checks whether the node has
any attributes

DOMNode hasChildNodes Checks whether the node has
any child nodes

DOMNode isDefaultNamespace Checks whether a given URI
is the document's default
namespace

DOMNode isSameNode Checks whether two given
nodes are the same node

DOMNode isSupported Checks whether the document
has a certain W3C feature
given a version

DOMText isWhitespaceInElementContent Checks whether the text node
has whitespace

More About PHP's Implementation of the DOM
The importance of the DOM functions being completely object-oriented cannot be
overstated. If you look at the official DOM specification, you can see there are a lot of
special properties in each class. The Node class has many properties that deal with
other nodes. For example, firstChild holds the first child node and nextSibling
holds the next sibling node. There are properties that let you move up, down, and
laterally from any node in the DOM.

Chapter 5

[173]

The majority of the DOM classes are interfaces for the Node class. This means that
if you have an object that extends Node, you will have access to these navigation
properties. This not only gives you the ability to navigate through the document
easily, but it gives you options on how you can extract data.

For example, DOMElement extends DOMNode. If you have a DOMElement object, you
can grab all of the child nodes back as a DOMNodeList simply by using DOMNode's
childNodes property. DOMNode's traversal properties is summarized in the
following table:

Property Name Return Type Description
parentNode DOMNode The parent node that contains the DOMNode
childNodes DOMNodeList A DOMNodeList of all direct child nodes of this

DOMNode
firstChild DOMNode The first child node of the DOMNode
lastChild DOMNode The last child node of the DOMNode
previousSibling DOMNode The node immediately preceding the DOMNode
nextSibling DOMNode The node immediately following the DOMNode

One of the things we did in our previous example was to grab the dates only
associated with a post. We grabbed the posts, looped through it, extracted another
NodeList using getElementsByTagName, now use the item method and pass it the
assumed index position.

<?php
 $posts = $aDom->getElementsByTagName('post');
 foreach ($posts as $post) {
 $postDate = $post->getElementsByTagName('date'); ?>
 Date: <?= $postDate->item(0)->nodeValue ?>

<?php } ?>

We could have also written it this way:

<?php
 $posts = $aDom->getElementsByTagName('post');
 foreach ($posts as $post) {
 $childNodes = $post->childNodes; ?>
 Date: <?= $childNodes->item(1)->nodeValue ?>

<?php } ?>

Traffic Incidents via SMS

[174]

In this example, we grab the NodeList of posts again and loop through it. This time,
however, we don't have to call getElementsByTagName a second time. Instead,
we grab the child nodes using DOMNodes's childNodes property. This also returns
a NodeList, so we can use the item method to grab the first element. The main
advantage to this method is that we are using a property (childNodes) instead of
a function call (getElementsByTagName) to get the same information. Accessing
properties is theoretically faster than calling a function because there is no thinking
necessary from the parser—the data is just passed and assigned.

Beware of White Space
We use an index position of 1 for the item method because in the
XML created, line breaks after the post element. The first item
returned, index(0) is the line break itself. It is DOMText object
containing white space. What we really want is the second item,
which is the date element. This is a common pitfall when working
with all XML documents. Even though you may see an element
right before or after the element you're interested in, there may be
white space character data objects in-between.

Using a full HTML file, let's take a look at another example on using these properties.
The example file named examplehtml.html is a small, valid HTML file with
two lists.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <title>Test ID Page</title>
</head>
<body>
 <p>This is a test of lists.</p>
 <ul id="myList">
 First Item
 Second Item
 Third Item

 <ul id="anotherList">
 You
 Won't
 See
 This
 At
 First

 </body>
</html>

Chapter 5

[175]

Note the first unordered list has an id attribute of myList, and the second unordered
list has an id attribute of anotherList. The file domxmlexample2.php is a PHP script
that does some basic extraction from this HTML file.

<?php

 $aDom = new DOMDocument();

 try {
 $aDom->loadHTMLFile('examplehtml.html');
 } catch (Exception $ex) {
 $aDom = false;	
 }

The beginning of this script does the same thing as the first example. We create
a new DOMDocument object and load some XML into it. This time, we use
loadHTMLFile() to load an HTML file.

$firstUL = $aDom->getElementById('myList');
$secondUL = $firstUL->nextSibling;

?>

In this next section of code, we grab the two unordered list nodes. The first list is
retrieved using the getElementById() method which takes the value of an id
attribute as the parameter and returns a DOMElement. The second unordered list
could be extracted using the same method. However, as we know the second list is
on the same DOM tree level as the first list, and it also immediately follows the first
list, we can use DOMNode's nextSibling property to retrieve it.

Looping through the first list:

<?php foreach ($firstUL->childNodes as $value) { ?>
 <?= $value->nodeValue ?>

<?php } ?>

This foreach loop uses the childNodes property, which is a DOMNodeList, to
retrieve the items in the first unordered list. Each DOMNode in the loop gets assigned
to $value. The nodeValue property in each DOMNode is the value of each li
element. Echoing out the nodeValue property will display the li value on
the screen.

Looping through the second list:
<?php foreach ($secondUL->childNodes as $value) { ?>
 <?= $value->nodeValue ?>

<?php } ?>

Traffic Incidents via SMS

[176]

The second list's ul element was extracted using the nextSibling property. This
property is a DOMNode. This is different from $firstUL because getElementById()
returns a DOMElement. Nevertheless, for our purposes, this is good enough because
the core navigation properties and values are in the DOMNode object. Like the
previous foreach loop, this block gets the child nodes of the element back, and those
nodeValue properties are used to display the value of the li element.

What's the first item? <?= $firstUL->firstChild->nodeValue ?>

Finally, this last line gets the first item of the first unordered list and displays it.
$firstUL is the first unordered list element. firstChild property holds the li
element. Finally, we display its nodeValue property to get the information about
the list. The purpose of the last line is to show how to access elements far away
from your current element. Properties, because they are objects, can be chained. It is
perfectly reasonable to traverse the DOM tree like such:

$testNode->parentNode->previousSibling->firstChild

Although wordy and long, this would go up one level from the node you are in,
across one level to the previous node on the same level, and then down one level. If
you think of this in familial relationships, if you are the testNode, then your parent's
sibling's child would be your cousin.

Running this example script in the browser will show how this parsing results:

Chapter 5

[177]

The DOM section in the official PHP documentation lists the implemented DOM
classes, their methods, and their properties. Sometimes, though, it's easier to see
things graphically. The following diagram shows the PHP implemented DOM
classes as a UML class diagram.

Traffic Incidents via SMS

[178]

This diagram shows the inheritance chain of each object, and every project's
properties and methods. At a glance, we can see which class can use the DOMNode
properties and methods thanks to inheritance as well as the data types we are
dealing with. Class diagrams are not that hard to interpret. Each box is a class.
A class is divided up into three sections. The top section is the name of the class.
The middle section lists the properties. The bottom section lists the methods. If the
middle or bottom section is empty, the class does not have any properties or
classes, respectively.

Properties are listed in the following format:

VisibilityIndicator PropertyName:DataType

Visibility indicators are a plus sign (+) for a public property, hash (#) for protected,
and a minus sign (-) for private. In the case of PHP DOM, all properties are public.
If a property has [READONLY] after the property name, it means that the property
cannot be changed by the developer. In DOMNode, there is a property listed as
+ownerDocument[READONLY]:DOMDocument. This means that there is a public
property named ownerDocument. It is read only and accessing it gives you a
DOMDocument data type.

Methods are listed in this format:

VisibilityIndicator MethodName(parameters):returnType

The visibility indicators are the same as the properties, and all are public in
PHP DOM. The method name is self-explanatory. The parameters are in a
parameterName:datatype pair. You shouldn't worry about the parameter name
because it is used by the function. It is just listed to give you a hint on what to pass.
If a parameter is not in brackets ([]) then it is required. Parameters in brackets are
optional. Finally, the returned value's data type is given. Let's look at a method in
DOMDocument: +loadXML(source:Str[,options:Int]):Mixed. This is a public
method named loadXML. It has one required string parameter named source, and an
optional one named options which is an integer. It returns a mixed data type. You'll
have to consult the documentation to find out exactly what is the source and options,
and what type of "mixed" data you get back.

An arrow from one class to another shows inheritance, with the parent being
the class that is being pointed. DOMText's parent is DOMCharacterData.
DOMCharacterData's parent is DOMNode.

Chapter 5

[179]

Now that we are familiar with the tool we are going to use, it's time to look at the
API and our source data.

411Sync.com API
411Sync.com is a site that provides an interface between your cell phone and
information that may normally not be in a format that is mobile-friendly. Some cell
phone-managed services it offers include:

Create and schedule personal reminders
A calendar
Stock portfolio alerts
Spending trackers
Text message storage
Mobile search keywords

The mobile search keywords feature is what we will be using for our mashup to
deliver content. It is a nifty, free way for any web developer to create content to be
delivered through SMS. Users send a request to 411Sync's phone number. 411Sync
then makes a request to your web server, passing any parameters you need. 411Sync
takes whatever results come up, formats it, and sends it back to the phone.

The mobile search keywords feature has developer documentation, located at
http://www.411sync.com/cgi-bin/Developer, which details the fields the form
requires, what they mean, and more information about the necessary RSS response.
By parsing and delivering RSS files from developers, 411Sync makes mobile
development easy. While it would normally take a lot of time and money to invest
in an SMS infrastructure, small developers can have access to this channel by simply
making a common RSS file. Debugging is also simpler because all we have to do is
make the RSS file.

•

•

•

•

•

•

Traffic Incidents via SMS

[180]

Creating Your Mobile Search Keyword
Before this happens, you, as the web developer, need to register for a free account
with 411Sync.com. You can do this at http://www.411sync.com/cgi-bin/
Register. You will need your cell phone number and to know your cell carrier.
After you have registered, click on Log-in. You will be taken to your
services homepage.

Chapter 5

[181]

Click on My Mobile Search Keywords to view the search keywords you have
created and to create new ones.

Once you create some mobile search keywords, they will appear here for you to edit.
For our purposes, you will have to create a new one by clicking on the Create Mobile
Search Keyword link. This will take you to a form that will create your keyword.

411Sync will publicize your keyword for you on their site directory. Therefore, most
of the questions on the keyword creation page asks you what your site is about. Not
all of these questions affect the way your search works. However, there are three that
must be filled out and require some thought in order for your keyword to work.

Name Your Keyword
This question identifies your service. It is the body of the SMS message from the
user to 411Sync. Therefore, it should be descriptive as to what the service is, and as
short as possible while meeting the minimum character length requirement, which
is currently at six. As this keyword identifies your feed, 411Sync will check to make
sure this value is unique in their system.

The keyword I selected for my service is "chpreports".

Traffic Incidents via SMS

[182]

Format the Users will Use when They Use Your
Search
While this question does not directly affect keyword behavior, it will make you think
about what the user has to put in. This question essentially asks what is the entire
SMS message the user must send to 411Sync. The first word should be the name of
the keyword. If there are any variables, they should be named and enclosed in
curly brackets.

Later, we will see we need one variable to identify the geographic region we are
interested in. Therefore when you create a service, make sure this question is filled in
with the keyword and a variable name in curly brackets. In the example, I created a
mobile search with the chpreports {regionCode}.

HTTP Location of the XML Data
This question asks where your RSS file will be. This should point to the script we
are going to create. Note that if the user needs to enter in a variable in order to use
your search, you need to manually set up the URL here to handle a variable. For
example, in the previous question we identified one variable, regionCode. (That
we need. "regionCode" is purely informational!) In the script, we do not access it as
$_GET['regionCode']. 411Sync will take whatever extra parameters it sees and just
append it to this URL.

In creating my URL, I set this question to:

http://www.shuchow.com/mashups/ch4/feed.php?rid=

As parameters are just passed to the URL, we catch it here. We set up one URL and
at the end, we start the query string parameter. In this case, it is named rid. When
411Sync is activated and it sends a parameter and GET request to the service, that
parameter will get stuck at the end of this URL. Then, our script will be able to access
it using $_GET['rid'].

Chapter 5

[183]

In more detail, the complete life cycle of a person's request is:

1.	 User sends a SMS message to 411Sync. The message contains the keyword
that identifies your service. The message may also be followed by some
parameter. 411Sync sends this parameter to your service.

2.	 411Sync's servers send an HTTP GET request to the URL you specified.
3.	 Your script executes, using any GET parameters 411Sync passed to it.
4.	 Your script sends its response back to 411Sync as an RSS file.
5.	 411Sync parses this RSS file, extracting the title elements.
6.	 411Sync passes the content from the title elements and sends an SMS

message back to the user.

Therefore, the key thing we need to create is an RSS file. There are a few restrictions,
though. Some of these restrictions are outlined in the documentation, some are
undocumented, while some are just part of the nature of mobile development.

First, the 411Sync parser takes everything in the title elements of the RSS file and
delivers it to the user. Our RSS file will have to stuff everything in these elements.
Second, while the documentation says that the service can deliver 255 characters to
the user, these are UNICODE characters. Delivery in ASCII will be significantly less.
Therefore, saving space in our response is critical. Finally, remember that typing on a
9-digit keyboard is still somewhat difficult. Our application needs to require just the
minimum amount from the user.

We will need to define which parameters we need to create this file. The content for
our RSS file will be traffic information coming from the California Highway Patrol.

California Highway Patrol Incident Page
This section will examine the California Highway Patrol Incident page. A user can
choose the area they are interested in, and the page will retrieve incidents for that
area. We want to let users request traffic reports for the same areas, so we need
to examine how this page creates content.

Traffic Incidents via SMS

[184]

We will do this by dissecting the general HTML structure of the Incident Page. The
Incident Page is located at http://cad.chp.ca.gov.

This page is divided into three frames. The bottom frame is just an informational
and legal footer. There is a top frame that holds some navigation. The pull-down
menu in the upper left corner labelled Areas lists the urban centres of California. The
traffic incident content is in the middle frame. This data appears to be displayed in a
table. There are columns for the time of the incident, type of incident, location, and
the general neighborhood. When the areas pull-down is activated and a new area is
selected, the content page refreshes with the area you selected. From this behavior,
we can guess that the pull down, through a JavaScript event, sends some sort of
information somewhere, probably in the form of an HTTP GET or POST request, and
the content page changes.

Chapter 5

[185]

In your web browser, view the frame source code for the top header. In Mozilla
and Opera, you can do this by right clicking on the top frame and selecting Frame |
View Source. �� For Safari or Internet Explorer, you can do this by right clicking on
the top frame and selecting View Frame Source, or View Source in the case of
Internet Explorer.

Let's zero in on the section that creates the Areas pull-down menu.

<form name="areas" action="body.asp" target="bodyx">
 <TR>
 <TD ALIGN="left" >
 Areas
 <SELECT name = "centerin" onchange="document.areas.submit()">
 <Option Value="BFCC">Bakersfield</Option>
 <Option Value="BSCC">Barstow</Option>
 <Option Value="GGCC">Bay Area</Option>
 …
 <Option Value="VTCC">Ventura</Option>
 <Option Value="YKCC">Yreka</Option>
 <Option Value="ca">State Map</Option>
 </Select>
 <input type="submit" value="Go!">
 </TD>
 <TR>
</form>�

There are several things to take away from this:

The menu is encased in one form named areas. The action goes to body.
asp, which is in the same directory of this page. The HTTP method is not
specified, so it will default to a GET request.
The form's only items are a SELECT tag and a submit button.
The select element is named centerin. On an onchange event, the form is
submitted. So, we can assume the submit button is only used for browsers
without Javascript turned on.
The menu options have a four-character value. The first two characters
appear to be tied to the geographical area. The last two characters are CC.

•

•

•

•

Traffic Incidents via SMS

[186]

Based on this, we can try to try to make a request to body.asp with a GET
parameter of centerin and a value from one of the menu items. Let's try a URL
of http://cad.chp.ca.gov/body.asp?centerin=BSCC. This uses the value for
Barstow, California.

This page looks similar to the home page except there is no navigation menu. We're
interested to see how the top frame, now with the content, is constructed. We can
check out the source for the whole frameset.

<HTML>
 <HEAD>
 </HEAD>
 <FRAMESET ROWS="55%,*" >
 <FRAME NAME="sa" SRC="sa_list.asp?centerin=BSCC&style=l"
 SCROLLING="auto" MARGINWIDTH="2" MARGINHEIGHT="2" BORDER="1">
 <FRAMESET ROWS="*" BORDER=YES FRAMESPACING=20>
 <FRAME NAME="ii" SRC="./footer_default.asp" SCROLLING="auto"
 MARGINWIDTH="2" MARGINHEIGHT="2">
 </FRAMESET>
 </FRAMESET>

 <BODY>

 </BODY>
</HTML>

Chapter 5

[187]

Here, we see the source of the top frame is a page named sa_list.asp. It is passed
URL parameters of centerin, the original name of the pull-down menu, with a
value of BSCC, which we used to test. Another value of style=1 is passed. Let's try to
hit that page with those query parameters.

Sure enough, this is the page we are looking for. If you change the value of centerin
in the address bar to some other option from the pull-down menu, you will get a
page for another area. Let's take a look at the HTML of sa_list.asp:

<html>
 <head>
 <meta http-equiv="Refresh" content="30">
 <meta name content="text/html charset=iso-8859-1">
 <title>CADWEB SA</title>
 <link rel="STYLESHEET" type="text/css" href="Inc/cadweb.css">
 </head>
 <BODY class="sa" ONLOAD="if((navigator.appName=='Netscape') &&
 (navigator.appVersion.charAt(0)=='3') && (navigator.appVersion.
 indexOf('Win')+navigator.appVersion.indexOf('Mac')!=-2))document.
 bgColor=document.bgColor;">
 <table border="0" align="center">
 <tr>
 <td class="Head" width="33%" align="Left">
 <a href="set_nav.asp?centerin=BSCC&style=l"
 target="bodyx">list |
 <a href="set_nav.asp?centerin=BSCC&style=m"
 target="bodyx">map |
 <a href="set_nav.asp?centerin=BSCC&style=b"
 target="bodyx">both

Traffic Incidents via SMS

[188]

 </td>
 <td class="Head" width="33%" align="Left">
 Number of Incidents: 4</td>
 <td class="Head" width="33%" align="right">
 Updated as of 5/27/2007 10:05:00 AM
 </td>
 </tr>
</table>
<table border="0" align="center">
 <tr>
 </td>
 <td class="HeadT" colspan="5" align="center">Barstow
 Communications Center</td>
 </tr>
 <tr>
 <td class="HeadUl">No</td>
 <td class="HeadUl">Time</td>
 <td class="HeadUl">Type</td>
 <td class="HeadUl">Location</td>
 <td class="HeadUl">Area</td>
 </tr>
 <tr>
 <td class="T">0535</td>
 <td class="T" nowrap> 9:47AM</td>
 <td class="T">
 <A HREF=./iiqr.asp?Center=INCC&LogNumber=0535D0527&t=Disabled
 %20Vehicle&l=WB%20I40%20MM%2083&b= TARGET="ii">Disabled Vehicle
 </td>
 <td class="T">WB I40 MM 83</td>
 <td class="T">Needles</td>
 </tr>
 <tr>
 <td class="T">0522</td>
 <td class="T" nowrap> 9:26AM</td>
 <td class="T">
 <A HREF=./iiqr.asp?Center=INCC&LogNumber=0522D0527&t=
 Pedestrian%20on%20the%20Roadway&l=LA%20PAZ%20DR%20ONR%20TO%20
 NB%20I15&b=4296%207C TARGET="ii">Pedestrian on the Roadway
 </td>
 <td class="T">LA PAZ DR ONR TO NB I15</td>
 <td class="T">Victorville</td>
 </tr>
 <tr>
 <td class="T">0500</td>
 <td class="T" nowrap> 8:58AM</td>
 <td class="T">
 <A HREF=./iiqr.asp?Center=INCC&LogNumber=0500D0527&t=
 Traffic%20Collision%20-%20Ambulance%20Responding&l=
 DUMONT%20DUNES&b= TARGET="ii">Traffic Collision -
 Ambulance Responding

Chapter 5

[189]

 </td>
 <td class="T">DUMONT DUNES</td>
 <td class="T">Barstow</td>
 </tr>
 <tr>
 <td class="T">0422</td>
 <td class="T" nowrap> 7:24AM</td>
 <td class="T">
 <A HREF=./iiqr.asp?Center=INCC&LogNumber=0422D0527&t=
 Disabled%20Vehicle&l=SB%20I15%20AT%20RASOR%20RD&b=
 TARGET="ii">Disabled Vehicle
 </td>
 <td class="T">SB I15 AT RASOR RD</td>
 <td class="T">Barstow</td>
 </tr>
</table>
</body>
</html>

This page is divided into two tables. The top table is the header of the page. We
can ignore it for our purposes. The second table is the content. It is a table of active
incidents. This is what we are going to have to extract.

The first row in the table is the header row. It tells us what each column holds. The
columns are: an identifier number, time of the incident, the type of incident, exact
location, and the general area. Each subsequent row holds an incident. Each cell in
an incident row has a class attribute whose value is T. This appears to be the best
identifier for our data. We now have a good idea of how this page is generated and
how it is structured, so we can create our feed.

Your Site is an API
This investigation of the California Highway Patrol website hints at a
notion that many developers are adapting these days—the website you
create is an API. Not only should your site be friendly for others to mash
up, but also for desktop applications like screen readers and user style
sheets. By thinking of your site as a content API, you increase
adaptation of your site. To facilitate this, make sure your HTML code is
well-formed and structurally there is good separation between content
and presentation.

Traffic Incidents via SMS

[190]

Mashing Up
We now have some key bits of information about this page. Let's recap what we have
discovered and learned:

1.	 411Sync.com parses an RSS file on your server and passes it to the user. The
service can take a variable from the user and pass to your page.

2.	 The page of incidents is at http://cad.chp.ca.gov/body.
asp?centerin=XXCC, where "XXCC" is a four character code that defines the
area to pull.

3.	 The incidents are in the second table of that page.
4.	 The columns of the incidents are always in the order ID Number, type,

location, and general area.
5.	 Each incident cell has a class attribute whose value is T.

Based on these factors, the format needs of 411Sync.com, and user-friendliness
for mobile users, we are going to break down our application into the
following components:

clsIncident.php—An incident object, this is our "Model" component. All
this class will do is hold information about an incident—time, location, etc.
clsDomParser.php—We are going to take a page from our event-based
SAX Parser from Chapter 1. While parsing with PHP DOM is not really
event-based parsing, there are basic things that all parsers will have to do.
For example, the parser will need to load the XML data. In here, we can also
dictate whether the parser should load an XML data versus HTML data, and
whether the data itself is a physical file or a string of data. As these tasks
are universal for all PHP DOM parsers, we will create an abstract class, and
all parsing logic specific to the implementation will be in another class that
extends this one.
clsCHPDomParser.php—This class will act as a "Controller" object. Its job is
to interact with the outward-facing, "View" page and use the other objects
to create the content. The other classes will have no or very little knowledge
of the CHP site and structure. This class, though, will directly work with the
sa_list.asp page.
feed.php—This is the only page that 411Sync.com will directly request. In
other words, this is our "View" page. This page's job is to take the parameter
from 411Sync.com, pass it to the other helper classes, wait for the results
from these helper classes, and return the result as an RSS file to the user.

•

•

•

•

Chapter 5

[191]

The Incident Class
This class is located inside the classes directory of the example code. This is the
only model class we need.

<?php

 class Incident {

 private $incidentType;
 private $address;
 private $area;

 public function getIncidentType() { return $this->incidentType; }
 public function getAddress() { return $this->address; }
 public function getArea() { return $this->area; }
 public function setIncidentType($t) {$this->incidentType = $t; }
 public function setAddress($a) { $this->address = $a; }	
 public function setArea($a) { $this->area = $a; }	
 }

?>

Besides the parser class we will create later, this is the only class that truly knows
anything about the CHP site. Even then, its knowledge is limited to the structure
of incident data. All this class will do is hold information about an incident, and
provide getter and setter functions for the information. We're going to keep the
incident type, address, and general area. In the interest of saving space, our first
application will not retrieve the time of the incident.

The DOM Parser Class
The event-based SAX Parsers from Chapter 1 defined parsing functions for child
objects to implement, set up the parser, and had a generic function that executed the
parsing of the documents. Our new parent DOM parser class, named DomParser
with a file name of clsDomParser.php in the examples code, will function in a
similar fashion. It will hold generic functions that all parsers must execute.

In the PHP DOM case, the generic tasks for this class will be to create the DOM and
decide whether to load the data as HTML or XML. The decision on what to use is not
made here. That will be tied to the implementation class. All this class will do is call
the appropriate PHP functions, depending on what the executing class wants.

<?php

 abstract class DomParser {
 protected $dom;

Traffic Incidents via SMS

[192]

We start by defining the class as an abstract class. Next, we define a class variable to
hold the DOM. There is no need for other classes to work with the DOMDocument
directly, so we make this a protected variable ;

 public function parse($url, $mode) {
 $returnMe = true;
 switch($mode) {
 case "HTML":
 try {
 @$this->dom->loadHTMLFile($url);
 }
 catch (Exception $ex) {
 $this->dom = null;
 $returnMe = false;
 }
 break;
 case "XML":
 try {
 $this->dom->loadXML($url);
 }
 catch (Exception $ex)
 {
 $this->dom = null;
 $returnMe = false;
 }
 break;
 default:
 $this->dom = null;
 $returnMe = false;	
 }

 return $returnMe;
 }

This parse function simply calls the appropriate function to load the data into the
DOMDocument. It takes two parameters—the URL where the XML is stored and a
string value of XML if we want to load XML, and a string value of HTML if we want to
load it as HTML. A switch statement decides which appropriate load function to
call. If the load was successful, the function returns true. If it failed, the try-catch
blocks will set the return value to false.

Chapter 5

[193]

Note that for the HTML load, we use the @ symbol before the load function call on
DomDocument. The @ symbol before a function call will suppress any warnings that
may be outputted to the browser. More often than not, when you develop in PHP,
you want to see all errors and warnings that happen. This is one case where you
do not want to see this. If the HTML data is not valid according to its DOCTYPE
element, DomDocument will report it and output it to the screen. Any validation error
will trigger this output and it is probably correct to say that the majority of web
pages out on the internet are not valid. In fact, earlier, when we examined code from
the CHP site, there was a missing closing TR element in the navigation header and on
sa_list.asp, there are missing closing A tags. If you do not use the @ symbol, your
results will probably be riddled with PHP warnings to your user. In our case, those
errors will cause a fatal error in our output because our feed would no longer be
valid RSS.

Luckily, the side affect for using @ in this case is minimal. DomDocument's ability to
load malformed HTML is very forgiving and shouldn't affect execution of code.

 public function __construct() {
 $this->dom = new DomDocument();
 }
}
?>

Lastly, the constructor is defined. When the object is instantiated, it will
automatically create the DomDocument and assign it to the class property.

This class is now ready to be used by anything that wants to parse using PHP DOM.

The CHP DOM Parser Class
The CHPDomParser class is named clsCHPDomParser.php in the examples code.
This class holds the code to parse the actual CHP web page. It must also interact with
other objects and the exposed web page. It has the tightest coupling with the PHP
site and holds the actual business logic in our application.

<?php

 class CHPDomParser extends DomParser {

 public function getRSSItems($rc) {
 $rc = strtoupper(trim($rc));
 $items = "";

Traffic Incidents via SMS

[194]

The first function is the only public function in this class besides the constructor and
will be called by the view page after object instantiation. This function calls other
functions in this class to create the content. The content is held in the variable named
$items, which is returned to the caller. It takes one parameter, $rc, which is the
region code.

 if ($rc == 'HELP' || $rc == '') {
 $items = $this->getHelpItems();

To make our application user friendly, we should define some help text. This help
text is defined in the function named getHelpItems(), which we call here. The help
text will be returned if the user sends a code of "HELP," or if the user does not send
any parameters. The help text return is triggered by the first if block.

 } else {
 $chpURL = $this->getCHPURL($rc);

If the request from the user is not for help, then we will prepare to make a request
to the CHP site. Our first task will be to create the URL to sa_list.asp. The URL
creation is handled by the function named getCHPURL(). Part of the URL is the
region code, so we pass the region code submitted to this function.

 if ($this->parse($chpURL, 'HTML')) {
 $incidentObjects = $this->getIncidentObjects();
 $items = $this->incidentObjectsToItems($incidentObjects);	
 }
 else {
 $items = "An error has occurred Please try again.";
 }

Next, we try parsing sa.list.asp. The bulk of the work is done in the function
getIncidentObjects(). This will parse the incident rows and return an array of
Incident objects. We then pass this array to incidentObjectsToItems(), which
takes the array and formats it into a text string to be returned to the user. This text
string is populated into $items. If the load fails, $items is populated with a generic
error message.

 }
 return $items;
 }

Chapter 5

[195]

$items is then returned to the caller.

 private function getIncidentObjects()
 {
 $incidentsArr = array();
 $counter = 0;
 $rows = $this->dom->getElementsByTagName('tr');
 foreach ($rows as $row)
 {
 $tds = $row->getElementsByTagName('td');

getIncidentObjects() is the main parsing function. It starts off with some
initialization declarations. $inicidentsArr holds the array of incidents and will be
returned to the caller. Another variable called $counter will be used to keep track of
which column in the table we are in.

The basic premise is that the td elements we are interested in are within tr
elements. Therefore, we grab the tr elements in the whole document using
getElementsByTagName() on the DOMDocument. We then loop through that
NodeList and execute getElementsByTagName() on the tr node searching for
the td elements.

 foreach ($tds as $td)
 {
 if ($td->getAttribute('class') == 'T')
 {
 //we are in the data section

Now, we must loop through the columns on each row. You may be wondering why
we didn't just use and get all td elements directly in the beginning. The reason why
is that we must keep track of our position in this table in order to identify which
td element holds an incident type, what holds an address, and which holds an
area. We know that the third td after a row is an incident type. We know that the
fourth td after a row is an address, and so forth. If we grabbed all td elements at the
beginning, the numbering would be off due to other table on the whole page or any
other td elements used to control layout.

We are only interested in the td elements of the incident table. Therefore, we
check to see if there is a class attribute and whether it has a value of T. If that is
true, let's go ahead and count the columns using the $counter variable and a
switch statement.

 switch($counter)
 {
 case 0:
 //1st - start of a new incident
 $incident = new Incident();
 break;

Traffic Incidents via SMS

[196]

If the counter is zero, it means we are in the first column, starting a new row and that
requires a new incident object. Here, we create one:

 case 1:
 //2nd - the time. Skip.
 break;

If the counter is one, we are in the time column. We can skip this because we made a
decision not to extract it to save space.

 case 2:
 //3rd - The Incident Type
 $incident->setIncidentType($td->nodeValue);
 break;

A counter value of two means we are in the third column, which is the incidents
type column. We grab the node value and store it into the incident object that
was created.

 case 3:
 //4th - Address
 $incident->setAddress($td->nodeValue);
 break;
 case 4:
 //5th -> Area
 $incident->setArea($td->nodeValue);
 array_push($incidentsArr, $incident);
 $incident = null;
 break;

We repeat the same procedure for the fourth and fifth columns. The fifth column
is the end of the row, so we need to also do some clean up. We take the incident
object and place it into the $incidentsArr, which is going to be returned to the
caller. We then destroy the incident object, ready to be created the next time a new
row is encountered.

 }

 if ($counter == 4)
 {
 $counter = 0;
 }
 else
 {
 $counter++;
 }

Chapter 5

[197]

This block increments or resets the counter when it encounters each "T" table cell.

 } //If
 } //Inner foreach
 } // Outer foreach

 return $incidentsArr;

 } //Function

Finally, the incidents array is returned and the function is closed.

 private function incidentObjectsToItems($incidents) {
 $itemsString = "";
 foreach ($incidents as $incident) {
 $itemsString .= $this->abbreviateIncidentType($inciden
 t->getIncidentType()) . ": " . $incident->getAddress()
 . ", " . $incident->getArea() . "--";
 }

 return $itemsString;
}

This function simply loops through an incidents array and formats it into a concise
and compact string. The only thing to look out for is that we pass the incident type to
abbreviateIncidentType(). This function abbreviates the incidents to give us more
space. More on how this function works when we get to it.

 private function getHelpItems() {
 $help = 'Fresno-FR, Los Angeles-LA, Monterey-MT, Sacramento-ST, ';
 $help .= 'Redding-RD, San Diego-BO, San Francisco Bay Area-GG';

 return $help;
 }

This is the function that generates the help text. This is simply a list of acceptable
region codes. Even though the pull-down menu has many more regions, we're going
to limit the ones shown to the user just to keep the help text under the maximum
payload size.

 private function abbreviateIncidentType($type) {

 $returnType = $type;

 switch($type) {
 case strstr($type, 'Traffic Hazard'):
 $returnType = 'TH';
 break;
 case strstr($type, 'Collision'):

Traffic Incidents via SMS

[198]

 $returnType = 'COL';
 break;
 case strstr($type, 'Hit and Run'):
 $returnType = 'H/R';
 break;
 case strstr($type, 'Hit & Run'):
 $returnType = 'H/R';
 break;
 case strstr($type, 'Disabled Vehicle'):
 $returnType = 'DV';
 break;
 default:
 $returnType = str_replace('a', '', $type);
 $returnType = str_replace('e', '', $returnType);
 $returnType = str_replace('i', '', $returnType);
 $returnType = str_replace('o', '', $returnType);
 $returnType = str_replace('u', '', $returnType);

 }

 return $returnType;
 }

This function abbreviates the incident types. Some of the incident type labels are
quite long. We do this simply to shorten the data returned. In case something slips
by, the default case in this switch statement removes the vowels from the string.

 private function getCHPURL($rc) {
 $prefix = 'http://cad.chp.ca.gov/sa_list.asp?style=l';
 $returnMe = $prefix . '¢erin=' . $rc . 'CC';
 return $returnMe;	
 }

}

?>

At the end of the class is the getCHPURL() function. This function simply injects the
region code submitted by the user into the URL format that sa_list.asp requires.

Now we have our helper classes defined, we can tie them all together using the
exposed view page.

Chapter 5

[199]

Creating the Feed Page
The feed page's job is just to include all necessary class files, call getRSSItems()
from CHPDomParser, and format the returned values into a valid RSS file.

<?php

 $regionCode = $_GET['rid'];

 header('Content-type: text/xml; charset=UTF-8');
 require_once('classes/models/clsIncident.php');
 require_once('classes/clsDomParser.php');
 require_once('classes/clsCHPDomParser.php');

The first few lines prepare our script for the execution of code. We grab the GET
variable named rid and set it to a local variable named $regionCode. We then set
the content type of this file to XML using a header change. Finally, we include all of
the classes we just created.

 $parserObj = new CHPDomParser();
 $text = $parserObj->getRSSItems($regionCode);
?>

Next, all we have to do to initialize the load, and parsing is to create the
CHPDomParser object and then call getRSSItems(), passing the $regionCode. The
items are returned and set in the variable named $text. That concludes the major
PHP code in this file.

<?= '<?xml version="1.0" encoding="utf-8" ?>' ?>
<rss version="2.0">
 <channel>
 <title></title>
 <link></link>
 <description></description>
 <language>en-us</language>
 <copyright></copyright>
 <item>
 <title><?= $text ?></title>
 <description></description>
 </item>
 </channel>
</rss>

Traffic Incidents via SMS

[200]

The RSS file is quite simple. Like the 411Sync documentation says, it passes the
values in the title element back to the user. All we have to do, then, is output
$text into the title element.

Testing and Deploying
Our application is now complete. We can now test and deploy our application. After
installing it into a publicly accessible web server, you can simulate the URL that
411Sync.com will use to hit your script. Don't forget to add the region code variable
after rid= or "help".

If this test is successful, we can be confident that our code executes properly and is
successfully retrieving the data from the CHP site.

Next, we can see if 411Sync.com can successfully get to your page. 411Sync.com
makes all of its searches available through a web interface. It is located at
http://www.411sync.com/cgi-bin/search. In the search box, enter in your
keyword and the region code then press Search.

Chapter 5

[201]

If this test is successful, try to send the same SMS message from your phone
to 415-676-8397. You should soon receive an SMS message back with
traffic information.

Summary
In this chapter, we used the new PHP DOM extension found in PHP 5 to screen
scrape information. This is a far more sophisticated and powerful way to extract
information from websites than old methods that often would hard code a lot of
structural information. After getting permission from the California Highway
Patrol, we deconstructed the Live Incidents site to see how it works. With this
knowledge, we used the PHP DOM extension to extract traffic incident data from
the Live Incidents website, reformatted it, and prepared it for delivery through SMS.
411Sync.com makes creating mobile content very easy. All we had to do was create
an RSS feed. Through keywords, 411Sync.com directs requests to our RSS feed and
sends it back to the mobile device.

London Tube Photos
 Project Overview

What Plot London Tube station locations on Google Maps. When a
station's icon is clicked, search Flickr for photos of the station
and display them on the map.

Protocols Used REST
Data Formats XML, RDF, JSON

Tools Featured SPARQL, RDF API for PHP, XMLHttpRequest Object (AJAX)
APIs Used Google Maps, Flickr Services

We have used a lot of techniques and APIs in our projects. For the most part, things
have mashed up together fairly easily with minimal issues. One of the reasons for
this is that we have relied on PHP to create the presentation for our mashups. This
simplifies the architecture of our mashup and gives us a lot of control. Many APIs,
though, are JavaScript-based, and hence, any mashup will rely heavily on JavaScript
for the presentation. This introduces a lot of other issues that we will have to deal
with. In this mashup, we will encounter some of those issues, and look at ways to
work around them. PHP will remain an important part of our mashup, but take a
smaller role than it has played so far.

In this mashup, we will present a geographically-centric way to present pictures
from the photo-sharing site, Flickr. When a user loads our application, they will
be presented with a Google map of London. A pull-down menu of all the London
Tube lines will be available. The user will select a line, and the application will load
all of the Tube stations onto the map and display them with markers. If the user
clicks on a marker, the name of the station will appear as a popup on the map. In the
background, a search query against Flickr will be initiated, and any pictures of the
station will appear in the popup as a thumbnail. Clicking on the photo will take the
user to the photo's page on Flickr.

London Tube Photos

[204]

JavaScript is not the only new tool that we will integrate into our toolbox. Before we
can work on the user interface, we will need to populate data into our application.
We need to find out which Tube stations belong to which line, and where those
stations are located. Many websites have one of those things or the other, but not
both. If we used them, not only are we dealing with two data sources, but we'd
have to resort to screen scraping again. Fortunately, there is one place that has both
pieces of information. This source is in Resource Description Format, an XML format
that we glanced at, earlier in Chapter 3. In this mashup, we will take a much closer
look at RDF, and how to extract data from it using a young query language called
SPARQL (SPARQL Protocol and RDF Query Language).

Preliminary Planning
Note that it would not have been wise to pre-plan mashups, but this application will
be much more complex, and will definitely require some forethought. Previously,
our APIs have worked in the background delivering data. We use PHP to retrieve
data from an API, receive it in whatever format it gives us, format the response into
either HTML output to the user, or another format to retrieve data from another API.
PHP gives us a lot of flexibility in the way our application is designed.

This time, one API, Google Maps, is a JavaScript API. Another, Flickr Services, is still
server based. The two cannot talk directly to each other, and we are going to have to
play within the rules set by each one. More than ever, we are going to have to take a
close look at everything before we attempt to write a single line of code.

At this point, this is what we know:

1.	 We need to find a data source for the Tube stations. We need to find the
names of the stations in each line, and some piece of information we can use
to geographically identify it on a map. The latter will be dictated more by the
capability of the tool on the receiving end. In other words, as we are going
to use Google Maps, we are going to have to see how Google Maps places
markers on its map, and we will have to massage the source data to Google
Map's liking.

2.	 We will use the Google Maps API solely for presentation. JavaScript cannot
call PHP functions or server side code directly, nor can PHP call JavaScript
functions. However, we can use PHP to write JavaScript code on the fly,
and we do have the JavaScript XMLHttpRequest object available. The
XMLHttpRequest object can call server resources by sending a GET or POST
request without the page reloading. We can then dynamically update the
page in front of the user. This process is popularly known as AJAX, or
Asynchronous JavaScript and XML.

Chapter 6

[205]

Looking at the Flickr Service's documentation page at
http://www.flickr.com/services/api/, we find we have an
incredible variety of formats and protocols to choose from. All of our
major request protocols, REST, XML-RPC, and SOAP are there. In
addition to these, we can have our choice of JSON or serialized PHP for
the response format. There is also a huge list of language kits already
built. You can use these kits to call Flickr directly from PHP, ColdFusion,
Java, etc. Unfortunately, JavaScript is not on that list.

Finding Tube Information
Our biggest problem is finding the initial Tube data. Without this first step, we
cannot create our mashup. The first logical step is to look at the official Tube site at
http://www.tfl.gov.uk/tube/. Poking around, we see a lot of colorful maps of the
lines, but nothing machine readable—no feeds and not even a pull-down menu with
stations. It looks like the official site will be a poor choice as a source of data.

We should look at the Google Maps API to see what it can even accept.
The documentation homepage is at http://www.google.com/apis/maps/
documentation/. This site has many examples as well as class, methods, and
properties references. Looking around, we see that a Google Map marker is
represented by a class called GMarker. There are many examples on how to create a
marker like so:

marker = new GMarker(point);
map.addOverlay(marker);

That's wonderful, but what is a point that is passed to the GMarker class? Looking at
the documentation reference, we find that it is a GLatLng object, which is an object
that has two simple properties—the longitude of the marker and the latitude of the
marker. It looks like the most direct way to create a marker is through latitude and
longitude coordinates.

Ruling out the official Tube site, we still need to find longitude and latitude
information for sites. With some searching, I stumbled upon Jo Walsh's site,
frot.org. Ms. Walsh has done a lot of work with open geographical data, and is
currently an officer in the Open Source Geospatial Foundation (http://www.osgeo.
org/). On her site, she talks about mudlondon, an IRC bot she created. As part of this
bot, she compiled an RDF file of all London Tube stations. The file is located at
http://space.frot.org/rdf/tube_model2.rdf. The first half of this file is
information about each station, including latitude and longitude positions. The
second half of this file maps out each line and their station. These two pieces of
information are exactly what we need. After contacting her, she was gracious enough
to allow us to use this file for our mashup.

London Tube Photos

[206]

Being an XML-based file, we can create our own parser like we did before.
However, some more searching reveals an RDF parser for PHP. This should save
us some effort.

There is one problem with this approach. The RDF file itself is over 500 kilobytes in
size. It would be perfectly reasonable to treat this RDF file like an RSS 1.1 feed and
load and parse it at run time. However, this file is not a blog's stream. Tube stations
do not change very often. To save bandwidth for Ms. Walsh, and dramatically speed
up our application, we should eliminate this load and parse. One solution is to save
this file directly onto our file system. This will give us a great speed boost. Another
speed boost can be gained if we retrieved the data from a database instead of parsing
the file every time. XML parsers are a fairly new addition into the PHP feature set.
They are not as mature as the database extensions. The nature of XML parsing also
has an overhead to it compared to just retrieving data from a database. It would
appear that we should use RDF parsing to populate a database at first, and then in
our application, load the data dynamically from a database.

Integrating Google Maps and Flickr
Services
Now that we have the data and know generally how to create markers with that
data, we need to look at how to bridge a JavaScript call in Google Maps to a server
call in Flickr Services. Flickr Services has a REST-based endpoint available. This
means that all we would need to do is send a GET or POST request to the endpoint,
supplying our parameters, and we would get data back. Moreover, one return option
is JavaScript Object Notation, JSON. Theoretically, we can use the XMLHttpRequest
object in JavaScript to send a GET request, and get JavaScript directly back from the
server. We can then use this JavaScript to dynamically change our page. This would
really make things easy.

The main obstacle to this is that we cannot make the XMLHttpRequest GET/POST
request directly against Flickr Services. This is because cross-scripting attacks are a
security problem. To counter this, all web browsers prevent a site from sending an
XMLHttpRequest against another site. An XMLHttpRequest can only go back to the
server from where the page was served.

To get around this, we can set up our own REST service that sits on our server. When
the user clicks on a marker, the XMLHttpRequest goes back against our REST service.
Our REST service then calls Flickr Service, and we merely pass the Flickr response
back to the client.

Chapter 6

[207]

Application Sequence
We now have a plan of attack and a preliminary architecture for our application. We
can create a Unified Modeling Language sequencing diagram to illustrate what will
happen when a visitor uses our mashup.

If you do not know UML, do not worry. This diagram keeps the UML notation
simplified and is easy to understand. This is basically a fancy way of summarizing
the steps that a user goes through to load a set of pictures from Flickr. While there
are just three things a user must do, this diagram shows sequentially what happens
behind the scenes.

This diagram gives us a good idea of what we are dealing with in terms of
technology. Let's take a look at some of the new formats we will encounter.

Resource Description Framework (RDF)
Recall from Chapter 3, we described RSS 1.1 as being RDF-based. What exactly is
RDF? Many call RDF "metadata about data" and then go on to describe how it has
evolved beyond that. While RDF and its usage has certainly evolved, it is important
to not to forget the "metadata about data" aspect because it captures the essence of
what RDF is.

London Tube Photos

[208]

The purpose of RDF is to describe a web resource, that is, to describe something on
the Internet. For example, if a shopping website lists the price of something, what
exactly is a price? Is it in American Dollars? Mexican Pesos? Russian Rubles? For a
website, what exactly is a timestamp? Should a machine parser treat a timestamp
in 12-hour notation different from a timestamp in 24-hour notation? XML, at a very
high level, was supposed to allow groups to standardize on a transaction format.
Implementation details were left to the parties of interests because XML is just a
language. RDF is the next evolution of that original goal. It gives us a framework
for that implementation. By defining what a timestamp is, any machine or human
that encounters that RDF document will know, without any ambiguity, what that
timestamp is, what it means, and what format it should be in.

The basic concepts and syntax of RDF is fairly simple and straightforward. RDF
groups things in what it calls triples. A triple basically says, "A something has a
property whose value is something". Triples use the grammar concepts of subject,
predicate, and object. In the sentence, "The page has a size of 21 kilobytes", the
page is the subject. The predicate is the property, in this case, size. The object is the
value of that property, 21 kilobytes. Typically in RDF, the subject is represented by
an about attribute of a parent element. The property and value are represented by
element and value pairs under that parent element. The page size sentence could be
represented as follows in XML notation:

<rdf:RDF
 Xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 Xmlns="http://www.example.org/pageProperties"

>
<rdfDescription rdf:about="http://www.shuchow.com/thecats.html">
 <creator>Shu Chow</creator>
 <title>My Cats</title>
 <lastMod>01/24/22007</lastMod>
 <size>21 kilobytes</size>
</rdf:Description>
</rdf:RDF>

In RDF, every element must be namespaced. The rdf namespace is required, and
must point to http://www.w3.org/1999/02/22-rdf-syntax-ns. This gives us
access to the core RDF elements that structure this document as an RDF document.
In this short document, we access the RDF elements three times—once as the root
element of the document, once more to identify a resource using the Description
element, and once more to identify the specific resource with the about attribute. In
human language form, the title can be stated as, "A web resource at http://www.
shuchow.com/thecats.html, has a title property, whose value is 'My Cats'". Even
more casually, we can say, "The page's title is 'My Cats'".

Chapter 6

[209]

Breaking it down into subject, predicate, and object:

The subject is http://www.shuchow.com/thecats.html.
The predicate is title. This may also be expressed as a URI.
The object is "My Cats".

In RDF, subject and predicates must be URIs. However, like in the preceding
example, predicates can be namespaced. Values can be either URIs, or, more
commonly, literals. Literals are string values within the predicate elements.

There is another RDF element that we will encounter in our mashup. In the previous
example, it was obvious from context that the web resource was an HTML page.
The RDF Schema specification has a type element resource attribute that classifies
subjects as programming objects (as opposed to triples objects), like PHP or
Java objects.

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://www.example.org/pageProperties"

>
<rdfDescription rdf:about="http://www.shuchow.com/thecats.html">
 <creator>Shu Chow</creator>
 <title>My Cats</title>
 <lastMod>01/24/22007</lastMod>
 <size>21 kilobytes</size>
 <rdf:type rdf:resource=
 "http://www.example.org/objects#An_HTML_Page" />

</rdf:Description>
</rdf:RDF>

The resource attribute is always a URI. Combined with the type element,
they tell us that in order to find out what exactly this resource is, we should visit
the value of the resource attribute. In this example, the resource is described at
http://www.example.org/objects#An_HTML_Page, which presumably describes
an HTML page.

Knowing just the simple nature of triples can get us started with RDF. Within the
core RDF specification, there are a few more elements that pertain to grouping of
collections. However, as the specification is designed to be scaled and expanded,
there are not many more elements beyond that. Namespacing of extensions is the
source of RDF's power. For our mashup, we will encounter a few more extensions,
and we will examine them closer when we encounter them. For now, we have the
basic skills to read and use our latitude/longitude data source.

•

•

•

London Tube Photos

[210]

Common extensions to RDF and their applications can turn RDF into a very
deep subject. To learn more about RDF, the W3C has created an excellent
primer located at http://www.w3.org/TR/rdf-primer/. Be warned
that one can get easily wrapped up in the philosophical underpinnings of
RDF—the official specification is actually six separate documents.

SPARQL
RDF is designed to be a data store. It follows that as soon as RDF came out, people
wanted a way to query, like a traditional database. SPARQL is a new RDF query
language that has recently become a W3C recommendation. You can think of
SPARQL as writing a query, loosely akin to SQL for databases, to parse an XML file,
specifically an RDF file. The results returned to you are row and column tables just
like in SQL.

Most people learned SQL with the aid of a command line client that queried a
database. This allowed us to experiment and play with query structures. Fortunately
for SPARQL, there is something similar; SPARQLer, located at http://www.
sparql.org/sparql.html, is an interactive web tool that allows you to specify an
RDF document on the web as an input and write SPARQL queries against it. It will
display the query results to us much like the results from a database client. As we
go through our initial discussion of SPARQL, we will use this query tool and an
example document RDF document at http://www.shuchow.com/mashups/ch6/
pets.rdf. This RDF document is a list of all the animals that my pay check feeds.

Analyzing the Query Subject
In the database world, before you start writing queries, you need to understand
the schema a little, either by entity-relationship diagrams (if you had good
documentation) or by simply using SHOW TABLES and EXAMINE SQL commands.
You'll need to do the same thing with SPARQL. Sometimes the host will have
documentation, but often, you will just need to read the RDF file to get a general feel
for the document. Let's start this exercise by opening the RDF file we will be working
with at http://www.shuchow.com/mashups/ch6/pets.rdf. Your browser will
either download this file to your hard drive, or it will open it in-window. If it opens
up in-window, it will probably apply a stylesheet to it to pretty up the presentation.
In this case, you will need to view the source of the document to see all the tags and
namespace prefixes.

Chapter 6

[211]

This RDF file is very straightforward and simple. We start off with the root element,
followed by the namespaces:

<rdf:RDF
 xmlns:mypets="http://www.shuchow.com/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
>

The namespaces rdf and rdfs are tied to w3.org resources, which tells us that they
are industry standards. mypets, however, is tied to shuchow.com, the file's domain.
This means that it's probably a proprietary vocabulary created by the shuchow.com
organization to support the information. To find out more, we could visit the site.
Doing so should lead us to some documentation on some of the syntax we
will encounter.

The rest of the file is basically a list of pets wrapped around Description elements
with some details as child elements. The about attribute in the Description element
points to the exact subject of this item.

<rdf:Description rdf:about="http://www.shuchow.com/thecats.html#avi">
 <mypets:name>Avi</mypets:name>
 <mypets:age>6</mypets:age>
 <mypets:gender>F</mypets:gender>
 <rdfs:type rdf:resource="http://www.shuchow.com/#parrot"/>
</rdf:Description>

The name, age, and gender of each pet are the value of their respective elements.
Each of these elements is namespaced to mypets. The type of the item is a URI
pointing to a location that describes what this "thing" is. For this file, it is an
imaginary URI used only as a way to separate the types of animals in my house. In
the real world, this may also not point to a real file, or it may have a complex RDF
taxonomy definition behind it. These Description blocks are repeated for each pet.

Anatomy of a SPARQL Query
If you know SQL, it should be easy to understand the first few lines of a SPARQL
query. Let us take a look at a simple SPARQL query to understand its parts. Suppose
we want to extract one specific piece of information about a specific pet. Let's say we
wish to extract Saffy's age. We know in the document that the age is the value of the
mypets:age element. We also know that the name of the pet, Saffy, is in the mypets:
name element. We need a query that will extract the value of mypets:age restricted
by the value of mypets:name.

London Tube Photos

[212]

This SPARQL query will give us this information:

PREFIX mypets: <http://www.shuchow.com/>

SELECT ?age
FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>
WHERE {
 ?Description mypets:name "Saffy" .
 ?Description mypets:age ?age
}

There are a couple of syntactical things we need to state before we look at this query.
First, in SPARQL, URIs are surrounded by less than and greater than brackets.
Second, SPARQL queries rely on variables to name values. Variable names are
denoted with a question mark at the beginning.

The first line of this query is a PREFIX statement. PREFIX statements are required
for every namespace that the query will encounter in the RDF document. In
pets.rdf, there are actually three namespace declarations. However, to extract the
age, we touch mypets:name and mypets:age, and they share a common namespace.
Therefore, in our query, we only need to prefix the mypets namespace. The format
is the PREFIX keyword, followed by the namespace name as given in the RDF
document, a colon, and finally the namespace value also as given in the
RDF document.

The next line is the SELECT statement. In the SELECT statement, list the names of
the SPARQL query variables you wish to extract. In SQL, SELECT statements are
followed by the names of the table columns or aliases. In SPARQL, variables are
defined, and their values set, in the WHERE clause. SELECT statements specify those
variables you wish to pluck. We will look at how to define SPARQL variables very
shortly. To keep things simple, this example uses the name of the element we are
interested in, age, as the variable name, ?age. However, SELECT ?mangoes would
have also given us the same results as long as the second line in the WHERE clause was
changed to ?Description mypets:age ?mangos. If you wish to extract multiple
variables, list each variable out in the SELECT statement, separated by spaces.

The next statement is the FROM statement. In SPARQL, this statement is optional. It is
used to point to the source of the RDF data. In many parsers, the location of the RDF
document is made outside of the SPARQL query. For example, some parsers take the
URL of the RDF document as a constructor argument. The FROM statement, although
not necessary, is like a comment for the query. It tells us that this query is written for
this specific RDF document. Like programmer comments, although not necessary,
it is good form to include this statement. In SPARQLer, we have the option of either
putting the source URL in the query or in a separate field.

Chapter 6

[213]

Writing SPARQL WHERE Clauses
Finally, we get to the WHERE clause. In SQL, a WHERE clause narrows down and
refines the data we are looking for. In SPARQL, it does the same thing. It also gives a
sense of structure for the query and parser. In a SQL database, a table has a defined,
consistent schema. A RDF document is a flat file. From a parser's standpoint, there
really is no guarantee of any sort of structure. A SPARQL WHERE clause gives the
parser an idea of how objects and properties are organized and how they relate to
each other.

Basic Principles
Recall the three parts of a RDF triple, and what they represent:

A Subject tells us the "thing" that this triple is about.
A Predicate specifies a property of the subject.
An Object is the value of the predicate.

A triple is simply each part, written out, in one line and separated by a string.

A SPARQL WHERE clause is just a series of triples strung together. Further, each part
of a triple can be substituted with a variable.

For example, let's say there is a cat named Gilbert. He has green eyes.

In a simple RDF, he can be represented like such:

<rdf:Description rdf:about='http://www.example.com/
cats#GilbertTheCat'>

<name>Gilbert</name>
 <eyeColor>Green</eyeColor>
</rdf:Description>

In triple form, this can be presented like such:

rdf:Description name "Gilbert"

This isolates the cat who's name value is "Gilbert." The item we are focusing on is the
subject. This is represented by the rdf:Description element. Name is the property
of the subject, which makes it the predicate. The value of the name, the object in this
triple, is "Gilbert". To specify the literal value of a triple's object, we wrap the value
around with quotes.

In queries, we can replace the subject with a variable.

?catObject name "Gilbert"

•

•

•

London Tube Photos

[214]

Now, ?catObject holds a reference to the cat who's name is Gilbert. We can use this
variable to access other properties of Gilbert the cat. To access Gilbert's eye color, we
could use two triples strung together:

?catObject name 	 "Gilbert" .
?catObject eyeColor ?eyeColor

To string together triples in a SPARQL query, use a period. This acts as a
concatenation operator, much like a period is used in PHP.

In this grouping, the first triple will place the subject, Gilbert The Cat, in the
?catObject variable. The second triple's subject is the variable ?catObject. That
means the predicate and object of the second triple will use this subject. This second
triple will place Gilbert's eye color in the ?eyeColor variable. To return the eyeColor
variable in the SPARQL resultset, we need to specify it in the SELECT statement.

In SPARQL WHERE clauses, the key concept to remember is that all
variables reference the same thing. The order of the WHERE statements
matters very little. It is what each variable's value is at the end of
execution that matters.

A Simple Query
This is the same principle that is applied to our earlier query that extracts Saffy's age
in our pets RDF document.

To see this in action, let's load up the online XML parser. Bring up SPARQLer
(http://www.sparql.org/sparql.html) in a web browser. You will be presented
with a simple form. The text area is where the SPARQL query you want to run is
entered. As long as you have a FROM clause in the query, you can leave the Target
graph URI field blank. The other options on the form can also be left blank. Enter the
age query into the query text area in the form:

PREFIX mypets: <http://www.shuchow.com/>

SELECT ?age
FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>
WHERE {
 ?Description mypets:name "Saffy" .
 ?Description mypets:age ?age
}

Chapter 6

[215]

Click on the Get Results button. SPARQLer will go out to retrieve pets.rdf, load it,
and then proceed to parse it.

London Tube Photos

[216]

The result will show that Saffy's age is 10.

The first triple finds the item that has a name (designated by the mypets:name
element) with a literal value of Saffy. The subject of this item is placed in the
?Description variable. Note that in the predicate of both triples in the WHERE
clause, the namespace is included with the element name. This is another important
thing to remember when writing SPARQL queries—if the element name in the RDF
document has a namespace prefix, you must also include that prefix in the SPARQL
query, along with declaring the namespace in a PREFIX statement.

Not only does this first clause zero-in on Saffy, but it sets the context of our search
and places it into the ?Description variable. This is extremely important in
SPARQL because every clause requires a subject. Thanks to this clause, we can use
?Description as the subject for other WHERE clauses.

The second statement says the following:

"The subject of this triple is referenced by ?Description (which we already set in
the first triple). The predicate of this subject that I'm interested in is mypets:age.
Place the object of this triple into a variable named ?age."

It is wordy to think of the query like this, but necessary. When learning and using
SPARQL, it's very important that we keep in mind the notion of triples. It's very
easy to fall back into a SQL mindset and think, "This clause gets me the station name
based on the element". However, what's really going on is more complicated than
that. The element name is useless unless the subject is defined throughout
your query.

During the parsing process, the parser finds that ?age is represented by "10" in
the document. The ?age variable is returned because it is specified in the
SELECT statement.

This example returned just one pet by using the pet's name. We can place no
restrictions on the value and return all the results. This would be like a SQL SELECT
query without a WHERE clause (SELECT ColumnName FROM TableName).

PREFIX mypets: <http://www.shuchow.com/>

SELECT ?name
FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>
WHERE {
 ?Description mypets:name ?name
}

Go back to SPARQLer and enter this query. This WHERE clause will execute and place
all of the mypets:name values into a variable named ?name. Our SELECT statement
returns this variable back to us.

Chapter 6

[217]

Your SPARQLer result set should look like this:

name
"Pim Pim"
"Saffy"
"Manfred"
"Lizzie Borden"
"Tera-San"
"Moose"
"Hoser"
"Mathilda"
"Opal"
"Wozniak"
"Dolly"
"Avi"
"Snowball"

Querying for Types
In the first query, we used a literal value of the name Saffy to find what we were
looking for. Simply searching on a literal value is often not a reliable approach.
Earlier, we noted that the RDF Schema vocabulary allows us to classify subjects as
programming objects using the type element. This next example will show how to
restrict on this element.

Let's say we wish to grab the names of all parrots. Our WHERE clause needs to do
the following:

Find the parrots in the RDF document.
Extract their names.

The type element is still the predicate. However, this element does not have a
value we can use as the triple object. Instead, the resource attribute value is the
object in this triple. resource is a URI that points to a description of what a parrot
is. Remember that triple objects can be either a literal value or a URI. Again, this
particular example URI is only an example to identify, not a formal vocabulary
definition, which it sometimes can be. This combination says "This subject is a
parrot". From there, we can extract the name element as we did before.

•

•

London Tube Photos

[218]

The restriction requirement is similar to what we have been doing. The triple
associated with it will use a URI instead of quoted literals like the previous examples.
We can specify this simply by specifying the URI in the query using greater than/
less than signs.

This triple is simply this:

?Description rdfs:type <http://www.shuchow.com/#parrot>

Sometimes, you may find this resource attribute starts with a local anchor, the pound
sign (#) followed by the value like so:

<rdfs:type rdf:resource="#value"/>

This pound sign is a reference to the document itself, much like it is used in HTML
anchor tags to reference locations within the same document.

Simply the object of "#value" does not qualify as a full URI in SPARQL triples. As
the pound sign is a redundant reference, we must also include the absolute path to
the file we are querying in the triple. Assuming the page at http://www.example.
com/this.rdf, to search on these values, you would need to include the full URI
back to the document, along with the value after the pound sign:

?Subject ns:predicate <http://www.example.com/this.rdf#value>

The complete SPARQL query looks like this:

PREFIX mypets: <http://www.shuchow.com/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?name
FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>
WHERE {
 ?Description rdfs:type <http://www.shuchow.com/#parrot> .
 ?Description mypets:name ?name
}
ORDER BY ?name

Running the query returns these results:

Name
"Avi"
"Dolly"
"Hoser"
"Moose"

Chapter 6

[219]

Ordering, Limiting, and Offsetting
Note that in this query, we added an ORDER BY clause. SPARQL supports a set of
clauses that follow a WHERE clause, which organizes the returned dataset. In addition
to ORDER BY, we can use LIMIT and OFFSET clauses.

An ORDER BY clause works very similarly to SQL's ORDER BY clause. This clause sorts
the returned dataset by the variable that follows the clause. The results returned are
ordered alphabetically if they are strings or ordinal if they are numeric. Ascending
and descending options can be specified by using the ASC and DESC functions,
respectively.

ORDER BY ASC(?name)
ORDER BY DESC(?name)

The ascending and descending clauses are optional. If they are left out, the default is
ascending order.

SPARQL also supports the LIMIT and OFFSET keywords much like PostgreSQL,
MySQL, and other relational database management systems. Both LIMIT and OFFSET
are followed by integers. LIMIT will limit the number of results returned to the
integer passed to it. OFFSET will shift the start of the returned results to the position
of the integer, with the first returned result being position zero.

For example, pets.rdf has 13 animals in the list. If we want to get the 7th and 8th
pets, in by alphabetical order, we can use LIMIT and OFFSET in conjunction with
ORDER BY.

PREFIX mypets: <http://www.shuchow.com/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?name
FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>
WHERE {
 ?Description mypets:name ?name
}
ORDER BY ?name
LIMIT 2
OFFSET 6

Note that order matters when you use ORDER BY, LIMIT, or OFFSET. These three
clauses must be in that order after the WHERE clause. For example, this will not work:

OFFSET 6
ORDER BY ?name
LIMIT 4

London Tube Photos

[220]

UNION and DISTINCT
The UNION keyword joins multiple WHERE groupings together, much like UNION in
SQL. The returned results will be a combination of the WHERE groupings. To use a
UNION clause, wrap the individual groupings within curly brackets. Join them with
the UNION keyword. Place all of this within the regular WHERE curly brackets.

For example, this query will retrieve the names of all parrots and male pets:

PREFIX mypets: <http://www.shuchow.com/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?name
FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>
WHERE {
 {
 ?Description rdfs:type <http://www.shuchow.com/#parrot>
 ?Description mypets:name ?name
 }

 UNION

 {
 ?Description mypets:gender "M" .
 ?Description mypets:name ?name
 }
}
ORDER BY ?name

Name
"Avi"
"Dolly"
"Hoser"
"Hoser"
"Manfred"
"Moose"
"Moose"
"Snowball"
"Wozniak"

Chapter 6

[221]

This union does not give us exactly the query we want. Hoser and Moose, male
parrots, are in both the first clause and the second. SPARQL supports another SQL
keyword, DISTINCT, that will exclude a row based on a column if it has already been
included in a previous clause.

Simply add the DISTINCT keyword you wish to insure uniqueness on, and the results
will reflect the change.

SELECT DISTINCT ?name

name
"Avi"
"Dolly"
"Hoser"
"Manfred"
"Moose"
"Snowball"
"Wozniak"

More SPARQL Features
The queries we will write later will require more complexity, but the features we
have discussed are more than we will need for our mashup. SPARQL, however, has
many more advanced features including:

Querying more than one RDF document (if the parser supports it).
The ability to filter returned results using special operators and a subset of
XPATH functions.

The Working Draft document that fully outlines all of SPARQL's features can be
found at http://www.w3.org/TR/rdf-sparql-query/. Although it is still in W3C
draft stage, many parsers give great support to the language. In future mashups,
if you encounter complex RDFs, it would not hurt to be familiar with SPARQL's
advanced features to see if it is a viable solution to extract data.

RDF API for PHP (RAP)
Now we know a bit about RDF and SPARQL, we need a way to actually execute
SPARQL queries in an application. There are not any core PHP functions for RDF,
but there is a very powerful third party library called RDF API for PHP (RAP). RAP
is an open source project, and can do just about anything you require with RDF.
RAP is basically a collection of RDF models. Each model suits a specific purpose.

•

•

London Tube Photos

[222]

A model named MemModel is a RDF file stored in memory. Another model named
DbModel, is a used to persist RDF models in a relational database. Each model has
specific methods that fit its purpose. DbModel has methods to automatically insert
and retrieve the model into and out of a relational database.

All models inherit methods from a generic abstract class called Model. These are
generic utility methods that apply to all models. For example, all models need to
load a RDF file to do anything with it. The load() method accomplishes this. All
models can be represented graphically using the visualize() method, which
creates a graphical representation of the RDF file. Version 0.94 includes a method
named sparqlQuery() that accepts a SPARQL query and executes it against the
model. We will be using this method to create a SPARQL client.

The project home page is located at http://sites.wiwiss.fu-berlin.de/suhl/
bizer/rdfapi/. You can download the latest version from there. Documentation is
also available, and is very extensive. Download the code, and unzip it. It will create
a directory named rdfapi-php. Then, place rdfapi-php in a directory in your
application structure. This directory must be accessible by Apache, and terms of
location and permissions.

We will use a few of the previous example SPARQL queries as examples for RAP. In
the examples code, the file named rapExample.php executes two SPARQL queries.
Let's take a look at this file to see the steps required to use RAP for SPARQL queries.

The file has some preliminary setup PHP code at the top.

define("RDFAPI_INCLUDE_DIR", "Absolute/Path/To/rdfapi-php/api/");
require_once(RDFAPI_INCLUDE_DIR . "RdfAPI.php");

//Create SPARQL Client
$sparqlClient = ModelFactory::getDefaultModel();
$sparqlClient->load('http://www.shuchow.com/mashups/ch6/pets.rdf');

The very first thing we need to do is create a global variable named
RDFAPI_INCLUDE_DIR. The value of this is the absolute path to the rdfapi-php/api
directory you just installed. We then use this global variable to include the
RdfAPI.php file. These two lines are required for every use of the RAP library.

Next, we create a default model object. The default model is a generic model
that all other models inherit from. It is created in the statement that calls
getDefaultModel(). The default model object includes the basic methods we
will need.

The last line in this block loads the RDF file using the default model's load()
method. Here, we load a remote file, but you can also keep a RDF file locally.

Chapter 6

[223]

Remember, the FROM clause is not used in a SPARQL query. The file you pass here is
actually the real RDF source. Being able to load remote files obviously means we can
use this library on all RDF-based mashups, and can get RDF data at run time.

After this, we can create a query and execute it.

 $query = '
 PREFIX mypets: <http://www.shuchow.com/>

 SELECT ?age
 FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>
 WHERE {
 ?Description mypets:name "Saffy" .
 ?Description mypets:age ?age
 }';

 $result = $sparqlClient->sparqlQuery($query);
 if ($result != false) {
 foreach ($result as $cat) {
 if ($cat != "") {
 echo "Age: " . $cat['?age']->getLabel();
 }
 }
 }

In this block, we put our SPARQL query into a variable named $query. We pass
that to the sparqlQuery method. This method is in the default model. It accepts a
SPARQL query and executes it against the RDF file in memory. Its return value is
an array of objects. The key in each array is a variable that we added to the SELECT
clause of the query, including the question mark. These are Resources objects in the
RAP library. The getLabel() method in the Resources object returns the value of
the variable.

To grab multiple variables, we just use the other keys in our foreach loop.

 $query = '
 PREFIX mypets: <http://www.shuchow.com/>

 SELECT ?name ?age
 FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>
 WHERE {
 ?Description mypets:name ?name
 ?Description mypets:age ?age
 }
 LIMIT 5

London Tube Photos

[224]

 ';

 $result = $sparqlClient->sparqlQuery($query);

 if ($result != false) {
 foreach ($result as $cat) {
 if ($cat != "") {
 echo "Name: " . $cat['?name']->getLabel() . ", Age: " .
 $cat['?age']->getLabel() . "
";
 }
 }
 }

Running this code produces this output on screen:

Name: Snowball, Age: 14
Name: Lizzie Borden, Age: 14
Name: Saffy, Age: 10
Name: Pim Pim, Age: 12
Name: Tera-San, Age: 6

RAP is quite a powerful tool. We only used a small portion of its features. If
RDF is a big part of your applications, it is certainly worthwhile exploring this
extensive library.

XMLHttpRequest Object
The next technologies we will look at depart from the server-oriented tools we
have used. You have probably heard of AJAX, Asynchronous JavaScript and XML
transfer. At the least, you have probably seen it on sites like Google Mail and Yahoo!
Mail. AJAX allows web browsers to interact with a server without refreshing the
page. Combined with dynamic HTML, it has created a new level of interactivity
between users and websites. With the near instantaneous data changes in front of a
user, web applications have never been more like desktop applications.

Another benefit to AJAX is that it can severely decrease the traffic between web
browser and web server. When we take a look at the amount of data being passed to
Google Maps, we will see why constant refreshes would slow down the application
too much.

Chapter 6

[225]

As we discuss AJAX and XMLHttpRequest, we'll build a very simple web
application. This application will take input from the user, pass it to a server, the
server will send back an XML document to the browser, and using JavaScript, we
will change the page dynamically. The client component of this application is in the
examples code as ajaxTest.html The corresponding server component is named
ajaxResponse.php.

The HTML page, without the JavaScript code, is very basic.

<html>
<head>

<script type="text/javascript" language="JavaScript">
…
</script>

</head>
<body>

<form name=»theForm» action=»#»>
 <input type=»text» name=»inputField» size=»10» />
 <input type=»button» value=»Click Me» />
</form>

<h1>Server Response Area</h1>
Nothing yet
</body>
</html>

This page is simply a form with a paragraph underneath it which will be updated
using JavaScript.

ajaxResponse.php is just as simple. This script will take a query parameter named
field, and pass it back to the requester as a very simple XML document.

<?php
 header("Content-type: text/xml; charset=UTF-8");
?>
<?= '<?xml version="1.0" encoding="utf-8" ?>' ?>
<response>
 <textField>You've entered: <?= htmlentities($_GET['field'])?>
 </textField>
</response>

The key here is that the page will use a query parameter named field.

London Tube Photos

[226]

XMLHttpRequest Object Overview
The XMLHttpRequest object is the heart of AJAX. This is an object built into all
modern web browsers (version 5.0 and above) to control HTTP requests. This object
is similar to other objects built into web browsers, say the form object to control all
form elements, or the window object to control the web browser window. All AJAX
really is the technique of using XMLHttpRequest to make an HTTP request to the
server, triggered by some JavaScript event, after the page has loaded. The server
returns some data, and the XMLHttpRequest object passes the server response to
some JavaScript function on the page. Again, using JavaScript, page stylesheet
information and the web browser Document Object Model (DOM) is changed
dynamically. Let's walk through the life cycle of a simple XMLHttpRequest.

Using the Object
The lifecycle is started by a JavaScript event. This can be anything the application
needs it to be—a mouseover, a page load, a button click, etc. Once triggered, the
steps that take place are:

1.	 Create the XMLHttpRequest object.
2.	 Define the destination server information (URL, path, port, etc.) of the HTTP

request that we are going to make.
3.	 Much like the web services we used earlier, we need to define the content

that we are going to send in our HTTP request. This may be just a
blank string.

4.	 Specify the callback function, and build it.
5.	 Use the object's send() method to send the request.
6.	 In the callback, catch the server response and use it to change the page.

Creating the Object
There are two ways to create the XMLHttpRequest object, depending on which
browser the visitor is using. If the user has a Mozilla browser (Firefox, Camino),
Safari, or Opera, we just create a ����new XMLHttpRequest() to create an object. If they
are using Internet Explorer 6, we need to use ActiveX to create a Microsoft.XMLHTTP
object, which is a clone of XMLHttpRequest. Use these two methods to place the
returned objects into a global JavaScript variable. We can use JavaScript to detect the
presence of the XMLHttpRequest object or Active X to determine which method we
should use.

Chapter 6

[227]

g_xmlHttp = null;
function createXMLHttpRequest() {
 if (window.XMLHttpRequest){

 g_xmlHttp = new XMLHttpRequest()
}
else if (window.ActiveXObject) {

 g_xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
}

}

This function should be called at the start of the request.

Making the HTTP Request
The start of our HTTP Request should be after the user does something. We will
trigger the request when the user triggers a key release on the text field. That is,
when the user presses on a key, the web application will call our JavaScript function
that communicates to the server.

 <input type="text" name="inputField" size="10"
 onkeyup="sendRequest()" />

The function is named sendRequest() here. We now need to write this function.
This function will create the XMLHttpRequest object, define the server parameters,
define callback function that will be executed when a server response is captured,
and then actually send the request.

 function sendRequest() {
 createXMLHttpRequest();
 var url = "/mashups/ch6/examples/ajaxResponse.php?field=" +
 document.theForm.inputField.value;
 g_xmlHttp.onreadystatechange = parseResponse;
 g_xmlHttp.open("GET", url, true);
 g_xmlHttp.send(null);
 }

The first statement in this function calls createXMLHttpRequest(), which creates
the XMLHttpRequest object and places it in the global variable g_xmlHttp. The
second line places the URL to the service in a variable. This is a virtual URL to the
service. You can also make an absolute URL to the service, but we'll discuss later
why an absolute URL is unnecessary. The last part of this statement places the value
of the input text box we had into a query parameter named field, which is what our
service is waiting for.

London Tube Photos

[228]

The next three statements use XMLHttpRequest methods and properties.
onreadystatechange is a property that holds the JavaScript callback function
for this object. Set this to the name of the function, without opening and closing
parentheses, that will be executed when the server responds. You can only select
one callback function. To execute more, you will need to create a facade wrapper
function that executes the others, and set the facade function as the callback.

open gets the object ready to send the request. The first two parameters are required.
The first parameter is the HTTP method to use. The second is the URL. The third
parameter is whether the object should be in asynchronous mode. It is optional, but
it is a good idea to set this to true because the default value is false, and we do
want to be in asynchronous mode. Otherwise, we would be in synchronous mode,
which means that the rest of the JavaScript does not execute until XMLHttpRequest
receives a response from the server.

send actually sends the request. send takes one required parameter, the body of
the request. In this example, we are sending a null because we are just doing a GET
request. The request does not have a body. If we were doing a POST, we would
construct the parameters in a separate string and pass it as send's parameter. After
send is called, the HTTP request is made and the callback function executes.

Creating and Using the Callback
There are two main jobs of the callback function. The first is to capture the server
response. The second is to do something with that response.

We start off our function with a couple of checks to make sure the data from the
server has indeed arrived. If we didn't do this, the rest of our code will execute
prematurely and without all the necessary parts from the server response.

The first if statement checks the readyState property of the XMLHttpRequest
object. As the request executes and processes, this value gets changed. There are five
possible values of this property:

readyState value Meaning
0 Uninitialized
1 Loading
2 Loaded
3 Interactive
4 Completed

Chapter 6

[229]

Only when the value is 4 is the data completely ready to be parsed and used by the
web application.

The second if statement checks to see XMLHttpRequests' status property. This is the
same code that reports 404 for missing file, 500 for internal server error, etc. A 200 is
a successful transaction. We need to make sure the request is executed successfully,
or the data might be useless.

function parseResponse() {
 if (g_xmlHttp.readyState == 4) {
 if (g_xmlHttp.status == 200) {
 var response = g_xmlHttp.responseXML;
 var outputArea = document.getElementById("ServerResponse").
 firstChild;
 var responseElements =
 response.getElementsByTagName("textField");
 outputArea.nodeValue =
 responseElements[0].firstChild.nodeValue;
 }
 }
}

The first line after the nested if statement captures the value in the responseXML
property of the XMLHttpRequest object and places it in a variable. This property is
where the browser keeps the response from the server. If you were to inspect it, you
would see the direct XML from the server.

The second statement captures the node of the HTML page of where we are going to
output the response. We use JavaScript's getElementById() function and traverse
down the DOM.

We can use the same DOM functions in JavaScript to extract the information from
the server response. This is what we do in the third statement. We know what we are
interested in is located in the textField element of the response. We zero in on that
and get that node.

Each DOM element keeps the text it displays in a property called nodeValue. In
the fourth statement, we set the output area's nodeValue to the nodeValue of the
response. This changes the webpage every time it is executed.

London Tube Photos

[230]

If you type in the text field of ajaxTest.php, you can see this code in action.

In our code, we checked for an HTTP status of 200. While this is good
practice, it requires the HTTP network protocol to be present in order
work. This means you must load the page in a web browser through
HTTP. If you load the page through the file system (i.e. through
file:///ajaxTest.php,instead of http://localhost/.../
ajaxTest.php), status check will fail, and the code will not
execute properly.

This is the standard way of triggering an AJAX application, and it works very
nicely. The DOM parsing, however, can get messy. There are two DOMs you must
parse—the local web page and the server response. Fortunately, you may have some
alternatives to parsing the server response.

First off, responseXML has a sister property, responseText, that works exactly the
same way. responseText holds the server response if it is any text string instead
of XML. You can immediately use the response text instead of traversing through
a DOM to get what you want. If you are merely a front-end developer for a much
larger web development, and the company manifesto is to transfer everything via
XML, this might not be an available option for you. Or, if your web service is used
by third parties, it may be best to keep it as XML. However, if you are writing a
very simple service to support just your application, know that you do not have to
structure everything in XML. You can just pass a simple text string back and use
responseText on the client end instead.

If your web service response is too complicated for a simple text string, you may
want to consider formating your text response in JavaScript Object Notation (JSON)
to send this result back to the page. It will still be a text response, so you can use
responseText and skip the parsing. JSON gives you the structure of XML with the
simplicity of a text string. This next section will introduce us to JSON.

Chapter 6

[231]

Debugging AJAX
Debugging the request and response from the server can be tricky. We
can't use a regular IDE. We need something to watch the HTTP streams.
Luckily, if you are using Firefox, there is a Greasemonkey script that will
do just that. Greasemonkey is a Firefox extension that allows users to
write their own JavaScript and code against a site when they visit it. It can
be found at https://addons.mozilla.org/firefox/748/. Once
you have that install, download the XMLHttpRequest debugging tip at
http://blog.monstuff.com/archives/000250.html. This tool
will watch everything that comes out from the browser, and everything
going in. Other helpful extensions for Firefox include LiveHTTPHeaders,
which show the request and response HTTP headers, and Firebug, a
general JavaScript and CSS debugger. For Internet Explorer, a commercial
tool called HTTPWatch is available to watch HTTP requests.

JavaScript Object Notation (JSON)
JavaScript Object Notation is simply a transfer format, much like SOAP or
XML-RPC. Unlike those two formats, JSON is not XML based. It is JavaScript code
that is loosely based on a C-style definitions and formats. Although called JavaScript
Object Notation, many server side languages have built parsers to interpret JSON
format. Given this and its lightweight nature, it has become a popular alternative to
XML when communicating between a web browser and a client. JSON's home page
is at http://www.json.org.

JavaScript Objects Review
Let's quickly review JavaScript objects first. To define a class in JavaScript, you
simply treat it as if it was a function. To give the class properties, use the keyword
this, followed by a dot, followed by the name of the property. To give the class
methods, also use this, followed by a dot, the name of the function, an equal sign,
the keyword function and then the function definition. For example, this could be a
cat object in JavaScript:

function Cat (name) {
 this.name = name;
 this.gender;
 this.age;
 this.eat = function() {
 alert("Yum");
 }
 this.sleep = function() {

London Tube Photos

[232]

 alert("zzzz…");
 }
}

This class definition requires a name as a constructor because it is the only required
parameter in the class definition. Cats can be instantiated like so:

aCat = new Cat("Quincy");
anotherCat = new Cat("Buddy");

JavaScript objects are pretty basic. There are no accessor keywords. Everything is
public. You can access or set properties simply by using dot notation on the object.

aCat.gender = "F"; //Quincy is now a female
anotherCat.name = "Gilbert"; //Buddy just got a name change.

Note the dot notation we use to access the object properties. We use the same dot
notation when we access JSON properties.

JSON Structure
To delimit object definitions, the object is named followed by an equals sign. The
properties of the object are then enclosed in curly brackets. JSON properties are
name/value pairs separated by a colon.

JSON properties support the following data types:

Type Format Examples
Number Integer, float, or real. The actual number. 1, 2.8217
String Double quoted value. "A Value", "Another Value"
Boolean True/false, no quotation marks. true, false
Array Square bracket delimited list. [34, 498, 12]
Object Curly Brackets. { property one: value one }
Null Null. Null

The JavaScript cat structure above can be represented and expanded in JSON like so:

var cat = {
 name: "Quincy",
 gender: "F",
 age: 4,
 spayed: true,

Chapter 6

[233]

 collar: {
 charm: "bell",
 color: "green"
 }
}

If this cat was represented using XML, it would be a bit more cumbersome and
definitely eat more bytes:

<cat>
 <name>Quincy</name>
 <gender>F</gender>
 <age>4</age>
 <spayed>true</spayed
 <collar>
 <charm>bell</charm>
 <color>green</green>
 </collar>
</cat>

Accessing JSON Properties
In the above example, the properties of the cat can be easily accessed through dot
notation with cat as the parent object. Her name is found by using the variable cat.
name, her age is at cat.age, etc. The example file jsonExample.html shows how
dot notation is used to access a property of a JSON object that is in the response. You
simply drill down further with the name of the object as a dot notation level. The
code displays Quincy's collar color using the variable cat.collar.color.

function getColor() {
 alert("Quincy's Collar Color: " + cat.collar.color);	
 }

JavaScript is a typeless language (meaning you do not have to specify which data
type a variable is), so we can use properties directly through dot notation. The only
thing that may need a conversion or alteration step are JSON arrays. For example,
let's insert an array of fur colors into the above example.

age: 4,
furcolor: ["white", "orange"],
spayed: true,

London Tube Photos

[234]

The furcolor is still accessible through dot notation, but there will be some twists.
If you access the array directly, you will get a string of the array elements separated
by commas. cat.furcolor will be "white, orange". To access individual elements,
attach the element number in brackets after the array name, like you would a normal
JavaScript array. cat.furcolor[0] will have a value of "white". cat.furcolor[1]
will have a value of "orange." You can also check the length of the array by accessing
.length after the array name in dot notation. cat.furcolor.length will have a
value of 2.

Serializing the JSON Response
As given in the example, the cat is already a serialized JavaScript object. The curly
brackets that immediately enclose the properties give this away. This means that we
can work directly with the data through dot notation.

Very frequently, though, you will receive a string representation of a JSON object.
One such situation is if the JSON object is stored in a XMLHttpRequest object's
responseText property. Sure, structurally the object is in JSON. However, the data
is cast as a string.

To turn the JSON string into a JavaScript object, pass it through the JavaScript
eval() method.

var cat = '{"name": "Quincy", "gender": "F", "age": 4, "spayed": true,
"color": ["white", "orange"], "collar": { "charm": "bell", "color":
"green" }}';
var quincyObj = eval('(' + cat + ')');

function getColor() {
 alert(«Quincy's Collar Color: « + quincyObj.collar.color);	
}

The eval() method executes whatever is passed to it. As we are passing in
something that is formatted as an object, it will return an object. This unserialized to
serialized example is in a file named jsonTest.html.

Note that in the call to eval(), we have to wrap the string within literal string
parentheses. This is because while the code looks like a JavaScript object, eval()
treats the opening curly bracket in the string as a generic block opening, and not as
the start of an object. Placing it within parentheses will put the parser into expression
parsing mode, which correctly will parse it as a JavaScript object.

Chapter 6

[235]

Be careful with eval()
Be careful when you use eval(). It blindly executes any code passed to
it, so make sure you fully trust the source of the input.

Finally, we get to our APIs. We only have two we need to look at—the Google Maps
API and Flickr Web Services.

Google Maps API
The Google Maps API allows third party developers to use the features of Google
Maps on their own sites. Anything you can do as a user of Google Maps can be done
using the Google Maps API. The Google Maps documentation home page is located
at http://www.google.com/apis/maps/documentation/. The documentation is
quite extensive. We will take a look at how the API basically works, and concentrate
on the features we will use in our mashup. Just knowing how the API is organized
is the key step in searching for information and using the Google Maps API in
future projects.

The Google Maps API requires an API key. You can register for it for free at
http://www.google.com/apis/maps/signup.html. This key is used when
including the Google Maps API in your page. Before you do anything with Google
Maps, you will need to get this API key and put this source tag and in top of your
page's head tag.

<script src="http://maps.google.com/maps?file=api&v=2&key=Your
Google API Key" type="text/javascript"></script>

The API is a JavaScript API based heavily on objects. The central object is the Google
Map that you see. Everything that you see on Google Maps including map controls,
icons, lines, and the white information window box, are just JavaScript objects added
to the map. As we go through the examples in this section, we will build the same
page that is in the examples named googleMapTest.php.

Creating a Map
The Map is created by instantiating the GMap2 class. The only required parameter in
the GMap2's constructor is an HTML container to place the map. Typically, this is an
empty div tag. The Google Map will be displayed in the space occupied by this tag.
This places a lot of importance on this container. You can use CSS to position the
map on the page, and the size of the container determines the size of the map.

London Tube Photos

[236]

Let's take a look at a simple example:

<html>
<head>
 <title>Google Maps Scratch</title>
 <script src="http://maps.google.com/maps?file=api&v=2&
 key=YOUR_GOOGLE_API_KEY" type="text/javascript"></script>

<script type="text/javascript">
var g_map;

function load() {
 if (GBrowserIsCompatible()) {
 g_map = new GMap2(document.getElementById("map"));

 }
}

 </script>	
</head>
<body onload="load()">
 <div id="map" style="width: 800px; height: 600px"></div>
</body>
</html>

This simple page would create a Google Map. We declare a global variable
named g_map to hold the Google Map. The load function is run when the onload
event is triggered. In the load function, a Google JavaScript function is called,
GBrowserIsCompatible, to check for browser compatibility. If it passes, we create
the map by instantiating GMap2. We pass the container using the JavaScript DOM
function getElementById to the GMap2 constructor. As the size of the div element is
800 by 600 pixels, this map will also be 800 by 600 pixels.

If you actually ran this code, you would find that it's pretty useless. You would
just get a blank, grey map. The problem is that the map doesn't know where to
initially center itself. You must specify this by using the map's setCenter() method.
setCenter() can actually be called at any time, and can be triggered by any event. It
accepts a GLatLng object as its parameter.

Geocoding
As you work with Google Maps, you will find that it relies heavily on latitude and
longitude coordinates to do anything on the map. The problem is that in every day
communication, we use addresses more often than latitude/longitude coordinates.
The process of translating from an address to a latitude/longitude coordinate is
known as geocoding. To make using Google Maps a lot easier, the API provides an
object named GClientGeocoder to geocode for us.

Chapter 6

[237]

To create a geocoder, first instantiate the GClientGeocoder object. This object has a
method named getLatLng(), which takes two parameters. The first parameter is a
string of the address you wish to look up. The second is a callback function that is
called after the server returns the results.

Google's servers pass a GLatLng object to the callback function. A GLatLng object
simply holds latitude and longitude coordinates as properties. If you need to
create a GLatLng object, there are two parameters you must pass—the latitude and
longitude. These properties can be accessed again by using this object's lat() and
long() methods.

A small inconvenience in using getLatLng() is that this method doesn't actually
return a GLatLng object to the caller. However, because one is passed to the callback
function, you have to create a callback function in order to use the geocoding results.
Going back to our code, we can make a small modification to the JavaScript to make
it center on an address.

<script type="text/javascript">
var g_map;

 function load() {
 if (GBrowserIsCompatible()) {
 var geocoder = new GClientGeocoder();
 g_map = new GMap2(document.getElementById("map"));
 geocoder.getLatLng(
 "780 Arastradero Road, Palo Alto, CA 94306 USA",
 centerMapCallback);
 }
 }
 function centerMapCallback(returnedPoint){
 g_map.setCenter(returnedPoint, 14);
 }
</script>

In this modified script, we create a GClientGeocoder in the load function. We create
the map like before. After that, we call getLatLng(), passing an address, and the
callback function, centerMapCallback.

London Tube Photos

[238]

In centerMapCallback(), we catch the GLatLng object in the parameter and pass it
to the map's setCenter() method to do the actual centering. The second parameter,
whose value is 14, is the zoom level. When the API calls for a zoom level, you can
supply an integer from zero to seventeen. The higher the number, the closer the
zoom will be.

We will not be doing any geocoding in this mashup, but you should still familiarize
yourself with GClientGeocoder. We will be using GLatLng quite a bit. Both objects
are very important to the Google Maps API. You will find that a mashup often needs
both of these objects.

Chapter 6

[239]

Markers
One frequent use of GLatLng is that they are parameters for markers. Markers are the
pointers Google Maps use to identify a specific place on the map. Each marker is an
instance of the GMarker class.

To create a basic marker on the map, you only need to do two things: 1) Create the
GMarker object, and 2) Add it to the map.

In our example, we can add a marker to the address simply by adding two extra lines
to do those tasks in our callback function.

 function centerMapCallback(returnedPoint){
 var marker = new GMarker(returnedPoint);
 g_map.setCenter(returnedPoint, 14);
 g_map.addOverlay(marker);	
 }

The first line instantiates the GMarker and places it in a local variable named marker.
The second line zooms to the map center as before. The third line adds marker to the
Google Map.

GMarker can take a second parameter, a GMarkerOptions object. This is an object
whose sole purpose is to tweak the marker. Using it, you can do things like add your
own customer icons or make the marker draggable. All you have to do is set the
properties of the GMarkerOptions object.

Consult the GMarkerOptions documentation at
http://www.google.com/apis/maps/documentation/
reference.html#GMarkerOptions for everything you can do
to markers.

London Tube Photos

[240]

Events
In the Google Maps API Class References documentation, notice that some objects
have events associated with them. These objects are things the user sees and can
interact with, like the map itself, lines, and markers. This allows you to fire off
JavaScript functions whenever the user does something.

Events are managed by the GEvent namespace. To register an event, you must add it
to the GEvent object using the addListener() method. addListener() takes three
parameters. First, it takes the object that you want the event to be active. Second,
it takes the kind of event (click, drag, etc.) that is available on the object. Finally, it
takes a handler function that fires when the event is triggered.

Let's add an event to our marker. Adding a few more lines to our callback function,
we can add an alert box that pops up when our marker is clicked.

function centerMapCallback(returnedPoint){
 var marker = new GMarker(returnedPoint);
 g_map.setCenter(returnedPoint, 14);
 g_map.addOverlay(marker);	

 GEvent.addListener(marker, "click", function() {
 alert("Marker clicked!");
 });
}

GEvent is not an object that we create, so we do not need to instantiate it. It is
automatically instantiated when we load the Google Maps API. When the click event
is triggered on marker, the handler function is executed.

InfoWindow Box
An alert box is pretty bland. What's more useful is the white popup box that
often appears when using Google Maps. These popup boxes look like comic book
speech balloons. They point to a specific location on the map, and contain helpful
information about that location. In the Google Maps API, these boxes are known as
InfoWindows.

InfoWindows are represented in the API by the GInfoWindow class. The most
important thing to know about InfoWindows is that for each Google map, there
is one and only one InfoWindow. This has two implications to us. First, when the
InfoWindow comes and goes from the user's view, all that is happening is that
visibility of InfoWindow is being toggled. This is done either through built-in
events of the API like, like clicking on the InfoWindow's close window button, or
programmatically by the developer, like calling the InfoWindow's show() or
hide() functions.

Chapter 6

[241]

Second, events just share and update the same InfoWindow. When you see an
InfoWindow take on new content, like what happens when you switch from one
marker to another in Google Maps, the InfoWindow's content is being changed
through JavaScript DOM methods. We will have to do the same when we use
InfoWindow boxes in our mashup.

Let's modify our example script further. Instead of getting a JavaScript alert box, let's
display an InfoWindow box when the user clicks on the marker.

Remember, every map already has an InfoWindow box associated with it when you
instantiate the map. Therefore, there is no need to create a GInfoWindow object. All
we have to do is order it to appear in the exact place that we want.

You can set an InfoWindow box over a specific point by passing a GLatLng object
over the point to the GInfoWindow's reset() method, then make it appear using
the object's show() method. However, there is a quicker way to do this. Making the
InfoWindow box appear over a marker is one of the most common things to do in
Google Maps. It's so common, the Google Maps API Team created methods on the
GMarker object that does just this. The beauty is that the method is on the marker,
so it will appear over the marker automatically. You do not have to track down the
latitude/longitude of the marker.

We can simply modify the event handler to show the InfoWindow instead of an alert.

GEvent.addListener(marker, "click", function() {
 marker.openInfoWindowHtml("<div>My Marker!</div>");
});

London Tube Photos

[242]

InfoWindow's size is the width and height of the largest HTML container inside.
Therefore, you can control the size by adding a height and/or width CSS properties
to the enclosing container. For example, you can make a roughly 200 pixels by 300
pixels InfoWindow by putting a div tag that is 200 pixels by 300 pixels like so:

.openInfoWindowHtml("<div style=\"width:220px; height:250px;\">
 Some HTML</div>");

Version 2.5 and above of the API also has added support for tabs in the InfoWindow.
To turn an InfoWindow into tabs, create a GInfoWindowTab for each tab. This class's
constructor takes two parameters. The first is the label of the tab, the second is the
content. Place all of these GInfoWindowTab objects in a JavaScript array. The GMarker
class also has support for a method named openInfoWindowTabs(). This method
takes an array of GInfoWindowTab objects. Calling it will open an InfoWindow, but
the window will be in a tab interface, with the objects as the content.

Our callback function can be tweaked a bit to use tabs in the InfoWindow:

function centerMapCallback(returnedPoint){
 var tabsArray = new Array();
 tabsArray[0] = new GInfoWindowTab("One", "<p>Content for Tab 1</p>");
 tabsArray[1] = new GInfoWindowTab("Two", "<p>Content for Tab 2</p>");

 var marker = new GMarker(returnedPoint);
 g_map.setCenter(returnedPoint, 14);
 g_map.addOverlay(marker);	

 GEvent.addListener(marker, "click", function() {
 marker.openInfoWindowTabs(tabsArray);
 });
}

Chapter 6

[243]

This concludes the basic features of Google Maps. There are plenty of other features
available. Some of the powerful features include:

The ability to draw lines on the map, similar to when Google Maps
gives directions.
A REST interface for the service returning XML, allowing you to use the
Google Maps database on server-side applications.
A Marker Manager to handle large amounts of markers at different
zoom levels.
Override the map tiles from Google Maps using the GMapTiles object.

If you use Google Maps API heavily in mashups, you should also be aware of the
many options objects available to you. They give you the flexibility to go beyond
many other mashups that use the API. For example, with the GMarkerOptions
object, you can create custom markers on your map.

Even without these advanced features, you will be able to do a lot with Google
Maps. We certainly have more than enough to create our mashup.

Flickr Services API
Flickr, focusing on photo sharing, is one of the oldest community-driven sites out
there. They were also an early adopter of web APIs for third party developers.
These things have given them a large user base and a very rich API. Flickr Services
is probably the most flexible web API we have seen. The API home page is located
at http://www.flickr.com/services/api/. You will need a free developer key
to use this API. As Flickr! is a subsidiary of Yahoo!, you will also need a free Yahoo!
account. You will be prompted for both at http://www.flickr.com/services/
api/keys/. From there, you can also sign up for both.

Like the other APIs from social-sharing sites we have seen, Flickr Services' API
focuses not only on their subject matter, but also has many methods that deal with
community features. There are an abundant group of methods that allow you to
query information about Flickr's community. Assuming someone has allowed it
on their privacy settings, you can get a person's blog entries and favourite photos,
among other things. There is also an API dealing with Flickr Group's information.
They allow you to find photos and information from people with a similar interest.

Certainly, the two largest groups of methods have to do with photos and photosets.
A user can arrange their photos into photosets for organization������������� a������������ l purposes.
Flickr, like Last.fm and YouTube, relies heavily on user tags. Their photo search is
influenced by what is tagged by people.

•

•

•

•

London Tube Photos

[244]

Probably the most impressive thing about Flickr Services is the choices you have in
request and response formats. For request, you can use any of the three most popular
formats—REST, SOAP, and XML-RPC. For responses, you can choose Flickr's own
XML schema, SOAP, XML-RPC, JSON, or even serialized PHP objects. Regardless
of the format you choose for request and responses, Flickr Services has a consistent
method of doing things. All requests take the same parameters and return the same
data. You just need to format and parse differently for each one.

Executing a Search
Because Flickr Services is so consistent, the best way to get an overview of it is to
walk through an example. In our mashup, we will need to concentrate on the group
of photo methods. In particular, we need one to search photos based on user tags.
Let's try and execute a search like we will be doing for our mashup.

For our request and response, we'll look to keep things simple. We will send the
service request using REST. Our web application is PHP driven, so a serialized PHP
response would be intriguing. However, as JavaScript will be doing a lot of the
work, we will use JSON. The straight XML response from a REST call would also be
acceptable, but it would be nice to avoid the DOM parsing that would be required
with it.

The method names are fairly self-explanatory and give us a lot of clues on what the
method does. Looking at the documentation for the method flickr.photos.search
at http://www.flickr.com/services/api/flickr.photos.search.html, we see
it is exactly what we need to search photos.

The URL for all Flickr REST requests is http://api.flickr.com/services/rest/.
Following this URL are the parameters of the method in a GET request format. There
are two required parameters for all REST requests—method and api_key. The value
of method is the name of the method that you wish to call. The value of api_key is
your Flickr API Key. To call flickr.photos.search, our complete URL would be:

http://api.flickr.com/services/rest/?method=flickr.photos.
search&api_key=YOUR_FLICKR_API_KEY

A methods documentation page lists all the parameters the method can take.
flickr.photos.searchs' available parameters are quite extensive. This gives us a
lot of ability to tweak our search. According to the documentation, the only required
parameter is api_key. However, this is sort of misleading because we also need to
supply a search term. We can search tags using the tags parameter, or a free text
search using the text parameter. Even though both are optional parameters, we
need to include one or the other. Otherwise, Flickr will return a message saying that
empty searches are not supported.

Chapter 6

[245]

To use tags, supply a comma delimited list of terms you wish to search. A text search
is just a free text string. Either way, when using REST, remember to URL encode
your terms.

http://api.flickr.com/services/rest/?method=flickr.photos.
search&api_key=YOUR FLICKR_API_KEY&text=fender%20stratocaster

If you use XML-RPC or SOAP, use the exact same parameters as listed in the
documentation and format the parameters and values as required by the respective
format. For SOAP, the endpoint is at http://api.flickr.com/services/soap/.
For XML-RPC, the service endpoint is at http://api.flickr.com/services/
xmlrpc/.

Interpreting Service Results
If you hit the above URL in a web browser, after adding your API key, the search
will execute and you will receive a live response from the server.

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photos page=»1» pages=»20» perpage=»100» total=»1904»>
 ��� <photo id="412962278" owner="43203076@N00" secret="63e7e2e1f0"
 server="183" farm="1" title="Doin' Studio Time" ispublic="1"
 isfriend="0" isfamily="0" />
 <photo id="412463850" owner="63895350@N00" secret="26b97edbb5"
 server="172" farm="1" title="Norby with his Fender Stratocaster"
 ispublic="1" isfriend="0" isfamily="0" />
 <photo id="411598583" owner="75859527@N00" secret="657eb806c8"
 server="172" farm="1" title="Hocus Pocus" ispublic="1"
 isfriend="0" isfamily="0" />
 …
</photos>
</rsp>

The returned format is in a standard format returned by Flickr whenever it returns
photos. By default, a call returns 100 results per "page". The photos element groups
individual photo elements in a "page". Each photo element represents a photo
returned in the search results. You can change the page you are on by passing a
page parameter to the call. Alternatively, you can also change the number of photos
returned in a page with the per_page parameter in the call.

London Tube Photos

[246]

Each photo element is basically a collection of attributes about the photo. These
attributes are very important. We need to know them in order to load the photo.

Attribute Description
Id Unique ID of the photo.
Owner Owner ID of the person that owns this picture.
Secret A secondary identifier used to help identify the photo.
Server The server on which this photo is stored.
Farm The server farm on which this photo is stored.
Title The title of the picture.
isPublic Boolean indicating whether the owner is publicly sharing the photo.
isFriend Boolean indicating whether the owner is on your list of friends.
isFamily Boolean indicating whether the owner is on your list of family members.

The last three booleans take either a 1 or 0 value. They also require the service caller
to be authenticated in using the authentication methods in the API.

This is what we want, but it is in the wrong format. We want the results back in
JSON. To get results in JSON, we need to pass a format parameter to the service call.
In this case, the value of that parameter is json.

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_
key=YOUR FLICKR_API_KEY&text=fender%20stratocaster&format=json

Adding the parameter will give us this response from the server.

jsonFlickrApi({
 "photos": {
 "page":1,
 "pages":20,
 "perpage":100,
 "total":"1904",
 "photo":[
 ������������������� ������������������������{«id»:»412962278», «owner»:»43203076@N00»,
 «secret»:»63e7e2e1f0», «server»:»183», «farm»:1,	
 «title»:»Doin\u2019 Studio Time», «ispublic»:1, «isfriend»:0,
 «isfamily»:0},
 {«id»:»412463850», «owner»:»63895350@N00»,
 «secret»:»26b97edbb5», «server»:»172», «farm»:1, «title»:
 »Norby with his Fender Stratocaster», «ispublic»:1,
 «isfriend»:0, «isfamily»:0},

Chapter 6

[247]

 {«id»:»411598583», «owner»:»75859527@N00»,
 «secret»:»657eb806c8», «server»:»172», «farm»:1, «title»:»Hocus
 Pocus», «ispublic»:1, «isfriend»:0, «isfamily»:0},
 …
]
 }
})

Each method's documentation page documents the returned XML format of the call.
From there, it is easy to take an educated guess at the JSON equivalent. Generally,
element attributes in the XML document are object properties in the JSON document.
Nested elements are translated into nested objects. The subject of search results,
whether they are things like blog entries, users in a group, or like in this case, photos,
are returned as JSON arrays. If you have trouble estimating the exact translation of
a method, you can always manually make the request in your browser like we
did here.

Note that the JSON results are encapsulated in a call to jsonFlickrApi. By default,
the API assumes that you want to pass the JSON results to a JavaScript callback
function. If you have a function named jsonFlickrApi in your application, the
JavaScript engine will pass the JSON object to that function when it receives the
response. The engine will then automatically execute the function. This can be a
controller in your JavaScript for the service's return value. However, you do need to
create a function named jsonFlickrApi, and it must be set-up to act on the returned
JSON code. If you choose not to use this, you can turn this automatic callback off by
sending a true (1) value to the nojsoncallback parameter in your call. This will give
the exact same text string without the jsonFlickrApi().

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_
key=YOUR_FLICKR_API_KEY&text=fender%20stratocaster&format=json&nojson
callback=1

Retrieving a Photo or a Photo's Page
Now that we have the results, we can use the data to retrieve photos from Flickr.
Image URLs in Flickr have the following format:

http://farm{FARM-ID}.static.flickr.com/{SERVER-ID}/{ID}_
{SECRET}{SIZE}.jpg

With the exception of the size, all the other variables can be extracted directly from
flickr.photos.search's web service call response.

London Tube Photos

[248]

The FARM-ID is the farm attribute. SERVER-ID is the server attribute. ID is the id
attribute. SECRET is the secret attribute in the XML. SIZE is the size of the photo you
want. It is an underscore followed by one character. The character can take on any of
the following letters:

Suffix Meaning Max Pixels on Side
_o Original size *
_b Large 1024
None Medium 500
_m Small 240
_t Thumbnail 100
_s Small Square 75 px x 75 px

 One of the first photo's XML is returned as:

<photo id="411598583" owner="75859527@N00" secret="657eb806c8"
server="172" farm="1" title="Hocus Pocus" ispublic="1" isfriend="0"
isfamily="0" />

We can use this information to construct a URL to a small version of the photo:

http://farm1.static.flickr.com/172/411598583_657eb806c8_m.jpg

Original size works a little differently. They have their own secret code in an
attribute named originalsecret and you must include the file type extension,
which you can get from another attribute named original_format. To get these
attributes, you need to request them in your original request in the extras parameter.
This parameter takes a comma-delimited list of attributes that may not be included
in the default response.

http://api.flickr.com/services/rest/?method=flickr.photos.
search&api_key=YOUR_FLICKR_API_KEY&text=fender%20stratocaster&form
at=json&nojsoncallback=1&extras=originalsecret,original_format

Consult a method's documentation to see if any extra parameters are available.

A URL to the photo's web page works in a similar way. The URL takes the
following format:

http://www.flickr.com/photos/{USER-ID}/{PHOTO-ID}

The documentation outlines several different things that you can link to, for example,
you can construct URLs to a photoset or a user's profile.

Chapter 6

[249]

Mashing Up
We have toured a lot of technologies for this mashup. Some of these are pretty
cutting-edge, but necessary to incorporate a relatively new specification. Not
surprisingly, your data sources are not always going to be from web APIs. Staying
flexible and searching for new technologies to use in your applications is important.
At last, we have the knowledge to start building the application.

The database is a good place to begin. Recall from our sequence diagram that a
visitor directly and indirectly interacts with several different components of our
application at any one time. Many of the components rely on the Google Map to be
built first, but the map relies on the database as a source for marker locations.

Building and Populating the Database
Our mashup needs three things: Tube stations, lines of the Tube system, and which
stations belong to which line. We also need to keep in mind that a station can belong
to more than one line. As our source of data is from the Tube Station RDF document,
let's take a close look at the document to see what's available to us.

Examining the File
The first half of the page consists of stations. A typical station looks like this:

<rdf:Description rdf:about="http://london.openguides.org/index.
cgi?id=Acton_Town_Station;format=rdf#obj">
<os:y>179613</os:y>
<dc:subject>Tube</dc:subject>
<name>Acton Town Station</name>
<dc:title>Acton Town Station</dc:title>
<rdfs:type rdf:resource="http://www.w3.org/2003/01/geo/wgs84_
pos#SpatialThing"/>
<geo:long>-0.280009</geo:long>
<space:connects rdf:resource="http://london.openguides.org/index.
cgi?id=Turnham_Green_Station;format=rdf#obj"/>
<os:x>519478</os:x>
<rdfs:seeAlso rdf:resource=»http://london.openguides.org/index.
cgi?id=Acton_Town_Station;format=rdf#obj»/>
<geo:lat>51.502833</geo:lat>
</rdf:Description>

London Tube Photos

[250]

We need at least a name and a latitude/longitude pair for Google Maps. The name,
geo:long, and geo:lat elements appear to give this to us. We will definitely need
to extract these. Putting this "thing" in a subject/predicate/object context, the rdf:
about attribute would give us the subject. Should the need arise, we can use that as
a unique identifier. We also see there is a type/resource element that may identify
this item as a tube station; this may also be useful.

Nowhere in this document do we find an actual list of lines. However, the last half
of this document is interesting. They are a collection of blocks, but smaller than a
station block.

<rdf:Description rdf:about="http://space.frot.org/a_space/id5276761">
<rdfs:type rdf:resource="http://space.frot.org/rdf/space.owl#Tube_
Line"/>
<rdf:predicate rdf:resource="http://frot.org/space/0.1/connects"/>
<rdf:subject rdf:resource="http://london.openguides.org/index.
cgi?id=North_Ealing_Station;format=rdf#obj"/>
<dc:title>Piccadilly Line</dc:title>
<rdf:object rdf:resource="http://london.openguides.org/index.
cgi?id=Ealing_Common_Station;format=rdf#obj"/>
</rdf:Description>

They appear to be a list of spatial relationships described in a triple format. The rdfs/
resource pair tells us it is a tube line. However, there are many of these in each line.
What gives this away are the rdf:predicate, rdf:subject, and rdf:object tags.
These items tells us that in this line, the subject, which directly correlates to the rdf:
about attributes of the stations, connects (according to rdf:predicate) to the object,
which also directly correlates to the rdf:about attributes. Basically, these items tell
us that the subject station connects to the object station in a certain line. They are
drawing the line map for us using a triple.

Therefore, we can simply pick these out to get the line stations. As rdf:subject
elements are the start of the connection chain, we can just pick out the rdf:subject
and filter by dc:title to get all of the stations in a line.

This is the only hint of the presence of Tube lines. However, all we really need to do
is extract the name of the line and the stations to which they belong.

Creating Our Database Schema
A line has many stations and a station can belong to more than one line. This sounds
like a job for a join table. We'll keep things simple and just extract the name, latitude,
and longitude for the stations, and just the line name for the line.

Chapter 6

[251]

Our database schema will look like this:

station

stationtoline

line

PK PKStationID (INT) LineID (INT)

StationName (VARCHAR(50))
Latitude (VARCHAR(50))
Longitude (VARCHAR(50))

StationID (INT)
LineID (INT)

LineName (VARCHAR(50))

We have included an SQL file in the examples code named londontube.sql. This
file will create a database with foreign key constraints. You can run this file directly
in an SQL import tool, like the MySQL command line, or phpMyAdmin, to create
this database. For all other RDMS setups, create a database named londontube and
mimic the schema.

Don't forget to give at least SELECT and INSERT permissions for a user
on this database, and a password!

Building SPARQL Queries
To populate these tables from RDF, we will need a SPARQL query for each one.
First, we will need to populate all stations. Second, we will need a SPARQL query to
populate all the lines. After we insert lines and stations, we need to use the SQL IDs
that were generated and insert them into the stationtoline junction table.

As we create these, we can double check our work back at SPARQLer. Be sure to
change the Data URL field to the London Tube RDF at http://space.frot.org/
rdf/tube_model2.rdf.

London Tube Photos

[252]

Stations Query
Our stations query must extract the name, latitude, and longitude from the RDF
document. We can do this with the following query:

 PREFIX : <http://xmlns.com/foaf/0.1/>
 PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 SELECT DISTINCT ?stationName ?lat ?long
 FROM <tube_model2.rdf>
 WHERE {
 ?type rdfs:type
 <http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing> .
 ?type :name ?stationName .
 ?type geo:lat ?lat .
 ?type geo:long ?long
 }
 ORDER BY ?stationName

In the top, we define the prefixes we will need. Note the very first prefix. The name
of the station is in the name element, which does not have a prefix. It falls into the
default namespace. You have to declare default namespace prefixes if they are used
in SPARQL. To do this, create the PREFIX statement as you normally would, but the
namespace portion is just an empty colon.

The SELECT statement tells the parser to grab three variables, ?stationName, ?lat,
and ?long. The WHERE clause refines the search and sets those variables.

The first triple narrows the search to stations. Remember when we looked at stations
in the RDF document, it had a type/resource pair that identifies it as a station?
The type was in the rdfs namespace, but its resource attribute was in the rdf
namespace. Even though we do not explicitly use the rdf namespace in this first
WHERE clause, the value is in that namespace, so therefore we also need to give it
a PREFIX declaration. This statement sets the subject for our other clauses in the
variable named ?type.

The three other triples set the variables we asked for in the SELECT statement. They
essentially work the same way. They use the subject in ?type to find the predicate,
which are the elements we want. The object of these triples is placed into the
?stationName, ?lat, and ?long variables.

Chapter 6

[253]

Lines Query
This one is easier than it may first appear. Our lines query must get all of the lines in
the system. However, the RDF file does not have a section of just lines. It does have
the section where it describes all of the connections in a line, though. We can simply
grab all of these connection items and use the DISTINCT keyword on the line name to
make sure we only get one of each.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
FROM <tube_model2.rdf>
SELECT DISTINCT ?lineName
WHERE {
 ?type rdfs:type <http://space.frot.org/rdf/space.owl#Tube_Line> .
 ?type dc:title ?lineName
}
ORDER BY ?lineName';

The WHERE clause by itself, gets all of the line names from the dc:title element
based on a type/resource combination like the previous query. However, the
DISTINCT keyword filters out all the repeat instances.

Lines to Stations Query
Remember previously that RDF items do not have relationships like SQL does per se.
We can work around this by using queries to find the subject of the child object. We
will have to do this to map the relationship between lines and stations.

PREFIX : <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?lineName ?stationName
FROM <tube_model2.rdf>
WHERE {
 ?line rdfs:type <http://space.frot.org/rdf/space.owl#Tube_Line> .
 ?line dc:title ?lineName .
 ?line rdf:subject ?infourl .
 ?infourl dc:title ?stationName
}
ORDER BY ?lineName ?stationName';

London Tube Photos

[254]

This query is asking for a line name and a station name pairing. All stations that
belong to a line should be included with that line. If a line has twelve stations, there
should be twelve entries with that line in the result set, with each station having on
entry in that pair.

The first line in the WHERE clause is simple enough. It sets the subject of all Tube lines
in the ?line variable. The second line sets the ?lineName variable, which we want
to extract, by making it the object of the dc:title predicate. It gets interesting in the
third line.

In the RDF document, these connection items have a subject element.

<rdf:subject rdf:resource="http://london.openguides.org/index.
cgi?id=Wapping_Station;format=rdf#obj"/>

These subject elements tell us that subject of this connection item is the resource
attribute value. The third line in the WHERE clause, then, sets the rdf:resource value
in a variable named ?infourl. Remember earlier when we looked at the stations we
noted the rdf:about attribute in the Description elements of the stations could be
used as a unique identifier for those stations? This is where it comes in handy. These
identifiers are used in rdf:resource in these connection items.

In the fourth line, we use this station identifier URL as the subject to grab the
station name. This fourth line looks for all subjects with the unique station URL and
operates on those items. In other words, it looks back at the station items in the first
half of the page.

Finally, back in the SELECT statement, we add a DISTINCT keyword to ?lineName.
This is because a connection between two stations is actually represented twice in
our document. You'll find a statement that says, "Station A is connected to Station B",
and later on in the document, you'll find "Station B connects to Station A". This is
no accident, but will cause each connection to be listed twice. DISTINCT will
eliminate that.

We have successfully worked around the issue of relationships. Though your classic
foreign key constraints in SQL are not available, we do have identifiers in this file
that we can play with. Fortunately, we have a well designed document, but this may
not always be the case. You may have to query more than one document, or you may
have to get extra complicated with your SPARQL WHERE clauses.

Database Population Script
Now that we have our SPARQL queries, it's time to actually use them to populate
our database. We will write a procedural script that uses RDF API for PHP to do
just that.

Chapter 6

[255]

As RAP is objected oriented, we'll use a model-centric approach for this script. In
the example chapter code, this section will go over the code in the script named
populateDB.php. In the classes/models directory, there are two files, clsLine.
php and clsStation.php. They represent the line table in the database and the
station table. They are just containers. Each column in the database is represented
by properties in the class, and each property has a public getter and setter method to
access it.

The clsLine.php file looks like this:

<?php
 class Line {

 private $lineId;
 private $lineName;
 public function getLineId() { return $this->lineId; }
 public function getLineName() { return $this->lineName; }
 public function setLineId($i) { $this->lineId = $i; }
 public function setLineName($n) { $this->lineName = $n; }
 }
?>

clsStation.php looks like this:

<?php
 class Station {

 private $stationId;
 private $stationName;
 private $lat;
 private $long;	
 public function getStationId() { return $this->stationId; }
 public function getStationName() { return $this->stationName; }
 public function getLat() { return $this->lat; }
 public function getLong() { return $this->long; }
 public function setStationId($i) { $this->stationId = $i; }
 public function setStationName($n) { $this->stationName = $n; }
 public function setLat($l) { $this->lat = $l; }
 public function setLong($l) { $this->long = $l; }
 }
?>

London Tube Photos

[256]

These "plain old PHP objects" are generic enough to reuse later in our application.

Based on our database schema, our populateDB.php needs to take the
following steps:

1.	 Get all lines from the RDF file.
2.	 Insert all the lines into the table.
3.	 Remember the table primary key that was generated by the insert.
4.	 Get all stations from the RDF file.
5.	 Insert all stations into the table.
6.	 Remember the table primary key that was generated by the insert.
7.	 Get all stations in a line from the RDF file.
8.	 Use the primary keys there were generated from the inserts and insert them

correctly into the stations-to-line junction table based on the query from the
RDF file.

Our script starts off with the standard initialization and preparation code that RAP
requires. In addition, we include the two model object definitions.

define("RDFAPI_INCLUDE_DIR", "Absolute/Path/To/rdfapi-php/api/");
require_once(RDFAPI_INCLUDE_DIR . "RdfAPI.php");
require_once('classes/models/clsLine.php');
require_once('classes/models/clsStation.php');

Next, the SPARQL client is created. We pass the URL to the tube document into the
load() method.

//Create SPARQL Client
$sparqlClient = ModelFactory::getDefaultModel();
$sparqlClient->load('http://space.frot.org/rdf/tube_model2.rdf');

We need to create a database connection. Modify this section as necessary if you are
not using MySQL, and customize it to the user.

//Create MySQL Client
$mySQLConn = @mysql_connect("127.0.0.1", "DB USER NAME", "DB USER
PASSWORD") or die("Couldn't connect to the MySQL server.");
$db = mysql_select_db("londontube", $mySQLConn) or die("Couldn't
connect to the londontube database.");

Now it's time to create some functions that will query the RDF document.

Chapter 6

[257]

The first is the getAllStations() function. This function will query the RDF
document and return an array of station objects.

function getAllStations(&$sparqlClient) {
 $returnArray = array();
 $query = '
 PREFIX : <http://xmlns.com/foaf/0.1/>
 PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 SELECT DISTINCT ?stationName ?lat ?long
 FROM <tube_model2.rdf>
 WHERE {
 ?type rdfs:type
 <http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing> .
 ?type :name ?stationName .
 ?type geo:lat ?lat .
 ?type geo:long ?long
 }
 ORDER BY ?stationName';
 $result = $sparqlClient->sparqlQuery($query);
 if ($result != "false") {
 foreach ($result as $station) {
 if ($station != "") {
 $stationObj = new Station();
 $stationObj->setStationName($station['?stationName']-
 >getLabel());	
 $stationObj->setLat($station['?lat']->getLabel());
 $stationObj->setLong($station['?long']->getLabel());
 $returnArray[$station['?stationName']->getLabel()] =
 $stationObj;
 }
 }
 }
 return $returnArray;
}

This function starts off with the SPARQL query that we built earlier and uses
the SPARQL client passed to it to execute it against the loaded RDF document.
Remember that the query gets the name, latitude, and longitude. The results set
comprises a row for each station. The foreach loops through this results set. It

London Tube Photos

[258]

places each results object into a RAP resource object named $station. For each
station in the results set, a new station is instantiated. Using the setter methods, the
results in $station populate each station object's name, latitude, and longitude. It
then places this object into the array to be returned, with the name of the station as
the key. Without any integer identifiers in RDF, we are going to have to use the next
best thing. The names of the stations and lines are going to have to be the keys.

The same principle applies to getAllLines(), which grabs all of the station lines in
the RDF document.

function getAllLines(&$sparqlClient) {
 $returnArray = array();
 $query = '
 PREFIX dc: <http://purl.org/dc/elements/1.1/>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 FROM <tube_model2.rdf>
 SELECT DISTINCT ?lineName
 WHERE {
 ?type rdfs:type
 <http://space.frot.org/rdf/space.owl#Tube_Line> .
 	 ?type dc:title ?lineName
 }
 ORDER BY ?lineName';
 $result = $sparqlClient->sparqlQuery($query);
 if ($result != "false") {
 foreach ($result as $line) {
 if ($line != "") {
 $lineObj = new Line();
 $lineObj->setLineName($line['?lineName']->getLabel());
 $returnArray[$line['?lineName']->getLabel()] = $lineObj;
 }
 }
 }
 return $returnArray;
}

The same principle applies to getAllLines(), which grabs all of the station lines in
the RDF document. Again, the line name is the key in this array.

Chapter 6

[259]

Lastly, we create a function that finds the station-to-line relationships.

function getLinesAndStations(&$sparqlClient) {
 $returnArray = array();
 $i = 0;
 $query = '
 PREFIX : <http://xmlns.com/foaf/0.1/>
 PREFIX dc: <http://purl.org/dc/elements/1.1/>
 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 SELECT DISTINCT ?lineName ?stationName
 FROM <tube_model2.rdf>
 WHERE {
 ?line rdfs:type <http://space.frot.org/rdf/space.owl#Tube_Line>
 ?line dc:title ?lineName .
 ?line rdf:subject ?infourl .
 ?infourl dc:title ?stationName
 }
 ORDER BY ?lineName ?stationName';
 $result = $sparqlClient->sparqlQuery($query);
 if ($result != "false") {
 foreach ($result as $relationship) {
 if ($relationship != "") {
 $returnArray[$i]['line'] = $relationship['?lineName']-
 >getLabel();
 $returnArray[$i]['station'] = $relationship[
 '?stationName']->getLabel();	
 $i++;
 }
 }
 }
 return $returnArray;
}

This array starts off, like the other two, by using SPARQL to query the loaded RDF
document. However, the returned array is different from the other two. We did not
create any model objects to hold relationships, so nothing like that is used. Instead,
we return a multi-dimensional array. An integer is the index, and each value is
an associative array inside it. The associative array has the line and station name
grouping together.

London Tube Photos

[260]

Now we have three functions that return three arrays. Let's call them and start
working on the arrays.

$linesArr = getAllLines($sparqlClient);
$stationsArr = getAllStations($sparqlClient);
$joinArr = getLinesAndStations($sparqlClient);

This block will store the arrays in $linesArr, $stationsArr, and $joinArr. First,
we will operate on the $linesArr array.

foreach ($linesArr as $line) {
 $sql = 'INSERT INTO line (LineName) VALUES (\'' . addslashes(
 $line->getLineName()) . '\')';
 $e = mysql_query($sql, $mySQLConn);
 $line->setLineId(mysql_insert_id($mySQLConn));
 }

This foreach loop will insert each Line object in the $linesArr array into the
database. The last statement in the code will get the new ID number from the insert
and store it in the object property. Another foreach loop does the same thing with
the stations.

foreach ($stationsArr as $station) {
 $sql = 'INSERT INTO station (StationName, Latitude, Longitude)
 VALUES (\'' . addslashes($station->getStationName()) . '\', \''
 . addslashes($station->getLat()) . '\', \'' . addslashes($station-
 >getLong()) . '\')';
 $e = mysql_query($sql, $mySQLConn);
 $station->setStationId(mysql_insert_id($mySQLConn));
 }

After this is done, we still have our arrays of lines and stations. Now, however, each
object's ID property is set with the primary key number assigned from the database.
We need to use this property when we populate the join table.

foreach ($joinArr as $key => $value) {
 $sql = 'INSERT INTO stationtoline (LineID, StationID) VALUES (' .
 $lines[$value['line']]->getLineId() . ', ' . $stations[$value[
 'station']]->getStationId() . ')';
 $e = mysql_query($sql, $mySQLConn);	
}

Remember that $join is a multivariable array, and 'line' is the key in the
associative array that has the line name, and 'station' is the key with the station
name. We use these keys to grab the object in $linesArr and $stationsArr. Once

Chapter 6

[261]

we have these objects, it's just a matter of using the ID getter method to grab the
database primary key ID for that station or line. These are used in the SQL statement
for the insert.

Run this file once in your web browser and you will have a fully populated database
full of London Tube station information. It's time to create the web front end to
our mashup.

The TubeSource Database Interface Class
This mashup will always have a pull-down menu of all stations. Once the user
selects a line, the page will refresh itself and the line's stations will be marked with
markers. This implies two things:

1.	 We need a function to pull the names of the Tube lines from the database.
2.	 We need a function to pull the station names from the database based

on lines.
We'll create a database interface class for this. It will be the source of all Tube
information from the database. In the examples, this file is in the classes directory
and named clsTubeSource.php. Anything that interfaces with the database will
occur in this class.

class TubeSource {
 private $dbConn;
 public function getAllLines() {
 $returnArray = array();
 $sql = 'SELECT LineID, LineName FROM line';
 $e = mysql_query($sql, $this->dbConn);
 while ($row = mysql_fetch_array($e)) {
 $lineObj = new Line();
 $lineObj->setLineId($row['LineID']);
 $lineObj->setLineName($row['LineName']);
 array_push($returnArray, $lineObj);
 }
 return $returnArray;
 }
 public function getStationsByLine($lineid) {
 $returnArray = array();
 $sql = 'SELECT S.StationName, S.Latitude, S.Longitude FROM
 stationtoline AS SL

London Tube Photos

[262]

 INNER JOIN station AS S
 ON SL.StationID = S.StationID
 WHERE SL.LineID = ' . $lineid;
 $e = mysql_query($sql, $this->dbConn);
 while ($row = mysql_fetch_array($e)) {
 $stationObj = new Station();
 $stationObj->setStationName($row['StationName']);	
 $stationObj->setLat($row['Latitude']);
 $stationObj->setLong($row['Longitude']);
 array_push($returnArray, $stationObj);
 }
 return $returnArray;
 }
 public function __construct(&$dbConn) {
 $this->dbConn = $dbConn;
 }
}
?>

This class takes a database connection object in its constructor. Its two methods,
getAllLines() and getAllStationsByLine(), return arrays of Line objects and
Station objects, respectively. They work with and populate the model classes in a
similar fashion as the SPARQL queries did. getAllStationsByLine() takes the
primary key ID of the line as a parameter, and uses it in the WHERE clause.

The Main User Interface
At this point, we can create the main user interface page to see how our mashup
is progressing. Let's create the functionality to draw a Google Map and draw the
markers when a user selects a line. This page needs to do the following:

1.	 Create and display Google Map.
2.	 Contain the JavaScript to display the station markers.
3.	 Call the TubeSource database class.
4.	 Present the user with a pull-down menu of stations populated with data

from TubeSource.

Chapter 6

[263]

This basic form of the home page is named index-����������Basic.php. We'll walk through
the portions of the page that handle all of the listed functionality. Later, we will
modify the page to add the Flickr calls to get the photos.

<?php
$googleKey = 'YOUR GOOGLE API KEY';
require_once('classes/models/clsLine.php');
require_once('classes/models/clsStation.php');
require_once('classes/clsTubeSource.php');

This page starts with some preliminary initialization. The Google API key is set in a
variable. All of our model classes are included as well as the TubeSource class.

//Create MySQL Client
 $mySQLConn = @mysql_connect("127.0.0.1", "tubeapp", "tubular") or
 die("Couldn't connect to the MySQL server.");
 $db = mysql_select_db("londontube", $mySQLConn) or die("Couldn't
 connect to the londontube database.");
//Create a DB abstrction object
 $tubeSourceObj = new TubeSource($mySQLConn);

We need to create the database code. Here, the database client is created and
TubeSource is instantiated with the client.

$linesArr = $tubeSourceObj->getAllLines();
 if ($_GET['line']) {
 $stationsArr = $tubeSourceObj->getStationsByLine($_GET['line']);
 }
?>

The next few lines end the preliminary PHP code. The first makes a call to
TubeSource's getAllLines() �� to get all the lines. The returned array of Line objects,
in $linesArr, will be used to created the pull-down menu.

If a GET parameter was passed to this page, we'll make a call to TubeSource's other
method, getStationsByLine(). This will get us the Station objects of a line stored in
an array.

Next, we start our HTML and JavaScript.

<html>
 <head>
 <title>London Tube Stations</title>

London Tube Photos

[264]

 <script src="http://maps.google.com/maps?file=api&v=2&
 key=<?= $googleKey ?>"
 type="text/javascript"></script>

 <script type="text/javascript">
 var g_map;

The JavaScript starts off with a declaration of a few global variables to hold
information throughout the application.

 function load() {
 if (GBrowserIsCompatible()) {
 var point = null;
 g_map = new GMap2(document.getElementById("map"));

The load function will be executed by the body onload event. The purpose of this
function is to create the Google Map and draw any markers if needed. This loads the
map into the g_map global variable.

 g_map.addControl(new GSmallMapControl());
 g_map.addControl(new GMapTypeControl());
 g_map.setCenter(new GLatLng(51.5099983215,
 -0.134690001607), 11);

These three lines operate on our map. The first two add some controls. There are a
whole series of controls you can add to a Google Map. The first line adds a small
version of the pan and zoom commands you see on Google Maps. The second line
adds Map Type Control buttons to the upper right corner of the map. These buttons
control whether the map is a typical street map, a satellite map, or a hybrid.

The third line centres the map to a location. Through research, trial, and error, I
found the latitude and longitude of downtown London. We pass the coordinates to
a GLatLng object, set a nice zoom level of 11 to most of London, and pass that to the
setCenter() ��������method.

<?php if ($_GET['line'] && count($stationsArr) > 0) {
 foreach ($stationsArr as $station) { ?>
 point = new GLatLng(<?= $station->getLat() ?>,
 <?= $station->getLong() ?>);
 g_map.addOverlay(createMarker(point,
 '<?= addslashes($station->getStationName()) ?>'));
<?php } } ?>

 }
}

Chapter 6

[265]

This section creates the markers. We use PHP to help us. If a line GET parameter was
passed to the page and the array of stations is not empty, then we need to create
a marker for each station. Still in PHP, we loop through using a foreach loop. A
GLatLng object, represented by point, is created with the PHP object's latitude and
longitude properties. If we just use this point and pass it to the map's addOverlay
method, we would create a marker on the map. However, we want to do a little extra
with it, like create an event.

We use this point and pass it to another function, createMarker(). This function
creates a marker, adds an event listener to it, then returns the same marker.

 // Creates a marker at the given point with the given number label
 function createMarker(point, stationName) {
 var marker = new GMarker(point);
 GEvent.addListener(marker, "click", function() {
 marker.openInfoWindowHtml("<div style=\"width:220px;
 height:250px;\">" + stationName + "</div>");

 });
 return marker;
 }

A marker is created in the first line of the function. Remember that the GEvent
object is created when you call the Google Map. Its job is to watch for events on
all Google Map objects. We tell it to listen for a click on this marker through the
addListener() method.

In the callback function parameter, we define what's going to happen when
the marker is clicked. Here, we tell the map to open the InfoWindow using
openInfoWindowHtml(). We provide HTML as the parameter using the station
name. When opened, the InfoWindow will appear over the marker. The name of the
station will be the only content in the window.

 </script>	
</head>
<body onload="load()" onunload="GUnload()">

In our body tag, we initiate map creation by calling load(). We also add a call to
GUnload() when the page is exited. GUnload() is part of the Google Maps API.
Its job is to close up any memory leaks. It is always a good idea to call this at an
onunload page event whenever you are using Google Maps.

<form name="selectionForm" action="index-Basic.php" method="get">
<select name="line">
 <option value="">Select a Line</option>

London Tube Photos

[266]

<?php foreach($linesArr as $lines) { ?>
 <option value="<?= $lines->getLineId() ?>" <?= $_GET['line'] ==
 $lines->getLineId() ? "selected=\"selected\"" : "" ?>><?= $lines-
 >getLineName() ?></option>
<?php } ?>
</select>
<input type="submit" value="Go!" />
</form>

This code block draws the form object that we use for line selection. The PHP
foreach loop loops through the array of Tube lines to grab each line object.

 <div id="map" style="width: 800px; height: 600px"></div>

</body>
</html>

At this point, the map is functional. You have a mashup that can draw stations in the
London Tube system. You can navigate around, select lines, and click on markers to
see what stations you clicked on.

Chapter 6

[267]

Using Flickr Services with AJAX
With some slight modification, we can add a call to Flickr Services. Generally, the
strategy we want is to make an HTTP request with the XMLHttpRequest object when
the user clicks on a marker A good place to do this is in the callback function for the
marker's event listener. We already know the name of the station, so we can use it as
the basis of a search to Flickr.

This is a very acceptable strategy, but there's a huge problem. In general, browsers
cannot make an HTTP request with XMLHttpRequest to another server. This is
done to prevent cross-site scripting attacks, in which a malicious website runs
code to steal information about sensitive information between a user and another
website. In practice, this means that XMLHttpRequest calls can only go back to the
server the page originated from. With this limitation, how are we going to use
XMLHttpRequest to make a call from our website to Flickr Services?

Creating an XMLHttpRequest Proxy
The solution is to create a web service proxy on our server. The web server will
execute the Flickr Service call, not the browser. Our XMLHttpRequest action will
execute a GET request on the proxy and pass Flickr Services parameters to the proxy.
The proxy will then make a request to Flickr, and pass the response back, unaltered,
to the web browser. The browser doesn't know or care that the true data source
is from Flickr. In the examples code, in the services directory, the proxy is named
searchFlickr.php. This is a small file whose sole job is to do just that.

<?php
require_once('../classes/RESTParser.php');
$restParser = new RESTParser();

We will use the REST interface from Flickr. In this code, we will use the same REST
parser that we created from Chapter 1 to handle the REST call.

$paramArray = array();
foreach ($_GET as $key => $value) {
 if ($key == 'format' || $key == 'nojsoncallback' || $key = 'text')
 {
 $paramArray[$key] = $value;
 } else {
 die("Unallowed Parameter Passed.");
 }
}

London Tube Photos

[268]

We initialize an array of Flickr Services parameters. We will pass this array to
the REST parser when we actually make the service call. This array is populated
by looping through the GET array and adding the array key and values to the
$paramArray. As this page is open to the entire world, it is a good idea to put some
security around it. Here, we are allowing only three Flickr parameters to be passed
from the calling page. Otherwise, the script will die.

//Add the API Key to the Request
$paramArray['api_key'] = 'YOUR FLICKR SERVICES KEY';

$paramArray['method'] = 'flickr.photos.search';
$paramArray['per_page'] = '4';
$paramArray['page'] = '1';
$paramArray['text'] .= ' London tube';

One additional benefit of this approach is that we get to hide our API key on the
server. If it was JavaScript making this call, we would have to expose our key in
front end code, and anyone can steal it. This isn't as much of a concern with the
Google API Key because that key is restricted by domain. However, there is no such
restriction for the Flickr Services key. Here, we add it to the parameter array on the
server. The key is passed in server-to-server communication, and the user will
never see it.

As an additional security measure, we also specify the Flickr method here. This
insures that only the flickr.photos.search method is called from this script.

We are passing two additional parameters to make the results a little more
manageable. per_page will limit the results returned from Flickr to just 4 photos
per page. We then tell Flickr to return only one page using the page parameter. The
result is that a maximum of four photos will be returned by Flickr.

The final line in this block adds "London tube" to our search query terms passed to
Flickr. This is solely for the purposes of narrowing the search..

echo $restParser->callService($paramArray, 'api.flickr.com', '/
services/rest/', 'GET');
?>

Finally we pass the array of parameters to the RESTParser's callService() method
along with the Flickr Services server and endpoint information. The method returns
the response from the server, and we just echo it out to the requester.

Chapter 6

[269]

Modifying the Main JavaScript
Now we can modify our mashup's index page. In the examples code for this chapter,
there is a file named index.php. This is the full, completed home page for the
mashup. It is basically index-Basic.php from earlier, but with the Flickr Services
calls. We will talk about what is different with this version from the basic version.

The first thing we need to do is add a handful more global variables to track.

 var g_xmlHttp;
 var g_stationName;
 var g_flickrString;
 var g_map;

The first, g_xmlHttp, is a container for the XMLHttpRequest object. The next two,
g_stationName and g_flickrString, are used to hold information from the Flickr
Service response. We will talk about the need for them as we encounter them.
Finally, g_map is the same Google Map container as before.

Making the XMLHttpRequest
Before we can make XMLHttpRequest requests, we need a function to create the
XMLHttpRequest object when a request is about to be made. This is done through the
createXMLHttpRequest() function.

 function createXMLHttpRequest() {
 if (window.XMLHttpRequest){
 g_xmlHttp = new XMLHttpRequest()
 } else if (window.ActiveXObject) {
 g_xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
 }
 	}

This code uses the standard browser check to see if the browser can create a native
XMLHttpRequest object or, if it is Internet Explorer, create a Microsoft.XMLHTTP
request object through ActiveXObject. The object is then placed in g_xmlHttp.

We call createXMLHttpRequest() in the first line of a modified Event Listener
callback function.

GEvent.addListener(marker, "click", function() {
 createXMLHttpRequest();
 g_stationName = stationName;

retrieveFlickrPhotos(stationName);
 marker.openInfoWindowHtml("<div style=\"width:220px; height:250px;\
 ">" + stationName + "<p style=\"text-align:center;\">
 </p></
 div>");
});

London Tube Photos

[270]

When the AJAX response is returned, the browser will have to update the
InfoWindow. At that point, the browser will not know the name of the station that
was clicked, so we store it in a global variable. This second statement is more for user
friendliness than application functionality.

Whenever someone clicks on the marker, the application should make the AJAX
request. Therefore, it needs to be included here in the click event. We will have to
define the request execution in a new function, retrieveFlickrPhotos(). This
function will actually create the Flickr search parameters, so we need to pass the
name of the station to use as the search term.

 function retrieveFlickrPhotos(stationName) {
 var url = "services/searchFlickr.php? format=

 json&nojsoncallback=1&text=" + escape(stationName);
 g_xmlHttp.onreadystatechange = parseFlickrSearch;
 g_xmlHttp.open("GET", url, true);
 g_xmlHttp.send(null);

 }

This function first prepares the URL back to our searchFlickr.php service on our
server. We add the Flickr Services parameters to this URL. The parameters we pass
are summarized as follows:

Parameter Value Notes
format json We want the response to be in JSON.
nojsoncallback 1 We do not want to automatically execute a callback when

the JSON response is received. This functionality will be
handled by the XMLHttpRequest callback.

text The station
name and
extra search
parameters

We need to pass the name through the JavaScript
escape() function to make it URL-friendly. We also pass
the terms "London" and "tube" to narrow our search. The
latter is purely to refine our results.

After that, the call to the service is executed. We define a callback named
parseFlickrSearch() to handle the response.

Chapter 6

[271]

Race Conditions
After this, we should create parseFlickrSearch() and define how we are going to
update the InfoWindow with Flickr photos. Before we do this, though, we need to
talk a little bit about race conditions.

Race conditions are a notion that originated in the electronics design, but has been
adopted by software designers. In simple terms, it is when execution of a code
happens before a prerequisite is met. This is a constant pitfall in multi-threaded
languages like C, C++, and Java. PHP, being a single threaded language, does not
usually encounter a lot of race condition issues. One exception to this in PHP and an
example of a race condition is in file manipulation.

If you copy a file to a location with PHP's copy() function, the operating system
needs to finish copying before you can work on the copy. Otherwise, operations on
the copy will fail. This might not be an issue with 4 kilobyte text files, but imagine
moving a 700 megabyte CD image. Even with a fast RAID, this might take a minute
or so to copy, during which time, your script must wait.

In developing with web services, where we have to call other networks, we will need
to be cognizant of race conditions due to network latency. AJAX only adds in more
complexity. An AJAX application, where code execution takes place on the browser,
has no idea what is going on with the web server. If multiple asynchronous requests
are made before they are fulfilled by the server, AJAX applications may see strange
results. Data retrieved by a request may not match up perfectly to the request that
initiated it. In other words, what you see on screen may have been caused by an
action several clicks ago. Our code must successfully handle these cases.

We will encounter race conditions at several points when we parse code. There are
many strategies we can employ to counter race conditions, and they are usually
much customized to a problem. However, solutions often fall into broader categories.
One way to combat a race condition is to pre-cache the data during a time when the
user is not interacting with the system so things like network latency and system
timeouts are not significant. Another solution is to reserve and hold onto a resource
so that it will be available when you need it. When we look at our race conditions,
we will simply make sure every resource has arrived before we execute code.

London Tube Photos

[272]

The first time we encounter a race condition is when we click on a marker. At this
point, the InfoWindow opens. The AJAX request has been initiated, yet it must go
through our proxy, wait for Flickr's response, and then come back through our
proxy. We face some network latency. Meanwhile, our user sees a blank window.

Is anything happening on the left? Did the service find any photos? Did the server
time out? The user does not know. This condition is not disastrous, but shows that
we have to do something about the timing. A perfectly reasonable way to handle this
is to tell the user that something is definitely happening, and be patient. On the right,
we add a "loading" graphic in the user interface to tell the user to wait.

 If you we clicked on a marker, would you rather see the blank space on the left, or
some feedback of status like the one on the right?

To add this, we can simply add an image tag to the HTML string that is passed when
we open the InfoWindow.

marker.openInfoWindowHtml("<div style=\"width:220px; height:250px;\
">" + stationName + "<p style=\"text-align:center;\"><img src=\
"images/wait.gif\" style=\"padding-top:50px;\" /></p></div>");

Chapter 6

[273]

Make Your Own Load Graphics
There are many repositories out there with load images for you to
download and use for free. If none of them suit your tastes, you can
make your own. Fortunately there is a site that can help. Ajaxload.info
(http://www.ajaxload.info/) offers many basic load designs and
lets you customize with any color.

Parsing the AJAX Response
Let's continue with our response parsing code. This section will deal with how we
get data out of the call to Flickr Services and how we update the web page. The first
step is to create parseFlickrSearch(), the callback function that we specified when
we made the outgoing HTTP request with XMLHttpRequest.

function parseFlickrSearch() {
 if (g_xmlHttp.readyState == 4) {
 var results = eval('(' + g_xmlHttp.responseText + ')');
 var photo = results.photos.photo;
 var totalPhotos = results.photos.total;
 var l_flickrString = "";

We start off by checking the status of the request. If the request is complete, we
continue with the execution of our code. Little did we know previously that by
waiting, we were dealing with a race condition.

The first statement after the if statement places the Flickr response, stored in the
XMLHttpRequest property responseText, in the results variable. This is after the
code has been executed through eval().

The next line goes straight to the list of photos returned. Remember the first few lines
of a Flickr Service Response:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photos page=»1» pages=»20» perpage=»100» total=»1904»>
 ��� <photo id="412962278" owner="43203076@N00" secret="63e7e2e1f0"
 server="183" farm="1" title="Doin' Studio Time" ispublic="1"
 isfriend="0" isfamily="0" />

The service returns one photo element for each photo found. In JSON, this is treated
as an array. Therefore, think of photo as an array of photo objects.

London Tube Photos

[274]

We set a variable, totalPhotos, to manage the total number of photos returned. We
set one last local variable, l_flickrString, to store the local results from Flickr. This
is a local variable that will be appended to the global g_flickrString.

 g_flickrString = "<div>" + g_stationName + "
"

The HTML that will be in the InfoWindow is stored in the variable g_flickrString.
Here, we start the string by repeating the name of the station, which was stored in a
global variable earlier when the marker was first clicked.

if (totalPhotos > 0) {
for (x = 0; x < totalPhotos; x++) {
 l_flickrString = " " +
 "<a href='http://www.flickr.com/photos/PHOTO_OWNER/
 PHOTO_ID' />" +
 "<img src='http://farmPHOTO_FARM.static.flickr.com" +
 "/PHOTO_SERVER/PHOTO_ID_PHOTO_SECRET_t.jpg' border='0' />";
 l_flickrString = l_flickrString.replace(/PHOTO_OWNER/g,
 photo[x].owner);
 l_flickrString = l_flickrString.replace(/PHOTO_ID/g,
 photo[x].id);
 l_flickrString = l_flickrString.replace(/PHOTO_FARM/g,
 photo[x].farm);
 l_flickrString = l_flickrString.replace(/PHOTO_SERVER/g,
 photo[x].server);
 l_flickrString = l_flickrString.replace(/PHOTO_SECRET/g,
 photo[x].secret);
 g_flickrString = g_flickrString + l_flickrString;
}

Here is where the population of Flickr data actually takes place. The if clause makes
sure some results were returned. If there are results returned, we loop through the
photo objects using a for loop and limited to the frequency of loops to totalPhotos.
Each loop through creates a string containing the URL to the picture returned and
the anchor tag to the photo's page. This string is stored in the l_flickrString
variable. For readability, we use a few placeholders for the Flickr values in the string,
then we use the JavaScript replace() method to exchange these placeholders with
the actual values from the photo array. At the end,. l_flickrString is attached to
the global g_flickrString.

 } else {
 g_flickrString = g_flickrString + "<p>No photos found
 for this station.</p>";
 }
 }
}

Chapter 6

[275]

After this, we close the if-else block. The else statement says if no results were
found, update g_flickrString with a message telling the user that the search came
up empty. This function's sole job was to create the string of HTML that will be in
InfoWindow. Let's take a look at updating InfoWindow with this string.

The main population happens in updateInfoBox().

function updateInfoBox() {
 if (g_flickrString == undefined) {
 var timeout = window.setTimeout("updateInfoBox()", 3000);
 } else {
 g_map.getInfoWindow().getContentContainers()[0].innerHTML = "<div>"
 + g_flickrString + "</div>";
 //Cleanup
 g_flickrString = null;
 g_stationName = null;
 }
}

This function is the last function called by the event listener.

GEvent.addListener(marker, "click", function() {
 createXMLHttpRequest();
 g_stationName = stationName;
 retrieveFlickrPhotos(stationName);
 marker.openInfoWindowHtml("<div style=\"width:220px; height:250px;\
 ">" + stationName + "<p style=\"text-align:center;\"><
 img src=\"images/wait.gif\" style=\"padding-top:50px;\" /></p></
 div>");
 updateInfoBox();
});

However, remember the service call happens elsewhere. While the information is
being retrieved, the window is already there. This is another race condition. If we call
g_flickrString before it is set, you will find it is undefined. If g_flickrString is
empty, use the setTimeout() JavaScript function to call itself after three seconds.
This delay in execution is a frequent tactic used in AJAX implementations.

If results were found, we get the DOM node of the InfoWindow box. This was done
using the DOM Inspector in Firefox. After this, we can append g_flickrString into
the node. Finally, we clean up the global variables by setting them to null.

London Tube Photos

[276]

At long last, our mashup is complete. We can take it out for a test drive. Load the
web page in your browser and select a line with the pull-down menu. The markers
for the line will appear.

Chapter 6

[277]

Click on one of the markers.

The InfoWindow will pop up. Through AJAX, our application is already searching
for our station at Flickr. When it finds it, the first four photos are added to the
InfoWindow.

London Tube Photos

[278]

Summary
We have covered a lot of technologies in this chapter. We learned how to read RDF
documents and how to extract data from them using SPARQL and RAP for RDF.
These standards are fairly new. However, given the desire to put as much as possible
into RSS, these technologies are certainly bound to take off.

When we created the front end application, there were more new technologies
including AJAX to communicate from the server to the device. The biggest pitfall
in this AJAX application was race conditions. We examined how to overcome those
with various techniques.

Index
Symbols
411Sync.com API

about 179
format 182
mobile search keyword, creating 180-183
mobile search keyword, naming 181
XML data, HTTP location 182, 183

A
Amazon API

about 61
ECS 62
ECS REST service 63

application project, Amazon.com
Amazon API 61
mashup 65
overview 13
protocols used 14
REST 38
REST in PHP 39
XML-PRC 14
XML-PRC in PHP 21
XML-PRC response, processing 31

Astrolicio.us
as mashups 8

Atom 136

B
binding element 95
body element

about 98
document binding 99
RPC binding 99

C
California Highway Patrol (CHP) Incident

page
about 183
frames 184
pull-down menu, creating 185

D
data report through SMS, CHP project

411Sync.com API 179
CHP Incident page 183
deploying 200, 201
mashing up 190
overview 163
screen-scraping, using PHP 164
testing 200, 201

data types, XML-RPC
base64-encoded binary 18
boolean 17
data/time 18
double 17
integer 17
scalar values 16
string 16

definitions element 84

E
ECS, Amazon API

about 62
customer information, retrieving 63
products information 62
products, searching 62
restaurant information 63
seller information, retrieving 63

[280]

shopping carts 63
XSL support 63

ECS REST request
about 63
service location 63-65

envelope element 97

F
fault element 100
Flickr Services API

about 243
Google Maps, integrating with 206
photo, retrieving 247, 248
search, executing 244
service results, interpreting 245, 246

G
Google Maps API

about 235
events 240
Flickr, integrating with 206
geocoding 236-239
InfoWindow box 240-243
map, creating 235, 236
markers 239

H
header element 98

I
Internet UPC Database API

about 58
array keys 60
lookupEAN 59
lookupUPC 59

J
JavaScript Object Notation. See JSON
JSON

about 231
JavaScript objects 231, 232
properties, accessing 233
response, serializing 234
structure 232, 233

L
Last.fm

Audioscrobbler Web Services API 141, 142
overview 140

London Tube project
application sequence 207
Flickr Services API 243
Google Maps and Flickr Services,

integrating 206
Google Maps API 235
information, finding 205, 206
JSON 231
mashing up 249
overview 203
planning 204, 205
protocols used 203
RDF 207-209
RDF API for PHP 221
SPARQL 210
XMLHttpRequest object 224

M
mashup, Amazon API project

about 65
Amazon cart, creating 75-78
Amazon XML responses, handling 70
ECS lookup response 70-74
working 66-69

mashup, California Highway Patrol project
about 190
application components 190
CHP DOM parser class 193-198
deploying 200, 201
DOM parser class 191, 192
feed page, creating 199
incident class 191
testing 200, 201

mashup, London Tube project
about 249
AJAX response, parsing 273-278
database, building 249
database, populating 249
database population script 254-260
database schema, creating 250
file, examining 249, 250
Flickr with AJAX 267-277

[281]

lines query 253
lines to stations query 253, 254
main JavaScript, modifying 269
main user interface 262-266
race conditions 271, 272
SPARQL qureries, building 251
stations query 252, 253
TubeSource database interface class

261, 262
XMLHttpRequest, making 269, 270
XMLHttpRequest proxy, creating 267, 268

mashup, video jukebox project
about 153
architecture 153
content page 156-158
main page 154
navigation page 154-156
using 158-161

mashups
about 7
Astrolicio.us 8
creating 11
examples 7
reason for growth 9
resources 12
Web 2.0 9
Wii Seeker Site 7

message element
about 91
document binding 92
RPC binding 91

P
parsing

about 167
PEAR using 142

PEAR for parsing
about 142
choosing criteria 143
File_XSPF 144-146
package, installing 143
package usage 143
Services_YouTube 147, 148
XML_RSS 149-152

PHP and SAX
about 48

callback functions, setting up 51, 52
callback functions, working of 52-54
SAX Parsar class, creating 54-58
SAX Parsar class, examining 55, 56
SAX Parsar class, testing 57, 58
XML functions, using 50, 51

portType element 93
projects

application project, Amazon.com 13
data report through SMS, CHP project 163
London Tube project 203
search engine, building 81
video jukebox project 125

R
RDF

about 207
for PHP 221-224
triples 208

Representational State Transfer. See REST
REST. See also REST in PHP

about 38
advantages 38
AJAX 39

REST in PHP. See also REST
request, making 40
response, processing 47
working with 39

REST request
GET request 40, 41
GET request functions 42, 43
initiating, sockets used 41, 42
making 40
Parsar class 43-45
Parsar class, testing 45-47
POST request 40, 41
POST request functions 42, 43

REST response
PHP and SAX 48
processing 47, 48

RSS
about 129
Atom 136
formats 129
RSS 1.1 130
RSS 2.0 132-134

[282]

version difference 134
versions 129

RSS 1.1
channel child elements 131
file structure 130
item child elements 132

RSS 2.0
channel child elements 134, 135
file structure 132
item child elements 135

S
SAX. See PHP and SAX
screen-scraping with PHP

about 164
DOM functions, parsing with 167-178
legal issues 164
technical issues 164

search engine project
mashing up 119-123
Microsoft Live Search Web Service 112
Microsoft Live Search Web Service, using

112-115
overview 81
PHP SoapClient 101
protocols 82
SOAP, protocols 82
Yahoo! Search Web Service 116
Yahoo! Search Web Service, using 116-118
Yahoo! Search Web Service location 116

service element 96
SOAP

about 82
advantages over XML-RPC 82
disadvantages 82
WSDL with XSD 83

SoapClient
about 101
calls, making 105-107
instantiating 103-105
non-WSDL mode, instantiating 104
parameters, creating 102, 103
SOAP errors handling, SoapFault used 108
SOAP operations calling, non-WSDL mode

108

SOAP operations calling, SDL mode 107
SOAP response, handling 108-112
successful results, handling 109-112
WSDL mode, instantiating 104

SOAP message 97
SOAP response

error handling, SoapFault 108
handling 108
successful results, handling 109-112

SPARQL
about 210
features 221
query structure 211, 212
query subject, analyzing 210, 211
WHERE clause 213-221

T
types element

about 85
arrays 90
complex type 88
simple type 86

U
UPC Database API. See Internet UPC

Database API

V
video jukebox project

Last.fm overview 140
mashing up 153
overview 125
PEAR for parsing 142
protocols used 125
RSS 129
XSPF 126
YouTube overview 136

W
Web 2.0

about 9
characteristics 9

[283]

importance of data 9
user communities 10, 11

Wii Seeker Site
as mashups 7

WSDL 82
binding element 95
body element 98
definitions element 84
envelope element 97
fault element 100
header element 98
message element 91
portType element 93
service element 96
SOAP message 97
structure 84
types element 85
XSD 83

X
XML-RPC. See also XML-RPC in PHP

about 14
arrays 18
data types 16
integer 17
parameters 16
procedure call 14
request 15
response 20, 21
structs 19
structure 14

XML-RPC in PHP. See also XML-RPC
arrays, passing 27
calling, sockets used 29-31
data serializing, encode request used 22
multiple parameter request 26
request, making 22
single parameter request 23-26
struct, passing 27-29
working with 21

XML-RPC request
arrays, passing 27
base64, single parameter 25
data serializing, encode request used 22

date/time, single parameter 25
double data type, single parameter 24
making 22
multiple parameter 26
single parameter 23, 24
struct, passing 27-29
XML-RPC calling, sockets used 29-31

XML-RPC response
Parser class, creating 32, 33
Parser class, testing 33-35
processing 31, 32
XML-RPC handling, PEAR used 35-38

XMLHttpRequest object
about 224
AJAX, debugging 231
callback, creating 228-231
callback, using 228-231
creating 226
HTTP request, making 227, 228
overview 226
using 226

XSD 82
XSPF

about 126
playlist child elements 127, 128
playlist structure 126, 127
track child elements 128, 129

Y
YouTube

developer API 138
developer methods 138
features 136, 137
overview 136
response with REST 139
XML-RPC call 138

	PHP Web 2.0 Mashup Projects
	Table of Contents
	Preface
	Chapter 1: Introduction to Mashups
	Web 2.0 and Mashups
	Importance of Data
	User Communities

	How We Will Create Mashups
	More Mashups

	Chapter 2: Buy it on Amazon
	Project Overview
	XML-RPC
	XML-RPC Structure
	XML-RPC Request
	Arrays
	Struct

	XML-RPC Response

	Working with XML-RPC in PHP
	Making an XML-RPC Request
	Serializing Data with XML-RPC Encode Request
	Calling XML-RPC Using Sockets

	Processing an XML-RPC Response
	Creating an XML-RPC Parser Class
	Testing Our XML-RPC Parser Class

	Using PEAR to Handle XML-RPC

	REST
	Working with REST in PHP
	Making a REST Request
	A GET and POST Refresher
	Using Sockets to Initiate a REST Request
	Creating GET and POST Request Functions
	Making a REST Parser Class
	Testing Our REST Parser Class

	Processing a REST Response
	Basic Walkthrough with PHP and SAX
	Creating a SAX Parser Class

	Internet UPC Database API
	Amazon API
	A Tour of ECS
	Anatomy of an ECS REST Request
	Location of Service

	Mashing Up
	Product Lookups
	Handling Amazon's XML Responses

	Summary

	Chapter 3: Make Your Own Search Engine
	Project Overview
	SOAP
	Web Services Descriptor Language (WSDL) With XML Schema Data (XSD)
	Basic WSDL Structure
	definitions Element
	types Element
	message Element
	portType Element
	binding Element
	service Element

	The SOAP Message
	Envelope
	Header
	Body
	Fault

	PHP's SoapClient
	Creating Parameters
	Instantiate the SoapClient
	Instantiating in WSDL Mode
	Instantiating in Non-WSDL Mode

	Making the Call and Using SoapClient Methods
	Handling the SOAP Response

	Microsoft Live Search Web Service
	Using Search

	Yahoo! Search Web Service
	Using Web Search

	Mashing Up
	Summary

	Chapter 4: Your Own Video Jukebox
	Project Overview
	XSPF
	RSS
	YouTube Overview
	YouTube Developer API

	Last.fm Overview
	Audioscrobbler Web Services

	Parsing With PEAR
	Package Installation and Usage
	File_XSPF
	Services_YouTube
	XML_RSS

	Mashing Up
	Mashup Architecture
	Main Page
	Navigation Page
	Content Page
	Using the Mashup

	Summary

	Chapter 5: Traffic Incidents via SMS
	Project Overview
	Screen Scraping the PHP Way
	Parsing with DOM Functions
	Basic Element and Attribute Parsing
	Testing the Schema
	More About PHP's Implementation of the DOM

	411Sync.com API
	Creating Your Mobile Search Keyword
	Name Your Keyword
	Format the Users will Use when They Use Your Search
	HTTP Location of the XML Data

	California Highway Patrol Incident Page
	Mashing Up
	The Incident Class
	The DOM Parser Class
	The CHP DOM Parser Class
	Creating the Feed Page
	Testing and Deploying

	Summary

	Chapter 6: London Tube Photos
	Project Overview
	Preliminary Planning
	Finding Tube Information
	Integrating Google Maps and Flickr Services
	Application Sequence
	Resource Description Framework (RDF)
	SPARQL
	Analyzing the Query Subject
	Anatomy of a SPARQL Query
	Writing SPARQL WHERE Clauses
	Basic Principles
	A Simple Query
	Querying for Types
	Ordering, Limiting, and Offsetting
	UNION and DISTINCT

	More SPARQL Features

	RDF API for PHP (RAP)
	XMLHttpRequest Object
	XMLHttpRequest Object Overview
	Using the Object
	Creating the Object
	Making the HTTP Request
	Creating and Using the Callback

	JavaScript Object Notation (JSON)
	JavaScript Objects Review
	JSON Structure
	Accessing JSON Properties
	Serializing the JSON Response

	Google Maps API
	Creating a Map
	Geocoding
	Markers
	Events
	InfoWindow Box

	Flickr Services API
	Executing a Search
	Interpreting Service Results
	Retrieving a Photo or a Photo's Page

	Mashing Up
	Building and Populating the Database
	Examining the File
	Creating Our Database Schema
	Building SPARQL Queries
	Stations Query
	Lines Query
	Lines to Stations Query
	Database Population Script

	The TubeSource Database Interface Class
	The Main User Interface
	Using Flickr Services with AJAX
	Creating an XMLHttpRequest Proxy
	Modifying the Main JavaScript
	Making the XMLHttpRequest
	Race Conditions
	Parsing the AJAX Response

	Summary

	Index

